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Abstract

In this thesis, we study the mechanisms involved in CD4+ T cell activation focusing on the

crucial role of costimulation for an effective immune response. For this purpose, interactions

between receptors from T cells and ligands on the APCs, as well as the trafficking of these

molecules, need to be analysed. At the same time, population models are developed to study

their homeostatic behaviour and the role of IL-2, as well as quorum-sensing mechanisms in

CD4+ T cell maintenance. A multidisciplinary approach that combines statistical analysis of

experimental data and mathematical models that describe the experiments, has been used that

take into account the stochastic nature of these processes. We have combined deterministic

methods when appropriate with stochastic ones, as well as made us of numerical simulations.
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Chapter 1

Introduction

1.1 Immunological motivation

1.1.1 The role of T cells in the immune system

Immunology is a relatively young area of research. It was only in 1983 that the precise nature of

the T cell receptor that uniquely characterises T cells was discovered. It is in this sense, that we

can say immunology is nowadays still evolving as a mature science. Therefore, having a clear

structure of the events that take place in a host when an infection occurs, the main components

involved and the characteristics of such a process should be the first steps to follow when

introducing any particular topic in the field as in the case of the present work.

Once the initial physical and chemical barriers are run through, an infectious agent (pathogen)

faces a combination of multiple cells and molecules in the organism whose ability to interact

between themselves and against the invader will determine the outcome of the immune response.

In fact, it is very common ([48] or [67] among others) to divide the functions of the immune

response between those referring to recognise and even completely neutralise external pathogens,

such as viruses or bacteria, and those tasks involving self-regulation, so the organism is not

damaged when the response is taking place. Moreover, the ability of the immune system to learn

from specific antigens so certain cells can keep the memory for subsequent attacks also plays a

central role on the capacity of immune system to defend us.
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1.1.2 Different cells for different responses.

Depending on the characteristics of the response, this can be described as innate or adaptive

[65]. The former takes place within a matter of hours and it is not antigen specific, that is, it

is produced disregarding the kind of molecule inducing immune response whereas the adaptive

response might take days to be completed and involves a more complicated process of recognition

between the host cell and the pathogen for the signal to be triggered. Although the current work

focuses on the adaptive one, a proper overlap of both is essential when the innate response fails

to deal the infection [46].

This adaptive response is mainly driven by T lymphocytes (T cells), which give instructions to

other cells and between them about how to proceed when pathogens replicate in the body. T

cell precursors originate in the bone marrow and mature in the thymus (undergoing positive

and negative selection). Only around 3% of immature T cells entering the thymus complete the

maturation process and are released into the periphery [66]. T cells in the periphery recognise

pathogens during an infection by means of a specific molecule that they express on their surface,

the T cell receptor (TCR). Maturation in the thymus ensures that the TCR is functional but, at the

same time, will not mount a potential autoimmune response in the periphery.

T cells in the periphery have very different functions depending on the class they belong to.

Helper T cells (CD4+ T cells) assist other cells within the immune system, such as B lymphocytes

(B cells) or cytotoxic T cells (CD8+ T cells), during an immune response. Cytotoxic T cells

are directly capable of killing virus-infected cells by recognising particular molecules expressed

on the surface of these target cells. T cells which are released into the periphery and have

not participated yet in an immune response are called naive T cells. Upon primary infection,

naive T cells, which are able to recognise the corresponding pathogen, undergo proliferation

and clonal expansion when their TCR bind a specific molecule (peptide), by means of the major

histocompatibility complexes (pMHC) that is located in an antigen presenting cells (APCs) (see

Figure 1.1).

After this occurs, a clonal contraction follows, which is tightly regulated by a subpopulation

of CD4+ T cells called regulatory T cells (Treg cells). Regulatory T cells are responsible for

restraining the immune response within safe levels, as well as for avoiding the occurrence of

potential autoimmune responses caused by T lymphocytes which may have erroneously escaped

negative selection in the thymus; see [11]. After clonal contraction, a small pool of those T

cells that participated in the immune response is selected to remain in the periphery, becoming
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memory T cells. These will be able then to mount a faster immune response following a potential

secondary exposure to the same pathogen [11].

1.1.3 Stages on an immune response.

It is commonly accepted that three different types of signal are generally involved in the whole

process of T cell activation.

Figure 1.1: Diagram of different pathways within T cell activation process that might drive into
apoptosis (death of the cell), in the absence of signal 2; into the third step, when the balance
between co-receptor CD28 with ligands B7-1 and B7-2 (also referred as CD80 and CD86) is
adequate or to an arrest of the cell-cycle, when the inhibitory signal produced by CTLA-4 is too
high. Figure taken from [3].

Signal 1, which would trigger the other two, is mediated by the T-cell receptor and normally

takes place in the peripheral lymphoid organs. This engagement might also be enforced by either

co-receptor CD4 or CD8 [21] but it will not assure the activation of such a cell. Signal 2, arises
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as a balance between inhibitory and promoting signals produced by co-receptors CTLA-4 and

CD28, respectively, located on the T cells, when binding certain members of the immunoglobulin

superfamily, B7 molecules, which appear on the surface of APCs [36]. In particular, this so-called

co-stimulatory system (see Figure 1.1) mainly involves the dynamics of the two co-receptor with

ligands B7-1 and B7-2 (also called CD80 and CD86) which, with different particularities, might

drive the immune response to distinct pathways as it will be observed later on. Although a more

in detail explanation will head every chapter, there is a correspondence between some signals and

the chapters of this thesis. Chapter 3 studies a co-stimulatory system model to understand and

predict some of the characteristics of this signal 2.

Finally, signal 3 corresponds to certain cytokines (proteins released by activated cells which, once

bound with specific receptors, they induce a particular response) called interleukins, which are

produced in this case by a subpopulation of T cells. In particular, interleukin-2 (IL-2), but also

interleukin-7 (IL-7), are the key factors in an important process of self-regulation, called quorum-

sensing, in which T cells replicate accordingly to the needs of the system by being capable of

perceiving their own population levels [5].

Figure 1.2 shows a general diagram from the antigen-mediated activation to the differentiation

of either CD4+ or CD8+ in an IL-2 mediation manner regulated by regulatory T cells. These

cells are characterised by the presence of FOXP3, a transcription factor, and CD25, which is the

high affinity IL-2 receptor. Thus, effector T cell, those IL-2 producer, together with regulatory T

cells, mainly those which can bind IL-2, play an important role in the quorum-sensing process

described in Chapter 4. At the same time, the main dynamics of IL-2 when trafficking within a

regulatory T cell and binding IL-2R are stochastically described in Chapter 2.

Apparently, it seems evident that regulatory T cells have an important role in both signals 2 and

3. In fact, some experiments have shown that regulatory cells knockout mice, this is, mice whose

regulatory cells have been removed, they end up with autoimmune diseases, inflammatory bowel

diseases and tumour rejection [61]. Nevertheless, it is not clear the average levels of regulatory

T cells at which the immune response might be optimised. In contrast to what has been done

in the rest of the chapters, in which in vitro data have been taken from literature to calibrate the

models, Chapter 4 appears as a result of a collaborative project with experimentalist partners from

Pasteur Institute in Paris. Therefore, data come from in vivo mice in which population levels of

this regulatory T cells, among others, were tracked under different scenarios as it will be described

in the aforesaid chapter.
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Figure 1.2: Once CD4+ or CD8+ become activated, their differentiation fate is affected by
interleukins mediation, each of them related to a specific kind of effector T cell (TH cells) which
whole ream of possibilities will not be considered in this work. However, it is known that IL-
2 and its high affinity receptor CD25 (IL-2R) affects the whole T cell fate process [71]. This IL-2
receptor is constitutively expressed in regulatory T cells and both take part of the quorum-sensing
mechanism described in Chapter 4. Figure taken from [32].

The role of regulatory T cells in the immune system has been of particular interest when dealing

with tumour scenarios. [20] or [49], among others, show how the progression of different cancers

is highly correlated to a high expression level of regulatory T cells. In particular, their relative

population levels together with effector CD8+ cells seem to be an important factor for tumour

prognosis [70]. In such situations, effector cells in charged of eliminating tumour cells, would be
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blocked by a too high amount of T reg cells, allowing the tumour to spread. In Chapter 5, this

quorum-sensing mechanism will be analysed to elucidate which conditions would drive a poor

or a better tumours prognosis.

1.2 Mathematical introduction

From a mathematical perspective, stochastic processes are the main tool followed to canvass

an important set of immunological issues in this work. More precisely, the particularities of

the biological frames under study, make Markov processes an ideal candidate for approaching

the main mechanisms that drive the nature of such systems, in which randomness plays an

essential role. Therefore, the fact of not taking into account aleatory behaviour might sometimes

disregard crucial features of the models. This can be addressed as a consequence of what is

behind the Markovian approach; the idea that responses of a system can be predicted only by

knowing the current situation of the process and that they do not depend on previous facts. Some

examples of the applicability of such approach can be found in epidemiology, genetics, finance,

telecommunications or genomics.

This scenario is also the case for Chapters 2 and 3, in which interactions of molecules from

a certain type of T cell to another, or within a same cell, might take place. The purposes of

this mathematical introduction are, primarily, to briefly introduce first and previous biological

examples in which the main tool behind this stochastic approach, the matrix-analytic methods,

was used. Secondly, to define some of the methodology that is used in those Sections, so the reader

might find more straightforward the biological tales behind each of those approaches without an

excessive overlapping with definitions and development of the mathematical structure. We will

refer to the concepts made below during Chapters 2, 3 and 5 when needed.

Matrix-analytic methods were originally applied as a tool to deal with bi-dimensional systems,

with some special properties, and verifying Markovian assumptions in an algorithmic and

manipulable structure, as it will be seen by the end of this section. From its utility in queuing

theory to broader applications in epidemiology or immunology, these methods rely on certain

techniques to arrange states of given processes which allows the construction of algorithms.

These arrangements permits transferring limitations to computational capacities by working from

groups and sub-groups conveniently represented by blocks and sub-blocks of matrices.
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1.2.1 Markov processes and the exponential distribution

Markov processes can be widely found in literature when approaching to biology and medicine.

For instance, studies like [10] claim that the completion time for sequential macromolecules

reactions can be exponentially distributed, and that this seems to be extended to more complex

biochemical systems. This Markovian assumptions, which simplify the nature of the system for

making it more tractable, have been then broadly used in immunology when analysing molecules

and cells interactions. In particular, for modelling CD4+ dynamics, References [26, 33, 55] could

be used as examples. Let us start then with a definition:

Definition 1.2.1 A continuous-time Markov chain (CTMC) is a continuous-time stochastic process

X = {X(t) : t ≥ 0} over the discrete state space S , where t ∈ [0, +∞) continuous and where X(t) is

a discrete random variable with probability mass function {pi(t) : i ∈ S} which satisfies the Markovian

property, that is,

P(X(t + s) = j|X(s) = i) = P(X(t + s) = j|X(s) = i, X(u) = iu, u ∈ [0, s)),

for all states i, j ∈ S and all times s, t > 0.

This implies that the probability for the process to move to a certain state j in the next movement

only depends on where the process is at the present, state i, and not where it was in the past,

states {iu, u ∈ [0, s)}. If the process satisfies the time homogeneity property, as it will be assumed

from now on, that is,

P(X(t) = j|X(s) = i) = P(X(t− s) = j|X(0) = i),

we can denote the transition probabilities pij(t) = P(X(t) = j|X(0) = i). The transition matrix

P(t) of a CTMC X is then defined as

P(t) = (pij(t))i,j∈S , (1.1)
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and satisfies

pij(t) > 0,
+∞

∑
j=0

pij(t) = 1, (1.2)

pij(t + s) = ∑
k∈S

pik(t)pkj(s),

for all i, j ∈ S and for all t, s > 0. The third property is referred to as the Chapman-Kolmogorov

equations. Moreover, P(t) is a right stochastic matrix, a real square matrix with each row

summing up to 1, and there is a one-to-one relation between a Markov chain and its transition

matrix.

A CTMC can be characterised by its initial distribution {pi(0) = P(X(0) = i) : i ∈ S} and P(t),

for each t > 0. However, the probabilities pij(t) and so the transition matrix are not always easy

to obtain, see Example 1.2.3 in this Section. In these situations, as occurs later on in other chapters,

an alternative construction of X can be given to describe the evolution of the system.

An alternative way of dealing with a CTMC requires the use of transition rates qij, where i, j ∈

S , that can be derived from transition probabilities pij(t), where i, j ∈ S , as explained in next

Definition 1.2.2.

Definition 1.2.2 Given a CTMCX = {X(t) : t ≥ 0} over the state space S with transition probabilities

pij(t), where i, j ∈ S , continuous and differentiable for t > 0, and satisfying

pij(0) =

 0, if i 6= j,

1, if i = j,

the transition rates qij, where i, j ∈ S , can be defined as

qij =


lim

∆t→0+

pij(∆t)−pij(0)
∆t = lim

∆t→0+

pij(∆t)
∆t , if i 6= j,

lim
∆t→0+

pii(∆t)−pii(0)
∆t = lim

∆t→0+

pij(∆t)−1
∆t , if i = j.

From Equation (1.2) and the fact that qij > 0 for i 6= j, it follows that

qii = − ∑
j∈S ;j 6=i

qij = −qi, i ∈ S , (1.3)
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and thus the following property holds

∑
j∈S

qij = 0, i ∈ S .

These transition rates, analogously to the transition probabilities in Equation (1.1), can be gathered

in a matrix called the infinitesimal generator matrix, defined next.

Definition 1.2.3 The infinitesimal generator Q of a given CTMCX = {X(t) : t ≥ 0}with transition

rates qij, i, j ∈ S , is defined as

Q = (qij)i,j∈S , (1.4)

where qij denotes the rate to move from state i to state j.

The following relation can be then established.

Theorem 1.2.1 (Forward and backward Kolmogorov equations) Let P(t) and Q be the transition

matrix and the generating matrix of a CTMC X = {X(t) : t ≥ 0}, respectively. Then, P(t) is

differentiable with respect to t and
dP(t)

dt
= P(t)Q (1.5)

and
dP(t)

dt
= QP(t), (1.6)

with the initial condition

P(0) = I,

are called, respectively, the forward and backward Kolmogorov differential equations. dP(t)
dt denotes the

element-by-element derivative of P(t) with respect to t and I is the identity matrix of size #S , the cardinality

of S .

In scalar form, Equation (1.5) can be rewritten as

dpij(t)
dt

=
+∞

∑
k=0

pik(t)qkj, i, j ∈ S , t > 0,

which is usually referred to as the master equation of the CTMC X . The solution of Equations

(1.5)-(1.6) is given by

P(t) = eQt, (1.7)



Chapter 1. Introduction 10

where

eQt =
+∞

∑
k=0

(Qt)k

k!
.

This convergent power series can be, in principle, computed in many ways depending on the

characteristic of the matrix Q. However the analytical expression is circumscribe to quite specific

situations, as reported in [47], in which case numerical methods for solving differential equations

need to be used. On the other hand, there are several approaches to obtain P(t) as an explicit

function of t which are constrained to specific scenarios. For instance, when dealing with a CTMC

X = {X(t) : t ≥ 0} with a finite state space S and a diagonalizable generating matrix Q, an

explicit expression of P(t) can be obtained by dealing with the eigenvalues of Q. The uniformation

method, described in [77], is another useful approach which works only under specific situations

for both finite and infinite state space S . Based on stability and efficiency criteria, some of these

approaches and others might be more appropriate. Reference [47] provides a full list of different

methods when solving the exponential of a matrix.

The exponential distribution plays a crucial role when dealing with Markov processes.

Definition 1.2.4 A random variable X has an exponential distribution with parameter λ, X ∼

exp(λ), if its probability distribution function is given by

F (x) = 1− e−λx, x > 0, (1.8)

where λ > 0 is a fixed constant.

It can be shown [28] that exponential random variables are the only non-negative, continuous

random variables that possess the memoryless property.

Definition 1.2.5 The probability distribution of a random variable X has the memoryless property if

P(X > t + s|X > s) = P(X > t), (1.9)

for all s, t > 0.

Moreover, this property is behind the proof that exponential distribution is closed under the

minimum operation. In particular, if {X1, ..., Xn} are independent exponentially distributed

random variables with parameters {λj : 1 ≤ j ≤ n} then
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1. X = min{X1, ..., Xn} has a exponential distribution with parameter
n
∑

j=1
λj and

2. P(Xj = min{X1, ..., Xn}) =
λj

λ1+···+λn
.

Let us recall that given a CTMC X , from Equation (1.3), qi = ∑
k∈S :k 6=i

qik and let us denote pij =

qij
∑

k∈S :k 6=i
qik

. Thus, an alternative definition of a CTMC is given in Definition 1.2.6.

Definition 1.2.6 A continuous-time Markov chain (CTMC) is a continuous-time stochastic process

X = {X(t) : t ≥ 0} over the discrete state space S if and only if given the sequence of events 0 < S1 <

S2 < . . . of X where Sn, n > 1, is the time of the nth transition, the process {X0, (Xn, Yn) : n > 1}

satisfies

P(Xn+1 = j, Yn+1 > y|Xn = i, Yn, Xn−1, Yn−1, ..., X1, Y1, X0) = pije−qiy, i, j ∈ S , n > 0,

where Yn = Sn − Sn−1 (with S0 = 0) is called the nth sojourn time, and Xn the state of the system after

the nth transition.

Alternative Definition 1.2.6 has the following interpretation. Given a CTMC X = {X(t) : t ≥ 0}

over the state space S , if the process is at state X(t) = i, where i ∈ S at a given time t > 0,

its dynamics can be studied as a competition of exponentially distributed random times. Thus,

for those states j ∈ S , j 6= i, which are directly accessible from i in one jump (for notation j ∈

AC(i)), such jump occurs after an exponentially distributed random time exp(qij), where qij is the

infinitesimal transition rate from state i to state j. Then, this movement actually takes place with

probability pij =
qij

∑
k∈S :k 6=i

qik
and the total time that the processX stays in state i ∈ S is exponentially

distributed exp( ∑
k∈S :k 6=i

qik). This idea is the basis of the Gillespie algorithm for simulating Markov

processes (Definition 1.2.7). More details can be found in [34, Chapter 4].

Definition 1.2.7 The Gillespie algorithm for a given CTMC X = {X(t) : t ≥ 0} with initial state

X(t0 = 0) = n0 and a final simulation time T > t0, follows the following steps:

n = n0;

t = t0 ;

while t < T:
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for k in AC(n):

uk ∼ U[0, 1);

ek = − log(1−uk)
qnk

;

τ = min
k∈AC(n)

{ek};

t = t + τ;

n = argmink∈AC(n){ek};

where argmin is the index of the minimum value of {ek : k ∈ AC(n)}.

A Gillespie python code is shown in the Appendices.

1.2.2 From Poisson processes to quasi-birth-and-death processes

Let us start with a simple example of a CTMC which is the Poisson process.

Example 1.2.1 The Poisson process with parameter λ can be defined as a continuous-time Markov chain

X = {X(t) : t ≥ 0} over the state space S = N0 = N∪ {0} satisfying

1. X(0) = 0, and

2. for h sufficiently small and for all i, j ∈ S ,

• pi,i+1(h) = λh + o(h),

• pi,i(h) = 1− λh + o(h),

• pi,j(h) = o(h), if j > i + 1 and

• pi,j(h) = 0, if j < i,

where limh→0
o(h)

h = 0.

Figure 1.3 shows a diagram of the Poisson process with parameter λ.
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· · ·0 1 2 i− 1 i i + 1

λ λ λλ

· · ·

Figure 1.3: Diagrammatic representation of the Poisson process with parameter λ.

A more general extension of the Poisson process appears when allowing the system not only to

increase, but to decrease. This leads to the general birth-and-death process.

Example 1.2.2 The general birth-and-death process can be defined as a continuous-time Markov chain

X = {X(t) : t ≥ 0} over the state space S = N0 satisfying

1. X(0) = 0 and

2. for h sufficiently small and for all i, j ∈ S ,

• pi,i+1(h) = λih + o(h),

• pi,i−1(h) = µih + o(h),

• pi,i(h) = 1− (λi + µi)h + o(h),

• pi,j(h) = o(h), otherwise.

Figure 1.4 shows a diagram of the birth-and-death process over the state space S = N0, with

parameters λi, for all i > 0, and µi, for all i > 1. Two particular cases of this process appear when

only considering arrows in one direction. Thus, the pure birth process would satisfy µi = 0, for all

i > 1, whereas the pure death process fulfils λi = 0, for all i > 0.

· · ·0 1 2 i− 1 i i + 1

λ0 λ1 λiλi−1

µ2µ1 µi+1µi

· · ·

Figure 1.4: Diagram of the general birth-and-death process.
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The corresponding generating matrices QP and QBD of the Poisson and the birth-and-death

process, respectively, are given by the following expressions

QP =


−λ λ 0 . . .

0 −λ λ . . .

0 0 −λ . . .
...

...
...

. . .


and

QBD =


−λ0 λ0 0 . . .

µ1 −λ1 − µ1 λ1 . . .

0 µ2 −λ2 − µ2 . . .
...

...
...

. . .

 .

The following definition can be seen as an extension of the birth-and-death process which keeps

some of its transitions structure.

Definition 1.2.8 The quasi-birth-and-death process (QBD) is a two-dimensional continuous-time

Markov process {(N (t), E(t)) : t > 0} over the state space

S = {(n, i) : n > 0, 1 ≤ i ≤ m}, where n and i are the level and the phase of the process,

with level-restricted transitions to neighbour.

This means that from a state (n, i) ∈ S , one-step transitions are only possible to (n −

1, j), (n, j), (n + 1, j) ∈ S . The process can be analysed as a two dimensional process with a block

structure by levels and an intra-block structure by phases. The generating matrix QLI
QBD for a

level-independent QBD process has the form

QLI
QBD =


S−Λ Λ 0 . . .

M S−Λ−M Λ . . .

0 M S−Λ−M . . .
...

...
...

. . .


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where S, Λ and M are m×m matrices, S is the generating matrix of {E(t) : t > 0}, see Example

1.2.3.

For the cases in which transition matrices S, Λ and M vary from one level to another, a different

version of quasi-birth-and-death process arises. We refer this as a level-dependent QBD process,

whose generating matrix QLD
QBD, has the form

QLD
QBD =


S0,0 −Λ0,1 Λ0,1 0 . . .

M1,0 S1,1 −Λ1,2 −M1,0 Λ1,2 . . .

0 M2,1 S2,2 −Λ2,3 −M2,1 . . .
...

...
...

. . .

 , (1.10)

where submatrices satisfy the same conditions as in QLI
QBD, but their elements might change

from one level to another. These will be the type of generating matrices we will find in

subsequent chapters. Intuitively, the similar tridiagonal structure of QBD and QQBD is behind

the applicability of matrix-analytic methods, which allows to study characteristics of interest in

these processes in an algorithmic manner. We note that generating matrices QLI
QBD and QLD

QBD

encode the rates to move from each state to another state in S but, where states are ordered in

the same way by rows and columns. It will be observed in some of the following chapters that

the success of this matrix-analytic approach relies, to a large extend, on the election of this order,

that is, how to arrange these infinitesimal generators. Additional details about matrix-analytic

methods can be found in [28]- [35].

Example 1.2.3 Suppose we are working with a quasi-birth-and-death process {(N (t), E(t)) : t > 0},

with m = 3 phases per level, over the state space

S = {(n, i) : n > 0, 1 ≤ i ≤ 3}, where n and i are the level and the phase of the process

with level-restricted transitions to neighbour and which diagrammatic representation is given in Figure

1.5.

Therefore, its generating matrix QLI
QBD has the form
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Figure 1.5: Diagrammatic representation of the level independent QBD process given in Example
1.2.3.

QLI
QBD =



qo
1 s12 0 λ1 0 0 0 0 0 . . .

s21 qo
2 s23 0 λ2 0 0 0 0 . . .

s31 s32 qo
3 0 0 λ3 0 0 0 . . .

µ1 0 0 q∗1 s12 0 λ1 0 0 . . .

0 µ2 0 s21 q∗2 s23 0 λ2 0 . . .

0 0 µ3 s31 s32 q∗3 0 0 λ3 . . .

0 0 0 µ1 0 0 q∗1 s12 0 . . .

0 0 0 0 µ2 0 s21 q∗2 s23 . . .

0 0 0 0 0 µ3 s31 s32 q∗3 . . .
...

...
...

...
...

...
...

...
...

. . .


where qo

1 = −s12 − λ1, qo
2 = −s21 − s23 − λ2, qo

3 = −s31 − s32 − λ3 and q∗1 = −s12 − λ1 − µ1,

q∗2 = −s21 − s23 − λ2 − µ2, qo
3 = −s31 − s32 − λ3 − µ3. And the general form is then

QLI
QBD =


S−Λ Λ 0 . . .

M S−Λ−M Λ . . .

0 M S−Λ−M . . .
...

...
...

. . .


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where S, Λ and M and 3× 3 matrices, S is the generating matrix of {E(t) : t > 0} and Λ and M are

diagonal matrices with Λii = λi and Mii = µi for 1 ≤ i ≤ 3.

1.2.3 Classification of states and long-term behaviour

One of the aims when analysing a CTMC X over the state space S is usually to study its long-

term behaviour; that is, the dynamics of {X(t) : t > 0} when t → +∞. In order to carry out this

analysis, one needs first to classify states within the state space S .

Definition 1.2.9 Given a CTMC X over the state space S , a state i ∈ S can be called either

instantaneous, stable or absorbing depending, respectively, on qi = +∞, 0 < qi < +∞ or qi = 0.

Definition 1.2.10 A set of states C ⊆ S is called communicating class if all the states in C are accessible

among them, that is, ∀i, j ∈ C exists some t > 0 such that pij(t) > 0. Moreover, a communicating class is

said to be closed if ∀i ∈ C and ∀j /∈ C pij(t) = 0, for all t > 0.

Definition 1.2.11 A CTMC X over S is called irreducible if S is a closed communicating class.

The following concepts are necessary for studying the behaviour of the process when t goes to

infinity.

Definition 1.2.12 Given a CTMC X over the state space S , a state i ∈ S is called recurrent if ui = 1,

where

ui = P(inf{t > Y1 = S1 : X(t) = i} < +∞|X(0) = i), i ∈ S ;

that is, if the probability of the process X to return to state i in finite time, starting at this state, is one.

State i ∈ S is called transient if ui < 1. Moreover, X is an irreducible transient or recurrent CTMC if all

its states are transient or recurrent, respectively.

Definition 1.2.13 Given a CTMC X over the state space S , a recurrent state i ∈ S is called positive

recurrent if µi < +∞, where

µi = E [inf{t > Y1 = S1 : X(t) = i}|X(0) = i] , i ∈ S ,

and null recurrent if µi = +∞.
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Definition 1.2.14 A positive recurrent and irreducible CTMC X is called ergodic.

For ergodic CTMCs, the following results allows one to analyse its long-term behaviour

Theorem 1.2.2 Let Q be the infinitesimal generator of an ergodic CTMC X , and let π = {πj : j ∈ S}

where πj = lim
t→+∞

P(X(t) = j|X(0) = i), which does not depend on i ∈ S . Then, π is given by

πQ = 0,

πe = 1,

where e is a column unity vector and 0 is a column vector of zeros.

1.2.4 First passage time and phase-type distributions

Let us consider now a non-ergodic CTMC X over S . Let us assume that X is not irreducible

because there is one absorbing state i ∈ S . One can study the time until absorption of this

absorbing CTMC X . This time is related to the first passage time for any given state i ∈ S .

Definition 1.2.15 Given a CTMC {X(t) : t > 0} defined over S , and i ∈ S , the first passage time to i

is a random variable defined as

T = min{t > 0 : X(t) = i}.

For the particular case in which state i ∈ S is absorbing, the first passage time to i is usually

referred to as the absorption time into i. This time, for the cases in which S in finite, follows a

phase-type distribution.

Definition 1.2.16 A phase-type distribution PH(α, T) is defined as the time until absorption in an

absorbing CTMC over the state space S = {1, 2, · · · , m} ∪ {0}, with 0 the absorbing state and with α the

vector of initial probabilities, where the generating matrix has the form

Q =

 T T0

0 0

 , (1.11)

where T is an m × m matrix such that (i) all diagonal elements are negative, (ii) all non-diagonal elements

are non-negative; (iii) all row sums are non-positive and (iv) T is invertible and where T0 = −Te, with e

being an m × 1 column vector of ones.
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If a random variable X follows a phase-type distribution (X ∼ PH(α, T)) where T is given in

Definition 1.2.16 and α is a probability vector, the distribution function of X is given by

F (x) = 1−αeTxe, x > 0, (1.12)

the density function by

f (x) = αeTxT0, x > 0,

and the different order moments by

E [Xn] = (−1)nn!αT−ne, x > 0.

It can be observed that the exponential distribution is a particular case of the phase-

type distribution. For instance, by comparing the probability distribution function of both

distributions, Equations (1.8) and (1.12), it can be seen that the exponential distribution arises

when setting m = 1, so that the exponential distribution is the phase-type distribution with

T = −λ and α = 1.

Example 1.2.4 Let us consider the quasi-brith-and-death process {(N (t), E(t)) : t > 0} given in

Example 1.2.3, but with only N + 1 levels and an absorbing state Abs. Let us assume that state Abs

is reachable only from level N, see the diagrammatic representation in Figure 1.6.

Figure 1.6: Diagrammatic representation of the level independent QBD process given in Example
1.2.4 with absorption at level Abs.
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The generating matrix has the form

QLI
QBD =



S−Λ Λ 0 . . . 0

M S−Λ−M Λ . . . 0

0 M S−Λ−M . . . 0
...

...
...

. . . 0

0 0 M S−Λ−M λ

0 0 0 0 0


,

where S, Λ and M and 3× 3 matrices, S is the generating matrix of {E(t) : t > 0}, Λ and M are diagonal

matrices with Λii = λi and Mii = µi for 1 ≤ i ≤ 3, and λ = (λ1, λ2, λ3)T ; the transpose of the vector

containing transition rates from level N to absorption.

We finish this section by defining the Laplace-Stieltjes transform of a random variable, which will

be widely used in Chapters 2 and 3 when dealing with exponential, phase-type distributions and

CTMCs.

Definition 1.2.17 The Laplace-Stieltjes transform of a non-negative continuous random variable X is

defined as

ϕX(s) =
∫ +∞

0
e−st f (t)dt = E[e−sX ] (1.13)

where f (·) is the probability density function of X.

When dealing with continuous random variables, the Laplace-Stieltjes transform plays a similar

role as the generating function for the case of discrete-time random variables. In fact, there are two

properties that will be useful in our analysis. The first one is that the Laplace-Stieltjes transform

is closed under the sum, that is, if ϕX(s) and ϕY(s) are the Laplace-Stieltjes transforms of the

independently distributed random variables X and Y, respectively, then

ϕX+Y(s) = ϕX(s)ϕY(s).

The second one is used to calculate the different order moments of a random variable X. Since if

ϕX(s) is the Laplace-Stieltjes transform of X, then

E[Xn] = (−1)n dn ϕX(s)
dsn

∣∣∣∣
s=0

= (−1)n ϕ
(n)
X (0).
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The mathematical framework reported in this section belongs to those tools that have been used

in more than one chapter of this thesis, in particular, Chapters 2, 3 and 5. Other mathematical

procedures used in these chapters and in Chapter 4, are explained in the aforesaid sections given

that they are used for more specific situations.

1.3 State-of-the-art. Aims of the thesis

In this section, a general overview of the state-of-the-art regarding the role of IL-2 in T cell

stimulation, the costimulatory system or regulatory T cells as a down-regulator subpopulation

is presented. These have been used as a starting point for the motivation of the current

work. The summary reported here, gathers investigations developed from different mathematical

approaches, some of them also in the field of Markov processes.

Regarding intracellular dynamics of IL-2, discussed in Chapter 2, it is known [6] that this cytokine

is required for regulatory cells homeostasis in peripheral pools. Reference [13] shows how the

upregulation of IL-2R, IL-2 high-affinity receptor, provokes a positive feedback loop of this ligand

signalling. IL-2 internal dynamics from an effector T cell to a regulatory cell were used in such a

chapter, with slight alterations, to develop a matrix-analytic approach from a stochastic version of

this phenomenon. Thus, quantitative information regarding this molecule wants to be analysed

with accuracy. Nevertheless, IL-2 ability to regulate T cell expansion was translated, back in 2014,

into the first reproducible effective human cancer immunotherapies [58].

However, population dynamics of T cells are not only driven by stimulatory signals, explained

in Section 1.1.2, from which IL-2 is the main protagonist of signal 3, but for inhibitory activities

in which regulatory T cells role needs to be studied separately. Already in Chapter 2, there is a

distinction regarding this subpopulation which is due to their expression of IL-2R. But in addition

to this, there is a characteristic that regulatory T cells have which has to do with the location of

the inhibitory receptor CTLA-4. Several works like [68] state that this co-receptor is constitutively

located mainly in intracellular compartments of conventional T cells whereas they are on the cell

surface only in regulatory T cells [76] which, in principle, would result in a higher ability, or faster,

for these regulatory T cells to inhibit others.

Moreover, a controversy between the mechanisms by which CTLA-4 would perform its

restraining functions has emerged mainly after recent discoveries in vitro and in vivo. For

instance, in [54], some experiments would support a CTLA-4 cell-extrinsic mediation in which, in
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contrast between a cell-intrinsic one, APC ligands sources of T cell activation would be depleted

via CTLA-4 internalisation within T cells. This hypothesis, would categorise APCs ability for

T cell activation depending on if they have been in contact with CTLA-4+ T cells before, this

is, depending on the amount of ligands (B7-1 and B7-2) that they have left [76]. The need of

an accurate quantitative analysis supports in Chapter 3 the use of matrix-analytic methods that

might bring some light to some of the characteristics that drive this costimulatory system.

Identifying the key elements that explain T cell activation requires a perspective that takes into

account different levels. Thus, the other two chapters jump from a molecular to a cellular and a

population level. In Chapter 4, different results regarding subpopulation dynamics of T cells, in

which IL-2 and regulatory cells were argued to have an important role, are used as a starting point

for a quorum-sensing like hypothesis. Previous works in [5] or [57], suggest this mechanism to

be behind homeostasis in T cells number by a process of perceiving the density of their own cell

populations. To elucidate if failures in such process might result in autoimmunity or uncontrolled

T cell activation, in vivo data is used in Chapter 4 to verify the efficiency of contrasted models

suggesting, if possible, different alternatives.

Moreover, regulatory cells also have a crucial function in tumour scenarios. Lots of different

researches (like [62] or [20]) correlate high FOXP3+ T reg cell expression to diverse cancers in

relation to other subpopulation of cells. In particular, the ratio between this cells and effector

CD8+ cells seems to be particularly important for tumour prognosis [70]. In Chapter 5, a tumour

scenario is considered to keep investigating the quorum-sensing role. By several versions of

a model, we try to illustrate the mechanisms by which regulatory T cells suppress effective

antitumour immunity, causing tumour progression [49]. For this purpose, a stochastic and a

deterministic approach will bring some conclusions regarding how the parameters of our models

might have an impact on tumour prognosis.

Regarding the methodology most frequently used in this work, matrix-analytic methods, as stated

in Section 1.2, have had a notorious impact during last decades thanks mainly to computational

improvement. This method makes use of a matrix formalism, and was originally developed by

Marcel F Neuts in the area of queueing theory [50]. Since then, it has been successfully applied

during the last years in different areas of mathematical biology, such as population dynamics [23],

epidemiology [18, 37], or cell and molecular biology [8, 38]. However, it has not been used yet for

the specific purpose of this work.
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Chapter 2

A stochastic model for intracellular

trafficking of interleukin-2

2.1 Introduction

The proper functioning of the different T cell classes described in the introduction, and so

the interaction between them, not only depends on the TCR and the pMHC complexes (see

Figure 1.1), but on a group of cytokines called the interleukin family; proteins that mediate

communication between cells regulating cell growth, differentiation and motility. The main target

of this chapter resides in understanding the main dynamics of the molecule interleukin-2 (IL-2),

a cytokine involved in different immunological processes (T cell thymic development [42, 43],

immune response [11] and regulation of homeostatic levels of regulatory T cells [7, 44]).

Regulatory T cell survival in the periphery depends on IL-2 molecules, as regulatory T cells are

characterised by the constitutive expression of IL-2 receptor molecules on their cell surface. Since

regulatory T cells are not capable of producing IL-2 in significant amounts, they directly depend

on the production of background levels of IL-2 by other cells in the periphery, such as helper

T cells [41]. As it will be studied in detail in Chapter 4, IL-2 is the key element on the called

quorum-sensing mechanism, in which the immune system is capable of self-controlling its own

population levels by the ability of some cells to produce IL-2, which implies T cell proliferation,

and in particular, proliferation of regulatory T cell, and by the capacity of regulatory T cells to

down-regulate T cell pool by inhibitory signals.



Chapter 2. A stochastic model for intracellular trafficking of interleukin-2 24

In particular, this chapter introduces, developes and analyses a stochastic version of the

deterministic model presented in [13] for the interaction between a helper T cell and a regulatory

T cell by means of the IL-2 molecule. When analysing a biological system like this one from

a mathematical and computational perspective, deterministic or stochastic approaches can be

followed. The advantage of a deterministic approach is that it allows one to elucidate the

dynamics of the process in an analytical manner, whereas the mathematical analysis of the system

is, in general, more plausible than in the stochastic approach. However, the stochastic approach

is able to reproduce the intrinsic randomness that naturally arises in these processes, being

specially desirable when small numbers of molecules are involved (e.g., T cell responses have

been reported to be mediated only by around 10 IL-2/IL-2R molecules [17]). When analysing

a stochastic model, the usual approach is to study the master equation of the process (a system

of differential equations involving the probabilities of the process being at each possible state at

any particular time, which is defined in Section 1.2.1). This system, which is usually referred

to as the Kolmogorov equations in the field of stochastic processes [34], is usually non-solvable

from an analytical point of view. Then, different approaches are implemented in the literature

such as Gillespie simulations [22] (see Definition 1.2.7) or the application of moment-based

approximations [75].

The aim here is therefore to illustrate the applicability of an alternative algorithmic method: the

matrix-analytic approach. The analysis developed here relies in the introduction of stochastic

descriptors, which are conveniently defined random variables providing detailed information

about the dynamics of the process, but without requiring to analyse the time-dependent dynamics

in the master equation.

The chapter is structured as follows: In Section 2.2, the stochastic version of the model in [13]

is presented. Different stochastic descriptors are defined in Section 2.3 for analysing the rate at

which IL-2/IL-2R complexes are formed on the regulatory T cell surface, as well as the rate at

which IL-2R molecules are synthesised. These descriptors can be efficiently analysed by means

of a matrix formalism developed in Section 2.4 which allows to work algorithmically to obtain

certain quantities of interest. This algorithmical approach, discussed in Section 2.6, allows to

analyse in an efficient manner these descriptors. Numerical results are obtained and discussed in

Section 2.5, and a summary with main conclusions is given in Section 2.8. Finally, as an example of

the different approaches mentioned before when solving Kolmogorov equations, a Van Kampen’s

expansion approximation is explained for the present model in Section 2.7
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2.2 Stochastic model

The aim of this section is to develop a stochastic version of the deterministic model proposed

in [13] for the interaction between a helper T cell and a regulatory T lymphocyte, mediated by

the interleukin-2 cytokine (IL-2) and its receptor (IL-2R). Considerations are restricted to the

dynamics of regulatory T cells: the synthesis of IL-2R by regulatory T cells is induced by IL-2

that is secreted by helper T cells, but sensed by regulatory T cells in a paracrine fashion.

The mathematical model introduced in [13], and generalised here with a stochastic approach,

considers the following variables: IL-2 cytokine or free ligand molecules (L), IL-2 receptors (R)

on the regulatory T cell surface, bound IL-2/IL-2R complexes on the cell surface (C), and bound

complexes in the endosome of regulatory T cells (E). The model under study is then represented

in Figure 2.1, and involves the analysis of the following random variables:

R(t) = “Number of free IL-2R on the cell surface at time t”,

C(t) = “Number of IL-2/IL-2R complexes on the cell surface at time t”,

E(t) = “Number of IL-2/IL-2R complexes in the endosome at time t”,

L(t) = “Number of free extra-cellular IL-2 ligands at time t”,

for any t ≥ 0, where an initial number of IL-2 molecules (ligand) L(0) = nL and free IL-2 receptors

R(0) = nR are assumed, with C(0) = E(0) = 0. In what follows, and given that the dynamics of

helper T cells, their IL-2 secretion, or the spatial diffusion of IL-2 from helper T cells to regulatory

T cells are not explicitly modelled, a constant background of ligand is postulated so that L(t) = nL

∀t ≥ 0, in the spirit of [27], and justified by the similar dynamics observed in previous simulations

under different initial values (results not shown here). Finally, let us consider that the total

number of receptors per cell is bounded by a carrying capacity of regulatory T cells. Thus, it is

assumed that

R(t) + C(t) + E(t) ≤ nmax
R ,

for all t ≥ 0, so that nR ≤ nmax
R .

Once the variables of the model have been described, the set of reactions considered in the model

(see Figure 2.1) can be introduced as:
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Figure 2.1: Model for IL-2 stimulation of a regulatory T cell where σ(·) encodes the ligand-induced
synthesis rate by a Hill function (see reaction (R3) below).

(R1) Binding of ligand to receptor

Extra-cellular IL-2 molecules can bind to IL-2R on the surface of regulatory T cells, forming

IL-2/IL-2R complexes, with rate kon,

R + L kon−→ C .

(R2) Dissociation of ligand and receptor

Bound complexes C can dissociate with rate koff,

C
koff−→ R + L .

(R3) Synthesis of IL-2R

Both constitutive and IL-2 induced synthesis of new IL-2R molecules,

∅
ν0+ν1σ(x)−−−−−→ R .



Chapter 2. A stochastic model for intracellular trafficking of interleukin-2 27

are taken into account. The synthesis of new receptors occurs at rate

v0 + v1σ(x) = v0 + v1
x3

x3 + K3
c

,

where x is the number of bound complexes on the cell surface at a given time, v0 is the

constitutive synthesis rate and v1 is the ligand-induced synthesis rate. The positive feedback

of bound complexes on IL-2R synthesis is represented by a Hill function with half-saturation

constant Kc = 103 and Hill coefficient m = 3 [13].

(R4) Internalisation of bound complexes

IL-2/IL-2R complexes are internalised from the membrane of the cell into the endosome with

rate γ,

C
γ−→ E .

(R5) Endosomal degradation

Internalised IL-2/IL-2R complexes are degraded in the endosome with rate ke,

E ke−→ ∅ .

(R6) Receptor recycling

IL-2R recycling takes place from internalised IL-2/IL-2R complexes with rate δ,

E δ−→ R .

(R7) Surface receptor degradation

Free IL-2R on the cell surface are degraded with rate ks,

R ks−→ ∅ .

Under Markovian assumptions, let us introduce a continuous-time Markov process (see

Definition 1.2.1) X (t) = {(R(t), C(t), E(t)) : t ≥ 0} defined over the space of states S =

{(n1, n2, n3) ∈ N3 : n1 + n2 + n3 ≤ nmax
R }, with non-null infinitesimal transition rates, according
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to mass-action kinetics, given by

q(n1,n2,n3),(n′1,n′2,n′3)
=



kon n1nL , if (n′1, n′2, n′3) = (n1 − 1, n2 + 1, n3),

koff n2 , if (n′1, n′2, n′3) = (n1 + 1, n2 − 1, n3),

ks n1 , if (n′1, n′2, n′3) = (n1 − 1, n2, n3),

γ n2 , if (n′1, n′2, n′3) = (n1, n2 − 1, n3 + 1),

δ n3 , if (n′1, n′2, n′3) = (n1 + 1, n2, n3 − 1),

ke n3 , if (n′1, n′2, n′3) = (n1, n2, n3 − 1),

ν0 + ν1σ(n2) , if (n′1, n′2, n′3) = (n1 + 1, n2, n3),

(2.1)

for (n1, n2, n3), (n′1, n′2, n′3) ∈ S . In Section 2.5 the values for all the rates are discussed.

If we note n = (n1, n2, n3), the dynamics of this process can be analysed in terms of the

probabilities {Pn(t) : t ≥ 0, n ∈ S}, where Pn(t) = P((R(t), C(t), E(t)) = n) is the probability

of the process being at state n at time t, for a given initial state n0 = (nR, 0, 0). These probabilities

verify the master equation corresponding to the Markov process under consideration [34]:

dPn(t)
dt

= ∑
n′∈S ,n′ 6=n

q(n′ ,n) Pn′(t)− ∑
n′∈S ,n′ 6=n

q(n,n′) Pn(t) , ∀n ∈ S . (2.2)

This system of differential equations cannot, in general, be solved analytically. Different methods

have been proposed and used in the literature to study the Kolmogorov equations of a given

Markov process, such as carrying out Gillespie simulations [22] or making use of expansion

techniques like Van Kampen’s approximation [75] that turns the Kolmogorov equations into a

combination of macroscopic fluctuations and concentrations; Fokker-Planck equation, in what is

called a system-size expansion. This procedure is used in Section 2.7 for the master Equation (2.2).

Our objective here is to propose, in Section 2.3, an alternative approach: the introduction of new

stochastic descriptors, which are random variables of interest to the process under consideration.

This approach, based on a matrix formalism, requires arranging the space of states S in groups of

states, and the use of several algorithmic techniques, known as the matrix-analytic approach [28].
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2.3 Stochastic descriptors

Further to previous elucidations, this section has the purpose of introducing and analysing a

continuous and a discrete stochastic descriptor that permit to study the joint role of the rate

at which IL-2/IL-2R bound complexes are formed and the rate at which IL-2R molecules are

synthesised in the dynamics of the process. For this objective, let us introduce:

1. the time to reach a threshold number, B, of bound complexes simultaneously present on the

cell surface, and

2. the number of newly synthesised receptors during that time.

The first descriptor gives an absolute measure of the rate at which bound complexes are formed

and maintained to reach a threshold number on the cell surface, while the second descriptor

enables relating this threshold number with its direct output, the synthesis of new receptors. In

order to analyse the stochastic descriptors, it is necessary to arrange the space of states S by levels

as follows:

S =
nmax

R⋃
k=0

L(k) ,

where each level, L(k) = {(n1, n2, n3) ∈ S : n2 = k}, is organised in sub-levels

L(k) =
nmax

R −k⋃
r=0

l(k; r) , 0 ≤ k ≤ nmax
R ,

with l(k; r) = {(n1, n2, n3) ∈ L(k) : n1 = r}. That is, level L(k) is the group of states within S

representing a total number of bound complexes on the cell surface equal to k, while each sub-

level l(k; r) is formed by those states within L(k) representing a total number of free receptors

equal to r, for 0 ≤ r ≤ nmax
R − k and 0 ≤ k ≤ nmax

R , as Figure 2.2 shows. Finally, it can be proved

that

J(k) = #L(k) =
(nmax

R − k + 1)(nmax
R − k + 2)

2
,

J(k; r) = #l(k; r) = nmax
R − k− r + 1 ,
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Figure 2.2: Space of states S subdivided by levels L(k) and sublevels l(k; r).

for 0 ≤ k ≤ nmax
R and 0 ≤ r ≤ nmax

R − k.

This organisation of S precedes an algorithmic approach when analysing the descriptors under

study. This analysis is based on the use of first-step arguments, Laplace-Stieltjes transforms and

probability generating functions, and is developed in the following sections. In Section 2.3.1 the

time to reach a total threshold number B of bound complexes simultaneously present on the cell

surface is studied as a random variable, where its Laplace-Stieltjes transform is obtained and its

order moments are computed. In Section 2.3.2, what it is analysed is the probability generating

function of the random variable representing the number of receptors synthesised during the

time it takes to reach a threshold number B of bound complexes simultaneously present on the

cell surface. Not only the different order moments of this random variable are obtained but also

an algorithmic approach for computing its probability mass function.
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2.3.1 Time to reach a threshold number B of bound complexes on the cell

surface

The time to reach a threshold number B of bound complexes simultaneously present on the cell

surface can be analysed in terms of the random variable

TB
(n1,n2,n3)

= “Time to reach a threshold number B of bound complexes

simultaneously present on the cell surface, given the current state

of the process (n1, n2, n3) ∈ S”

or, mathematically,

TB
(n1,n2,n3)

= inf{t > 0 : C(t) = B},

for values n2 ≤ B ≤ nmax
R , with Tn2

(n1,n2,n3)
= 0. In order to study this random variable, Let us

make use of its Laplace-Stieltjes transform [34, Appendix F] (see Definition 1.2.17)

ϕB
(n1,n2,n3)

(z) = E
[

e
−z TB

(n1,n2,n3)

]
, <(z) ≥ 0 ,

which uniquely determines the distribution of the random variable and allows to compute its

order moments by successive differentiation, as follows

mB,(l)
(n1,n2,n3)

= E
[
(TB

(n1,n2,n3)
)l
]

= (−1)l dl

dzl ϕB
(n1,n2,n3)

(z)

∣∣∣∣∣
z=0

, l ≥ 1 .

The Laplace-Stieltjes transform ϕB
(n1,n2,n3)

(z) can be obtained by a first-step argument

(z + ∆(n1,n2,n3))ϕB
(n1,n2,n3)

(z) = kon n1nL ϕB
(n1−1,n2+1,n3)

(z) + koff n2 ϕB
(n1+1,n2−1,n3)

(z)

+ks n1 ϕB
(n1−1,n2,n3)

(z) + γ n2 ϕB
(n1,n2−1,n3+1)(z)

+δ n3 ϕB
(n1+1,n2,n3−1)(z) + ke n3 ϕ(n1,n2,n3−1)(z)

+(1− δn1+n2+n3,nmax
R

) (ν0 + ν1σ(n2))

×ϕB
(n1+1,n2,n3)

(z) , (2.3)
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where ∆(n1,n2,n3) = kon n1nL + koff n2 + ks n1 + γ n2 + δ n3 + ke n3 + (1 − δn1+n2+n3,nmax
R

)

× (ν0 + ν1σ(n2)), and δi,j represents the Kronecker’s delta (which is equal to 1 if i = j and 0

otherwise). Equation (2.3) yields a system of equations involving the Laplace-Stieltjes transforms

corresponding to states (n1, n2, n3) ∈ ∪B−1
k=0 L(k), with boundary conditions ϕB

(n1,B,n3)
(z) = 1 for

states (n1, B, n3) ∈ L(B). This system of equations can be efficiently solved by working with a

matrix formalism, while exploiting the structure of S . This procedure is shown in some detail in

Section 2.6.

Once the Laplace-Stieltjes transforms are in hand, the different order moments can be obtained

by successive differentiation of Equation (2.3) with respect to z, and setting z = 0, as follows

∆(n1,n2,n3)mB,(l)
(n1,n2,n3)

= kon n1nLmB,(l)
(n1−1,n2+1,n3)

+ koff n2mB,(l)
(n1+1,n2−1,n3)

+ks n1mB,(l)
(n1−1,n2,n3)

+ γ n2mB,(l)
(n1,n2−1,n3+1)

+δ n3mB,(l)
(n1+1,n2,n3−1) + ke n3mB,(l)

(n1,n2,n3−1)

+(1− δn1+n2+n3,nmax
R

) (ν0 + ν1σ(n2))mB,(l)
(n1+1,n2,n3)

+lmB,(l−1)
(n1,n2,n3)

, (2.4)

so that moments of order l can be obtained, in an algorithmic manner, from previously computed

moments of order l − 1, starting with mB,(0)
(n1,n2,n3)

= ϕB
(n1,n2,n3)

(0), computed from Equation (2.3).

This procedure makes use of a similar matrix formalism to the one mentioned for solving

Equation (2.3), and is briefly discussed in Section 2.4.

