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Abstract 
 

In this thesis, we examine the relationship between news and the stock 

market. Further, we explore methods and build new nonlinear models for 

forecasting stock price movement and portfolio optimization based on past 

stock prices and on one type of big data, news items, which are obtained 

through the RavenPack News Analytics Global Equities editions. 

The thesis consists of three essays. In Essay 1, we investigate the 

relationship between news items and stock prices using the artificial neural 

network (ANN) model. First, we use Granger causality to ascertain how news 

items affect stock prices. The results show that news volume is not the Granger 

cause of stock price change; rather, news sentiment is. Second, we test the 

semi–strong form efficient market hypothesis, whereas most existing research 

testing efficient market hypothesis focuses on the weak–form version. Our 

ANN strategies consistently outperform the passive buy–and–hold strategy 

and this finding is apparently at odds with the notion of the efficient market 

hypothesis. Finally, using news sentiment analytics from RavenPack Dow 

Jones News Analytics, we show positive profitability with out–of–sample 

prediction using the proposed ANN strategies for Google Inc. (NASDAQ: 

GOOG). 

In Essay 2, we expand the utility of the information from news volume 

and news sentiments to encompass portfolio diversification. For the Dow 

Jones Industrial Average (DJIA) components, we assign different weights to 

build portfolios according to their weekly news volumes or news sentiments. 

Our results show that news volume contributes to portfolio variance both in–

sample and out–of–sample: positive news sentiment contributes to the 
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portfolio return in–sample, while negative contributes to the portfolio return 

out–of–sample, which is a consequence of investors overreacting to the news 

sentiment. Further, we propose a novel approach to portfolio diversification 

using the k–Nearest Neighbors (kNN) algorithm based on the idea that news 

sentiment correlates with stock returns. Out–of–sample results indicate that 

such strategy dominates the benchmark DJIA index portfolio. 

In Essay 3, we propose a new model called the Combined Markov and 

Hidden Markov Model (CMHMM), in which observation is affected by a Markov 

model and an HMM (Hidden Markov Model) model. The three fundamental 

questions of the CMHMM are discussed. Further, the application of the 

CMHMM, in which the news sentiment is one observation and the stock return 

is the other, is discussed. The empirical results of the trading strategy based 

on the CMHMM show the potential applications of the proposed model in 

finance. 

This thesis contributes to the literature in a number of ways. First, it 

extends the literature on financial applications of nonlinear models. We explore 

the applications of the ANNs and kNN in the financial market. Besides, the 

proposed new CMHMM model adheres to the nature of the stock market and 

has better potential prediction ability. Second, the empirical results from this 

dissertation contribute to the understanding of the relationship between news 

and the stock market. For instance, our research found that news volume 

contributes to the portfolio return and that investors overreact to news 

sentiment—a phenomenon that has been discussed by other scholars from 

different angles. 
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Chapter 1: 

Introduction 

1.1 Research background 

The stock market is one of the most important ways for companies to 

raise money and has become an integral part of the global economy. Investing 

in stocks has been one of the most popular investments for investors. However, 

there is always some risk to investment in the stock market as it is very hard 

to predict stock price movement. Forecasting stock price movement is 

extremely challenging as the stock market is essentially dynamic, nonlinear, 

complicated and nonparametric in nature. 

Researchers have shown that stock price fluctuations depend on many 

factors, including equity (Lucas and McDonald, 1990, Brav et al., 2000), 

interest rates (Christie, 1982, Flannery and James, 1984, Alam and Uddin, 

2009), cash flows (Sloan, 1996, Chen et al., 2013), insider information (Kyle, 

1985, Wang and Wang, 2017), unexpected extreme news (Chan, 2003, 

Asgharian et al., 2011), prescheduled earnings announcements (Jennings and 

Starks, 1986, Skinner, 1994, Su, 2003), political events (Kim and Mei, 2001, 

Amihud and Wohl, 2004, Jensen and Schmith, 2005), and corporate takeovers 

(Malatesta and Thompson, 1985, Franks and Harris, 1989, Pound and 

Zeckhauser, 1990) etc. 

A large amount of research has been published on, continues to build a 

prediction model for and uses different techniques to predict the stock market 

(Park and Irwin, 2007, Atsalakis and Valavanis, 2009, Tziralis and 
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Tatsiopoulos, 2012, Nazário et al., 2017) or build portfolios (Markowitz, 1952, 

Konno and Yamazaki, 1991, Paranjape-Voditel and Deshpande, 2013). 

Traditional forecasting research has employed statistical time series analysis 

techniques such as autoregression moving average (Rogalski, 1978, Atsalakis 

and Valavanis, 2009, Taylor, 2011) and regression models (Cutler et al., 1989, 

Schwert, 1989, Tsai, 2012). In recent years, with successful applications of 

Artificial intelligence (AI) techniques across a wide range of fields including 

medical diagnosis (Szolovits et al., 1988, Kononenko, 2001, Ramesh et al., 

2004, Fieschi, 2013), robot control (Nguyen-Tuong and Peters, 2011, Ingrand 

and Ghallab, 2014, Siciliano and Khatib, 2016), online and telephone customer 

service (Hui and Jha, 2000, Zeinalizadeh et al., 2015, Rodríguez et al., 2016), 

remote sensing (Estes et al., 1986, Tuia et al., 2014, Lary et al., 2016) and 

toys (Lund, 2003), numerous stock prediction systems based on AI techniques, 

including artificial neural networks (ANN), fuzzy logic, the hybridization of ANN 

and fuzzy systems and support vector machines have been proposed (Park 

and Irwin, 2007, Atsalakis and Valavanis, 2009).  

Atsalakis and Valavanis (2009) summarise the applications of some 

intelligent techniques to forecast stock market indexes and stock prices. These 

techniques include ANNs, genetic algorithms, autoregressive moving average 

models and autoregressive integrated moving average models. According to 

Atsalakis and Valavanis (2009), the number of input variables used in each 

model differs. In general, the average number of input variables is between 

four and ten while the most commonly used inputs are the stock (index) 

opening price, closing price, and highest and lowest daily values. The 

performance measures used by different authors may be classified as 
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statistical measures and non–statistical measures. Statistical measures 

include the root mean square error (RMSE), the mean absolute error (MAE) 

and the mean squared prediction error (MSPE), as well as statistical indicators 

such as the autocorrelation, the correlation coefficient, the mean absolute 

deviation, the squared correlation and the standard deviation. 

In the past years, data has increased on large scales in various fields. 

Industries are interested in the potential of big data. The burgeoning data 

deluge in this era of big data heralds significant challenges for data analysis 

(Chen et al., 2014). Nearly all major companies, including EMC, Oracle, IBM, 

Microsoft, Google, Amazon and Facebook, have started their big data projects. 

Many national governments have likewise been highly attentive to big data. In 

March 2012, the Obama administration announced a USD 200 million 

investment to launch the ‘Big Data Research and Development Plan’. The 

spotlight has also been on big data in academia. In 2011, Science launched a 

special issue (vol. 331, no. 6018) titled ‘Dealing with Data’ on the key 

technologies of data processing in big data. 

Big data can improve the productivity and competitiveness of enterprises 

and the public sector, and create huge benefits for consumers. According to 

McKinsey and Company reports (Manyika et al., 2011), if big data could be 

creatively and effectively utilised, the potential value of the US medical industry 

may surpass USD 300 billion, thus reducing the requisite expenditure for the 

US. healthcare by over 8%. Farecast, an airline ticket forecast system that 

predicts trends and rising/dropping ranges in airline ticket prices, has saved 

nearly USD 50 per ticket per passenger, with its forecast accuracy as high as 

75% (Mayer-Schönberger and Cukier, 2013). 
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Big data also provide sought-after opportunities for technical analysis in 

the domain of finance. A technical trading system consists of a set of trading 

rules that generate trading signals; for example, long, short, or out of the 

market. Most existing research on trading strategies only considers past stock 

price (Atsalakis and Valavanis, 2009). Big data provide useful information for 

building trading strategies. For instance, Bettman et al. (2010) reveal that 

message–board takeover rumours generate significant positive abnormal 

returns and trading volumes.  

In this thesis, we consider one type of big data, news items. We use the 

dataset obtained from the RavenPack News Analytics (RPNA) Dow Jones 

Edition, which has been widely used by other researchers (Mitra and Mitra, 

2011, Shi and Ho, 2015, Akbas et al., 2016, Shi et al., 2016b). RavenPack 

systematically tracks and analyses information on more than 2,200 

government organisations, 138,000 key geographical locations, 150 major 

currencies, 80 traded commodities and over 30,000 companies. It is a 

comprehensive database covering more than 1,200 types of firm–specific and 

macroeconomic news events. Among its many benefits, RavenPack delivers 

sentiment analysis and reveals the event data that are most likely to affect 

financial markets and trading around the world. All relevant news articles about 

entities are classified and quantified according to their sentiment, relevance, 

topic, novelty and market effect. The more details introduction of RavenPack 

is given in the Appendix. 

In general, linear models are not sufficiently adequate for describing and 

predicting the number of features associated with the stock market. In this 

thesis, we consider using nonlinear models to describe and predict the stock 
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market. That is, we examine the relationship between news and the stock 

market. Further, we explore methods for forecasting stock price movement and 

portfolios using nonlinear models, specifically, ANN models, k–Nearest 

Neighbor (kNN) algorithm and Markov models/hidden Markov models (HMMs). 

The purpose and approach of each of the three essays that constitute this 

thesis are summarised below.  

1.2 Essay one  

AI techniques are changing our world with successful applications in 

different domains. Among these AI techniques, the ANN is one of the most 

popular. The structure of the ANN model mimics the human brain and nervous 

system (Hill et al., 1994, Zhang et al., 1998, Bahrammirzaee, 2010). ANN is a 

data–driven modelling approach and a nonlinear nonparametric model. ANNs 

utilise data and let the data determine the structure and parameters of a model. 

In Essay one, we explore the relationship between news items and the stock 

return using the ANN model. 

First, we seek to discover what effects stock price movement using the 

Granger causality test (Granger, 1969, Granger, 1988), a statistical hypothesis 

test for determining whether one–time series is useful in forecasting another. 

Our results show that news volume is not the Granger cause of stock price 

change; news sentiment is the Granger cause of stock price change.  

Second, we wish to test the semi–strong form efficient market hypothesis, 

whereas most existing research on testing efficient markets hypothesis 

focuses on the weak–form version. According to the efficient markets 

hypothesis, it is impossible to ‘beat the market’ as market prices reflect all 
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relevant information. The existence of statistical arbitrage and profitable 

trading strategies are incompatible with market efficiency. We consider a broad 

range of news releases in the stock market, build ANN trading strategies using 

news items and stock return as inputs, and perform out–of–sample 

forecasting. The news releases are extracted from the unique RavenPack 

News Analytics database that monitors over 1,000 types of events ranging 

from different corporate actions to terrorist threats and natural disasters. We 

find that the ANN strategies consistently outperform the passive buy–and–hold 

strategy and that this finding is apparently at odds with the notion of the 

efficient market hypothesis. 

Finally, we build a trading strategy considering a company and test the 

potential profitability of the ANN strategies. Using news sentiment analytics 

from RavenPack Dow Jones News Analytics, we develop an ANN model to 

predict the stock price movements of Google Inc. (NASDAQ: GOOG) and test 

its potential profitability using out–of–sample prediction. 

1.3 Essay two 

Modern Portfolio Theory (MPT) begins with the path–breaking work of  

Markowitz (1952). Markowitz’s mean–variance optimization method suggests 

that it is possible to construct an ‘efficient frontier’ of optimal portfolios, offering 

the maximum possible expected return for a given level of risk.  

Since Markowitz, researchers have proposed alternative portfolio 

theories that include additional moments such as skewness or more realistic 

descriptions of the distribution of returns. Others have improved Markowitz’s 

mean–variance approach by reducing statistical errors in the sample mean 
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and covariance matrix.  

However, the efficiency of Markowitz’s mean–variance portfolio 

optimization method is in question. For instance, an empirical study by 

DeMiguel et al. (2009) evaluates the mean–variance portfolio method across 

seven empirical datasets and finds it leads to poor out–of–sample 

performances, no better than the 1/N rule in terms of Sharpe ratio, certainty–

equivalent return or turnover.  

The sharply increasing data deluge in the big data era presents 

significant challenges for portfolio diversification. In essay two, we expand the 

use of information from news volume and news sentiments to portfolio 

diversification. We discuss the possibility of the contribution of news volume 

and news sentiments to portfolios by assessing the performance of portfolios 

that are constructed according to these factors. Our results show that news 

volume contributes to portfolio variance both in–sample and out–of–sample; 

positive news sentiment contributes to portfolio return in–sample; and negative 

news sentiment contributes to portfolio return out–of–sample, which is a 

consequence of investor overreaction to news sentiment. 

Further, we propose a novel approach to portfolio diversification based 

on the kNN algorithm. The diversification strategy emerges from the idea that 

news sentiment is correlated with stock returns. Out–of–sample results 

indicate that such strategy dominates the benchmark index portfolio. 

1.4 Essay three 

HMMs have been used to analyse and predict time series phenomena. 

Recent work has exploited the potential of the HMM to analyse the stock 
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market and predict the financial market. Compared with the successful 

applications of HMMs in engineering, applications of HMMs in finance are in 

doubt. One of the main reasons for this is that most existing applications of 

HMM in finance use stock returns or stock prices as observations, assuming 

they are independent accordance with the requirements of the HMM model. 

However, it is apparent that prices or returns on day 1 and on the following day 

are not, in actual fact, independent. 

In Essay three, we propose a new model (CMHMM), in which the 

observation is affected by a Markov model and an HMM model. The three 

fundamental questions of CMHMM are discussed. Further, the application of 

the CMHMM, in which the news sentiment as one observation and the stock 

return as the other observation is analysed. The empirical results of the trading 

strategy based on the CMHMM show the potential applications of the proposed 

model. 

1.5 Contributions of this thesis 

This thesis contributes to the literature in a number of ways. First, it 

extends the literature on financial applications of nonlinear models. The ANN 

model, the kNN algorithm and the HMM are widely used by many 

applications/systems in engineering, but the use of these models in finance is 

still under development.  

This research expands the application of the ANN in finance. Most 

existing research on the use of ANNs in finance employs only the past stock 

price to predict the future direction of stock price movement. Our ANN trading 
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strategies are based on the information provided in news, which has only been 

available in the form of data over the past few years. 

The existing research using HMM for stock price prediction utilises stock 

price or stock return as the observation that is in conflict with the assumption 

by the HMM models that the observations are independent. In this research, 

we consider the different levels of ‘economic state’ as hidden states. Each 

‘economic state’ has a significant chance to generate different levels news 

sentiment and different levels stock return. We can observe stock return and 

news sentiment to estimate the hidden state. We therefore consider the return 

to be affected by the past stock return (a Markov model) and an HMM model. 

This CMHMM model adheres to the nature of the stock market and has better 

potential prediction ability. 

Second, the empirical results from this dissertation contribute to the 

understanding of the relationship between the news and the stock market. For 

instance, we find that news volume is not the Granger cause of stock price 

change, but that news volume contributes to the portfolio variance both in–

sample and out–of–sample; conversely, we find that news sentiment is the 

Granger cause of stock price change and that, as investors overact to news 

sentiment, positive sentiment contributes to portfolio return in–sample while 

negative news sentiment contributes to portfolio return out–of–sample.  

Most existing research on testing the efficient markets hypothesis (EMH) 

focuses on the weak–form version. In this study, we consider news items as 

public information and test the semi–strong form efficient market using 

statistical arbitrage. The ability of our strategy to consistently beat the market 

is at odds with the EMH. 
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Chapter 2: 

Essay 1: The relation between news items and 
stock price movement: An analysis based on 

artificial neural networks  

2.1 Introduction 

The efficient market hypothesis states that price movements are 

extremely efficient in reflecting information flows (Fama, 1970). Some studies 

have shown that stock prices are related to news events such as earnings 

announcements (Skinner, 1994), political events (Kim and Mei, 2001) and 

corporate takeovers (Pound and Zeckhauser, 1990), while others have failed 

to find convincing evidence to relate price changes to news (Joulin et al., 2008). 

The aim of this study is to explore the relationship between news items and 

stock price movement.  

We first investigate the Granger causality (Granger, 1969, Granger, 1988) 

between news items and stock returns. Our results show that stock price 

change is the Granger cause of news volume and news sentiment; conversely, 

news volume is not the Granger cause of stock price change, whereas news 

sentiment is.  

Moreover, we test the semi–strong form of the efficient market hypothesis 

using statistical arbitrage. Behavioral finance believes that information plays a 

significant role in human decision making and affects stock price movement. 

According to the EMH, it is impossible to ‘beat the market’ as market prices 

reflect all relevant information. We consider a broad range of news releases in 

the stock market, build ANN trading strategies with news sentiment as inputs, 

and perform out–of–sample forecasting. The news releases are extracted from 
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the unique RavenPack News Analytics database that monitors over 1,000 

types and corporate actions. We find that the ANN strategies consistently 

outperform the passive buy–and–hold strategy; this finding is apparently at 

odds with the notion of the efficient market hypothesis. 

The next step is to consider a particular company and test the potential 

profitability of the ANN strategies. Using news sentiment analytics from 

RavenPack Dow Jones News Analytics, we develop an ANN model to predict 

the stock price movements of Google Inc. (NASDAQ: GOOG) and test its 

potential profitability with out–of–sample prediction. 

The remainder of this chapter is organised as follows. In the second 

section, we discuss the Granger causality test for news and stock returns. In 

Section 2.3, we test the semi–strong form of the efficient market hypothesis 

using statistical arbitrage. The empirical results from ANNs predicting the stock 

price movements of Google Inc. are discussed in Section 2.4. The final section 

concludes this chapter. 

2.2 The Granger causality test for news items and stock returns 

2.2.1 Theoretical background of Granger causality 

In multivariate time series analysis, we often need to determine statistical 

causal relations between different time series. Granger causality was first 

proposed by Granger (Granger, 1969) in 1969 to meet this requirement. The 

causality test is a technique for determining whether there is an improvement 

in the predictability of a series when incorporating of the past of a second 

series, by comparison with the predictability based solely on the past of the 

first series. The Granger causality test is widely used to check the relationship 
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between different time series, such as the relationship between economic 

growth and energy consumption (Asafu-Adjaye, 2000, Chiou-Wei et al., 2008), 

the relationship between economic growth and defence spending (Joerding, 

1986), the relationship between foreign direct investment and pollution 

(Hoffmann et al., 2005, Lee, 2009), and the relationship between foreign trade 

and economic growth (Awokuse, 2007, Ho et al., 2015).  

