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Robust finite-time guidance against maneuverable targets with unpredictable
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Abstract

This paper presents a robust finite-time guidance (RFTG) law to a short-range interception problem. The main challenge
is that the evasive strategy of the target is unpredictable because it is determined not only by the states of both the
interceptor and the target, but also by external un-modeled factors. By robustly stabilizing a line-of-sight rate, this paper
proposes an integrated continuous finite-time disturbance observer/bounded continuous finite-time stabilizer strategy.
The design of this integrated strategy has two points: 1) e↵ect of a target maneuver is modeled as disturbance and then
is estimated by the second-order homogeneous observer; 2) the finite-time stabilizer is actively coupled with the observer.
Based on homogeneity technique, the local finite-time input-to-state stability is established for the closed-loop guidance
system, thus implying the proposed RFTG law can quickly render the LOS rate within a bounded error throughout
intercept. Moreover, convergence properties of the LOS rate in the presence of control saturation are discussed. Numerical
comparison studies demonstrate the guidance performance.

Keywords: Robust finite-time guidance, Maneuverable target, Unpredictable evasive strategy, Finite-time
input-to-state stability

1. Introduction

Interception of a maneuverable target is one of essential
questions in the study of homing guidance. With the ad-
vancement of artificial intelligence, propulsion, composite
material, etc, evasive capability of the target has been in-
creasing at a rapid pace, and poses a challenging problem.
This new guidance problem is referred to as Unpredictable
Maneuverable Target Interception (UMTI) herein; that is,
the interceptor cannot predict the evasive strategy of the
target. The existing evasive strategies consist of conven-
tional maneuver models [1, 2] and optimal evasive strate-
gies [3, 4, 5]. The conventional maneuver models, such as
a step maneuver, depend on prescribed maneuvers. The
optimal evasive strategies are completely determined by
the relative motion information of the interceptor and the
target. These two types cannot be applied to the UMTI
since both of them do not explicitly take account of the
external un-modeled factors, particularly involving the de-
terministic yet unknown. In addition, considering that ma-
neuvering capability of the target is comparable to that of
the interceptor, the interceptor should be capable of ex-
ploiting its limit maneuverable capability, that is, control
saturation.
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This paper is concerned with designing a robust guid-
ance law to achieve the UMTI. In the literature, a number
of guidance laws have been investigated to deal with the
problems of the maneuverable target interception. These
guidance laws can be roughly classified into two categories:
relative-motion-prediction-based guidance law (RMP-GL)
and manifold-stabilization-based guidance law (MS-GL).
The RMP-GL usually obtains an optimal solution subject
to a predetermined interception engagement (such as an
ideal collision triangle scenario) using prediction of the rel-
ative motion between the interceptor and the target. The
design tools of the RMP-GLs mainly include optimal con-
trol theory and di↵erential game theory. For example, in
[6], assuming an explicit model of the target maneuver and
a first-order missile dynamics, the interception problem is
formulated as a linear quadratic control problem; in [4],
a nonlinear 3D-vector guidance law is designed, which is
an optimal strategy pair in the sense of the saddle-point
inequality. The RMP-GLs, however, cannot be applied
to the UMTI since the prediction of the intercept motion
(including a time-to-go and an intercept point) is di�cult
to carry out due to significant uncertainties of the target
motion.

With respect to the MS-GLs, they render the interceptor-
target relative motion around a prescribed manifold by
compensating for (or suppressing) adverse e↵ect of vari-
ous disturbances and uncertainties related to the target
maneuver. The design tools mainly consist of adaptive
control, sliding mode control, high-gain control, etc. In [7],
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the authors parameterize upper bounds of the target accel-
eration and then develop the resulting parameter adaptive
laws, thus handling the target maneuver. As such, the con-
trol saturation and the speed of the parameter adaptation
are two fundamental concerns in adaptive control design
[8, 9, 10]. To address these two concerns, in [11], a set of
relative-state-dependent basis functions is selected to rep-
resent the target acceleration, and then a weight vector
adaptive law is derived using optimal modification tech-
nique. Although the adaptive guidance laws work well in
the above-mentioned scenarios, they have three drawbacks
herein: 1) the guidance performance heavily depends on
the convergence of adaptive parameters, while these pa-
rameters are easily prone to diverge when the jerk of the
maneuverable target is considerable; 2) the robustness to
the target maneuver relies on the parameterization of the
target maneuver, while it is very hard to accurately pa-
rameterize the target maneuver under study; 3) the order
of the closed-loop guidance system will inevitably increase
as the dimension of the adaptive parameters grows.

The sliding mode control is used to suppress the ef-
fect of the target maneuver in [12, 13]. In [14], the high-
order sliding mode control is adopted to estimate and to
compensate for the e↵ect of the target maneuver. In this
regard, the sliding mode guidance laws are upper-bound-
dependent. For the UMTI, the upper bounds of the target
acceleration are required to be chosen relatively big for
the sake of completely canceling the adverse e↵ects of the
target maneuver. Consequently, the resulting control is
conservative and may induce severe chattering due to var-
ious kinds of modeling imperfections [15]. As another way,
a smooth sliding mode guidance law is proposed in [16], in
which an adaptive law is used to estimate the upper bound
of the target maneuver. However, the adaptive parameter
may diverge under the situation of control saturation.

In [17], the high-gain control is used to ensure input-to-
state stability for a closed-loop LOS rate dynamics, and
thereby the residual error of the LOS rate can be made
su�ciently small in the presence of the target maneuver.
In [18], a finite-time guidance is proposed to nullify the
LOS rate, and the convergence boundary layer is theoret-
ically analyzed. The guidance performance of the high-
gain control, however, may deteriorate due to measure-
ment noise when the system bandwidth is excessively en-
larged. In fact, it is di�cult to make a reasonable trade-o↵
between the disturbance suppression and the noise attenu-
ation without the priori information of the evasive strategy
of the target.

