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Abstract 

This study aimed to design novel N-containing heterocyclic compounds, utilising different 

synthetic strategies to tune the photophysical properties of these compounds. This research 

was focussed on three families of compounds: indoles, hydrazones and phenanthrolines.  

Hydrazones were proved to be useful precursors for the preparation of the bis(indoyl) 

derivatives via a double Fischer indole synthesis. Structural modifications and their effect 

on the photophysical properties were studied. Also, the pH response and metal sensing 

ability of these compounds were investigated.  

Despite the popularity of research involving indoles, a vast majority focusses on the 

development of new materials via functionalisation of the C-2 position. This thesis described 

two different strategies to modulate the photophysical properties of materials through a) 

structural modification of the organic framework aimed at altering its electron distribution 

and b) a use of metals aimed at the formation of organometallic complexes. 

Finally, the synthesis of five novel phenanthroline ligands was explored using two different 

strategies. Photophysical properties of the novel phenanthroline derivatives were 

investigated. Also, the synthesis of Ir(III) phenanthroline complexes was carried out and 

their photophysical properties were evaluated. 
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Chapter 1 Introduction 

Light has been one of the biggest human fascinations since antiquity1. It is no wonder the sun 

was considered a god by ancient civilizations. The Egyptians named their sun god Ra (Figure 

1-1). These were the same people who used the seed of a plant found in the Nile River to treat 

skin diseases (Leukodermia). After ingestion and exposure to sunlight, the skin regained its 

original pigment.2 This is one of many instances where processes, promoted by the sun, lead 

the development and evolution of life as we know it, although sometimes we may not be aware 

of it.3 

At least one organic photoreaction is older than mankind; photosynthesis4. While attempting 

to explain plant growth, people discovered the process of photosynthesis. This is the most 

obvious example of photochemistry which causes chemical change driven by the light. 

Although, photochemistry also uses the physical processes, they are not involved in any 

chemical alterations in chemical identity. Scientists have extensively investigated the 

interactions of light with matter, enriching the field of photochemistry.  

 

Figure 1-1 The Egyptian god Ra (© Bill Stanley)5 

1.1 The energy of light: Ground and excited states 

Upon light excitation of suitable wavelength, the molecule transfers into an electronic excited 

state (G*). Each excited state has its own electronic configuration different from that of the 

ground state owing to different physical and chemical properties. Electronic spectroscopy can 
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be used to monitor these transitions. The transitions from the ground state (G0) of a molecule 

gives rise to the bands observed in absorption spectra and are responsible for the colour. A loss 

of energy by the molecule in the excited states (G*) can follow either a radiative or a non-

radiative pathway.6 

 

Figure 1-2 Electronic transitions involved in excitation with a photon of suitable energy 

1.2  Principles of excited state deactivation7, 8 

A molecule in an excited state will return to the ground state within a short period of time. The 

most common deactivation process is non-radiative decay. Here, an excess of energy can either 

be transferred into the vibration, rotation and translation of surrounding molecules or the 

molecule can undergo thermal degradation. The radiative decay process from an excited state 

involves the emission of a photon.9  

The photophysical pathways for relaxation are reflected in the Jablonski diagram (Figure 1-3). 

S represents singlet state and T triplet state of the molecule. In Figure 1-3, the electronic energy 

levels are defined by S0, S1 and S2 (arranged by energy). Each electronic level consists of 

vibrational levels (0-3) and rotational levels (omitted for simplicity of viewing). The process 

of absorption is reflected as a vertical transition from S0 to S1 or S2 (depending on the energy 

of the incoming photon). According to the Franck-Condon principle10, in many cases the 

excited molecules will be in a higher vibrational level (of the electronic excited state). These 

excited vibrational states are often referred to as “hot states". According to Kasha's rule, a 

return to the ground state is most likely to take place from the lowest vibrational level of the 

Electronic  

ground state (G0) 

UV visible light 

Electronically  

excited states (G*) 

E 

Emission spectrum 

Absorption spectrum 

G0 + hν → G*  
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first excited state (S1,0).
11 The radiative decay (emission of a photon) from an excited state is 

called luminescence . Depending on the nature of the excited state, luminescence can be 

divided into two categories, fluorescence and phosphorescence.  

1. Fluorescence is the emission of light from a singlet excited state. This process is 

favourable as it does not involve a change in the electron spin multiplicity. It occurs in 

the order of 10-9 to 10-6 seconds.  

2. Phosphorescence is the emission of light from a triplet excited state, in which the 

excited electron has the same spin as the electron in the ground state. These transitions 

are forbidden. Consequently, phosphorescence is a much slower process in comparison 

to fluorescence. It continues even after the excitation source is turned off (10-4 to 102 

seconds or over). Phosphorescence involves intersystem crossing (change in the 

electron spin multiplicity). 

 

Figure 1-3 Jablonski diagram for absorption, fluorescence and phosphorescence 
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There is a variety of non-radiative processes to dissipate the excess of energy:  

1. Vibrational relaxation refers to collisions of molecules with excited species and solvent. 

This process is very rapid (<10-12 s). Therefore, fluorescence almost always involves 

the transition from the lowest vibrational level of the excited state. 

2. Internal conversion involves the spontaneous change from the initial electronic state to 

a lower energy electronic state of the same multiplicity (10-14 to 10-12 seconds).  The 

excess of energy is usually converted into vibrational energy.  

3. External conversion involves deactivation of the excited electronic state involving the 

interaction between the excited state and the solvent. Solvents with high viscosity and 

low temperatures slow down this deactivation process diminishing the collision 

number. 

4. Intersystem crossing is a crossover process which is enhanced if the vibrational levels 

of two states overlap. It is more common in molecules that contain heavy atoms, such 

as iridium, leading to a reduction in fluorescence. 

Consequently, this thesis aims to develop and study a variety of strategies to tune photophysical 

properties of novel N-containing emitters. These are one of the most important and commonly 

used ligands in coordination chemistry12-14. Therefore, three families of two or more donor 

atom nitrogen-containing heterocycles were investigated: hydrazones, indoles and 

phenanthrolines.  
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Chapter 2 Synthesis and Characterisation of Bis(2,6-

diacetylphenylhydrazones) 

2.1 Introduction 

Since the middle of the 20th century15, the chemistry of hydrazones has dynamically evolved. 

In particular, aryl hydrazones are a versatile class16 of compounds due to their ease of 

preparation, stability, conformational flexibility and tendency toward crystallinity. Their 

structural features display versatile behaviour in metal coordination, acting as multidentate 

ligands by forming coloured chelates. Potentially, heterocyclic hydrazones can coordinate to 

the metal through the nitrogen atoms either alone or together with the central heteroatom. The 

colourful chelates can then be used in a selective determination of cationic or anionic species, 

which has made them active components of chemosensors.17 

In addition, they have been used as precursors for the synthesis of a variety of heterocycles, 

including thousands18 of indoles via the Fischer indole synthesis. They are widely used in 

organic synthesis due to their capability to react with electrophiles and nucleophiles. The 

hydrazone group contains two connected nitrogen atoms which are both nucleophilic, although 

the amino type nitrogen is more reactive than the imine nitrogen atom19, 20. 

 

Figure 2-1 Reactivity and active centres of hydrazone group 

Owing to their properties, hydrazones and their metal complexes have been employed in 

various fields including metal and covalent organic frameworks21-25, sensors26, analytical27, 

biological28, 29 and medicinal chemistry30-34. 

Hydrazones are usually synthesised by three different pathways: (i) condensation of hydrazine 

with aldehydes or ketones35, (ii) reaction involving a diazonium salt and β-ketoester under 

basic conditions (Japp-Klingemann)36 and (iii) Pd-catalysed18 reaction of aryl halides with 

hydrazine derivatives (Buchwald-Hartwig). 
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Scheme 2.1 Mechanism of the condensation reaction of hydrazine with a carbonyl compound 

The Japp-Klingemann reaction involves two steps. The first process is the coupling between a 

diazonium salt and a malonic acid derivative. Here, an unstable azo compound gives a 

hydrazone following  decarboxylation.37 

 

Scheme 2.2 Mechanism of the Japp-Klingemann coupling reactions 

Buchwald-Hartwig coupling is a palladium catalysed reaction for the formation of C-N bonds. 

In 1995 Buchwald38 and Hartwig39 reported independently the reaction of arylhalides with 

nitrogen nucleophiles, such as hydrazine, using base (stoichiometric amounts). 
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Scheme 2.3 General mechanism of the Buchwald-Hartwig coupling  

2.1.1 Bis(phenylhydrazone)derivatives as ancillary ligands  

 

N-Containing heterocycles, containing electron-withdrawing imine nitrogen(s) (C=N), have 

attracted interest for their ability to form metal complexes40. 2,2’-Bipyridyl (bpy) (S.1) and 

2,2′:6′,2′′-terpyridine (tpy) (S.4) systems are the most commonly used. In the middle of the 20th  

century, biacetylhydrazone (bdH) (S.2) and its derivatives emerged as alternatives to the 

well-known complexing agent, 2,2’-bypyridine (S.1)41. BdH (S.2) is a bidentate ligand with 

two imine N-atom donors capable of bonding with metals. 2-Pyridinal methylamine (S.3) 

contains both, the cyclic amine and the imine functional group. In addition, ligands containing 

the trimethine structural unit (S.5), comprising a cyclic amine and imine group, emerge as 

alternatives to the previous mentioned frameworks. 

Curry, Robinson and Busch show that 2,6-diacetylpyridinebis(phenylhydrazone) ligands (S.6) 

function as planar tridentate ligands. A replacement of hydrogen(s) at the amino group can 

significantly decrease the donor strength of the ligand due to an increase in the steric hindrance 

and disruption of the planarity. 42 
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Bpy (S.1) BdH (S.2) 2-pyridinal methylamine (S.3) 

  
 

Tpy (S.4) Trimethine (S.5) 
2,6-diacetylpyridine 

bis(phenylhydrazone) (S.6) 

Figure 2-2 Examples of N-bidental ligands and N-tridental ligands 

2.2 Design and synthesis of bis(phenylhydrazone)derivatives 

Hydrazones are a versatile class of compounds due to their ease of preparation. Their 

applicability in a wide range of applications has resulted in extensive use in organic synthesis, 

especially as intermediates for the preparation of heterocyclic compounds43, 44. 

Six substrates were screened as potential precursors for the synthesis of bis(indolyl) 

derivatives. To understand the influence of substituents on the cyclisation, R=OCH3 and 

R=OCF3 were selected as electron-donating and withdrawing groups respectively and for 

comparison with a non-substituted substrate (R=H). Our “selection/exclusion” criteria for the 

substrates was based on five factors:  

1. relatively low cost 

2. relatively low toxicity 

3. mild reaction conditions 

4. yields above 60%  

5. ease of purification e.g. washing, precipitation or recrystallisation ( N-

arylhydrazones are easily enolisable, and are unstable to purification by flash 

chromatography)45 
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1 2 

  

3 4 

  

5 6 

Figure 2-3 Target structures of bis(phenylhydrazones) 

The synthesis of bis(phenylhydrazone)pyridines (1-3) and bis(phenylhydrazone)benzenes (4-

6) was accomplished by using a (standard) condensation protocol42, 46, reacting the appropriate 

hydrazine with 2,6-diacetylpyridine or 1,3-diacetylbenzene respectively (Scheme 2.4).  

 

Scheme 2.4 Synthesis of bis(phenylhydrazones)  

The synthesis of compounds 1-3 provided products as solids that can be easily precipitated 

resulting in the yields of 73%-93%. Compound 4 was obtained in the yield of 80% using 

solvent diffusion (EtOH-Ether, inner-outer). However, compounds 4-6 were more difficult to 

isolate. For compounds 5 and 6, repeated attempts at recrystallisation or precipitation (varying 

solvents) failed. The attempts to form exclusively bishydrazones 5 and 6 without the presence 

of mono-adducts proved to be unsuccessful. Compounds 5 and 6 failed the 

“selection/exclusion” criteria and were thus removed from further studies.  
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2.3 Synthesis of pyridinyl bis(phenylhydrazone) metal complexes 

Metal ions play an important role in biological processes, increasing their interest as 

biomarkers or drugs for early diagnosis and treatment of diseases. Cancer is one of the most 

common diseases causing human suffering and death 47, 48.. Due to the toxicity of cis-platin49, 

a well-known chemotherapeutic drug, platinum50 and ruthenium 51, 52 have been commonly 

explored. However, there is an emerging interest in the use of cheaper first-row coordination 

compounds53 54, 55. 

In addition, imine nitrogen (C=N) linkage possess remarkable antibacterial, antifungal, 

anticancer and antimalarial activities. 

For the synthesis of bis(phenylhydrazone)pyridine derivative complexes, a variety of metal 

salts were used to examine the coordination number preferred. Two different approaches were 

used: 

1. Conventional synthesis of the metal complexes followed by crystal growth using 

solvent layering, slow evaporation, vapour diffusion and crystallisation. 

2. Vapour diffusion technique56, 57, which is a popular method for simultaneous complex 

and crystal formation. 

 

The conventional synthesis was used to screen the conditions. The reaction was carried out in 

open air, rapidly adding a solution of the ligand (flask A) to a solution of the metal salt (flask 

B). Table 2-1 summarises the different conditions for the attempted synthesis of metal 

complexes using hydrazones 1-3 as ligands.  
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Table 2-1 Examples of metal complexes via conventional synthesis 

R Solvent Metal source Ratio (L:M) 

Result 

OCH3 EtOH (dry) KAuCl4 1:1 

OCH3 DCM (dry) PtCl2 1:1 

OCH3 Acetone Cu(ClO4).6H2O 2:1 

H Acetone Cu(ClO4).6H2O 2:1 

OCH3 Acetone Zn(ClO4).6H2O 2:1 

OCH3 EtOH Zn(ClO4).6H2O 2:1 

H Acetone Zn(ClO4).6H2O 2:1 

OCF3 Acetone Zn(ClO4).6H2O 2:1 

OCF3 EtOH Zn(ClO4).6H2O 2:1 

OCF3 EtOH Cu(ClO4).6H2O 2:1 

OCF3 EtOH Co(ClO4).6H2O 2:1 

OCF3 EtOH AlCl3 2:1 

Vapour diffusion allows a metal complex and crystal growth in the same vial. Generally, a 

saturated solution, prepared by dissolving a few milligrams of the ligand in a suitable solvent, 

was added to the metal salt in a vial. The mixture in the vial was then placed in a larger vial 

that contained a small volume of solvent, in which the resulting metal complex is insoluble. 

The outer vial was then sealed. The vapour of the volatile solvent from the larger vial slowly 

diffuses through the holes in the inner vial. This lead to formation of crystals of the metal 

complex suitable for X-ray examination. Table 2-2 summarises the different conditions for the 

attempted synthesis of metal complexes using hydrazones 1-3 as ligands. 
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Table 2-2 Examples of metal complexes via vapour diffusion 

Entry R Solvent inner vial  Solvent outer vial Metal salt Ratio (L:M) 

Result 

1 H Acetone Hexane Zn(ClO4).6H2O 1:1  2:1 

2 H Acetone Hexane ZnCl2 1:1  2:1 

3 H Acetone Hexane Cu(ClO4).6H2O 1:1 2:1 

4 H Acetone Hexane AlCl3 2.1 

5 H Acetone Hexane μ-Ir-dimer 1:1  2.1 

6 H Acetone Hexane EuCl3 1:1 2.1 

7 OCH3 EtOH/DCM Diethyl ether Zn(ClO4).6H2O 1:1 2.1 

8 OCH3 EtOH/DCM Diethyl ether Cu(ClO4).6H2O 1:1 2:1 

9 OCH3 EtOH/DCM Diethyl ether AlCl3 2:1 

10 OCH3 EtOH/DCM Diethyl ether Pt(PhCN)2Cl2 2:1 

11 OCH3 EtOH/DCM Diethyl ether μ-Ir-dimer 1:1 

12 OCH3 EtOH/DCM Diethyl ether EuCl3 2:1 

13 OCF3 EtOH/DCM Diethyl ether Zn(ClO4).6H2O 1:1 2:1 

14 OCF3 EtOH/DCM Diethyl ether Cu(ClO4).6H2O 1:1 2:1 

15 OCF3 EtOH/DCM Diethyl ether AlCl3 2:1 

16 OCF3 EtOH/DCM Diethyl ether Pt(PhCN)2Cl2 2:1 

17 OCF3 EtOH/DCM Diethyl ether μ-Ir-dimer 1:1 2.1 

18 OCF3 EtOH/DCM Diethyl ether EuCl3 1:1 2.1 

2.3.1 X-Ray crystal structures 

The ligands with a trimethine motif were investigated. Ligands 1-3 can coordinate to the metals 

through the three nitrogen atoms. X-Ray analysis of Zn2+ and Cu2+ complexes of 

bishydrazones, with a stoichiometric ratio of ligand to metal 2:1, revealed an octahedral 

arrangement; the colour of the complexes were orange and brown-green, respectively.   

The crystal structures of bis-[2,6-diacetylpyridine(phenylhydrazone)] Zn(II) diperchlorate 

(Zn.1) and bis-[2,6-diacetylpyridine(phenylhydrazone)] Cu(II) diperchlorate (Cu.1) 

complexes are shown in Figure 2-4. Both complexes crystallised in a monoclinic cell and were 

solved in the P21 space group with three cations, six [ClO4]
- counter ions and one molecule of 

water in the asymmetric unit. The only difference was that the zinc complex (Zn.1) crystallised 

as orange blocks while the copper complex (Cu.1) crystallised as brown blocks. 
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Zn.1 Cu.1 

Figure 2-4 Crystal structures of 2,6-diacetylpyridine(phenylhydrazone) Zn (Zn.1) and Cu(Cu.1) 

diperchlorate complexes 

The crystal structure of bis-[2,6-diacetylpyridine(phenylhydrazone)] Zn(II) 

tetrachloridozincate complex (Zn.1.1) is shown in Figure 2-5. The orange compound 

crystallised in a monoclinic cell and was solved in the P2/n space group with four cations, four 

[ZnCl4]
2- counter ions and acetone, water and hexane in the asymmetric unit. The [ZnCl4]

2- 

anions were formed in the presence of an excess of Cl anions from the ZnCl2 salt58-60. 

 

Zn.1.1 

Figure 2-5 Crystal structures of bis-[2,6-diacetylpyridine(phenylhydrazone)] Zn(II) 

tetrachloridozincate (Zn.1.1)  

The crystal structures of bis-[2,6-diacetylpyridine(4-trifluoromethoxyphenylhydrazone)] 

Zn(II) diperchlorate (Zn.3) and bis-[2,6-diacetylpyridine(4-trifluoromethoxy 

phenylhydrazone)] Cu(II) diperchlorate (Cu.3) complexes are shown in Figure 2-6. Both 

complexes crystallised in a monoclinic cell. However, Zn.3 was solved in the Cc space group 

with one cation and two anions in the asymmetric unit while Cu.3 was solved in the C2/c space 
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group with half a cation and two half perchlorate anions in the asymmetric unit. In addition, 

Zn.3 crystallised as orange prisms while Cu.3 crystallised as brown fragments. 

 

  

Zn.3 Cu.3 

Figure 2-6 Crystal structures of 2,6-diacetylpyridine(4-trifluoromethoxyphenyl hydrazone) Zn 

(Zn.3) and Cu(Cu.3) diperchlorate complexes 

The crystal structure of bis-[2,6-diacetylpyridine(4-methoxyphenylhydrazone)] Zn(II) 

diperchlorate complex (Zn.2) is shown in Figure 2-7. The compound crystallised (as brown 

plates) in an orthorhombic cell and was solved in the Fddd space group with a quarter of a 

cation and half a perchlorate counter ion in the asymmetric unit. 

 

 

 

Zn.2 

Figure 2-7 Crystal structure of 2,6-diacetylpyridine(4-methoxyphenylhydrazone) Cu(II) 

diperchlorate complex (Zn.2) 
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2.4 Analysis of bis(phenylhydrazone)derivatives  

2.4.1 Photophysical properties of bis(phenylhydrazone)derivatives 

The photophysical properties of the resulting bis(phenylhydrazone)derivatives (1-4) were 

investigated in three different solvents. Compound 4 was found to be an exception due to low 

solubility in acetonitrile1. The different conformation adopted by the molecule influenced the 

interactions of lone pairs present in the nitrogen atoms. Therefore, the spectral shift, intensity 

or shape change can be attributed to specific solute-solute interaction and solute-solvent 

interaction61.  

Absorption spectroscopy was used to study the photophysical behaviour of compounds 1-4 in 

different solvents. The bishydrazones showed the absorption maxima in the range of 344-

360 nm (Figure 2-8). While the extinction coefficient values were dependent on the solvent 

choice, the position of the main band is almost independent. 

 

Scheme 2.5 Intramolecular interaction  in compounds 1-4 via H-bonding 

The record of the spectra in solvents of different polarity The absorption profiles of compounds 

1 and 4 are not altered by the solvent polarity (Figure 2-8.1 and Figure 2-8.4). However, 

compound 2 and 3 present two additional bands in acetonitrile and dichloromethane (Figure 

2-8.2 and Figure 2-8.3). From these results, it can be concluded that only the compounds with 

substituents (2 and 3) are affected by a decrease in the solvent polarity. The introduction of 

substituents alters the magnitude and direction of the permanent dipole moments and electron 

distribution, and can allow the formation of a more stable exciplex. As a result, the spectral 

                                                 

1 Spectroscopic measurements were performed using the same concentration range (10-5 M) 
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shifts can be attributed to solute-solute or solute solvent interactions via the formation of H-

bonding. 
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Figure 2-8 Absorbance spectra of 1-4 in methanol, acetonitrile and dichloromethane 

The emission properties of pyridine-based hydrazones 1-3 and benzene-based hydrazone 4 

were investigated. Compound 4 was the only emissive material, showing that the use of a 

different bridge unit such as benzene can affect the luminescent properties. Interestingly,  

compounds 1 and 4 have similar framework structures, where the pyridine bridging unit in 1 

is replaced by benzene in 4. However, the results show that compound 4 exhibits a quantum 

yield of =38%, while emission of compound 1 is non-existent.  



 
 

  17 

300 400 500

0

10000

20000

30000

40000

50000

 1

 4

 4

(
M

-1
c
m

-1
)

Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

  
N

o
rm

a
lis

e
d

 P
L
 (

a
.u

.)

 

Figure 2-9 Absorption and normalised emission (energy of excitation 338nm) profile of 

compounds 1 and 4 in dichloromethane  

2.4.2 Acidochromism: reversible pH-induced molecular change  

The sensing ability of the aryl-hydrazones 1-4 was investigated. The pH response was studied 

upon addition of trifluoroacteic acid (TFA) (1.3×10-2 M) to the solutions of hydrazones 1-4 in 

ethanol (2.2-2.8×10-5 M). The reversibility of the protonation process was explored by the 

addition of tetra-n-butylammonium fluoride (TBAF) solution (1.0×10-2 M) to the protonated 

species. The presence of an isosbestic point in the absorption spectra of compounds 1-3 

suggests the coexistence of two different species which were associated with the protonation 

of the pyridine-nitrogen. Hydrazones 1-3 displayed a noticeable colour change from colourless 

(pH>7) to yellow, burgundy and orange, respectively, at acidic pH.  

Compound 1 shows two absorption bands in the UV region at λmax=303 nm and at λmax=348 nm 

(Figure 2-10). Upon addition of Tetra-n-butylammonium fluoride 

Trifluoroacteic acidTFA (1.3×10-2 M), two new bands are observed in the visible region at 

λmax=428 nm and at λmax=496 nm. These bands are responsible for the yellow colour of the 

molecule and can be attributed to the protonation of the pyridine unit (Figure 2-10). 

Protonation of the pyridine unit is also confirmed with X-ray analysis (Figure 2-11). 
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Figure 2-10 Spectrophotometric titration of compound 1 (2.2×10-5 M) with TFA (1.3×10-2 M) 

in EtOH  

Figure 2-11 shows the normalised absorbance intensity variation upon addition of 2 eq of 

TFA. 

 

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

 303 nm

 348 nm

 428 nm

 496 nm


A

 o
r


I 
(a

.u
.)

TFA equivalents

 

Figure 2-11 Crystal structure of protonated 2,6-diactetylpyridinebis(phenylhydrazone) (left). 

Normalised absorption variation upon addition of TFA at 303 nm, 348 nm, 428 nm and 

496nm (right) 

Compound 2 displays a remarkable colour change from colourless at pH>7 to burgundy at 

pH<7. It shows four absorption bands in the UV-vis spectral region at λmax=318 nm, 

λmax=362 nm, λmax=451 nm and at λmax=530 nm (Figure 2-12). Upon addition of TFA (1.3×10-

2 M), there is an increase in the intensities of the bands at 451 nm and 530 nm along with a 

decrease in the intensities of the bands at λmax=318 nm and λmax=362 nm. These peaks are 

responsible for enhancing the red colour already observed in the solution as a result of the 

protonation of the pyridine unit. Also, the X-ray analysis shows that 2 exists in the protonated 

form under neutral conditions (Figure 2-13). Reversibility of the protonation is tested by the 
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addition of n-tetrabutylammonium fluoride solution (1.0×10-2 M, in THF/EtOH) to an acidified 

solution of 2. The disappearance of the bands at λmax=451 nm and at λmax=530 associated with 

the protonated form of 2 is observed. At a basic pH, hydrazone 2 shows a shoulder at 

λmax=318 nm and an intense band at λmax=362 nm in the UV region.  
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Figure 2-12 Spectrophotometric titration of compound 2 (2.6×10-5 M) with TFA (1.3×10-2 M, 

up to 2 equivalents) in EtOH, followed by deprotonation of 2 by addition of TBAF 

(1.0×10-2 M, in THF/EtOH) 

Figure 2-13 shows the normalised absorbance intensity variation upon addition of 2 eq of TFA. 
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Figure 2-13 Crystal structure of protonated 2,6-diactetylpyridinebis(4-

methoxyphenylhydrazone) (left). Normalised absorption variation upon addition of TFA 

at 318 nm, 362 nm, 451 nm and 530 nm (right).  

Compound 3 displays a colour change from colourless at pH>7 to orange pH<7. Four 

absorption bands can be observed in the UV-vis spectral region at λmax=308 nm, λmax=347 nm 

λmax=407 nm and at λmax=483 nm (Figure 2-14). Upon the addition of TFA (1.3×10-2 M) there 
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is an increase in the intensity of the bands at 407 nm and 483 nm along with a decrease of 

λmax=308 nm and λmax=347 nm bands. These bands are responsible for enhancing the orange 

colour already observed in the solution as a result of the protonation of the pyridine unit. Also, 

the X-ray analysis shows that compound 3 already exists in the protonated form under neutral 

conditions (Figure 2-15). Reversibility of the protonation is studied by the addition of TBAF 

solution (1.0×10-2 M, in THF/EtOH). A disappearance of the bands at λmax=407 nm and at 

λmax=483 associated with the protonated form of 3 has been observed. In solution of pH>7, 

hydrazone 3 shows a shoulder at λmax=308 nm and an intense band at λmax=347 nm in the UV 

region.  
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Figure 2-14 Spectrophotometric titration of compound 3 (2.4×10-5 M) in EtOH with TFA 

(1.3×10-2 M, up to 2 equivalents) in EtOH, followed by deprotonation by addition of 

(1.0×10-2 M, in THF/EtOH) 

Figure 2-15 shows the normalised absorbance intensity variation upon addition of 2 eq of TFA. 
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Figure 2-15 Crystal structure of protonated 2,6-diactetylpyridinebis(4-

trifluoromethoxyphenylhydrazone) (left). Normalised absorption variation upon 

addition of TFA at 309 nm, 347 nm, 407nm and 483 nm) (right).  

Compound 4 shows two absorption bands in the UV region at λmax=319 nm and at λmax=362 nm 

and a blue emission at λem=387 nm (Figure 2-16). However, no significant change is observed 

in either absorption or emission spectra upon the addition of TFA (1.3×10-2 M), due to the 

absence of protonation event. 
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Figure 2-16 Spectrophotometric titration of compound 4 (2.8×10-5 M) with TFA (1.3×10-2 M) 

in EtOH (left). Emission (energy of excitation 350 nm) of compound 4 (2.8×10-5 M) in 

EtOH solution upon addition of TFA (1.3×10-2 M) (right) 

2.4.3 Hydrazones Cu2+ and Zn2+ detection via metal complex formation  

Zinc (Zn2+) and copper (Cu2+ ) are the second and third most abundant metal ions, after Fe2+, 

in the human body62, 63. Both play a crucial role in the biological processes64, 65 involved in 

neurological disorders such as Alzheimer’s and Parkinson’s66-68. Therefore, the potential of 
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hydrazones (1-4) for selective detection of Cu2+ and Zn2+ ions was investigated via UV-vis 

spectrophotometric titrations. An isosbestic point was observed during the titrations of 1-4 with 

Cu2+ ions strongly indicating the formation of copper-hydrazone complexes of 1-4. However, 

the isosbestic points were only observed for hydrazones 1-3 upon titration with Zn2+ ions. The 

titration of 4 with Zn2+ ions did not lead to substantial changes in UV-vis spectrum, indicating 

that 4 has no sensitivity for Zn2+ions. 

2.4.3.1 Sensing Cu2+ ions via metal-hydrazone complex formation  

A dramatic change in the absorption spectrum of hydrazone 1 in ethanol (2.3×10-5 M) is 

observed upon the titration with a solution of copper perchlorate hexahydrate (3.2×10-3 M) in 

EtOH. As shown in Figure 2-17, upon addition of Cu2+, the peaks at λmax=303 nm and 

λmax=349 nm gradually decrease with a new peak developing at λmax=447 nm. The presence of 

the isosbestic points indicate the formation of a metal-hydrazone complex through the 

coordination with the –NH and the pyridine nitrogen. This led to a drastic colour change which 

was clearly detectable to the naked eye.  
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Figure 2-17 Spectrophotometric titration of compound 1 (2.3×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.2×10-3 M, up to 2.0 equivalents) in EtOH 

A dramatic change in the absorption profile of hydrazone 2 in ethanol (2.6×10-5 M) is observed 

upon the titration of the solution with a solution of copper perchlorate hexahydrate (3.2×10-3 
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M) in EtOH. As shown in Figure 2-18, upon addition of Cu2+, the peaks at λmax=318 nm and 

λmax=362 nm gradually decrease. Due to the presence of the shoulders at λmax=451 nm and 

λmax=530 nm prior to the addition of Cu2+, the resultant spectrum became very complex. 