Granger (1969) defines the causality for two scalar–valued, stationary, 

and ergodic time series {Xt} and {Yt} using a simple model:  

 
 

Xt = � aj

m

j=1

Xt−j + �bj

m

j=1

Yy−j + εt (2-1) 

 
Yt = � cj

m

j=1

Xt−j + �dj

m

j=1

Yy−j + ηt (2-2) 

   

Here εt, and ηt are two uncorrelated white–noise series.  

If some bj  is not zero, the knowledge of past Y values helps to predict 

current and future X values, and Y is said to Granger cause X. Similarly, X is 

said to Granger cause Y if some cj is not zero. Linear least squares predictors 

are used when implementing this test. 

Previous studies have used the Granger causality test to explore the 

factors causing stock price changes. For instance, Hiemstra and Jones (1994) 

show unidirectional Granger causality from stock returns and percentage 

volume changes. Ibrahim (1999) investigates the dynamic interactions 

between seven macroeconomic variables and the stock prices for an emerging 

market: Malaysia. The results show cointegration between the stock prices and 

three macroeconomic variables—consumer prices, credit aggregates and 
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official reserves. Granger et al. (2000) test the appropriate Granger relations 

between stock prices and exchange rates using recent Asian flu data, 

revealing different conclusions for different countries. Ray (2012) reports that 

bi–directional causality exists between stock price and foreign exchange 

reserve; stock price and money supply; stock price and crude oil price; and 

stock price and whole price index.  

In this research, we want to investigate the Granger causality between 

news and stock returns, that is to determine whether the phenomenon of news 

sentiment or news volume series is significant in forecasting stock returns 

series (or vice versa). 

2.2.2 Data description 

The stock price data that we use are daily closing prices (from the year 

2004 to 2012) of the Dow Jones Price Index. We compute stock returns as 100 

times the first difference of the natural logarithm of the daily stock price, that is,  

100 ∗ ln (Pt Pt−1⁄ ) and obtain the stock price return series {Stock_returnt}.  

The news data used in this study are provided by RavenPack Inc., a 

leading provider of news analytic data (see the Appendix for further details). 

For every news item, there are several variables that quantify the content and 

form of the article. For example, the ‘relevance’ score, ranging from 0 to 100, 

indicates how strongly an entity is related to the underlying news story and a 

score of 100 indicates that the article is highly relevant. For a news story with 

a relevance score of 100, the ‘ENS—Event Novelty Score’ represents the level 

of novelty of the story. Thus, the first story reporting a categorised event 

receives a novel score of 100. The novelty scores of subsequent stories about 
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the same event follow a decay function (i.e. 100, 75, 56, 42, 32, 24, 18, 13, 10, 

8, 6, 4, 3, 2, 2, 1, 1, 1, 1, 0 …). The ‘ESS—Event Sentiment Score’ represents 

the news sentiment for a given entity, ranging from 0 to 100, where 0 indicates 

extremely negative news, 50 indicates neutral news, and 100 indicates 

extremely positive news.  

Emerging from the years spanning 2004 to 2012, there are 20,354,107 

news articles in the RavenPack database. Among them, 856,071 (4.21%) have 

a relevance score of 100 and 342,098 (1.68%) have an event novelty score of 

100. Of the news articles with a novelty score of 100, the numbers of positive 

news articles, negative news articles and neutral news articles are 151,309 

(44.23%), 150,458 (43.98%) and 40,331(11.79%) respectively. 

In this study, we seek to explore the relationship between stock return 

and news volume and the relationship between stock returns and news 

sentiment. To do so, we calculate the number of news items in a trading day 

and obtain the time series  {News_numbert} . The news sentiment series 

{News_ESSt} are calculated as ∑(ESS − 50) for a trading day, that is, the sum 

of the ESS minus 50. After this, we examine whether there exists any causal 

linkage between stock prices and news by conducting the Granger causality 

test. 

2.2.3 Empirical results 

In statistics, a unit root test seeks to ascertain whether a time series 

variable is non–stationary, as many economic and financial time series exhibit 

trending behavior or non–stationarity in the mean. If the data have a unit root, 

then some form of trend removal is required. In our research, we first conduct 
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Dickey–Fuller tests (Dickey and Fuller, 1979) to examine whether there is a 

unit root present in the three time series {Stock_returnt},{News_numbert} and 

{News_ESSt}. The Dickey–Fuller test is one of the most commonly used root 

tests. Our results indicate that the null hypothesis of a unit root is rejected for 

all three series.  

Table 2.1 reports the results of our Granger causality tests for stock price 

returns, news volume and news sentiment. It shows that at 5% significance 

level, we reject the null and conclude that there is evidence to suggest stock 

return change is the Granger cause of news volume and news sentiment; for 

the news volume and stock price return, we fail to reject the null and conclude 

new volume is not the Granger cause of stock price return; for the news 

sentiment and stock price change, we reject the null and conclude news 

sentiment is the Granger cause of stock price change.  

 
Table 2.1 The results of Granger causality tests 
 
Null hypothesis Significance level Results 

Stock return does not Granger cause news 
volume 

0.05 Reject 

0.01 Fail to reject 

Stock return does not Granger cause news 
sentiment 

0.05 Reject 

0.01 Fail to reject 

News volume does not Granger cause stock 
return 

0.05 Fail to reject 

0.01 Fail to reject 

News sentiment does not Granger cause 
stock return 

0.05 Reject 

0.01 Reject 

 

In the following sections, we try to predict the stock price movement using 

news items and past stock prices. From Table 2.1, we know that news volume 

is not the Granger cause of stock price return but that news sentiment is the 

Granger cause of stock price change. In the following sections, we do not 
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consider news volume, but we include news sentiment in our model for 

predicting stock price movement. 

2.3 Test the semi–strong form of the efficient market hypothesis using 
ANN 

Behavioral finance shows that information plays a significant role in 

human decision making and that financial decisions are significantly driven by 

emotion and mood (Nofsinger, 2005). However, the EMH proposed by Fama 

(1970) implies that there is no way for investors to consistently achieve 

superior rates of return. Fama (1970) further classifies EMH into three forms: 

1) weak–form efficiency, where the information set is limited to the information 

contained in the past price history of the market; 2) semi–strong form efficiency, 

where the information set is all information that is publicly available; 3) strong–

form efficiency, where the information set comprises all available public and 

private information available. Fama (1991) propose changes the categories: 

the first category covers the more general area of tests for return predictability; 

the second and third categories only are changed in title, not coverage, while 

'semi-strong form tests' is replaced by 'event studies', and 'strong form tests' is 

replaced by 'tests for private information'. In this chapter, we still follow the 

definition of Fama (1970). 

Testing the EMH is an area of enormous interest in the literature of asset 

pricing and investments. However, most existing studies test only weak–form 

efficiency and conflicting results are reported (Yen and Lee, 2008).  

Empirical results from some researchers support the weak–form of 

efficiency. For instance, Chan et al. (1997) examine the relationships among 
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stock prices in 18 national stock markets for the period spanning 1961 to 1992; 

the results of their unit root tests suggest that the world equity markets are 

weak–form efficient. Aga and Kocaman (2008) test weak–form of the efficiency 

of the index in Istanbul Stock Exchange, concluding that it has a weak form of 

efficiency.  

Some studies find mixed evidence on the efficient–market hypothesis. 

Borges (2010) discovers mixed evidence on the efficient market hypothesis 

using the stock market indexes of the UK, France, Germany, Spain, Greece 

and Portugal, from January 1993 to December 2007. The hypothesis proves 

valid for Portugal, Greece, France and the UK; however, the tests for Germany 

and Spain do not allow the rejection of the EMH. Mlambo and Biekpe (2007) 

also find mixed evidence for 10 African stock markets by using the runs test 

methodology. 

Some researchers challenge the efficient market hypothesis. Lee et al. 

(2010) employ a panel data stationarity test that incorporates multiple 

structural breaks for the stock price series of 32 developed and 26 developing 

countries. Their results are inconsistent with the efficient market hypothesis. 

Further, Nisar and Hanif (2012) examine the weak form of efficient–market 

hypothesis in the four major stock exchanges of South Asia: India, Pakistan, 

Bangladesh and Sri Lanka. They apply four statistical tests–including the runs 

test, serial correlation, unit root and the variance ratio test for the historical 

index on a monthly, weekly and daily basis for a period of 14 years (from 1997 

to 2011). Their findings suggest that none of the four major stock markets of 

South Asia follows the random–walk and hence, that none of these markets is 

the weak–form of efficient. 
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In this strand of literature, the papers can be further subdivided into two 

major groups. The first group of studies tests the predictability of security 

returns on the basis of past price changes (Gozbasi et al., 2014, Westerlund 

et al., 2015). More specifically, these studies employ a wide array of statistical 

tests to detect different types of deviations from the random walk in financial 

time series, such as linear serial correlations, unit roots, low–dimensional 

chaos, nonlinear serial dependence and long memory (Lim and Brooks, 2011). 

For instance, Narayan et al. (2014) test the predictability of excess stock 

returns for 18 emerging markets, using a range of macroeconomic and 

institutional factors, through a principal component analysis. Westerlund and 

Narayan (2013) exploit the information contained in the heteroskedasticity of 

the data to test EMH. 

The second group of studies examines the profitability of trading 

strategies based on past returns, such as technical trading rules, momentum 

and contrarian strategies (Park and Irwin, 2007). A technical trading system 

consists of a set of trading rules that generate trading signals, such as long, 

short and out of the market signals. The profit of trading strategies is apparently 

at odds with the notion of the efficient market hypothesis, which implies that 

there is no way for investors to achieve consistently superior rates of return in 

an efficient market. For example, Bessembinder and Chan (1995) find that 

investors can earn statistically significant profits from commodity futures 

markets using momentum–based trading strategies. Hogan et al. (2004) 

empirically investigate whether momentum and value trading strategies 

constitute statistical arbitrage opportunities and find that these opportunities 

are in conflict with market efficiency. 
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An increasing number of researchers use ANNs in the technical analysis 

of the stock market. ANNs have been used to solve complicated practical 

problems in various fields, such as pattern recognition and medical diagnosis 

(Miller et al., 1992, Paliwal and Kumar, 2009). In particular, there is a 

burgeoning strand of literature on the applications of ANNs in economics and 

finance (Qi, 1996, Wong et al., 1997, Wong and Selvi, 1998, McAdam and 

McNelis, 2005, Schmeling, 2009). Most research using ANNs for technical 

analysis only considers past stock prices and volumes. For example, Leigh et 

al. (2002) build a neural network prediction system based on the dynamics of 

market price and volume. Their results support the effectiveness of the 

technical analysis approach. Beale et al. (2015) explore the profitability of 

stock trading by using a neural network model developed to assist the trading 

decisions of the volume adjusted moving average and the ease of movement 

indicator.     

Most of the existing papers (Borges, 2010, Mlambo and Biekpe, 2007, 

Lee et al., 2010, Nisar and Hanif, 2012, Gozbasi et al., 2014) on testing the 

EMH have the shortcoming of not being comprehensive and robust as they 

only consider past price returns and/or major announcement events. Under 

the semi–strong form of EMH, the information set includes all publicly available 

information. In this research, we use the dataset from RavenPack Inc., a 

leading provider of news analytics data. RavenPack’s News Analytics dataset 

systematically tracks and analyses information on more than 2,200 

government organisations, 138,000 key geographical locations, 150 major 

currencies, 80 traded commodities and over 30,000 companies. This dataset 

contains almost all publicly available news and can be used to test the semi–
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strong form of EMH. 

In this research, we explore the financial market reaction to news items, 

which has been a topic of much discussion recently. For instance, Chan (2003) 

examines monthly returns following public news and finds a difference 

compared to stocks with similar returns, but with no identifiable public news. 

Ann et al. (2005) reveal that insider purchases (sales) are a good indication of 

good (bad) news and the information content of insiders trades provided that 

investors are able to realise returns within, at most, two months after the 

announcement date. Özatay et al. (2009) find that the emerging market bond 

index spreads respond substantially to the US. macroeconomic news and 

changes in the Federal Reserve's target interest rates. Bollen et al. (2011) 

show that measurements of collective mood states derived from large–scale 

Twitter feeds correlate to the value of the Dow Jones Industrial Average (DJIA) 

over time. Their results indicate that the accuracy of DJIA predictions can be 

significantly improved by the inclusion of specific public mood dimensions.  

A key implication of the efficient market hypothesis is that any attempt to 

make profits by exploiting currently available information is futile. The market 

price already reflects all that can be known from the available information. The 

profit of trading strategies that consider all public news is apparently at odds 

with the notion of the semi–strong efficient market hypothesis. In this research, 

we build an ANN trading strategy and test the semi–strong form efficiency 

market hypothesis. 

The remainder of this section is organised as follows. In Section 2.3.1, 

we introduce the ANN methodology used to generate predictions. In Section 

2.3.2, we discuss the data set used in this research. The empirical results of 
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using ANNs to predict the direction of DJIA index movement and the trading 

strategy of using ANNs are discussed in Section 2.3.3. We conclude this study 

and discuss potential future research directions in Section 2.3.4. 

2.3.1 ANN methodology 

In the past decade, the availability of datasets has increased 

tremendously in various fields including finance. Therefore, the empirical 

applications of data mining techniques, such as classification, clustering and 

association, have become increasingly important (Liao et al., 2012). In 

particular, there is an emerging strand of literature on the applications of data 

mining techniques in the analysis of stock price movements (Paranjape-Voditel 

and Deshpande, 2013, Aghabozorgi and Teh, 2014, Patel et al., 2015, Li et al., 

2016). This strand of literature suggests that the ANN model is fast becoming 

one of the leading data mining techniques in the field of stock market prediction 

(Kim and Han, 2000, Cao et al., 2005, Hassan et al., 2007, Guresen et al., 

2011, Kara et al., 2011, Wang et al., 2011, Chang et al., 2012, Preethi and 

Santhi, 2012, Ticknor, 2013, de Oliveira et al., 2013). Chang et al. (2012) 

suggest that ANN can be employed to enhance the accuracy of stock price 

forecasting. de Oliveira et al. (2013) show that the ANN model is a feasible 

alternative to conventional techniques for predicting the trends and behavior 

of stocks in the Brazilian market. 

The structure of the ANN model mimics the human brain and nervous 

system (Hill et al., 1994, Zhang et al., 1998, Bahrammirzaee, 2010). A neural 

network consists of a set of fundamental processing elements (called neurons) 

and processes information using a connectionist approach to computation. 
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Most neural networks contain three types of layers: input, hidden, and output 

(as shown in Figure 2.1). Each neuron in a hidden layer receives the input data 

attributes xm from each of the neurons in an input layer and the attributes are 

added through applied weights wm and converted to an output value by an 

activation function (u). Then, the output is passed to the neurons in the next 

layer, providing a feed forward path to the output layer (z).  

 

 
Figure 2.1 The structure of a neuron with its summation node 

 

 

 

Figure 2.2 The structure of a neuron network 
 

In general, the activation function is a nonlinear function. Activation 

functions that are commonly used include the threshold function, the piecewise 
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linear function and the sigmoid function. A neural network is an adaptive 

system that changes its weights based on external or internal information that 

flows through the network during the learning phase. These learning rules 

include supervised learning, unsupervised learning and reinforcement learning. 

In supervised learning, the network is trained through provision with input and 

matching output patterns.   

The Probabilistic Neural Network (PNN) is one of the most widely 

implemented neural network topologies (Specht, 1988, Specht, 1990). PNN is 

devised on the basis of the classical Bayesian classifier, whose goal is to 

statistically minimise the risk of misclassifications. Adapting the concept of 

posterior probability, whose goal is to statistically minimise the risk of 

misclassifications a process that assumes that the probability density function 

of the population from which the data were drawn is known a priori—the 

decision rule is to classify a sample to the class with the maximum posterior 

probability. The PNN then uses a training set to obtain the desired statistical 

Bayesian information. The desired probability density function for each class 

is approximated using Parzen windows, a nonparametric procedure that 

synthesises an estimate of a probability density function by the superposition 

of a number of windows.  

In this study, the PNN is implemented using the Neural Network Toolbox 

of MATLAB from Mathworks, with the network structures specified according 

to the default settings (Beale et al., 2015). More specifically, the PNN creates 

a two–layer network structure. The first layer has radial basis network neurons 

and calculates its weighted inputs by the distance between its weight vector 

and the input vector, multiplied by the bias. The second layer has competitive 
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transfer function neurons and calculates its weighted input using dot product 

weight function and its network inputs with the sum of network inputs.  

2.3.2 Data 

We use news items from the RavenPack News Analytics (RPNA) 

database as the all available public information (see the Appendix for further 

details). RPNA offers an analytical output for macroeconomic news release on 

a global basis. The database contains a unique observation for every article 

and includes the date and time each news article was released, a unique firm 

identifier, and several variables that quantify the content and form of the article.  

In this research, we only consider several important fields of news items. 

These fields include the ‘relevance’ score, ranges from 0 to 100 (highly 

relevant) and indicates how strongly an entity is related to the underlying news 

story; the ‘ENS–Event Novelty Score’, represents its degree of novelty while 

the first story reporting a categorized event receives a novel score of 100; the 

‘ESS – Event Sentiment Score’, ranging from 0 to 100, where 0 indicates 

extremely negative news, 50 indicates neutral news, and 100 indicates 

extremely positive news. 

We construct the daily sentiment score (DSS) using ‘ENS’ and ‘ESS’. 

 DSSi = � I(ENS = 100)(ESS − 50)
all news in day i

 (2-3) 

Determining the data frequency mainly depends on the final goal of the 

ANN. High–frequency data, that is, intraday data, are prone to be 

contaminated by noise. In this study, we use daily closing prices of the Dow 

Jones Price Index from 1 January 2007 to 31 December 2012. The data source 



 

25 
 

is the Thomson Reuters Tick History (TRTH) database, which is provided by 

the Securities Industry Research Centre of Australasia (SIRCA). We compute 

stock returns as 100 times the first difference of the natural logarithm of the 

daily stock price—that is, 100 ∗ ln (Pt Pt−1⁄ )—and obtain stock price return 

series. 