Following the technical route of the MS-GLs, a ro-
bust finite-time guidance (RFTG) law is presented in this
paper. An integrated continuous finite-time disturbance
observer (CFTDO)/bounded continuous finite-time stabi-
lizer (BCFTS) strategy is proposed. The CFTDO is de-
signed to estimate the disturbances that are the e↵ects
of the target maneuvers by making the observation-error
dynamics behave as a second-order homogeneous system.
The BCFTS uses a typical first-order homogeneous system

to specify the finite-time stability of the nominal guid-
ance system in consideration. Both the CFTDO and the
BCFTS are based on non-smooth yet continuous feedback
control. Such non-smooth feedback control has a favor-
able characteristic: its equivalent control gain increases
as the feedback error decreases. In contrast to existing
smooth feedback controls, the non-smooth feedback con-
trol may have better convergence and robustness [19, 20]
and is suitable to be applied to the UMTI. Given these
virtues, a few guidance laws based on the non-smooth
feedback control have been designed. For example, the
finite-time convergence of the LOS rate is realized in [12],
but the e↵ect of the target maneuver is suppressed using
the conventional sliding mode control; in [21], using the
high-gain control, the authors present a guidance law with
finite-time input-to-state stability (FTISS). Note that the
robustness of these two guidance laws is routinely guaran-
teed by the sliding mode control or the high-gain control.
As discussed previously, these two control methods have
their own drawbacks when adopted in the UMTI.

To address the preceding drawbacks, the integrated
strategy is put forward with two key ideas: 1) the e↵ect of
the target maneuver is modeled as the disturbance and is
estimated using the CFTDO; 2) the design of the BCFTS
is coupled with that of the CFTDO. An unique charac-
teristic of this integrated strategy is that it can explic-
itly deal with the interplay between the CFTDO and the
BCFTS. This characteristic is di↵erent from the existing
finite-time disturbance observer-based control methodolo-
gies (e.g., [22, 23, 24, 25, 26]), which design the observer
and the finite-time controller in a decoupled fashion: they
are based on a zero-observation-error assumption. How-
ever, the observation errors cannot be perfectly canceled
in practice, especially concerning the UMTI. Nevertheless,
the proposed RFTG law can avoid such a restricted as-
sumption because of the integrated design adopted herein.

In addition, the proposed integrated strategy has sev-
eral appreciable advantages in the current scenario. The
BCFTS, which uses the control saturation to quickly sta-
bilize the LOS rate, can take advantage of the limit of
the maneuver capability of the interceptor. Regarding the
CFTDO, it can rapidly estimate the disturbance of in-
terest without su↵ering from the parameter convergence
issues. Through cooperation between the BCFTS and the
CFTDO, the resultant RFTG law is independent of both
the explicit maneuver models and the upper bounds of
the target maneuvers. Further, the RFTG law can guar-
antee locally FTISS in the presence of bounded derivative
of the disturbance, implying the LOS rate can be rendered
within a bounded error as quickly as possible. Numerical
comparison results demonstrate the proposed RFTG law
can guarantee the high-precision miss-distance.

This paper is organized as follows. We begin by formu-
lating a new short-range interception problem. In partic-
ular, a notion of the unpredictable evasive strategies is in-
troduced. The next section presents the robust finite-time
guidance law. Then, the convergence analysis of the LOS
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rate is conducted in non-saturation and saturation cases.
Finally, numerical comparison studies are performed to as-
sess the guidance performance.

2. Problem formulation

The design and analysis of the RFTG law is based on
the following assumptions:

Assumption 1. The motion of the interceptor and the
target is in a planar plane.

Assumption 2. Both the interceptor and the target per-
form maneuvers orthogonal to their velocity vectors.

Assumption 3. The speeds of the interceptor and the tar-
get, V

M

and V

T

, are constant, and V

M

> V

T

.

The equations of the relative motion between the in-
terceptor and the target are given as follows [27]:
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�2ṙ!

r

� cos(�� �

M

)a
M

r

+
cos(�� �

T

)a
T

r

, (3)

�̇

M

=
a

M

V

M

, (4)
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T

=
a

T
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where r is the interceptor-target range. � is the LOS angle.
! is the LOS rate: ! = �̇. �

M

and �

T

are flight-path
angles of the interceptor and the target. a

M

and a

T

are
acceleration of the interceptor and the target, respectively.
Herein, it is assumed that the variables, r, ṙ, �, !, V

M

,
and �

M

, are available to the interceptor, while the states
of the target, V

T

, �
T

, and a

T

are unknown.
The target acceleration in the UMTI can be described

by
a

T

= ⌅(x, ⌘,$, t), (6)

where x represents the states of the interceptor and the
target, such as r, �, V

M

, and V

T

. ⌘ represents the states
of the prescribed maneuver models satisfying

⌘̇ = f(⌘, &, t), (7)

where & represents the parameter vector of the prescribed
target maneuvers, such as frequency in a sinusoidal func-
tion. $ represents the deterministic yet unknown maneu-
vers, such as an artificial-intelligence model and an event-
trigger-based model. It is $ that makes the target accel-
eration unpredictable.

Assumption 4. The target acceleration ⌅(x, ⌘,$, t) is
continuously di↵erentiable with respect to t, and is bounded,
i.e., |⌅(x, ⌘,$, t)|  U

T

. The target jerk d⌅(x,⌘,$,t)

dt

is also
bounded.

It is worth mentioning that the target maneuver model
(6) almost encompasses existing target maneuver models
used so far in the homing guidance literature. To be spe-
cific,

1. when a

T

= ⌅(x, t), the resulting maneuvers are de-
termined by the information of the interceptor and
the target. The optimal evasive strategies fall into
this class;

2. when a

T

= ⌅(⌘, t), the resulting maneuvers repre-
sent the predictable maneuvers with the prescribed
forms defined by (7), such as step maneuver, vertical-
S maneuver, spiraling maneuver, etc;

3. when a

T

= ⌅(x, ⌘,$, t), the resulting maneuvers are
the model of the UMTI, which can not be predicted
onboard due to unavailable mathematical descrip-
tion for $.

Remark 1. From the view of the target maneuver mod-
els, the above three cases clarify the main di↵erences be-
tween the UMTI and the existing interception problems.
A specific target maneuver model concerning (6) is given
in Section 5.1 to assess the guidance performance of the
proposed guidance law.

At this point, we end this section by the objective of
the present study: design a guidance law to intercept the
target with acceptable small miss-distance in the presence
of the target maneuvers described by (6).

3. Robust finite-time guidance design

In this section, the RFTG law is presented: first, the
CFTDO is designed to estimate the e↵ect of the target ma-
neuvers; second, the integrated CFTDO/BCFTS strategy
is proposed to robustly stabilize the LOS rate. Note that
the design of both the CFTDO and the BCFTS is based on
homogeneity technology, which is able to construct homo-
geneous dynamic systems with favorable finite-time sta-
bility. The fundamental notions used herein are briefly
introduced in Appendix 7.1, and Appendix 7.2.

