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SUMMARY

Recently the Method of Difference Potentials has been extended to Linear Elastic Fracture Mechanics. The

solution was calculated on a grid boundary belonging to the domain of an auxiliary problem, which must be

solved multiple times. Singular enrichment functions, such as those used within the Extended Finite Element

Method, were introduced in order to improve the approximation near the crack tip leading to near-optimal

convergence rates. Now the method is further developed by significantly reducing the computation time. This

is achieved via the implementation of a system of basis functions introduced along the physical boundary

of the problem. The basis functions form an approximation of the trace of the solution at the physical

boundary. This method has proven efficient for the solution of problems on regular (Lipschitz) domains. By

introducing the singularity into the finite element space, the approximation of the crack can be realised by

regular functions. Near optimal convergence rates are then achieved for the enriched formulation. A solution

algorithm using the Fast Fourier Transform is provided with the aim of further increasing the efficiency of

the method.

Copyright c© 2010 John Wiley & Sons, Ltd.
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KEY WORDS: method of difference potentials; extended finite element method; fracture; rate of
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1. INTRODUCTION

The Method of Difference Potentials, (DPM), was originally developed by Ryaben’kii [1, 2] and has

been applied to Boundary Value Problems (BVPs) in fluid dynamics [3], acoustics [4, 5, 6] and many

other applications [1]. The methodology is based on the same boundary integral equation as that

used in Boundary Element Methods (BEM) [7, 8, 9, 10, 11]. Within the BEM, this boundary integral

equation is numerically integrated given the knowledge of a suitable Green’s function. The DPM
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2 W. H. WOODWARD ET AL.

avoids any need for Green’s functions by embedding the problem within a well-defined auxiliary

problem. The auxiliary problem is then solved numerically, avoiding the solution of the integral

equation. A boundary system of equations must be constructed in order to calculate appropriate

grid densities at the embedded boundary. This requires the auxiliary problem to be solved a

multiple number of times, where the number of solutions required increases with required accuracy.

Definition of the auxiliary problem can be flexible provided that it is well defined and completely

encloses the embedded domain and its boundary. The auxiliary problem is therefore chosen as to

facilitate the most efficient solution method. Previously a square domain with a regular grid has

been used along with the use of finite difference methods which can be particularly efficient for

regular problems such as this. In this paper, an adjusted Extended Finite Element Method (XFEM)

formulation based on that used in [12] is used to solve the auxiliary problem. Unlike other embedded

methods, such as the Finite Cell Method [13], the DPM does not require any special quadrature

procedure near the boundary in order to accurately represent the domain geometry. The adjusted

XFEM used here extends the near-crack-tip singular enrichment functions along the entire length

of the crack, replacing the traditional Heaviside enrichment. While this adjustment is reasonable for

the simple and well understood test cases solved in this paper, it is recognized that the traditional

combination of Heaviside and singular enrichment is required for general problems. However, for

the purpose of demonstrating the promise of this method for further development, the adjusted

XFEM is used for simplicity of formulation.

Recently the DPM was applied to Linear Elastic Fracture Mechanics (LEFM) [12]. For the

first time, DPM technology was combined with the finite element method (FEM). By introducing

singular enrichment functions near the crack tip, such as those used in XFEM, it was shown that the

DPM can achieve near-optimal convergence rates for simple 2D crack test cases. In addition to this,

the minimal clear trace for crack problems, as derived by [14], was numerically realised. Several

developments of the methodology given in [12] for the solution of LEFM problems are presented

here. In [12] the solution to the problem was based on a grid boundary close to the physical boundary

of the problem. A system of basis functions is now introduced along the physical boundary, as

suggested in [1] for regular problems. The basis functions form an approximation of the trace of

the solution at the physical boundary. This method has proven efficient for the solution of problems

on regular (Lipschitz) domains, e.g. [15]. So far there have only been a few examples where the

DPM has been used for solving BVPs with singularities. For the first time the DPM was applied in

non-Lipschitz domains for the solution of the Poisson and Chaplygin equations in [16, 17, 18]. In

[19] the Helmholtz equation is solved for a problem with a singularity which exists due to a non-

smooth boundary. In addition, work [20] is worth noting in which a discontinuity in the boundary

conditions is considered. In these papers the regularization of the numerical algorithm was based on

the identification of an explicit asymptotic behaviour of the solution near the singularity.

In the current work the FEM basis is enriched near the crack tip in order to account for the

singularity. Local splines are used for the basis functions to localise any error anticipated near the

singularity. However it is found that by enriching the FEM space with the appropriate singular

functions, the trace along the crack boundary can be reduced to a regular function. Therefore,

no special treatment is required along the crack boundary despite the presence of a discontinuity

across the crack and a singularity at the crack tip. Competitive convergence rates are achieved. The

reduction of the problem to the physical boundary allows for a significant reduction of the number of

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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THE METHOD OF DIFFERENCE POTENTIALS FOR LEFM 3

required solutions of the auxiliary problem. Therefore the method is significantly faster than when

solving on the grid boundary, as in [12]. Further to this, by interpolating from the grid boundary

to the physical boundary, boundary conditions of all kinds can be applied more easily than for the

previous method.

Although multiple solutions of the auxiliary problem are still required, the DPM’s ability to solve

complex problems on a regular grid leads to advantages prior to solving the problem. Firstly, there

is no need to generate a mesh which conforms to the domain geometry. Secondly, the stiffness

matrix can be defined explicitly using a finite difference scheme, thus avoiding the expensive

Gauss quadrature procedure required for the FEM formulation. This includes avoiding any special

quadrature procedures needed near the crack tip. Therefore two expensive preprocessing steps can

be avoided by the method. In order to further increase the efficiency of the method, we suggest a

Fast Fourier Transform (FFT) algorithm for the fast solution of the auxiliary problem. The algorithm

is based on that given by Wiegmann [21] for the solution of two-dimensional finite difference

equations. Here it is given for a FEM formulation and a two-stage solution is required in order

to account for the enriched space. The method takes advantage of the regular grid used in order

to solve the problem using the FFT. A coupled scheme is used where the relatively small enriched

part is solved using conventional methods while the large, regular part is solved using the FFT. This

leads to a fast solution method for the enriched system when the enriched area is small relative to the

total area of the domain. It also holds the advantage of avoiding the need to construct a full stiffness

matrix for the problem. Here the formulation is applied to a square auxiliary domain, however it

remains valid for rectangular domains provided that the grid is regular. A first discussion is given of

the efficiency of this formulation and further numerical tests will be presented in a future paper.

This paper leads directly from the work presented in [12]. The reader is therefore encouraged

to first familiarise themselves with the work presented there. This paper is organised as follows.

Section 2 defines the problem to be solved along with the auxiliary problem used within the DPM.

Section 3 outlines the XFEM formulation used to solve the auxiliary problem. The clear trace

used at the crack boundary is described in Section 4.1 while an approximation of the differential

potentials and projections are formulated in Section 5. A numerical algorithm for the enriched DPM

is provided in Section 6. The result of convergence studies for simple 2D test cases are given in

Section 7. In Section 8 a fast solution algorithm using the FFT is outlined. A brief discussion of the

method and the findings of this paper are provided in Section 9 and a conclusion is given in Section

10.

2. DEFINITION OF THE PROBLEM

2.1. Crack problem

A linear elastic bidimensional problem is considered for an isotropic homogeneous material. The

problem is considered on a bounded domain D̄ ∈ R
2 with outer boundary Γ′ and containing a crack

along a contour denoted Γc = Γcl

⋃

Γcr , where Γcl and Γcr denote the left and right-hand side

of the crack boundary respectively. We denote Γ = Γ′
⋃

Γc and therefore we have D̄ = D
⋃

Γ,

as seen in Fig. 1(a). The displacements over the domain are given as the vector functions vD̄ =

{v(1)
D̄
, v

(2)

D̄
} ∈ C2 (D\Γc)

⋂

C1
(

D̄\Γc

)

where Ck denotes the space of functions for which their

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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4 W. H. WOODWARD ET AL.

first k derivatives are smooth and continuous and the superscripts (1) and (2) denote the x and y

components respectively. vD̄ can be discontinuous at the crack boundary Γc.

The displacement functions satisfy the two-dimensional elastostatic system:

µ∆vD̄ + (λ+ µ) grad div vD̄ = fD, (1)

where λ > 0 is the Lame constant and µ > 0 is the shear modulus of the material. The right-hand

side, fD = {f (1)
D , f

(2)
D }, represents body forces acting upon the domain and we define VD̄ as the

space of all admissible displacement functions vD̄ . The BVP to be solved is defined in operator

form as:

LDD̄vD̄ = fD on D̄,

lΓD̄vD̄ = ϕΓ on Γ,
(2)

where LDD̄ and lΓD̄ are linear operators representing the elastostatic equation (1) and boundary

conditions respectively. We can then say that fD belongs to the space of functions FD such that

LDD̄ : VD̄ → FD . The boundary operator, lΓD̄, can define Dirichlet, Neumann or mixed boundary

conditions and ϕΓ is a known boundary function. We assume that fD and ϕΓ are such that the BVP

(2) is well posed if vD̄ ∈ C2 (D\Γc)
⋂

C1
(

D̄\Γc

)

. We also introduce the subspace UD̄ ⊂ VD̄ of all

regular displacement functions which are smooth and continuous across the crack such that in this

case effectively no crack boundary exists.

Figure 1. (a) Cracked domain D̄ = D
⋃

Γ with Γ = Γ′⋃Γc and (b) the auxiliary domain D̄0 = D0⋃Γ0

Let us introduce the Mode I and Mode II asymptotic displacement fields. Let r denote the distance

from the crack tip and θ ∈ [−π;π] be the angle to the tangential of the crack at the crack tip. The

displacements fields are then given as:

v
(1)
I =

KI

2µ

√

r

2π
cos

(

θ

2

)[

κ− 1 + 2 sin2
(

θ

2

)]

,

v
(2)
I =

KI

2µ

√

r

2π
sin

(

θ

2

)[

κ+ 1− 2 cos2
(

θ

2

)]

,

(3)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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v
(1)
II =

KII

2µ

√

r

2π
sin

(

θ

2

)[

κ+ 1 + 2 cos2
(

θ

2

)]

,

v
(2)
II = −KII

2µ

√

r

2π
cos

(

θ

2

)[

κ− 1− 2 sin2
(

θ

2

)]

.