However, upon the addition of Cu2+ the metal complex formation is clearly evident through an 

abrupt intensity decrease of the absorbance of the ligand main band.  
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Figure 2-18 Spectrophotometric titration of compound 2 (2.6×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.2×10-3 M, up to 2.0 equivalents) in EtOH 

A significant change in the absorption spectrum of hydrazone 3 in ethanol (2.3×10-5 M) is 

detectable upon the titration with a solution of copper perchlorate hexahydrate (3.2×10-3 M) in 

EtOH. As shown in Figure 2-19, upon addition of Cu2+, the peaks at λmax=308 nm and 

λmax=347 nm gradually decrease with a new peak emerging at λmax=414 nm. The presence of 

the isosbestic points indicates the formation of a metal-hydrazone complex through the 

coordination with the –NH and the pyridine nitrogen. This was clearly detectable to the naked 

eye through a colour change of the solution.  
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Figure 2-19 Spectrophotometric titration of compound 3 (2.3×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.2×10-3 M, up to 2.0 equivalents) in EtOH 

A dramatic change in the absorption spectrum of hydrazone 4 in ethanol (2.8×10-5 M) is 

observed upon the titration with a solution of copper perchlorate hexahydrate (3.2×10-3 M) in 

EtOH. As shown in Figure 2-20, upon addition of Cu2+, the peaks at λmax=319 nm and 

λmax=344 nm gradually decrease with a new peak developing at λmax =398 nm. The presence 

of the isosbestic points indicates the formation of a metal-hydrazone complex most likely 

through the coordination of the Cu(II) with the –NH nitrogen atoms.  
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Figure 2-20 Spectrophotometric titration of compound 4 (2.8×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.2×10-3 M, up to 3.0 equivalents) in EtOH 

2.4.3.2 Sensing Zn2+ ions via metal-hydrazone complex formation  

A change in the absorption spectrum of hydrazone 1 in ethanol (2.1×10-5 M) is observed upon 

the titration with a solution of zinc perchlorate hexahydrate (3.0×10-3 M) in EtOH. As shown 

in Figure 2-20, upon addition of Zn2+, the peaks at λmax=302 nm and λmax=350 nm gradually 

decrease with a new peak emerging at λmax=405 nm. The presence of the isosbestic points 

indicates the formation of a metal-hydrazone complex through the coordination with the –NH 

and the pyridine nitrogen. This was detected by the naked eye through a colour change of the 

solution.  
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Figure 2-21 Spectrophotometric titration of compound 1 (2.1×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.0×10-3 M, up to 60.0 equivalents) in EtOH 

A change in the absorption spectrum of hydrazone 2 (1.8×10-5 M) is recorded upon the titration 

of the solution with a solution of zinc perchlorate hexahydrate (3.0×10-3 M) in EtOH. As shown 

in Figure 2-22, upon addition of Zn2+, the peaks at λmax=318 nm and λmax=362 nm gradually 

decrease with a new peak developing at λmax=422 nm. The presence of the isosbestic points 

confirmes the formation of a metal-hydrazone complex through the coordination with the –NH 

and the pyridine nitrogen. The accompanying colour change was visible to the naked eye.  



 
 

  27 

300 400 500 600

0.0

0.2

0.4

0.6

0.8

 Hydrazone

 Zn
2+

 addition

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

0 10 20 30 40

0.0

-0.1

-0.2

-0.3

-0.4

-0.5


A

 
L
m

a
x
 

Zn
2+

 equivalents

 

Figure 2-22 Spectrophotometric titration of compound 2 (1.8×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.0×10-3 M, up to 41.8 equivalents) in EtOH 

A change in the absorption spectrum of hydrazone 3 in ethanol (2.3×10-5 M) is observed upon 

titration with a solution of zinc perchlorate hexahydrate (3.0×10-3 M) in EtOH. As shown in 

Figure 2-23, upon addition of Zn2+, the peaks at λmax=308 nm and λmax=347 nm gradually 

decrease with a new peak developing at λmax=394 nm. The presence of the isosbestic point 

indicates the formation of a well-defined complex through the coordination with the –NH and 

the pyridine nitrogen. This led to a colour change which was detected by the naked eye.  



 
 

  28 

300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

 Hydrazone

 Zn
2+

 addition

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

0 5 10 15 20 25 30

0.00

0.01

0.02

0.03

0.04


A

 
c
m

a
x

Zn
2+

 equivalents

 

Figure 2-23 Spectrophotometric titration of compound 3 (2.3×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.0×10-3 M, up to 41.8 equivalents) in EtOH 

No significant change in the absorption spectrum of compound 4 in ethanol (2.3×10-5 M) is 

observed upon titration of the solution with a solution of zinc perchlorate hexahydrate 

(3.0×10- 3 M) in EtOH, as shown in Figure 2-24. The minor change in the intensity of the 

absorption is a consequence of the dilutions. 
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Figure 2-24 Spectrophotometric titration of compound 4 (2.3×10-5 M) with a solution of copper 

perchlorate hexahydrate (3.0×10-3 M, up to 2.0 equivalents) in EtOH 

Figure 2-25 summarises the Cu2+ and Zn2 sensing ability of pyridine-based hydrazones 1-3 

and benzene-based hydrazone 4. All hydrazones (1-4) showed higher sensitivity towards Cu2+ 

ions than for the detection of Zn2+ ions. This is a consequence of the d10 electronic 

configuration of Zn2+ inhibiting MLCT electronic transitions. Comparing the sensitivity of 

hydrazones 1-3 for the detection of Cu2+ ions, hydrazone 1 showed the highest sensing ability. 

An increase in the steric hindrance of the phenyl group of the hydrazones resulted in a decrease 

in the donor strength of the ligands. In addition, the compounds 1-3 showed higher detection 

in comparison to compound 4, most likely due to the coordination with the metal atom through 

the nitrogen atom of the pyridine bridging unit.  
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Figure 2-25 Comparison of the spectral changes during the titration of hydrazones 1-4 with a 

solution of Cu2+ and Zn2+ (0-2 equivalents) 

2.5 Conclusion 

In conclusion, four 2,6-diacetylbis(phenylhydrazone) derivatives were successfully 

synthesised. Factors which make them interesting examples include: relatively easy synthesis 

(yields up to 93%), good solubility in organic solvents, easy purification process, stability, 

tendency toward crystallinity and the use of relatively cheap precursors. In addition, simple 

structural modifications allowed the tuning of the photophysical properties. 

The impact of structural modification to hydrazones 1-4 on their photophysical properties was 

studied. Analysis of hydrazones 1-4 in different solvents revealed a solvatochromic effect for 

the phenyl-substituted hydrazones. Here, hydrazones 2 and 3 showed a larger solvatochromic 

shift with solvents of a lower polarity. The photoluminescence properties were also analysed, 

but only hydrazone 4 was an efficient emitter (=38%).  

UV-Vis spectrophotometric titrations of hydrazones 1-4 were conducted to explore their 

sensing behaviour towards cationic species. Pyridine-based hydrazones 1-3 showed substantial 

changes upon addition of TFA. A replacement of pyridine by a benzene central unit in 

hydrazone 4 resulted in no response to changes in pH solution. This highlighted that the signal 

recognition motif, in response to pH, was localised on the pyridine unit. Protonation of the 

pyridine unit was also confirmed by X-ray analysis. In addition, the reversibility of the 

protonation process for hydrazones 1-3 was successfully demonstrated using TBAF. 

The Cu2+ and Zn2+ sensing behaviour of the hydrazones 1-4 was also investigated via UV-vis 

spectroscopy. The results demonstrate that despite an apparent similarity in ion size and the 



 
 

  31 

chemical properties of Cu2+ and Zn2 ions, their mode of interaction with the hydrazones 1-4 

was substantially different . The hydrazones 1-4 were more sensitive for the detection of Cu2+ 

than for the detection of Zn2+ . 

In addition, the colour changes can be clearly observed by the naked eye providing a convenient 

and reliable sensing strategy for pH, Cu2+ and Zn2 ion detection as biomarkers for early 

detection of incipient diseases. The cations sensing can potentially be used to unmask 

homeostatic failure in absence of pathological conditions69. 

2.6 Experimental 

2.6.1 General techniques 

All chemicals were obtained from Sigma Aldrich, Alfa Aesar, VWR and Across and used 

without further purification. Anhydrous solvents were obtained from a PureSolv MD6 solvent 

purification system. 1H NMR and 13C NMR spectra were recorded on a Bruker Advanced 500 

spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual 

solvent peak and peaks are described as singlet (s), doublet (d), triplet (t), quartet (q), sextet 

(sex), multiplet (m), broad singlet (br) and coupling constants (J) are quoted in Hertz (Hz). 

Spectra were recorded in chloroform-d, dichloromethane-d2 or deuterated DMSO-d6 and were 

measured at room temperature unless otherwise stated. Where needed, two dimensional 

correlation spectroscopy (2D-COSY), heteronuclear single quantum coherence spectroscopy 

(HSQC) and heteronuclear multiple bond correlation spectroscopy (HMBC) were used in order 

to aid assignment. The progress of reactions was monitored by TLC and purified by column 

chromatography using silica gel 60 (40-63µm). High resolution mass spectrometry (HRMS) 

was performed on Bruker MaXis Impact (EI+) by positive and negative electrospray ionisation. 

The accepted experimental error was <4 ppm. High performance liquid chromatography 

(HPLC) was performed on an Agilent 1100 Infinity Series equipped with a UV detector and 

Ascentis Express C18 reverse phase column, using MeCN/water (50-95%) containing 0.1% 

TFA, at a flow rate of 0.5 mL min-1 over a period of 12 minutes. Infrared spectra (IR) were 

recorded in solid phase on a Bruker Alpha Platinum ATR FTIR spectrometer with vibrational 

frequencies given in cm-1. Melting points were measured on a Stuart SMP30. The electronic 

absorption spectra were recorded on a Cary 100 UV-vis scanning spectrometer. The 

fluorescence spectra were recorded on a FluoroMax-3 spectrofluorimeter. Quantum yields of 

fluorescence were measured by the relative method using optically dilute solutions. 
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2.6.2 Experiments 

2.6.2.1 2,6-Diactetylpyridine-bis(phenylhydrazone) (1)42 

 

A solution of 2,6-diacetylpyridine (915 mg, 5.6 mmol) and phenylhydrazine (1.10 mL, 11.2 

mmol) in dry EtOH (10 mL) was refluxed for 45 min. The reaction mixture was cooled to room 

temperature. The resulting white powder was collected by suction filtration, washed with cold 

ethanol and dried under vacuum to yield compound 1 as a pale yellow-white solid (1.66 g, 

86%). 1H NMR (500 MHz, C2D6O) δ ppm 9.49 (s, 2H, NH), 8.01 (d, J = 7.9 Hz, 2H, 3’-H), 

7.76 (t, J = 7.9 Hz, 1H, 4’-H), 7.33 (dd, J = 7.9, 1.2 Hz, 4H, 2-H), 7.26 (t, J = 7.9 Hz, 4H, 3-

H), 6.81 (tt, J = 7.9, 1.2 Hz, 2H, 4-H), 2.45 (s, 6H, CH3). 13C NMR (125 MHz, C2D6O) δ ppm 

154.9, 145.6, 141.5, 136.2, 128.9, 119.3, 117.4, 113.0, 11.0; m/z (ES+): Found: 366.1692 

[M+Na], requires: 366.1689; IR νmax/cm-1 (solid): 3341, 3012, 2927, 1600, 1561, 1245, 1162, 

1139, 746, 693; M.pt: 218-220.5 °C. 

2.6.2.2 2,6-Diactetylpyridine-bis(4-methoxyphenylhydrazone) (2)  

 

The same procedure as described for compound 1 was followed using 4-

methoxyphenylhydrazine hydrochloride (664 mg, 3.8 mmol) and 2,6-diacetylpyridine (310 

mg, 1.9 mmol). Compound 2 was isolated as a dark purple solid (785 mg, 73%). 1H NMR (400 

MHz, CDCl3 + EtOH) δ ppm 11.14 (s, 2H, NH), 7.80 (t, J = 8.1 Hz, 1H, 4’-H), 7.39 (d, J = 9.0 

Hz, 4H, 3-H), 7.02 (d, J = 8.1 Hz, 2H, 3’-H), 6.43 (d, J = 9.0 Hz, 4H, 2-H), 3.66 (s, 6H, OCH3), 

2.38 (s, 6H, CH3); 13C NMR (125 MHz, C2D6O) δ ppm 154.2, 138.0, 118.9, 115.4, 114.5, 55.2, 

11.6; m/z (ES+): Found: 426.1905 [M+Na], requires: 426.1900; IR νmax/cm-1 (solid): 3393, 

3187, 2994, 2831, 1502, 1412, 1270, 1231, 816; M.pt: 178-181 °C.  
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2.6.2.3 2,6-Diactetylpyridine-bis(4-trifluoromethoxyphenylhydrazone) (3) 

 

The same procedure as described for compound 1 was followed using 4-

trifluoromethoxyphenylhydrazine hydrochloride (2.29 g, 10.0 mmol) and 2,6-diacetylpyridine 

(816 mg, 5.0 mmol). Compound 3 was isolated by gravity filtration as a bright orange solid 

(2.40 g, 93%). 1H NMR (500 MHz, MeOD) δ ppm 8.49 (t, J = 8.1 Hz, 1H, 4’-H), 8.01 (d, J = 

8.1 Hz, 2H, 3’-H), 7.60 – 7.27 (m, 4H, 3-H), 7.06 (d, J = 9.0 Hz, 4H, 2-H), 2.44 (s, 6H, CH3); 

13C NMR (125 MHz, MeOD) δ ppm 149.1, 148.4, 145.2, 144.1, 132.6, 123.5, 122.0 (q, JF-C = 

254.9 Hz ),121.8, 116.6, 11.5; m/z (ES+): Found: 534.1333 [M+Na], requires: 534.1335; IR 

νmax/cm-1 (solid): 3150, 3073, 2955, 2906, 1540, 1504, 1439, 1248, 1193, 1159, 1142, 844; 

M.pt: 271.3-272.8 °C. 

2.6.2.4 1,3-Diactetylbenzene-bis(phenylhydrazone) (4)  

 

The same procedure as described for compound 1 was followed using phenylhydrazine 

hydrochloride (0.84 mL, 8.5 mmol) and 1,3-diacetylbenzene (460 mg, 2.8 mmol). Compound 

4 was isolated as a gold solid (666 mg, 69%). 1H NMR (300 MHz, C2D6O + EtOH) δ ppm 

9.92 (s, 2H, Ph), 7.76 (dd, J = 8.9, 6.7 Hz, 1H, 4’-H), 7.70 – 7.62 (m, 2H, 3’-H), 7.52 (s, 2H, 

Ph), 7.44 (d, J = 8.8 Hz, 2H, Ph), 7.26 (s, 2H, Ph), 7.13 (dd, J = 8.8, 1.4 Hz, 2H, Ph), 7.05 (d, 

J = 1.4 Hz, 2H, Ph), 4.82 (s, 4H, CH2); 13C NMR (100 MHz, EtOH + C2D6O) δ ppm 149.5, 

143.6, 143.5, 138.4, 137.6, 135.0, 129.3, 122.0, 120.0, 118.9, 117.5, 113.7, 112.1, 101.5, 31.1; 

m/z (ES+): Found: 343.4060 [M+H], requires: 343.4460; IR νmax/cm-1 (solid): M.pt: 229-231 

°C.  
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Chapter 3 Synthesis and Characterisation of Bis(indolyl)derivatives  

The following chapter covers the synthesis of four novel bis(indolyl)derivatives and a 

comprehensive and detailed study of their photophysical properties. The synthetic routes have 

been designed to understand the substrate reactivity and to evaluate their synthetic 

applicability. In order to improve the applicability of the bis(indolyl)derivatives, it is very 

important to understand the driving factors that allow tuning of photophysical properties and 

therefore, the effectiveness and applicability of those materials. Three interesting examples for 

tuning of the photophysical properties of these compounds, two of which successful, are: 

1. The effect of increasing the electronic delocalisation along the backbone of the 

molecules.  

2. The effect of different substituents.  

3. The unsuccessful strategy of using the bis(indolyl)derivatives as chelating agents.  

3.1 Indole 

Indole is ubiquitous and one of the most abundant heterocyclic structures in nature. It was 

isolated for the first time by Baeyer from the treatment of indigo (S.7) with oleum70. Since the 

1950s its importance has grown impressively because it and its derivatives are part of 

biologically significant compounds. For example, tryptophan (S.8) which is an essential amino 

acid and a constituent of most proteins. Serotonin (S.9)71, a vasoconstrictor that plays a part in 

conducting impulses to the brain and cardiovascular function. Complex alkaloids are clinically 

used anticancer agents72 (cause the inhibition of mitosis or cell division), vinblastine (S.10)73 

isolated from Catharanthus roseus, is particularly interesting as it contains both an indole and 

an indoline motif and Cypridina luciferin (S.11)74 which is an indole-based substrate 

responsible for the biluminiscence produced by ostracod crustaceans. It participates in the 

luminescent enzyme system “luciferin-luciferase”. 
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Figure 3-1 Naturally occurring indole-containing products 

3.2 Indole synthesis 

Due to a wide range of biological and medicinal applications, such as chemosensors75, 76, 

regulators of neurological and physiological functions77, anticancer agents72, 78 and antidiabetic 

drugs79 (applications developed most recently), the synthesis of indoles and its derivatives have 

been well-established80, 81. Many of these synthetic approaches involve the annulation of a five 

member ring to an existing (functionalised) benzene ring. With a few exceptions such as those 

proceeding through the pyrrole82 functionalization or methods in which both rings are formed 

simultaneously83. There are four bonds in the five-membered indole ring. Synthesis of indoles 

are often named and classified84 dependent on the last bond formed, this is shown in the Figure 

3-2.  
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Figure 3-2 Types of indole synthesis, classified by the last bond formed (showing an example) 

Type 1 and 2 involve bond formation to an aromatic carbon (occupied only by H) or 

functionalised. Type 3 has a C-N bond formation, type 4 involves a C-C bond formation and 

type 5 involves generation of the benzene ring from an existing cyclohexane. As previously 

mentioned, not all of the indoles are formed from a functionalised benzene ring. Type 6 takes 

place through pyrrole85 and type 7 through the construction of both rings. 

3.2.1 Fischer indole synthesis 

First reported in 188343, the Fischer indole reaction is still the most versatile, efficient and 

highly used method for the synthesis of indole intermediates. In many cases the reaction of a 

substituted phenylhydrazine with an aldehyde or ketone leads to the phenylhydrazone, which 

undergoes cyclic [3,3]-sigmatropic rearrangement under acid catalysis which allows the NH3 

elimination leading to the desired indole (Scheme 3.1)86. 
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Scheme 3.1 Accepted mechanism for the Fischer indole synthesis 

This reaction meets all the requirements of a modern indole synthesis in its convenience and 

simplicity. Allowing the attachment of different substituents at the C-2 and C-3 positions and 

on the aromatic ring, by using different ketones or aldehydes and substituted hydrazine 

derivatives. This also includes a relative tolerance to a wide range of compatible functional 

groups at the aromatic ring allowing direct formation of substituted indoles without the need 

for further modifications. 

The main drawback is a limited number of commercially available aryl hydrazines and their 

toxicity87, 88. Mono- and unsubstituted hydrazines are readily available; however, the ring 

closure leading to the final indole can occur at two different positions resulting in the formation 

of regioisomers. This does not apply when symmetrical or ortho-substituted hydrazines are 

used. 

3.2.1.1 Precursors for Fischer indole synthesis 

Traditionally, hydrazines have been made by diazotisation of the corresponding aniline and 

reduction of the diazonium salt, or by reduction of the N-nitroso derivative as shown in Scheme 

3.289. However, the explosive hazards associated with the isolation of solid diazonium salts 

and the introduction of toxic elements by the reduction of the N-nitroso derivative, results in 

these methodologies not being ideal. Therefore, a safer and more reliable alternative to convert 

aryldiazonium salts into hydrazines has been found by using either elemental tin or tin(II) 

chloride in acidic media, or ascorbic acid90, 91, a metal-free reductant. This procedure has been 

applied to the synthesis of eletriptan (Scheme 3.3). 
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Scheme 3.2 Aryl hydrazines from reduction of N-nitrosoanilines 

 

 

Scheme 3.3 Reduction of aryldiazonium salts with ascorbic acid, and Fischer indolisation of 

eletriptan92 (use to treat migraines) 

Use of the Japp-Klingemann reaction, involves the reaction of a diazonium salt with a β-

ketoester under basic conditions (Scheme 3.4). First reported in 188793, it directly leads to 

hydrazones via the reaction. The scope of this procedure is currently limited to 2-substituted 

indoles only. 

 

Scheme 3.4. The Japp-Kinglemann variation on the Fischer indole synthesis 

An alternative approach to multi-substituted indoles, avoiding the need to isolate any 

intermediate, was reported by Buchwald et al.94 and Hartwig (Scheme 3.5). The palladium-

catalysed cross coupling reaction of aryl halides with hydrazine derivatives produces 

N-arylbenzophenone hydrazones, followed by its hydrolysis with enolisable ketones and 

subsequent Fischer indolisation.  
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Scheme 3.5 Buchwald-Hartwig Pd-catalyzed arylation of benzophenone hydrazine in indole 

synthesis  

3.2.1.2 Relevance of the acid choice for indole catalysis 

The choice of acid catalyst is very important. Brønsted acids such as HCl, H2SO4, 

polyphosphoric acid and p-toluenesulfonic acid (p-TSA) have been used successfully. Lewis 

acids such as boron trifluoride, zinc chloride, iron chloride and aluminium chloride are also 

used as catalysts. The use of thionyl chloride was also explored for the synthesis of 3-(N-

acylamino)-2-phenylindoles95.  

The importance of the acid-catalysts has been demonstrated for methoxy phenylhydrazines96. 

For instance, in the presence of catalytic amounts of ZnCl2, an unexpected substitution between 

the methoxy group and chlorine takes place. Migration of the methoxy group has been observed 

in the presence of BF3. In the presence of HCl, the expected product is only generated in very 

low yield along with other by-products (Scheme 3.6)97. 

 

Scheme 3.6 Intent to synthesize 7-methoxy-2-propionyl-1H-indole 

In recent years, alternative catalysts such as 2,4,6-trichloro-1,2,5-triazine (TCT) (Scheme 

3.7)98, rhodium complexes (Scheme 3.8)99 or photoredox Pd-catalysed visible light100 for C-H 

activation were developed for the synthesis of indoles. 

 

Scheme 3.7 Reaction of phenylhydrazine with cyclohexanone in the presence of TCT 
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Scheme 3.8 Solvent free Fischer indole synthesis using low melting mixtures 

Low melting L-(+)-tartaric acid-dimethyl urea mixture appears to be an alternative for the use 

of a solvent in Fischer synthesis. The melt plays the dual role of solvent as well as catalyst101. 

This reaction is an example of a redox neutral strategy for metal-catalysed C-H activation that 

has been developed in recent years102-104. The hydrazine generated acts as a directing group for 

regioselective insertion. At the same time, the hydrazine is acting as an internal oxidant for the 

regeneration of the catalyst for the next catalytic cycle without using an external oxidant (as 

commonly happens with metal-catalysed reactions) 94.  

 

Scheme 3.9 Synthesis of indoles via Rhodium-Catalysed C-H activation directed by an in-situ 

generated redox-neutral group 

3.3 Typical reactivity of indoles: C-2 vs C-3 position 

Indoles are electron rich molecules and their chemistry is dominated by electrophilic 

substitution. There is a strong preference for electrophilic substitution in the five-membered 

ring, which is ~1013 times more reactive than benzene105. The attack at the nitrogen would 

destroy the aromaticity of the pyrrole ring hence there are two other remaining alternatives. 

The resonance structure A is favoured and explains the preference for the C-3 position due to 

the retention of benzenoid character of the bicycle, while B has perturbed this system (Scheme 

3.10). However electrophilic substitution can occur at C-2 if, for instance, the C-3 position is 

occupied by a substituent via attack at the C-3 position and rearrangement of 3,3-disubstituted 

indoles to 2,3-disubstituted indoles82. 
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Scheme 3.10 Reactivity of indole 

Terrier et al. have shown the effect of different substituents at the C-5 position of indole. The 

reactivity of these indoles upon 4,6-dinitrobenzofuroxan (DNBF), a neutral 

“superelectrophilic” heteroaromatic compound, increases with the indole basicity as shown in 

Figure 3-3. In addition, their studies have shown that the presence of a methyl group in the 

position adjacent to the electrophilic attack reduces the DNBF addition efficiency. This 

reduction in efficiency is attributed to a steric hindrance105, 106. 

 

Figure 3-3 The reactivity ranking of some indoles 

3.4 Functionalisation of indoles 

3.4.1 Halogenation of indoles  

The presence of functionalities is a requirement for metal catalysed cross-coupling reactions. 

Therefore, halogenated indoles are convenient intermediates that can undergo transmetalation 

or/and cross-coupling transformations. 

The literature states different opinions regarding the halogenation of indoles. Two of the most 

controversial are remarked here; Sundberg says “Halogenation follows the normal pattern of 

electrophilic substitution” 107 whereas Li et al. say “Synthesis of halogenated indoles is rare 

and difficult”108. 
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If the first statement published by researchers is correct and universal, then halogenation 

follows a traditional pattern of electrophilic substitution. The C-3 position is generally the 

preferred site of attack. If it is blocked, substitution occurs at the C-2 position. Therefore, 

halogenation of indoles could be done by one of the oldest reactions know in organic chemistry, 

electrophilic aromatic halogenation as a straight-forward step. However, additional factors 

such as electron-withdrawing or donating substituents may exercise directing influences48. 

There are other examples that are more in agreement with the second statement. In the presence 

of a strong electron withdrawing substituent at the C-3 position, substitution takes place in the 

benzene ring at the C-5 or C-6 position107, 109. Also, the presence of substituents in the six or 

five-membered ring along with the N-substituent decreases the chemo- and regioselectivity of 

halogenation in the indole110. Finally, an increased interest to this subject of regioselective 

halogenation over the past years shows the revalidation of the second statement over the first 

one111. 

Selective bromination of 3-bromoindole can be achieved by treating the indole with n-

butyllithium, followed by the addition of trimethyltin chloride (Me3SnCl) and titration with 

elemental bromine Scheme 3.11. 

 

Scheme 3.11 Selective C-3 bromination of indole via metal-halogen exchange  

Recent developments identified an efficient and inexpensive oxidative bromination and 

iodination protocol for arenes and heteroarenes, which can be used in kilogram-scale, reporting 

yields over 95%112. This mild oxidative system avoids the use of X2 which are hazardous, toxic 

and corrosive103, by using hydrogen halides which are readily available, easy to store and 

transport and inexpensive. Over the years, oxidative halogenation procedures113, 114 have 

involved in situ formation of halogenating reagents, which requires the use of oxidants such as 

selectfluor, hydrogen peroxides, persulfates, etc. However, the generation and use in situ of the 

halogenating reagents has a number of limitations including limited substrate scope, potential 

explosiveness and limitation in heteroarenes. These drawbacks make reagents including N-

halosuccinimides115 and halogens77, 116, 117, the most commonly used. However, reaction 

conditions using some of these reagents require highly acidic or basic media which have several 
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disadvantages including poor selectivity, multiple halogenation and narrow functional 

tolerance. 

 

Scheme 3.12 Bromination using hydrogen halides 

C-2 Functionalised indoles are a common moiety used for the synthesis of anticancer agents118-

120, compounds applied in fluorogenic probes121, 122 or treatment of Parkinson’s and 

depression123. This is why the introduction of a halogen at the C-2 position is very interesting 

in the synthesis of the target molecules. However, halogenation of substituted indoles at this 

position is rare and difficult108 and remains a challenge. Sensitivity of 2-haloindoles and acid-

catalysed hydrolysis of these compounds has been well documented124, 125. Also, the 

unpredictable reactivity depends strongly on the nature of the substituents in the indole. 

A methodology for the synthesis of 2-halogenated indoles was first published by Bergman126 

making use of Katritzky127 indole C-2 lithiation protocol. Carbon dioxide is used as an 

activating and easy N-removable protecting group. Despite a variety of electrophiles used, 

Bergman et al were the pioneers reporting the use of this as a halogenating reagent. Nowadays, 

the Bergman strategy is still in use128.  

 

Scheme 3.13 Synthesis of 2-halogenated indoles  

Cyclisation of gem-Dihaloofin129has attracted a lot of interest as an alternative to functionalise 

2-bromo/chloro indole cores due to their high reactivity and easy availability130. In order to 

promote intramolecular cyclisation, different reagents such as Pd(0) and P(tBu)3 as ligand131, 

Cs2CO3
108or TBAF in THF132 using microwave irradiation have been used as a catalyst 

(Scheme 3.14).  
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Scheme 3.14 Synthesis of 2-halogenated indoles using gem-Dihaloolefin in the presence of TBAF 

(metal free condition) to promote intramolecular cyclisation 

Halogen functionalisation is still one of the most important key reactions, which continues to 

develop. Yeung et al.133 reported a new type of bromination of sensitive lactones using indole 

as a catalyst. The reaction shown in Scheme 3.15 is an example used to establish the 

electrophilicity of the intermediate-indole as a Br source. 

 

Scheme 3.15 Bromination of 1,3,5-trimethoxybenzene 

3.4.2 Friedel-Crafts and Vilsmeier formylation reactions 

Although the Friedel-Crafts reaction is one of the most important C-C bond forming reactions 

in organic chemistry, the synthesis of 3-acylindoles is often complicated by the competitive 

substitution at nitrogen. Acylation using acetic anhydride in acetic acid leads mainly to 1,3-

diacetylindole. However, Gribble et al. were able to perform the regioselective acylation of 

N-protected indoles134. This acylation can even be used on indoles bearing an electron-

withdrawing group at the C-2 position135, although the yield is not as high as in the presence 

of an electron-withdrawing substituent (Scheme 3.16). 