Behavioral finance shows that information plays a significant role in 

human decision making and that financial decisions are significantly driven by 

emotion and mood (Nofsinger, 2005). In this research, we consider stock 

returns and news sentiments to construct our trade strategy.  

2.3.3 Empirical results 

In this study we define the movement of stock prices ‘up’ (‘down’) in Day 

i by whether the closing Dow Jones Price Index in Day i is larger (or smaller) 

than the closing Dow Jones Price Index in Day i–1.  We use the movement of 

stock prices ‘up’ or ‘down’ as our training patterns. Figure 2.3 shows our neural 

network classification framework for the prediction of stock price movements. 

The neural network model is trained using the training data and subsequently 

tested to measure its performance on the testing data. Basically, the process 

of training or learning leads to obtain the optimum neural network weights by 

minimising the model error, which is the difference between the actual output 

and the desired one. In this study, we employ data during from 1 January 2007 

to 31 December 2011 as the training set and data from 1 January 2012 to 31 

December 2012 as the test set. Given these preparations, this study uses 

stock price returns of the last three trading days 

(i.e.,Stock_returnt−3, Stock_returnt−2, Stock_returnt−1) and the DSS of the final 
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trading days (i.e., Daily Sentiment Score,  DSSt−1 )  as input features in the 

PNN. In total, this approach comes to four indices meaning that there are four 

input nodes and one output node. We have not normalised the data because 

neural networks are able to recognise the high–level feature. 

 

 

 

Figure 2.3 The PNN classification framework for the prediction of stock price 
trends 

 

For the application of binary classification, sensitivity and specificity are 

used to measure the performance. In this study, we define the pattern as: ‘price 

up’ and ‘price down’; then we calculate 

Sensitivity =
Number of true ‘up’

Number of true ‘up’+Number of false ‘down’
 

Specificity =
Number of true ‘down’

Number of true ‘down’ + Number of false ‘up’
 

Prediction rate =
Number of true ‘up’ + Number of true ‘down’

Number of prediction days
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Table 2.2 shows the performance characteristics of our PNN prediction 

model. The sensitivity is 54.7% and the specificity is 58.0%. The prediction rate 

is 56.2%. According to the random walk directional forecast, the stock price 

has a fifty–fifty chance of closing higher or lower than the opening price. As can 

be seen, the sign predictions indicate a performance better than a random walk 

directional forecast.  

 
Table 2.2 Performance Characteristics of the PNN prediction model 
 
 Sensitivity Specificity Prediction rate 

PNN 54.7% 58.0% 56.2% 

 
 

 

Considering transaction costs, it is not smart to go or stay ‘long’ when the 

forecast return falls above zero, nor is it prudent to go or stay ‘short’ when the 

forecast return is below zero. The ‘long’ and ‘short’ positions are defined as 

buying and selling at the current price respectively. However, the trading 

strategy applied in this section is to go or stay ‘long’ when the forecast return 

is above 0.2% and to go or stay ‘short’ when the forecast return is below  

–0.2%. We use 0.2% to balance the transaction costs and trading frequency. 

We consider the estimated total return of such a strategy as: 

 
RANN = � ytrt

n+ρ

t=n+1

 (2-4) 

Here ρ is the out–of–sample horizon and yt the recommended position 

that takes the value of –1 (for a short position), +1 (for a long position) and 0 

(for a hold position); rt  is the return in the Day t–that is, rt = 100 ∗

log(Pt/Pt−1); Pt and Pt−1 are closing prices of the security at Day t and Day t–

1, respectively; and n is the number of training observations.  
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Figure 2.4 shows our neural network classification framework for the 

trading strategy. The training patterns are Pt
Pt−1

> 1.002, 1.002 ≥ Pt
Pt−1

≥ 0.998 

and Pt
Pt−1

< 0.998. We employ data from 1 January 2007 to 31 December 2011 

as the training set and data from 1 January 2012 to 31 December 2012 as the 

test set. During the test phase, we use stock price returns from the last three 

trading days (i.e., Stock_returnt−3, Stock_returnt−2, Stock_returnt−1)  and the 

DSS from the final trading days (i.e., Daily Sentiment Score,  DSSt−1) as input 

features in the PNN.  

 

 

Figure 2.4 The trading strategy based on the PNN 
 

With the efficient–market hypothesis, no mechanical trading rule would 

consistently outperform the buy–and–hold policy. We compare our proposed 

strategy with the buy–and–hold policy. The returns on a simple buy–and–hold 

strategy are given as follows: 

 
Rb = 100 ∗ log (

Pt+ρ
Pt

) (2-5) 

Here ρ  indicates the holding period, and Pt  and Pt+ρ  are the prices of 

Probabilistic Neural Network 
  

Input Features 
(stock return,  
DSS) 

Training  Patterns 
(Price changing: >0.2%, 
[02%,-0.2%] , <0.2%) 

Trained Probabilistic  
 Neural Network 

Input Features 
(stock return,  
DSS.) 

Predicted Patterns 
(buy, sell or hold) 

   

Training Phase Testing Phase 
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securities at Time t and t + ρ respectively. 

In the out–of–sample testing, the total return of the proposed strategy 

RANN is 15.6 and the total return of the buy–and–hold strategy Rb is 7.0. In 

other words, using the buy–and–hold strategy, the investor can achieve a 

premium (Pt+ρ/Pt − 1) of 7.25%; in contrast, using the proposed strategy, the 

investor can access a premium of 16.89%. The trading rule based on ANNs 

dominates the buy–and–hold strategy.  

2.3.4 Concluding remarks 

 Most of the existing research on testing efficient market hypothesis 

focuses on the weak–form version. In this study, we consider news items as 

public information and test the semi–strong form efficient market using 

statistical arbitrage. As far as we know, this study is the first study that uses 

news sentiment to build trade strategies. Our results show that the proposed 

PNN strategy outperforms the buy–and–hold strategy in terms of trading 

performance. The ability of our strategy to consistently beat the market is at 

odds with the EMH. Our models rely on powerful pattern recognition properties 

to produce predictions in the time series, therefore avoiding the need to specify 

an explicit econometric model to represent the time series. 

Further, our findings suggest that news sentiment can be used to 

enhance the accuracy of trading strategies. Newswire message provides 

useful information for professional traders who can adjust their strategies 

proactively in response to changes in news flows and sentiment. 

The key factor in using statistical arbitrage to test efficient–market 

hypothesis is the profitable trading strategy. However, much work is required 
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to improve the prediction accuracy of our model. One possible direction for 

future research is the use of high–frequency data of stock prices and news and 

the stock market volatility in the forecast model. 

2.4 Predicting the stock price movement of Google Inc. 

Technical analysis is the study of past price movements with the aim of 

forecasting potential future price movements. Market participants who use 

technical analysis often exploit primary market data, such as historical prices, 

volume and trends, to develop trading rules, models and even technical trading 

systems. These systems comprise a set of trading strategies and rules that 

generate trading signals, for example, buy and sell signals, in the market. 

Several studies (Bessembinder and Chan, 1995, Fernandez-Rodrıguez et al., 

2000, Hsu and Kuan, 2005, Park and Irwin, 2007, Han et al., 2013) examine 

the profitability of these trading strategies, which include moving average, 

momentum and contrarian strategies. In particular, Park and Irwin (2007) 

suggest that out of 95 modern studies on technical trading strategies, 56 of 

them provide statistically significant evidence that technical analysis generates 

positive results. Han et al. (2013) demonstrate that a relatively straightforward 

application of a moving average timing strategy outperforms the passive buy–

and–hold strategy. Bessembinder and Chan (1995) suggest that technical 

trading rules have varying degrees of success across different international 

stock markets; in general, these rules tend to be more successful in the 

emerging markets. Fernandez-Rodrıguez et al. (2000) examine the profitability 

of a simple technical trading rule based on the ANNs and conclude that the 

ANN trading rule is mostly superior to a passive buy–and–hold trading strategy 
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during ‘bear’ market and ‘stable’ market episodes.  

Most existing research on technical trading rules and strategies focuses 

on objective and unambiguous rules based on historical market information 

without considering investor sentiment. Recent research in behavioural 

finance apparently indicates that news sentiment is significantly related to 

stock price movements (Neal and Wheatley, 1998, Antweiler and Frank, 2004, 

Schmeling, 2009, Lux, 2011, Chung et al., 2012, Wang et al., 2013). For 

instance, Antweiler and Frank (2004) suggest that internet messages have a 

significant impact on stock returns and disagreement among posted messages 

is associated with increased trading volumes. Schmeling (2009) finds that 

sentiment negatively forecasts aggregate stock market returns on average 

across countries. Moreover, Schmeling (2009) suggests that the effect of 

sentiment on stock returns is higher for countries with less market integrity that 

are more susceptible to market overreaction and herding. Wang et al. (2013) 

provide evidence that, while news volume does not Granger cause stock price 

change, news sentiment does Granger cause stock price change. In general, 

these papers suggest that the effect of sentiment on stock markets cannot be 

ignored. 

In this research, we combine a trading strategy based on the ANN model 

with news sentiment analysis to build our ANN model of predicting the stock 

price movements of Google Inc. (NASDAQ: GOOG). GOOG is an American 

public corporation specialising on Internet–related services and products that 

enhance the ways people connect with information. Its primary source of 

revenue comes from delivering online advertising that is relevant to consumers 

and cost–effective for advertisers (Google Inc., 2015). Founded by Larry Page 
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and Sergey Brin as a privately held company in 1998, GOOG became a public 

corporation after its initial public offering (IPO) on 19 August 2004. Over the 

past decade, its shares have grown by more than 1,500%. As of 31 December 

2014, Google had 53,600 full–time employees. Its current range of services 

includes web search research, email, mapping, office productivity and video 

sharing services. We focus on GOOG for the following reasons: first, as a 

major stock on NASDAQ, GOOG is one of the few that has relatively 

straightforward transaction data because it is a non–dividend–paying stock. As 

noted on Google’s Investor Relations website, Google has ‘never declared or 

paid a cash dividend nor do we expect to pay any cash dividends in the 

foreseeable future (Google Inc., 2015). Second, since its IPO, GOOG is 

considered one of the best performers in the stock market, as its stock price 

has increased by more than 15 times over the past decade. Third, GOOG has 

a very high volume of outstanding shares (over 300 million with an average 

daily trading volume of 2.4 million) and a high stock price (over $600 in 

September 2015), making it unlikely to be the subject of price manipulation 

(Google Inc., 2015). Fourth, as a frequently traded share with a large market 

capitalisation exceeding US$400 billion, news directly related to GOOG is 

frequently reported in various major media outlets. These news releases are a 

rich source of data for examining the effect of news sentiment on GOOG’s 

price movements. To quantify the sentiment associated with each news 

release, we use the dataset obtained from the RavenPack News Analytics 

Global Equities editions.  

The remainder of this section is organised as follows. In Section 2.4.1, 

we introduce the research background. In Section 2.4.2, we discuss the 
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datasets used in this research. The empirical results of using ANNs to predict 

the stock price movements of Google Inc. are discussed in Section 2.4.3. The 

final section concludes this part of the thesis. 

2.4.1 Research background 

The stock market is essentially dynamic, nonlinear, complicated 

nonparametric and hard to predict. The successful prediction of a stock's future 

price could yield a significant profit. A large amount of research has been 

published using different techniques to predict the stock market. Most studies 

predict the movement of stock market indexes, such as the DJIA index (Quah, 

2008, Cervelló-Royo et al., 2015), the NYSE composite index (Leigh et al., 

2002), NASDAQ Stock Exchange index (Guresen et al., 2011), and the stock 

market indexes of undeveloped countries (Kara et al., 2011, de Oliveira et al., 

2013). 

There are few studies that predict the movement of individual companies 

and, further, these studies consider only past prices when predicting. For 

instance, White (1988) uses neural network modelling and learning techniques 

to search for and decode nonlinear regularities in the prediction of IBM 

common stock daily returns; and Hui and Chan (2014) construct two trading 

strategies for 12 constituent stocks of the Hang Seng Index.  

The value of ANN modelling techniques in performing complicated 

pattern recognition and nonlinear forecasting has been shown by their 

applications in different domains. In this section, we apply the ANN models to 

predict the stock price movement of Google Inc. by considering stock returns 

and news sentiment. 
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2.4.2 Data 

In this research, we use the daily opening and closing prices of GOOG 

from 1 January 2013, to 31 December 2014 as the training set and data from 

1 January 2015 to 30 June 2015 as the test set to test the predictive accuracy 

of the proposed PNN method. The prices are obtained from SIRCA’s TRTH 

database. Figure 2.6 shows the daily closing prices of GOOG from 

1 January 2013, to 30 June 2015. In 2014, the price experienced a surge, 

which was a result of the Google two–for–one stock split on 3 April 2014. As a 

result of the stock split, GOOG’s shareholders received two shares (Class A 

and Class C) for every one share that they owned. The main difference 

between these two classes is that Class A confers voting rights whereas Class 

C does not. 

To compute the returns of GOOG, we calculate the difference between 

the natural logarithm of the daily opening and closing stock prices and multiply 

the difference by 100—that is, 100 ∗ ln (Piopen Piclose⁄ ). Piopen is the opening 

price of the GOOG and Piclose is the closing price of the GOOG in Day i. As 

we use the daily opening and closing stock price to calculate the stock returns, 

the stock split of GOOG does not affect our estimation results. 
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Figure 2.5 Daily closing prices of the NASDAQ: GOOG (Jan 2013–Jun 2015) 
 

The news dataset for GOOG is obtained from RavenPack News Analytics 

(see the Appendix for details), which provides sentiment analysis for the news 

articles relevant to GOOG. For each news article, RavenPack provides the 

following key information: the date and time each news article is released, a 

unique firm identifier, and several variables that measure the relevance, 

content, sentiment and form of the article. In this research, we consider the 

‘Relevance’ score and the ESS.    

We construct the Daily Sentiment Score (DSS) for GOOG using the 

relevance score and ESS based on the formula provided below. The period 

that we use to calculate the DSS on Day i–1 is the 24–hour period before the 

market opens on day i:  

DSSi−1 =

∑ I(Relevance =all news about the given firm  in 24 hours before market open in the day i

100)(ESS − 50)  

Figure 2.6 shows the DSS for GOOG from 1 January 2013 to 30 June 2015. 
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Figure 2.6 DSS of the NASDAQ: GOOG (Jan 2013–Jun 2015) 

2.4.3 Empirical results 

In this research, the stock price movement is ‘up’ (or ‘down’) in Day i if 

the closing price of GOOG on Day i is higher (or lower) than the opening price 

of GOOG on Day i. We use the ‘up’ and ‘down’ movements of the stock prices 

as our training patterns. The PNN model is trained on the training data and 

subsequently tested to assess its performance on the testing data. The 

process of training or learning helps us obtain the optimum ANN weights by 

minimising the model error, or the difference between the actual output and 

the desired one. Given these sets, this study uses stock price returns from the 

last three trading days (i.e.,Stock_returnt−3, Stock_returnt−2, Stock_returnt−1) 

and DSS from the final trading day (i.e., DSSt−1 ) as input features for the 

PNN model. Following this approach, four indices have been obtained. In other 

words, there are four input nodes and one output node. Table 2.3 shows the 
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basic statistics of these inputs (the close–to–open return and the DSS of 

GOOG). 

 

Table 2.3 The basic statistics of the close–to–open return and the DSS of 
GOOG (Jan 2013–Jun 2015) 
 
 Mean Highest Lowest 

Close–to–open return –0.03% 4.03% –5.48% 

DSS  –2.39 396 –418 

 
For the application of the binary classification in the PNN model, 

sensitivity and specificity are used to assess the performance of the model. In 

this research, we define the patterns as ‘price up’ and ‘price down’; then we 

calculate the following variables: 

Sensitivity =
Number of true ‘up’

Number of true ‘up’+Number of false ‘down’ 

Specificity =
Number of true ‘down’

Number of true ‘down’ + Number of false ‘up’
 

Prediction rate =
Number of true ‘up’ + Number of true ‘down’

Number of prediction days
 

Table 2.4 shows the performance characteristics of our PNN prediction 

method. The sensitivity is 52.83% and the specificity is 55.71%. The prediction 

rate is 54.47%. The sign predictions indicate that the PNN method can perform 

better than a random walk directional forecast.  

 
Table 2.4 Performance characteristics of the PNN prediction model 
 Sensitivity Specificity Prediction rate 

PNN 52.83% 55.71% 54.47% 
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2.4.4 Concluding remarks 

Many papers on trading strategies build trading rules based on historical 

data such as stock price and volume. In this paper, we use the sentiment 

scores of news articles related to GOOG to develop an ANN model to predict 

its stock price movements. More specifically, by defining an ‘up’ (or ‘down’) 

movement on Day i as the day’s closing price being higher (or lower) than its 

opening price, our empirical results provide better predictive accuracy than a 

random walk directional forecast. Our model provides a potentially profitable 

trading strategy with the following rules: if the model predicts an ‘up’ movement, 

we should buy the stock at the stock market opening and sell the stock at the 

stock market close; in contrast, if the model predicts a ‘down’ movement, we 

should sell the stock at the stock market open and buy the stock at the stock 

market close. 

2.5 Conclusion 

In Essay one, we investigate the relationship between news and stock 

price changes. Our results show that stock price change is the Granger cause 

of news volume and news sentiment; news volume is not the Granger cause 

of stock price change while news sentiment is the Granger cause of stock price 

change. We contribute to the literature concerning efficient market hypothesis 

testing by our unique focus on the semi–strong form efficient market 

hypothesis, as most existing research on testing efficient market hypothesis 

focuses on the weak–form version. 
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Chapter 3: 

Essay 2: Can news volume and news sentiment 
contribute to portfolio selection? 

3.1 Introduction 

Investors want to build a robust portfolio strategy to seek profits while 

avoiding the potential risks of loss. Markowitz’s mean–variance model, which 

is the start of modern portfolio theory (MPT), was introduced more than 60 

years ago and is still considered one of the most popular approaches to 

portfolio optimization. Markowitz’s mean–variance model (1952) derived the 

optimal rule for allocating wealth across risky assets in a static setting when 

investors care only about the mean and variance of a portfolio’s return. This 

investment theory is based on the idea that risk–averse investors can construct 

portfolios to optimise or maximise expected return by considering a given level 

of market risk and emphasising that risk is an inherent part of higher reward. 