3.1. Continuous finite-time disturbance observer (CFTDO)

To estimate the e↵ect of the target maneuver, the CFTDO
is designed as follows:

˙̂
! =

�2ṙ!

r

� cos(�� �

M

)a
M

r

+ d̂

T

+ k

1

|! � !̂|↵ sgn(! � !̂),

˙̂
d

T

= k

2

|! � !̂|2↵�1 sgn(! � !̂),

(8)

where !̂ is the estimated LOS rate. d̂

T

is the estimated
e↵ect of the target maneuver d

T

= cos(���T )aT

r

. 1

2

< ↵ <

1. k

1

> 0. k

2

> 0. !̂(0) = !̂

0

. d̂

T

(0) = d̂

T0

. sgn(·) is a
signum function.
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Correspondingly, the observation-error dynamics are
given by

ė

!

= e

d

� k

1

|e
!

|↵ sgn(e
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ė
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where e
!

= !�!̂. e
d

= d
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�d̂
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. �(t) = ḋ

T

. e
!

(0) = !(0)�
!̂

0

. e

d

(0) = d

T

(0) � d

T0

. When �(t) = 0, the obtained
observation-error dynamics are reduced to a second-order
homogeneous system whose origin is finite-time stable [20].
The stability analysis is carried out in Section 4.1. When
�(t) 6= 0 and |�(t)| is bounded, the observation errors can
be made su�ciently small, which is proved in Section 4.2.

Remark 2. In light of the terms involving 1

r

in (8), their
value will be singular when r = 0. Nevertheless, as dis-
cussed in the guidance literature, such as [28], this kind of
singularity has little impact on the guidance performance.
Besides, in practice, the engagement ends before r = 0.

Remark 3. If ↵ = 1, the observer (8) is a conventional
Luenberger observer [29]. Compared with the Luenberger
observer, the observer (8) has better performance in con-
vergence and disturbance rejection by virtue of the non-
smooth feedback. In the case of ↵ = 1

2

, it is a second-
order sliding mode observer. Both the second-order slid-
ing mode observer and the observer (8) can guarantee the
finite-time convergence. Unlike the second-order sliding
mode observer, the observer (8) does not require the up-
per bound of the target jerk, which is hard to be properly
determined in the UMTI.

Remark 4. Another favorable property of the CFTDO is
that it works well in the presence of the control saturation,
which is observed in the numerical simulations.

3.2. Integrated CFTDO/BCFTS strategy

To stabilize the LOS rate with finite-time convergence,
the robust finite-time guidance (RFTG) law is designed
based on the integrated CFTDO/BCFTS strategy:

a

M

= U

M

sat

✓
�(�,!, d̂

T

)

U

M

◆
,

�(�,!, d̂
T

) =
1

cos(�� �

M

)
(�2ṙ! + c

1

r|!|� sgn(!) + rd̂

T

),

(10)

where U

M

is the upper bound of the interceptor accelera-
tion. c

1

> 0. 0 < � < 1. sat(·) is a saturation function:
sat(y) = min{1, |y|} sgn(y).

As shown in (10), the RFTG law is composed by the
CFTDO and the BCFTS. The task of the BCFTS is to
stabilize the LOS rate within a small enough error in finite
time. In particular, when |�(�,!, d̂

T

)| < U

M

, the resulting
closed-loop dynamics of the LOS rate is

!̇ = �c

1

|!|� sgn(!) + e

d

. (11)

If e
d

= 0, the resulting dynamics reduce to a typical first-
order homogeneous system with the finite-time stability,
specifying the nominal performance of the BCFTS.

The following lemma states a particular homogeneous
property of the integrated CFTDO/BCFTS strategy.

Lemma 1. Suppose that �(t) = 0, and |�(�,!, d̂
T

)| <

U

M

. Then, by � = ↵, the obtained closed-loop LOS rate
dynamics are homogeneous of degree 1 � 1

↵

with dilation
( 1

↵

,

1

↵

, 1).

Proof. Consider �(t) = 0 and |�(�,!, d̂
T

)| < U

M

. Using
the RFTG law (10), together with � = ↵, the closed-loop
closed-loop LOS rate dynamics are given by

!̇ = �c

1

|!|↵ sgn(!) + e

d

,

ė

!

= e

d

� k

1

|e
!

|↵ sgn(e
!

),

ė

d

= �k

2

|e
!

|2↵�1 sgn(e
!

).

(12)

By definition of the homogeneous vector field, it is straight-
forward to check that the dynamic system (12) is homo-
geneous of degree 1� 1

↵

with dilation ( 1

↵

,

1

↵

, 1).

If � = ↵, this integrated CFTDO/BCFTS strategy has
two advantages. First, it can explicitly cope with the inter-
play between the CFTDO and the BCFTS. Using the inte-
grated strategy, the closed-loop system is constructed as a
third-order homogeneous system with the finite-time sta-
bility. In the literature, the existing finite-time disturbance
observer-based control methodologies (e.g., [23, 25, 26])
design the observer and the finite-time controller inde-
pendently. In this case, the disturbances must be com-
pletely canceled by the observer in finite time, and then
the finite-time controller is designed based on this zero-
observation-error assumption. However, such convenient
design methodologies are not acceptable for the UMTI
since the zero-observation-error assumption is not valid.
Second, it can e↵ectively reduce the so-called chattering
e↵ects in implementation. As pointed out by [15], the
finite-time convergence is in conflict with the chattering
suppression demand. A small power in the non-smooth
feedback is the main reason. In this respect, increasing
the power is a reasonable solution to relieving chattering.
By virtue of the integrated design, the power can be in-
creased without sacrificing the robustness, thereby reduc-
ing the chattering e↵ects.