(4)

Here KI and KII are the Mode I and Mode II Stress Intensity Factors (SIFs) respectively. κ is

Kosolov’s constant and is equal to (3− 4ν) for plane strain and (3− ν)/(1 + ν) for plane stress,

where ν is Poisson’s ratio. These displacement fields will be used to define the crack test cases to

be solved in this paper (Section 7.1) in addition to the enrichment functions used within the XFEM

formulation (Section 3.2). It is to be noted that although the asymptotic form of the solution near the

singularity is assumed to be known, the corresponding coefficients, or the appropriate weights, are

not known. They are to be included into the overall set of unknowns and determined in the numerical

solution. It is also noted that only the first terms of the asymptotic solution are given by 3 and 4.

The higher order terms have been truncated as they are not required for the problems considered in

this paper with low order boundary conditions.

Higher order terms are required if higher order basis functions are to be used [22]. It has also been

found that including higher order terms can significantly improve the accuracy of the stress near the

crack tip [23]. This is particularly useful for dynamic crack propagation models as it provides a quick

method to calculate the stress intensity factors which in turn allows the direction of propagation to

be calculated. Introducing higher order terms involves introducing additional coefficients within the

enriched area near the crack. This should not introduce a significant complication to the formulation

other than causing the stiffness matrix to be poorly conditioned. For higher order terms it may be

the case that a preconditioner would be needed for the stiffness matrix.

2.2. Auxiliary problem

The BVP to be solved is embedded within an auxiliary domain of simple geometry discretized using

a uniform grid. This section describes the construction of the auxiliary problem used in the solution

process of the DPM.

For a domain D̄ which lies within an auxiliary domain D0 bounded by Γ0 so that D̄ ⊂ D0,

as shown in Fig. 1(b), let us define a function vD̄ which extends over the entirety of D̄0 such

that vD̄ = vD̄0 |D̄ . The auxiliary domain is defined as a square D0 = {x, y | 0 ≤ x ≤ L, 0 ≤ y ≤ L}
where L is the length of the domain. We define the space of all admissible displacements within

D̄0 as VD̄0 ⊂ C2
(

D0\Γc

)
⋂

C1
(

D̄0\Γc

)

where all vD̄0 ∈ VD̄0 satisfy the homogeneous boundary

conditions defined by lΓ0D̄0vD̄0 = 0. We note that Γ0
⋂

Γc = ∅ and therefore here there is no

boundary condition applied to the functions vD̄0 on the crack boundary Γc. Let UD̄0 be the space

of all regular functions uD̄0 which are smooth and continuous across the crack (or equivalently, for

which no crack boundary exists, i.e. Γc = ∅), such that UD̄0 ⊂ VD̄0 .

Let FD0 be the space of all body force functions fD0 where suppfD0 = D, i.e. fD0(x) = 0

if x /∈ D. The boundary condition defined by lΓ0D̄0 must ensure that the solution to the regular

problem is well-posed. However beyond this it can be chosen as to facilitate the most efficient

numerical solution of the problem. For most of this paper we shall use uniform Dirichlet boundary

conditions along the auxiliary boundary, Γ0, in the form uD̄0 |Γ0 = 0 for all uD̄0 ∈ UD̄0 , until Section

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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8 where we use mixed boundary conditions. The auxiliary problem with no crack is therefore defined

as:

LD0D̄0uD̄0 = fD0 , uD̄0 ∈ UD̄0 , fD0 ∈ FD0 . (5)

This auxiliary problem will be used to find the solution of the embedded BVP (2) for which a

solution is required. The DPM for domains containing a crack requires the solution of this regular

auxiliary problem (5) only.

3. METHOD USED TO SOLVE AUXILIARY PROBLEM

An XFEM formulation is used in order to model crack problems. This is done by introducing a

discontinuity across the crack, in addition to an approximation of the singularity at the crack tip,

into the solution space. Although the DPM only requires multiple solutions of a regular auxiliary

problem, a discontinuous auxiliary problem must be formulated in order to calculate the appropriate

force terms for the regular auxiliary problems to be solved. However a solution is never required

for the discontinuous problem. The adjusted XFEM used here is based on the XFEM formulation

presented in [12].

3.1. Definition of grid sets

We define a square grid xm1,m2 = (xm1 , ym2) = (m1h, m2h) with step size h and assume that the

sides of the square D̄0 lie on the grid lines as shown in Figure 2(a). The regular grid is used to form

square elements with a node at each corner. Let us define the grid setM0 as that containing all nodes

m lying within the domain D0 and also denote N0 as the set of all nodes lying within D0 or upon

its boundary Γ0.

Let us now introduce the following grid sets, γc, IH , IF and I ′F . γc is defined as the grid set

containing all nodes lying on the crack boundary, Γc, or for which their support is intersected by the

crack boundary, as shown in Figure 2(a). Now let us define a region DF of characteristic length dF

such that DF ⊂ D0 and such that the centre point of DF is at the crack tip. Here we use a square

domain for DF .We define I ′F as the set of all nodes lying entirely within the region DF as seen

in Figure 2(b). Next we define the grid set IF to include all nodes lying within DF along with all

nodes whose support is intersected by the boundary of DF . Therefore we have I ′F ⊂ IF . We also

define IH as the set of nodes belonging to γc but not I ′F , IH = γc\(I ′F
⋂

γc). Therefore IH ⊂ γc.

Finally, we define IFH = IF
⋃

IH and the total enriched area DFH = DF

⋃

DH , where DH is the

area occupied by all elements with all four nodes belonging to IH .

Now consider the domain D in Figure 2(a), bounded by Γ = Γ
′ ⋃

Γc. By D− we denote the

domain D− = D0\D̄. Considering the discretized domain, by M+ we denote the set of points

m ∈M0 lying in the interior ofD and not on its boundary. By N+ we denote the grid set formed by

the extension of M+ via the nine-node stencil (7), N+ =
⋃

Nm, m ∈M+. Similarly let us denote

by M− the set of points m ∈M0 belonging to D−, therefore M− =M0\M+. By N− we denote

the extension of M− via the stencil, N− =
⋃

Nm, m ∈M−. It is clear that M+ and M− do not

intersect,M+
⋂

M− = ∅. We form a boundary grid set γ′ from the intersection of the grid domains

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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THE METHOD OF DIFFERENCE POTENTIALS FOR LEFM 7

N+ and N−, γ′ = N+
⋂

N−. A section of the γ′ grid set is shown in Fig. 2(a). The entire boundary

grid set is then given by γ = γ′
⋃

γc.

Figure 2. (a) Auxiliary domain and boundary grid sets and (b) Grid sets I ′F (plane nodes), IF (plane and
gray nodes) and IH (square nodes)

3.2. The Extended Finite Element Method

In [12], an XFEM formulation for it’s application with the DPM is outlined. For the test cases solved

in this paper an adjusted XFEM is used. This adjusted XFEM differs from the more traditional

XFEM described in [12] in that the singular enrichment functions F j are used along the entire

length of the crack, replacing the Heaviside enrichment. This formulation allows us to consider cD̄

along the entire crack boundary. In the case that the traditional XFEM formulation with a Heaviside

function is used away from the crack tip, as done in [12], a blending from the singular enrichment to

the Heaviside enrichment would be required. However, it can be shown that a Heaviside enrichment

can actually be replaced by a
√
r sin(θ/2) enrichment. In this case, orders of convergence for linear

elements will be identical to those of FEM; of order 2 for the L2 norm in displacements and 1 for

the H1 norm, with no loss of accuracy. For quadratic elements however, the orders of convergence

will be lower than those of FEM, reduced to 2.5 for the L2 norm and to 1.5 for the H1 norm with

higher error levels. This result is expected as adding a r3/2 sin(θ/2) term to the interpolation space is

required to recover an optimal order of convergence for quadratic elements. With the choice made

here on separating Mode I and Mode II displacements, for simplicity, normal opening in case of

Mode I and tangent sliding in Mode II are allowed even far away from the crack, with optimal

accuracy for linear elements. While introducing the Heaviside enrichment should not present a

significant problem to configure, the adjusted XFEM is used here for simplicity of formulation.

The adjusted XFEM displacement used in this paper is given by:

v(j) =

|N0|
∑

n=1

a(j)n ψn +
∑

n∈IFH

c(j)n F (j)ψn, a(j)n , c(j)n ∈ R, j = (1, 2), (6)

Here, ψn are first order shape functions and | · | denotes the number of nodes within the grid

set. F (1) and F (2) are global singular functions which are chosen by considering the problem to

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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8 W. H. WOODWARD ET AL.

be solved. For example, for a Mode I problem solved, these functions are chosen to be the Mode I

asymptotic displacement fields (3) with a SIFKI set to 1. Similarly, for a Mode II test case the Mode

II displacement fields (4) are used. This is a convenient formulation for simple test cases where the

nature of the displacement field is well understood. For more complex test cases involving mixed

mode loading, additional singular terms would need to be added to the system to account for both

modes simultaneously.

This first order FEM formulation uses a nine-node stencil:

Nm = {(xm1 , ym2) , (xm1 ± h, ym2) , (xm1 , ym2 ± h) , (xm1 ± h, ym2 ± h) , (xm1 ± h, ym2 ∓ h)} .
(7)

For more details on the original XFEM formulation, including numerical integration techniques

used near the crack, see [12].

3.3. Regular auxiliary problem with enrichment

Consider the adjusted XFEM formulation outlined in Section 3.2. Let us introduce VN0 as the vector

space of all functions vN0 = {v(1)N0 , v
(2)
N0}, defined for all n ∈ N0, that satisfy the auxiliary boundary

conditions lΓ0N0vN0 = 0 and are two-valued if n ∈ IFH , such that:

vN0 |n =















0 if n ∈ Γ0,

an if n /∈ IFH

⋃

Γ0,

(cn, an) if n ∈ IFH .

(8)

Consider a case in which all enriched DOFs belonging to γc are deactivated while any enriched

DOFs outside of γc remain active. vN0 would then be as follows:

vN0 |n =



























0 if n ∈ Γ0,

an if n /∈ IFH

⋃

Γ0,

(0, an) if n ∈ γc,

(cn, an) if n ∈ IFH\γc.

(9)

As the enriched DOFs along the crack have been deactivated, the function vN0 in this case must

be regular across the crack, i.e. no discontinuity exists. However, the singular enrichment within I ′F
remains within the solution space. Let us define the space U∗

N0 ⊂ VN0 as the space of all functions

u∗N0 ∈ VN0 for which all enriched DOFs belonging to γc only are deactivated, as defined by (9). Let

us also define the space UN0 as that of all regular functions uN0 for which all enriched DOFs are

deactivated such that UN0 ⊂ U∗
N0 . Here we use the superscript ∗ to distinguish between the discrete

regular space with singular enrichment, U∗
N0 away from the crack boundary, and that without, UN0 .