2.3.2 Number of receptors synthesised during the time to reach a threshold

number B of bound complexes on the cell surface

Let us now focus on analysing the random variable

NB
(n1,n2,n3)

= “Number of newly synthesised receptors during the time it takes to

reach a threshold number B of bound complexes simultaneously

present on the cell surface, given the current state of the system

(n1, n2, n3) ∈ S”
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which is defined for values n2 ≤ B ≤ nmax
R . In order to analyse this random variable, Let us

consider its probability generating function

φB
(n1,n2,n3)

(s) = E
[

s
NB

(n1,n2,n3)

]
, |s| ≤ 1 ,

which characterises the random variable, while allowing at the same time to compute any pth

order factorial moment as

nB,(p)
(n1,n2,n3)

= E
[

NB
(n1,n2,n3)

(NB
(n1,n2,n3)

− 1)(NB
(n1,n2,n3)

− 2) . . . (NB
(n1,n2,n3)

− p + 1)
]

=
dp

dsp φB
(n1,n2,n3)

(s)
∣∣∣∣
s=1

, p ≥ 0 . (2.5)

A particular advantage of using the probability generating function is that it allows us to compute

the probability mass function of the random variable under study as

αB
(n1,n2,n3)

(a) = P(NB
(n1,n2,n3)

= a) =
1
a!

da

dsa φB
(n1,n2,n3)

(s)
∣∣∣∣
s=0

, a ≥ 0 . (2.6)

The probability generating function can be obtained by following a first-step argument, in a

similar manner to that discussed in Section 2.3.1. In particular,

∆(n1,n2,n3)φB
(n1,n2,n3)

(s) = kon n1nLφB
(n1−1,n2+1,n3)

(s) + koff n2φB
(n1+1,n2−1,n3)

(s)

+ks n1φB
(n1−1,n2,n3)

(s) + γ n2φB
(n1,n2−1,n3+1)(s)

+δ n3φB
(n1+1,n2,n3−1)(s) + ke n3φB

(n1,n2,n3−1)(s)

+(1− δn1+n2+n3,nmax
R

) (ν0 + ν1σ(n2)) s

×φB
(n1+1,n2,n3)

(s) , (2.7)

for states (n1, n2, n3) ∈ ∪B−1
k=0 L(k), with boundary conditions φB

(n1,B,n3)
(s) = 1 for states

(n1, B, n3) ∈ L(B). Equation (2.7) yields a system of equations that can be efficiently solved by

following the same matrix formalism as in Section 2.3.1 and that is discussed in Section 2.4.

A direct application of Equations (2.5)-(2.7) leads to a system of equations corresponding to the

desired factorial moments and the probability mass function. In particular,
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∆(n1,n2,n3)nB,(p)
(n1,n2,n3)

= kon n1nLnB,(p)
(n1−1,n2+1,n3)

+ koff n2nB,(p)
(n1+1,n2−1,n3)

+ks n1nB,(p)
(n1−1,n2,n3)

+ γ n2nB,(p)
(n1,n2−1,n3+1)

+δ n3nB,(p)
(n1+1,n2,n3−1) + ke n3nB,(p)

(n1,n2,n3−1)

+(1− δn1+n2+n3,nmax
R

) (ν0 + ν1σ(n2))(nB,(p)
(n1+1,n2,n3)

+p nB,(p−1)
(n1+1,n2,n3)

) , p ≥ 1 ,

∆(n1,n2,n3)αB
(n1,n2,n3)

(a) = kon n1nLαB
(n1−1,n2+1,n3)

(a) + koff n2αB
(n1+1,n2−1,n3)

(a)

+ks n1αB
(n1−1,n2,n3)

(a) + γ n2αB
(n1,n2−1,n3+1)(a)

+δ n3αB
(n1+1,n2,n3−1)(a) + ke n3αB

(n1,n2,n3−1)(a)

+(1− δn1+n2+n3,nmax
R

)(1− δa,0) (ν0 + ν1σ(n2))

×αB
(n1+1,n2,n3)

(a− 1) , a ≥ 0 .

Boundary conditions for the equations above are nB,(p)
(n1,B,n3)

= 0, for all p ≥ 1 and (n1, B, n3) ∈

L(B), and αB
(n1,B,n3)

(a) = 0 for all a ≥ 1, and αB
(n1,B,n3)

(0) = 1. Efficient methods to solve the

previous systems of equations can be developed by following the matrix formalism presented

earlier and mathematical details are explained in Section 2.4.

2.4 Matrix formalism

For efficiently analysing the first descriptor studied in Section 2.3.1, we express the system of

equations given by Equation (2.3), in matrix form as

ϕ(z) = A(z)ϕ(z) + b(z), (2.8)

where the constant B is omitted here for the ease of notation. The vector of unknowns ϕ(z) is

structured, due to the organization of S in levels and sub-levels, by blocks as

ϕ(z) =


ϕ0(z)

ϕ1(z)
...

ϕB−1(z)

 , ϕk(z) =


ϕk

0(z)

ϕk
1(z)
...

ϕk
nmax

R −k(z)

 , 0 ≤ k ≤ B− 1,
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with ϕk
r (z) = (ϕ(r,k,0)(z), . . . , ϕ(r,k,nmax

R −r−k)(z))T , and where T represents the transpose operator.

In a similar way, the organisation of states within S by levels and sub-levels, and the consideration

of transition rates in Equation (2.1), yield

A(z) =



A0,0(z) A0,1(z) 0 . . . 0 0

A1,0(z) A1,1(z) A1,2(z) . . . 0 0

0 A2,1(z) A2,2(z) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . AB−2,B−2(z) AB−2,B−1(z)

0 0 0 . . . AB−1,B−2(z) AB−1,B−1(z)


,

where the sub-matrix Ak,k′(z) contains in an ordered fashion those coefficients in the System (2.3)

related with transitions from states at level L(k) towards states at level L(k′). The specific structure

by sub-levels yields the expressions

Ak,k(z) =



Bk,k
0,0(z) Bk,k

0,1(z) 0 . . . 0 0

Bk,k
1,0(z) Bk,k

1,1(z) Bk,k
1,2(z) . . . 0 0

0 Bk,k
2,1(z) Bk,k

2,2(z) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Bk,k
nmax

R −k−1,nmax
R −k−1(z) Bk,k

nmax
R −k−1,nmax

R −k(z)

0 0 0 . . . Bk,k
nmax

R −k,nmax
R −k−1(z) Bk,k

nmax
R −k,nmax

R −k(z)


,

Ak,k−1(z) =



Bk,k−1
0,0 (z) Bk,k−1

0,1 (z) 0 . . . 0 0

0 Bk,k−1
1,1 (z) Bk,k−1

1,2 (z) . . . 0 0

0 0 Bk,k−1
2,2 (z) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Bk,k−1
nmax

R −k−1,nmax
R −k(z) 0

0 0 0 . . . Bk,k−1
nmax

R −k,nmax
R −k(z) Bk,k−1

nmax
R −k,nmax

R −k+1(z)


,

Ak,k+1(z) =



0 0 0 . . . 0 0

Bk,k+1
1,0 (z) 0 0 . . . 0 0

0 Bk,k+1
2,1 (z) 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Bk,k+1
nmax

R −k−1,nmax
R −k−2(z) 0

0 0 0 . . . 0 Bk,k+1
nmax

R −k,nmax
R −k−1(z)


,
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where the dimensions of sub-blocks 0 in previous expressions are omitted. However, dimensions

of a sub-block 0 corresponding to those rows related with sub-level l(k; r) and those columns

related with sub-level l(k′; r′) are J(k; r) × J(k′; r′). Expressions for sub-matrices Bk,k′
r,r′ (z) are

obtained from Equation (2.3) as

(Bk,k−1
r,r (z))ij =

 γk(z + ∆(r,k,i))−1, if j = i + 1,

0, otherwise,

where 1 ≤ i ≤ J(k; r), 1 ≤ j ≤ J(k− 1; r), 1 ≤ k ≤ B− 1 and 0 ≤ r ≤ nmax
R − k;

(Bk,k−1
r,r+1 (z))ij =

 ko f f k(z + ∆(r,k,i))−1, if j = i,

0, otherwise,

where 1 ≤ i ≤ J(k; r), 1 ≤ j ≤ J(k− 1; r + 1), 1 ≤ k ≤ B− 1 and 0 ≤ r ≤ nmax
R − k− 1;

(Bk,k
r,r−1(z))ij =

 ksr(z + ∆(r,k,i))−1, if j = i,

0, otherwise,

where 1 ≤ i ≤ J(k; r), 1 ≤ j ≤ J(k; r− 1), 0 ≤ k ≤ B− 1 and 1 ≤ r ≤ nmax
R − k;

(Bk,k
r,r (z))ij =

 kei(z + ∆(r,k,i))−1, if j = i− 1,

0, otherwise,

where 1 ≤ i ≤ J(k; r), 1 ≤ j ≤ J(k; r), 0 ≤ k ≤ B− 1 and 0 ≤ r ≤ nmax
R − k;

(Bk,k
r,r+1(z))ij =


σ(k)(z + ∆(r,k,i))−1, if j = i,

δi(z + ∆(r,k,i))−1, if j = i− 1,

0, otherwise,

where 1 ≤ i ≤ J(k; r), 1 ≤ j ≤ J(k; r + 1), 0 ≤ k ≤ B− 1 and 0 ≤ r ≤ nmax
R − k− 1; and

(Bk,k+1
r,r−1 (z))ij =

 konrnL(z + ∆(r,k,i))−1, if j = i,

0, otherwise,

where 1 ≤ i ≤ J(k; r), 1 ≤ j ≤ J(k + 1; r − 1), 0 ≤ k ≤ B− 2 and 1 ≤ r ≤ nmax
R − k. Finally, the
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expression for vector b(z) in Equation (2.8) is given by

b(z) =



0

0
...

0

AB−1,B(z)eJ(B)


,

where ej represents a column vector of ones with dimension j.

Then, following a forward elimination backward substitution method suggested by Ciarlet [15,

p. 144], Algorithm 1 is obtained which permits to compute all the Laplace-Stieltjes transforms in

Equation (2.3) in an efficient and recursive manner.

2.5 Numerical results

In this section, we carry out a numerical study of the the descriptors previously introduced

for the IL-2 stimulation of regulatory T cells. In order to do so, we propose to make use of

the physiological parameters and kinetic rates provided in [13] and reported in Table 2.1. We

are interested in the stimulation dynamics of a regulatory T cell under three different regimes,

characterised by the availability of IL-2 (low, medium, high), given by nL ∈ {103, 5 · 103, 104},

respectively. These values, chosen for illustrative purposes, have been selected taking into

account that a helper T cell has an antigen induced IL-2R synthesis rate in the range of (0, 2) ·

104 molecules · h−1 [13] (where h is hours). Initial conditions for our process are then given

by R(0) = v0/ks, C(0) = E(0) = 0, which represent the state of the regulatory T cell before

stimulation. We have assumed that in the absence of IL-2, the initial number of IL-2R on the

surface of a regulatory T cell is given by the balance between receptor synthesis and degradation.

We restrict ourselves to the first 60 minutes post-stimulation and for computational convenience,

we consider the dynamics occurring on f = 1% of the cell surface, without loss of generality.

Thus, nL ∈ {10, 50, 100}, nR = 15 and the kinetic rates have been transformed accordingly. Over

this model, molecules are considered not to move in a way they could interact to each other as

long as they are located in the synapse. New approaches including mobility are suggested for

further analysis as explained in Chapter 6. The binding rate, kon (see Figure 2.1) is obtained from
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k̃on in Table 2.1 as follows

kon =
k̃on

f d sc NA
,

where d is the distance to the source of IL-2 (helper T cells), sc is the regulatory T cell surface area

and NA is Avogadro’s number. Finally, preliminary Gillespie simulations allow us to set nmax
R =

6 R(0). This value is chosen so that the total number of receptors in the system, R(t)+ C(t)+ E(t),

for t ∈ [0, 60]min, does not exceed the value nmax
R with a probability greater than 0.99.

Parameter Value
Regulatory T cell surface area, sc 3× 10−10m2

Distance to a helper T cell secreting IL-2, d 1× 10−3m
Antigen induced IL-2R synthesis rate in a regulatory T cell, v0 103 molecules · h−1

IL-2 induced IL-2R synthesis rate in a regulatory T cell, v1 8× 103 molecules · h−1

IL-2 association rate constant to IL-2R, k̃on 111.6nM−1h−1

IL-2 dissociation rate constant to IL-2R, koff 0.83h−1

Internalisation rate constant of IL-2R, ks 0.64h−1

Internalisation rate constant of IL-2/IL-2R complexes, γ 1.7h−1

Recycling rate constant of endosomal IL-2R, δ 9h−1

Endosomal degradation constant, ke 5h−1

Table 2.1: Physiological parameters and kinetic rates from [13] where nM−1 are nanomoles.

We note that the aim of the numerical experiments to be carried out in this section is to investigate

the main hypothesis of the mathematical model, and originally considered in [13]. Namely, that

IL-2R ligand-induced synthesis is driven by a positive feedback from the IL-2/IL-2R complexes

on the cell surface. However, a number of other possible alternatives need to be considered,

for example, a positive feedback from the IL-2/IL-2R complexes in the endosome, or a synergistic

positive feedback from the IL-2/IL-2R complexes on the surface and those in the endosome. Thus,

we propose here three possible alternatives for the synthesis rate considered in reaction (R3) in

Section 2.2. In particular, we consider three different arguments for the function σ.

σ(C) =
C3

C3 + K3
c

,

σ(E) =
E3

E3 + K3
c

,

σ(C + E) =
(C + E)3

(C + E)3 + K3
c

,

where C and E represent the number of surface complexes and endosomal complexes at a given
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time, respectively. In fact, for the σ(C + E) case, making the function Hill depends on two Hill

functions instead of the sum of two of them was proof not to substantially alter the results (not

shown here).

In Figure 2.3, we plot the average time E[TB
(15,0,0)] to reach a threshold number B of bound

complexes on the cell surface ± its standard deviation. We plot these times as a function of B,

for different ligand concentrations nL ∈ {10, 50, 100}, and for the three synthesis hypothesis,

σ(C), σ(E) and σ(C + E), respectively. In the first instance (Figure 2.3 top, σ(C)), the average

time to reach B bound complexes on the cell surface is approximately equal to one hour for

values of B equal to B = 4, B = 21 and B = 39, for concentrations nL = 10, nL = 50 and

nL = 100, respectively. That is, higher ligand concentrations lead to a larger number of bound

receptors on the surface, that induce synthesis of new IL-2 receptors, thus enhancing further IL-2

binding to IL-2R. In the third model (Figure 2.3 bottom, σ(C + E)), the corresponding values of

B for an average time of one hour are B = 4, B = 23 and B = 41, for concentrations nL = 10,

nL = 50 and nL = 100, respectively. This illustrates the small but additional positive feedback

that endosomal complexes provide to the number of surface complexes, if they are explicitly

considered in the synthesis rate. On the other hand, the second hypothesis corresponding to σ(E)

(Figure 2.3 middle), which assumes that only endosomal complexes induce positive feedback for

the synthesis of new receptors, significantly changes the timescales of the threshold. In particular,

values of B corresponding to an average time, E[TB
(15,0,0)], approximately equal to one hour are

B = 4, B = 10 and B = 13, for concentrations nL = 10, nL = 50 and nL = 100, respectively. That

is, if only endosomal complexes were to give positive feedback for the synthesis of new receptors,

the stimulation of the regulatory T cell, and in particular the rate at which complexes are formed

in its surface, would significantly decrease.

A similar analysis can be made regarding the second descriptor, the average number E[NB
(15,0,0)]

of synthesised receptors during the time it takes for B complexes to be present on the cell surface.

The descriptor is analysed in Figure 2.4 and plotted as a function of B. We study the behaviour of

this discrete descriptor for different ligand concentrations and considering a number, E[NB
(15,0,0)],

to be approximately equal to 40. If we assume the first hypothesis, corresponding to σ(C)

(Figure 2.4 top), the threshold value of IL-2/IL-2R corresponds to B = 7, B = 19 and B = 26, for

concentrations nL = 10, nL = 50 and nL = 100, respectively. If we assume the third hypothesis,

corresponding to σ(C + E) (Figure 2.4 bottom), the threshold values are then equal to B = 7, B = 19

and B = 27, for concentrations nL = 10, nL = 50 and nL = 100, respectively. This means that

there is a slight enhancement contribution of endosomal complexes in σ(C + E) in comparison
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Figure 2.3: Mean time E[TB
(15,0,0)] (in minutes), ± its standard deviation, to reach a threshold

number B of bound complexes on the cell surface, as a function of B, for different number of IL-2
molecules, nL ∈ {10, 50, 100}. The synthesis rate hypothesis considered in the process amounts to
(from top to bottom) σ(C), σ(E) and σ(C + E). (Python code for obtaining the blue curves, nL = 50,
when σ(C + E) is included in Appendix A).
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with σ(C), which allows the regulatory T cell to synthesise receptors slightly faster.

On the other hand, the hypothesis corresponding to σ(E) (Figure 2.4 middle) significantly changes

the stimulatory dynamics, and corresponding values of B are approximately equal to B = 7,

B = 14 and B = 17, for concentrations nL = 10, nL = 50 and nL = 100, respectively. We point out

that results in Figure 2.4 need to be carefully interpreted in relation with results in Figure 2.3, since

they are intrinsically related. In particular, since we plot in Figure 2.4 the number of synthesised

receptors to reach a threshold number B of bound complexes on the cell surface, this number

directly depends on the time to reach this threshold, which is plotted in Figure 2.3. This explains

some behaviours shown in Figure 2.4. For example, in Figure 2.4 middle, the number E[NB
(15,0,0)] of

receptors synthesised to reach B = 14 complexes on the cell surface, for a concentration nL = 50,

is equal to E[NB
(15,0,0)] ∼ 44. This large number of receptors synthesised (in comparison, for

example, with the same case in Figure 2.4 top, E[NB
(15,0,0)] ∼ 23), can be explained by noting that

B = 14 complexes on the cell surface are only obtained in this case after a time significantly larger

than one hour (see Figure 2.4 middle).

From previous comments it is clear that, when endosomal complexes are considered in the

synthesis rate, their contribution to this synthesis is negligible during the one hour time interval

considered in this section. However, it is not possible from previous results to quantify how much

the contribution of the ligand-induced pathway is, in comparison with the constitutive pathway,

to the receptors synthesis. This can be addressed by noting that, regardless of the particular σ(x)

considered (with x ∈ {C, E, C + E}), the total number of synthesised receptors to reach a threshold

number B of surface bound complexes, NB
(nR ,0,0), can be split as

NB
(nR ,0,0) = NB

(nR ,0,0)(CS) + NB
(nR ,0,0)(LIS),

where NB
(nR ,0,0)(CS) represents those receptors which are constitutively synthesised, while

NB
(nR ,0,0)(LIS) represents those receptors which are ligand-induced synthesised. It is clear then

that

E[NB
(nR ,0,0)] = E[NB

(nR ,0,0)(CS)] + E[NB
(nR ,0,0)(LIS)],

where values E[NB
(nR ,0,0)] are those ones considered in Figure 2.4. Values E[NB

(nR ,0,0)(CS)] can be
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Figure 2.4: Mean number E[NB
(15,0,0)] of receptors synthesised, plus and minus its standard

deviation, to reach a threshold number B of bound complexes on the cell surface, versus B, for
different ligand concentrations nL ∈ {10, 50, 100}. Synthesis rate hypothesis considered in the
process amounts to (from top to bottom) σ(C), σ(E) or σ(C + E).
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obtained by slightly modifying our arguments in Section 2.3. In particular, if we define

φB
(n1,n2,n3)

(s; CS) = E
[

s
NB

(n1,n2,n3)(CS)
]

, |s| ≤ 1,

Equation (2.7) is replaced by

∆(n1,n2,n3)φB
(n1,n2,n3)

(s; CS) = konn1nLφB
(n1−1,n2+1,n3)

(s; CS) + koffn2φB
(n1+1,n2−1,n3)

(s; CS)

+ksn1φB
(n1−1,n2,n3)

(s; CS) + γn2φB
(n1,n2−1,n3+1)(s; CS)

+δn3φB
(n1+1,n2,n3−1)(s; CS) + ken3φB

(n1,n2,n3−1)(s; CS)

+(1− δn1+n2+n3,nmax
R

)
(

v0s + v1
x3

x3 + K3
c

)
φB

(n1+1,n2,n3)
(s; CS),

where x ∈ {n2, n3, n2 + n3} for synthesis rates given by σ(C), σ(E) and σ(C + E), respectively.

Thus, moments of NB
(nR ,0,0)(CS) (and, similarly, of NB

(nR ,0,0)(LIS)) can be obtained by reproducing

our arguments in Section 2.3.

We compute in Table 2.2 not only the mean number E[NB
(15,0,0)] of synthesised receptors to reach

a threshold number B of bound complexes under different scenarios, but also the percentage

contribution to this synthesis of constitutive and ligand-induced synthesis pathways. For the

hypothesis corresponding to synthesis rate given by σ(C), we observe that larger amounts of

ligands represent a more important role played by ligand-induced synthesis, which was expected.

However, a saturation behaviour can be observed between concentrations nL = 50 and nL = 100,

which seems to indicate that ligand concentrations above a particular threshold do not lead to

higher ligand-induced synthesis. Of course, this is directly related with the Hill function assumed

in [13] for σ(x). Similar comments can be made for hypothesis corresponding to σ(C + E).

Moreover, differences between values of E[NB
(15,0,0)] in Table 2.2 for the cases σ(C) and σ(C + E),

and even for σ(E), are negligible for B = 5. This indicates that the ligand-induced synthesis

pathway does not play a significant role, in absolute terms, in the short-term dynamics of the

system. This is not the case for B = 10, which shows a significant different behaviour for σ(E)

with respect to σ(C) or σ(C + E), meaning that ligand-induced synthesis plays a major role in

mid- and long-term dynamics. Finally, we point out that several values shown in Table 2.2 have to

be carefully interpreted by looking at the same time at Figures 2.3 and 2.4. For example, the value

E[NB
(15,0,0)] ∼ 670 for B = 10, synthesis rate given by σ(E), and ligand concentration nL = 10, can

be explained by noting that, under these settings, B = 10 bound complexes on the cell surface are

only reached in the long-term, significantly after the first hour of the experiment (see Figure 2.3).
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B σ(x) nL E[TB
(15,0,0)] E[NB

(15,0,0)] 100
E[NB

(15,0,0)(CS)]

E[NB
(15,0,0) ]

% 100
E[NB

(15,0,0)(LIS)]

E[NB
(15,0,0) ]

%

10 86.52 15.97 90.33% 9.67%
σ(C) 50 8.91 1.73 86.06% 13.94%

100 4.10 0.80 85.66% 14.34%
10 95.26 15.92 99.72% 0.28%

5 σ(E) 50 9.00 1.50 99.73% 0.27%
100 4.11 0.69 99.84% 0.16%
10 84.12 15.98 87.72% 12.28%

σ(C + E) 50 8.88 1.78 83.02% 16.98%
100 4.09 0.82 83.46% 16.54%
10 408.35 107.32 63.43% 36.57%

σ(C) 50 27.93 10.41 44.75% 55.25%
100 12.23 4.85 42.00% 58.00%
10 3993.32 669.99 99.36% 0.64%

10 σ(E) 50 51.13 8.67 98.33% 1.67%
100 16.31 2.76 98.36% 1.64%
10 316.02 92.79 56.77% 43.23%

σ(C + E) 50 26.32 10.95 40.05% 59.95%
100 11.87 5.18 38.21% 61.79%

Table 2.2: Values of E[TB
(15,0,0)] (in minutes), E[NB

(15,0,0)], 100
E[NB

(15,0,0)(CS)]

E[NB
(15,0,0) ]

% (that is, %

corresponding to constitutive synthesis), and 100
E[NB

(15,0,0)(LIS)]

E[NB
(15,0,0) ]

% (that is, % corresponding to

ligand-induced synthesis), for different concentrations nL ∈ {10, 50, 100} and different values
of B ∈ {5, 10}. Synthesis rates given by σ(C), σ(E) and σ(C + E) considered.

2.6 Algorithms

Algorithm 1 (for obtaining the Laplace-Stieltjes transforms ϕB
(n1,n2,n3)

(z))

H0(z) = IJ(0) −A0,0(z);

For k = 1, . . . , B− 1:

Hk(z) = IJ(k) −Ak,k(z)−Ak,k−1(z)H−1
k−1(z)Ak−1,k(z);

ϕB−1(z) = H−1
B−1(z)AB−1,B(z)eJ(B);

For k = B− 2, . . . , 0:

ϕk(z) = H−1
k (z)Ak,k+1(z)ϕk+1(z);

Finally, the different order moments mB,(l)
(n1,n2,n3)

of the random variable TB
(n1,n2,n3)

can be obtained

by means of applying a similar matrix formalism to Equation (2.4). In particular, system given by
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Equation (2.4) can be expressed in matrix form as

m(l) = A(0)m(l) + b̃l ,

with

(b̃l)i = l
1
∆i

(m(l−1))i, 0 ≤ i ≤
B−1

∑
k=0

#L(k),

where ∆i represents the value ∆(n1,n2,n3) for the state (n1, n2, n3) corresponding to row i. Vector b̃l

can be structured by blocks as

b̃l =



b̃l
0

b̃l
1
...

b̃l
B−2

b̃l
B−1


.

Then, similar arguments than those ones applied for obtaining Algorithm 1 yield Algorithm 1

(continuation), which allows us to compute moments in vector m(p) from previously computed

moments in vector m(p−1), starting at m(0) = ϕ(0) and until the desired order p = l is reached.

Algorithm 1 (Continuation) (for obtaining the l-th order moments mB,(l)
(n1,n2,n3)

)

For k = 0, 1, . . . , B− 1:

m(0)
k = ϕk(0);

For p = 1, . . . , l:

J(p)
0 = b̃p

0 ;

For j = 1, . . . , B− 1:

J(p)
j = Aj,j−1(0)H−1

j−1(0)J(p)
j−1 + b̃p

j ;

m(p)
B−1 = H−1

B−1(0)J(p)
B−1;

For j = B− 2, . . . , 1, 0:
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m(p)
j = H−1

j (0)
(

J(p)
j + Aj,j+1(0)m(p)

j+1

)
;

Regarding the second descriptor analysed in Section 2.3.2, Equation (2.8) can be expressed in

matrix form as

φ(s) = A(s)φ(s) + b, (2.9)

where we are omitting again B in the notation, and where probability generating functions

φB
(n1,n2,n3)

(s) for (n1, n2, n3) ∈ ∪B−1
k=0 L(k) are stored in a column vector φ(s) which is organised

in sub-vectors following the structure by levels and sub-levels of S , in a similar way than our

arguments with vector ϕ(z). Moreover, from a direct comparison between Equations (2.3) and

(2.8) it is straightforward to check that A(s) = A(z = 0), except for sub-blocks Bk,k
r,r+1(z) which

should be replaced by Bk,k
r,r+1(s) given by

(Bk,k
r,r+1(s))ij =


σ(k)s∆−1

(r,k,i), if j = i,

δi∆−1
(r,k,i), if j = i− 1,

0, otherwise,

for 1 ≤ i ≤ J(k; r), 1 ≤ j ≤ J(k; r + 1), 0 ≤ k ≤ B− 1 and 0 ≤ r ≤ nmax
R − k− 1. Finally, vector

b = b(z = 0), and Algorithm 1 directly applies for computing vector φ(s) from Equation (2.9).

Factorial moments nB,(p)
(n1,n2,n3)

and probabilities αB
(n1,n2,n3)

(a) of random variable NB
(n1,n2,n3)

can then

be computed following similar arguments than before, and are omitted here.

2.7 Van Kampen’s expansion approximation

For the cases in which the chemical master equation is not an exact procedure (when Lindeberg

condition is not obeyed), an approximation procedure procures an analytical complement to

numerical simulations. Accordingly, in the limit of infinitely large systems, several approaches

have associated the solutions of the master equation to the one for the reaction rate equation (RRE)

of the aforesaid system. In the present section, for instance, by separating macroscopic fluctuation

yi from the macroscopic concentration φi, the Master equation can be turned into a Fokker-Planck

equation kind [74] when expanding the total number of the ith species, ni, in inverse powers

of the square root of the system size Ω in what it is called a ”system-size expansion”. This

approximation, proved by Van Kampen [31], provides more precise solutions for the master
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equation in a systematic way by adding perturbations to the solution of the RRE. Linear noise

approximation refers to the first perturbation term in Van Kampen’s expansion which, as it will

be shown in the present section, plays the central role in this procedure. Let us then define

ni = Ωφi + Ω
1
2 yi.

A step operator that increases or decreases the ith species in 1 over the function f can be also

defined for our purpose as

Ei( f (ni)) = f (ni + 1)

and

E−1
i := Fi( f (ni)) = f (ni − 1).

Given that the previous operator hardly affects the macroscopic scale, Taylor series properly

describe it, in the limit of Ω �1. For instance, if the operator is applied to f (ni) = ni ending

as

E±1
i ni = ni ± 1,

E±1
i n2

i = n2
i + 12 ± 2ni,

... ,

so the operator can be approximated by a Taylor series,

E±1
i = 1± ∂

∂ni
+

1
2

∂2

∂n2
i
± . . . ,

and, applying the chain rule for

∂

∂yi
f (ni(yi)) =

∂ni
∂yi

∂

∂ni
f (ni(yi)),

∂

∂ni
= (

∂ni
∂yi

)−1 ∂

∂yi
,

the following expression holds

E±1
i = 1± (Ω)−

1
2

∂

∂yi
+

1
2

Ω−1 ∂2

∂y2
i
± .... (2.10)
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Transforming from the old variables (n1, n2, n3) to (y1, y2, y3), we have the relations:

P(n1,n2,n3)(t) −→ Π(y1,y2,y3)(t),

Ω
1
2

∂

∂ni
P(n1,n2,n3)(t) =

∂

∂yi
Π(y1,y2,y3)(t).

Thus, our master equation from Equation (2.2) given by

dp(n1,n2,n3)

dt
= κonnL(n1 + 1)p(n1+1,n2−1,n3) + κo f f (n2 + 1)p(n1−1,n2+1,n3)

+κs(n1 + 1)p(n1+1,n2,n3) + γ(n2 + 1)p(n1,n2+1,n3−1)

+δ(n3 + 1)p(n1−1,n2,n3+1) + κe(n3 + 1)p(n1,n2,n3+1)

+(ν0 + ν1σ(n2))p(n1−1,n2,n3) −
(

κonnLn1

+κo f f n2 + κsn1 + γn2 + δn3 + κen3 + (ν0 + ν1σ(n2))
)

p(n1,n2,n3),

may be rewritten in terms of these operators as

∂

∂t
Π(y1,y2,y3)(t) = (E1F2 − I)κonnLn1 + (F1E2 − I)κo f f n2 + (E1 − I)κsn1 + (E2F3 − I)γn2

+(F1E3 − I)δn3 + (E3 − I)κen3 + (F1 − I)(ν0 + ν1σ(n2)), (2.11)

where I is the identity operator and where

EiFj = FjEi = 1 + Ω−
1
2 (

∂

∂yi
− ∂

∂yj
) + Ω−1 1

2
(

∂

∂yi
− ∂

∂yj
)2. (2.12)

Ignoring terms with Ωi when i < −1. Finally, using identities (2.10), (2.11) and (2.12):

∂

∂t
Π −

√
Ω

dφ1
dt

∂Π
∂y1
−
√

Ω
dφ2
dt

∂Π
∂y2
−
√

Ω
dφ3
dt

∂Π
∂y3

=
[
κonnL

(
Y1 −Y2√

Ω
+

(Y1 −Y2)2

2Ω

)(√
Ωy1 + Ωφ1

)
+ κo f f

(
Y2 −Y1√

Ω
+

(Y2 −Y1)2

2Ω

)(√
Ωy2 + Ωφ2

)
+ κs

(
Y1√

Ω
+

Y2
1

2Ω

)(√
Ωy1 + Ωφ1

)
+ γ

(
Y2 −Y3√

Ω
+

(Y2 −Y3)2

2Ω

)(√
Ωy2 + Ωφ2

)
+ δ

(
Y3 −Y1√

Ω
+

(Y3 −Y1)2

2Ω

)(√
Ωy3 + Ωφ3

)
+ κe

(
Y3√

Ω
+

Y2
3

2Ω

)(√
Ωy3 + Ωφ3

)
+
(

ν0 + ν1σ(
√

Ωy2 + Ωφ2)
)(
− Y1√

Ω
+

Y2
1

2Ω

) ]
Π, (2.13)
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where Yn
i = ∂n

∂yn
i

. Therefore, for the case ν1 = 0, and expanding the last expression according to
√

Ω, the three differential equations for the macroscopic behaviour hold for the terms with
√

Ω,

dφ1

dt
= −κonnLφ1 + κo f f φ2 − κsφ1 + δφ3,

dφ2

dt
= κonnLφ1 − κo f f φ2 − γφ2,

dφ3

dt
= γφ2 − δφ3 − κeφ3,

in which the steady state is the trivial (n1, n2, n3)∗0 = (0, 0, 0). When ν1 6= 0, an unsolvable

situation to obtain a polynomial expression in terms of Ω−
1
2 holds. It can be supposed, however,

that a coefficient ν1 approximates the value of the synthesis. In such a scenario, in order to obtain

the steady state, the following system needs to be solved

0 = −κonnLφ1 + κo f f φ2 − κsφ1 + δφ3 + ν1,

0 = κonnLφ1 − κo f f φ2 − γφ2, (2.14)

0 = γφ2 − δφ3 − κeφ3,

and the steady state can be shown to satisfy

(n1, n2, n3)∗ =

(
(δ + κe)(γ + κo f f )ν1

T
,
(δ + κe)κonnLν1

T
,

γκonnLν1

T

)
,

where T = γδκs + γκeκs + δκo f f κs + κeκo f f κs + γκeκonnL. To prove its stability, the Jacobian J is

computed,

J =


−κonnL − κs κo f f δ

κonnL −κo f f − γ 0

0 γ −δ− κe

 .

Thus, defining M = J− λI3×3 and expressing the determinant of M as a polynomial in λ

|M| = λ3 + λ2a1 + λa2 + a3,

it can be shown that a1, a2, a3 > 0 and a1a2 > a3 regardless of the value of the parameters
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(assuming they are all positive), and so (n1, n2, n3)∗ is stable. Let us approximate ν1 = 1.3333,

disregarding for a moment the x3

x3+κ3
C

term. In such a case, using the values of the parameters

modified from [13] and given in Table 2.1, the time dynamics can be plotted in Figure 2.5, and

Figure 2.5: Time dynamics (in minutes) for System (2.14). ν1 = 1.3333. Parameter values modified
from Table 2.1 as explained in Section 2.5, this is, κo f f = 0.0138min−1, κs = 0.0107min−1, δ =
0.15min−1, ν0 = 0.1667min−1, γ = 0.0283min−1, κe = 0.0833min−1, and κon ≈ 0.001. Case
NL = 100. Initial conditions also given in Section 2.5 are (n1(0), n2(0), n3(0)) = ( ν0

κs
, 0, 0).

the positive steady state that results is

(n1, n2, n3)∗ = (37.66, 92.07, 11.17),

where its stability has been proved.

From the lowest order in Equation (2.13), the following Fokker-Plank equation is also obtained to

characterise the fluctuations

∂Ψ
∂t

= −∑
i,j

Aij
∂

∂yi
(yjΨ) +

1
2 ∑

i,j
Bij

∂2Ψ
∂yi∂yj

, (2.15)
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with

A =


−κonnL − κs + ν1 κo f f δ

κonnL −κo f f − γ 0

0 γ −δ− κe



and

B =


κonnLφ1 + κo f f φ2 + κsφ1 + δφ3 + ν1 −2κonnLφ1 − 2κo f f φ2 −2δφ3

−2κonnLφ1 − 2κo f f φ2 κonnLφ1 + κo f f φ2 + γφ2 −2γφ2

−2δφ3 −2γφ2 γφ2 + δφ3 + κeφ3

 ,

so the first moment and the variance of the fluctuation can be obtained from Equation (2.15):

d〈yi〉
dt

= ∑
j

Aij〈yj〉,

d〈yiyj〉
dt

= ∑
m

Aim〈ymyj〉+ ∑
n

Ajn〈yiyn〉+ Bij.

In particular,

d〈y1〉
dt

= (−κonnL − κs + ν1)〈y1〉+ κo f f 〈y2〉+ δ〈y3〉,

d〈y2〉
dt

= κonnL〈y1〉+ (−κo f f − γ)〈y2〉,

d〈y3〉
dt

= γ〈y2〉+ (−δ− κe)〈y3〉,
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and the second order moments are given as

d〈y2
1〉

dt
= 2(−κonnL − κs + ν1)〈y2

1〉+ 2κo f f 〈y1y2〉+ 2δ〈y1y3〉+ κonnLφ1

+κo f f φ2 + κsφ1 + δφ3 + ν1,

d〈y2
2〉

dt
= 2κonnL〈y1y2〉 − 2(κo f f + γ)〈y2

2〉+ κonnLφ1 + κo f f φ2 + γφ2,

d〈y2
3〉

dt
= 2γ〈y2y3〉 − 2(δ + κe)〈y2

3〉+ γφ2 + δφ3 + κeφ3,

d〈y1y2〉
dt

= κonnL〈y2
1〉+ (−κonnL − κs − κo f f − γ + ν1)〈y1y2〉+ κo f f 〈y2

2〉

+δ〈y2y3〉 − 2κonnLφ1 − 2κo f f φ2,

d〈y1y3〉
dt

= γ〈y1y2〉+ (−κonnL − κs − δ− κe + ν1)〈y1y3〉+ κo f f 〈y2y3〉+ δ〈y2
3〉 − 2δφ3,

d〈y2y3〉
dt

= κonnL〈y1y3〉+ γ〈y2
2〉 − (κo f f + γ + δ + κe)〈y2y3〉 − 2γφ2,

which in steady state, the sign is calculated, resulting in

〈y2
1〉, 〈y2

2〉, 〈y2
3〉, 〈y1y2〉, 〈y1y3〉 > 0, and

〈y2y3〉 < 0,

and we can conclude that only complexes on the cell surface and those in the endosome have

negative correlation.

2.8 Discussion

We have developed a stochastic version of the deterministic model introduced in [13], for the

stimulation of a regulatory T cell by IL-2. Instead of solving the master equation associated with

the Markovian process, or of carrying out Gillespie simulations, we have defined two random

variables to analyse the rate at which IL-2/IL-2R bound complexes are formed and stay on the cell

surface, as well as the rate at which IL-2R is synthesised. We have computed the Laplace-Stieltjes

transforms and the probability generating functions of these random variables by appropriately

arranging the space of states and making use of first-step arguments.

The authors in [13] hypothesise that IL-2R synthesis is induced by the presence of bound IL-
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2/IL-2R complexes on the cell surface. We have further generalised this hypothesis, and have

also considered the role of internalised IL-2/IL-2R complexes in the IL-2R synthesis rate. We

have made use of numerical experiments to compare these two different hypotheses. Our

numerical results suggest that if endosomal complexes contribute to the induced synthesis rate,

their effect would be negligible when considering the time to reach a certain signalling threshold

(encoded by the number of bound IL-2/IL-2R complexes on the surface of a regulatory T cell).

Moreover, considering only endosomal complexes as the signalling units for IL-2R synthesis

would significantly change the dynamics of the process.

On the other hand, slight modifications in our stochastic descriptors allow us to address the role

played by the constitutive and the ligand-induced pathways in the synthesis of IL-2R molecules.

A particular conclusion from Table 2.2 is that ligand-induced synthesis is not significantly

important for short-term dynamics of the system, in which constitutive receptor synthesis seems

to play the central role. On the other hand, under high ligand concentrations, ligand-induced

synthesis plays a major role, and the hypothesis regarding the nature of the synthesis rate needs

to be carefully analysed. While including endosomal complexes in the synthesis rate (together

with surface complexes) seems to not change main behaviours of the process, considering only

these complexes into the synthesis rate gives significantly different results. On the other hand,

while increasing ligand concentrations gives an increasing role of the ligand-induced synthesis, a

saturation behaviour is clearly observed, so that above particular ligand concentration thresholds

no significant more ligand-induced synthesis should be expected.

Finally, we need to point out that, although the algorithmic approach followed here allows us to

obtain analytical results regarding the dynamics of the process, it also has its own computational

limitations. Thus, the focus on algorithmic efficiency made in Section 2.6 is essential for the

computation of numerical results. In general, a balance between computational limitations and

model complexity needs to be considered, and alternative procedures should prevail under

higher dimensional models for more complex processes.
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Chapter 3

CTLA-4 in the co-stimulatory system

3.1 Introduction

As mentioned in Section 1.1.2, T cells require at least two different signals to become fully

activated; the antigen-specific, involving the T-cell receptor, and the co-stimulatory signal; an

antigen nonspecific interaction between molecules (ligands) on APC (antigen presenting cell),

and receptors from the T cell. The balance between stimulatory and inhibitory co-signals, CD28

and CTLA-4 (cytotoxic T lymphocyte antigen 4) bindings respectively, determines the nature of

the latter. Since these receptors bind the same two ligands B7-1 and B7-2 (also referred to as CD80

and CD86, respectively), dynamics when forming complexes need to be established. Failures on

co-stimulation may result in T cell anergy.

This chapter is accomplished through the study of mathematical models for simulating the

synaptic accumulation of these four molecules. For this purpose, some data about their nature

such as mobility, expression levels, binding affinity or endocytic and exocytic procedures must be

analysed to estimate the parameters of the models.

The first step is to develop some preliminary stochastic models involving specific phases of the

whole process and disregarding partakers if needed. Thus, for the binding stage, several models

are elaborated in Section 3.2 for CD28 with the two ligands and for B7-1 with both receptors

having into account the monomeric and dimeric structure of B7-2 and B7-1, respectively, and the

monovalence and bivalence of CD28 and CTLA-4 each to each. After that, another model for

CTLA-4 endocytosis is developed in Section 3.3. Its emerging role as a cell-extrinsic regulator and
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the relevance of this until now not well-known process to immune system tolerance lead to claim

that a proper understanding about the behavior of this inhibitory receptor can be crucial.

Through continuous time trivariate Markov processes, the stochastic equations are derived for

all the models and so the Kolmogorov equation. By using this master equation and partial

differential equations for the moment generating function first and second moments are then

obtained for each case. To move from this stochastic approach to the deterministic one, the master

equation is developed using the Van Kampen expansion. With moment closure techniques the

approximated solution of the moments can be also found. For the internalisation model, a matrix

analytic method will be described to study in an analytical manner the distribution of certain

variables.

In this Chapter, the aim is to analyse the interaction dynamics of molecules CTLA-4, B7-1 and

B7-2 when intracellular trafficking of CTLA-4 is taken into account, by considering a stochastic

Markovian framework. Then, a matrix formalism, based on the matrix-analytic approach [35],

is proposed which allows us to analyse in an exact way the dynamics of the process involving

the interaction of this receptor with a single ligand type within the synapse, and different

characteristics of the underlying Markov process are studied by means of stochastic descriptors

(conveniently defined random variables which allow one to analyse the main dynamics in the

process). This matrix formalism not only allows to analyse these dynamics, but also to identify

the role played by each kinetic rate in the characteristics under study.

Moreover, a whole picture scenario can be also analysed by expanding the one-to-one molecule

model, leading to a general model with four compartments representing the interaction dynamics

between CTLA-4, CD28, B7-1 and B7-2. By means of Gillespie simulations, our numerical results

suggest that co-receptor CD28 and ligand B7-2 play, in a synergistic manner, a crucial role in co-

stimulation when they are simultaneously present within the synapse, having a significant impact

on the B7-1 ligand depletion timescales, as well as on the formation dynamics of CTLA-4/B7-1

bound complexes. On the other hand, B7-2 ligand depletion dynamics, which are highly affected

by the total number of CTLA-4 receptors on the cell surface, do not seem to be noticeable affected

by competitor molecules (CD28 and B7-1). Moreover, saturation scenarios are identified when the

synthesis of co-receptor CTLA-4 is represented in our process by means of a proportional increase

of molecular levels on the cell surface upon T cell activation.

The chapter is organised as follows. Section 3.2 introduces several stochastic models describing

the interactions between ligands and receptors on cell surface. In Section 3.3, a stochastic model is
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proposed in which the interaction dynamics of CTLA-4 with one ligand are represented. In order

to analyse these dynamics, we introduce several stochastic descriptors (Section 3.3.2), which can

be efficiently analysed in terms of the matrix formalism proposed in that section. In this matrix-

analytic approach, the focus is on constructing iterative procedures for computing the quantities

of interest, leading to the construction of algorithmic procedures. A sensitivity analysis is also

developed in Section 3.3.2.5 in order to quantitatively address the role played by each kinetic rate

(these rates being discussed in Section 3.3.3) in the dynamics of our process. Numerical results

involving B7-1 and CTLA-4 interactions are obtained in Section 3.3.4 regarding the internalisation

(ligand depletion) timescales, the rate of receptor-ligand complex formation on the synapse and

the sensitivity analysis mentioned above. Equivalent results related to B7-2 ligand instead of B7-1

are also presented in this section. Finally, in Section 3.4, we propose a general model in which

the four main molecules in charge of the co-stimulatory system (B7-1, B7-2, CTLA-4 and CD28)

are considered. This model is constructed in terms of compartments, so that the impact of each

molecule on the system dynamics can be addressed.

3.2 Cell surface models

CTLA-4 and CD28 are glycoproteins expressed by both CD8+ and CD4+ T cells. However,

while CD28 is constitutively expressed on the plasma membrane of both resting and activated

conventional T cells, CTLA-4 only does it constitutively in CD4+CD25+FOXP3+ T regs

(regulatory T cells), whereas it is not expressed by resting conventional T cell until 2 days

after cell-activation in both mice and humans. Furthermore, in the resting immune system the

expression of CTLA-4 is normally to T reg cells. According to several studies, CD28-deficient

mice have considerably impaired T cell responses to antigen. In contrast with this co-stimulatory

function, blockade of CTLA-4 increases T cell response in a wide range of systems.

In terms of the morphology of these molecules, B7-1 and B7-2 have a dimeric and a monomeric

crystal structure respectively. CD28 is a dimer but its binding are thought to be monovalent due

to steric inhibition. Finally, CTLA-4 is also a dimer and binds as a bivalent molecule. One of

the most interesting parts of this process, in addition to the quantification of the balance between

positive and negative signals from the receptor, is CTLA-4 fate after endocytosis. On one hand,

because of the lack of information to this respect, and on the other, due to its emerging role as an

extrinsic regulator of T cell response, in which this receptor would deplete the ligands from the

APC so for future interactions, this APC would not be able to stimulate in the same way. Having



Chapter 3. CTLA-4 in the co-stimulatory system 57

said that, several aspects about CTLA-4 trafficking need to be also taken into consideration for a

better understanding.

Figure 3.1: Co-stimulatory system between and APC and a T cell. Our models contemplate the
dynamics between the co-receptors CD28 and CTLA-4 expressed by a T cell and ligands B7-1 and
B7-2 presented on an APC. Figure taken from [19].

One of the first things to take into account when buiding our models, and in particular for

the parametrisation stage, has to do with CTLA-4 endocytosis. It is stated that this process is

consitutive and independent of ligand bindings [76, 73], which indicates that it is the receptor

itself driving this trafficking move. At the same time, it is well known that trafficking pool of

CTLA-4 is regulated by both recycling and degradation pathways [73] which reduces the amount

of kinetic rates for us to consider when building up the models. In this same study, it was

found that whilst CTLA-4 traffic is increased following stimulation, no change in endocytosis

is apparent.

Regarding the spatial location of this receptor, it is believed that the majority of surface CTLA-

4 (more than 80%) internalise within 5 minutes [76] and that only a small fraction of them is

expressed on the surface at any given time. Moreover, recent studies suggest that CTLA-4 acts

as an effector molecule to inhibit CD28 co-stimulation by the cell-extrinsic depletion of ligands

[54], this means that somehow, ligands in charge of stimulate T cells are depleted from APCs by

CTLA-4 so that APCs ability to re-stimulate in the future will be considerably, although still not

quantified, reduced. This new hypothesis is particularly analysed in Section 3.4.1.
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The two models proposed in this subsection are mainly studied from an stochastic point of view

and can be defined as three dimensional Continuous Time Markov Processes. Given the state

vector W(t) = (n1, n2, n3), which values correspond to the number of each molecule involved in

the reaction at time t, three elements defined in Chapter 1.2 need to be established to characterise

every model; the states space, the transition rates and the infinitesimal generator matrix.

3.2.1 CD28 binding B7-1 and B7-2 model

In this first part, a stochastical model for simulating the synaptic accumulation of the co-

stimulatory molecules CD28, B7-1, and B7-2 is presented. Due to the almost negligible amount of

CTLA-4 on the surface before the TCR signalling befalls, similar conditions could be supposed at

commencement of co-stimulation. For this purpose, we assume a constant receptor and ligands

concentration; R1, L1 and L2 respectively. In this first approach, considerations about diffusion on

cells are ignored. Given that, three different complexes X1(t), X2(t) and X3(t) can be formed as

follows:

a)
CD28 + B7-2

κ1+

κ1−
X1

b)
CD28 + B7-1

κ2+

κ2−
X2

c)
X2 + CD28

κ3+

κ3−
X3

Figure 3.2: Diagram for a CD28 binding B7-1 and B7-2 dynamics model.

Figure 3.2 shows the diagram of the kinetics between co-receptor CD28 and ligands B7-1 and

B7-2. In particular, κ1+ encodes the binding rate between the monovalent B7-2 ligand and CD28

which, once bound forming complex X1, it can be dissociated with rate rate κ1− . Analogously,

κ2+ and κ2− give the association and dissociation rates between CD28 and ligand B7-1. Given that

this ligand is bivalent, when binding with receptor CD28 a factor of two needs to be included, as

it can be seen in the rates given in Equation (3.1). Finally, monomer X2 can bind another CD28

receptor to form a dimer X3 with rate κ3+ which dissociates with rate κ3− also by a factor of two.

Thus, if n = (n1, n2, n3) represents the number of molecules X1, X2 and X3, for each random
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vector W(t) = (X1(t), X2(t), X3(t)) a probability distribution Pn(t)= P(X1(t) = n1, X2(t) = n2,

X3(t) = n3) is associated and we can describe our model with the six reactions below:

∆W1 = (1, 0, 0),

∆W2 = (−1, 0, 0),

∆W3 = (0, 1, 0),

∆W4 = (0,−1, 0),

∆W5 = (0,−1, 1),

∆W6 = (0, 1,−1).

For which of them we can obtain the following infinitesimal transition rates q∆Wi (n1, n2, n3) =

lim
∆t→0

P(W(t + ∆t) = (n1, n2, n3) + ∆Wi |W(t) = (n1, n2, n3)), respectively:

q∆W1(n1, n2, n3) = κ1+(L1 − n1)(R1 − n1 − n2 − 2n3),

q∆W2(n1, n2, n3) = κ1−n1,

q∆W3(n1, n2, n3) = 2κ2+(L2 − n2 − n3)(R1 − n1 − n2 − 2n3),

q∆W4(n1, n2, n3) = κ2−n2,

q∆W5(n1, n2, n3) = κ3+ n2(R1 − n1 − n2 − 2n3),

q∆W6(n1, n2, n3) = 2κ3−n3.

(3.1)

For convenience, in the special case ∆W0 = (0, 0, 0) we write q∆W0 = 1− ∑6
i=1 q∆Wi . Hence, we

get the expression

Pn(t) = ∑
∆Wi

q∆Wi (n)Pn(t + ∆t),

where the state space is S = {(n1, n2, n3) ∈ (N ∪ {0})3; n1 + n2 + 2n3 ≤ R1 , n2 + n3 ≤ L2 } which

may give distinguishable cases for the nature of S depending on the relation between R1 and

L2. For notation simplicity, we write Pn(t) = Pn, and the master equation of this model can be

deduced

dp(n1,n2,n3)

dt
= κ1− (n1 + 1)p(n1+1,n2,n3) + κ1+ (L1 − n1 + 1)(R1 − n1 + 1− n2 − 2n3)p(n1−1,n2,n3)

+ κ2− (n2 + 1)p(n1,n2+1,n3) + 2κ2+ (L2 − n2 + 1− n3)(R1 − n1 − n2 + 1− 2n3)p(n1,n2−1,n3)

+ 2κ3− (n3 + 1)p(n1,n2−1,n3+1) + κ3+ (n2 + 1)(R1 − n1 − n2 + 1− 2n3)p(n1,n2+1,n3−1)

−
(

(R1−n1−n2− 2n3)[κ1+ (L1−n1)+ 2κ2+ (L2−n2−n3)+ κ3+ n2]+ κ1−n1 + κ2−n2 + 2κ3−n3 + 1
)

p(n1,n2,n3),
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from which the different order moments mi = E [Xi(t)] and mij = E
[
Xi(t)Xj(t)

]
, with i, j ∈

{1, 2, 3} can be obtained. Those of order one are given below

dm1
dt = κ1+ R1L1 − (κ1+ R1 + κ1−)m1 − κ1+(L1 −m1)(m1 + m2 + 2m3)

+κ1+(m11 −m2
1 + m12 −m1m2 + 2m13 − 2m1m3),

dm2
dt = 2κ2+ L2R1 − 2κ2+(L2 −m2 −m3)m1 − [2κ2+ L2 − κ3+ m1 + (2κ2+ + κ3+)(R1 −m2 − 3m3)

+κ2− + κ3+ m3]m2 − (2κ2+(m12 + m13 −m1m2 −m1m3) + κ3+(m12 −m1m2)

+(2κ2+ + κ3+)(m22 −m2
2) + (6κ2+ + 2κ3+)(m23 −m2m3) + 4κ2+(m33 −m2

3),
dm3
dt = (R1 −m1 −m2 − 2m3)κ3+ m2 − 2κ3−m3 − κ3+(m12 −m1m2 + m22 −m2

2 + 2m23 − 2m2m3).