 

Scheme 3.16 C-3 Acylation of 5-fluoro-1-(phenylsulfonyl) indole and 2-chloro-1-(phenylsulfonyl) 

indole 
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These methods often suffer from side-reactions such as double acylation or polymerisation of 

indoles. There are many modified methods. For example, 1,5-diazabicyclo[4.3.0]non-5-ene 

has been used for regioselective organocatalytic C-3 acylation of N-protected indoles. 

However, acylation is influenced by substituents at the benzene ring Scheme 3.17. 

 

Scheme 3.17 C-3 Acylation of 5-substituted-N-protected indoles 

Synthesis of a bridged indole-based dye via Friedel-Crafts alkylation136, 137 employs sodium 

triphenylphosphine-m-sulfonate 133 which can be recovered (by precipitation) and re-used 

without a loss in its catalytic activity.  

 

Scheme 3.18 Synthesis of 3,3'-(2-phenylethane-1,1-diyl)bis(1-methyl-1H-indole) via double C-3 

alkylation of 1-methylindole138 

Vilsmeier reaction can be an alternative to the Friedel-Crafts method, which generally requires 

a stoichiometric amount of Lewis acids or Brønsted acid, for the addition of carbonyl 

functionality at the C-3 position139. 

 

Scheme 3.19 Vilsmeier formylation of indole 
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3.4.3 Selective functionalization of indoles via metalation 

Metalated indoles are extremely useful intermediates and they can be metalated at any position, 

by the use of direct ortho metalation or by halogen-metal exchange. Protection of the indole 

nitrogen plays a pivotal role in the reactivity of the indole. 

The most widely used lithiating agents are alkyllithium or lithium amides. n-Butyllithium is a 

commonly used reagent, however, when stonger reagents are required t-butyllithium or s-

butyllithium can be employed. As an alternative to RLi reagents, LDA is tolerable to many 

functional groups. It also has a greater selectivity for proton abstraction vs nucleophilic 

addition. Lithiating agents with varied steric hindrance, basicity and the potential for 

asymmetric deprotonations have been employed, for example, isopropylcyclohexylamide, 

dicyclohexylamide, bistrimethylsilylamide (LiHMDS), 2,2,6,6-tetramethylpiperidine 

(LiTMP).  

For the compounds that can be deprotonated using either LDA or n-butyllithium, metalations 

with lithium amides are reversible. So, for efficient conversion the substrate must have a pKa 

of two units lower than the base used. 

The scope of the metalation reaction is expanded by the use of complexing and chelating 

reagents such as hexamethylphosphoric triamide (HMPA), N,N’-dimethylpropyleneurea 

(DMPU) and tetramethylethylenediamine (TMEDA) which increase the rate of metalation and 

the range of compounds which can be deprotonated. 

3.4.3.1  Metalation directed by nitrogen functionality 

3.4.3.2 Selective C-3 lithiation 

The direct C3-lithiation of the indole ring has been observed with N-(trialkylsilyl)indoles140, 

141. Although C-2 is more acidic than C-3 in N-substituted indoles the triisopropylsilyl-

protecting group blocks reactivity at C-2 position. The N-triisopropylsilyl group is readily 

removed by TBAF. 

 

Scheme 3.20 C3-Lithiation of N-(trialkylsilyl)indoles 
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3.4.3.2.1 Selective C-2 lithiation of indole 

The use of a removable N-protecting group would allow the preparation of 2-substituted N-

unsubstituted indoles. An advantage of the benzenesulfonyl, as a common protecting group, is 

that it allows for the regioselective generation of 2-lithioindole derivatives containing methoxy 

groups and other potential directing groups in the benzenoid ring. Sundberg showed an absence 

of benzene ring lithiated products when phenylsulfonyl was used as a protecting group. 

Nevertheless, when the counterpart N-methyl indole was used, an activation of the benzene 

ring toward metalation was observed.142 

 

Scheme 3.21 C-2 Electrophilic substitution of indoles in the presence of LDA or n-BuLi 

3.4.3.3 Directed ortho metalation 

The intrinsic regioselectivity of metalation of a particular heterocycle can be overcome by the 

use of directing groups (inductive effect), chelation or a combination of both. The direct C-7, 

C-3 and C-2 lithiation of the indole can be achieved selectively using 

1- (2,2- diethylbutanoyl)indole as a common substrate. These results are especially interesting 

because the regioselectivity is controlled essentially only by the effects of the ligands 

employed143. The DEB group can promote unprecedented C-7 lithiation under kinetically 

controlled conditions144. This unusual lithiation has been demonstrated to be useful for the 

synthesis of 3,7-disubstituted indoles which are not readily available by conventional synthetic 

methods. 
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Scheme 3.22 Regioselective metalation of C-7, C-3, and C-2 position 

3.4.3.4 Halogen–metal exchange in indole 

3.4.3.4.1 Halogen–metal exchange at C-3 position of indole 

Halogen–lithium exchange at the C-3 position has been explored by Gribble using 3-iodo-N-

(phenylsulfonyl)indole as a substrate treated with t-BuLi. This leads to the formation of  

unstable 3-lithioindole at temperatures above -100 °C, which rearranges to the 2-lithioindole 

yielding 2-methyl-N-(phenylsulfonyl)indole upon quenching with 2-iodomethane145. 

However, in many cases, halogen–lithium exchange reactions proceed without side-reactions 

such as ring fragmentation or rearrangement to the corresponding 2-lithioindole intermediate 

(even at room temperature).  
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3.4.3.4.2 Halogen–metal exchange at C-2 possition of indole 

N-(Substituted)indoles often undergo selective hydrogen-halogen exchange at C-2 assisted by 

a strong base. Hebert reported the formation of 1,2-bis metalated indoles treating 2-iodoindole 

with excess of n-butyllithium followed by quenching the lithiated species with different 

electrophiles yielding 2-substituted indoles111 (Scheme 3.23). 

 

Scheme 3.23 Synthesis of 2-substituted indoles via 1,2-bismetalated indoles 

Fifty years before, Shirley and Roussel failed in the attempt to introduce a second lithium atom 

using fourfold excess of the organometallic compound146, contrasting with the carbazole147 

behaviour in which first the N-H bond can be replaced by an N-Li bond and the metalation in 

the ortho position takes place in a good yield. The stabilization of the anion, as shown in 

Scheme 3.24, would cause the lack in reactivity of N-lithioindole toward n-butyllithium. 

 

Scheme 3.24 Reactivity of N-lithioindole 

3.5 Carbon-carbon bond formation 

Formation of a carbon-carbon bond plays an important role in shaping chemical synthesis. 

Various strategies are available for the construction of the C-C bond including; carbonyl 

condensation (Aldol reaction), Diels-Alder cycloaddition or Wittig reaction. However, these 

processes are not very successful in the synthesis of complex frameworks. Cross-coupling 

reactions catalysed by transition-metals are an alternative approach, widely used in the last 

quarter of the 20th century. 

3.5.1 Palladium catalyzed cross-coupling reactions 

The significance of this useful synthetic strategy was shown when Heck, Negishi and Suzuki 

were awarded with the Nobel Prize in chemistry in 2010. There are many variations of 
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palladium catalyzed cross-coupling, in which the organometallic reagent varies on, which 

enables a wide range of substrates to be prepared (Figure 3-4). 

 

Figure 3-4 Palladium catalysed C-C reactions84 

In essence all the reactions proceed by similar catalytic cycles. The majority of palladium 

cross-coupling reactions are catalyzed by Pd(0), Pd(II) or Pd(IV), however the zero-valent 

palladium catalyst is the most versatile. The cycle (Scheme 3.25) is initiated by the oxidative 

addition of the halide or pseudo halide to the LnPd(0), forming two new bonds and increasing 

the oxidation state of the palladium. At this stage, the processes diverge, in the Kumada, 

Negishi, Suzuki, Hiyama, Sonogashira and Stille coupling processes, oxidative addition is 

followed by transmetalation. This is the step that shows a difference between organometallic 

species used for the coupling with the generated PdII species. Subsequent reductive elimination 

results in C-C coupling regenerating the Pd0 active species which re-enter the catalytic cycle. 

Alternatively, in the Heck process, the reaction progresses by coordination of PdII to an alkene 

followed by the syn- migration insertion that will undergo syn-β –hydride elimination to give 

the product assisted by a base. 
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Scheme 3.25 General mechanistic steps of cross-coupling reactions 

3.5.2 Heck cross-coupling reaction  

The Heck reaction is based on the alkenylation of organic electrophiles, although the first step 

is common to all cross-coupling reactions. Activation of the organic electrophile by oxidative 

addition to the active Pd(0) specie. There is no transmetalation and it follows a slightly different 

procedure. The C-C bond is formed by the insertion of the alkene followed by β-elimination 

leading preferentially to the E product formation. 

 

3.5.3 Sonogashira cross-coupling reaction 

The Sonogashira reaction is based mainly on the coupling between organohalides with aryl or 

aliphatic alkynes. It is promoted by Cu(I) generating the alkynyl copper derivatives in presence 

of an amine as base (but copper-free variants of this C-C coupling are also well-established). 
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3.5.4 Kumada cross-coupling reaction  

The Kumada reaction involves the coupling of organohalides with Grignard reagents. Due to 

the high reactivity of Grignard reagents, the reactions proceed quickly. However, the 

aggressive nature of the reagents limits its use due to intolerance to many functional groups. 

 

3.5.5 Negishi cross-coupling reaction  

The cross-coupling involving an organozinc reagent and organohalides (or equivalents) is 

known as the Negishi reaction. Despite the reduced reactivity compared to organomagnesium 

or organolithium reagents, the Negishi coupling is still regarded as a preferred option. This is 

due to a broader tolerance towards sensitive functional groups such as carbonyls and nitriles.  

 

3.5.6 Suzuki-Miyaura cross-coupling reaction  

The Suzuki reaction involves the cross-coupling of organoboron reagents (boronic acids or 

esters) with organohalides (aryl or vinyl halides). A key step of the reaction involves 

transmetalation of organoboron reagents which require activation by base or fluoride, resulting 

in arylpalladium (II) halides. In the presence of (aqueous) base the reaction proceeds smoothly 

and offers a wide range of selective C-C bond formation, high tolerance to many functional 

groups and boron containing by-products are easily removable by alkali work-up. 

 

3.5.7 Hiyama cross-coupling reaction  

As in the Suzuki reaction, the activation by a base or fluoride is required for the transmetalation 

from organosilanes with organohalides (or their equivalents). 

 

3.5.8 Stille cross-coupling reaction 

The now named Stille reaction developed by John Stille and David Milstein in 1978, along 

with the Suzuki C-C coupling, are two of the most versatile palladium catalyzed cross-coupling 
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reactions. Due to its high stereospecificity and regioselectivity, the Stille reaction is preferred 

for the synthesis of highly functionalised molecules. More importantly, the reaction is tolerant 

to a wide variety of functional groups (amines, epoxides, carboxylic acids, alcohols) and 

organostannanes are relatively insensitive to moisture and oxygen. The main drawback is the 

toxicity of stannanes leading to the reaction not being adopted by industry, although the Stille 

reaction is popular at a small scale. 

The Stille cross-coupling employs organostannanes to construct a new C-C bond. 

 

3.6 Bis(indolyl)pyridine as chelating ligands  

Cyclometalated compounds with a variety of N-donor ligands (e.g., amines, azobenzenes, 

imines, hydrazones, oximes and N-centered heteroarenes) have been extensively investigated. 

Whereas, the chemistry of the analogous indole derivatives remains partially unexplored.  

To the best of our knowledge, the synthesis of bis(indolyl)pyridine complexes is quite 

restricted and limited and is summarised in Scheme 3.26. In 2002 Tao, Wang et al.148 published 

the synthesis of compounds Pd(BIP)Py, Pt(BIP)SMe2 and Pt(BIP)Py. The synthesis of 

compound Pd(BIP)Py is the reaction of the corresponding salt Li2BIP with Pd(Py)2Cl2. To 

ensure that the complex was formed in a reasonable yield, excess of the ligand in the ratio 3:1 

was required (yield of 21% ratio 1:1). The same procedure was carried out for the synthesis of 

the platinum(II) complex. However, the reaction was unsuccessful and an alternative route was 

developed to yield Pt(BIP)Py via substitution of the labile dimethyl sulfoxide ligand from 

reaction of Pt(BIP)SMe2 with pyridine in dichloromethane. The compound Pt(BIP)SMe2 was 

obtained in yield of 21% from the reaction of H2BIP with Pt2Me4(SMe2)2. To complete the 

coordination sphere of those divalent metals, a neutral ligand is required. In the case of the 

tetravalent complexes, two negatively charged ligands are required to saturate the coordination 

sphere of the metal centre yielding the neutral complexes.  

It was not until one year later when Wang et al.149 became interested in the synthesis of 

tetravalent complexes. Complexes Sn(BIP)Ph2 and Pb(BIP)Ph2 were synthesised from the 

corresponding salt Li2BIP with the appropriate M(Py)2Cl2 in the yield of 68% and 64% 

respectively. The substitution reaction involves the replacement of Cl- ions by the dianionic 

tridentate ligand forming cyclometalated complexes and LiCl as byproduct.  
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Scheme 3.26 Synthetic strategy towards H2(BIP) metal complexes 

These results show the need to use n-BuLi as a base to generate the dianionic ligand whereas 

other aromatic heterocyclic compounds do not require deprotonation (Figure 3-5) for 

complexation150, 151,152, 153,154, 155. Determination of pKa is influenced by solvation effects, use 

of non-aqueous media, etc156.  

 

Figure 3-5 Calculated pKa of different aromatic heterocycles157 

3.7 Design and synthesis of bis(indolyl)derivatives 

The functionalisation of the indole nucleus is still a fascinating area with a remarkable impact 

on organic synthesis158. Electrophilic substitution at the C-3 position is the natural reactivity 

pattern of indoles. Therefore, our goal is to access C-2 substituted derivatives. Furthermore, 
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the study aims to investigate how different functional groups affect the distribution of the 

electronic density and thus the photophysical properties. Structural alterations include: a) the 

residues that extend π -conjugation or inject/withdraw electrons in C-5 position (3.1-3.3), b) 

the donor-acceptor  strength of the linker (3.3, 3.4-3.6) and c) the conjugation of the aromatic 

system at the C-3 position (3.3, 3.7-3.8).  

1. Metal-free small organic molecules have rather limited π-conjugation, they can 

intrinsically display deep-blue emission as well as high fluorescence quantum yield 

(). They have precise chemical structures, high purity and high thermal stability159, 

160. 

2. Marginal structural modifications can lead to significant changes in the electronic 

distribution in the molecule tuning electronic spectra and the fluorescence quantum 

yields () without compromising their thermal stability.  

3. These molecules are of particular interest because the pyridine and indole heterocyclic 

fragments are in juxtaposition. Thus, these synthetic scaffolds can potentially serve as 

dianionic terdentate ligands (N^N^N).   

 

  
3.1 

 

3.2 

 

  

3.3 

 

3.4 

 

  
3.5 

 

3.6 

 

  
3.7 3.8 

Figure 3-6. Structures of bis(indolyl)derivatives (3.1-3.8) 
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3.8 Synthesis of bis(indolyl)derivatives  

3.8.1 Bis(indolyl)derivatives via Fischer synthesis 

3.8.1.1 Synthesis of bis(phenylhydrazone)derivatives 

Hydrazones have been widely used in organic synthesis, especially as intermediates for the 

preparation of heterocyclic compounds. The bis(phenylhydrazone)s can be used for a double 

Fischer reaction.  

The synthesis of bis(phenylhydrazone)pyridines (1-3) and bis(phenylhydrazone)benzene 4 was 

accomplished using a condensation protocol42, 46 by reacting an appropriate hydrazine with 

2,6-diacetylpyridine or 1,3-diacetylbenzene, respectively (Scheme 3.27).  

 

Scheme 3.27 Synthesis of bis(phenylhydrazone)derivatives 

The synthesis of compounds 1-3 provides solids and results in yields of 73%-93%. But, the 

crude compounds 4-6 are very complex mixtures and thus more difficult to isolate. Compound 

4 was obtained in a yield of 80% using solvent diffusion (EtOH:Ether) for the crystal growth. 

For compounds 5 and 6 repeated attempts at recrystallisation, precipitation or crystal growth 

using varying solvents proved unsuitable. In order to form 5 and 6 without the presence of the 

mono-condense product, the amount of hydrazine was increased. However this proved 

unsuccessful, as more complicated crude products were observed, along with unreacted starting 

materials.  

3.8.2 Synthesis of bis(indolyl)derivatives via Fischer synthesis 

In order to obtain only one regioisomer, indolisation requires the use of p-substituted 

phenylhydrazones. Phenyl rings with electron-donating substituents have been reported to 

enhance the rate of the indolisation. Whereas the presence of an electron-withdrawing group 

on the phenyl ring decreases the rate of cyclisation or the reaction will require harsher 

conditions161, 162. 
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Through the synthesis of bis(phenylhydrazone)pyridines (1-3) we observed that the electronic 

effect of the studied substituents contradicts previously reported work162, 163. The indole-based 

molecules (Z=N and R=H, OCF3) can be prepared by a PPA-catalysed cyclisation164 of the 

bis(phenylhydrazone)derivatives. However, using the same procedure for [Z=N and R=OCH3] 

and [Z=CH and R=H], the synthesis was unsuccessful.  

 

 Scheme 3.28 Fischer synthesis of H2BIP(R)  

3.8.2.1 Synthesis of bis(4-methoxyphenylhydrazone)pyridine  

The cyclisation behaviour of 2,6-diactetylpyridinebis(4-methoxyphenylhydrazone) shows that 

the situation is more complex than previously thought. The accepted mechanism for Fischer’s 

synthesis (Scheme 3.29) was suggested by Robinson86, although mechanistic details 

underlying the acid-promoted indolisation step remain yet unclear165. According to the 

Robinson mechanism, the phenylhydrazone (M.1) then rearranges to the ene-hydrazine (M.2). 

Followed by the key [3,3]-sigmatropic rearrangement step, resulting in a diamine (M.3) and 

the loss of aromaticity. The intermediate diene (M.2) is stabilised by an electron-withdrawing 

group in the phenyl ring. Thus, the methoxy substituent is destabilised and should therefore be 

more reactive162, 163. The last step involves rearomatisation and ammonia elimination (M.5) to 

provide M.6. 
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Scheme 3.29 Accepted mechanism for the Fischer indole synthesis  

The methoxy substituent on the phenyl showed a dramatic effect on its reactivity in the Fischer 

cyclisation reaction. Varied conditions were investigated. When a mixture of 

NaOAc/CH3COOH was used, the cyclisation step was unsuccessful and only starting materials 

were isolated. The use of Eaton’s reagent (CH3SO3H/P2O5) favours the regiospecific formation 

of one product166 which is not necessarily the most thermodynamically stable. The use of this 

reagent as an acid catalyst should overcome the energy barrier to form the bis(indolyl)pyridine 

derivative. However, the use of a co-solvent (DCM) and the Eaton’s reagent only slightly 

enhanced the formation of the semi-cyclised intermediate (up to 19%) after the mixture was 

left to react overnight. Reaction conditions using ethanol as a solvent and p-TSA as a catalyst 

under microwave irradiation (MW) for 2.5 h at 120 °C provided the semi-cyclised intermediate 

and unreacted starting material. 

Finally, in order to avoid the isolation of the hydrazone, a one-pot reaction using: i) low melting 

L-(+)-tartaric acid:dimethyl urea mixture and ii) microwave irradiation (2.5 h at 120 °C) was 

used to force the reaction to form the indole. The melt plays a dual role acting as solvent as 

well as catalyst101. However, the desired product was not obtained.  

However, this strategy yielding 3.1 and 3.2 is rather limited by the availability of the 

biscarbonyl compounds. Additionally, the outcome of the reaction is strongly driven by the 



 
 

  59 

electronic nature of substituents of the hydrazine reagents and the bridge unit.163, 165 Thus, an 

alternative approach has been explored that can be used to access the target compounds.  

3.8.3 Exploration of indole reactivity 

3.8.3.1 Fischer synthesis of C-3 substituted indoles  

Different approaches can be used for the synthesis of C3-substituted indoles; however, these 

procedures are undoubtedly more time consuming compared with the Fischer indole synthesis, 

which allows the generation of already functionalised indoles. Fischer indole synthesis is a 

convenient method allowing the attachment of different substituents at the C-2 and C-3 

positions by using a variety of carbonyl compounds and hydrazine derivatives. Traditionally, 

the synthesis of indoles was carried out by isolating the unstable hydrazone and subsequent 

cyclisation with the appropriate acid. However, due to the instability of the intermediates, a 

one-pot synthesis proved a much better alternative (Scheme 1-30). The acid choice and 

substituents on the arylhydrazone are of particular relevance as they determine the rate of the 

cyclisation and therefore, the formation of the products. 

 

Scheme 3.30 One-pot Fischer synthesis of indole 7 and 8 and halogenation to obtain 9, 10 and 11 

Different conditions were screened for the synthesis of compound 7. The use of Brønsted acids 

AcOH and H2SO4 did not result in product formation, while 4% H2SO4 aqueous solution 

enabled indole formation in a 30% yield. The presence of sodium or ammonium acetate, which 

can act as a pH buffer during the reaction, seem to facilitate the cyclisation. Although, 
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formation of the indoles proceeds successfully (yield of 60%) under these reaction conditions, 

the purification step is a highly time-consuming procedure. To minimise the formation of side-

products and to facilitate the isolation of the final molecules, it was decided to avoid strong 

acid media and alternative catalysts were sought. 2,4,6-Trichloro-1,2,5-triazine (TCT) is 

reported to be a suitable catalyst in the Fischer synthesis98. However, the results were not 

reproducible despite the amount of TCT being reduced from 0.5 eq to 0.1 eq and temperature 

was varied from 80°C to 65°C. It is believed that HCl generation in the reaction mixture and 

the peculiar reactivity of 4-methoxy phenyl hydrazine led to unwanted side products such as 

those resulting from hydrolysis of hydrazone. Alternatively, a use of the low melting mixture 

comprising from tartaric acid-dimethylurea as a free-solvent condition successfully resulted in 

65% yield. However, the purification procedure has not been simplified and still remains a 

challenge. 

After the best conditions were established (NaOAc/CH3COOH), they were used for the 

synthesis of compound 8 resulting in 67% of yield.   

3.8.3.2 Synthesis of 2-halogenated indoles 

Although halogenated indoles are potential intermediates in C-C formation via transmetalation, 

particularly in cross-coupling reactions, the synthesis of 2-halogenated indole remains a 

challenge. Due to their hydrolysis, air sensitivity and thermal instability (they should be stored 

at T below -20 °C), these reactive intermediates should be utilised as soon as they are prepared. 

Generally, halogenation takes place at the C3-position, although the reaction can occur at the 

C2-position. These useful intermediates can be generated without N-protection of the indole 

by electrophilic substitution using NBS as a straight forward method.  

This approach potentially, has the benefit of preparing several materials in “one pot”. The most 

common bromination reaction involves the use of NBS (slight excess) in chloroform. In the 

case of compound 7, it yields only the di-brominated indole (9) whose formation can be 

favoured by increasing the equivalents of NBS to give yields of 50% (from 1.2 to 2.2 eq). 

However, for compound 8, the mixture of mono- (10) and di-brominated indole (11) can be 

controlled by adjusting the stoichiometric ratios of the reagents. Those resulting materials are 

sufficiently different in polarity to facilitate chromatography separation. However, due to the 

instability of compound 10, which decomposes during the process, only the side product 11 is 

isolated (in the yield of 6%). Subsequently the amount of NBS was reduced to minimise the 

formation of 11 and compound 10 was not isolated but used straight away in the next step 

without further purification.  
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From the experimental results it can be concluded that the procedure for the synthesis of 

brominated indoles is dominated by the substituents present on the indole. Showing that the 

substituent at the C3-position causes a stronger effect compared with the C-5 position. 

3.8.3.3 Synthesis of 3-butyl-5-methoxy-2-thiophene-1H-indole 

Further investigations of the synthesised 2-bromo-3-butyl-5-methoxy-1H-indole (10) were 

focussed on a Stille cross-coupling reaction with 2-(tri-n-butylstannyl)thiophene. The 

brominated intermediate proved to be unstable, and so was used without further purification. 

A variety of catalysts were used, Pd(PPh3)4, Pd(PPh2)Cl2 and Pd(dppf)Cl2, however, the 

reactions led to an intractable mixture. After column chromatography was carried out, the 

product isolated was not the desired compound. Thus, 2-halogenated indoles are not suitable 

intermediates. 

3.8.3.4 Synthesis of 2-organostannyl indoles 

In this section the synthetic approach for the preparation of 2-substituted-N-unsubstituted 

indoles is discussed. Organotin reagents possess several advantageous features such as air and 

moisture stability and tolerance to many functional groups. Stabilisation of the 1-indolyl anion 

is responsible for its lack of reactivity toward n-butyllithium for generation of 1,2-bismetalated 

indoles, thus protection should be carried out first. The phenylsulfonyl protecting group is one 

of the most commonly used, it directs ortho metalation through the stabilization of the C2-

position by intramolecular interactions between a lone pair on the sulfonyl group with lithium 

(Scheme 3.31). The synthesis of N-protected indoles (13-15) was achieved with an overall 

yield of 57-79% by following a two-step literature procedure. In the first step, indole was 

deprotonated with sodium hydride followed by electrophilic attack of benzenesulfonyl 

chloride. Compounds 14 and 15 were then reacted with n-BuLi or LDA as a base, followed by 

quenching with trimethyltin chloride. The sterically hindered LDA proved to be a better 

alternative than n-BuLi for the synthesis of the stannyl derivatives. The use of n-BuLi led to 

the formation of side-products due to the metalation of the ortho position of the phenylsulfonyl 

group. The organostannyl derivatives (16 and 18) were obtained in yields of 35% and 67% 

respectively.  
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Scheme 3.31 Synthesis of N-protected indoles (13-15) and organnostanyl derivatives (16-18) 

3.8.4 Synthesis of bis(indolyl)derivatives via one-pot double Stille cross-coupling 

The preparation of such materials, where the functionalisation was carried out at the C2-

position, was laborious due to low yields in the reaction sequence and highly time consuming 

purification processes. The one-pot double Stille reaction has such benefits as: a reduction in 

the number of steps, an increase in the yields and reduced time consumption.  

3.8.4.1 Synthesis of 2,6-bis(5-methoxy-3-phenyl-1H-indole)pyridine (3.7) 

The synthesis of compound 20 was performed by one-pot reaction of the two consecutive Stille 

cross-coupling processes. The reaction involved 5-methoxy-3-phenyl-1-phenylsulfonyl-2-

trimethylstannylindole (16) and 2,6-dibromopyridine in the presence of Pd(PPh3)4 and CuI 

under refluxing THF for 4h (Scheme 3.32). The formation of compound 14 proved that 

transmetalation occurred. However, the reductive elimination step leading to 19 did not take 

place. Several attempts to synthesise this product proved unsuccessful. Presumably the reaction 

process was sterically hindered due to the phenyl substituent at the C3-position. However, 

compound 20 was isolated in a yield of 84 % after column chromatography.  
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Scheme 3.32 Synthetic route to compounds 14, 19, 20 and 3.7 

3.8.4.2 Synthesis of 2,6-bis(5-methoxy-1H-indole)pyridine (3.2) and 2,6-bis(5-methoxy-

1H-indole)benzene (3.6) 

The synthesis of compounds 3.2 and 3.6 can be achieved by following a two-step procedure. 

The initial step involved a one-pot double Stille cross-coupling reaction of 5-methoxy-3-

phenyl-1-phenylsulfonyl-2-trimethylstannylindole (18) and 2,6-dibromopyridine or 1,3-

dibromobenzene in the presence of Pd(PPh3)4 and CuI under reflux in THF for 24h (Scheme 

3.33). After work-up and purification by column chromatography the products 22 and 21 were 

isolated in the yields of 92% and 8%2 respectively.  

                                                 

2 As a consequence of the extremely low yield of compound 22, mono-cross coupling product 

30 was obtained in the yield of 18%. No further synthesis or analysis was carried out. 
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Scheme 3.33 Synthetic route to 2,6-bis(5-methoxy-1H-indole)pyridine (3.2) and 2,6-bis(5-

methoxy-1H-indole)benzene (3.6) 

From Table 1, it is clear that the most viable condition is using 10% of catalyst. Presumably 

due to the formation of compound 15, the rate of transmetalation is greater than the reductive 

elimination step. Therefore by reducing the amount of catalyst the rate of the transmetalation 

step is reduced, avoiding complete consumption of 18 and transformation into 15.  

Table 3-1 Optimised conditions for the synthesis of 21 and 22 

 

 

 

 

 

 

 

The second step involved the deprotection of compound 22 into compound 3.2 performed by 

the addition of the THF solution of TBAF. The presence of compound 23 can be excluded by 

controlling the stoichiometric amount of TBAF added (minimum of 3 eq). The chemical 

conversion for this step is 86%. After work-up and purification by column chromatography the 

product 3.2 was isolated only in a yield of 24% due to low solubility of crude mixture in most 

organic solvents. To overcome the solubility issues of the crude mixture, dry load was chosen.  

Z Pd(PPh3)4 CuI Yield  

N 20% 20% 24% 

N 10% 20% 92% 

CH 20% 20% 5% 

CH 10% 20% 8% 
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3.8.4.3 Synthesis of 2,5-bis(5-methoxy-1H-indole)thiophene (3.4) 

The synthesis of compound 3.4 was achieved by following a two-step procedure. The initial 

step involved a one-pot double Stille cross-coupling reaction of 5-methoxy-3-phenyl-1-

phenylsulfonyl-2-trimethylstannylindole (18) and 2,5-dibromothiophene in the presence of 

Pd(PPh3)4 and CuI under reflux in THF for 24 h (Scheme 3.34). After work-up and purification 

by column chromatography the product 24 was isolated in the yield of 89%. 

 
Scheme 3.34 Synthetic route to 2,5-bis(5-methoxy-1H-indole)thiophene (3.4) and 2,5-bis(5-

methoxy-1H-indole)thiazole (3.5) 

It is clear (Table 3-2) that the most viable condition was the one using 15% catalyst. The yields 

of individual side products can be controlled or even eliminated by controlling the amount of 

catalyst. The presence of co-catalyst was crucial, as in its absence only starting materials were 

obtained. An excess of Pd(PPh3)4 could involve the formation of undesired compounds, such 

us 15, 26, 27 and 28. The use of 10% of catalyst significantly reduced the product yield and 

increased the presence of unreacted starting materials.  

