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We present the results of an experimental investigation of the motion of a light, solid
sphere in a horizontal rotating cylinder filled with viscous fluid. At high rotation rates,
the sphere sits near the axis of the cylinder. At lower rotation rates, a set of off-axis fixed
points are observed for a range of sphere radii. The locations of these fixed points are in
quantitative agreement with the predictions of a model based on available theory. The
fixed points are observed to become unstable to periodic orbits below a critical Reynolds
number Rec. The radius of the observed orbits increases with Reynolds number more
slowly than a typical Hopf bifurcation, in this case, growing as 1/Re2.

Key words: keywords

1. Introduction

The general problem of motion of a light spherical particle in a rotating flow has
received considerable attention since the seminal work of Thomson (1873) on inviscid
irrotational flows. Kelvin considered a small sphere placed in an irrotational rotating
flow and predicted that the sphere will be attracted to the centre of the flow by a force
which is inversely proportional to the cube of the distance from the axis of rotation.
A review of the forces involved in the motion of bubbles and rigid particles in un-

bounded domains at low to moderate Reynolds numbers is provided by Magnaudet
(1997). Lee & Ladd (2005) use Stokesian dynamics to calculate the motion of an in-
finitesimally small particle in cylinder of rotating around its axis which is perpendicular
to gravity. They find that the circular orbit of a particle denser than the fluid and moving
with it in solid-body rotation is perturbed by outward centrifugal forces, leading to spiral
trajectories that are eventually confined by the cylinder wall. The centrifugal force term
used by Lee & Ladd (2005) is valid only when the motion of the sphere through the sur-
rounding fluid is much smaller than the speed of the particle, and thus their calculations
of equilibrium position are difficult to justify in a physical realisation.
Lift in low Reynolds number flows was first studied theoretically by Saffman (1965)

and is known to be responsible for the lateral migration spheres in Poiseuille flow as
reviewed by Leal (1980). The magnitude of the lift is proportional to the square of the
radius of the sphere a. Experimental work conducted by Van Nierop et al. (2007) concerns
the motion of bubbles in a flow rotating about a horizontal axis for Reynolds number
0.01 < Re < 500. For a bubble of radius a moving at speed v through the surrounding

† Email address for correspondence: tom.mullin@maths.ox.ac.uk
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fluid of kinematic viscosity ν, they find that at low Reynolds numbers, av/ν < 10 the
lift coefficient is always negative, i.e. the lift force on the bubble is centripetal, directed
towards the axis of rotation. This contrasts with higher Reynolds numbers where the lift
force on the bubble is directed outwards.

The results of a study of the motion of heavy spheres with density ratios between
1.15 and 8.14 in a vertical rotating cylindrical container is reported by Karanfilian &
Kotas (1981). They explored a range of Re between 0.035 and 3365, and found that for
Re < 1 the lift coefficient is always negative in accord with the discussion in the previous
paragraph.

Other experimental work conducted in a horizontal rotating cylinder filled with a
viscous fluid focused on the motion of a single heavy sphere and the interaction between
two and three spheres (Mullin et al. 2005). Mullin et al. find a fixed point regime where
the sphere is balanced next to the wall, and a dynamical cascading regime, in which the
sphere describes asymmetric orbits for Re > 1.21. The motion at the fixed points adjacent
to the wall are studied in detail by Ashmore et al. (2005) who show that cavitation is an
essential component of the force balance and Yang et al. (2006), who study the effects
of roughness in the interactions with the wall. The dynamical motion including chaos
was subsequently studied in detail by Davidheiser et al. (2010). When many particles are
added to a rotating cylinder of viscous fluid, axial segregation and pattern formation can
occur (see Seiden & Thomas 2011, and references therein).