Let us introduce the function θZ′Z where Z ′ and Z are two arbitrary grid sets such that when

Z ⊂ Z ′:

θZ′ZfZ |n =







fZ , if n ∈ Z,

0, if n ∈ Z ′\Z,
(10)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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THE METHOD OF DIFFERENCE POTENTIALS FOR LEFM 9

and when Z ′ ⊂ Z:

θZ′ZfZ |n = fZ , if n ∈ Z ′. (11)

We define FM0 as the space of all body force terms fM0 for which the operator fM0 = θM0M+fM+

is defined such that:

fM0 |m ≡ (θM0M+fM+) |m =







fM+ , if m ∈M+,

0, if m ∈M0\M+.
(12)

We now define our regular auxiliary problem with singular enrichment as:

LM0N0u∗N0 = fM0 , u∗N0 ∈ U∗
N0 , fM0 ∈ FM0 , (13)

where as all functions u∗N0 satisfy the auxiliary boundary conditons, the problem (13) is well

defined. The function u∗N0 ∈ U∗
N0 is therefore unique for any given body force term fM0 .

4. DIFFERENTIAL POTENTIAL AND CLEAR TRACE

In this paper we will seek to approximate the differential potential given by:

PD̄ΓξΓ = vD̄ −GD̄D LDD̄ vD̄,

or

wD̄ = vD̄ − uD̄.

(14)

For the origin of this expression the reader is referred to [12].

Taking the trace TrΓD̄wD̄ of the differential potential (14) we arrive at the Boundary Equation

with Projection (BEP):

PΓξΓ = ξΓ −TrΓD̄ GD̄D LDD̄vD̄. (15)

An approximation of this equation will be used to calculate the trace of the solution vD̄ on the

boundary Γ.

It can be shown that if (2) is well conditioned, then (15) is also well conditioned [1].

4.1. Clear trace for crack problems

Consider a decomposition of the solution to the cracked auxiliary problem, vD̄0 , similar to that used

for the adjusted XFEM (Section 3.2):

vD̄0 = aD̄0 + cD̄0F,

where aD̄0 and cD̄0 are regular functions and F is discontinuous with singular gradients of order

1/
√
r. Here supp cD̄0 = DFH , where DFH is the entire enrichmed area as defined in Section 3.2.

In fact, let F be equal to the global singular functions F =
(

F (1), F (2)
)

used within the XFEM

formulation and we have vD̄0 ∈ VD̄0 . In the case where cD̄0 |Γc
= 0 and

∂cD̄0

∂n |Γc
= 0, assuming that

F fully accounts for the discontinuity, the solution vD̄0 is a regular function which is smooth and
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continuous across the crack. Therefore in this case vD̄0 ∈ UD̄0 , i.e. vD̄0 is a solution to the regular

auxiliary problem (5). As the solution to the regular auxiliary problem is unique, then in this case

vD̄0 = uD̄0 for any particular force term fD0 .

Now let us consider the differential potential as defined by Ryaben’kii [1] over D0 associated to

such a function vD̄0 ∈ UD̄0 when considering a crack boundary Γc only. We have:

PD̄0Γc
ξΓc

= vD̄0 −GD̄0D0 LD0D̄0 vD̄0 ,

= vD̄0 − uD̄0 ,

= 0,

where PD̄0Γc
is a projection matrix and GD̄0D0 is the Green’s operator, defined such that uD̄0 =

GD̄0D0fD0 .

Therefore, when the Cauchy data of the function, cD̄0 , is zero on Γc, i.e. cD̄0 |Γc
= 0 and

∂cD̄0

∂n |Γc
= 0, then the differential potential due to the crack is also zero. The Cauchy data of cD̄0 is

therefore sufficient to supply a clear trace along the crack boundary.

Until now the crack boundary as been represented by two overlapping boundaries; Γc =

Γcl

⋃

Γcr . However if only the smooth, continuous function cD̄0 is required at the crack boundary,

then cD̄0 |Γcl
= cD̄0 |Γcr

,
∂cD̄0

∂n|Γcl

= −∂cD̄0

∂n |Γcr
. Therefore we can represent the crack as one contour,

Γc = Γcl , with cD̄0 |Γc
= cD̄0 |Γcl

and
∂cD̄0

∂n |Γc
=

∂cD̄0

∂n |Γcl
, where here the positive normal and

tangential directions along Γc are chosen to be those consistent with Γcl .

We introduce the following differential trace for crack problems:

ṽΓ = T̃rΓD̄vD̄ ≡







(

vD̄(x), ∂vD̄(x)
∂n

)

|Γ′ if x ∈ Γ′,
(

cD̄(x), ∂cD̄(x)
∂n

)

|Γc
if x ∈ Γc.

(16)

5. APPROXIMATION OF THE SOLUTION AT THE BOUNDARY

The Difference Potential, wN+ = PN+γξγ = vN+ −GN+M+LM+N+vN+ , can be used to

approximate the Differential Potential, wD̄ = PD̄ΓξΓ = vD̄ −GD̄D LDD̄ vD̄ . We seek the solution

vD̄ ∈ VD̄ to the BVP (2) and will use the adjusted FEM described in Section 3.2.

We introduce a basis along the boundary Γ in the space of boundary densities ΞΓ. Here we

define the density on the outer boundary Γ′, ξΓ′ , as the Cauchy data of the function vD̄0 such that

ξΓ′ =
(

vD̄0 ,
∂vD̄0

∂n

)

|Γ′ . Along the crack boundary Γc, we define the density, ξΓc
, as the Cauchy data

of cD̄0 such that ξΓc
=
(

cD̄0 ,
∂cD̄0

∂n

)

|Γc
. The density along the entire boundary is then given by:

ξΓ =







ξΓ′ if n ∈ Γ′,

ξΓc
if n ∈ Γc.

Consider the outer boundary. Let ω′ denote the set of points on Γ′ where the basis functions

exist such that we have a discrete space of vector densities denoted Ξω′ , where Ξω′ ⊂ ΞΓ′ . Since

the density ξΓ′ is a vector function with two components, ξΓ′ = (ξ0, ξ1) |Γ′ , the basis will consist

of two sets of functions; Ψ′
ω′

0
=
(

ψ1
0 , ψ

2
0 , ..., ψ

|ω′|
0

)

and Ψ′
ω′

1
=
(

ψ1
1 , ψ

2
1 , ..., ψ

|ω′|
1

)

where |ω′| is the
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total number of basis points on Γ′. We define ψk
0 and ψk

1 as the vector functions ψk
0 =

(

ψk, 0
)

and

ψk
1 =

(

0, ψk
)

, where k = 1, 2, ..|ω′|, and then define the total system of basis functions on Γ′ as

Ψ′
ω′ = (Ψ′

ω′

0
,Ψ′

ω′

1
). Similarly for the crack boundary, let ωc denote the set of points on Γc where

the basis functions exist such that we have a discrete space of vector densities denoted Ξωc
⊂ ΞΓc

.

We then have two sets of basis functions on the crack boundary; Φωc0 =
(

φ10, φ
2
0, ..., φ

|ωc|
0

)

and

Φωc1 =
(

φ11, φ
2
1, ..., φ

|ωc|
1

)

, where φk0 =
(

φk, 0
)

and φk1 =
(

0, φk
)

. The total system on Γc is then

Φωc
= (Φωc0 ,Φωc1). We then define the total set of boundary points on Γ as ω = ω′

⋃

ωc, and the

total set of basis functions as Ψω = (Ψ′
ω′ ,Φωc

).

The boundary density can then be approximated in terms of the boundary basis as follows:

ξΓ′(s) =

|ω′|
∑

k=1

vk
0ψ

k
0 (s) +

|ω′|
∑

k=1

vk
1ψ

k
1 (s), if s ∈ Γ′, (17)

ξΓc
(s) =

|ωc|
∑

k=1

ck0φ
k
0(s) +

|ωc|
∑

k=1

ck1φ
k
1(s), if s ∈ Γc, (18)

where s is the arc length along Γ from a predefined origin and vk
0 , vk

1 , ck0 and ck1 are coefficients

which, with the basis functions, define the density ξΓ along the entire boundary. Let us define

qk0 = vk
0 , qk1 = vk

1 for k = 1, 2, .., |ω′| and q
k+|ω′|
0 = ck0 , q

k+|ω′|
1 = ck1 for k = 1, 2, .., |ωc|. Let us also

define ψ
k+|ω′|
0 = φk0 , ψ

k+|ω′|
1 = φk1 for k = 1, 2, .., |ωc| such that the entire boundary basis can be

expressed as:

ξΓ(s) =

|ω|
∑

k=1

qk0ψ
k
0 (s) +

|ω|
∑

k=1

qk1ψ
k
1 (s). (19)

When Γ′ is a sufficiently smooth, closed contour, the components of ξΓ′ can be considered to

be smooth periodic functions of the arc length s. However, when the domain boundary contains

corners, e.g. a square, the density ξΓ′ consists of only piecewise smooth functions. As we seek

ξΓ′ to represent a displacement solution and its normal gradient, ξΓ′ =
(

vD̄,
∂vD̄
∂n

)

|Γ′ , we expect a

continuous but non-smooth displacement, ξ0, and a discontinuous gradient, ξ1, across such corners.

Moreover, if the outer boundary Γ′ is intersected by the crack, i.e. in the case of an edge crack,

the displacement and its normal gradient are likely to be non-smooth and possibly discontinuous

at the point of intersection. In order to account for such discontinuities at boundary corners and

edge cracks, the basis functions, Ψ′
ω′ , are divided into individual basis functions for each side of the

domain. For example, consider the square domain shown in Figure 3(a). The set of points ω′ along

the boundary is divided into five subsets, ω′ = (ω′
l1

⋃

ω′
l2

⋃

ω′
b

⋃

ω′
r

⋃

ω′
t). Upon each set of points

we define an individual set of basis vector functions such that Ψω′ =
(

Ψω′

l1
,Ψω′

l2
,Ψω′

b
,Ψω′

r
,Ψω′

t

)

.

Here the left-hand side boundary Γ′
l is divided into two parts, above the crack, Γ′

l1
, and below the

crack, Γ′
l2

.