The second step involved the deprotection of compound 24 into compound 3.4 by adding 

TBAF solution in THF (5 equivalents). After work-up and purification by column 

chromatography the product 3.4 was isolated in the yield of 40% and compound 29 in the yield 

of 30 %.  

  



 
 

  66 

Table 3-2 Optimised conditions for the synthesis of compound 24 

Y Pd(PPh3)4 CuI Yield 

CH 20% - - 

CH 20% 20% 33% 

CH 15% 20% 89% 

CH 10% 20% 41% 

 

3.8.4.4 Synthesis of 2,5-bis(5-methoxy-1-phenylsulphonyl-1H-indole)thiazole (25) 

The synthesis of compound 3.5 can be achieved by following a two-step procedure. The initial 

step involved a one-pot double Stille cross-coupling reaction of 5-methoxy-3-phenyl-1-

phenylsulfonyl-2-trimethylstannylindole (18) and 2,5-dibromothiazole in the presence of 

Pd(PPh3)4 and CuI under refluxing THF for 60 h (Scheme 3.34).  

The most viable condition for the synthesis of 25 required the use of 20% catalyst. The 

formation of some side-products such as 27 were eliminated by controlling the amount of 

catalyst. A decrease of the Pd(PPh3)4 catalyst below 10% did not lead to the product, but 

involved the formation of undesired compound 27 and the stannyl derivative 18. Thus, the 

possibility for the double C-C coupling to proceed still remained. Nevertheless, longer reaction 

times did not lead to the formation of the desired compound 25. 

The second step to transform 25 to 3.5 could not be carried out because compound 25 

undergoes slow decomposition in solution upon exposure to air and, as a result, complete 

characterization of 25 was not possible. However, both 1H NMR (Figure 3-7) and LC-MS data 

(Found: 656.7, requires: 656.8) confirm the formation of 2,5-bis(5-methoxy-1-

phenylsulphonyl-1H-indole)thiazole (25). 
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Figure 3-7 1HNMR spectrum of 2,5-bis(5-methoxy-1-phenylsulphonyl-1H-indole)thiazole (25) 

3.9 Attempted synthesis of bis(indolyl)pyridine complexes 

Coordination compounds are significant as metals constitute the bulk of the periodic table as 

well as the broad diversity of their properties. This comprises:  

 different charge and coordination geometries depending of the environment, 

 Lewis acid-character and therefore ligand interaction tuning their overall properties,  

 redox activity and, 

 partially fulfilled d-shell imparting interesting electronic and magnetic properties do 

transition metal complexes. 

After the laborious preparation of the ligands, in theory, chelation can be achieved in two steps. 

The first one involves the generation of the dianionic ligand with n-BuLi followed by metal 

binding (Scheme 3.35). Different stoichiometric base-ligand-metal ratios were screened for 

the bis(indolyl)pyridine derivatives 3.1-3.3. Presumably, the pyridyl derivatives 3.1-3.3 may 

favour the chelation in comparison to the thiophenyl bisindole 3.4 due to a higher planarity of 

the bisindole framework of the former. The three nitrogen atoms are placed to act cooperatively 

in cation binding. The attempts to form gold complexes using the bis(indolyl)pyridines (3.1-

3.3) as ligands were unsuccessful. Different conditions included the use of KAuCl4 in the 
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presence of various bases (LDA, n-BuLi) with the different stoichiometric ratios of the ligands 

3.1-3.3. A metallic colour which seems to correspond to Au0 was observed in the reactions. 

This can be explained by the dianionic tridentate ligand acting as a reducing agent. According 

to the literature, similar reactions of gold(III) chloride acid with amines acting as reducing 

agents in the formation of gold nanoparticles have been reported167-169.                 

 

Scheme 3.35 Synthetic strategy for H2BIP(R) complexes 

In addition, attempts using different stoichiometric ratios of the ligands 3.1-3.3 and a variety 

of zinc and copper salts, AgNO3
167

, Ag2O and bis(benzonitrile)dichloroplatinum(II) also 

proved unsuccessful. Here, is a summary of important factors that can affect the binding of the 

ligand and metal: 

1. Following a synthetic route reported by Wang et al., n-BuLi is required as a base. The 

first challenge is therefore the double deprotonation of the ligand. The deprotonated 

ligand provides two negative charges lowering the overall charge of the metal complex.  

2. Orientation and proximity between the -NH and the electron lone pairs of the pyridine 

are crucial for intramolecular H-bonding. Indole is π-rich heterocycle, and in 

comparison to pyridine, is non-basic, being potentially a good H-bond donor. On the 

other hand, pyridine is π-deficient heterocycle but exhibits Lewis basicity (lone-pair) 

being a good H-bond acceptor.170  
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3. The bite angle (α) is smaller for 2-(2’-pyridyl)indole than 2-(2’-pyridyl)quinoline 

(Figure 3-8). The bite angle of a bidentate ligand can be considered “the intersection 

of the linear axes containing the donor electrons”. 164A smaller angle is less preferred 

for an octahedral complexation due to a smaller approximation between the ligand and 

the metal. The presence of the five-membered ring of the indole causes a smaller angle.  

 
 

Figure 3-8 The bite angle of 2-(2’-pyridyl)indole and 2-(2’-pyridyl)quinoline. 

3.10 Photophysical properties of indole: experimental and theoretical  

The importance to understand photophysical properties and electronic transitions of indole 

resides in its relation to the amino acid tryptophan, being its chromophore171. The luminescence 

of tryptophan is used when studying complex biological systems, protein structure and 

function 172. 

   

S.12 S.13 S.14 

Figure 3-9 Indole transients originated as consequence of photoexcitation  

The theoretical interpretation of the absorption spectrum of indole is quite difficult173, 174 due 

to a number of reactive intermediates besides the emitting singlet excited state. Also, it can 

include: the triplet of the indole (S.12), the radical cation (S.13), the neutral indolyl radical 

(S.14) and the solvated electron175.  

The π-deficient character of the pyridine and indole π-rich character can result in the H-bond 

donation from the indole to the pyridine. In the case of 2-(2’-pyridyl)indole, the intramolecular 

H-transfer can complicate the interpretation of the photophysical data. Potentially, this indole 

can exists as a tautomeric form (Figure 3-10), although the disruption of the aromaticity makes 

such a process unfavourable. 176  
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Figure 3-10 Intramolecular H-transfer in 2-(2’-pyridyl)indole 

Introduction of new substituents, or the same substituents in a different position of the indole, 

causes changes not only to the geometry, but also to the electronic properties of the system. 

The magnitude and mainly direction of the permanent dipole moments alter the stability and 

may alter the order of the two lowest singlet excited states, which are responsible for the 

emission properties177-179. The singlet excited states can also be influenced by the solvent. 

Large solvatochromic effects have been observed in solutions of different polarities172, which 

can be a consequence of exciplex formation180-183. 

It is known that the use of different solvents does not affect the ground state of indoles 

considerably (absorption spectra are little affected). However, due to the influence on the 

emission spectra, the excited state is highly polarised and depending of the solvent the 

transients could be more or less stabilised. Most likely the polarized forms (Figure 3-11) cause 

larger contributions to the excited state than to the ground state.173 

 

Figure 3-11 A polarised form of indole 

3.10.1 Photophysical properties: absorption and emission profile of compound 

3.1-3.4  

The spectroscopic behaviour of compounds 3.1-3.3 in acetonitrile and 3.4 in toluene solutions 

were studied (Figure 3-12). The absorption spectra of the pyridine-bridged series 3.1-3.3 

display similarities in the near-blue region. This indicates that the indole-pyridine-indole core 

is the dominant feature of the main absorption between 280-380 nm attributed to π-π* 

transitions. However, the absorption profile of 3.1-3.3 is highly sensitive to changes in 

substitution of the indole nucleus. The presence of the electron-withdrawing substituent such 

as –OCF3, or the electron-donating –OCH3 groups influence the magnitude of the permanent 

dipole and therefore the energy of the electronic states.  
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Figure 3-12 Absorption and normalised emission spectra of compounds 3.1-3.4 

In comparison, compound 3.4 has a weaker absorption band at λmax= 380 nm, which can be 

attributed to the changes in donor-acceptor character due to the use of thiophene as the bridging 

unit. Its band is red-shifted which is suggestive of the involvement of the sulfur atom lone pair 

in the electron delocalisation. There is a very small overlap between the absorption and 

emission spectra of compounds 3.1-3.3. The emission profile of compound 3.1-3.3 consists of 

an asymmetric band with intensity maxima in the range of 393-404 nm, almost reassembling 

one another. However, for compound 3.4 the overlap is larger and the emission profile presents 

two bands with maxima at 435 and 465 nm. In the case of compound 3.4, we can confirm that 

the different shape of the band compared with compounds 3.1-3.3, is not a consequence of 

using toluene instead of acetonitrile. The efficiency of these novel compounds as emitters has 

been assessed by measuring the fluorescence quantum yield (). Quantum yield values are 

obtained according to the literature method184 using anthracene and 9,10-diphenylanthracene 

as cross-references. The photophysical properties of the compounds 3.1-3.4 are gathered in 

Table 3-3. Compounds 3.1, 3.2 and 3.4 give very good quantum yields values of up to 55%. 

However, an impressive quantum yield of 92 % is achieved with compound 3.3 bearing an -

– OCF3 group. Deviations of the fluorescence quantum yields and extinction coefficients are a 

result of the structural modifications affecting conjugation, the bridging and peripheral units, 

planarity, etc. Overall, the difference in the photophysical behaviour of these materials 

demonstrates the capability of the peripheral groups to fine-tune the optical properties. 
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Table 3-3 Electronic and optical properties of bis(indolyl)derivatives 3.1-3.4 

 

 

3.10.2 Density functional theory calculations3 

3.10.2.1 Molecular orbitals  

For a better understanding of the photophysical processes, it is crucial to understand the energy 

levels involved. Photoexcitation promotes the population of excited states with electrons from 

the ground state. Density functional theory (DFT) has been used to calculate electronic and 

optical properties of compounds 3.1-3.5. The DFT has shown that in the case of H2BIP (3.1) 

and H2BIP(OCF3) (3.2) the HOMO is mainly localised on the indole, whereas the LUMO is 

mainly localised on the pyridine orbitals.  

  

                                                 

3 In collaboration with Dr Natalia Martsinovich, Department of Chemistry, University of 

Sheffield 

Z 

Absorbance 

ab/nm, -1cm-1 

Emission 

em/nm, 

Bandgap, eV 

H2BIP(H) 

320, 1.9 x 104 

347, 2.2 x 104 

403; 40 3.26 

H2BIP(OCF3) 

317, 5.8 x 104 

344, 7.4 x 104 

393; 92 3.36 

H2BIP(OCH3) 352, 4.7 x 104 404; 55 3.15 

H2BIT(OCH3) 380, 1.35 x 104 435, 465; 35 2.75 
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a) b) 

  

c) d) 

  

Figure 3-13 Frontier molecular orbitals of H2BIP: a) HOMO and b) LUMO and H2BIP(OCF3): 

c) HOMO and d) LUMO 

In the case of H2BIP(OCH3) (3.3) the HOMO is mainly localised on the indole with 

contributions from the orbitals localised on the methoxy group, whereas the LUMO is mainly 

localised on the pyridine. This different localization of the orbitals is expected leading to charge 

separation in the photo excited state.  

a) b) 

  

Figure 3-14 Frontier molecular orbitals of H2BIP(OCH3): a) HOMO and b) LUMO 

In the case of H2BIT(OCH3) (3.4) and H2BIA(OCH3) (3.5), the HOMO and LUMO are 

localised across the whole molecule. Therefore, the charge separation in these compounds is 

much less pronounced.  
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a) b) 

  

c) d) 

  

Figure 3-15. Frontier molecular orbitals of H2BIT: a) HOMO, b) LUMO and H2BIA: c) 

HOMO, b) LUMO 

3.10.2.2 Electronic properties  

The difference in energy between the HOMO and LUMO has been calculated in the solvent 

acetonitrile and are shown in Figure 3-16. The energy gaps are very similar (within 0.08 eV) 

for all three H2BIP 3.1-3.3 molecules. There is 0.7-0.8 eV overestimation of the calculated 

HOMO-LUMO gaps compared to that which is determined by experimentation (Table 3-3), 

because the calculated HOMO-LUMO gaps do not include exciton binding.185 The gaps 

increase in the order H2BIP(OCH3)<H2BIP(H)<H2BIP(OCF3), and in excellent agreement with 

experimental results. The lowest gap of H2BIP(OCH3) 3.3 can be attributed to delocalisation 

of its frontier orbitals onto the methoxy groups, while the higher gap of H2BIP(OCF3) 3.2 can 

be attributed to its non-planarity, and therefore lower conjugation in this molecule. 

H2BIA(OCH3) (3.5) and H2BIT(OCH3) (3.4) have the energy gap 0.5-0.6 eV smaller than the 

H2BIP molecules, showing the significant effect of the central pyridine/thiophene/thiazole 

moiety. This change in the gap is mainly caused by the change in the LUMO energies (Figure 

3-16): 
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Figure 3-16 Energy of frontier molecular orbitals and band gap energies of compounds 3.1-3.5 

3.10.2.3 Geometry  

Density functional theory (DFT) calculations predict almost planar geometries for H2BIP, 

H2BIP(OCH3) and H2BIP(OCF3) (3.1-3.3). In comparison with them, the thiophene-based 

H2BIT(OCH3) (3.4) and the thiazole-based H2BIA(OCH3) (3.5) are non-planar. The degree of 

co-planarity was quantified by measuring the dihedral angles between the two indole groups 

(Figure 3-17). All the compounds 3.1-3.3 have the dihedral angles of 4-7° in acetonitrile (7-

14° in vacuum), H2BIP(OCF3) (3.3) is the less planar of the three H2BIP compounds. While 

the dihedral angle for H2BIT(OCH3) (3.4) and H2BIA(OCH3) (3.5) are 38° (or 49° in vacuum) 

and 17° (or 34° in vacuum) respectively.  

The higher planarity of H2BIP molecules (3.1-3.3) can be explained by H-bonding formation 

between the π-rich indole with the π-deficient pyridine. Pyridine exhibits Lewis basicity , thus 

making it a good H acceptor170 compared with the sulfur atom in the thiophene and thiazole 

heterocycles.  
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Figure 3-17 Dihedral angles between the planes of the two indole moieties 

3.11 Conclusion 

The synthesis of novel small π-conjugated materials was studied via double Fisher synthesis 

and Stille cross-coupling protocols. While double Fisher synthesis was limited by the 

availability of the biscarbonyl compounds and reactivity of the hydrazone intermediates, Stille 

cross-coupling was proved to be a more efficient method, allowing the synthesis of 

bis(indolyl)derivatives which are inaccessible via Fisher synthesis. The detailed investigation 

of both synthetic strategies gave a better understanding of the reactivity of the indole 

derivatives. However, despite several attempts, metalation of the bis(indolyl)derivatives was 

unsuccessful. 

Analysis of these molecules using UV-vis spectroscopy showed the structural dependence of 

the photoluminescence properties. In addition, the donor-acceptor character of methoxy and 

trifluoromethoxy groups, together with π-bridging units, showed a dramatic effect on the 

photophysical properties of the final molecules. Shifts of 3.1-3.4 in absorption/emission spectra 

are defined by the nature of the linking groups. Also, the extinction coefficient and quantum 

yields can be controlled via the structural features of bisindoles. Compounds 3.1, 3.2 and 3.4 

prensented great quantum yields (up to 55%). However, compound 3.3 bearing OCF3 group 

achieved an excellent quantum yield of 92%. 

DFT calculations support the trends recorded in the experimental observations of these 

compounds, thus highlighting the reliability of the computational protocol for comparison of 

the related structures.  

  

Ɵ 
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3.12 Experimental  

3.12.1 General techniques 

All chemicals were obtained from Sigma Aldrich, Alfa Aesar, VWR and Across and used 

without further purification. Anhydrous solvents were obtained from a PureSolv MD6 solvent 

purification system. 1H NMR and 13C NMR spectra were recorded on a Bruker Advanced 500 

spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual 

solvent peak and peaks are described as singlet (s), doublet (d), triplet (t), quartet (q), sextet 

(sex), multiplet (m), broad singlet (br) and coupling constants (J) are quoted in Hertz (Hz). 

Spectra were recorded in chloroform-d, dichloromethane-d2 or deuterated DMSO-d6 and were 

measured at room temperature unless otherwise stated. Where needed, two dimensional 

correlation spectroscopy (2D-COSY), heteronuclear single quantum coherence spectroscopy 

(HSQC) and heteronuclear multiple bond correlation spectroscopy (HMBC) were used in order 

to aid assignment. The progress of reactions was monitored by TLC and purified by column 

chromatography using silica gel 60 (40-63µm). High resolution mass spectrometry (HRMS) 

was performed on Bruker MaXis Impact (EI+) by positive and negative electrospray ionisation. 

The accepted experimental error was <4 ppm. High performance liquid chromatography 

(HPLC) was performed on an Agilent 1100 Infinity Series equipped with a UV detector and 

Ascentis Express C18 reverse phase column, using MeCN/water (50-95%) containing 0.1% 

TFA, at a flow rate of 0.5 mL min-1 over a period of 12 minutes. Infrared spectra (IR) were 

recorded in solid phase on a Bruker Alpha Platinum ATR FTIR spectrometer with vibrational 

frequencies given in cm-1. Melting points were measured on a Stuart SMP30. The electronic 

absorption spectra were recorded on a Cary 100 UV-vis scanning spectrometer. The 

fluorescence spectra were recorded on a FluoroMax-3 spectrofluorimeter. Quantum yields of 

fluorescence were measured by the relative method using optically dilute solutions. 

3.12.2 Experiments 

Synthesis of hydrazones 1-4 is discussed in the Chapter 2; and full characterisation is given 

for the new materials in 2.6.2. 
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3.12.2.1 2,6-Bis(1H-indol-2-yl)pyridine (3.1)164  

 

A solution of compound 1 (175 mg, 0.51 mmol) in 1 g of polyphosphoric acid (PPA) was 

heated at 100°C overnight. The reaction mixture was cooled to room temperature, neutralised 

with 10% NaOH aqueous solution and extracted with DCM (3 × 75 mL). The combined 

organic phases were washed with water and dried over anhydrous Na2S04. The solvents were 

removed under reduced pressure to yield compound 3.1 as a yellow-camel solid (64.3 mg, 

41%). 1H NMR (300 MHz, CDCl3) δ ppm 9.65 (s, 2H, NH), 7.73 (m, 1H, 4’-H), 7.65 (m, 4H, 

4-H and 7-H), 7.50 (d, J = 8.1 Hz, 2H, 3’-H), 7.25-7.13 (m, 4H, 5-Hand 6-H), 7.07 (s, 2H, 3-

H); m/z (ES+): Found: 310.1366, requires: 310.1266; IR νmax/cm-1 (solid): 3433, 3047, 1595, 

1564, 1449, 1334, 1300, 786, 743, 612; M.pt: 248 °C.  

3.12.2.2 2,6-Bis[(5-trifluoromethoxy)-1H-indol-2-yl]pyridine (3.2) 

 

The same procedure as described for compound 3.1 starting from compound 3 (1.13 g, 

2.2 mmol) dissolved in 1 g of polyphosphoric acid (PPA) heated at 100 °C overnight. 

Compound 3.2 was isolated as a yellow solid (446 mg, 43%).1H NMR (500 MHz, CDCl3) 

δ ppm 9.56 (s, 2H, NH), 7.80 (dd, J = 8.4, 7.2 Hz, 1H, 4’-H), 7.71 (dd, J = 7.2 Hz, 0.6 Hz, 2H, 

3’-H), 7.53 (s, 2H, 4-H), 7.48 (d, J = 8.8 Hz, 2H, 7-H), 7.14 (dd, J = 8.8, 1.4 Hz, 2H, 6-H), 

7.08 (d, J = 1.4 Hz, 2H, 3-H). 13C NMR (125 MHz, CDCl3) δ ppm 149.5, 143.6, 138.1, 137.7, 

134.9, 129.3, 121.0 (q, JF-C = 255.6 Hz), 119.1, 117.6, 113.7, 112.1, 101.7; m/z (ES+): Found: 

495.1254 [M+NH4
+], requires: 495.1250; IR νmax/cm-1 (solid): 3465, 3314, 1693, 1595, 1564, 

1453, 1252, 1191, 1131, 868, 782; M.pt: 226 °C. 
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3.12.2.3 2,6-Bis[(5-methoxy)-1H-indol-2-yl]pyridine (3.3) 

 

To a solution of 22 (400 mg, 0.61 mmol) in dry THF (20 mL), 1.83 mL of 1M TBAF in THF 

(1.9 mmol) was added. The reaction was refluxed for 2.5 h. The reaction mixture was 

hydrolysed with water (15 mL) and extracted with ethyl acetate (3 × 25 mL). The combined 

organic layers were washed with brine, dried over Na2SO4. The solvents were removed under 

reduced pressure. Compound 3.3 was purified by column chromatography on Silica 

(Hex-EtOAc with a gradient from 9:3 to 7:3) yielding a yellow solid (54 mg, 24%). 1H NMR 

(500 MHz, CD2Cl2) δ ppm 9.68 (s, 2H, NH), 7.78 (dd, J = 8.2, 7.1 Hz, 1H, 4’-H), 7.69 (dd, J 

= 8.2, 0.7 Hz, 2H, 3’-H), 7.43 (d, J = 8.8 Hz, 2H, 7-H), 7.11 (d, J = 2.5 Hz, 2H, 4-H), 7.02 (dd, 

J = 2.0, 0.7 Hz, 2H, 3-H), 6.90 (dd, J = 8.8, 2.5 Hz, 2H, 6-H), 3.86 (s, 6H, OCH3); 13C NMR 

(125 MHz, CD2Cl2) δ ppm 155.1, 150.3, 137.7, 137.6, 132.3, 130.0, 118.4, 114.4, 112.6, 102.7, 

101.1, 56.1; m/z (ES+): Found: 370.1561, requires 370.1550; IR νmax/ cm-1 (solid): 3430, 

3446, 2922, 2853, 1623, 1594, 1562, 1540, 1450, 1211, 781; M.pt: 295 °C. 

3.12.2.4 2,5-Bis[(5-methoxy)-1H-indol-2-yl]thiophene (3.4) 

 

The same procedure as described for compound 3.3, starting from compound 25 (223 mg, 

0.34 mmol) and TBAF (1.7 mmol, 1M in THF). Compound 3.4 was purified by column 

chromatography (Hex-EtOAc, 7:3) and isolated as a green solid (51 mg, 40%). 1H NMR 

(400 MHz, CD3CN) δ ppm 9.78 (s, 2H, N-H), 7.33 (s, 2H, 3’’-H), 7.28 (dt, J = 8.8, 0.7 Hz, 2H, 

7-H), 7.05 (d, J = 2.5 Hz, 2H, 4-H), 6.80 (dd, J = 8.8, 2.5 Hz, 2H, 6-H), 6.65 (dd, J = 2.2, 0.8 

Hz, 2H, 3-H), 3.80 (s, 6H, OCH3); 13C NMR (125 MHz, CD2Cl2) δ ppm 155.2, 134.9, 133.0, 

132.3, 130.0, 123.9, 113.4, 112.0, 102.4, 101.0, 56.1; m/z (ES+): Found: 375.1159 [M+H], 

requires: 375.1162; IR νmax/cm-1 (solid): 3448, 3409, 3064, 2916, 2848, 1699, 1450, 1437, 

1220, 1028, 779; M.pt: 251 °C. 
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3.12.2.5 5-Methoxy-3-phenyl-1H-indole (7)186 

 

4-Methoxyphenylhydrazine hydrochloride (980 mg, 5.6 mmol) was dissolved in a heated 

solution of sodium acetate (1.18 g, 14.4 mmol) in glacial acetic under a nitrogen atmosphere. 

Phenylacetaldehyde (1.00 mL, 8.6 mmol) was added dropwise. The reaction mixture was 

stirred overnight at 75°C, then after cooling was poured into water (20 mL) and extracted with 

diethyl ether (3 × 25 mL). The combined organic layers were washed with a saturated solution 

of NaHCO3 (3 × 30 mL) until the pH was adjusted to 7 and dried over Na2SO4. The solvents 

were removed under reduced pressure, the residue was passed through a silica plug and purified 

by column chromatography on Silica (Hexane-Diethyl ether, 1:7) to yield compound 7 as a 

yellow solid (0.81 g, 60%). 1H NMR (500 MHz, CDCl3) δ ppm 8.15 (br s, 1H, NH), 7.65 (dd, 

J = 7, 1.2 Hz, 2H, 2’-H ), 7.46 (t, J = 7.0 Hz, 2H, 3’-H), 7.38 (d, J = 2.4 Hz, 1H, 4-H), 7.36 – 

7.28 (m, 3H, 2-H and 7-H), 6.92 (dd, J = 8.8, 2.4 Hz, 1H, 6-H), 3.87 (s, 3H, OCH3); 13C NMR 

(125 MHz, CDCl3) δ ppm 154.8, 135.9, 132.0, 128.9, 127.4, 126.2, 126.0, 122.8, 118.2, 112.7, 

112.3, 101.7, 56.1; m/z (ES+): Found: 224.1069 [M+H], requires 224.1075; IRνmax/cm-1: 

3402, 3006, 2956, 2827, 1613, 1598, 1580, 1537; M.pt: 69.8-70.8 °C. 

3.12.2.6 3-n-Butyl-5-methoxy-1H-indole (8)187 

 

The same procedure as described for compound 7 using hexanal (2 mL, 16.7 mmol), NaOAc 

(3 g, 36.14 mmol) and 4-methoxyphenylhydrazine hydrochloride (2.43 g, 13.9 mmol). The 

residue was passed through a silica plug and then purified by column chromatography on Silica 

(Hexane-DCM, 1:9) to yield the compound 8 as a yellow oil (2.00 g, 67%). 1H NMR 

(500 MHz, CDCl3) δ ppm 7.78 (br s, 1H, NH), 7.24 (d, J = 8.8 Hz, 1H, 7-H ), 7.05 (d, J = 

2.5  Hz, 1H, 4-H), 6.95 (d, J = 2.2 Hz, 1H, 2-H), 6.85 (dd, J = 8.8, 2.5 Hz, 1H, 6-H), 3.88 (s, 

3H, OCH3), 2.72 (t, J = 7.4 Hz, 2H, 1’-H), 1.69 (dt, J = 15.3, 7.4 Hz, 2H, 2’-H), 1.43 (sex, J = 

7.4 Hz, 2H, 3’-H), 0.96 (t, J = 7.4 Hz, 3H, 4’-H); 13C NMR (125 MHz, CDCl3) δ ppm 154.0, 

131.7, 128.2, 122.0, 117.1, 112.1, 111.8, 101.2, 56.2, 32.3, 25.0, 22.8, 14.2; m/z (ES+): Found: 
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204.1390 [M+H], requires 204.1310; IRνmax/cm-1(liquid): 3414, 2954, 2926, 2855, 1623, 

1582, 1482. 

3.12.2.7 2-Bromo-3-n-butyl-5-methoxy-1H-indole (10)  

 

N-bromosuccinimide (415 mg, 2.5 mmol) in small portions was added to an ice cooled solution 

of compound 8 (515 mg, 2.5 mmol) in chloroform (80 mL). The reaction was wrapped with 

foil and allowed to react for 1h at room temperature. The reaction mixture was diluted in DCM 

(20 mL) and washed with water (3 × 20 mL). The combined organic layers were washed with 

brine, dried over Na2SO4 and the solvents were evaporated under reduced pressure yielding 

compound 10. 1H NMR (300 MHz, CDCl3) δ ppm 7.80 (s, 1H, NH), 7.17 (d, J = 8.8 Hz, 1H, 

6-H), 6.97 (d, J = 2.5 Hz, 1H, 4-H), 6.82 (dd, J = 8.8, 2.5 Hz, 1H, 7-H), 3.86 (s, 3H, OCH3), 

2.68 (t, J = 7.5 Hz, 2H, 1’-H), 1.64 (dt, J = 14.7, 7.5 Hz, 2H, 2’-H), 1.39 (td, J = 14.7, 7.5 Hz, 

2H, 3’-H), 0.94 (t, J = 7.5 Hz, 3H, 4’-H); m/z (ES+): Found: 282.0480 [M+H], requires 

282.0415. 

3.12.2.8 2,6-Dibromo-3-n-butyl-5-methoxy-1H-indole (11)  

 

The same procedure as described for compound 10 using N-bromosuccinimide (111 mg, 

0.67 mmol) and compound 8 (126 mg, 0.61 mmol). Compound 11 was purified by column 

chromatography on Silica (Hex-DCM, 4:3) and isolated as a brown oil (13 mg, 5.8%). 