When an investor constructs a portfolio, he or she has to consider how each 

security cooperates with all other securities. Markowitz’s mean–variance 

optimization method suggests that it is possible to construct an ‘efficient 

frontier’ of optimal portfolios, offering the maximum possible expected return 

for a given level of risk. 

Some researchers doubt the efficiency of Markowitz’s mean–variance 

portfolio optimization method. For instance, the empirical study of DeMiguel et 

al. (2009) evaluates the mean–variance portfolio method across seven 

empirical datasets and finds that the mean–variance portfolio method leads to 

poor out–of–sample performances, no better than the 1/N rule in terms of 
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Sharpe ratio, certainty–equivalent return or turnover.  

The big data era brings about huge challenges for portfolio diversification. 

Researchers consider using big data, such as stock messages (Antweiler and 

Frank, 2004) or information of searched items on Google Trends (Kristoufek, 

2013) to help portfolio diversification. 

In this chapter, we expand the use of information from news volume and 

news sentiments to portfolio diversification. We discuss the possibility of news 

volume and news sentiments contributing to portfolios by assessing the 

performance of portfolios that are built based on news volume and news 

sentiments. Our empirical analytics use the time series provided by the news 

analytics data from Raven Pack. Further, we propose a novel approach to 

portfolio diversification based on the k–Nearest Neighbors (kNN) algorithm. 

The diversification strategy arises from the idea that news sentiment is 

correlated with stock returns. 

The remainder of the chapter is organised as follows. In the second 

section, we introduce the research background. In Section 3.3, we discuss the 

data set used in this research. The empirical results are reported in Section 

3.4 and the robust checks are discussed in Section 3.5. The final section 

concludes this chapter. 

3.2 Research Background 

3.2.1 Modern Portfolio Theory 

MPT begins with the path–breaking work of Markowitz (1952) who 

derived the optimal rule for allocating wealth across risky assets in a static 

setting when investors care only about the mean and variance of a portfolio’s 



 

41 
 

return. In 1990, Harry Markowitz shared a Nobel Memorial Prize in Economic 

Sciences for his ‘pioneering work in the theory of financial economics’. 

Markowitz’s mean–variance optimization method, which can be traced back to 

his paper ‘Portfolio Selection’ in the Journal of Finance in 1952 and his book 

‘Portfolio Selection: Efficient Diversification’ in 1959, suggests that it is possible 

to construct an ‘efficient frontier’ of optimal portfolios, offering the maximum 

possible expected return for a given level of risk.  

Markowitz’s mean–variance optimization method can be explained as 

follows. Consider a portfolio with n different assets where asset number i will 

give the return Ri . Note that µi  and σi2are the corresponding mean and 

variance and that σi,j is the covariance between Ri and Rj. The investor is a 

‘rational man’ and he or she always chooses the portfolio with the smallest 

variance of return (i.e., the smallest risk) if the expected returns are the same, 

or the portfolio with the highest expected return if the variance levels are equal. 

For a portfolio, if the investor invests xi of the value of the portfolio in asset 

𝑖𝑖, (1 > xi > 0, 𝑖𝑖 =  1, 2, … , n and ∑ xi = 1n
i = 1 ), then the expected return of the 

whole portfolio R is µ = E(R) = E(∑ xi ∗ Ri).  The variance of the entire 

portfolio is σ2 = V(R) = V(∑ xi ∗ Ri). For different choices of 𝑥𝑥1,  𝑥𝑥2, … 𝑥𝑥𝑛𝑛, the 

investor will receive different combinations of µ and σ2. Those (σ2, µ) with 

minimum σ2 for a given µ or more and with maximum µ for a given σ2 or less 

are called efficient frontiers, which shows that by investing in more than one 

asset and choosing the right combination of assets, an investor can benefit 

from diversification and particularly from a reduction in portfolio risk. 

There are a number of critical underlying assumptions in MPT about the 

behavior of individuals (Beyhaghi and Hawley, 2013). These assumptions 
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include: 1) the investors are rational; 2) investors are risk averse and make 

decisions based on the axioms of expected utility theorem; 3) investors always 

prefer portfolios with higher expected returns if variances of the returns are 

equal; 4) investors are price takers who cannot affect a security price; 5) 

investors know the expected return of each asset in their portfolios. 

Following Markowitz’s work, new contents have been introduced to 

extend the MPT framework. The Capital Asset Pricing Model (CAPM) 

proposed by Sharpe (1964) takes into consideration the equilibrium asset–

pricing consequences of investors’ individually rational actions and provides a 

foundation for an asset pricing model. The CAPM model suggests that an 

efficient portfolio is actually a linear combination of the market portfolio and the 

risk–free asset. Instead of considering a single risk factor, Ross (1976) 

proposed Arbitrage Pricing Theory (APT), which is a generalisation of CAPM. 

In APT, assets returns are driven by multiple risk factors.  

3.2.2 The development of Markowitz’s mean–variance approach 

After the pioneering work of Markowitz (1952), researchers develop 

mean–variance approach from different directions (Elton and Gruber, 1997). 

Some scholars (Lee, 1977, Konno et al., 1993, Briec et al., 2007) propose 

alternative portfolio theories that include additional moments such as 

skewness or more realistic descriptions of the distribution of returns. For 

instance, Briec et al. (2007) propose a nonparametric efficiency measurement 

approach for the static portfolio selection problem in mean–variance–

skewness space. 

Second, mean–variance portfolio theory was developed to find the 
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optimum portfolio by considering return distributions over a single period. 

Therefore, the other research direction of MPT concerns how the single–period 

problem should be modified when investors consider a multi–period 

investment. This problem has been analyzed under various assumptions 

(Celikyurt and Özekici, 2007, Gülpınar and Rustem, 2007, Calafiore, 2008, 

Takano and Gotoh, 2014).  

Third, some researchers have sought to improve Markowitz’s mean–

variance approach by reducing statistical errors in the sample mean and 

covariance matrix. For example, Lai et al. (2011) propose a new approach to 

resolve the ‘Markowitz optimization enigma’–a phrase that describes portfolios 

that may perform poorly because the means and covariances of the underlying 

assets are unknown and have to be estimated from historical data. Jobson and 

Korkie (1980) examine the sampling properties of the conventional estimators 

for the parameters of an efficient portfolio. 

Fourth, some researchers discuss optimal portfolios under constraint 

(Snell and Tonks, 1998, Aktas et al., 2008, Bera and Park, 2008, Landsman, 

2010). For instance, Snell and Tonks (1998) discuss efficient frontiers and 

optimal investment strategies for the dynamic mean–variance portfolio 

selection problem under the constraint of a higher borrowing rate. Aktas et al. 

(2008) propose a tail mean–variance approach, based on tail condition 

expectations and tail variance as a measure for the optimal portfolio selection. 

Bera and Park (2008) propose the use of a cross–entropy measure as the 

objective function with side conditions produced by the mean and variance–

covariance matrix of the resampled asset returns. Landsman (2010) proposes 

the tail mean–variance approach, based on the tail condition expectation and 
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tail variance as a measure for the optimal portfolio selection. 

3.2.3 Criticisms of Markowitz’s mean–variance approach 

Some researchers doubt the efficiency of Markowitz’s mean–variance 

portfolio optimization method. Contrary to the notion of diversification, Bera 

and Park (2008) find that using Markowitz’s mean–variance portfolio 

optimization method leads to portfolios that are highly concentrated on a few 

assets and result in poor out–of–sample performances. Scherer (2002) show 

that when using the mean–variance portfolio optimization method, small 

changes in inputs can give rise to large changes in the portfolio.  

Additionally, using Markowitz’s mean–variance portfolio optimization 

theory, investors must assume that the means and covariance of the 

underlying asset returns are known, whereas in practice, they are unknown. 

Normally, they are estimated using historical data and led to portfolios that may 

perform poorly. As stated above, the empirical study of DeMiguel et al. (2009) 

evaluates the mean–variance portfolio method across seven empirical 

datasets,  finding that it leads to poor out–of–sample performances, no better 

than the 1/N rule in terms of Sharpe ratio, certainty–equivalent return, or 

turnover. 

On the whole, using the mean–variance optimization method, investors 

solely base on expected return and risk to make decisions. These expectations 

are derived from historical returns. Their optimal asset allocations are highly 

sensitive to small changes in inputs and may not be well diversified. 
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3.2.4 Big data opportunity 

Recently, data harvesting has increased on a large scale and across 

various fields. The concept of ‘Big data’ not only relates to the storage of and 

access to data but also to the way in which data are understood and exploited. 

Researchers seek to comprehend the relationship between the news, the 

stock return and market volatility. For instance, Antweiler and Frank (2004) 

study the effect of more than 1.5 million messages posted on Yahoo! Finance 

and Raging Bull about the 45 companies in the DJIA and the Dow Jones 

Internet Index. They find that stock messages help predict market volatility and 

that the effect of these messages on stock returns is statistically significant but 

economically small. Alanyali et al. (2013) exploit a large corpus of daily print 

issues of the Financial Times—from 2 January 2007 until 

31 December 2012—to quantify the relationship between decisions made in 

financial markets and developments in financial news. They find a positive 

correlation between the daily number of mentions of a company in the 

Financial Times and the daily transaction volume of that company’s stock, both 

on the day before the news is released and on the same day as the news is 

released. 

An increasing number of scholars are considering building portfolios or 

improving portfolio optimization methods according to big data or using big 

data analytic techniques. To estimate portfolio risk, Mitra et al. (2009) present 

a tractable method of including both option implied volatility and quantified 

news. Kristoufek (2013) discusses an approach to portfolio diversification 

using the information of searched items on Google Trends. In his research, the 

popular stocks are penalised by assigning them lower portfolio weights and 
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bring forward the less popular or peripheral stocks to decrease the total 

riskiness of the portfolio. His results indicate that such a strategy dominates 

both the benchmark index and the uniformly weighted portfolio both in–sample 

and out–of–sample. Gillam et al. (2015) propose a measure of abnormal news 

volume that controls for the size of the firm and the analyst attention that it 

receives and demonstrate that this measure enhances the predictive power of 

the global stock selection model using information coefficients, Boolean 

signals and efficient frontiers. Creamer (2015) advocates a portfolio 

diversification method that outperforms the market portfolio. In his method, 

investors’ expectations are based either on news sentiment using high–

frequency data or on a combination of accounting variables, financial analyst 

recommendations and corporate social network indicators with quarterly data.  

3.2.5 The research plan 

Research in behavioural finance indicates that news sentiment is 

significantly related to stock price movements and financial decisions are 

significantly driven by mood and sentiment (Nofsinger, 2005). For instance, 

Tetlock (2007) quantitatively measures the interactions between the media 

and the stock market using daily content from a popular Wall Street Journal 

column. He finds that high media pessimism predicts downward pressure on 

market prices followed by a reversion to fundamentals and that unusually high 

or low pessimism predicts high market trading volume. Zouaoui et al. (2011) 

examine the influence of investor sentiment on the probability of stock market 

crises and find that investor sentiment increases the probability of occurrence 

of stock market crises within a one–year horizon. Wang et al. (2013) show 
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evidence that while news volume does not Granger cause stock price change, 

news sentiment does Granger cause stock price change. Ho and Wang (2016) 

develop an ANN model to predict the stock price movements of GOOG and 

test its potential profitability using out–of–sample prediction. In general, these 

papers suggest that the effect of sentiment on stock markets cannot be ignored.  

In this research, we consider the utility of information from news volume 

and news sentiment to portfolio diversification. For the DJIA components, we 

assign different weights according to their weekly news volume or news 

sentiment to build portfolios. We follow the power–law rule proposed by 

Kristoufek (2013) to obtain the weights of our portfolio components. Both in– 

and out–of–sample are used to assess the performance of the portfolios. The 

former is a standard approach employed to measure the quality of portfolio 

optimization and the latter is more useful for evaluating the practical 

applicability of portfolio selection methods. The in–sample refers to the building 

of portfolio weights using information from the same period, while the out–of– 

sample refers to the building of portfolio weights at Week t using the 

information in Week t–1. 

Further, we propose a novel approach to portfolio diversification based 

on the k–Nearest Neighbors (kNN) algorithm. The diversification strategy is 

based news sentiment is correlated with stock returns. 

3.3 Data 

3.3.1 Dow Jones Industrial Average index 

The DJIA, also called the Dow 30 or simply the Dow, is a stock market 

index that was first calculated on 26 May 1896. The DJIA is the most–quoted 
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market indicator in newspapers, on TV and on the Internet. The DJIA 

comprised only 12 stocks at its beginning and expanded to 20 firms in 1920. 

In 1928, the industrial average was expanded to its current level of 30 firms, 

which, on the DJIA, have historically accounted for approximately 25% of the 

market value of all NYSE firms (Jones et al., 1989). The DJIA is one of the 

most important indexes of the NYSE and it reliably indicates basic market 

trends.  

The index shows how 30 large publicly owned companies based in the 

United States have traded during a standard trading session in the stock 

market. The DJIA is price weighted rather than market capitalization weighted. 

In other words, its component weightings are affected only by changes in the 

stock prices. Additionally, the practice of adjusting the divisor has been 

initiated to mitigate the effects of stock splits and other adjustments. Figure 3.1 

shows the daily closing values of the DJIA from January 2014 to June 2016. 
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Figure 3.1 Daily closing values of the DJIA (Jan 2014–Jun 2016) 
 

The components of the DJIA have changed many times since its 

inception; the reasons for these changes are: i) firm mergers and 

reorganisations and; ii) the achievement of a better representation of American 

industry (Jones et al., 1989). The most recent change to the index occurred on 

19 March 2015 when Apple replaced AT&T, which had been a component of 

the DJIA since November 1916. Table 3.1 shows the 30 major American 

companies that currently comprise the DJIA. 

  

Table 3.1 DJIA components (since 19 March 2015) 
 Company Name Exchange Symbol 

1 3M Company NYSE MMM 

2 E.I. du Pont de Nemours & Company NYSE DD 

3 McDonald's Corporation NYSE MCD 

4 Exxon Mobil Corporation NYSE  XOM 
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 Company Name Exchange Symbol 

5 Merck & Co. Inc. NYSE MRK 

6 American Express Company NYSE AXP 

7 General Electric Company NYSE GE 

8 Microsoft Corporation NASDAQ MSFT 

9 Pfizer Inc. NYSE PFE 

10 The Home Depot Inc. NYSE HD 

11 The Procter & Gamble Company NYSE PG 

12 The Boeing Company NYSE BA 

13 Intel Corporation NASDAQ INTC 

14 The Travellers’ Companies Inc. NYSE TRV 

15 Caterpillar Inc. NYSE CAT 

16 International Business Machines Corporation NYSE IBM 

17 United Technologies Corporation NYSE UTX 

18 Chevron Corporation NYSE CVX 

19 Johnson & Johnson NYSE JNJ 

20 Verizon Communications Inc. NYSE VZ 

21 Cisco Systems, Inc. NASDAQ CSCO 

22 JPMorgan Chase & Co. NYSE JPM 

23 Wal–Mart Stores Inc. NYSE WMT 

24 The Coca–Cola Company NYSE KO 

25 The Walt Disney Company NYSE DIS 

26 UnitedHealth NYSE UNH 

27 Goldman Sachs NYSE GS 

28 Nike NYSE NKE 

29 Visa NYSE V 

30 Apple NASDAQ AAPL 

Note: NYSE refers to the New York Stock Exchange. NASDAQ is the acronym for the National 
Association of Securities Dealers Automated Quotations, which is the second–largest 
exchange in the world by market capitalisation, behind only the NYSE. 

 
 

The DJIA tracks only 30 large American companies; however, these 

companies are inclusive of all industries except utilities and transportation, 

creating a broad overview of the economy. In general, the DJIA is a leading 

indicator and is considered by many investors to represent trends in the 

economy. Many researchers use the DJIA in their study of the stock market. 
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For instance, Beneish and Gardner (1995) examine the stock market effect of 

changes in the composition of the DJIA. Charles and Darné (2014) explore the 

relations between events (e.g., financial crashes, elections, wars and 

monetary policies) and the consequent volatility of the DJIA index during the 

period from 1928 to 2013. 

3.3.2 Data acquisition and pre–processing 

In this research, we consider the stock price returns and news items for 

only two and a half years (Jan 2014–Jun 2016). We consider only 29 of the 30 

DJIA index components; we do not include Apple Inc. (NASDAQ: AAPL) or 

AT&T Inc. (NYSE: T) in our research (Apple Inc. replaced AT&T Inc. on 

19 March 2015). 

For each of the 29 stocks, we construct the series of daily returns, ri,j, 

defined as ri,j = pi,j + 1−pi,j
pi,j

. The pi,j is the adjusted opening price of stock 𝑖𝑖 on 

Day 𝑗𝑗. This approach is different from those of most studies that use the 

closing price to calculate the daily return as we adjust our portfolio at the stock 

market’s opening according to the news. The adjusted price is used to produce 

an accurate representation of the firm's equity value beyond the simple market 

price. The adjusted opening price considers all corporate actions, such as 

stock splits, dividends and distributions and rights offerings. The adjusted 

opening and closing price data have been obtained using Yahoo! Finance 

(https://finance.yahoo.com/). 

Our raw news item data have been obtained from the RPNA database 

(see the Appendix for further details). The database contains unique 

observations for every article and includes the date and time each news article 
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was released, a unique firm identifier and several variables that quantify the 

content and form of the article. During the period from January 2014 to June 

2016, there were a total of 15,476,000 news items; there were 6,265,885 in 

2014, 6,103,673 in 2015 and 3,106,442 from January to June in 2016. 

There are 39 fields used to describe each news item. In this research, we 

consider only some of these fields, such as time stamp, company name, news 

relevance, event sentiment and news novelty.  