5.1. Local splines

Local splines are used for the basis functions, Ψω. Crack problems contain a singularity at the crack

tip which is likely to induce an error in the solution. Local splines are used instead of non-local
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12 W. H. WOODWARD ET AL.

Figure 3. (a) Boundary basis points ω = (ω′
l1

⋃

ω′
l2

⋃

ω′
b

⋃

ω′
r
⋃

ω′
t

⋃

ωc), (b) Boundary points with normal

through γ node, ω̄, shown as gray nodes. γ′ nodes shown in black

interpolations in an attempt to localise this error to a region near the crack tip. For simplicity of

formulation these local splines are used along the entire boundary Γ.

Consider an arbitrary contour, Γi, of length S. Let ωi be a set of equally spaced points, sk, along

the contour such that sk = (k − 1)H , k = 1, 2, ..., |ωi|, and H = S/(|ωi| − 1). The spline functions

are piecewise polynomials which possess continuous derivatives up to the order p. We introduce the

arbitrary function, fωi
, which exists on ωi and is equal to fk at the point sk. The spline functions

used in this paper to interpolate along the contour are derived from those given by Ryaben’kii in

[24] and are of the form:

FΓi
(s) = FΓi

(fr, Xk(s), H) , r = k − s, ..., k + p+ 1− s, (20)

where Xk = (s− sk)/H and for a given s the number k is chosen so that the inequalities sk ≤ s ≤
sk+1 are satisfied. This spline interpolation can be seen to be local as to calculate FΓi

at any point

s, only the values fr within the limits k − s ≤ r ≤ k + p+ q + 1− s are used, independent of the

step size H .

Now consider the square domain (Figure 3(a)). We have Γ′ =
⋃

Γ′
i for i = {l1, l2, b, r, t} and

Γ = Γ′
⋃

Γc. We define the interpolation operator R
′(p,H)
Γ′ω′ as that which extends the densities ξ0

and ξ1 on ω′, in addition to the tangential gradient of ξ0, to the entire boundary Γ using the spline

interpolations (20) such that:

R
′(p,H)
Γω ξω =

(

ξ0, ξ1,
∂ξ0
∂s

)

|Γ. (21)

5.2. Interpolation to grid nodes

Let τ be an arbitrary grid point belonging to γ′. Now we denote by sτ the point along Γ′ for which

the normal to Γ′ passes through the point τ . We define the set of points ω̄′ along the boundary as all

such points sτ related to each γ′ node, as seen in Figure 3(b). Therefore each γ′ node is associated

with a point on Γ′ belonging to ω̄′. We therefore have the space of vector densities defined at ω̄′;

Ξω̄′ ⊂ ΞΓ′ . We note that some γ′ nodes near sharp corners, such as the node denoted as γ′1 in Figure

3(b), are related to two points on the boundary belonging to ω̄′; ω̄′
2 and ω̄′

4. In the presence of

corners there may also exists γ′ nodes for which no such point exists, for example the node γ′3 in
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Figure 3(b). We assign such nodes to the boundary points within ω̄′ belonging to the neighbouring

γ′ nodes. For example, γ′3 is assigned to the boundary points ω̄′
2 and ω̄′

4 belonging to the γ′ points

γ′2 and γ′4 respectively. We then follow the same process on the crack boundary Γc to form the set

of points ω̄c associated to the grid set γc. Nodes lying beyond the crack tip are associated to the

ω̄c points belonging to the neighbouring γc nodes. The total set of such boundary points is defined

as ω̄ = ω̄′
⋃

ω̄c. Let ω̄τ be the set of ω̄ points ω̄τ1 , ω̄τ2, ... related to each node τ ∈ γ. For most γ

nodes, ω̄τ consists of one boundary point only, however for nodes such as those near a corner, ω̄τ

can consist of multiple points.

Next we define the interpolation operator π
(t)
γω̄, where t = 0, 1, ..., t, in order to interpolate from

the boundary points ω̄ to the grid nodes γ such that:

π
(t)
γω̄ξω̄|τ =

1

|ω̄τ |
∑|ω̄τ |

j=1

[

ξD̄|ω̄τj
+ ρn

∂ξD̄
∂n

|ω̄τj
+ ρt

∂ξD̄
∂nt

|ω̄τj
+ ...

+
∑t

k=0

ρkn
k!

ρt−k
t

(t− k)!

∂tξD̄
∂nk∂nk−t

t

|ω̄τj

]

,

=
1

|ω̄τ |
∑|ω̄τ |

j=1

[

ξ0|ω̄τj
+ ρnξ1|ω̄τj

+ ρt
∂ξ0
∂nt

|ω̄τj
+ ...

+
∑t

k=0

ρkn
k!

ρt−k
t

(t− k)!

∂tξD̄

∂nk∂nk−t
t

|ω̄τj

]

,

t = 0, 1, ..., τ = 1, ..., |γ|,
(22)

where ρn and ρt are the normal and tangential distances from sτ to τ respectively, and the boundary

normal n along Γ is defined as positive when facing outwards, i.e. away from the domain, and

negative when facing inwards. The positive tangential direction nt along Γ is defined to be the

anticlockwise direction along the boundary. For the crack boundary, Γc the positive normal and

tangential directions are chosen as described in Section 4.1. Equation (22) is a Taylor expansion

from the boundary to each τ ∈ γ node, averaged for each boundary point related to τ .

We seek to interpolate from the boundary Γ to find the difference trace (23) on γ:

ξγ |n = TrγN+ vN+ |n =















an if n ∈ γ′\γ′c,
cn if n ∈ γc\γ′c,
(an, cn) if n ∈ γ′c,

(23)

The difference trace consists of the displacement components an, n ∈ γ′ and cn, n ∈ γc. However

along Γ′ we approximate the Cauchy data of vD̄ rather than aD̄. Therefore, when n ∈ γ′c, we

interpolate to find vn before calculating an from an = vn − Fcn. Away from γc, this step is not

required as an = vn. The Cauchy data of vD̄ is considered on Γ′ rather than that of aD̄ because high

gradients tend to occur within aD̄ as one moves from the unenriched region into the enriched region,

DFH . When an edge crack is considered, these high gradients occur at the outer boundary Γ′ and

can disturb the accuracy of the interpolation of the function along the boundary, Γ′. vD̄ on the other

hand is smooth and continous everywhere except for across the crack boundary. This irregularity is

easily accounted for by dividing Γ′ at the intersection of Γ′ and Γc as described in Section 5. We

note that the density ξω consists of two different functions, the displacement, vD̄0 , along Γ′ and the
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component cD̄0 along Γc. Therefore at the intersecting grid set γ′c, the grid density ξγ = π
(t)
γω̄ξω̄ is

two valued as shown in (23).

Now we define the operator Ex
(p,H,t)
γω as that which extends the density ξω to the γ nodes, using

the spline functions (20) to interpolate to ω̄ and then (22), such thatEx
(p,H,t)
γω : Ξω → Ξγ , as follows:

Ex(p,H,t)
γω ξω =



















Ex
(p,H,t)
γ′ω′ ξω′ = an if n ∈ γ′\γ′c,

Ex
(p,H,t)
γcωc ξωc

= cn if n ∈ γc\γ′c
(

Ex
(p,H,t)
γ′ω′ ξω′ , Ex

(p,H,t)
γcωc ξωc

)

= (an, cn) if n ∈ γ′c.

(24)

where Ξγ is the space of all clear traces on γ.

We can then approximate the differential potential on the grid N+ as follows:

PN+γEx
(p,H,t)
γω ξω ≈ θN+D̄PD̄ΓξΓ, for n ∈ N+, (25)

where ξω = ξΓ|ω .

As can be seen in (22), a first order interpolation is readily available as the boundary densities ξ0

and ξ1 represent the displacement and its normal gradient on the boundary, respectively, while the

tangential derivatives of these densities along the boundary are easily obtained by differentiating the

basis functions:

∂tξ0(s)

∂nt
t

=
∂tξ0(s)

∂st
=
∑|ω|

k=1 a
k
0

∂tψk
0 (s)

∂st
,

∂tξ1(s)

∂nt
t

=
∂tξ1(s)

∂st
=
∑|ω|

k=1 a
k
1

∂tψk
1 (s)

∂st
.

(26)

For higher order interpolations, an equation based interpolation can be formulated by substituting

the boundary densities into the governing equation (1), as done by [15] with the Helmholtz equation.

5.2.1. Interpolation from crack boundary Along the crack boundary the function cD̄0 can be

interpolated without considering the singular term, F , without any loss of accuracy. This can be

seen to be the case as follows.

Consider the function v∗
D̄0 = cD̄0F . Consider also a point x on the crack boundary, x ∈ Γc, and a

point xτ lying a distane ρn from Γc on the normal to Γc at x. An interpolation of v∗
D̄0 from x to xτ

is given by:

v∗D̄0(xτ ) = v∗D̄0(x) + ρn
∂v∗

D̄0(x)

∂n
+ ...+

∞
∑

k=2

ρkn
k!

∂kv∗
D̄0(x)

∂nk
. (27)

This Taylor expansion (27) of v∗
D̄0 can be expressed as the product of the Taylor expansion of its

two components cD̄0 and F . Therefore we have:

v∗D̄0(xτ ) =

∞
∑

j=0

ρjn
j!

∂jcD̄0(x)

∂nj

∞
∑

k=0

ρkn
k!

∂kF (x)

∂nk
. (28)

Let us rewrite (28) as follows:
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v∗D̄0(xτ ) =

(

t
∑

j=0

ρjn
j!

∂jcD̄0(x)

∂nj
+O

(

ρt+1
n

)

)

F (xτ ),

where, as the expansion is to infinity, we have
∑∞

k=0

ρkn
k!

∂kF (x)

∂nk
= F (xτ ). As F (xτ ) is known

from the XFEM formulation, this interpolation can be used to find cD̄0 , and therefore v∗
D̄0 , at any

point xτ lying within the enriched area, DFH .

Figure 4. Edge crack problem. The grid set γ′c shown as the plane nodes, γc shown as gray nodes and plane
nodes, and part of γ′ shown as hollow nodes and plane nodes. Boundary basis points, ωc, shown along the

crack boundary.

5.3. Completion operator

As the XFEM is a continuum method, the displacement can be found at any point within the entire

domain D̄, not only on the grid nodes N0. The displacement at any point other than the grid nodes

is found via an interpolation performed by the bilinear finite element shape functions. While this

interpolation might be sufficiently accurate for the displacement function, the approximation of

the displacement gradients using these shape functions will be poor. A higher order interpolation

is required here between the grid nodes. We therefore introduce a completion operator which

interpolates to any point within the domain D̄ using higher order Lagrange polynomials. This

completion operator will then be used to calculate the displacement and its gradients away from

the grid nodes.