The results of numerical investigations of pedalling motion of pairs of spheres in a hor-
izontal rotating cylinder of viscous fluid are reported by Mukundakrishnan et al. (2008).
They use direct numerical simulations of the incompressible Navier-Stokes equations on
a finite-length horizontal rotating cylinder with 1 < Re < 60. The majority of their
study is concerned with the dynamics of two particles but they also find that a single
light particle has a stable fixed point which is in accord with the theory of Coimbra &
Kobayashi (2002).

Horizontal rotating cylinders of viscous fluid are used widely in biotechnology in ap-
plications related to tissue growth engineering. An example of this is provided by a
bioreactor, where tissue can be grown in a reduced gravity environment when is placed
inside of a rotating cylinder filled with fluid (Gao et al. 1996). The tissue is in the
form of a near-spherical porous scaffold. It is less dense than the fluid and at a given
rotation rate it is observed to sit at a fixed point which is displaced from the axis of
rotation. This has practical advantages as collision between the delicate tissue and the
walls of the bio-reactor can be avoided. The understanding of the dynamics of a single
particle in a horizontal rotating cylinder also aids understanding of the behaviour of
colloidal suspensions. Specifically, as a model of the manufacturing process of precision
latex micro-spheres through the use of a rotating latex reactor as discussed by Roberts
et al. (1991).

The focus of our investigation is on the fixed points for a light rigid sphere in a
horizontal rotating cylinder at low Reynolds number. These fixed point observations are
in good accord with a theory that we develop from the lift force expression of Gotoh
(1990). We observe that a particle at a fixed point near to the centre of the cylinder
becomes unstable to periodic motion as the rotation rate is reduced and the sphere
approaches the wall of the cylinder. The growth rate of the oscillations is unusual as it
is found to be slower than for a standard Hopf bifurcation.

The structure of the paper is as follows. In §2 we evaluate the time-dependent forces
acting on the sphere and derive an expression for the equilibrium positions. The exper-
iment is described in §3, followed by the experimental results in §4 where a comparison
with the results of our model is made. We draw some conclusions in §5.



An experimental study of the motion of a light sphere in a rotating viscous fluid 3

O
r

θ

FB

FL

FD

FC

Ω

ρf , µ

x

er

eθ

y

x

g

Figure 1. Schematic of an end view of the flow domain. A cylinder of fluid (outer circle) rotates
about its axis O at angular velocity Ω, and a buoyant particle (inner filled circle) is held at an
equilibrium position by a balance of Stokes drag FD, centripetal forces FC , buoyancy FB and
lift FL.

2. Equilibrium position of a sphere in a rotating viscous flow

In this section, a model is described for the motion of a buoyant sphere within a
cylinder rotating about its axis, which is perpendicular to gravity. This model follows
the results of Candelier (2008), who derived the history-dependent forces on a sphere
in an unbounded rotating flow at low Reynolds number, and showed that these forces
correspond to the lift and drag corrections predicted by Gotoh (1990) when the sphere
is in equilibrium.

The cylinder rotates with angular velocity Ω, and is filled with viscous fluid of density
ρf and dynamic viscosity µ (figure 1). A buoyant spherical particle of radius a and density
ρs is immersed in a fluid, and we assume that this sphere is small, and sufficiently far
from the walls of the cylinder, that hydrodynamic interactions between the particle and
the walls of the cylinder can be neglected. Defining a radial coordinate system centred
at the axis of the cylinder, with unit azimuthal and radial basis vectors er and eθ, the
velocity field in the absence of the sphere is solid body rotation, u = rΩeθ. The location
of the centre of the sphere is denoted by x, with radial coordinates (r, θ) and Cartesian
coordinates (x, y), and the acceleration arising from gravity by g = −g(eθ cos θ+er sin θ).
The system has three independent dimensionless groups: the density ratio ρs/ρf (which
takes the value 0.69 in our experiments), and two Reynolds numbers, based on rotation
rate and the settling velocity,

Re =
ρfa

2Ω

µ
and Rep =

ρfVTa

µ
, (2.1)

where

VT =
2ga2(ρf − ρs)

9µ
(2.2)

is the rising speed of the (buoyant) sphere in quiescent fluid. The quantity Re, as defined
in (2.1), is often known as the Taylor number (e.g. Childress 1964).



