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Abstract

The development of new quantum chemical methods requires extensive benchmarking to

establish the accuracy and limitations of a method. Current benchmarking practices in

computational chemistry use test sets that are subject to human biases and as such can be

fundamentally flawed. This work presents a thorough benchmark of diffusion Monte Carlo

(DMC) for a range of systems and properties as well as a novel method for developing

new, unbiased test sets using multivariate statistical techniques. Firstly, the hydrogen

abstraction of methanol is used as a test system to develop a more efficient protocol that

minimises the computational cost of DMC without compromising accuracy. This protocol

is then applied to three test sets of reaction energies, including 43 radical stabilisation

energies, 14 Diels-Alder reactions and 76 barrier heights of hydrogen and non-hydrogen

transfer reactions. The average mean absolute error for all three databases is just 0.9

kcal/mol.

The accuracy of the explicitly correlated trial wavefunction used in DMC is demon-

strated using the ionisation potentials and electron affinities of first- and second-row atoms.

A multi-determinant trial wavefunction reduces the errors for systems with strong multi-

configuration character, as well as for predominantly single-reference systems. It is shown

that the use of pseudopotentials in place of all-electron basis sets slightly increases the

error for these systems. DMC is then tested with a set of eighteen challenging reactions.

Incorporating more determinants in the trial wavefunction reduced the errors for most sys-

tems but results are highly dependent on the active space used in the CISD wavefunction.

The accuracy of multi-determinant DMC for strongly multi-reference systems is tested for

the isomerisation of diazene. In this case no method was capable of reducing the error of

the strongly-correlated rotational transition state.

Finally, an improved method for selecting test sets is presented using multivariate

statistical techniques. Bias-free test sets are constructed by selecting archetypes and pro-

totypes based on numerical representations of molecules. Descriptors based on the one-,

two- and three-dimensional structures of a molecule are tested. These new test sets are

then used to benchmark a number of methods.
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Chapter 1

Introduction

Quantum chemical methods have become an integral part of the chemistry field over the

last 50 years. Advances in drug discovery1,2 and high-throughput material screening3

would not have been possible without them but their impact is much broader. They allow

hypothetical and unobserved systems to be studied in great detail. The foundation of all

computational chemistry methods lies in solving the time-independent Schrödinger wave

equation (SWE),

ĤΨ = EΨ (1.1)

where Ĥ is the electronic Hamiltonian operator, Ψ is the wavefunction solution and E

is the electronic energy of the system of interest. If the Hamiltonian and wavefunction are

known then virtually any property can be calculated. The correlated nature of sub-atomic

interactions means the Schrödinger equation can only be solved exactly for systems with

one or two electrons. Approximations must be made to solve it for larger systems. Tradi-

tional electronic structure methods like Hartree Fock (HF) theory and density functional

theory (DFT) are well established and chemically accurate results have been obtained for

a range of systems.4–7 Unfortunately this accuracy comes with a large cost. Post-HF

CCSD(T) scales as N7 with respect to system size, N. DFT methods are more affordable

but their performance is unreliable; accurate DFT results for small systems don’t neces-

sarily translate for large systems.8 A promising alternative to these methods is quantum

Monte Carlo (QMC).

QMC uses stochastic integration and has greater freedom in the form of the trial

wavefunction compared to ab initio wavefunction theory (WFT) or DFT methods. The

commonly-used Slater-Jastrow trial wavefunction explicitly accounts for the static and

dynamic correlation in a system. By using statistical sampling QMC methods are intrinsi-

cally parallelisable and scale nearly perfectly with the number of available cores. They are

ideally positioned to take full advantage of the new wave of parallel computers compared

to more traditional methods.

The development of new quantum chemical methods requires extensive benchmarking

to demonstrate robustness and identify potential weaknesses and shortcomings. Perfor-

mance of a method is measured by the error, defined as the difference between the calcu-

lated value and some reference value that has been obtained from experiment or high-level

2



3

electronic structure methods. Commonly used metrics include the mean unsigned error

(MUE) or mean absolute deviation (MAD) but other metrics like root mean squared error

(RMSE) can be used. Smaller errors are desirable and chemical accuracy is defined as

an error of 1 kcal/mol or less. For properties where energy differences are expected to be

small, like the relative energies of conformers, this accuracy needs to be on the order of

0.1-0.2 kcal/mol. The outcomes of benchmarking guide users towards the most appropri-

ate method for a specific problem and identify the types of systems where a method might

fail. Computational chemistry is increasingly being used for simulations where experiment

is impossible and it is essential that we can estimate the accuracy of the calculations in

these situations.

Benchmarking is a powerful tool for assessing and comparing the accuracy of electronic

structure methods but there are serious limitations to the current methodology. The

standard practice in computational chemistry is to benchmark using test sets. There

are now hundreds, if not thousands, of these sets available in the literature for a vast

range of properties. These test sets have been built using ‘chemical intuition’ and are

biased by how we perceive chemical space. This has led to redundancies in test sets and

benchmarking results that are highly dependent on the systems studied. Not using a

comprehensive test set to evaluate a method can lead to biases in reported error when one

class of reaction is over represented.9–12 The standard practice has become a cumbersome

process requiring thousands of calculations to overcome these challenges. Some effort has

been directed at finding small, representative subsets but this is limited to only a few test

sets for a handful of properties.13 It also requires thousands of data points from previous

benchmarking studies with the biased test sets.

An alternative method for building these test sets is to use multivariate statistics and

remove the human bias entirely. Chemical space can be represented by numerical descrip-

tors based on the structure or physical properties of molecules. Techniques like k -means

clustering and archetypal analysis are routinely used in other fields to find combinations

of points that best represent or summarise large data sets. By developing these techniques

for computational chemistry, smaller databases can be created for benchmarking that are

designed to provide critical tests of methods without redundancy.

The aim of this work is two-fold. Firstly, an extensive benchmarking study is conducted

for diffusion Monte Carlo (DMC). Secondly, a machine-learning approach is explored for

building new test sets. This thesis begins by introducing some background theory related

to electronic structure methods as they pertain to this work. Chapter 3 describes a small

benchmarking study of DMC for the reaction between atomic hydrogen and methanol.

This study investigated the effect of a number of parameters within the DMC algorithm to

improve the efficiency of the calculation but maintain accuracy. Chapter 4 presents a more

comprehensive benchmarking of DMC, specifically focusing on reaction barriers for a range

of organic systems. In Chapter 5 the effect of pseudopotentials and multi-determinant

trial wavefunctions on the correlation energy recovered by DMC is investigated using the

ionisation potentials and electron affinities of first- and second-row atoms. In Chapters
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6 and 7 the performance of DMC is investigated more rigorously using systems that are

known to be challenging for ab initio WFT and DFT methods, including a set of 18

‘difficult cases’ and the isomerisation of diazene. Finally, Chapter 8 presents a novel

method for developing test sets using multivariate statistics instead of chemical intuition.

These new test sets are then used to benchmark DMC and DFT methods.
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Chapter 2

Theoretical Methods

2.1 Introduction

The Schrödinger wave equation:1

ĤΨ = EΨ (2.1)

describes the total energy (E ) of a system as a function of the Hamiltonian (Ĥ) operating

on the wavefunction (Ψ). If the Hamiltonian and wavefunction are known then virtually

any physical or chemical property of a given molecular system can be calculated. The

Hamiltonian is an operator describing the observable energy of the system and can be

written in terms of kinetic (T̂ ) and potential (V̂ ) energy operators for electrons (e) and

nuclei (n):

Ĥ = T̂n + T̂e + V̂ee + V̂ne + V̂nn (2.2)

This definition ignores relativistic effects but provides a good description for the relatively

light first- and second-row atoms.2 The Born-Oppenheimer approximation3 is commonly

used to simplify wavefunction solutions to the Schrödinger wave equation by decoupling

the motion of electrons and nuclei. It assumes the nuclei are infinitely heavy relative to the

electrons and the electrons move instantaneously in response to the nuclei. The electronic

Hamiltonian, Ĥelec, can then be written as:

Ĥelec = T̂e + V̂ee + V̂ne + V̂nn

= −1

2

n∑
i

∇2
i +

n∑
i<j

1

rij
−

N∑
I

n∑
i

ZI
rIi

+ V̂nn

(2.3)

for a system of n electrons and N nuclei, where rij is the distance between electrons

i and j and ZI is the atomic number of nuclei I. The Born-Oppenheimer approximation

reduces the Schrödinger wave equation to an electronic problem and wavefunction solutions

describe the motion of n electrons moving in a field of N fixed nuclei. Electronic structure

theory is primarily concerned with finding the electronic wavefunction solutions and their

corresponding energy.

The Schrödinger wave equation is a second-order linear differential equation and exact

solutions exist for only a small number of systems. Electronic structure methods use

6
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different approximations in a trade off between accuracy and computational cost. Hartree-

Fock (HF) theory uses the mean-field approximation but fails to account for electron

correlation and post-HF ab initio wavefunction theory (WFT) attempts to recover this

correlation energy. Density functional theory (DFT) reduces the dimensionality of the

problem by using the electron density in place of the wavefunction. Quantum Monte

Carlo (QMC) methods use stochastic integration and have much greater freedom in the

form of the trial wavefunction. An overview of each method is provided below. More

detailed information for ab initio and DFT methods can be found in Refs. 2,4–6. Detailed

information for QMC methods can be found in Refs. 7–10.

2.2 Ab initio methods

Hartree-Fock (HF) theory11 is the foundation of ab initio wavefunction methods. It ap-

proximates an exact N -body wavefunction by using single particle functions (orbitals) to

describe the distribution of each electron. The non-relativistic electronic Hamiltonian in

Equation 2.3 depends only on the spatial coordinates, ri, of each electron but electrons

are also characterised by a spin quantum number. The coordinate xi = (ri, σi) is used in-

stead to define the spin and three spatial coordinates of an electron i. The Pauli exclusion

principle states that no two electrons can occupy the same point in configuration space12

and wavefunction solutions to Equation 2.3 must be antisymmetric with respect to the

interchange of any two electrons, such that for a system of N electrons:

Ψ(x1, ...,xm, ...,xn, ...,xN ) = −Ψ(x1, ...,xn, ...,xm, ...,xN ) (2.4)

The HF wavefunction is given by a single N -electron Slater determinant:13

ΨHF = |ψ1, ψ2, ...ψN 〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) ... ψN (x1)

ψ1(x1) ψ2(x1) ... ψN (x1)
...

...
. . .

...

ψ1(xN ) ψ2(xN ) ... ψN (xN )

∣∣∣∣∣∣∣∣∣∣
(2.5)

The set of functions ψi are the individual one-electron wavefunctions, also called molec-

ular orbitals (MOs), that describe the distribution of an electron as a function of its spin

and spatial coordinates x. Interchanging any two electrons in the Slater-determinant will

change the sign of ΨHF, satisfying the antisymmetry requirement. The expectation value

of the energy is given by E = 〈Ψ|Ĥ|Ψ〉 if Ψ is normalised. For the HF wavefunction:

EHF =
∑
i

Hi +
1

2

∑
ij

(Jij −Kij) (2.6)

where Hi involves one-electron terms arising from the kinetic energy and nuclear attraction

of the electrons, Jij is a two-electron term describing the coulomb repulsion between
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the electrons and Kij is a two-electron term associated with the exchange of electronic

coordinates. The variational theorem states that the energy determined by an approximate

wavefunction will always be equal to or greater than the energy of the exact wavefunction.

The coefficients of the MOs are optimised to minimise EHF in a process that is carried out

iteratively and is known as the Self-Consistent Field (SCF) method.11,14–18

There are several variations of HF theory. Restricted Hartree-Fock (RHF) assumes the

spin-up (α) and spin-down (β) electrons of an electron pair are energetically degenerate

and assigns them to the same spatial MO. This is a reasonable assumption for closed shell

species but open shell systems like radicals have uneven numbers of α and β electrons. Un-

restricted Hartree-Fock (UHF) method allows separate sets of MOs for α and β electrons

but this can result in spin-contamination and the wavefunctions are no longer eigenfunc-

tions of Ŝ2.19 Restricted open-shell Hartree-Fock (ROHF) pairs α and β electrons in a

similar manner to RHF but allocates separate MOs for unpaired electrons.6

The orbitals used in HF theory are independent of the instantaneous motion of other

electrons and introduce an intrinsic error known as the ‘correlation error’. The correlation

energy is defined as:

Ecorr = Eexact − EHF (2.7)

The HF energy provides an upper limit on the electronic energy of a system and the

correlation energy will always be negative. The correlation error increases with system size

and the number of electrons. It accounts for only a small percentage of the total electronic

energy of a system but is important when energy differences are considered and post-HF

methods are chiefly concerned with recovering this energy. Correlation energy is often

characterised as either static or dynamic. Static correlation arises from near-degeneracy

effects and is important in systems where different orbitals have similar energies such

as stretched bonds and low-lying excited states. Dynamic correlation arises from the

instantaneous electron-electron interactions. For systems where dynamic correlation is

dominant a single determinant is sufficient and HF provides a reasonable description. For

systems with significant static correlation more than one reference determinant should be

used.

2.2.1 Post-HF methods

Configuration interaction

The configuration interaction (CI) method allows excitations from occupied orbitals into

one or more unoccupied ‘virtual’ orbitals.20 Single excitations (Ψa
i ) promote one electron

from an occupied orbital, i, into a virtual orbital, a. Double excitations promote two

electrons and so forth. Examples of some of these excitations are shown in Figure 2.1.

These different configurations are then mixed together to give a better approximation of

the true wavefunction:

ΨCI = c0Ψ0 +
∑
i

caiΨ
a
i +

∑
ij

cabij Ψab
ij +

∑
ijk

cabcijkΨabc
ijk + .... (2.8)
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Ψa
i Ψab

ij

E

Ψ0 Ψabc
ijk

Figure 2.1: Examples of the types of excitations used to generate a configuration
interaction wavefunction. Excitations shown include single (Ψa

i ), double (Ψab
ij ) and

triple (Ψabc
ijk) excitations from the Hartree-Fock reference, Ψ0.

where i, j, k, ... refer to occupied orbitals and a, b, c, ... refer to unoccupied (vir-

tual) levels. The coefficients, cai , c
ab
ij , cabcijk , ..., are found using the variational theorem.

Configuration state functions (CSFs) are symmetry-adapted linear combinations of Slater

determinants and are often used in place of determinants to reduce the number of func-

tions.

Full configuration interaction (FCI) includes all possible configurations for a system

with N electrons (up to N -fold excitations) and is exact within a given set of basis func-

tions. The cost of FCI increases exponentially and in practice the CI expansion is trun-

cated according to excitation level.21 In this work CISD (single and double excitations)

and CISDTQ (single, double, triple and quadruple excitations) were used. Truncated CI

methods are variational but no longer size consistent i.e. the energy of a system with

N non-interacting particles is not equal to the sum of the energy of N isolated systems.

They recover smaller fractions of the correlation energy as system size increases and can

be unreliable for dissociation energies and other energy differences, particularly for larger

molecules.22

2.2.2 Coupled-cluster theory

Coupled-cluster (CC) theory23–26 defines the true wavefunction as:

ΨCC = eT̂ΨHF (2.9)

where T̂ is an excitation operator and can be written as a linear combination of excitations,

up to N -fold excitations for system with N electrons:

T̂ = T̂1 + T̂2 + T̂3 + ...+ T̂N (2.10)

If all excitation levels up to N are included then ΨCC is equivalent to ΨFCI and is exact

within the basis set approximation but the number of excitations is usually truncated

at some level. Unlike FCI it includes additional terms to maintain size-consistency but
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truncated CC is no longer variational. Coupled cluster with single, double and perturba-

tive triple excitations (CCSD(T)27) has become the gold-standard in quantum chemical

methods and is expected to give results close to the FCI limit for a given basis set. The

basis set error is often removed by extrapolating to the complete basis set limit.2

2.2.3 Multi-reference methods

The methods described above use a single Slater determinant as the reference function.

This approach fails for systems where static correlation is important and more than one

configuration contributes significantly to the ground state energy. The multi-configuration

self consistent field (MCSCF) method begins with linear combination of Slater determi-

nants. It is similar in principle to CI but optimises the MOs used for constructing the

determinants as well as the determinant coefficients in an iterative SCF procedure. The

Slater determinants included are selected a priori, commonly using the complete active

space (CAS) method.28 The CAS wavefunction includes all possible excitations within a

set of active orbitals. The near-degeneracies that result in static correlation most often

affect the highest occupied and lowest unoccupied orbitals and the active space is usu-

ally built using a certain number of these orbitals. The general notation is CAS(n, m),

referring to n electrons distributed amongst m active orbitals.

The CASSCF wavefunction does not include dynamic correlation but this can be incor-

porated with multi-reference configuration interaction (MRCI).28 MRCI is similar to CI

as described above but generates all possible excitations for each determinant in a multi-

reference wavefunction. Each determinant is treated equivalently. A cheaper alternative

is complete active space second order perturbation theory (CASPT2), where perturbative

corrections are made to the CASSCF expansion based on the single and double excitations

from every determinant in the active space.29 Including the perturbations destroys the

variationality of MCSCF.

2.2.4 Composite high-level methods

Composite methods attempt to reproduce accurate high-level ab initio methods at a frac-

tion of the cost. They use a combination of methods and basis sets via addititivity or

extrapolation schemes with theoretical or empirical corrections. Examples include the

Gaussian (Gn) procedures,30–37 the complete basis set (CBS) methods38–41 and the Weiz-

mann (Wn) procedures.42–44 This work used a variation of the G4 method, G4MP2-X.

Results from high-level methods with small basis sets are combined with results from low-

level methods with large basis sets to approximate a high-level energy (CCSD(T)) with a

large basis set.45 The electronic energy calculated with G4MP2-X is defined as:

EG4(MP2)−6X =HF/CBS + Ecorr
SCS-MP2/G3MP2LargeXP+

∆ES-CCSD/6− 31G(d) + Ecorr
S-(T)/6− 31G(d)

+ HLC + ESO

(2.11)
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where HLC is a high-level correction and ESO is a spin-orbit correction. More details

can be found in Ref. 45. This method has been shown to deliver chemically accurate

results when tested on a set of 526 energies including thermochemical properties, reaction

energies and barrier heights and weak interactions. Its empirical nature means that good

performance for systems similar to the training set does not translate into reliable results

for all systems.46,47

2.3 Density functional theory

A popular alternative to ab initio methods is density functional theory (DFT). The

Hohenberg-Kohn thereom states that the electronic energy of the ground state of a system

is determined by the one-electron density, ρ0(r).48 While ab initio methods become in-

creasingly demanding as the number of atoms increases, the one-electron density is always

a function of three variables, independent of the number of atoms. The theorem shows

that there exists an energy functional that will return the ground state energy for a given

ρ0(r) but does not give the exact form. Instead, modern DFT methods are based on

Kohn-Sham theory.49 The energy functionals used have the form:

E(ρ) = ET + Ene(ρ) + Eee(ρ) + EXC(ρ) (2.12)

The first three terms describe the kinetic energy, nuclei-electron attraction and classical

electrostatic repulsion and have well-defined functionals. The last term, EXC(ρ), is the

exchange-correlation functional. Its exact form is unknown and defining this functional is

the greatest challenge of DFT methods. The treatment of the exchange-correlation energy

determines the accuracy and expense of DFT methods. A hierarchy of the approximate

treatments of the exchange-correlation term can be classed in a ‘Jacob’s Ladder’.50 The

exact functional lies at the top of the ladder and the lower five rungs define a set of

assumptions made in approximating the exchange-correlation functional.

At the bottom of the ladder is the local density approximation, where EXC is assumed

to depend only on a locally uniform density. A better approximation assumes the density

is not locally uniform and EXC depends on the density and its derivatives. This is known as

the generalised gradient approximation (GGA) and constitutes the second rung. The third

rung is meta-GGA functionals and includes a term for the Laplacian of the density (∇2ρ)

or the orbital kinetic energy density (τ). Hybrid (or hyper-GGA) functionals include

a dependence on the exact (HF) exchange and lie on the fourth rung. An example is

the B3LYP51,52 functional, used in this work to generate trial wavefunctions for QMC

methods. It uses a generalised gradient approximate to the electron density and mixes

HF in the Becke exchange functional with parameterisations. Double-hybrid functionals

incorporate the unoccupied Kohn-Sham orbitals and constitute the fifth rung.
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2.4 Quantum Monte Carlo

Quantum Monte Carlo methods solve the SWE stochastically rather than analytically.

Using a stochastic method like Monte Carlo (MC) integration means there is much greater

freedom in the choice of trial wavefunction. Electron correlation effects can be explicitly

included, allowing for very accurate calculations of molecular properties. One of the

greatest advantages of QMC methods is their favourable scaling with respect to system

size, N, scaling as O(N 3-4) compared to O(N 7) for the gold-standard CCSD(T).7

The two most common QMC methods are variational quantum Monte Carlo (VMC)

and diffusion quantum Monte Carlo (DMC). Both are variational and the calculated energy

of the trial wavefunction will always be above the true ground-state.10

2.4.1 Trial wavefunction

The exact form of the trial wavefunction is not known for most systems. Instead, QMC

and many ab initio methods construct a trial wavefunction (ΨT) as an approximation to

the true wavefunction.7 Most MC methods use a Slater-Jastrow trial wavefunction, such

that:

ΨT = eJD↑D↓ (2.13)

where ΨT is the trial wavefunction, D↑D↓ are single-particle Slater determinants and J

is the Jastrow factor. The parameters in the trial wavefunction are optimisable. In this

work they are optimised by minimising the total energy at the variational Monte Carlo

(VMC) level, using the linear method of Toulouse and Umrigar.53 Other forms of the

trial wavefunction include geminals,54 backflow-transformed determinants,55 Pfaffians56

and multi-determinant expansions.57

Jastrow factor

The Jastrow factor is a function of inter-electron distances and describes the dynamic

electron correlation of the system:

J =
∑
i>j

∑
A

[Jee(rij) + JeN(riA) + JeeN(riA, rjA, rij)] (2.14)

where i, j label electrons and A labels nuclei. The general form includes electron-electron

(ee), electron-nucleus (eN ) and electron-electron-nucleus (eeN ) correlation terms,58 though

there are more extensive versions.59,60 The third term (JeeN ) has a very small impact on

total energy but a significant contribution to computational time, as shown in Chapter

3. A two-term Jastrow factor is used for all DMC calculations presented here unless

stated otherwise. The Jastrow factor enforces the electron-electron Kato cusp conditions,

where the local kinetic energy must have an equal and opposite divergence to the Coulomb

potential as two charged particles approach.61
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Slater determinant

The Slater determinant describes the nodal surface of the system and enforces the electron-

nucleus cusp. The Slater determinant is made up of single particle orbitals that are

usually obtained from DFT or HF calculations. Studies have shown Kohn-Sham orbitals

taken from DFT calculations perform marginally better than HF orbitals.62,63 Single-

determinant wavefunctions can fail to describe near-degeneracy effects but the inclusion

of more determinants can better describe the static correlation of a system. These multi-

determinant wavefunctions have been successfully applied to a number of systems.64–74

More detail is provided in Section 2.4.4

2.4.2 Variational Monte Carlo (VMC)

Variational Monte Carlo (VMC) uses the Metropolis algorithm75 to evaluate a trial wave-

function and calculate molecular properties like the total energy. Random moves are

proposed from a standard distribution. Moves to points of higher probability are always

accepted but moves to regions of lower probability are rejected according to a particular

formula obeying a detailed balance equation. Ergodicity is assumed; any point in the

configuration space can be reached in a finite number of moves and the distribution of the

moving points will converge to the desired probability distribution after an appropriate

period of equilibration. For uncorrelated samples the statistical uncertainty in the integral

decreases as the square root of the number of sampling points, independent of the dimen-

sionality of the integral and the result converges much faster than standard grid methods

such as the trapezoidal rule. The trial wavefunction can be systematically improved by

varying its parameters to minimise the energy estimate.7 The variational energy of a trial

wavefunction ΨT can be written as the expectation value of the Hamiltonian:

EV =

∫
ΨT(R)ĤΨT(R)dR∫

Ψ2
T(R)dR

≥ E0 (2.15)

where E V is the variational energy, Ĥ is the many-body Hamiltonian, ΨT is the trial

wavefunction and R is a 3N -dimensional vector of particle coordinates. If ΨT has correct

symmetry under particle exchange, the first derivative is continuous everywhere except

where the potential is finite and
∫

Ψ2
TdR and

∫
ΨTĤΨTdR exist then E V will always be

greater than the exact ground-state energy, E 0, providing an upper bound on the energy.

For stochastic evaluation, Equation 2.15 can be re-written using an importance sam-

pling transform, such that :

EV =

∫
p(R)EL(R)dR (2.16)

where E L is the local energy, expressed as:

EL(R) = Ψ−1
T ĤΨT (2.17)
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and p is a probability distribution, expressed as:

p(R) =
Ψ2

T(R)∫
Ψ2

T(R′)dR′
(2.18)

This probability distribution is sampled using the the Metropolis algorithm75 and the total

VMC energy is the local energy averaged over the distribution p(R):

EV = lim
M→∞

1

M

M∑
i=1

EL(Ri) (2.19)

where M is the number of configurations Ri that have been generated after equilibrium.

The statistical error introduced by the stochastic MC algorithm is proportional to 1√
M

for M samples. Configurations are serially correlated and a blocking method is used to

give a better estimate of the error. Adjacent data points are averaged together to form

block averages.76 This is performed recursively and the number of data points is halved

with each iteration. The calculated value of the standard error increases as a function of

the number of blocking transformations until a limiting value is reached.

Selecting the normalised square of the trial wavefunction for the probability distribu-

tion (Equation 2.18) simplifies Equation (2.16). ΨT is an approximate eigenfunction of the

Hamiltonian, i.e ĤΨT ≈ EΨT, but as ΨT approaches the exact eigenfunction the variance

of the local energy approaches zero (i.e. ĤΨ0
Ψ0

= E0, where E0 is the ground state energy

of the system (a constant)). This is the zero-variance property; EL becomes a smoother

function of R as ΨT is improved, reducing the number of sampling points required for

an accurate estimate of Ev. Unlike other QMC variations VMC is not affected by the

fermion sign problem and the accuracy of the VMC method will always be limited by the

quality of the trial wavefunction. It can be challenging to ensure equivalent wavefunctions

for different systems, leading to inaccurate estimates of energy differences.

2.4.3 Diffusion Monte Carlo (DMC)

Diffusion Monte Carlo (DMC) is variational like VMC but its accuracy is not dependent

on the form of the trial wavefunction. It propagates the time-dependent Schrödinger

wave equation (Equation 2.20) through imaginary time to extract the true ground-state

wavefunction, Ψ0:

ih̄
δΨ(R, t)

δt
= ĤΨ(R, t) (2.20)

Substituting τ = it/h̄ in (Equation 2.20) transforms it into a diffusion equation:

δΨ(R, τ)

δτ
= −(Ĥ − ER)Ψ(R, τ)

= −(T̂ + (V̂ (R)− ER))Ψ(R, τ)

= −(
1

2
∇2

R + (V̂ (R)− ER))Ψ(R, τ)

(2.21)
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where ER is the reference energy, an arbitrary offset. The electronic Hamiltonian (Ĥ) has

been expanded into kinetic and potential energy terms. The wavefunction Ψ(R, τ) can be

expanded in eigenstates ψi of the hamiltonian, such that:

Ψ(R, τ) =
∑
i

e−(Ei−ER)τci(0)ψi(R) (2.22)

where Ei is an eigenvalue. This will converge on the ground state (Ψ0) in the limit τ→∞
if ER = E0 as the excited states have larger Ei values and will decay rapidly. In principle

DMC is an exact method but in reality the ground state it converges on is the nodeless

bosonic solution. Antisymmetry constraints must be imposed for the solution to converge

on the fermionic ground state.

Equation 2.21 can be written in integral form using the Greens function:

Ψ(τ,R) =

∫
G(τ,R′,R)Ψ(R′)dR′ (2.23)

where G(τ,R′,R) =
〈
R|e−(Ĥ−ER)τ|R′

〉
is the Green’s function describing the propaga-

tion from R′ to R in imaginary time τ and Ψ(R′) is the initial trial wavefunction. Green’s

function Monte Carlo (GFMC)77,78 samples this Green’s function directly but the algo-

rithm is too computationally expensive for almost all systems. The Trotter formula79 can

be used to approximate the propagator in terms of kinetic and potential enregy, such that:

(e−(Ĥ−ER)∆τ)N = (e−(T̂+(V̂−ER))∆τ)N

≈ (e−T̂∆τe−(V̂−ER)∆τ)N
(2.24)

with timestep ∆τ = τ/N for N timesteps, assuming ∆τ to be small. Since the kinetic

(T̂ ) and potential (V̂ ) energy operators do not commute this approximation introduces a

time-step error when ∆τ is non-zero. This bias is corrected for by using different values

of ∆τ and extrapolating to ∆τ → 0. The initial trial wavefunction Ψ(R′) can be taken

from an optimised VMC wavefunction but a more efficient solution uses the importance

sampling transform and samples from the mixed distribution:

f(R, τ) = Ψ0(R, τ)ΨT(R, τ) (2.25)

where ΨT(R, τ) is the guiding wavefunction (trial wavefunction).80 The stochastic realisa-

tion of Equation 2.24 models T̂ as a diffusion process and V̂ as a branching process. Walk-

ers are distributed according to f(R, 0) = |ΨT(R)|2 with equal weights (wk = 1) before

undergoing a drift-diffusion process and the weight is updated according to wk(τ+ ∆τ) =

wk(τ)e−∆τ(EL(R)−ER). A stochastic birth-death process is used to control the number of

walkers. In the simplest implementation, walkers with weight greater than 1 are duplicated

with probability wk − 1 and walkers with weight less than one are killed with probability

1− wk.
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The ground state energy can then be calculated:

EDMC = lim
τ→∞

∫
Ψ(R, τ)ĤΨT(R)dR∫
Ψ(R, τ)ΨT(R)dR

= lim
τ→∞

∫
f(R, τ)EL(R)dR∫

f(R, τ)dR

=
1

M

∑
M

EL(RM ) +O(1/
√
M)

(2.26)

for M configurations. The statistical uncertainty on the final EDMC value can be reduced

by running for longer periods.

Fixed-node approximation

DMC is an exact method within statistical error bars but will converge on the bosonic

ground state rather than the antisymmetric fermionic solution. The most common solution

is the fixed-node approximation (FNA) where DMC solutions are restricted to having the

same nodes as the trial wavefunction. These nodes are enforced by rejecting any moves

where a walker would cross a node.