Let τ be a point lying anywhere within D̄. Let us define a square D̄τ which contains τ and

is formed by joining the four corner nodes of the nine node stencil, as defined by (7), such that

τ ∈ D̄τ . The square must be defined such that the node lying at the centre of the square, nc, belongs

to M+. Generally the choice of stencil used to form D̄τ is not unique. In this case we choose the

stencil for which τ is closest to the centre of the square. If the choice of stencil is still not unique,

we use the stencil for which τ is closest to the top left-hand corner of D̄τ . We denote the nodes of

the stencil used to form Dτ as Nτ where Nτ ∈ N+.

Consider an arbitrary function zNτ
defined on Nτ and set the notation zi,j = zNτ

(xi,j). Now we

define the following Lagrange polynomial at x ∈ D̄τ :

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme



16 W. H. WOODWARD ET AL.

PD̄τ
(x, Nτ , zNτ

) =

N
∑

i=1

J
∑

j=1

li,j(x) zi,j , (29)

where N and J are the total number of nodes in the x and y directions respectively, and the basis

polynomials li,j are given by:

li,j(x) =
∏

1≤m≤N

m 6=i

η − ηm
ηi − ηm

∏

1≤n≤J

n6=j

ζ − ζn
ζj − ζn

,

and here η = (x− xc)/h and ζ = (y − yc)/h where (xc, yc) are the coordinates of the central node

nc. Using the nine node grid set Nτ , such that N = J = 3, these polynomials are second order. A

larger grid set allows for higher order polynomials to be used, however second order accuracy is

sufficient for the problems within this paper.

Consider a function zD̄ defined in D̄ and set zN+ = zD̄|N+ . We can approximate this function at

any point x within D̄ using the Lagrange polynomial (29) such that:

z̃D̄ = PD̄(x, N+, zN+) ≈ zD̄(x). (30)

Let us define the completion operator PD̄N+ : VN+ → VD̄ such that using the polynomial

interpolation defined by (30):

PD̄N+vN+ =







ãD̄ if x /∈ DFH ,

(ãD̄, c̃D̄) if x ∈ DFH ,
(31)

where ãD̄ = ṽD̄ = PD̄(x, N+, vN+) when x /∈ DFH and when x ∈ DFH we have ãD̄ = ṽD̄ −
F c̃D̄, where ṽD̄ = PD̄(x, N+, vN+), and c̃D̄ = PD̄(x, N+, cN+). The function aD̄ is approximated

indirectly within DFH due to the high gradients of the function which occur at the boundary of the

enriched region as discussed in Section 5.2.

5.3.1. Interpolation near crack boundary The support of the function cN+ is limited to grid sets

local to the crack, therefore the nine node stencil Nτ used for this interpolation in Section 5.3

can be too large. Therefore near the crack D̄τ is chosen to be the largest quadrilateral possible up

to a maximum length of two elements in any direction. An example of the grid sets chosen for

nodes belonging to IH are shown in Figure 5. Considering the second term on the right hand side

of the XFEM displacement given by equation (6), we can see that cD̄0 is continuous across the

crack as cD̄0 =
∑

n∈IFH
cnψn, where ψn is continuous across the element. Therefore the Lagrange

interpolation across the crack is not a problem here for cD̄0 . However, when interpolating vN+ near

the crack boundary,Nτ is chosen such that D̄τ is not intersected by the crack as vN+ is discontinuous

across the crack.

5.4. Approximation of Differential Potential and Boundary Projection

We can now therefore approximate the differential potential (14) at any point x ∈ D̄ as follows:
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Figure 5. Stencil used for Lagrange polynomial near crack boundary. Nodes belonging to IH shown in grey,
nodes belonging to IF shown in black.

PD̄N+PN+γEx
(p,H,t)
γω ξω ≈ PD̄Γξγ . (32)

In addition to interpolating a function, the polynomials (29) can be used to approximate the first

derivatives of a function as follows:

∂PD̄(x, N
+, zN+)

∂x
=

N
∑

n=1

J
∑

j=1

∂li,j(x)

∂x
zi,j ≈

∂zD̄(x)

∂x
. (33)

Let us approximate the trace operator (16), T̃rΓN+ : VN+ → ΞΓ, using these Lagrange

polynomials such that:

T̃rΓN+vN+ =







(

PD̄(x, N+, vN+),
∂PD̄(x,N+,v

N+)

∂n

)

for x ∈ Γ′,
(

PD̄(x, N+, cN+),
∂PD̄(x,N+,c

N+)

∂n

)

for x ∈ Γc.
(34)

We can therefore approximate the BEP (15) as follows:

T̃rΓN+PN+γEx
(p,H,t)
γω ξω = R

(p,H)
Γω ξω − T̃rΓN+GN+M+LM+N+vN+ , (35)

where the operator R
(p,H)
Γω differs slightly to R

′(p,H)
Γω (21) in that it extends the Cauchy data only,

without the tangential gradient, such that R
(p,H)
Γω : Ξω → ΞΓ.

Let us also introduce an alternative BEP which has the slight difference that here the tangential

gradient is calculated on the boundary Γ in addition to the function and its normal gradient:

T̃r
′

ΓN+PN+γEx
(p,H,t)
γω ξω = R

′(p,H)
Γω ξω − T̃r

′

ΓN+GN+M+LM+N+vN+ , (36)

where the operator T̃r
′

ΓN+ is defined such that:

T̃r
′

ΓN+vN+ =







(

PD̄(x, N+, vN+),
∂PD̄(x,N+,v

N+)

∂n ,
∂PD̄(x,N+,v

N+)

∂nt

)

for x ∈ Γ′,
(

PD̄(x, N+, cN+),
∂PD̄(x,N+,c

N+)

∂n ,
∂PD̄(x,N+,c

N+)

∂nt

)

for x ∈ Γc.
(37)

The additional constraint of evaluating the tangential gradient of the function at the boundary

serves only to apply a stricter requirement on the clear trace ξΓ needed to satisfy the BEP. Finally,
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let us define the operator T̃r
′

ω̄N+vN+ as that which provides the trace (37) on the boundary subset

ω̄ ⊂ Γ only.

5.5. Approximation of boundary operator

The spline functions (20) to approximate the boundary conditions, lΓD̄vD̄ = ϕΓ, which we will

apply in the form:

lω̄ωξω = ϕω̄ . (38)

The operator lω̄ω can define Dirichlet, Neuman or Robin boundary conditions using these spline

interpolations. These splines can be used to interpolate the function ξ0 and its normal derivative

ξ1 along the entire boundary and can also calculate the tangential derivative ∂ξ0
∂nt

, as described in

Section 5.1.

Therefore the method holds the advantage that the boundary conditions need never be

approximated on a grid. The accuracy of the boundary conditions relies only on the order of the

boundary basis functions chosen, in this case the order p = 2 of the local splines (20).

6. NUMERICAL ALGORITHM

Let us now formulate the solution method for general crack problems where vD̄ ∈ VD̄ . We seek a

boundary density ξΓ which satisfies the BEP (15). An approximate solution is obtained by finding a

solution to the approximated BEP (36) along with the boundary equation (38).

Let us rewrite the approximated BEP (36) as the following set of equations evaluated on the

boundary set ω̄:

|ω|
∑

k=1

qk0 T̃r
′

ω̄N+PN+γEx
(p,H,t)
γω ψk

0 +

|ω|
∑

k=1

qk1 T̃r
′

ω̄N+PN+γEx
(p,H,t)
γω ψk

1

=

|ω|
∑

k=1

qk0R
′(p,H)
ω′ω ψk

0 +

|ω|
∑

k=1

qk1R
′(p,H)
ω̄ω ψk

1 − T̃r
′

ω̄N+GN+M+LM+N+vN+ . (39)

We then form the vector of unknown coefficients of length 4|ω|;

qω = [vω′ , cωc
] =
[

v1
0, ..., v

|ω′|
0 , v1

1, ..., v
|ω′|
1 , c10, ..., c

|ωc|
0 , c11, ..., c

|ωc|
1

]

, (40)

We note that here each term vk
0 , vk

1 , ck0 and ck1 are in fact vectors containing each directional

component; vk
0 =

(

v
(1)k
0 , v

(2)k
0

)

, vk
1 =

(

v
(1)k
1 , v

(2)k
1

)

, ck0 =
(

c
(1)k
0 , c

(2)k
0

)

and ck1 =
(

c
(1)k
1 , c

(2)k
1

)

such that vω′ and cωc
can be written as:

vω′ =
[

v
(1)1
0 , v

(2)1
0 , ..., v

(1)|ω′|
0 , v

(2)|ω′|
0 , v

(1)1
1 , v

(2)1
1 , ..., v

(1)|ω′|
1 , v

(2)|ω′|
1

]

,

and
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cωc
=
[

c
(1)1
0 , c

(2)1
0 , ..., c

(1)|ωc|
0 , c

(2)|ωc|
0 , c

(1)1
1 , c

(2)1
1 , ..., c

(1)|ωc|
1 , c

(2)|ωc|
1

]

,

respectively.

We then represent the system of equations (39) in matrix form:

Dω̄ωqω = −T̃r
′

ω̄N+GN+M+LM+N+vN+ . (41)

where the matrix operator Dω̄ω of dimensions 6|ω̄| × 4|ω| is as follows:

Dω̄ω =
[

D̃ω̄ωψ
1
0 , ..., D̃ω̄ωψ

|ω|
0 , D̃ω̄ωψ

1
1 , ..., D̃ω̄ωψ

|ω|
1

]

, (42)

with D̃ω̄ω = T̃r
′

ω̄N+PN+γEx
(p,H,t)
γω −R

′(p,H)
ω̄ω .

Each column of Dω̄ω is found by first extending each individual basis function on ω to the γ grid

set before calculating the difference potential (25). Each time the difference potential is calculated

a solution of the auxiliary problem (13) is required. Therefore in order to form Dω̄ω, 4|ω| solutions

of the auxiliary problem is needed. One additional solution of the auxiliary problem is also needed

to calculate the right-hand side of (41). However for homogeneous problems, LD̄DvD̄ = 0D, this

solution is not needed. The difference potential is then reduced to the boundary points ω̄ using the

Lagrange interpolations (29) where the function and its first derivatives are evaluated.