4 T. Sauma-Pérez, C. G. Johnson, Y. Li, T. Mullin

The equation of motion for the sphere is

mp
d2x

dt2
= mpg +

∮

dV

σ · n dS, (2.3)

where mp = (4/3)πa3ρs is the mass of the spherical particle, dV represents the particle
surface, n is a unit outward normal and σ is the Cauchy stress in the fluid. At infinitesimal
Reynolds number, the contributions to this stress integral for a spherical particle in an
unbounded domain can be described by the history, buoyancy, drag, centrifugal and
added mass forces (Maxey & Riley 1983). Away from the Stokes flow limit, Magnaudet
(1997) reviews the forces and inertial corrections occurring at low to moderate Reynolds
numbers, when the particle is also subject to a lift force. We now evaluate the contribution
from each of these forces.

The buoyancy and Stokes drag forces are given by

FB = −4

3
πa3ρfg (2.4)

and

FD = 6πµarΩeθ, (2.5)

respectively (see, for example Batchelor 1967; Maxey & Riley 1983). If all inertial and
acceleration forces can be neglected (namely when Re → 0, Rep → 0, Ω2R/g → 0), then
the stress on the sphere results from these two forces alone. In this limit, the radial force
balance implies that any equilibrium must lie at the same vertical position as the origin.
The fluid acceleration generated by the rotation of the cylinder results in a radial

pressure gradient, and a consequent inward-pointing radial force on the particle, given
by

FC = −4

3
πa3Ω2rρfer. (2.6)

When a spherical particle in an unbounded parallel shear flow is subjected to a force,
it experiences an additional lift force in the perpendicular direction (Segré & Silberberg
1962), which cannot be explained by viscous stresses alone (Bretherton 1962). For a
spherical particle in a shear flow (where a Reynolds number Res = ρfa

2γ̇/µ is defined
from the shear rate γ̇), Saffman (1965) calculated the strength of this lift force in the

low Reynolds number regime Rep ≪ Re1/2s ≪ 1, showing that it scales with Re1/2s .
Saffman’s calculation of the lift force was subsequently extended by McLaughlin (1991)

to the regime in which both Reynolds numbers are much less than one, but where Rep is

not necessarily small compared to Re1/2s . Numerical calculation (Dandy & Dwyer 1990)
indicates that the expression of Saffman (1965), formally valid only in the asymptotic

regime Rep ≪ Re1/2s ≪ 1, is nonetheless accurate if Rep < Re1/2s < 1 (Mei 1992).
In the case relevant to our problem, where the background flow is in solid body ro-

tation rather than parallel shear, Gotoh (1990) calculated the leading-order effects of
inertia using similar analysis to that of Saffman (1965). At small Reynolds number (when

Rep ≪ Re1/2 ≪ 1) and for a particle at rest, Gotoh (1990) shows that the leading-order

contribution of inertia is at O(Re1/2), and takes the form

FL = 6πµarΩRe1/2 [k1eθ − k2er] , (2.7)

where

k1 = 3

√
2(19 + 9

√
3)

280
≈ 0.524 and k2 = 3

√
2(19− 9

√
3)

280
≈ 0.0517. (2.8)
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This expression is valid only for particles that are stationary in the lab frame (that is,
particles that may be rotating, but for which dx/dt = 0). The finite-Re adjustment
(2.7) comprises both a radial lift component analogous to that found by Saffman (1965)
and an azimuthal component, corresponding to a modification of the Stokes drag law
at small finite Reynolds number. We note that the mechanisms of lift and drag studied
by Gotoh (1990) differ significantly from those that occur at high Reynolds number
(Rastello et al. 2009; Bluemink et al. 2010). At low Reynolds number, the lift force on
a sphere in a rotating flow is directed inwards, towards the centre of rotation (Gotoh
1990). Surprisingly, this is the opposite direction to the lift force in a low Reynolds
number simple shear flow of the same vorticity. The explanation for this difference, given
by Van Nierop et al. (2007), is that a sphere in a rotating base flow experiences two
lift forces: an outward-directed force similar to the one occurring in simple shear flows
(Saffman 1965), and an inward-directed force, slightly larger in magnitude, resulting from
curvature of the sphere wake.