3.2.2 CTLA-4 and CD28 competing for B7-2 model

The following scenario could occur when receptors CTLA-4 have been already recycled to the

synapse and they are in a position of binding ligands. Thus, the competition with CD28 for

binding to B7-2 is studied here. In order to analyse possible variations with the presence of B7-

1, this second approach provides an indication about what would occur in its absence. For this

purpose, we assume a constant ligand and receptors concentration; L1, R1 and R2 respectively.

It can be noticed, that this model is symmetric to model in Figure 3.2, so variations will be due

to the name of the variables and the rates considered later on in Section 3.3.3 so only the main

characteristics will be enunciated here. Again, considerations about the mobility on cells are

ignored. Given that, three different complex X′1(t), X′2(t) and X′3(t) can be formed as follows:

a)
CD28 + B7-2

κ′1+

κ′1−
X′1

b)
CTLA-4 + B7-2

κ′2+

κ′2−
X′2

c)
X′2 + B7-2

κ′3+

κ′3−
X′3

Figure 3.3: Diagram for a B7-2 binding CD28 and CTLA-4 dynamics model.

Similarly to the previous case, the increment vectors linked to ith reaction can be defined
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∆W1 = (1, 0, 0),

∆W2 = (−1, 0, 0),

∆W3 = (0, 1, 0),

∆W4 = (0,−1, 0),

∆W5 = (0,−1, 1),

∆W6 = (0, 1,−1).

For which of them we can obtain the infinitesimal transition rates, respectively,

q∆W1(n1, n2, n3) = κ′1+
(R1 − n1)(L1 − n1 − n2 − 2n3),

q∆W2(n1, n2, n3) = κ′1−n1,

q∆W3(n1, n2, n3) = 2κ′2+(R2 − n2 − n3)(L1 − n1 − n2 − 2n3),

q∆W4(n1, n2, n3) = κ′2−n2,

q∆W5(n1, n2, n3) = κ′3+ n2(L1 − n1 − n2 − 2n3),

q∆W6(n1, n2, n3) = 2κ′3−n3.

In this second model, the state space is S = {(n1, n2, n3) ; n1 + n2 + 2n3 ≤ L1 , n2 + n3 ≤ R2 }
and the master equation is as follows:

dp(n1,n2,n3)

dt
= κ′1− (n1 + 1)p(n1+1,n2,n3) + κ′1+

(R1 − n1 + 1)(L1 − n1 + 1− n2 − 2n3)p(n1−1,n2,n3)

+ κ′2− (n2 + 1)p(n1,n2+1,n3
+ 2κ′2+

(R2 − n2 + 1− n3)(L1 − n1 − n2 + 1− 2n3)p(n1,n2−1,n3)

+ 2κ′3− (n3 + 1)p(n1,n2−1,n3+1) + κ′3+
(n2 + 1)(L1 − n1 − n2 + 1− 2n3)p(n1,n2+1,n3−1)

−
(

(L1−n1−n2− 2n3)[κ′1+
(R1−n1)+ 2κ′2+

(R2−n2−n3)+ κ′3+
n2]+ κ′1−n1 + κ′2−n2 + 2κ′3−n3 + 1

)
p(n1,n2,n3).

Finally, the first order moment in this situation are given by the expressions

dm1
dt = κ′1+

L1R1 − (κ′1+
L1 + κ′1−)m1 − κ′1+

(R1 −m1)(m1 + m2 + 2m3)

+κ′1+
(m11 −m2

1 + m12 −m1m2 + 2m13 − 2m1m3),
dm2
dt = 2κ′2+

R2L1 − 2κ′2+
(R2 −m2 −m3)m1 − [2κ′2+

R2 − κ′3+
m1 + (2κ′2+

+ κ′3+
)(L1 −m2 − 3m3)

+κ′2− + κ′3+
m3]m2 − (2κ′2+

(m12 + m13 −m1m2 −m1m3) + κ′3+
(m12 −m1m2)

+(2κ′2+
+ κ′3+

)(m22 −m2
2) + (6κ′2+

+ 2κ′3+
)(m23 −m2m3) + 4κ′2+

(m33 −m2
3),

dm3
dt = (L1 −m1 −m2 − 2m3)κ′3+

m2 − 2κ′3−m3 − κ′3+
(m12 −m1m2 + m22 −m2

2 + 2m23 − 2m2m3)

.

Several simulations for the binding models are included in Section 3.2.3 and so the explanation

regarding the parameters taken in Section 3.3.3.
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3.2.3 Numerical results

Once the kinetic rates for CTLA-4 and ligands B7-1 and B7-2 are in hand in Section 3.3.3, and those

involving CD28 in Section 3.4, the binding models described before can be numerically studied

to have a better understanding of dynamics surface. Following these cited rates, which will be

explained in Section 3.3.3, gathered for a better tracking in Table 3.1, Gillespie simulations were

run for monitoring the main dynamics of these four molecules when i) CLTA-4 is missing and ii)

there is an absence of B7-1.

Mature APC Activated T cell after Kinetic rates

B7-1 B7-2 CD28 CTLA-4 κ1+ , κ′1+ κ1− , κ′1− κ2+ , κ3+ κ2− , κ3− κ′2+ , κ′3+ κ′2− , κ′3−

20 431 256 110 0.061s−1 28s−1 0.034s−1 1.6s−1 0.087s−1 5.1s−1

Table 3.1: Total numbers L1 and L2 of ligands (B7-1 or B7-2) provided by a mature and receptors
R1 and R2 (CD28 or CTLA-4) for an activated T cell and kinetic rates for models in Figures 3.2
and 3.3.

Figure 3.4: Gillespie simulations for model given in Figure 3.2 with rates taken from Table 3.1
regarding binding kinetics between CD28 with B7-1 and B7-2. X1 correspond to bound CD28/B7-
2 complexes, X2 are CD28/B7-1 monomers and X3, CD28/B7-1 dimers. Time in seconds.

Binding kinetics have a much faster performance than trafficking states. Whereas ligand

internalisation occurs at the order of ≈ 4 · 103 − 9 · 104 seconds (see Section 3.3.4) depending

on the ligand and on the scenario, steady state for complex formation is reached in less than a

second. This justifies a separate study of molecular interactions on the surface without necessarily

considering internalisation or recycling. Figures 3.4 and 3.5 also show a similar qualitative

behavior for complex formation in both models. This was forseen since, as mentioned before,
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Figure 3.5: Gillespie simulations for model given in Figure 3.3 with rates taken from Table 3.1
regarding binding kinetics between B7-2 with CD28 and CTLA-4. X′1 correspond to bound
CD28/B7-2 complexes, X′2 are CTLA-4/B7-2 monomers and X′3, CTLA-4/B7-2 dimers. Time in
seconds.

both models are symmetric. monomers X2 and X′2 have a quicker formation than dimers X3 and

X′3 but, after some time, the laters overtake the formers and so they remain ready for internalising.

3.3 CTLA-4 transendocytosis dynamics

3.3.1 Stochastic model

In this section we construct a stochastic model for the interaction dynamics of receptor R (CTLA-

4) with ligand L (B7-1 or B7-2), represented in Figure 3.6. The system under study consists of

a T cell containing a total number nR of receptors which can interact with a total number nL of

ligands provided by a donor cell placed next to the T cell under consideration. Receptors in the

system can be found into the endosome (species RE), on the cell surface (species RS, where we

only consider receptors present on the synapse, which is where these interaction dynamics take

place) or forming bound complexes with the ligand on the synapse (species B). Receptors on

the synapse can be endocytosed with rate γR, becoming receptors into the endosome. On the

other hand, internalised receptors can be recycled towards the synapse, which occurs with rate δ.

Ligands on the synapse are internalised by means of their combination with free receptors, this

binding occurring at rate α+, forming bound complexes B which eventually become internalised

with rate γB. Finally, bound complexes B on the synapse can also be dissociated with rate α−, and
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Figure 3.6: Diagram of the stochastic model for the interaction between a receptor and a ligand
on the synapse between a T cell and an APC.

this dissociation is assumed to occur instantaneously once the bound complex is internalised,

representing an acidic endosomal environment [64]; see Figure 3.6. In order to study this process

from the stochastic point of view, we consider the random variables

RE(t) = “Number of free receptors in the endosome at time t”,

B(t) = “Number of bound R + L complexes on the synapse at time t”,

LE(t) = “Number of ligands in the endosome at time t”,

LS(t) = “Number of ligands on the synapse at time t”,

RS(t) = “Number of free receptors on the synapse at time t”,

for t ≥ 0, with initial conditions

B(0) = LE(0) = 0,

LS(0) = nL,

RE(0) + RS(0) = nR.

That is, zero ligands are considered to be initially internalised, representing the beginning of the

T cell/APC interaction. On the other hand, the number of receptors initially on the synapse and



Chapter 3. CTLA-4 in the co-stimulatory system 65

in the endosome can vary between different situations. It is clear then that

nL = LS(0) = LS(t) + LE(t) + B(t),

nR = RS(0) + RE(0) = RS(t) + RE(t) + B(t),

for all t ≥ 0, which yields

LS(t) = nL − LE(t)− B(t), (3.2)

RS(t) = nR − RE(t)− B(t),

for all t ≥ 0.

We consider a continuous-time Markov chain (CTMC) X = {X(t) = (RE(t), B(t),

LE(t)) : t ≥ 0} modelling our process. From Equation (3.2) it is clear that X is defined over the

state space S = {(n1, n2, n3) ∈ (N∪ {0})3 : n1 + n2 ≤ nR, n2 + n3 ≤ nL}. From a straightforward

analysis of the geometric shape of S , it is observable that there are two distinguishable cases for

the nature of S depending on the relation between nR and nL. We assume from now on that

nL ≤ nR, which drives us to consider only ligand B7-1 for carrying out this analysis; see CTLA-

4, B7-1 and B7-2 copy numbers in Section 3.3.3. However, we note here that all the arguments

developed in this paper can be easily adapted to the case nL > nR and therefore this approach

would be valid for B7-2 ligand.

When describing the transitions between states in X , we note that, from one state (n1, n2, n3) in

the interior of S , there are five possible transitions towards adjacent states, from a direct analysis

of Figure 3.6. These transitions represent formation and dissociation of bound complexes on the

synapse, internalisation of these, as well as internalisation and recycling of free receptors between

the synapse and the endosome. A transition from a state n = (n1, n2, n3) to a state n′ = (n′1, n′2, n′3)

is governed by the infinitesimal transition rate

qn,n′ =



(nR − n1 − n2)γR, if (n′1, n′2, n′3) = (n1 + 1, n2, n3),

n1δ, if (n′1, n′2, n′3) = (n1 − 1, n2, n3),

(nR − n1 − n2)(nL − n2 − n3)α+, if (n′1, n′2, n′3) = (n1, n2 + 1, n3),

n2α−, if (n′1, n′2, n′3) = (n1, n2 − 1, n3),

n2γB, if (n′1, n′2, n′3) = (n1 + 1, n2 − 1, n3 + 1),

(3.3)

summarised in Figure 3.7. For states in the boundary of S , those transitions inwards S are
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considered in the same way than in Equation (3.3), discarding any transition outwards S .

Transition rates in Equation (3.3) are directly obtained by mass-action kinetics from the reactions

considered in the process and by pointing out that, if (RE(t), B(t), LE(t)) = (n1, n2, n3) at a

certain epoch t ≥ 0, the number of free receptors and free ligands on the synapse at that

instant is nR − n1 − n2 and nL − n2 − n3, respectively. For example, process X can move from

state (n1, n2, n3) to state (n1 + 1, n2, n3) if a CTLA-4 receptor molecule becomes internalised

from the synapse into the endosome, a transition that occurs with infinitesimal transition rate

q(n1,n2,n3),(n1+1,n2,n3) = γR(nR − n1 − n2), since any of the nR − n1 − n2 available free receptors on

the synapse internalises with rate γR according to Figure 3.6.

Figure 3.7: Transitions diagram for process X .

The dynamics of the process X can be analysed in terms of its master equation given by

dPn(t)
dt

= ∑
n′∈S ,n′ 6=n

qn′ ,n Pn′(t)− ∑
n′∈S ,n′ 6=n

qn,n′ Pn(t) , ∀n ∈ S ,

with n = (n1, n2, n3) representing a particular state of the process, and Pn(t) = P(X(t) =

n). Since it is rarely possible to analitically solve a master equation of this type, different

approximative techniques such as the Van Kampen approach [75] or Gillespie simulations

are often implemented in the literature instead. However, given particular characteristics of
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our process X , analytic approaches can be followed in order to exactly compute a number

of quantities of interest regarding this process. In particular, we analyse in Section 3.3.2 a

number of summary statistics, here referred to as stochastic descriptors, by means of first-step

arguments, the usage of auxiliary absorbing Markov chains and Laplace-Stieltjes transforms, and

the implementation of a matrix-analytic approach.

3.3.2 Stochastic descriptors

The interest in this section is in a number of characteristics of interest in our process related to

the internalisation (ligand depletion) timescales, and the rate of receptor-ligand bound complex

formation on the synapse. This is because the time to reach a given threshold number of ligands

internalised may be identified with the initiation of different signalling cascades [2, 69]. However,

this time may not only depend on the ligand concentration provided by the donor cell (that is,

the amount of ligand on the synapse), but also on the particular binding affinity of the ligand

considered, the spatial distribution of receptors (surface/endosome) within the T cell when

this co-stimulatory process takes place, or the presence of other molecular competitors (e.g., co-

receptor CD28) on the synapse at the same time. These factors will be considered in our numerical

experiments in Sections 3.3.4 and 3.3.5.

Secondly, it is also of interest to analyse the rate at which receptor-ligand complexes are formed

on the cell surface, and how these binding events occur while internalisation is taking place.

This is because the initiation of a cellular reponse may not only depend on the individual signal

provided by every bound complex on the synapse during time, but on this signal being produced

by complexes simultaneously present at any given time. In particular, the internalisation of ligand

may occur after a considerably accumulation of bound complexes on the synapse occurs, so that at

some given time in our process one may find many bound complexes simultaneously present on

the synapse, or alternatively internalisation of bound complexes could occur in a more sequential

manner, having only few bound complexes simultaneously present on the synapse at any given

time.

Finally, we also analyse the steady-state spatial configuration of CTLA-4 receptors in our

system without ligand stimulation, since it allows us to inform our models from experimental

knowledge. In particular, we can link the steady-state spatial configuration of CTLA-4 receptors

without ligand stimulation with the internalisation and recycling rates of this receptor, and

then make use of well-known quantitative experimental information in order to approximate
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these rates. Lastly, it is of interest to analyse what is the role played by each parameter θ ∈

{α+, α−, γR, γB, δ} in process X , regarding the behavior of the characteristics mentioned above.

This can be done by means of a local sensitivity analysis for the parameters, which is carried

out in Section 3.3.2.5 by extending and adapting arguments in [14]. In particular, an adaptation of

arguments in [14] recently carried out in [25] for developing local sensitivity analysis in structured

Markov chains, allows one to identify the most crucial parameters for each particular stochastic

descriptor under study, in a neighbourhood of a particular selection (α+, α−, γR, γB, δ).

3.3.2.1 Matrix-analytic approach

The analysis of the stochastic descriptors is carried out here by means of the matrix-analytic

approach [35], which mainly consists of thinking on the Markov chain under consideration as

a stochastic process evolving over groups or levels of states inside S , instead of over particular

states (n1, n2, n3) ∈ S . This leads to the analysis of systems of linear equations by following a

matrix formalism, where matrices involved in these systems can be structured by blocks. The

structure by blocks of these matrices is crucial when developing efficient algorithms in order to

obtain the different order moments and distributions of the random variables under analysis.

Then, a strong focus on algorithmic issues is made all over this Section, and all the algorithmic

procedures constructed are provided in Section 3.3.2.6.

First, we propose to organise the space of states S of X by levels and sub-levels. Specifically,

S =
nL⋃

k=0

L(k), with L(k) =
nL−k⋃
r=0

l(k; r),

where the level L(k) is formed by all the states in S with a total number of ligands into the

endosome equal to k, that is, L(k) = {(n1, n2, n3) ∈ S : n3 = k}. Moreover, each level

L(k) is divided into sub-levels so that each sub-level l(k; r) contains those states with a total

number of ligands into the endosome equal to k and a total number of bound complexes

on the cell surface equal to r, that is, l(k; r) = {(n1, n2, n3) ∈ S : n2 = r, n3 = k} =

{(0, r, k), (1, r, k), . . . , (nR − r, r, k)}. Then, #l(k; r) = nR − r + 1 and straightforward algebra

yields J(k) = #L(k) = ∑nL−k
r=0 #l(k; r) = (nL−k+1)(2nR−nL+k+2)

2 . It is obvious that the state space’s

cardinality is #S = ∑nL
k=0 #L(k).

An analysis of possible transitions in Figure 3.7 indicates that transitions from one sub-level l(k; r)

only occur towards adjacent sub-levels l(k′; r′) with (k′, r′) ∈ {(k, r− 1), (k, r), (k, r + 1), (k + 1, r−
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1)}. This yields the following infinitesimal generator Q for the CTMC X structured by blocks,

Q =



A0,0 A0,1 0J(0)×J(2) . . . 0J(0)×J(nL−1) 0J(0)×J(nL)

0J(1)×J(0) A1,1 A1,2 . . . 0J(1)×J(nL−1) 0J(1)×J(nL)

0J(2)×J(0) 0J(2)×J(1) A2,2 . . . 0J(2)×J(nL−1) 0J(2)×J(nL)
...

...
...

. . .
...

...

0J(nL−1)×J(0) 0J(nL−1)×J(1) 0J(nL−1)×J(2) . . . AnL−1,nL−1 AnL−1,nL

0J(nL)×J(0) 0J(nL)×J(1) 0J(nL)×J(2) . . . 0J(nL)×J(nL−1) AnL ,nL


,

where the matrix Ak,k′ contains the transition rates corresponding to transitions from states of

L(k) to states of L(k′), k′ ∈ {k, k + 1}. Due to transitions between sub-levels we have that

Ak,k =



Bk,k
0,0 Bk,k

0,1 0 . . . 0 0

Bk,k
1,0 Bk,k

1,1 Bk,k
1,2 . . . 0 0

0 Bk,k
2,1 Bk,k

2,2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Bk,k
nL−k−1,nL−k−1 Bk,k

nL−k−1,nL−k

0 0 0 . . . Bk,k
nL−k,nL−k−1 Bk,k

nL−k,nL−k


, 0 ≤ k ≤ nL,

(3.4)

Ak,k+1 =



0 0 0 . . . 0 0

Bk,k+1
1,0 0 0 . . . 0 0

0 Bk,k+1
2,1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0

0 0 0 . . . Bk,k+1
nL−k,nL−k−1 0


, 0 ≤ k ≤ nL − 1.

Dimensions of blocks 0 are omitted in the previous expressions, but a block 0 representing

transitions from states in l(k; r) towards states in l(k′; r′) has dimensions (nR − r + 1) × (nR −

r′ + 1). Expressions for matrices Bk,k′
r,r′ in Equation (3.4) are as follows:
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• For 0 ≤ r ≤ nL − k, 0 ≤ k ≤ nL,

(
Bk,k

r,r

)
ij

=



iδ, if j = i− 1,

−A(i,r,k), if j = i,

(nR − i− r)γR, if j = i + 1,

0, otherwise,

where A(i,r,k) = (nR − i − r)γR + iδ + (nR − i − r)(nL − r − k)α+ + rα− + rγB and where

0 ≤ i ≤ nR − r, 0 ≤ j ≤ nR − r.

• For 0 ≤ r ≤ nL − k− 1, 0 ≤ k ≤ nL,

(
Bk,k

r,r+1

)
ij

=

 (nR − r− i)(nL − r− k)α+, if j = i,

0, otherwise,

where 0 ≤ i ≤ nR − r, 0 ≤ j ≤ nR − r− 1.

• For 1 ≤ r ≤ nL − k, 0 ≤ k ≤ nL,

(
Bk,k

r,r−1

)
ij

=

 rα−, if j = i,

0, otherwise,

where 0 ≤ i ≤ nR − r, 0 ≤ j ≤ nR − r + 1.

• For 1 ≤ r ≤ nL − k, 0 ≤ k ≤ nL − 1,

(
Bk,k+1

r,r−1

)
ij

=

 rγB, if j = i + 1,

0, otherwise,

where 0 ≤ i ≤ nR − r, 0 ≤ j ≤ nR − r + 1.

3.3.2.2 Steady-state spatial CTLA-4 configuration

Because the amount of ligands nL in our model is constant and, once internalised, ligands can

not be recycled to the synapse, the system in the long-term (in particular, once LE(t) = nL) only

describes the trafficking of CTLA-4 between the endosome and the synapse. That is, once LE(T) =

nL at some time T, the dynamics of X are reduced to the process X̂ = {RE(t) : t ≥ T}, since
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given a total number nR of CTLA-4 receptors in the system it is clear that RS(t) = nR − RE(t)

for any t ≥ T. This leads to the birth-and-death process X̂ defined over Ŝ = {0, 1, . . . , nR} and

represented in Figure 3.8, and the long-term dynamics of this process can be analysed in terms of

its stationary distribution, which does not depend on the initial state of this process.

Figure 3.8: Transitions diagram of process X̂ .

The infinitesimal generator Q̂ of X̂ is given by



−nRγR nRγR 0 . . . 0

δ −(δ + (nR − 1)γR) (nR − 1)γR . . . 0

0 2δ −(2δ + (nR − 2)γR) . . . 0
...

...
...

. . .
...

0 0 0 . . . γR

0 0 0 . . . −nRδ


,

and the stationary distribution π̂ = (π̂m : 0 ≤ m ≤ nR) of X̂ can be easily obtained as the solution

of

π̂Q̂ = 0nR+1,

π̂enR+1 = 1,

where 0a represents a column vector of zeros with dimension a and eb represents a column vector

of ones with dimension b. Finally, straightforward algebra yields

π̂m = lim
t→+∞

P(RE(t) = m) =
(

nR
m

)(
γR

δ + γR

)m ( δ

δ + γR

)nR−m
, 0 ≤ m ≤ nR.

Obviously, we can obtain different features regarding the state of the process X in the long-term

from π̂. Of particular interest is the mean number of receptors into the endosome of the T cell in
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the long-term, which is given by

m̂ =
nR

∑
m=0

mπ̂m =
nRγR

δ + γR
. (3.5)

3.3.2.3 Time to reach a threshold number I of internalisations of ligands

In this Section, our aim is to study the time to reach a total threshold number I of ligands

internalised during the process. This characteristic in the process, given an initial state

(n1, n2, n3) ∈ S , can be analysed in terms of the continuous random variable

T I
(n1,n2,n3)

= “Time to reach a threshold number I of internalised ligands in the process

X , given the current state (n1, n2, n3)” = inf{t > 0 : LE(t) = I};

that is, the first time to have LE(t) = I given the initial state (n1, n2, n3) ∈ S . We point out here

that, given an initial value n3, we consider only the relevant case n3 ≤ I ≤ nL.

In order to analyse this random variable, we split the state space as

S = C ∪ Ĉ,

with C = {(n1, n2, n3) ∈ S : n3 ≤ I − 1} and Ĉ = {(n1, n2, n3) ∈ S : n3 ≥ I}. Then, given

an initial state (n1, n2, n3) ∈ C, the time T I
(n1,n2,n3)

to have a threshold number I of internalised

ligands is the time until the process X reaches the sub-set Ĉ. In order to analyse this time, we

construct an auxiliary process X (I) defined over the truncated state space

S(I) = C ∪ { Ī},

where Ī is a macro-state constructed by lumping all the states within Ĉ. We maintain all the

transitions between states in C, and transitions from states in C towards the macro-state Ī are

obtained by lumping transitions from C towards Ĉ in the original process. Moreover, we consider

Ī as an absorbing macro-state, so that when the auxiliary process X (I) enters into Ī, the process

ends. From the construction of X (I), it is clear that the time to reach the absorbing state Ī in the

auxiliary process is exactly the time T I
(n1,n2,n3)

to reach a threshold number I of ligands internalised

in the original process X . Thus, this time can now be studied as the time until absorption in

a CTMC with a finite irreducible class C of transient states, and one absorbing state Ī, so that
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T I
(n1,n2,n3)

follows a continuous phase-type distribution; see [34, Section 6.13].

It is advisable here to work with the Laplace-Stieltjes transform of T I
(n1,n2,n3)

so that any order

moment of the random variable under study can be obtained in an efficient manner. The

definition of the Laplace-Stieltjes transform allows us to work in an algorithmic way, which

is strongly recommendable when the size of the state space can become a challenge from the

computational point of view, as it occurs here. Moreover, we point out that, although it is beyond

the objectives of this Section, the probability distribution of T I
(n1,n2,n3)

is unequivocally determined

by its Laplace-Stieltjes transform, and that it is possible to approximate this distribution by means

of the numerical inversion of the transform; see [24] where this procedure was applied regarding

a random variable representing the survival time of an individual in a competition process, and

[1] for a presentation and comparison of several numerical inversion techniques.

We define then the Laplace-Stieltjes transform of T I
(n1,n2,n3)

as

φI
(n1,n2,n3)

(z) = E
[

e
−zT I

(n1,n2,n3)

]
, Re(z) ≥ 0,

and, once this transform is in hand, the different l-th order moments τ
I,(l)
(n1,n2,n3)

= E
[(

T I
(n1,n2,n3)

)l
]

can be obtained by successive differentiation as

τ
I,(l)
(n1,n2,n3)

= (−1)l dl

dzl φI
(n1,n2,n3)

(z)

∣∣∣∣∣
z=0

, l ≥ 1.

In order to obtain the Laplace-Stieltjes transform for the initial state (n1, n2, n3) ∈ C, we can apply

a first-step argument so that a system of equations is obtained relating the transforms for the

different possible initial states in C. Specifically,

φI
(n1,n2,n3)

(z) =
(nR − n1 − n2)γR

A(n1,n2,n3) + z
(1− δn1,nR−n2)φI

(n1+1,n2,n3)
(z) +

n1δ

A(n1,n2,n3) + z

×(1− δn1,0)φI
(n1−1,n2,n3)

(z) +
(nR − n1 − n2)(nL − n2 − n3)α+

A(n1,n2,n3) + z

×(1− δn2,nL−n3)(1− δn2,nR−n1)φI
(n1,n2+1,n3)

(z) +
n2α−

A(n1,n2,n3) + z

×(1− δn2,0)φI
(n1,n2−1,n3)

(z) +
n2γB

A(n1,n2,n3) + z
((1− δn2,0)

×(1− δn3,I−1)φI
(n1+1,n2−1,n3+1)(z) + δn3,I−1

)
, (3.6)
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for any (n1, n2, n3) ∈ C, where A(i,r,k) = (nR − i− r)γR + iδ + (nR − i− r)(nL − r− k)α+ + rα− +

rγB and δi,j represents Kronecker’s delta (which equals 1 if and only if i = j, and 0 otherwise).

We present later a matrix formalism which allows us to work in an algorithmic manner when

solving Equation (3.6), yielding Algorithm 2 (Part 1) provided in Section 3.3.2.6 for computing

the Laplace-Stieltjes transforms φI
(n1,n2,n3)

(z).

Once transforms φI
(n1,n2,n3)

(z) are in hand, the l-th order moments of T I
(n1,n2,n3)

can be obtained by

successive differentiation of Equation (3.6),

A(n1,n2,n3)τ
I,(l)
(n1,n2,n3)

= lτ I,(l−1)
(n1,n2,n3)

+ (nR − n1 − n2)γR(1− δn1,nR−n2)τ
I,(l)
(n1+1,n2,n3)

+n1δ(1− δn1,0)τ
I,(l)
(n1−1,n2,n3)

+ (nR − n1 − n2)(nL − n2 − n3)

×α+(1− δn2,nL−n3)(1− δn2,nR−n1)τ
I,(l)
(n1,n2+1,n3)

+ n2α−

×(1− δn2,0)τ
I,(l)
(n1,n2−1,n3)

+ n2γB(1− δn2,0)(1− δn3,I−1)

×τ
I,(l)
(n1+1,n2−1,n3+1), (3.7)

and where Equation (3.7) is algorithmically solved in Section 3.3.2.6. A by following the same

matrix formalism than the one followed for solving Equation (3.6), so that Algorithm 2 (Part 2) is

built and provided in Section 3.3.2.6.

The state space S(I) of X (I) inherits the structure by levels from S ,

S(I) = C ∪ { Ī} =
I−1⋃
k=0

L(k) ∪ { Ī},

so that Equation (3.6) can be written in matrix form as

g(I)(z) = A(I)(z)g(I)(z) + a(I)(z). (3.8)

It is obvious that the size of the previous system and, thus, the dimensions of the matrix A(I)(z)

and the column vectors g(I)(z) and a(I)(z) depend on the value I. However, we omit for simplicity

the superscript I in the notation from now on. The column vector g(z) contains the Laplace-

Stieltjes transforms φI
(n1,n2,n3)

(z) for states (n1, n2, n3) in S(I) in an ordered manner, and the matrix

A(z) and the column vector a(z) are straightforwardly obtained from Equation (3.6). Specifically,

for Re(z) ≥ 0, g(z) =
(
g0(z)T , g1(z)T , . . . , gI−2(z)T , gI−1(z)T)T , where gk(z) =

(
gk

0(z)T , gk
1(z)T ,

. . . , gk
nL−k−1(z)T , gk

nL−k(z)T
)T

for 0 ≤ k ≤ I − 1. Finally, gk
r (z) = (φI

(0,r,k)(z), φI
(1,r,k)(z),
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. . . , φI
(nR−r−1,r,k)(z), φI

(nR−r,r,k)(z))T , for 0 ≤ r ≤ nL − k, 0 ≤ k ≤ I − 1.

We point out that, with the proposed structure, the column vector gk(z) contains the Laplace-

Stieltjes transforms corresponding to initial states in the level L(k), and the column sub-vector

gk
r (z) contains the Laplace-Stieltjes transforms corresponding to initial states in the sub-level

l(k; r) ⊂ L(k). From Equation (3.6), it is clear that

A(z) =



A0,0(z) A0,1(z) 0J(0)×J(2) . . . 0J(0)×J(I−2) 0J(0)×J(I−1)

0J(1)×J(0) A1,1(z) A1,2(z) . . . 0J(1)×J(I−2) 0J(1)×J(I−1)

0J(2)×J(0) 0J(2)×J(1) A2,2(z) . . . 0J(2)×J(I−2) 0J(2)×J(I−1)
...

...
...

. . .
...

...

0J(I−2)×J(0) 0J(I−2)×J(1) 0J(I−2)×J(2) . . . AI−2,I−2(z) AI−2,I−1(z)

0J(I−1)×J(0) 0J(I−1)×J(1) 0J(I−1)×J(2) . . . 0J(I−1)×J(I−2) AI−1,I−1(z)


,

where matrices Ak,k′(z) have the same structure than matrices Ak,k′ in the infinitesimal generator

Q, but with sub-matrices Bk,k′
r,r′ replaced by sub-matrices Bk,k′

r,r′ (z), where the latter are obtained

from the former as

(
Bk,k′

r,r′ (z)
)

ij
=

 0, if k′ = k, r′ = r and i = j,
1

A(i,r,k)+z

(
Bk,k′

r,r′

)
ij

, otherwise.

Finally, a(z) =
(

0T
J(0), 0T

J(1), . . . , 0T
J(I−2), aI−1(z)T

)T
, with aI−1(z) =

(
0T

nR+1, aI−1
1 (z)T ,

. . . , aI−1
nL−I(z)T , aI−1

nL−I+1(z)T
)T

, where aI−1
r (z) = rγB

(
1

z+A(0,r,I−1)
, 1

z+A(1,r,I−1)
, . . . ,

1
z+A(nR−r−1,r,I−1)

, 1
z+A(nR−r,r,I−1)

)T
, for 1 ≤ r ≤ nL − I + 1.

We can express system in Equation (3.8) in terms of levels as

g0(z) = A0,0(z)g0(z) + A0,1(z)g1(z),

g1(z) = A1,1(z)g1(z) + A1,2(z)g2(z),
... (3.9)

gI−2(z) = AI−2,I−2(z)gI−2(z) + AI−2,I−1(z)gI−1(z),

gI−1(z) = AI−1,I−1(z)gI−1(z) + aI−1(z),

which can be solved in an algorithmic manner. In particular, a straightforward analysis of



Chapter 3. CTLA-4 in the co-stimulatory system 76

Equation (3.9) permits to construct Algorithm 1, given in Section 3.3.2.6, which solves the system

by working with the levels structure with an specialised block-Gaussian elimination procedure.

However, we recall here that the dimension of a level L(k) (and, therefore, of the matrices Ak,k(z)

in Equation (3.9)) is given by J(k) = (nL−k+1)(2nR−nL+k+2)
2 , while the dimension of a sub-level

is #l(k; r) = nR − r + 1. This encourages the development of efficient alternatives to Algorithm

1 which take advantage of the special sub-level structure of S(I). In particular, the equation

corresponding to a particular level L(k) in Equation (3.9), for any 0 ≤ k ≤ I − 1, can be rewritten

in terms of sub-levels as

gk
0(z) = Bk,k

0,0(z)gk
0(z) + Bk,k

0,1(z)gk
1(z),

gk
1(z) = Bk,k

1,0(z)gk
0(z) + Bk,k

1,1(z)gk
1(z) + Bk,k

1,2(z)gk
2(z) + (1− δk,I−1)Bk,k+1

1,0 (z)

×gk+1
0 (z) + δk,I−1aI−1

1 (z),
... =

... (3.10)

gk
nL−k−1(z) = Bk,k

nL−k−1,nL−k−2(z)gk
nL−k−2(z) + Bk,k

nL−k−1,nL−k−1(z)gk
nL−k−1(z)

+Bk,k
nL−k−1,nL−k(z)gk

nL−k(z) + (1− δk,I−1)Bk,k+1
nL−k−1,nL−k−2(z)

×gk+1
nL−k−2(z) + δk,I−1aI−1

nL−I(z),

gk
nL−k(z) = Bk,k

nL−k,nL−k−1(z)gk
nL−k−1(z) + Bk,k

nL−k,nL−k(z)gk
nL−k(z) + (1− δk,I−1)

×Bk,k+1
nL−k,nL−k−1(z)gk+1

nL−k−1(z) + δk,I−1aI−1
nL−I+1(z).

It is clear from Equation (3.10) that, by assuming that transforms gk+1(z) corresponding to the

level L(k + 1) are in hand, we can obtain transforms gk(z) of the level L(k) with a similar

procedure than in Algorithm 1. Then, by initializing this procedure in the last level L(I − 1),

where the transforms gI−1(z) can be directly obtained from Equation (3.10), we can work in

an algorithmic manner obtaining the transforms in gk(z) for k = I − 1, I − 2, . . . , 1, 0, which

yields Algorithm 2 (Part 1) in Section 3.3.2.6. We recall here that the computational challenge

in Algorithm 2 (Part 1) lays on the calculation of inverses of matrices with size nR − r + 1,

whereas in Algorithm 1 it lays on the calculation of inverses of matrices with size J(k) =
(nL−k+1)(2nR−nL+k+2)

2 .

In order to solve Equation (3.7), we organise the moments τ
I,(l)
(n1,n2,n3)

in column vectors in a similar

manner than with the Laplace-Stieltjes transforms, so that quantities τ
I,(l)
(n1,n2,n3)

for the different

possible initial states are stored in a column vector m(l) = (m(l)T
0 , m(l)T

1 , . . . , m(l)T
I−2 , m(l)T

I−1 )T ,

where m(l)
k = (mk,(l)T

0 , mk,(l)T
1 , . . . , mk,(l)T

nL−k−1, mk,(l)T
nL−k )T , for 0 ≤ k ≤ I − 1. Finally, mk,(l)

r =
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(τ
I,(l)
(0,r,k), τ

I,(l)
(1,r,k), . . . , τ

I,(l)
(nR−r−1,r,k), τ

I,(l)
(nR−r,r,k))

T , for 0 ≤ r ≤ nL− k and 0 ≤ k ≤ I− 1. Then, Equation

(3.7) yields the system in matrix form

m(l) = A(0)m(l) +
l

∑
i=1

(
l
i

)
A(i)(0)m(l−i) + (−1)la(l)(0), (3.11)

that can be rewritten in terms of levels and sub-levels in a similar way than system in Equation

(3.8), so that Algorithm 2 (Part 2) is obtained and given in Section 3.3.2.6. We point out here

that Algorithm 2 (Part 2) works in an efficient algorithmic manner by calculating the i-th order

moments stored in m(i) by using the (i− 1)-th order moments m(i−1) computed in the previous

step, and starting at m(0) = g(0). Expressions for the derivatives of matrices Bk,k′
r,r′ (z) and sub-

vectors aI−1
r (z) with respect to z, at z = 0, appearing in Algorithm 2 (Part 2) are given as

(
Bk,k′ ,(p)

r,r′ (0)
)

ij
= (−1)p p!

1

Ap+1
(i,r,k)

(
Bk,k′

r,r′ (0)
)

ij
,

(
aI−1,(p)

r (0)
)

i
= (−1)p p!

1

Ap+1
(i,r,k)

(
aI−1

r (0)
)

i
,

for any possible values of i, j, r, k, and p, and where we are making use of the matrix calculus

notation A(p)(0) = dp

dzp A(z)
∣∣∣
z=0

.

3.3.2.4 Maximum number of bound complexes B

The aim in this section is to develop a wide analysis of the peak reached by B(t) during the

process; that is, the peak number of bound complexes obtained by the T cell on the synapse after

ligand stimulation. In order to analyse both the stimulation intensity and its speed, we propose

to study the related random variables

Bmax
(n1,n2,n3)

= “Maximum number of bound complexes simultaneously present on the

synapse of the T cell during the whole process, given the current state

(n1, n2, n3) ∈ S” = max{B(t) : 0 ≤ t ≤ TnL
(n1,n2,n3)

},

TBb
(n1,n2,n3)

= “Time to reach b bound complexes simultaneously present on the synapse

of the T cell, given the current state (n1, n2, n3) ∈ S”

= inf{t ≥ 0 : B(t) = b},
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where we consider only non-trivial cases given by values n2 ≤ b ≤ nL. We first note that the

random variable TBb
(n1,n2,n3)

is defective, since P(TBb
(n1,n2,n3)

→ +∞) > 0, representing the

case in which every ligand becomes internalised without X ever showing b bound complexes

simultaneously on the synapse. Moreover, variable Bmax
(n1,n2,n3)

is directly related to TBb
(n1,n2,n3)

since P(TBb
(n1,n2,n3)

< +∞) = P(Bmax
(n1,n2,n3)

≥ b), so that the analysis of the random variable

TBb
(n1,n2,n3)

yields the distribution of Bmax
(n1,n2,n3)

.

In order to analyse the random variable TBb
(n1,n2,n3)

, we can focus on its different order moments.

However, we point out that for any value n2 ≤ b ≤ nL we can split its l-th order moment as

E
[(

TBb
(n1,n2,n3)

)l
]

= E
[(

TBb
(n1,n2,n3)

)l ∣∣∣Bmax
(n1,n2,n3)

≥ b
]

P
(

Bmax
(n1,n2,n3)

≥ b
)

(3.12)

+E
[(

TBb
(n1,n2,n3)

)l ∣∣∣Bmax
(n1,n2,n3)

< b
]

P
(

Bmax
(n1,n2,n3)

< b
)
→ +∞,

since P(Bmax
(n1,n2,n3)

< b) > 0 and E[(TBb
(n1,n2,n3)

)l |Bmax
(n1,n2,n3)

< b]→ +∞. We focus then on the first

term in Equation (3.12), which provides us information about the time to reach a total number b

of bound complexes simultaneously on the synapse restricted to the case that this number is in

fact reached, as well as about the probability of this event taking place. The time until reaching

the value b in those cases in which this value is not reached at all is obviously infinite and, thus,

irrelevant. Moreover, the analysis of the first addend in Equation (3.12) allows us to compute

the probability mass function of Bmax
(n1,n2,n3)

. In order to analyse the first contribution in Equation

(3.12), we consider the Laplace-Stieltjes transform of the time to reach a total number b of bound

complexes simultaneously on the synapse of the T cell, restricted to the fact that this number is

achieved, which is given by

φ̄b
(n1,n2,n3)

(z) = E
[

e
−zTBb

(n1,n2,n3) ; Bmax
(n1,n2,n3)

≥ b
]

= E
[

e
−zTBb

(n1,n2,n3)
∣∣∣Bmax

(n1,n2,n3)
≥ b

]
P
(

Bmax
(n1,n2,n3)

≥ b
)

,

so that this Laplace-Stieltjes transform does not accumulate mass 1 at z = 0, but we have instead

φ̄b
(n1,n2,n3)

(0) = P(Bmax
(n1,n2,n3)

≥ b).

Let us note that, from an analysis of S , if LE(t) = nL − b + 1 at some time during the process

before B(t) reaching the value b, then it will not be possible to have B(t) = b in the future any

more, because of ligand scarcity on the cell surface (since at this time there are only b− 1 ligands

available on the synapse). This means that the process to reach b bound complexes on the synapse
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of the T cell or until being certain that this value will not be ever reached can be analysed by means

of an auxiliary process X (b) over

S(b) = C(b) ∪ {b̄} ∪ {nL − b + 1},

where C(b) = {(n1, n2, n3) ∈ S : n2 < b, n3 < nL− b + 1} is an irreducible class of transient states,

the macro-state b̄ is obtained by lumping all the states in {(n1, n2, n3) ∈ S : b ≤ n2 ≤ nL}, and

nL − b + 1 is obtained by lumping all the states in {(n1, n2, n3) ∈ S : nL − b + 1 ≤ n3 ≤ nL}, with

b̄ and nL − b + 1 being considered as absorbing states in X (b). We maintain from the original

process X all the transitions between states in C(b), and those transitions from states in C(b)

towards states in {(n1, n2, n3) ∈ S : b ≤ n2 ≤ nL} or in {(n1, n2, n3) ∈ S : nL − b + 1 ≤ n3 ≤ nL}

become, in X (b), transitions from C(b) towards state b̄ or nL − b + 1, respectively. Then, the

time to reach b bound complexes in the original process restricted to the sample paths where b is

actually reached is the time to reach the absorbing state b̄ in the auxiliary process, restricted to the

sample paths where absorption actually occurs in b̄ and not in nL − b + 1. This means that, if we

extend the definition of the restricted Laplace-Stieltjes transforms to the auxiliary process X (b),

we have that φ̄b
b̄(z) ≡ 1 and φ̄b

nL−b+1
(z) ≡ 0, ∀Re(z) ≥ 0.

We can obtain, by a first-step argument, a system of equations regarding the restricted Laplace-

Stieltjes transforms φ̄b
(n1,n2,n3)

(z) as

(z + A(n1,n2,n3))φ̄b
(n1,n2,n3)

(z) = (1− δn1,nR−n2)(nR − n1 − n2)γRφ̄b
(n1+1,n2,n3)

(z)

+(1− δn1,0)n1δφ̄b
(n1−1,n2,n3)

(z) + (1− δn2,0)n2α−

×φ̄b
(n1,n2−1,n3)

(z) + (1− δn2,0)(1− δn3,nL−b)n2γB

×φ̄b
(n1+1,n2−1,n3+1)(z) + (nR − n1 − n2)(nL − n2 − n3)

×α+

(
(1− δn2,b−1)φ̄b

(n1,n2+1,n3)
(z) + δn2,b−1

)
, (3.13)

for any 0 ≤ n2 ≤ b− 1, 0 ≤ n3 ≤ nL − b, 0 ≤ n1 ≤ nR − n2 and Re(z) ≥ 0. Equation (3.13) can be

solved in an algorithmic way, so that Algorithm 3 (Part 1) is constructed in Section 3.3.2.6. Since

φ̄b
(n1,n2,n3)

(z) = E[e
−zTBb

(n1,n2,n3) ; Bmax
(n1,n2,n3)

≥ b], the distribution of Bmax
(n1,n2,n3)

is given in terms of

φ̄b
(n1,n2,n3)

(0) = P(Bmax
(n1,n2,n3)

≥ b).

Once the restricted Laplace-Stieltjes transforms are in hand, the restricted moments τ̄
b,(l)
(n1,n2,n3)

=

E[(TBb
(n1,n2,n3)

)l ; TBb
(n1,n2,n3)

< +∞] of the random variable TBb
(n1,n2,n3)

can be computed by

successive differentiation of Equation (3.13), and Algorithm 3 (Part 2), given in Section 3.3.2.6,



Chapter 3. CTLA-4 in the co-stimulatory system 80

is obtained by following similar matrix-analytic arguments.

The state space of the auxiliary process X (b) inherits the structure by levels and sub-levels from

S . Specifically,

C(b) =
nL−b⋃
k=0

Lb(k),

where a level Lb(k) is given as Lb(k) = ∪b−1
r=0 l(k; r), where sub-levels l(k; r) are those ones defined

in the original process X . That is, a level Lb(k) in the auxiliary process differs from a level L(k) in

the original process only in the fact that it contains less sub-levels, in particular it only contains

those sub-levels l(k; r) with values r ∈ {0, . . . , b− 1}, instead of r ∈ {0, . . . , nL − k} as it was in

the original process.

Equation (3.13) yields the system in matrix form

ḡ(z) = Ā(z)ḡ(z) + ā(z), (3.14)

where for the ease of notation we are omitting from now on the value b in the notation. However,

it is important to point out that the vector ḡ(z) in Equation (3.14), as well as other quantities

obtained later, directly depend on the particular value of b, so that we would have in fact ḡ(z; b).

Then, if our interest is in obtaining the Laplace-Stieltjes transforms φ̄b
(n1,n2,n3)

(z) for different

values of b, we need to solve the system in Equation (3.14) for all those different values of b.

In a similar way than in Section 3.3.2.3, ḡ(z) is a column vector containing the restricted Laplace-

Stieltjes transforms φ̄b
(n1,n2,n3)

(z) for states (n1, n2, n3) ∈ C(b), in an ordered manner. The

particular structure of ḡ(z) is omitted here since it follows the steps given in Section 3.3.2.3

for g(z). However, it is clear that ḡ(z) contains sub-vectors ḡk(z) storing the Laplace-Stieltjes

transforms corresponding to states in level Lb(k). At the same time, any sub-vector ḡk(z) is

structured in sub-vectors ḡk
r (z) which contain the Laplace-Stieltjes transforms for states in sub-

level l(k; r) ⊂ Lb(k).

The special structure of S(b) means that the matrix Ā(z) is similar to matrix A(z) in Equation
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(3.8). Specifically, we can write

Ā(z) =



Ā0,0(z) Ā0,1(z) . . . 0 J̄(0)× J̄(nL−b−1) 0 J̄(0)× J̄(nL−b)

0 J̄(1)× J̄(0) Ā1,1(z) . . . 0 J̄(1)× J̄(nL−b−1) 0 J̄(1)× J̄(nL−b)

0 J̄(2)× J̄(0) 0 J̄(2)× J̄(1) . . . 0 J̄(2)× J̄(nL−b−1) 0 J̄(2)× J̄(nL−b)
...

...
. . .

...
...

0 J̄(nL−b−1)× J̄(0) 0 J̄(nL−b−1)× J̄(1) . . . ĀnL−b−1,nL−b−1(z) ĀnL−b−1,nL−b(z)

0 J̄(nL−b)× J̄(0) 0 J̄(nL−b)× J̄(1) . . . 0 J̄(nL−b)× J̄(nL−b−1) ĀnL−b,nL−b(z)


,

where now #Lb(k) = J̄(k) = ∑b−1
r=0 #l(k; r). Matrices Āk,k′(z) have the same structure than Ak,k′(z)

in Equation (3.9) but removing those rows and columns related to sub-levels l(k; r) with b ≤ r ≤

nL − k, and they are thus omitted. Finally, the vector ā(z) is given by

ā(z) =



ā0(z)

ā1(z)
...

ānL−b−1(z)

ānL−b(z)


, with āk(z) =



0nR+1

0nR

...

0nR−b+3

āk
b−1(z)


, 0 ≤ k ≤ nL − b,

where āk
b−1(z) = ( (nR−b+1)(nL−b+1−k)α+

z+A(0,b−1,k)
, (nR−b)(nL−b+1−k)α+

z+A(1,b−1,k)
, . . . , (nL−b+1−k)α+

z+A(nR−b,b−1,k)
, 0)T , for 0 ≤ k ≤

nL − b.

A similar system than the one given by Equation (3.9) can be obtained in terms of the levels Lb(k),

and then re-expressed in terms of sub-levels as in Equation (3.10). Moreover, system in Equation

(3.14) can be iteratively differentiated so that the restricted different order moments of our random

variables TBb
(n1,n2,n3)

, τ̄
b,(l)
(n1,n2,n3)

= E[(TBb
(n1,n2,n3)

)l ; Bmax
(n1,n2,n3)

≥ b], l ≥ 1, can be computed. In

particular, by following a similar approach than in Algorithm 2, Algorithm 3 is constructed and

given in Section 3.3.2.6, which permits to obtain the restricted Laplace-Stieltjes transforms of the

random variables TBb
(n1,n2,n3)

(stored in the column vector ḡ(z)), and the restricted different order

moments of TBb
(n1,n2,n3)

(stored in a column vector m̄(l) structured in sub-vectors regarding levels

and sub-levels). Finally, for an initial state (n1, n2, n3) ∈ S , the distribution of Bmax
(n1,n2,n3)

is stored in

the column vectors ḡ(0), obtained by application of Algorithm 3 when varying the value b ≤ nL.
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3.3.2.5 Sensitivity analysis

In this section we carry out a local sensitivity analysis of the characteristics studied in the previous

sections with respect parameters {α+, α−, γR, γB, δ}. Once the descriptors of interest are in hand,

we address the question about the particular contribution of each parameter to each of these

descriptors. Specifically, we propose here to carry out a local sensitivity analysis in terms of the

computation of the partial derivatives of each of the descriptors in this section with respect to

each parameter.

The local sensitivity analysis permits to study which kind of changes we should expect regarding

the descriptors of interest from slight perturbations in one of the parameters - these perturbations

can represent either an error in its approximation or a slight change in the experiment conditions.

Moreover, it allows us to know, in an neighbourhood of the specific selection (α+, α−, γR, γB, δ),

which is the contribution of each parameter to the results obtained for each descriptor, by

observing the sign and the relative magnitudes of the partial derivatives.

We propose here to follow the arguments in [25], which generalise arguments in [14] for

perturbation analysis of absorbing CTMCs to structured Markov chains of the same type than the

ones analysed in this paper. Specifically, in [14] known properties of matrix calculus [39, 40] are

used in order to obtain the derivatives of different descriptors in absorbing Markov chains with

respect parameters appearing in the transition rates of these Markov chains. Roughly speaking,

the arguments in [14, 25] basically lay on the idea that the main properties of scalar calculus - such

as the chain rule - also apply to matrix calculus, and in the fact that, given a matrix that depends

on some parameter, A(θ), it is possible to obtain the derivative of A(θ)−1 with respect to θ as

d
(
A(θ)−1)

dθ
= −A(θ)−1 dA(θ)

dθ
A(θ)−1.