3.3. Guidance scheme of RFTG law

The RMP-GLs and the MS-GLs employ distinct guid-
ance schemes. The scheme of the former is to first predict
the relative motion between the interceptor and the tar-
get throughout the engagement, and then to correct the
guidance command, so that the guided relative motion
meets the prescribed guidance requirements. The MS-
GLs’s guidance scheme is to directly maintain a desired
relative motion relationship, which is a su�cient condi-
tion that can guarantee a successful interception. From
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the perspective of guidance performance, the RMP-GLs
can achieve various optimal performance needs, while, ex-
cept terminal constraints, the MS-GLs cannot attain other
guidance performance needs. For example, the energy
management of the RMP-GLs is superior to that of the
MS-GLs. As a result, the trajectory curvature of the
RMP-GLs would be significantly smaller than that of the
MS-GLs, assuming that the knowledge of the target ma-
neuver is available to the interceptor. If the future motion
information of the target can be obtained onboard, the
RMP-GLs will be the first choice.

The proposed RFTG law (10) follows the scheme of
the MS-GLs due to the unpredictable target maneuvers
in the UMTI. To achieve intercept, three conditions are
needed: ! = 0, sin(� � �

M

)a
M

� sin(� � �

T

)a
T

, and
ṙ

0

< 0, where ṙ

0

is the initial interceptor-target range
rate. These three conditions can render the interceptor-
target range rate negative, thus finally intercepting the
target. The condition ! = 0 is an ideal relative motion
relationship, and, in practical applications, it is suggested
that the LOS rate ! should be stabilized with a su�ciently
small error as quickly as possible. Furthermore, by exam-
ining the function �(�,!, d̂

T

), the non-smooth feedback
control c

1

r|!|↵ sgn(!) can lead to a large magnitude of the
guidance command and likely cause the control saturation
to happen at the start of the intercept. Nevertheless, the
control saturation can e↵ectively compensate for the e↵ect
of the target maneuver and stabilize the LOS rate using
the limit of the interceptor’s maneuverable capability. The
rigorous convergence analysis of the LOS rate is performed
in the following section.

4. Convergence analysis of LOS rate

This section presents the main theoretical results of
the proposed RFTG law. Using homogeneity technique,
global finite-time stability is established for the CFTDO.
Based on Lyapunov theory, the convergence analysis of the
LOS rate is conducted in the linear region of the saturation
function in (10) and in the case of the control saturation,
respectively.

4.1. Global finite-time stability of CFTDO in the case of
�(t) = 0

Suppose �(t) = 0. Then, the observation-error dynam-
ics are given by

ė

!

= e

d

� k

1

|e
!

|↵ sgn(e
!

),

ė

d

= �k

2

|e
!

|2↵�1 sgn(e
!

).
(13)

The CFTDO has the following property:

Theorem 1. The zero solution of the observation-error
dynamics (13) is globally finite-time stable.

Proof. Consider a Lyapunov function candidate:

V

1

=
k

2

2↵
|e

!

|2↵ +
1

2
e

2

d

. (14)

The derivative of V
1

along (13) is

V̇

1

= �k

1

k

2

|e
!

|3↵�1

. (15)

Clearly, V̇
1

is negative definite, and V̇

1

= 0 means e
!

= 0.
Using LaSalle’s invariance theorem, the zero solution of the
observation-error dynamics (13) is globally asymptotically
stable. The degree of homogeneity of (13) is 1 � 1

↵

< 0.
Correspondingly, the finite-time stability of the zero solu-
tion can be established by the following lemma, which has
been proved in [20] and is given below for the convenience
of the reader.

Lemma 2. The zero solution of a homogeneous dynamic
system is finite-time stable if and only if its zero solution
is asymptotically stable and its degree of homogeneity is
negative.

4.2. Local finite-time input-to-state stability of RFTG law

In this subsection, the convergence analysis is con-
ducted in the linear region of the saturation function in
(10). Accordingly, the guidance command (10) is replaced
by

a

M

= �(�,!, d̂
T

). (16)

Using the RFTG law (16), along with � = ↵, the re-
sulting closed-loop guidance system is given by

!̇ = �c

1

|!|↵ sgn(!) + e

d

,

ė

!

= e

d

� k

1

|e
!

|↵ sgn(e
!

),

ė

d

= �k

2

|e
!

|2↵�1 sgn(e
!

) + �(t).

(17)

Now, we are in a position to present the stability prop-
erty of the RFTG law (16).

Theorem 2. The zero solution of the closed-loop guid-
ance system (17) is locally finite-time input-to-state stable
(FTISS).

Proof. By the Theorem 2 in [30], for system (13), there
exists a homogeneous, and continuously di↵erentiable Lya-
punov function V

2

with dilation ( 1

↵

, 1), which satisfies

V̇

2

 �⇢

1

V

2↵
↵+1

2

, (18)

where ⇢

1

> 0, since system (13) is globally finite-time
stable.

Consider a Lyapunov function candidate for system
(17):

V

3

=
1

1 + ↵

|!|1+↵ +⌥V

2

, (19)

where ⌥ > 0. Note that V

3

is positive definite and is
homogeneous of 1 + 1

↵

with dilation ( 1

↵

,

1

↵

, 1).
Next, we will show that, if ⌥ is su�ciently large, V

3

is
a FTISS-Lyapunov function for (17).
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Let x = (!, e
!

, e

d

). Using the Cauchy-Schwarz inequal-
ity [31], we can obtain

����
dV

3

dx
[0, 0, �(t)]T

����  ⌥U

T

����
@V

2

@e

d

����. (20)

For a chosen compact set:

⌃ = {(e
!

, e

d

) 2 R2 :

����
@V

2

@e

d

���� 
µ

⌥
}, 8µ > 0, (21)

|dV3
dx

[0, 0, �(t)]T | has an upper bound µU

T

.
Thus, the derivative of V

3

along (17) satisfies

V̇

3

 ˙̃
V

3

+ µU

T

, (22)

where ˙̃
V

3

is the derivative of V
3

along (12):

˙̃
V

3

= �c

1

|!|2↵ + |!|↵e
d

sgn(!) +⌥V̇

2

 �c

1

|!|2↵ + |!|↵e
d

sgn(!)�⌥⇢

1

V

2↵
↵+1

2

.

(23)

Clearly, ˙̃
V

3

is homogeneous of 2 with dilation ( 1

↵

,

1

↵

, 1). By
virtue of homogeneity technique, the negative definite of
˙̃
V

3

on R3 can be guaranteed by the negative definite on
the closed curve

S = {(!, e
!

, e

d

) : ⌅(!, e
!

, e

d

) = |!|↵ + |e
!

|↵ + |e
d

| = 1}.
(24)

Let

U

1

= {(!, e
!