Candelier (2008) showed that the steady lift and drag corrections obtained by Gotoh
(1990) in fact arise as a special case of the time-dependent history force on the particle,
in the case where the particle is stationary. This history force is not restricted to steady
states, but describes the forces on a particle moving arbitrarily when Rep ≪ Re1/2 ≪ 1;
for example, the lift and drag in the ‘centrifuging’ regime first calculated by Herron et al.

(1975) and Basset-Boussineq-Oseen force (Basset 1888) are also captured by the history
force of Candelier (2008) in the appropriate regimes of particle motion. The expression
for this history force is

FH = −6πµa
√
Re

(
∫ t

−∞

K1 (Ω(t− τ)) · dvs

dt
dτ +

∫ t

−∞

K2 (Ω(t− τ)) · vs(τ) dτ

)

,

(2.9)
where vs = dx/dt− u(x) is the slip velocity,

K1(t) =

(

f1(t) −g1(t)
g1(t) f1(t)

)

· P (t), K2(t) = Ω

(

g1(t) + f2(t) f1(t)− g2(t)
−f1(t) + g2(t) g1(t) + f2(t)

)

· P (t)

(2.10)

P (t) =

(

cos(t) − sin(t)
sin(t) cos(t)

)

, f2(t) =
10

7

sin(2t)√
πt

, g2(t) =
6

5

cos(2t)√
πt

, (2.11)

f1(t) =
1

112

(

80 cos(2t)t3 + 20 sin(2t)t2 + 6 cos(2t)t− 3 sin(2t))

t2
√
πt

)

, (2.12)

g1(t) = − 3

40

(

8 sin(2t)t2 − 2 cos(2t)t+ sin(2t)

t2
√
πt

)

. (2.13)

With the contributions to the surface integral in (2.3) calculated in (2.4), (2.5), (2.6)
and (2.9), the equation of motion (2.3) then reads

mp
d2x

dt2
= mpg + FB + FC + FD + FH. (2.14)

We integrate (2.14) in time numerically using a second-order implicit backward differ-
entiation formula (BDF2). The integrals in (2.9) are evaluated using a second-order
trapezoidal rule, modified to account for the 1/

√
t singularity in the integrand. Since

the history forces (2.9) involve the complete history of motion of the sphere, we must
specify this motion; here we assume that the sphere is at rest for t < 0, and starts to
move at t = 0 when integration of the governing equations begins. We use the result
that the history force reduces to the lift force of Gotoh (1990) for a sphere at rest (i.e.
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FH(t′) = FL(t
′) if dx/dt = 0 for all t 6 t′) to calculate this history integral exactly for

t < 0, and thus avoid numerical error due to truncation of the integral domain.
We use this time-dependent theory to study the existence and stability of equilibrium

points. For a sphere in stationary equilibrium (2.14) reads

mpg + FB + FC + FD + FL = 0, (2.15)

(since FH reduces to FL for a stationary sphere) with azimuthal and radial components

cos θ = − Re

Rep

(

1 + k1Re
1/2

) r

a
and (2.16)

sin θ =
Ω2r

g
+ k2Re

1/2Ωr

VT
=

Re3/2

Rep

[

1

3

√
Re + k2

]

r

a
. (2.17)