We ascertain the news relevant to the 29 stocks based on the field 

‘company name’. To analyse the effect of the news on the stock market, we 

define the news that happens before the stock market’s opening on Day 𝑖𝑖 as 

the news that happens on the Day 𝑖𝑖 − 1. When building the daily news volume 

and news sentiment series, we need to consider the market hours of the 

NASDAQ stock market and the NYSE, which run from 9:30am to 4:00pm on 

weekdays. Further, we need to consider summer daylight–savings time 

adjustments when pre–processing our dataset as the RPNA uses coordinated 

universal time (UTC) for every news item, so that 2:00am on 9 March 2014, 

8 March 2015 and 13 March 2016 becomes 3:00am; and 2:00am on 

2 November 2014 and 1 November 2015 becomes 1:00am. 

Table 3.2 shows the basic statistics for the daily news volume of these 

29 stocks. If we only consider the new news items, the average daily news 

volume is less than one article per stock. 
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Table 3.2 The basic statistics for the daily news volume of the 29 stocks (Jan 
2014–Jun 2016) 
 

  News volume (all) News volume (only new news) 

 Symbol Mean Median Max Min Std. 
dev. 

Mean Median Max Min Std. 
dev. 

1 MMM 5.58 3 123 0 11.27 0.34 0 14 0 1.38 

2 DD 9.40 3 217 0 19.68 0.34 0 13 0 1.27 

3 MCD 17.93 11.5 205 0 24.68 0.42 0 16 0 1.54 

4 XOM 20.70 15 223 0 23.42 0.38 0 15 0 1.37 

5 MRK 12.49 7 168 0 18.19 0.49 0 17 0 1.44 

6 AXP 14.21 10 139 0 16.13 0.38 0 12 0 1.14 

7 GE 37.29 32.5 406 0 36.29 0.95 0 15 0 1.72 

8 MSFT 42.75 40 346 0 38.16 0.68 0 13 0 1.45 

9 PFE 21.54 15 298 0 30.80 0.53 0 16 0 1.62 

10 HD 11.76 7 244 0 20.54 0.33 0 17 0 1.52 

11 PG 14.14 11 197 0 19.49 0.44 0 18 0 1.45 

12 BA 30.88 24 236 0 31.19 0.66 0 19 0 1.76 

13 INTC 15.36 11 144 0 19.36 0.62 0 19 0 1.52 

14 TRV 4.91 4 49 0 5.24 0.23 0 6 0 0.53 

15 CAT 8.80 4 215 0 19.29 0.40 0 15 0 1.53 

16 IBM 22.10 18 351 0 25.95 0.71 0 14 0 1.46 

17 UTX 9.93 5 198 0 16.43 0.50 0 17 0 1.69 

18 CVX 16.50 11 214 0 20.19 0.35 0 15 0 1.25 

19 JNJ 15.90 12 211 0 21.31 0.45 0 18 0 1.50 

20 VZ 23.91 19 258 0 25.27 0.53 0 13 0 1.38 

21 CSCO 15.46 13 134 0 17.20 0.49 0 13 0 1.30 

22 JPM 131.46 123 1035 0 115.69 2.99 2 41 0 3.84 

23 WMT 27.64 21 317 0 31.57 0.60 0 20 0 1.82 

24 KO 19.95 14 265 0 24.94 0.48 0 16 0 1.39 

25 DIS 20.30 16 200 0 21.56 0.39 0 11 0 1.09 

26 UNH 7.81 4 184 0 16.14 0.32 0 13 0 1.14 

27 GS 106.54 96 1287 0 114.98 2.13 1 27 0 3.12 

28 NKE 11.32 6 175 0 15.85 0.37 0 12 0 1.25 

29 V 6.02 2 140 0 12.31 0.32 0 20 0 1.33 

This table presents a summary of the descriptive statistics for the daily news (all news and 
only new news) volume (Jan 2014–Jun 2016) for the 29 stocks used in this study. The new 
news is defined as ENS = 100. The summary statistics include the mean value (Mean), median 
value (Median), maximum (Max), minimum (Min) and standard deviation (Std. dev.). 

 
For each news item, the ESS represents the news sentiment for a given 
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entity, ranging from 0 to 100, where 0 indicates extremely negative news, 50 

indicates neutral news and 100 indicates extremely positive news. To easily 

understand the effect of the news, we use –50 to indicate extremely negative 

news, 0 to designate neutral news and +50 to connote extremely positive news 

for each item. Table 3.3 shows the basic statistics of daily total news 

sentiments of these 29 stocks.  

 

Table 3.3 The basic statistics for the daily total news sentiment for the 29 stocks 
(Jan 2014–Jun 2016) 
 
 Symbol Mean Median Max Min Std. dev. 

1 MMM 1.46 0 119 -39 10.25 
2 DD 1.16 0 146 -41 10.41 
3 MCD 0.39 0 148 -78 11.16 
4 XOM 0.88 0 61 -49 8.49 
5 MRK 2.76 0 116 -56 11.67 
6 AXP 1.48 0 120 -62 10.13 
7 GE 9.57 0 166 -32 21.31 
8 MSFT 3.92 0 136 -41 13.22 
9 PFE 3.26 0 180 -56 15.28 
10 HD 1.86 0 194 -39 16.12 
11 PG 1.02 0 194 -45 13.23 
12 BA 5.46 0 228 -56 19.10 
13 INTC 2.28 0 129 -81 12.57 
14 TRV -0.91 0 28 -43 3.82 
15 CAT 0.50 0 130 -80 11.46 
16 IBM 5.91 0 117 -65 13.98 
17 UTX 3.18 0 123 -62 13.62 
18 CVX 1.06 0 116 -134 10.12 
19 JNJ 3.12 0 181 -87 15.27 
20 VZ 3.33 0 196 -52 14.37 
21 CSCO 2.01 0 173 -52 13.90 
22 JPM 2.84 2 142 -62 15.67 
23 WMT 0.88 0 126 -51 12.22 
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 Symbol Mean Median Max Min Std. dev. 

24 KO 2.34 0 179 -51 13.56 
25 DIS 1.68 0 109 -65 10.42 
26 UNH 1.46 0 149 -43 12.48 
27 GS 1.80 1 236 -121 15.99 
28 NKE 1.08 0 162 -196 15.90 
29 V 1.87 0 182 -57 14.34 

This table presents a summary of the descriptive statistics for the daily total news sentiment 
(Jan 2014–Jun 2016) for the 29 stocks used in this study. The summary statistics include 
mean value (Mean), median value (Median), maximum (Max), minimum (Min) and standard 
deviation (Std. dev.). 

 
 

In Table 3.2 and 3.3, we can see that almost all the medians of the daily 

news volume for these 29 stocks are 0, as are almost all the medians of the 

daily news sentiment. It is difficult for us to assign weight to a portfolio based 

on this daily data. Therefore, we have decided to build the portfolio in response 

to the weekly data. 

3.4 News items and portfolio selection 

Portfolio performance measures are a key aspect of the investment 

decision–making process. Based on the idea of risk and return, a variety of 

evaluation techniques, such as the Sharpe ratio (Sharpe, 1966), the Treynor 

ratio (Treynor, 1965) and the alpha of Jensen (Jensen, 1969), were proposed 

and applied for evaluating the performance of the portfolio.  

The Sharpe ratio is the most popular among them and this ratio has 

become the industry standard. It was developed by William F. Sharpe, the 

winner of the 1990 Nobel Memorial Prize in Economic Sciences. The Sharpe 

ratio is calculated as the difference between the mean portfolio return and the 

risk–free rate over the standard deviation of portfolio return. 
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 Sharpe ratio =
𝑟𝑟𝑝𝑝� − 𝑟𝑟𝑓𝑓
𝜎𝜎𝑝𝑝

 (3-1) 

Here, 𝑟𝑟𝑝𝑝�  is the expected portfolio return, 𝑟𝑟𝑓𝑓 is the risk–free rate and 𝜎𝜎𝑝𝑝 is the 

portfolio standard deviation. The Sharpe ratio is a risk–adjusted measure of 

return and it can be used to evaluate the performance of a portfolio. In this 

research, we use return, standard deviation and the Sharpe ratio to evaluate 

portfolios that have been built according to different methods. 

For the risk free rate, there is no precise or widely accepted guidance on 

the appropriate debt maturity to use in modelling shareholder returns and risk 

premiums. Some researchers (Chawla, 2014, Brotherson et al., 2015) 

recommend selecting the yield to maturity on a long–term US government 

bond as a base interest rate. For this research, we use 2.5 years (Jan 2014–

Jun 2016) as our data period; we then use the mean of the daily treasury yield 

curve rates for the 30–year government bonds from January 2014 to June 

2016—which is 3.0017—as a proxy for the risk–free interest rate (our data 

source is the website of the US Department of the Treasury: 

www.treasury.gov). 

To easily compare the results, we have annualised the return and the 

standard deviation. The annualised return formula is: 

Annualised Return = ((principal + gain) / principal) ^ (365/days) – 1 (3–2) 

To annualise the standard deviation, we simply multiply our daily 

standard deviation by the square root of the number of trading days. 

 Annualised Standard Deviation = Standard Deviation of Daily 

Returns * Square Root (trading days) 
(3–3) 
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3.4.1 Can news volume contribute to portfolio selection? 

Table 3.4 shows the weekly statistics for our 29 stock returns and Table 

3.5 shows the weekly statistics for the news volume of our 29 stocks. 

 

Table 3.4 The basic statistics for the weekly returns of the 29 stocks over 129 
weeks from 8 January 2014 to 28 June 2016 
 
 Symbol Mean (%) Median (%) Max (%) Min (%) Std. dev. (%) 

0 DJIA 0.059 0.305 5.597 –0.535 1.938 
1 MMM 0.236 0.174 7.188 –6.549 2.208 
2 DD 0.160 0.283 16.232 –9.915 3.599 
3 MCD 0.251 0.184 7.512 –9.478 2.326 
4 XOM 0.019 0.212 9.466 –11.797 2.828 
5 MRK 0.175 0.305 6.303 –14.231 2.540 
6 AXP –0.259 0.269 7.422 –12.597 3.160 
7 GE 0.172 0.195 11.070 –10.740 2.668 
8 MSFT 0.354 0.299 15.291 –14.385 3.578 
9 PFE 0.186 0.171 7.593 –11.768 2.459 
10 HD 0.425 0.607 6.903 –9.634 2.706 
11 PG 0.091 0.253 4.776 –8.931 1.942 
12 BA 0.011 0.382 11.217 –13.216 3.384 
13 INTC 0.265 0.488 9.713 –10.515 3.182 
14 TRV 0.258 0.403 5.826 –9.340 2.178 
15 CAT –0.035 0.356 10.123 –10.282 3.376 
16 IBM –0.105 0.142 7.153 –11.192 2.841 
17 UTX –0.029 0.060 5.194 –10.673 2.495 
18 CVX –0.009 0.050 14.085 –16.083 3.828 
19 JNJ 0.252 0.408 7.331 –7.996 2.084 
20 VZ 0.195 0.476 8.622 –8.344 2.204 
21 CSCO 0.279 0.389 16.821 –12.850 3.292 
22 JPM 0.108 0.520 6.931 –12.168 2.993 
23 WMT 0.011 0.236 7.896 –11.959 2.496 
24 KO 0.151 0.384 6.388 –8.015 2.070 
25 DIS 0.240 0.338 9.486 –11.250 2.916 
26 UNH 0.536 0.429 9.816 –12.367 2.894 
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 Symbol Mean (%) Median (%) Max (%) Min (%) Std. dev. (%) 

27 GS –0.103 0.297 7.185 –11.413 2.960 
28 NKE 0.314 0.425 11.333 –10.983 3.088 
29 V 0.294 0.591 12.118 –10.071 2.886 

This table presents a summary of the descriptive statistics of the weekly return (from 
Wednesday to the following Tuesday from 8 Jan 2014–28 Jun 2016) for the 29 stocks used in 
this study. The summary statistics include the mean value (Mean), median value (Median), 
maximum (Max), minimum (Min) and standard deviation (Std. Dev.). 

 
 
Table 3.5 The basic statistics for the weekly news volume for the 29 stocks 
over 129 weeks from 8 January 2014 to 28 June 2016 
 
 
  News volume (all) News volume (only new news) 
 Symbo

l 
Mean Medi

an 
Max Min Std. 

dev. 
Mean Medi

an 
Max Min Std. 

dev. 

1 MMM 39.08 28 171 11 31.32 2.38 1 15 0 3.46 

2 DD 66.01 42 493 8 66.92 2.39 1 15 0 3.59 

3 MCD 126.20 104 450 30 75.64 2.93 1 20 0 4.13 

4 XOM 145.14 130 416 53 72.55 2.70 2 17 0 3.78 

5 MRK 87.83 77 331 16 53.16 3.40 2 21 0 3.89 

6 AXP 99.47 86 319 25 53.14 2.68 2 14 0 3.15 

7 GE 260.84 233 832 105 108.98 6.65 6 25 0 4.97 

8 MSFT 299.97 277 850 131 106.29 4.79 4 20 0 4.20 

9 PFE 151.48 117 617 42 103.70 3.75 2 19 0 4.19 

10 HD 82.64 60 350 19 63.61 2.30 1 17 0 3.69 

11 PG 99.33 85 340 30 58.92 3.09 2 20 0 3.81 

12 BA 216.95 193 516 88 88.24 4.63 3 26 0 4.85 

13 INTC 107.68 88 349 38 61.38 4.31 3 21 0 4.16 

14 TRV 34.45 30 81 16 14.84 1.60 1 8 0 1.61 

15 CAT 62.08 42 343 9 58.78 2.81 1 22 0 4.47 

16 IBM 155.27 135 577 54 80.54 5.05 4 18 0 3.65 

17 UTX 69.74 53 327 16 50.92 3.53 2 21 0 4.49 

18 CVX 116.02 92 431 36 69.62 2.46 1 21 0 3.97 

19 JNJ 111.46 102 364 31 57.57 3.14 2 21 0 3.85 

20 VZ 167.53 155 384 42 69.48 3.75 3 17 0 3.73 

21 CSCO 108.45 97 306 31 51.80 3.43 2 19 0 3.72 

22 JPM 919.09 812 2421 263 409.50 20.85 19 87 1 12.69 

23 WMT 193.55 164 680 59 97.57 4.16 3 24 0 4.71 

24 KO 140.63 130 405 42 66.05 3.37 2 19 0 3.63 
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  News volume (all) News volume (only new news) 
 Symbo

l 
Mean Medi

an 
Max Min Std. 

dev. 
Mean Medi

an 
Max Min Std. 

dev. 

25 DIS 142.64 127 347 41 63.08 2.76 2 14 0 2.94 

26 UNH 54.55 40 256 8 46.74 2.26 1 18 0 3.11 

27 GS 748.20 628 2565 205 445.10 14.98 14 43 0 8.07 

28 NKE 78.74 67 348 18 54.89 2.53 2 15 0 3.32 

29 V 42.01 30 276 2 42.68 2.23 1 24 0 3.89 

This table presents the summary descriptive statistics of the weekly news (all news and only 
new news) volume from Wednesday to the following Tuesday from 8 January 2014 to 
28 June 2016 for the 29 stocks used in this study. The summary statistics include mean value 
(Mean), median value (Median), maximum (Max), minimum (Min) and standard deviation (Std. 
dev.). 

 
The problem of portfolio selection can be considered as dealing with the 

situation in which an investor must determine how many shares of which 

assets to hold at which time instants in order to maximize the expected total 

utility from all consumption over the entire investment horizon (Korn and Korn, 

2001). In other words, an investor must determine the weights of his or her 

portfolio components. In this section, we analyse the performance of the news 

volume–based portfolio selection strategy, following the power–law rule 

proposed by Kristoufek (2013) to obtain the weights of our portfolio 

components.  

We use both in– and out–of–sample methods to assess the performance 

of the proposed methodology. The former is a standard approach for 

measuring the quality of portfolio optimisation; however, the latter is more 

useful for evaluating the practical application of the portfolio selection method. 

In this section (Section 3.4), the in–sample comprises portfolio weights that are 

built using information from the same period, while the out–of–sample consists 

of portfolio weights at Week t that are built using the information gleaned from 

Week t–1. 
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For each of the 29 stocks, let Vi,t be the news volume for the stock–

related term of stock i at Week t. The in–sample weight 𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 of stock i in the 

portfolio at Week t is defined as: 

 
𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 =

Vi,t−α

∑ Vk,t
−αN

k = 1
 

 
(3–4) 

Here, N is the number of stocks in the portfolio and α  is a power–law 

parameter measuring the strength of discrimination for the stock volume. The 

normalisation factor ∑ Vk,t
−αN

k = 1  ensures that ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 = 1N
i = 1 for all t. From this 

definition, when α > 0, stocks with more news are assigned a lower weight 

and where α < 0 , higher weights are attributed to stocks with more news. For 

α = 0, a uniformly diversified portfolio is created where 𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 = 1
N
. 

For the out–of–sample, portfolio weights at Week t are built using the 

information gleaned from Week t–1. The out–of–sample weight 𝑤𝑤𝑖𝑖,𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 of stock 

i in the portfolio at Time t is defined as: 

 
𝑤𝑤𝑖𝑖,𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 =

Vi,t−1−α

∑ Vk,t−1
−αN

k = 1
 

 
(3–5) 

Here, N is the number of stocks in the portfolio and α  is a power–law 

parameter measuring the strength of discrimination for the stock volume. 

Figures 3.2 and 3.3 show the returns, standard deviations and Sharpe 

ratios for portfolios based on in–sample and out–of–sample portfolio 

performance judged according to the news volume (all news) approach for α 

and varying between –4 and 4 with a step of 0.1 respectively. The behaviours 

of the return, standard deviations and Sharpe ratios are practically identical for 

the in–sample and the out–of–sample: The returns rise with α; the standard 



 

61 
 

deviations decrease when α increases between α = −4 and α = 0.6 for the 

in–sample or between α = −4 and α = 0.3 for the out–of–sample where the 

deviation reaches its minimum; the Sharpe ratios likewise increase with α. 