, e

d

) 2 R3\{0} : �c

1

|!|2↵+|!|↵e
d

sgn(!) � 0}.
(25)

Correspondingly, S
1

= S \ U

1

is compact.
Define

N

1

= min
(!,e!,ed)2S1

{⇢
1

V

2↵
↵+1

2

} > 0 (26)

and
N

2

= min
(!,e!,ed)2S1

{�|!|↵e
d

sgn(!)}  0. (27)

Then, (23) can be written as

� ˙̃
V

3

� c

1

|!|2↵ +⌥N

1

+N

2

� ⌥N

1

+N

2

.

(28)

Hence, V̇
3

is negative definite when ⌥ > �N2
N1

.

Since both V

3

and ˙̃
V

3

are homogeneous of degrees 1+ 1

↵

and 2 with dilation ( 1

↵

,

1

↵

, 1), respectively, it follows that

˙̃
V

3

 �⇢

2

V

2↵
↵+1

3

, (29)

where ⇢

2

= �min{(!,e!,ed):V3(!,e!,ed)=1}{V̇3

> 0}.
Substituting (29) into (22) gives

V̇

3

 �⇢

2

V

2↵
↵+1

3

+ µU

T

. (30)

According to (30), when V

3

� ( 2µUT

⇢2
)

↵+1
2↵ , it follows

that

V̇

3

 �1

2
⇢

2

V

2↵
↵+1

3

. (31)

By definition, V

3

is the FTISS-Lyapunov function, and
therefore the zero solution of the closed-loop guidance sys-
tem (17) is locally finite-time input-to-state stable [19].

In particular, we can specialize Theorem 3 to the con-
stant disturbance case:

Corollary 1. Assume �(t) = 0. Then, the zero solution of
the closed-loop guidance system (17) is locally finite-time
stable.

4.3. Convergence of LOS rate in the presence of control
saturation

In this subsection, the convergence analysis is con-
ducted in the presence of the control saturation, i.e., when

|�(�,!, d̂
T

| � U

M

. (32)

The guidance command (10) in this case is replaced by

a

M

= U

M

sgn[�(�,!, d̂
T

)]. (33)

Substituting (33) into (2), the closed-loop dynamics of
the LOS rate is given as

!̇ =
�2ṙ!

r

� cos(�� �

M

)U
M

sgn[�(�,!, d̂
T

)]

r

+
cos(�� �

T

)a
T

r

,

(34)

where !(0) = !

0

.

Assumption 5. ṙ < 0, |� � �

M

| <

⇡

2

, and cos(� �
�

M

)U
M

> |cos(�� �

T

)|U
T

.

In light of Assumption 5, ṙ < 0 and |� � �

M

| < ⇡

2

are
easily satisfied in a realistic engagement. cos(���

M

)U
M

>

|cos(� � �

T

)|U
T

means that the maneuverable capability
of the interceptor is greater than that of the target.

Next, we establish the corresponding convergence of
the LOS rate.

Theorem 3. Under Assumption 5,

1. When sgn[�(�,!, d̂
T

)] = sgn(!), for |!
0

| < � La
2Lṙ

,
where L

a

= inf
t�0

cos(���

M

)U
M

� |cos(���

T

)|U
T

,
and L

ṙ

= inf
t�0

ṙ, |!| in system (34) monotonously
decreases;

2. When sgn[�(�,!, d̂
T

)] = � sgn(!), |!| in system (34)

is bounded, and |!(t)|  max{|!
0

|, (�
c1
)

1
� }, where

� = sup
t�0

(|e
d

|).

Proof. Theorem 1 is proved using the positive definite func-
tion

V

4

=
1

2
!

2

. (35)
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Consider the derivative of V
4

along (34)

V̇

4

=
�2ṙ!2

r

� cos(�� �

M

)U
M

sgn[�(�,!, d̂
T

)]!

r

+
cos(�� �

T

)a
T

!

r

.

(36)

By Lyapunov stability theory, the stability of the LOS
rate can be guaranteed when V̇

4

 0. The proof pro-
ceeds in two cases, namely, sgn[�(�,!, d̂

T

)] = sgn(!) and
sgn[�(�,!, d̂

T

)] = � sgn(!).

4.3.1. sgn[�(�,!, d̂
T

)] = sgn(!)
Substituting

sgn[�(�,!, d̂
T

)] = sgn(!) (37)

into (36) gives

V̇

4

=
�2ṙ!2

r

� cos(�� �

M

)U
M

|!|
r

+
cos(�� �

T

)a
T

!

r

 �2ṙ!2

r

� |!|[cos(�� �

M

)U
M

� |cos(�� �

T

)|U
T

]

r

.

(38)

Let inf
t�0

cos(���

M

)U
M

� |cos(���

T

)|U
T

= L

a

, and
inf

t�0

ṙ = L

ṙ

. According to (38), V̇
4

 0 when the ini-
tial LOS rate satisfies |!

0

| < � La
2Lṙ

. Then, using LaSalle’s
invariance theorem, it is established that |!| ceases to de-
crease as |!| = 0. The L1 performance is as follows:

|!(t)|  |!
0

|. (39)

4.3.2. sgn[�(�,!, d̂
T

)] = � sgn(!)
Substituting

sgn[�(�,!, d̂
T

)] = � sgn(!) (40)

into (36) arrives at

V̇

4

=
�2ṙ!2

r

+
cos(�� �

M

)U
M

|!|
r

+
cos(�� �

T

)a
T

!

r

.

(41)
Together with condition |�(�,!, d̂

T

| � U

M

and

sgn[�(�,!, d̂
T

)] = � sgn(!) (42)

yields
U

M

|!|  ��(�,!, d̂
T

)!. (43)

Substituting expression �(�,!, d̂
T

) into (43) gives

U

M

|!|  � !

cos(�� �

M

)
(�2ṙ! + c

1

r|!|� sgn(!) + rd̂

T

).

(44)
By manipulation, (44) can be rewritten as

�2ṙ!2

r

+
cos(�� �

M

)U
M

|!|
r

+
cos(�� �

T

)a
T

!

r

+ c

1

|!|1+� � (d
T

� d̂

T

)!  0,

(45)

which is equivalent to

V̇

4

 �c

1

|!|1+� + e

d

!