The FNA introduces a systematic error when the nodal surface is not exact and is

the biggest limitation on the accuracy of fixed-node DMC (FNDMC). Significant effort

has been directed towards improving the nodes of the trial wavefunction but the structure

of these nodal surfaces is still relatively unknown.81 Starting orbitals can be generated

from canonical HF orbitals, Kohn-Sham orbtials from DFT or natural orbitals from post-

HF methods. An obvious solution to the FNA is to simply use better starting orbitals

and it has been shown that Kohn-Sham orbitals offer a better starting point.62,63 Multi-

determinant wavefunctions can improve the nodes but only if the coefficients have been

reoptimised in the presence of a correlation factor.81,82

The nodes can be systematically improved by optimising the Slater determinants in

the presence of a correlation function83 or the nodal surfaces can be optimised directly, as

is the case in self-healing DMC.84,85 Another alternative is the released node method,86,87

where the fixed-node constraint is relaxed and the exact ground-state energy is estimated

by including a factor of -1 for each walker that crosses the nodal surface. The cancellation

between the positive and negative contributions to the averages increases with the number

of walkers, resulting in rapid growth of the variance as the denominator approaches zero.

The rate of error growth increases with the difference in the energy between the fermi

and bose ground states and is too large for use, even in small systems.88 Other wave-

function forms can be used that include correlation more directly than the sums of Slater

determinants. Examples are the antisymmetrized geminal power functions,54 valence-

bond,89 Pfaffian forms56 and back-flow-transformed determinants.55 Another alternative

is Fermion Monte Carlo (FMC)90 (also referred to as exact QMC91) which is independent

of the nodes of the trial function. Instead, cancellation of positive and negative walkers is

used to maintain antisymmetry. Although it is an exact method in general it is unstable
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and at present FMC methods are not practical for large systems.92

2.4.4 Multi-determinant DMC

The standard trial wavefunction used in DMC calculations has one Slater determinant but

the nodal surface has the potential to be improved by including more determinants. In

this case, the Slater-Jastrow wavefunction can be written as:

ΨT = eJ
∑
n

cnD
↑
nD
↓
n (2.27)

where cn are coefficients and D↑nD
↓
n are the Slater determinants taken from a multi-

determinant wavefunction. These methods generate too many determinants, or config-

uration state functions (CSFs, spin- and space-symmetry adapted linear combinations of

determinants) to be used practically in a DMC methods and the expansions are usu-

ally truncated according to some threshold. Traditionally the number of CSFs has been

selected by choosing a fixed number of terms93 or using a threshold value on the CI coef-

ficients.66,68,74,94,95

This work used two different truncation schemes; a weight-based scheme and an energy-

based one. The weight-based scheme arranges the CSFs in order of their coefficients, from

largest to smallest absolute value. The CSFs are progressively included until sum of the

squares of the CSF coefficients (i.e. the norm of the expansion) is equal to some thresh-

old value. This removes a significant number of CSFs with small coefficients that make

relatively small contributions to the total wavefunction. The energy-based truncation

estimates the contribution each determinant (or CSF) makes to the total energy of the

multi-determinant calculation. CSFs are ordered according to their energetic contribution

and then summed in a similar manner as the weights until a threshold value is reached.

2.5 Basis sets

The molecular orbitals used in ab initio and DFT methods are built up using linear

combinations of basis functions to describe the electron distribution of atomic orbitals

(AOs):

φ =

N∑
i=1

aiψi (2.28)

where φ is the molecular orbital and ψ is a basis function describing the atomic orbital

with an associated coefficient ai. The set of N basis functions ψi is a basis set. Slater-type

orbitals (STOs) use functions from the exact solution of the Schrödinger equation for the

hydrogen atom and have the form e−ζr, where r is the distance from the nucleus and

ζ is an exponent. Gaussian-type orbitals (GTOs)20 use gaussian functions of the form

e−ζr
2

and require more primitives to describe the wavefunction than STO basis sets but

they are easier and more efficient to solve. Most calculations use GTO basis sets. The
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simplest AO representation uses just one function per orbital (which can have multiple

primitives), known as a minimal basis set. A double-zeta basis set uses two basis functions

to represent each orbital, a triple-zeta uses three and so forth. Larger basis sets give a

better description of the AOs but come with a higher computational cost.

Split-valence basis sets use one basis function for the core but two or more basis

functions with different exponents for each valence orbital.96,97 Polarisation functions

with higher angular momentum and diffuse basis functions with smaller exponents can

also be included. Correlation-consistent basis sets98–100 are designed to systematically

approach the complete basis set (CBS) limit. This work used the Roos augmented triple

zeta basis set,101 which have been constructed using the atomic natural orbital approach.

2.5.1 Pseudopotentials

QMC methods scale as approximately N3−4 with respect to system size, N but this

increases to approximately Z5.5−6.5 with respect to atomic number, Z .102,103 The variance

in energy of a QMC calculation is determined by the largest energy scale present. For most

systems the core electrons have little effect on the valence electronic structure but their

large energy fluctuations means the majority of the computational time would be spent

sampling the core.104 Pseudopotentials replace these chemically inert core electrons with

an effective potential such that the valence electrons still feel the same electric field but the

high-energy core electrons are removed. The total energy of the system is lowered and the

energy fluctuations are reduced. Scalar relativistic effects are important beyond third-row

atoms (and even some third-row atoms) and these can be included in the pseudopotential.

The true Hamiltonian, Ĥ, is replaced with an effective Hamiltonian, Ĥeff, of the form:

Ĥeff = K + Vloc + Vnon-loc (2.29)

where K is the kinetic energy. The local potential, Vloc, depends only on the distance

of the electron from the nucleus but the non-local potential, Vnon-loc, is different for each

angular-momentum. The use of pseudopotentials in VMC is quite straightforward105,106

but their non-local component is incompatible with DMC. A locality approximation can be

made where the non-local part of pseudopotential is taken to act on the trial wavefunction

rather than the DMC wavefunction, introducing singularities in the nodal regions of the

trial wavefunctions.107 This approximation destroys the variational property of the algo-

rithm. An alternative semi-localisation scheme, known as ‘T-moves’, essentially ‘pushes’

walkers away from divergences in the non-local pseudopotential. This scheme restores the

variational property and has better numerical stability than the locality approximation.108

The standard pseudopotentials used in DFT and HF methods have a singularity at

the nucleus and can result in large time-step errors in QMC. QMC-specific pseudopo-

tentials have been designed that are soft and have no singularities at the nucleus. The

non-local potential of these QMC-specific pseudopotentials decays quickly away from the

nucleus to reduce the cost of the numerical integration. These pseudopotentials cannot
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be generated within a QMC framework and are created from external sources, generally

using HF or Dirac-Fock calculations. The first QMC-specific pseudopotentials were gen-

erated for the carbon atom from a HF starting point by Greeff et al.109 This procedure

was then extended to all first- and second-row elements.110 Trail and Needs introduced

singularity-free relativistic pseudopotentials for most of the periodic table based on Dirac-

Fock calculations,111,112 however these spin-orbit pseudopotentials only have basis sets

for hydrogen and the atoms B to Ne.113 Burkatzki et al. have also created non-singular

energy-consistent scalar-relatvisitic HF pseudopotentials and basis sets for main group el-

ements114 as well as 3d -transition metals.115 The accuracy of these pseudopotentials have

been demonstrated for a number of systems.112,114–118 This work made use of Burkatzki-

Fillipi-Dolg114,115 (BFD) and Trail-Needs111 (TN) pseudopotentials.

2.6 Summary

As evidenced above there are a range of different approaches for solving the Schrödinger

wave equation for electrons. These methods vary significantly in cost and accuracy and the

most appropriate method often depends on the nature of the chemical systems studied. An

aim of this thesis is to test the accuracy of these methods and develop optimal protocols

for applying them.
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Chapter 3

An efficient protocol for diffusion

Monte Carlo calculations

3.1 Introduction

Hydrogen-abstraction reactions have an important role in many fields of chemistry, includ-

ing biology, combustion, autoxidation, atmospheric chemistry, polymerisation and many

other synthetic processes.1,2 Transition states are challenging structures and often high-

level methods are necessary for a reasonable description of electronic correlation. Studies

have shown that DFT methods are capable of producing accurate geometries and frequen-

cies for this reaction but underestimate barrier heights. Functionals specifically param-

eterised for kinetic reactions (i.e. BMK3) perform better but their accuracy cannot be

guaranteed for reactions not included in the training set.4 In general expensive, high-level

ab initio or composite methods are necessary for correct barrier heights.5–8

Reliable kinetic models need accurate barrier heights but chemically reliable results

often require a high-level treatment of electron correlation effects. This is illustrated by

the H abstraction of methanol by an H atom. The two main reaction pathways are

CH3OH + H→ CH2OH + H2 (3.1)

→ CH3O + H2 (3.2)

with CH2OH is the dominant product. These pathways are illustrated in Figure 3.1

These reactions are known to be important in the combustion of methanol under fuel-rich

conditions,9 and have been studied using a wide range of theoretical methods.5–8,10,11 De-

spite the apparent simplicity of this system, studies have shown that accurate calculations

of the barrier heights require methods that scale as a large power of the system size,8 and

that there are large discrepancies between methods. The performance of both MP2 theory

and the popular B3LYP density functional12 are particularly poor for this system.

QMC methods have been shown to be highly accurate for energetic13,14 and struc-

tural properties.15 The main advantages of QMC methods over more widely-used alter-

natives such as coupled cluster theory are their low scaling with system size (N3−4), and

their immense parallelisability.16 Despite these advantages there have been relatively few

QMC calculations of H abstraction barrier heights. The earliest example, of the reaction

25
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Figure 3.1: The potential energy surface for the reaction between atomic hydrogen
and methanol.

H2 + H→ H + H2,17,18 has very recently been revised to even higher accuracy.19 Other ex-

amples include the reaction OH + H2 → H2O + H,20 and a study by Kollias et al. of the H

abstraction of methanol by a Cl atom, which showed agreement with MP2 calculations.21

More recent examples include the H abstraction by styrene of the H-terminated Si(001)

surface,22 and calculations of the barrier heights of three H-transfer reactions involving

small molecules.23

In order to achieve resolutions of chemical accuracy in the barrier heights, statisti-

cal uncertainties in the stochastic QMC energies need to be on the order of fractions of

a kcal/mol. Even though QMC scales well, this need for small uncertainties makes the

calculations computationally expensive. As with other electronic-structure theories, ef-

ficient use of QMC methods requires a number of methodological choices to be made,

including the choice of trial wavefunction and treatment of non-local pseudopotentials.

Wavefunction choice is often discussed in reports of QMC calculations, but the effects of

the parameters governing the treatment of pseudopotentials, including quadrature grids

and cutoffs, are rarely mentioned. The impact of these choices, and their mutual interac-

tions, are investigated in this chapter by performing a detailed study of the barrier heights

of H abstraction in methanol by an H atom.

3.2 Trial wavefunction

Practical QMC calculations require user-defined trial wavefunctions. The complexity of

these wavefunctions strongly influence the computational cost of the calculations. Com-

plicated wavefunctions are more expensive to optimise and evaluate at each Monte Carlo

step, but more accurate wavefunctions lower the variance of the energy and therefore re-

quire fewer Monte Carlo steps to obtain a given statistical accuracy. In addition, the nodal
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surface of the wavefunction (the hypersurface on which it equals zero, and across which it

changes sign) determines the systematic errors in fixed-node DMC calculations. The trial

wavefunctions employed here have the Slater-Jastrow form,

ΨT = eJD↑D↓ (3.3)

where the D↑,↓ are Slater determinants constructed from single-particle orbitals, and J is

a Jastrow factor containing explicit electron correlation terms.

The Jastrow factor used is a sum of electron-electron (ee), electron-nucleus (eN ), and

electron-electron-nucleus (eeN ) terms,

J =
∑
i>j

∑
A

[Jee(rij) + JeN (riA) + JeeN (riA, rjA, rij)] (3.4)

where i, j label electrons, and A labels nuclei. These terms were constructed as compactly-

supported natural polynomial expansions in the electron-electron and electron-nucleus

distances,

Jee(rij) =f(rij ;L
ee)

Nee∑
l=0

αl r
l
ij (3.5)

JeN (riA) =f(riA;LeN )

NeN∑
l=0

βl;A r
l
iA (3.6)

JeeN (riA, rjA, rij) =f(riA;LeeN )f(rjA;LeeN )

NeeN∑
l,m,n=0

γlmn;A r
l
iAr

m
jAr

n
ij (3.7)

where L is the cutoff range, and {α, β, γ} are optimisable parameters. The cutoff function

f(r;L) is a C2-smooth Wendland function24 which goes to zero at L,

f(r;L) =

{ (
1− r

L

)4 (
1 + 4 rL

)
0 ≤ r ≤ L

0 r > L
(3.8)

All the calculations presented here used fixed ranges of L = 5 Bohr. The electron-electron

cusp condition and the electron-nucleus no-cusp conditions were enforced by constraining

the optimisable parameters in the Jastrow factor. The method described in the appendix

of Ref. 25 is used for the more complicated eeN term. The free parameters in the Jastrow

factor were optimised by minimising the total energy at the Variational Monte Carlo

(VMC) level, using the linear method of Toulouse and Umrigar.26

In addition to all-electron calculations, non-local pseudopotentials were used to rep-

resent the ionic cores. The use of pseudopotentials can greatly reduce the cost of QMC

calculations, as the removal of the chemically inert core electrons reduces the fluctuations

in the local energy. Evaluation of the local energy requires the non-local potential to be

projected onto the trial wavefunction. Following Mitas et al.,27 for each ion the contribu-

tion to this projection from an electron labelled i can be written as a sum over angular
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momenta l, (
V̂nlΨT

ΨT

)
i

=
∑
l

(2l + 1)

4π
vl(ri)

∫
4π
Pl[cos θi′ ]

ΨT (..., r′i, ...)

ΨT (..., ri, ...)
dΩ′i (3.9)

where vl is the angular-momentum dependent radial potential, and the integral is over the

surface of a sphere of radius ri centred on the ion. In practice the integral is evaluated

using a deterministic approach,

∫
4π
f(r′i)dΩ′i ≈

NQ∑
k

wkf(rk) (3.10)

where the NQ weights wk and points rk are chosen according to a Gaussian quadrature

rule, with values taken from Ref.27 This projection must be evaluated for each electron

within range of each ion, at each step of the DMC calculation, so the number of quadrature

points and the range of the radial potentials can have a large impact on the cost of the

QMC calculation.

3.3 Computational details

The forward (F) and reverse (R) barrier heights of the reactions shown in Equations (3.1,3.2)

are defined as the total energy differences

VF1 = E(TS1)− E(CH3OH)− E(H) (3.11)

VR1 = E(TS1)− E(CH2OH)− E(H2) (3.12)

VF2 = E(TS2)− E(CH3OH)− E(H) (3.13)

VR2 = E(TS2)− E(CH3O)− E(H2) (3.14)

where TS1 and TS2 are the transition-state structures for the reactions. The molecular

geometries were obtained from B3LYP calculations with the Roos augmented triple-zeta

(ATZ) basis set,28 using Gaussian09.29 The orbitals used in the Slater determinants were

taken from B3LYP calculations. Although the orbitals themselves contain no description

of electron correlation, it has been shown that using orbitals from a correlated method

such as B3LYP results in better QMC energies than using Hartree-Fock orbitals.30 For

all-electron calculations using the full electron-ion Coulomb potential, the orbitals were

expanded in the Gaussian-type Roos ATZ basis set,28 and cusp-corrected using a standard

approach.31

The effect of using two different pseudopotentials was compared. Both are Hartree-

Fock pseudopotentials including scalar relativistic effects and were explicitly constructed

for use in QMC calculations. The Trail-Needs (TN)32 potentials are shape-consistent,

whereas the Burkatzki-Filippi-Dolg (BFD)33 potentials are energy-consistent. The BFD
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calculations used the associated valence triple-zeta (VTZ) basis sets, and an improved H-

atom potential.34 Calculations with the TN potentials used the aug-cc-pVTZ-CDF basis

set from Ref.35

Non-local pseudopotentials were treated beyond the locality approximation in DMC

using the size-consistent T-moves approach.36 Imaginary time-step sizes of τ=(0.04, 0.02,

0.01, 0.005) a.u. were used for pseudopotential calculations. Smaller time-step sizes are

required for all-electron calculations, and in this case values of τ = (0.02, 0.01, 0.005, 0.001)

a.u. were used. All DMC energies were extrapolated to τ = 0 using quadratic fits. Target

population sizes of 8000 walkers were used in all DMC calculations. DMC results have a

small bias from using a finite population size. This bias is smaller for better trial wave

functions. For small systems like those studied here this bias is very small for populations

over 1000. The number of walkers used in the calculations is determined by the compu-

tational efficiency for parallel codes on a large number of cores. The walker population

is redistributed at each step but this is a slow process. Using larger numbers of walkers

increases the ratio of compute to communcation and avoids wasting time. Therefore larger

populations are used for larger numbers of cores. For further information please see Ref.

37. All the QMC calculations were performed using the CSIRO Quantum Monte Carlo

code.38

Forward and reverse barrier heights are not directly available from experiment. The

highest level theoretical results available in the literature use coupled cluster methods. To

compare with these coupled cluster calculations using the CCSD(T) approach were also

performed using Molpro39 with Dunning’s aug-cc-pVQZ basis set40 and an unrestricted

Hartree-Fock reference state.

Finally, the accuracy of density functional theory is evaluated using 12 different exchange-

correlation functionals. The types of functionals chosen were the local density approxima-

tion (LDA41 ), generalised gradient approximation (GGA) functionals (BLYP,42,43 PBE,44

B97D345), meta-GGAs (TPSS,46 M06L47), hybrid GGAs (B3LYP,12 PBE048), hybrid

meta-GGAs (B1B95,49 MPW1B9550), and double hybrids (B2PLYP,51 mPW2PLYP52).

3.4 Results and discussion

Barrier heights calculated using density functional, CCSD(T), and QMC methods are

compared against results from the literature in Table 3.1.

The CCSD(T) results presented here were calculated using the B3LYP geometries and

agree closely with previous calculations. When compared against the results of Carvalho

et al.,6 who used CCSD(T)/cc-pVTZ geometries, the largest deviation seen is only 0.3

kcal/mol. This demonstrates the accuracy of the B3LYP geometries, despite the inability

of that level of theory to predict accurate barrier heights.

None of the exchange-correlation functionals used are able to recover all the barrier

heights to within chemical accuracy of the CCSD(T) reference values. The most accurate

functionals are the double-hybrids. They perform well for the forward barriers but the
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Table 3.1: Reaction barrier heights for the H abstraction of methanol by an H atom
(in kcal/mol) using different methods. Statistical uncertainties in the last digit of
the DMC results are shown in parentheses. All DFT calculations used the Roos-ATZ
basis, unless stated otherwise.

Method VF1 VR1 VF2 VR2

LDA -3.5 -0.1 1.8 -7.7
BLYP 1.1 12.0 3.3 6.5
PBE 2.0 8.3 5.7 3.2
B97D3 0.8 12.5 3.9 7.3
TPSS -0.9 11.4 1.1 7.3
M06L 7.0 10.1 7.8 8.2
B3LYP 3.6 13.3 6.9 9.2
B3LYP/6-31+G(d,p)8 3.2 12.9 - -
PBE0 5.5 11.0 10.4 8.0
B1B95 6.8 13.5 11.3 10.5
B1B95/MG3S8 7.0 13.5 - -
mPW1B95 6.9 12.8 11.5 10.0
mPW1B95/MG3S8 7.1 12.9 - -
B2PLYP 10.0 17.6 14.0 17.2
mPW2PLYP 9.8 17.0 13.9 16.7

MP2/6-31+G(d,p)8 16.8 18.0 - -

CCSD(T)/aug-cc-pVQZ8 9.6 15.6 - -
CCSD(T)/cc-pVQZ [6] 9.8 15.8 15.1 12.0
CCSD(T)/aug-cc-pVQZ 9.5 15.5 15.1 11.7

DMC (All-electron) 9.9(1) 15.5(1) 16.3(1) 12.1(1)
DMC (BFD) 9.8(2) 15.0(2) 15.9(2) 12.1(2)
DMC (TN) 9.9(2) 15.6(2) 15.7(2) 12.2(2)
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reverse barrier VR2 deviates from the reference CCSD(T) value by over 5 kcal/mol. There

is significant variation of barrier heights, even within the same class of functionals. For

example, the forward barrier heights obtained using the meta-GGA functionals TPSS

and M06L differ by around 7 kcal/mol. The extreme variability in the accuracy of the

different density functionals emphasises the need for extensive benchmarking using higher

level methods.

All-electron DMC calculations were performed using the complete Jastrow factor shown

in Equation 3.4, including the eeN terms. The barrier heights obtained using this method

agree closely with the CCSD(T) results for barriers except for VF2, where there is a dif-

ference of just over 1 kcal/mol. This disagreement is potentially due to the presence of

non-dynamical correlation effects. The T1 diagnostic53 is a widely-used indicator of non-

dynamical effects in coupled-cluster calculations. Typically, T1 values of 0.02 or greater

are taken as an indication that a single determinant reference state is insufficient, though

some researchers suggest this value should be higher for open-shell systems.54 Nearly all of

the structures have small T1 values, the exceptions being CH3O (0.021) and TS2 (0.032).

Reference pseudopotential QMC results were obtained using both BFD and TN pseu-

dopotentials, with the same sized Jastrow factor used in the all-electron calculations. The

barrier heights are all within two standard deviations of the all-electron results. These

pseudopotential calculations are actually more expensive per Monte Carlo step than the

all-electron approach (1.54x, for the DMC calculation of CH3OH), due to the need to

repeatedly evaluate the integral in Equation 3.9. The cost benefits of the pseudopotential

approach come from the ability to use larger imaginary time-step sizes, and the reduced

variance of the energy. As an example, for a fixed time-step size of τ = 0.005 a.u., the

BFD calculation of CH3OH is over 20% faster than the all-electron calculation, to obtain

the same statistical accuracy. This reduction in cost will be significantly larger for systems

containing heavier elements.

3.4.1 Approximations

To further reduce the computational cost of the DMC calculations, the effect of reducing

both the complexity of the Jastrow factor and the treatment of the pseudopotentials was

investigated. Dubecký et al.55 have shown that for noncovalent interactions a two-body

Jastrow factor is sufficient and the same modification is considered here, removing the most

expensive eeN terms. For the pseudopotentials, the number of quadrature points in the

evaluation of Equation 3.9 and the range of both the local and non-local radial potentials

was reduced. The notation used to define these settings is x.y.z. Here x denotes the size of

the Jastrow factor, which is either 2J (indicating use of ee and eN terms) or 3J (indicating

use of ee, eN , and eeN terms). The number of points used in the quadrature grid (NQ in

Equation 3.10) is given by y.

Points were distributed tetrahedrally (y = 4) or icosahedrally (y = 12), with the

locations of the points on the unit sphere taken from Ref.27 Finally, z is a parameter which

determines the ranges of the radial parts of both the local and non-local pseudopotentials.
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The ranges r of the local potentials are chosen such that r is the point furthest from the

nucleus which deviates by more than 10−z from the bare Coulomb potential. Similarly,

the range of the radial part of a non-local potential is defined as the point furthest from

the nucleus which deviates by more than 10−z from zero. The potentials are set to zero

outside these ranges. This method of defining the ranges leads to different values for each

element and for both types of pseudopotential used. For the elements considered here,

the BFD potentials are shorter ranged than the TN potentials for each of our choices

of z = 8, 5, 3. Using this notation, the settings used for the reference pseudopotential

calculations in Table 3.1 are 3J.12.8.

3.4.2 Accuracy

As shown in Figure 3.2, the different settings used for the Jastrow factor and pseudopoten-

tials have very little effect on the predicted barrier heights. The majority of settings result

in no statistically significant change, and the largest changes are less than 1 kcal/mol.

Overall the deviations from the reference values are statistically equivalent for both types

of pseudopotential considered.

3.4.3 Cost

Despite the relatively insignificant changes in the barrier heights, the reduced settings can

have a very strong effect on the computational cost of the QMC calculations. The timings

for a complete DMC calculation of CH3OH, relative to the reference settings using the

BFD pseudopotentials, are shown in Figure 3.3.

The largest time saving comes from eliminating the eeN terms in the Jastrow factor,

which makes the DMC calculation of CH3OH 3x faster per Monte Carlo step. This sim-

plified Jastrow factor increases the variance of the local energy (see Sec. 3.4.4), but even

when this effect is taken into account, a speedup of around 2.5x is still obtained for the

time to achieve a fixed statistical accuracy in the total energy.

The next most important speedup comes from reducing the number of points in the

quadrature grids. Evaluating the projection of the non-local operator onto the trial wave-

function requires multiple evaluations of the wavefunction ratio with the position of one

electron moved. Even when using efficient methods for calculating this ratio, reducing

the number of quadrature points from 12 to 4 results in a speedup of 1.7x when using

the simpler 2J Jastrow factor. Reducing the ranges of the local and non-local parts of

the pseudopotentials also reduces the cost of the calculations, but the improvement ob-

tained is much smaller than when simplifying the Jastrow factor or reducing the number

of quadrature points. When combined, all three measures provide a speedup greater than

5x, with no reduction in the quality of the barrier heights.

Calculations using the TN pseudopotentials were always more expensive than when

using the BFD potentials, as shown in Figure 3.3. There are a number of reasons for this,

the most important being simply the size of the one-electron basis set used to construct

the B3LYP orbitals in the trial wavefunction. When expressed in spherical harmonic (as
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Figure 3.2: Deviations of DMC barrier heights from the 3J.12.8 reference values, for
different Jastrow factor and pseudopotential settings. The settings use the notation
x.y.z, where x denotes the size of the Jastrow factor, y is the number of points used
in the quadrature grid for evaluating non-local pseudopotentials, and z is a measure
of the cutoff applied to the radial parts of the pseudopotentials. For more details see
Sec. 3.4.



34 An efficient protocol for diffusion Monte Carlo calculations

●

●
●

●
● ● ●

●

●
●

●
● ● ●

●

●
●

●
● ● ●

●

●

●

●
●

●
●

3J.12.8 2J.12.8 2J.12.5 2J.12.3 2J.4.8 2J.4.5 2J.4.3

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

T
im

e 
re

la
tiv

e 
to

 B
F

D
.3

J.
12

.8
●

●

●

●

BFD
BFD (variance−corrected)
TN
TN (variance−corrected)

Figure 3.3: DMC timings for CH3OH relative to BFD.3J.12.8 settings. Solid points
indicate relative times for a fixed number of Monte Carlo steps. Open points indicate
relative times to achieve a fixed statistical uncertainty.

opposed to Cartesian) Gaussians, the CDF basis set used with the TN potentials has 35%

more primitives than the BFD basis set. There is also some contribution from the fact

that the TN potentials contain a non-local term for H. The TN potentials contain s, p,

and d channels for each element used in this work. The BFD potentials contain only s

and p channels for C and O species, and only a local component for H. Finally, in the

Gaussian representation of the pseudopotentials used, the TN potentials contain many

more terms than the BFD potentials. This has a very small effect on the cost, but it could

be eliminated by representing both potentials on a radial grid.

3.4.4 Variance

Reducing the complexity of the trial wavefunction by removing the eeN terms from the

Jastrow factor leads to an increase in the variance of the local energy, shown in Figure 3.4.

The results shown here are for energy-optimised trial wavefunctions. It should be possible

to obtain lower variances by explicitly minimising the variance of the local energy rather

than the total energy, though the gains are likely to be small.

Reducing the number of points in the quadrature grid has no effect on the variance

when using the BFD pseudopotentials, but results in a 5% increase in the variance when

using the TN potentials. This is likely due to the different angular momenta used in the

construction of the different potentials. As mentioned above, the TN pseudopotentials

use higher angular momentum terms than the BFD potentials, and so one would expect

them to require a higher order quadrature rule. However, the effect is small, and does

not translate in any statistically significant way to the quality of the energy barriers as

shown in Figure 3.2. Reducing the ranges of the local and non-local radial potentials has

no noticeable effect on the variance for either type of pseudopotential.
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Figure 3.4: VMC variance of the local energy for CH3OH using different settings for
the Jastrow factor and pseudopotentials.

3.4.5 Time-step error

The changes to the Jastrow factor and treatment of pseudopotentials also have an effect

on the time-step error in DMC, as shown in Figure 3.5. A non-symmetric branching

factor was used in DMC calculations with T-moves, which results in large time-step (τ)

errors, but with a predominantly linear behaviour that is easily extrapolated to τ = 0.

Using a symmetric branching factor does result in a smaller error for a given value of τ ,

but in practice it has been frequently observed that the increased curvature means that

reliable extrapolation to τ = 0 still requires relatively small values of τ . Using symmetric

branching with T-moves is slightly more expensive than non-symmetric branching, as it

requires a second evaluation of the local energy at each DMC step if a T-move is accepted.

Our current approach is to use non-symmetric branching if performing a full extrapolation

to τ = 0, and to use symmetric branching if a single small value of τ is used.

As with the variance, the largest effect on the time-step error is the quality of the trial

wavefunction. Using the larger 3J Jastrow factor results in smaller time-step errors than

when using the 2J form. The quality of the Jastrow factor also has a small effect on the

final τ = 0 DMC energy, which comes from the projection of the non-local pseudopotential

onto the trial wavefunction (Equation 3.9).

The majority of the quadrature grid and cutoff settings result in time-step errors that

are mutually indistinguishable. Using the simpler 2J Jastrow factor, the use of a short

range in the pseudopotentials has a larger effect than the number of quadrature points.

Using the shortest range (corresponding to z = 3) produces noticeably higher energies,

regardless of the number of quadrature points used. As the difference in cost between

using ranges corresponding to z = 3 and z = 5 is so small, it is safer to use the larger

value, which has no visible effect on the time-step error.
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Figure 3.5: DMC energies as a function of imaginary time-step for the TS2 geometry,
using the BFD pseudopotentials.

3.5 Summary

DMC has been used to calculate the reaction barrier heights of the two main channels for

H abstraction of methanol by an H atom, a problem that requires a high-level treatment

of electron correlation effects. The combination of B3LYP geometries and QMC energies

predicts barrier heights that agree with CCSD(T) values to within chemical accuracy.

The cost of the DMC calculations can be minimised by simplifying the trial wave-

function and the treatment of non-local pseudopotentials. The largest cost saving can

be achieved by using a simple Jastrow factor that includes only two-body correlation ef-

fects. By combining this simplified trial wavefunction with a sparse quadrature grid in the

projection of the non-local pseudopotential, and applying cutoffs to the ranges of these

potentials, the cost of DMC calculations was reduced by a factor of 5x over reference

calculations, with no loss in accuracy.