1H NMR (500 MHz, CDCl3) δ ppm 7.81 (s, 1H, NH), 7.47 (s, 1H, 7-H), 6.97 (s, 1H, 4-H), 

3.93 (s, 3H, OCH3) 2.67 (t, J = 7.5 Hz, 2H, 1’-H), 1.61 (dt, J = 14.7, 7.5 Hz, 2H, 2’-H), 1.38 

(dq, J = 14.7, 7.5 Hz, 2H, 3’-H), 0.94 (d, J = 7.5 Hz, 3H, 4’-H). 
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3.12.2.9 3-n-Butyl-5-methoxy-1-phenylsulfonylindole (13)  

 

NaH (240 mg, 5.9 mmol, 60% dispersion in oil) was charged with nitrogen, washed with 2 mL 

of Hexane twice before being dissolved in THF (7 mL) and then, a solution of compound 8 

(401 mg, 2.0 mmol) in THF (4 mL) was added dropwise at 0°C. The reaction mixture was left 

to stir for 1h at room temperature. Benzenesulfonyl chloride (0.50 mL, 3.9 mmol) was added 

dropwise at the same temperature and the reaction was stirred for 7h. The reaction mixture was 

hydrolysed with water (10 mL) and extracted with diethyl ether (3 × 25 mL). The combined 

organic layers were washed with brine and dried over Na2SO4. The solvents were evaporated 

under reduced pressure. Compound 13 was purified by column chromatography on Silica 

(Hex-DCM, 1:3) yielding a rose-white solid (230 mg, 57%).1H NMR (500 MHz, CD2Cl2) 

δ ppm 7.86 (dd, J = 8.1, 1.5 Hz, 1H, 7-H), 7.81 (dd, J = 7.5, 1.2 Hz, 2H, 2’’-H), 7.53 (t, J = 7.5 

Hz, 1H, 4’’-H), 7.42 (t, J = 7.5 Hz, 2H, 3’’-H), 7.28 (s, 1H, 2-H), 6.91 (d, J = 8.1, 1H, 6-H) 

6.89 (s, 1H, 4-H), 3.81 (s, 3H, OCH3), 2.61 (t, J = 7.5 Hz, 2H, 1’-H), 1.64 (dt, J = 14.7, 7.4 Hz, 

2H, 2’-H), 1.39 (dq, J = 14.7, 7.4 Hz, 2H, 3’-H), 0.94 (t, J = 7.4 Hz, 3H, 4’-H); 13C NMR 

(125 MHz, CD2Cl2) δ ppm 156.9, 138.4, 134.0, 132.9, 130.5, 129.5, 127.0, 124.8, 123.9, 115.0, 

113.7, 102.7, 56.0, 31.3, 24.9, 22.8, 14.0; m/z (ES+): Found: 344.1317 [M+H], requires 

344.1242; IRνmax/cm-1(solid): 3005, 2955, 2928, 2869, 2833, 1609, 1446, 1251; M.pt: 77.1-

77.8 °C.  

3.12.2.10 5-Methoxy-3-phenyl-1-phenylsulfonylindole (14)188  

 

NaH (160 mg, 3.8 mmol, 57-63% dispersion in oil) was charged with nitrogen, washed with 

2 mL of Hexane twice before being dissolved in THF (5 mL) and then, a solution of solution 
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of compound 7 (573 mg, 2.6 mmol) in THF (7 mL) was added dropwise at 0°C. The reaction 

mixture was left to stir for 1h at room temperature. Benzenesulfonyl chloride (0.36 mL, 2.8 

mmol) was added dropwise at the same temperature and the reaction was stirred for 45 min. 

The reaction mixture was hydrolysed with water (10 mL) and extracted with diethyl ether (3 × 

25 mL). The combined organic layers were washed with brine, dried over Na2SO4. The solvents 

were evaporated under reduced pressure. Compound 14 was purified by column 

chromatography on Silica (Hex-DCM, 1:13) yielding a white solid (808 mg, 87%). 1H NMR 

(500 MHz, CDCl3) δ ppm 7.96 (d, J = 9.0 Hz, 1H, 7-H), 7.89 (dd, J = 8.3, 0.9 Hz, 2H, 2’’-H), 

7.64 (s, 1H, 2-H), 7.60 – 7.56 (m, 2H, 2’-H), 7.56 – 7.51 (m, 1H, 4’’-H), 7.45 (m, 4H, 3’-H 

and 3’’-H), 7.40 – 7.34 (m, 1H, 4’-H), 7.20 (d, J = 2.5 Hz, 1H, 4-H), 6.98 (dd, J = 9.0, 2.5 Hz, 

1H, 6-H), 3.82 (s, 3H, OCH3); 13C NMR (125 MHz, CDCl3) δ ppm 198.0, 157.0, 155.6, 138.3, 

134.0, 133.2, 129.4, 129.1, 128.0, 127.7, 126.9, 124.5, 123.9, 114.9, 114.1, 103.2, 55.9; 

m/z (ES+): Found 364.1006 [M+H], requires 364.0929; IRνmax/cm-1 (solid): 3135, 3061, 

2920, 1611, 1471, 1364; M.pt: 127.5-128.0 °C.  

3.12.2.11 5-Methoxy-1-phenylsulfonylindole (15)189 

 

To a solution of compound 9 (4.12 g, 27.9 mmol) in dry THF (20 mL) under nitrogen was 

added dropwise a solution of NaH (1.53 g, 36.4 mmol) in dry THF (250 mL) at 0 °C. The 

reaction mixture was warmed to room temperature and reacted for 1h. The mixture was cooled 

to 0 °C before the addition of benzenesulfonyl chloride (3.6 mL, 28.0 mmol). The reaction 

mixture reacted overnight. Once completed, the reaction mixture was hydrolysed with water 

(15 mL) and extracted with ethyl acetate (3 × 25 mL). The combined organic phases were 

washed with brine and dried over Na2SO4. The solvents were removed under reduced pressure. 

Compound 15 was recrystallised from EtOH and isolated as an off-white crystalline (6.34 g, 

79%). 1H NMR (500 MHz, CDCl3) δ ppm 7.88 (d, J = 9.0 Hz, 1H, 7-H), 7.84 (dd, J = 8.5, 1.2 

Hz, 2H, 2’’-H), 7.54 – 7.50 (m, 2H, 2-H and 4’’-H), 7.42 (t, J = 7.8 Hz, 2H, 3’’-H), 6.97 (d, J 

= 2.5 Hz, 1H, 4-H), 6.92 (dd, J = 9.0, 2.5 Hz, 1H, 6-H), 6.59 (dd, J = 3.6, 0.6 Hz, 1H, 3-H), 

3.81 (s, 3H, OCH3); 13C NMR (125 MHz, CDCl3) δ ppm 133.9, 129.4, 127.3, 126.8, 114.6, 

113.9, 109.5, 103.9, 55.8; m/z (ES+): Found: 288.0693 [M+H], requires 288.0690; 
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IR νmax/cm-1 (solid): 3136, 3103, 3000, 2949, 2839, 15832, 1445, 1436, 1370, 1141, 1120, 

1090, 994; M.pt: 95-97 °C. 

3.12.2.12 5-Methoxy-3-phenyl-1-phenylsulfonyl-2-trimethylstannylindole (16) 

 

To a solution of compound 14 (1.64 g, 4.5 mmol) in THF (30 mL) was added 1.6 M hexane 

solution of nBuLi (4.48 mL, 7.2 mmol) at -78°C within 45 min. The orange solution was 

allowed to reach room temperature and was left sitting for 1 h. Trimethyltin chloride (7.48 mL, 

7.2 mmol, 1M in THF) was added dropwise at -78°C and the reaction was left for 2h. The 

reaction mixture was hydrolysed with water (15 mL) and extracted with ethyl acetate (3 × 

25 mL). The combined organic layers were washed with a saturated solution of KF, dried over 

Na2SO4 and the solvents were evaporated under reduced pressure. Compound 15 was purified 

by column chromatography on Silica (Hex-EtOAc, 9:1) yielding a white solid (210 mg, 35%). 

1H NMR (500 MHz, C2D6O) δ ppm 7.77 (d, J = 9.0 Hz, 1H, 7-H), 7.70 (d, J = 7.3 Hz, 2H, 2’’-

H), 7.63 (t, J = 7.3 Hz, 1H, 4’’-H), 7.58 – 7.49 (m, 4H, 3’’-H and 3’-H), 7.47 (d, J = 7.3 Hz, 

1H, 4’-H), 7.44 (dd, J = 6.7, 1.5 2H, 2’-H), 6.91 (dd, J = 9.0, 2.5 Hz, 1H, 6-H), 6.71 (d, J = 2.5 

Hz, 1H, 4-H), 3.66 (s, 3H, OCH3), 0.09 (9H, SnMe3); 13C NMR (125 MHz, C2D6O) δ ppm 

156.5, 141.8, 138.2, 136.7, 134.2, 134.1, 132.9, 132.6, 129.8, 129.5, 128.8, 128.2, 126.2, 115.1, 

113.7, 101.3, 55.3, -5.2; m/z (ES+): Found: 528.0655 [M+H], requires 528.0577; IRνmax/cm-

1 (solid): 3060, 2991, 2921, 1768, 1525, 1360, 1216; M.pt: 112.4-113.6 °C. 
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3.12.2.13 5-Methoxy-3-phenyl-1-[(2’-trimethylstannyl)phenylsulfonyl]-2-

trimethylstannylindole (17) 

 

The same procedure as described for compound 16. Compound 17 was isolated as a violet solid 

(216 mg, 7%). 1H NMR (500MHz, C2D6O) δ ppm 7.79 (dd, J = 7.7, 1.1 Hz, 1H, 2’’-H), 7.60 

– 7.49 (m, 7H,2’-4’H and 3’’-H ), 7.43 (td, J = 7.7, 1.1 Hz, 1H, 4’’-H), 7.40 (d, J = 9.0 Hz, 1H, 

7-H ), 6.96 (dd, J = 7.7, 1.1 Hz, 1H, 5’’-H), 6.87 (dd, J = 9.0, 2.5 Hz, 1H, 6-H), 6.79 (d, J = 

2.5 Hz, 1H, 4-H), 3.70 (s, 3H, OCH3), 0.47 (s, 9H, SnMe3), 0.01 (s, 9H, SnMe3); 13C NMR 

(125 MHz, C2D6O) δ ppm 156.2, 145.2, 141.9, 141.9, 137.5, 135.8, 134.2, 132.6, 132.6, 132.4, 

130.1, 129.7, 128.7, 128.0, 124.5, 114.0, 113.5, 101.5, 55.3, -5.2, -5.2; m/z (ES+): Found: 

692.0279 [M+H], requires 692.0225; IRνmax/cm-1 (solid): 3053, 2957, 2918, 1738, 1606, 1487, 

1431, 1345; M.pt: 58.2-59.0 °C. 

3.12.2.14 5-Methoxy-1-phenylsulfonyl-2-trimethylstannylindole (18) 

 

To a solution of compound 15 (3.94 g, 13.7 mmol) in THF (30 mL) was added 2M THF 

solution of LDA (10.3 mL, 20.5 mmol) at -20°C dropwise. The orange solution was allowed 

to reach room temperature and was left sitting for 1 h. Trimethyltin chloride (21.3 mL, 

20.5 mmol, 1M in THF) was added dropwise at -78°C and the reaction was left for 2h. The 

reaction mixture was hydrolysed with water (15 mL) and extracted with ethyl acetate (3 × 25 

mL). The combined organic layers were washed with a saturated solution of KF, dried over 

Na2SO4 and the solvents were evaporated under reduced pressure. Compound 18 was purified 

by column chromatography on Silica (Hex-DCM, 1:1) yielding a white solid (4.10 g, 67%). 

1H NMR (500 MHz, CDCl3) δ ppm 7.74 (d, J = 9.0 Hz, 1H, 7-H), 7.65 (dd, J = 7.9 Hz, 1.0 

Hz, 2H, 2’’-H), 7.49 (t, J = 7.9 Hz, 1H, 4’’-H), 7.39 (t, J = 7.9 Hz, 2H, 3’’-H), 6.49 (d, J = 2.5 
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Hz, 1H, 4-H), 6.82 (dd, J = 9.0 Hz, 2.5Hz, 1H, 6-H), 6.77 (d, J = 2.5 Hz, 1H, 4-H), 3.80 (s, 3H, 

OCH3), 0.42 (s, 9H, SnMe3); 13C NMR (100 MHz, CDCl3) δ ppm 156.4, 144.6, 139.1, 133.5, 

133.2, 133.0, 129.2, 126.4, 120.5, 114.5, 113.3, 102.7, 55.7, -6.6; m/z (ES+): Found: 474.0155 

[M+Na], requires: 474.0158; IR νmax/cm-1 (solid): 3068, 2972, 2913, 2833, 1586, 1506, 1586, 

1506, 1448, 1422, 1362 1145, 1108, 1089; M.pt: 64-65°C. 

3.12.2.15 6-(5-Methoxy-3-phenyl-1-phenylsulfonylindol-2-yl)-2-bromopyridine (20) 

 

A solution of 2,6-dibromopyridine (27 mg, 0.11 mmol), compound 16 (139 mg, 0.26 mmol) 

and CuI (2 mg, 10%) in THF (5 mL) was degassed and bubbled with nitrogen for 30 min. Then, 

Pd(PPh3)4 (13.3 mg, 10%) dissolved in THF (2 mL) was added. The reaction mixture was 

transferred to a pre-heated hot-plate at 65 °C and refluxed for 4h. The reaction mixture was 

hydrolysed with 10 mL of water and extracted with ethyl acetate (3 x 15 mL). The combined 

organic layers were washed with brine, dried over Na2SO4 and the solvents were removed 

under reduced pressure. Compound 20 was purified by column chromatography on Silica 

(Hex-EtAcO, 7:3) and/or HPLC (50:95+Formic acid 0.1%) to yield the compound as a 

yellow-orange solid (160 mg, 84%). 1H NMR (500 MHz, DMSO) δ ppm 8.05 (d, J = 9.2 Hz, 

1H, 7-H), 7.95 (dd, J = 7.8, 1.1 Hz, 2H, 2’’-H), 7.75 (t, J = 7.4 Hz, 1H, 3’’’-H), 7.71 (m, 2H, 

4’’-H and 4’’’-H), 7.61 (t, J = 7.8 Hz, 2H, 3’’-H), 7.52 (dd, J = 7.4, 0.8 Hz, 1H, 2’’’-H), 7.35 

(t, J = 7.2 Hz, 2H, 3’-H), 7.30 (t, J = 7.2 Hz, 1H, 4’-H), 7.22 (dd, J = 7.2, 1.4 Hz, 2H, 2’-H), 

7.10 (dd, J = 9.2, 2.5 Hz, 1H, 6-H), 6.88 (d, J = 2.5 Hz, 1H, 4-H), 3.72 (s, 3H, OCH3); 13C NMR 

(125 MHz, DMSO) δ ppm 156.8, 151.2, 140.0, 140.0, 136.9, 134.6, 134.1, 131.0, 130.0, 129.9, 

129.5, 129.5, 128.6, 127.9, 127.8, 126.9, 126.3, 125.1, 115.9, 115.0, 102.4, 55.4; m/z (ES+): 

Found: 519.0383 [M+H], requires 519.0300; IRνmax/cm-1 (solid): 3052, 2917, 2849, 1606, 

1541, 1495, 1448, 1334; M.pt: 161.0-161.9°C. 
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3.12.2.16 1,3-bis(5-Methoxy-1-(phenylsulfonyl)-1H-indol-2-yl)benzene (21) 

 

The same procedure as described from compound 20 starting from compound 18 (1.07 g, 

2.35 mmol), 1,3-dibromobenzene (0.13 mL, 1.08 mmol), CuI (41 mg, 20%) and Pd(PPh3)4 

(124 mg, 20%). Compound 21 was purified by column chromatography on Silica (Hex-EtOAc, 

gradient from 4:1) and isolated as a brown solid (56 mg, 8.0%).1H NMR (400 MHz, CDCl3) δ 

ppm 8.20 (d, J = 9.1 Hz, 2H, 7-H), 7.81 (s, 1H, 2’-H), 7.57 (d, J = 7.8 Hz, 2H, 4’’-H), 7.47 (d, 

J = 7.8 Hz, 5H, 3’’-H and 5’-H), 7.42 (t, J = 7.6 Hz, 2H, 4’-H), 7.29 (t, J = 7.8 Hz, 4H, 2’’-H), 

6.97 (dd, J = 9.1, 2.6 Hz, 2H, 6-H), 6.89 (d, J = 2.6 Hz, 2H, 4-H), 6.60 (s, 2H, 3-H), 3.83 (s, 

6H, OCH3);
 13C NMR (100 MHz, CDCl3) δ ppm 157.4, 142.9, 136.9, 133.7, 133.1, 132.0, 

132.0, 131.6, 130.5, 128.8, 127.1, 126.9, 118.0, 114.9, 113.8, 103.4, 55.7; m/z (ES+): Found: 

671.1279 [M+Na], requires: 671.1281; IR νmax/cm-1 (solid): 3072, 2995, 2921, 2851, 2832, 

1609, 1585, 1477, 1462, 1448, 1368, 1260, 1424; M.pt: 177-179 °C. 

3.12.2.17 2,6-Bis(5-methoxy-1-phenylsulfonylindol-2-yl)pyridine (22) 

 

The same procedure as described for compound 20 starting from compound 18 (1.13g, 

2.5 mmol), 2,6-dibromopyridine (270 mg, 1.2 mmol), CuI (40 mg, 20%), and Pd(PPh3)4 (133 

mg, 10%) refluxed overnight at 90 °C. Compound 22 was purified by column chromatography 

(Hex-EtOAc, 7:3) and isolated as a white solid (0.70 g, 92%). 1H NMR (500 MHz, CD2Cl2) 

δ ppm 8.06 (d, J = 8.9 Hz, 2H, 7-H), 7.92 (dd, J = 8.1, 7.5 Hz, 1H, 4’’-H), 7.75 – 7.71 (m, 6H, 

2’-H and 3’’-H), 7.36 (t, J = 7.4, 1.2 Hz, 2H, 4’-H), 7.16 (dd, J = 8.4, 7.4 Hz, 4H, 3’-H), 7.00-

6.98 (m, 4H, 4-H and 6-H), 6.87 (d, J = 0.7 Hz, 2H, 3-H), 3.82 (s, 6H, OCH3); 13C NMR 

(125 MHz, CD2Cl2) δ ppm 157.7, 151.0, 142.1, 137.5, 135.8, 133.9, 133.1, 131.9, 129.0, 127.7, 

125.2, 117.5, 116.0, 114.7, 104.1, 56.0; m/z (ES+): Found: 650.1434 [M+H], requires: 
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650.1414; IR νmax/cm-1 (solid): 3060, 2999, 2954, 2837, 1606, 1563, 1474, 1448, 1427, 1366, 

1359, 1177, 1143, 601, 570; M.pt: 197-200°C. 

3.12.2.18 2,5-Bis(5-methoxy-1-phenylsulfonylindol-2-yl)thiophene (24) 

 

The same procedure as described from compound 20 starting from compound 18 (900 mg, 2.0 

mmol), 2,5-dibromothiophene (220 mg, 0.91 mmol), CuI (35 mg, 20%) and Pd(PPh3)4 (158 

mg, 15%). Compound 24 was purified by column chromatography on Silica (Hex-EtOAc, 

gradient from 4:1 to 7:3) and isolated as a green solid (515 mg, 89%). 1H NMR (500 MHz, 

CDCl3) δ ppm 8.23 (d, J = 9.2 Hz, 2H, 7-H), 7.53 (dd, J = 8.4, 1.1 Hz, 4H, 2’-H), 7.47 (t, J = 

7.6 Hz, 2H, 4’-H), 7.32 (dd, J = 8.4, 7.6 Hz, 4H, 3’-H), 7.27 (s, 2H, 3’’-H), 7.00 (dd, J = 9.2, 

2.6 Hz, 2H, 6-H), 6.90 (d, J = 2.6 Hz, 2H, 4-H), 6.63 (s, 2H, 3-H), 3.84 (s, 6H, OCH3); 

13C NMR (125 MHz, CDCl3) δ ppm 157.3, 137.4, 134.6, 134.2, 133.9, 133.2, 131.3, 130.3, 

129.0, 127.1, 117.8, 115.2, 114.4, 103.3, 55.8; m/z (ES+): Found: 655.1029 [M+H], requires: 

655.1026; IR νmax/cm-1 (solid): 3073, 3000, 2920, 2834, 1585, 1464, 1447, 1434, 1370, 1207, 

1174, 1144, 600, 569; M.pt: 152-156 °C. 

3.12.2.19 2,5-Bis(5-methoxy-1-phenylsulfonylindol-2-yl)thiazole (25) 

 

Same procedure as described from compound 20 starting from compound 18 (0.58 mmol, 2.2 

equiv), 2,5-dibromothiazole (0.26 mmol), CuI (20%) and Pd(PPh3)4 (20%). Chemical 

conversion is quantitative; however, compound 25 rapidly decomposes. 1H NMR (300 MHz, 

CD2Cl2) δ 8.06 (d, J = 8.6 Hz, 2H, 7-H), 7.93 (dd, J = 8.3, 7.3 Hz, 1H, 3’’-H), 7.77 – 7.69 (m, 

4H, 2’-H), 7.40 – 7.32 (m, 4H, 4’-H), 7.16 (t, J = 7.9 Hz, 4H, 3’H), 6.99 (m, 4H, 4-H and 6- H), 

6.88 (s, 2H, 3-H), 3.82 (s, 6H, OCH3). 
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3.12.2.20 Bis(5-methoxy-1-phenylsulfonylindol-2-yl) (28) 

 

The same procedure as described for compound 20 starting from compound 18 (392 mg, 0.87 

mmol), 2,5-dibromothiophene (97 mg, 0.40 mmol), CuI (15.2 mg, 20%) and Pd(PPh3)4 

(92.5 mg, 20%). Compound 28 was purified by column chromatography on Silica (Hex-

EtOAc, 7:3). 1H NMR (400 MHz, CDCl3) δ ppm 8.16 (d, J = 9.0 Hz, 2H, 7-H), 7.63 (d, J = 

7.4 Hz, 2H, 2’-H), 7.49 (t, J = 7.4 Hz, 2H, 4’-H), 7.35 (t, J = 7.8 Hz, 4H, 3’-H), 7.04 (dd, J = 

9.2, 2.4 Hz, 2H, 6-H), 6.99 (d, J = 2.1 Hz, 2H, 4-H), 6.51 (s, 2H, 3-H), 3.86 (s, 6H, OCH3); 

m/z (ES+): Found: 595.0979 [M+Na], requires 595.0968. 

3.12.2.21 2-(5-Methoxy-1-phenylsulfonylindol-2yl)-5-(5-methoxy-1H-indol-2-

yl)thiophene (29) 

 

Compound 29 was isolated as the 2nd product following the procedure for the compound 2.4. 

Green solid (52 mg, 30%). 1H NMR (500 MHz, CDCl3) δ ppm 8.21 (d, J = 9.2 Hz, 2H, 7-H 

and NH), 7.48 – 7.38 (m, 3H, PG), 7.31 (d, J = 3.8 Hz, 1H, 3’’-H), 7.28 – 7.21 (m, 3H, 7-H 

and PG), 7.24 (d, J = 3.8 Hz, 1H, 4’’-H), 7.06 (d, J = 2.5 Hz, 1H, 4’’’-H), 6.99 (dd, J = 9.2, 2.6 

Hz, 1H, 6-H), 6.88 (dd, J = 8.7, 2.5 Hz, 2H, 4-H and 6’’’-H), 6.69 (dd, J = 2.1, 0.8 Hz, 1H, 

3’’’-H), 6.60 (d, J = 0.6 Hz, 1H, 3-H), 3.86 (s, 3H, OCH3’’’), 3.83 (s, 3H, OCH3); 13C NMR 

(125 MHz, CDCl3) δ ppm 157.4, 154.9, 137.4, 137.1, 134.8, 133.8, 133.2, 132.6, 132.1, 131.4, 

131.4, 131.3, 129.7, 128.9, 126.9, 122.9, 117.9, 114.9, 114.3, 113.3, 111.8, 103.2, 102.3, 101.0, 

56.0, 55.8; m/z (ES+): Found: 515.1098 [M+H], requires: 515.1094; IR νmax/cm-1 (solid): 

3365, 3065, 2925, 2830, 1719, 1609, 1365, 1293, 1202, 1171, 1025; M.pt: 103-106 °C. 
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3.12.2.22 6-(5-Methoxy-3-phenyl-1-phenylsulfonylindol-2-yl)-2-bromobencene (30) 

 

Compound 30 was isolated as the 2nd product following the procedure for the compound 21. 

Brown solid (124 mg, 18 %). 1H NMR (400 MHz, CDCl3) δ ppm 8.10 (d, J = 9.1 Hz, 1H, 7-

H), 7.47 (d, J = 1.0 Hz, 2H), 7.36 (dd, J = 13.1, 7.4 Hz, 2H), 7.27 (dd, J = 8.4, 1.2 Hz, 2H), 

7.19 (dd, J = 16.5, 9.0 Hz, 3H), 6.89 (dd, J = 9.1, 2.6 Hz, 1H, 6-H), 6.79 (d, J = 2.6 Hz, 1H, 4-

H), 6.40 (s, 1H, 3-H), 3.73 (s, 3H, OCH3); 13C NMR (101 MHz, CDCl3) δ ppm 157.3, 141.3, 

137.2, 134.4, 133.8, 133.0, 132.8, 129.2, 128.8, 126.8, 121.6, 117.8, 114.7, 114.11, 103.4, 55.7. 

m/z (ES+): Found: 442.0105 [M+Na], requires: 442.0034; IR νmax/cm-1 (solid): 3065, 2997, 

2960, 2933, 2829, 1736, 1480, 1461, 1365, 1329, 1176, 1148, 1061, 1034, 995; M.pt: 152-

154 °C. 
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Chapter 4 Synthesis and Characterisation of Phenanthroline Derivatives 

and their Iridium(III) Complexes  

The following chapter covers the synthesis of five novel phenanthroline-based ligands and a 

detailed study of their photophysical properties. To improve the applicability of the 

1,10-phenanthroline (Phen) derivatives, it is very important to understand the driving factors 

that allow the tuning of their photophysical properties. Three strategies to tune the 

photophysical properties of phenanthroline, are described in this chapter. 

 

Phen (S.15) 

The first strategy is to increase π-system through a structural modification of 5,6- positions 

without compromising the solubility of the molecule. 

A second less exploited, however fruitful, strategy involves the protonation of the 

phenanthroline-nitrogen atoms. The spectrophotometric studies provide a better understanding 

of the acid forms, showing that protonation induces stabilisation of the electronic transitions 

(red-shift). Also, a detailed 1H NMR analysis provides further insights on the protonation of 

the modified phenanthrolines. 

The third strategy involves taking advantage of phenanthroline structural features as a classic 

chelating agent. This chapter therefore covers the synthesis of the five phenanthroline-based 

iridium cationic complexes. 2-Phenylpyridine and phenanthroline are utilised as 

cyclometalating (C^N) and ancillary (N^N) ligands, respectively. The use of different ancillary 

ligands can show their effect in the photophysical properties of the resulting complexes. Also, 

in addition to the mononuclear iridium complexes, the di-nuclear complex is synthesised an 

characterised.  

4.1 Introduction 

4.1.1 Phenanthroline derivatives 

1,10-Phenanthroline (Phen) is a versatile starting material for organic, inorganic and 

supramolecular chemistry synthesis, which has been used extensively for decades. Due to the 

unique structural features of Phen, e.g. aromaticity, basicity, co-planarity, rigidity and chelating 

capability (two nitrogen atoms in juxtaposition)190. Its properties are exploited for the 
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construction of efficient luminescent materials191, in molecular recognition192 and sensing193, 

binding/cleaving reagent for DNA and RNA194, catalysis195, photodynamic therapy196 and 

cancer research197.  

Various methodologies are known for the synthesis of 1,10-phenanthrolines, including the 

classical Skraup198, 199 and Friedlander reactions. The Shkraup reaction, first discovered in 

1880, can be applied to 8-aminoquinolines for the construction of 1,10-phenanthrolines. For 

the derivatisation of the wide use130 of 1,10-phenanthroline, the previously mentioned methods 

are not necessarily useful in the case of substrates bearing sensitive functionalities. These 

methods usually require strong acidic or basic conditions and high temperatures200. Thus, 

substituted 1,10-phenanthrolines are normally synthesised by modifying the existing 

framework using nucleophilic or electrophilic aromatic substitutions, or by construction of the 

heterocycles incorporating the substituents onto the parent nucleus.  

 

Figure 4-1 Reactive positions of phenanthroline  

Phen is an excellent building block for the synthesis of highly luminescent materials (Figure 

4-1). The 2,9- and 4,7-positions are the most active sites of Phen towards nucleophilic reagents; 

while positions 5,6- or 3,8-, with a higher electronic density, are preferred by electrophilic 

reagents201, 202.  

Phenanthroline-halides are important starting materials; however, direct halogenation is 

difficult and non-selective, which is typical for π-deficient heterocyclic compounds. Generally, 

for the compounds containing the electron withdrawing imine nitrogen (C=N-), the 

electrophilic substitution with halogens requires harsh reaction conditions203 and yields are 

fairly satisfactory204, 205. Substitution of the aromatic system at the positions 2,9-206 and 4,7-207, 

208 is the favoured strategy209, 210. Whereas, manipulation of 3,8- and 5,6-positions of the 

phenanthroline core is more difficult with a lesser number of synthetic approaches available190.  
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The synthetically viable synthons for the useful derivatisation of the 5,6-positions are 5,6-

diamino-1,10-phenanthroline (phen-diamine) (S.18) and 5,6-dione-1,10-phenanthroline (phen-

dione) (S.16). Two main procedures are reported in the literature for the synthesis of compound 

S.18211-213, which are very similar comprising of two general stages212, 214 (Scheme 4.1): 1) 

amination and 2) the formation of the dioxime and its consequent reduction. 

1) 5-Nitro-1,10-phenanthroline (S.19) is formed by nitration of compound S.15, followed by 

amination with either hydroxylamine under strong basic conditions or with liquid ammonia. 

The reduction of 5-nitro-6-amino-1,10-phenanthroline (S.20) yield the corresponding S.18.  

2) Phen (S.15) was easily oxidised to phenanthroline-5,6-dione (S.16) followed by the 

transformation of S.16215-218 to the dioxime derivative S.17. This product is converted by 

catalytic reduction into the corresponding S.18. 

Phen-diamine (S.18) and Phen-dione (S.16)  can be condensed with a variety of ortho-quinones 

to form additional derivatives. The two most widely used are pyrazino[2,3-

f][1,10]phenanthroline (S.22) 219-222 and 1H-Imidazo[4,5-f][1,10]phenanthroline (S.21)223-225. 