In fact, the arguments in [14] do not require the Markov chain being absorbing, and it is possible

then to generalise arguments in [14, 39, 40] to more general structured Markov chains as the

ones analysed in this paper, as shown in [25]. In particular, we can obtain the derivatives of our

descriptors - quantities stored in m(l) in Algorithm 2, and in ḡ(0) and m̄(l) in Algorithm 3 - with

respect each parameter θ ∈ {α+, α−, γR, γB, δ}. Specifically, Algorithms 2S and 3S are obtained

in Section 3.3.2.6, where these derivatives are stored, respectively, in vectors m(l,θ), ḡ(θ)(0) and

m̄(l,θ). We note here that Algorithms 2S and 3S use data obtained from Algorithms 2 and 3, and

have to be implemented after them.
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Once Algorithms 2S and 3S have been developed, the partial derivatives of the components

of vectors m(l) (corresponding to the l-th order moments of the time T I
(n1,n2,n3)

to reach some

threshold number I of ligands internalised), ḡ(0) (corresponding to the probabilities of reaching

some maximum number of bound complexes simultaneously on the synapse, P(Bmax
(n1,n2,n3)

≥

b)), and m̄(l) (corresponding to the restricted l-th order moments of the time to reach a total

number b of bound complexes simultaneously on the synapse) with respect each parameter

θ ∈ {α+, α−, γR, γB, δ} are stored in vectors m(l,θ), ḡ(θ)(0) and m̄(l,θ), respectively. Then, regarding

the time T I
(n1,n2,n3)

to reach some threshold number I of ligands internalised, we can obtain the

partial derivative of any of its different l-th order moments τ
I,(l)
(n1,n2,n3)

with respect each parameter

θ ∈ {α+, α−, γR, γB, δ},
∂τ

I,(l)
(n1,n2,n3)

∂θ , which is directly stored in the (n1, n2, n3)-th component of the

vector m(l,θ) obtained from Algorithm 2S. Regarding the maximum number of bound complexes

simultaneously present on the synapse during the process, Bmax
(n1,n2,n3)

, we can analyse its l-th order

moment as

E
[(

Bmax
(n1,n2,n3)

)l
]

=
nL

∑
b=n2

blP(Bmax
(n1,n2,n3)

= b),

so that its partial derivatives are given by

∂E
[(

Bmax
(n1,n2,n3)

)l
]

∂θ
=

nL

∑
b=n2

bl
∂P(Bmax

(n1,n2,n3)
= b)

∂θ
,

where the partial derivatives of the probabilities in the expression above are straightforwardly

obtained from derivatives
∂P(Bmax

(n1,n2,n3)≥b)

∂θ , stored in the (n1, n2, n3)-th component of the vector

ḡ(θ)(0) obtained in Algorithm 3S for the particular value b.

Finally, partial derivatives of the probabilities π̂m, 0 ≤ m ≤ nR, regarding the stationary

distribution of the CTMC, can be straightforwardly computed by direct differentiation so that

if m̂ represents the mean number of receptors into the endosome in steady-state, we have

∂m̂
∂θ

=
nR

∑
m=0

m
∂π̂m

∂θ
=


0, if θ ∈ {α+, α−, γB},

nRδ
(δ+γR)2 , if θ = γR,

− nRγR
(δ+γR)2 , if θ = δ,
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where, in the expression above, partial derivatives for quantities π̂m are given by

∂π̂m

∂θ
=


0, if θ ∈ {α+, α−, γB},

π̂m

(
m
γR
− nR

δ+γR

)
, if θ = γR,

π̂m

(
nRγR

δ(δ+γR) −
m
δ

)
, if θ = δ,

for 0 ≤ m ≤ nR.

3.3.2.6 Algorithms

Algorithm 1

(Laplace-Stieltjes transforms φI
(n1,n2,n3)

(z) computed from Equation (3.9))

H0(z) = IJ(0) −A0,0(z);

For k = 1, . . . , I − 1:

Hk(z) = IJ(k) −Ak,k(z);

gI−1(z) = HI−1(z)−1aI−1(z);

For k = I − 2, . . . , 1, 0:

gk(z) = Hk(z)−1Ak,k+1(z)gk+1(z);

Algorithm 2

Part 1 (Laplace-Stieltjes transforms φI
(n1,n2,n3)

(z) computed from Equation (3.10))

HI−1
0 (z) = InR+1 − BI−1,I−1

0,0 (z); JI−1,(0)
0 (z) = 0nR+1;

For r = 1, . . . , nL − I + 1:

HI−1
r (z) = InR−r+1 − BI−1,I−1

r,r (z)− BI−1,I−1
r,r−1 (z)HI−1

r−1(z)−1BI−1,I−1
r−1,r (z);

JI−1,(0)
r (z) = BI−1,I−1

r,r−1 (z)HI−1
r−1(z)−1JI−1,(0)

r−1 (z) + aI−1
r (z);

gI−1
nL−I+1(z) = HI−1

nL−I+1(z)−1JI−1,(0)
nL−I+1(z); mI−1,(0)

nL−I+1 = gI−1
nL−I+1(0);

For r = nL − I, . . . , 1, 0:
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gI−1
r (z) = HI−1

r (z)−1
(

BI−1,I−1
r,r+1 (z)gI−1

r+1(z) + JI−1,(0)
r (z)

)
; mI−1,(0)

r = gI−1
r (0);

For k = I − 2, . . . , 1, 0:

Hk
0(z) = InR+1 − Bk,k

0,0(z); Jk,(0)
0 (z) = 0nR+1;

For r = 1, . . . , nL − k:

Hk
r (z) = InR−r+1 − Bk,k

r,r (z)− Bk,k
r,r−1(z)Hk

r−1(z)−1Bk,k
r−1,r(z);

Jk,(0)
r (z) = Bk,k

r,r−1(z)Hk
r−1(z)−1Jk,(0)

r−1 (z) + Bk,k+1
r,r−1 (z)gk+1

r−1(z);

gk
nL−k(z) = Hk

nL−k(z)−1Jk,(0)
nL−k(z); mk,(0)

nL−k = gk
nL−k(0);

For r = nL − k− 1, . . . , 1, 0:

gk
r (z) = Hk

r (z)−1
(

Bk,k
r,r+1(z)gk

r+1(z) + Jk,(0)
r (z)

)
; mk,(0)

r = gk
r (0);

Part 2 (Moments τ
I,(l)
(n1,n2,n3)

= E
[(

T I
(n1,n2,n3)

)l
]

computed from Equation (3.11))

For i = 1, . . . , l:

For k = I − 1, . . . , 1, 0:

Jk,(i)
0 (0) =

i
∑

p=1
( i

p)(−1)p
(

Bk,k,(p)
0,0 (0)mk,(i−p)

0 + Bk,k,(p)
0,1 (0)mk,(i−p)

1

)
;

For r = 1, . . . , nL − k:

Jk,(i)
r (0) = Bk,k

r,r−1(0)Hk
r−1(0)−1Jk,(i)

r−1 (0) + (1− δk,I−1)Bk,k+1
r,r−1 (0)mk+1,(i)

r−1

+
i

∑
p=1

( i
p)(−1)p

(
Bk,k,(p)

r,r−1 (0)mk,(i−p)
r−1 + Bk,k,(p)

r,r (0)mk,(i−p)
r

+(1− δr,nL−k)Bk,k,(p)
r,r+1 (0)mk,(i−p)

r+1 + (1− δk,I−1)Bk,k+1,(p)
r,r−1 (0)

×mk+1,(i−p)
r−1

)
+ δk,I−1(−1)iaI−1,(i)

r (0);

mk,(i)
nL−k = Hk

nL−k(0)−1Jk,(i)
nL−k(0);

For r = nL − k− 1, . . . , 1, 0:

mk,(i)
r = Hk

r (0)−1
(

Bk,k
r,r+1(0)mk,(i)

r+1 + Jk,(i)
r (0)

)
;

Algorithm 3 (Truncated Laplace-Stieltjes transforms φ̄b
(n1,n2,n3)

(z) and the truncated l-th order

moments E[(TBb
(n1,n2,n3)

)l ; Bmax
(n1,n2,n3)

≥ b])
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H̄nL−b
0 (z) = InR+1 − BnL−b,nL−b

0,0 (z); J̄nL−b,(0)
0 (z) = 0nR+1;

For r = 1, . . . , b− 1:

H̄nL−b
r (z) = InR−r+1 − BnL−b,nL−b

r,r (z)− BnL−b,nL−b
r,r−1 (z)H̄nL−b

r−1 (z)−1BnL−b,nL−b
r−1,r (z);

J̄nL−b,(0)
r (z) = BnL−b,nL−b

r,r−1 (z)H̄nL−b
r−1 (z)−1 J̄nL−b,(0)

r−1 (z) + δr,b−1ānL−b
b−1 (z);

ḡnL−b
b−1 (z) = H̄nL−b

b−1 (z)−1 J̄nL−b,(0)
b−1 (z); m̄nL−b,(0)

b−1 = ḡnL−b
b−1 (0);

For r = b− 2, . . . , 1, 0:

ḡnL−b
r (z) = H̄nL−b

r (z)−1
(

BnL−b,nL−b
r,r+1 (z)ḡnL−b

r+1 (z) + J̄nL−b,(0)
r (z)

)
; m̄nL−b,(0)

r = ḡnL−b
r (0);

For k = nL − b− 1, . . . , 1, 0:

H̄k
0(z) = InR+1 − Bk,k

0,0(z); J̄k,(0)
0 (z) = 0nR+1;

For r = 1, . . . , b− 1:

H̄k
r (z) = InR−r+1 − Bk,k

r,r (z)− Bk,k
r,r−1(z)H̄k

r−1(z)−1Bk,k
r−1,r(z);

J̄k,(0)
r (z) = Bk,k

r,r−1(z)H̄k
r−1(z)−1 J̄k,(0)

r−1 (z) + Bk,k+1
r,r−1 (z)ḡk+1

r−1(z) + δr,b−1āk
b−1(z);

ḡk
b−1(z) = H̄k

b−1(z)−1 J̄k,(0)
b−1 (z); m̄k,(0)

b−1 = ḡk
b−1(0);

For r = b− 2, . . . , 1, 0:

ḡk
r (z) = H̄k

r (z)−1
(

Bk,k
r,r+1(z)ḡk

r+1(z) + J̄k,(0)
r (z)

)
; m̄k,(0)

r = ḡk
r (0);

For i = 1, . . . , l:

For k = nL − b, . . . , 1, 0:

J̄k,(i)
0 (0) =

i
∑

p=1
( i

p)(−1)p
(

Bk,k,(p)
0,0 (0)m̄k,(i−p)

0 + Bk,k,(p)
0,1 (0)m̄k,(i−p)

1

)
;

For r = 1, . . . , b− 1:

J̄k,(i)
r (0) = Bk,k

r,r−1(0)H̄k
r−1(0)−1 J̄k,(i)

r−1 (0) + (1− δk,nL−b)Bk,k+1
r,r−1 (0)m̄k+1,(i)

r−1

+
i

∑
p=1

( i
p)(−1)p

(
Bk,k,(p)

r,r−1 (0)m̄k,(i−p)
r−1 + Bk,k,(p)

r,r (0)m̄k,(i−p)
r +

(1− δr,b−1)Bk,k,(p)
r,r+1 (0)m̄k,(i−p)

r+1 + (1− δk,nL−b)Bk,k+1,(p)
r,r−1 (0)

×m̄k+1,(i−p)
r−1

)
+ δr,b−1(−1)iak,(i)

b−1(0);
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m̄k,(i)
b−1 = H̄k

b−1(0)−1 J̄k,(i)
b−1(0);

For r = b− 2, . . . , 1, 0:

m̄k,(i)
r = H̄k

r (0)−1
(

Bk,k
r,r+1(0)m̄k,(i)

r+1 + J̄k,(i)
r (0)

)
;

Algorithm 2S (Sensitivity analysis for quantities computed in Algorithm 2)

HI−1,(θ)
0 (z) = − BI−1,I−1,(θ)

0,0 (z); JI−1,(0,θ)
0 (z) = 0nR+1;

For r = 1, . . . , nL − I + 1:

HI−1,(θ)
r (z) = − BI−1,I−1,(θ)

r,r (z)−
(

BI−1,I−1,(θ)
r,r−1 (z)HI−1

r−1(z)−1BI−1,I−1
r−1,r (z)− BI−1,I−1

r,r−1 (z)

×HI−1
r−1(z)−1HI−1,(θ)

r−1 (z)HI−1
r−1(z)−1BI−1,I−1

r−1,r (z) + BI−1,I−1
r,r−1 (z)HI−1

r−1(z)−1

×BI−1,I−1,(θ)
r−1,r (z)

)
;

JI−1,(0,θ)
r (z) = BI−1,I−1,(θ)

r,r−1 (z)HI−1
r−1(z)−1JI−1,(0)

r−1 (z)− BI−1,I−1
r,r−1 (z)HI−1

r−1(z)−1HI−1,(θ)
r−1 (z)

×HI−1
r−1(z)−1JI−1,(0)

r−1 (z) + BI−1,I−1
r,r−1 (z)HI−1

r−1(z)−1JI−1,(0,θ)
r−1 (z)

+aI−1,θ
r (z);

gI−1,(θ)
nL−I+1(z) = −HI−1

nL−I+1(z)−1HI−1,(θ)
nL−I+1(z)HI−1

nL−I+1(z)−1JI−1,(0)
nL−I+1(z)+ HI−1

nL−I+1(z)−1JI−1,(0,θ)
nL−I+1 (z);

mI−1,(0,θ)
nL−I+1 = gI−1,(θ)

nL−I+1(0);

For r = nL − I, . . . , 1, 0:

gI−1,(θ)
r (z) = −HI−1

r (z)−1HI−1,(θ)
r (z)HI−1

r (z)−1
(

BI−1,I−1
r,r+1 (z)gI−1

r+1(z) + JI−1,(0)
r (z)

)
+HI−1

r (z)−1
(

BI−1,I−1,(θ)
r,r+1 (z)gI−1

r+1(z) + BI−1,I−1
r,r+1 (z)gI−1,(θ)

r+1 (z)

+JI−1,(0,θ)
r (z)

)
; mI−1,(0,θ)

r = gI−1,(θ)
r (0);

For k = I − 2, . . . , 1, 0:

Hk,(θ)
0 (z) = − Bk,k,(θ)

0,0 (z); Jk,(0,θ)
0 (z) = 0nR+1;

For r = 1, . . . , nL − k:

Hk,(θ)
r (z) = −Bk,k,(θ)

r,r (z)−
(

Bk,k,(θ)
r,r−1 (z)Hk

r−1(z)−1Bk,k
r−1,r(z)− Bk,k

r,r−1(z)Hk
r−1(z)−1Hk,(θ)

r−1 (z)
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×Hk
r−1(z)−1Bk,k

r−1,r(z) + Bk,k
r,r−1(z)Hk

r−1(z)−1Bk,k,(θ)
r−1,r (z)

)
;

Jk,(0,θ)
r (z) = Bk,k,(θ)

r,r−1 (z)Hk
r−1(z)−1Jk,(0)

r−1 (z)−Bk,k
r,r−1(z)Hk

r−1(z)−1Hk,(θ)
r−1 (z)Hk

r−1(z)−1Jk,(0)
r−1 (z)

+Bk,k
r,r−1(z)Hk

r−1(z)−1Jk,(0,θ)
r−1 (z) + Bk,k+1,(θ)

r,r−1 (z)gk+1
r−1(z) + Bk,k+1

r,r−1 (z)gk+1,(θ)
r−1 (z);

gk,(θ)
nL−k(z) = −Hk

nL−k(z)−1Hk,(θ)
nL−k(z)Hk

nL−k(z)−1Jk,(0)
nL−k(z) + Hk

nL−k(z)−1Jk,(0,θ)
nL−k (z);

mk,(0,θ)
nL−k = gk,θ

nL−k(0);

For r = nL − k− 1, . . . , 1, 0:

gk,(θ)
r (z) = −Hk

r (z)−1Hk,(θ)
r (z)Hk

r (z)−1
(

Bk,k
r,r+1(z)gk

r+1(z) + Jk,(0)
r (z)

)
+Hk

r (z)−1
(

Bk,k,(θ)
r,r+1 (z)gk

r+1(z) + Bk,k
r,r+1(z)gk,(θ)

r+1 (z) + Jk,(0,θ)
r (z)

)
;

mk,(0,θ)
r = gk,(θ)

r (0);

For i = 1, . . . , l:

For k = I − 1, . . . , 1, 0:

Jk,(i,θ)
0 (0) =

i
∑

p=1
( i

p)(−1)p
(

Bk,k,(p,θ)
0,0 (0)mk,(i−p)

0 + Bk,k,(p)
0,0 (0)mk,(i−p,θ)

0 + Bk,k,(p,θ)
0,1 (0)mk,(i−p)

1

+Bk,k,(p)
0,1 (0)mk,(i−p,θ)

1

)
;

For r = 1, . . . , nL − k:

Jk,(i,θ)
r (0) = Bk,k,(θ)

r,r−1 (0)Hk
r−1(0)−1Jk,(i)

r−1 (0)−Bk,k
r,r−1(0)Hk

r−1(0)−1Hk,(θ)
r−1 (0)Hk

r−1(0)−1Jk,(i)
r−1 (0)

+Bk,k
r,r−1(0)Hk

r−1(0)−1Jk,(i,θ)
r−1 (0) + (1− δk,I−1)

(
Bk,k+1,(θ)

r,r−1 (0)mk+1,(i)
r−1

+Bk,k+1
r,r−1 (0)mk+1,(i,θ)

r−1

)
+

i
∑

p=1
( i

p)(−1)p
(

Bk,k,(p,θ)
r,r−1 (0)mk,(i−p)

r−1 + Bk,k,(p)
r,r−1 (0)mk,(i−p,θ)

r−1

+Bk,k,(p,θ)
r,r (0)mk,(i−p)

r + Bk,k,(p)
r,r (0)mk,(i−p,θ)

r + (1− δr,nL−k)
(

Bk,k,(p,θ)
r,r+1 (0)mk,(i−p)

r+1

+Bk,k,(p)
r,r+1 (0)mk,(i−p,θ)

r+1

)
+ (1− δk,I−1)

(
Bk,k+1,(p,θ)

r,r−1 (0)mk+1,(i−p)
r−1 + Bk,k+1,(p)

r,r−1 (0)

×mk+1,(i−p,θ)
r−1

))
+ δk,I−1(−1)iaI−1,(i,θ)

r (0);

mk,(i,θ)
nL−k = −Hk

nL−k(0)−1Hk,(θ)
nL−k(0)Hk

nL−k(0)−1Jk,(i)
nL−k(0) + Hk

nL−k(0)−1Jk,(i,θ)
nL−k (0);

For r = nL − k− 1, . . . , 1, 0:

mk,(i,θ)
r = −Hk

r (0)−1Hk,(θ)
r (0)Hk

r (0)−1
(

Bk,k
r,r+1(0)mk,(i)

r+1 + Jk,(i)
r (0)

)
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+Hk
r (0)−1

(
Bk,k,(θ)

r,r+1 (0)mk,(i)
r+1 + Bk,k

r,r+1(0)mk,(i,θ)
r+1 + Jk,(i,θ)

r (0)
)

;

Algorithm 3S (Sensitivity analysis for quantities computed in Algorithm 3)

H̄nL−b,(θ)
0 (z) = − BnL−b,nL−b,(θ)

0,0 (z); J̄nL−b,(0,θ)
0 (z) = 0nR+1;

For r = 1, . . . , b− 1:

H̄nL−b,(θ)
r (z) = − BnL−b,nL−b,(θ)

r,r (z)−
(

BnL−b,nL−b,(θ)
r,r−1 (z)H̄nL−b

r−1 (z)−1BnL−b,nL−b
r−1,r (z)

−BnL−b,nL−b
r,r−1 (z)H̄nL−b

r−1 (z)−1H̄nL−b,(θ)
r−1 (z)H̄nL−b

r−1 (z)−1BnL−b,nL−b
r−1,r (z)

+BnL−b,nL−b
r,r−1 (z)H̄nL−b

r−1 (z)−1BnL−b,nL−b,(θ)
r−1,r (z)

)
;

J̄nL−b,(0,θ)
r (z) = BnL−b,nL−b,(θ)

r,r−1 (z)H̄nL−b
r−1 (z)−1 J̄nL−b,(0)

r−1 (z)− BnL−b,nL−b
r,r−1 (z)H̄nL−b

r−1 (z)−1

×H̄nL−b,(θ)
r−1 (z)H̄nL−b

r−1 (z)−1 J̄nL−b,(0)
r−1 (z)+ BnL−b,nL−b

r,r−1 (z)H̄nL−b
r−1 (z)−1 J̄nL−b,(0,θ)

r−1 (z)

+δr,b−1ānL−b,(θ)
b−1 (z);

ḡnL−b,(θ)
b−1 (z) = − H̄nL−b

b−1 (z)−1H̄nL−b,(θ)
b−1 (z)H̄nL−b

b−1 (z)−1 J̄nL−b,(0)
b−1 (z) + H̄nL−b

b−1 (z)−1 J̄nL−b,(0,θ)
b−1 (z);

m̄nL−b,(0,θ)
b−1 = ḡnL−b,(θ)

b−1 (0);

For r = b− 2, . . . , 1, 0:

ḡnL−b,(θ)
r (z) = − H̄nL−b

r (z)−1H̄nL−b,(θ)
r (z)H̄nL−b

r (z)−1
(

BnL−b,nL−b
r,r+1 (z)ḡnL−b

r+1 (z) + J̄nL−b,(0)
r (z)

)
+H̄nL−b

r (z)−1
(

BnL−b,nL−b,(θ)
r,r+1 (z)ḡnL−b

r+1 (z) + BnL−b,nL−b
r,r+1 (z)ḡnL−b,(θ)

r+1 (z)

+J̄nL−b,(0,θ)
r (z)

)
; m̄nL−b,(0,θ)

r = ḡnL−b,(θ)
r (0);

For k = nL − b− 1, . . . , 1, 0:

H̄k,(θ)
0 (z) = − Bk,k,(θ)

0,0 (z); J̄k,(0,θ)
0 (z) = 0nR+1;

For r = 1, . . . , b− 1:

H̄k,(θ)
r (z) = −Bk,k,(θ)

r,r (z)−
(

Bk,k,(θ)
r,r−1 (z)H̄k

r−1(z)−1Bk,k
r−1,r(z)− Bk,k

r,r−1(z)H̄k
r−1(z)−1H̄k,(θ)

r−1 (z)

×H̄k
r−1(z)−1Bk,k

r−1,r(z) + Bk,k
r,r−1(z)H̄k

r−1(z)−1Bk,k,(θ)
r−1,r (z)

)
;

J̄k,(0,θ)
r (z) = Bk,k,(θ)

r,r−1 (z)H̄k
r−1(z)−1 J̄k,(0)

r−1 (z)−Bk,k
r,r−1(z)H̄k

r−1(z)−1H̄k,(θ)
r−1 (z)H̄k

r−1(z)−1 J̄k,(0)
r−1 (z)

+Bk,k
r,r−1(z)H̄k

r−1(z)−1 J̄k,(0,θ)
r−1 (z)+ Bk,k+1,(θ)

r,r−1 (z)ḡk+1
r−1(z)+ Bk,k+1

r,r−1 (z)ḡk+1,(θ)
r−1 (z)



Chapter 3. CTLA-4 in the co-stimulatory system 90

+δr,b−1āk,(θ)
b−1 (z);

ḡk,(θ)
b−1 (z) = − H̄k

b−1(z)−1H̄k,(θ)
b−1 (z)H̄k

b−1(z)−1 J̄k,(0)
b−1 (z) + H̄k

b−1(z)−1 J̄k,(0,θ)
b−1 (z);

m̄k,(0,θ)
b−1 = ḡk,(θ)

b−1 (0);

For r = b− 2, . . . , 1, 0:

ḡk,(θ)
r (z) = − H̄k

r (z)−1H̄k,(θ)
r (z)H̄k

r (z)−1
(

Bk,k
r,r+1(z)ḡk

r+1(z) + J̄k,(0)
r (z)

)
+H̄k

r (z)−1
(

Bk,k,(θ)
r,r+1 (z)ḡk

r+1(z) + Bk,k
r,r+1(z)ḡk,(θ)

r+1 (z) + J̄k,(0,θ)
r (z)

)
;

m̄k,(0,θ)
r = ḡk,(θ)

r (0);

For i = 1, . . . , l:

For k = nL − b, . . . , 1, 0:

J̄k,(i,θ)
0 (0) =

i
∑

p=1
( i

p)(−1)p
(

Bk,k,(p,θ)
0,0 (0)m̄k,(i−p)

0 + Bk,k,(p)
0,0 (0)m̄k,(i−p,θ)

0 + Bk,k,(p,θ)
0,1 (0)m̄k,(i−p)

1

+Bk,k,(p)
0,1 (0)m̄k,(i−p,θ)

1

)
;

For r = 1, . . . , b− 1:

J̄k,(i,θ)
r (0) = Bk,k,(θ)

r,r−1 (0)H̄k
r−1(0)−1 J̄k,(i)

r−1 (0)−Bk,k
r,r−1(0)H̄k

r−1(0)−1H̄k,(θ)
r−1 (0)H̄k

r−1(0)−1 J̄k,(i)
r−1 (0)

+Bk,k
r,r−1(0)H̄k

r−1(0)−1 J̄k,(i,θ)
r−1 (0)+ (1− δk,nL−b)

(
Bk,k+1,(θ)

r,r−1 (0)m̄k+1,(i)
r−1 + Bk,k+1

r,r−1 (0)

×m̄k+1,(i,θ)
r−1

)
+

i
∑

p=1
( i

p)(−1)p
(

Bk,k,(p,θ)
r,r−1 (0)m̄k,(i−p)

r−1 + Bk,k,(p)
r,r−1 (0)m̄k,(i−p,θ)

r−1

+Bk,k,(p,θ)
r,r (0)m̄k,(i−p)

r + Bk,k,(p)
r,r (0)m̄k,(i−p,θ)

r + (1− δr,b−1)
(

Bk,k,(p,θ)
r,r+1 (0)

×m̄k,(i−p)
r+1 + Bk,k,(p)

r,r+1 (0)m̄k,(i−p,θ)
r+1

)
+ (1 −

δk,nL−b)
(

Bk,k+1,(p,θ)
r,r−1 (0)m̄k+1,(i−p)

r−1

+Bk,k+1,(p)
r,r−1 (0)m̄k+1,(i−p,θ)

r−1

))
+ δr,b−1(−1)iak,(i,θ)

b−1 (0);

m̄k,(i,θ)
b−1 = − H̄k

b−1(0)−1H̄k,(θ)
b−1 (0)H̄k

b−1(0)−1 J̄k,(i)
b−1(0) + H̄k

b−1(0)−1 J̄k,(i,θ)
b−1 (0);

For r = b− 2, . . . , 1, 0:

m̄k,(i,θ)
r = − H̄k

r (0)−1H̄k,(θ)
r (0)H̄k

r (0)−1
(

Bk,k
r,r+1(0)m̄k,(i)

r+1 + J̄k,(i)
r (0)

)
+H̄k

r (0)−1
(

Bk,k,(θ)
r,r+1 (0)m̄k,(i)

r+1 + Bk,k
r,r+1(0)m̄k,(i,θ)

r+1 + J̄k,(i,θ)
r (0)

)
;
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Note that expressions for matrices Bk,k′ ,(θ)
r,r′ (z), āI−1,(i,θ)

r (z) and āk,(i,θ)
b−1 (z) in Algorithms 2S and 3S

are straightforwardly obtained by direct differentiation of matrices Bk,k′
r,r′ (z), āI−1,(i)

r (z) and āk,(i)
b−1(z)

with respect to θ ∈ {α+, α−, γR, γB, δ}, and are thus omitted here.

3.3.3 Kinetic rates and molecular levels

Firstly, we present in Table 3.2 association and dissociation rates for receptor CTLA-4 and ligands

B7-1 and B7-2, obtained from those reported in [30]. In particular, we denote by αi+ and αi− the

association and dissociation rates, respectively, for molecule B7-i (i ∈ 1, 2) with receptor CTLA-

4. Then, dissociation rates αi− are directly obtained from [30], while association rates αi+ are

computed by dividing binding rates αi (i ∈ {1, 2}), defined and computed in [30], by the area

of the synapse. Moreover, association rates αi+ have been multiplied by a factor f ∈ {2, 4}

depending on the nature of the two molecules B7-i involved in the reaction; that is, taking into

account the bivalent structure of CTLA-4 and B7-1, and the monomeric structure of B7-2.

Lack of experimental data in the literature regarding endocytosis and recycling rates for receptor

CTLA-4 forces us here to estimate them by making use of results obtained in Section 3.3.2 together

with well-known characteristics of CTLA-4 trafficking. In particular, we assume here that CTLA-

4 internalises in a completely ligand-independent manner [53, 76], so that γR = γB both for B7-1

and B7-2 ligands in Figure 3.6. On the other hand, it has been estimated that 90% of CTLA-4 is

intracellular at any given time [68], so that Equation (3.5) directly yields γR = γB = 9δ. Finally,

it is also known that when analysing trafficking dynamics, more than 80% of surface CTLA-4 at

any time is internalised within 5 minutes [76]. We use this information as follows: we consider a

situation where 100 CTLA-4 receptors are marked on the cell surface, and consider the time T(85)

for 85 of these receptors being internalised. In the absence of ligand, this yields the birth-and-

death process in Figure 3.8 (with nR = 100, γR = 9δ), and T(85) corresponds to the time to reach

state m = 85 starting at state 0. We denote the mean of this time as τ0, which can be computed by
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θ Definition Rate

α1+ CTLA-4/B7-1 association rate 4 · 0.094 s−1

α1− CTLA-4/B7-1 dissociation rate 0.43 s−1

α2+ CTLA-4/B7-2 association rate 2 · 0.087 s−1

α2− CTLA-4/B7-2 dissociation rate 5.1 s−1

Table 3.2: Binding and dissociation rates considered for CTLA-4, B7-1 and B7-2, obtained from
[30].

following a first-step argument. In particular, we can write the system

τ0 = τ1 +
1

900δ
,

τ1 =
891
892

τ2 +
1

892
τ0 +

1
892δ

,

... =
...

τm =
9(100−m)

9(100−m) + m
τm+1 +

m
9(100−m) + m

τm−1 +
1

(9(100−m) + m)δ
,

... =
...

τ84 =
84
228

τ83 +
1

228δ
,

where τi = E[T(85)] for the initial state i ∈ {0, . . . , 84}. Finally, we look for the value of δ so that

τ0 = 300s, which is approximately δ = 9.0255 · 10−4s−1.

On the other hand, the amounts of each type of molecule in our process are obtained by

conveniently transforming physiological parameters presented in Table 3.3, which are directly

taken from [30]. To work with the correct amount of B7-1 and B7-2 ligands, homogeneous

spatial distribution of these molecules is supposed in both T cells and APCs. Therefore, only

a proportional part of these molecules is present on the synapse. This can be calculated by

dividing the area of the synapse by the area of the specific cell (the T cell or the APC) which

the molecules we are considering belong to. For the CTLA-4 receptor, we first note that its spatial

distribution corresponds to 90%− 10% (endosome-surface) in non-regulatory T cells at any given

time. Thus, 400 CTLA-4 receptors are considered on the cell surface (of which ∼ 11 correspond

to receptors on the synapse, according to synapse area and T cell radius), while 3600 are into

the endosome (∼ 100 corresponding to those ones trafficking to the synapse). Following T cell

activation CTLA-4 is synthesised, resulting in a temporary proportional increase at the cell surface

[68]. To represent different time instants after activation when synthesis may have occurred,

we consider total numbers of CTLA-4 receptors within the synapse equal to 11, 22, 55 and 110
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Molecular levels Rate Cell dimension Rate

Total CTLA-4 on surface of T cell 4 · 102 Radius of T cell 6 µm

Total B7-1 in Immature APC 1 · 103 Radius of APC 10 µm

Total B7-1 in Mature APC 2 · 103 Area of synapse 12.6 µm2

Total B7-2 in Immature APC 2 · 104

Total B7-2 in Mature APC 4.3 · 104

Table 3.3: Molecular levels and cell dimension data from [30].

RE(0) RS(0)
Activated T cell 100 11

Activated T cell after CTLA-4 synthesis 100 22,55,110

Table 3.4: Initial numbers RE(0) and RS(0) of receptors in the endosome and on the synapse,
respectively. We recall nR = RE(0) + RS(0).

(representing 2-, 5- or 10-fold increases with respect steady-state conditions before activation,

respectively). We note that these higher surface receptor levels could also be considered when

analysing the interaction between a regulatory T cell and an APC, since it is known that CTLA-4

is constitutively expressed by regulatory T cells [76]. These assumptions yield the total number of

co-receptors given in Table 3.4, and their initial spatial distribution. Number of ligands provided

by the donor cell are given in Table 3.5, and have been computed also by taking into account the

APC surface area, the synapse area, and the quantities reported in [30].

3.3.4 Results

In this section, we study the trafficking dynamics upon stimulation of non-regulatory activated

T cells by mature and immature APCs. In particular, our interest is in the interaction of

receptor CTLA-4 with ligands B7-1 and B7-2 provided by these APCs. For these dynamics when

considering only one ligand type (either B7-1 or B7-2), shown in Figure 3.6 and developed in

Section 3.3.2 (for the case nR ≥ nL which includes ligand B7-1 but an analogous development

can be done for B7-2 considering nR < nL), the exact analysis in Section 3.3.2 is applied, so that

Mature APC Immature APC

B7-1 B7-2 B7-1 B7-2

20 431 10 201

Table 3.5: Total number nL of ligand (B7-1 or B7-2) provided by a mature or an immature APC on
the synapse.
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our results should be considered as exact in this situation. This exact analysis has the particular

feature that it allows to develop a sensitivity analysis for parameters (Section 3.3.2.5), so that the

role played by each parameter in our process can be exactly quantified, related to the stochastic

descriptors analysed in Section 3.3.2.

3.3.4.1 Ligand depletion timescales

We focus in this section on the timescales of B7-1 depletion, which are analysed here in terms

of the random variable T I
n, defined in Section 3.3.2.3. For these dynamics, B7-1 ligand depletion

timescales can be analysed by computing E[TnL−I
n ] (where n = (n1, n2, n3) is the initial state,

and nL refers to the amount of B7-1 ligand on the synapse according to Table 3.5), when only

ligand B7-1 is considered. This represents the mean time to reach a threshold number nL − I of

internalised B7-1 ligands, so that I ligands remain on the synapse at that time instant. For I = nL,

E[TnL−I
n ] is trivially 0 representing that no ligand depletion has occurred at the beginning of the

process. On the other hand, E[TnL−I
n ] for I = 0 represents the average first time at which all ligand

(nL) molecules have been internalised by the T cell.

To quantify the B7-1 internalisation ability of the T cell we analyse in Figure 3.9 the mean time

to reach a threshold number nL − I of B7-1 ligands internalised for different values of I. In

particular, we plot E[TnL−I
n ] versus 1 ≤ I ≤ nL for different numbers of CTLA-4 receptors

initially on the synapse, and for a mature or an immature APC interacting with a T cell. These

quantities of interest can be exactly computed by following arguments in Section 3.3.2, and in

particular by means of Algorithm 2 in Section 3.3.2.6. A significant variation in E[TnL−I
n ] cannot be

noticeable between the different synapse receptor levels considered, although higher differences

are shown when the T cell interacts with a mature APC. Interestingly, what can be observed when

contrasting the kind of APC involved in the T cell activation (which means doubling the amount

of available B7-1 ligands in the mature APC in comparison with the immature APC, see Table 3.5)

is an increase in the internalisation time of just around a 25% in the immature case with respect

the mature case (e.g. E[TnL
n ] = 413.49s for RS(0) = 11, and a T cell interacting with an immature

APC, while E[TnL
n ] = 548.84s in the mature case). A saturation behavior can be clearly identified

with respect the total number RS(0) of CTLA-4 receptors initially on the synapse: while synthesis

of CTLA-4 resulting in doubling the number of receptors (represented by RS(0) = 22 in Figure

3.9) helps to reduce the timescales of ligand depletion, higher levels of receptors on the synapse

(RS(0) ∈ {55, 110}) do not seem to have a significant additional effect.
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Figure 3.9: Ligand depletion represented by the mean time E[TnL−I
n ] (in seconds) to reach a

threshold number nL− I of internalised B7-1 ligands through CTLA-4 binding, versus 1 ≤ I ≤ nL.
Consideration of a T cell interacting with a mature (top) or an immature (bottom) APC, for initial
CTLA-4 receptor numbers on the synapse equal to 11, 22, 55 and 110.
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Mature APC Immature APC

RS(0) 11 22 55 110 11 22 55 110

E[TB0.5nL
n ] 0.5186 0.1114 0.0361 0.0170 0.2111 0.0888 0.0328 0.0160

Table 3.6: Restricted mean time E[TB0.5nL
n ] (in seconds) until having 50% of the B7-1 ligands

simultaneously bound to CTLA-4 co-receptors on the synapse.

3.3.4.2 Receptor-ligand complex formation

The aim in this section is to develop a wide analysis of the peak reached by receptor-ligand

complexes during the process; that is, the peak number of bound complexes obtained by the

T cell on the synapse after ligand stimulation, taking into account definitions in Section 3.3.2.4 of

Bmax
n and TBb

n.

In particular, we analyse in Figure 3.10 the maximum number of bound CTLA-4/B7-1 complexes

simultaneously present on the synapse during the process. More specifically, the probability

mass function of Bmax
n (when only ligand B7-1 is considered), for the initial state n obtained from

molecular levels in Section 3.3.3 (in particular, n = (RE(0), B1(0), LE(0)) = (100, 0, 0)), is plotted

under eight possible scenarios regarding interaction of B7-1 on either a mature or immature APC

with CTLA-4 co-receptor under distinct instants of T cell activation, which correspond to four

different receptor levels on the synapse (RS(0) ∈ {11, 22, 55, 110}) reported in Table 3.4. These

different initial receptor levels result in a manifest distinction between the probability distribution

of Bmax
n (Figure 3.10) when interacting with either an immature or mature APC. In order to explain

these results, we first note the relatively short time needed for CTLA-4 co-receptors to bind B7-

1 ligands, specially under high synapse receptor levels, in comparison with the internalisation

timescales. This can be easily noticed by comparing the values of the restricted mean time

E[TB0.5nL
n ] to have 50% of the B7-1 ligands simultaneously bound to CTLA-4 co-receptors on

the synapse, computed from Algorithm 3 in Section 3.3.2.6 and given in Table 3.6, with values

in Figure 3.9 for the mean time E[TnL−I
n ] to reach a threshold number nL − I of B7-1 ligands

internalised, for varying values of I. We note here that the restricted mean time E[TB0.5nL
n ]

reported here is in fact E[TB0.5nL
n |TB0.5nL

n < +∞]; that is, we compute the mean time to have a

total number 0.5nL of bound complexes simultaneously formed, assuming that this number is

reached. This is related to the fact that the random variable TBb
n is defective, see Section 3.3.2.4.

Results in Figure 3.10 show that, when analysing the interaction of a T cell with a mature APC,

a limited number of CTLA-4 receptors on the cell surface avoids the accummulation of bound

complexes on the cell surface, these being internalised in a more sequential way as they are
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Figure 3.10: Probability mass function of the maximum number Bmax
n of CTLA-4/B7-1 bound

complexes simultaneously present on the synapse. T cell interacting with a mature (top) or an
immature (bottom) APC, for initial CTLA-4 receptor numbers on the synapse equal to 11, 22, 55
and 110.

formed. On the other hand, if more CTLA-4 receptors are initially present on the synapse, all

the available B7-1 ligands rapidly join these receptors forming a maximum number of ∼ 20

bound complexes on the synapse. This is also observable in the immature APC case, although

here the amount of ligands (only 10 B7-1 ligands on the synapse) acts as the limiting factor

when forming these bound complexes. These comments are also supported by results in Table

3.7, where summary statistics (mean and standard deviation) of these maximum numbers are

reported.

Mature APC Immature APC
RS(0) 11 22 55 110 11 22 55 110

E[Bmax
n ] 13.19 19.22 19.97 19.99 9.67 9.96 9.99 10

SD[Bmax
n ] 1.57 0.71 0.17 0.36 0.51 0.2 0.1 0

Table 3.7: Mean and standard deviation of the maximum number Bmax
n of CTLA-4/B7-1 bound

complexes present on the synapse for the stochastic model, and for a mature or an immature APC
interacting with T cell with 11, 22, 55 or 110 CTLA-4 receptors initially on the synapse.
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Partial Derivative θ Mature APC Immature APC
11 receptors 110 receptors 11 receptors 110 receptors

α1+ −1.28 · 10−1 −1.74 · 10−2 −1.49 · 10−1 −1.62 · 10−2

α1− 1.25 · 10−1 1.71 · 10−2 1.45 · 10−1 1.59 · 10−2

∂E[TI
n ]

∂θ
E[TI

n ]
θ

γR 4.11 · 10−2 6.56 · 10−3 4.00 · 10−2 6.57 · 10−3

γB −7.74 · 10−1 −1.00 −9.50 · 10−1 −1.00

δ −2.64 · 10−1 −1.30 · 10−3 −8.59 · 10−2 −1.28 · 10−3

α1+ 2.13 5.68 · 10−3 1.16 · 10−1 5.98 · 10−3

α1− −6.06 · 10−1 −3.80 · 10−5 −1.08 · 10−2 −3.91 · 10−5

∂E[Bmax
n ]

∂θ
E[Bmax

n ]
θ

γR −3.23 · 10−1 −6.83 · 10−7 −3.58 · 10−4 −8.29 · 10−7

γB −2.04 · 10−1 −1.13 · 10−6 −6.28 · 10−4 −1.37 · 10−6

δ 6.72 · 10−1 7.10 · 10−8 3.51 · 10−4 8.43 · 10−8

Table 3.8: Elasticities of the descriptors E[Bmax
n ] and E[T I

n] with I = 0.5nL, with respect rate θ ∈
{α1+, α1−, γR, γB, δ}. Different scenarios regarding interaction between a T cell at different stages
of activation (11 and 110 receptors initially on the synapse) with an immature or mature APC.
Receptor CTLA-4 and ligand B7-1.

3.3.4.3 Sensitivity analysis for B7-1/CTLA-4 complexes

In this Section, our aim is to address the impact that a perturbation in the parameter values has on

the descriptors of interest, as an analytical tool for quantifying the role played by each parameter

on the ligand depletion timescales and on the signal peak. To this end, we compute in Table 3.8 the

partial derivatives of the descriptors E[T I
n] (for I = 0.5nL representing the internalisation of 50%

of available B7-1 ligands) and E[Bmax
n ] with respect to each parameter θ ∈ {α1+, α1−, γR, γB, δ}.

In particular, elasticities (normalised and dimensionless partial derivatives) (∂E[T I
n]/∂θ)/(E[T I

n]/θ)

and (∂E[Bmax
n ]/∂θ)/(E[Bmax

n ]/θ) are reported in Table 3.8.

A comprehensive analysis of values in Table 3.8 lead to the following insights: (i) value −1.00

for the elasticity of E[T I
n] with respect the internalisation rate γB of bound complexes indicates

the linear relationship between the timescales for the internalisation of bound complexes and

the rate corresponding to this reaction (specially in the case of higher synapse receptor levels,

RS(0) = 110, which results in faster complex formation); (ii) while internalisation rate γB is shown

to be the one playing the most important role for these timescales, second more crucial rates

for this descriptor are binding/dissociation rates α1+ and α1−, with similar elasticities (but with

different elasticity sign, representing the fact that faster binding leads to shorter timescales, while

faster dissociation leads to longer timescales); (iii) the recycling of receptors from the endosome
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can have an important role for the timescales of ligand depletion under low synapse availability

of receptors, which corresponds to the mature case when no receptor synthesis has occurred yet

(RS(0) = 11); (iv) the binding rate α1+ is the most important parameter in order to explain the

signal peak represented by descriptor E[Bmax
n ], so that its corresponding elasticity is, at least, one

order of magnitude larger than the elasticities corresponding to the rest of parameters; (v) the

second most important parameter regarding this descriptor corresponds to the dissociation rate

α1−, while the role played by other rates (γR, γB and δ) is only significant under low surface

receptor levels; (vi) all the parameters in the system play a more important role on the signal

peak under low synapse receptor levels (mature APC with no receptor synthesis represented by

RS(0) = 11), while the role played by these parameters highly decreases under high receptor

levels.

3.3.4.4 Analogous results for B7-2 ligand

In the present Section, we show the results we obtained by applying our model in Figure 3.6

when considering ligand B7-2 instead of B7-1, so that now nL represents the amount of B7-2

ligand according to Table 3.5. As previously discussed, the whole procedure developed in Section

3.3.2, can be readjusted in a straightforward but wearisome manner after swapping the condition

nL ≤ nR by nL > nR. Thus, taking into account values in Tables 3.4-3.5, B7-2 could be used as the

ligand in our model. We carry out instead here Gillespie simulations as an approximation of the

corresponding analytical values when considering this ligand.

In order to test how the B7-2 ligand depletion dynamics are affected by the total number of

CLTA-4 receptors initially on the T cell surface, we plot in Figure 3.11 the B7-2 ligand depletion

timescales for a mature APC interacting with a T cell, for different values RS(0) ∈ {11, 22, 55, 110}

of CTLA-4 receptors on the cell surface. These timescales are computed and plotted in Figure 3.11

in terms of the average time E[TnL−I
n ] to have nL − I B7-2 ligands internalised, for 1 ≤ I ≤ nL,

which is computed here by means of Gillespie simulations. We note first that timescales for B7-

2 ligand depletion are significantly larger than the timescales for B7-1 ligand depletion (7.5− 9

minutes for total B7-1 ligand depletion in Figure 3.9 (top), versus 65− 150 minutes for total B7-2

ligand depletion in Figure 3.11). We point out here that this difference in these timescales seems to

be caused by the different internalisation ability (via CTLA-4) of ligands B7-1 and B7-2. Total B7-1

ligand depletion occurs always in less than 10 minutes, regardless of the CTLA-4 surface receptor

levels and the type of APC under study. For ligand B7-2, the saturation behavior observed for
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Figure 3.11: Ligand depletion represented by the mean time E[TnL−I
n ] (in seconds) to reach a

threshold number nL− I of internalised B7-2 ligands through CTLA-4 binding, versus 1 ≤ I ≤ nL.
Consideration of a T cell interacting with a mature APC, for initial CTLA-4 receptor numbers on
the synapse equal to 11, 22, 55 and 110. Data from [54, Supplementary Material, Figure S4 B (left)]
are also plotted with only first dot is fitted.

B7-1 regarding the surface receptor levels is not observed, and higher synapse CTLA-4 receptor

levels always result in a reduction for the timescales of B7-2 ligand depletion. In particular, a 10-

fold increase for the CTLA-4 receptor levels via synthesis can result in a reduction of more than

50% for the time to total B7-2 ligand depletion (∼ 150 minutes for RS(0) = 11 against less than 75

minutes for RS(0) = 110 in Figure 3.11).

Moreover, Figure 3.11 allows us to compare the B7-2 ligand depletion timescales obtained from

our model with data in [54, Supplementary Material, Figure S4 B (left)]. In these experiments,

mean B7-2 GFP fluorescence was measured and plotted in an intensity scale on the APC varying

from 35 to 10 over the same timescale represented in Figure 3.11. By comparing the amount

of ligands lost from the APC to that internalised by the T cell in the model and assuming a
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correspondance from what happens in the synapse on a one to one interaction to what occurs

in the whole cell when a bunch of them are cultured in the experiment, a similar slope can

be appreciate, at least, in a qualitative manner. Moreover, some of the quantitative differences

between our model predictions and the data might be explained by the role played by the other

players (B7-1 and CD28) in the co-stimulatory system, as discussed in Section 3.3.5.

In Figure 3.12 the probability distribution for the maximum number Bmax
n of CTLA-4/B7-2 bound

complexes simultaneously present on the synapse is plotted for different initial CTLA-4 synapse

levels, and for a T cell interacting with a mature or immature APC. Formation of CTLA-4/B7-

2 bound complexes is limited in these scenarios by the availability of CTLA-4 receptors on the

synapse. Thus, increasing the initial number of CTLA-4 receptors on the synapse clearly increases

this maximum. On the other hand, some contribution for the formation of these complexes is

given by the recycling of receptors from the endosome to the synapse, which can be noticed

from the fact that, when a total number RS(0) = 11 of CTLA-4 receptors is considered initially

on the synapse, the distribution of Bmax
n concentrates among values 15 to 30, which necessary

implies as a prerequisite the recycling of some receptors. Formation of bound complexes does not

significantly changes between the mature and immature case, although some differences can be

noticed for higher numbers of CTLA-4 receptors initially on the synapse. This is related to the

fact that, once availability of CTLA-4 receptors on the synapse is ensured, the availability of B7-2

ligands plays a more important role (and the immature APC contains less than half of the B7-2

ligands than the mature APC). Moreover, and as expected, a more deterministic behavior can be

observed for the different distributions corresponding to larger amounts of molecules in Figure

3.12, given by smaller variances for these distributions.

3.3.5 Discussion

In the present Chapter, we introduce a stochastic model to study, in an analytical way, diverse

dynamics of the main inhibitory co-receptor when interacting with ligands from an APC. In

Section 3.3 we have carried out a detailed analysis for studying the ligand depletion timescales

and the receptor-ligand complex formation dynamics, when a mature or an immature APC

interacts with a T cell, and when this co-stimulation process occurs at different activation stages

resulting in different CTLA-4 molecular levels on the synapse. We could observe in Section

3.3.4 that increasing CTLA-4 receptor levels result in a decrease of the timescales for B7-1 ligand

depletion (Figure 3.9), where saturation scenarios are found for CTLA-4 receptor levels increases
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Figure 3.12: Probability mass function of the maximum number Bmax
n of CTLA-4/B7-2 bound

complexes simultaneously present on the synapse, for a T cell interacting with a mature (top) or
immature (bottom) APC, and for initial CTLA-4 receptor numbers on the synapse equal to RS(0) ∈
{11, 22, 55, 110}. Initial conditions n for the total number of each molecule chosen according to
values in Tables 3.4-3.5.
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higher than 2-fold (RS(0) ∈ {55, 110}). This saturation behavior is not observed when analysing

B7-2 ligand depletion (Figure 3.11), where increases in the CTLA-4 receptor levels always result

in decreases for the ligand depletion timescales.

When analysing CTLA-4/B7-1 complex formation, our results in Figure 3.10 show a significant

variation in the way CTLA-4 binds B7-1 depending on the initial synapse receptor levels.

Given that association and dissociation rates for these molecules are much higher than CTLA-4

intracellular trafficking rates, the initial location of this receptor before ligand stimulation makes

a significant difference in the dynamics analysed in Figure 3.10, which can be shown by studying

the values of E[Bmax
n ] and Var[Bmax

n ] in Table 3.7 as a summary of the distributions plotted in

Figure 3.10, where Var[X] represents the variance of the random variable X. High synapse

receptor levels correspond to a mean maximum amount E[Bmax
n ] ∼ nL of ligands simultaneously

bound on the synapse, whereas the behavior for low levels regarding this descriptor varies

depending on the kind of APC participating in the interaction.

Our results regarding B7-1 ligand depletion timescales in Figure 3.9 suggest that the lifetime of

the last ligand present on the synapse is below ten minutes, while we have in just five minutes

around 80% of them internalised into the endosome, which agrees with previous experimental

knowledge [76]. Diverse scenarios involving different types of APCs and different T cell synapse

receptor levels produce very similar timescales regarding this internalisation process, which is

particularly striking when doubling the number of available ligands. This would imply that the

time until having an inhibitory signal, if this signal depended on the complete internalisation of

the available B7-1 ligands via binding the co-receptor CTLA-4, would be more affected by the

concentration of CTLA-4 than by the concentration of B7-1.

Finally, results in Table 3.8 allow us to analyse the effect that each kinetic rate has on the

descriptors previously computed. When analysing the role played by each kinetic rate on the

CTLA-4/B7-1 interaction dynamics, kinetic rate α1+ seems to play a crucial role, specially under

low receptor levels. Moreover, the recycling rate δ plays an important role under low CTLA-

4 receptor levels on the cell surface, since recycling is, under these scenarios, a prerequisite for

other interactions to take place. On the other hand, if an enough number of CTLA-4 receptors

is initially on the synapse (RS(0) = 110 due to synthesis), the importance of recycling dynamics

clearly decreases.
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3.4 A four compartment model

Figure 3.13: Compartmentalised stochastic model. A: formation and internalisation of bound
CTLA-4/B7-1 complexes. C: formation and internalisation of bound CTLA-4/B7-2 complexes.
B: formation of bound CD28/B7-1 complexes. D: formation of bound CD28/B7-2 complexes.
Molecular levels from Tables in Section 3.3.3, where now nB7−1

L , nB7−2
L , nCD28

R and nCTLA−4
R refer

to levels for B7-1 and B7-2 ligands, and CD28 and CTLA-4 receptors, respectively.