In the notation defined in Sec. 3.4, our recommended protocol is 2J.4.5, using the

BFD pseudopotentials. However, a caveat is that one should be careful with the choice

of integration grids for systems containing much heavier elements. These cases are likely

to be more sensitive to the number of quadrature points due to the importance of larger

angular momenta in the pseudopotentials.

Together with these cost-reducing measures, the accuracy, favourable scaling, and low

memory requirements of QMC methods indicate this is a practical route to tackle H

abstraction in much larger systems.
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2014, 44, 40–102.

2 L. Pardo, J. R. Banfelder, R. Osman, J. Am. Chem. Soc. 1992, 114, 2382–2390.

3 A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405–3416.

4 E. I. Izgorodina, D. R. B. Brittain, J. L. Hodgson, E. H. Krenske, C. Y. Lin, M. Na-

mazian, M. L. Coote, J. Phys. Chem. A 2007, 111, 10754–10768.
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Chapter 4

Calculating barrier heights with

quantum Monte Carlo

4.1 Introduction

Calculating barrier heights can give detailed insight into reaction mechanisms that is unob-

tainable through experiment alone. This information can be used to build kinetic models

of the atmosphere,1 investigate which side reactions might compromise polymerisation

without wasting material2 and gain a better understanding of enzyme catalysis.3 These

applications require accurate barrier heights but different classes of reactions pose unique

challenges for quantum chemistry methods.

DFT methods are particularly unreliable for reactions. They underestimate barrier

heights in an erratic manner4,5 and often fail to locate transition states.6 Relative energies

of barrier heights are also sensitive to the basis set used.7,8 Functionals like mPW1K9

and KMLYP10 have been specifically parameterised using barrier heights but improved

performance for kinetics comes at the cost of poor results for ground state properties like

atomisation energies and geometries. Newer functionals like BMK11 are parameterised

with larger training sets and perform better for these ground state properties but still

perform worse than B3LYP12,13 for geometries and vibrational frequencies. Chemically

reliable results are often only obtainable with high-level quantum chemistry methods but

these are computationally expensive and scale poorly with system size.

QMC methods14–18 are a promising alternative to traditional high-level electronic

structure methods for these types of problems. By using stochastic integration they have

greater freedom in the choice of trial wavefunction and give a better description of static

and dynamic correlation in the system. DMC also has much smaller basis set truncation

and basis set superposition errors compared to other electronic structure methods.14

The accuracy and reliability of QMC methods have been extensively demonstrated for

basic atomic properties like total energies, ionisation potentials and electron affinities.19–21

They have been benchmarked for the atomization energies of small molecules with the G1

and G2 test set.22–25 Using multi-determinant trial wavefunctions in DMC reduced the

mean absolute deviation from experimental values of the G2 test set to just 1.2 kcal/mol.25

QMC methods describe both static and dynamic correlation effectively and have excep-

40
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tional performance for noncovalent interactions, with a mean absolute deviation of 0.68

kcal/mol for the S22 test set26 and just 0.15 kcal/mol for the A24 test set.27

Until very recently, QMC benchmarking for barrier heights had been carried out in

a scattered manner. The simple exchange reaction barrier H + H2 → H2 + H28–30 was

one of the first systems studied and has recently been revised to even higher accuracy.31

Other simple reactions studied include five prototypical chemical reactions, including three

hydrogen-exchange, one heavy atom exchange and one association reaction.32 More chal-

lenging organic reactions have also been studied.33–35 Chapter 3 presented a small study

of the reaction barrier for hydrogen abstraction from methanol,36 a simple reaction yet

accurate barrier heights are typically only obtainable with the highest levels of quantum

chemistry. DMC has performed well in all cases, with errors close to or less than the

chemical accuracy standard of 1.0 kcal/mol. A recent study investigated the performance

of DMC methods for a set of 19 hydrogen abstraction reactions. They compared the per-

formance of DMC with all-electron basis-sets and pseudopotentials and in both cases the

the MAD was 1.0 kcal/mol.37 Another study looked at 19 non-hydrogen transfer reactions

and the DMC error was 1.5 ± 0.5 kcal/mol.38 This chapter presents a more systematic

benchmarking study for a range of reaction classes, including radical stabilisation energies,

Diels-Alder reactions and hydrogen and non-hydrogen transfer reactions.

4.2 Methods

Geometries and reference values for the test sets were taken from previous work, as outlined

below. Single-determinant DMC calculations used B3LYP trial wavefunctions. Burkatzki-

Filippi-Dolg (BFD) pseudopotentials39 with the associated triple-zeta (VTZ) basis sets

were used, with an improved H-atom potential.40 Nonlocal pseudopotentials use size-

consistent T-moves with a symmetric branching term.41 Fixed-node Diffusion Monte Carlo

calculations were performed using the CSIRO QMC code42 with a target population size

of 6400 walkers and an imaginary time step size of 0.01 a.u.

Configuration interaction (CI) calculations used Kohn-Sham orbitals from B3LYP den-

sity functional calculations incorporating single and double excitations (CISD). The use

of Kohn-Sham orbitals in CI wavefunctions has been shown to give better DMC nodal

surfaces than Hartree-Fock orbitals.43 The CSFs were taken from the natural orbitals of

the CISD wavefunction and were selected using the recently developed energy truncation

method.44 The variable parameters in the Jastrow factor and the CSF coefficients were

optimised by minimising the variational energy using an approach based on the linear

method.45 B3LYP and CI calculations were performed with GAMESS.46,47

4.3 Radical stabilisation energy

Radical stabilisation energy (RSE) is defined as the reaction enthalpy (∆Hrxn) for the

hydrogen transfer reaction:
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X · + R−H
∆Hrxn−−−−→ X−H + R · (4.1)

For carbon-centred radicals, RSE is defined in terms of the methyl radical (i.e. X ·
is replaced by the methyl radical, CH3 · and X-H is its closed shell parent compound

methane, CH4). Equivalent isodesmic reactions can be written for oxygen- or nitrogen-

centred radicals, where X · is NH2 · or OH · and the closed shell compound is ammonia or

water.48 Eq. 4.1 is essentially the difference in bond dissociation energies (BDE) of R−H

and X−H. Absolute BDE calculations can challenging for electronic structure methods

but radical stabilisation energies are defined by an isodesmic reaction that gives favourable

error cancellation for most methods. Even moderate DFT methods will sometimes give

reasonable values,48 provided the percentage of exact exchange is high.49,50

The theoretical prediction of thermodynamic stabilities allows for quantitative compar-

ison of substituent effects for radicals of varying structure and electronic characteristics.

Accurate RSEs are needed to understand, and subsequently design, complex radical reac-

tions. For example, RSEs have been used to identify reactions that involve endothermic

hydrogen atom transfer steps.51 They have also been used to identify hydrogen atom

donors and acceptors that will accelerate homolytic hydrogen transfer in polarity reversal

catalysis52 and to distinguish between toxic and non-toxic general anaesthetics.53 These

types of applications require methods that are not only accurate but also consistent across

a range of radicals and substituents. The performance of DMC for radical stabilisation

energies is assessed here using RSE43, a collection of 43 H-abstraction energies for the

reactions of hydrocarbons with a methyl radical (R−H + CH3 · → R · + CH4).54 Refer-

ence CCSD(T)/CBS energies (ignoring ZPVE and thermal effects) using B3LYP/TZVP

geometries were taken from previous work.55 The reference value for reaction 4 was recal-

culated in this work at the CCSD(T)/CBS level using the standard two-point extrapolation

scheme of Helgaker, Klopper and co-workers56,57 with the Dunning basis sets cc-pVDZ

and cc-pVTZ.58,59 These calculations were carried out using MOLPRO 2012.60

DMC deviations from reference values are reported in Table 4.1 alongside results from

some popular DFT and WFT methods for comparison.54 DMC shows excellent agree-

ment with CCSD(T)/CBS reference values for all reactions, with an overall MAD of 0.3

kcal/mol. The two main sources of errors in a DMC calculation come from the fixed-node

approximation and the time-step bias but these cancel out for energy differences.26,63–67

The isodesmic reactions in RSE43 also result in favourable error cancellation for other

methods and this is seen in the generally low MADs for all methods. Although the DFT

and WFT methods in Table 4.1 have small MADs, the overall error for DMC is significantly

lower and surpasses chemical accuracy.

Closer inspection of Table 4.1 shows that despite the methods having small MADs

there is considerable variability in the quality of results for individual reactions. The WFT

methods MP2 and SCS-MP2 generally perform well and have an overall MAD of 3.1 and

3.5 kcal/mol respectively but fail catastrophically for reactions 1 and 2, where errors are
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Table 4.1: Deviations of radical stabilisation energies from reference values for the
RSE43 test set. Statistical uncertainties in the last of digit of the DMC results are
shown in parentheses.

Deviation (kcal/mol)

Radical Refa DMC MP2b SCS-MP2b B1B95b PWPB95b B3LYPb PBE0b M05-2Xb

1 CH2−C6H5 -15.2 0.3(2) -24.6 -23.1 2.2 0.6 2.1 1.2 1.0
2 CH2−−C −CN 1.9 -0.7(2) -27.8 -30.7 5.1 1.8 4.6 4.0 0.6
3 CF−−CH2 6.8 0.6(2) -6.4 -8.2 2.3 0.9 0.9 1.5 -0.5
4 CH2−CCl3 -0.9c -0.4(2) -1.5 -1.5 2.1 1.1 2.5 1.6 0.9
5 CH2−CF2−CH3 0.1 0.1(2) -0.5 -0.5 1.4 0.8 1.5 1.2 0.6
6 CH2−CF3 1.4 0.2(2) -0.5 -0.5 1.2 0.7 1.4 1.1 0.4
7 CH2−CH2−Cl -3.2 -0.5(2) -1.3 -1.4 1.7 0.9 2.2 1.1 1.1
8 CH2−CH2−F -1.3 0.2(2) -0.2 -0.2 1.3 0.8 1.4 1.1 0.7
9 CH2−CH2−OH -1.8 0.1(2) -0.4 -0.5 1.6 1.0 1.4 1.4 0.7
10 CH2−CH−−CH2 -17.5 0.4(2) -6.0 -6.8 2.4 0.9 2.4 1.8 1.8
11 CH2−CHO -10 0.0(2) -9.5 -9.7 2.2 0.7 2.1 1.4 1.4
12 CH2−CN -8.6 -0.6(2) -11.1 -11.8 2.4 0.8 2.5 1.7 0.5
13 CH2−CO−CH3 -6.3 0.0(2) -1.7 -1.8 1.7 1.0 1.7 1.1 0.9
14 CH2−CO−NH2 -6.3 0.3(2) -1.5 -1.6 1.8 1.1 1.8 1.2 0.9
15 CH2−CO−NH−CH3 -6.6 0.4(2) -2.4 -2.6 1.7 0.9 1.7 1.2 0.9
16 CH2−CO−O−CH3 -6.4 -0.2(2) -2.5 -2.6 1.8 0.9 1.8 1.2 1.0
17 CH2−CO−OH -3.0 0.2(2) -0.5 -0.6 1.5 0.8 1.4 1.2 0.6
18 CH2−CH(−CH2)2 -3.9 0.0(2) -0.4 -1.2 1.7 0.8 0.8 1.2 0.1
19 CH2−F -12 0.4(2) 0.1 -0.7 3.1 2.0 2.3 1.9 1.6
20 CH2−NH2 4.7 0.0(2) -0.1 -0.5 1.1 0.6 0.8 1.1 0.1
21 CH2−NH +

3 -12.6 0.1(2) -0.1 -0.8 3.4 2.2 2.6 2.0 1.5
22 CH2−NH−CH3 -11.1 -0.3(2) -1.0 -1.7 2.8 1.5 2.2 1.7 1.0
23 CH2−NH−CHO -8.6 0.4(2) -0.8 -1.7 3.6 2.1 3.0 2.4 1.4
24 CH2−NH−OH -12.8 0.1(2) -0.5 -1.0 3.6 2.2 2.8 2.0 1.2
25 CH2−N(−CH3)2 -3.3 -0.1(2) -1.5 -2.2 2.1 1.0 2.0 1.6 0.9
26 CH2−NO2 -3.9 -0.2(2) -0.7 -1.4 2.0 1.0 1.2 1.4 0.2
27 CH2−O−CH3 -2.7 0.0(2) -0.4 -0.8 2.2 1.3 1.8 1.7 1.2
28 CH2−O−CHO -5.9 -0.5(2) -0.6 -1.3 2.4 1.3 1.7 1.6 0.6
29 CH2−CO−O−CH3 -6.2 -0.4(2) -0.7 -1.4 2.8 1.5 2.1 1.9 0.8
30 CH2−OH -4.2 0.1(2) -0.2 -0.8 2.0 1.1 1.4 1.6 1.1
31 CH2−PH +

3 0.7 0.2(2) -0.5 -0.2 1.0 0.6 1.0 0.6 0.2
32 CH2−S−CH3 -10.8 0.4(2) -0.7 -1.3 3.0 1.9 2.1 1.8 1.4
33 CH2−S−CHO -8.4 0.3(2) -1.0 -1.6 2.9 1.7 2.1 1.9 1.0
34 CH2−SH +

2 2.7 0.3(2) -0.2 -0.5 1.5 0.9 1.1 1.3 0.4
35 CH2−SH -9.4 0.6(2) -0.5 -1.1 2.8 1.8 1.9 1.7 1.3
36 CH2−SO−O−CH3 0.0 0.1(2) -0.9 -0.9 1.8 1.1 1.6 1.3 0.1
37 CH2−SO−CH3 -2.9 0.6(2) -1.0 -1.2 2.7 1.6 2.1 1.8 0.7
38 NH2-CH −CN -22.5 -0.2(2) -8.8 -10.3 6.2 3.5 5.2 4.6 2.8
39 NH2-CH −CO−NH2 -24.1 0.5(2) 0.3 -0.8 5.9 3.8 4.8 4.1 3.4
40 NH2-CH −CO−OH -25.4 0.7(2) 0.3 -1.0 6.5 4.1 5.4 4.5 4.0
41 CH2−C−−−CH -13.1 -0.6(2) -9.6 -10.8 3.1 1.2 3.1 2.4 1.4
42 C(−CH3)3 -6.4 -0.1(2) -1.2 -1.4 4.3 2.4 3.9 3.7 1.5
43 CH2−C(−CH3)3 -2.3 0.3(2) -0.7 -0.7 1.4 0.8 1.4 1.2 0.6

MAD 0.3(2) 3.1 3.5 2.6 1.4 2.2 1.8 1.0
aCCSD(T)/CBS55

bValues taken from Ref. 61 , calculated using the large Ahlrichs’ type quadruple-ζ basis sets def2-QZVP62

cCalculated in this work
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greater than 20 kcal/mol. Previous studies have shown that MP2 and its variants struggle

with reactions that involve highly delocalised radicals.49,50,68 Reactions 38, 39 and 40 are

particularly problematic for DFT methods and have errors more than twice the average

error for the respective method. The best performing DFT method is M05-2X69 with a

MAD of just 1.0 kcal/mol. The results are generally consistent for all reactions but it

was specifically parameterised with a set of carbon-carbon bond dissociation energies.68

In contrast to the other methods presented here, DMC performs consistently well and

deviations from reference values are less than 1 kcal/mol for all substituents. It was

through this consistent performance that an error in the reference value for reaction 4

was found. The original reference value was -7.0 kcal/mol and DMC had an error of -7.4

kcal/mol. While an error this large wouldn’t seem unusual for DFT methods it was in

stark contrast with every other result for DMC. The reference value was recalculated using

the same CCSD(T)/CBS method and found to be -0.9 kcal/mol, in much better agreement

with the DMC value.

4.4 Diels-Alder reactions

Figure 4.1: The Diels-Alder reactions included in the DARC test set.54 The test set
includes the endo and exo forms of the products of reactions 7-10. Reference energies
are listed in Table 4.2.

DFT methods fail to treat fractional charges and distributes the electron densities

artificially. The discrete nature of electrons means the exact energy of an atom with a

fractional electron charge is a straight-line interpolation between the integers but approx-

imate functionals are convex between the integers.70 This is known as the delocalisation

error. This error leads to DFT methods underbinding reactions that involve the formation

of cyclic or bicyclic compounds, overstabilising charge-transfer complexes, overestimat-
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Table 4.2: Deviations of reaction energies from reference values for the DARC test set.
Statistical uncertainties in the last digit of the DMC results are shown in parentheses.

Deviation (kcal/mol)

No. Refa DMC MP2b SCS-MP2b B1B95b PWPB95b B3LYPb PBE0b M05-2Xb

1 -43.8 3.6(2) 6.1 1.4 -1.0 -0.4 -10.1 5.1 2.9
2 -59.3 1.7(2) 3.0 -0.8 2.1 0.9 -6.2 8.6 4.2
3 -30.0 1.8(2) 4.7 0.2 -3.4 -2.1 -14.9 0.6 -0.9
4 -33.1 -0.3(2) 3.3 -0.8 -0.1 -0.2 -11.5 3.6 -0.1
5 -36.5 2.9(2) 6.7 1.4 -2.8 -1.4 -14.1 1.7 1.5
6 -48.2 0.4(2) 4.9 -0.4 0.1 -0.1 -11.3 4.4 2.3
7 -14.4 0.5(3) 1.4 -1.5 -8.2 -5.1 -18.6 -4.1 -2.4
8 -16.2 0.7(3) 1.1 -1.6 -8.1 -5.0 -18.0 -3.7 -2.3
9 -17.2 0.4(3) 1.6 -1.5 -8.3 -5.2 -18.8 -4.1 -2.3
10 -19.2 0.9(3) 1.3 -1.6 -8.1 -5.1 -18.1 -3.6 -2.2
11 -31.6 1.2(3) 5.3 0.2 -6.6 -3.8 -18.7 -2.7 -0.7
12 -32.1 1.1(3) 5.1 0.0 -6.4 -3.7 -18.4 -2.4 -0.7
13 -34.1 1.1(3) 5.5 0.2 -6.7 -3.9 -18.9 -2.7 -0.7
14 -34.4 1.2(3) 5.3 0.1 -6.3 -3.7 -18.4 -2.3 -0.6

MAD 1.2(3) 3.9 0.8 4.9 2.9 15.4 3.5 1.7
aCCSD(T)/CBS54

bValues taken from Ref. 61, calculated using the large Ahlrichs’ type quadruple-ζ basis sets def2-QZVP62

ing the polarisabilities of extended polymers and underestimating HOMO-LUMO gaps.71

Functionals that include a relatively large fraction of exact exchange can minimise this

error but in general DFT methods perform poorly for these systems. Kohn-Sham orbitals

give better nodal surfaces for DMC calculations43,72 and they have become the orbitals

of choice for most calculations. QMC methods do not suffer from the delocalisation error

but whether that error translates from DFT methods to poor nodal surfaces in the trial

wavefunction warrants investigation. The performance of DMC is assessed here using a

collection of 14 Diels-Alder reactions (DARC). Diels-Alder reactions involve the cycload-

dition of a substituted alkene to a conjugated diene. This class of reaction is known to

be problematic for DFT methods and the unexpectedly large errors are attributed to the

delocalisation error.71,73 The DARC test set was originally studied by Johnson et al.71

and includes the reactions of butadiene, cyclopentadiene, cyclohexadiene and furane with

ethene, ethyne, maleine and maleinimide acting as dienophiles. Structures are shown in

Figure 4.1. CCSD(T)/ CBS reference values using B3LYP/6-31G(2df, p) geometries were

taken from previous work.54

DMC deviations are reported in Table 4.2. The DMC results are in good agreement

with the CCSD(T)/CBS reference values despite the use of Kohn-Sham orbitals in the

trial wavefunction. DMC relies on trial wavefunctions built using orbitals from other

methods and reactions involving cycloaddition of substituted alkenes, like those in DARC,

suffer from the delocalisation error when treated with DFT methods. Interestingly, the

DMC/B3LYP results here consistently overestimate the reaction exothermicity, whereas

B3LYP underestimates it.71

The largest errors are seen for reactions 1, 3 and 5, where the dienophile is ethene

(C2H4). Much smaller errors are seen for their equivalent reactions with ethyne (C2H2) as

the dienophile (reactions 2, 4 and 6). Ethene and ethyne are both part of the G2 test set,74

a collection of atomisation energies of small molecules. DMC calculations show ethene has

much larger errors compared to ethyne, reflecting the trend seen here. Accurate reaction

energies rely on a balanced treatment of electron correlation effects for all species. The
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Table 4.3: The 38 hydrogen-transfer (HTBH) and 38 non-hydrogen transfer (NHTBH)
barrier heights in the BH7654 test set.

ID HTBH NHTBH

1 H + HCl→ H2 + Cl H + N2O→ OH + N2

2 OH + H2 → H + H2O H + FH→ HF + H
3 CH3 + H2 → CH4 + H H + ClH→ HCl + H
4 OH + CH4 → CH3 + H2O H + FCH3 → HF + CH3

5 H + H2 → H + H2 H + F2 → HF + F
6 OH + NH3 → H2O + NH2 CH3 + FCl→ CH3F + Cl
7 HCl + CH3 → Cl + CH4 F– + CH3F→ FCH3 + F–

8 OH + C2H6 → C2H5 + H2O F– ...CH3F→ FCH3...F–

9 F + H2 → HF + F Cl– + CH3Cl→ ClCH3 + Cl–

10 O + CH4 → OH + CH3 Cl– ...CH3Cl → ClCH3...Cl-

11 H + PH3 → H2 + PH2 F– + CH3Cl→ FCH3 + Cl–

12 H + OH→ H2 + O F– ...CH3Cl→ FCH3...Cl–

13 H + H2S→ H2 + HS OH– + CH3F→ HOCH3 + F–

14 O + HCl→ OH + Cl OH– ...CH3F→ HOCH3...F–

15 NH2 + CH3 → CH4 + NH H + N2 → HN2

16 NH2 + C2H5 → C2H6 + NH H + CO→ HCO
17 C2H6 + NH2 → NH3 + C2H5 H + C2H4 → CH3CH2

18 NH2 + CH4 → NH3 + CH3 CH3 + C2H4 → CH3CH2CH2

19 C5H8 → TS HCN → HNC

discrepancies seen with the different dienophiles suggests a problem with the description

of the electron correlation in ethene and ethyne compared to their respective products.

For the larger systems there is a more favourable cancellation of errors. DMC performs

well for this set of reactions, with a MAD of just 1.2 kcal/mol.

4.5 Hydrogen and non-hydrogen transfer barrier heights

The RSE43 and DARC test sets focus on specific properties and only reflect a small

part of chemical space. DMC performs extremely well for these problems but this does

not guarantee the errors will be small for other systems. The BH76 test set combines

two sets of transition state barrier heights for 38 hydrogen transfer (HTBH) and 38 non-

hydrogen transfer (NHTBH) reactions. The NHTBH database consists of 12 heavy-atom

transfer barrier heights, 16 nucleophilic substitution barrier heights and 10 unimolecular

or association reaction barrier heights. The best estimates for the barrier heights are taken

from previous work and were obtained from a combination of experimental and theoretical

data using QCISD/MG3 geometries.75,76

DMC errors for BH76 are shown in Figure 4.2. Overall the DMC values agree closely

with the reference values and the mean absolute deviation (MAD) is 1.1 ± 0.2 kcal/mol.

Hydrogen transfer barrier heights (Figure 4.2a) show better agreement with reference

values than non-hydrogen transfer barrier heights (Figure 4.2b). Heavy-atom transfer

reactions have a MAD of 1.7 ± 0.2 kcal/mol compared to 0.9 ± 0.2 kcal/mol for nucle-
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Figure 4.2: Deviation of DMC from reference values for the a) hydrogen transfer
(HTBH) and b) non-hydrogen transfer (NHTBH) subsets of BH76. The reactions
are defined in Table 4.3. SD refers to single determinant DMC, MD refers to multi-
determinant DMC. Full details can be found in the text. The shaded region denotes
nominal chemical accuracy, ± 1 kcal/mol. The lines between points are simply drawn
to guide the eye.
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ophilic substitution and 1.0 ± 0.2 kcal/mol for unimolecular and association reactions.

Previous studies have shown that these heavy atom transfer reactions are generally the

most challenging for ab initio WFT and hybrid-meta DFT compared to the other reaction

classes.76

Some of the reactions in this test set have previously been studied using QMC methods,

including HTBH reactions 2,33 4, 6, and 1832 and NHTBH reactions 1, 5, 8 and 15.6,32 In

all cases the single-determinant reaction barrier heights presented here are in good agree-

ment with previous results. The entire HTBH test set was recently used to investigate the

effect pseudopotentials have on these types of reactions.37 The BFD results reported here

agree closely with theirs and the overall MAD is the same (1.0 kcal/mol). The NHTBH

test set has also been studied with DMC and the results are statistically equivalent.38

Multi-determinant study

Single-determinant DMC with B3LYP orbitals in the trial wavefunction had errors less

than 1.0 kcal/mol for most but not all barrier heights in BH76. Reactions 14 and 19

from HTBH and 1, 5, and 6 from NHTBH had particularly large errors. These reactions

have problematic species like atomic oxygen and NHTBH reaction 1 is known to have

multireference character.6 It has been demonstrated with other systems that including

more determinants in the trial wavefunction improves the reaction barrier results.32 More

specifically, a DMC study of NHTBH Reaction 5 used a complete active space wavefunction

(CASSCF(3,3)) which was shown to significantly reduce the error.6

To investigate this further, multi-determinant expansions were built for HT14 and

NHT1, NHT5 and NHT6 with CISD wavefunctions using an active space incorporating

all valence electrons and sufficient virtual levels to close the n=3 shell (13 levels per atom)

for heavy atoms. One virtual level was included for each H atom. For HTBH reaction 19

the d -orbitals were omitted (8 levels per heavy atom).

The number of configuration state functions (CSFs) produced by multi-reference meth-

ods is usually too large for DMC methods and they are truncated according to some

threshold. Traditionally CSFs are truncated to keep a fixed number of terms21 or using a

cutoff on the CI expansion coefficients.19,77–79 An alternative solution uses the energetic

contribution each CSF makes to the total energy.44 CSFs are ordered according to their

energetic contributions to the total CI energy before being summed in increasing order

until some cut-off threshold is reached, Etrunc.

Three different variations of this energy-based truncation were used here. The first,

hereafter referred to as single-point truncation, uses the same threshold for all species

involved in a reaction. The second scheme uses different cut-offs for transition states and

products (or reactants) to maximise error cancellation. This approach is referred to as

‘sum truncation’, and Etrunc is selected according to Equation 4.2:

ETStrunc = EP1
trunc + EP2

trunc (4.2)
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Figure 4.3: Deviation of DMC reaction energies from reference values for the (a)
forward and (b) reverse barrier heights of four reactions taken from BH76. The
reactions are defined in Table 4.3. ‘Single-point Etrunc’ uses the largest truncation
value for each molecule shown in Table 4.4, ‘Sum Etrunc’ uses the largest truncation
value on the transition states and a smaller value for the products (or reactants).
‘Extrapolated Etrunc’ extrapolates the energy to the Etrunc = 0 limit. NHT1 could
not be extrapolated due to the system size. The shaded region denotes chemical
accuracy, ± 1 kcal/mol. The lines between points are merely drawn to guide the eye.

where P1 and P2 are the products (or reactants) and TS is the transition state. For

reactions where H is a product or reactant ETStrunc = EP1
trunc. This approach has the benefit

of allowing larger cutoffs (and fewer CSFs) for transition states and larger systems. The

third scheme extrapolates the individual energies to the Etrunc = 0 limit. A comparison

of the results from the truncation schemes is shown in Figure 4.3. The number of CSFs

included in the DMC calculation after the truncation was applied are shown in Table 4.4.

In general, the use of a multi-determinant wavefunction is better than a single-determinant

for these problematic species. The sum-truncation method gives better agreement with

the extrapolated values compared to the single point method. In some cases (i.e. NHT6

and NHT14 forward barriers) the single-point energy agrees better with the reference value

and the extrapolated energy is worse than the single reference value. This is a side-effect

of an inadequate active space for the extrapolation and a fortuitous cancellation of errors

for the single-point truncation. The results could be further improved by using a larger

active space but this simple active space is adequate for most barriers considered here.

The transition state for NHT1 was too large to extrapolate to the CSF limit but based on
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Table 4.4: Summary of the final number of CSFs used in the DMC calculation of each
molecule for different Etrunc values. ‘Single-point Etrunc’ calculations used the largest
Etrunc value shown. ‘Sum Etrunc’ calculations used the larger value on the transition
state (TS) but smaller values on other molecules.

(a) NHT1

Mol Etrunc = 0.07 Etrunc = 0.035

N2O 576 1141
OH 1 7
N2 45 110

TS1 1053 2430

(b) NHT5

Mol Etrunc = 0.02 Etrunc = 0.01

F2 299 422
HF 11 20
F 35 49

TS5 274 509

(c) NHT5

Mol Etrunc = 0.02 Etrunc = 0.01

CH3 14 36
FCl 326 495

CH3F 99 236
Cl 35 50

TS6 923 1843

(d) HT14

Mol Etrunc = 0.02 Etrunc = 0.01

O 29 42
HCl 29 51
OH 36 67
Cl 35 50

TS14 1072 1925
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Figure 4.4: Mean absolute deviation (kcal/mol) for the three databases. Methods
shown include ab initio wavefunction, hybrid functionals and double hybrid function-
als (values taken from Ref. 54).

results here the sum-truncation results gives the same answer as the extrapolated limit.

Based on the performance of the multi-determinant wavefunctions and truncation

schemes, the final sum-truncation multi-determinant values are included in Figure 4.2.

For HTBH reaction 19, the active space incorporated all valence electrons and up to 8

virtual levels for each heavy atom. This reduced to error by approximately 1 kcal/mol

but there is still a large deviation from experimental values. Using these improved wave-

functions gives better agreement with the reference values and reduces the mean absolute

deviation to 0.9 kcal/mol for both databases.

4.6 Comparison to other methods

Finally, the DMC results are compared to some popular DFT and WFT methods in

Figure 4.4. DMC is accurate for all three test sets but the performance of other methods

is much less consistent. In general, the DFT methods perform well for RSE43 but this

is largely due to the error cancellation in the isodesmic reactions. XYG380 is the best

performing functional for RSE43. DARC is the most challenging for DFT methods and this

is attributed to the delocalisation error. SCS-MP2 is an ab initio wavefunction method not

affected by the delocalisation error and has the smallest error for DARC. Functionals like

MPWB1K81 and BMK11 are specifically parameterised for reaction energies and perform

well for the BH76 dataset.