 

 

Scheme 4.1 Synthetic route to two useful synthons (S.16 and S.18): i) HNO3;ii) NH2OH HCl·, 

base, EtOH ;iii)N2H4, Pd/C(10%) MeOH; iv) H2SO4/HNO3, KBr v) NH2OH HCl·, base, 

EtOH, N2H4, Pd/C(10%) MeOH 
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Figure 4-2 Versatile building blocks: 1H-Imidazo[4,5-f][1,10]phenanthroline (S.21) and 

Pyrazino[2,3-f][1,10]phenanthroline (S.22) via modification of 5,6- positions 

4.1.2 1,10-Phenanthroline as ancillary ligand for Ir(III) complexes 

N-Containing heterocycles with electron-withdrawing imine nitrogen(s) (C=N-), have 

attracted interest for their ability to form metal complexes40. 2-2’-Bipyridyl (ppy, S.23) systems 

are the most commonly used. However, Phen (S.15) has several distinct features compared 

with its analogue 2,2’-bypiridine (bpy, S.1). Co-planarity of the two nitrogen atoms in 

juxtaposition190 causes a strong entropically favoured Phen-metal binding. The similar 

disposition of the nitrogen atoms in bpy is disrupted by the free rotation on the bond that links 

the heterocycles.190 In addition, cyclometalation upon C-3 was observed between the iridium 

centre and bpy ligand (S.9)226. This observation is explanatory of the extensive popularity of 

2-phenylpyridine as a cyclometalating ligand (ppy)227, 228. Where the carbon atom has a 

negative charge and the Ir-C bond is strong enough to be comparable to covalent bonds.  
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Bpy (S.1) Ppy (S.23) Phen (S.15) 

Figure 4-3 Examples of bidental ligands  

Another feature of this class of chelating agents, in particular Phen, is their low σ-donor 

nitrogen ability. Phen presents a weak basicity (pKa 4.95 in water)190. Comparing Phen with 

aliphatic diamines such as ethylenediamine (en) (pKa 10.65 and 8.04 for successive addition 

of proton to en)229 its basicity is remarkably lower230, 231. In agreement with the electron-

deficiency of the heteroaromatic rings and therefore low σ-donating ability of the nitrogen 

atoms. Although the entropic contribution is larger than en for the stability of the complex 

formed (nitrogen atoms placed to act cooperatively in cation binding). The σ-donating ability 

of these heterocyclic nitrogen atoms is poor, but is overcome by the ability of Phen to act as a 

π-acceptor231. In addition, their σ-electron deficiency, makes them excellent acceptors capable 

of stabilising metal ions in lower oxidation states.190  

4.1.3 Cyclometalated iridium(III) complexes 

Over the last two decades heavy metal complexes232, in particular Ir(III) complexes, have 

attracted considerable attention66, 233, 234 due to their photophysical and photochemical 

properties. While cyclometalated Ir(III) complexes have been widely exploited as organic 

light-emitting diodes (OLEDs)235, light emitting electrochemical cells (LEECs)236, 237 and 

photocatalysts, very few iridium complexes were employed in living cells and therefore as 

biological labelling reagents238-240. In the search to overcome the optical shortcomings present 

in fluorescent probes based in organic dyes: (i) poor water solubility, (ii) poor photostability, 

(iii) high toxicity to living cells, (iv) tissue damaged due to the radiation (UV) required for the 

excitation and small Stokes shifts241. The development of new d8-metal Pt complexes, d10-

metal Zn(II) complexes or d6-metal complexes (Ru, Re, Os), Ir in particular, has been one of 

the main research focuses. 

Ir(III) complexes have been thoroughly investigated for better understanding of the excited 

state and the electron transfer processes to optimise the potential for practical applications. The 

iridium(III) complexes possess several useful properties such as good stability, high 

photoluminescent quantum yields (which can be modulated through synthetic modifications) 

and their efficient spin-orbit coupling. Photoinduced energy and electron transfer processes are 
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frequently observed in Ir(III) cyclometalated complexes. Cyclometalated iridium(III) 

complexes have one of the largest spin–orbit coupling constants known (3909 cm-1)242, 

resulting in an efficient intersystem crossing (ISC) in these systems.243The efficiency of this 

process leads to the mixed singlet and triplet metal-to-ligand charge-transfer processes that 

allows the otherwise forbidden S0 to T1 transitions244. It is also apparent that incorporation of 

additional metal centres facilitates the spin-orbit coupling, enhancing the radiative rate constant 

and thus the efficiency of phosphorescence. In addition, polynuclear complexes possess 

enhanced extinction coefficients as compared to mononuclear analogues245. In iridium(III) 

polynuclear complexes the role of the metal centre has often been ignored, in most of the 

literature reported there is only one metal centre.246 Extensive literature searches show there 

are few reports of di- metal d6 (Ru(II)247-249, Os(II)250, Rh(III)251) complexes and even of tetra-

nuclear Ru(II) complexes252. However, little published data containing ppy-Phen di-nuclear 

iridium complexes253-255 was found.  

4.1.4 General synthesis of mononuclear Ir(III) complexes with bidentate ligands 

In 1991, during the preparation of [Ir(bpy)3]
3+, Watts noticed spontaneous cyclometalation, 

which occurred at C-3 in one of the bpy ligands226. This led to an extensive use of ppy as a 

cyclometalating ligand. 

Ir(III) complexes containing cyclometalated ligands hold a pseudo-octahedral coordination. 

The iridium atom usually has six coordination sites, occupied by three monoanionic bidentate 

ligands256. Cyclometalated Ir(III) complexes are commonly synthesised via a standard two step 

procedure. The first step involves the preparation of a bis µ-chloro dinuclear Ir(III) dimer 

[Ir(C^N)2(µ-Cl)]2, Nonoyama reaction257, by reacting IrCl3·nH2O and a cyclometalating pro-

ligand HC^N. In the second step a third ligand can substitute the chlorides in the Ir(III) dimer. 

Depending on whether all the ligands are identical to each other, the iridium complexes can be 

classified either as homoleptic [Ir(C^N)3] if C^N ligands are identical or heteroleptic 

[Ir(C^N)2(C’^N’), if a different C’^N’ is used258. Homoleptic iridium complexes possess two 

geometric isomers, facial (fac) and meridional (mer), which have N,N-cis and N,N-trans 

configurations respectively (Scheme 4.2). The coexistence of both isomers is quite common. 

However, both isomers present distinctly different photophysical properties227, 259, which are 

very important for a variety of applications237, 259. The kinetic isomer mer can be thermally or 

photochemically isomerised to the thermodynamic fac isomer259. In contrast, heteroleptic 

Ir(III) complexes have a strong preference for N,N-trans configurations, avoiding isomeric 

contamination. 
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Scheme 4.2 General synthetic route to cyclometalated Ir(III) complexes via Nonoyama reaction 

Following this synthetic strategy, neutral and ionic (mono-, bis- and tris-) cyclometalated Ir(III) 

complexes have been synthesised. With the choice of an appropriate third ligand the charges 

on the iridium complexes can be controlled. In contrast to neutral iridium complexes, cationic 

iridium complexes can be synthesised and isolated more easily, getting closer to theoretical 

yields260, 261. 

4.1.5 Cyclometalated iridium complexes: octahedral coordination & 

photophysics 

The electronic configuration of iridium(III) centre is a 5d6. The octahedral crystal field of the 

ligands splits the five degenerate d-orbitals into two sets: a triply degenerate level, t2g, and a 

doubly degenerate level, eg
262. The splitting pattern and magnitude (Δ0) are both dependent on 

the metal nature and the crystal field strength of the ligand, specifically: i) the type of ligands 

and ii) the different spatial orientations and arrangement, and thus electrostatic interactions. 

The electron distribution between the t2g and eg levels is defined by Δ0. In accordance with 

Hund’s rule, in a strong field system (where Δ0 is large) it is energetically favourable to pair 

electrons in the t2g level (a low spin complex). Whereas, a low field system (where Δ0 is smaller 

than the pairing energy) results in a high spin configuration with the maximum number of 

unpaired electrons distributed across the t2g and e levels).  

Three types of excited states can be identified for metal complexes. They are classified based 

on the origin and destination of the orbitals: i) metal centred states (MC) from the promotion 

of an electron from t2g to eg orbitals; ii) ligand centred states (LC) that are mainly π-π* transition 

amd iii) metal-to-ligand charge-transfer transitions (MLCT) (Figure 4-4).  
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For better understanding of the photophysical processes associated with the d6 metal 

complexes, it is crucial to understand the electronic transitions involved (Figure 4-4). 

Photoexcitation promotes the population of excited states. In the case of the fac-[Ir(C^N)3] 

complex, density functional theory (DFT) calculations263, 264 showed, that the HOMO (Figure 

4-5a) is delocalised over the t2g of Ir and π orbitals of the 2-phenylpyridine, whereas the LUMO 

(Figure 4-5b) only involves the π* orbital of the 2-phenylpyridine. It shows that, there are at 

least two types of electronic transitions occurring: LC transitions involving π-π* orbitals of the 

ligand and MLCT involving the iridium electrons from the t2g orbitals. In addition, the strong 

spin–orbit coupling (SOC) in iridium facilities the triplet 3MLCT and 3LC transitions. 

Consequently, the four electronic excited states: the singlets (1MLCT and 1LC) and triplets 

(3MLCT and 3LC) have become available. In reality in cyclometaletd Ir(III) complexes, the 

triplet excited state (3MLCT) is a result of combined LC and MLCT transitions265. Generally, 

1LC transitions are higher in energy than 1MLCT. Since, the energy difference between singlet 

and triplet states (Esinglet-Etriplet) of a LC transition is usually higher than that of a MLCT, the 

3MLCT transition energy is higher than 3LC.256 Hence, the transitions 3MLCT and 3LC are 

rarely distinguished as a consequence of their small molar absorptivity and featureless band 

patterns.227 

 

 

 

Figure 4-4 Simplified diagram of molecular orbitals for an octahedral d6 complex involving 2-

phenylpyridine (left). Diagram of a heteroleptic Ir complex, where the use of a third 

ligand (L’) enables additional transitions (right). 
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Figure 4-5 Frontier molecular orbitals of Ir(ppy)3 at S0 optimized geometry: (a) HOMO and 

(b) LUMO. Taken from ( Jansson et al., 2007)263  

Generally, emission arises from the lowest excited state. Particularly, emission from 

phosphorescent iridium(III) complexes mainly arises from 3MLCT or a mixture of 3MLCT and 

3LC transitions266. Altering the structure of the ligands can have a significant effect on the 

luminescence properties observed242, 267. First, by the functionalisation of the C^N and/or by 

the use of ancillary ligands, other transitions, such as intraligand-charge-transfer (ILCT), in 

addition to LC and MLCT states can occur depending on the energy of states (Figure 4-4). 

Those transitions are localised on the ligand. A use of these strategies shows tangled 

photophysics. Despite its complexity, these approaches are used to modulate the luminescent 

properties232, 262, 265, 268 because the energy is mainly determined by a “global” LUMO energy. 

Extending the π-conjugation of either a cyclometalating or an ancillary ligand decreases the 

band gap producing a bathochromic shift in the emission spectra269.  

4.2 Design and synthesis of 1,10-phenanthroline derivatives 

Based on previous statements, the possibility of varying the substitution pattern directly at the 

imidazole-precursor was investigated for use as a building block. The structural features were 

carefully selected to increase the lying between π-π* and n-π* electronic states by increasing 

the conjugation of the aromatic system through modification of the 5,6-positions, enhancing 

the PL quantum yield of the material. 

1. Phenanthroline derivative ligands have poor solubility in most organic solvents270. To 

overcome this issue and prevent intermolecular π-π stacking, bulky branched chains 

were incorporated into the structures. The substantial increase in the steric bulk of the 

ligand facilitates the solubility of the compound. Although, the synthesis is not trivial 

and thermal stability may be comprised. 
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2. Substitution at the imidazole-nitrogen (-NH) can potentially alter the electron 

distribution in the molecule and therefore the electronic properties. However, the 

substitution can also lead to a reduction of the planarity of the molecule.  

3. Structural modification of 4.1-4.5 can modify the energies of π-π* and n-π* electronic 

transitions and enhance the PL quantum yield of the material. 

 
 

4.1 4.2 

 
 

4.3 4.4 

 

4.5 

Figure 4-6 Structures of phenanthroline ligands (4.1-4.5) 

4.2.1 Synthesis of 1,10-phenanthroline derivatives 

Two synthetic routes towards the synthesis of 2-{4-[(2-octyldodecyl)oxy]phenyl}-1H-

imidazo[4,5-f][1,10]phenanthroline (4.1) and 2-{4-[(2-octyldodecyl)oxy]phenyl}-1-phenyl-

1H-imidazo[4,5-f][1,10]phenanthroline (4.2) have been investigated and are discussed in 

section 4.2.1.1. 
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4.2.1.1 Synthesis of 2-{4-[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-

f][1,10]phenanthroline 

The imidazole-containing phenanthroline derivative 4-(1H-imidazo[4,5-

f][1,10]phenanthrolin-2-yl)phenol (31) and 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-

yl)benzene-1,2-diol (32)271 were synthesised according to the methods reported in literature 

with an overall yield of 90% and 93%, respectively. Oxidation of 1,10-phenanthroline (S.15) 

with NaBr and the mixture of concentrated acids (H2SO4 and HNO3) led to 

1,10-phenanthroline-5,6-dione (S.16).194 A subsequent reaction of S.16 with either 

4-hydroxybenzaldehyde (S.24) or 2,4-dihydroxybenzaldehyde in glacial acetic acid and 

ammonium acetate resulted in the formation of compounds (31) and (32), respectively. An 

attempt to alkylate compound 31 with 9-(iodomethyl)nonadecane (33) gave compound 4.1. 

However, since the isolation of 4.1 in a pure form proved to be difficult, an alternative synthetic 

route was used to access compound 4.1.  

 

Scheme 4.3 Synthesis 2-{4-[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-

f][1,10]phenanthroline (4.1) 

Having in mind difficulties associated with the purification, an alternative approach was 

developed for the synthesis of compounds 4.1 and 4.3. Firstly,  9-(iodomethyl)nonadecane (33) 

was synthesised according to the methods reported in literature272. S.26 was converted to the 

corresponding iodide (33) with the yield of 93%, using triphenylphosphine, imidazole and 

iodine. The alkyl iodide was subsequently used in excess with a mild base for the alkylation of 

S.24 to achieve 34 in 63% of yield.  
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The first attempt to synthesise compounds 35 and 36, using 2 molar equivalents of potassium 

carbonate and 2.2 molar equivalents of alkyl iodide (33) led to the formation of products in 

very poor yields of 15% and 29%, respectively. The low yields of the desired compounds 

promoted further investigations into the molar ratios of base and the corresponding iodide. A 

slight increase in the amount of base (2.5 eq), while the concentration of alkyl iodide remained 

constant, did not show any improvement. When 2.5 molar equivalents of base and 3.2 molar 

equivalents of the iodide compound were used, compound 35 was obtained in a 45% yield. In 

addition, a side product, 36, was present. Finally, 4 molar equivalents of base and 3.2 molar 

equivalents of the iodide resulted in a yield of 51% for compound 35. However, in all cases, 

due to the appearance of compound 36, it was considered that the second alkylation was not as 

effective due to the steric effect.  

 

Scheme 4.4 Synthesis of 9-(iodomethyl)nonadecane 

Imidazole-containing phenanthroline derivatives were then synthesised by reacting S.16 with 

the appropriate aldehyde (34 and 35) to obtain compounds 4.1 and 4.3 (Scheme 4.5) in yields 

of 22% and 15%, respectively. 
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Scheme 4.5 Synthesis of 2-{4-[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-

f][1,10]phenanthroline (4.1) and 2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-

f][1,10]phenanthroline (4.3) 

4.2.1.2 Synthesis of 2-{4-[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-imidazo[4,5-

f][1,10]phenanthroline (4.2) and 2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1-

phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (4.4) 

The synthesis of compounds 4.2 and 4.4 was carried out according to the approach depicted in 

Scheme 4.6. Through a one-step reaction, 4.2 and 4.4 were prepared by refluxing 34 or 35 with 

9,10-phenanthreequinone (S.16), with commercially available aniline. Firstly, for the synthesis 

of compound 4.2, the ratio of the reagents Phen:aldehyde:aniline was 1:1:1.2. Although the 

conversion rate was quite high, the purification process proved to be more difficult due to the 

remaining aldehyde. A ratio of 1.3:1:1.2 provided up to 81% yield. However, the yield of 

compound 4.4, using Phen:aldehyde:aniline in the ratio of 1:1:1.2, was only 48%.  
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Scheme 4.6 Synthesis of 2-{4-[(2-octyldodecyl)oxy]phenyl}s1-phenyl-1H-imidazo[4,5-

f][1,10]phenanthroline (4.2) and 2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-

imidazo[4,5-f][1,10]phenanthroline (4.4) 

4.2.1.3 Synthesis of 1,4-bis(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-

yl)benzene (4.5) 

The synthesis of 1,4-bis(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (4.5) 

was accomplished as described in Scheme 4.7. Compound 4.5 was synthesised via the 

condensation of 1,10-phenanthroline-5,6-dione (S.16), terephtaldehyde (S.27), aniline and 

ammonium acetate in refluxing glacial acetic acid in the yield of 85%. 

 

Scheme 4.7 Synthesis of 1,4-bis(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene 

(4.5) 



 
 

  105 

4.3 Synthesis of Ir(III) phenanthroline complexes 

Iridium(III) complexes can be synthesised via preparation of the µ-dichloro-bridged Ir dimer, 

followed by cleavage of the dimer in the presence of a N^N ligand. Synthesis of heteroliptic 

Ir(III) complexes generally avoids isomeric contamination and requires mild reaction 

conditions enabling the use of a wide range of ligands256. 

One of the factors hampering the applicability of cationic iridium complexes is their low 

solubility in many ordinary organic solvents such as dichloromethane, toluene and 

chlorobenzene273. It has been noted that the use of long chains like alkyls is beneficial to 

improve the solubility273-275. Altering the ligands can have a significant effect on the 

luminescence properties too242 and this strategy has been used to modulate the luminescent 

properties. In addition, the quasi-octahedral-geometry of iridium allows introduction of ligands 

in a specific manner.  

The design of cationic iridium complexes is as follows:  

1. To alter electronic properties of cationic iridium complexes Ir.4.1-Ir.4.5, modified 

phenanthrolines 4.1-4.5 as ancillary ligands are used.   

2. To improve the solubility beyond strong polar solvents, substitution at the imidazole 

nitrogen can be used (although, it can lead to distortion of planarity of the phenan-

imidazole unit).  

3. To access cationic heteroliptic complexes with yields closer to theoretical values and 

of high purity, the synthesis based on the µ-dichloro-bridged Ir dimer as (C^N) starting 

material is used.260, 261 
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Ir.4.1 Ir.4.2 

  

Ir.4.3 Ir.4.4 

 

Ir.4.5 

Figure 4-7 Synthetic targets for Ir(III)-phenanthroline complexes (Ir.4.1-Ir.4.5) 

4.3.1 Synthesis of complexes Ir.4.1-Ir.4.5 

The Ir(III) complexes Ir.4.1-Ir.4.5 were prepared using the most popular synthetic protocol 

(Scheme 4.8 and Scheme 4.9). The first step was the isolation of the µ-dichloro-bridged Ir 

dimer (37), followed by cleavage of the dimer in the presence of a N^N ligand. 
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4.3.1.1 Synthesis of cationic Ir(III) complexes 

The synthesis of four mononuclear (Ir.4.1-Ir.4.4) and di-nuclear (4.5) Ir(III) complexes was 

performed as shown in Scheme 4.8 and Scheme 4.9. The complexes were prepared in yields 

up to 98%. 

 

Scheme 4.8 Synthesis of mononuclear Ir(III) complexes 4.1-4.4 

4.3.1.2 Synthesis of di-nuclear Ir(III) complex 

Scheme 4.9 shows a simple and effective way to obtain the dinuclear cyclometalated 

iridium(III) complex (Ir.4.5) by using a bis-N^C-coordinating ligand (4.5). The ligand was 

synthesised through the condensation of 1,10-phenanthroline-5,6-dione (S.16), 

terephthalaldehyde, aniline and ammonium acetate in refluxing glacial acetic acid. The Ir(III) 

complex 4.5 was obtained in a yield of 25% by the direct reaction of the µ-dichloro-bridged Ir 

dimer (37) in dry ethanol in the presence of the ligand (N^N) 4.5 in the ratio 1.5:1, respectively. 
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Scheme 4.9 Synthesis of di-nuclear Ir(III) complex Ir.4.5 

4.4 Analysis of 1,10-phenanthroline derivatives 

4.4.1 Photophysical properties 

Photophysical properties of 1,10-phenanthroline (Scheme 4.8) have been studied since the 

fifties and curiously, unmodified Phen is a weakly emissive compound (=0.0087)276. More 

detailed discussion in literature has suggested that Phen and phenanthrene have very similar 

absorption spectra and therefore the lowest energy band can be assigned to allowed π-π* 

transitions277, 278. Although emission is mainly originated from π-π* transitions, Phen has close 

lying π-π* and n-π* electronic states. Deactivation via non-radiative pathways are usually 

observed in n-π*, causing a small fluorescence quantum yield279. Several strategies are 

available to increase the band gap and obtain a wide range of highly luminescent compounds 

with emission bands from the UV to NIR. This includes functionalisation at the various ring 

positions, complexation with transition metals and lanthanides or protonation of the 

phenanthroline nitrogen atoms278. The latter is a fruitful but less exploited strategy276 that has 

been studied in Section 4.4.2. 
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Figure 4-8 1,10-Phenanthroline spectra (in DCM) from left to right: absorption, fluorescence 

and 77 K phosphorescence emission intensities are normalised. Taken from (Accorsi et 

al., 2009)276   

4.4.1.1 Absorption and emission properties of compounds 4.1-4.5 

The absorption spectra of the series display similarities in the near-blue region. This indicates 

that the 2-phenyl-1H-imidazo-phenanthroline core is a dominant feature of the main absorption 

between 275-285 nm. Compound 4.1 has low solubility in common organic solvents and to 

simplify the analysis, it was excluded. Figure 4-9 shows the absorption spectra of compounds 

4.2-4.5 in dichloromethane as a function of the molar absorptivity. It shows a red-shift of the 

absorption maximum going from Phen, 4.2<4.3<4.4<4.5. This red shift indicates an increase 

in the conjugation of the molecules. As can be seen in Figure 4-9 comparing 4.3 and 4.4, the 

substitution of the hydrogen at the imidazole ring reduces the absorption intensity and leads to 

a loss of the band at 329 nm. The molar absorptivity of 4.2-4.5 increases in the following order 

4.2<4.4<4.5<4.3. Photoluminescence spectra of 4.2-4.5 in dichloromethane (Figure 4-9) 

consists of broad, featureless and asymmetric bands with a maximum intensity in the range of 

404-437 nm, resembling one another for 4.3 and 4.4. The photophysical data is gathered in 

Table 1. 
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Figure 4-9 The absorption and normalised emission spectra of compounds 4.2-4.5 in 

dichloromethane (energy of excitation 350 nm)  

The quantum yields were calculated according to the literature method using anthracene and 

9,10-diphenyl anthracene as cross-references184. The efforts to increase the quantum yields of 

4.1-4.5 by extending π-conjugation of Phen was successful. Being a less common synthetic 

strategy, a substitution at the 5,6-positions of the aromatic system in Phen was found to be 

effective, with a 20% improvement in the quantum yield as summarised in Table 4-1. 

Moreover, by linking two Phen aromatic moieties in compound 4.5, an impressive quantum 

yield of 68% is achieved.  
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Table 4-1 Photophysical properties of compounds 4.1-4.5  

Compound Absorbance 

λmax (nm), ε (M-1cm-1) 

Emission 

λem (nm),  

4.1 286, 1.8 x 102 

332, 1.3 x 102 

494 NA 

4.2 278, 3.3 x 104 

308, 1.9 x 104 

426 20 

4.3 283, 3.7 x 104 

329, 2.9 x 104 

437 19 

4.4 283, 3.3 x 104 

327, 2.0 x 104 

437 16 

4.5 284, 3.4 x 104 

341, 2.4 x 104 

404, 427, 

453,  

68 

4.4.2 Acidochromism: UV-Vis and 1H NMR titrations 

1,10-Phenathroline (Phen) has been identified as a luminescent heterocyclic system in the last 

50 years280. Phen itself and its derivatives have been versatile ligands in coordination 

chemistry. However, some intrinsic properties of this class of ligands (luminescence, rigidity, 

two aromatic nitrogen atoms, etc.) also make them appealing as analytical probes for proton 

and cation sensing281.  

The spectrophotometric and 1H NMR behaviour of Phen 4.1-4.5 upon addition of 

trifluoroacetic acid (TFA) was investigated. In the case of compounds 4.1-4.5, protonation can 

occur at the Phen-nitrogen atoms (pKa=4.95)190, and either at the benzimidazole-nitrogen 

(pKa=5.48)282 or 1-phenyl-1H-benzimidazole (predicted pKa=5.48)4. 

                                                 

4 Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2017 ACD/Labs) 
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pKa 4.95 pKa 5.48 pKa 4.42 

Figure 4-10 Phenanthroline, benzimidazole and 1-Phenyl-1H-benzimidazole  

4.4.2.1 Spectrophotometric titrations 

The absorption and emission profile of compounds 4.1-4.5 in dichloromethane (2×10-5M) 

underwent spectral changes in the presence of TFA (2.6×10-2 M). The corresponding spectra 

are shown in Figure 4-11, Figure 4-12, Figure 4-14, Figure 4-16 and Figure 4-18. The 

attenuation of the absorption band of the neutral compounds 4.2-4.5 and the appearance of a 

new band are observed with an increase in TFA concentration. Generally, the red-shifted 

absorption peak upon addition of TFA is represented as positive acidochromism281. The 

presence of isosbestic points suggests that a chemical reaction occurs e.g. the protonation of 

the phenanthroline-derivatives nitrogen atoms. The protonated species are responsible for a 

red-shifted band 283 in the Phen derivatives 4.1-4.5 (Scheme 4.10). The fluorescence in the 

emission spectra of 4.2-4.5 is completely quenched upon the addition of acid. When 

considering Phen, inversion between the strongly emissive π-π* and emissive n-π* states is 

possible. Protonation can stabilise the n-π* state relative to the π-π* state and therefore decrease 

the emission284. 
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Scheme 4.10 Protonation-deprotonation mechanism in compounds 4.1-4.5 in the presence of 

TFA 

4.4.2.1.1 Acidochromism in compound 4.1  

Compound 4.1 has really low solubility. It shows a weak absorption in the UV spectral region 

between 286-332 nm (ε ~ 102 M-1cm-1) (Figure 4-11a) and emission at 494 nm (Figure 4-11b). 

Upon the addition of TFA, there is a noticeable increase in the extinction coefficient and 

emission intensity. This could be a result of the increased solubility of the protonated species.  
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Figure 4-11 Spectrophotometric titration of compound 4.1 (1.6×10-6 M) with TFA (2.6×10-2 M) 

in DCM: a) absorption; b) emission (energy of excitation 350 nm)  
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4.4.2.1.2 Acidochromism in compound 4.2  

Compound 4.2 shows a strong featureless absorption band in the ultraviolet spectral region at 

λmax=278 nm (ε=3.3 x 104 M-1cm-1) and λmax=308 nm (ε=1.9 x 104 M-1cm-1) (Figure 4-12a), 

and it has a blue emission at λem=426 nm (Figure 4-12b). Upon the addition of TFA 

(2 equivalents), strong spectral changes are observed that can be attributed to protonation of 

the imidazo-phenanthroline unit. The presence of isosbestic point at 294 nm suggests the 

coexistence of the species associated with the protonation process of the imidazo-phen nitrogen 

atoms. No more changes in the absorption spectrum of 4.2 are observed after 2 equivalents of 

TFA are added. The new band at λmax=308 nm can be assigned to the protonated species.  

a) b) 

250 300 350 400 450

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 3.2

 TFA addition (0.25 eq)

A
b

s
o

rb
a
n

c
e

Wavelength (nm)

 

400 450 500 550 600

0

5000

10000

15000

20000

25000

30000

35000

40000

F
lu

o
re

s
c
e
n

c
e
 I

n
te

n
s
it
y

Wavelength (nm)

 3.2

 TFA addition (0.25 eq)

 

Figure 4-12 Spectrophotometric titration of compound 4.2 (2.3×10-5 M) with TFA (2.6×10-2 M) 

in DCM: a) absorption; b) emission (energy of excitation 350 nm) 

Figure 4-13 shows a plot of the normalised absorption and emission variation as a function of 

the number of TFA equivalents, which correspond to the decrease in absorbance intensity of 

Phen 4.2 (at 276 nm) along with the protonation of the imidazo-phen unit (at 308 nm) and the 

decrease of emission intensity (at 426 nm). The emission decrease follows a similar pattern to 

the decrease observed for absorption at 276 nm upon the addition of TFA.  
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Figure 4-13 Normalised absorption (276 nm and 308 nm) and emission (426 nm) of compound 

4.2 (2.3×10-5 M) in a DCM solution as function of the number of equivalents of 

trifluoroacetic acid added (2eq).  

4.4.2.1.3 Acidochromism in compound 4.3 

Compound 4.3 shows a strong structured absorption band in the UV spectral region at 

λmax=283 nm (ε=3.7 x 104 M-1cm-1) and λmax=329 nm (ε=2.9 x 104 M-1cm-1) (Figure 4-14a), 

and a blue emission at λem=437 nm (Figure 4-14b). Upon addition of TFA, strong spectral 

changes are observed that can be attributed to protonation of the imidazo-phenanthroline unit. 

The presence of only one isosbestic point at 302 nm suggests the coexistence of the species 

associated with the protonation of the phenanthroline nitrogen atoms. The absorption changes 

are complete after addition of 2.0 equivalents of acid.  
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Figure 4-14 Spectrophotometric titration of compound 4.3 (1.6 ×10-5 M) with TFA (2.6×10-2 M) 

in DCM: a) absorption; b) emission (energy of excitation 350 nm) 
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Figure 4-15 shows a plot of the normalised absorption and emission variation as a function of 

the number of TFA equivalents. There is an absorbance decrease of the band associated with 

Phen 4.3 (at 437 nm) along with an increase in the band which correspond to the protonated 

imidazo-phen unit (at 329 nm) and a decrease of emission intensity (at 437 nm). The emission 

of Phen was quenched by the addition of TFA.  
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Figure 4-15 Normalised absorption (282 nm and 329 nm) and emission (437 nm) of compound 

4.3 (1.6×10-5 M) in a DCM solution as function of the number of equivalents of 

trifluoroacetic acid added (3 eq).  