 �c

1

|!|1+� +�|!|,
(46)

where � = sup
t�0

(|e
d

|). Therefore, to ensure V̇

4

 0, |!|
needs to satisfies |!| � (�

c1
)

1
� . At a result, |!| will be

bounded within (�
c1
)

1
� . The L1 performance in this case

is as follows:

|!(t)|  max{|!
0

|, (�
c

1

)
1
� }. (47)

In fact, this case represents an engagement wherein the
target maneuver is beneficial to the interceptor.

Remark 5. In the maneuverable target interception liter-
ature, there are only a few works that exploit the control
saturation and rigorously analyze the resulting transient
performance. In [7], an auxiliary low-pass filter is added
to compensate for e↵ect of the control saturation. A fast
adaptive guidance law in [11] induces an auxiliary signal
to prevent the control saturation from destroying the pa-
rameter adaptation. The objective of dealing with the con-
trol saturation in these two guidance laws is to enable the
adaptive laws to work so that the parameters of the target
maneuvers can be e↵ectively estimated. Since the result-
ing design is closely coupled with the adaptive laws, both of
them do not provide explicit convergence properties of the
LOS rate in the presence of the control saturation, partic-
ularly regarding the transient performance. Di↵erent from
these two guidance laws, the RFTG law directly use the
control saturation to drive the LOS rate to a su�ciently
small neighborhood of the origin, and the estimation of the
e↵ect of the target maneuvers does not be a↵ected by the
control saturation due to the design of CFTDO.

Remark 6. A theoretical proof of convergence of the LOS
rate in this case is very challenging. To the best knowledge
of the authors, this is the first attempt to rigorously analyze
the convergence property in the presence of the control sat-
uration. Admittedly, a number of assumptions are made
for the system states in Theorem 3. Without the assump-
tions in Theorem 3, it is hard to ensure the convergence of
the LOS rate. In fact, the assumptions employed in The-
orem 3 have clearly physical meanings and can be easily
satisfied in practice, which is illustrated in the numerical
evidence in the next section.

Remark 7. When the control saturation happens and the
engagement conditions satisfy the assumptions in Theorem
3, the LOS rate will decrease in magnitude, thus reducing
|�(�,!, d̂

T

|. Once |�(�,!, d̂
T

| < U

M

, the system trajec-
tories will enter the linear region of the RFTG law, and
correspondingly, the convergence property will follows The-
orem 2.
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(a) (b)

(c) (d)

Fig. 1. Simulation results for MS-GLs.

5. Simulations

In this section, numerical comparison results for the
RFTG law and the other three guidance laws are pre-
sented. Based on a target maneuver model of the UMTI,
case studies are also carried out where guidance perfor-
mance is systematically assessed for the proposed RFTG
law.

5.1. A target maneuver model of UMTI

In accordance to the general model (6), a target ma-
neuver model is given as follows:

◆ȧ

T

+ a

T

= ⌅

1

(!) + ⌅

2

(⌘) + ⌅

3

($), (48)

where ◆ is the time constant, and

⌅

1

(!) = U

⌅1
T

sgn[cos(�� �

T

)!], (49)

⌅

2

(⌘) = C⌘, (50)

⌘̇ = ⇤⌘, (51)

⌅

3

($) = U

⌅3
T

tanh('$), (52)

where U

⌅1
T

, and U

⌅3
T

are two positive constants. ⌘
0

is the
initial state of ⌘. ⇤ is a n ⇥ n constant coe�cient matrix
with all eigenvalues lying on the imaginary axis. C is a
constant vector of suitable size. tanh(·) is a hyperbolic
tangent function. $ > 0. ' > 0 is the parameter regarding
the slope of ⌅

3

($) at $ = 0.
In view of (48), ⌅

1

(!) is the evasive maneuver which
aims to increase |!| and zero-e↵ort-miss (ZEM); ⌅

2

(⌘) is
the periodic maneuver that is composed of sinusoidal ma-
neuvers; ⌅

3

($) is the so-called deterministic yet unknown

8



maneuver which is determined by a combination of two
step functions:

$ =

8
><

>:

0, 0  t  t

1

;

⌫

1

, t

1

< t < t

2

;

⌫

2

, t � t

2

.

(53)

5.2. Comparisons with other MS-GLs

For the sake of comparison, three MS-GLs are chosen
as follows:

5.2.1. Adaptive guidance law
The adaptive guidance law (AGL) is adapted from [7]:

a

M

= �N

a

ṙ! + k

a

r! + d̂

a

tanh(
r!

"

), (54)

˙̂
d

a

= �r! tanh(
r!

"

) + �"� �⇣d̂

a

, (55)

where N

a

> 1. k

a

> 0. � > 0 is the adaptation gain.
" > 0. ⇣ > 0. Note that, compared with the adaptive
guidance law in [7], the AGL used here does not explic-
itly consider the second-order autopilot dynamics. In a
realistic short-range engagement, the autopilot dynamics
of the interceptor are nonlinear and time-varying, partic-
ularly regarding the highly maneuverable targets. In such
a situation, the time-invariant second-order linear system
used in [7] is not proper [32].

5.2.2. Sliding mode guidance law
Let the sliding surface be ⌦ = r! � c

s

p
r. The sliding

mode guidance law (SMGL) consists of the second-order
sliding mode observer (SOSMO) and the second-order slid-
ing mode stabilizer (SOSMS) [14]:

a

M

=
1

cos(�� �

M

)
(⇣

1

|⌦|2/3 sgn(⌦) + ⇣

2

Z
|⌦|1/3 sgn⌦dt

�N

s

ṙ! � c

s

ṙ/(2
p
r) + z

1

),
(56)

where z

1

is obtained by the following observer:

ż

0

= v

0

� cos(�� �

M

)a
M� � ṙ! � c

s

ṙ/(2
p
r),

ż

1

= v

1

,

ż

2

= �1.1L sgn(z
2

� v

1

),

(57)

in which

v

0

= �2L1/3|z
0

� ⌦|2/3 sgn(z
0

� ⌦) + z

1

,

v

1

= �1.5L1/2|z
1

� v

0

|1/2 sgn(z
1

� v

0

) + z

2

.

(58)

It is noted that L is the Lipschitz constant, determined by
the upper bound of the derivative of the target accelera-
tion.