4.7 Summary

DMC has been benchmarked using three test sets to investigate performance for radi-

cal stabilisation energies, Diels-Alder reactions and barrier heights of hydrogen and non-

hydrogen transfer reactions. DMC had consistently low MADs for all three reactions

classes. For reactions with large errors DMC could be systematically improved by using
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a multi-determinant wavefunction. Although the best DFT methods for individual test

sets are competitive with DMC the quality varies dramatically with choice of exchange-

correlation functional. There is no a priori way of making a good choice of DFT method.

The exceptional performance of DMC, coupled with its favourable scaling, makes it an

ideal method for providing reference results for reaction barrier heights, which can be used

to benchmark lower level methods such as DFT.
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26 M. Korth, A. Lüchow, S. Grimme, J. Phys. Chem. A 2008, 112, 2104–2109.

27 M. Dubecký, R. Derian, P. Jurečka, L. Mitáš, P. Hobza, M. Otyepka, Phys. Chem.

Chem. Phys. 2014, 16, 20915.

28 R. N. Barnett, P. J. Reynolds, W. A. Lester, J. Chem. Phys. 1985, 82, 2700–2707.

29 D. L. Diedrich, J. B. Anderson, Science 1992, 258, 786–788.

30 D. L. Diedrich, J. B. Anderson, J. Chem. Phys. 1994, 100, 8089–8095.

31 J. B. Anderson, J. Chem. Phys. 2016, 144, 166101.

32 F. Fracchia, C. Filippi, C. Amovilli, J. Chem. Theory Comput. 2013, 9, 3453–3462.
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Chapter 5

Ionisation potentials and electron

affinities of first- and second-row

atoms

5.1 Introduction

Deriving accurate physical properties from electronic wavefunctions is only possible when

there is a good description of the dynamic and non-dynamic electron correlations for all

species. Hartree-Fock theory does not take into account the correlation arising from inter-

acting electrons and recovering this energy is one of the greatest challenges for quantum

chemical methods. The correlation energy is only a small component of the total energy of

a system but it is extremely important for energy differences, especially when the energy

difference is small. Finding an equivalent description of electron correlation on charged

and neutral species with the same atomic number is challenging and the electron affinity

and ionisation potential can be used to measure a method’s performance. The electron

affinity of an atom is defined as the difference in energy between the neutral and anionic

species. Similarly, the ionisation potential is defined as the energy difference between the

neutral and cationic form.

QMC methods recover a significant amount of this correlation energy and are well

suited for these types of problems. First-row atoms and ions have been thoroughly stud-

ied.1–15 Early work looked at the electron affinity of the fluorine atom. Using DMC with

a small, double-zeta basis set recovered over 90% of the correlation energy for the neutral

atom and anion. The calculated electron affinity was 3.45±0.11 eV agreed closely with the

experimental value of 3.40 eV.15 Another study looked at the VMC energies of first-row

cations Li+ through Ne+ and anions B– through F– . The overall mean absolute deviation

was 110 meV for ionisation potentials and 70 meV for electron affinities.13 Subsequent

work showed that using trial wavefunctions that included more configurations for species

like Be, B and C to account for the 2s − 2p near degeneracy recovered more correlation

energy.7,8 QMC methods also recover a significant amount of correlation energy for sec-

ond row atoms.1,8, 12 Other systems studied include post-d group 13-17 elements16 and

third-row transition metals iron17 and copper.18 Thus far chemically accurate results,

defined as an error less than 43 meV, are only consistently attainable for first-row atoms

56
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with multi-determinant wavefunctions1,7 or more expensive methods like full-configuration

interaction QMC.4,6

The aims of this chapter are twofold. The first is to establish the accuracy of the CSIRO

QMC code (CMQMC19) for these atomic properties. QMC programs have the same un-

derlying formula but the actual implementation of the algorithms can differ. A significant

advantage of in silico experiments over physical experiments is the reproducibility and

consistency of results but this is dependent on the parameters and algorithms within the

programs. This is a well known problem for DFT methods where differences in the integra-

tion grid size can affect the precision of the final result.20–23 In the case of the G2/97 test

the B3LYP total energy was different by as much as 0.5 kcal/mol for some programs.22 For

newer meta-GGA functionals these errors were as large as 3.21 kcal/mol for M06HF for

reaction energies.23 As seen in Chapter 3 there are many parameters that can be adjusted

in QMC methods that can affect the cost and accuracy of calculations. The sensitivity

of ionisation potentials and electron affinities of first- and second-row atoms to electronic

correlation treatment make them a good test set to validate a new code.

The second aim of this chapter is to test the performance of the energy-consistent

Burkatzki-Fillipi-Dolg (BFD) pseudopotential27 for these systems where electron correla-

tion is important. QMC methods scale as approximately N3−4 with respect to system size,

N, but the large energy fluctuations of core electrons increases the scaling to approximately

Z5.5−6.5 with nuclear charge, Z .24,25 Pseudopotentials are routinely used in QMC calcu-

lations to replace core electrons with an effective potential. The chemically active valence

electrons still feel the same electronic field but the large energy and small length scale

associated with the chemically inert core electrons is removed and the computational cost

is significantly reduced.26 Most applications of DMC would be impossible without pseu-

dopotentials but approximating the core electrons with an effective potential introduces

a systematic error. The BFD pseudopotential is constructed to reproduce HF energies

of the ground state and some excited states of an atom. It is a popular pseudopotential

and is routinely used in QMC calculations. The errors introduced by the approximation

are usually small and cancel out for energy differences. Benchmarking studies have shown

good performance in QMC relative to all-electron results.27–29 A study on post-d group

13-17 elements showed single-determinant DMC had an error of 62.8±0.6 meV for ion-

isation potentials and 50.00 ± 0.04 meV for electron affinities (third-row elements were

omitted because of their large spin-orbit effects).16 The BFD pseudopotential was built

specifically for QMC but it can be used with other methods. A study of the ionisation

potential and electron affinity of H and Li atoms with RCCSD(T) showed results differ

from experiment by 50 meV for IP and 10 meV for EA.30 No benchmarking study has

investigated the effect of pseudopotentials on QMC IPs and EAs of first- and second-row

atoms.
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5.2 Methods

Single-determinant DMC calculations used B3LYP orbitals in the trial wavefunctions.

Configuration interaction (CI) calculations used Kohn-Sham orbitals from B3LYP density

functional calculations incorporating single and double excitations (CISD). The use of

Kohn-Sham orbitals in CI wavefunctions has been shown to give better DMC nodal sur-

faces than Hartree-Fock orbitals.31 The CSFs were selected using the recently developed

energy truncation method.32 All molecules used an Etrunc value of 0.01, except for CIS-

DTQ/AE wavefunctions for O and F (and their respective ions) which use Etrunc=0.015.

It has been shown32 that there is usually a linear relationship between the DMC energy

and trunction, with a gradient of approximately 0.1. For the truncation values used here

it is expected that the total energies are converged to within 0.001 and 0.0015 Hartree

respectively (0.027-0.04 eV). The variable parameters in the Jastrow factor and the CSF

coefficients were optimised by minimising the variational energy using an approach based

on the linear method.33

All-electron calculations used the Roos ATZ basis sets34 and cusp-corrected orbitals.35

Pseudopotential calculations replace the core electrons with an effective potential. Here

the BFD pseudopotentials27 with the associated triple-zeta (VTZ) basis sets were used,

with an improved H-atom potential.36 In DMC calculations involving these non-local

pseudopotential the size-consistent T-moves scheme was used with a symmetric branching

term.37 B3LYP and CI calculations were performed with GAMESS.38,39 Fixed-node diffu-

sion Monte Carlo calculations were performed using the CSIRO QMC code19 with a target

population size of 6400 walkers. An imaginary time step size of 0.01 a.u. was used for

pseudopotential calculations. Smaller time-steps are required for all-electron calculations

and a time-step of 0.001 a.u. was used.

5.3 Single-determinant DMC

Ionisation potentials and electron affinities were calculated for all first- and second-row

atoms except for the electron affinities of Be, N, Ne and Mg, which do not form stable

anions. Experimental reference values are taken from Ref 7. Scalar relativistic effects

are built into the BFD pseudopotential but are not included in the all-electron results.

Accordingly, BFD errors are calculated using reference values that include relativistic

effects and all-electron errors use reference values with these effects removed.

All-electron (AE) ionisation potentials and electron affinities for the atoms Li through

Ar are shown in Tables 5.1 and 5.2. Deviations from (nonrelativistic) experimental ref-

erence values are shown in Figure 5.1. The DMC-B3LYP/AE electron affinities agree

closely with experimental reference values and have a mean absolute deviation (MAD) of

just 34 ± 6 meV. The quality of ionisation potentials is lower and the overall MAD is 77

± 6 meV. For ionisation potentials and electron affinities to be accurate there must be a

balanced description of electronic correlation on all species. This is challenging for neutral

and charged species with the same atomic number but it is especially difficult for systems
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Table 5.1: All-electron (AE) ionisation potentials (eV) for the atoms Li through Ar
calculated with DMC and different trial wavefunctions. Mean absolute deviation
(MAD) is reported in meV. Uncertainty in last digit of DMC results is shown in
parentheses.

Ref.a B3LYP/AE CISD/AE CISDTQ/AE POEP-SCa POEP-MCa POEP-2014b

Li 5.3197 5.382(6) 5.393(4) 5.389(5) 5.391(1) 5.391(1)
Be 9.3227 9.043(6) 9.326(6) 9.322(5) 9.050(2) 9.320(1) 9.314(2)
B 8.298 8.467(6) 8.270(6) 8.282(6) 8.449(2) 8.249(2) 8.137(4)
C 11.2603 11.418(6) 11.264(6) 11.248(6) 11.410(6) 11.203(2) 11.167(4)
N 14.5551 14.698(6) 14.551(6) 14.551(6) 14.713(3) 14.527(2) 14.499(4)
O 13.6181 13.592(6) 13.601(6) 13.579(6) 13.620(10) 13.589(4)
F 17.446 17.450(6) 17.437(6) 17.431(6) 17.432(5) 17.413(3)
Ne 21.6239 21.656(6) 21.609(6) 21.618(6) 21.660(3) 21.658(7)
Na 5.1391 5.124(6) 5.199(6) 5.147(6) 5.159(8) 5.112(2)
Mg 7.6368 7.495(6) 7.605(6) 7.573(6) 7.510(20) 7.620(10) 7.589(4)
Al 5.9858 5.964(6) 5.975(6) 5.875(6) 5.880(20) 5.930(20) 5.784(5)
Si 8.169 8.156(6) 8.171(6) 8.094(6) 8.210(20) 8.080(30) 8.075(7)
P 10.5379 10.550(6) 10.611(6) 10.360(6) 10.540(30) 10.460(10) 10.488(9)
S 10.36 10.280(6) 10.320(6) 10.095(6) 10.320(30) 10.241(11)
Cl 12.9939 12.942(6) 12.901(6) 12.762(6) 12.910(20) 12.934(6)
Ar 15.8407 15.818(6) 5.827(8) 15.660(8) 15.830(30) 15.806(14)
MAD 77(6) 30(6) 80(6) 80(13) 54(10) 70(5)

aReference 7
bReference 1

Table 5.2: All-electron (AE) electron affinities (eV) for the atoms Li through Ar
calculated with DMC and different trial wavefunctions. Mean absolute deviation
(MAD) is reported in meV. Uncertainty in last digit of DMC results is shown in
parentheses.

Ref.a B3LYP/AE CISD/AE CISDTQ/AE POEP-SCa POEP-MCa POEP-2014b

Li 0.618 0.561(5) 0.627(5) 0.621(4) 0.559(2) 0.619(1) 0.593(1)
B 0.2797 0.337(6) 0.262(6) 0.253(6) 0.340(2) 0.158(3) 0.157(4)
C 1.2621 1.336(6) 1.247(6) 1.260(6) 1.342(6) 1.161(2) 1.206(6)
O 1.4611 1.425(6) 1.430(6) 1.470(6) 1.370(20) 1.399(4)
F 3.4325 3.419(6) 3.381(6) 3.415(6) 3.445(8) 3.452(3)
Na 0.5479 0.508(6) 0.555(6) 0.503(6) 0.480(10) 0.570(10) 0.558(3)
Al 0.4414 0.439(6) 0.424(6) 0.431(6) 0.500(30) 0.380(20) 0.447(7)
Si 1.4155 1.425(6) 1.403(6) 1.378(6) 1.400(30) 1.340(30) 1.421(5)
P 0.7465 0.698(6) 0.686(6) 0.685(6) 0.690(30) 0.717(12)
S 2.096 2.068(6) 2.050(6) 2.053(6) 2.050(40) 2.030(10)
Cl 3.667 3.669(6) 3.718(6) 3.631(6) 3.760(20) 3.696(5)
MAD 34(6) 29(6) 26(6) 58(18) 64(11) 39(5)

aReference 7
bReference 1
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Figure 5.1: Deviation from experimental ionisation potentials, ∆IP, (upper plot)
and electron affinities, ∆EA, (bottom plot) for the atoms Li through Ar obtained
with single- and multi-determinant DMC with all-electron (AE) basis sets or the
BFD pseudopotential. The shaded region denotes chemical accuracy. Experimental
reference values taken from Ref. 7. Lines are drawn between points to guide the eye.
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with orbital degeneracies.

From Figure 5.1 it can be seen that the largest errors for ionisation potentials come

from Be, B, C and N. The errors for second-row atoms are much smaller. The single-

particle energies of the 2s and 2p orbitals of the atoms Be, B and C and the ions Li– ,

B+, C+, B– and N+ are relatively close and the 2s2 pair can easily be promoted to a 2p2

pair. This is known as the 2s2p near degeneracy. For second row atoms the 3s, 3p and

3d subshells are sufficiently close in energy and single or pair excitations are important.

These near-degeneracies affect Mg, Al and Si as well as the ions Na– , Al+, Al– , Si+,

and P+ but the effect of these degenerate orbitals less important compared to first-row

atoms7 and the errors for second-row atoms are smaller. These degeneracies are also less

pronounced for anions compared to cations and this is reflected in the smaller errors for

electron affinities for both first- and second-row atoms relative to the ionisation potentials.

DMC-B3LYP/AE results are compared with the most comprehensive set of single-

determinant DMC results in the literature in Tables 5.1 and 5.2. The DMC-B3LYP/AE

ionisation potentials of Na, Al and Si and the electron affinities of O, Al and Cl have

smaller errors but overall both methods are in agreement. The quality of the nodes of

the trial wavefunction is the biggest limitation for the accuracy of DMC under the fixed-

node approximation. In Ref. 7 the DMC-SC trial wavefunctions were obtained within the

parameterised optimised effective potential (POEP) approximation where the potential

is parameterised as well as the radial parts of the orbital. POEP orbitals are a good

approximation to Hartree-Fock theory but Kohn-Sham orbitals are known to give better

nodal surfaces for DMC.40

DMC-B3LYP/AE results presented here are in good agreement with experimental

reference values. They come close to chemical accuracy, defined as an error less than 43

meV, but the orbital degeneracies of some atoms and cations resulted in significant errors

for these species. The inclusion of additional determinants in the trial wavefunction can

recover some of the correlation energy associated with these degeneracies and decrease

these errors.

5.4 Multi-determinant DMC

Correlation energy is defined as the difference between the energy in the Hartree-Fock limit

and the exact (nonrelativistic) energy of a system. This correlation energy arises from the

interaction of electrons (dynamic correlation) and orbital degeneracies (static correlation).

Single-determinant DMC recovers a significant portion of the correlation energy but in-

cluding more determinants in the trial wavefunction can systematically improve the nodal

surface and recover the remaining correlation energy. This is especially important for sys-

tems with known degeneracies but it can also improve the nodal surface of systems that are

predominantly single-reference in character. The effect of these additional configurations

on the total energy can be described by the nodal correlation energy, defined here as the

difference between the single-determinant DMC-B3LYP and multi-determinant DMC-CI
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energies:

∆Ecorr = EDMC-CI − EDMC-B3LYP

Multi-determinant wavefunctions were built using configuration interaction (CI) with

single and double excitations (CISD) and CI with single, double, triple and quadruple ex-

citations (CISDTQ) from a B3LYP reference wavefunction. The active space used here for

all-electron CISD and first-row CISDTQ calculations is the entire orbital space as defined

by the Roos ATZ basis set34 (46 levels per atom). All-electron CISDTQ calculations with

the complete active space were not feasible for second-row atoms and the active space was

restricted to 13 levels per atom. The pseudopotential calculations (DMC-CISD/BFD and

DMC-CISDTQ/BFD) used all levels in the active space as defined by the BFD triple-zeta

basis set associated with the pseudopotential. For Li, Be, Na and Mg this was 15 levels.

For all other atoms it was 29 levels.

CISD and CISDTQ all-electron ionisation potentials and electron affinities for first-

and second-row atoms are shown in Tables 5.1 and 5.2 and deviations from experimental

reference values are included in Figure 5.1. Relative nodal correlation energies are shown

in Figure 5.2a.

For the atomic calculation performed here, the DMC wavefunctions built with CISD

and CISDTQ determinants recover the same amount of correlation energy when the same

active space is used, as seen in Figure 5.2a. Using all virtual orbitals in the active space

was not computationally feasible for second-row CISDTQ calculations and a restricted

active space with fewer levels was used instead. This smaller active space recovers less

correlation energy compared to CISD with a complete active space. These results indicate

triple and quadruple excitations have little contribution to the nodal surface but single and

double excitations into higher virtual orbitals are important. By definition, no correlation

energy is recovered for one electron systems when using pseudopotentials.

DMC-CISD/AE calculations reduced the MAD for ionisation potentials to just 30 ± 6

meV, compared to 77 ± 6 meV for single-determinant DMC. The MAD for electron affini-

ties was reduced to 29 ± 6 meV. Multi-determinant wavefunctions recovered a significant

amount of correlation energy for near-degenerate systems, namely Be, B, C and N, and

this improved the quality of the ionisation potentials and electron affinities of these atoms.

While there is an overall reduction in the error, the multi-determinant DMC-CISD/AE

ionisation potentials for Na, P and Cl and the electron affinity for Cl are worse than the

single-determinant result. The Na and P neutral atoms recover more nodal correlation

energy relative to the DMC-B3LYP/AE energy compared to the cations but the Cl atom

recovers less than the charged species. The accuracy of the final energy difference is ulti-

mately governed by the convergence of the energy with respect to the multi-determinant

expansion. A balanced description of correlation cannot be guaranteed for all species, even

when a complete active space is used. When one species converges faster it can lead to

results worse than the single-determinant.

The DMC-CISD/AE and DMC-CISDTQ/AE ionisation potentials and electron affini-
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Figure 5.2: DMC nodal correlation energy as a fraction of the total DMC-B3LYP
energy for CISD (closed circles) and CISDTQ (open circles) trial wavefunctions.
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Figure 5.3: Deviation from experimental ionisation potentials (∆IP) for the first row
atoms obtained with DMC-CISD/AE compared to DMC-CISD/HF results taken from
Ref. 3. The shaded region denotes chemical accuracy.

ties are in good agreement when the same active space is used but the DMC-CISDTQ/AE

calculations use a smaller active space for second-row atoms. DMC-CISDTQ/AE ionisa-

tion potentials show much larger deviations from experimental reference values and the

MAD is 80 ± 6 meV. Surprisingly the DMC-CISDTQ/AE electron affinities agree closely

with CISD results, despite the CISDTQ wavefunctions recovering less correlation energy.

The convergence of the CISDTQ wavefunction is slower for neutral atoms and anions

and less correlation energy is recovered compared to cations. The errors in this slower

convergence cancel out for electron affinities.

The most comprehensive set of multi-determinant values from the literature for both

first- and second-row atoms are included in Table 5.1 and 5.2. The DMC-MC7 results are

only available for some atoms and the configurations were selected based on knowledge

of degenerate orbitals. Similarly, the DMC-POEP1 results use either a single or two-

configuration wavefunction depending on the atom. Both methods use POEP orbitals.

A separate study used a CISD trial wavefunction from a HF reference but only cal-

culated first-row ionisation potentials.3 These results are compared in Figure 5.3. The

errors for DMC-CISD/AE ionisation potentials calculated in this work are smaller for

O but larger for B. The errors are roughly the same magnitude but have opposite sign

for Ne and the overall error for both methods is 19meV. Although both methods used CI

wavefunctions with single and double excitations (CISD) Seth et al. used the atomic multi-

configuration Hartree-Fock (MCHF) package ATSP2K41 and excitations were determined

by principal quantum numbers and angular momentum numbers. The DMC-CISD/AE

results presented here are consistent with previous work but orbitals were generated with

a method that is transferrable to molecules.
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Table 5.3: Mean absolute deviation (MAD) of DMC with different trial wavefunctions
for ionisation potentials and electron affinities of first- and second-row atoms in meV.
Uncertainty in last digit of DMC results is shown in parentheses.

IP EA

DMC-B3LYP/AE 77(6) 34(6)
DMC-CISD/AE 30(6) 29(6)
DMC-CISDTQ/AE 80(6) 26(6)
DMC-B3LYP/BFD 73(3) 35(5)
DMC-CISD/BFD 58(3) 51(4)
DMC-CISDTQ/BFD 55(3) 44(4)

The DMC-MC wavefunctions from Ref. 7 and the DMC-POEP wavefunctions from

Ref 1 used a small set of configurations chosen based on a priori knowledge of degenerate

orbitals. A more ‘black-box’ style approach was used in the present work where all possible

single and double or single, double, triple and quadruple excitations were included in the

CI calculation. When the DMC-CISD/AE and DMC-MC results are compared for the

atoms Be through N and Al through P, DMC-CISD/AE performs better. The MAD for

ionisation potentials is 21 ± 6 meV and just 13 ± 6 meV for electron affinities. As shown

in Figure 5.2a, including more virtual orbitals in the active space recovers more correlation

energy. The single and double excitations into higher virtual orbitals have a significant

contribution to the quality of the nodal surface for DMC calculations. Furthermore, nodal

correlation energy can be recovered for all species, including those that are predominantly

single-reference. By using a more extensive wavefunction for all species the errors for

DMC-CISD/AE are smaller than previous multi-determinant studies.

5.5 BFD pseudopotential

DMC methods scale as Z5.5−6.5 with respect to atomic number Z and the high-energy

core electrons are routinely replaced by an effective potential to reduce the computational

cost. The effect of these pseudopotentials on the correlation energy of neutral and charged

first- and second-row atoms is investigated here. Deviations from experimental reference

values are shown in Figure 5.1. The mean absolute deviations (MADs) for pseudopotential

results are reported in Table 5.3.

The MAD for DMC-B3LYP/BFD ionisation potentials and electron affinities is equiv-

alent to all-electron results. Figure 5.1 shows the errors are generally smaller for first-row

atoms compared to all-electron results but this improvement is cancelled out by larger

errors for second-row atoms. A previous study has shown core relaxation is important

for first row atoms and freezing the doubly occupied 1s introduced substantial errors for

CCSD(T) and FCIQMC first-row ionisation potentials.6 Although the study only looked

at first-row atoms it is likely removing the neon core for second-row atoms is having a

similar, detrimental effect. The quality of the ionisation potential and electron affinity is

improved for the degenerate species (Be, B, C and N) but worse for all other atoms. This
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suggests the errors introduced by removing the core electrons are negated by the errors

associated with the degenerate orbitals.

The error of the DMC-B3LYP/BFD ionisation potential for Na is especially large

compared to other atoms. The BFD pseudopotential replaces the 1s, 2s and 2p electrons

of second-row atoms with an angular-momentum dependent effective potential that acts

on the valence electrons. This means the Na+ cation is the pseudopotential core and the

ionisation potential is the energy of the single-particle orbital. The Li ionisation potential

is defined in a similar manner but the error associated with it is much smaller. The

BFD pseudopotential is constructed to reproduce Dirac-Fock energies but this neglects

correlation energy. The large error for the Na ionisation potential comes from the core

correlation energy that is being ignored. For other atoms the error introduced by neglecting

the correlation energy cancels out and reasonable values are obtained.

The DMC-CISD/BFD and the DMC-CIDSTQ/BFD results are included in Figure

5.1. Overall mean absolute deviations (MADs) are reported in Table 5.3. Electron corre-

lation energy is shown in Figure 5.2b. Compared to all-electron results the BFD multi-

determinant wavefunctions recover more correlation relative to the total energy of the

atoms. For most systems the DMC-CISD/BFD and DMC-CISDTQ/BFD wavefunctions

recover the same amount of correlation energy. The exception is the Li, B and Al anions

where DMC-CISDTQ/BFD recovers more correlation energy than DMC-CISD/BFD. This

is most likely a side effect of the truncation of determinants rather than a contribution

from the additional excitations. It is not practical to include all determinants from a

CISD (or CISDTQ) calculation in a DMC trial wavefunction and instead the number of

determinants is truncated according to some threshold. An energy truncation scheme was

used here32 where the number of determinants was selected based on their contribution to

the CI energy of the atom. Despite using the same truncation value the multi-determinant

pseudopotential wavefunctions recovered significantly more correlation energy compared

to the all-electron wavefunctions. The individual determinants have a bigger contribution

to the final energy of the molecule and the BFD wavefunctions are more sensitive to the

truncation.

The MAD for ionisation potentials decreases from 73 ±3 meV for single determinant

DMC-B3LYP/BFD to 58± 3 meV for DMC-CISD/BFD (55± 3 for DMC-CISDTQ/DMC).

The difference in the correlation energy recovered for the anions discussed above results

in smaller errors for the DMC-CISDTQ/BFD electron affinities compared to the DMC-

CISD/BFD results (44 ± 4 meV compared to 51 ± 4 meV) but in both cases the errors are

larger than single-determinant DMC-B3LYP/BFD. Despite CISD (and CISDTQ) wave-

functions recovering a significant amount of nodal correlation energy the relative correla-

tion energy for anions is worse compared to single-determinant results.
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5.6 Summary

Overall, DMC performs well for the ionisation potentials and electron affinities of first- and

second-row atoms. The quality of single-determinant DMC-B3LYP/AE electron affinities

was better than ionisation potentials but including more determinants in the trial wave-

function improved the results. The DMC-CISD/AE results presented here are in good

agreement with experiment and chemically accurate results have been obtained for the

atoms Li through Ar. Including more virtual orbitals in the active space with just single

and double excitations recovered a significant amount of nodal correlation energy. Includ-

ing triple and quadruple excitations in the trial wavefunction had little effect on the nodal

correlation energy recovered and the final energy differences. BFD pseudopotentials offer

a good compromise between cost and accuracy and a significant amount of nodal correla-

tion energy can be recovered by incorporating more determinants in the active space. In

general, including more configurations in the trial wavefunction will recover more nodal

correlation energy and lower the total energy of a system but for this to translate to

accurate energy differences it needs to be balanced on all species.
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10 M. D. Brown, J. R. Trail, P. L. Ŕıos, R. J. Needs, J. Chem. Phys. 2007, 126, 224110.

11 K. Hongo, Y. Kawazoe, H. Yasuhara, Mater. Trans. 2006, 47, 2612–2616.

12 M. Casula, S. Sorella, J. Chem. Phys. 2003, 119, 6500–6511.

13 F. J. Gálvez, E. Buenda, A. Sarsa, Int. J. Quant. Chem. 2002, 87, 270–274.

14 J. W. Moskowitz, K. E. Schmidt, J. Chem. Phys. 1992, 97, 3382–3385.



68 Ionisation potentials and electron affinities of first- and second-row atoms

15 R. N. Barnett, P. J. Reynolds, W. A. Lester Jr., J. Chem. Phys. 1986, 84, 4992–4996.

16 W. A. Al-Saidi, J. Chem. Phys. 2008, 129, 064316.

17 E. Buend́ıa, F. J. Gálvez, A. Sarsa, J. Chem. Phys. 2006, 124, 154101.

18 M. Caffarel, J.-P. Daudey, J.-L. Heully, A. Ramárez-Solás, J. Chem. Phys. 2005, 123,
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Chapter 6

Difficult reactions

6.1 Introduction

The previous chapters have demonstrated the accuracy and reliability of DMC for a variety

of systems. Single-determinant DMC was sufficient for chemically accurate results for most

molecules and a multi-determinant wavefunction improved results for more challenging

systems. The largest source of error in a DMC calculation comes from the fixed-node

approximation but errors in the nodal surface usually cancel out for energy differences.

The systems studied thus far have been limited to atoms and small or organic systems.

Benchmarking results in the literature are also restricted to similar, simple electronic

structures.1,2 A more thorough investigation of the performance of DMC is presented in

this chapter using a set of eighteen reactions that are particularly challenging for density

functional theory (DFT).

DFT methods are a popular choice for low-cost electronic structure calculations. They

have been broadly applied to a range of problems including transition metals,3 molecular

properties and spectroscopy for inorganic compounds,4 complex chemical and biological

systems5 and hydrogen bonding in water complexes6 to name just a few. Despite the

successes in these area, there are severe limitations to the method. DFT suffers from

self-interaction and delocalisation errors.7–10 Poor results can be expected in these cases

but it can also fail unexpectedly and catastrophically for simple systems like unsaturated

hydrocarbons.11 Most DFT methods fail to describe dispersion effects unless specifically

parameterised for them.12–14 As seen in Chapter 3 small, seemingly simple problems like

hydrogen abstraction from methanol require high-level and costly methods for accurate

results.15–17

Wavefunction theory (WFT) based methods, like the ‘gold-standard’ CCSD(T) do

not suffer the same errors as DFT but become prohibitively expensive as system size

increases. DMC is also unaffected by the delocalisation and self-interaction errors but

scales as approximately N3−4 with respect to system size, N. The Slater-Jastrow form

of the trial wavefunction provides a good description of correlation effects and DMC is

more suitable for dispersion problems.6,18–22 Despite using Kohn-Sham orbitals in the

trial wavefunction it has been shown to deliver chemically accurate results for the types

of systems that DFT struggles with, such as the H-abstraction of methanol and Diels-

Alder reactions as shown. The benchmarking of single- and multi-determinant DMC is

70
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Table 6.1: Reference values (kcal/mol) for the difficult cases (DC18) test set. Reac-
tions 1-9 are taken from Ref. 23, reactions 10-18 are taken from Ref. 14.