Solving for r and θ, we find the equilibrium position of the sphere to be

x = r cos θ = −a
Rep

Re

1 + k1Re
1/2

(

1 + k1Re
1/2

)2

+ Re
(

k2 +
1

3
Re1/2

)2
, (2.18)

y = r sin θ = a
Rep

Re1/2

1

3
Re1/2 + k2

(

1 + k1Re
1/2

)2

+ Re
(

k2 +
1

3
Re1/2

)2
. (2.19)

Since y > 0, the equilibrium position for a buoyant sphere lies above the origin. This arises
from the requirement that the radial component of the buoyancy force FB is directed
outwards, to balance the inward-directed lift and centrifugal forces. This differs from the
prediction y < 0 obtained from models where rotating background flow is approximated
as a simple shear flow, where the Saffman (1965) expression for the perpendicular com-
ponent of lift is used (e.g. Coimbra & Kobayashi 2002; Ramirez et al. 2003). We note
that the vertical displacement of the equilibrium position is much smaller than the hori-
zontal displacement (by an order of Re1/2), and so the equilibrium points lie close to the
horizontal diameter of the cylinder on a radius, which for our experimental parameters
is . 3◦ above the central plane. The stability of these equilibrium points is discussed in
§4.

3. Experiment

3.1. Experimental setup and procedure

A schematic diagram of the apparatus is given in figure 2. The apparatus comprised a
precision-bored rig glass cylindrical drum of length 225.000± 0.005 mm, inner diameter
120.000 ± 0.005 mm and with a wall thickness of 5.200 ± 0.005 mm. The cylinder was
completely filled with glycerol of density ρg = 1.261 gr/cm3 and viscosity ν = 1100± 0.3
mm2/s (measured using an Ubbelohde suspended level viscometer). The experiments
were performed in a temperature controlled room with a measured air temperature of
20±0.5C. This gave rise to an estimated temperature variation of ±0.2C in the glycerol.
The spheres used were polypropylene, of density ρs = 0.87 ± 0.02 gr/cm3 and radius

a = 3.15, 4.76, 6.32, 7.05, 7.90, 9.50mm (±0.005mm).
The cylinder was mounted on bearings on a machined steel platform with three ad-

justable legs, which were used to level the cylinder using an engineer’s spirit level. Careful
levelling of the system was required in order to minimise buoyancy-induced drift of the
sphere along the axis of the cylinder. The cylinder was rotated using a DC motor with
feedback control via a 10:1 gear box, which was connected to the cylinder by a smooth
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Figure 2. Schematic diagram of the experiment. A glass cylinder was mounted horizontally
between bearings and completely filled with glycerol. A light sphere was placed inside it and
the cylinder was rotated around it’s axis using a motor, a gear box and a smooth belt. A shaft
encoder was used to measure the frequency of rotation of the cylinder

belt. The speed of rotation was controlled by a commercial servo control and the ro-
tation frequency was measured using an optical encoder, attached to the shaft of the
motor, which produced 500 pulses per revolution. The pulse count was monitored using
a universal counter and this was used to calibrate the rotation rate of the cylinder.

The angular velocity of the cylinder, Ω = 2πf , was measured by the encoder to an
accuracy of 0.01%. The maximum angular velocity used in this experiment was Ω ≈ 25
rad/s giving a maximum Reynolds number Re = a2Ω/ν ≈ 2 for the largest sphere.
However, the majority of the experiments were performed with 0.05 < Re < 0.7.

The inside of the cylinder was polished and ground as was a 1cm band on the outside
at the ends. The end caps were machined together to ensure that, when mounted, any
misalignment of the ends was minimal. The excellent agreement between the experimental
results and the theory for the fixed points suggests that any secondary flows were weak.

Two time scales were considered when taking into account how long it would take
the fluid to achieve solid body rotation after the rotational velocity were modified. As
described by Greenspan & Howard (1963), the viscous diffusion time is Td = R2/µ ≈ 3.2s,
and the spin-up time is Ts = R/

√
µ∆Ω ≈ 1.8s, for a change in rotation rate ∆Ω. After

a change of rotation rate, we waited a time much longer than Td and Ts (at least two
minutes) before making any measurements, to ensure that any transients had decayed
and the fluid inside the cylinder was in solid body rotation.