  

 

Figure 3.2 The in–sample portfolio performance based on news volume (all 
news) 
Return, standard deviation and Sharpe ratio are shown for the in–sample performances of the 
constructed portfolio; the discrimination parameter α ranges between –4 and 4 with a step of 
0.1. The middle point (α = 0) represents the uniformly weighted portfolio. The maximum return 
portfolio is found to be α = 4, which is the maximum value for α and the maximum return is 
16.85%. The minimum return portfolio is found to be α = –0.19% and the minimum return is  
–3.30%. The maximum standard deviation (34.73%) portfolio is found to be α = –4, which is 
the minimum value for α. The minimum standard deviation portfolio is found to be α = 0.6 and 
the minimum standard deviation is 21.86%. The maximum Sharpe ratio portfolio is found to be 
α = 4 and the maximum value is 0.56. The minimum Sharpe ratio portfolio is found to be α = 
–3.1, while the minimum value is –0.08. 
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Figure 3.3 The out–of–sample portfolio performance based on news volume 
(all news) 
Return, standard deviation and Sharpe ratio are shown for the out–of–sample performances 
of the constructed portfolio; the discrimination parameter α ranges between –4 and 4 with a 
step of 0.1. The middle point (α = 0) represents the uniformly weighted portfolio. The maximum 
return portfolio is found to be α = 3.9, while the maximum return is 12.67%. The minimum 
return portfolio is found to be α = –4 and the minimum return is 0.87%. The maximum standard 
deviation (33.30%) portfolio is found to be α = –4, which is the minimum value for α. The 
minimum standard deviation portfolio is found to be α = 0.3, while the minimum return is 
22.02%. The maximum Sharpe ratio portfolio is found to be α = 2.8 and the maximum value is 
0.36. The minimum Sharpe ratio portfolio is found to be α = –4 and the minimum value is     
–0.06. 

 

Figures 3.4 and 3.5 show returns, standard deviations and Sharpe ratios 

for in–sample and out–of–sample portfolio performance based on the news 

volume (only new news) approach for α  varying between –4 and 4 

respectively with a step of 0.1. The behaviour of the standard deviations is 
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practically identical for the in–sample and the out–of–sample—the standard 

deviations decrease as α increases. For the in–sample, as α increases, the 

return decreases; the minimum return portfolio is found to be α = –1.4 and the 

minimum return is 4.62%. The return increases when α > 1.4 , while the 

maximum return portfolio is found to be α = 0.7 and the maximum return is 

8.42%. After this, the return decreases again. For the out–of–sample, as α 

increases, the return likewise rises, yet the maximum return is 8.13% (α = 4) 

and the minimum return is –4.69% (α = –4). For the in–sample, the Sharpe 

ratio follows the changing of the return. As α increases, the Sharpe ratio 

decreases and the minimum Sharpe ratio is found to be α = –1.4, while the 

minimum value is 0.06. The Sharpe ratio increases when α > 1.4, while the 

maximum Sharpe ratio portfolio is found to be α = 0.7 and the maximum value 

is 0.25. After this, the Sharpe ratio decreases again. For the out–of–sample, 

as α  rises, the Sharpe ratio also increases. The maximum Sharpe ratio 

portfolio is found to be α = 4 and the maximum value is 0.23. The minimum 

Sharpe ratio portfolio is found to be α = –4, while the minimum value is –0.25. 
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Figure 3.4 The in–sample portfolio performance based on the news volume 
(only new news) 
Return, standard deviation and Sharpe ratio are shown for in–sample performances of the 
constructed portfolio; the discrimination parameter α ranges between –4 and 4 with a step of 
0.1. The middle point (α = 0) represents the uniformly weighted portfolio. The maximum return 
portfolio is found to be α = 0.7 while the maximum return is 8.42%. The minimum return 
portfolio is found to be α = –1.4 and the minimum return is 4.62%. The maximum standard 
deviation (34.90) portfolio is found to be α = –4, which is the minimum value for α. The 
minimum standard deviation portfolio is found to be α = 1.1 and the minimum return is 21.61%. 
The maximum Sharpe ratio portfolio is found to be α = 0.7 and the maximum value is 0.25. 
The minimum Sharpe ratio portfolio is found to be α = –1.4 and the minimum value is 0.06. 

 
 
 
 

-4 -3 -2 -1 0 1 2 3 4
0

5

10

Discrimination parameter α  

R
e
tu

rn

-4 -3 -2 -1 0 1 2 3 4
20

30

40

Discrimination parameter α  

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

Discrimination parameter α  

S
h
a
rp

e
 r

a
ti
o



 

65 
 

 
Figure 3.5 The out–of–sample portfolio performance based on the news 
volume (only new news) 

 
Return, standard deviation and Sharpe ratio are shown for the out–of–sample performances 
of the constructed portfolio; the discrimination parameter α ranges between –4 and 4 with a 
step of 0.1. The middle point (α = 0) represents the uniformly weighted portfolio. The maximum 
return portfolio is found to be α = 4, while the maximum return is 8.13%. The minimum return 
portfolio is found to be α = –4 and the minimum return is –4.69%. The maximum standard 
deviation (31.15%) portfolio is found to be α = –4, which is the minimum value for α. The 
minimum standard deviation portfolio is found to be α = 1 and the minimum return is 21.75%. 
The maximum Sharpe ratio portfolio is found to be α = 4, while the maximum value is 0.23. 
The minimum Sharpe ratio portfolio is found to be α = –4 and the minimum value is –0.25. 
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3.4.2 Can news sentiment contribute to portfolio selection? 

In this section, we consider the contribution of news sentiment when 

building portfolios, where TSi,t is the total news sentiment of stock i at Week 

t. TSi,t = ∑  (ENS − 50)𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑡𝑡 𝑛𝑛𝑡𝑡𝑜𝑜𝑠𝑠𝑠𝑠 𝑖𝑖 𝑎𝑎𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 𝑡𝑡 .  Table 3.6 shows the 

weekly statistics for total news sentiment for the 29 stocks. 

 

Table 3.6 The basic statistics for the weekly total news sentiment for the 29 
stocks over 129 weeks from 8 January 2014 to 28 June 2016 
 
 Symbol Mean Median Max Min Std dev 

1 MMM 10.23 0 126 –39 27.41 

2 DD 8.21 0 179 –56 30.42 

3 MCD 2.48 0 221 –78 33.42 

4 XOM 6.30 0 79 –60 23.32 

5 MRK 19.29 12 173 –39 32.77 

6 AXP 9.98 2 131 –62 24.48 

7 GE 67.28 53 364 –15 65.23 

8 MSFT 27.50 22 139 –51 34.81 

9 PFE 23.16 11 180 –60 39.83 

10 HD 13.20 0 194 –38 41.13 

11 PG 7.21 0 194 –45 35.64 

12 BA 38.41 23 298 –65 53.72 

13 INTC 15.69 8 176 –90 32.63 

14 TRV –6.46 0 18 –46 10.04 

15 CAT 3.35 0 162 –115 30.50 

16 IBM 41.67 36 169 –37 37.71 

17 UTX 22.40 15 204 –61 36.84 

18 CVX 7.52 1 116 –93 24.52 

19 JNJ 21.87 12 181 –63 40.19 

20 VZ 23.37 13 224 –52 42.25 

21 CSCO 14.20 2 225 –57 39.50 

22 JPM 19.85 9 194 –67 45.20 

23 WMT 6.07 1 153 –51 32.56 

24 KO 16.54 7 194 –55 35.16 

25 DIS 11.87 4 104 –67 25.61 
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 Symbol Mean Median Max Min Std dev 

26 UNH 10.06 0 184 –53 32.19 

27 GS 12.45 8 190 –121 40.09 

28 NKE 9.02 0 209 –101 41.25 

29 V 13.37 0 246 –57 44.40 

This table presents the summary descriptive statistics of the weekly total news sentiment (from 
Wednesday to the following Tuesday over the period from 8 Jan 2014–28 Jun 2016) for the 
29 stocks used in this study. The summary statistics include mean value (Mean), median value 
(Median), maximum (Max), minimum (Min) and standard deviation (Std. dev.). 

 
 

We consider news sentiment according to the sorted order of total 

sentiment, where SOi,t is the sorted order of TSi,t—the smallest TSi,t with a 

value of 1, the largest TSi,t with a value of 29. The in–sample weight 𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 of 

stock i in the portfolio at Time t is defined as: 

 
𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 =

SOi,t
−α

∑ SOk,t
−αN

k = 1
 (3–6) 

Here, N is the number of stocks in the portfolio and α  is a power–law 

parameter measuring the strength of discrimination for the stock sentiment. 

The normalisation factor ∑ SOk,t
−αN

k = 1  ensures that ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 = 1N
i = 1 for all t. 

From this definition, when α > 0 , stocks with higher news sentiment are 

assigned a lower weight, but where α < 0, we allocate heavier weights for 

stocks with higher news sentiment. For α = 0, a uniformly diversified portfolio 

is desired, where 𝑤𝑤𝑖𝑖,𝑡𝑡𝑖𝑖𝑛𝑛 = 1
N
. 

The out–of–sample weight 𝑤𝑤𝑖𝑖,𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 of stock i in the portfolio at Time t is 

defined as: 

 
𝑤𝑤𝑖𝑖,𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 =

SOi,t−1
−α

∑ SOk,t−1
−αN

k = 1
 (3–7) 

Figures 3.6 and 3.7 depict returns, standard deviations and Sharpe ratios 

for in–sample and out–of–sample portfolio performance based on the news 
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weekly sentiment approach for α and varying between –4 and 4 with a step 

of 0.1 respectively. The behaviour of the return is practically different for the 

in–sample and the out–of–sample; for the in–sample, as α rises, the return 

decreases; for the out–of–sample, when α increases, the return falls. The 

behaviour of the standard deviations is practically similar for the in–sample and 

the out–of–sample: when we assign more weights to the stocks with higher 

weekly sentiment, the portfolio has a smaller standard deviation. The Sharpe 

ratio follows the changes in returns as they are affected by the standard 

deviation. For the in–sample, the maximum Sharpe ratio portfolio is found to 

be α = –4, while the maximum value is 0.70. When α increases, the Sharpe 

ratio decreases; the minimum Sharpe ratio is found to be α = 2.6 and the 

minimum value is –0.47. For the out–of–sample, the minimum Sharpe ratio 

portfolio is found to be α = –4, while the minimum value is 0.1335. As α rises, 

the Sharpe ratio also increases. The maximum Sharpe ratio portfolio is found 

to be α = 1.8, while the highest value is 0.47. 
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Figure 3.6 The in–sample portfolio performance based on the weekly news 
sentiment 
Return, standard deviation and Sharpe ratio are shown for the in–sample performances of the 
constructed portfolio; the discrimination parameter α ranges between –4 and 4 with a step of 
0.1. The middle point (α = 0) represents the uniformly weighted portfolio. The maximum return 
portfolio is found to be α = –4, which is the minimum value for α, while the maximum return is 
19.68%. The minimum return portfolio is found to be α = 3.8, while the minimum return is     
–12.61%. The maximum standard deviation (34.51%) portfolio is found to be α = 3.8. The 
minimum standard deviation portfolio is found to be α = 0, while the standard deviation is 
22.17%. The maximum Sharpe ratio portfolio is found to be α = –4, while the maximum value 
is 0.70. The minimum Sharpe ratio portfolio is found to be α = 2.6, while the minimum value is 
–0.47. 
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Figure 3.7 The out–of–sample portfolio performance based on the weekly 
news sentiment 
Return, standard deviation and Sharpe ratio are shown for out–of–sample performances of 
the constructed portfolio; the discrimination parameter α ranges between –4 and 4 with a step 
of 0.1. The middle point (α = 0) represents the uniformly weighted portfolio. The maximum 
return portfolio is found to be α = 2.7, while the maximum return is 16.48%. The minimum 
return portfolio is found to be α = –4 and the minimum return is 6.17%. The maximum standard 
deviation (32.32%) portfolio is found to be α = –4, which is the minimum value for α. The 
minimum standard deviation portfolio is found to be α = 0.2, while the minimum return is 
22.13%. The maximum Sharpe ratio portfolio is found to be α = 1.8, while the maximum value 
is 0.47. The minimum Sharpe ratio portfolio is found to be α = –4 and the minimum value is 
0.1335. 

 

3.4.3 Conclusions and discussion 

Our research shows some interesting results concerning the relationship 

between news volume, news sentiment and portfolio performance. For news 

volume, the results show that if we assign greater weight to stock with higher 
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levels of news volume (all news and only new news), the portfolio has higher 

standard deviation. This means that high news volume contributes to a 

portfolio’s risk. For news sentiment, positive news sentiment contributes to the 

portfolio return in–sample, while negative news sentiment contributes to the 

portfolio return out–of–sample, which occurs as a consequence of investors 

overreacting to the news sentiment. 

Our results enhance the literature in two ways. First, we contribute to 

the discussion about the relationship between news volume and the stock 

market. There is little research to address the effect of the news volume on the 

stock market and the existing research only considers some types of news. 

For instance, Alanyali et al. (2013) exploit a large corpus of daily print issues 

of the Financial Times and find a positive correlation between the number of 

daily mentions of a particular company in the Financial Times and the daily 

transaction volume of that company's stock both on the day before the news 

is released and on the same day as the news is released. This research 

considers news relating to a single firm, whereas our research found that all 

news contributes to the portfolio return. This result is consistent with those of 

Gillam et al. (2015), who propose a measure of abnormal news volume that 

controls for the size of the firm and the analyst attention that it receives, 

demonstrating that news volume information can enhance returns.  

Further, our research contributes to the exploration of the relationship 

between news sentiment and the stock return, which has been discussed by 

several studies. For instance, Heston and Sinha (2017) find that daily news 

can be used to predict stock returns; Allen et al. (2015) show that news 

sentiment score contains useful information about factors impacting on the 
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volatility of the DJIA; Ho and Wang (2016) develop an ANN model to predict 

the stock price movements of GOOG using the news sentiments for Google 

Inc. 

Additionally, the different portfolio performances in and out–of–sample 

can be explained as the investors overreacting to the news sentiment, a 

phenomenon that has been discussed by other scholars. For instance, 

Barberis et al. (1998) find that stock prices are considered to have been altered 

by the overreaction of investors if the average return that follows not one but a 

series of announcements of good news is lower than the average return that 

follows a series of negative news stories. Boubaker et al. (2015) find evidence 

of short–term overreaction in the Egyptian stock exchange where losers (‘bad 

news’ portfolios) significantly outperform winners (‘good news’ portfolios).   

3.5 A proposed new portfolio selection method based on the kNN 

3.5.1 Theoretical background: The kNN for classification 

The k–Nearest–Neighbor (kNN) is one of the most fundamental and 

simple classification methods based on the closest training examples in the 

feature space. An unknown pattern can be classified according to the majority 

vote of its neighbors. It is one of the first choices for a classification study as it 

needs little or no prior knowledge about the distribution of the data.  

The kNN has been used in many applications such as face recognition 

(Yang, 2006, Masip and Vitrià, 2008), handwriting recognition (Kumar et al., 

2011, Zanchettin et al., 2012), text classification (Han et al., 2001, Yong et al., 

2009) and forest field plot (Haapanen and Ek, 2001, Reese et al., 2002). 

The concept of kNN method is quite simple. The k is a positive integer, 
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typically small. Given a new unlabelled sample, the system finds the k nearest 

neighbors among the training samples. In other words, each sample is 

classified by a majority vote of its neighbors. For example, if k = 1, the sample 

is simply assigned to the class of its nearest neighbor. In a two–class 

classification problem, k is normally an odd number to avoid tied votes. Figure 

3.8 shows the use of kNN where k = 3. In this example, the three nearest 

neighbors are a given unlabelled sample denoted as ☆ and two adjacent 

samples, denoted as △, which belong to Class 1. The given sample ☆ also 

has one adjacent sample, denoted as ○, from Class 2. Hence, by following the 

rule of majority vote, the unlabelled sample ☆ will be assigned to Class 1. 

 

 

 

 

 

   

 

 
 
Figure 3.8 An illustration of sample classification using the kNN method when 
k=3. 
 
 

To achieve accurate classification, the prime concern when using the 

kNN is how to define ‘nearest’; in other words: how to find a smart way to 

measure the similarity of samples. Researchers attribute different similarity 

functions to different problems. For example, in text classification, researchers 

use cosine distance (Tan, 2006, Yu and Yu, 2007): 

Class 1 Class 2 
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Sim(d1, d2) = ( � d1l ∗ d2l)/
v

l = 1

(�� d1l2
V

l = 1

�� d2l2
V

l = 1

) (3–8) 

Here, V denotes the dimensions of a document with vectors d1 and d2; kNN 

training is extremely fast since it needs only to calculate the distance. 

In these years, kNN method have been used in the research of finance. 

For instance, Teixeira and de Oliveira (2010) propose a method for automatic 

stock trading that combines technical analysis and the nearest neighbor 

classification. 

3.5.2 A new portfolio selection method based on the kNN  

The kNN classifier is a machine learning algorithm that is considered 

simple to implement. In this type of classifier, a new pattern is classified 

according to its similarity with the available training patterns. The performance 

of a kNN classifier is primarily determined by the choice of K as well as by the 

distance metric applied. The most crucial aspect of kNN is how to define 

‘nearest’. 

The data sets can be classified as the training data set and the test data 

set. A training set is a set of data used to discover potential relationships. A 

test set is a set of data used to assess the strength and utility of the proposed 

kNN method. To measure the similarity between the two, the Euclidean 

distance between the data in the test data set and that in the training data set 

is computed. Next, the class of the training pattern with the smaller distance is 

assigned to the test data. 

The basic idea behind this method is “history repeats itself” and future 

market direction can be determined by examining past patterns while all 
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technical analysis rests on this assumption. In section 3.4, we conclude 

positive news sentiment contributes to the portfolio return in–sample, while 

negative news sentiment contributes to the portfolio return out–of–sample. In 

this section, we use news sentiment and stock returns to calculate the distance. 

For this research, we consider the simplest situation and choose k = 1. 

Figure 3.9 shows the structure of the kNN portfolio selection method. At the 

beginning of every week in this research (i.e., the opening time of the stock 

market on Wednesdays), we calculate the distance of Stock i from the other 

stock in the training data set. We select the return with the smallest distance 

as the predicted return of Stock i for each week and sort the predicted returns 

of each of the 29 stocks, assigning the sorted order SOi,t of 29, 28 … 1 to 

them. The smallest expected return has the value 1, while the largest expected 

return has the value 29. The weight 𝑤𝑤𝑖𝑖,𝑡𝑡 of Stock i in the portfolio at Time t is 

defined as: 

 
𝑤𝑤𝑖𝑖,𝑡𝑡 =

SOi,t−1
−α

∑ SOk,t−1
−αN

k = 1
 (3–9) 

We update the portfolio weight every week during the test period using 

Equation 3–9. 
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Figure 3.9 The structure of the kNN portfolio selection method 
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3.5.3 Empirical results 

In Section 3.4, we define the in–sample as the attribution of portfolio 

weights using information from the same period and the out–of–sample as the 

allocation of portfolio weights at Week t using the information gleaned from 

Week t–1. In this section, we use different definitions for in–sample and out–

of–sample. For this research, we consider only 129 weeks (about 2.5 years), 

from 8 January 2014 to 28 June 2016. The first 121 weeks (8 Jan 2014–

5 Jan 2016) are used as the in–sample period (also called the training period) 

and the last 25 weeks (6 Jan 2016–25 Jun 2016) are used as the out–of–

sample period (also called the test period). 