Reaction Ref. Value

1 HCN . . . BF3 → HCN + BF3 5.7
2 C6Cl6 + 6 HCl → 6 Cl2 + C6H6 148.3
3 P4 → 4 P 289.9
4 SF6 → S + 6 F 477.5
5 PF5 → P + 5 F 556.4
6 P4O10 → P4 + 5 O2 719.7
7 C6F6 → 6 C + 6 F 1388.1
8 Si(OCH3)4 → Si + 4 C + 4 O + 12 H 2023.5
9 urotropin → 6 C + 4 N + 12 H 2151.1

10 2-pyridone → 2-hydroxypyridine -1.0
11 (C20)cage → (C20)bowl -13.3
12 hepta−1,2,3,5,6−hexaene→ hepta−1,3,5−triyne 14.3
13 2 tetramethyl−ethen→ octamethylcylobutane -19.2
14 CH12 isomerisation -25.0a

15 carbo-[3]-oxacarbon isomerisation -26.9
16 N2CH2 + C2H4 → (CH2)3N2 -38.1
17 4 Be → Be4 -90.4b

18 4 S2 → S8 -101.0
aReference 24
bReference 13

extended in this chapter using a test set of 18 difficult cases for DFT methods (DC18),

shown in Table 6.1. Reactions 1 to 9 are taken from work by Truhlar et. al23 (DC9T) and

include non-hydrogen hypervalent compounds and more second-row and halogen atoms

than previous test sets. Reactions 10 to 18 are taken from work by Grimme et. al.14

(DC9G) and include larger organic molecules and isomerisation energies.

6.2 Method

Geometries and reference values were taken from previous work.14,23 The reference reac-

tion energies reported in Ref. 14 were taken from previous papers and were incorrect for

reactions 14 and 17. The reference energies listed in in Table 6.1 were updated with values

from Ref. 24 and Ref. 13 respectively.

DMC calculations were performed using target population sizes of 6400 walkers and an

imaginary-time step of 0.01 a.u. Core electrons were replaced with the energy-consistent

Burkatzki-Filippi-Dolg (BFD) potentials and associated associated triple-zeta (VTZ) basis

sets,25 with an improved basis and potential for H.26 The size-consistent T-moves scheme

was used for these non-local pseudopotentials.27 The eeN term was omitted from the

Jastrow factor.15

Single-determinant (SD) DMC calculations used B3LYP orbitals in the trial wave-

function. The CSFs for multi-determinant (MD) DMC were obtained from configuration
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Figure 6.1: Deviations from reference values (∆E) for the DC18 test set. The shaded
region represents chemical accuracy, ± 1 kcal/mol. The red dashed line denotes
errors of 5 kcal/mol. Reactions with errors greater than 5 kcal/mol were selected for
a multi-determinant study. The lines between points are merely drawn to guide the
eye.

interaction with single and double excitations (CISD) from a B3LYP reference wavefunc-

tion. The use of Kohn-Sham orbitals in CI wavefunctions have been shown to give better

DMC nodal surfaces than Hartree-Fock orbitals.28 CSFs were selected using the recently

developed energy truncation method.29 The variable parameters in the Jastrow factor and

the CSF coefficients were simultaneously optimised by minimising the variational energy

using an approach based on the linear method.30 B3LYP and CI calculations were per-

formed with GAMESS.31,32 Quantum Monte Carlo calculations were performed using the

CSIRO Quantum Monte Carlo software package.33
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6.3 Single-determinant DMC

Single-determinant DMC deviations from reference values (∆E) are shown in Figure 6.1.

Overall, the quality of results is much lower than previous test sets. Only four of the

eighteen reactions come close to the ‘chemical accuracy’ standard of errors less than 1

kcal/mol. Reactions 1, 13 and 17 are all examples of systems with significant dispersion

forces.12–14 Most DFT methods fail to account for dispersion forces but DMC describes

these effects with high accuracy6,18–22 and the small DMC errors for these reactions are

unsurprising. Reaction 10 is the isomerisation of DNA base tautomers (2-pyridone →
2-hydroxypyridine). The aromatic structure of 2-hydroxypyridine is challenging for DFT

methods and in most cases they predict the wrong energy ordering of isomers.34 The

reference isomerisation energy is -1.0 kcal/mol and DMC predicts no energy difference

between the isomers.

Despite the good results for these four reactions the overall performance of single-

determinant DMC for the DC18 test set is poor. Half of the reactions have errors greater

than 5 kcal/mol and reactions 3, 4 and 18 have errors greater than 8 kcal/mol. The mean

absolute deviation (MAD) is 4.9 kcal/mol for the entire set. As shown previously, DMC

can be improved by incorporating more determinants in the trial wavefunction. Systems

with errors greater than 5 kcal/mol were treated with multi-determinant methods with

the exception of reaction 11.

Reaction 11, the relative energy of C20 cage and bowl isomers, is a challenging problem

for many methods. C20 has three distinct low-lying isomers: a fullerene cage, a monocyclic

ring and a bowl structure.35 The relative energy of these isomers is extremely sensitive

to the method used and most methods disagree on the magnitudes of the energies and

even the relative ordering of isomers.36–42 The reference value used here (13.3 kcal/mol)

was calculated at an estimated CCSD(T)/CBS level43 using MP2/TZV2d1f geometries.39

Single-determinant DMC predicted a much larger energy difference of 19.2 ± 0.4 kcal/mol

based on these MP2/TZV2d1f geometries. A recent study using a similar extrapolation

scheme with PBE0/cc-pVTZ geometries found the relative energy between the bowl and

cage isomers was approximately 8 kcal/mol.42 Due to differences in geometries the DMC

energy can’t be compared with this new value. Part of the problem is thought to arise

from partial multi-reference effects44 and it is likely additional determinants could improve

the energy, but given the system size and the unreliability of the reference data it was not

included in the subsequent multi-determinant study.

6.4 Multi-determinant DMC

6.4.1 Active space selection

The choice of active space used for multi-determinant wavefunction expansions determines

the accuracy of the final energy. Full configuration interaction incorporates all excitations

in all levels. It is the most accurate method and will give the exact energy for the basis set
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limit but is prohibitively expensive for most systems. Instead, the active space and level

of excitations are restricted but often there is no a priori way of knowing which orbitals

or excitations are the most relevant. The active space needs to include the important

bonding orbitals as well as sufficient virtual levels to capture the necessary excitations.

In some cases this is obvious but most often it is selected intuitively or a guess is made

at what the most relevant orbitals or excitations should be. For the ionisation potentials

and electron affinities of first- and second-row atoms in Chapter 5, including triple and

quadruple excitations had little effect on the final energy but higher energy virtual orbitals

were extremely important. Selecting an appropriate active space can be complicated for

reactions where number of electrons and orbitals needs to be balanced on both sides of a

reaction equation. This becomes especially challenging for decomposition reactions where

there is a large disparity in molecule sizes on either side of the equation. The active space

needs to be sufficient on atoms to capture the important configurations but small enough

for larger molecules to be computationally feasible. The DC18 set includes a wide range

of molecules and reactions and the following guidelines were used to provide consistency.

Core electrons and shells were replaced with a pseudopotential, equivalent to a helium

core for first-row atoms and a neon core for second-row atoms.

• For first row atoms, all valence electrons and sufficient virtual levels to close the n=2

shell (i.e. 2s and 2p orbitals, 4 levels per atom)

• For second row atoms, all valence electrons and sufficient virtual levels to close the

n=3 shell were included (i.e 3s, 3p and 3d orbitals, 9 levels per atom)

• One level was included for each H atom in the molecule

The notation RAS(Ne, Norb) is used, denoting restricted active space (only single and

double excitations were included) with Ne electrons and Norb active orbitals. These meth-

ods produce too many determinants to be practical for DMC calculations and instead

the expansion is truncated according to some threshold. In this work the number of de-

terminants was selected using an energy-truncation scheme.29 The error cancellation in

multi-determinant expansions for reactions can be maximised by using different Etrunc

values, using the formula:

EPtrunc = ER1
trunc + ER2

trunc (6.1)

where ER1
trunc and ER2

trunc are the energy cut-offs of reactants and EPtrunc is the energy-cut off

of the products.29 The value of Etrunc used was dependent on each reaction; Etrunc = 0.01

Ha or the smallest value possible to keep the number of CSFs below 1200 for the largest

molecule in the reaction. A summary of the active space, Etrunc and final number of CSFs

used in each calculation is provided in Table 6.2.

6.4.2 Non-hydrogen hypervalent compounds

Non-hydrogen, hypervalent molecules are challenging for both DFT and WFT meth-

ods.11,13,45 There are four decomposition energies of these types of molecules in DC18.
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Table 6.2: Details of the final active spaces of Ne electrons in Norb active orbitals
used for each molecule. Configuration space functions (CSFs) are symmetry-adapted
linear combinations of the determinants (Dets).

RXN Mol Etrunc (Ha) Ne Norb Dets CSFs

3 P4 0.055 20 36 4630 1131
P 0.01375 5 9 13 6

4 SF6 0.05 28 47 4286 951
S 0.05 4 8 1 1
F 0.05 5 8 1 1

5 PF5 0.07 28 48 5128 1140
P 0.01167 3 8 1 1
F 0.01167 5 8 29 10

7 C6F6 0.01 18 24 415 100
C 0.01 2 3 1 1
F 0.01 1 1 1 1

9 urotropin 0.04 56 52 2424 698
N 0.04 5 4 1 1
C 0.04 4 4 1 1

12 hepta-1,2,3,5,6-hexaene 0.01 32 32 4489 1030
hepta-1,3,5-triyne 0.01 32 32 3583 874

15 carbo-[3]-oxacarbon 1 0.03 30 36 3998 951
carbo-[3]-oxacarbon 2 0.03 30 36 4583 1045

Reaction 3, 4 and 5 are the decomposition energies of P4, SF6 and PF5 respectively and

all three have DMC errors greater than 6.5 kcal/mol. Reaction 17, the decomposition of

a beryllium cluster, has an error of 1.3 ± 0.1 kcal/mol. Errors in the nodal surface can

cancel out for energy differences provided there is an equivalent description of correlation

for all species. These large errors in the decomposition energies of molecules containing

second-row atoms point to a problem in the description of the molecule relative to the

atoms. Reaction 6 is the decomposition of P4O10 into P4 and O2 but the error is 2.1 ± 0.4

kcal/mol, suggesting the errors for the molecules P4O10 and P4 are cancelling out. Using

more determinants can improve the description of the molecules in reactions 3, 4 and 5

relative to the atoms and reduce the error.

In reaction 3, the active space for P4 was chosen to include all valence electrons and

nine active orbitals for each atom (RAS(20, 36)). The error in the decomposition energy

was reduced by approximately 3.5 kcal/mol to 11.9 ± 0.3 kcal/mol. This error is still

significant but incorporating more orbitals into the active space could reduce it further.

Including additional excitations had no effect on second-row ionisation potentials and

electron affinities and is unlikely to decrease the error here.

Reactions 4 and 5 are similar to reaction 3 and single-determinant DMC also under-

binds these molecules. Since they contain first- and second-row atoms the active space

was initially chosen such that it included four levels for each first-row atom and nine lev-

els for second-row atoms. The active space was RAS(48, 33) on SF6 and RAS(40, 29)

on PF5. Although the active space included a large number of orbitals and electrons on
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both molecules there was no difference in the reaction energy compared to the single-

determinant result. Previous QMC calculations have shown that multi-determinant DMC

results are generally converged with smaller active spaces for molecules containing first-

row atoms. A study looking at model retinal chromophores found no difference between

the CAS(6,6) and CAS(6,12) space for C5NH8 and good results were seen with the smaller

space.46 Another study looking at models of the green fluorescent chromophore showed

DMC results were converged with CAS(2,2) compared to CAS(12,11), even though the

CASPT2 calculations used to generate the orbitals were not.47 For second-row atoms

larger active spaces with higher virtual orbitals are necessary. In a study of the G2 test

set a modest active space incorporating valence electrons had a much greater effect on

molecules with second row atoms compared to first row. In a small test with PH2, PH3

and P2, a larger active space with more virtual orbitals reduced the error from 2.3 kcal/mol

(s and p orbitals only) to 1.6 kcal/mol.48

Since the initial active space had no effect, the number of levels was increased to

nine for all atoms. After freezing the doubly-occupied s orbitals on PF5 the final active

space was RAS(28, 48) and the magnitude of the error in reaction 5 was reduced by 6

kcal/mol. Using nine levels on all atoms (RAS(34,63)) resulted in too many CSFs for

the DMC calculation of SF6. The natural orbital occupation numbers (NOONs) from the

CISD-B3LYP RAS(34,63) calculation were used to reduce the active space. All doubly-

occupied orbitals with λi > 1.991 were frozen and any virtual level with λi < 0.001 was

omitted. This reduced the active space for SF6 to RAS(28, 47) but the atom active spaces

were left unchanged. Using this modified active space lowered the error of reaction 4 to

just 1.2 ± 0.3 kcal/mol. The active spaces used in the final DMC calculations of SF6

and PF5 included substantially more virtual levels than the initial active spaces but the

number of electrons had to be reduced for the calculation to be computationally feasible.

These results suggest that excitations into higher virtual orbitals are more important than

including more electrons in the active space for DMC calculations of molecules containing

second-row atoms.

6.4.3 Atomisation energies of large molecules

DFT errors are known to increase with system size and atomisation energies of large

organic molecules like C6F6 (reaction 7) and urotropin (C6H12N4, reaction 9) are particu-

larly challenging.11,24,49–51 DFT also has unexpectedly large errors for ‘simple’ saturated

systems like urotropin and unsaturated compounds of the same size are described better.11

The performance of DFT methods for these systems can be sporadic and unpredictable;

most methods overbind C6F6 but B3LYP underbinds it by 2.9 kcal/mol.49

Of the ten decomposition energies in the DC18 test set, nine of them have DMC

errors greater than 5 kcal/mol. Single-determinant DMC underestimated the binding

energies of reactions 7 and 9 by at least 6.0 kcal/mol. Reaction 8, the decomposition

of Si(OCH3)4, also has a large DMC error (4.2 ± 0.2 kcal/mol) but it was below the 5

kcal/mol threshold and was not studied further. The large errors for these systems can
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be attributed to a poor description of the nodal surface on the large molecules relative to

the atoms. Similarly to the decomposition energies of second-row-containing molecules,

including more determinants should improve the nodal surface of the molecules.

Using an active space with four levels per atom for C6F6 in reaction 7 was too computa-

tionally demanding and all doubly-occupied orbitals on atoms were frozen (RAS(18,14)).

Using this active space in the DMC trial wavefunction reduced the error of reaction 7

to 1.3 ± 0.5 kcal/mol. A larger active space for urotropin in reaction 9 (RAS(56, 52),

four levels for each C and N atom and 1 level for each H atom) still underestimated the

decomposition energy by 4.2 ± 0.4 kcal/mol.

In both cases, a multi-determinant trial wavefunction reduced the DMC errors but the

results are dependent on the molecule and active space used. For C6F6 a small active space

with just 14 orbitals was sufficient. Urotropin has the same number of heavy atoms but a

CISD trial wavefunction with an active space with 52 orbitals still resulted in a DMC error

greater than 4 kcal/mol. The active space on C6F6 was much smaller than those used

on the decomposition energies of hypervalent compounds, highlighting the unpredictable

behaviour of these multi-determinant wavefunctions in DMC.

6.4.4 Isomerisation energies of organic molecules

Accurately describing the electron distribution in delocalised systems is a challenging

problem for electronic structure methods. HF methods do not take electronic correlation

into account and underestimate electron delocalisation but DFT methods have been shown

to overestimate it.52 Although DFT methods can accurately predict the structure of

delocalised systems like cumulenes and carbomers they fail to predict the relative stabilities

of isomers. They tend to overstabilise delocalised cumulenes relative to poly-enes and

underestimate the energy difference.53,54 DC18 contains four isomerisation energies of

organic molecules, shown in Figure 6.2. QMC methods have been shown to recover a

significant amount of correlation energy yet single-determinant DMC underestimated the

energy differences for reactions 12 and 15 by approximately 5 kcal/mol. Reactions 10 and

14 are also isomerisation reactions but they have much smaller DMC errors.

DMC recovers a significant amount of correlation energy but the accuracy of energy

differences is determined by error cancellation. When the errors in the nodal surface are

equivalent the reaction energy will be good, regardless of how accurate the individual

results are. For reactions 10 and 14 there is a good cancellation of errors and the reaction

error is small. For reactions 12 and 15 there is an unbalanced description of the molecules

and additional determinants are required. Choosing an active space for isomerisation

energies is considerably easier than atomisation energies where the number of products and

reactants can differ significantly but to maintain consistency with the previous calculations

the same guidelines were used. For C7H4 (12a and 12b in Figure 6.2) this gave an active

space of 20 electrons in 32 orbitals for each isomer and reduced the error to 1.4 ± 0.3

kcal/mol. For the C9O3 isomers (15a and 15b in Figure 6.2) the doubly-occupied s

orbitals were frozen on each atom. The final active space (RAS(30, 36)) reduced the error
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Figure 6.2: The structures of the isomers in reactions 10, 12, 14 and 15.
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to 0.3 ± 0.3 kcal/mol.

The improvement made to the nodal surface by these additional determinants can be

quantified by the nodal correlation energy, defined as:

∆Ecorr = EDMC-CI − EDMC-B3LYP

where EDMC-CI is the multi-determinant energy and EDMC-B3LYP is the single-determinant

energy. The nodal correlation energy can be used to establish which system was the

most improved by a multi-determinant wavefunction. 15a recovered approximately 12.5

kcal/mol correlation energy while 15b recovered 5.4 kcal/mol. 12a recovered 8.8 kcal/mol

and 12b recovered 5.2 kcal/mol. Although all four molecules recovered a significant

amount of correlation energy in both reactions there was one isomer that recovered more.

There is no distinction between the molecules that makes it clear as to when a multi-

determinant wavefunction should be used. It can not always be attributed to the multi-

reference character of the molecule. For example, the T1 diagnostic is a common metric

used to assess the suitability of single-reference methods55 and values over 0.02 suggest the

need for a multi-reference calculation. The T1 diagnostic for one of the carbomer isomers

in reaction 15 was 0.018 in the original work. This is close to the threshold of 0.02 but

a rough CASSCF analysis showed no significant multi-reference character.54 In this work

using more determinants in the DMC wavefunction reduced the error by 5 kcal/mol.

6.4.5 Binding energy of sulphur

Reaction 18 is the binding of four sulfur dimers (S2) to form a sulfur ring, S8.56 Multiply

bonded sulphur compounds are known to be challenging for DFT methods11 and DMC-

B3LYP underestimated the binding energy by 8.0 kcal/mol. Using an active space of

9 levels on each atom was not feasible for a molecule this size. As shown for reactions

3, 4 and 5, higher virtual orbitals are especially important for multi-determinant DMC

calculations with second-row atoms and an active space of 4 levels per atom would be

inadequate. The largest active space considered for S8 used an equivalent number of

electrons and orbitals after freezing the s orbital on each atom (RAS(32, 32)). Energy

differences rely on a balanced description of electron correlation on products and reactants

and a suitable active space needs to be used on all species. Unfortunately this active space

was not suitable and the error increased by 1.5 kcal/mol. Based on results from previous

molecules in this set, more virtual levels need to be included in the active space but this

as not possible at this stage. A CISDTQ wavefunction that includes more excitations is

unlikely to improve the results and would be prohibitively expensive.

6.5 Comparison to other methods

Mean absolute deviations (MADs) for DMC and some popular WFT and DFT methods

are reported in Figure 6.3. The MAD for single-determinant DMC for the two test sets
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combined is 4.9± 4 kcal/mol, but the error for DC9G is 3.7± 4 kcal/mol compared to 6.2±
4 kcal/mol for DC9T. Despite these large errors, single-determinant DMC performs better

than the other methods. DC18 is made up of reactions specifically chosen to challenge

DFT methods and the large errors for DFT methods are unsurprising. Although DMC is

not affected by the same problems as DFT methods, the errors for the two test sets follow

the same trends. Reactions 1 to 9 (DC9T) are predominantly hypervalent compounds with

second row atoms and these high-energy reactions are more challenging for all methods

compared to reactions 10 to 18 (DC9G). Unlike the DFT and WFT methods shown, DMC

can be improved by including more determinants in the trial wavefunction. Using a multi-

determinant wavefunction for reactions 3, 4, 5, 7, 9, 12 and 15 reduced the errors associated

with them, and the overall MAD is reduced to 3.1 ± 4 kcal/mol. This also reduced the

disparity between the two subsets, the MADs for DC9T and DC9G were reduced to 3.4

± 4 and 2.9 ± 4 kcal/mol respectively.

6.6 Summary

DMC is not affected by the same errors as DFT methods but the quality of reaction

energies in the DC18 test set was low. Reactions 1 to 9 are more challenging for DFT

methods and also had larger errors for DMC compared to reactions 10 to 18. Despite this,

single-determinant DMC still had smaller errors for the DC18 test set compared to other

methods. A unique advantage of DMC methods over DFT methods is they can be sys-

tematically improved by including more determinants in the wavefunction. Unfortunately

it is not always clear when a multi-determinant wavefunction should be used or what the

virtual orbitals the active space should include. In general, decomposition energies of large

molecules require a multi-determinant wavefunction to better describe the nodal surface

of the molecule relative to the atoms. Higher virtual orbitals are necessary for molecules

with second-row atoms and including more determinants will only improve the final en-

ergy if sufficient virtual orbitals are included. Unfortunately including more determinants

doesn’t always work, as was seen for reaction 18 (S8) and it may only remove some of

the error, like reactions 3 and 9. For isomerisation reactions, it is not apparent which

systems might need more determinants but a smaller active space is sufficient. Despite

these drawbacks DMC performs consistently well for the range of reactions compared to

other methods.
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Chapter 7

The isomerization of diazene

(N2H2)

7.1 Introduction

Azo compounds, defined by −N−−N− functional groups, have a broad range of applica-

tions. They are powerful and selective reducing agents and sources of free radicals.1 They

can undergo a reversible cis/trans photochemical or thermal transformation about the

the -N=N- double bond, potentially acting as molecular switches or optical data storage

systems.2–4 Diazene (N2H2, also known as diimide) is the simplest azo compound. It

has been used for stereospecific reduction of olefins5 and as a ligand for transition metal

complexes.6

The isomerisation of diazene has been extensively studied.4,7–25 There are three iso-

mers, cis, trans and iso-N2H2 and three isomerisation pathways; rotation about the -N=N-

double bond, in-plane hydrogen inversion and an N-H bond cleavage/recombination. The

transition state for the inversion pathway is predominantly single-reference but the ro-

tational pathway is strongly correlated. The last pathway is often ignored due to the

instability of the diazenyl radical. Rotation about a double bond involves breaking the

π-bond and passing through a diradical transition state before reforming the π-bond. The

configurational degeneracy can be seen in the potential energy curve of the rigid rotation

of the trans structure about the double bond. Single-reference methods like CCSD over-

estimate the energy and a cusp-like feature is seen at a dihedral angle of 90o if the energy

is plotted as a function of dihedral angle.11 Multi-reference methods give smoother curves

and better estimates of the energy.8,10,18 The complicated, multi-reference nature of the

rotational transition state means it is often omitted from studies4,21,22,24 but when both

barrier heights are compared the results are inconsistent. In some cases the rotational

barrier is much higher in energy than the inversion barrier20,25 but other studies show the

barrier heights are similar.12,23

Accurate relative energies need equivalent descriptions of correlation on all species but

this is challenging when one structure has significant degeneracies. Single-reference meth-

ods give a poor description of the non-dynamical correlation on the rotational transition

state. Multi-reference methods like multiconfigurational space self-consistent field (MC-

85
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(a) (b) (c) (d) (e)

Figure 7.1: The diazene isomers and transition states a) trans-N2H2, b) cis-N2H2, c)
iso-N2H2, d) TS1, out-of-plane rotational transition state e) TS2, in-plane hydrogen
inversion transition state

SCF) or multi-reference configuration interaction (MRCI) methods, designed specifically

for these types of degenerate systems, can fail to give a good description of the dynamic

correlation on closed shell species. QMC methods like DMC are well suited to this type

of problem. DMC with a trial wavefunction built from single-reference orbitals (e.g. HF,

DFT) can fail for ‘near-degeneracy’ systems but including more determinants can account

for the non-dynamic correlation. DMC has also previously been used to study the singlet

and triplet excited states of trans-azobenzene, another popular azo-compound. Using a

MCSCF trial wavefunction gave good agreement with experimental values.26,27

The major challenge of this system is finding a balanced description of the static and

dynamic correlation on all species. Chapter 5 showed DMC with a multi-determinant trial

wavefunction improved the description of correlation on challenging, degenerate species like

Be, B, C and N. Including triple and quadruple excitations in the trial wavefunction had

little effect on the final energy but the accuracy of the energy differences depended on the

active space. The correlation energy of second-row anions and neutral atoms was poorly

described relative to cations for smaller active spaces and the final energy differences were

worse than single-determinant results. Chapter 6 showed that multi-determinant DMC

calculations were no better than single-determinant DMC calculations with small active

spaces for PF5 and SF6. The choice of multi-determinant method and active space used to

generate the starting orbitals for a DMC calculation will ultimately govern the accuracy of

the final energy. For single-determinant DMC it has been shown that Kohn-Sham orbitals

give better trial wavefunctions than Hartree-Fock orbitals28,29 but multi-determinant ex-

pansions are more complicated. In this chapter the effect that different multi-determinant

methods and the choice of active space within these methods have on DMC total and

relative energies is investigated. Three multi-determinant methods are compared; com-

plete active space self-consistent field (MCSCF), configuration interaction with single and

double excitations (CISD) and configuration interaction with single, double, triple and

quadruple excitations (CISDTQ).
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7.2 Methodology

The structures of the three isomers and two transition states are shown in Figure 7.1.

Molecular geometries were taken from previous work where they were calculated using the

2-RDM method and an aug-cc-pVTZ basis set.7 Two single-determinant methods (HF and

B3LYP) are compared against three multi-determinant methods. Multi-configuration self

consistent field (MCSCF) wave functions in complete active spaces (CAS) were generated

using all possible excitations in a given active space. Configuration interaction (CI) calcu-

lations were truncated to include single and double excitations (CISD) or single, double,

triple and quadruple excitations (CISDTQ) from a single-determinant B3LYP reference

wavefunction. The use of Kohn-Sham orbitals in CI wavefunctions has been shown to give

better DMC nodal surfaces than Hartree-Fock orbitals.29 Full details of the active spaces

are outlined in the results section below. The notation (Ne, Norb) is used, where Ne is

the number of active electrons and Norb is the number of orbitals. B3LYP, CI and MC-

SCF calculations were performed with GAMESS.30,31 The number of configuration state

functions (CSFs) produced by multi-determinant methods is usually too large for DMC

methods and they are commonly truncated according to some threshold. A weight-based

truncation scheme was used here where the number of CSFs were selected such that the

sum of the coefficients was 99.5% of the original expansion.

Fixed-node diffusion Monte Carlo calculations were performed using the CMQMC

code32 with a target population size of 6400 walkers and an imaginary time step size of

0.01 a.u. The Jastrow factor used here is the sum of electron-electron (ee) and electron-

nucleus (eN ) terms.33 Burkatzki-Filippi-Dolg (BFD) pseudopotentials with the associated

triple-zeta (VTZ) basis sets were used34 with an improved H-atom potential.35 DMC calcu-

lations involving nonlocal pseudopotentials used size-consistent T-moves with a symmetric

branching term.36 The variable parameters in the Jastrow factor and the CSF coefficients

were optimised by minimising the variational energy using an approach based on the linear

method.37

7.3 Single-determinant DMC

Energies relative to trans-N2H2 are reported in Table 7.1 for DMC using single-determinant

methods (HF and B3LYP) as well as relative energies from the trial wavefunctions. Multi-

reference configuration interaction with Davidson38 and Pople39 size consistency correc-

tions and an aug-cc-pVQZ basis set (MRCI+Q/AVQZ) reference values are taken from

Ref. 12.

There is good agreement between the reference values and the single-determinant

DMC-HF and DMC-B3LYP for the predominantly single-reference species cis-N2H2, iso-

N2H2 and the inversion transition state, TS2. Both DMC-HF and DMC-B3LYP over-

estimate the relative energy of the rotational transition state, TS1, by more then 20

kcal/mol. This is unsurprising given the strongly correlated nature of this structure. The

DMC-B3LYP relative energies are lower than DMC-HF values for all structures and over-
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Table 7.1: Relative energies with respect to the trans isomer (kcal/mol) calculated
from single-determinant methods with BFD pseudopotentials. DMC statistical errors
on the last digit are shown in parentheses. MRCI+Q/AVQZ reference values are
taken from Ref. 12.

Method cis-N2H2 iso-N2H2 TS1 TS2

MRCI+Q/AVQZ 5.05 24.04 54.96 51.07
HF 6.22 17.92 87.56 55.10
B3LYP 5.41 20.52 74.97 48.98
DMC-HF 5.8(1) 25.8(1) 79.1(1) 54.0(1)
DMC-B3LYP 5.6(1) 24.2(1) 77.5(1) 53.7(1)
CCSD(T)/EBSL a 5.38 62.64 52.3
2-RDM a 5.44 50.73 53.84

aReference 7

all DMC-B3LYP has a mean absolute deviation (MAD) of 6.5 kcal/mol compared to 7.4

kcal/mol for DMC-HF. This is consistent with previous work that has shown the use of a

correlated method like B3LYP gives better nodal surfaces compared to Hartree-Fock.28,29

Single-determinant DMC won’t properly describe the non-dynamical correlation that is

important in multi-reference systems like the rotational transition state, TS1, but includ-

ing more determinants in the trial wavefunction can recover this correlation energy.

7.4 Multi-determinant DMC

7.4.1 Total energies

The number of determinants, configuration state functions (CSFs) and total DMC energy

for different multi-determinant trial wavefunctions are reported for each isomer Table 7.2.

Figure 7.2 and Figure 7.3 show the total trial wavefunction and DMC energy as a function

of the number of orbitals, Norb, in the active space (Ne, Norb).

Including more orbitals in the active space lowered the total energy of the trial wave-

function for all species. MCSCF energies are lower than both CISD and CISDTQ energies

when the same active space is used. The DMC total energies are much less sensitive to the

active space or method compared to the trial wavefunction energies and Figure 7.3 shows

a closer view of the total DMC energies as a function of Norb. DMC-MCSCF energies are

still lower than DMC-CISD and DMC-CISDTQ energies for the same active space but the

difference is much smaller than the trial wavefunctions. In general, increasing the active

space for MCSCF trial wavefunctions decreases the total DMC energy but this trend is not

consistent. For example, increasing the active space from MCSCF(4,3) to MCSCF(6,6)

decreases the DMC energy of cis-N2H2 by 10 mHa, but increases the energy of iso-N2H2

by 2 mHa. The DMC total energy of the strongly correlated rotational transition state

shows little change when the active space is increased from MCSCF(4,3) to MCSCF(8,8)

but drops by 12 mHa when the full valence space, MCSCF(12, 10), is used.