When the cylinder was filled with glycerol, air also entered the fluid creating bub-
bles. The presence of an air bubble of comparable size to the sphere produced unwanted
complications in the dynamics, analogous to those found when there is more than one
spherical particle in the flow, see Mullin et al. (2005). Hence, before each set of exper-
iments, bubbles were removed by first rotating the cylinder at high speed so that the
bubbles merged on the axis of the cylinder. The larger bubble which formed was removed



8 T. Sauma-Pérez, C. G. Johnson, Y. Li, T. Mullin

Ω

g

(a) (b) (c)

Figure 3. Sphere of radius a = 7.90mm (false-colour shaded red, online) at different Reynolds
numbers. The rotational axis of the drum is marked by a dotted line and a cross where this
axis meets the far wall of the drum. As Re decreases the horizontal displacement of sphere
equilibrium position from this axis, x, moves further from the cylinder axis. (a) Re = 1.990,
x ≈ 0 mm; (b) Re = 0.792, x = 1.8 mm; (c) Re = 0.332, x = 6.25 mm.

by injecting degassed fluid into one of two sealable holes drilled into the end plate of the
cylinder.

The cylinder was front-illuminated using two light sources, and the back lid of the
cylinder was painted white to improve the contrast between the background and the
dark green polypropylene sphere. Images were taken using a fast digital camera (Sony
XCD-X710) and the position of the sphere was determined by a dedicated image analysis
MATLAB routine. The contrast between the sphere and the white background was used
to identify the position of the centre of the sphere.nce.

4. Results

4.1. Fixed points

At the highest Reynolds numbers examined, Re ≈ 2, the sphere rotated on its axis
about an equilibrium position close to the centre of the cylinder. As Re was decreased,
the sphere adopted new equilibrium positions away from the centre of the cylinder as
shown in figure 3. The sphere spun on its axis at each of the equilibrium positions with
a dimensionless rotation frequency ωr/Ω ≈ 1, as expected from the torque balance on a
sphere in a rotating flow (Gotoh 1990). Below a critical Reynolds number the sphere no
longer stayed at a steady equilibrium point, but described a circular orbit.

The equilibrium positions were measured for each diameter of sphere and the horizontal
distance of this equilibrium from the cylinder axis, x, is plotted as a function of Re as
figure 4. Open markers with vertical bars indicate spheres on a circular orbit, and in this
case the marker denotes the position of the centre of the orbit and the height of the bar
indicates the standard deviation from the average position, a measure of the amplitude
of the oscillation. These positions have been been normalised by Repa, and under this
scaling the theory (2.18), plotted as a solid curve, predicts a collapse of the experimental
measurements. There is generally good agreement between theoretical prediction and
experimental measurement of the horizontal displacement of the equilibrium point, both
in the dependence on Re and the collapse with respect to Repa. The displacement in
the vertical direction y is much smaller than the horizontal displacement, as predicted
theoretically (2.19), but this vertical displacement is below the limits of resolution of
the experiment. Although we are unable to give precise estimates for the location of the
centre of the sphere we are confident that the centre was always above the central plane
of the cylinder for all fixed points in accord with theory.
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Figure 4. Horizontal displacement of there sphere as a function of Reynolds number for spheres
of radii a = 9.5, 7.9, 7.05, 6.33, 4.78 mm. Open circles denote the centre of an orbit; filled circles
indicate stationary fixed points. Each data point corresponds to the distance between the central
axis of the cylinder and the centre of the sphere, averaged over 2 seconds (60 frames). The
continuous line is the theoretical prediction for this horizontal displacement, from §2.