Understanding the mechanisms which allow CTLA-4 and CD28 to regulate T cell responses

requires a mathematical procedure analysing the interaction between the main molecules

involved in the co-stimulatory system. Moreover, recent studies support the crescent idea of

quantifying the triggering signal, from TCR stimulation to CD28 co-signal, as a cascade path

which efficiency would depend on this triggering signal occurring faster than a dwell time for the

contact between the APC and the T cell.

A general stochastic model presented in Figure 3.13 allows us to quantify how fast this co-

stimulation process occurs depending on the concentrations of co-receptors CTLA-4 and CD28,

and ligands B7-1 and B7-2 interacting within the synapse at different stages of T cell activation,

and for a T cell interacting with an immature or mature APC. By making use of the compartmental

model in Figure 3.13, we can analyse similar characteristics in the underlying Markov chain

(regarding ligand depletion timescales, receptor-ligand complex formation and steady-state
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characteristics) when the different four molecules are introduced and removed one at a time.

When only compartment A is considered, these characteristics can be exactly analysed via the

techniques developed in Section 3.3.2, and the corresponding Algorithms in Section 3.3.2.6.

A particular feature of this analytical approach is that it allows us to study the impact that

each kinetic rate has on the descriptors of interest, via the computation of partial derivatives.

However, for the dynamics of the process when more than one compartment is considered in

Figure 3.13, Gillespie simulations are implemented instead in order to compute our results, given

the increasing complexity of this general model and computational limitations of algorithms in

Section 3.3.2.6.

For model in Figure 3.13, a total number nCD28
R = 256 of CD28 is considered on the synapse [30],

and binding and dissociation rates for CD28 with ligand B7-1 and B7-2 are αCD28
1+ = 0.034s−1,

αCD28
1− = 1.6s−1, αCD28

2+ = 0.061s−1 and αCD28
2− = 28s−1 [30]. In order to analyse the impact

that introducing any other molecule (B7-2, CD28) has on the B7-1 ligand depletion dynamics,

we compute in Figure 3.14 the analogous results than those ones in Figure 3.9 regarding the

time to reach a threshold number nB7−1
L − I of internalised B7-1 ligands via CTLA-4 binding,

where compartments A, A+B, A+C and A+B+C+D are considered for a T cell interacting with

a mature APC, and with RCTLA−4
S (0) ∈ {11, 110}. Ligand B7-2 (introduced by compartment

C) seems to have a greater impact on the B7-1 ligand depletion dynamics in comparison with

co-receptor CD28 (introduced by compartment B). However, it is worth to highlight how this

mean time E[TnB7−1
L −I

n ] is specially perturbed when both molecules are introduced at the same

time (compartments A+B+C+D) compared to the slighter difference provoked by the individual

presence of CD28 or B7-2. This suggests that there exists a significant synergy between the CD28

co-receptor and the B7-2 ligand for slowing down not only the binding (see Figure 3.15 where

this synergistic behavior can also be identified for the receptor-ligand CTLA-4/B7-1 complexes

formation), but also the internalisation dynamics of the CTLA-4/B7-1 bound complexes. The

presence of competitor molecules CD28 and B7-2 can increase the time for total B7-1 ligand

depletion from ∼ 9 minutes (compartment A in Figure 3.14 (top)) up to ∼ 43 minutes

(compartments A+B+C+D in Figure 3.14 (top)). However, if synthesis of CTLA-4 receptor results

in a 10-fold increase for the synapse receptor levels (RCTLA−4
S (0) = 110), then this difference is

highly attenuated: ∼ 7.5 minutes for total B7-1 ligand depletion for compartment A in Figure

3.14 (bottom), against ∼ 19 minutes for total B7-1 ligand depletion for compartments A+B+C+D

in Figure 3.14 (bottom).

We analyse in Figure 3.15 how CTLA-4/B7-1 complex formation dynamics are affected by the
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Figure 3.14: Mean time E[TnB7−1
L −I

n ] (in seconds) to reach a threshold number nB7−1
L − I of

internalised B7-1 ligands via CTLA-4 binding versus 1 ≤ I ≤ nB7−1
L , for compartments A, A+B,

A+C and A+B+C+D. Initial conditions n for the total number of each molecule are taken from
Tables 3.4-3.5. T cell interacting with a mature APC, for CTLA-4 receptor numbers initially on the
synapse equal to 11 (top) and 110 (bottom).
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Figure 3.15: Probability mass function of the maximum number Bmax
n of CTLA-4/B7-1 bound

complexes simultaneously present on the synapse, for compartments A, A+B, A+C and
A+B+C+D. Initial conditions n for the total number of each molecule are taken from Tables 3.4-
3.5. T cell interacting with a mature APC, for initial CTLA-4 receptor numbers on the synapse
equal to 11 (top) and 110 (bottom).

introduction of competitor molecules, by means of considering compartments A ,A+B, A+C and

A+B+C+D. Main conclusion from these results is the synergistic behavior observed between co-

receptor CD28 and ligand B7-2 for avoiding formation and internalisation of bound CTLA-4/B7-

1 complexes. The internalisation timescales observed in these results represent an increase of

around 2− 3 times for the time required to internalise B7-1 via CTLA-4 binding under scenario

A+B+C+D compared to scenarios without CD28 and/or without B7-2.
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RS(0) Bound complex CTLA-4/B7-1 CTLA-4/B7-2 CD28/B7-1 CD28/B7-2

11 E[Bmax
n ] 7.22 15.27 18.65 132.32

Var[Bmax
n ] 0.87 6.02 0.64 4.56

110 E[Bmax
n ] 16.91 96.52 10.22 118.47

Var[Bmax
n ] 1.28 3.15 0.23 4.91

Table 3.9: Mean and variance of the maximum number Bmax
n of bound complexes simultaneously

present on the synapse for scenario A+B+C+D, and regarding bound complexes CTLA-4/B7-1,
CTLA-4/B7-2, CD28/B7-1 and CD28/B7-2. n represents the initial state of process in Figure 3.13
given from Tables 3.4-3.5, and we consider a T cell interacting with a mature APC, for initial
numbers of CTLA-4 receptors on the synapse equal to 11 and 110.

We can complement data in Figure 3.15 by results in Table 3.9, where we compute the mean

and the variance of the maximum number of bound complexes CTLA-4/B7-1, CTLA-4/B7-2,

CD28/B7-1 and CD28/B7-2 for both activation stages represented by RS(0) = 11 and RS(0) =

110, for a non-regulatory T cell interacting with a mature APC, and when the four molecules

are considered within the synapse at the same time (scenario A+B+C+D). Our results suggest

that the formation of complexes involving the B7-2 ligand is even more influenced by the initial

surface receptor levels than when considering complex formation involving the B7-1 ligand.

The significant formation of bound CD28/B7-2 complexes, which are the most common bound

complexes in both scenarios, could be considered as contradictive with the synergistic effect

observed before for CD28 and B7-2 in disrupting formation of CTLA-4/B7-1 complexes; that is,

if co-receptor CD28 and ligand B7-2 tend to bind each other according to Table 3.9, it should be

expected that the separate presence of each of them should affect more the dynamics of CTLA-4

and B7-1 than the presence of both of them at the same time. However, the unstable nature of

bound CD28/B7-2 complexes represented by αCD28
2− = 28s−1 needs to be taken into account.

Therefore, we can conclude that competitor molecules for B7-1 (i.e., receptor CD28 and ligand

B7-2) have a significant effect in B7-1 ligand depletion timescales. On the other hand, numerical

results carried out but not reported here regarding B7-2 ligand depletion timescales suggest that

these timescales are not so significantly affected by competitor molecules for B7-2 (B7-1 and

CD28). Moreover, the introduction of B7-2 into the system has a higher effect than the introduction

of CD28 on the dynamics of CTLA-4/B7-1, both regarding the B7-1 ligand depletion and the

CTLA-4/B7-1 complex formation, but the introduction of both molecules (B7-2 and CD28) at the

same time results into a synergistic effect significantly affecting CTLA-4/B7-1 dynamics.
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3.4.1 Cell extrinsic regulator mediation

Once TCR signalling has been triggered by MHCp in the synapse area between a T cell and an

APC, a competition process takes place between inhibitor CTLA-4 and CD28 co-receptors for

ligands B7-1 and B7-2 from the APC. However, the strength of CD28 co-signal is thought to be

limited by CTLA-4 not only because of the fact of sharing ligands but also for a cell extrinsic

regulator process in which CTLA-4 would deplete ligands from and APC(B7-1,B7-2) in a way

that this APC would become and APC∗(B7-1,B7-2) with a presumably lower capacity for future

stimulations due to a decrease of ligand expression.

Under this scenario, we want to quantify this loss of efficiency by measuring how molecules in

the APC∗ were depleted depending on different conditions as the type of T cell that the APC

interacted to or on the time of this interaction. With respect to the first condition, an important

distinction has to be done between Regulatory and non-regulatory T cells. CD28 is considered

to be, as the other three molecules, homogeneously distributed in the cells, and not to vary from

one kind of T cell to the other. On the other hand, for the CTLA-4 receptor, we first note that

its spatial distribution corresponds to 90%− 10% (endosome-surface) in non-regulatory T cells at

any given time. Thus, and according to [30], which parameters regarding expression levels are

gathered in Table 3.3, 400 CTLA-4 receptors are on the cell surface (of which ∼ 11 correspond

to receptors on the synapse, according to synapse area and T cell radius), while 3600 are into

the endosome (∼ 100 corresponding to those ones trafficking to the synapse). Following T cell

activation CTLA-4 is synthesised, resulting in a temporary proportional increase at the cell surface

[68]. To represent different time instants after activation when synthesis may have occurred,

we consider total numbers of CTLA-4 receptors within the synapse equal to 11, 22, 55 and 110

(representing 2-, 5- or 10-fold increases with respect steady-state conditions before activation,

respectively). These assumptions yield the total number of co-receptors given in Table 3.4, and

their initial spatial distribution. A similar analysis yields the total number of ligands provided by

the donor cell, which is given in Table 3.5.

If we consider initial values for a mature APC(B7-1,B7-2) as appear in Table 3.5, for the different

values of RCTLA−4
S (0), the mean number of molecules of each kind can be computed at different

time points (900, 1800, 3600 s) which will indicate the time of contact between the regulatory T cell

and the APC(B7-1,B7-2). The mean values of the ligands will be then the initial values of the new

APC∗(E[LB7−1], E[LB7−2])900, APC∗(E[LB7−1], E[LB7−2])1800,APC∗(E[LB7−1], E[LB7−2])3600. Table

3.10.
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110R 155R 210R
900s 1800s 3600s 900s 1800s 3600s 900s 1800s 3600s

E[RCTLA−4
S ] 0.82 1.21 2.39 1.5 2.63 7.51 3.27 6.27 20.06

E[RCD28] 159.04 175.67 206.73 172.24 195.21 238.86 190.45 221.91 254.73
E[LB7−1] 1.4 0.33 0.02 0.48 0.08 0 0.21 0 0
E[LB7−2] 267.55 212.14 109.71 218.52 143.05 32.38 158.95 71.38 2

E[BCTLA−4
1 ] 1.11 0.34 0.01 0.77 0.17 0 0.37 0.01 0

E[BCTLA−4
2 ] 9.11 9.49 8.67 13.25 12.78 7.77 17.59 14.67 1.43

E[BCD28
1 ] 4.37 1.03 0.06 1.83 0.17 0 0.73 0.02 0

E[BCD28
2 ] 92.59 79.3 49.21 81.93 60.62 17.14 64.82 34.07 1.27

E[LB7−1
int ] 13.12 18.3 19.91 16.92 19.58 20 18.69 19.97 20

E[LB7−2
int ] 61.75 130.07 263.41 117.3 214.55 373.71 189.64 310.88 426.3

Table 3.10: Mean number of molecules and complexes in the synapse after 103 simulations of
model in Figure 3.13 after 900, 1800 and 3600 s.for three different cases of number of total
number of CTLA-4 RCTLA−4

E (0) + RCTLA−4
S (0) = 110, 155, 210. Initial values from Tables 3.4-

3.5. The mean values of the ligands will be then the initial values of the new APCs. That is
APC∗(E[LB7−1], E[LB7−2])900, APC∗(E[LB7−1], E[LB7−2])1800,APC∗(E[LB7−1], E[LB7−2])3600.

With this in hand, Figures 3.16, 3.17 and 3.18 show the dynamics of ligand B7-2 over time under

the different values of total CTLA-4, when CD28 fixed. Moreover, data from experiments done

in [54] in which they measure the mean fluorescence intensity of B7-2 in both B7-2+ cells and

CTLA-4+ cells was incorporated to our plots to follow the accuracy of our model. In particular,

dots in our plots show the correspondance between the intensity of the green fluorescence marker

for B7-2 on average for the APCs, with internalisation of such ligand in the T cells.

3.4.1.1 Varying the amount of both ligands.

In this Section, numerical results were obtained supposing that the number of ligands varies with

respect to the amount of receptors. If, for instance, this number increases two times, in which

case, nB7-1
L = 40 and nB7-2

L = 862, Figure 3.16 shows a plausible situation (according to internal

discussions with experimentalists) in which an increase of ligands might have accidentally

occurred.

Furthermore, when equally decreasing the amount of ligands by dividing rates in Table 3.5

(mature case) by two, what Figure 3.17 shows is a minor tracking of data from [54], which is

here rescaled since it comes in relative terms as explained in Section 3.3.4. Given that the number

of complexes is the same for both Figures 3.16 and 3.17, effectively there is a more inclined slope

as the amount of ligands gets reduced.
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Figure 3.16: Time dynamics (in seconds) of B7-2 when the number of ligads given in Table 3.5
(mature case) is multiplied by two under different scenarios. Data from [54, Supplementary
Material, Figure S4 B (left)] are also plotted with only first dot is fitted..

3.4.1.2 Varying the ratio r 1
2
.

But it can also happen that what varies at a given time is the rate between the two ligands in

charge of costimulation. Thus, if the total amount of ligands gets fixed as

nT
L = nB7-1

L + nB7-2
L = 451,

for the initial scenario (Table 3.5, mature case), the ratio r 1
2

= nB7-1
L

nB7-2
L

modifies to provide several

possibilities in which the proportion of both ligands can be altered. Therefore, the amount of

initial ligands in each case is given by

nB7-1
L = r 1

2
· nT

L

nB7-2
L = (1− r 1

2
) · nT

L
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Figure 3.17: Time dynamics (in seconds) of B7-2 when the number of ligads given in Table 3.5
(mature case) is divided by two under different scenarios and. Data from [54, Supplementary
Material, Figure S4 B (left)] are also plotted with only first dot is fitted.

And computing the model for the cases r 1
2
∈ {0.1, 0.25, 0.5, 0.75} plots are given in Figure 3.18.

Figure 3.18 shows internalisation of B7-2 when varying the ratio r 1
2

according to expression

(3.17). Interestingly, the time taken for the whole amount of B7-2 to become internalised is not

significantly altered depending on the initial quantity of such type of ligand as long as there is

a compensation of the amount of B7-1 involved in the process. This statement relies not only

on the similar time for this process to finish (around 4 · 103 to 8 · 103 (seconds) depending on the

initial amount of receptors on the surface RS(0) for the four plots in Figure 3.18) but on how

different this time is from Figure 3.16 to Figure 3.15 (from around 1.4 · 104 to 6 · 103 (seconds) when

RS(0) = 11), where the amount of B7-1 is proportionally reduced or augment with the amount

of B7-2. This seems to confirm that competition really exists and can be quantified having into

account, as Figures 3.4 and 3.5 show, that each ligand has a constant amount of receptors occupied
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Figure 3.18: Time dynamics (in seconds) of B7-2 when varying the ratio r 1
2

and for different
scenarios. Data from [54, Supplementary Material, Figure S4 B (left)] are also plotted with only
first dot is fitted.

from very early and that free receptors, as long as there are ligands, do not last too long without

binding.

On the other hand, the slope for each graph in Figure 3.18 is quite different depending on r 1
2
.

When the rate between B7-1 and B7-2 r 1
2

is high, case right down, it takes longer for the first B7-2

to internalise but after certain time the speen is higher than in other cases. However, as the rate

r 1
2

gets reduced, B7-2 internalisation is more constant.
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Chapter 4

Quorum-sensing model

4.1 Introduction

Regulatory CD4+ T cells (T regs) play a central role in establishing self-tolerance and in

preventing autoimmune diseases. The mechanisms in which this T cell subpopulation regulates

the size number of the CD4+ T cell pool have been recently hypothesised through different

approaches [5, 60]. A quorum-sensing like model, in which homeostasis is based in the ability of

certain populations to perceive their own expression levels proliferating consequently, is followed

in this chapter.

As explained in Chapter 2, Interleukin 2 (IL-2), a cytokine mainly secreted for effector CD4+ T

cells (IL-2 producer), can bind with high affinity to receptor CD25, which characterises, together

with transcriptor factor FOXP3, regulatory CD4+ T cells [11]. Therefore, in this quorum-sensing

mechanism three different T cells subpopulations are considered: IL-2 producers, regulatory T

cells, which depend on IL-2 to proliferate and survive, and a third group of CD4+ that excludes

the other two (Total CD4+ - {IL-2 producer/T reg}).

One of the main distinctive points about this chapter has to do with the fact that real data were

specifically obtained for the common purpose of analysing the hypotheses explained beforehand

in a shared project with immunologists from Pasteur Institute in Paris, as part of the European

Network in Quantitative immunology (QuanTI Network). Data shown in the present chapter

belong to Pasteur Institute and the University of Leeds group as was stated in the agreement.

The present chapter is organised in the following manner: First, a statistical analysis (Sections 4.2
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and 4.3) is carried out based on a set of experiments done in Pasteur Institute of Paris regarding

this phenomenon. In particular, two scenarios under different infections and conditions with

the purpose of providing in vivo results to support or refute what has already been observed

ex vivo. A deterministic mathematical model is introduced in Section 4.4 to contrast distinct

hypotheses in the mechanisms that drive quorum-sensing, to provide estimations on which parts

of the process might be more relevant or to observe if the behaviour obtained in the experiments

can be reproduced, and under which circumstances. In order to do so, Section 4.5 brings a

global sensitivity analysis to distinguish those parameters with a stronger effect to take into

consideration for further analysis. Thus, once these parameters are identified, Section 4.6 explains

a parameter estimation process in which Bayesian techniques are explained and used. Finally,

some results and discussions follow in Sections 4.7 and 4.8.

4.2 Lymphopenia driven proliferation

A T-cell receptor (TCR) complex consists on two functional components: the TCR heterodimer,

responsible for antigen recognition, and the CD3 complex, in charge of signal transduction. By a

genetic technique, mice can have certain specific genes in-operated so, when compared to normal

mice (control), conclusions about a specific gene role can be determined. CD3 is composed of one

extracellular immunoglobulin-like domain CD3γ, CD3δ and two CD3ε chains which, together

with the two intracellular ζ chains, drive the signalling capacity of T cells [16].

In the present lymphopenia driven proliferation (LDP) set of experiments, both CD3ε chains have

been blocked in host mice (CD3ε−/− mice) avoiding T cell development. Two different types of

reporter mice were used to obtain the T cells injected in the hosts. Out of the four successive

experiments following the levels of IL-2 producer T cells, T reg cells and Total CD4+ (excluding

IL-2 producers and T reg), 2 · 104 T cells coming from Tg IL-2/GFP mice were used for two of them

(experiment 1 and experiment 2), whereas 2 · 104 and 5 · 104 T cells coming from IL-2/Thy1.1 were

applied for the two other trials (Figure 4.1).



Chapter 4. Quorum-sensing model 116

Figure 4.1: Time line for lymphopenia driven proliferation (LDP) experiment in which three or
four mice are euthanised each week from the day of the injection until week 6. Each CD3 knockout
mouse provides some amount of IL-2 producer cells, regulatory T cells and total CD4+ excluding
the previous two groups.

For each of these experiments, either three (experiment 2 and experiment 3) or four (experiment

1 and experiment 4) mice were used every week to analyse their lymphatic organs (spleen and

inguinal regions, in this case) so every piece of data (Total CD4+, IL-2 producer, T reg) belongs

to a different mouse. In fact, the mouse needs to be killed for the obtaining of the data. Tables

4.1,4.2,4.3,4.4 show the data for the four different LDP experiments obtained in Pasteur Institute.

For the purpose of the statistical analysis, let us define

xijk = “Number of CD4+ T cells excluding IL-2 producers and T reg cells for mouse j,

of experiment k at week i.”, (4.1)

yijk = “Number of IL-2 producers T cells for mouse j of experiment k at week i.”, (4.2)

zijk = “Number of T reg cells for mouse j of experiment k at week i”, (4.3)

where 1 ≤ k ≤ 3, 1 ≤ j ≤ 4 (for k = 1), 1 ≤ j ≤ 3 (for k = 2, 3) and 0 ≤ i0 < if ≤ 6 (5 for k = 4).

Vectors can then be arranged as

(xj)
[i0,i f ]
k = (xji0 , xji0+1, ..., xji f−1, xji f )k (4.4)
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and, defining j f = 3 (when k = 1) or j f = 4 (when k = 2, 3), the average value

E[x]
[i0,i f ]
k =

1
j f

j f

∑
j=1

(xj)
[i0,i f ]
k , (4.5)

and similarly for the other two variables y and z. So on, super-index [k0, k f ] will be skipped when

k0 = 0 and k f = 6.

Week Mouse xij1 yij1 zij1

1 156353 3521 6808
2 102995 1943 711

1 3 51743 5952 501
4 47772 3340 819
1 468609 41957 19880
2 393237 23900 9630

2 3 1222322 173879 61537
4 475998 47420 3201
1 1266271 130700 176400
2 813128 136521 70671

3 3 392307 66010 55010
4 396125 85487 71934
1 737624 102441 32575
2 341650 50375 2689

4 3 76333 11158 5602
4 751773 81213 36026
1 2407178 409248 96311
2 2148912 319652 119087

5 3 1060051 263194 86828
4 2227967 547476 71472
1 1032118 181490 74581
2 3081450 426915 521068

6 3 504651 89185 33496
4 4588501 651678 188138

Table 4.1: Data obtained in Pasteur Institute for (LDP) experiment 1 where x, y and z represent the
number of CD4+, IL-2 producers and regulatory T cells, respectively, in a single mouse which is
euthanised for such purpose.
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Week Mouse xij2 yij2 zij2

1 124000 1876 1100
1 2 141000 1654 1011

3 127000 2341 988
1 452400 36915 9591

2 2 308000 20543 13552
3 414000 23184 12420
1 2315300 105809 104652

3 2 1821600 92901 65031
3 3548200 230633 124187
1 1680000 82320 206640

4 2 3562500 146418 158175
3 2170000 124558 164920
1 2632000 16780 34291

5 2 2281600 159712 104954
3 2974400 356928 130874
1 5324800 415334 23961

6 2 9664000 1227600 128726
3 5562700 310398 103460

Table 4.2: Data obtained in Pasteur Institute for (LDP) experiment 2 where x, y and z represent the
number of CD4+, IL-2 producers and regulatory T cells, respectively, in a single mouse which is
euthanised for such purpose.

Week Mouse xij3 yij3 zij3

1 663000 1950 4501
1 2 896000 3120 3876

3 690000 2960 6102
1 1858896 29952 13104

2 2 3358714 108346 27086
3 3444210 72765 20790
1 6945575 206938 579425

3 2 5529576 69841 242424
3 3322200 73224 67800
1 9628990 316050 906010

4 2 5989375 129500 485625
3 3201600 113796 278400
1 4360500 91800 229500

5 2 5593000 152320 357000
3 7520000 229600 480000
1 5868720 209851 59280

6 2 11800000 500303 215794
3 8589848 322043 185153

Table 4.3: Data obtained in Pasteur Institute for (LDP) experiment 3 where x, y and z represent the
number of CD4+, IL-2 producers and regulatory T cells, respectively, in a single mouse which is
euthanised for such purpose.
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Week Mouse xij4 yij4 zij4

1 604000 51680 4256
2 2031840 81600 8160

1 3 671531 49567 7469
4 709995 28600 5005
1 7355850 438045 909150
2 12300000 517725 991643

2 3 13000000 648600 772800
4 10900000 301860 673380
1 16700000 35114 877850
2 11600000 23808 321408

3 3 15200000 47472 648784
4 9928800 20160 151200
1 4590000 14520 251680
2 5609520 11760 270480

4 3 3817440 15840 142560
4 6448400 13160 131600
1 4885920 26325 17908
2 7857720 26910 11228

5 3 15700000 33820 117520
4 7621120 16640 69888

Table 4.4: Data obtained in Pasteur Institute for (LDP) experiment 4 where x, y and z represent the
number of CD4+, IL-2 producers and regulatory T cells, respectively, in a single mouse which is
euthanised for such purpose.

Figure 4.2 shows the mean ± the standard deviation of these values for three of the experiments.

The particularities of experiment 4, which in addition to having followed cell expression for just

5 weeks, instead of 6, as in the other three experiments, a different initial amount of cells is

injected into mice; drove us to work from a comparative study of the first three experiments

simultaneously. Before analysing the correlation between different types of cells for each

experiment, one of the first targets is to quantify dissimilarities among them, mainly to find out if

these are due to the different conditions that have already been explained.

Whereas in IL-2 producer cells a smaller difference appears from one experiment to another, either

total CD4+ and T reg cells show an important variability in terms of absolute numbers. At first

sight, experiments 2 and 3 show a similar behaviour in the three variables whereas experiment 1

practically reverses monotony. This suggests that the sign of correlation between variables might

be constant but, for each experiment, the time for the change of cycles differs and this variation

has not much to do, according to Figure 4.2, with the kind of reporter mice from which injected

cells proceed. Given that OVA and LCMV experiments in following sections will study quorum-

sensing under non-natural conditions, we first need to quantify how this variability might happen
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Figure 4.2: Three different experiments for the lymphopenia driven proliferation. From left to
right, dots represent the average of the values of the actual data for total CD4+, IL-2 and T reg
cells, and curves a spline interpolation over time (in weeks). Dash curves represent the standard
error.

due to experimental issues and noise.

Given this, let us make a comment about the main similarities between experiments regarding the

correlation of the variables. Figure 4.3 shows a stronger linear correlation between E[z]2 and E[z]3

than between any of these two with E[z]1 (Pearson correlation coefficient of 0.966 versus 0.333 and

0.175). This characteristic occurs, in a smaller proportion, with variables x and y. Moreover, 95%

confidence intervals for experiments 2 and 3 also support this statement. In particular, (0.521,

0.988) between E[xj]2 and E[xj]3, (0.581, 0.990) between E[yj]2 and E[yj]3, and (0.781, 0.995) for

E[zj]2 and E[zj]3. This intersection does not occur when comparing experiment 1 with either

experiment 2 or 3. This suggests that the type of cells injected into mice do not seem to have a

notable effect on the proliferation of these type of cells, given that cells from Tg IL-2/GFP mice

were used for experiments 1 and 2 and T cells from IL-2/Thy1.1 mice, for experiments 2 and 3.

Even when experiments 2 and 3 show a more similar behaviour, a smaller variability obtained

within mice in experiment 1, in which four mice instead of the three from experiments 2 and 3

were taken every week, is observed in its standard deviation in Figure 4.2.

Let us now compare correlation between variables to see how this might vary from one

experiment to another (Figure 4.4). Here, what seems to be predominant is the linear correlation

observed between CD+4 and IL-2 in the three experiments (Pearson correlation of 0.977, 0.975 and

0.960 for experiments 1, 2 and 3). Again, the respective 95% confidence intervals, (0.847, 0.997),

(0.836, 0.996) and (0.747, 0.994) come to confirm this statement. The strength of this relation,

given by the slope m of the blue dash lines, does not seem to be that clearly similar for the three

experiments. The values of the slopes m1 = 0.17, m2 = 0.09 and m1 = 0.03, when obtaining
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Figure 4.3: Linear correlation between every couple from CD4+ ((xj)1), IL-2 producers ((xj)2),
regulatory cells ((xj)3) (first row) and the other two variables y and z (second and third row) with
their respective Pearson correlation coefficient (between E[x]1, E[x]2, E[x]3 for the first row and
similarly for y and z in second and third row). For every variable x,y and z, dots show the j
different mouse with a different colour for every week i. Blue dash lines are regression lines.

the 95% confidence intervals for every couple, (0.129, 0.215), (0.067, 0.117) and (0.024, 0.049)

respectively, suggests that how this linear relation between IL-2 and CD4+ occurs is significantly

different for each experiment. Additionally, Figure 4.4 shows that T reg cells do not seem to have

a clear linear relation with the other two variables, as it was expected, and a deeper analysis is

required. However, these values take into account vectors including every week i ∈ [0, 6] which

indicates the importance of measuring how this values depend on each week.



Chapter 4. Quorum-sensing model 122

Figure 4.4: Linear correlation between (xj)k, (yj)k and (zj)k for every experiment k (k = 1, 2, 3 in
the first, second and third row, respectively). For every experiment k, dots show the j different
mouse with a different colour for every week i. P values in the top-left corner correspond to each
pair E[x]k, E[y]k and E[z]k for k ε[1, 3]. Blue dash lines are regression lines.

Let us now focus on experiment 4. Given that a different amount of cells were injected for this

case compared to the other three experiments, comparisons have been omitted so far. Notation

can be maintained considering now k = 4. One advantage of this experiment, as occurs in the

first one, is that a larger number of mice were used every week (j ≤ 4). On the other hand,

measurements took place for one week less than in the other cases (0 ≤ i ≤ 5). An equivalent

table to the one shown in Figure 4.4 for previous experiments show a very different behaviour

due to a drastic increase of T reg cells and, in particular, of IL-2 producer cells, in week 3.

This particularity, provokes an imbalance in the decreasing tendency of the Pearson coefficient

observed for previous experiments (from left to right in the columns of Figure 4.4). Again, no

linear correlation can be strongly supported here.
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Figure 4.5: Linear correlation between (xj)4, (yj)4 and (zj)4. Dots show the j (1 ≤ j ≤ 4) mouse
with a different colour for every week i (0 ≤ i ≤ 5). P values correspond to each pair E[x]4, E[y]4
and E[z]4. Blue dash lines are regression lines.

Figure 4.6 shows an equivalence to Figure 4.3 but instead of total number of cells, it follows

the rate of each group of cell to compare each pair of experiments. This would bring some

light to a linear kind of relation between the percentages of the variables in use. Given that the

amounts of each type of cells are relatively similar for each experiment, no much noise affects the

conclusions shown in this plot (this would not be the case in Section 4.3). Figure 4.6 confirms the

existing connection between experiments 2 and 3 also regarding population rates. For the other

experiments, no linear correlation seems to be supported.

Figure 4.6: Linear correlation between
(xj)k

(xj)k+(yj)k+(zj)k
,

(yj)k
(xj)k+(yj)k+(zj)k

and
(zj)k

(xj)k+(yj)k+(zj)k
for every

experiment k (k = 1, 2, 3 in the first, second and third column, respectively). For every experiment
k, dots show the j different mouse with a different colour for every week i. P values correspond
to each pair E[x]k

E[x]k+E[y]k+E[z]k
, E[y]k

E[x]k+E[y]k+E[z]k
and E[z]k

E[x]k+E[y]k+E[z]k
for k ε[1, 3]. Blue dash lines

represent regression lines.
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Given that no significant linear correlation was found in most of the situations, a more specific

observation follows separating vectors by slots of weeks, this is, considering Equations (4.4)

and (4.5) without omitting super-index. Thus, in Table 4.5, a more specific analysis of the

correlation between variables was done identifying when the main variation takes place for every

experiment. Here, it can be observed that the four experiments follow a very similar behaviour

before the fifth week and that from then, variability emerges, bringing distinct combinations

between how variables interact. It is particularly noticeable the opposite adaptation of IL-2 and

CD4+ to T reg cells between experiments 2 and 3. Even when taken as a whole, they showed

a clear linear relation (Figures 4.3 and 4.6), the negative feedback of regulatory T cells start at

different moments depending on the experiment.

Weeks 0-2 Weeks 1-3 Weeks 2-4 Weeks 3-5 Weeks 4-6
CD4 vesusIL-2 0.996 0.978 0.880 1 0.951

Exp 1 CD4 vesusT reg 0.995 0.759 0.780 0.624 0.896
IL-2 vesusT reg 1 0.879 0.984 0.602 0.715
CD4 vesusIL-2 0.954 0.998 0.985 0.984 0.997

Exp 2 CD4 vesusT reg 0.927 1 0.861 -0.939 -0.565
IL-2 vesusT reg 0.997 0.998 0.761 -0.863 -0.622
CD4 vesusIL-2 0.971 0.990 0.941 1 1

Exp 3 CD4 vesusT reg 0.995 0.902 0.978 0.933 -0.787
IL-2 vesusT reg 0.991 0.834 0.991 0.917 -0.787
CD4 vesusIL-2 1 0.289 0.261 0.973

Exp 4 CD4 vesusT reg 0.997 0.824 0.660 0.684 N.A.
IL-2 vesusT reg 0.996 0.781 0.897 0.496

Table 4.5: Pearson correlation coefficient between variables for every set of two weeks in each
experiment.

However, cross-correlation is not symmetric and a delayed on the impact between variables can

be analysed. For that purpose, it is convenient to have a constant unit of time in the measurements

which allows us only to work for this case with the LDP experiment. What follow are all possible

combinations between the correlation of one vector variable with a transposition of one other

vector variable of 1 to a maximum of 4 weeks. Results have been obtained for absolute values

and for percentages and, again, an important variability results among the different experiments

(Tables 4.6 and 4.7).
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Absolute numbers

E[x][k
′
0,6]

i E[y][k
′
0,6]

i E[z][k
′
0,6]

i
k′0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

E[x]
[0,k f ]
1 .98 .60 .57 .96 .48 .90 .90 .18 .71 .95

E[y]
[0,k f ]
1 .98 .73 .58 .99 .66 .82 .88 .22 .83 0.93

E[z]
[0,k f ]
1 .80 .39 .55 .84 .65 .82 .28 .73 .66 .39

E[x]
[0,k f ]
2 .98 .63 .70 .99 .98 .55 .73 .03 -.45 -.77

E[y]
[0,k f ]
2 .98 .83 .61 .99 1 .36 .70 .06 -.50 -.54

E[z]
[0,k f ]
2 .55 .47 .87 .99 .99 .36 .39 .91 1 .98

E[x]
[0,k f ]
3 .96 .82 .84 .87 .92 .65 .72 .21 -.66 -.96

E[y]
[0,k f ]
3 .96 .85 .88 .80 .99 .48 .63 .09 -.72 -.87

E[z]
[0,k f ]
3 .65 .68 .80 .97 .96 .48 .64 .86 .96 .96

E[x]
[0,k f ]
4 .40 -.54 -.63 .24 NA .75 -.06 -.94 -.80 NA

E[y]
[0,k f ]
4 .40 .67 -.83 -.12 NA .83 .37 -.42 -.81 NA

E[z]
[0,k f ]
4 .75 .49 -.95 -.03 NA .83 -.51 -.57 .20 NA

Table 4.6: Pearson correlation coefficient between one vector variable and a transposition from 0
to a maximum of 4 weeks (3 for experiment 4) of one other vector variable for each experiment
for absolute values k f + k0 = 6 for i ∈ [1, 3] and k f + k0 = 5 for i = 4).

Percentages

E[x][k
′
0,6]

i E[y][k
′
0,6]

i E[z][k
′
0,6]

i
k′0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

E[x]
[0,k f ]
1 -.80 .20 -.38 .06 .94 -.77 .09 .81 -.82 .10

E[y]
[0,k f ]
1 -.80 -.34 .44 -.86 .61 .24 .33 -.77 .59 .39

E[z]
[0,k f ]
1 -.77 .66 .35 -.68 1 .24 -.58 .34 -.38 -.72

E[x]
[0,k f ]
2 -.84 .68 -.30 -.02 .55 -.89 .42 .23 .39 -.72

E[y]
[0,k f ]
2 -.84 .74 -.21 .99 -.97 .50 -.40 .09 -.48 -.56

E[z]
[0,k f ]
2 -.89 .79 .06 .87 -.99 .50 -.67 .53 -.06 -.69

E[x]
[0,k f ]
3 -.90 .60 -.19 .40 .30 -.93 .21 .84 .28 -.72

E[y]
[0,k f ]
3 -.90 .55 .72 .32 -.73 .68 -.35 -.67 -.11 .64

E[z]
[0,k f ]
3 -.93 .16 .85 .57 -.85 .68 -.36 .40 -.19 -.38

E[x]
[0,k f ]
4 -.92 -.64 -.91 .68 NA -.91 .43 -.92 -.12 NA

E[y]
[0,k f ]
4 -.92 -.48 -.98 -.60 NA .68 -.11 .99 .61 NA

E[z]
[0,k f ]
4 -.91 .35 -.75 .23 NA .68 .23 .78 -.38 NA

Table 4.7: Pearson correlation coefficient between one vector variable and a traspostion from 0 to
a maximum of 4 weeks (3 for experiment 4) of one other vector variable for each experiment for
percentages (k f + k0 = 6 for i ∈ [1, 3] and k f + k0 = 5 for i = 4).
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4.3 Lymphocytic choriomeningitis virus (LCMV) experiment

A plaque-forming unit (PFU), in virology, is a measure that quantifies the number of particles

that can forme plaques per unit volume. Theoretically, the plaque-forming unit includes only

the infectious virus particles since a virus particle failing to infect a host cell would not be able

to produce a plaque and would not be taking into account. Given that PFU includes only the

particles capable of infecting cells on their own, one PFU means one event of dissolution (or one

infectious virus particle).

Figure 4.7: Time line for lymphocytic choriomeningitis virus LCMV experiment in which two or
three mice (j) were killed for both control and infection. Each mouse provides some amount of
IL-2 producer cells, regulatory T cells and total CD4+ excluding the previous two groups

IL-2 Thy1.1/FoxP3 mRFP mice were infected with 2 · 105 plaque-forming units (PFU) of

lymphocytic choriomeningitis virus (LCMV) and three mice were killed every time to measure

the same variables as in LDP experiment in Section 4.2. As a control, two mice (three for the last

day) were used to compare results. Figure 4.7 shows the time line for LCMV experiment. In this

section, let us define xC
ij and xI

ij as the number of CD4+ T cells (excluding both IL-2 producers

and regulatory) in mouse j at day i (where i = 1, 2, 3, 4, 7, (16) and j = 1, 2, (3)) for control case

and virus infection, respectively. Note that every mouse j is independent for each day i. Similarly,

yC
ij , yI

ij and zC
ij , zI

ij encode number of IL-2 producer and T reg cells directly from data as Table 4.8

shows.
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Control / Non-infected

Days (i) xC
i1 xC

i2 zC
i3 yC

i1 yC
i2 yC

i3 zC
i1 zC

i2 zC
i3

1 1.65 · 107 1.96 · 107 − 3.30 · 103 7.84 · 103 − 2.98 · 106 2.33 · 106 −
2 1.48 · 107 1.72 · 107 − 4.95 · 104 8.16 · 104 − 2.72 · 106 3.08 · 106 −
3 2.21 · 107 2.03 · 107 − 1.99 · 104 1.42 · 104 − 2.32 · 106 3.24 · 106 −
4 1.95 · 107 1.68 · 107 − 9.75 · 104 2.18 · 105 − 2.73 · 106 2.52 · 106 −
7 3.09 · 107 1.48 · 107 2.98 · 107 3.09 · 104 1.48 · 104 8.95 · 103 2.64 · 106 1.93 · 106 NA

16 − − − − − − − − −

LCMV Infection

Days (i) xI
i1 xI

i2 zI
i3 yI

i1 yI
i2 yI

i3 zI
i1 zI

i2 zI
i3

1 1.75 · 107 1.85 · 107 2.00 · 107 1.00 · 105 6.43 · 104 2.25 · 105 2.48 · 106 2.96 · 106 2.47 · 106

2 1.60 · 107 1.97 · 107 1.37 · 107 6.72 · 105 6.98 · 105 1.88 · 106 3.23 · 106 3.58 · 106 2.95 · 106

3 1.61 · 107 1.85 · 107 1.61 · 107 1.89 · 105 2.18 · 105 3.84 · 105 2.84 · 106 3.26 · 106 3.07 · 106

4 2.30 · 107 2.75 · 107 2.53 · 107 6.49 · 106 5.26 · 106 5.59 · 106 4.06 · 106 3.40 · 106 4.12 · 106

7 2.56 · 107 2.38 · 107 2.53 · 107 1.38 · 106 3.09 · 106 2.82 · 106 3.48 · 106 3.55 · 106 2.90 · 106

16 1.68 · 107 3.23 · 107 2.42 · 107 5.04 · 105 3.23 · 105 4.83 · 105 9.58 · 105 1.68 · 106 1.88 · 106

Table 4.8: LCMV experiment data for both control and infection. Two or three mice were killed
at days 1,2,3,4,7 and 16 for the obtaining of CD4+ cells, IL-2 producers and regulatory cells. NA
means not available due to experimental reasons.

Arranging vectors similarly to Section 4.2 (see Equations (4.4) and (4.5)), Figure 4.8 shows the

correlation between (xj)k, (yj)k and (zj)k for every experiment k (k = I, C). This plots show

how when the infection takes place, T reg cells suppression gets blocked when comparing to the

control case (Pearson coefficient reduced from r = −0.044 to r = −0.821). Alternatively, there

are some behaviours that might not be explained by this first approach like interactions between

IL-2 producer cells and either total CD4+ or T reg cells. Apparently, by looking at Figure 4.8, the

infection strengthens IL-2 proliferative abilities. This might be also due to the small amount of

data available which correlations miss to understand or that delay in which signals are traduced

is not reflected in this analysis.

Similarly to the comparison done in LDP between Figures 4.4 and 4.6, a last example between

correlations is shown in Figure 4.9 in which correlation between percentages are studied.

Hence, correlation between
(xj)k

(xj)k+(yj)k+(zj)k ,
(yj)k

(xj)k+(yj)k+(zj)k and
(zj)k

(xj)k+(yj)k+(zj)k are analysed in an

analogous manner to Figure 4.8. Here it can be observed a neater effect of T reg cells when

suppressing CD4+ and also how IL-2 producer cells lose their proliferative capacity when the

infection take place. However, conclusions need to be analysed carefully. On one side, given that

three variables are taken into account when parametrising, if the weight of the third variable is

too high, that might affect the Pearson correlation term even when there is a reasonable strong

linear correlation between the other two variables. On the other hand, if when comparing two
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Figure 4.8: Linear correlation between (xj)k, (yj)k and (zj)k for every experiment k (k = C, I in
the first (infected mice) and second (control mice) column, respectively) in the LCMV experiment.
For every experiment k, dots show the j different mouse with a different colour for every day i. P
values correspond to each pair E[x]k, E[y]k and E[z]k for k = C, I. Blue dash lines are regression
lines.

variable the proportional rates are imbalanced, they might seem to follow a strong correlation

which is only due to this lack of proportion. This can be the case between T reg cells and CD4+

in the control case (Figure 4.9). However, given the relation between this two variables in term of

numbers and proportions (same box in Figure 4.8), the suppressive influence of T reg cells over

CD4+ seems to have in principle supported when no infection is taken place.

Figure 4.9: Linear correlation between
(xj)k

(xj)k+(yj)k+(zj)k ,
(yj)k

(xj)k+(yj)k+(zj)k and
(zj)k

(xj)k+(yj)k+(zj)k for every

experiment k (k = C, I in the first (infected mice) and second (control mice) column, respectively)
in the LCMV experiment. For every experiment k, dots show the j different mouse with a different

colour for every day i. P values correspond to each pair E[x]k

E[x]k+E[y]k+E[z]k , E[y]k

E[x]k+E[y]k+E[z]k and
E[z]k

E[x]k+E[y]k+E[z]k for k = C, I. Blue dash lines are regression lines.
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4.4 Two hypothesis tests for a quorum-sensing model

As mentioned in Section 1.1.3, a quorum-sensing model was already proposed in [5, 57]. For

this chapter, several variations take place in the alluded model. In addition to this, by using

some Bayesian techniques, data exposed in Section 4.3 for LCMV have been used to parametrise

the model and to elucidate some yet hidden mechanisms behind this self-regulated process.

Given the following T cell subpopulations, naive CD4+ (n1), IL-2 producer (n2), memory (n3)

and regulatory (n4) T cells, two different hypothesis in Models (I) and (II) regarding IL-2 fate via

regulatory T cell suppression are given by equations below in a general scenario.

IL-2 death pathway (Model (I)):

dn1

dt
= ν1 + λ1n1

(
1− n1

κ1

)
− µ1n1 − α1n1,

dn2

dt
= α1n1 + λ2n2 − µ2n2 − α2n2 − βn2n4,

dn3

dt
= α2n2 + λ3n3

(
1− n3

κ3

)
− µ3n3,

dn4

dt
= ν4 + λ4n4

(
1− n4

κ4

)
− µ4n4 + γ4n4n2.

(4.6)

IL-2 differentiation pathway (Model (II)):

dn1

dt
= ν1 + λ1n1

(
1− n1

κ1

)
− µ1n1 − α1n1,

dn2

dt
= α1n1 + λ2n2 − µ2n2 − α2n2 − βn2n4,

dn3

dt
= α2n2 + λ3n3

(
1− n3

κ3

)
− µ3n3 + βn2n4,

dn4

dt
= ν4 + λ4n4

(
1− n4

κ4

)
− µ4n4 + γ4n4n2.

(4.7)

Even when the concept of naive and memory cells where explained in the introduction (Section

1.1.1), given that in this section no distinction had been already done, it must be clarified that

whereas naive T cells have not received any kind of activation, memory cells did at some point,

but at the present moment are not activated any more. However, it is known that their time of

reaction to a plausible response will take much less time to be produced [51]. Having said that,

what in the experiments and so in previous sections were called total CD4+, in this chapter they

are separated into naive and memory.
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Consequently, in both models, for the naive cells (n1) there is a thymic input, ν1, which is the

rate at which naive cells are produced or more precisely, released to the periphery. Homeostasis

proliferation, the rate at which naive T cells in normal conditions get divided, is encoded by λ1

and it is limited by a carrying capacity κ1 for naive cells. Death rate of naive cells is given by µ1.

And finally, an activation term, α1, expresses how much of an immune response behaviour we

have in a lymphopenic environment. This term is only present if an immune response has taken

place and it will create two different scenarios in succeeding sections depending on if this term is,

or not, considered.

Regarding IL-2 producing cells, there is a programme of proliferation, λ2, which is turned on,

when an immune response is taking place, a µ2 death rate, with no carrying capacity, and a

memory differentiation rate, α2, which term is only present if an immune response takes place,

just like α1. These three terms are linearly proportional to the amount of IL-2 producing cells

available. As a contrast, β rate, that is, the death regulated by regulatory cells in Model (I) and the

differentiation into memory cells in Model (II) , is proportional to the amount of IL-2 producer

cells (n2) and to the number of T reg cells (n4). Thus, the two hypotheses considered in the analysis

mathematically speaking are: this term being a death term (so this term will not appear in the

third equation regarding memory T cells), or the term being a suppression of IL-2 production for

IL-2 producing cells to become part of the memory population, so by switching off IL-2 secretion

and these cells would stop being n2 (so the term would appear in the memory T cell equation

with positive sign).

For the memory T cells or IL-2 non-producing T cells there is no thymic input. However, an

homeostasis proliferation λ3 is considered, that is, the rate at which memory T cells in normal

conditions get divided. As occurred with n1, a carrying capacity κ3 for memory cells limits their

expansion. As for the previous populations, n3 death rate is given by µ3.

Finally, regulatory T cells follow a thymic input ν1 encoding the rate at which this subpopulation

is released into the periphery. An homeostatic proliferation, λ4, that should be considered as

TCR signal induced more than cytokine induced which, as for n1 and n3 is limited by a carrying

capacity κ3, an n4 death rate given by µ4 and a γ4 term for IL-2 driven proliferation, proportional

to n2 and n4. Note that no γ1 term was used for naive cells given that they do not upregulate

CD25.
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4.5 Sensitivity analysis

This section focuses on Model (I). The same procedure was followed for Model (II) and its not

shown here due to similar output. As a way of analysing the weight that every single parameter

has in the output when initial values are perturbed, a global sensitivity analysis was carried for

model given by Equation (4.6). As in many other systems biology [45], once the influence of

each input factor is quantified, further studies can be followed having into account the results

obtained from sensitivity analysis. Those parameters which influence in the output appears to be

considerably small can be then considered as fixed values and the system of open values shall be

reduced, which will allow, in principle, a more accurate study on the remaining set of parameters,

which are those supposed to be more relevant for the output.

As a starting point, a general approach over the whole set of {θ} is followed. The effect on each

concentration of species of every parameter in {θ} at different time points, including steady state

is simultaneously quantified, as

Sij =

(
∂ni
∂θj

)
·
(

ni
θj

)−1

This global sensitivity analysis provides a first conclusion when limiting the range of parameters

to study in depth [63]. The following table shows a summary of the Sij as a mean of the those

obtained at different points, including steady state.

n1 n2 n3 n4(
∂ni
∂λ1

)
·
(

ni
λ1

)−1
-.129 -.001 -.000 -.001(

∂ni
∂λ3

)
·
(

ni
λ3

)−1
0 .000 -.118 .000(

∂ni
∂µ1

)
·
(

ni
µ1

)−1
-.034 -.000 -.000 -.000(

∂ni
∂µ3

)
·
(

ni
µ3

)−1
0 .000 -.127 0(

∂ni
∂µ4

)
·
(

ni
µ4

)−1
0 .000 .000 .000(

∂ni
∂ν1

)
·
(

ni
ν1

)−1
.181 .001 .000 .001(

∂ni
∂ν4

)
·
(

ni
ν4

)−1
0 -.000 -.000 .000

Table 4.9: Summary of the elasticities from the sensitivity analysis of Sij where j ∈ {θF}.

Given that the influence for all the variables which respect to every parameter in {θF} is always
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smaller than |0.135|, it seems reasonable to fix these values according to literature and keep the

analysis with the rest of the parameters. For the carrying capacities κ1 and κ4 which have been

obtained from data in homeostasis, the influence given by the sensitivity analysis is much higher

and will vary depending on the variable. Table 4.11 summaries these values

n1 n2 n3 n4(
∂ni
∂κ1

)
·
(

ni
κ1

)−1
.819 .005 .001 .005(

∂ni
∂κ4

)
·
(

ni
κ4

)−1
0 ≈ -1 -.258 .006

Table 4.10: Summary of the elasticities for the sensitivity analysis of κ1 and κ4.

Interestingly, variations in κ4 inputs show a very strong inverse correlation with the output of

n2. In the case of κ1 it seems to be the one with the highest impact on the output of n1 given

that the rest of the rest of the rates, (only those with sub index 1 will have something to do with

the output), have a relationship of less than |0.2|. Finally, the set of parameters of {θV} which

will be under the Bayesian study verifies: A previous knowledge about the process they encode

being particularly important, or not sufficiently understood; This relates also to the fact of a lack

of information relating to the exact values of the parameters; And finally, as the output of the

sensitivity analysis arises, altering parameters in {θV} tends to have more weight on the output

than those in {θF} as it is shown below.

n1 n2 n3 n4(
∂ni
∂α1

)
·
(

ni
α1

)−1
-.017 .006 .001 .006(

∂ni
∂α2

)
·
(

ni
α2

)−1
0 -.035 .237 -.033(

∂ni
∂β

)
·
(

ni
β

)−1
0 -.010 -.003 -.009(

∂ni
∂λ2

)
·
(

ni
λ2

)−1
0 ≈ 1 .317 ≈ 1(

∂ni
∂λ4

)
·
(

ni
λ4

)−1
0 .994 .244 -.006(

∂ni
∂κ3

)
·
(

ni
κ3

)−1
0 .000 .754 0(

∂ni
∂γ4

)
·
(

ni
γ4

)−1
0 -.991 -.243 .006(

∂ni
∂µ2

)
·
(

ni
µ2

)−1
0 -.210 -.051 -.198

Table 4.11: Summary of the elasticities for sensitivity analysis of parameters in {θV}.