We consider only 29 of the 30 components of the DJIA index; we do not 

include Apple Inc. (NASDAQ: AAPL) or AT&T Inc. (NYSE: T) in our research 

(Apple Inc. replaced AT&T Inc. on 19 March 2015). We use the out–of–sample 

period to evaluate the performance of the proposed method and we are mainly 

interested in three portfolio performance measures: return, standard deviation 

and the Sharpe ratio. Standard deviation is a common measure of risk and the 

Sharpe ratio represents the standardised average return of the portfolio. 

Before we assess the performance of the proposed kNN method, we will 

discuss the out–of–sample performance of the mean–variance method. Figure 

3.10 shows the frontier of the mean–variance method during the in–sample 

period, which reveals the balance between the return and the standard 

deviation (risk). Table 3.7 shows the out–of–sample performance of the mean–

variance method. For instance, for the portfolio with an in–sample annualised 

return of 22% and the minimum standard deviation, we retain the weights of 

the portfolio and assess its performance during the out–of–sample period. The 
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out–of–sample annualised return, the annualised return standard deviation 

and the Sharpe ratio are –0.38%,14.40% and –0.23 respectively. 

Our results indicate poor out–of–sample performances for the mean–

variance portfolio optimisation method. The results are consistent with the 

findings of other scholars, (e.g., Bera and Park (2008) DeMiguel et al. (2009)). 

Further, our results show that using Markowitz’s mean–variance portfolio 

optimisation method leads to portfolios that are highly concentrated on a few 

assets. We consider 29 stocks to build the portfolio and we can see for the in–

sample return of 4% that the portfolio with the minimum standard deviation is 

built with only 12 stocks. This result concurs with the findings of Bera and Park 

(2008).  

 

 

Figure 3.10 The frontier of the mean–variance method during the training 
period 
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Table 3.7 The out–of–sample performance of the mean–variance method  
 

In–sample Out–of–sample Stock 
numbers 

Return (%) Std. (%) Sharpe 
ratio 

Return (%) Std. (%) Sharpe 
ratio 

 

4 16.35 0.43 23.58 8.22 2.50 12 

6 16.44 0.55 22.81 8.28 2.39 11 

8 16.64 0.66 20.99 8.47 2.12 11 

10 16.99 0.77 18.34 8.78 1.75 9 

12 17.53 0.86 15.96 9.23 1.40 10 

14 18.26 0.93 12.33 9.84 0.95 8 

16 19.21 0.99 8.73 10.57 0.54 7 

18 20.48 1.03 6.75 11.35 0.33 7 

20 22.18 1.04 4.68 12.45 0.14 6 

22 24.84 1.01 –0.38 14.40 –0.23 4 

 

As discussed, the mean–variance portfolio optimisation method leads to 

poor performance during the test period. To assess the proposed kNN method, 

we use the DJIA index for the benchmark. Table 3.8 shows the out–of–sample 

performance of the DJIA index and the kNN portfolio selection method. The 

return for the kNN method is 19.17% while the return for the DJIA index 

portfolio is only 3.70%. The standard deviation of the kNN method is 9.93%, 

while the standard deviation of the DJIA index portfolio is 9.97%. The proposed 

kNN method dominates the DJIA index portfolio both in terms of return and 

standard deviation. To further illustrate this, Figure 3.11 compares the 

evolution of the kNN portfolio to that of the DJIA index. The value of the out–

of–sample kNN portfolio at the end of the analysed period is 108.8% of its initial 

value, which corresponds to a cumulative profit of 8.8%. In contrast to the DJIA 

index, which has a cumulative profit of 1.8%, the kNN strategy yields 

approximately five times the profit. 
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Table 3.8 The performance of the kNN portfolio selection method 
 
 DJIA index portfolio kNN portfolio 

Return (%) 3.70 19.17 

Standard deviation (%) 9.97 9.93 

Sharpe ratio 0.07 1.63 

 
 

 
 

 

 
Figure 3.11 The evolution of portfolio value based on the kNN method using 
news sentiment 
The red line represents the evolution of the DJIA index; the black line shows the performance 
of the out–of–sample diversification using the proposed kNN method. The opening price of 6 
Jan, 2016 as the benchmark (value 100). Portfolio value is shown on the y–axis. The 
comparison of the black and red lines is essential as it shows the significant profits to be made 
if we apply the kNN–based strategy. 
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3.5.4 Robustness checks 

To ascertain the robustness of the proposed method, we access the kNN 

portfolio performance for every week of the out–of–sample period. The results 

are shown in Table 3.9. Of these 25 weeks, there were 17 weeks (68%) where 

the return of the kNN portfolio was better than that of the DJIA index portfolio. 

The results show the robustness of the proposed method: 

Table 3.9 The robustness of the kNN portfolio selection method 
 

 Return  

Week DJIA index portfolio kNN portfolio Better than DJIA? 

1 –3.66 –2.06 YES 

2 –4.59 –4.32 YES 

3 2.54 2.17 NO 

4 0.11 0.98 YES 

5 –0.93 –0.12 YES 

6 2.79 3.53 YES 

7 –0.39 –1.15 NO 

8 2.63 3.33 YES 

9 0.70 1.41 YES 

10 1.65 0.90 NO 

11 1.97 1.99 YES 

12 0.36 1.21 YES 

13 –0.27 –0.72 NO 

14 0.77 1.32 YES 

15 1.79 1.67 NO 

16 –0.35 –0.24 YES 

17 –1.45 –2.04 NO 

18 1.04 0.92 NO 

19 –2.33 –2.08 YES 

20 1.34 1.82 YES 

21 0.30 0.28 NO 

22 0.80 1.37 YES 

23 –1.27 –0.78 YES 

24 0.73 0.82 YES 
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 Return  

Week DJIA index portfolio kNN portfolio Better than DJIA? 

25 –2.11 –1.36 YES 

   68% 

 

3.6 Conclusions 

The current, standard approach to portfolio selection based on the mean 

and variance of the assets often leads to a lopsided concentration on a few 

firms and poor out–of–sample forecasting performance. The starting point of 

this research was a curiosity towards the connection between strategic 

decision making and news. As a consequence, we propose two major 

modifications to the current approach. The first modification involves the use 

of big datasets, such as news volume and news sentiment scores associated 

with the firms. This modification is motivated by empirical evidence that news 

volume and sentiment can significantly affect asset return and risk. The other 

modification involves the application of the kNN algorithm, which is commonly 

used in the classification and regression of large datasets. The proposed kNN 

method is extremely fast, since it consists solely of the storage of all training 

patterns. This is a great advantage for our proposed method as we intend to 

analyse a high number of stocks on a daily basis. 

Our results indicate that news volume and sentiment can enhance the 

current approach to portfolio selection. In particular, in–sample and out–of–

sample tests suggest that the proposed kNN portfolio selection approach 

dominates the benchmark DJIA index portfolio. 
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Chapter 4: 

Essay 3: Combined Markov and hidden Markov 
model in stock price movement prediction 

4.1 Introduction 

The literature has provided various explanations for the movement of 

stock prices. The most important of them is the random walk hypothesis and 

the efficient market hypothesis. The random walk hypothesis (Fama, 1965) 

states that stock market prices evolve according to a random walk. The 

efficient market hypothesis (Fama, 1970) claims that securities markets are 

extremely efficient in reflecting information about individual stocks and about 

the stock market as a whole. In other words, the stock price is determined by 

all relevant information. 

 Conversely, many researchers show that stock price fluctuations 

depend on other factors, including interest rate (Christie, 1982, Flannery and 

James, 1984, Alam and Uddin, 2009), insider information (Kyle, 1985, Wang 

and Wang, 2017), unexpected extreme news (Chan, 2003, Asgharian et al., 

2011), prescheduled earnings announcements (Jennings and Starks, 1986, 

Skinner, 1994, Su, 2003), political events (Kim and Mei, 2001, Amihud and 

Wohl, 2004, Jensen and Schmith, 2005) and corporate takeovers (Malatesta 

and Thompson, 1985, Franks and Harris, 1989, Pound and Zeckhauser, 1990). 

Quite a long time ago, speculators, investors and traders use technical 

analysis to try to predict the stock price movement (Abu-Mostafa and Atiya, 
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1996). The practice of technical analysis evaluates securities by analysing the 

statistics generated by market activity, such as past prices and volume. 

Speculators, investors and traders employ charts (Leigh et al., 2008), technical 

indicators (Tanaka-Yamawaki and Tokuoka, 2007), oscillators (Koutmos, 1996, 

Cohen and Cabiri, 2015) and other tools to identify patterns that can suggest 

future activity. The key assumption of the technical analysis is that ‘history 

tends to repeat itself’. 

The enormous amount of valuable data generated by the stock market 

has encouraged researchers to attempt prediction using different 

methodologies. With the development of the computer and computing 

techniques, there is a burgeoning strand of literature on the application of data 

mining techniques to the analysis of stock price movements (Atsalakis and 

Valavanis, 2009, Hajizadeh et al., 2010). These data mining techniques 

include decision trees (Wang and Chan, 2006, Wu et al., 2006, Chang, 2011), 

clustering (Harris, 1991, Lai et al., 2009), ANNs (Wong and Selvi, 1998, Paliwal 

and Kumar, 2009, Ho and Wang, 2016) and the support vector machine (Tay 

and Cao, 2001, Huang et al., 2005, Ni et al., 2011), etc. 

There is an increasing body of research about the application of the 

Markov models and HMMs to finance. Markov models were first proposed by 

Andrei Markov who studied them in the early twentieth century. They are used 

to model randomly changing systems wherein future states depend only on 

the current state and not on events that have occurred previously. Based on 

the idea of Markov property, Hamilton (1989) proposed the regime–switching 

model, which involves multiple structures (equations) that can characterise 

time series behaviours in different regimes. The regime–switching model is 
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able to capture more complex dynamic patterns and is widely used in 

economics and finance. 

HMMs describe the relationship between two stochastic processes: an 

observed process and an underlying, ‘hidden’ (unobserved) process. The 

hidden process is assumed to follow a Markov chain and the observed data 

are modelled as independent, yet conditional on the sequence of hidden states. 

After successful applications in speech and handwriting, HMMs have been 

employed in financial market prediction by some researchers (Hassan and 

Nath, 2005, Gupta, 2012, Lee et al., 2014). Nonetheless, most of these studies 

use stock return for the observations of the HMM models, which conflicts with 

the assumption that the observations are independent. 

 In this research, we propose a new model wherein the observation is 

affected by a Markov model and an HMM model. The proposed model better 

describes the nature of the stock market and exhibits better potential prediction 

ability. In the first section of this chapter, the structure of the proposed model 

is described; after this, problems in the evaluation, decoding and learning 

within the proposed model are discussed, along with how to solve them. Next, 

we explore potential applications of the proposed model in the stock market by 

designing trading strategies based on it. 

The remainder of the chapter is organised as follows. In the second 

section, we introduce the research background. In Section 4.3, we describe 

the structure of the proposed model and discuss the problems in evaluation, 

decoding and learning. The application of the proposed model for stock market 

price prediction is discussed in Section 4.4. The final section concludes the 

chapter. 
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4.2 Research background 

4.2.1 Markov model 

In probability theory, a Markov model is a stochastic model that consists 

of a list of the possible states of a system, the possible transition paths 

between those states and the rate parameters of those transitions. In a Markov 

model, it is assumed that future states depend only on the current state, not 

on events that occurred before it (this is called the Markov property). 

 Markov models assume that there are a finite number of discrete states, 

which are called Markov states. If we suppose that the states are numbered 

and that T = {1, 2, …  t}  denotes the set of transient states, the transition 

probabilities can be described as: 

 
𝑷𝑷𝑇𝑇 = �

𝑃𝑃11 … 𝑃𝑃1𝑡𝑡
… … …
𝑃𝑃𝑡𝑡1 … 𝑃𝑃𝑡𝑡𝑡𝑡

� 

 

(4–1) 

The value Pij represents the probability that the process will, when in state i, 

make a transition into state j. It is understandable that probabilities are 

nonnegative and that the process must make a transition into some state. We 

have that: 

 
Pij ≥ 0, i, j ≥  0; � Pij = 1

t

j = 0

, i =  1,2. . t (4–2) 

Figure 4.1 shows an example of the use of a Markov model to describe 

a hypothetical stock market. The states represent whether the hypothetical 
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stock market is exhibiting uptrend, downtrend or sideways trend on a given 

day. According to the figure, an uptrend day is followed by another uptrend day 

50% of the time, a downtrend day 10% of the time and a sideways trend day 

the other 40% of the time. Labelling the state–space (1 = downtrend, 2 = 

sideways, 3 = uptrend) the transition matrix for this example is: 

𝑷𝑷𝑇𝑇 = �
0.5 0.4 0.1
0.3 0.4 0.3
0.1 0.4 0.5

� (4–3) 

 

 
 

 

 
Figure 4.1 An example of the use of a Markov model to describe a hypothetical 
stock market 
Each circle represents a Markov state. There are three states: uptrend, downtrend and 
sideways in the stock market. Arrows indicate allowed transitions. 

 

Markov processes can be similarly classified according to the type of time 

parameter and the type of state–space parameter. For instance, a discrete–

time and discrete–state Markov process is called a discrete–time Markov chain. 

A Markov chain is classified as non–homogeneous if the future state is 
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dependent on the time parameter. It is called homogeneous if it is independent 

of time. 

4.2.2 Regime–switch model 

In the Markov regime–switching model, the regime switching is affected 

by a state variable that follows a first–order Markov chain. This means that the 

current value of the state variable is immediately affected by the value of the 

last period. A two–state Markov–switching AR(1) model, which follows 

Hamilton (1989) structure, is shown as: 

 Zt = α0 + α1st + βZt−1 + εt (4–4) 

 εt ∼ i. i. d. N(0,σ2) (4–5) 

 Pr[St = 1|St−1 = 1] = p (4–6) 

 Pr[St = 0|St−1 = 0] = q (4–7) 

 

Following Hamilton’s work, a number of extended Markov regime–

switching models have been proposed, such as the continuous–time Markov 

regime–switching model (Zhou and Yin, 2003), the regime–switching model 

with time–varying parameters (Mount et al., 2006) and the regime–switching 

long memory model (Haldrup and Nielsen, 2006). 

Regime–switching models have long been a tool available to economics 

and finance. Regime–switching models with constant transition probabilities 

have been applied to interest rates (Gray, 1996, Dahlquist and Gray, 2000, 

Ang and Bekaert, 2002), the behaviour of gross national product (Durland and 

McCurdy, 1994, Clements and Krolzig, 1998, Lam, 2004), option valuation 

(Bollen, 1998, Buffington and Elliott, 2002, Henriksen, 2011, Shen et al., 2014), 
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portfolio selection (Zhou and Yin, 2003, Elliott et al., 2010, Hua and Wang, 

2014), speculative bubbles (Van Norden and Schaller, 1999, Al-Anaswah and 

Wilfling, 2011, Shi and Song, 2014) and foreign exchange rates (Engel, 1994, 

Bollen et al., 2000, Marsh, 2000).  

There is a significant amount of research utilising regime–switching 

models in the financial market. Dueker (1997) applies switching conditional 

variance models to financial markets and examines their multi–period stock 

market volatility forecasts as predictions of options–implied volatilities.  

Alizadeh and Nomikos (2004) propose a new approach for determining time–

varying minimum variance hedge ratios in stock index futures markets by using 

Markov regime–switching models. Moore and Wang (2007) investigate the 

volatility of stock markets in the new European Union member states by 

utilising the Markov regime–switching model. Timmermann (2012) develops 

an asset–pricing model that represents breaks in the context of a Markov–

switching process with an expanding set of nonrecurring states. The model 

presents empirical evidence on the existence of structural breaks in the 

fundamental processes underlying US stock prices. Zhu and Zhu (2013) 

introduce a regime–switching combination approach to predict excess stock 

returns. They find that excess returns are more predictable during economic 

contractions than during expansions.  

Considering news sentiment is a new direction in the financial market 

prediction. Chung et al. (2012) implement a multivariate Markov–switching 

model to capture the unobservable dynamics of the changes in the economic 

regime and examine asymmetries in the predictive power of investor sentiment 

about the cross–section of stock returns in economic expansion and recession 
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states. Ho et al. (2013) examine the dynamic relationship between firm–level 

return volatility and public news sentiment using two–state Markov regime–

switching GARCH (generalized autoregressive Conditional heteroscedasticity) 

models. Their results show the significant effect of firm–specific news 

sentiment on intraday volatility persistence.  

4.2.3 Hidden Markov Model 

 
An HMM is a finite state machine with a fixed number of states that 

provides a framework for modelling a time series of multivariate observations 

that are probabilistic with internal states that are either hidden or not directly 

observable. HMMs were introduced at the beginning of the 1970s as a tool in 

speech recognition (Rabiner, 1989). This model, based on statistical methods, 

has become increasingly popular over the last several years as a consequence 

of its strong mathematical structure and theoretical basis for use in a wide 

range of applications. 

Figure 4.2 shows the general structure of an HMM—a doubly stochastic 

process in which the underlying stochastic process is unobservable (Si); in 

other words, the states are hidden. However, there is another stochastic 

process (based on the hidden states) that produces a sequence of 

observations (Oi): 
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Figure 4.2 The general structure of an HMM 
 

 

HMMs have been used in analysing and predicting time series 

phenomena and have been applied to many different areas, including speech 

recognition (Rabiner, 1989, Huang et al., 1990), gene profiling and recognition 

(Lukashin and Borodovsky, 1998, Wang et al., 2007), medical science (Yi and 

Beheshti, 2009, Tao et al., 2012) and ECG (electrocardiogram) analysis (Koski, 

1996, Andreão et al., 2006).  