4.4.2.1.4 Acidochromism in compound 4.4 

Compound 4.4 shows a strong structured absorption band in the UV spectral region at 

λmax=283 nm (ε=3.3 x 104 M-1cm-1) and λmax=327 nm (ε=2.0 x 104 M-1cm-1) (Figure 4-16a), 

and a blue emission at λmax=437 nm (Figure 4-16b). Upon addition of TFA, strong spectral 

changes are observed that can be attributed to the protonation of the imidazo-phen unit at 

λmax=309 nm. The presence of only one isosbestic point at 297 nm suggests the coexistence of 

two species associated with the protonation of the phenanthroline nitrogen atoms. The titration 

is complete after 3 equivalents of the TFA are added and the band at λmax=309 nm is assigned 

to the protonated species.  
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Figure 4-16 Spectrophotometric titration of compound 4.4 (1.9×10-5 M) with TFA (2.6×10-2 M) 

in DCM: a) absorption; b) emission (energy of excitation 350 nm) 

Figure 4-17 shows a plot of the normalised absorption and emission variation as a function of 

the number of TFA equivalents, which correspond to the decrease in absorbance intensity of 

Phen 4.4 (437 nm) with the protonation of the imidazo-phen unit (309 nm) and the decrease 

of emission intensity (437 nm). The emission is quenched by the addition of TFA and the 

decrease is parallel to the decrease observed for the absorption at 283 nm.  
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Figure 4-17 Normalised absorption (283 nm and 309 nm) and emission (437 nm) of compound 

4.4 (1.9×10-5 M) in a DCM solution as function of the number of equivalents of 

trifluoroacetic acid added (3 eq). 
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4.4.2.1.5 Acidochromism in compound 4.5  

Compound 4.5 shows a strong structured absorption band in the UV spectral region at 

λmax=284 nm (ε=3.4 x 104 M-1cm-1) and λmax=341 nm (ε=2.4 x 104 M-1cm-1) (Figure 4-18a), 

and a blue emission at λem=404 nm, λem=427 nm, λem=453 nm and λem=490 nm (Figure 4-18b). 

Upon addition of trifluoracetic acid, strong spectral changes are observed and can be attributed 

to protonation of the imidazo-phen unit. The absorption spectra now shows the presence of two 

well-defined isosbestic points and an “artificial” one which is the product of the dilutions. 

These two isosbestic points at 291 nm and 384 nm are indicative of the coexistence of different 

species in equilibrium, as a consequence of two imidazo-phenan units (four nitrogen atoms). 

The titration is complete after 4 equivalents of TFA are added, absorption bands at λmax=303 

nm and λmax=330 nm are assigned to the protonated species.  
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Figure 4-18 Spectrophotometric titration of compound 4.5 (1.6×10 -6 M) with TFA (2.6×10-2 M) 

in DCM: a) absorptio; b) emission (energy of excitation 350 nm) 

Figure 4-19 shows a plot of the normalised absorption and emission variation as a function of 

the number of TFA equivalents, which correspond to the absorbance intensity decrease of Phen 

4.5 (309 nm) with the protonation of the imidazo-phen unit (at 437 nm) and the decrease of 

emission intensity (at 404 nm, 427 nm, 453 nm and 490 nm). Emission of Phen is quenched 

by the addition of TFA. 
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Figure 4-19 Normalised absorption (284 nm, 303 nm and 413 nm) and emission (404 nm, 

427 nm, 453nm and 490 nm) of compound 3.5 (1.6×10 -6 M) in a DCM solution as function 

of the number of equivalents of trifluoroacetic acid added (4 eq). 

4.4.3 1H NMR titrations 

The response of phenanthrolines 4.2-4.5 in CDCl3 (0.3-0.4 mM) to acid was tested using TFA 

(1.3×10 -6 M). In general on addition of TFA, there was a downfield shift of the hydrogens of 

the Phen core. Preferential location in the case of unsymmetrical N-Ph substituted 

phenanthrolines was observed due to steric and electronic effects285. While for compound 4.3 

the proton was shared between the Phen nitrogen atoms, when the molecule became symmetric 

after the imidazole was protonated.  

The asymmetric Phen derivative 4.2 displayed a distinct downfield shift in the signals of the 

protons belonging to the Phen unit 1-H, 3-H, 2-H, 1’-H and 3’-H upon addition of TFA (Figure 

4-20). Addition of 2.0 equivalents of TFA did not lead to substantial changes, indicating the 

completion of the protonation event. There was a preferential protonation to N (Figure 4-21), 

however the shuttling of the proton between both nitrogen atoms (N and N) was fast on the 

NMR time scale. Therefore, the NMR spectra represented an average of the adduct shown in 

Figure 4-20. There was no significant shift in the signals of protons 4-H, 5-H, 2’’-H, 3’’-H 

and 4’’-H (Figure 4-20). This suggested that under experimental conditions there was not a 

second protonation event occurring in the benzoimidazole in CDCl3. 
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Figure 4-20 1H NMR titration of phenanthroline 4.2 (0.45 mM) in CDCl3 with TFA addition: from 

0 to 3 eq, with a consecutive aliquot of 0.25 eq (from bottom to the top)  
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Figure 4-21 1H NMR proton shift upon titration of a phenanthroline 4.2 (0.45 mM) against 

TFA in CDCl3 

1H NMR investigation of compound 4.3 shows broad signals. The broadness of the signals 

could be due to the concentration of the sample or dynamic exchange behaviour of the molecule 

(e.g. rotamers, proton exchange). The 1H NMR was attempted using different concentrations 

and at a higher temperature. Lower concentrations were inconsistent with the integration values 

of expected protons, and could be a consequence of slow spin relaxation. Another experiment 

at high temperature (333 K) was performed to improve the signal resolution, however there 

were no changes. The H signals became more defined after addition of 2.5 equivalents of TFA 

(Figure 4-22). The pKa values of phenanthroline (4.95) and benzimidazole (5.48) are very 

similar indicating that protonation can occur simultaneously at the imidazole and 

phenanthroline unit. Most likely, protonation of the imidazole takes place due to the shifts of 

protons 4-H, 6-H being more affected than 5-H (Figure 4-22). 

The 1-H, 3-H, 2-H, 1’-H and 3’-H protons of asymmetric Phen derivative 4.4 displayed a 

distinct downfield shift upon the addition of TFA (Figure 4-23). Addition of 2.25 equivalents 

of TFA did not lead to substantial changes indicating the completion of the protonation event. 

There was a preferential protonation to N (Figure 4-24), however the shuttling of the proton 

between both nitrogen atoms (N and N) was fast. Therefore, the NMR spectra was an average 

of the adduct shown in Figure 4-23. There is no significant shift in the signals of protons 4-H, 

5-H, 6-H, 2’’-H, 3’’-H and 4’’-H (Figure 4-23). This suggested that under experimental 

conditions there was not a second protonation event occurring in the benzoimidazole. 
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Figure 4-22 1H NMR titration of a phenanthroline 4.3 (0.32 mM) in CDCl3 with TFA addition: 

from 0 to 3 eq, with a consecutive aliquot of 0.25 eq (from bottom to the top)   
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Figure 4-23 1H NMR titration of a phenanthroline 4.4 (0.30 mM) in CDCl3 with TFA addition: 

from 0 to 3 eq, with a consecutive aliquot of 0.25 eq (from bottom to the top) 
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Figure 4-24 1H NMR proton shift upon titration of a phenanthroline 4.4 (0.30 mM) against 

TFA in CDCl3 

The asymmetric Phen derivative 4.5 displayed a distinct downfield shift in the signals of the 

protons belonging to the Phen structure, such as 1-H, 3-H, 2-H, 1’-H and 3’-H upon addition 

of TFA (Figure 4-25). Between addition of 1.0 equivalent and 2.0 equivalents there was no 

substantial shift in the signals of the aforementioned protons. As can be seen from Figure 4-26, 

the gradients of the first process and second process are very similar. This indicates a sequential 

protonation process of the equivalent phenanthroline hydrogens. Here too, there was a 

preferential protonation to N. The NMR spectra was an average of the adduct shown in Figure 

4-25 due to the fast shuttling of the proton between both nitrogen atoms (N and N). There was 

no significant shift in the signals of protons 4-H, 5-H, 6-H, 2’’-H, 3’’-H and 4’’-H (Figure 

4-25). This suggested that under experimental conditions there was not a second protonation 

event occurring in the benzoimidazole. 
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Figure 4-25 1H NMR titration of a phenanthroline 4.5 (0.36 mM) in CDCl3 with TFA addition: 

from 0 to 3 eq, with a consecutive aliquot of 0.25 eq (from bottom to the top) 
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Figure 4-26 1H NMR proton shift  upon titration of a phenanthroline 4.5 (0.36 mM) against 

TFA in CDCl3 

4.5 Analysis of Ir(III)-phenanthroline complexes 

4.5.1 Photophysical properties of compounds Ir.4.1-Ir.4.5 

In cyclometalated iridium complexes, fluorescence is mostly absent as a result of spin–orbit 

coupling from the metal; which accelerates intersystem crossing to the triplet state265.  

Figure 4-27 shows the spectroscopic behaviour of fac-[Ir(C^N)3] in dichloromethane solution. 

Fac-Ir (ppy)3 shows an intense ultraviolet absorption band (250-320 nm) associated to 1LC 

(π-π* absorption of the free ppy ligand). The weaker absorption bands on the visible region 

(320-510 nm) are assigned to MLCT transitions235, 286. The band with a maximum at 385 nm 

is typically assigned to 1MLCT, whereas the weaker shoulder that appears at longer 

wavelengths (450-510 nm) is assigned to 3MLCT287. Fac-Ir (ppy)3 in dichloromethane solution 

shows an asymmetric emission band at 515 nm. This broad band is associated with 

phosphorescence from 3MLCT288-290. 
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Figure 4-27 Normalised absorption (dashed line) and photoluminescence (solid line) spectra of 

Ir(ppy)3 in dichloromethane. Taken from (Wang et al., 2009)287 

4.5.1.1 Absorption and emission properties of compounds Ir.4.1-Ir.4.5 

The spectroscopic behaviour of five cationic iridium(III) complexes in dichloromethane 

solution were studied. Due to the presence of the same cyclometalated ligand 2-phenylpyridine 

and different Phen derivatives as auxiliary ligands, the absorption spectra of compounds 

Ir.4.1-Ir.4.4 displayed high similarities (Figure 4-28). However, the polynuclear complex 

Ir.4.5 possesses an enhanced extinction coefficient (105 M-1cm-1
 vs 104 M-1cm-1). 

Photoluminescence spectra of complexes Ir.4.1-Ir.4.5 in dichloromethane (Figure 4-28) 

consist of broad, featureless and asymmetric bands with a maximum intensity in the range of 

567-574 nm, almost resembling one another. These bands can be assigned to MLCT 

transitions. The photophysical data of the target iridium(III) complexes are summarised in 

Table 4-2.  
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Figure 4-28 Normalised absorption and photoluminiscence spectra of complexes Ir.4.1-Ir.4.5 

in DCM at room temperature (excitation energy: 350 nm) 

Table 4-2 Optical properties of compounds Ir.4.1-Ir.4.5 

Compound 
Absorbance 

λmax (nm), ε(M-1cm-1) 

Emission 

λem (nm), PL 

Ir. 4.1 273, 5.3 x 104; 288, 5.3 x 104 570 0.069 

Ir.4.2 271, 5.8 x 104; 287, 5.2 x 104 567 0.028 

Ir.4.3 

255, 6.2 x 104 ; 272, 5.7 x 104; 340, 

3.7 x 104; 415, 8.2 x 104; 470, 2.2 x 

104 

571 

0.057 

 

Ir.4.4 254, 6.7 x 104; 272, 6.4 x 104 465, 567 0.054 

Ir.4.5 

255, 7.1 x 105 ; 270, 6.9 x 105; 296, 

6.1 x 105; 348, 3.6 x 105; 412, 1.5 x 

105; 469, 2.4 x 104 

574 0.054 

4.5.1.1.1 Compound Ir.4.1 

The absorption behaviour of compound Ir.4.1 in DCM (8.87 x 10-6 M) at room temperature 

was studied. Similar to published data, the observed bands at max =273 nm (ε=5.3 x 104 M-

1cm-1) and max =272 nm (ε=5.3 x 104 M-1cm-1) can be assigned to π-π* (spin-allowed) 

transitions, these intense bands in the UV region closely resemble the ones of free ppy287 and 

phen 4.1 free ligands. There is another band at around 339 nm (ε=3.0 x 104 M-1cm-1) and also 
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a weaker absorption band extended to the visible region with a maximum at around 400 nm 

(ε=4.7 x 103 M-1cm-1). The latter can be due to 1MLCT or 3MLCT transitions. The 

photoluminescence spectrum of Ir.4.1 in dichloromethane solution shows an asymmetric 

emission band. This major peak at 570 nm is responsible for the orange emission upon 

excitation with light at 350 nm.  
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Figure 4-29 Absorption spectra of compound Ir.4.1 and normalised photoluminescence in 

dichloromethane (excitation energy: 350 nm) 

4.5.1.1.2 Compound Ir.4.2 

The absorption behaviour of compound Ir.4.2 in DCM (1.08 x 10-5 M) at room temperature 

was studied. Similar to published data, the observed bands with max=271 nm (ε=5.8 x 104 M-

1cm-1) and max=287 nm (ε=5.2 x 104 M-1cm-1) can be assigned to π-π* (spin-allowed) 

transitions, these intense bands in the UV region closely resemble the ones of the free ppy287 

and phen 4.2 ligands. The weaker absorption band, extended to the visible region, observed at 

around 406 nm (ε=5.5 x 103 M-1cm-1) can be due to 1MLCT or 3MLCT transitions. The 

photoluminescence spectrum of Ir.4.2 in dichloromethane solution shows four bands; three 

weaker bands at 403 nm, 429 nm and 456 nm and a major peak at 567nm. Excitation performed 

at 350 nm caused orange emission associated with the prime peak at 567 nm.  
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Figure 4-30 Absorption spectra of compound Ir.4.2 and normalised photoluminescence in 

dichloromethane (excitation energy: 350 nm) 

4.5.1.1.3 Compound Ir.4.3 

The absorption behaviour of compound Ir.4.3 in DCM (9.5 x 10-6 M) at room temperature was 

studied. Similar to published data, the observed bands with max =255 nm (ε=6.2 x 104 M-1cm-

1) and max =272 nm (ε=5.7 x 104 M-1cm-1) can be assigned to the π-π* (spin-allowed) 

transitions, these intense bands in the UV region closely resemble the ones of the ppy287 and 

phen 4.3 free ligands. The weaker absorption band with a maximum at max =340 nm (ε = 3.7 

x 104 M-1cm-1) could be due to 1MLCT, whereas the weaker shoulder that appears between 

415-470 nm, with vibrational satellites could be due to 3MLCT transitions. The 

photoluminescence spectrum of Ir.4.3 in dichloromethane solution shows a major band 

associated with 3MLCT transition. This major peak at 571 nm is responsible for the orange 

emission upon excitation with light at 350 nm.  
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Figure 4-31 Absorption spectra of compound Ir.4.3 and normalised photoluminescence in 

dichloromethane (excitation energy: 350 nm) 
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4.5.1.1.4 Compound Ir.4.4 

The absorption behaviour of compound Ir.4.4 in DCM (7.94 x 10-6 M) at room temperature 

was studied. Similar to published data, the observed bands with max =254 (ε=6.7 x 104 M-1cm-

1) and 272 nm (ε=6.4 x 104 M-1cm-1) can be assigned to π-π* (spin-allowed) transitions, these 

intense bands in the UV region closely resemble the ones of ppy287 and phen 4.4 free ligands. 

The weaker absorption band, extended to the visible region, observed at around 400 nm can be 

due to 1MLCT or 3MLCT transitions. The photoluminescence spectrum of Ir.4.4 in 

dichloromethane solution shows two bands. A weaker band with its intensity at 465 nm and a 

major peak. The orange emission upon excitation with light at 350 nm is a consequence of the 

peak at 567 nm. 
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Figure 4-32 Absorption spectra of compound Ir.4.4 and normalised photoluminescence in 

dichloromethane (excitation energy: 350 nm) 

4.5.1.1.5 Compound Ir.4.5 

The absorption behaviour of compound Ir.4.5 in DCM (5.71 x 10-6 M) at room temperature 

was studied. Similar to published data, the observed bands with max =at 255, 270 and 296 nm 

can be allocated to the π-π* transitions (ε≈105 M-1cm-1), these three intense ultraviolet bands 

closely resemble the ones of free ppy287 and phen 4.4 free ligands. The weaker absorption band, 

extended to the visible region, observed at between 400-500 nm can be due to 1MLCT or 

3MLCT (metal-to-ligand charge-transfer transitions). The photoluminescence spectrum of 

Ir.4.5 in dichloromethane solution consists of a featureless and asymmetric bands with 

intensity maximum at 571 nm. This prime peak is responsible for the orange emission upon 

excitation with light at 350 nm.  
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Figure 4-33 Absorption spectra of compound Ir.4.5 and normalised photoluminescence in 

dichloromethane (excitation energy: 350 nm) 

4.6 Conclusions 

This chapter describes effective ways to tune the photophysical properties and to improve the 

emission efficiency of phenanthroline derivatives. Two different strategies were investigated 

for the synthesis of 1H-imidazo[4,5-f][1,10]phenanthroline derivatives. A small library of five 

novel structures 4.1-4.5 was prepared.  

One of the main issues of phenanthroline derivatives is their low solubility in most organic 

solvents. Therefore, an important goal was to increase the solubility by using a bulky branched 

chain and the substitution of the –NH with a phenyl group. The latter has proven to be more 

efficient than addition of a second 4-[(2-octyldodecyl)oxyl] substituent. 

Notice that the racemic mixture of 2-octyl-dodecanol was used to develop the synthetic 

strategy. There are four possible diastereoisomers for the molecules 35, 4.3 and 4.4 which have 

two chiral centers. There was no observation of any optical activity [α] 598
20  for compounds 33-

36 and 4.1-4.4. 

Analysis of these molecules using UV-vis spectroscopy showed the dependence of the 

photoluminescence properties from the structure of the phen-based derivatives. This strategy 

allowed improvement of the quantum yields of compounds 4.2-4.4 compared with unmodified 

phen emission (=0.0087). Emission of compound 4.5 was proven to be the most effective 

(=0.68). 
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The response of the phen derivatives to acid was tested using UV-vis spectroscopy studies 

which confirm that protonation induced stabilisation of the electronic transitions with a positive 

acidochromism (red-shift). In addition, 1H NMR titrations supported that basicity in 4.1-4.5 

was influenced by the -NH substitution.  

The UV-vis spectroscopy and 1HNMR analysis of all the novel compounds helped to give a 

deeper understanding of the photophysical properties of the molecules, along with their 

potential as sensors. 

The synthesis of four mononuclear Ir.4.1-Ir.4.4 and one of the di-nuclear Ir.4.5 novel 

iridium(III) complexes was successfully carried out. The UV-vis absorption spectra of the 

cationic iridium(III) complexes Ir.4.1-Ir.4.5 displayed common features. These small 

differences were a result of the use of the different phenanthrolines 4.1-4.5 as ancillary ligand 

(N^N). However, the polynuclear complex (Ir.4.5) possessed enhanced extinction coefficient 

in comparison to the mononuclear analogues. Moreover, the use of the same cyclometalated 

ligand along with modified phenanthrolines in mononuclear complexes did not show a 

substantial change on the emission. Emission maximum was not very sensitive to the type of 

ancillary ligand used. Interestingly, the di-nuclear Ir(III) complex (Ir.4.5) has a very similar 

emission pattern to the synthesised mononuclear Ir(III) complexes. The photoluminescence 

quantum yields in dichloromethane solutions were moderated (PL<0.1). 

4.7 Experimental 

4.7.1 General techniques 

All chemicals were obtained from Sigma Aldrich, Alfa Aesar, VWR and Across and used 

without further purification. Anhydrous solvents were obtained from a PureSolv MD6 solvent 

purification system. 1H NMR and 13C NMR spectra were recorded on a Bruker Advanced 500 

spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual 

solvent peak and peaks are described as singlet (s), doublet (d), triplet (t), quartet (q), sextet 

(sex), multiplet (m), broad singlet (br) and coupling constants (J) are quoted in Hertz (Hz). 

Spectra were recorded in chloroform-d, dichloromethane-d2 or deuterated DMSO-d6 and were 

measured at room temperature unless otherwise stated. Where needed, two dimensional 

correlation spectroscopy (2D-COSY), heteronuclear single quantum coherence spectroscopy 

(HSQC) and heteronuclear multiple bond correlation spectroscopy (HMBC) were used in order 

to aid assignment. The progress of reactions was monitored by TLC and purified by column 
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chromatography using silica gel 60 (40-63µm). High resolution mass spectrometry (HRMS) 

was performed on Bruker MaXis Impact (EI+) by positive and negative electrospray ionisation. 

The accepted experimental error was <4 ppm. High performance liquid chromatography 

(HPLC) was performed on an Agilent 1100 Infinity Series equipped with a UV detector and 

Ascentis Express C18 reverse phase column, using MeCN/water (50-95%) containing 0.1% 

TFA, at a flow rate of 0.5 mL min-1 over a period of 12 minutes. Infrared spectra (IR) were 

recorded in solid phase on a Bruker Alpha Platinum ATR FTIR spectrometer with vibrational 

frequencies given in cm-1. Melting points were measured on a Stuart SMP30. The electronic 

absorption spectra were recorded on a Cary 100 UV-vis scanning spectrometer. The 

fluorescence spectra were recorded on a FluoroMax-3 spectrofluorimeter. Quantum yields of 

fluorescence were measured by the relative method using optically dilute solutions. 

4.7.2 Experiments 

4.7.2.1 1,10-Phenanthroline-5,6-dione (S.16)194  

 

The compound 1,10-phenanthroline-5,6-dione (S.16) was prepared from a modification of 

literature method. Dropwise concentrated H2SO4 (35 mL) was added to 1,10-phenanthroline 

(S.15) (2.51 g, 13.9 mmol), in an ice bath. To this solution NaBr (4.54 g, 44.1 mmol) was 

added, followed by the dropwise addition of concentrated HNO3 (17.5 mL). The mixture was 

stirred at room temperature for 20 min and then refluxed for 1h. After being allowed to cool to 

room temperature, crushed ice was added and the solution was neutralised 30% (v/v) NaOH. 

The filtrate (dissolved in hot water) and the filtered waters were extracted with DCM. The 

organic layers were collected and, after removal of the solvent under pressure, the title 

compound was obtained as yellow solid (1.53 g, 52%). 1H NMR (400 MHz, CDCl3) δ ppm 

9.12 (dd, J = 4.7, 1.7 Hz, 2H, 1-H), 8.51 (dd, J = 7.9, 1.7 Hz, 2H), 2-H, 7.59 (dd, J = 7.9, 

4.7 Hz, 2H, 3-H); m/z (ES+): Found: 213.0650 [M+H], requires: 213.0659 

4.7.2.2 (±)-9-(Iodomethyl)nonadecane (33)272 
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To a stirred solution of 2-octyl-dodecanol (11.08 g, mmol) in of dichloromethane at 0 °C 

triphenylphosphine (13.11 g, 50 mmol) and imidazole (3.4 g, 50 mmol) were added. The 

mixture was stirred for 15 minutes before iodine (12.1 g, 48 mmol) was added in small portions. 

The reaction was allowed to warm to room temperature over 2 h before the addition of 5 mL 

of saturated Na2SO3. The bright yellow reaction mixture was concentrated in vacuo, diluted 

with pentane (50 mL) and washed with water (3 × 100 mL) and brine (100 mL). The resulting 

pentane solution was passed through a silica plug, eluting with pentane and concentrated in 

vacuo to yield the product as a colorless oil (14.15 g, 93%). 1H NMR (500 MHz, CDCl3) δ ppm 

3.27 (d, J = 4.6 Hz, 2H, I-CH2), 1.53 (s, 1H, -CH) 1.27 (m, 32H, -CH2), 0.88 (m, 6H, -CH3); 

m/z (ES+): iodide too labile. 

4.7.2.3 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol (31)291  

 

A mixture of 1,10-phenanthroline-5,6-dione (S.16) (704 mg, 3.32 mmol), 

4-hydroxybenzaldehyde (S.24) (446 mg, 3.65 mmol) and ammonium acetate (5.1 g, 

66.3 mmol) in glacial acetic acid (15 mL) was refluxed under nitrogen for 3.5 h. The reaction 

was allowed to reach room temperature and filtered, then washed with copious amounts of 

acetone and ether. The title compound was obtained as a yellow solid after being vacuum dried 

(927 mg, 90%).1H NMR (300 MHz, DMSO) δ ppm 9.02 (dd, J = 4.3, 1.7 Hz, 2H, 1-H), 8.91 

(d, J = 8.2 Hz, 2H, 3-H), 8.12 (d, J = 8.7 Hz, 2H, 5-H), 7.83 (bs, 2H, 2-H), 6.99 (d, J = 8.7 Hz, 

2H, 4-H); m/z (ES+): Found: 335.0904 [M+Na], requires: 335.0903. 

4.7.2.4 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene-1,2-diol (32)271 

 

A mixture of 1,10-phenanthroline-5,6-dione (S.16) (426 mg, 2.01 mmol), 

3,4-dihydroxybenzaldehyde (S.25)  (305 mg, 2.21 mmol) and ammonium acetate (3.1g, 

40.2 mmol) in glacial acetic acid (9 mL) was refluxed under nitrogen for 2 h and 20 min. The 

reaction was allowed to reach room temperature, then poured into water and treated with 

ammonia solution (35%) until neutral pH. The precipitate was filtered off and washed with 
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abundant water to obtain the title compound as a brownish solid (614 mg, 93%). 1H NMR 

(300 MHz, DMSO) δ ppm 9.02 (d, J = 4.1 Hz, 2H, 1-H), 8.91 (dd, J = 14.4, 7.6 Hz, 2H, 3-H), 

7.87 – 7.77 (m, 2H, 2-H), 7.74 (d, J = 2.1 Hz, 1H, 5-H), 7.60 (dd, J = 8.2, 2.1 Hz, 1H, 4-H), 

6.95 (d, J = 8.2 Hz, 1H, 5-H); m/z (ES+): Found: 351.0850 [M+Na], requires: 351.0852. 

4.7.2.5 (±)-4-[(2-octyldodecyl)oxy]benzaldehyde (34) 

 

To a solution of 4-hydroxybenzaldehyde  (S.24) (995 mg, 8.2 mol), and potassium carbonate 

(1.13 g, 9.8 mmol) in DMF (10 mL) dropwise 9-(iodomethyl)nonadecane (33) (4.0 g, 

9.8 mmol) was added. The mixture was refluxed under nitrogen for 24 h. The reaction was 

allowed to reach room temperature, poured onto water and then extracted with DCM. The 

combined organic layers were dried over MgSO4 and the solvents were evaporated under 

reduced pressure. The residue was purified by silica gel column chromatography 

(Hexane-DCM, 1:2) to provide a colourless oil (2.1 g, 63%). 1H NMR (400 MHz, CDCl3) 

δ ppm 9.88 (s, 1H, -CHO), 7.82 (d, J = 8.7 Hz, 1H, 2-H), 6.99 (d, J = 8.7 Hz, 1H, 1-H), 3.91 

(d, J = 5.8 Hz, 2H, -OCH2), 1.80 (dt, J = 12.0, 5.8 Hz, 1H, -CH), 1.26 (s, 33H, -CH2), 0.88 (t, 

J = 6.8 Hz, 6H, -CH3); 13C NMR (100 MHz, CDCl3) δ ppm 190.9, 164.7, 132.1, 129.9, 114.9, 

38.0, 31.4, 30.1, 29.8, 29.8, 29.8, 29.7, 29.5, 29.5, 27.0, 14.3; m/z (ES+): Found: 425.3391 

[M+Na], requires: 425.3390; IR νmax/cm-1 (liquid): 2921, 2852, 1693, 1600, 1577, 1509, 1466, 

1391, 1377, 1310, 1254, 1214, 1157, 1019. 

4.7.2.6 Diastereoisomers of 3,4-bis[(2-octyldodecyl)oxy]benzaldehyde (35) 

 

To a solution of 3,4-dihydroxybenzaldehyde (S.25) (1.03 g, 7.5 mmol) and potassium 

carbonate (4.1 g, 29.8 mmol) in DMF (30 mL) was added dropwise 9-(iodomethyl)nonadecane 

(33) (9.3 g, 22.7 mmol). The mixture was refluxed under nitrogen for 24 h. The reaction was 

cooled to room temperature, poured onto water and then extracted with DCM. The combined 

organic layers were dried over MgSO4 and the solvents were evaporated under reduced 

pressure. The residue was purified by silica gel column chromatography (Hexane-DCM, 2:1) 



 
 

  137 

to provide a brown oil (2.7 g, 51% ). 1H NMR (400 MHz, CDCl3) δ ppm 9.83 (s, 1H, -CHO), 

7.40 (dd, J = 8.1, 1.8 Hz, 1H,5-H), 7.37 (d, J = 1.8 Hz, 1H, 1-H), 6.93 (d, J = 8.1 Hz, 1H, 4-H), 

3.92 (dd, J = 11.8, 5.7 Hz, 4H, -OCH2), 1.83 (dq, J = 11.8, 5.7 Hz, 2H, -CH), 1.26 (s, 

64H, -CH2), 0.88 (t, J = 6.8 Hz, 12H, -CH3); 13C NMR (100 MHz, CDCl3) δ ppm 191.2, 155.3, 

150.0, 129.9, 126.7, 111.7, 110.7, 71.8, 38.2, 32.1, 31.5, 31.5, 30.3, 30.2, 29.9, 29.8, 29.8, 29.5, 

27.1, 22.9, 14.3; m/z (ES+): Found: 699.6663 [M+H], requires: 699.6650; IR νmax/cm-1 

(liquid): 2921, 2852, 1691, 1594, 1584, 1509, 1465, 1435, 1378, 1340, 1266, 1237, 1164, 

1020. 