Clearly, those parameters that are more subjected to variability are λ2, λ4, κ3 and γ4. Given that,

at the same time, the information relating to this rate in literature is not strong enough, these four
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parameters will undergo the Bayesian process. Moreover, α1 and α2 are considered to play a key

role on the activation process. As it will be seen in Section 4.6, they will be also conditioned to

a variable recording the time in which activation take place an, lastly, they take different values

when there is no immune response, as it was seen before. µ2 is also considered in the Bayesian

analysis since it should not be assured that its weight, approximately −0.2 for several variables,

can be despicable. Additionally, and given that n2 is the only variable without a carrying capacity

in the model, changes on degradation rate need to be followed. Finally, β plays a central role

when studying the two different models hypothesised in which the preference for the system to

whether IL-2 producer cells become memory cells or are degraded when activation process has

finished, wants to be quantified.

4.6 Parameter estimation

Still showing results only for Model (I), System (4.6) encodes LCMV dynamics for the IL-2 death

pathway. As discussed in Section 4.5, some of these parameters {θF}, gathered in Table:4.12, are

obtained from literature [5] whereas the rest of them {θV} were either deterministically compute

from the equations or they go under an ABC parameter estimation process (see Definition 4.6.1).

Therefore, {θ} = {θF} ∪ {θV}.

Parameter Value Units
λ1 2 · 10−2 h−1

λ3 5 · 10−2 h−1

µ1 1 · 10−3 h−1

µ3 1 · 10−2 h−1

µ4 1 · 10−2 h−1

ν1 2.5 · 106 cell · day−1

ν4 2.5 · 105 cell · day−1

Table 4.12: Parameters {θF} obtained from literature [5].

Given that data show CD4+ both naive (n1) and memory (n3) together, a coefficient q0 ∈ ]0, 1]

might be included to split them. The rate naive/memory T cells is not rigorously established in

literature and it is subjected to variabilities from homeostasis. This distinction, however, will

be only considered for obtaining initial conditions and carrying capacities in {θF} given that

for obtaining parameters in {θV} both memory and naive T cells will be gathered together for

comparing with CD4+ data, as it will be explained. Consequently, the following relations, for

instance, for the control case, hold:
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nC
1 (i, j) = q0 · xC

ij ,

nC
2 (i, j) = yC

ij ,

nC
3 (i, j) = (1− q0) · xC

ij ,

nC
4 (i, j) = zC

ij .

(4.8)

Therefore, the values of the parameters in {θV} will be q0 dependent as it is described in Section

4.6.1. Time dynamics of the three populations given in data are shown with a cube spline

interpolation in Figure 4.10.

Figure 4.10: Spline for the infection case for CD4+ (both naive and memory), IL-2 producers and
regulatory T cells. Dash lines are the standard deviation. Time in days.

4.6.1 κ1 and κ4 ∈ {θV} estimation. No immune response

LCMV control data will be used to estimate the carrying capacity rates κ1 and κ4 ∈ {θV} and

initial conditions. For this purpose, when no immune response is taking place, α1 = α2 = 0

can be assumed, so no differentiation from naive into IL-2 producers nor from IL-2 producers to
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memory T cells will be considered. Thus, from System (4.6), it holds:

0 = ν1 + λ1 n1

(
1− n1

κ1

)
− µ1 n1, (4.9)

0 = λ3n3

(
1− n3

κ3

)
− µ3n3. (4.10)

For this subsection, and given that no particular immune response is taken place, no discernment

will be done from mice at different days. Therefore, κ1 can be obtained from system above taking

n1 = mean(nC
1 (i, j)), that is

κ1 =
λ1 mean(nC

1 (i, j))2

ν1 + (λ1 − µ1) mean(nC
1 (i, j))

. (4.11)

κ4 is supposed to keep the relation 1:10 with κ1 as for the synthesis of naive and regulatory T cells,

so

κ4 = 0.1 · κ1. (4.12)

Initial conditions were then obtained as ns(0) =mean(nC
s (i, j)) with s = 1, 2, 3, 4, i = 1, 2, 3, 4, 7

and j = 1, 2, (3). Thus, for example, for q0 = 1, and given parameters from Table 4.12,

Parameter Value Units
κ1 16730840 cell
κ4 1673084 cell

n1(0) 20206727 cell
n2(0) 49686 cell
n3(0) 0 cell
n4(0) 2648488 cell

Table 4.13: Initial conditions and κs ∈ {θV} with (s = 1, 4) for q0 = 1.

4.6.2 Bayesian estimation for {θV}

When analysing a statistical model, one of the crucial points relies on the properties deduced

from the underlying probability distribution of the data. This process of inference normally

needs a function of the parameter, likelihood function, to quantify the support data [12]. An

alternative way of approximating this likelihood, when for instance its analytical expression

cannot be obtained, follows a class of computational methods under the name of Approximate
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Bayesian Computation (ABC)-based methods [9].

A prior distribution π(θ) represents the beliefs about parameter θ before data is available. If θ∗

is a sample from this prior distribution, a dataset nS is generated by a conditional probability

distribution f (nS|θ∗) or likelihood function as a solution of a given statistical model. Therefore,

both nS and the experimental data, nI , can be compared under a proposed distance d which

if it is sufficiently small, θ∗ will be accepted. The posterior distribution π(θ|nI) is then the set

of accepted θ ∈ π(θ|nI). A summary of this rejection sampler, which is one of the more used

examples of ABC-based methods, is given in the following definition.

Definition 4.6.1 The Approximate Bayesian computation (ABC) rejection sampler [52] follows

the following steps:

1. Sample θ∗ from π(θ).

2. Simulate a dataset nS from f (nS|θ∗).

3. If d(nS, nI) ≤ ε, accept θ∗, otherwise reject.

4. Return to step 1.

ABC-based methods then filter the most appropriate values sampled from prior distributions

for a given set of parameters by means of a distance d between certain approximations of the

likelihood function and the observed data. But before applying this methodology to model given

by Equation (4.6), several definitions are needed which will be used as prior distributions later

on.

Definition 4.6.2 A random variable X has an uniform distribution, X ∼ U(a, b), if its probability

density function is given by:

f (x) =
1

b− a
, a < x < b, (4.13)

where a and b are fixed constants.

Definition 4.6.3 For a given positive integer n, the gamma function, Γ is an extension of the factorial

function, shifting arguments down by 1. That is

Γ(n) = (n− 1)! = (n− 1) · (n− 2) · · · (4.14)
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Definition 4.6.4 A random variable X defined over the interval [0, 1] has a beta distribution with

parameters α and β, X ∼ Beta(α, β), if its probability distribution function is given by

F (x) =
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1, (4.15)

where α and β are positive parameters and B(α, β) = Γ(α)Γ(β)
Γ(α+β) (Γ is gamma function).

Recapitulating, parameters {α1, α2, β, λ2, λ4, κ3, γ4, µ2} ∈ {θV} are obtained for a first

approximation from System (4.6) using the control case data. However, the more than probable

diverse manner of the Immune System to behave with and without a challenge activation guides

us towards considerations found in literature as well as intuition to choose the intervals of

the uniform prior distribution π(θV) for each of these parameters under the infection scenario.

For this purpose, sufficiently wide intervals broadly considering a range which contemplates

successive and reasonable speeds of reaction are taken under two alternatives procedures. One of

them choosing the prior over the parameter itself and, the other, over the inverse of the parameter,

that is, over a time scale.

So far, there are four different scenarios for our analysis of parameters:

• Uρ: When π(θV) follows a uniform distribution over parameters θV .

• Uτ : When π(θV) follows a uniform distribution over the exponent of the intervals of the

parameters θV .

• Betaρ: When π(θV) follows a Beta( 1
2 , 1

2 ) over parameters θV .

• Betaτ : When π(θV) follows a Beta( 1
2 , 1

2 ) over the exponent of the intervals of the parameters

θV .

Other four similar scenarios when the priors are taken over the time (the inverse of the

parameters) were also studied although results are not shown here. Now, given the sample

θ∗i = (α∗1 , α∗2 , β∗, λ∗2 , λ∗4 , κ∗3 , γ∗4 , µ∗2)i ∈ {θV}, for i = 1, 2, ...N, prior distributions can be defined as:
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The Uρ (left column) and Uτ (right column) cases:

α1 ∼ U[10−5, 100](h−1),

α2 ∼ U[10−5, 100](h−1),

β ∼ U[10−10, 10−3](h−1 · cell−1),

λ2 ∼ U[10−2, 102](h−1),

λ4 ∼ U[10−2, 102](h−1),

κ3 ∼ U[104, 108](cell),

γ4 ∼ U[10−10, 10−3](h−1 · cell−1),

µ2 ∼ U[10−4, 10−1](h−1),

α1 ∼ 10U[−5,0](h−1),

α2 ∼ 10U[−5,0](h−1),

β ∼ 10U[−10,−3](h−1 · cell−1),

λ2 ∼ 10U[−2,2](h−1),

λ4 ∼ 10U[−2,2](h−1),

κ3 ∼ 10U[4,8](cell),

γ4 ∼ 10U[−10,−3](h−1 · cell−1),

µ2 ∼ 10U[−4,−1](h−1).

(4.16)

where U represents the uniform distribution. The Betaρ (left column) and Betaτ (right column)

cases:

α1 ∼ Beta[10−5, 100](h−1),

α2 ∼ Beta[10−5, 100](h−1),

β ∼ Beta[10−10, 10−3](h−1 · cell−1),

λ2 ∼ Beta[10−2, 102](h−1),

λ4 ∼ Beta[10−2, 102](h−1),

κ3 ∼ Beta[104, 108](cell),

γ4 ∼ Beta[10−10, 10−3](h−1 · cell−1),

µ2 ∼ Beta[10−4, 10−1](h−1),

α1 ∼ 10Beta[−5,0](h−1),

α2 ∼ 10Beta[−5,0](h−1),

β ∼ 10Beta[−10,−3](h−1 · cell−1),

λ2 ∼ 10Beta[−2,2](h−1),

λ4 ∼ 10Beta[−2,2](h−1),

κ3 ∼ 10Beta[4,8](cell),

γ4 ∼ 10Beta[−10,−3](h−1 · cell−1),

µ2 ∼ 10Beta[−4,−1](h−1).

(4.17)

where Beta represents Beta( 1
2 , 1

2 ) distribution. Then, an ABC estimation (Definition 4.6.1) was

computed for obtaining the posterior distributions of these parameters using the distance

d(nSi , nI) =

√√√√√ 6

∑
j=1

4

∑
k=1

(
nSi

k (j)−mean(nI
k(j))

sd(nI
k(j))

)2

, (4.18)

where nSi is the solution of System (4.6) for every sample θ∗i over either θ or τθ . For this purpose,
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the set of accepted values A can be defined as:

A = {θ∗i ; d(nSi , nI) < δ}, (4.19)

for a given fixed δ ∈ <+. For this first approach, best combination of values θmin from all θi in

A (given by the minimum value of d(nSi , nI)) was used to plot curves ns(t) for s = 1, 2, 3, 4. This

would give so far the best fit to data nI
s(i, j), for s = 1, 2, 3, 4. However either the first set of dots

was fairly reproduced and then the curves for regulatory and IL-2 producer cells do not reach a

peak within the 16 days time or there were another bunch of accepted parameters which gave

a reasonable accuracy for the second half of the dots without reproducing the peak around the

third day (results not shown here).

4.6.3 LCMV challenge model

This vicissitude suggested a next step in which the strength of the challenge signal would be

progressively reduced, in a linear manner, starting at a certain time of the activation process t0

until it extinguishes after an interval ∆t that will be given by tchall = t0 + ∆t. This LCMV challenge

affects only parameters α1, α2 and λ2. Therefore, the two new priors that were considered in the

ABC analysis

t0 ∼ U[12, 96](h)

∆t ∼ U[1, 72](h).
(4.20)

Our new set of parameters is now called ΘV = {α1, α2, β,λ2,λ4,κ3, γ4,µ2, t0,tchall }. For each of the

N proposed set of parameters θ∗i in ΘV taken from the prior distributions, System (4.6) is solved

for t ∈ [0, t0i [ for i = 1, 2, 3...N. The code jumps then for t ∈ [t0i , tchalli [ (i = 1, 2, 3...N) to solve

System (4.21)

dn1

dt
= ν1 + λ1n1

(
1− n1

κ1

)
− µ1n1 − g(t; t0, tchall)α1n1,

dn2

dt
= g(t; t0, tchall)α1n1 + g(t; t0, tchall)λ2n2 − µ2n2 − g(t; t0, tchall)α2n2 − βn2n4,

dn3

dt
= g(t; t0, tchall)α2n2 + λ3n3

(
1− n3

κ3

)
− µ3n3,

dn4

dt
= ν4 + λ4n4

(
1− n4

κ4

)
− µ4n4 + γ4n4n2.

(4.21)
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where g(t; t0, tchall) = tchall−t
tchall−t0

and similarly for Model (II) in System (4.7). Finally, once the virus

is cleared, this is, α1,α2, λ2 → 0, for t = [tchalli , 16 · 24] (h), the code jumps to solve System (4.22),

dn1

dt
= ν1 + λ1n1

(
1− n1

κ1

)
− µ1n1,

dn2

dt
= −µ2n2 − βn2n4,

dn3

dt
= λ3n3

(
1− n3

κ3

)
− µ3n3,

dn4

dt
= ν4 + λ4n4

(
1− n4

κ4

)
− µ4n4 + γ4n4n2,

(4.22)

and similarly for Model (II) in System (4.7). This is, the strength of the activation signal vanishes

progressively from t0 to tchall and this is reflected on parameters α1, α2 and λ2 which, after t =

tchalli will be equal to 0. So far, the results of the posterior distributions obtained when using the

priors over the parameter or over the time can be compared. For this comparison to be realistic,

in both cases the same amount of proposals were taken, N = 106, and so the same threshold of

acceptance, δ = 29. In this way, it can be compared not only the differences in the distributions,

but the amount of accepted proposal NA for each case and the best fit(s) given by the minimum

value(s) of d(nSi , nI), being the output of each approach our accepted matrix in Equation (4.19)

A =



(α∗1)1 (α∗1)2 . . . (α∗1)NA

(α∗2)1 (α∗2)2 . . . (α∗2)NA

(β∗)1 (β∗)2 . . . (β∗)NA
...

...
. . .

...

(t∗0)1 (t∗0)2 . . . (t∗0)NA

(t∗chall)1 (t∗chall)2 . . . (t∗chall)NA


, (4.23)

Still, the curve for IL-2 producer cells do not seem to reflect the behaviour given by the data in

what the highest value concerns (results not shown here). This seem to be due to the convenience

of the distance measure to give priority the proximity to dots excluding day 3. However, and

given the difficulty in measuring the expression levels which might happen in shorter slots of

time than 24 hours, the Bayesian fitting was computed again ignoring the results obtained in day

3, which could perhaps not represent rigorously the time scales of what is happening, to somehow

force the curve to reach the high peak at the following day. The same plots as for the previous
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case were obtained and here it is shown (Figure 4.22) how the curve now follows a more similar

behaviour to expected experimentally. A summary of the characteristics of each approach (also

for Model (II)) is shown in the following table

MODEL I MODEL II
Death pathway Differentiation pathway

‰acceptance Min(d(nSi , nI)) ‰acceptance Min(d(nSi , nI))

Uτ over θ 2.28 22.550 1.68 21.514
Betaρ over θ 0.10 24.647 0.11 23.672
Betaτ over θ 1.90 22.543 1.78 22.361
Uρ over τθ 0.50 24.008 0.51 21.719
Uτ over τθ 2.23 22.741 1.65 21.143

Betaρ over τθ 3.29 23.606 3.33 23.392
Betaτ over τθ 2.01 23.368 1.76 21.641

Table 4.14: Summary of the eight different approaches Uρ,Uτ ,Betaρ,Betaτ all over θ and over τθ

regarding the number of trials NT (for δ = 29) and for Models (I) and (II). Data from Uρ was not
possible to obtain under this value of δ for computational reasons.

4.7 Results

Out of the ten different posterior distributions, one for each parameter, that are obtained from

each approach, let us focus on those which present a higher disagreement among them. Figure

4.11, shows these dissimilarities for α1 in a coupled way when comparing the four cases Uτ ,

Betaτ (Model (I)), U∗τ , Beta∗τ (Model (II)) when the prior distributions are considered over the

parameters. It can be observed how the posterior distribution, plotted in light blue, seems to

follow a bimodal shape when Beta distribution is used as the prior for computing the distance

whereas it looks more uni-modal when using a uniform prior. This suggests that the inclusion

of weight on the sides, which is what the Beta distribution does, would bring two alternative

pathways to minimise the distance of the curves to the data. Nevertheless, the only two

parameters which can increase the proliferation of IL-2 producers are the differentiation of naive

cells into IL-2 producers, recorded by α1, and the proliferation of the latter, given by λ2. However,

correlations between this two variables, shown in Figure 4.20, indicates that when the model

accepts high values for λ2, instead of compensating with smaller values for α1, it tends to accept

values of α1 in the middle of its prior interval, which is what produces this accumulation of values

in the posterior distribution.

Broadly speaking, two different types of behaviour can be observed when comparing prior
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Figure 4.11: α1 for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

Figure 4.12: α2 for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

to posterior distributions in the parameters. Mainly for α1, λ2, β and γ4, some noticeable

dependency between the learning and the prior distribution can be observed, when taking

together the uniform and the beta distributions (Figures 4.11,4.13,4.15,4.16). Even when these

alterations are not very significant, they have to be taken into account when comparing how the

respective variations in the other parameters are almost negligible, supporting the idea that these
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Figure 4.13: λ2 for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

Figure 4.14: λ4 for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

four parameters are those driving the Bayesian learning.

Regarding the posterior distribution of λ2, Figure 4.13 does not show much difference between

the diverse approaches further the amount of accepted values that are reflected also in the

prior distribution and given in Table 4.14. Taking these two plots together the output clusters
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Figure 4.15: β for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

Figure 4.16: γ4 for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

the truthfulness of the model in two different groups characterised by the strength of naive

differentiation into IL-2 producers. This behaviour can also be appreciated in the most of the

other parameters (see for instance β posterior distributions in Figure 4.15). This approximation to

the best fit might act as a support of the robustness of the model.
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Figure 4.17: µ2 for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

Figure 4.18: κ3 for Uτ ,U∗τ ,Betaτ ,Beta∗τ prior (black curve) and posterior distributions (light blue).
Dark blue bars correspond to the 10% of the accepted values A which gives the smallest distance
d.

Mean Std. Dev. Min Median Max
Uτ 3.98 · 10−3 3.21 · 10−2 1.01 · 10−5 6.42 · 10−4 6.16 · 10−1

α1 U∗τ 1.16 · 10−2 7.35 · 10−2 1.00 · 10−5 4.08 · 10−4 9.37 · 10−1

Betaτ 8.35 · 10−3 6.99 · 10−2 1.00 · 10−5 1.85 · 10−4 9.87 · 10−1

Beta∗τ 2.51 · 10−2 1.31 · 10−1 1.00 · 10−5 1.28 · 10−4 9.99 · 10−1

Uτ 1.17 · 10−1 2.22 · 10−1 1.01 · 10−5 6.71 · 10−3 9.97 · 10−1

α2 U∗τ 1.06 · 10−1 2.13 · 10−1 1.01 · 10−5 3.58 · 10−3 9.95 · 10−1

Betaτ 1.69 · 10−1 3.05 · 10−1 1.00 · 10−5 2.65 · 10−3 1.00
Beta∗τ 1.74 · 10−1 3.06 · 10−1 1.00 · 10−5 2.15 · 10−3 1.00

Table 4.15: Summary of posterior distributions when uniform prior is taken over the logarithm of
the parameters and β term represents death of IL-2 producer cells (case Uτ).
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Mean Std. Dev. Min Median Max
Uτ 2.83 1.13 · 10 1.00 · 10−2 5.17 · 10−2 9.85 · 10

λ2 U∗τ 7.61 · 10−1 5.36 1.00 · 10−2 3.48 · 10−2 9.00 · 10
Betaτ 3.86 1.53 · 10 1.00 · 10−2 2.19 · 10−2 1.00 · 102
Beta∗τ 1.73 1.05 · 10 1.00 · 10−2 2.12 · 10−2 9.96 · 10

Uτ 7.75 1.67 · 10 1.00 · 10−2 5.11 · 10−1 9.86 · 10
λ4 U∗τ 9.03 1.81 · 10 1.00 · 10−2 6.74 · 10−1 9.92 · 10

Betaτ 2.28 · 10 3.38 · 10 1.00 · 10−2 1.28 1.00 · 102

Beta∗τ 2.59 · 10 3.51 · 10 1.00 · 10−2 2.52 1.00 · 102

Table 4.16: Summary of posterior distributions when uniform prior is taken over the log of the
parameters and β term represents death of IL-2 producer cells (case Uτ).

Mean Std. Dev. Min Median Max
Uτ 9.15 · 10−6 4.98 · 10−5 1.01 · 10−10 3.38 · 10−8 7.84 · 10−4

β U∗τ 1.00 · 10−5 6.75 · 10−5 1.00 · 10−10 4.52 · 10−9 9.06 · 10−4

Betaτ 4.26 · 10−5 1.64 · 10−4 1.00 · 10−10 1.38 · 10−9 9.99 · 10−4

Beta∗τ 3.17 · 10−5 1.44 · 10−4 1.00 · 10−10 7.03 · 10−10 1.00 · 10−3

Uτ 8.43 · 10−5 1.67 · 10−4 1.05 · 10−8 1.02 · 10−5 9.90 · 10−4

γ4 U∗τ 8.04 · 10−5 1.62 · 10−4 1.39 · 10−8 9.89 · 10−6 9.71 · 10−4

Betaτ 2.51 · 10−4 3.25 · 10−4 1.63 · 10−8 8.37 · 10−5 1.00 · 10−3

Beta∗τ 2.58 · 10−4 3.26 · 10−4 1.79 · 10−8 8.94 · 10−5 1.00 · 10−3

Table 4.17: Summary of posterior distributions when uniform prior is taken over the log of the
parameters and β term represents death of IL-2 producer cells (case Uτ).

Mean Std. Dev. Min Median Max
Uτ 1.25 · 10−2 2.13 · 10−2 1.00 · 10−4 2.26 · 10−3 9.85 · 10−2

µ2 U∗τ 1.07 · 10−2 1.96 · 10−2 1.00 · 10−4 1.97 · 10−3 9.70 · 10−2

Betaτ 1.30 · 10−2 2.51 · 10−2 1.00 · 10−4 1.01 · 10−3 1.00 · 10−1

Beta∗τ 1.19 · 10−2 2.52 · 10−2 1.00 · 10−4 9.42 · 10−4 1.00 · 10−1

Uτ 5.15 · 106 9.42 · 106 1.01 · 104 1.21 · 106 8.31 · 107

κ3 U∗τ 3.43 · 106 8.59 · 106 1.00 · 104 4.28 · 105 8.26 · 107

Betaτ 6.48 · 106 1.46 · 107 1.00 · 104 3.73 · 105 9.96 · 107

Beta∗τ 4.72 · 106 1.14 · 107 1.00 · 104 2.37 · 105 9.41 · 107

Table 4.18: Summary of posterior distributions when uniform prior is taken over the log of the
parameters and β term represents death of IL-2 producer cells (case Uτ).

Mean Std. Dev. Min Median Max
Uτ 66.85 22.89 12 72 95

t0 U∗τ 63.45 23.21 12 69 95
Betaτ 63.82 28.59 12 73 95
Beta∗τ 60.60 29.84 12 68 95

Table 4.19: Summary of posterior distributions when uniform prior is taken over the log of the
parameters and β term represents death of IL-2 producer cells (case Uτ).
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Regarding the strength of the signal for the activation, results seem to suggest a delay of between

62 and 67 hours average, depending on the approach that has been followed (Uτ , Betaτ , U∗τ or

Beta∗τ (Table 4.19). Even when the acceptance criteria must consider the election of a vector with

10 different proposed parameters, from the prior uniform distribution which interval, for t0, is

[12, 96], Figure 4.19 show the posterior distribution of this parameter with a clear slope to the

right for every case. However when only the 10% of the accepted values giving the minimum

distance are considered, the distribution looks more homogeneous and, specially for the IL-2

death pathway, the optimal value is obtained when α1, α2 and λ2 start to decrease between the

first and the second day.

Figure 4.19: t0 prior (black curve) and posterior distributions (light blue). Dark blue bars
correspond to the 10% of the accepted values A which gives the smallest distance d.

4.7.1 Model selection

The tendency for preferring the differentiation path or the death one for IL-2 producer cells does

not seem to be strongly supported by the model comparison in which the ‰of acceptances was

contrasted in both scenarios. On the other hand, the robustness of the model is also seconded by

the relatively small different appearing regarding the different approach that has been followed,

according to the values below. Let us call p =‰of acceptances for model (I) and p∗ = ‰of

acceptances for model (II) for every single approach. Then, it can be concluded:

• For Uτ over θ versus U∗τ : p∗UL
(p∗UL+pUL) = 0.425
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• For Betaρ over θ versus Beta∗ρ : p∗B
(p∗B+pB) = 0.511

• For Betaτ over θ versus Beta∗τ : p∗BL
(p∗BL+pBL) = 0.483

• For Uρ over τθ versus U∗ρ : p∗U
(p∗U+pU) = 0.505

• For Uτ over τθ versus U∗τ : p∗UL
(p∗UL+pUL) = 0.426

• For Betaρ over τθ versus Beta∗ρ : p∗B
(p∗B+pB) = 0.505

• For Betaτ over τθ versus Beta∗τ : p∗BL
(p∗BL+pBL) = 0.466

4.8 Discussion

This chapter goes through an adapted model for quorum-sensing mechanism involving CD4+ T

cells, IL-2 producer cells and T reg cells. The first part (Sections 4.2 and 4.3) mainly analyses from a

statistical point of view several experiments in which under different scenarios population levels

were tracked. First, a lymphopenia driven proliferation set of experiments shows, with variability

occurring from one condition to another, that negative feedback from T reg cells to the other cells

cannot be explained in a linear way as clearly as the positive signal from IL-2 (Figures 4.3-4.6).

Among other observations explained in Section 4.2, it is reasonable as a first approach to analyse

these correlations from a relative and a total point of view before making further conclusions.

After this, Section 4.4 propose a quorum-sensing model for trying to reproduce the mechanisms

observed in data. Once the model is introduced, the first step is to localise those parameters that

mainly drive the output of the model. For this purpose, Section 4.5 identifies such rates that

would be used afterwards in the Bayesian estimation and fix those which would be taken from

literature. In this Bayesian analysis in Section 4.6.2, the methodology behind the ABC algorithm

and so the justification on the election of prior distributions and intervals are explained.

As an attempt of improving our model, once the first results were obtained, we introduced

some alterations regarding the variability of some of the rates. Given that the strength in cell

signalling might be monotonously reduced [72], we include in Section 4.6.3 two new variables,t0

and tchall = t0 + ∆t, in the Bayesian analysis to identify when the activation pathway starts to

decrease, encoded by α1, α2 and λ2, and when it would be completely over. Which means that

from time 0 to time t0, these three parameters would take the values obtained in the estimation,

and from t0 to tchall , they would linearly decrease until 0.
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Some conclusions about this Bayesian analysis can be observed in Figures 4.11-4.19. There are

some parameters for which the learning done by the Bayesian analysis is more relevant than

others. For instance, we see that the selection of α1, λ2, β and γ4 has a strong impact on the

resultant distance d. For the first three of them, α1, λ2, β, small values result in smaller distance,

whereas for γ4 the model tends to choose values higher than 10−7. We can also conclude that

there is no significant learning for values α2 and λ4. Finally, there is just a preference for not

choosing too high values for κ3 and µ2, for the latter, specially when using a Beta distribution for

the prior. It seems then, that the most sensitive reactions for this model to track are related to

effector cells production (α1 and λ2) and iteractions between regulatory T cells and effector cells,

which would be studied in more detail in Chapter 5.

Figure 4.20: Correlations of accepted parameters from {θV} for case Betaτ .

Moreover, Figure 4.20 shows correlations between all different dots in the set of accepted values

for case Betaτ as a representative example of all of them. In fact, and as it could be predicted from

the posterior distributions, differences between approaches do not seem to indicate a significance

influence on the output from the election of the prior distribution. A first noticeable thing to

comment comes from the vertical and horizontal gaps that some parameters show regardless

their correspondence with the others. This is specially evident for α1 and in a smaller proportion

for γ4 or κ3, and reflects well with what was observed in the probability distribution plots for the

posterior of the parameters which shifts the preference of certain values to a specific side. A more

interesting result that cannot be appreciated in the previous plots shows a very strong correlation

between λ4 and γ4 and, on the other side, between β and λ2. The first of them suggests that
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proliferation of regulatory T cells seems to be somehow balanced by both the influence of IL-2

producer cells and self-development signals and when one of them tends to spread that forces

the increase of the other. The second case indicates that from a specific value of λ2, the same

which splits in every correlation the dots into crowded and non-crowded region, the value of β

will increase with λ2, suggesting that IL-2 producer cells would balance their expression levels

by the control of the regulatory T cells.

Figure 4.21: Time course of model given by Equation (4.6) for the median values of parameters
{θV} (shown in Table 4.18) for case Beta∗τ with 95% confident interval. Vertical lines reflect the time
points where the system jumps from model given by Equation (4.6) to model given by Equation
(4.21) and then to model given by Equation (4.22) as explained in Section 4.6.3.

Finally, the median of the values given in Table 4.18 was plotted for the model Beta∗τ in Figures

4.21 and 4.22. Both of them show the 95% confident interval and it can be observed that when the

whole approach is followed without taking into account dots of day 3 (Figure 4.21), the model

seems to better describe the shape of the experimental data. However, due to the particularities

of the data and the limitations of the model, the comments made throughout the chapter suggest

further study is needed.
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Figure 4.22: Time course of model given by Equation (4.6) for the median values of parameters
{θV}, excluding day 3, for case Beta∗τ with 95% confident interval. Vertical lines reflect the time
points where the system jumps from model given by Equation (4.6) to model given by Equation
(4.21) and then to model given by Equation (4.22) as explained in Section 4.6.3.
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Chapter 5

A probabilistic approach to tumour

prognosis

5.1 Introduction

In previous chapters, the role of regulatory CD4+T cells suppressing effector T cells (IL-2

producing cells) was explained. From a molecular point of view, in Chapter 3 we explained

how CTLA-4 high expression on the surface of T reg cells leads to an acceleration on the blockade

of cells proliferation by a cell extrinsic behaviour that depletes triggering molecules on APCs.

Moreover, the quorum-sensing mechanism between these two types of cells analysed in Chapter

4 suggests that the relative number of naive, effector, memory and T reg CD4+ T cells determines

the mechanism that regulates population levels. In fact, in a cancer scenario, it has been observed

[59] that the relative number of effector and T reg cells, as well as IL-2 expression levels, are an

indicator of disease progression.

In this Chapter, we consider a tumour scenario to further investigate the role of quorum-sensing.

To this end, we only take into account two types of cells; T reg cells and IL-2 producing

CD8+ T cells. It has been studied that in malignant tumour, regulatory T cells suppress

effective antitumour immunity, causing tumour progression ([70] or [49] among others). To

mathematically check this, two different models are proposed for Sections 5.2 and 5.3 encoding

interactions between this two subpopulations of cells. Each of these models will be studied both

deterministic and stochastically. Moreover, for each of these models, some mathematical results
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are used to guarantee the extinction of one of the populations depending on the parameter rates.

Finally, Section 5.4 shows some conclusions regarding the results obtained from each approach.

5.2 Toy model

In this section, a basic toy model is considered for two interacting populations of T cells: cytotoxic

effector CD8+ T cells (IL-2 producing) and regulatory T cells. nE(t) and nR(t) represent the

amount of cytotoxic and regulatory T cells, respectively, at time t ≥ 0. Reactions considered

in Equation (5.1) represent linear and non-linear death in both populations (µE, µR, νE and νR),

where, in the spirit of [4], νE and νR also act as ”carrying capacities”; proliferation due to TCR (λE

and λR), proliferation due to IL-2 (αE and αR) and suppression of effector T cells by regulatory T

cells (χ).

By focusing on the stochastic version of this model, and considering a continuous-time Markov

chain X = {(NE(t), NR(t)) : t ≥ 0} defined over N2
0, transitions and infinitesimal transition

rates are given by

q(nE ,nR),(n′E ,n′R) =



λEnE + αEn2
E, if (n′E, n′R) = (nE + 1, nR),

µEnE + νEn2
E + χnEnR, if (n′E, n′R) = (nE − 1, nR),

λRnR + αRnEnR, if (n′E, n′R) = (nE, nR + 1),

µRnR + νRn2
R, if (n′E, n′R) = (nE, nR − 1).

(5.1)

This represents a bivariate Markov process over S = N2
0 that, starting at a given state (nE, nR) ∈

N2, it may eventually hit one of the axis

AE = {(nE, 0) : nE ∈N}, AR = {(0, nR) : nR ∈N},

meaning that one of the T cell populations becomes extinct. Once one population becomes extinct,

the surviving species will evolve according to a one-dimensional birth-and-death process; see, for

example, [4, Section 6.2].
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5.2.1 Probability of extinction and mean time until extinction

A fundamental question is whether this process hits or not one of the axis; that is, whether one

of the T cell populations becomes extinct in a finite time or not, with probability one. In order to

analyse this, for which we will use some results in [56] and [29], one may consider from now on

that AE and AR are two sub-sets of absorbing states. Then, we structure the state space of X as

S = C ∪ AE ∪ AR = C ∪ C0, (5.2)

with C0 being an absorbing set of states in an axis and C = N2 being an irreducible infinite class

of non-absorbing states. Thus, we have Theorem 5.1.

Theorem 5.1. Let α(nE ,nR), with (nE, nR) ∈ C, be the probability of reaching some state in C0, from

(nE, nR), in a finite time, and τ(nE ,nR) the mean time until this occurs. Under parameter Regimes

A, B or C, α(nE ,nR) = 1 and τ(nE ,nR) < +∞ for any initial state (nE, nR) ∈ C. Where

Regime A:

µE = µR,

λE > λR,

αR > αE,

νE > αE > αR
2 ,

2νE < χ < νE + νR.

Regime B:

µE = µR,

λE > λR,

αR > αE,

νE > αE > αR
2 ,

2νR > χ > νE + νR.

Regime C:

µE = µR,

λE > λR,

αR > αE,

νE = νR = ν > αE > αR
2 ,

2ν < χ.

Proof.

We prove this result by means of [56, Criterion C]. In particular, this criterion states:

[56, Criterion C]: Lets suppose thatX is a regular process defined over S = C ∪C0 where C is a

set of non-absorbing states and C0 is a set of absorbing states. Let α(nE ,nR), with (nE, nR) ∈ C,

be the probability of reaching some state in C0, from (nE, nR), in a finite time, and τ(nE ,nR) the

mean time until this occurs. If there exists a set of constants u(n′E ,n′R) ≥ 0 for (n′E, n′R) ∈ C

such that

∑
(n′E ,n′R)∈S

q(nE ,nR),(n′E ,n′R)u(n′E ,n′R) ≤ −1, ∀(nE, nR) ∈ C,
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then α(nE ,nR) = 1 and τ(nE ,nR) ≤ u(nE ,nR) < +∞.

The utility of this criterion is partially limited by the fact that it is not trivial to find these constants u(nE ,nR).

We may instead follow the results in [29] where alternative sufficient conditions are given. In order to use

results in [29], we first organise C by levels as

C =
+∞⋃
k=2

C(k), C(k) = {(nE, nR) ∈ C : nE + nR = k}.

For each level C(k), we define the global birth-and-death rates as

λk = max
(nE ,nR)∈C(k)

{q(nE ,nR),(nE+1,nR) + q(nE ,nR),(nE ,nR+1)},

µk = min
(nE ,nR)∈C(k)

{q(nE ,nR),(nE−1,nR) + q(nE ,nR),(nE ,nR−1)}.

Finally, if we define

σ2 = 1,

σk =
λ3 · · · λk
µ3 · · · µk

, k ≥ 3,

then, [29, Theorem 3] states that α(nE ,nR) = 1 for all (nE, nR) ∈ C if (sufficient condition)

+∞

∑
k=2

1
λkσk

= +∞.

Moreover, if α(nE ,nR) = 1 for all (nE, nR) ∈ C, then [29, Theorem 4] states that τ(nE ,nR) < +∞ if

(sufficient condition)

+∞

∑
k=2

σk < +∞.

In our particular process, since give (nE, nR) ∈ C(k), nR = k− nE, we get

λk = max
nE∈[1,k−1]

{(αE − αR)n2
E + (λE − λR + αRk)nE + λRk},

µk = min
nE∈[1,k−1]

{(νE + νR − χ)n2
E + (χ− 2νR)knE + (µR + νRk)k + (µE − µR)nE}, .
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We prove now that, at least under three different regimes, α(nE ,nR) = 1 and τ(nE ,nR) < +∞.

Regime A

For simplicity, and given that data in literature (see, for instance, References [5] and [6]) seems to support

this hypothesis, we will assume for now on that µ = µE = µR. We can write first λk and µk as

λk = max
nE∈[1,k−1]

{ fk(nE)}, µk = min
nE∈[1,k−1]

{gk(nE)}, k ≥ 2,

with fk(·) and gk(·) two continuous functions defined over nE ∈ [1, k− 1] as

fk(nE) = (αE − αR)n2
E + (λE − λR + αRk)nE + λRk, (5.3)

gk(nE) = (νE + νR − χ)n2
E + (χ− 2νR)knE + (µ + νRk)k. (5.4)

We first note that, under Regime A, fk(·) and gk(·) are monotonically increasing and decreasing,

respectively, with respect to nE ∈ [1, k− 1]. In particular:

• f ′k(nE) = 2(αE − αR)nE + (λE − λR + αRk) > 0 ⇔ nE < λE−λR+αRk
2(αE−αR) , since αR > αE. Now,

since k(αR − 2αE) < 0 < λE − λR + 2(αR − αE), we have that

nE ≤ k− 1 <
λE − λR + αRk

2(αR − αE)
,

so that f ′k(nE) < 0 for all nE ∈ [1, k− 1].

• g′k(nE) = 2(νE + νR − χ)nE + (χ− 2νR)k < 0⇔ nE < (2νR−χ)k
2(νE+νR−χ) , since νE + νR > χ. Now,

since nE ≤ k− 1 and

k− 1 <
(2νR − χ)k

2(νE + νR − χ)
⇔ (2νE − χ)k < 2(νE + νR − k) ⇔ k >

2(νE + νR − k)
2νE − χ

,

which holds since 2νE < χ, we have that g′k(nE) < 0 for all nE ∈ [1, k− 1].
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Then, fk(·) and gk(·) reach their maximum and minimum, respectively, at nE = k− 1. Thus,

λk = αEk2 + (αR − 2αE + λE)k + αE − αR + λR − λE,

µk = νEk2 + (µ + χ− 2νE)k + νE + νR − χ.

In order to prove α(nE ,nR) = 1 for all (nE, nR) ∈ C, we now analyse the convergence of

+∞

∑
k=2

1
λkσk

=
+∞

∑
k=2

ak.

We use here D’Alembert criterion:

lim
k→+∞

ak+1
ak

= lim
k→+∞

k+1
∏

p=3
µp

(
k+1
∏

p=2
λp

)−1

k
∏

p=3
µp

(
k

∏
p=2

λp

)−1 = lim
k→+∞

µk+1
λk+1

= lim
k→+∞

νE(k + 1)2 + (µ + χ− 2νE)(k + 1) + νE + νR − χ

αE(k + 1)2 + (αR − 2αE + λE)(k + 1) + αE − αR + λR − λE

=
νE
αE

> 1,

so that
+∞
∑

k=2

1
λkσk

= +∞ and α(nE ,nR) = 1 for all (nE, nR) ∈ C. Moreover, by applying [29, Theorem 4] we

can prove that τ(nE ,nR) < +∞ by proving that

+∞

∑
k=2

σk =
+∞

∑
k=2

ak (5.5)

converges. By D’Alembert criterion again, we have that

lim
k→+∞

ak+1
ak

= lim
k→+∞

k+1
∏

p=3
λp

(
k+1
∏

p=3
µp

)−1

k
∏

p=3
λp

(
k

∏
p=3

µp

)−1 = lim
k→+∞

λk+1
µk+1

= lim
k→+∞

αE(k + 1)2 + (αR − 2αE + λE)(k + 1) + αE − αR + λR − λE

νE(k + 1)2 + (µ + χ− 2νE)(k + 1) + νE + νR − χ

=
αE
νE

< 1,
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so that
+∞
∑

k=2
σk converges and τ(nE ,nR) < +∞ for all (nE, nR) ∈ C.

Regime B

We point out here that, since fk(nE) only involves parameters αE, αR, λE and λR, which satisfy same

inequalities as in Regime A, we have that

λk = αEk2 + (αR − 2αE + λE)k + αE − αR + λR − λE.

On the other hand, it can be proved in an analogous way as in Regime A that g′k(nE) < 0 for all nE ∈

[1, k− 1], so that

µk = νEk2 + (µ + χ− 2νE)k + νE + νR − χ.

Then, since λk and µk have the same expressions than in Regime A, and νE > αE also in Regime B:

+∞

∑
k=2

1
λkσk

= +∞,
+∞

∑
k=2

σk < +∞,

so that α(nE ,nR) = 1 and τ(nE ,nR) < +∞ for all (nE, nR) ∈ C.

Regime C:

By following same argument than for Regimes A and B, we can obtain λk = αEk2 + (αR − 2αE + λE)k +

αE − αR + λR − λE also under this regime. We also note that under Regime C, ν = νE = νR, so that

gk(1) = gk(k− 1) = νk2 + (µ + χ− 2ν)k + 2ν− χ,

g′k(1) = (χ− 2ν)(k− 2) > 0, k ≥ 3,

g′k(k− 1) = (2ν− χ)(k− 2) < 0, k ≥ 3,

g′k(nE) = 0 ⇔ nE =
k
2

,

g′′k (k/2) = 2(2ν− χ) < 0.
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That is, gk(·) reaches its maximum in nE = k/2 and its minimum in nE ∈ {1, k − 1} (both with same

value). Since µk = min
nE∈[1,k−1]

{gk(nE)}, k ≥ 2, we get

µk = νk2 + (µ + χ− 2ν)k + 2ν− χ,

which is the same expression than in previous regimes but with νE = νR = ν. Thus, since ν > αE, by

same arguments than before, it is clear that

+∞

∑
k=2

1
λkσk

= +∞,
+∞

∑
k=2

σk < +∞,

so that α(nE ,nR) = 1 and τ(nE ,nR) < +∞ for all (nE, nR) ∈ C. �

5.2.2 A probabilistic approach to predicting tumour prognosis

Once we have proved in Theorem 5.1 that, at least under some parameter regimes, processX goes

to absorption into some of the axis with probability one and in a finite mean time, our aim in this

Section is to provide a probabilistic measure of the predicted outcome of tumour-specific immune

responses, which is dictated by the ratio Te f f /Treg [59, Figure 1]. In particular, we focus here on

analysing the probability of reaching different regions of the state space defined according to this

ratio, corresponding to Poor Prognosis or Better Prognosis. This poor prognosis corresponds to

smaller chances for the immune system to recover from the tumour than in the better prognosis

case. Various approaches shown in [70] or [62] correlate small ratios of effector CD8+ T cells

to regulatory CD4+ T cells with poor prognosis in several types of human cancers and a better

prognosis is related to high amounts of effector CD8+ T cells in almost every type of cancer under

study [20, Table 1] (see Figure 5.1).

Thus, our regions can be described in terms of parameters 0 < K1 < K2, by splitting the state

space S into three regions of states (nE, nR) according to the value of nE
nR

(=
Te f f
Treg

): (nE, nR) ∈

PPK1,K2 (poor prognosis) if nE
nR
≤ K1; (nE, nR) ∈ BPK1,K2 (better prognosis) if nE

nR
≥ K2; and

(nE, nR) ∈ RK1,K2 (rest) if K1 < nE
nR

< K2. Regions PPK1,K2 , BPK1,K2 and RK1,K2 depend on the

particular values of K1 and K2; see Figure 5.2.

Given an initial state (NE, NR) ∈ RK1,K2 our interest is in computing the poor prognosis probability
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Figure 5.1: Tumour prognosis depends on the ratio Te f f /Treg. Figure taken from [59]. The x axis
just representatively indicates that for a region of values Te f f /Treg ≈ 1, prognosis is better.

defined as

pK1,K2
(NE ,NR) = “Probability of process X of reaching region PPK1,K2 before region BPK1,K2 , given the

initial state (NE, NR) ∈ RK1,K2”.

which represents the probability that the process drifts towards poor prognosis instead of better

prognosis. We point out here that, since our process X reaches one of the axis in finite time with

probability one, at least under some parameter regimes, X can not stay in RK1,K2 indefinitely and

one of the prognosis regions (poor or better) has to be reached. Thus, in these regimes,

1− pK1,K2
(NE ,NR) = “Probability of process X of reaching region BPK1,K2 before region PPK1,K2 , given the

initial state (NE, NR) ∈ RK1,K2”.

We can compute this probability by following a first-step argument. In particular, this probability
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Figure 5.2: Poor and Better prognosis regions defined in the spirit of [59], and according to
parameter values 0 < K1 < K2. Initial state (NE, NR).

for all values (nE, nR) ∈ RK1,K2 verifies

∆(nE ,nR)pK1,K2
(nE ,nR) = (λE + αEnE)nE pK1,K2

(nE+1,nR) + (µE + νEnE + χnR)nE pK1,K2
(nE−1,nR)

+(λR + αRnE)nR pK1,K2
(nE ,nR+1) + (µR + νRnR)nR pK1,K2

(nE ,nR−1), (5.6)

with ∆(nE ,nR) = (λE + αEnE + µE + νEnE + χnR)nE + (λR + αRnE + µR + νRnR)nR, and with

boundary conditions given by

pK1,K2
(nE ,nR) = 1, if nE

nR
≤ K1,

pK1,K2
(nE ,nR) = 0, if nE

nR
≥ K2.

However, the infinite number of states in RK1,K2 translates into an infinite system of equations

given by Equation (5.6), which seems to be analytically intractable. We propose here to follow

a similar approximative approach than the one in [23], and analyse Equation (5.6) by truncating
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the set RK1,K2 so that a finite system of equations is obtained that approximates the infinite one, a

truncation that can be carried out following a probabilistic criteria.

We first organise region RK1,K2 by levels as

RK1,K2 =
+∞⋃
k=2

RK1,K2(k),

with

RK1,K2(k) =
{(⌈

K2k
K2 + 1

⌉
− 1,

⌊
k

K2 + 1

⌋
+ 1
)

,(⌈
K2k

K2 + 1

⌉
− 2,

⌊
k

K2 + 1

⌋
+ 2
)

, . . . ,
(⌊

K1k
K1 + 1

⌋
+ 1,

⌈
k

K1 + 1

⌉
− 1
)}

,

where dxe and bxc amount to the upper and lower integer part of x, respectively. That is, RK1,K2(k)

contains all the states (nE, nR) ∈ RK1,K2 that verify nE + nR = k; see Figure 5.3. Thus, it is clear

that level RK1,K2(k) contains

JK1,K2(k) = #RK1,K2(k) =
⌈

K2k
K2 + 1

⌉
−
⌊

K1k
K1 + 1

⌋
− 1

states.

Observation: State
(⌈

K2k
K2+1

⌉
− 1,

⌊
k

K2+1

⌋
+ 1
)

is at position 1 within level RK1,K2(k) (when this

level is not empty), state
(⌊

K1k
K1+1

⌋
+ 1,

⌈
k

K1+1

⌉
− 1
)

is at position
⌈

K2k
K2+1

⌉
−
⌊

K1k
K1+1

⌋
− 1 within

this level (when this level is not empty), and any other state (nE, nR) ∈ RK1,K2(k) is at position

Posk(nE) =
⌈

K2k
K2+1

⌉
− nE within this level.

We propose now to truncate RK1,K2 in terms of the random variable

Xmax,K1,K2
(nE ,nR) = “Maximum cell population size (that is, maximum level RK1,K2(k)) reached by process

X before reaching prognosis regions PPK1,K2 ∪BPK1,K2 , given the initial state (nE, nR)”

= max
t∈[0,T]

{NE(t) + NR(t)},
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Figure 5.3: Region RK1,K2 organised in levels RK1,K2(k), k ≥ 2. Each level RK1,K2(k) contains states
(nE, nR) ∈ RK1,K2 such that nE + nR = k. Truncating level RK1,K2(Kε(NE, NR)).

where T = inf{t > 0 : (NE(t), NR(t)) ∈ PPK1,K2 ∪ BPK1,K2}. Since we are interested in the

dynamics of X until regions PPK1,K2 or BPK1,K2 are reached, we propose to choose a truncating

level RK1,K2(Kε(NE, NR)) by choosing the smallest value Kε(NE, NR) such that

P
(

Xmax,K1,K2
(NE ,NR) > Kε(NE, NR)

)
< ε,

for the initial state (NE, NR) ∈ RK1,K2 , and ε > 0 small enough.

Once Kε(NE, NR) is selected for a given initial state (NE, NR) of interest, and for a small value

ε > 0, we propose to analyse the dynamics of X within states in

Kε(NE ,NR)−1⋃
k=2

RK1,K2(k),

since states at and above level RK1,K2(Kε(NE, NR)) are only visited by process X with probability

smaller than ε, which acts here as an error control parameter. Thus, states at and above

level RK1,K2(Kε(NE, NR)) and transitions from level RK1,K2(Kε(NE, NR) − 1) to states at level

RK1,K2(Kε(NE, NR)) are discarded, and X evolves now among a finite number of states.
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Kε(NE, NR), chosen as the (1 − ε) percentile of Xmax,K1,K2
NE ,NR

, can be identified by computing

probabilities

pmax,K1,K2
(NE ,NR) (k) = P(Xmax,K1,K2

(NE ,NR) > k),

for all k ≥ NE + NR. These probabilities, for any initial state (nE, nR) ∈ RK1,K2 , can be computed

by means of the system of equations given by Equation (5.6) (replacing probabilities pK1,K2
(nE ,nR) by

probabilities pmax,K1,K2
(nE ,nR) ), with boundary conditions

pmax,K1,K2
(nE ,nR) (k) = 0, if nE

nR
≤ K1 or nE

nR
≥ K2,

pmax,K1,K2
(nE ,nR) (k) = 1, if nE + nR = k, K1 < nE

nR
< K2.

Thus, the percentile Kε(NE, NR) can be obtained, for a given initial state (NE, NR), by computing

pmax,K1,K2
(NE ,NR) (k) for k = NE + NR + 1 and sequentially increasing the value of k until we reach

pmax,K1,K2
(NE ,NR) (k) < ε. We note here that convergence is ensured, at least in Regimes A, B and C, given

that it has been proved in Theorem 5.1 that the probability to extinction of one of the populations

is equal to one.

In order to solve this system of equations, for probabilities pmax,K1,K2
(NE ,NR) (k), we work in matrix form

and store these probabilities in a vector

pmax,K1,K2(k) =


pmax,K1,K2

2 (k)

pmax,K1,K2
3 (k)

...

pmax,K1,K2
k−1 (k)

 ,

with

pmax,K1,K2
r (k) =


pmax,K1,K2(⌈

K2r
K2+1

⌉
−1,

⌊
r

K2+1

⌋
+1
)(k)

...

pmax,K1,K2(⌊
K1r

K1+1

⌋
+1,

⌈
r

K1+1

⌉
−1
)(k)

 , 2 ≤ r ≤ k− 1.
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Then, this system of equations can be written in matrix form as

pmax,K1,K2(k) = AK1,K2(k)pmax,K1,K2(k) + bmax,K1,K2(k) (5.7)

with coefficient matrix given by

AK1,K2(k) =



0 AK1,K2
23 0 . . . 0 0

AK1,K2
32 0 AK1,K2

34 . . . 0 0

0 AK1,K2
43 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 AK1,K2
k−2,k−1

0 0 0 . . . AK1,K2
k−1,k−2 0


, (5.8)

where each matrix AK1,K2
r,r′ corresponds to transitions from states at level RK1,K2(r) to states at level

RK1,K2(r′). We note that:

• Dimensions of AK1,K2
r,r−1 : JK1,K2(r) × JK1,K2(r − 1) =

(⌈
K2r

K2+1

⌉
−
⌊

K1r
K1+1

⌋
− 1
)
×(⌈

K2(r−1)
K2+1

⌉
−
⌊

K1(r−1)
K1+1

⌋
− 1
)

.