We therefore have a system of linear algebraic equations (41). Generally it is found that |ω| < |ω̄|
for meaningful solutions. Therefore we have an overdetermined system which can be solved using

least squares. Solving the system (41) along with the boundary conditions (38) leads to an unique

solution.

The difference potential,wN+ , can then be found from (25) using the calculated boundary density

ξω before the final solution is obtained from:

vN+ = wN+ + uN+ ,

where uN+ = GN+M+LM+N+vN+ = GN+M+fM+ .

6.1. Summary of computational procedure

A step-by-step summary of the computational procedure is as follows:

1. Define the discrete auxiliary problem (13). The auxiliary problem must be well posed with

a domain that fully contains the embedded domain, D̄, and its boundary, Γ. The auxiliary

boundary conditons lΓ0N0u∗N0 = 0 can be chosen as to facilitate the most efficient solution

method.

2. Define the required grid sets γ, γ′, γc, γ′c, IFH , N+, M+.

3. Define a suitable system of basis functions along the boundary in order to approximate

the boundary density ξΓ as in (19). Each basis function, ψk
0 , ψk

1 , can be defined using any

properties known for the solution a priori. In this paper all basis functions are defined using

the local spline functions given in Section 5.1.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme



20 W. H. WOODWARD ET AL.

4. Build the boundary system of equations (41). For each directional component j = (1, 2), we

do the following for k = 1, 2, ..., |ω| and i = 0, 1:

4.1. Extend the boundary basis function ψk
i to the grid boundary γ using the extension

operator (24) to find the grid density ξk,iγ .

4.2. Calculate the difference potential wk,i
N+ = vk,j

N+ −GN+M+LM+N+vk,j
N+ for vk,j

N+ =

θN+γξ
k,i
γ . This requires a solution of the auxiliary problem (13) with right-hand side

fk,i
M0 = LM0N0θN0N+vk,i

N+ .

4.3. Calculate the trace (37) of wk,i
N+ on the boundary points ω̄ using the Lagrange

interpolations and store as a column of matrix Dω̄ω.

5. Solve the auxiliary problem (13) with right-hand side θM0M+fM+ to find uN+ . If the problem

is homogeneous such that LM+N+vN+ = fM+ = 0M+ , then this step is not required.

6. Solve the boundary system (41) with the boundary conditions lω̄ωξω = ϕω̄ , where lω̄ω can be

approximated as described in Section 5.5, to find the boundary density ξω.

7. Extend the boundary density, ξω, to γ to find the grid density, ξγ . Calculate the difference

potential wN+ = vN+ −GN+M+LM+N+vN+ where vN+ = θN+γξγ . This requires the

solution of the auxiliary problem (13) with right-hand side LM0N0θN0N+vN+ .

8. The final solution is then found from vN+ = wN+ + uN+ .

The majority of the computational effort needed within the procedure exists within Step 4 where

4|ω| solutions of the auxiliary problem are required. When solving multiple problems on the same

domain, D̄, but with different boundary conditions or force terms, the BEP can be stored and reused

for each problem. In this case, only two solutions of the auxiliary problem is needed, Steps 5 and 7,

to find any additional solution once the BEP is known. Therefore, the cost of Step 4 becomes less

essential when multiple problems are to be solved.

The cost involved in constructing the BEP is not as significant as might first appear. As is

shown in Section 7, the number of basis functions, |ω|, doesn’t necessarily need to increase with

increasing mesh refinement. Therefore, particularly for smooth boundary densities, it is expected

that |ω| << |N0|. We have shown in this paper (Section 4.1) that only smooth, regular functions

are required even along the crack boundary. Further to this, a major advantage of the DPM is its

ability to solve any problem using a regular grid, regardless of the complexity of the problem’s

geometry. This is a key advantage over classical FEM for two reasons; the first is the avoidance

of generating a mesh which conforms with the domain boundaries, and the second is avoiding

the expensive Gauss quadrature procedure for the construction of the stiffness matrix. The Gauss

quadrature can be avoided as the regular grid allows the stiffness matrix to be defined explicitly,

e.g. using a finite difference formulation. Therefore the cost of the 4|ω|+ 2 required solutions of

the auxiliary problem is compensated by the avoidance of these expensive steps. In Section 8 an

alternative solution algorithm for the auxiliary problem is provided. The algorithm has the potential

to be fast, particularly for problems with small enrichment areas, reducing the cost of the DPM.

The solution of the auxiliary problem in Step 7 can be avoided if in Step 4 we also construct the

projection matrix PN+ω = PN+γEx
(p,H,t)
γω . The projection matrix can be constructed by storing

each difference potential, wk,i
N+ , in Step 4.2. as a column of the matrix PN+ω such that:
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PN+ω =
[

PN+γEx
(p,H,t)
γω ψ1

0 , ...,PN+γEx
(p,H,t)
γω ψ

|ω|
0 ,

PN+γEx
(p,H,t)
γω ψ1

1 , ...,PN+γEx
(p,H,t)
γω ψ

|ω|
1

]

.

The difference potential can then be obtained from (25), wN+ = PN+ωξω , without requiring an

additional solution of the auxiliary problem.

7. CONVERGENCE TESTS

7.1. Test cases

Before solving a crack test case, we solve a regular problem in order to demonstrate the optimal

accuracy of the solution method when no singularity or discontinuity exists within the problem. The

regular problem to be solved is that of a 2D, in plane bending of a beam. The analytical solution for

this problem is known and is given by:

u(1) = xy,

u(2) = −
(

x2 + νy2
)

/2.
(43)

Dirichlet boundary conditions are applied upon the entire boundary such that ξ
(1)
0 |Γ = u(1)|Γ and

ξ
(2)
0 |Γ = u(2)|Γ. The domain is square and therefore must deal with a boundary containing sharp

corners.

Two crack problems are then solved, the Mode I (3) and Mode II (4) asymptotic displacement

fields over a square domain with an edge crack, as in Figure 4. These problems contain singular

derivatives at the crack tip and a discontinuity across the crack boundary. Dirichlet boundary

conditions are applied along the outer boundary, Γ′, such that ξ
(1)
0 |Γ′ = v

(1)
j |Γ and ξ

(2)
0 |Γ′ = v

(2)
j |Γ

for j = I for the Mode I problem and j = II for the Mode II problem. Along the crack, free traction

boundary conditions are applied such that t (ξ0, ξ1) |Γc
= 0Γc

.

7.2. Accuracy

The relative L2 norm, (||vh − v||L2)/(||v||L2), and relative Sobolev norm
(

H1
)

, (||vh −
v||H1)/(||v||H1 ), as defined in [12] are approximated for the convergence study where vh is the

approximated solution and v is the known analytical solution.

Ryaben’kii [1] shows that the accuracy for a difference potential approximating a second order

differential operator, LD0D̄0 , is O(hp), where p is the accuracy of the difference operator LM0N0 .

Therefore we expect:

||θN+D̄0vD̄0 − PN+ξγ ||L2+ε ≤ const · h2−ε, (44)

where ε is arbitrary, with 0 < ε < 1, and represents the error in approximating the norm.

However the convergence of the approximated differential potential (32) depends not only on the

accuracy of the auxiliary problem, but also on each interpolation used to extend the density from
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the boundary to the grid nodes and then back to the boundary. If the boundary extension operator,

Ex
(p,H,t)
γω , in (36) in addition to the trace operator, T̃r

′

ΓN+ , provides second order approximations

or higher then one would expect to achieve an optimal convergence rate of 2 for the L2 norm.

Therefore for the solution of these test cases we use p = 2, t = 2 such that we have Ex
(2,H,2)
γω . We

also use second order Lagrange polynomials for the trace operator, T̃r
′

ΓN+ , where possible. At the

crack boundary, first order polynomials are used where a restricted number of enriched nodes are

available, as discussed in Section 5.3.1. However, as the crack test cases to be solved consist of a

horizontal, straight line crack, we can achieve a second order approximation by ensuring that the

crack lies exactly halfway through the elements. In this way, the first order polynomials provide a

second order approximation.

These crack test cases were also solved in [12] using a DPM formulation solved at the γ nodes.

Here it was observed that with geometrical enrichment, i.e. a constant enrichment area DF , near-

optimal convergence rates of near 2 were achieved for both the L2 and H1 norms. The high

convergence rate of 1.8 achieved for the H1 norm is due to symmetry properties of the problem

solved and the regular grid used, as observed by [25, 26]. This superconvergence is observed for the

regular problem solved in this paper.

7.3. Convergence results

7.3.1. Regular test case Before performing a convergence study for the grid refinement of the

auxiliary problem, it is necessary to determine the number of boundary points |ω| needed to ensure

that the convergence rate is independent of |ω|. In this way we obtain an accurate insight into the

performance of the method when the number of solutions to the auxiliary problem is constant despite

increasing grid refinement. In order to do so, we performed a convergence study for varying |ω|
using our maximum grid size |N0| = 1852. It was found that for |ω| > 240 the accuracy of the

solution for this maximum grid size became independent of |ω|, as can be seen from Figure 6.
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Figure 6. Error in relative L2 and H1 norms for the regular problem for increasing |ω| and fixed grid size of

|N0| = 1852

Therefore we now perform a convergence study for grid refinement where we keep at a constant

|ω| = 260. From Figure 7 we see that optimal convergence rates of 2 is achieved for the L2 norm

while superconvergence of 1.8 is achieved for the H1 norm.
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Figure 7. Error in relative L2 and H1 norms for the regular problem

7.3.2. Crack test cases For the crack problem the number of ω points were chosen such that the

step size along the boundary, H , was equal to that of the regular problem. We therefore perform

a convergence study for the grid refinement using |ω| = 298. A geometrical enrichment scheme is

used. We see from Figure 8 that a near optimal convergence rates of 1.9 and 0.9 are achieved for

the L2 and H1 norms respectively. However we see that the superconvergence of the H1 norm seen

for the regular problem is lost in this case. These results are very similar to the those obtained by

Larborde et al. in [22].
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Figure 8. Error in relative L2 and H1 norms for the Mode I crack problem

8. FAST SOLVER USING THE FAST FOURIER TRANSFORM

As discussed in Section 6.1, the main disadvantage of the DPM is that it requires 4|ω| solutions

of the auxiliary problem in order to construct the BEP (41). Here we follow the formulation for a

fast solution method given by [21] for the solution of a finite difference formulation and apply an

adjusted scheme derived for the FEM used in this paper. This FFT formulation is used to solve the
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regular part of the problem, while the smaller enriched part of the problem must be solved using

conventional methods. Therefore a two-step solution is introduced. For a derivation of the FFT

formulation used for the solution of the regular, unenriched part of the problem, see Appendix A.