Table 1. Summary of homing accuracy

Method Miss distance (m)
RFTGL 0.00002
AGL 0.00011
SMGL 0.00029
HGGL 0.00027

5.2.3. High-gain guidance law
The high-gain guidance law (HGGL) is used to sup-

press the e↵ect of the target maneuvers [33]:

a

M

=
1

cos(�� �

M

)
(�2ṙ!+c

h

r|!|�h sgn(!)+
r!

2⇥2

), (59)

where the design parameter ⇥ is determined by the upper
bound of |a

T

|. Considering the unpredictable targets, ⇥
needs to be chosen su�ciently small to guarantee a prede-
termined ultimate bound of |!| throughout intercept. The
parameters of the RFTG law are chosen as c

1

= 2, ↵ = 0.6,
and k

1

= k

2

= 5. The parameters of the AGL are chosen
as N

a

= 4, k
a

= 3, � = 10, " = 0.02, and ⇣ = 0.02. The
parameters of the SMGL are chosen as L = 100, c

s

= 0,
N = 6, and ⇣

1

= ⇣

2

= 20. The parameters of the HGGL
are chosen as c

h

= 2, � = 0.6, and ⌥ = 0.01.
In the simulation, the interceptor’s initial position is set

at the origin, its initial velocity is 1000m/s, and its initial
flight path angle is 50 deg. The attitude dynamics of the
interceptor is modeled as a first-order system with a time
constant 0.1 s. The target’s initial position coordinates are
x

T0 = 0m, and y

T0 = 4000m, its initial velocity is 500m/s,
and its initial flight path angle is 35 deg. The parameters
of the target maneuver model (48) are chosen as ◆ = 0.1 s,

U

⌅1
T

= 0m/s2, C =
⇥
1 0

⇤
, ⌘

0

=
⇥
�23.8 42.4

⇤T
m/s2,

⇤ =


0 �2
2 0

�
, U⌅3

T

= 47.5m/s2, ' = 0.2, t
1

= 2 s, t
2

= 4 s,

⌫

1

= 4, and ⌫

2

= 6. Note that we select U⌅1
T

= 0m/s2 to
render the comparison in the same setting.

Figure 1a presents the LOS rates of the four guidance
laws. As shown, the LOS rates of the four guidance laws
diverge at last. It is worth mentioning that this diver-
gence phenomenon cannot be avoided due to the inherent
property of the e↵ect of the disturbance. The convergence
of the RFTG law and the HGGL is better than that of
the AGL and the SMGL. This can be attributed to the
manifolds used in guidance design: the RFTG law and
the HGGL directly employ the LOS rate as the manifold,
while the AGL and the SMGL use the transversal compo-
nent of the relative velocity. In addition, the divergence of
the AGL that begins at approximately 5 s is caused by the
parameter adaption. Figure 1b describes the disturbance
observation performance of the RFTG law, the SMGL, and
the AGL. Compared with the SMGL, and the AGL, the
CFTDO of the RFTG law can estimate the disturbance
with a faster convergence rate and greater precision. The
performance deterioration of the SMGL is caused by the
improper choice of the critical design parameter, L, which
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is closely related to the derivative of the target accelera-
tion. The upper bound adaption in the AGL also stops at
the beginning of the intercept, so as to avoid adverse ef-
fects of control saturation. As depicted in Figs. 1a and 1b,
there exists a conflict between the adaption process and
the stabilization: the adaption dose not work when the
stabilization error is relatively small. Figure 1c gives the
guidance commands generated by the four methods. The
profile of the RFTG law is smooth. The profile of the
HGGL oscillates severely due to the high gain used. The
profile of the SMGL is conservative because of the esti-
mated disturbance. The profile of the AGL has a large
number of undesired small spikes, which is mainly caused
by the adaption process. Figure 1d depicts the flight tra-
jectories, and, correspondingly, table 1 gives the homing
accuracy of the four guidance laws, demonstrating homing
precision of the RFTG law is better than that of the other
three in the presence of the target maneuver.

5.3. Guidance performance analysis for RFTG Law

In the subsection, four cases are studied to illustrate
the guidance performance regarding the initial LOS rate,
⌅

1

(!), ⌅
2

(⌘), and ⌅

3

($), respectively. The parameters
of the RFTG law are chosen as U

M

= 196m/s2, c
1

= 1,
↵ = 0.6, and k

1

= k

2

= 100.
The tests in the simulations are compared with the

nominal case. In light of the nominal case, the intercep-
tor’s initial position is set at the origin, its initial velocity
is 1000m/s, and its initial flight path angle is 65 deg. The
attitude dynamics of the interceptor is modeled as a first-
order system with a time constant 0.1 s. The target’s ini-
tial position coordinates are x

T0 = 4km, and y

T0 = 0km,
its initial velocity is 500m/s, and its initial flight path
angle is 35 deg. The parameters of the target maneuver
model are chosen as ◆ = 0.1 s, U⌅1

T

= 0m/s2, C =
⇥
1 0

⇤
,

⌘

0

=
⇥
39.2 39.2

⇤T
m/s2, ⇤ =


0 �1
1 0

�
, U⌅3

T

= 98m/s2,

' = 0.2, t
1

= 2 s, t
2

= 4 s, ⌫
1

= 4, and ⌫

2

= 10.

5.3.1. The initial LOS rate
Two interception scenarios, together with the nominal

case, are employed to demonstrate the robustness of the
RFTG law in term of the initial LOS rate. For the two
interception scenarios, referred to as Case 1 and Case 2,
the initial flight-path angles are �

0

= 45deg in Case 1, and
�

0

= 85deg in Case 2, and the other parameters are the
same as that of the nominal case. The miss-distances of the
nominal case, Case 1, and Case 2 are 0.0143m, 0.0106m,
and 0.0136m, respectively. The miss-distances in these
three cases are high-precision, thus demonstrating the sat-
isfactory robustness of the RFTG law to the initial LOS
rate. Figure 2a presents the LOS rates of the three cases,
and Fig. 2b shows the corresponding missile and the tar-
get acceleration. From the two figures, it can be observed
that the control saturation occurs in Case 1 and Case 2 at
the beginning of the intercept, while the LOS rates quickly

converge to the origin. Such control saturation is caused
by the large magnitude of the initial LOS rates. The hom-
ing accuracy in Case 1 and Case 2, in fact, illustrates the
e↵ectiveness of the RFTG law in the presence of control
saturation, and Theorem 1 has stated this result. Besides,
as shown in Fig. 2b, the missile acceleration is mainly used
to compensate for the e↵ect of the target maneuver when
the LOS rates in magnitude are relatively small.