For a wide range of parameters, including the values relevant to our experiments, nu-
merical integration of the time-dependent model (2.14) indicates that these fixed points
are stable: no orbits are predicted. This was ascertained by solving for the motion of
spheres that were initially displaced from their equilibrium position. Up to a scaling fac-
tor, the trajectory obtained is independent of the size of the initial displacement of the
sphere, since the model is linear in particle position and velocity. After an initial tran-
sient of duration ∼ 1/Ω arising from the history force, the spheres are predicted to spiral
towards the equilibrium point, with the distance from this point decaying exponentially
in time. The mechanism driving this stable attraction to the fixed point is simply the
centrifugal pressure gradient in the fluid, with the rate of approach to the fixed point
modified only slightly by the history force. This behaviour is consistent with the trajecto-
ries for buoyant particles plotted in figure 5 of Candelier (2008) (which are qualitatively
similar to the trajectories we obtain for our experimental parameter values), in that the
rate of approach to the fixed point differs only slightly in different formulations of the
history force.

4.2. Oscillations

As noted in figure 4, below a critical Re the spheres were observed trace an orbit, centred
around the equilibrium position predicted by the theory of §2. This is contrary to the
theoretical predictions of a stable equilibrium without a limit cycle: this discrepancy will
be discussed later. The paths of these orbits for a = 7.9mm are shown in figure 6(a) for
a range of Re. Solid lines in this figure correspond to the least squares fits of circles to
the data; these circles were used to estimate the centre and radius of each orbit.
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Figure 5. Nondimensional horizontal displacement of the sphere at the onset of instability,
xc/a, as a function of sphere radius a.

The radius of each orbit is plotted as a function of Re in figure 7. For all sphere
sizes the orbit radius increased, as did the distance between the orbit centre and the
cylinder axis, as Re decreased. The critical distance and Reynolds number at which the
oscillation started was estimated by measuring the radius of the orbit. When the radius
was smaller than 5% of the radius of the sphere, approximately the smallest orbit that
could be observed clearly, the sphere was deemed to be on a fixed point. We have chosen
the critical point in this way as it enables a measure which compares the onset of the
oscillations between all spheres. We observe that the sphere becomes unstable to periodic
orbits when its equilibrium point is greater than ≈ 0.7 of the sphere radius, for a range of
sphere sizes (figure 5). This corresponds to smaller spheres becoming unstable at smaller
values of the critical Reynolds number Rec.

In many fluid mechanics problems the onset of a simple oscillation is well-described as
a Hopf bifurcation in which R ∼ |Re − Rec|1/2 where Rec is the critical value of Re at
the bifurcation point. Examples include flow past a cylinder (Sreenivasan et al. 1987),
Taylor-Couette flow (Pfister & Gerdts 1981) and Rayleigh-Benard convection (Ecke et al.
1992). Indeed in a study of the closely related problem of the motion of heavy spheres
in a rotating horizontal cylinder of viscous fluid (Mullin et al. 2005), the characteristics
of a simple Hopf bifurcation are also found. In the present case, when the light sphere is
away from the wall the growth of the radius of the oscillation radius with decreasing Re

is well-fitted by R ∼ Re−2, as demonstrated by the line of gradient −2 in figure 7.
As Re decreases, the increase of both orbit radius and displacement of the orbit centre

from the cylinder axis means that the influence of the cylinder wall becomes dominant
for sufficiently small Re. When Re was . 0.01 the sphere sat at a series of fixed points
adjacent to the descending wall. When Re was increased above ≈ 0.01 the sphere began
to oscillate adjacent to the wall. Typical examples of orbits near onset can be seen in
figure 8 for a 12.5mm sphere at Re = 0.012. The orbit is elliptical and the motion is
localised adjacent to the cylinder wall. The radius of this oscillation was proportional
to the R ∼ |Re − Rec|1/2 in accord with a standard Hopf bifurcation and the results
of Mullin et al. (2005) for heavy spheres. It can also be seen in figure 8 that the orbit
became more circular as Re was increased and approaching the small near pefect circular
orbits close to the cylinder axis (figure 6).