The FFT is used for the fast inversion of the difference operator LM0N0 while requiring only a

partial construction of the stiffness matrix for the enriched problem. The method takes advantage of

the regularity of the auxiliary problem in addition to the flexibility allowed in choosing its boundary

conditions. The boundary conditions of the auxiliary problem need only ensure that the auxiliary

problem is well defined. A discussion of the effectiveness of this algorithm for enriched problems

is given in Section 8.1.1.

8.1. Enriched formulation

Now let us consider the enriched auxiliary problem (13) for u∗N0 ∈ U∗
N0 . This problem requires

additional consideration due to the enriched DOFs within the stiffness matrix.

Let us rewrite the enriched auxiliary problem (13) as follows:

Kue = fe, (45)

where K is the fully defined stiffness matrix of the auxiliary problem (13) such that for two

dimensional problems K is a 2(|N0|+ |IFH |)× 2(|N0|+ |IFH |) matrix which contains the

operator LM0N0 in addition to the well defined boundary conditions. We do this by simply adding

rows containing the boundary equations to LM0N0 at the appropriate locations such that they

correspond to the boundary displacements within ue. Here 2(|N0|+ |IFH |) is the total number

of DOFs in the system which we will denote n∗. fe is an extension of the force vector, fM0 , in

order to include the boundary conditions. As the boundary conditions are homogeneous, this term is

extended by 0 to a length of n∗. The displacement vector remains unchanged, i.e. ue ≡ u∗N0 ∈ U∗
N0 .

The boundary conditions applied to this enriched auxiliary problem are to be the same as for the

regular auxiliary problem (49). The auxiliary problem (45) can be structured as follows:

[

Kaa Kac

Kca Kcc

]{

a

c

}

=

{

fa

f c

}

, (46)

where Kaa contains all regular equations related to the regular coefficients an in (6), Kcc contains

enriched equations only related to the cn coefficients in (6), while Kac and Kca are coupling terms

between the regular and enriched FEM. As K is sparse, each submatrix is also sparse. Here a and c

are vectors of the regular terms, an for n ∈ N0, and enriched terms, cn for n ∈ IFH , respectively,

while fa and f c are vectors of the corresponding force terms.

Now we will solve the restated enriched auxiliary problem (45) in two stages:

(

Kcc −KcaK
−1
aaKac

)

c = f c −KcaK
−1
aa f

a, (47)

Kaaa = fa −Kacc. (48)

This two-stage solution method allows us to take advantage of the fast FFT solver to invert Kaa.

As generally the enriched area of a problem is small in comparison to the global domain area, the

matrixKaa, of dimensions 2|N0| × 2|N0|, is much larger thanKbb, of dimensions 2|IFH | × 2|IFH |.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)

Prepared using nmeauth.cls DOI: 10.1002/nme



THE METHOD OF DIFFERENCE POTENTIALS FOR LEFM 25

In order to solve the first system (47) we require nc = 2|IFH | solutions of the fast solver to calculate

the term K−1
aaKac in addition to one solution on the right hand side of (47). We are then left with

a full matrix system of dimension nc × nc which can be solved using conventional methods such

as LU decomposition. Although the matrix is full, it is small in comparison to the total number of

DOFs and therefore the LU matrices do not require a large amount of memory. We then require one

additional solution of the fast solver in order to solve (48).

8.1.1. Computational cost Let us denote na = 2|N0| as the total number of regular DOFs. Let us

assume we use the LU decomposition method in order to solve the smaller enriched system (47).

Let us denote the matrix system on the left hand side of (47) as K′
cc = Kcc −KcaK

−1
aaKac. Before

solving we calculate and store K′
cc at a cost of O

(

ncna ln(na) + (nc)2
)

. Here O (na ln(na)) is the

number of operations required to solve the regular part of the auxiliary problem once using the

FFT formulation (see Appendix A). This must be done O (nc) number of times to obtain K−1
aaKac.

We then also require O
(

(nc)2
)

number of operations in order to calculate KcaK
−1
aaKac. K′

cc is

a full matrix, therefore its bandwidth is bc = nc and the LU decomposition of K′
cc then requires

O(nc(bc)2) = O((nc)3) operations [27]. When geometrical enrichment is used, the ratio between

the number of enriched DOFs, nc, and the number of regular DOFs, na, approaches a constant.

For the following discussion we assume that a geometrical enrichment is used. In the case of large

problems we have (nc)3 >> ncna ln(na) + (nc)2, and therefore an approximation of the number

of operations needed for the preparation of this method for solution is of order O((nc)3). The total

cost of then solving the enriched auxiliary problem is O (ncbc) = O
(

(nc)2
)

for the solution of

(47) through the forward and backward substitution of the LU matrices, and O (na ln(na)) for

the solution of (48). For large problems, we have (nc)2 >> na ln(na) and therefore the order of

operations for the solution of the auxiliary problem becomes O((nc)2). However, as discussed in

6.1, the DPM requires 4|ω|+ 2 solutions of the auxiliary problem. Therefore we have a total number

of required operations at O((nc)3 + (4|ω|+ 2)(nc)2). Using appropriately chosen basis functions

should restrict the required number of basis functions, |ω|, such that |ω| << nc, for example see

[15]. Here we have neglected the cost of solving the BEP (39) as due to its small size the cost of its

solution is small in comparison to the solution of the auxiliary problem.

Table I shows the computational cost of the DPM presented here in comparison to the classical

FEM method using LU decomposition for the BVP. As we expect nc << na and |ω| to be

independent of mesh refinement, the FTT formulation compares well with the LU decomposition.

However, for very large problems using geometrical enrichment, nc could become sufficiently

large such that the method is no longer quicker to solve. However, the DPM holds two significant

advantages over classical methods regardless of the size of the problem. The regular grid is

advantageous at the meshing stage as there is no need to construct a mesh which conforms to

the domain geometry. Further to this, its regularity means that the stiffness matrix can be defined

explicitly, e.g. using a finite difference scheme. Therefore, the DPM allows us to avoid two

expensive steps in the preprocessing stage.

In order to put the numbers shown in Table I in context, let us consider a problem with

an area ratio of AF /A = 1/400. This is equivalent to a square 1m × 1m domain with an

enrichment area at a crack tip of dimension 0.05m × 0.05m. Now we know that, for large

problems, nc/na ≈ (AF /A) and therefore have nc ≈ (AF /A)n
a. Therefore we have the order of
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Table I. Comparison of DPM with classical FEM

FEM with LU decomposition DPM with FFT

Mesh generation
Must conform
to boundaries Regular

Build K Gauss quadrature Define explicitly
Cost of matrix
decomposition O((n∗)2) O((nc)3)

Cost of solution O((n∗)3/2) (4|ω|+ 2)O((nc)2)
Cost of additional

solutions O((n∗)3/2) O((nc)2)

operations required for the construction and solution of the auxiliary problem as O(((AF /A)n
a)3)

and O
(

(4|ω|+ 2)((AF /A)n
a)2
)

respectively, which in this case equates to O(10−8(na)3) and

O(10−6(4|ω|+ 2)(na)2). Now in order for the cost of matrix construction for the DPM to be less

than that for the LU decomposition we require O(10−8(na)3) < O((n∗)2). If we approximate n∗ ≈
na, this leads to the condition na < O(108). Similarly, in order for the cost for the solution for DPM

to be less than that for the LU decomposition we require O(10−6(4|ω|+ 2)(na)2) < O((n∗)3/2).

Rearranging and applying the same approximation, we have na < O(1012/(4|ω|+ 2)2), where we

expect |ω| << na. For na in the region of these values the DPM with the FFT algorithm is expected

to become more expensive than the classical FEM when ignoring the added cost of Gauss quadrature

and mesh generation. While a study is required in order to establish the true effectiveness of this

formulation, the discussion provided here demonstrates the potential of the method.

Finally, we note the final row of Table I. Here we provide the order of operations required for the

solution of any additional problems using the same geometry but different boundary conditions or

force terms. In this case the BEP can be stored from the first problem and reused, therefore avoiding

the need for 4|ω| solutions of the auxiliary problem.

9. DISCUSSION

Here the DPM formulation has been significantly enhanced compared to that presented in [12].

The reduction of the problem to a system of basis functions along the crack tip greatly increases

the efficiency of the solution method. The number of solutions of the auxiliary problem needed

is reduced from 2|γ| to 4|ω|. γ increases with grid refinement (|γ| ∝
√
n0), however ω can be

independent of grid refinement. Therefore the greater the grid refinement, the greater the efficiency

of the new methodology compared to that presented in [12].

In this paper, local splines are used as basis functions along the entire physical boundary. Second

order, local splines were chosen in anticipation of an error at the crack tip due to the gradient

singularity. However, it was found that the density along the crack boundary can be a smooth

function. Therefore higher order or non-local functions could be used as basis functions along the

outer boundary and along the crack boundary. In doing so one would expect that on fine grids

considerably fewer boundary interpolation functions than boundary grid nodes will be needed

for achieving a comparable accuracy. This would then reduce the number of basis functions, and

therefore auxiliary problem solutions, needed to achieve a desired accuracy, further improving the
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efficiency of the method. While this has been achieved before for regular problems, this is the first

time it has been applied to crack problems with a singularity on the boundary.

Further to this, the new methodology allows for an easier and more flexible application

of boundary conditions. Whereas with the previous method, the boundary conditions were

approximated on the grid nodes, here the boundary conditions can be implemented to any accuracy

on the physical boundary.

A fast solution method is suggested in Section 8. Such methods could allow the DPM to be an

efficient solution method for crack propagation problems. For such problems the regular part of

the stiffness matrix, Kaa, would remain unchanged as the crack propagates. Therefore only the

enriched terms, Kac, Kca and Kcc, would require recalculation at each iteration of the crack length.

As a regular grid is used and therefore the difference equations are known throughout (50), (51),

these matrices can be constructed explicitly at relatively low computational cost. The quick solver

for the DPM could then provide a quick solution method at each iteration leading to a potentially

efficient DPM solution method for crack propagation problems.