MCSCF calculations produced substantially more CSFs than both CI methods for
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Table 7.2: Total DMC energies, E (Ha), number of determinants (Det) and number of
configuration state functions (CSFs) for the isomers and transition states of diazene
using trial wavefunctions with different multi-determinant methods and active spaces
(Ne, Norb). DMC statistical uncertainty on the last digit is shown in parentheses.

(a) trans-N2H2

Method (Ne, Norb) Det CSF Total CSF E (Ha)

CISD (12,10) 27 10 325 -21.0453(4)
CISD (12,12) 124 41 703 -21.0436(3)
CISD (12,14) 277 83 1225 -21.0460(3)
CISD (12,18) 924 254 2701 -21.0469(3)

CISDTQ (12,10) 26 11 5495 -21.0451(1)
CISDTQ (12,18) 675 173 459971 -21.0477(1)
CISDTQ (12,20) 1020 264 854050 -21.0486(1)
MCSCF (2,2) 4 3 3 -21.0348(2)
MCSCF (4,3) 1 1 6 -21.0352(2)
MCSCF (6,6) 18 7 175 -21.0425(2)
MCSCF (8,8) 74 23 1764 -21.0467(2)
MCSCF (12,10) 161 57 13860 -21.0480(2)

(b) cis-N2H2

Method (Ne, Norb) Det CSF Total CSF E (Ha)

CISD (12,10) 20 8 325 -21.0367(1)
CISD (12,12) 139 40 703 -21.0364(3)
CISD (12,14) 323 89 1225 -21.0376(3)
CISD (12,18) 888 230 2701 -21.0372(3)

CISDTQ (12,10) 9 6 5495 -21.0361(1)
CISDTQ (12,18) 748 190 459971 -21.0386(1)
CISDTQ (12,20) 1119 278 854050 -21.0404(1)
MCSCF (2,2) 4 3 3 -21.0260(2)
MCSCF (4,3) 1 1 6 -21.0257(3)
MCSCF (6,6) 24 8 175 -21.0359(2)
MCSCF (8,8) 59 18 1764 -21.0381(2)
MCSCF (12,10) 138 42 13860 -21.0376(2)
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(c) iso-N2H2

Method (Ne, Norb) Det CSF Total CSF E (Ha)

CISD (12,10) 45 16 325 -21.0055(4)
CISD (12,12) 148 45 703 -21.0061(4)
CISD (12,14) 232 69 1225 -21.0062(3)
CISD (12,18) 802 209 2701 -21.0074(3)

CISDTQ (12,10) 22 10 5495 -21.0054(1)
CISDTQ (12,18) 619 163 459971 -21.0084(1)
CISDTQ (12,20) 1069 273 854050 -21.0065(1)
MCSCF (2,2) 4 3 3 -21.0000(2)
MCSCF (4,3) 3 3 6 -21.0021(2)
MCSCF (6,6) 38 14 175 -20.9998(2)
MCSCF (8,8) 138 42 1764 -21.0037(2)
MCSCF (12,10) 200 63 13860 -21.0079(2)

(d) Rotational transition state (TS1)

Method (Ne, Norb) Det CSF Total CSF E (Ha)

CISD (12,10) 38 14 325 -20.9465(1)
CISD (12,12) 253 77 703 -20.9459(3)
CISD (12,14) 432 126 1225 -20.9459(4)
CISD (12,18) 1505 405 2701 -20.9458(3)

CISDTQ (12,10) 39 13 5495 -20.9438(1)
CISDTQ (12,18) 2447 600 459971 -20.9484(1)
CISDTQ (12,20) 3576 858 854050 -20.9449(1)
MCSCF (2,2) 4 3 3 -20.9361(2)
MCSCF (4,3) 4 3 6 -20.9407(2)
MCSCF (6,6) 45 14 175 -20.9398(2)
MCSCF (8,8) 173 59 1764 -20.9386(2)
MCSCF (12,10) 474 155 13860 -20.9511(2)

(e) Inversion transition state (TS2)

Method (Ne, Norb) Det CSF Total CSF E (Ha)

CISD (12,10) 43 14 325 -20.9587(3)
CISD (12,12) 220 66 703 -20.9595(3)
CISD (12,14) 555 155 1225 -20.9597(3)
CISD (12,18) 1718 461 2701 -20.9604(3)

CISDTQ (12,10) 33 11 5495 -20.9593(1)
CISDTQ (12,18) 1334 343 459971 -20.9625(1)
CISDTQ (12,20) 1957 493 854050 -20.9622(1)
MCSCF (2,2) 4 3 3 -20.9488(2)
MCSCF (4,3) 2 2 6 -20.9495(2)
MCSCF (6,6) 49 15 175 -20.9579(2)
MCSCF (8,8) 121 41 1764 -20.9595(2)
MCSCF (12,10) 309 96 13860 -20.9625(2)
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Figure 7.2: Total energies, E (Ha), of the diazene isomers and transition states as a
function of the number of orbitals, Norb, in the active space (Ne, Norb).
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Figure 7.3: Total DMC energies, E (Ha), of the diazene isomers and transition states
as a function of the number of orbitals, Norb, in the active space (Ne, Norb).
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Figure 7.4: Nodal correlation energy (kcal/mol) for cis, iso, TS1 and TS2 (kcal/mol).
CISD results are represented by triangles (4). CISDTQ results are represented by
circles (◦).

the same active space and more CSFs are included in DMC-MCSCF(12,10) calculations.

Although CISDTQ produces more CSFs than CISD (5495 compared to 325) for the full-

valence active space the number of CSFs used in the DMC calculation is virtually the same

after the weight-based truncation scheme is applied. The number of CSFs was reduced

such that the sum of the coefficients of the expansion used in DMC calculations was 99.5%

of the original expansion and this suggests the determinants associated with the triple and

quadruple excitations have very small weights for this system. For most species the DMC-

CISDTQ energy is the same or slightly lower than DMC-CISD for the same active space.

For the rotational transition state, TS1, the DMC-CISD(12, 10) energy is slightly lower

than the DMC-CISDTQ(12,10) energy but the difference is only 2.7 mHa.

Correlation energy is usually defined as the difference between the exact energy and

the Hartree-Fock value. Single-determinant DMC recovers a significant portion of this

correlation energy and the remainder can be obtained by including more determinants

to improve the nodal surface. The effect of these additional configurations on the total

energy is described by the nodal correlation energy, defined as the difference between the

single-determinant and multi-determinant DMC energies:

∆Ecorr = EDMC-CI − EDMC-B3LYP (7.1)
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Table 7.3: DMC energies relative to trans-N2H2 (kcal/mol). DMC statistical uncer-
tainty on the last digit is shown in parentheses. Reference MRCI+Q/AVQZ values
are taken from Ref. 12.

Method (Ne, Norb) cis-N2H2 iso-N2H2 TS1 TS2

Ref. 5.05 24.04 54.96 51.07
HF 5.79(12) 25.84(12) 79.14(13) 53.98(12)
B3LYP 5.55(13) 24.20(12) 77.52(12) 53.71(12)
CISD (12,10) 5.38(24) 24.97(32) 61.97(24) 54.30(31)
CISD (12,12) 4.55(29) 23.56(31) 61.30(30) 52.75(30)
CISD (12,14) 5.27(28) 24.96(29) 62.82(30) 54.13(28)
CISD (12,18) 6.12(28) 24.79(28) 63.44(29) 54.27(29)
CISDTQ (12,10) 5.68(12) 24.92(11) 63.59(12) 53.88(11)
CISDTQ (12,18) 5.71(10) 24.70(10) 62.32(10) 53.45(11)
CISDTQ (12,20) 5.13(10) 26.42(10) 65.08(10) 54.23(10)
MCSCF (2,2) 5.67(12) 21.85(11) 62.13(12) 53.95(12)
MCSCF (4,3) 5.84(13) 20.97(12) 59.52(13) 53.77(12)
MCSCF (6,6) 4.10(12) 26.78(11) 64.50(12) 53.14(11)
MCSCF (8,8) 5.41(11) 26.95(11) 67.72(11) 54.62(11)
MCSCF (12,10) 6.60(11) 25.43(10) 61.07(10) 53.71(10)

Figure 7.4 shows the DMC-CISD and DMC-CISDTQ nodal correlation energy as a func-

tion of Norb. The additional excitations in CISDTQ trial wavefunctions have little effect

on DMC energies compared to CISD wavefunctions, consistent with results from Chap-

ter 5. The amount of correlation energy recovered by the strongly-correlated transition

state, TS1, is independent of the active space and all methods recover approximately 17-19

kcal/mol of nodal correlation energy for this species. Although the other species are pre-

dominantly single-reference, a significant amount of correlation energy (2-4 kcal/mol) is

recovered by the multi-determinant expansions. Unlike TS1, the nodal correlation energy

of the single-reference isomers shows a weak dependence on the number of orbitals in the

active space and including more orbitals recovers slightly more correlation energy.

The total energy of all species was lowered by including additional determinants in the

trial wavefunction and a significant amount of correlation energy was recovered for the

multi-reference transition state. The different multi-reference characters of the isomers

and transition states is the major challenge of this system and the relative energies with

respect to the trans isomer will only be improved if there’s a better description of the

electron correlation on all species.

7.4.2 Relative energies

Relative energies with respect to the trans isomer are reported in Table 7.3. Relative

energy errors are shown in Figure 7.5. The mean absolute deviation (MAD) of each

method is shown in Figure 7.6.

For cis-N2H2 there is good agreement with reference values for all DMC methods and

active spaces. This is unsurprising given the single-reference nature of this isomer. The
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iso isomer has a small error for most DMC-CI calculations but MCSCF trial wavefunc-

tions give a bad description of the electron correlation of this single-reference isomer for

DMC methods. DMC-MCSCF calculations with smaller active spaces (MCSCF(2, 2) and

MCSCF(4, 3)) underestimate the relative energy with respect to trans-N2H2 by approxi-

mately 2 kcal/mol but DMC-MCSCF calculations with larger active spaces (MCSCF(6,6)

and MCSCF(8,8)) overestimate the relative energy by approximately 2 kcal/mol. The

inversion transition state, TS2, is also predominantly single-reference but the relative en-

ergy is over-estimated by approximately 2 kcal/mol for both single and multi-determinant

DMC methods. Previous work with high-level single-reference methods has shown the

CCSD(T)/EBSL barrier height is 52.30 kcal/mol and completely-renormalised coupled

cluster (CR-CC(T)/EBSL) gives a barrier height of 53.84 kcal/mol.7 Both of these values

are in good agreement with both the single- and multi-determinant methods here, with

barriers between 53-54 kcal/mol. All methods consistently overestimate the relative en-

ergy of TS1 by at least 5 kcal/mol. Multireference calculations from previous work agree

with the MRCI+Q/AVQZ reference values used here. CCSD(T)/EBSL and 2-RDM re-

sults are included in Table 7.1 for comparison. 2-RDM is a parameterised multireference

method and gives relative energy of 50.73 kcal/mol,7 in better agreement (and lower than)

the reference MRCI+Q/AVQZ values used here. In contrast, the multi-determinant DMC

results are in better agreement with CCSD(T)/EBSL results from previous work7 (see

Table 7.1), where the relative energy was 62.64 kcal/mol. Using a multi-determinant trial

wavefunction reduced the DMC error compared to single-determinant DMC results but

including additional excitations or orbitals in the active space did not reduce the error

further.

Although DMC-MCSCF total energies were lower than DMC-CISD or DMC-CISDTQ

for the same active space all three methods give similar relative energies with respect to

trans-N2H2 for the full valence active space (12, 10). DMC-CISD and DMC-CISDTQ

relative energies are consistent across all active spaces considered. Relative energies of

iso-N2H2 and TS1 vary unpredictably with the size of the active space in MCSCF trial

wavefunctions. Overall DMC-CISD(12,12) has the smallest MAD but there is not one

method that performs best for all four structures. DMC with MCSCF(4,3) determinants

has the smallest error for TS1, the most challenging structure, but the largest error for

single-reference iso-N2H2.

7.5 Future work

Despite an extensive study using three different multi-determinant trial wavefunctions and

a range of active spaces the DMC error on the relative energy of rotational transition state

could not be reduced below 5 kcal/mol. The fixed-node approximation means DMC can

be severely limited by the quality of the nodal surface and it is not always possibly to

recover all the correlation energy. The convergence of the DMC energy with respect to

the method and active space used to generate the determinants and also the number of
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Figure 7.6: Mean absolute deviations (MAD) of the DMC relative energies for diazene
isomers and transition states using different trial wavefunctions. Errors are calculated
with respect to reference MRCI+Q/AVQZ energies are taken from Ref. 12

determinants used in the calculation is unique for each molecule. In this work no trial

wavefunction gave a suitable nodal surface to adequately describe the static correlation of

the rotational transition state relative to the trans isomer.

The isomerisation of diazene is a challenging problem but there are several avenues that

could be explored further to reduce this error. The full-valence active space is a natural

starting point for these types of studies. The orbitals that contribute to bonding need to

be considered and generally these are found in the full-valence active space. For certain

systems more orbitals need to be included, but it’s not always apparent when this might

be useful. It has been shown in several studies that for certain systems the orbitals active

space must be extended beyond the full-valence space. Using a larger active space with

just single and double excitations (SOCI) recovered more correlation energy for first-row

atoms than just full-valence active space,40 suggesting that excitations into higher virtual

states can contribute significantly to the reduction of the fixed-node error. Another study

looking at the binding energy of the beryllium dimer shown that the full valence active

space was sufficient for the atom but was a poor choice for the dimer. Expanding the

active space to include the 3s and 3p orbitals recovered more correlation energy but an

even better result was obtained when the energy was extrapolated to the full CI limit.41

Another study looking at the excitation energies of the green fluorescent protein noted that

larger active spaces up to CAS(10,10) resulted in more accurate excitation energies even

though the anionic chromophore does not have a strong multiconfigurational character.42

There is no ‘one-size-fits-all’ solution for this problem though. Previous studies have

shown that trial wavefunctions with smaller active spaces can be sufficient to reduce the
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DMC error of some systems. In a study looking at the photoisomerization of model

retinal chromophores43 it was shown that a CAS(6,6) expansion was sufficient. Increasing

the number of virtual orbitals to 12 and 18 had no effect on the final excitation energy.

For acrolein geometry optimisations an active space as small as CAS(2,2) was sufficient.44

In this work the size of the active space used in the trial wavefunction had little effect

on the relative energies but larger active spaces improved the nodal surface and decreased

the total DMC energy. Increasing the active space could lower the MCSCF energy even

more. In Figure 7.3 the TS1 DMC-MCSCF energy appeared to have converged for both the

(6,6) and (8,8) active spaces but there was a significant lowering of energy when the active

space was expanded to MCSCF(12,10). In Figure 7.4 the amount of correlation energy

recovered for DMC-CI calculations of single-reference species decreases slightly as the

active space increases. This problem warrants an investigation using larger active spaces,

but the accuracy of the result will still depend on the amount of correlation recovered by

each species.

Optimising the orbitals in VMC would remove some of the ambiguity in the calculations

by removing the starting orbitals as a variable. The choice of active space and excitation

used would still affect the final results. It is the convergence of the total energy with

respect to the size of the active space and number of determinants that ultimately governs

the accuracy of the relative energies. This convergence is unique to each species but more

correlation energy could be recovered by extrapolating to the full CSF limit. The number

of CSFs used in the trial wavefunction is normally truncated according to some threshold.

In this work the CSFs were truncated such that the sum of the coefficients was 99.5% of

the original expansion. Some studies,29,40,45 extrapolate the results to the full CSF limit

but just a single point was used here. For atomisation energies of the G1 set extrapolating

to the full CSF limit reduced the mean absolute deviation (MAD) by approximately 1

kcal/mol relative to the single-determinant results.40 Although the error here is greater

than 5 kcal/mol for all methods extrapolating to the full CSF limit could recover additional

correlation energy for some species and reduce the DMC relative energy errors. .

The accuracy of fixed-node DMC is limited by the quality of the nodal surface but there

are other methods available to recover the correlation energy. In addition to the multi-

determinant expansion (static correlation) and Jastrow factor (dynamic correlation), a

backflow transformation can be included. This backflow transformation allows further

variations in the nodal surface, allowing for an improvement. In a study on the first-

row atoms and ions it was shown that using a modest multi-determinant expansion with

a backflow transformation could recover over 99% of the correlation energy at the DMC

level.46 Another possibility is auxiliary-field QMC (AFQMC). It uses the same imaginary-

time propagation as DMC but stochastically samples from the determinant space. The

chromium dimer is another example where DMC was unable to recover all of the corre-

lation energy, regardless of the active space or trial wavefunction used.47 The AFQMC

potential energy curve (PEC) for the chromium dimer showed much better agreement with

experiment.48
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7.6 Summary

The isomerisation of diazene is a challenging problem and the solution was not as simple

as just including more determinants, unlike the previous difficult cases in Chapter 6. DMC

methods recover a significant amount of correlation energy but energy differences will only

be accurate when the description of this correlation energy is equivalent on all species.

The rotational transition state of the isomerisation of diazene is strongly multi-reference in

nature and finding a good description of the static correlation of this system relative to the

other isomers is problematic. In this work three different multi-determinant methods with

different active spaces could not produce trial wavefunctions for DMC that reduced the

error below 5 kcal/mol. Including more orbitals or excitations in the active space did not

reduce this error further. Although MCSCF trial wavefunctions recovered more correlation

energy and had lower total energies the relative energies of all methods was virtually the

same. Using cheaper multi-determinant methods like CISD to generate trial wavefunctions

is sufficient for these types of system. Further work is needed to develop and understand

these methods. It is not clear why certain active spaces give smaller errors for MCSCF trial

wavefunctions or why CISD or CISDTQ trial wavefunctions showed no change with active

space. It is important to know the limitations of a given multi-determinant description of

a trial wavefunction, to not only know when it might not work but to know what can be

done to further improve it.
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Chapter 8

Bias-free chemical test sets

8.1 Introduction

Benchmarking studies evaluate the accuracy of computational procedures. It is a well-

established practice in computational chemistry and provides invaluable information for

users of quantum chemical methods. Systematic benchmarking demonstrates the robust-

ness of a method, identifies systems where it might fail and validates the implementation

of algorithms within a new program. This thesis has made thorough use of these bench-

marking protocols and published test sets to provide a well-rounded description of diffu-

sion Monte Carlo (DMC) performance for a range of problems, significantly expanding

the benchmarking already in the literature (for a thorough review of QMC applications

see Refs 1–4).

For benchmarking to be useful it must be systematic and repeatable. This has been

achieved by benchmarking against test sets of molecules and there are now hundreds, if

not thousands, of test sets available in the literature with validated reference data. The

first formalised test sets were introduced by Pople et al. while developing their G(n) series

of composite methods. These initial test sets were built using small molecules with well-

established gas-phase experimental values. They were limited to ionisation potentials,

electron affinities and atomisation energies which were calculated from heats of forma-

tion. Over time, more molecules have been added to create more diverse test sets with

larger systems and more properties.5–11 Truhlar et al. advanced this type of standardised

benchmarking by introducing test sets covering a wider range of physiochemical properties.

This included test sets for chemical energies (CE345), physical energies (PE39), chemical

structural properties (CS20) and physical structural properties (PS47).12,13 They also

introduced test sets like Database/3,14 and its successor Database/4,15 as sets with good

chemical diversity without being as large as G2/978,9 or G3/99.10 These early test sets

were built using molecules explicitly selected for the accuracy of their reference data

High quality experimental data is largely confined to values like heats of formation

for relatively small molecules. The properties that can be derived from these experimen-

tal values is limited and the first test sets were severely restricted in terms of electronic

complexity and chemical properties. It is important to benchmark these properties but

they are not a reliable indicator of a methods performance for other properties. The use

of atomisation energies in benchmarking can lead to a strong bias towards an accurate

102
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description of the free atoms relative to molecules.16,17 For example, the popular PBE18

functional performs poorly for the W4-08 test set19 of atomization energies with a mean

absolute deviation (MAD) of 13.0 kcal/mol but accurately predicts the isomerisation en-

ergies for the molecules in the ISO34 test set20 (MAD of 1.8 kcal/mol).21

The development of high-level quantum chemical methods like CCSD(T) means test

sets can be built for any conceivable property or system and a computational chemist now

has access to a myriad of test sets. Often there are many test sets for one problem and it is

left to the chemist’s discretion to choose which one to use. The construction of these test

sets has been guided by ‘chemical intuition’ and they are biased by a limited understanding

of chemical space and an aversion to overly-complicated systems. The poor construction

of these test sets means the relative and absolute performance of a method is extremely

dependent on the test sets used. For example, if a chemist was studying non-covalent

interactions they could test a method with a large test set like JSCH-2005,22 made up of

143 non-covalent complexes including DNA base pairs, amino acid pairs and other model

complexes. If they wanted a smaller test set they could look at S22,22,23 a subset of 22

complexes from JSCH-2005, or A24,24 a test set of 24 noncovalent complexes specifically

chosen to cover a wide range of interactions, including hydrogen bonding, π − π stacking

and mixed electrostatics-dispersion and dispersion-dominated interactions. If they wanted

to study larger complexes they could use the L725 test set of seven large complexes of 48

to 112 atoms. If they were interested in molecule-specific dispersion interactions they

could use X40,26 a test set of non-covalent interactions for 40 halogenated molecules, or

a water clusters test set featuring clusters of 2 to 10 water molecules.27 The outcomes of

their benchmarking study would be determined by the test sets they used. The popular

B3LYP method has a root mean squared error (RMSE) of 1.08 kcal/mol for the A24 test

set but 7.00 kcal/mol for the JSCH test set.28 The relative performance of methods can

also change; M062X-D3 and B97-D perform worse than SAPT2 for the A24 set but better

for the JSCH test set.28

Newer test sets like GMTKN30,21 a database of test sets for general main group ther-

mochemistry, kinetics and non-covalent interactions, are intentionally built with redun-

dancies so that omitting one or two test sets will not affect the relative performance of

methods. A clear trend in the construction of these test sets is the emphasis on size for

diversity and robustness. With each subsequent update of a test set more data points have

been added (i.e. Gn series7–11 , S22 to S22x529 or S6630). These test sets are powerful

tools but benchmarking has become a cumbersome task requiring thousands of calcula-

tions, GMTKN30 is made up of 30 test sets to cover a wide cross section of chemical space

and features 1218 single point calculations.

These test sets are constructed to model real life problems but are strongly influenced

by chemical intuition. Chemists select reactions they believe will be the most diverse or

most representative of the problem they’re studying. Grimme et al. proposed a novel

approach in which the test set was generated ‘mindlessly’.31 Rather than letting chem-

ical intuition guide the selection of molecules for their test set they created a generator
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requiring explicit specification of any constraints prior to the systems being generated.

As an example they used two sets of constraints to create two test sets. MB08-931 was

generated using elemental probabilities of atoms such that the probability of atoms Na to

Cl is one third the probability of atoms Li to F which in turn is one third the probabil-

ity of hydrogen. The other set, MB08-ORG used organic molecule elemental probability

distributions. Decomposition energies were used in an attempt to represent real world

applications with their artificial molecules. By stepping away from the standard approach

of looking at stable and realistic molecules the authors hoped to find a ‘robust’ method

capable of handling any type of system. These two test sets were combined to form MB08-

165. While this test set removes biases and gives a better approximation of chemical space

it still requires 180 single-point calculations.

There is a need in the field to create smaller, more bespoke test sets. More time

could be spent developing new methods if only a handful of calculations were needed for

a robust benchmarking. This is not a novel concept, Truhlar et al. created smaller test

sets by selecting a subset of an existing test set such that the error measure of the subset

showed the smallest deviation from the entire test set for a given cost.14 Representative

subsets were found for four of their test sets; Database/3 was reduced to two subsets of

6 atomisation energies and 6 barrier heights,32 NHTBH38/04 was reduced to three sub-

sets of 6 reactions for heavy atom transfer (HATBH6), nucleophilic substitution (NSBH6)

and unimolecular association (UABH76).33 Two test sets for metal-ligand bond energies

and transition metal atomisation energies were reduced to just four entries (MLBE4/0534

and TMAE4/0535). This method reduces the number of calculations required for bench-

marking new methods but still requires an enormous number of calculations with existing

methods. For example, when looking for a smaller test set of Database/3,14 a test set of 109

atomisation energies and 44 barrier heights,32 they used three error metrics (mean signed

error (MSE), mean unsigned error (MUE) and root-mean-square deviation (RMSD)) from

80 different methods. This meant over 12000 calculations were required to reduce it down

to 6 atomisation energies and 6 barrier heights.14 It is also limited by the diversity of the

existing subset, relying on the assumption that the initial test set provided an adequate

representation of chemical space. An alternative solution is to step away from the existing

test sets and remove the human element by using tools like multivariate statistics instead.

8.1.1 Multivariate statistical techniques

Multivariate statistical techniques are powerful analytical tools that can be used to study

intrinsic patterns in highly complex data sets. Multiple variables are analysed simultane-

ously to reveal correlated patterns and structural relationships. This information can then

be used to reduce dimensionality with minimal loss of information. Unsupervised pattern

recognition techniques like k -means clustering and principal components analysis (PCA)

are routinely used in a variety of fields, from material36 and earth37 sciences, to pharma-

ceuticals.38 More recently, archetypal analysis has been used in conjunction with PCA

and k -means clustering to characterise datasets of diamond nanoparticles and graphene
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nanoflakes.39 It has also been used to summarise a small test set of corrosion inhibitors40

A brief summary of these methods is provided below.

Principal component analysis

Principal component analysis (PCA) is a data manipulation method that converts a set

of observations of possibly correlated variables into a set of linearly uncorrelated variables

(principle components) using an orthogonal transformation.41 The axes of this new coor-

dinate system are oriented to account for maximum variation in the data set. It takes an

n × p data matrix X (made up of n observations of p variables) and uses an orthogonal

linear matrix transformation to express the original data as a linear combination of scores

and loadings, described by:

X = t1p′1 + t2p′2 + ...+ tAp′A + E = TP ′ + E (8.1)

Where X is the original data matrix, A is the total number of extracted principal

components (A ≤ p) and E is the residual matrix. The new latent variables, t scores,

show how the objects relate to each other, while the p loadings are the weights of each

original variable and show their importance in seen in the scores.

K -means clustering

K -means clustering is a vector quantization method that groups data points together

to form clusters. Each cluster is characterised by a representative structure known as

a prototype. Given a set of n observations (x1,x2, ...,xn) where each observation is a

d -dimensional real vector, k -means clustering aims to partition the n observations into

k(≤ n) sets S = {S1, S2, ...Sk} so as to minimise an objective function J, usually the

squared distance of each point to its closest centroid ci:

J =
k∑
i=1

∑
x∈Si

||x− ci||2 (8.2)

The prototypes are the means of the clusters. This objective function is used as a

measure of the quality of the clustering; a lower score indicates better clustering and the

prototypes are more representative of the data. K -means clustering requires the user to

specify the desired number of clusters a priori. An arbitrary choice of too few clusters

can miss important information but too many clusters can be redundant. The explained

variance as a function of number of clusters can be used to choose an appropriate number

of clusters.

Clustering is a useful tool to summarise the data. It means chemical space, as defined

by the set of descriptors used, can be represented by a subset of prototypes. Instead of

benchmarking with hundreds or thousands of calculations the test set is reduced to tens

of molecules. Unfortunately it is restricted to data for which there is a notion of centre,

and it cannot handle non-globular clusters, or clusters of different sizes and densities, also
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has trouble with outliers. It also has limited flexibility, each data point is restricted to one

cluster, with no intermediates allowed between clusters.42 Careful selection of descriptors

can avoid these problems and ensure it is effective.

Archetypal analysis

Archetypal analysis43 (AA) is a relatively new statistical procedure that can reduce the

benchmarking space down to just a handful of key structures.39 AA is a matrix factorisa-

tion method that seeks to represent each individual in a multivariate data set as a linear

combination of pure types. It is a similar technique to PCA but where in PCA the coef-

ficients can be negative and their sum is not restricted to one in AA the archetypes form

a convex hull of the dataset. The archetypes represent the ‘pure types’ in the data and

mean the results are more easily interpretable.

The effectiveness of AA was first demonstrated with datasets of the shape of human

heads and air pollution.43 It has since been applied to a range of fields, identifying

representative genotypes within the human population44 and analysing subtle biological

variance in global gene expression45 and variation in phenotypes.46 It has also been used

for signal enhancement and feature extraction of IR image sequences47 as well as extracting

features from different high-dimensional datasets42 and even to identify work preferences

for software engineers.48 The use of these extreme points for benchmarking has also been

demonstrated.49 More recently it was applied to datasets of diamond nanoparticles39 and

a dataset of corrosion inhibitors.40

The methodology is as follows. A multivariate dataset of n observations of m attributes

is represented by an n ×m matrix, X. Archetypal analysis seeks to find a k ×m matrix

Z such that each data point can be represented as a mixture of the k archetypes. This is

achieved by minimising the residual sum of squares:

RSS =
n∑
i=1

‖Xi −
k∑
j=1

αijZi‖2 =
n∑
i=1

‖Xi −
k∑
j=1

αij

n∑
i=1

βijXi‖2 (8.3)

It is subject to two conditions:

1.
∑k

j=1 αij = 1, with αij ≥ 0 and i = 1, ..., n

2.
∑n

i=1 βij = 1, with βij ≥ 0 and i = 1, ..., k

The first constraint requires the data to be best approximated by convex combinations

of the archetypes whilst the second constraint implies that the archetypes are convex com-

binations of the data points. An R package, archetypes allows for easy implementation.50

Whilst there are some similarities in PCA and AA there are a few key differences worth

making note of. The number of archetypes must be selected initially but in PCA the

decision can be made a posteriori. Also, the archetypes are pure data that will not neces-

sarily be represented in the dataset i.e archetypes can be selected from the data even when

they’re not in the original dataset. In contrast, the principal components are the directions
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of a new coordinate system. Thus the number of principal axes and archetypes needed

to represent the same features of a dataset will not necessarily be the same. Prototypes

selected with k -means clustering are the most representative structures and archetypes

can be thought of as the outliers. Combining the two sets together creates a robust and

bias-free test set.