4.7.2.7 (±)-3-hydroxy-4-[(2-octyldodecyl)oxy]benzaldehyde (36) 

 

To a solution of 3,4-dihydroxybenzaldehyde (S.25) (370 mg, 2.68 mmol), and potassium 

carbonate (778 mg, 5.63 mmol) in DMF (10 mL) dropwise 9-(iodomethyl)nonadecane (33) 

(2.4 g, 5.9 mmol) was added. The mixture was refluxed under nitrogen for 24 h. The reaction 

was cooled to room temperature, poured onto water and then extracted with DCM. The 

combined organic layers were dried over MgSO4 and the solvents were evaporated under 

reduced pressure. The residue was purified by silica gel column chromatography 

(Hexane-DCM, 1:2) to provide a brown oil (318 mg, 28%). 1H NMR (400 MHz, CDCl3) δ ppm 

9.84 (s, 1H, -CHO), 7.45 (d, J = 1.9 Hz, 1H, 1-H), 7.42 (dd, J = 8.2, 1.9 Hz, 1H, 5-H), 6.96 (d, 

J = 8.2 Hz, 1H, 4-H), 5.69 (s, 1H, -OH), 4.01 (d, J = 5.8 Hz, 2H, -OCH2), 1.86 (dt, J = 12.1, 

5.8 Hz, 1H, -CH ), 1.48 – 1.15 (m, 35H, -CH2), 0.88 (t, J = 6.8 Hz, 6H, -CH3); 13C NMR (100 

MHz, CDCl3) δ ppm 191.1, 151.5, 146.4, 130.6, 124.6, 114.2, 111.0, 72.3, 38.0, 32.1, 32.0, 

31.5, 30.1, 29.8, 29.8, 29.7, 29.7, 29.5, 29.4, 27.0, 22.8, 22.8, 14.3; m/z (ES+): Found: 

441.3340 [M+Na], requires: 441.3339; IR νmax/cm-1 (liquid): 3549, 3368, 2921, 2852, 1686, 

1610, 1585, 1507, 1459, 1377, 1343, 1272, 1244, 1199, 1124, 1012. 
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4.7.2.8 (±)-2-{4-[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-f][1,10]phenanthroline 

(4.1) 

 

A mixture of 1,10-phenanthroline-5,6-dione (S.16) (988 mg, 4.66 mmol), of 

4-[(2-octyldodecyl)oxy]benzaldehyde (34) (1.7 g, 4.2 mmol) and ammonium acetate (6.5 g, 

84.6 mmol) in glacial acetic acid (28 mL) was refluxed under nitrogen for 24 h. The reaction 

mixture was poured into water and treated with ammonia solution (35%) until neutral pH. The 

precipitate was filtered off and washed with abundant water. The compound was dissolved in 

DCM and washed with water. The combined organic layers were dried over MgSO4 and the 

solvents were evaporated under reduced pressure. The residue was purified by silica gel 

column chromatography (DCM-EtOH to pure EtOH) to obtained the title compound as a 

yellow solid (560 mg ,22%). 1H NMR (400 MHz, CDCl3) δ ppm 8.87 (s, 2H, 1-H), 8.75 (s, 

2H, 3-H), 8.27 (d, J = 8.5 Hz, 2H, 5-H), 7.35 (s, 2H, 2-H), 6.76 (d, J = 8.5 Hz, 2H, 4-H), 3.72 

(d, J = 5.3 Hz, 2H, 6-H), 1.69 (s, 1H, 7-H), 1.22 (s, 36H, -CH2), 0.84 (m, 6H, CH3); 13C NMR 

(100 MHz, CDCl3) δ ppm 160.7, 152.6, 147.2, 143.8, 130.9, 128.5, 123.3, 122.8, 114.8, 71.1, 

38.0, 32.0, 32.0, 31.4, 30.1, 29.8, 29.7, 29.7, 29.5, 29.4, 26.9, 22.8, 22.8, 14.2; m/z (ES+): 

Found: 593.4227 [M+H], requires: 593.4214; νmax/cm-1 (solid): 3072, 2920, 1610, 1579, 1525, 

1483, 1455, 1401, 1360, 1333, 1291, 1246; M.pt: >350 °C. 

4.7.2.9 (±)-2-{4-[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-imidazo[4,5-

f][1,10]phenanthroline (4.2) 

 

A mixture of 1,10-phenanthroline-5,6-dione (S.16) (1.5 g, 6.9 mmol), of 

4-[(2-octyldodecyl)oxy]benzaldehyde (34) (2.30 g, 5.71 mmol), aniline (0.63 mL, 6.85 mmol) 

and ammonium acetate (4.40 g, 57.1 mmol) in glacial acetic acid (25 mL) was refluxed under 

nitrogen for 24 h. The reation mixture was poured into water and treated with ammonia solution 

(35%) until neutral pH, then poured onto water and then extracted with DCM. The combined 
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organic layers were dried over MgSO4 and the solvents were evaporated under reduced 

pressure The residue was purified by silica gel column chromatography (DCM-EtOH, 10:1 to 

pure EtOH) to obtain the title compound as a brown solid (3.1 g, 81 %). 1H NMR (400 MHz, 

CDCl3) δ ppm 9.19 (dd, J = 4.4, 1.7 Hz, 1H, 1-H), 9.14 (dd, J = 8.1, 1.7 Hz, 1H, 3-H), 9.04 

(dd, J = 4.3, 1.5 Hz, 1H, 1’-H), 7.75 (dd, J = 8.1, 4.4 Hz, 1H, 2-H), 7.65 (dt, J = 8.9, 4.4 Hz, 

3H, 3’’-H and 4’’-H), 7.54 (dd, J = 7.9, 1.6 Hz, 2H, 2’’-H), 7.50 (d, J = 8.9 Hz, 2H, 4-H), 7.43 

(dd, J = 8.4, 1.5 Hz, 1H, 3’-H), 7.28 (dd, J = 8.4, 4.3 Hz, 1H, 2’-H), 6.82 (d, J = 8.9 Hz, 2H, 

5-H), 3.81 (d, J = 5.8 Hz, 2H, 6-H), 1.75 (dd, J = 11.5, 5.8 Hz, 1H, 7-H), 1.26 (s, 38H, -CH2 ), 

0.88 (t, J = 6.7 Hz, 6H, CH3); 13C NMR (100 MHz, CDCl3) δ ppm 160.4 (s), 152.5 (s), 149.1 

(s), 147.9 (s), 145.0 (s), 144.5 (s), 138.4 (s), 136.3 (s), 130.8 (s), 130.7 (s), 130.3 (s), 129.0 (s), 

128.0 (s), 126.9 (s), 124.2 (s), 123.6 (s), 122.2 (s), 122.1 (s), 120.0 (s), 120.0 (s), 114.6 (s), 71.2 

(s), 38.0 (s), 32.1 (s), 32.1 (s), 31.5 (s), 30.2 (s), 29.8 (s), 29.8 (s), 29.7 (s), 29.5 (s), 29.5 (s), 

27.0 (s), 22.8 (s), 14.3 (s); m/z (ES+): Found: 670.4534 [M+H], requires: 670.4516; νmax/cm-1 

(solid): 2348, 3064, 2921, 2852, 1686, 1608, 1498, 1465, 1442, 1377, 1296, 1250; M.pt: 

178-180 °C.  

4.7.2.10 Diastereoisomers of 2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-

f][1,10]phenanthroline (4.3) 

 

A mixture of 1,10-phenanthroline-5,6-dione (S.16) (0.75 g, 3.54 mmol), 3,4-bis[(2-

octyldodecyl)oxy]benzaldehyde (35) (1.7 g, 2.4 mmol) and ammonium acetate (3.6 g, 

47.2 mmol) in glacial acetic acid (20 mL) was refluxed under nitrogen for 24 h. The reaction 

mixture was poured into water and treated with ammonia solution (35%) until neutral pH. The 

precipitate was filtered off and washed with abundant water. The compound was dissolved in 

DCM and washed with water. The combined organic layers were dried over MgSO4 and the 

solvents were evaporated under reduced pressure. The residue was purified by silica gel 

column chromatography (DCM-EtOH to pure EtOH) to obtain the title compound as an orange 

crystalline solid (227 mg, 14 % ). 1H NMR (400 MHz, CDCl3+TFA) δ ppm 9.32 (d, J = 8.2 Hz, 

2H, 1-H), 9.03 (d, J = 4.7 Hz, 2H, 3-H), 7.94 (dd, J = 8.2, 4.7 Hz, 2H, 2-H), 7.73 (d, J = 8.5 Hz, 

1H, 4-H), 7.65 (s, 1H, 6-H), 6.90 (d, J = 8.5 Hz, 1H, 5-H), 3.94 (d, J = 4.8 Hz, 2H, 7-H), 1.96 

– 1.75 (m, 1H, 8-H), 1.59 – 1.11 (m, 34H, -CH2), 0.99 – 0.71 (m, 12H, -CH3 ); 13C NMR 
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(100 MHz, CDCl3+TFA) δ ppm 155.1, 152.0, 150.6, 146.6, 136.5, 135.6, 126.4, 125.8, 122.3, 

119.9, 119.8, 116.9, 114.1, 113.1, 112.7, 111.2, 110.8, 72.2, 72.0, 38.4, 38.2, 32.1, 31.4, 30.3, 

29.9, 29.9, 29.9, 29.8, 29.8, 29.6, 29.6, 27.1, 22.9, 14.2; m/z (ES+): Found: 889.7298 [M+H], 

requires: 889.7293; νmax/cm-1 (solid): 3084, 2954, 2920, 2851, 1605, 1564, 1522, 1489, 1394, 

1260, 1218, 1133, 1068, 1029, 806, 739; M.pt: 85-87 °C.  

4.7.2.11 Diastereoisomers of 2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-

imidazo[4,5-f][1,10]phenanthroline (4.4) 

 

A mixture of 1,10-phenanthroline-5,6-dione (S.16) (685 mg, 3.22 mmol), 3,4-bis[(2-

octyldodecyl)oxy]benzaldehyde (35) (2.3 g, 3.2 mmol), aniline (0.35 mL) and ammonium 

acetate (2.49 g, 32.2 mmol) in glacial acetic acid (14 mL) was refluxed under nitrogen for 24 h. 

The reaction mixture was then cooled to room temperature. The reaction mixture was poured 

into water and treated with ammonia solution (35%) until neutral pH and then extracted with 

DCM. The combined organic layers were dried over MgSO4 and the solvents were evaporated 

under reduced pressure. The residue was purified by silica gel column chromatography 

(DCM-EtOH to pure EtOH) to obtain the title compound as a red crystalline solid/glue (1.50 g, 

48%). 1H NMR (400 MHz, CDCl3) δ ppm 9.16 (m, 2H, 1-H and 3-H), 9.03 (dd, J = 4.3, 

1.5 Hz, 1H, 1’-H), 7.75 (dd, J = 8.1, 4.4 Hz, 1H, 2-H), 7.70 – 7.61 (m, 3H, 2’’-H and 4’’-H), 

7.56 (dd, J = 6.5, 3.0 Hz, 2H, 3’’-H), 7.44 (dd, J = 8.4, 1.5 Hz, 1H, 3’-H), 7.32 – 7.27 (m, 1H, 

2’-H), 7.16 (dd, J = 8.4, 2.0 Hz, 1H, 4-H), 7.05 (d, J = 2.0 Hz, 1H, 6-H), 6.77 (d, J = 8.5 Hz, 

1H, 5-H), 3.83 (d, J = 5.6 Hz, 2H, 7-H), 3.61 (d, J = 5.6 Hz, 2H, 7-H), 1.76 (m, 2H, 8-H), 1.36 

(m, 64H, -CH2), 0.93 – 0.81 (m, 12H, CH3); 13C NMR (100 MHz, CDCl3) δ ppm 152.6, 150.7, 

149.2, 149.2, 148.0, 145.0, 144.6, 138.8, 136.3, 130.8, 130.8, 130.4, 129.2, 128.1, 126.9, 124.2, 

123.7, 122.5, 122.3, 122.3, 120.1, 120.1, 114.3, 113.0, 72.0, 71.8, 38.3, 38.3, 32.2, 31.6, 30.0, 

30.0, 30.0, 29.9, 29.7, 29.6, 27.2, 22.9, 14.4; m/z (ES+): Found: 965.7606 [M+H], requires: 

975.7606; νmax/cm-1 (solid/glue): 3263, 3136, 3054, 2954, 2921, 2852, 1691, 1670, 1599, 

1498, 1464, 1443, 1316, 1257, 1223; M.pt: 56-58 °C.  

 



 
 

  141 

4.7.2.12 1,4-Bis(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (4.5) 

 

A mixture of 1,10-phenanthroline-5,6-dione (S.16)  (639 mg, 3.01 mmol), terephtaldehyde 

(S.27)  (202 mg, 1.51 mmol), aniline (0.28 mL, 3.01 mmol) and ammonium acetate (4.6 g, 

60.2 mmol) in glacial acetic acid (4 mL) was refluxed under nitrogen for 24 h. The reaction 

mixture was then cooled to room temperature before the amount of glacial acetic acid was 

reduced under vacuum. The resulting clay was poured into water and neutralised with ammonia 

solution (35%). The precipitate was obtained using centrifuge and washed with water and 

diethyl ether. The yellow product was dried using the freeze dryer to give the title compound 

as a white powder (0.85 g, 85%). 1H NMR (400 MHz, CDCl3) δ ppm 9.19 (dd, J = 4.3, 1.6 

Hz, 2H, 1-H), 9.11 (dd, J = 8.1, 1.6 Hz, 2H, 3-H), 9.05 (dd, J = 4.2, 1.5 Hz, 2H, 1’-H), 7.76 

(dd, J = 8.1, 4.4 Hz, 2H, 2-H), 7.72 – 7.62 (m, 6H, Ph), 7.58 – 7.50 (m, 4H, Ph), 7.44 (dd, J = 

8.4, 1.4 Hz, 2H, 3’-H), 7.30 (dd, J = 8.4, 4.3 Hz, 2H, 2’-H); 13C NMR (101 MHz, CDCl3) δ 

ppm 151.4, 149.3, 148.3, 145.2, 144.7, 137.9, 136.4, 130.9, 130.7, 130.7, 130.6, 129.4, 128.7, 

128.2, 127.3, 124.0, 123.7, 122.4, 119.9; m/z (ES+): Found: 667.2353 [M+H], requires: 

667.2353; νmax/cm-1 (solid): 3286, 3078, 3056, 1651, 1597, 1564, 1514, 1497, 1465, 1455, 

1440, 1425, 1155, 831; M.pt: > 350 °C.  

4.7.2.13 µ-Dichloro-bridged iridium dimer [Ir(ppy)4Cl2] (37) 

 

IrCl3 (202 mg, 0.68 mmol) with 2-phenylpyridine (S.23) (0.21 mL, 1.49 mmol, 2.2 equivalents) 

in a mixture of 2-ethoxyethanol and water (3:1) was refluxing at 110 °C overnight. The solid 

product was filtered through a sinter funnel and washed with water, hexane and diethyl ether. 

The yellow µ-dichloro-bridged Ir dimer (37) was directly used after dried under vacuum 

without further purification (260 mg, 65%). 1H NMR (300 MHz, CDCl3) δ ppm 9.24 (dd, J = 
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5.8, 0.6 Hz, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.73 (td, J = 7.9, 1.5 Hz, 1H), 7.48 (dd, J = 7.6, 1.0 

Hz, 1H), 6.85 – 6.67 (m, 2H), 6.56 (td, J = 7.6, 1.3 Hz, 1H), 5.93 (d, J = 7.3 Hz, 1H); m/z (ES+): 

Found: 501.0941 [M/2-Cl+], requires: 501.0943. 

4.7.2.14 Synthesis of the cationic iridium complexes  

All iridium(III) complexes were prepared by the same procedure. Herein, only the synthesis of 

4.1 is described in detail.  

4.7.2.14.1 [Ir(ppy)2(4.1)]+( Ir.4.1) 

 

To a solution of 2-{4-[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-f][1,10]phenanthroline 

(4.1) (96 mg, 0.16 mmol) in ethanol (40 mL) was added an ethanoic solution of µ-dichloro-

bridged Ir dimer (37) (79 mg, 0.07 mmol). The resulting mixture was refluxed for 24 h. Upon 

cooling, diethyl ether was added to the reaction mixture and filtered through a sinter funnel. 

After dried under vacuum the title compound was obtained as a bright yellow crystalline solid 

(150 mg, 86%). 1H NMR (400 MHz, CDCl3) δ ppm 8.67 (d, J = 8.3 Hz, 2H, 9-H), 8.12 (s, 

2H), 7.93 (d, J = 8.1 Hz, 2H), 7.71 (m, 7H, 4-H and 11-H), 7.36 (d, J = 5.9 Hz, 2H), 7.03 (m, 

7H, 3-H), 6.84 (t, J = 6.3 Hz, 2H, 2-H), 6.42 (d, J = 7.5 Hz, 2H, 1-H), 3.88 (d, J = 5.6 Hz, 2H, 

14-H), 1.87 – 1.76 (m, 1H, 15-H), 1.31 (m, 32H, -CH2), 0.87 (m, 6H, -CH3); 13C NMR 

(100 MHz, CDCl3) δ ppm 168.17 (s), 161.16 (s), 155.05 (s), 150.69 (s), 148.68 (s), 147.85 (s), 

143.73 (s), 138.02 (s), 132.00 (s), 130.94 (s), 129.38 (s), 124.91 (s), 123.22 (s), 122.77 (s), 

121.96 (s), 119.65 (s), 114.91 (s), 71.08 (s), 38.03 (s), 32.03 (s), 31.45 (s), 30.16 (s), 29.81 (s), 

29.76 (s), 29.71 (s), 29.46 (s), 26.98 (s), 26.96 (s), 22.79 (s), 14.23 (s); m/z (ES+): Found: 

1093.5093 [M+], requires: 1093.5093; νmax/cm-1 (solid): 3348, 3047, 2920, 2850, 1606, 1583, 

1465, 1452, 1362, 1248, 1075, 808, 757, 727. 
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4.7.2.14.2 [Ir(ppy)2(4.2)]+( Ir.4.2) 

 

With 0.37 mmol 2-{4-[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-imidazo[4,5-

f][1,10]phenanthroline (3.2) in place of 4.1, this complex was obtained by a procedure similar 

to that described for 4.1. Yield: 42 mg, 98%, gold crystalline solid.1H NMR (400 MHz, 

CDCl3) δ ppm 9.31 (dd, J = 8.3, 1.3 Hz, 1H, 9-H), 8.24 (dd, J = 5.0, 1.2 Hz, 1H, 11-H), 8.14 

(dd, J = 5.0, 1.2 Hz, 1H, 12-H), 7.87 (m, 3H, 10-H), 7.78 – 7.58 (m, 10H), 7.49 (m, 4H), 7.34 

(dd, J = 31.6, 5.3 Hz, 2H), 7.12 – 6.96 (m, 4H), 6.92 (m, 3H, 2-H), 6.81 (d, J = 8.9 Hz, 2H), 

6.36 (t, J = 7.0 Hz, 2H, 1-H), 3.79 (d, J = 5.6 Hz, 2H, 20-H), 1.73 (m, 21-H), 1.27 (m, 

32H, -CH2), 0.85 (t, J = 6.7 Hz, 6H, -CH3); 13C NMR (100 MHz, CDCl3) δ ppm 168.0, 167.8, 

161.1, 155.1, 150.3, 149.9, 149.5, 148.8, 148.8, 148.7, 148.4, 144.8, 144.8, 143.8, 143.7, 138.6, 

138.6, 137.2, 137.1, 133.1, 132.0, 132.0, 131.5, 131.4, 131.3, 131.1, 131.0, 130.9, 130.4, 128.9, 

128.5, 127.8, 126.9, 126.7, 126.4, 125.1, 125.0, 123.9, 123.6, 123.0, 122.7, 121.0, 120.2, 120.0, 

119.9, 114.8, 71.3, 38.0, 32.1, 32.0, 31.4, 30.1, 29.8, 29.8, 29.7, 29.5, 29.5, 27.0, 22.8, 14.3; 

m/z (ES+): Found: 1169.5420 [M+], requires: 1169.5397; νmax/cm-1 (solid): 3371, 3046, 2920, 

2851, 1680, 1605, 1582, 1562, 1439, 1400, 1248, 1176, 1125, 726, 693. 

4.7.2.14.3 [Ir(ppy)2(4.3)]+( Ir.4.3) 

 

With 0.09 mmol 2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-

f][1,10]phenanthroline (4.3) in place of 4.1, this complex was obtained by a procedure similar 

to that described for 4.1. Yield: 93 mg, 98%., orange crystalline solid. 1H NMR (400 MHz, 

CDCl3) δ ppm 8.22 (m, 3H), 7.91 (d, J = 8.1 Hz, 2H), 7.70 (m, 6H), 7.37 (s, 2H), 6.99 (m, 8H), 

6.40 (d, J = 7.4 Hz, 2H, 1-H), 4.13 (d, J = 5.3 Hz, 2H, 15-H), 3.86 (d, J = 5.0 Hz, 2H, 15-H), 



 
 

  144 

1.84 (s, 4H, 16-H), 1.27 (m,64 H, -CH2), 0.86 (m, 12H, -CH3); 13C NMR (101 MHz, CDCl3) 

δ ppm 168.2, 155.3, 151.5, 150.6, 149.8, 147.9, 143.7, 138.0, 132.0, 131.0, 124.9, 123.2, 122.8, 

121.1, 119.7, 113.2, 112.3, 72.2, 71.8, 38.4, 38.2, 32.1, 31.6, 31.5, 30.3, 30.3, 29.9, 29.9, 29.8, 

29.6, 29.6, 29.6, 29.5, 29.5, 27.2, 27.1, 22.8, 14.2; m/z (ES+): Found: 1389.8179 [M+], 

requires: 1389.8163; νmax/cm-1 (solid): 3046, 2920, 2851, 1737, 1606, 1477, 1455, 1261, 1062, 

809, 758, 728. 

4.7.2.14.4 [Ir(ppy)2(4.4)]+( Ir.4.4) 

 

With 0.21 mmol 2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-imidazo[4,5-

f][1,10]phenanthroline (4.4) in place of 4.1, this complex was obtained by a procedure similar 

to that described for 4.1. Yield: 296 mg, 98%, orange crystalline solid. 1H NMR (400 MHz, 

CDCl3) δ ppm 9.37 (d, J = 7.9 Hz, 1H, 9-H), 8.27 (d, J = 4.7 Hz, 1H, 11-H), 8.18 (s, 1H, 12-H), 

7.97 – 7.85 (m, 3H, 10-H), 7.73 (m, 9H), 7.58 – 7.47 (m, 3H, 13-H and 14-H), 7.38 – 7.29 (m, 

1H), 7.17 (d, J = 8.9 Hz, 1H, 16-H), 7.08 (dd, J = 16.2, 8.2 Hz, 4H), 7.02 – 6.92 (m, 3H, 2-H), 

6.78 (d, J = 8.4 Hz, 1H, 17-H), 6.41 – 6.32 (m, 2H, 1-H), 3.84 (d, J = 5.6 Hz, 2H, 21-H), 3.59 

(d, J = 5.4 Hz, 2H, 21-H), 1.87 – 1.72 (m, 2H, 22-H), 1.27 (d, J = 8.6 Hz, 64H, -CH2), 0.97-0.74 

(m, 12H, -CH3); 13C NMR (100 MHz, CDCl3) δ ppm 168.0, 167.8, 155.0, 151.3, 150.1, 149.7, 

149.4, 149.2, 148.7, 148.3, 144.8, 144.7, 143.7, 143.6, 138.5, 138.5, 137.3, 137.1, 133.1, 131.9, 

131.9, 131.4, 131.2, 131.0, 130.9, 130.2, 128.8, 128.5, 128.4, 127.7, 126.8, 126.6, 126.3, 125.0, 

124.9, 123.7, 123.4, 123.1, 122.9, 122.7, 122.5, 120.8, 120.1, 119.9, 119.8, 113.9, 112.7, 71.8, 

71.7, 38.1, 38.1, 32.0, 31.4, 30.2, 30.2, 29.8, 29.8, 29.8, 29.7, 29.5, 29.4, 27.0, 27.0, 24.7, 22.8, 

14.2: m/z (ES+): Found: 1465.8488 [M+], requires: 1465.8476; νmax/cm-1 (solid): 3367, 3044, 

2920, 2851, 1681, 1605, 1477, 1440, 1259, 1141, 1030, 1007, 757, 725. 
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4.7.2.14.5 [Ir(ppy)2(4.5)]+( Ir.4.5) 

 

With 0.14 mmol 1,4-bis(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (4.5) 

in place of 4.1, this complex was obtained by a procedure similar to that described for 4.1. 

Yield: 60 mg, 27%, brown crystalline solid. 1H NMR (400 MHz, CDCl3) δ ppm 9.31 (dd, J = 

8.2, 1.2 Hz, 2H, 9-H), 8.27 (dd, J = 5.1, 1.3 Hz, 2H, 10-H), 8.16 (dd, J = 5.1, 1.2 Hz, 2H, 12-H), 

7.96 – 7.82 (m, 6H, 11-H and 8-H), 7.81 – 7.62 (m, 18H), 7.59 (s, 4H), 7.52 (dd, J = 8.6, 

5.1 Hz, 4H, 13-H), 7.41 (d, J = 5.9 Hz, 2H), 7.35 (d, J = 5.9 Hz, 2H), 7.06 (m, 6H,3-H), 6.95 

(m, 6H, 2-H), 6.46 – 6.30 (m, 4H, 1-H); m/z (ES+): Found: 834.2086 [M/2+2], requires: 

834.2083; νmax/cm-1 (solid): 3323, 3041, 1604, 1581, 1475, 1377, 1157, 756, 720. 
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Appendix 

1HNMR and 13C NMR data of novel compounds 
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  163 

1H NMR (400 MHz, CDCl3 + EtOH) and 13C NMR (125 MHz, C2D6O) of 2,6-

Diactetylpyridine-bis(4-methoxyphenylhydrazone) (2)  

 

 



 
 

  164 

1H NMR (500 MHz, MeOD) and 13C NMR (125 MHz, MeOD) of 2,6-Diactetylpyridine-

bis(4-trifluoromethoxyphenylhydrazone) (3)  

 

 



 
 

  165 

1H NMR (500 MHz, CDCl3) and 13C NMR (125 MHz, CDCl3)of 2,6-Bis[(5-

trifluoromethoxy)-1H-indol-2-yl]pyridine (3.2) 

 

 
  



 
 

  166 

1H NMR (500 MHz, CD2Cl2) and 13C NMR (125 MHz, CD2Cl2) of 2,6- Bis[(5-methoxy)-

1H-indol-2-yl]pyridine (3.3) 

 

 

 



 
 

  167 

1H NMR (400 MHz, CD3CN) and 13C NMR (125 MHz, CD2Cl2) of 2,5-Bis[(5-methoxy)-

1H-indol-2-yl]thiophene (3.4) 

 

 

 



 
 

  168 

1H NMR (300 MHz, CDCl3) of 2-Bromo-3-n-butyl-5-methoxy-1H-indole (10)  

 

1H NMR (500 MHz, CDCl3) of 2,6-Dibromo-3-n-butyl-5-methoxy-1H-indole (11) 

 



 
 

  169 

1H NMR (500 MHz, CD2Cl2) and 13C NMR (125 MHz, CD2Cl2) of 3-n-Butyl-5-methoxy-

1-phenylsulfonylindole (13) 

 

 



 
 

  170 

1H NMR (500 MHz, C2D6O) and 13C NMR (125 MHz, C2D6O) of 5-Methoxy-3-phenyl-1-

phenylsulfonyl-2-trimethylstannylindole (16) 

 

 



 
 

  171 

1H NMR (500MHz, C2D6O) and 13C NMR (125 MHz, C2D6O) of 5-Methoxy-3-phenyl-1-

[(2’-trimethylstannyl)phenylsulfonyl]-2-trimethylstannylindole (17) 

 

 



 
 

  172 

1H NMR (500 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 5-Methoxy-1-

phenylsulfonyl-2-trimethylstannylindole (18) 

 

 



 
 

  173 

1H NMR (500 MHz, DMSO) and 13C NMR (125 MHz, DMSO) of 6-(5-Methoxy-3-phenyl-

1-phenylsulfonylindol-2-yl)-2-bromopyridine (20) 

 

 



 
 

  174 

1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 1,3-Bis(5-Methoxy-1-

(phenylsulfonyl)-1H-indol-2-yl)benzene (21) 

 

 



 
 

  175 

1H NMR (500 MHz, CD2Cl2) and13C NMR (125 MHz, CD2Cl2) of 2,6-Bis(5-methoxy-1-

phenylsulfonylindol-2-yl)pyridine (22) 

 

 



 
 

  176 

1H NMR (500 MHz, CDCl3) and 13C NMR (125 MHz, CDCl3) 2,5-Bis(5-methoxy-1-

phenylsulfonylindol-2-yl)thiophene (24) 

 

 



 
 

  177 

1H NMR (300 MHz, CD2Cl2) of 2,5- Bis(5-methoxy-1-phenylsulfonylindol-2-yl) thiazole 

(25) (Crude NMR spectrum) 

 

1H NMR (400 MHz, CDCl3) of Bis(5-methoxy-1-phenylsulfonylindol-2-yl) (28)

 



 
 

  178 

1H NMR (500 MHz, CDCl3) and 13C NMR (125 MHz, CDCl3) of 2-(5-Methoxy-1-

phenylsulfonylindol-2yl)-5-(5-methoxy-1H-indol-2-yl)thiophene (29) 

 

 



 
 

  179 

1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of (±)-4-[(2-

Octyldodecyl)oxy]benzaldehyde (34) 

 

 

 



 
 

  180 

1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 3,4-Bis[(2-

octyldodecyl)oxy]benzaldehyde (35) 

 

 

 

 



 
 

  181 

1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 3-Hydroxy-4-[(2-

octyldodecyl)oxy]benzaldehyde (36)  

 

 

 



 
 

  182 

1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of (±)-2-{4-[(2-

octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-f][1,10]phenanthroline (4.1) 

 

 

 



 
 

  183 

1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 

(±)-2-{4-[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline 

(4.2)

 

 



 
 

  184 

1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 

2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1H-imidazo[4,5-f][1,10]phenanthroline (4.3) 
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1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 

2-{3,4-bis[(2-octyldodecyl)oxy]phenyl}-1-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline 

(4.4) 
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1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) of 1,4-bis(1-phenyl-1H-

imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzene (4.5) 
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[Ir(ppy)2(4.1)]+( Ir.4.1) 
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[Ir(ppy)2(4.2)]+( Ir.4.2) 
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[Ir(ppy)2(4.3)]+( Ir.4.3) 
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[Ir(ppy)2(4.3)]+( Ir.4.4) 
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[Ir(ppy)2(4.3)]+( Ir.4.5) 
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