5.3.2. Target maneuver ⌅

1

(!)
Two interception cases, Case 3 and Case 4, together

with the nominal case, are employed to demonstrate the
guidance performance with respect to the target maneuver
⌅

1

(!). In light of the two interception cases, the param-
eters of interest are chosen as U

⌅1
T

= 49m/s2 in Case 3
and U

⌅1
T

= 24.5m/s2 in Case 4; the other simulation pa-
rameters are the same as that of the nominal case. The
miss-distances of the nominal case, Case 3, and Case 4 are
0.0143m, 0.7170m, and 0.0607m, respectively. Obviously,
compared with the nominal case, the homing accuracy of
Case 3 deteriorates significantly. As described in Fig. 2c,
the main reason is the large oscillations of the LOS rates
when the interceptor approaches the target closely. These
oscillations are induced by the rapidly varying e↵ect of the
target maneuver ⌅

1

(!), which is enlarged by the decreas-
ing interceptor-target range. In addition, note that, at the
start of the intercept, the LOS rates are rendered within
small errors by virtue of the non-smooth feedback when
the interceptor-target range is relatively large.

5.3.3. Target maneuver ⌅

2

(⌘)
Two interception engagements, together with the nom-

inal case, are used to assess the guidance performance
against the weaving targets with di↵erent frequencies. Given
these two interception engagements, which are referred to
as Case 5 and Case 6, the parameters in question are set

for ⇤ =


0 �1.5
1.5 0

�
in Case 5, and ⇤ =


0 �0.5
0.5 0

�
in

Case 6, and the other parameters in the simulations are
the same as that of the nominal case. The homing accu-
racy of these three cases is high: the miss-distances of the
nominal case, Case 5, and Case 6 are 0.0143m, 0.0131m,
and 0.0042m, respectively. As depicted in Fig. 3a, the
LOS rates are stabilized well in the presence of the si-
nusoidal maneuvers with 0.5 rad/s, 1 rad/s, and 1.5 rad/s.
Such three cases demonstrate that the RFTG law can ef-
fectively deal with the weaving targets.

5.3.4. Target maneuver ⌅

3

($)
Two interception cases, together with the nominal case,

are adopted to illustrate the guidance performance in term
of the so-called deterministic yet unknown maneuvers. With
respect to these two interception cases, which are referred
to as Case 7 and Case 8, the parameters of interest are cho-
sen as t

2

= 5 s in Case 7, and U

⌅3
T

= 147m/s2 in Case 8,
the other parameters used in the simulations are the same
as that of the nominal case. The miss-distances of the
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Fig. 2. Simulation results for Cases 1, 2, 3 and 4.

nominal case, Case 7, and Case 8 are 0.0143m, 0.0146m,
and 0.0276m, respectively. As described in Figs. 3c and 3d,
the LOS rate in Case 7 is quickly nullified after the sudden
change of the target maneuver at 5 s, while the LOS rate
in Case 8 is stabilized through a relative large transient
period due to the control saturation, which is the adverse
impact of the large magnitude of the target acceleration.
Furthermore, because the maneuverability of the target is
larger than that of the interceptor at about 5.5 s to 6.0 s,
the divergence of the LOS rate in Case 8 lasts a short
period of time.

6. Conclusion

In this paper, the integrated continuous finite-time dis-
turbance observer (CFTDO)/bounded continuous finite-
time stabilizer (BCFTS) strategy is proposed to approach

the problem of intercepting a maneuvering target with
an unpredictable evasive strategy. The local FTISS of
the proposed RFTG law is established in the case of the
bounded derivative of the e↵ect of the target maneuver.
Numerical comparisons demonstrate the favorable guid-
ance performance of the RFTG law in terms of the hom-
ing accuracy and the estimation of the e↵ect of the target
maneuver. Furthermore, the RFTG law can e↵ectively
stabilizes the LOS rate in the presence of the control sat-
uration, and achieve the high-precision miss-distances in
the four typical cases of the unpredictable maneuverable
target interception.
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7. Appendix

7.1. Appendix 1: homogeneous systems

Consider dilation (r
1

, ..., r

n

), r
i

> 0, i = 1, ..., n, where
" = e

t, t 2 R. Then, a real-valued function, f(x), is
homogeneous of degree # 2 R with (r

1

, ..., r

n

) if

f("r1x
1

, ..., "

rn
x

n

) = "

#

f(x). (60)

A vector field, g(x) = [g
1

(x), ..., g
n

(x)]T, is homogeneous
of degree p 2 R with (r

1

, ..., r

n

), if

g

i

("r1x
1

, ..., "

rn
x

n

) = "

ri+p

g

i

(x). (61)

A real-valued function, �(x), is a homogeneous norm
on a finite-dimensional vector space Rn, if �(x) is contin-
uous, positive definite, and is homogeneous of degree one
with dilation (r

1

, ..., r

n

).

7.2. Appendix 2: finite-time input-to-state stability

Consider a system

ẋ = f(x(t), u(t)), f(0, 0) = 0, x(t) 2 Rn

, u(t) 2 Rm

, (62)

where f is continuous with respect to (x(t), u(t)), and
u(t) : R

+

! Rm is measurable and locally essentially
bounded. System (62) is locally finite-time input-to-state
(FTISS) with respect to u(t) if there exist some neighbor-
hoods W

x

⇢ Rn of 0 and W
u

⇢ Rm, such that, for initial
state x(0) = x

0

2 W
x

and u(t) 2 W
u

, the solution x(t) is
defined for t > 0 and satisfies

kxk
2

 max{�(kx
0

k
2

, t), �(ku(t)k1)}, (63)

where � is a generalizedKL-function, and � is aK-function
([19]).

Consider a continuous, positive definite, and radially
unbounded function V (x) on a domain, E ⇢ Rn, that
contains the origin; V (x) is a FTISS-Lyapunov function if
each solution x(t) and input u(t) satisfy

kx(t)k
2

� �

1

(ku(t)k1)

=)V̇ (x)|
(1)

 ��

2

(kx(t)k
2

), 8t � 0,
(64)

where �

1

and �

2

are K-functions, and �

2

(kxk
2

) v V (x)↵

for some positive constant ↵ < 1 ([19]).
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