8.1.2 Descriptors

Multivariate statistics require numerical inputs but traditional molecular structure repre-

sentations like Cartesian coordinates are not amenable to these methods. Descriptors need

to be permutationally invariant but a permutation-invariant version of Cartesian coordi-

nates scales combinatorially.51,52 Fortunately, the advancement of quantitative structure-

activity relationship (QSAR) models for medicinal chemistry has led to the development

of a wide range of descriptors.53

The simplest of these descriptors are one-dimensional and based on physical proper-

ties of molecules, such as molecular weight, shape-factors, estimated logP, surface area,

dipole moment, HOMO-LUMO gap etc. Geometric descriptors include moments of in-

ertia, shadow indices, molecular volume, molecular surface area and gravitation indices.

Electrostatic descriptors include minimum and maximum partial charges or molecule or

particular types of atoms, polarity parameter.54 These whole-molecule, low-dimension

descriptors convey very little information about the substructure of the molecule. De-

scriptors that represent the one-, two- or three-dimensional structure of a molecule are

preferable.

The one-dimensional structure of a molecule is the molecular formula. Molecular fin-

gerprints deconstruct a molecule into a bit string with a simple ‘yes-no’ check for the pres-

ence of a predefined set of functional groups. They represent extremely high-dimensional

chemistry-space, varying between 150 to 200 bits for MDL applications, up to a few

thousand for Tripos and Daylight applications and even up to millions for pharmacore

fingerprints, depending on the functional groups of interest.55 Molecular quantum num-

bers are similar to fingerprints but include counts rather than bits for simple structural

features such as atom, bond and ring types.56 The combination of one-dimensional descrip-

tors like physical properties with fingerprints has been used for diverse subset selection.57

Topological descriptors consider the two-dimensional structure of the molecule and reflect

features like size, shape, symmetry, branching, connectivity and cyclicity.58–61 Finger-

prints and topological descriptors don’t contain any information on the stereochemistry

of the molecule and topological descriptors emphasise structure and connectivity over the

charge or type of atom. Information is sparse for small molecules with few functional

groups and little to no connectivity.

Structural descriptors represent the three-dimensional structure of the molecule and

are invariant to rotations, translations and permutations of equivalent atoms. Versions of

these descriptors have been developed based on graph-theory procedures52 and electronic

structure methods62 and have been used to gauge dis(similarity) of crystalline, disordered
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and molecular compounds.51 Other types of descriptors have been developed to predict

properties without expensive electronic structure calculations and include Coulomb ma-

trices,63,64 bags of bonds,65 ‘symmetry functions’66 descriptors. Other approaches, like

the smooth overlap of atomic positions (SOAP),67 start with descriptors designed to rep-

resent local atomic environments but then combine them for a global measure of structure

similarity.

The Coulomb matrix M 63 is a matrix representation of the three-dimensional structure

of a molecule. It was introduced to correlate chemical structure to accuracy of approximate

quantum chemical methods and has been used for machine learning models.63,68,69 The

entries of the matrix are given by:

MIJ =

0.5Z2.4
I for I = J

ZIZJ
|RI−RJ | for I 6= J

(8.4)

where RI and ZI are the Cartesian coordinates and nuclear charge of atom I and J re-

spectively. Diagonal elements encode a polynomial fit of atomic energies to nuclear charge

and off-diagonal elements of the matrix correspond to the Coulomb repulsion between

atoms I and J. The total energy of a molecule is invariant under rotation, translation

and symmetry operations such as mirror reflections and this is reflected in the Coulomb

matrix. Different numbers of atoms in molecules result in different dimensionalities of

the Coulomb matrices. This is easily overcome by introducing ‘dummy’ atoms with zero

nuclear charge, padding out the matrix with zeroes so all matrices have size d× d where d

is the maximal number of atoms per molecule. Depending on the range of molecular size

within the dataset this can lead to very sparse matrices. These types of numerical descrip-

tors are based on the structure of a molecule and don’t require any electronic structure

calculations aside from an initial geometry optimisation. If we can represent a molecules

position in chemical space as a set of numeric descriptors we can use unbiased methods to

sample from this chemical space and come up with better test sets.

Machine learning (ML) systematically identifies similarities among data to make quan-

titative predictions.70 In this chapter, the performance of three classes of descriptors (one,

two and three- dimensional) is investigated. The functional relationship between the de-

scriptors and electronic energy of a system using ML techniques. New, unbiased test

sets are developed and then used to assess the performance of DFT and QMC methods.

DFT is a popular alternative to traditional ab initio wavefunction theory71 and offers

a good compromise between accuracy and cost. The biggest limitation for DFT is the

unknown form of the exchange-correlation functional and performance for DFT methods

can be sporadic, depending on the approximation to this functional. Often the methods

are parameterised for a given set of problems and will perform well for systems similar to

the training set, but can fail catastrophically for other systems.72 QMC methods are a

stochastic alternative to ab initio and DFT methods and have been shown to be highly

accurate for energetic73,74 and structural properties.75
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8.2 Computational methods

8.2.1 Data set

The data set was built using geometries and energies taken from the NIST Computa-

tional Chemistry Comparison and Benchmark Database (CCCBDB).76 The CCCBDB is

an online database of experimental and computed thermochemical data for a selected set

of 1709 gas-phase atoms molecule, ranging in size from 1 to 26 atoms. It encompasses

a vast array of properties including enthalpies of formation, entropies, heat corrections,

geometries and atomic charges. It is an extensive collection of molecules and energies but

is not comprehensive for all methods and basis sets. Due to the nature of the data in the

CCCBDB not all molecules have energies for all methods. A compromise was made be-

tween using a highly accurate reference method and using as many data points as possible

to sample a broad section of chemical space. Molecules with ωB97XD/6-31G∗ geometries

and energies were used for the data set and G4 energies were used for reference values.

The final data set had 1499 molecules.

8.2.2 Descriptors

MACCS 166 keys77 fingerprints and 19 connectivity-based topological descriptors (out-

lined in Table 8.1) were used, both generated using RDKIT,78 an open source toolkit for

cheminformatics. The ordering of atoms in the Coulomb matrix is undefined and it can

be challenging to find equivalent representations of molecules for reactions. Three meth-

ods have been proposed to overcome this.69 The first is the eigenspectrum representation

(EVEC), where each matrix M is represented by a vector of sorted eigenvalues. This

drastic dimensionality reduction (reducing a d × d matrix to a vector of length d) can

result in loss of information and introduce noise.79 The second is the sorted Coulomb

matrix (SCMAT), where rows (and columns) of M are ordered by their norm, such that

||Mi|| ≥ ||Mi+1||. This method is sensitive to slight variations in atomic coordinates that

change the magnitude of Mi. The third solution is a set of Coulomb matrices where the

ordering of atoms has been varied for each matrix (RCMAT).69 All three versions were

used here. Correlated columns were removed for each set of descriptors so that only the

column with the highest variance was retained for each inter-correlated pair (R2 > 0.9).

This left a total of 149 fingerprint descriptors, 13 topological descriptors and 435 Coulomb

matrix descriptors.

8.2.3 Machine learning

The magnitude of the error, ∆E, defined as the difference between G4 and ωB97X-D3/6-31G∗

energies:

∆E = EG4 − EωB97X-D3/6-31G∗ (8.5)

was correlated to the descriptors using decision tree (DT),80 and random forest (RF)81

ML techniques. Decision trees are a binary, rule-based modelling technique that typically
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Table 8.1: Two-dimensional topological descriptors

Descriptor Description

BalabanJa An index for a hydrogen-suppressed graph of n nodes and m
edges. It ignores H atoms and does not include charge or atomic
number.

BertzCTb Measure of molecules ‘complexity’, sum of two terms repre-
senting complexity of bonding and complexity of distribution
of heteroatoms.

IPCc Information content of the coefficients of the characteristic
polynomial of the adjacency matrix of a hydrogen suppressed
graph of a molecule

Hall-Kier αd Parameter derived from the ratio of the covalent radius Ri of
the ith atom relative to the sp3 carbon. Non-zero contributions
to α are given by heteroatoms or carbon atoms with a valence
state different from sp3

κ 1-3d Takes into account the different shape contribution of het-
eroatoms and hybridisation states

χ 0-4v, 0-4nd Molecular connectivity; characterises structural attributes of
molecule

aRef. 60, bRef. 59, cRef. 58, dRef. 61

uses an attribute selection search to construct binary rules of different combinations of

attributes. A decision tree model approximates the dependent variable as rudimentary

decision rules based on the values of a number of attributes. The number and specific

types of attributes can vary to suit the needs of the task. Despite their simplicity, decision

trees have been shown to perform fairly well with the added value of ease interpretation

given the number of rules are not very large.80 Random forests (RF) are an ensemble

learning method that train a multitude of decision trees and output the mode of the classes

in classification or mean prediction in regression of the individual trees. RF improve over

decision trees with respect to overfitting to the training set. The algorithm for inducing a

random forest combines ‘bagging’ and the random selection of features in order to construct

a collection of decision trees with controlled variance.81

These RF models were used to correlate the energy difference to the structural fin-

gerprints. The training set was generated from 50% of the data set sampled around the

prototype and archetype structures, whilst the remaining 50% of the data was used as a

test set. The training set was used to calibrated the RF models whilst the test set was

used to test the prediction ability of the model. The quality of the fit can be described by

an R2 value:

R2 =

N∑
i=1

(Yi − Pi)2

N∑
i=1

(Yi − P̄ )2

(8.6)

Where N is the number of molecules, Yi and Pi are the machine learning predicted and

actual energy difference for molecule i, respectively. The average energy different over
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all structures is given by P̄ . When computed on the training set, R2 measures how well

the model fits the simulated data. To check for the possibility of overfitting, a technique

known as internal three-fold-out (TFO) cross-validation was applied. The training set was

divided into three subsets. One was removed while the other two were used to fit the

regression model. The resulting model was then compared against the simulation data for

the left-out subset. This process was repeated until all the subsets have been validated

against each other.

8.2.4 Atomisation energies

The new test sets were used to assess the performance of a variety of methods. Estimated

CCSD(T)/CBS reference atomisation energies using the same ωB97XD/6-31G∗ geometries

taken the CCCBDB76 were calculated using:

E
CCSD(T)
CBS = EMP2

CBS + (ECCSD(T) − EMP2)|small basis set (8.7)

This difference does not depend significantly on the basis set and is a good approximation

to CCSD(T)/CBS.82 EMP2
CBS was determined using the extrapolation scheme of Helgaker

and coworkers83 and cc-pVTZ and cc-pVQZ basis sets.84 The small basis set difference

was calculated at the cc-pVDZ level.84 For larger molecules (48, 167, 264, 768, 769, 773,

1433, 1477 and 1482) MP2 calculations are replaced with the approximate resolution of

the identity MP2 (RI-MP2) method.85–87 Absolute and relative RI-MP2 energies agree

well with MP2 values.88

The accuracy of density functional theory (DFT) was investigated using 10 differ-

ent exchange-correlation functionals. The types of functionals evaluated include local

density approximation (SVWN89,90), generalised gradient approximation (GGA) func-

tional (PBE18), meta-GGAs (TPSS,91 M06L92), hybrid GGAs (B3LYP,93,94 ωB97XD,95

PBE096,97), hybrid meta-GGAs (B1B95,98 MPW1B9599) and double-hybrid GGAs (B2P-

LYP100 and mPW2PLYP101). DFT calculations use the 6-311+G(3df,2p) basis set. The

performance of MP2 and the G4(MP2)-6X composite method102 was also compared.

G4(MP2) is widely accepted as a highly accurate method close to chemical accuracy72

and G4(MP2)-6X102 is an approximation to G4(MP2) with improved speed for larger

molecules. All DFT calculations including the starting orbitals for DMC were performed

using Gaussian.103 CCSD(T) and MP2 calculations were performed using Molpro.104

Diffusion Monte Carlo (DMC) calculations were performed using the CMQMC code.105

Slater-Jastrow trial wavefunctions were used:

ΨT = eJD↑D↓ (8.8)

where D↑D↓ are Slater determinants constructed from single-particle orbitals, taken from

B3LYP calculations. J is a two-term Jastrow factor containing explicit electron correlation

terms.106 The free parameters in the Jastrow factor were optimised by minimising the

total energy at the variational Monte Carlo (VMC) level. Pseudopotentials are routinely
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used in DMC calculations to replace the chemically-inert core electrons and reduce local

energy fluctuations, speeding up the calculations. Energy consistent Burkatzki-Filippi-

Dolg (BFD) pseudopotentials with the associated triple-zeta basis set and improved H-

atom potential107,108 were used here with imaginary timestep sizes τ = 0.01. Nonlocal

pseudopotentials were treated beyond the locality approximation in DMC using the size-

consistent T-moves approach.109

8.3 Results and discussion
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Figure 8.1: Explained variance of the entire data set as a function of number of
components for principal component analysis (PCA), archetypal analysis (AA) and
k -means clustering of a) fingerprint, b) topological and c) Coulomb matrix descriptors.

8.3.1 Principal component analysis

Principal component analysis (PCA) was used to explore the variance within the descrip-

tors. Figure 8.1 shows the explained variance as a function of number of components

for the three classes of descriptors. The fingerprints (FP) descriptors are essentially in-

dependent from each other; each variable only accounts for the presence or absence of a

particular functional group. Not surprisingly, these descriptors have the lowest explained

variance with the first, second and third principal components (PCs) accounting for only

6.6%, 5.6% and 4.6% of the variance respectively, for a combined total of only 16.7%. In

comparison the PCs for the topological (TOPO) and Coulomb matrix (CMAT) descrip-

tors recover a much higher proportion of the variance. The first, second and third PCs for

TOPO explain 28.8%, 18.9% and 13.5% of the variance respectively (combined total of

61.2%). In the case of CMAT descriptors the first, second and third PCs explain 25.3%,

9.7% and 7.0% of the variance respectively for a combined total of 42.0%. The CCCBDB

is a diverse data set and the fingerprints of the molecules are especially unique fingerprints.

PCA is an orthogonal transformation and will not recover much variance for uncorrelated
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variables. In contrast, the TOPO and CMAT descriptors are more easily generalised by

the PCs. There are fewer TOPO descriptors so the PC’s will account for more variance.

Despite having more variables (435 compared to 149) the PCs for CMAT recover more

variance than for FP, suggesting the variables are more correlated.

8.3.2 K -means clustering

To characterise the diversity of the data set, k -means clustering was used to identify groups

(clusters) of molecules that share structural or functional similarity based on the three

types of descriptors. This process has previously been used for a set of nanoparticles39

and a test set of corrosion inhibitors.40 For each cluster the molecule with the shortest

Euclidean distance to the cluster centroid was selected as the cluster prototype. These

were used for further analysis.

In k -means clustering the number of clusters is set a priori. A choice of too few clusters

can miss important information whereas too many clusters becomes redundant. The

optimum number of clusters was selected by analysing the amount of explained variance

as a function of number of clusters (see Figure 8.1). To keep the number of clusters to

a minimum clusters were selected to explain 70% of the explained variance (including

more clusters would increase the explained variance, as required). This gave 10 TOPO

prototypes and 66 CMAT prototypes. The TOPO descriptors describe a chemical space

that is more easily summarised by a select few prototypes whereas the CMAT space

is quite diverse and spread out. Clustering the fingerprint descriptors recovers very little

information, a consequence of the diversity of the data set. Clustering recovers less variance

for all three classes of descriptors when compared to PCA.

Hierarchical clustering was used to further analyse these prototype structures, mea-

suring the similarity within the descriptors at different levels. The resulting dendrograms

are shown in Figure 8.2a for TOPO descriptors and Figure 8.2b for CMAT descriptors.

The TOPO prototypes are quite diverse and are depicted by nine hierarchical branches

for the 10 prototypes. A broad range of functional groups is captured in this small set.

Topological descriptors tend to emphasise physical structure or connectivity information

over charge and this is seen in the grouping of the branches. Linear molecules (GeO2

(318), CH2CCCH2 (779), GeS2 (168)) and cage-like molecules (the P4 cluster (230)

and adamantane (773)) belong to the same branches. From a chemical perspective the

separation is not intuitive. For example GeO2 (318) is more similar to 1,2,3-butatriene

(779) than GeS2 (168). The species selected as prototypes include molecules that are

challenging from a theoretical perspective (i.e. P4
10,17 and diazene N2H2

110–129). These

statistically relevant molecules are unlikely to be those intuitively selected by chemists

but are necessary to provide cases that challenge the accuracy and suitability of quantum

chemical methods.

CMAT descriptors required 66 prototypes to account for 70% of the explained variance

and the resulting dendrogram is crowded. By virtue of having more points there is a

broader range of atoms and functional groups represented in the CMAT prototypes than
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Figure 8.2: Hierarchical clustering dendrograms of the cluster prototypes of (a) TOPO
and (b) CMAT descriptors. Molecules with at least one halogen atom (F, Cl or Br)
are highlighted in green.
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the TOPO prototypes and molecules range in size from two to twenty-six atoms. CMAT

descriptors are calculated using nuclear charge and the three-dimensional coordinates of

the molecule, and this is reflected in the dendrogram. Highlighted in green are all molecules

with at least one halogen atom (F, Cl or Br) and in general they share the same branches.

Organic molecules are also grouped together; for example, 3-penten-1-yne (555) and 1-

buten-3-yne (1401) both have a carbon double and triple bond and share the same branch.

Despite this, not all grouping is intuitive. For example the upper-left branch has myo-

inositol (1433) with 6 OH groups is next to azobenzene (48) with two benzene rings and

a nitrogen double bond. The upper-right branch shows four molecules with very different

structures, despite containing only C and H atoms.

8.3.3 Archetypal analysis

As stated above, k -means clustering only identifies structures that characterise the main

groups of molecules that share similar properties. It fails to identify structures that repre-

sent unique combinations of features and lie on the complex hull of the data set. Archetypal

analysis is needed to find the outliers. Archetypes were identified as molecules with the

shortest Euclidean distance to each ‘pure type’. The explained variance as a function of

number of archetypes is shown in Figure 8.1. To keep the analysis of archetypes consistent

with the prototypes, archetypes were selected to explain 70% of the variance, resulting in

5 TOPO archetypes and 13 CMAT archetypes. Fingerprint descriptors are poorly sum-

marised by archetypes since they represent a high-dimensional chemical space that cannot

be encapsulated by a convex hull.

Since each molecule can be described as a linear combination of archetypes, the data

can be plotted on a two-dimensional simplex plots, as shown in Figure 8.3. The edges are

defined by the archetypes and all other molecules are scattered at relative positions given

by the contributions of each archetype towards each molecule. Points are coloured accord-

ing to the magnitude of ∆E, defined as the difference between G4 and ωB97X-D3/6-31G∗

energies. Smaller errors are shown in indigo and larger errors in red.

The TOPO and CMAT archetype molecules cover a broad range of molecule sizes; the

largest molecule for both sets of descriptors has fourteen heavy atoms (azobenzene (48)

for TOPO and anthracene (167) for CMAT). Both descriptors include a small, hydrogen-

containing archetype (the hydrogen radical (267) for TOPO and 2H (460) for CMAT)

and for both descriptors this is the most important archetype. Using descriptors based

entirely on the structural information of the molecules has found archetypes that distribute

molecules according to their error, or rather, how challenging they are for computational

methods. In general, the archetype molecules have relatively large errors, supporting the

idea that archetypes are more unique and consequently more challenging molecules.

8.3.4 New test sets

CMAT and TOPO descriptors emphasise different attributes of a molecule; topological de-

scriptors highlight connectivity but Coulomb matrices emphasize charge. This can be very
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Figure 8.3: Simplex plots of the (a) TOPO and (b) CMAT descriptors. Archetypes
(large circles) are located toward the edges of the regular polygons and molecules are
scattered as projections of the archetypes in the simplex. Prototypes are shown as
triangles. Points are coloured according to the magnitude of ∆E.
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Figure 8.4: Histogram of the errors for the entire data set and new test sets based
on (a) topological and (b) Coulomb matrix descriptors. The error (∆E) is defined as
the difference between the ωB97XD/6-31G∗ and G4 energies, measured in Hartrees
(Ha).

useful when deciding what types of descriptors to use when seeking a new test set, depend-

ing on future research plans. It is not unexpected that there is little overlap between their

prototypes and archetypes, only CBr4 (990) shows up as an archetype for both, the benzyl

radical (682) is a prototype for both and azobenzene (48) is a TOPO archetype but a

CMAT prototype. The broad distribution of the molecules in CMAT space is evidenced by

the overlap of archetypes and prototypes. Azobenzene (990), 2,2,3,3-tetramethylbutane

(1035) and octafluoropropane (1264) and are both CMAT prototypes and archetypes

and it can be seen in the simplex plot that there are prototype structures lying on the

archetype convex hull.

Once identified, the archetypes and prototypes can be combined to form a reliable,

statistically significant and diverse test set for quantum chemical methods. The distribu-

tion of errors was compared, to assess the performance of CMAT and TOPO archetypes

and prototypes in representing the database as a whole. Results are shown in Figure 8.4.

The error distribution of the entire data set is shown in grey. The TOPO prototypes (light

red) are more widely distributed than the CMAT prototypes (light blue) and the broad

distribution of the CMAT prototypes more closely resembles that of the whole data set.

In contrast, the TOPO archetypes (dark red) encompass molecules with both small and

large errors. The CMAT archetypes are more widely distributed than the archetypes, but

a skew towards larger errors is seen. For both descriptors the archetypes have larger errors

than the prototypes. This again shows the prototypes are more representative structures

whereas the archetypes (especially in the case of TOPO archetypes) capture molecules at

the extreme ends of the distribution. These archetypes and prototypes were found using

only structural information, yet the molecules identified as archetypes and prototypes re-

flect the energies of the whole data set. As seen in the dendrogram and simplex plots,

these structures aren’t the ones that would be intuitively selected, and might even be
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Figure 8.5: Explained variance of the organic subset, as a function of number of
components for principal component analysis (PCA), archetypal analysis (AA) and
k -means clustering of a) fingerprint, b) topological and c) Coulomb matrix descriptors.

selected against for being problematic systems (i.e. P4 and diazene N2H2). By removing

human biases a diverse and statistically significant subset of molecules has been identified.

These new test sets are labelled CMolsC-1130 (CMAT test set) and CMolsT-1131 (TOPO

test set) and are available online.

8.3.5 Organic molecules

The CCCBDB is an especially diverse data set but most applications using test sets focus

on a specific property or functional group. To demonstrate the suitability of this method

for all properties, a smaller test set containing all molecules with at least one C and one H

atom and no transition metals was built, to mimic an organic test set that would normally

be used by chemists. This resulted in 700 molecules. Given the number of molecules and

the number of CMAT descriptors, the CMAT descriptors were limited to only include

ones that had values for more than 25% of the data set. This resulted in 194 variables,

compared to 435 which were used for the entire data set. Once correlated columns were

removed there were 13 TOPO descriptors and 143 fingerprint descriptors.

The same PCA, k -means clustering and AA as described above was performed and

results are shown in Figure 8.5. Archetypes and prototypes were selected for 70% explained

variance again, resulting in 5 TOPO archetypes, 11 TOPO prototypes and 62 CMAT

prototypes. The CMAT archetypes did not recover 70% of the variance and were omitted

from further study. The dendrograms for the CMAT and TOPO prototypes are shown

in Figure 8.6. The TOPO prototypes for the organic subset are quite diverse, with eight

distinct branches for the eleven molecules. They cover a broad range of functional groups

with an emphasis on functional groups containing oxygen. For the CMAT prototypes

there is a similar grouping of halogen-containing molecules, as was seen for the larger data

set.
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The simplex plot for the TOPO archetypes is shown in Figure 8.7. The TOPO

archetypes again include the smallest molecule in the set (in this case the CH radical

(832)) and one of the largest (adamantane (773)). Molecules are more evenly distributed

in the simplex plot compared to Figure 8.3a but again molecules are distributed according

to ∆E, despite no energetic information being included in the descriptors. The CMAT

descriptor was not suitable for this smaller data set as there was too much variance in the

data set in CMAT space to be encapsulated by the archetypes. Despite this, the distri-

bution of molecules within the simplex plot for the TOPO descriptors shows it is suitable

for this smaller set.

The histogram of the errors of the archetypes and prototypes for the organic subset is

shown in Figure 8.8. The distribution of archetypes and prototypes is very similar to those

found for the whole test set. The TOPO archetypes capture molecules at the extremes

of the distribution again, whereas the prototypes for both descriptors better represent

the entire subset. This reiterates the suitability of prototypes and archetypes for forming

a reliable and statistically significant data set. In cases where the CMAT descriptor is

too diverse, the TOPO descriptor is still appropriate. These new test sets are labelled

CMolsC-org132 (CMAT organic test set) and CMolsT-org133 (TOPO organic test set) and

are available online. The use of this method has been demonstrated for organic molecules

but the same approach could be used to find test sets of more exotic species.

8.3.6 Machine learning

Regression machine learning (ML) models were calibrated to predict the difference be-

tween the ωB97XD/6-31G∗ and G4 energies (∆E) using the TOPO and CMAT descrip-

tors. Random forest (RF) models trained with 50% of the data set sampled around

archetype and prototype structures are shown in Table 8.2. The optimal RF models ex-

hibit cross-validation correlation coefficient (R2
CV ) of ∼0.97 and ∼0.74 for TOPO and

CMAT descriptors, respectively.

Scatter plots shown in Figure 8.9 illustrate the better transferability capacity of the

CMAT ML model, where the accuracy of the predictions of ∆E values of the test set

structures is >0.96, whilst the TOPO correlation is 0.2 units lower. The tridimensional

information of the CMAT descriptors is more suitable for describing the energy difference

between the two methods, which suggest that the set of archetype and prototype structures

selected by this descriptor type are a better representation of the data set in the particular

context of ωB97XD/6-31G∗ and G4 energy gaps.

8.3.7 Atomisation energies

Total atomic energies are readily computed but in practice they are rarely reported on.

Energy differences are of more chemical interest but accurate values rely on good cancel-

lation of errors. Electron correlation energy makes up a small part of the total energy but

becomes significant for energy differences. Atomisation test sets like the G(n) series5,7–11
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Figure 8.6: Hierarchical clustering dendrograms of the cluster prototypes of (a) TOPO
and (b) CMAT descriptors for the organic subset. Molecules with at least one halogen
atom (F, Cl or Br) are highlighted in green.
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Figure 8.7: Simplex plot of the TOPO archetypes for the organic subset. Archetypes
are located toward the edges of the regular polygons and the molecules are scattered as
projections of the archetypes in the simplex. The large circles represent the archetypes
and the triangles represent the prototypes. Points are coloured according to the
magnitude of ∆E.

Table 8.2: Details of the optimum regression models of ∆E (defined as the difference
between the ωB97XD/6-31G∗ and G4 energies). RCV is the cross-validation coeffi-
cient, STDCV and STDTest are the standard deviations of the cross-validation set and
entire set, respectively.

Model Descriptor Parametersa RCV STDCV (Ha) RTest STDTest (Ha)

RF
CMAT n = 25, s = 2 0.975 0.032 0.964 0.041
TOPO n = 25, s = 2 0.739 0.105 0.733 0.104

n is the number of estimator trees and s is the minimum sample split in the RF model.

are predominantly made up of small, stable molecules with well-defined experimental val-

ues. These new CMolsC-1 and CMolsT-1 test sets provide a more robust test of a methods

performance. Here they are used to test the performance of a selection of DFT methods

as well as MP2, G4(MP2)-6X and DMC. Results are reported in Table 8.3.

For the majority of methods the most challenging set of molecules is the CMolsC-1

test set. The archetypes are generally more challenging structures than prototypes, with

larger MAD values for CMolsC-1A compared to CMolsC-1P. Results are not as consis-

tent for CMolsT-1, functionals like M06L and B1B95 have larger errors for prototypes

compared to archetypes but for ωB97XD and the double-hybrid functionals B2PLYP and

mPW2PLYP the archetypes are more challenging. Topological descriptors align more with

our understanding of chemical intuition compared to the Coulomb matrix descriptors, and

the CMolsT-1 test set highlights how parameterisation and the treatment of the exchange-

correlation functional affect DFT performance. In contrast, DMC is not a parameterised

method and the errors are consistent for archetypes and prototypes from both sets.
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Figure 8.8: Histogram of the errors for the organic sub set and new test sets based
on a) topological and b) Coulomb matrix descriptors. The error (∆E) is defined as
the difference between the ωB97XD/6-31G∗ and G4 energies, measured in Hartrees
(Ha).
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Figure 8.9: Scatter plot of ∆E predictions for the test set consisting of 50% of the data
set using TOPO (a) and CMAT (b) descriptors. ∆EActual refers to the values calcu-
lated by energy differences between the two methods and ∆EPredicted corresponds to
the RF predictions.
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Table 8.3: Mean absolute deviation (MAD) of DMC results from est. CCSD(T)/CBS
reference values (kcal/mol) for atomisation energies of the molecules in the CMolsC-1
and CMolsT-1 test sets.

CMolsC-1A CMolsC-1P CMolsT-1A CMolsT-1P Overall

SVWN 196.4 150.8 191.4 156.2 159.8
PBE 25.1 23.9 36.4 26.2 25.0
TPSS 4.6 6.3 6.4 9.0 6.3
M06L 10.9 8.3 7.4 11.0 8.9
B3LYP 22.1 11.1 12.7 12.4 12.8
PBE0 8.8 8.5 9.9 9.9 8.8
ωB97XD 8.2 5.6 7.4 5.4 6.0
B1B95 9.0 6.6 5.7 9.7 7.2
B2PLYP 19.7 11.3 13.0 11.0 12.5
mPW2PLYP 18.0 10.5 13.0 10.9 11.7
G4 4.0 2.9 4.0 4.1 3.2
MP2 21.0 12.5 9.5 12.9 13.6
DMC 10.0 6.3 11.1 8.4 7.3

Density functionals can be grouped together according to their treatment of the exchange-

correlation term in what is known as a ‘Jacob’s Ladder’.134 There is significant variation

within the different classes of methods. LDA functionals such as SVWN form the low-

est rung of the Jacob’s ladder and have the largest errors with an overall MAD of 159.8

kcal/mol. The double-hybrid functionals B2PLYP and mPW2PLYP lie at the top of the

Jacob’s ladder, but have comparable performance with lower level methods like B3LYP.

They have been shown to be more basis-set dependent than hybrid functionals135 but

these two test sets highlight some potential shortcomings compared to other methods.