The frequency of the orbit was measured and its nondimensional form is shown in
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Figure 6. Orbits of a sphere with a = 7.9mm at various fixed values of Re. Symbols are
observed sphere positions, and the solid line corresponds to a circular fit for each orbit.
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Figure 7. Nondimensional orbit radius R/a, plotted against Re. The grey dashed line denotes
the threshold below which a sphere is assumed to lie on its equilibrium point.

figure 9, plotted as a function of Re. The frequency ratio of the sphere to the cylinder is
close to two when the sphere is near the wall and rapidly approaches one as the sphere
moved towards the centre of the cylinder when Re was increased. As noted above the
orbit became more circular and was centred on the unstable fixed point.

5. Discussion and conclusions

We have investigated the motion of a light sphere immersed in a rotating viscous flow at
low Reynolds numbers. Our experimental results show a set of stable fixed points which
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Figure 8. Plot of the orbits of a 12.5mm sphere at the various given values of Re, illustrating
the behaviour of the orbits as they approach the side wall of the drum (solid black circle).

are eccentric to the axis of the cylinder over a range of Re. The balance of forces required
for stability is explained using the buoyancy force arguments of Magnaudet (1997), Gotoh
(1990) and Candelier (2008). We present results of a model for the equilibrium position
of the sphere, based on these arguments, and the predictions of the equilibrium points
are in excellent accord with the experiments.

We also found experimentally that these equilibrium positions become unstable to
oscillatory motion below a critical value Rec and the sphere follows circular orbits. The
centre of the orbit is located on the fixed point predicted by the theory, but the existence
of a stable orbit is not predicted by the theory, which instead predicts a stable fixed
point. As Re decreases, the radius of the experimentally observed orbit scales initially as
Re−2, which is slower than the growth following a typical Hopf bifurcation.

Two clear possibilities exist for the difference between the stability predictions of the
theory and the experimental observations. Firstly, the effect of the outer walls of the
drum are neglected in the theory, but become significant in the experiments as Re is
decreased and the predicted equilibrium position moves away from the axis of rotation
towards the drum wall. At these lower values of Re, the experimentally observed orbits
become elliptical and decrease in size, until the sphere restabilises at a stable equilibrium
point adjacent to the cylinder wall. This change in stability occurs via a standard Hopf
bifurcation, as reported previously for heavy spheres Mullin et al. (2005). It is possible
that the orbits we observe are caused by wall effects destabilising even the fixed points
very close to the axis of rotation. To test this, experiments were performed in which a
100mm-long plexiglass cylinder of radius 3mm glued to the inner wall of the cylinder.
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Figure 9. Graph of the frequency of oscillation of spheres in the diameter range 9.5 to 25.0 mm
plotted as a function of Re. The frequencies have been made dimensionless using the rotation
frequency of the cylinder.

No change to the orbits was observed, even with this large perturbation, suggesting that
wall effects (and indeed any small geometrical imperfections in the experiment) are not
the cause of the observed orbits.

Secondly, the theory is formally valid only in the asymptotic limit Rep ≪ Re1/2 ≪ 1.

In our experiments, Re1/2 < 1 is satisfied always, and Rep < Re1/2 is satisfied for all but
three measurements of the spheres of 9.5mm radius. We observe orbits only for smaller
values of Re, which suggests that while Re1/2 ≪ 1 may be satisfied, finite-Rep effect not
included in the model may act to destabilise the equilibrium points as Rep approaches

Re1/2.
Notably, the observed dependence of orbit radius on Re is not the standard R ∼

|Re −Rec|1/2 expected of a Hopf bifurcation and, further work is required to explain the
mechanism of instability and the origins of this behaviour. A full numerical simulation
of the system may shed light on these issues, but it remains a challenging problem to
resolve, in three dimensions, the subtle balance of stabilising and destabilising forces
acting on the sphere at finite Reynolds number.
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