• Dimensions of AK1,K2
r,r+1 : JK1,K2(r) × JK1,K2(r + 1) =

(⌈
K2r

K2+1

⌉
−
⌊

K1r
K1+1

⌋
− 1
)
×(⌈

K2(r+1)
K2+1

⌉
−
⌊

K1(r+1)
K1+1

⌋
− 1
)

.

These matrices are given as follows:

• For 3 ≤ r ≤ k− 1:

(
AK1,K2

r,r−1

)
ij

=


(µE+νEnE+χnR)nE

∆(nE ,nR)
, if j = Posr−1(nE − 1),

(µR+νRnR)nR
∆(nE ,nR)

, if j = Posr−1(nE),

0, otherwise,

with (nE, nR) =
(⌈

K2r
K2+1

⌉
− i,

⌊
r

K2+1

⌋
+ i
)

, for 1 ≤ i ≤ JK1,K2(r);

• For 2 ≤ r ≤ k− 2:

(
AK1,K2

r,r+1

)
ij

=


(λE+αEnE)nE

∆(nE ,nR)
, if j = Posr+1(nE + 1),

(λR+αRnE)nR
∆(nE ,nR)

, if j = Posr+1(nE),

0, otherwise,
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with (nE, nR) =
(⌈

K2r
K2+1

⌉
− i,

⌊
r

K2+1

⌋
+ i
)

, for 1 ≤ i ≤ JK1,K2(r);

Finally, the vector of independent terms is given as

bmax,K1,K2(k) =



0JK1,K2 (2)

0JK1,K2 (3)
...

0JK1,K2 (k−2)

bmax,K1,K2
k−1


,

with bmax,K1,K2
k−1 = AK1,K2

k−1,k1JK1,K2 (k), where 1JK1,K2 (k) is a column vector of ones with dimension

JK1,K2(k). Finally, our system of equations can be solved algorithmically via Algorithm 5.1

Algorithm 5.1

H2 = 1;

For r = 3, . . . , k− 1:

Hr = IJK1,K2 (r) −AK1,K2
r,r−1 H−1

r−1AK1,K2
r−1,r ;

pmax,K1,K2
k−1 (k) = H−1

k−1bmax,K1,K2
k−1 ;

For r = k− 2, . . . , 2:

pmax,K1,K2
r (k) = H−1

r AK1,K2
r,r+1 pmax,K1,K2

r+1 (k);

Once Kε(NE, NR) is chosen by starting at k = NE + NR + 1 and sequentially increasing k until

pmax,K1,K2
(NE ,NR) (k) < ε, the system of equations given by Equation (5.6) for the desired probabilities

pK1,K2
(nE ,nR) can be solved also in a matrix way:

pK1,K2(Kε(NE, NR)) = AK1,K2(Kε(NE, NR))pK1,K2(Kε(NE, NR)) + bK1,K2(Kε(NE, NR)) (5.9)
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with

bK1,K2(Kε(NE, NR)) =


bK1,K2

2

bK1,K2
3

...

bK1,K2
Kε(NE ,NR)−1

 ,

where sub-vector bK1,K2
r has zeros everywhere except for any element corresponding to a state

(nE, nR) such that nE
nR+1 ≤ K1 or nE−1

nR
≤ K1 (that is, a state (nE, nR) that has one-step transition

access to poor prognosis region PPK1,K2 ), which is equal to

1
∆(nE ,nR)

(
(λR + αRnE)nRδ{ nE

nR+1≤K1}
+ (µ + νEnE + χnR)nEδ{ nE−1

nR
≤K1}

)
,

where δ{A} is equal to 1 if A is satisfied, and 0 otherwise. This system can be solved by adapting

Algorithm 5.1

5.2.3 Deterministic approach to the model

We have just presented the matrix-analytic methods to study the effector and T reg cells system

from a stochastic point of view. From a deterministic perspective, this process is described by

dnE
dt

= −µEnE − νEn2
E + λEnE + αEn2

E − χnEnR,

dnR
dt

= −µRnR − νRn2
R + λRnR + αRnEnR, (5.10)

where nE(t) and nR(t) represent, as previously, the amount of cytotoxic (or effector) and

regulatory T cells, respectively, at time t ≥ 0, and rates are defined as in Section 5.2. The focus here

is in analysing the mathematical model defined in Section 5.2 from a deterministic perspective.

First, we compute the steady states of this process by setting the derivatives of the population

dynamics equal to 0:

− µEnE − νEnEnE + λEnE + αEnEnE − χRnEnR = 0,

−µRnR + λRnR + αRnEnR − νRnRnR = 0, (5.11)
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which leads to four steady states

SS1 : (n(1)
E , n(1)

R ) = (0, 0), extinction. (5.12)

SS2 : (n(2)
E , n(2)

R ) =
(

0,
λR − µR

νR

)
, poor prognosis.

SS3 : (n(3)
E , n(3)

R ) =
(

µE − λE
αE − νE

, 0
)

, better prognosis.

SS4 : (n(4)
E , n(4)

R ) =
(

χ(λR − µR)− νR(λE − µE)
νR(αE − νE)− αRχ

,
(αE − νE)(λR − µR) + αR(µE − λE)

νR(αE − νE)− αRχ

)
, tolerance.

For these steady states, we carry out a stability analysis by means of computing the corresponding

Jacobian matrix J(nE, nR), which is given by

J(nE, nR) =

 2nEαE + λE − µE − 2nEνE − nRχR −nEχR

nRαR nEαR + λR − µR − 2nRνR

 ,

so that a given steady state (n(i)
E , n(i)

R ) (i ∈ {1, 2, 3, 4}) is asymptotically stable if and only if the

eigenvalues of J(n(i)
E , n(i)

R ) have strictly negative real part.

Steady state SS1: (n(1)
E , n(1)

R ) = (0, 0) - Extinction

Steady state SS1 represents that both populations go to extinction in the late times. Evaluating

the Jacobian matrix at the steady state, we get:

J(n(1)
E , n(1)

R ) =

 λE − µE 0

0 λR − µR

 ,

with eigenvalues

σ
(1)
1 = λE − µE,

σ
(1)
2 = λR − µR.

Thus, SS1 is stable if and only if the stability conditions

SC1 : µE > λE, µR > λR (5.13)
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are satisfied.

Steady state SS2: (n(2)
E , n(2)

R ) = (0, λR−µR
νR

) - Poor prognosis

Steady state SS2 represents survival of the regulatory T cell population in the late times, while

the population of effector T cells goes to extinction, moving the system towards the poor prognosis

area. Evaluating the Jacobian matrix at SS2 we obtain

J(n(2)
E , n(2)

R ) =

 µE − λE + (−λR+µR)χR
νR

0

− αR(−λR+µR)
νR

µR − λR

 ,

with eigenvalues

σ
(2)
1 = −λR + µR,

σ
(2)
2 =

λEνR − µEνR − λRχ + µRχ

νR
.

Thus, steady state SS2 is stable if and only if the stability conditions

SC2 : λR > µR, λEνR + (−λR + µR) χ < µEνR (5.14)

are satisfied. It is easy to check that stability conditions SC1 and SC2 are incompatible, so that

steady states SS1 and SS2 can not be stable at the same time.

Steady state SS3: (n(3)
E , n(3)

R ) = ( µE−λE
αE−νE

, 0) - Better prognosis

Steady state SS3 represents the process going in the late times towards the better prognosis area,

with the population of regulatory T cells going to extinction. The Jacobian matrix for this steady

state is

J(n(3)
E , n(3)

R ) =

 λE − µE
(λE−µE)χR

αE−νE

0 λR − µR − αR(λE−µE)
αE−νE

 ,
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with eigenvalues

σ
(3)
1 = −λE + µE,

σ
(3)
2 =

−αRλE + αEλR + αRµE − αEµR − λRνE + µRνE
αE − νE

.

Thus, steady state SS3 is stable if and only if the stability conditions

SC3 : λE > µE, (αR (−λE + µE) + (λR − µR) (αE − νE)) (αE − νE) < 0 (5.15)

are satisfied. Again, stability conditions SC1 and SC3 are incompatible, so that steady states SS1

and SS3 can not be stable at the same time. In fact, SC2 and SC3 are also incompatible when

imposing that n(2)
E , n(2)

R , n(3)
E , n(3)

R > 0, which are physical conditions. This allows to conclude

that, only under parameter regimes SC1, SC2 or SC3, initial states will not affect long-term

dynamics, and the steady states will only depend on the ratios between parameters given by

stability conditions SCi, with i ∈ {1, 2, 3}.

Steady state SS4: (n(4)
E , n(4)

R ) =
(

χ(λR−µR)−νR(λE−µE)
νR(αE−νE)−αRχ

, (αE−νE)(λR−µR)+αR(µE−λE)
νR(αE−νE)−αRχ

)
- Tolerance

Steady state SS4 represents both populations surviving in the late times. This can lead to late times

poor or better prognosis depending on the particular value of (n(4)
E , n(4)

R ) which, at the same time,

depends on the particular values of the parameters in the model. The Jacobian matrix in this case

is given by

J(n(4)
E , n(4)

R ) =

 − (νE−αE)(νR(λE−µE)+χ(−λR+µR))
νEνR−νRαE+χαR

χ(νR(−λE+µE)+χ(λR−µR))
νEνR−νRαE+χαR

αR(αR(λE−µE)+(νE−αE)(λR−µR))
νEνR−νRαE+χαR

νR(αR(−λE+µE)−(νE−αE)(λR−µR))
νEνR−νRαE+χαR

 ,

and the eigenvalues as

σ
(4)
1 , σ

(4)
2 =

1
2(νEνR − νRαE + χαR)

[
χ(νE − αE)(λR − µR) + νR

(
αR(−λE + µE) + αE(λE + λR − µE − µR) + νE(−λE − λR + µE + µR)

)
±

(
− 4(νEνR − νRαE + χαR)

(
αR(λE − µE) + (νE − αE)(λR − µR)

)(
νR(λE − µE) + χ(−λR + µR)

)
+

(
χαE(λR − µR) + νE

(
νR(λE + λR − µE − µR) + χ(−λR + µR)

)
+ νR

(
αR(λE − µE) + αE(−λE − λR + µE + µR)

))2
) 1

2 ]
,
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which implies that steady state SS4 is stable if and only if σ
(4)
1 and σ

(4)
2 have strictly negative

real part. However, a general analysis of stability and parameter conditions, without setting

these parameters to some specific values, does not seem feasible from an analytical point of

view. However, different scenarios will be considered in Section 5.2.4 depending on the ratio
n(4)

E

n(4)
R

. Thus, depending on this ratio being smaller, equal or grater than one, time dynamics of

effector and regulatory T cells will be studied, exploring how the probability of reaching poor or

better prognosis is altered when varying this ratio.

5.2.4 Results

The parameter values for our deterministic studies were obtained from [5]. Some small

perturbations were implemented for reaching the diversity of steady states, as it will be explained

later, by identifying, and minimising the difference of only those parameters responsible of

changing the steady state.

Parameter µE µR νE νR λE λR αE αR χ

from [5] 1 · 10−2 1 · 10−2 1 · 10−4 1 · 10−4 2 · 10−2 2 · 10−2 5 · 10−5 1 · 10−4 2 · 10−4

SC1 2 · 10−2 2 · 10−2 1 · 10−4 3 · 10−4 1.5 · 10−2 1 · 10−2 5 · 10−5 7.5 · 10−5 5 · 10−4

SC2 1 · 10−3 1 · 10−3 1 · 10−4 3 · 10−4 1.5 · 10−2 1 · 10−2 5 · 10−5 7.5 · 10−5 5 · 10−4

SC3 1 · 10−2 1 · 10−2 1 · 10−4 3 · 10−4 1.5 · 10−2 2 · 10−3 5 · 10−5 7.5 · 10−5 5 · 10−4

SC
4(n(4)

R >n(4)
E )

1 · 10−2 1 · 10−2 1 · 10−4 1 · 10−4 5 · 10−2 2 · 10−2 5 · 10−5 1 · 10−4 2 · 10−4

SC
4(n(4)

R =n(4)
E )

1 · 10−2 1 · 10−2 1 · 10−4 1 · 10−4 5 · 10−2 1 · 10−2 5 · 10−5 1 · 10−4 2 · 10−4

SC
4(n(4)

R <n(4)
E )

1 · 10−2 1 · 10−2 1 · 10−4 1 · 10−4 8 · 10−2 1 · 10−3 5 · 10−5 1 · 10−4 2 · 10−4

Units h−1 h−1 cell−1h−1 Cell−1h−1 h−1 h−1 Cell−1h−1 cell−1h−1 cell−1h−1

Table 5.1: Parameter values used for model in Equation (5.10). Values from [5] satisfy stability
conditions for SS2. Modifications of some identified values result in the stability of the other
steady states as given.

Regarding values K1 and K2 which delimit poor and better prognosis areas, results given in

References [62] and [70] suggest that the poor prognosis is reached when numbers of effector and

regulatory T cells stablish equally or when T reg cells are found in higher proportion, which drives

us to consider K1 = 1, according also to [59]. On the other hand, the better prognosis is indicated

for a proportion of 1:10 for T reg/effector, so we set K2 = 10. These two values will remain

fixed for the whole chapter. Regarding the initial state, we will use a value (NE, NR) ∈ RK1,K2

in between these two regions, in a relation of 1:2 for T reg/effector. Therefore, and having into

account computational limitations, for now on the initial state (NE, NR) = (50, 25) will be used.
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• Steady state SS1: (n(1)
E , n(1)

R ) = (0, 0) - Extinction

Based on stability conditions SC1, (µE > λE and µR > λR), both cell populations

would reach extinction in the late times. This can be obtained by only slightly perturbing

parameters µR and µE from those in [5], as reported in Table 5.1.

Figure 5.4: Time dynamics for effector and regulatory T cells when reaching SS1 = (0, 0) under
parameters given in Table 5.1 for SC1. (Python code for obtaining this figure is included in
Appendix C).

Figure 5.4 shows together deterministic time dynamics, and Gillespie simulations of model

given in Equation (5.10) when steady state (n(1)
E , n(1)

R ) = (0, 0) is reached. We can

see that whereas the deterministic simulation supports that regulatory T cell number

always remains below effector’s, and so their extinction also becomes earlier, the stochastic

simulation sample (blue and red solid lines) shows that this fact can be altered, specially in

low expression levels examples as it is the case. The mean time until reaching steady state

for both populations is of the order of 30 days, which is relatively shorter than the following

cases.

Regarding the probability of reaching poor or better prognosis areas, Figure 5.5 shows

the results of the methodology followed in Section 5.2.2. Thus, these analytical results

indicate that under stability conditions SC1 given in Table 5.1, when K1 = 1, K2 = 10

and (NE, NR) = (50, 25) is the initial state, the probability of entering to poor prognosis
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area through each state (nE, nR) is given by red bars in the histogram and through states

(nE, nR) in the better prognosis, by blue bars. When adding up all the probabilities of

entering from every state for each area we obtain the total probability of reaching either poor

prognosis area p1,10
(50,25) = 0.6544 or better prognosis area 1− p1,10

(50,25) = 0.3456. The stochastic

simulation plotted in Figure 5.4 shows for instance a sample in which poor prognosis

is reached first and through state (nE, nR) = (7, 7). This stochastic approach has the

advantage, with respect to a deterministic model, that it can track how probability changes

from state to state, which can be particularly interesting for detecting wide distribution as

the poor prognosis one in Figure 5.5.

Figure 5.5: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying SC1 in
Table 5.1. (Python code for obtaining this figure is included in Appendix B).

• Steady state SS2: (n(2)
E , n(2)

R ) = (0, λR−µR
νR

) - Poor Prognosis

Stability conditions SC2 represent populations (nE(t), nR(t)) reaching poor prognosis

steady state (0, λR−µR
νR

), allowing the disease condition to prevail, see Figure 5.6. This plot

also shows that regulatory T cells expression level overtakes effector cells number around

day 4− 5. Moreover, whereas T reg cells seem to reach steady state in a similar range of time

to SS1 case, effector cells will not extinct, in the deterministic case, before day 60. However,

stochastic simulations might bring cases, as the one plotted, in which this extinction occurs
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at a different time, as in three weeks time in such plot.

Figure 5.6: Time dynamics for effector and regulatory T cells when reaching SS2 = (0, 30) under
parameters given in Table 5.1 for SC2.

Regarding the probability of reaching poor and better prognosis regions plotted in Figure

5.7, we can see this a case in which poor prognosis region will be reached in almost 100%

of the cases. Given that the process ends up in state (nE, nR) = (0, 30), located quite inside

the poor prognosis area, the chances of reaching better prognosis first are almost negligible.

The closer to zero that nR is in the steady state SS2 = (0, λR−µR
νR

), the bigger that probability

of reaching better prognosis 1− p1,10
(50,25) will become, with a maximum value given for the

extinction case; 1− p1,10
(50,25) = 0.3456. The stochastic simulation plotted in Figure 5.6 also

shows one of the cases with more probability, which is the one reaching poor prognosis

around state (nE, nR) = (35, 35).

• Steady state SS3: (n(3)
E , n(3)

R ) = ( µE−λE
αE−νE

, 0) - Better prognosis

This steady state represents a T cell environment which favours the killing of cancerous

cells, by increasing the effector T cell population. In order for the system to reach this steady

state in the long-term, parameters need to satisfy SC3 conditions. These conditions can

be satisfied by slightly decreasing values αR and λR from [5], as represented in Table 5.1.

In Figure 5.8 we plot time dynamics of these two species, with steady state (n(3)
E , n(3)

R ) =

(2 · 102, 0). In a situation like this, after a simultaneous decrease of both populations during
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Figure 5.7: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying SC2 in
Table 5.1.

the first week, effector T cells start increasing until steady state nE = 100 while regulatory

cells keep going down until extinction.

In this better prognosis scenario, there is, as for SS2 case, a clear tendency for the process

to reach first the region where the steady state is allocated. Nevertheless, Figure 5.9 shows

that when SS3 = (100, 0), probability of entering in poor prognosis region p1,10
(50,25) is slightly

higher than the chances of entering in the better prognosis area in the previous case. This

could be the case of the stochastic simulation in Figure 5.8 if both effector and regulatory T

cells Gillepie simulation touch at any time. The peculiar shape of the histogram for better

prognosis, alternating a higher value of probability every ten states, has to do with the

fact that these states {(nE, nR) = (10 · i, i) ∈ BP1,10} are reachable for the process from

two different transition rates, as Equation (5.1) shows, whereas the rest of the states in the

better prognosis region (which are connected by transitions to at least one state outside this

region), are only reachable by one transition rate.

• Steady state SS4: (n(4)
E , n(4)

R ) =
(

χ(λR−µR)−νR(λE−µE)
νR(αE−νE)−αRχ

, (αE−νE)(λR−µR)+αR(µE−λE)
νR(αE−νE)−αRχ

)
- Tolerance

The final steady state occurs when both cell populations reach stable non-zero steady state

values. Depending on the particular values of parameter considered (see Table 5.1) steady
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Figure 5.8: Time dynamics for effector and regulatory T cells when reaching SS3 = (100, 0) under
parameters given in Table 5.1 for SC3.

Figure 5.9: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying SC3 in
Table 5.1.
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state (n(4)
E , n(4)

R ) can amount to a larger number of effector T cells or of regulatory T cells. In

particular, by considering different parameter values satisfying SC4, one can obtain n(4)
E >

n(4)
R , n(4)

E = n(4)
R or n(4)

E < n(4)
R ; see Figures 5.10-5.15.

i) When n(4)
E > n(4)

R

Figure 5.10: Time dynamics for effector and regulatory T cells when reaching (n(4)
E , n(4)

R ) with

n(4)
E > n(4)

R under parameters given in Table 5.1 for SC
4(n(4)

E >n(4)
R )

.

ii) When n(4)
E = n(4)

R

iii) When n(4)
E < n(4)

R

The time dynamics of the process when steady state SS4 = (n(4)
E , n(4)

R ) is reached show

similar behaviour in the three different cases SC
4(n(4)

E >n(4)
R )

, SC
4(n(4)

E =n(4)
R )

and SC
4(n(4)

E <n(4)
R )

.

In all of them (Figures 5.10, 5.12 and 5.14) both populations arrive to steady state in around

two weeks, faster than in the other steady states. Regardless of the ratio n(4)
E

n(4)
R

, regulatory T

cells maximum value is always only slightly higher that its steady state whereas effector

cells reach up to more than twice its steady state value as Figure 5.14 shows, from 352 to

approximately 800. The behaviour of the stochastic simulations for nE and nR populations,

Figures 5.10, 5.12 and 5.14, suggests that effector cells have a short time impact on regulatory

T cells, as the similar path (but shifted to right in T reg cells) for both of them show.

Finally, Figures 5.11, 5.13 and 5.15 encode the probability of reaching SS4 in the three
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Figure 5.11: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying
SC

4(n(4)
E >n(4)

R )
in Table 5.1.

different scenarios described before. Poor prognosis histograms in Figures 5.11 and 5.13

show almost the same behaviour where their similar mean values are also reflected in

the intersection between effector and regulatory T cells curves in their respective Gillespie

samples shown in Figures 5.10 and 5.12. Better prognosis histogram is not shown in Figure

5.11 since 1− p1,10
(50,25) is almost negligible in this case. As the ratio n(4)

E

n(4)
R

increases, not only

1− p1,10
(50,25) does but also the mean value of any of the two variables in the state of entry

in the poor prognosis area and the difference between the probability of entering in the

better prognosis region through states {(nE, nR) = (10 · i, i); (nE, nR) ∈ BP1,10} and the

probability of entering through the rest of the states in this BP region.

5.3 Fas/FasL induced-death and role of IL-2 in T reg cells

death

Fas ligand (FasL) is a transmembrane protein which, once secreted mainly by an effector cell,

might induce apoptosis when binding with its receptor (Fas). Fas/FasL interactions have
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Figure 5.12: Time dynamics for effector and regulatory T cells when reaching (n(4)
E , n(4)

R ) with

n(4)
E = n(4)

R under parameters given in Table 5.1 for SC
4(n(4)

E =n(4)
R )

.

a crucial role when regulating the immune system and particularly in cancer progression

[59]. This alternative model tries to reproduce how tumour prognosis will be affected by

the fact that these ligand/receptor interactions are considered in the model. Consequently,

in this section, the relations between effector and regulatory T cells are slightly modified

with respect to those in the model given in Equation (5.10).

In such scenario, effector T cells die with rate µE, they die by Fas/FasL induced-death due

to Fas expressed on effector T cells and FasL expressed on effector T cells with rate νEE, they

die by Fas/FasL induced-death due to Fas expressed on effector T cells and FasL expressed

on regulatory T cells with rate νER, they proliferate due to TCR with rate λE, they proliferate

due to IL-2 secreted by effector T cells with rate αE and they are suppressed by regulatory

T cells with rate χ. Regulatory T cells die with rate µR and this death rate depends on the

cytokine IL-2 available, and modulated as κE
κE+nE

, they die by Fas/FasL induced-death due

to Fas expressed on regulatory T cells and FasL expressed on effector T cells with rate νRE,

they die by Fas/FasL induced-death due to Fas expressed on regulatory T cells and FasL

expressed on regulatory T cells with rate νRR, they proliferate due to TCR with rate λR and

they proliferate due to IL-2 secreted by effector T cells with rate αR.
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Figure 5.13: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying
SC

4(n(4)
E =n(4)

R )
in Table 5.1.

These reactions can be modelled, like in Section 5.2, as a continuous-time Markov chain X̄ =

{(NE(t), NR(t)) : t ≥ 0} defined over N2
0, where transitions and infinitesimal transition
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Figure 5.14: Time dynamics for effector and regulatory T cells when reaching (n(4)
E , n(4)

R ) with

n(4)
E < n(4)

R under parameters given in Table 5.1 for SC
4(n(4)

E <n(4)
R )

.

rates are given by

q̄(nE ,nR),(n′E ,n′R) =



λEnE + αEn2
E, if (n′E, n′R) = (nE + 1, nR),

µEnE + νEEn2
E + (νER + χ)nEnR, if (n′E, n′R) = (nE − 1, nR),

λRnR + αRnEnR, if (n′E, n′R) = (nE, nR + 1),

µR
κE

κE+nE
nR + νRRn2

R + νREnRnE, if (n′E, n′R) = (nE, nR − 1).

(5.16)

Note that these transitions satisfy, as those in Equation (5.1), that from any given state

(nE, nR) only adjacent states (nE + 1, nR), (nE − 1, nR), (nE, nR + 1) and (nE, nR − 1) are

directly accessible in one jump. This implies that the probabilistic approach in Section 5.3.2

of this model can be constructed by using the structure of states explained in Section 5.2.2.

5.3.1 Probability of extinction and mean time until extinction

Following the reasoning in Section 5.2.1, some parameter regimes are looked in the present

Section for model given by reactions described in Equation (5.16). For this purpose,

Theorem 5.2 holds.
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Figure 5.15: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying
SC

4(n(4)
E <n(4)

R )
in Table 5.1.

Theorem 5.2. Let α(nE ,nR), with (nE, nR) ∈ C, be the probability of reaching some state in C0,

from (nE, nR), in a finite time, and τ(nE ,nR) the mean time until this occurs. Under parameter

Regimes Ā or B̄, α(nE ,nR) = 1 and τ(nE ,nR) < +∞ for any initial state (nE, nR) ∈ C. Where
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Regime Ā:

µ := µE

νEE + νRR > νER + νRE + χ > 2νRR + µ
κE

Regime B̄:

µ := µE

νEE + νRR < νER + νRE + χ < 2νEE,

2νEE + νER + νRE + χ > 4νRR + 3 µ
κE

.

Proof.

Following the same reasoning as for Theorem 5.1, the global brith-and-death rates for each level C(k),

k = nR + nE, are given in this case as

λk = max
nE∈[1,k−1]

{ f̄k(nE)},

µk = min
nE∈[1,k−1]

{ḡk(nE)},

with, in this case,

f̄k(nE) = (αE − αR)n2
E + (λE − λR + αRk)nE + λRk,

ḡk(nE) = (νEE − νER + νRR + νRE − χ)n2
E

+ (µE + kνER + kχ− 2kνRR − µR
κE

κE + nE
+ νREk)nE + (µR

κE
κE + nE

+ νRRk)k.

Note that f̄k(nE) has the same expression as fk(nE) in Equation (5.3) and that the more complicated

expression of ḡk(nE) will make harder to find some regimes to verify uniqueness of solution. In order

to find such regimes, some assumptions need to be taken into account so these conditions can be used.

Then, we set the minimum for ḡk(nE) to be in in either nE = 1 or nE = k− 1 and, if the function

monotonically increases or decreases, respectively, our assumption will hold. Since

ḡk(1) = νEE + νRR(k− 1)2 + µE + µR
κE

κE + 1
(k− 1) + νRE(k− 1) + (νER + χ)(k− 1),

ḡk(k− 1) = νEE(k− 1)2 + νRR + µE(k− 1) + µR
κE

κE + k− 1
+ νRE(k− 1) + (νER + χ)(k− 1),

for k > 2, ḡk(1) ≷ ḡk(k− 1) is equivalent to

νEE + νRR(k− 1)2 + µE + µR
κE

κE + 1
(k− 1) ≷ νEE(k− 1)2 + νRR + µE(k− 1) + µR

κE
κE + k− 1

,

νRR(k2 − 2k)− νEE(k2 − 2k)− µE(k− 2) + µR(k− 2)
κE(κE + k)

(κE + k− 1)(κE − 1)
≷ 0.
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Note that when k = 2, ḡk(1) = ḡk(k− 1). So dividing last expression by (k− 2),

(νRR − νEE)k− µE + µR
κE(κE + k)

(κE + k− 1)(κE + 1)
≷ 0.

Let us consider µ = µE = µR for this section, given that µE = µR in both parameter regimes A and

B. Since

κE(κE + k)
(κE + k− 1)(κE + 1)

< 1,

if

νEE > νRR ⇒ ḡk(1) < ḡk(k− 1).

And the second condition is then that ḡ′k(nE) > 0 ∀nE ∈ [1, k− 1]. Since

ḡ′k(nE) = 2νEEnE + 2νRR(nE − k) + (νER + νRE + χ)(k− 2nE) + µ(
3κEnE + n2

E − κEk
(κE + nE)2 ).(5.17)

In order to deal with this expression, a classification depending of the values of nE needs to be done

due to the variations of sign of each of the four terms in Equation (5.17). In order to have ḡ′k(nE) > 0

∀nE ∈ [1, k− 1], we can study what will happen under

– Case i) When nE ∈ [0, k
3 ).

– Case ii) When nE ∈ [ k
3 , k

2 ).

– Case iii) When nE ∈ [ k
2 , k).

Last term of Equation (5.17) can now be minimized. For cases ii) and iii), µ( 3κEnE+n2
E−κEk

(κE+nE)2 ) > 0, but

most of the times negligible when compared to the other terms. In case i), µ( 3κEnE+n2
E−κEk

(κE+nE)2 ) > −kµ
κE

.

Let us start by working with case iii). From

2νEEnE > |2νRR(nE − k) + (νER + νRE + χ)(k− 2nE)|

it follows that either one of this two conditions needs to be satisfied:

– SC1 : νEE + νRR > νER + νRE + χ or

– SC2 : νEE + νRR < νER + νRE + χ < 2νEE.
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With this two options in hand for nE ∈ [ k
2 , k) we need to check if Equation (5.17) is also satisfied

for the other two cases i) and ii). Case ii) gives a less strict condition for uniqueness than case iii) so

nothing new appears from it. From case i) the regime that insterests us has to verify both

– SC1 : νEE + νRR > νER + νRE + χ and

– SC2 : 2νEE + νER + νRE + χ > 4νRR + 3 µ
κE

.

So, in conclusion, for ḡ′k(nE) > 0 ∀nE ∈ [1, k− 1], regimes Ā and B̄ hold. �

These two regimes Ā and B̄ for System (5.18), together with the regimes found in previous

sections for f̄k(nE) and with the convergence of
+∞
∑

k=2

1
λkσk

, can be gathered in Table 5.2 which

resumes the two scenarios where existence and uniqueness of extinction are guaranteed.

Regime Ā Regimen B̄

νEE + νRR > νER + νRE + χ > 2νRR + µ
κE

νEE + νRR < νER + νRE + χ < 2νEE

2νEE + νER + νRE + χ > 4νRR + 3 µ
κE

νEE > νRR > αE, αE < αR < 2αE, λE < λR

Table 5.2: Summary of the regimes where existence and uniqueness of extinction are guaranteed
for model (5.18).

5.3.2 A probabilistic approach for predicting tumour prognosis

Process X̄ starts in a given initial state (NE(0), NR(0)) = (NE, NR) and it is defined on

the same state space S as the model in Section 5.2, which is structured by levels RK1,K2(k).

Given that infinitesimal transition rates q(nE ,nR),(n′E ,n′R) and q̄(nE ,nR),(n′E ,n′R) in Equations (5.1)

and (5.16) have the same structure, that is, they represent the same kind of transitions to

adjacent states, most of the probabilistic approach explained in Section 5.2.2 can be equally

implemented for the Fas/FasL model.

In order to carry out the truncation of RK1,K2 as in Section 5.2.2, by means of the probabilities

defined by the system of equations given in Equation (5.7), we define

X̄max,K1,K2
(nE ,nR) = “Maximum cell population size (that is, maximum level RK1,K2(k)) reached by

process X̄ before reaching prognosis regions PPK1,K2 ∪BPK1,K2 , given the

initial state (nE, nR)” = max
t∈[0,T]

{NE(t) + NR(t)},
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where T = inf{t > 0 : (NE(t), NR(t)) ∈ PPK1,K2 ∪BPK1,K2}, with associated probabilities

p̄max,K1,K2
(NE ,NR) (k) = P(X̄max,K1,K2

(NE ,NR) > k),

for all k > NE + NR. The objective is to choose a truncation value k such that

p̄max,K1,K2
(NE ,NR) (k) < ε,

for ε small enough. Probabilities p̄max,K1,K2
(NE ,NR) (k) can be computed by firststep arguments

leading to an analogous system to the one given by Equation (5.7). In particular, matrices

AK1,K2
r,r′ need to be substituted by matrices ĀK1,K2

r,r′ , which are defined as follows:

– For 3 ≤ r ≤ k− 1:

(
ĀK1,K2

r,r−1

)
ij

=


µnE+νEEn2

E+(νER+χ)nEnR
∆̄(nE ,nR)

, if j = Posr−1(nE − 1),

µR
κE

κE+nE
nR+νRn2

R+νREnRnE

∆̄(nE ,nR)
, if j = Posr−1(nE),

0, otherwise,

with (nE, nR) =
(⌈

K2r
K2+1

⌉
− i,

⌊
r

K2+1

⌋
+ i
)

, for 0 ≤ i ≤ JK1,K2(r), and where now

∆̄(nE ,nR) = (λE + αEnE + µE + νEEnE + νERnR + χnR)nE + (λR + αRnE + µR
κE

κE+nE
+

νRRnR + νREnE)nR.

– For 2 ≤ r ≤ k− 2,

(
ĀK1,K2

r,r+1

)
ij

=
(

AK1,K2
r,r+1

)
ij

,

where 0 ≤ i ≤ JK1,K2(r).

Finally, the vector of independent terms bmax,K1,K2(k) in Equation (5.7) needs to be replaced

by

b̄max,K1,K2(k) =



0JK1,K2 (2)

0JK1,K2 (3)
...

0JK1,K2 (k−2)

b̄max,K1,K2
k−1


,
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with b̄max,K1,K2
k−1 = ĀK1,K2

k−1,k1JK1,K2 (k), where 1JK1,K2 (k) is a column vector of ones with dimension

JK1,K2(k). Finally, the resulting alternative version of Equation (5.7), with matrices ĀK1,K2
r,r−1

and vector b̄max,K1,K2
k−1 can be iteratively solved via Algorithm 5.1 which allows to truncate

the state space for the Fas/FasL model described by transition rates given in Equation (5.16)

as Figure 5.3 shows.

Once Kε(NE, NR) is chosen by starting at k = NE + NR + 1 and sequentially increasing k

until p̄max,K1,K2
(NE ,NR) (k) < ε, process X̄ can be analysed on a truncated state space for levels

Kε(NE ,NR)⋃
k=2

RK1,K2(k). The objective, as in Section 5.2.2, is to compute probabilities

p̄K1,K2
(NE ,NR) = “Probability of process X̄ of reaching region PPK1,K2 before region BPK1,K2 ,

given the initial state (NE, NR) ∈ RK1,K2”.

which can be obtained in a matrix way by solving the system

p̄K1,K2(Kε(NE, NR)) = ĀK1,K2(Kε(NE, NR))p̄K1,K2(Kε(NE, NR)) + b̄K1,K2(Kε(NE, NR))

where vector p̄K1,K2 has the same structure as vector pK1,K2 in Section 5.2.2, matrix ĀK1,K2

has the same structure as matrix AK1,K2 defined in Equation (5.8) but substituting matrices

AK1,K2
r,r′ by matrices ĀK1,K2

r,r′ , and with

b̄K1,K2(Kε(NE, NR)) =


b̄K1,K2

2

b̄K1,K2
3

...

b̄K1,K2
Kε(NE ,NR)−1

 ,

where sub-vector b̄K1,K2
r has zeros everywhere except for any element corresponding to a

state (nE, nR) such that nE
nR+1 ≤ K1 or nE−1

nR
≤ K1 (that is, a state (nE, nR) that has one-step

transition access to poor prognosis region PPK1,K2 ), which is equal to

1
∆̄(nE ,nR)

(
(λR + αRnE)nRδ{ nE

nR+1≤K1}
+ (µEnE + νEEn2

E + (νER + χ)nEnR)δ{ nE−1
nR
≤K1}

)
,

where δ{A} is equal to 1 if A is satisfied, and 0 otherwise. This system can be solved by

adapting Algorithm 5.1.



Chapter 5. A probabilistic approach to tumour prognosis 188

5.3.3 Deterministic approach to the model

The equations for the deterministic model are given by

dnE
dt

= −µEnE − νEEn2
E − νERnEnR + λEnE + αEn2

E − χnEnR,

dnR
dt

= −µR
κE

κE + nE
nR − νREnRnE − νRRn2

R + λRnR + αRnRnE, (5.18)

As for the original model, four steady states SSi with i ∈ {1, 2, 3, 4} can be obtained for the

Fas/FasL model by computing

− µEnE − νEEn2
E − νERnEnR + λEnE + αEn2

E − χnEnR = 0,

−µR
κE

κE + nE
nR − νREnRnE − νRRn2

R + λRnR + αRnRnE = 0. (5.19)

Therefore,

SS1 : (n(1)
E , n(1)

R ) = (0, 0), extinction. (5.20)

SS2 : (n(2)
E , n(2)

R ) =
(

0,
λR − µR

νRR

)
, poor prognosis.

SS3 : (n(3)
E , n(3)

R ) =
(

µE − λE
αE − νEE

, 0
)

, better prognosis.

Observation: Given that the stability analysis of SS4 does not seem feasible from an

analytical perspective and not even its formulae looks tractable, we will focus on the other

three.

Equivalently to the study done in Section 5.2.3, a stability analysis by means of analysing

the corresponding Jacobian matrix J̄(nE, nR) can be done, where

J̄(nE, nR) =

 2(αE − νEE)nE − (νER + χ)nR + λE − µE −(νER + χ)nE
µRκEnR

(κE+nE)2 + (αR − νRE)nR
−µRκE
κE+nE

+ (αR − νRE)nE − 2νRRnR + λR

 .

Thus, a given steady state (n(i)
E , n(i)

R ) (i ∈ {1, 2, 3}) is asymptotically stable if and only if the

eigenvalues of J̄(n(i)
E , n(i)

R ) have strictly negative real part.
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Steady state SS1: (n(1)
E , n(1)

R ) = (0, 0) - Extinction

Steady state SS1 represents that both populations go to extinction in the late times.

Evaluating the Jacobian matrix at the steady state, we get:

J̄(n(1)
E , n(1)

R ) =

 λE − µE 0

0 λR − µR

 ,

with eigenvalues

σ̄
(1)
1 = λE − µE,

σ̄
(1)
2 = λR − µR.

Thus, SS1 is stable if and only if the stability conditions

SC1 : µE > λE, µR > λR (5.21)

are satisfied.

Steady state SS2: (n(2)
E , n(2)

R ) = (0, λR−µR
νRR

) - Poor prognosis

Steady state SS2 represents survival of the regulatory T cell population in the late times,

while the population of effector T cells goes to extinction, moving the system towards the

poor prognosis area. The Jacobian matrix evaluated at SS2 can be obtained as

J̄(n(2)
E , n(2)

R ) =

 λE − µE + (µR−λR)(νER+χR)
νRR

0
(λR−µR)(µR+αRκE−νREκE)

κEνRR
µR − λR

 ,

from which the following eigenvalues hold

σ̄
(2)
1 = −λR + µR,

σ̄
(2)
2 =

(λE − µE)νRR + (µR − λR)(νER + χ)
νRR

.

Thus, we can conclude that steady state SS2 is stable if and only if the stability conditions

SC2 : λR > µR, νRRλE + (νER + χ)µR < νRRµE + (νER + χ)λR (5.22)
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are satisfied.

Steady state SS3: (n(3)
E , n(3)

R ) = ( µE−λE
αE−νEE

, 0) - Better prognosis

Steady state SS3 represents the process going in the late times towards the better prognosis

area, with the population of regulatory T cells going to extinction. The Jacobian matrix for

this steady state is

J̄(n(3)
E , n(3)

R ) =

 λE − µE
(λE−µE)(νER+χ)

αE−νEE

0 λR − µR
κE(αE−νEE)

κEαE−κEνEE+µE−λE
+ (αR−νRE)(µE−λE)

αE−νEE

 ,

with eigenvalues

σ̄
(3)
1 = −λE + µE,

σ̄
(3)
2 = λR − µR

κE(αE − νEE)
κEαE − κEνEE + µE − λE

+
(αR − νRE)(µE − λE)

αE − νEE
.

Thus, steady state SS3 is stable if and only if the stability conditions

SC3 : λE > µE,
(

λR − µR
κE(αE − νEE)

κEαE − κEνEE + µE − λE
+

(αR − νRE)(µE − λE)
αE − νEE

)
< 0 (5.23)

are satisfied. Moreover, stability conditions SC1 and SC2 are incompatible, so that steady

states SS1 and SS2 can not be stable at the same time. This also happens between SC1

and SC3 but not necessary between SC2 and SC3. This means that steady states SS2 and

SS3 could be reached under the same parameter regimes depending on the initial value

(NE, NR) for the process.

5.3.4 Results

Table 5.3 shows parameter regimes leading to stability of each of the steady states above.

First row indicates the values as appear in [5]. However, we note that since λR is not

included in this reference, it has been taken for a first approach as λE and we consider

νEE = νER = νRE = νRR = νE.
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Parameter µE µR νEE νER νRE νRR

In the spirit of [5] 1 · 10−2 1 · 10−2 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4

SC1 1 · 10−2 1 · 10−2 1 · 10−3 1 · 10−4 1 · 10−4 1 · 10−4

SC2 1 · 10−2 1 · 10−2 1 · 10−3 1 · 10−4 1 · 10−4 1 · 10−4

SC3 1 · 10−3 1 · 10−3 4 · 10−4 1.5 · 10−4 1.5 · 10−4 1 · 10−4

Units h−1 h−1 cell−1h−1 cell−1h−1 cell−1h−1 cell−1h−1

Parameter λE λR αE αR χ κE

In the spirit of [5] 2 · 10−2 2 · 10−2 5 · 10−5 1 · 10−4 2 · 10−4 102

SC1 2 · 10−3 8 · 10−3 7.5 · 10−5 1 · 10−4 2 · 10−4 102

SC2 2 · 10−2 3 · 10−2 7.5 · 10−5 1 · 10−4 2 · 10−4 102

SC3 5 · 10−3 5 · 10−4 7.5 · 10−5 1 · 10−4 2 · 10−4 102

Units h−1 h−1 cell−1h−1 cell−1h−1 cell−1h−1 cell

Table 5.3: Parameter values used for Fas/FasL model described by Equation (5.18).

Steady state SS1: (n(1)
E , n(1)

R ) = (0, 0) - Extinction

In this case, slight alterations from [5] of certain parameters were implemented having

into account stability conditions SC1, and the regimes where existence and uniqueness of

extinction are guaranteed, Regimen A in Table 5.2, leading to steady state (n(1)
E , n(1)

R ) =

(0, 0).

Figure 5.16: Time dynamics for effector and regulatory T cells when reaching SS1 = (0, 0) under
parameters given in Table 5.2 for SC1.
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Figure 5.16 shows stochastic and deterministic time dynamics of Fas/FasL model under

parameter regime SC1, in which extinction takes place. As a contrast to what happened to

the extinction case in the toy model, see Figure 5.4, effector cells tend to become extinguish

much quicker than regulatory cells, which survive longer with respect to the previous

model. Successive simulations with other parameter regimes confirm that this different

is not only due to the election of the rate values but for the impact that Fas/FasL dynamics

have in inducing apoptosis.

Figure 5.17: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying SC1 in
Table 5.3.

As a consequence of this new behaviour, some alterations also related to the probability of

reaching poor and better prognosis regions could be predicted when comparing toy and

Fas/FasL models. Figure 5.17 shows how 1 − p1,10
(50,25) reduces from 0.3456 in the former

(Figure 5.5) to almost 0 in the latter. From Figures 5.16 and 5.17 together we can deduce that

the process in this scenario very soon reaches poor prognosis regimes and around states

very close to the initial state (NE, NR), being the one with more probability (≈ 0.14) state

(nE, nR) = (25, 25).
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Steady state SS2: (n(2)
E , n(2)

R ) = (0, λR−µR
νRR

) - Poor prognosis

Under parameters satisfying stability conditions SC2, the process reaches a scenario in

which tumour progression is believed to take place. Figure 5.18 is an example of the time

dynamics when parameters satisfy these SC2, values given in Table 5.2. Similarly to the

extinction case, effector cells go very quickly to extinction whereas regulatory cells expand

until reaching steady state nR = 200, in around two weeks mean time.

Figure 5.18: Time dynamics for effector and regulatory T cells when reaching SS2 = (0, 200) under
parameters given in Table 5.2 for SC2.

Histograms shown in Figure 5.19 for the probabilities of reaching poor and better prognosis

regions in this scenario are almost identical to the extinction case. However, since T reg cells

are proliferating much faster here, the state of entry in the poor prognosis region has slightly

increased now (in ≈ 7 states). Moreover, the probability distributions for poor prognosis in

the Fas/FasL model tends to be more symmetric in the firt two steady states when compared

to the ones in the toy model.

Steady state SS3: (n(3)
E , n(3)

R ) = ( µE−λE
αE−νEE

, 0) - Better prognosis

Finally, parameter regimes given by SC3 would potentially drive the proccess into

regulatory T cell extinction and the maintenance of effectors in the late times. For the
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Figure 5.19: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying SC2 in
Table 5.3.

particular case in which such parameters are fixed as given in Table 5.2, The steady state

SS3 would be given as (n(3)
E , n(3)

R ) = (12, 0).

In this particular case, time dynamics for effector and regulatory T cells in Figure 5.20 show

that the deterministic curves intersect twice, and the stochastic curves many more. This,

together to the fact that population levels are very close, implies that the probability of

reaching better prognosis first 1− p1,10
(50,25), even when the steady state SS3 ≈ (12.31, 0) is

allocated in the poor prognosis area, is smaller than 0.02 (Figure 5.21). in fact, if we compute

these histograms just perturbing the initial state, let us say reducing the initial value of

regulatory cells, this probability 1− p1,10
(50,25) progressively increases until being one, when

(NE, NR) = (50, 5). For instance, the initial state that splits probability of reaching poor or

better prognosis in approximately two halves is (NE, NR) = (50, 9).

5.4 Conclusions

This Chapter introduces two versions of a tumour prognosis model from different

perspectives. With the intention of elucidating how the ratio Te f f /Treg between effector
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Figure 5.20: Time dynamics for effector and regulatory T cells when reaching SS3 ≈ (12.31, 0)
under parameters given in Table 5.2 for SC3.

Figure 5.21: Probabilities of reaching poor and better prognosis regions through each potential
state (nE, nR). Initial state (NE, NR) = (50, 25). K1 = 1, K2 = 10. Parameters satisfying SC3 in
Table 5.3.
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CD8+ T cells and regulatory T cells determines tumour progression, we studied, for each of

these two models, some parameter regimes in which extinction and uniqueness of extinction

are guaranteed. For our toy model and for the Fas/FasL version, regimes given in Theorem

5.1 and Theorem 5.2 in Sections 5.2.1 and 5.3.1 guarantee that the respective process will

reach poor or better prognosis with probability one.

With this in hand, stochastic descriptors, over a conveniently defined state space are used

in the stochastic version of our models to study in Sections 5.2.2 and 5.3.2 the probability

of reaching poor or better prognosis depending on the values of the parameters and so

the probability of entering to each of these two regions by any specific state. Moreover,

a deterministic approach follows in both Sections 5.2.3 and 5.3.3 for analysing the steady

states of the systems and their stability.

When studying the toy model, results in Section 5.2.4 shows how the tendency of probability

of reaching poor and better prognosis varies as the parameter conditions SCi, with i =

1, 2, 3, 4, are changed. When observing the histograms with the probability of entering

through every state, the patterns followed in the case of poor and better prognosis are

quite different, see for instance Figure 5.5. Whereas for the poor prognosis the shape of

the distribution is more constant, and seems to follow a gamma distribution, for the better

prognosis distribution certain states have a much higher probability of being reached than

their neighbours. In particular, those states (nE, nR) ∈ K2. This is because they can be

reached by one transition more than those (nE, nR) /∈ K2 but which belong to BPK1,K2 .

When comparing the different probability distributions, it can be observed that the steady

state location determines the distribution of the two types of prognosis. However, this

condition is not complete for the steady state SS3 = (100, 0). Even when it is located in

the better prognosis area, Figure 5.9 shows how the process sometimes reaches first a poor

prognosis region (more than 5 times out of 100) before ending up in SS3. When SS4 is

analysed, again this steady state location affects both distributions. When the steady state is

located in the poor prognosis region, the probability of reaching better prognosis 1− p1,10
(50,25)

is negligible (Figure 5.11), and this probability increases as the steady state approaches to

the better prognosis area. It is also interesting to notice how the region of values for the

poor prognosis distribution increases as the probability of reaching this area decreases (odd

figures from Figure 5.5 to 5.15).

Regarding the time dynamics, stochastic and deterministic simulations are plotted for every

steady state (even figures from Figure 5.4 to Figure 5.14), using values in Table 5.1. The
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time needed for the process to reach each steady state is significantly different. If for the

three distinct cases of SS4, this steady state is reached in around 10 days (Figures 5.10,5.12

and 5.14), at least 60 days are needed for the system to stay at steady state for the better

prognosis scenario (Figure 5.8). This gives and indicator of the time that the system needs

to become in homeostais when tumour cells have good prognosis to be depleted. Figures

5.10, 5.12 and 5.14 also show better how effector cells and T reg cells interacts in time. By

observing the stochastic dynamics these three plots suggest that regulatory T cells reproduce

the behaviour of effector cells dynamics from which we could conclude that the formers

have more impact on the latter than the other way round, disregarding the amount of cells

of each type.

When introducing the Fas/FasL model, the main differences occur when the steady state

reaches either extinction or the better prognosis region. In the first case, Figure 5.17 shows

that when SS1 = (0, 0) is reached, the different paths observed of the toy model are always

the poor prognosis one (1− p1,10
(50,25) ≈ 0). Actually, by comparing the time dynamics of both

models in the extinction case (Figures 5.4 and Figure 5.16), we can see that whereas effector

cells decreases the time to extinction (from 30 to 10 days), regulatory T cells delay the time

needed to vanish in the Fas/FasL model (from 30 to more than 60 days).

Regarding SS3, Figures 5.20 and 5.21 both together indicate that even when the steady state

is located in the better prognosis area, the poor prognosis region is almost always reached

first. This is due to the long time that the process stays around similar values of effector and

T reg cells 5.20 and also to the small value of regulatory T cells in steady state SS3.

Finally, further results for the matrix-analytic approach for both models include a different

way of ordering the poor and the better prognosis areas. This would consist on squares

instead of triangles and could be more appropriate for certain types of cancers as it is

suggested in [59]. Finally, the times needed to reach every state in the boundary conditions

can be also analytically obtained with the same approach developed in Sections 5.2.3 and

5.3.2.
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Chapter 6

Conclusions

Understanding the mechanisms by which the immune system self-regulates lymphocytes

expression levels is believed to be nowadays a crucial aspect for plenty of immunologists.

Focused on the role that regulatory CD4+ T cells have in such a matter, the present work has

analysed, at different levels, diverse features about this cell sub-population to find out more

about their quantitative effect in controlling T cell pool in both homeostasis and cancerous

scenarios. To this purpose, the main part of the work was organised from a stochastic

perspective which has, among others, the advantage of taking into account the intrinsic

randomness of a system and so identifying some less deterministic behaviours that might

not be tracked, for instance, by differential equations.

Starting from a molecular approach, Chapters 2 and 3 develop, by means of matrix-

analytic methods, two different stochastic models to quantify receptor/ligand dynamics

between different types of cells. The apparatus driven by cytokine IL-2 for regulatory T

cell stimulation, is studied in Chapter 2. Our model suggests that CD25 (IL-2 high affinity

receptor) synthesis rate is fairly affected by the number of IL-2/IL-2R complexes and so

that, when these complexes are both intracellular and extracellularly located, those driving

the receptor rates are located on the cell surface. Numerical results explained throughout

this Chapter also illustrate how time dynamics of these molecules get affected by initial

conditions and different hypothesis.

Regulatory T cells are characterised by CD4, transcription factor FOXP3, and CD25.

However, another of their characteristic is the location of the inhibitory co-receptor CTLA-

4. The fact that most of these molecules are located in the cell surface, in contrast to what
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occurs in conventional T cells, implies that their ability to suppress T cell activation is

much higher than non-regulatory cells. Chapter 3 compare the the co-stimulatory system

dynamics between conventional T cells and APCs and regulatory T-cells with APCs. In

terms of cell intrinsic behaviours, results obtained indicate some saturation phenomena

when approaching to regulatory cells scenarios, related to higher amount of initial CTLA-

4 receptors on the cell surface. When only CTLA-4 is considered versus one kind of

ligand, for the maximum amount of complexes simultaneously on the cell surface, this

variations are more relevant with mature APCs interactions whereas for the time until

having certain amount of ligands internalised, it almost remains the same. When talking

about cell extrinsic behaviours, clear differences are quantified depending on if the APC∗

that for a second time is stimulating a T cell, stayed in a first stimulation with a regulatory

or a conventional T cell and for how long, because of the B7 ligands that the APC∗ might

have lost in the first one. Additionally, the possibility of sequentially including ligands or

receptors in our model, allows us to describe a significant synergy when CD28, CTLA-4,

B7-1 and B7-2 are considered together to described the two main characteristics explained

above.