The best DFT method is ωB97XD, with an overall error of 6.0 kcal/mol. ωB97XD is a

long-range corrected functional and includes 100% Hartee-Fock exchange for long-range

electron-electron interactions. It is known to perform well for challenging systems like the

DC9 test set135 and performs better than other functionals for non-covalent systems.95

G4(MP2)-6X has the lowest MAD of all methods studied here. It is a composite method

that uses an additivity scheme based on ab initio wavefunction calculations but has been

parameterised on a large test set. DMC has an overall MAD of 7.3 kcal/mol and performs

better than the double-hybrid functionals but worse than ωB97XD and TPSS. These two

new test sets include more exotic molecules with second and third-row atoms or hyperva-

lent bonding that are generally more challenging for DMC methods. Unlike DFT methods,

DMC is systematically improvable by including more determinants. In a previous study

of G2 atomisation energies using a multi-determinant trial wavefunction reduced the error

from 2.1 kcal/mol to 1.2 kcal/mol.74 The same approach could reduce the error here.
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8.4 Summary

The development of new quantum chemical methods requires extensive testing to demon-

strate robustness and to identify potential weaknesses and shortcomings. Numerous

databases are available to test and standardise this process. However, selecting robust

structural test sets for specific problems is vulnerable to human bias and intuition.

The archetypes and prototypes found here constitute diverse subsets of molecular struc-

tures that can serve as reference to build robust calibration and test sets. Fingerprint

descriptors, used in material science, are insufficient to describe chemical space, but both

Coulomb matrix and topological descriptors were useful to identify the ideal subset of

structures. Archetypal analysis found the molecules with the largest errors with reference

to G4 methods without calculating the energy whilst the prototypes are a good repre-

sentation of the data set as a whole. When tested on a smaller set of organic molecules,

the archetypes and prototypes exhibit similar results. By calculating atomisation ener-

gies for the CMolsC-1 and CMolsT-1 test set it was shown DFT performance depends on

the parameterisation and treatment of the exchange-correlation functional but DMC is a

consistent method for challenging problems. These conclusions are difficult to draw from

other test sets as they are biased by the same chemical intuition used to build the training

sets.

Prototypes and archetypes can produce test sets without need of assumptions, prior

knowledge or a completed body of work, as shown with both the general case and the

specific case of organic molecules. These methods can be used to create small, robust test

sets that avoid the burden on computational resources that is presented by the existing

biased test sets. The test sets presented here are useful for main-group and organic

chemistry but these methods can be extended to create test sets for virtually any property

or type of system. Test sets for more exotic molecules or metallic systems could be

constructed in the same manner, using descriptors that favour these exotic features. High-

cost electronic structure calculations are not required to identify potentially large errors or

challenging structures where popular methods might fail; just a sound statistical analysis

of the chemical diversity of the structures is required.
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Chapter 9

Conclusion

Electronic structure theory is a powerful tool but more scalable methods are needed to

take full advantage of the new wave of parallel computing. The stochastic nature of

quantum Monte Carlo (QMC) means it is well suited for this style of computing. It is

still a relatively new method and thorough benchmarking is needed before it is readily

adopted by the quantum chemistry community. There also needs to be more transparency

on the algorithmic choices made in its implementation. There are a number of parameters

that can be adjusted that have a significant effect on the speed of calculations but not

necessarily the accuracy. Using methanol as a test-case, a combination of parameters was

found that reduced the speed of calculations without affecting the accuracy. This method

was then applied to a set of reaction barrier heights to demonstrate the suitability of DMC

for a wide range of chemically relevant systems. DMC performed consistently well for a

variety of reaction barrier heights and had an average error of 0.9 kcal/mol across three

diverse databases.

A unique advantage of QMC methods over traditional ab initio and DFT methods is

the flexibility in the choice of trial wavefunction. The accuracy of DMC for the aforemen-

tioned barrier heights is in large part due to the Slater-Jastrow wavefunction explicitly

accounting for the dynamic and non-dynamic electron correlation in the system. The

trial wavefunction can also be systematically improved by including more determinants.

This was demonstrated using the ionisation potentials and electron affinities of first- and

second-row systems. These systems are extremely sensitive to the treatment of electron

correlation and accurate values will only be obtained when there is a balanced description

of correlation on the charged and neutral species. A significant portion of the correlation

energy was recovered when using a multi-determinant expansion with just single and dou-

ble excitations and higher-order excitations had little effect. Less correlation energy was

recovered using a multi-determinant expansion with pseudopotentials but results were still

good.

The advantage of a systematically improvable wavefunction was demonstrated with a

set of eighteen challenging reactions. DMC methods had comparable performance with

the best DFT methods for a range of these challenging systems. For reactions with partic-

ularly large errors a multi-determinant expansion using a CISD wavefunction improved the

results. The results were dependent on the active space used and more virtual orbitals were

necessary for reactions with second-row atoms. Not all systems could be improved. For
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large systems of second-row atoms, like S8, a larger active space was too computationally

demanding. For particularly challenging systems like diazene with a strong multireference

character a multi-determinant wavefunction had little effect on the final energy.

Extensive use was made of existing benchmarking protocols but the current methodol-

ogy is tedious and rife with problems. We want methods that are accurate for all domains

of chemical space but the current test sets are not testing this. Properties like atomisation

energies don’t commute with properties like barrier heights. Ideally the test sets we use to

validate our methods should capture a representative subset of chemical space but current

test sets are biased by our perceived chemical intuition and an human tendency for easy

systems. Good performance for one test set does not guarantee good performance for

another. Test sets like DC18 can be built using problematic reactions but there is no a

priori way of knowing if a system will be challenging or not.

With better test sets we can spend less time verifying and justifying our methods and

more time developing new ones. To this end a method was developed that used multi-

variate statistics to objectively select a representative subset. These methods were tested

on a set of 1500 molecules using numerical descriptors based entirely on the structure of

these molecules. No electronic-structure calculations were necessary. Using these methods

identified a subset of molecules was identified that overlapped with the DC18 test set, but

with no information known about them before hand. These test sets have the potential

to improve the parameterisation of DFT methods. Empirical parameterisation is used in

some methods to better describe the exchange-correlation functional but often this leads

to skewed performance in favour of systems similar to the training set. These unbiased

test sets could be used for a more robust parameterisation resulting in more universal

functionals.
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Abstract
Accurate calculation of hydrogen abstraction reaction barriers is a challenging problem, often

requiring high level quantum chemistry methods that scale poorly with system size. Quantum

Monte Carlo (QMC) methods provide an alternative approach that exhibit much better scaling, but

these methods are still computationally expensive. We describe approaches that can significantly

reduce the cost of QMC calculations of barrier heights, using the hydrogen abstraction of metha-

nol by a hydrogen atom as an illustrative example. By analysing the combined influence of trial

wavefunctions and pseudopotential quadrature settings on the barrier heights, variance, and time-

step errors, we devise a simple protocol that minimizes the cost of the QMC calculations while

retaining accuracy comparable to large-basis coupled cluster theory. We demonstrate that this

protocol is transferable to other hydrogen abstraction reactions.

K E YWORD S

methanol, quantum Monte Carlo, reaction barrier

1 | INTRODUCTION

Hydrogen abstraction reactions play important roles in many branches

of organic chemistry, from the combustion of hydrocarbons[1] to dam-

age in DNA as an indirect consequence of exposure to ionising radia-

tion.[2] Accurate calculations of reaction barrier heights are required to

build kinetic models for these processes; however, chemically reliable

results often require a high-level treatment of electron correlation

effects. This is illustrated by the H abstraction of methanol by an H

atom, which has two main reaction channels,

CH3OH1H ! CH2OH1H2 (1)

! CH3O1H2 (2)

with CH2OH as the dominant product. These reactions are known to

be important in the combustion of methanol under fuel-rich condi-

tions,[3] and have been studied using a wide range of theoretical

methods.[4–9] Despite the apparent simplicity of this system, studies

have shown that accurate calculations of the barrier heights require

methods that scale as a large power of the system size,[6] and that

there are large discrepancies between methods. The performance of

both MP2 theory and the popular B3LYP density functional[10] are par-

ticularly poor for this system.

Real-space quantum Monte Carlo (QMC) methods offer a stochas-

tic alternative to traditional high-level electronic structure methods,

and have been shown to be highly accurate for energetic[11,12] and

structural properties.[13] The main advantages of QMC methods over

more widely used alternatives such as coupled cluster theory are their

low scaling with system size (N324), and their immense parallelisabil-

ity.[14] Despite these advantages there have been relatively few QMC

calculations of H abstraction barrier heights. The earliest example, of

the reaction H21H ! H1H2,
[15,16] has very recently been revised to

even higher accuracy.[17] Other examples include the reaction

OH1H2 ! H2O1H,[18] and a study by Kollias et al. of the H abstrac-

tion of methanol by a Cl atom, which showed agreement with MP2 cal-

culations.[19] More recent examples include the H abstraction by

styrene of the H-terminated Si(001) surface,[20] and calculations of the

barrier heights of three H-transfer reactions involving small

molecules.[21]
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To achieve resolutions of chemical accuracy in the barrier heights,

statistical uncertainties in the stochastic QMC energies need to be on

the order of fractions of a kcal/mol. Even though QMC scales well, this

need for small uncertainties makes the calculations computationally

expensive. As with other electronic-structure theories, efficient use of

QMC methods requires a number of methodological choices to be

made, including the choice of trial wavefunction and treatment of non-

local pseudopotentials. Wavefunction choice is often discussed in

reports of QMC calculations, but the effects of the parameters govern-

ing the treatment of pseudopotentials, including quadrature grids and

cutoffs, are rarely mentioned.

In this work, we investigate the impact of these choices, and their

mutual interactions, by performing a detailed study of the barrier

heights of H abstraction in methanol by an H atom. We show that sig-

nificant cost savings can be achieved, while still obtaining accurate bar-

rier heights. In addition, we demonstrate that the approach is

transferable, by evaluating the barrier heights of four unrelated H

abstraction reactions. This enables a more black-box approach to be

taken in similar QMC calculations.

2 | METHODS

The forward (F) and reverse (R) barrier heights of the reactions shown

in Equations 1 and 2 are defined as the total energy differences

V1F5EðTS1Þ2EðCH3OHÞ2EðHÞ (3)

V1R5EðTS1Þ2EðCH2OHÞ2EðH2Þ (4)

V2F5EðTS2Þ2EðCH3OHÞ2EðHÞ (5)

V2R5EðTS2Þ2EðCH3OÞ2EðH2Þ (6)

where TS1 and TS2 are the transition-state structures for the reactions.

The molecular geometries were obtained from B3LYP calculations with

the Roos augmented triple-zeta (ATZ) basis set,[22] using

Gaussian09.[23]

Practical QMC calculations require user-defined trial wavefunc-

tions. The complexity of these wavefunctions strongly influence the

computational cost of the calculations. Complicated wavefunctions are

more expensive to optimize and evaluate at each Monte Carlo step,

but more accurate wavefunctions lower the variance of the energy and

therefore require fewer Monte Carlo steps to obtain a given statistical

accuracy. In addition, the nodal surface of the wavefunction (the hyper-

surface on which it equals zero, and across which it changes sign)

determines the systematic errors in fixed-node Diffusion Monte Carlo

(DMC) calculations. The trial wavefunctions employed here have the

Slater–Jastrow form,

WT5eJD"D# (7)

where the D";# are Slater determinants constructed from single-particle

orbitals, and J is a Jastrow factor containing explicit electron correlation

terms.

The Jastrow factor we use is a sum of electron-electron (ee),

electron-nucleus (eN), and electron-electron-nucleus (eeN) terms,

J5
X
i>j

X
A

JeeðrijÞ1JeNðriAÞ1JeeNðriA; rjA; rijÞ
� �

(8)

where i, j label electrons, and A labels nuclei. These terms were con-

structed as compactly supported natural polynomial expansions in the

electron–electron and electron–nucleus distances,

JeeðrijÞ5fðrij; LeeÞ
XNee

l50

al r
l
ij (9)

JeNðriAÞ5fðriA; LeNÞ
XNeN

l50

bl;A r
l
iA (10)

JeeNðriA; rjA; rijÞ5fðriA; LeeNÞfðrjA; LeeNÞ
XNeeN

l;m;n50

glmn;A r
l
iAr

m
jAr

n
ij (11)

where L is the cutoff range, and fa;b;gg are optimizable parameters.

The cutoff function fðr; LÞ is a C2-smooth Wendland function[24] which

goes to zero at L,

fðr; LÞ5
(

12
r
L

� �4
114

r
L

� �
0 � r � L

0 r>L

(12)

All the calculations presented here use fixed ranges of L55 Bohr.

The relevant symmetries, electron–electron cusp condition, and the

electron–nucleus no-cusp conditions were enforced by constraining

the optimisable parameters in the Jastrow factor. We used the method

described in the appendix of Ref. [25] for the more complicated eeN

term. The free parameters in the Jastrow factor were optimized by

minimising the total energy at the variational Monte Carlo (VMC) level,

using the linear method of Toulouse and Umrigar.[26]

The orbitals used in the Slater determinants were taken from

B3LYP calculations. Although the orbitals themselves contain no

description of electron correlation, it has been shown that using orbi-

tals from a correlated method such as B3LYP results in better QMC

energies than using Hartree–Fock orbitals.[27] For all-electron calcula-

tions using the full electron-ion Coulomb potential, the orbitals were

expanded in the Gaussian-type Roos ATZ basis set,[22] and cusp-

corrected using a standard approach.[28]

In addition to all-electron calculations, we also used nonlocal pseu-

dopotentials to represent the ionic cores. The use of pseudopotentials

can greatly reduce the cost of QMC calculations, as the removal of the

chemically inert core electrons reduces the fluctuations in the local

energy. Evaluation of the local energy requires the nonlocal potential

to be projected onto the trial wavefunction. Following Mitas et al.,[29]

for each ion the contribution to this projection from an electron labeled

i can be written as a sum over angular momenta l,

V̂nlWT

WT

 !
i

5
X
l

ð2l11Þ
4p

vlðriÞ
ð
4p
Pl½cos u0i �

WTð. . . ; r0i ; . . .Þ
WTð. . . ; ri; . . .Þ dX

0
i (13)

where vl is the angular-momentum dependent radial potential, and the

integral is over the surface of a sphere of radius ri centred on the ion.

In practice the integral is evaluated using a deterministic approach,

ð
4p
fðr0iÞdX0

i �
XNQ

k

wkfðrkÞ (14)
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where the NQ weights wk and points rk are chosen according to a Gaus-

sian quadrature rule, with values taken from Ref. [29]. This projection

must be evaluated for each electron within range of each ion, at each

step of the DMC calculation, so the number of quadrature points and

the range of the radial potentials can have a large impact on the cost of

the QMC calculation. We compared the effect of using two different

pseudopotentials, both of which were explicitly constructed for use in

QMC calculations, but using different methods. Both are Hartree–Fock

pseudopotentials including scalar relativistic effects, but the Trail-

Needs (TN)[30] potentials are shape-consistent, whereas the Burkatzki–

Filippi–Dolg (BFD)[31] potentials are energy-consistent. Our BFD calcu-

lations used the associated valence triple-zeta (VTZ) basis sets, and an

improved H-atom potential.[32] Calculations with the TN potentials

used the aug-cc-pVTZ-CDF basis set from Ref. [33].

Nonlocal pseudopotentials were treated beyond the locality

approximation in DMC using the size-consistent T-moves approach.[34]

Imaginary time-step sizes of s5ð0:04;0:02;0:01;0:005Þ a.u. were

used for pseudopotential calculations. Smaller time-step sizes are

required for all-electron calculations, and in this case values of s5ð0:02
;0:01;0:005;0:001Þ a.u. were used. All DMC energies were extrapo-

lated to s50 using quadratic fits. Target population sizes of 8000

walkers were used in all DMC calculations. All the QMC calculations

were performed using the CSIRO Quantum Monte Carlo code.[35]

Forward and reverse barrier heights are not directly available from

experiment. The highest level theoretical results available in the litera-

ture use coupled cluster methods, so to compare with these we also

performed coupled cluster calculations using the CCSD(T) approach.

These were performed using Molpro[36] with Dunning’s aug-cc-pVQZ

basis set[37] and an unrestricted Hartree–Fock reference state.

Finally, we evaluated the accuracy of density functional theory

using 12 different exchange-correlation functionals. The types of func-

tionals chosen were the local density approximation (LDA[38]), general-

ized gradient approximation (GGA) functionals (BLYP,[39,40] PBE,[41]

B97D3[42]), meta-GGAs (TPSS,[43] M06L[44]), hybrid GGAs (B3LYP,[10]

PBE0[45]), hybrid meta-GGAs (B1B95,[46] MPW1B95[47]), and double

hybrids (B2PLYP,[48] mPW2PLYP[49]).

3 | RESULTS AND DISCUSSION

Barrier heights calculated using density functional, CCSD(T), and QMC

methods are compared against results from the literature in Table 1.

Our CCSD(T) results, calculated at the B3LYP geometries, agree

closely with previous calculations. When compared against the results

of Carvalho et al.,[8] who used CCSD(T)/cc-pVTZ geometries, the larg-

est deviation we observe is only 0.3 kcal/mol. This demonstrates the

accuracy of the B3LYP geometries, despite the inability of that level of

theory to predict accurate barrier heights.

None of the exchange-correlation functionals we used are able to

recover all the barrier heights to within chemical accuracy of the CCSD

(T) reference values. The most accurate functionals are the double-

hybrids, which perform well for the forward barriers. However, the

reverse barrier V2R deviates from the reference CCSD(T) value by over

5 kcal/mol. There is significant variation of barrier heights, even within

the same class of functionals. For example, the forward barrier heights

obtained using the meta-GGA functionals TPSS and M06L differ by

around 7 kcal/mol. The extreme variability in the accuracy of the differ-

ent density functionals emphasizes the need for extensive benchmark-

ing using higher level methods.

All-electron QMC calculations were performed using the complete

Jastrow factor shown in Equation 8, including the eeN terms. The bar-

rier heights obtained using this method agree closely with the CCSD(T)

results, for all but the V2F barrier, where there is a difference of just

over 1 kcal/mol. This disagreement is potentially due to the presence

of nondynamical correlation effects. The T1 diagnostic[50] is a widely

used indicator of nondynamical effects in coupled-cluster calculations.

Typically, T1 values of 0.02 or greater are taken as an indication that a

single determinant reference state is insufficient, though some

researchers suggest this value should be higher for open-shell sys-

tems.[51] Nearly all of the structures have small T1 values, the excep-

tions being CH3O (0.021) and TS2 (0.032).

TABLE 1 Reaction barrier heights for the H abstraction of metha-
nol by an H atom (in kcal/mol) using different methods

Method V1F V1R V2F V2R

LDA 23.5 20.1 1.8 27.7

BLYP 1.1 12.0 3.3 6.5

PBE 2.0 8.3 5.7 3.2

B97D3 0.8 12.5 3.9 7.3

TPSS 20.9 11.4 1.1 7.3

M06L 7.0 10.1 7.8 8.2

B3LYP 3.6 13.3 6.9 9.2

B3LYP/6-311G(d,p) [6] 3.2 12.9 - -

PBE0 5.5 11.0 10.4 8.0

B1B95 6.8 13.5 11.3 10.5

B1B95/MG3S [6] 7.0 13.5 - -

mPW1B95 6.9 12.8 11.5 10.0

mPW1B95/MG3S [6] 7.1 12.9 - -

B2PLYP 10.0 17.6 14.0 17.2

mPW2PLYP 9.8 17.0 13.9 16.7

MP2/6-311G(d,p) [6] 16.8 18.0 - -

CCSD(T)/aug-cc-pVQZ [6] 9.6 15.6 - -

CCSD(T)/cc-pVQZ [8] 9.8 15.8 15.1 12.0

CCSD(T)/aug-cc-pVQZ 9.5 15.5 15.1 11.7

DMC (All-electron) 9.9 (1) 15.5 (1) 16.3 (1) 12.1 (1)

DMC (BFD) 9.8 (2) 15.0 (2) 15.9 (2) 12.1 (2)

DMC (TN) 9.9 (2) 15.6 (2) 15.7 (2) 12.2 (2)

Statistical uncertainties in the last digit of the DMC results are shown in
parentheses. All DFT calculations used the Roos-ATZ basis, unless stated
otherwise.

SWANN ET AL. | 3 of 00



Reference pseudopotential QMC results were obtained using both

BFD and TN pseudopotentials, with the same sized Jastrow factor

used in the all-electron calculations. The barrier heights are all within

two standard deviations of the all-electron results. These pseudopoten-

tial calculations are actually more expensive per Monte Carlo step than

the all-electron approach (1.54x, for the DMC calculation of CH3OH),

due to the need to repeatedly evaluate the integral in Equation 13. The

cost benefits of the pseudopotential approach come from the ability to

use larger imaginary time-step sizes, and the reduced variance of the

energy. As an example, for a fixed time-step size of s50:005 a.u., the

BFD calculation of CH3OH is over 20% faster than the all-electron cal-

culation, to obtain the same statistical accuracy. This reduction in cost

will be significantly larger for systems containing heavier elements.

3.1 | Approximations

To further reduce the computational cost of the QMC calculations, we

investigated the effect of reducing both the complexity of the Jastrow

factor and the treatment of the pseudopotentials. Dubeck�y et al.[52]

have shown that for noncovalent interactions a two-body Jastrow fac-

tor is sufficient, and we consider the same modification here, removing

the most expensive eeN terms. For the pseudopotentials, we reduced

the number of quadrature points in the evaluation of Equation 13, and

also reduced the range of both the local and nonlocal radial potentials.

The notation used to define these settings is x:y:z. Here x denotes the

size of the Jastrow factor, which is either 2J (indicating use of ee and

eN terms) or 3J (indicating use of ee, eN, and eeN terms). The number

of points used in the quadrature grid (NQ in Equation 14) is given by y.

We used y54 tetrahedrally distributed points, and y512 icosahe-

drally distributed points, with the locations of the points on the unit

sphere taken from Ref. [29]. Finally, z is a parameter which determines

the ranges of the radial parts of both the local and nonlocal pseudopo-

tentials. The ranges r of the local potentials are chosen such that r is

the point furthest from the nucleus which deviates by more than 102z

from the bare Coulomb potential. Similarly, the range of the radial part

of a nonlocal potential is defined as the point furthest from the nucleus

which deviates by more than 102z from zero. The potentials are set to

zero outside these ranges. This method of defining the ranges leads to

different values for each element and for both types of pseudopoten-

tial used. For the elements considered here, the BFD potentials are

shorter ranged than the TN potentials for each of our choices of z58,

5, 3. Using this notation, the settings used for the reference pseudopo-

tential calculations in Table 1 are 3J:12:8.

3.2 | Accuracy

As shown in Figure 1, the different settings used for the Jastrow factor

and pseudopotentials have very little effect on the predicted barrier

heights. The majority of settings result in no statistically significant

change, and the largest changes are less than 1 kcal/mol. Overall the

deviations from the reference values are statistically equivalent for

both types of pseudopotential considered.

3.3 | Cost

Despite the relatively insignificant changes in the barrier heights, the

reduced settings can have a very strong effect on the computational

cost of the QMC calculations. The timings for a complete DMC

FIGURE 1 Deviations of DMC barrier heights from the 3J.12.8 reference values, for different Jastrow factor and pseudopotential settings.
The settings use the notation x:y:z, where x denotes the size of the Jastrow factor, y is the number of points used in the quadrature grid
for evaluating nonlocal pseudopotentials, and z is a measure of the cutoff applied to the radial parts of the pseudopotentials. For more
details see section 3
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calculation of CH3OH, relative to the reference settings using the BFD

pseudopotentials, are shown in Figure 2.

The largest time saving comes from eliminating the eeN terms in

the Jastrow factor, which makes the DMC calculation of CH3OH 3x

faster per Monte Carlo step. This simplified Jastrow factor increases

the variance of the local energy (see section 3.4), but even when this

effect is taken into account, we still obtain a speedup of around 2.5x

for the time to achieve a fixed statistical accuracy in the total energy.

The next most important speedup comes from reducing the num-

ber of points in the quadrature grids. Evaluating the projection of the

nonlocal operator onto the trial wavefunction requires multiple evalua-

tions of the wavefunction ratio with the position of one electron

moved. Even when using efficient methods for calculating this ratio,

reducing the number of quadrature points from 12 to 4 results in a

speedup of 1.7x when using the simpler 2J Jastrow factor. Reducing

the ranges of the local and nonlocal parts of the pseudopotentials also

reduces the cost of the calculations, but the improvement obtained is

much smaller than when simplifying the Jastrow factor or reducing the

number of quadrature points. When combined, all three measures pro-

vide a speedup greater than 5x, with no reduction in the quality of the

barrier heights.

Our calculations using the TN pseudopotentials were always more

expensive than when using the BFD potentials, as shown in Figure 2.

There are a number of reasons for this, the most important being sim-

ply the size of the one-electron basis set used to construct the B3LYP

orbitals in the trial wavefunction. When expressed in spherical har-

monic (as opposed to Cartesian) Gaussians, the CDF basis set used

with the TN potentials has 35% more primitives than the BFD basis

set. There is also some contribution from the fact that the TN poten-

tials contain a nonlocal term for H. The TN potentials contain s, p, and

d channels for each element used in this work. The BFD potentials con-

tain only s and p channels for C and O species, and only a local compo-

nent for H. Finally, in the Gaussian representation of the

pseudopotentials we used, the TN potentials contain many more terms

than the BFD potentials. This has a very small effect on the cost, but it

could be eliminated by representing both potentials on a radial grid.

3.4 | Variance

Reducing the complexity of the trial wavefunction by removing the

eeN terms from the Jastrow factor leads to an increase in the variance

of the local energy, shown in Figure 3. The results shown here are for

energy-optimized trial wavefunctions. It should be possible to obtain

lower variances by explicitly minimising the variance of the local energy

rather than the total energy, though the gains are likely to be small.

Reducing the number of points in the quadrature grid has no effect

on the variance when using the BFD pseudopotentials, but results in a

5% increase in the variance when using the TN potentials. This is likely

due to the different angular momenta used in the construction of the

different potentials. As aforementioned, the TN pseudopotentials use

higher angular momentum terms than the BFD potentials, and so one

would expect them to require a higher order quadrature rule. However,

the effect is small, and does not translate in any statistically significant

way to the quality of the energy barriers as shown in Figure 1. Reduc-

ing the ranges of the local and nonlocal radial potentials has no notice-

able effect on the variance for either type of pseudopotential.

3.5 | Time-step error

The changes to the Jastrow factor and treatment of pseudopotentials

also have an effect on the time-step error in DMC, as shown in Figure

4. We used a nonsymmetric branching factor in our DMC calculations

with T-moves, which results in large time-step (s) errors, but with a pre-

dominantly linear behavior that is easily extrapolated to s50. Using a

symmetric branching factor does result in a smaller error for a given

value of s, but in practice we have frequently observed that the

increased curvature means that reliable extrapolation to s50 still

requires relatively small values of s. Using symmetric branching with T-

moves is slightly more expensive than nonsymmetric branching, as it

requires a second evaluation of the local energy at each DMC step if a

T-move is accepted. Our current approach is to use nonsymmetric

branching if performing a full extrapolation to s50, and to use sym-

metric branching if a single small value of s is used.

As with the variance, the largest effect on the time-step error is

the quality of the trial wavefunction. Using the larger 3J Jastrow factor

FIGURE 2 DMC Timings for CH3OH relative to BFD.3J.12.8
settings. Solid points indicate relative times for a fixed number of
Monte Carlo steps. Open points indicate relative times to achieve a
fixed statistical uncertainty

FIGURE 3 VMC variance of the local energy for CH3OH using
different settings for the Jastrow factor and pseudopotentials
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results in smaller time-step errors than when using the 2J form. The

quality of the Jastrow factor also has a small effect on the final s50

DMC energy, which comes from the projection of the nonlocal pseudo-

potential onto the trial wavefunction (Equation 13).

The majority of the quadrature grid and cutoff settings result in

time-step errors that are mutually indistinguishable. Using the simpler

2J Jastrow factor, the use of a short range in the pseudopotentials has

a larger effect than the number of quadrature points. Using the short-

est range (corresponding to z53) produces noticeably higher energies,

regardless of the number of quadrature points used. As the difference

in cost between using ranges corresponding to z53 and z55 is so

small, it is safer to use the larger value, which has no visible effect on

the time-step error.

3.6 | Transferability

The results so far indicate that BFD.2J.4.5 is a reliable low-cost DMC

protocol for calculating the barrier heights of the reactions (1) and (2).

To assess its transferability to other systems, we compared it to the

more expensive BFD.3J.12.8 protocol for four additional H abstraction

reactions. These reactions were taken from the HTBH38/04 data-

base[53] and include two reactions with the heavier elements S and Cl.

The results of these calculations are shown in Table 2, which lists

the barrier heights relative to reference values obtained from a combi-

nation of theoretical and experimental results.[54] Both DMC protocols

obtain barrier heights within chemical accuracy (within statistical uncer-

tainties) of the reference values. They also agree with each other to

within a fraction of a kcal/mol, showing that the reduced BFD.2J.4.5

protocol is transferable to other reaction barriers. The largest differ-

ence is in the forward barrier height for the reaction

OH1C2H6 ! C2H5 1H2O, though at 0.54 kcal/mol, this is still less

than 2 statistical error bars.

4 | CONCLUSIONS

We have used real-space QMC methods to calculate the reaction bar-

rier heights of the two main channels for H abstraction of methanol by

an H atom, a problem that requires a high-level treatment of electron

correlation effects. The combination of B3LYP geometries and QMC

energies predicts barrier heights that agree with CCSD(T) values to

within chemical accuracy.

The cost of the QMC calculations can be minimized by simplifying

the trial wavefunction and the treatment of nonlocal pseudopotentials.

The largest cost saving can be achieved by using a simple Jastrow fac-

tor that includes only two-body correlation effects. By combining this

simplified trial wavefunction with a sparse quadrature grid in the pro-

jection of the nonlocal pseudopotential, and applying cutoffs to the

ranges of these potentials, we were able to reduce the cost of DMC

calculations by a factor of 5x over our reference calculations, with no

loss in accuracy.

In the notation defined in section 3, our recommended protocol is

2J.4.5, using the BFD pseudopotentials. We have shown that this

approach is transferable to similar problems, including reactions involv-

ing the heavier elements S and Cl. However, a caveat is that one should

be careful with the choice of integration grids for systems containing

much heavier elements. These cases are likely to be more sensitive to

the number of quadrature points due to the importance of larger angu-

lar momenta in the pseudopotentials.

Together with these cost-reducing measures, the accuracy,

favorable scaling, and low memory requirements of QMC methods

indicate this is a practical route to tackle H abstraction in much larger

systems.
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