10. CONCLUSION

Within this paper the successful reduction of the DPM to the physical boundary has been

demonstrated for LEFM problems containing a discontinuity across the crack and singular

derivatives at the crack tip. It has been shown that by enriching the problem near the crack with

a discontinuous function with singular derivatives, the trace needed at the crack boundary can be

reduced to the regular function and its normal derivative only. It is demonstrated that the trace along

the crack boundary can be reduced to a regular function if the singularity is introduced within the

FEM space. The formulation requires much fewer solutions of the auxiliary problem than previous

formulations for the solution of LEFM problems such as in [12] and therefore offers significant

gains in efficiency. Near optimal convergence rates are achieved for the test cases solved, of 1.9 for

theL2 norm and 0.9 for theH1 norm. A fast solution method using the FFT is suggested which takes

advantage of the DPM’s ability to solve complex problems on a regular, rectangular grid potentially

leading to further gains in efficiency. The efficiency of the method will be demonstrated through

numerical tests to be presented in a future paper.
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A. FINITE FOURIER TRANSFORM FORMULATION

Here will will follow the formulation of [21] for a finite difference scheme to derive the FFT

formulation for our FEM on a regular, square grid. Consider the auxiliary problem (13) under the
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constraint u∗N0 ∈ UN0 such that the displacement u∗N0 = uN0 , i.e. is a regular, unenriched function.

The method involves extending our auxiliary problem of dimension |N0| to a larger problem of

dimension 4|N0|. This larger problem is in fact solved with periodic boundary conditions, however

the asymmetric nature of the extension results in a unique solution and mixed boundary conditions

on our original |N0| problem [21]. Let us denote the extended grid sets M e as all the plane nodes

and Ne as all nodes (plane and hollow) in Figure 9. The original auxiliary domain is shown in

gray. Considering this problem only, the plane nodes denote the M0 grid set while the hollow nodes

denote the nodes on the boundary belonging to N0. The extended problem will be solved such that

mixed boundary conditions are applied on these hollow nodes.

Let us denote Ñe =
√

|Ne| as the number of rows and columns of nodes in the extended problem

and Ñ0 =
√

|N0| as the number of rows and columns of nodes in the original problem, here

Ñ0 = Ñe/2. We extend the force term fM0 =
(

f
(1)
M0 , f

(2)
M0

)

asymmetrically onto the entire Ne

domain as follows:

fm1,m2 =
(

f (1)
m1,m2

, f (2)
m1,m2

)































=
(

f
(1)
m1,m2 , f

(2)
m1,m2

)

if m1,m2 ≤ Ñ0,

=
(

−f (1)

Ñe−m1,m2
, f

(2)

Ñe−m1,m2

)

if m1 > Ñ0,m2 ≤ Ñ0,

=
(

f
(1)

m1,Ñe−m2
,−f (2)

m1,Ñe−m2

)

if m1 ≤ Ñ0,m2 > Ñ0,

=
(

−f (1)

Ñe−m1,Ñe−m2
,−f (2)

Ñ0−m1,Ñ0−m2

)

if m1 > Ñ0,m2 > Ñ0,

where here m1,m2 = 1, 2, .., Ñe and m1 = m2 = 1 is chosen to be the point at the top left hand

corner of the domain. This extension is shown symbolically in Figure 9. Here the reflection of the

letters represent a reflection of the field. The force term is defined as zero on the hollow nodes.

The extension is defined such that the sum of the force terms over the entire extended domain are

zero, i.e.
∑|Ne|

n=1 f
(j)
n = 0 for j = (1, 2). This restricts the possibility for rigid body motion that is

otherwise present for problems with periodic boundary conditions and therefore ensures a unique

solution to the problem.

Figure 9. Extended domain for the FFT formualtion. Plane nodes denote M0 nodes and hollow nodes denote
nodes upon which the boundary conditions exist
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This formulation enforces the following boundary conditions for the solution uNe(x, y) =
(

u
(1)
Ne(x, y), u

(2)
Ne(x, y)

)

on the hollow nodes shown in Figure 9:

u
(1)
Ne(0, y) = u

(1)
Ne(Ñeh/2, y) = 0,

∂u
(2)

Ne (0,y)

∂x =
∂u

(2)

Ne (Ñ
eh/2,y)

∂x = 0,

u
(2)
Ne(x, 0) = u

(2)
Ne(x, Ñeh/2) = 0,

∂u
(1)

Ne(x,0)

∂y =
∂u

(1)

Ne (x,Ñ
eh/2)

∂y = 0,

x, y ∈ [0, (Ñe − 1)h]. (49)

Discretizing the elastostatic equation (1) using a FEM formulation such as that given in Section

3.2 for an unenriched displacement field, uN0 ∈ UN0 , leads to the following equations for node

n, j = m1,m2:

(λ+ 2µ)

6
A

(1)
n,j +

µ

6
B

(1)
n,j +

(λ+ µ)

2
C

(2)
n,j = f̃

(1)
n,j , (50)

µ

6
A

(2)
n,j +

(λ+ 2µ)

6
B

(2)
n,j +

(λ+ µ)

2
C

(1)
n,j = f̃

(2)
n,j , (51)

where A
(i)
n,j , B

(i)
n,j and C

(i)
n,j represent the following difference equations:

A
(i)
n,j = −u(i)n−1,j−1 − 4u

(i)
n−1,j − u

(i)
n−1,j+1 + 2u

(i)
n,j−1 + 8u

(i)
n,j+

2u
(i)
n,j+1 − u

(i)
n+1,j−1 − 4u

(i)
n+1,j − u

(i)
n+1,j+1,

B
(i)
n,j = −u(i)n−1,j−1 + 2u

(i)
n−1,j − u

(i)
n−1,j+1 − 4u

(i)
n,j−1 + 8u

(i)
n,j−

4u
(i)
n,j+1 − u

(i)
n+1,j−1 + 2u

(i)
n+1,j − u

(i)
n+1,j+1,

C
(i)
n,j = −u(i)n−1,j−1 + u

(i)
n−1,j+1 + u

(i)
n+1,j−1 − u

(i)
n+1,j+1,

and the force term f̃
(i)
n,j is defined as:

f̃
(i)
n,j =

h2

36

(

f
(i)
n−1,j−1 + 4f

(i)
n−1,j + f

(i)
n−1,j+1 + 4f

(i)
n,j−1 + 16f

(i)
n,j+

4f
(i)
n,j+1 + f

(i)
n+1,j−1 + 4f

(i)
n+1,j + f

(i)
n+1,j+1

)

. (52)

Equations (50) and (51) are the x and y component equations within the stiffness matrix belonging

to node n, j. As our problem is homogeneous, this equation is the same throughout the stiffness

matrix.

Now we introduce the following discrete Fourier transform (DFT) in the first variable, where here

i =
√
−1,

U
(j)
k,j =

Ñe

∑

n=1

u
(j)
n,jexp

(−2πi(k − 1)(n− 1)

Ñe

)

, 1 ≤ k ≤ Ñe, (53)

and the inverse DFT,
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u
(j)
n,j =

1

Ñe

Ñe

∑

k=1

U
(j)
k,j exp

(

2πi(k − 1)(n− 1)

Ñe

)

, 1 ≤ n ≤ Ñe. (54)

We use the same notation for the force term, such that the DFT is given by:

F
(j)
k,j =

Ñe

∑

n=1

f̃
(j)
n,jexp

(−2πi(k − 1)(n− 1)

Ñe

)

, 1 ≤ k ≤ Ñe. (55)

We note here that the DFT is applied to f̃
(j)
n,j , defined in (52), rather than f

(j)
n,j . It is possible to

transform f
(j)
n,j , however as f̃

(j)
n,j is easily calculated the formulation is simplified slightly by using

f̃
(j)
n,j here.

The DFT in both variables is then given by:

Ū
(j)
k,m =

Ñe

∑

j=1

U
(j)
k,j exp

(−2πi(m− 1)(j − 1)

Ñe

)

, 1 ≤ m ≤ Ñe, (56)

with the corresponding inverse DFT:

U
(j)
k,j =

1

Ñe

Ñe

∑

m=1

Ū
(j)
k,mexp

(

2πi(m− 1)(j − 1)

Ñe

)

, 1 ≤ j ≤ Ñe, (57)

where again equivalent expressions exist for the force terms.

Substituting the inverse DFTs (54) and then (57) into the difference equations (50), (51) and

rearranging we arrive at the following equations:

ak,mŪ
(1)
k,m + bk,mŪ

(2)
k,m = F̄

(1)
k,m,

dk,mŪ
(2)
k,m + bk,mŪ

(1)
k,m = F̄

(2)
k,m,

(58)

where the terms ak,m, bk,m and ck,m are found to be:

ak,m =
(λ+ 3µ)

6

[

8− 4 cos

(

2π(m− 1)

Ñe

)

cos

(

2π(k − 1)

Ñe

)]

− (4λ+ 6µ)

3
cos

(

2π(k − 1)

Ñe

)

+
2λ

3
cos

(

2π(m− 1)

Ñe

)

, (59)

bk,m = 2 (λ+ µ) sin

(

2π(m− 1)

Ñe

)

sin

(

2π(k − 1)

Ñe

)

, (60)

dk,m =
(λ+ 3µ)

6

[

8− 4 cos

(

2π(m− 1)

Ñe

)

cos

(

2π(k − 1)

Ñe

)]

− (4λ+ 6µ)

3
cos

(

2π(m− 1)

Ñe

)

+
2λ

3
cos

(

2π(k − 1)

Ñe

)

. (61)

Equations (58) can be inverted for 1 ≤ k ≤ Ñe, 1 ≤ m ≤ Ñe and km > 1 such that:
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Ū
(1)
k,m =

dk,mF̄
(1)
k,m

−bk,mF̄
(2)
k,m

ak,mdk,m−b2
k,m

,

Ū
(2)
k,m =

ak,mF̄
(2)
k,m

−bk,mF̄
(1)
k,m

ak,mdk,m−b2
k,m

.
(62)

For k = m = 1 we have a1,1 = b1,1 = d1,1 = 0 and therefore from equations (58) we have

F̄
(1)
1,1 = F̄

(2)
1,1 = 0. In this case equations (58) are satisfied for any displacement terms and therefore

Ū
(1)
1,1 ,

¯
U

(2)
1,1 are not unique. We therefore set Ū

(1)
1,1 = Ū

(2)
1,1 = 0 in order to ensure a unique solution is

obtained.

For this regular problem, let us denote ne = 2|Ne| as the total number of DOFs within our

extended problem. The above formulation allows the solution to the regular auxiliary problem (13)

under the constraint u∗N0 = uN0 ∈ UN0 to be solved in O (ne ln(ne)) operations [21]. In relation to

the dimensions of the original auxiliary problem, as ne = 4n0, this equates to O (4na ln(4na)) =

O (na ln(na)).
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