There are, however, certain limitations that need to be taken into account when dealing with

the type of analytic models used for Chapters 2 and 3. The computational costs of dealing

with these matrix algorithms reduce the complexity of our models, which only allows to

track the short amount of dynamics considered in them and with small initial conditions.

Even when this fact can be compensated with the use of simulations, these should not be

too different to the analytic versions if we want to identify where the possible variations

arise.

From a population level, Chapter 4 introduces a quorum-sensing model in which

interactions between naive, IL-2 producer (effector) cells, memory and regulatory CD4+

cells take place together. For this purpose, some experimental data is used to try to stablish

a hierarchy in the reactions involved in the model. As hypothesis for selecting a better

model which explains how regulatory cells inhibit effector cells proliferation, we study one

pathway in which these effector cells would become memory by T reg cells intervention,

and another one in which this intervention would induce effector cells apoptosis. Results

from Bayesian analysis with different approaches conclude that, in spite of the robustness

of the model, no preference pathway is supported by the model comparison. Moreover,

the efficiency of such models is also discussed for the different approaches and so the
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identification of those parameters which perturbations might affect more the output of these

models.

Results suggest that certain reactions, such as the differentiation/death pathway of IL-2

producers or the IL-2 driven proliferation of regulatory cells, mainly drive the output of the

systems and that also these parameters are those in which the learning might be affected

by the kind of prior distribution chosen. A complete study of these Bayesian techniques

together with a statistical analysis allow to understand the main dynamics of this quorum-

sensing mechanism. However, this approach still brings some limitations. In first place,

the problems of tracking with accuracy the influence that a short and noisy data has in the

output. On the other hand, the fact of tracking together two subpopulations experimentally,

when the models split them, suggest that restrictions of the model replicating data might be

due to this fact.

Finally, this quorum-sensing mechanism is studied in more detail to analyse tumour

prognosis. For this purpose, only regulatory T cells and effector CD8+ cells are taken

into account. By means of matrix-analytic methods and a deterministic approach, two

different models were compared to elucidate some conditions, under which the cancer

might have a poor or a better prognosis. Taking together the stochastic and the deterministic

approach, our models analyse how this system might reach each steady state and, with more

accuracy, the probability of ending up in any of these areas of prognosis, and so under which

parameter regimes, the existence and uniqueness of extinction is guaranteed.

Regarding the limitations of this analysis of tumour prognosis, we would mention that

given the non-linear terms of our models, the parameter regimes for which we can verify

the existence and uniqueness of solution are quite restricted. However, the values found

in literature for these parameters seem to fit well in those regimes. On the other hand,

the stability of the steady states for the Fas/FasL model, does not allow to work with the

tolerance case from an analytic point of view. This does not allow to compare the if the

tolerance state can be reached under the same parameter regimes that one of the other states,

varying initial conditions.

Future work that could be done to complete the study developed in some of the chapters

includes: for Chapter 2 and Chapter 3, taking into account the mobility of the molecules

to quantify how this would affect the output of the systems. In addition to this, it would

have been very interesting to model TCR + CTLA-4+ dynamics for Chapter 3 for which,

the possibility of using experimental data would have been great to include to carry out
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Bayesian analysis. For Chapter 4, the fact that memory cells and naive cells were included

together in the data, but separated in the models (and that these models cannot always

reproduce the data) motivates to implement a different version of the model or, preferably,

manage to obtain pieces of data that split these two species. Finally, for Chapter 5, we

are trying to include some clinical data for completing the analysis and a different way of

dividing bad and better prognosis regions that could perhaps be more adequate depending of

different scenarios experimentally observed.
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Appendices

A representative selection of codes have been included in this appendices, with references

to figures obtained as a result. At the same time, throughout the thesis, an indication of the

correspondent code included here is made. For the sake of the space, those lines starting

with ”]” in the codes are a continuation of the previous line.

A Python code for mean time ± standard deviation to reach

a threshold B of complexes on the cell surface. Chapter 2.

# For Figure 2 . 3 ( bottom ) , blue curve .

import random , math

import numpy as np

from numpy import l i n a l g

# Matrix d e f i n i t i o n :

def Build ApkkMinus1z ( ApkkMinus1z , p , k , z ) :

f o r j in range (nmax−k + 1 ) :

f o r i in range ( j * ( 2 * nmax−2*k− j +3 )/2 , ( j + 1 ) * ( 2 * nmax−2*k−( j + 1 ) + 3 ) / 2 ) :

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Airk=v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) + ks * j +( ke+ d e l t a )

] * ( i− j * ( 2 * nmax−2*k− j +3)/2)+kon * j * nl +( k o f f+gamma) * k

e l s e :

Airk=ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

ApkkMinus1z [ i , j * ( 2 * nmax−2*(k−1)− j +3)/2+ i− j * ( 2 * nmax−2*k− j +3)/2+1]

] = ( ( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) ) / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) (gamma* k ) ) / ( ( f l o a t ) ( z+Airk ) )

ApkkMinus1z [ i , ( j + 1 ) * ( 2 * nmax−2*(k−1)−( j +1)+3)/2+ i− j * ( 2 * nmax−2*k− j +3)/2]

] = ( ( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) ) / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( k o f f * k ) ) / ( ( f l o a t ) ( z+Airk ) )

def Build Apkkz ( Apkkz , p , k , z ) :
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j =0

f o r i in range ( j * ( 2 * nmax−2*k− j +3 )/2 , ( j + 1 ) * ( 2 * nmax−2*k−( j + 1 ) + 3 ) / 2 ) :

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Airk=v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) + ks * j +( ke+ d e l t a )

] * ( i− j * ( 2 * nmax−2*k− j +3)/2)+kon * j * nl +( k o f f+gamma) * k

e l s e :

Airk=ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

Apkkz [ i , i −1]=(( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( ke * ( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) ) / ( ( f l o a t ) ( z+Airk ) )

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Apkkz [ i , i +(nmax−k− j + 1 ) ] = ( ( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) ) ) / ( ( f l o a t ) ( z+Airk ) )

Apkkz [ i , i +(nmax−k− j +1)−1]=(( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( d e l t a * ( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) ) / ( ( f l o a t ) ( z+Airk ) )

f o r j in range ( 1 , nmax−k ) :

f o r i in range ( j * ( 2 * nmax−2*k− j +3 )/2 , ( j + 1 ) * ( 2 * nmax−2*k−( j + 1 ) + 3 ) / 2 ) :

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Airk=v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) + ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

e l s e :

Airk=ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

Apkkz [ i , i−(nmax−k−( j −1)+1) ]=( ( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( ks * j ) ) / ( ( f l o a t ) ( z+Airk ) )

Apkkz [ i , i −1]=(( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( ke * ( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) ) / ( ( f l o a t ) ( z+Airk ) )

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Apkkz [ i , i +(nmax−k− j + 1 ) ] = ( ( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) ) ) / ( ( f l o a t ) ( z+Airk ) )

Apkkz [ i , i +(nmax−k− j +1)−1]=(( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( d e l t a * ( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) ) / ( ( f l o a t ) ( z+Airk ) )

j =nmax−k

f o r i in range ( j * ( 2 * nmax−2*k− j +3 )/2 , ( j + 1 ) * ( 2 * nmax−2*k−( j + 1 ) + 3 ) / 2 ) :

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Airk=v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) + ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

e l s e :

Airk=ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)+kon * j * nl +( k o f f+gamma) * k

Apkkz [ i , i−(nmax−k−( j −1)+1) ]=( ( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( ks * j ) ) / ( ( f l o a t ) ( z+Airk ) )

Apkkz [ i , i −1]=(( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) )

] / ( ( f l o a t ) ( Airk * * p ) ) * ( ( f l o a t ) ( ke * ( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) ) / ( ( f l o a t ) ( z+Airk ) )

def Build ApkkPlus1z ( ApkkPlus1z , p , k , z ) :
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f o r j in range ( 1 , nmax−k + 1 ) :

f o r i in range ( j * ( 2 * nmax−2*k− j +3 )/2 , ( j + 1 ) * ( 2 * nmax−2*k−( j + 1 ) + 3 ) / 2 ) :

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Airk=v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) + ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

e l s e :

Airk=ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

ApkkPlus1z [ i , ( j −1)* (2*nmax−2*(k+1)−( j −1)+3)/2+ i− j * ( 2 * nmax−2*k− j +3)/2]

] = ( ( f l o a t ) ( ( ( − 1 ) * * p ) * math . f a c t o r i a l ( p ) ) ) / ( ( f l o a t ) ( Airk * * p ) )

] * ( ( f l o a t ) ( kon * j * nl ) ) / ( ( f l o a t ) ( z+Airk ) )

values = [0 ]

values2 = [0 ]

values3 = [0 ]

jumps = [0 ]

nl =50

B=1

T=0

kmax=1000

while B<34:

nmax=90

nr=15

Kc=10

v0 =0.1667

v1 =1.3333

kon =0.001029

k o f f =0.0138

d e l t a =0.15

ke =0.0833

ks =0.0107

gamma=0.0283

z=0

l =2

Hrkz=[np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 ) ) )

] f o r k in range ( B ) ]

invHrkz =[np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 ) ) )

] f o r k in range ( B ) ]

J j r k z = [ [ np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , 1 ) ) ) f o r k in range ( B ) ]

] f o r j in range ( l + 1 ) ]

grkz =[np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , 1 ) ) ) f o r k in range ( B ) ]

mjrk = [ [ np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , 1 ) ) ) f o r k in range ( B ) ]

] f o r j in range ( l + 1 ) ]

m t i l d e j r k = [ [ np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , 1 ) ) ) f o r k in range ( B ) ]

] f o r j in range ( l + 1 ) ]

s=0

k=0
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Apkkz=np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 ) ) )

Build Apkkz ( Apkkz , s , k , z )

Hrkz [ k]=np . asmatrix ( np . i d e n t i t y ( ( ( nmax−k + 1 ) * ( nmax−k+2))/2))−Apkkz

del Apkkz

invHrkz [ k]=Hrkz [ k ] . I

J j r k z [ s ] [ k]=np . matrix ( np . zeros ( ( nmax−k + 1 , 1 ) ) )

f o r k in range ( 1 , B ) :

# p r i n t ”k ” , k

Apkkz=np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k +2) )/2 ,

] ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 ) ) )

Build Apkkz ( Apkkz , s , k , z )

ApkkMinus1z=np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k +2) )/2 ,

] ( ( nmax−k + 2 ) * ( nmax−k + 3 ) ) / 2 ) ) )

Build ApkkMinus1z ( ApkkMinus1z , s , k , z )

ApkkPlus1z=np . asmatrix ( np . zeros ( ( ( ( nmax−k + 2 ) * ( nmax−k +3) )/2 ,

] ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 ) ) )

Build ApkkPlus1z ( ApkkPlus1z , s , k−1,z )

Hrkz [ k]=np . asmatrix ( np . i d e n t i t y ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 ) )

]−Apkkz−ApkkMinus1z * invHrkz [ k−1]*ApkkPlus1z

invHrkz [ k]=Hrkz [ k ] . I

del Apkkz , ApkkMinus1z , ApkkPlus1z

k=B−1

ApkkPlus1z=np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k + 2 ) ) / 2 , ( ( nmax−k ) * ( nmax−k + 1 ) ) / 2 ) ) )

Build ApkkPlus1z ( ApkkPlus1z , s , k , z )

ek=np . asmatr ix ( np . ones ( ( ( ( nmax−k ) * ( nmax−k + 1 ) ) / 2 , 1 ) ) )

grkz [ k]= invHrkz [ k ] * ApkkPlus1z * ek

mjrk [ s ] [ k]= grkz [ k ]

del ApkkPlus1z

f o r k in reversed ( range ( B−1 ) ) :

# p r i n t ” kreverse ” , k

ApkkPlus1z=np . matrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k +2) )/2 ,

] ( ( nmax−k ) * ( nmax−k + 1 ) ) / 2 ) ) )

Build ApkkPlus1z ( ApkkPlus1z , s , k , z )

grkz [ k]= invHrkz [ k ] * ApkkPlus1z * grkz [ k+1]

del ApkkPlus1z

mjrk [ s ] [ k]= grkz [ k ]

f o r k in range ( B ) :

f o r j in range (nmax−k + 1 ) :

f o r i in range ( j * ( 2 * nmax−2*k− j +3 )/2 , ( j + 1 ) * ( 2 * nmax−2*k−( j + 1 ) + 3 ) / 2 ) :

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Airk=v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) + ks * j +( ke+ d e l t a )

] * ( i− j * ( 2 * nmax−2*k− j +3)/2)+kon * j * nl +( k o f f+gamma) * k

e l s e :

Airk=ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

m t i l d e j r k [ s ] [ k ] [ i , 0 ] = mjrk [ s ] [ k ] [ i , 0 ] / ( ( f l o a t ) ( Airk ) )

f o r s in range ( 1 , l + 1 ) :

# p r i n t ” s ” , s

k=0
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J j r k z [ s ] [ k]= s * m t i l d e j r k [ s−1][k ]

f o r k in range ( 1 , B ) :

ApkkMinus1z=np . asmatrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k +2) )/2 ,

] ( ( nmax−k + 2 ) * ( nmax−k + 3 ) ) / 2 ) ) )

Build ApkkMinus1z ( ApkkMinus1z , 0 , k , z )

J j r k z [ s ] [ k]=ApkkMinus1z * invHrkz [ k−1]* J j r k z [ s ] [ k−1]+s * m t i l d e j r k [ s−1][k ]

k=B−1

mjrk [ s ] [ k]= invHrkz [ k ] * J j r k z [ s ] [ k ]

f o r k in reversed ( range ( B−1 ) ) :

ApkkPlus1z=np . matrix ( np . zeros ( ( ( ( nmax−k + 1 ) * ( nmax−k+2))/2

] , ( ( nmax−k ) * ( nmax−k + 1 ) ) / 2 ) ) )

Build ApkkPlus1z ( ApkkPlus1z , 0 , k , z )

mjrk [ s ] [ k]= invHrkz [ k ] * ( J j r k z [ s ] [ k]+ ApkkPlus1z * mjrk [ s ] [ k + 1 ] )

f o r k in range ( B ) :

f o r j in range (nmax−k + 1 ) :

f o r i in range ( j * ( 2 * nmax−2*k− j +3 )/2 , ( j + 1 ) * ( 2 * nmax−2*k−( j + 1 ) + 3 ) / 2 ) :

i f i <( j + 1 ) * ( 2 * nmax−2*k−( j +1)+3)/2−1:

Airk=v0+v1 * ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) / 2 ) ) * * 3 )

] / ( ( k+( i− j * ( 2 * nmax−2*k− j + 3 ) /2 ) ) * * 3+ Kc * * 3 ) + ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

e l s e :

Airk=ks * j +( ke+ d e l t a ) * ( i− j * ( 2 * nmax−2*k− j +3)/2)

]+kon * j * nl +( k o f f+gamma) * k

m t i l d e j r k [ s ] [ k ] [ i , 0 ] = mjrk [ s ] [ k ] [ i , 0 ] / ( ( f l o a t ) ( Airk ) )

jumps . append ( B )

values . append ( mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr + 3 ) / 2 , 0 ] )

values2 . append ( mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr +3)/2 ,0]+ math . s q r t ( mjrk [ 2 ] [ 0 ]

] [ nr * ( 2 * nmax−2*0−nr +3)/2 ,0]−mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr +3)/2 ,0 ]

] * mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr + 3 ) / 2 , 0 ] ) )

values3 . append ( mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr +3)/2 ,0]−math . s q r t ( mjrk [ 2 ] [ 0 ]

] [ nr * ( 2 * nmax−2*0−nr +3)/2 ,0]−mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr +3)/2 ,0 ]

] * mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr + 3 ) / 2 , 0 ] ) )

p r i n t B

B += 1

p r i n t mjrk [ 1 ] [ 0 ] [ nr * ( 2 * nmax−2*0−nr +3)/2 ,0 ] # ( Figure 2 . 3 ( bottom ) , blue curve . )

p r i n t values2 [ B−1]

p r i n t values3 [ B−1]

B Python code for Probability of reaching poor and beeter

prognosis. Chapter 5.

#Histograms f o r Figure 5 . 5

import m a t p l o t l i b . pyplot as p l t

import random , math

import numpy as np

from numpy import l i n a l g

import c o l l e c t i o n s
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eps=1e−7

def J ( k1 , k2 , k ) :

re turn i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ) )

]− i n t ( ( ( f l o a t ) ( k1 * k ) ) / ( ( f l o a t ) ( k1 +1))+ eps)−1

def J2 ( k1 , k2 , k ) :

re turn i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * ( k + 0 . 9 9 ) ) ) / ( ( f l o a t ) ( k2+1))−eps ) )

]− i n t ( ( ( f l o a t ) ( k1 * ( k + 0 . 9 9 ) ) ) / ( ( f l o a t ) ( k1 +1))+ eps)−1

def Pos ( k , nE ) :

re turn i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))−nE

def Delta ( nE , nR ) :

re turn (muE+nuE*nE+ x i *nR+lE+alE *nE ) * nE+(muR+nuR*nR+lR+alR *nE ) * nR

def DeltaTruncated ( nE , nR ) :

re turn (muE+nuE*nE+ x i *nR ) * nE+(muR+nuR*nR ) * nR

def Build AkkMinus1k1k2 ( AkkMinus1k1k2 , k , k1 , k2 ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

j =Pos ( k−1,nE−1)

i f j >=1 and j<J ( k1 , k2 , k−1)+1:

AkkMinus1k1k2 [ i −1, j −1]=(muE+nuE*nE+ x i *nR ) * nE/( Delta ( nE , nR ) )

j =Pos ( k−1,nE )

i f j >=1 and j<J ( k1 , k2 , k−1)+1:

AkkMinus1k1k2 [ i −1, j −1]=(muR+nuR*nR ) * nR/( Delta ( nE , nR ) )

def Build AkkMinus1k1k2Truncated ( AkkMinus1k1k2 , k , k1 , k2 ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

j =Pos ( k−1,nE−1)

i f j >=1 and j<J ( k1 , k2 , k−1)+1:

AkkMinus1k1k2 [ i −1, j −1]=(muE+nuE*nE+ x i *nR ) * nE/( DeltaTruncated ( nE , nR ) )

j =Pos ( k−1,nE )

i f j >=1 and j<J ( k1 , k2 , k−1)+1:

AkkMinus1k1k2 [ i −1, j −1]=(muR+nuR*nR ) * nR/( DeltaTruncated ( nE , nR ) )

def Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k , k1 , k2 ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

j =Pos ( k+1 ,nE+1)

i f j >=1 and j<J ( k1 , k2 , k +1)+1 :

AkkPlus1k1k2 [ i −1, j −1]=( lE+alE *nE ) * nE/( Delta ( nE , nR ) )

j =Pos ( k+1 ,nE )

i f j >=1 and j<J ( k1 , k2 , k +1)+1 :

AkkPlus1k1k2 [ i −1, j −1]=( lR+alR *nE ) * nR/( Delta ( nE , nR ) )
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def Build bkk1k2 ( bkk1k2 , k , k1 , k2 ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

i f ( ( f l o a t ) ( nE ) ) / ( ( f l o a t ) ( nR+1))<=k1 :

bkk1k2 [ i −1 ,0]=( lR+alR *nE ) * nR/( Delta ( nE , nR ) )

i f ( ( f l o a t ) ( nE−1) )/( ( f l o a t ) ( nR))<=k1 :

bkk1k2 [ i −1 ,0]+=(muE+nuE*nE+ x i *nR ) * nE/( Delta ( nE , nR ) )

def Build bkk1k2Truncated ( bkk1k2 , k , k1 , k2 ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

i f ( ( f l o a t ) ( nE ) ) / ( ( f l o a t ) ( nR+1))<=k1 :

bkk1k2 [ i −1 ,0]=( lR+alR *nE ) * nR/( DeltaTruncated ( nE , nR ) )

i f ( ( f l o a t ) ( nE−1) )/( ( f l o a t ) ( nR))<=k1 :

bkk1k2 [ i −1 ,0]+=(muE+nuE*nE+ x i *nR ) * nE/( DeltaTruncated ( nE , nR ) )

def Build bkk1k2 poor ( bkk1k2 , k , k1 , k2 , j ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

i f nE== i n t ( ( ( f l o a t ) ( k1 * j ) ) / ( ( f l o a t ) ( k1 + 1 ) ) )

] and nR+1== i n t ( math . c e i l ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k1+1))−eps ) ) :

bkk1k2 [ i −1 ,0]=( lR+alR *nE ) * nR/( Delta ( nE , nR ) )

i f nE−1==i n t ( ( ( f l o a t ) ( k1 * j ) ) / ( ( f l o a t ) ( k1 + 1 ) ) )

] and nR== i n t ( math . c e i l ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k1+1))−eps ) ) :

bkk1k2 [ i −1 ,0]+=(muE+nuE*nE+ x i *nR ) * nE/( Delta ( nE , nR ) )

def Build bkk1k2Truncated poor ( bkk1k2 , k , k1 , k2 , j ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

i f nE−1==i n t ( ( ( f l o a t ) ( k1 * j ) ) / ( ( f l o a t ) ( k1 + 1 ) ) )

] and nR== i n t ( math . c e i l ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k1+1))−eps ) ) :

bkk1k2 [ i −1 ,0]+=(muE+nuE*nE+ x i *nR ) * nE/( DeltaTruncated ( nE , nR ) )

def Bui ld bkk1k2 bet te r ( bkk1k2 , k , k1 , k2 , j ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :

nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

i f nE== i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * j ) ) / ( ( f l o a t ) ( k2+1))−eps ) )

] and nR−1==i n t ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k2 +1))+ eps ) :

bkk1k2 [ i −1 ,0]=(muR+nuR*nR ) * nR/( Delta ( nE , nR ) )

i f nE+1== i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * j ) ) / ( ( f l o a t ) ( k2+1))−eps ) )

] and nR== i n t ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k2 +1))+ eps ) :

bkk1k2 [ i −1 ,0]+=( lE+alE *nE ) * nE/( Delta ( nE , nR ) )

def Bui ld bkk1k2Truncated bet ter ( bkk1k2 , k , k1 , k2 , j ) :

f o r i in range ( 1 , J ( k1 , k2 , k ) + 1 ) :
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nE= i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * k ) ) / ( ( f l o a t ) ( k2+1))−eps ))− i

nR= i n t ( ( ( f l o a t ) ( k ) ) / ( ( f l o a t ) ( k2 +1))+ eps )+ i

i f nE== i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * j ) ) / ( ( f l o a t ) ( k2+1))−eps ) )

] and nR−1==i n t ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k2 +1))+ eps ) :

bkk1k2 [ i −1 ,0]=(muR+nuR*nR ) * nR/( DeltaTruncated ( nE , nR ) )

# Parameter values :

NE=50

NR=25

k1=1

k2=10

lE =0.015

lR =0.01

nuE=0.0001

nuR=0.0003

alE =0.00005

alR =0.000075

muE=0.02

muR=0.02

x i =0.0005

Kepsilon=NE+NR+1

p r o b a b i l i t y =1

Epsi lon =0.02

# Maximum l e v e l f o r t r u n c a t i o n :

while p r o b a b i l i t y>Epsi lon :

Kepsilon+=1

Hk1k2=[np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k ) ) ) ) f o r k in range ( 2 , Kepsilon + 1) ]

invHk1k2 =[np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k ) ) ) ) f o r k in range ( 2 , Kepsilon + 1) ]

pmaxk1k2=[np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , 1 ) ) ) f o r k in range ( 2 , Kepsilon + 1 ) ]

Hk1k2 [ 0 ]= np . asmatrix ( np . eye ( ( 3 −2 ) ) )

invHk1k2 [ 0 ] = Hk1k2 [ 0 ] . I

f o r k in range ( 3 , Kepsilon + 1 ) :

AkkMinus1k1k2=np . asmatr ix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k−1 ) ) ) )

Build AkkMinus1k1k2 ( AkkMinus1k1k2 , k , k1 , k2 )

AkkPlus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k−1) , J2 ( k1 , k2 , k ) ) ) )

Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k−1,k1 , k2 )

Hk1k2 [ k−2]=np . asmatrix ( np . eye ( ( J2 ( k1 , k2 , k ) ) ) ) −
] AkkMinus1k1k2 * invHk1k2 [ k−3]* AkkPlus1k1k2

invHk1k2 [ k−2]=Hk1k2 [ k−2]. I

k=Kepsilon

AkkPlus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k + 1 ) ) ) )

Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k , k1 , k2 )

pmaxk1k2 [ k−2]=invHk1k2 [ k−2]* AkkPlus1k1k2 *np . asmatrix ( np . ones ( ( J2 ( k1 , k2 , Kepsilon + 1 ) , 1 ) ) )

f o r k in reversed ( range ( 2 , Kepsilon ) ) :

AkkPlus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k + 1 ) ) ) )
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Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k , k1 , k2 )

pmaxk1k2 [ k−2]=invHk1k2 [ k−2]* AkkPlus1k1k2 * pmaxk1k2 [ k−1]

p r o b a b i l i t y =pmaxk1k2 [NE+NR−2][ Pos (NE+NR,NE)−1 ,0]

p r i n t ( Kepsilon , p r o b a b i l i t y )

p r i n t (” Kepsilon : ” , Kepsilon )

p r i n t (” P r o b a b i l i t y of exceeding the Kepsilon l e v e l : ” , p r o b a b i l i t y )

# P r o b a b i l i t i e s of Poor and B e t t e r prognosis

pk1k2 =[np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , 1 ) ) ) f o r k in range ( 2 , Kepsilon +1 ) ]

Pk1k2 =[np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k ) ) ) ) f o r k in range ( 2 , Kepsilon + 1) ]

f o r k in range ( Kepsilon , Kepsilon + 1 ) :

AkkMinus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k−1 ) ) ) )

Build AkkMinus1k1k2Truncated ( AkkMinus1k1k2 , k , k1 , k2 )

AkkPlus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k−1) , J2 ( k1 , k2 , k ) ) ) )

Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k−1,k1 , k2 )

Hk1k2 [ k−2]=np . asmatrix ( np . eye ( ( J2 ( k1 , k2 , k ) ) ) ) −AkkMinus1k1k2 * invHk1k2 [ k−3]* AkkPlus1k1k2

invHk1k2 [ k−2]=Hk1k2 [ k−2]. I

k=2

Build bkk1k2 ( Pk1k2 [ k−2] ,k , k1 , k2 )

f o r k in range ( 3 , Kepsilon + 1 ) :

AkkMinus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k−1 ) ) ) )

i f k==Kepsilon :

Build AkkMinus1k1k2Truncated ( AkkMinus1k1k2 , k , k1 , k2 )

e l s e :

Build AkkMinus1k1k2 ( AkkMinus1k1k2 , k , k1 , k2 )

bkk1k2=np . asmatr ix ( np . zeros ( ( J2 ( k1 , k2 , k ) , 1 ) ) )

i f k==Kepsilon :

Build bkk1k2Truncated ( bkk1k2 , k , k1 , k2 )

e l s e :

Build bkk1k2 ( bkk1k2 , k , k1 , k2 )

Pk1k2 [ k−2]=AkkMinus1k1k2 * invHk1k2 [ k−3]*Pk1k2 [ k−3]+bkk1k2

k=Kepsilon

pk1k2 [ k−2]=invHk1k2 [ k−2]*Pk1k2 [ k−2]

f o r k in reversed ( range ( 2 , Kepsilon ) ) :

AkkPlus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k + 1 ) ) ) )

Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k , k1 , k2 )

pk1k2 [ k−2]=invHk1k2 [ k−2]*( AkkPlus1k1k2 * pk1k2 [ k−1]+Pk1k2 [ k−2])

p r i n t (” P r o b a b i l i t y of reaxing Poor Prognosis Region : ” , pk1k2 [NE+NR−2][ Pos (NE+NR,NE)−1 ,0] )

p r i n t (” P r o b a b i l i t y of reaxing B e t t e r Prognosis Region : ” , 1−pk1k2 [NE+NR−2][ Pos (NE+NR,NE)−1 ,0] )

pk1k2poor = [ [ np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , 1 ) ) ) f o r k in range ( 2 , Kepsilon +1 ) ]

] f o r j in range ( 1 , Kepsilon + 1 ) ]
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histogramx = [ ]

histogramy = [ ]

histogram2x = [ ]

histogram2y = [ ]

# P r o b a b i l i t y of entry through each s t a t e ( nE , nR ) :

check1=0

f o r j in range ( 1 , Kepsilon + 1 ) :

Pk1k2 =[np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k ) ) ) ) f o r k in range ( 2 , Kepsilon + 1) ]

k=2

Build bkk1k2 poor ( Pk1k2 [ k−2] ,k , k1 , k2 , j )

f o r k in range ( 3 , Kepsilon + 1 ) :

AkkMinus1k1k2=np . asmatr ix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k−1 ) ) ) )

i f k==Kepsilon :

Build AkkMinus1k1k2Truncated ( AkkMinus1k1k2 , k , k1 , k2 )

e l s e :

Build AkkMinus1k1k2 ( AkkMinus1k1k2 , k , k1 , k2 )

bkk1k2=np . asmatr ix ( np . zeros ( ( J2 ( k1 , k2 , k ) , 1 ) ) )

i f k==Kepsilon :

Build bkk1k2Truncated poor ( bkk1k2 , k , k1 , k2 , j )

e l s e :

Build bkk1k2 poor ( bkk1k2 , k , k1 , k2 , j )

Pk1k2 [ k−2]=AkkMinus1k1k2 * invHk1k2 [ k−3]*Pk1k2 [ k−3]+bkk1k2

k=Kepsilon

pk1k2poor [ j −1][k−2]=invHk1k2 [ k−2]*Pk1k2 [ k−2]

f o r k in reversed ( range ( 2 , Kepsilon ) ) :

AkkPlus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k + 1 ) ) ) )

Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k , k1 , k2 )

pk1k2poor [ j −1][k−2]=invHk1k2 [ k−2]*( AkkPlus1k1k2 * pk1k2poor [ j −1][k−1]+Pk1k2 [ k−2])

i f pk1k2poor [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0] >0:

p r i n t ( ” ( ” , i n t ( ( ( f l o a t ) ( k1 * j ) ) / ( ( f l o a t ) ( k1 +1))+ eps ) , ” , ” ,

] i n t ( math . c e i l ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k1+1))−eps ) ) , ” ) , ” , pk1k2poor [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0] )

histogramx=np . append ( histogramx , s t r ( ” ( ” ) + s t r ( i n t ( ( ( f l o a t ) ( k1 * j ) ) /

] ( ( f l o a t ) ( k1 +1))+ eps ) ) + s t r ( ” , ” ) + s t r ( i n t ( math . c e i l ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k1+1))−eps ) ) ) + s t r ( ” ) ” ) )

histogram2x=np . append ( histogram2x , s t r ( ” ( ” ) + s t r ( i n t ( ( ( f l o a t ) ( k1 * j ) ) /

] ( ( f l o a t ) ( k1 +1))+ eps ) ) + s t r ( ” , ” ) + s t r ( i n t ( math . c e i l ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k1+1))−eps ) ) ) + s t r ( ” ) ” ) )

histogramy=np . append ( histogramy , 0 )

histogram2y=np . append ( histogram2y , pk1k2poor [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0] )

check1+=pk1k2poor [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0]

p r i n t (” Tota l Poor Prognosis Region AGAIN: ” , check1 )

pk1k2better = [ [ np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , 1 ) ) ) f o r k in range ( 2 , Kepsilon +1 ) ]

] f o r j in range ( 1 , Kepsilon + 1 ) ]

check2=0

f o r j in range ( 1 , Kepsilon + 1 ) :

Pk1k2 =[np . matrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k ) ) ) ) f o r k in range ( 2 , Kepsilon + 1) ]

k=2

Bui ld bkk1k2 bet te r ( Pk1k2 [ k−2] ,k , k1 , k2 , j )

f o r k in range ( 3 , Kepsilon + 1 ) :
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AkkMinus1k1k2=np . asmatr ix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k−1 ) ) ) )

i f k==Kepsilon :

Build AkkMinus1k1k2Truncated ( AkkMinus1k1k2 , k , k1 , k2 )

e l s e :

Build AkkMinus1k1k2 ( AkkMinus1k1k2 , k , k1 , k2 )

bkk1k2=np . asmatr ix ( np . zeros ( ( J2 ( k1 , k2 , k ) , 1 ) ) )

i f k==Kepsilon :

Bui ld bkk1k2Truncated bet ter ( bkk1k2 , k , k1 , k2 , j )

e l s e :

Bui ld bkk1k2 bet te r ( bkk1k2 , k , k1 , k2 , j )

Pk1k2 [ k−2]=AkkMinus1k1k2 * invHk1k2 [ k−3]*Pk1k2 [ k−3]+bkk1k2

k=Kepsilon

pk1k2better [ j −1][k−2]=invHk1k2 [ k−2]*Pk1k2 [ k−2]

f o r k in reversed ( range ( 2 , Kepsilon ) ) :

AkkPlus1k1k2=np . asmatrix ( np . zeros ( ( J2 ( k1 , k2 , k ) , J2 ( k1 , k2 , k + 1 ) ) ) )

Build AkkPlus1k1k2 ( AkkPlus1k1k2 , k , k1 , k2 )

pk1k2better [ j −1][k−2]=invHk1k2 [ k−2]*( AkkPlus1k1k2 * pk1k2better [ j −1][k−1]+Pk1k2 [ k−2])

i f pk1k2better [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0] >0:

p r i n t ( ” ( ” , i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * j ) ) / ( ( f l o a t ) ( k2+1))−eps ) ) , ” , ” ,

] i n t ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k2 +1))+ eps ) , ” ) , ” , pk1k2better [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0] )

histogramx=np . append ( histogramx , s t r ( ” ( ” ) + s t r ( i n t ( math . c e i l ( ( ( f l o a t ) ( k2 * j ) ) /

] ( ( f l o a t ) ( k2+1))−eps ) ) ) + s t r ( ” , ” ) + s t r ( i n t ( ( ( f l o a t ) ( j ) ) / ( ( f l o a t ) ( k2 +1))+ eps ) ) + s t r ( ” ) ” ) )

histogramy=np . append ( histogramy , pk1k2better [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0] )

check2+=pk1k2better [ j −1][NE+NR−2][ Pos (NE+NR,NE)−1 ,0]

p r i n t (” Tota l B e t t e r Prognosis Region AGAIN: ” , check2 )

# Do both add up to 1 ? :

p r i n t ( check1+check2 )

i n t e g e r s =[ i f o r i in range ( len ( histogramx ) ) ]

i n t e g e r s 2 =[ i f o r i in range ( len ( histogram2x ) ) ]

poor=round ( check1 , 4 )

b e t t e r =round ( check2 , 4 )

p l t . bar ( i n t e g e r s , histogramy , width = 0 . 9 , c o l o r = ’b ’ , a l i g n = ’ center ’ , l a b e l = ’ B e t t e r prognosis ’ )

p l t . bar ( in tegers2 , l i s t ( reversed ( histogram2y ) ) , width = 0 . 9 , c o l o r = ’ red ’ ,

] a l i g n = ’ center ’ , l a b e l = ’ Poor prognosis ’ )

p l t . x t i c k s ( f o n t s i z e =9 , r o t a t i o n =70)

p l t . ylim ( ( 0 , 0 . 1 4 ) )

histogramnew = [ ]

histogramnew2 = [ ]

f o r i in range ( len ( i n t e g e r s 2 ) ) :

histogramnew=np . append ( histogramnew , histogramx [ i ] )

f o r i in range ( ( len ( i n t e g e r s )− len ( i n t e g e r s 2 ) ) ) :

histogramnew2=np . append ( histogramnew2 , histogramx [ i +len ( i n t e g e r s 2 ) ] )
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Finalhis togram= l i s t ( reversed ( histogramnew ) ) + l i s t ( histogramnew2 )

p l t . x t i c k s ( i n t e g e r s , F inalhis togram )

p l t . xlim ( ( − 0 . 5 , 9 0 ) )

p l t . t i t l e ( r ’ $ ( n ˆ{ ( 1 )} E , n ˆ{ ( 1 )} R ) = ( 0 , 0 ) $ ( e x t i n c t i o n ) f o r toy model ’ , l o c = ’ l e f t ’ )

p l t . t i t l e ( r ’ $p { (50 ,25 )} ˆ{1 ,10}=0.6544 $ ’ , l o c = ’ center ’ )

p l t . t i t l e ( r ’ $1−p { (50 ,25 )} ˆ{1 ,10}=0.3456 $ ’ , l o c = ’ r ight ’ )

p l t . legend ( l o c =1 , prop={ ’ s ize ’ : 1 2} )

p l t . show ( )

C Python code for time dynamics of effector and regulatory

T cells. Chapter 5

#Time dynamics f o r Figure 5 . 4

import random , math

import numpy as np

from scipy . i n t e g r a t e import odeint

from scipy import i n t e g r a t e

import m a t p l o t l i b . pyplot as p l t

# G i l l e s p i e s imulat ion :

alE =0.00005

alR =0.000075

lbE =0.015

lbR =0.01

muE=0.02

muR=0.02

x i =0.0005

nuE=0.0001

nuR=0.0003

L=0

k=0

k1=1

nEp = [0 ]

K1=0.25

while k1<2:

while k<100:

t = 0

nE = 50

l =0

nR = 25

jumps = [0 ]

valuesnE = [0 ]
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valuesnR = [0 ]

while t <1500:

# nE + 1

i f nE>0:

q1 = nE*nE* alE+nE* lbE

u1 = random . random ( )

e1 = −( f l o a t (1 ) / f l o a t ( q1 ) ) * math . log (1−u1 )

e l s e :

e1 = f l o a t ( ’ in f ’ )

# nE − 1

i f nE>0:

q2 = nE*nE*nuE+nE*muE+nE*nR* x i

u2 = random . random ( )

e2 = −( f l o a t (1 ) / f l o a t ( q2 ) ) * math . log (1−u2 )

e l s e :

e2 = f l o a t ( ’ in f ’ )

# nR + 1

i f nR>0:

q3 = nR* lbR+nE*nR* alR

u3 = random . random ( )

e3 = −( f l o a t (1 ) / f l o a t ( q3 ) ) * math . log (1−u3 )

e l s e :

e3 = f l o a t ( ’ in f ’ )

# nR − 1

i f nR>0:

q4 = nR*nR*nuR+nR*muR

u4 = random . random ( )

e4 = −( f l o a t (1 ) / f l o a t ( q4 ) ) * math . log (1−u4 )

e l s e :

e4 = f l o a t ( ’ in f ’ )

minimum = e1

i =1

i f minimum>e2 :

minimum=e2

i =2

i f minimum>e3 :

minimum=e3

i =3

i f minimum>e4 :

minimum=e4

i =4

i f i ==1:

nE=nE+1

i f i ==2:

nE=nE−1

i f i ==3:

nR=nR+1

i f i ==4:

nR=nR−1

t += minimum



Appendices 215

jumps . append ( f l o a t ( f l o a t ( t )/ f l o a t ( 2 4 . ) ) )

valuesnE . append ( nE )

valuesnR . append (nR)

i f ( nE<K1*nR) and L<1:

L=L+1

nEp=[nE , nR]

l = l +1

k += 1

p r i n t nEp

p l t . p l o t ( jumps , valuesnE , c o l o r = ’ blue ’ , l a b e l = ’ T e f f ( s t o c h a s t i c ) ’ )

p l t . p l o t ( jumps , valuesnR , c o l o r = ’ red ’ , l a b e l = ’ Treg ( s t o c h a s t i c ) ’ )

p l t . x l a b e l ( ’ Time ( days ) ’ )

p l t . y l a b e l ( ’ C e l l numbers ’ )

p l t . t i t l e ( r ’ $SS 1$ ( e x t i n c t i o n ) f o r toy model ’ , l o c = ’ l e f t ’ )

p l t . t i t l e ( r ’ $ ( n ˆ{ ( 1 )} E , n ˆ{ ( 1 )} R ) = ( 0 , 0 ) $ ’ , l o c = ’ r ight ’ )

p l t . a x i s ( [ 0 , 1500/24 . , 0 , 1 2 0 ] )

k1=k1+1

# D e t e r m i n i s t i c s imulat ion :

#=======================================================

def eq ( par , i n i t i a l c o n d , s t a r t t , end t , i n c r ) :

#−time−grid−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t = np . l i n s p a c e ( s t a r t t , end t , i n c r )

# d i f f e r e n t i a l−eq−system−−−−−−−−−−−−−−−−−−−−−−
def funct ( y , t ) :

NE=y [ 0 ]

NR=y [ 1 ]

muE, nuE , lbE , alE , xi ,muR, nuR , lbR , alR ,NE,NR

# the model equat ions

f0 = −muE*NE−nuE*NE*NE+lbE *NE+alE *NE*NE−x i *NE*NR

f1 = −muR*NR−nuR*NR*NR+lbR *NR+alR *NE*NR

return [ f0 , f1 ]

# i n t e g r a t e−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ds = i n t e g r a t e . odeint ( funct , i n i t i a l c o n d , t )

re turn ( ds [ : , 0 ] , ds [ : , 1 ] , t )

#=======================================================

# parameters

NE=50

NR=25

k1=1

k2=10

muE=0.02

muR=0.02

nuE=0.0001

nuR=0.0003
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lbE =0.015

lbR =0.01

alE =0.00005

alR =0.000075

x i =0.0005

r a t e s =(muE, nuE , lbE , alE , xi ,muR, nuR , lbR , alR ,NE,NR)

# i n i t i a l condi t ions

S0 = NE

Z0 = NR

y0 = [ S0 , Z0 ]

F0 , F1 , T=eq ( ra tes , y0 , 0 , 5 0 0 0 . , 1 0 0 0 )

p l t . p l o t ( T/ 2 4 . , F0,’−−b ’ , l a b e l = ’ T e f f ( d e t e r m i n i s t i c ) ’ )

p l t . p l o t ( T/ 2 4 . , F1,’−−r ’ , l a b e l = ’ Treg ( d e t e r m i n i s t i c ) ’ )

p l t . legend ( l o c =1 , prop={ ’ s ize ’ : 1 2} )

p l t . show ( )
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[38] M López-Garcı́a, M Nowicka, C Bendtsen, G Lythe, S Ponnambalam, and C Molina-

Parı́s, Stochastic models of the binding kinetics of vegf-a to vegfr1 and vegfr2 in endothelial

cells, Journal of Theoretical Biology. Under review (2015).

[39] JR Magnus and H Neudecker, Matrix differential calculus with applications to simple,

hadamard, and kronecker products, Journal of Mathematical Psychology 29 (1985), no. 4,

474–492.

[40] JR Magnus and H Neudecker, Matrix differential calculus with applications in statistics and

econometrics, (1995).

[41] TR Malek and I Castro, Interleukin-2 receptor signaling: at the interface between tolerance

and immunity, Immunity 33 (2010), no. 2, 153–165.

[42] TR Malek, BO Porter, EK Codias, P Scibelli, and A Yu, Normal lymphoid homeostasis

and lack of lethal autoimmunity in mice containing mature t cells with severely impaired il-2

receptors, The Journal of Immunology 164 (2000), no. 6, 2905–2914.

[43] TR Malek, A Yu, V Vincek, P Scibelli, and L Kong, Cd4 regulatory t cells prevent lethal

autoimmunity in il-2rβ-deficient mice: implications for the nonredundant function of il-2,

Immunity 17 (2002), no. 2, 167–178.

[44] TR Malek, A Yu, L Zhu, T Matsutani, D Adeegbe, and AL Bayer, Il-2 family of cytokines

in t regulatory cell development and homeostasis, Journal of Clinical Immunology 28 (2008),

no. 6, 635–639.

[45] S Marino, IB Hogue, CJ Ray, and DE Kirschner, A methodology for performing global

uncertainty and sensitivity analysis in systems biology, Journal of theoretical biology 254

(2008), no. 1, 178–196.

[46] R Medzhitov and CA Janeway, Innate immunity: impact on the adaptive immune response,

Current opinion in immunology 9 (1997), no. 1, 4–9.

[47] C Moler and C Van Loan, Nineteen dubious ways to compute the exponential of a matrix,

twenty-five years later, SIAM review 45 (2003), no. 1, 3–49.

[48] K Murphy and C Weaver, Janeway’s immunobiology, Garland Science, 2016.

[49] N Nagarsheth, MS Wicha, and W Zou, Chemokines in the cancer microenvironment and

their relevance in cancer immunotherapy, Nature Reviews Immunology (2017).

[50] MF Neuts, Matrix-analytic methods in queuing theory, European Journal of Operational

Research 15 (1984), no. 1, 2–12.



BIBLIOGRAPHY 221

[51] C Park and TS Kupper, The emerging role of resident memory t cells in protective immunity

and inflammatory disease, Nature medicine 21 (2015), no. 7, 688.

[52] JK Pritchard, MT Seielstad, A Perez-Lezaun, and MW Feldman, Population growth of

human y chromosomes: a study of y chromosome microsatellites., Molecular biology and

evolution 16 (1999), no. 12, 1791–1798.

[53] OS Qureshi, S Kaur, TZ Hou, LE Jeffery, NS Poulter, Z Briggs, R Kenefeck, AK Willox,

SJ Royle, JZ Rappoport, and DM Sansom, Constitutive clathrin-mediated endocytosis of

ctla-4 persists during t cell activation, Journal of Biological Chemistry 287 (2012), no. 12,

9429–9440.

[54] OS Qureshi, Y Zheng, K Nakamura, K Attridge, C Manzotti, EM Schmidt, J Baker,

LE Jeffery, S Kaur, Z Briggs, et al., Trans-endocytosis of cd80 and cd86: a molecular basis for

the cell-extrinsic function of ctla-4, Science 332 (2011), no. 6029, 600–603.

[55] C Rangel, J Angus, Z Ghahramani, M Lioumi, E Sotheran, A Gaiba, D L Wild, and

F Falciani, Modeling t-cell activation using gene expression profiling and state-space models,

Bioinformatics 20 (2004), no. 9, 1361–1372.

[56] GEH Reuter, Competition processes, Proc. 4th Berkeley Symp. Math. Statist. Prob, vol. 2,

1961, pp. 421–430.

[57] J Reynolds, IF Amado, AA Freitas, G Lythe, and C Molina-Parı́s, A mathematical

perspective on cd4+ t cell quorum-sensing, Journal of theoretical biology 347 (2014), 160–

175.

[58] SA Rosenberg, Il-2: the first effective immunotherapy for human cancer, The Journal of

Immunology 192 (2014), no. 12, 5451–5458.

[59] R Roychoudhuri, RL Eil, and NP Restifo, The interplay of effector and regulatory t cells in

cancer, Current opinion in immunology 33 (2015), 101–111.

[60] S Sakaguchi, Regulatory t cells: key controllers of immunologic self-tolerance, Cell 101 (2000),

no. 5, 455–458.

[61] S Sakaguchi, T Yamaguchi, T Nomura, and M Ono, Regulatory t cells and immune

tolerance, Cell 133 (2008), no. 5, 775–787.

[62] P Salama, M Phillips, F Grieu, M Morris, N Zeps, D Joseph, C Platell, and B Iacopetta,

Tumor-infiltrating foxp3+ t regulatory cells show strong prognostic significance in colorectal

cancer, Journal of clinical oncology 27 (2009), no. 2, 186–192.

[63] A Saltelli, K Chan, EM Scott, et al., Sensitivity analysis, vol. 1, Wiley New York, 2000.



BIBLIOGRAPHY 222

[64] JA Schmid, The acidic environment in endocytic compartments., Biochemical Journal 303

(1994), no. Pt 2, 679.

[65] KT Schultz and F Grieder, Structure and function of the immune system, Toxicologic

pathology 15 (1987), no. 3, 262–264.

[66] K Shortman, D Vremec, and M Egerton, The kinetics of t cell antigen receptor expression by

subgroups of cd4+ 8+ thymocytes: delineation of cd4+ 8+ 3 (2+) thymocytes as post-selection

intermediates leading to mature t cells., The Journal of Experimental Medicine 173 (1991),

no. 2, 323–332.

[67] LM Sompayrac, How the immune system works, John Wiley & Sons, 2015.

[68] B Soskic, OS Qureshi, T Hou, and DM Sansom, A transendocytosis perspective on the

cd28/ctla-4 pathway., Advances in immunology 124 (2013), 95–136.

[69] B Sulzer, RJ De Boer, and AS Perelson, Cross-linking reconsidered: binding and cross-

linking fields and the cellular response., Biophysical journal 70 (1996), no. 3, 1154.

[70] Y Takeuchi and H Nishikawa, Roles of regulatory t cells in cancer immunity, International

immunology 28 (2016), no. 8, 401–409.

[71] T Taniguchi and Y Minami, The il-2il-2 receptor system: a current overview, Cell 73 (1993),

no. 1, 5–8.

[72] JJ Tyson, KC Chen, and B Novak, Sniffers, buzzers, toggles and blinkers: dynamics of

regulatory and signaling pathways in the cell, Current opinion in cell biology 15 (2003),

no. 2, 221–231.

[73] E Valk, CE Rudd, and H Schneider, Ctla-4 trafficking and surface expression, Trends in

immunology 29 (2008), no. 6, 272–279.

[74] NG van Kampen, The expansion of the master equation, Adv. Chem. Phys 34 (1976), 245–

309.

[75] NG Van Kampen, Stochastic processes in physics and chemistry, vol. 1, Elsevier, 1992.

[76] L Walker and DM Sansom, The emerging role of ctla4 as a cell-extrinsic regulator of t cell

responses, Nature reviews Immunology 11 (2011), no. 12, 852–863.

[77] J Zhang, LT Watson, and Y Cao, A modified uniformization method for the solution of the

chemical master equation, Computers & Mathematics with Applications 59 (2010), no. 1,

573–584.


	Quote
	Acknowledgements
	Abstract
	Publications
	Contents
	List of figures
	List of tables
	Introduction
	Immunological motivation
	The role of T cells in the immune system
	Different cells for different responses.
	Stages on an immune response.

	Mathematical introduction
	Markov processes and the exponential distribution
	From Poisson processes to quasi-birth-and-death processes
	Classification of states and long-term behaviour
	First passage time and phase-type distributions

	State-of-the-art. Aims of the thesis

	A stochastic model for intracellular trafficking of interleukin-2
	Introduction
	Stochastic model
	Stochastic descriptors
	Time to reach a threshold number B of bound complexes on the cell surface
	Number of receptors synthesised during the time to reach a threshold number B of bound complexes on the cell surface

	Matrix formalism
	Numerical results
	Algorithms
	Van Kampen's expansion approximation
	Discussion

	CTLA-4 in the co-stimulatory system
	Introduction
	Cell surface models
	CD28 binding B7-1 and B7-2 model
	CTLA-4 and CD28 competing for B7-2 model
	Numerical results

	CTLA-4 transendocytosis dynamics
	Stochastic model
	Stochastic descriptors
	Kinetic rates and molecular levels
	Results
	Discussion

	A four compartment model
	Cell extrinsic regulator mediation


	Quorum-sensing model
	Introduction
	Lymphopenia driven proliferation
	Lymphocytic choriomeningitis virus (LCMV) experiment
	Two hypothesis tests for a quorum-sensing model
	Sensitivity analysis
	Parameter estimation
	1 and 4  {V} estimation. No immune response
	Bayesian estimation for {V}
	LCMV challenge model

	Results
	Model selection

	Discussion

	A probabilistic approach to tumour prognosis
	Introduction
	Toy model
	Probability of extinction and mean time until extinction
	A probabilistic approach to predicting tumour prognosis
	Deterministic approach to the model
	Results

	Fas/FasL induced-death and role of IL-2 in T reg cells death
	Probability of extinction and mean time until extinction
	A probabilistic approach for predicting tumour prognosis
	Deterministic approach to the model
	Results

	Conclusions

	Conclusions
	Appendix
	Python code for mean time  standard deviation to reach a threshold B of complexes on the cell surface. Chapter 2.
	Python code for Probability of reaching poor and beeter prognosis. Chapter 5.
	Python code for time dynamics of effector and regulatory T cells. Chapter 5

	Bibliography