Recent work has exploited the potential of the HMM to analyse the stock 

market and predict the financial market. Hassan and Nath (2005) apply HMMs 

to forecast airline stocks. They use the past datasets for the chosen airlines to 

train an HMM model and the trained HMM to search for the variable of interest 

behavioural data pattern in the past data. They forecast the airline stocks using 

the neighbouring values of these datasets. Gupta (2012) considers the 

fractional change in stock value and the intraday high and low values of the 

stock to train the continuous HMM and then uses this HMM to make a 

maximum a posteriori decision about all the possible stock values for the next 

day. Lee et al. (2014) use HMMs to learn the historical trend patterns of foreign 

exchange and to predict the next–day movement trends. Huang et al. (2015) 

extend selective HMMs to combine the financial index with the selected Twitter 



 

92 
 

mood to predict the next–day trends in the stock market. Fan et al. (2016) 

discuss the pricing of dynamic fund protection when the value process of the 

investment fund is governed by a geometric Brownian motion with parameters 

modulated by a continuous–time, finite state hidden Markov chain. 

The other research direction of the HMM application is combining 

HMMs with other models. Hassan et al. (2007) propose a fusion model, 

combining an HMM with an ANN and a GA (genetic algorithms), to generate 

one–day–ahead forecasts for stock prices. In this model, the optimised HMM 

is used to identify similar data patterns from the historical data. Haeri et al. 

(2015) propose a hybrid approach using HMMs and classification and 

regression trees algorithms for forecasting the daily direction (the increase or 

decrease) of Euro–Yen exchange rates. 

4.2.4 HMMs and three fundamental questions 

An HMM can be described as λ = λ(S, V,π, A, B) (Rabiner, 1989) , where: 

1) S = {s1, s2 … sN} is the set of states and N is the number of states 

in the model. Although the states are hidden, for many practical 

applications there is often some physical significance attached to 

the states or to sets of states in the model. 

2) V = {v1, v2  … vM}  is the set of symbols. M is the number of 

observation symbols (which correspond to the physical output of the 

system being modelled). 

3) π = {πi} for size N defines the initial probability distribution, πi =

P(S(t =  0) = Si), where 𝜋𝜋𝑖𝑖 represents the probability of being in 

state i at the beginning of the experiment (i.e., at Time t = 0). 
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4) A = {aij} for size N × N defines the transition matrix where aij =

P(s(t) = sj|s(t − 1) = si), the conditional probability from State i to 

State j. 

5) B= {bik} for size N × M defines the emission probability where 

bik = P(𝑂𝑂t = vk|s(t) = si), the probability of observing 𝑂𝑂t = vk  at 

State i. 

To help understand the basic features of HMM, we present a simple 

example of the HMM applied to a hypothetical stock market in Figure 4.3. We 

assume that there are three states—good, bad and neutral—in the stock 

market. The arrows indicate allowed transitions. There are three types of 

observations: up, down and no change (NoC). In this example, S =

{Good, Neutral, Bad}, V = {Up, Down, No Change},  

𝐴𝐴 = �
0.4 0.4 0.2
0.3 0.4 0.3
0.2 0.4 0.4

�, 𝐵𝐵 = �
0.5 0.3 0.2
0.2 0.6 0.2
0.2 0.3 0.5

� 
(4–8) 

In this sample, we cannot observe the hidden states, that is we don’t 

know the economic state is good, bad or neutral. Every day, the chance of the 

appearance of different hidden states follows the matrix A; the chance of the 

appearance of different observations follows the matrix B. We only can 

observe the different observations, that is, stock price increasing, decreasing 

or remaining stationary. 

 



 

94 
 

 
Figure 4.3 An example of the use of an HMM model to describe a hypothetical 
stock market 
Each circle represents a hidden Markov state. There are three states—good, bad and 
neutral—in the hypothetical stock market. Arrows indicate allowed transitions. There are three 
types of observation: up, down and no change (NoC). 

A hidden Markov model instantiates one assumption: the probability of 

an output observation 𝑂𝑂1  depends only on the state that produced the 

observation 𝑞𝑞i and not on any other states or any other observations, which 

can be called output independence. 

 𝑃𝑃(𝑜𝑜𝑖𝑖|𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑇𝑇, 𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑇𝑇) = 𝑃𝑃(𝑜𝑜𝑖𝑖|𝑞𝑞𝑖𝑖) (4-9) 

To work with the HMM, the following three fundamental questions should 

be resolved:  

1) Evaluation: given the model λ= (A, B, π), how do we compute P(O| 

λ), the probability of occurrence of the observation sequence 

𝑂𝑂 = 𝑂𝑂1,𝑂𝑂2  … 𝑂𝑂𝑡𝑡? 
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2) Decoding: given the observation sequence O and a model λ, how 

do we choose a state sequence 𝑞𝑞1,  𝑞𝑞2  … 𝑞𝑞𝑡𝑡. that best explains 

the observations? 

3) Learning: given the observation sequence O and a space of models 

found by varying the model parameters A, B and π, how do we 

locate the model that best explains the observed data? 

There are established algorithms to solve the above questions (Rabiner 

and Juang, 1986). The forward–backward algorithm to compute the P(O| λ) 

(Problem 1), the Viterbi algorithm to resolve Problem 2 and the Baum–Welch 

algorithm to train the HMM (Problem 3). 

 The forward–backward algorithm: 

The forward–backward algorithm is based on the technique known as 

dynamic programming. Dynamic programming breaks a complex problem 

down into a collection of simpler sub–problems, solves each of these sub–

problems only once, stores the solutions and uses them later, rather than 

recomputing them. The procedure of the forward–backward algorithm is shown 

below (Rabiner, 1989, Petrushin, 2000): 

Let 𝛼𝛼𝑡𝑡(𝑖𝑖) = 𝑃𝑃(𝑂𝑂1,𝑂𝑂2  …  𝑂𝑂𝑡𝑡 , 𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖|𝜆𝜆)  be the probability of the partial 

observation sequence 𝑂𝑂1,𝑂𝑂2  …  𝑂𝑂𝑡𝑡  to be produced by all possible state 

sequences that end at the state: 𝑖𝑖 − 𝑡𝑡ℎ. The forward procedure is a recursive 

algorithm for calculating 𝛼𝛼𝑡𝑡(𝑖𝑖)  for the observation sequence of increasing 

length. 

The Forward algorithm. 
1. Initialisation:  𝛼𝛼1(𝑖𝑖) = 𝜋𝜋𝑖𝑖𝑏𝑏𝑖𝑖(𝑂𝑂1)       1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 

2. Recursion: for 𝑡𝑡 = 2,3, … ,𝑇𝑇, and for 𝑗𝑗 = 1,2, … ,𝑁𝑁, compute 
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𝛼𝛼𝑡𝑡(𝑗𝑗) = � � 𝛼𝛼𝑡𝑡−1(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖 = 1

� 𝑏𝑏𝑖𝑖(𝑂𝑂𝑡𝑡) 

3. Termination: 𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ 𝛼𝛼𝑇𝑇(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 . 

 

Similar to the forward algorithm, a symmetrical backward variable 

𝛽𝛽𝑡𝑡(𝑖𝑖) = 𝑃𝑃(𝑂𝑂𝑡𝑡+1,𝑂𝑂𝑡𝑡+2 …𝑂𝑂𝑇𝑇|𝑞𝑞𝑡𝑡 = 𝑠𝑠𝑖𝑖 , 𝜆𝜆) is defined as the conditional probability of 

the partial observation sequence (𝑂𝑂𝑡𝑡+1,𝑂𝑂𝑡𝑡+2 …𝑂𝑂𝑇𝑇) from 𝑡𝑡 + 1 to the end to 

be produced by all state sequences that start at the state: 𝑖𝑖 − 𝑡𝑡ℎ . The 

backward procedure calculates recursively backward variables reversing 

along the observation sequence. 

 
The Backward algorithm. 

1. Initialisation:  𝛽𝛽T(𝑖𝑖) = 1       1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 

2. Recursion: for 𝑡𝑡 = T − 1, T − 2, … , 1, and for 𝑖𝑖 = 1,2, … ,𝑁𝑁, 

𝛽𝛽𝑡𝑡(𝑖𝑖) = � [𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖(𝑂𝑂𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)]
𝑁𝑁

j = 1

 

3. Termination: 𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ 𝜋𝜋𝑖𝑖𝛽𝛽1(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 . 

 
The Viterbi algorithm: 

The Viterbi Algorithm, which could be interpreted as a dynamic 

programming algorithm, was first proposed by Andrew J. Viterbi in 1967 

(Viterbi, 1967). The Viterbi algorithm chooses the state sequence that best 

maximises the likelihood of the state sequence for the given observation 

sequence. Let 𝛿𝛿𝑡𝑡(𝑖𝑖) be the maximal probability of state sequences of the 

length t that end in State i and produce the first t observations for the given 

model. 
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 𝛿𝛿𝑡𝑡(𝑖𝑖) = 𝑃𝑃[𝑞𝑞1𝑞𝑞2 … 𝑞𝑞𝑡𝑡−1, 𝑞𝑞𝑡𝑡 = 𝑖𝑖,𝑂𝑂1𝑂𝑂2 …𝑂𝑂𝑡𝑡|𝜆𝜆]𝑞𝑞1,𝑞𝑞2…𝑞𝑞𝑡𝑡−1
𝑚𝑚𝑎𝑎𝑚𝑚  (4-10) 

 

The Viterbi algorithm. 
1. Initialisation:  𝛿𝛿1(𝑗𝑗) = π𝑖𝑖𝑏𝑏𝑖𝑖(𝑜𝑜1); 𝜓𝜓1(𝑗𝑗) = 0   

1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 

2. Recursion: for 𝑡𝑡 = 2,3, … , T, and for 𝑗𝑗 = 1,2, … ,𝑁𝑁, 

𝛿𝛿𝑡𝑡(𝑗𝑗) = [𝛿𝛿𝑡𝑡−1(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖]𝑏𝑏𝑖𝑖(𝑂𝑂𝑡𝑡)1≤𝑖𝑖≤𝑁𝑁
𝑚𝑚𝑎𝑎𝑚𝑚  

𝜓𝜓𝑡𝑡(𝑗𝑗) = [𝛿𝛿𝑡𝑡−1(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖]1≤𝑖𝑖≤𝑁𝑁
𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚  

3. Termination: 𝑃𝑃∗ = [𝛿𝛿𝑇𝑇(𝑖𝑖)]1≤𝑖𝑖≤𝑁𝑁
𝑚𝑚𝑎𝑎𝑚𝑚  

𝑞𝑞𝑇𝑇∗ = [𝛿𝛿𝑇𝑇(𝑖𝑖)]1≤𝑖𝑖≤𝑁𝑁
𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚  

 
4. Backtracking: 𝑞𝑞𝑡𝑡∗ = 𝜓𝜓𝑡𝑡+1(𝑞𝑞𝑡𝑡+1∗ ), 𝑡𝑡 = 𝑇𝑇 − 1,𝑇𝑇 − 2, … ,1 

 
The Baum–Welch algorithm: 

The Baum–Welch algorithm was proposed to estimate the parameters of 

the HMM model—that is, the initial probability distribution π, the transition 

probabilities A, and the emission functions B. The algorithm determines the 

locally optimal parameters by essentially using three equations: one for the 

initial probabilities 𝜋𝜋, one for the transition probabilities 𝛼𝛼𝑖𝑖𝑖𝑖  and one for the 

emission probabilities 𝑏𝑏𝑖𝑖𝑠𝑠. 

𝜋𝜋𝑖𝑖 =
E (Number of times a sequence started with 𝑆𝑆𝑖𝑖)

E (Number of times a sequence started with any state)
 

(4–11) 

𝛼𝛼𝑖𝑖𝑖𝑖 =
E (Number of times the state changed from 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑖𝑖)

E (Number of times the state changed from 𝑆𝑆𝑖𝑖 to any state)
 

(4–12) 

𝑏𝑏𝑖𝑖𝑠𝑠

=
E(Number of times the state was 𝑆𝑆𝑖𝑖 and the observation was  v𝑠𝑠)

E (Number of times the state was 𝑆𝑆𝑖𝑖))
 

(4–13) 
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These equations are used to recalculate the parameters of the model. 

The process continues until the stopping criterion is reached. 

 
The Baum–Welch algorithm. 

1. Initialisation: pre–set model parameters  

2. Recursion: define 𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑞𝑞𝑡𝑡 = 𝑖𝑖, 𝑞𝑞𝑡𝑡+1 = 𝑗𝑗|𝑂𝑂, 𝜆𝜆) as the probability 

of moving from State 𝑖𝑖 at 𝑡𝑡 to State 𝑗𝑗 at 𝑡𝑡 + 1; and define 𝛾𝛾𝑡𝑡(𝑖𝑖) =

∑ 𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖=1  as the probability of starting in State 𝑖𝑖 at 𝑡𝑡. Based on the 

forward–backward algorithm, 

𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗) =
𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)

∑ ∑ 𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖(𝑜𝑜𝑡𝑡+1)𝛽𝛽𝑡𝑡+1(𝑗𝑗)𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

 

Then recalculate the model parameters 𝜋𝜋𝑖𝑖, 𝛼𝛼𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖𝑠𝑠, for  

1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 ,1 ≤ 𝑘𝑘 ≤ 𝑀𝑀 

𝜋𝜋�𝑖𝑖 = 𝛾𝛾1(𝑖𝑖) 

𝛼𝛼�𝑖𝑖𝑖𝑖 =
∑ 𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑇𝑇−1
𝑡𝑡=1

∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑇𝑇−1
𝑡𝑡=1

 

𝑏𝑏�𝑖𝑖𝑠𝑠 =
∑ (𝛾𝛾𝑡𝑡(𝑖𝑖)𝑇𝑇
𝑡𝑡=1 |𝑜𝑜𝑡𝑡 = 𝑣𝑣𝑠𝑠)

∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑇𝑇
𝑡𝑡=1

 

3. Termination: when the difference in the measure of the likelihood 

function between two consecutive iterations is less than the threshold 

or the maximal number of iterations is exceeded.  

4.3 The proposed CMHMM model 

4.3.1 The reason for proposing a new model 

Compared with the successful applications of HMMs in engineering, 

applications of the regime–switching model and HMMs in finance are still being 

developed. Dacco and Satchell (1999) find that regime–switching models 

provide good in–sample performance, but that they are usually outperformed 

by random walks when used for forecasting (out–of–sample). They suggest 
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that the reason for this problem is that even if there is only a small 

misclassification, the forecasting of the regime–switching model will lose its 

advantage of knowing the correct model specification. 

Conversely, for the application of HMMs to stock market prediction, most 

existing research (Hassan and Nath, 2005, Gupta, 2012, Huang et al., 2015) 

uses the stock price return or stock price for the observation series. However, 

in the HMM, the observation is identically and independently distributed, given 

the hidden state—a position that is obviously not true for stock returns. This is 

the disadvantage of using HMM to describe the stock market and the reason 

why we propose a new model. 

4.3.2 The proposed CMHMM model 

 
To forecast stock market indexes and stock prices, most existing 

research uses past price or past return, even where different models are used 

(Atsalakis and Valavanis, 2009). For instance, Göçken et al. (2016) build 

hybrid ANN models using technical indicators, such as the simple moving 

average of close price and the momentum of close price. Göçken et al. (2016) 

propose a forecasting model based on chaotic mapping, the firefly algorithm 

and support vector regression. To show the applicability of the proposed 

algorithm, they apply it to the daily closing stock prices of three NASDAQ firms. 

Ni et al. (2011) hybridise the fractal feature selection method and the support 

vector machine to predict the direction of the daily stock price index using past 

stock index prices. 

In contrast, more recent research utilises news sentiment to predict 

stock price movement. For example, Li et al. (2014) propose a quantitative, 
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media–aware trading strategy to investigate the effect of media on stock 

markets. Liu et al. (2015) propose a model to both identify homogeneous stock 

groups and predict stock co–movement with firm–specific social media 

metrics. Ho and Wang (2016) propose neural network models using news 

sentiment to predict the stock price movement of GOOG. 

The unique characteristic of HMMs is that the underlying system state 

is not directly observable and can only be estimated using related observable 

parameters. In this research, we can consider the stock price or return and the 

news sentiment as the observation series. Conversely, Wang and Wang (2017) 

build a game theoretical model to examine how the information advantage of 

insiders affects stock price movements. In their model, they define a variable 

called ‘economic state’ and assume: (1) the economic state can only be 

changed by the occurrence of a news event; (2) each role in the stock market 

cannot precisely know the previous economic state, the current economic state 

or the future economic state; and (3) the price of the stock is affected by the 

current economic state. 

Inspired by this model, we consider the different levels of ‘economic state’ 

as hidden states in the HMM. Each ‘economic state’ has a significant chance 

to generate different levels news sentiment and different levels stock return. 

We can observe stock return and news sentiment to estimate the hidden state, 

as the stock returns are not independent in the days following news releases. 

We therefore consider the return to be affected by the past stock return (a 

Markov model) and an HMM model. 

Figure 4.3 shows the general structure of a CMHMM model, which 

includes a discrete HMM and a Markov model. Here, s1, s2 … st is the hidden 
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states series and O11, O12  … O1t is the Observation Series 1. This observation 

series is only affected by the hidden state si. O21, O22 … O2t is the Observation 

Series 2, while OH1, OH2 … OHt  is the effect of the HMM model and 

OM1, OM2 … OMt is the effect of the Markov model. 

 
 
 

 

Figure 4.4 General Structure of a CMHMM model 
 

For the purpose of illustration, we consider a financial market in which 

there exist different levels of economic states (for instance, three levels of 

economic states: good, bad and neutral) that are hidden and cannot be 

observed. However, news events and stock price changes can be observed. 

A favourable economic state means that the economic environment has a 

positive effect on the news sentiment and the stock price during the studied 

investment period, while an unfavourable economic factor means a negative 
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effect. The stock price change is not only affected by the hidden economic 

state; it is also affected by past fluctuations in stock price. 

A CMHMM model can be described as λ =

λ(S𝐻𝐻 , V1, V2,π1, A1, B1, B2,π2, A2), where: 

1) S𝐻𝐻 = {sH1, sH2 … sHN}  is the set of hidden states, while N is the 

number of states in the model. 

2) V1 = {v11, v12 … v1M} is the set of symbols. M is the number of 

observation symbols that corresponds to the physical output 

observation series O1𝑡𝑡 of the HMM. 

3) V2 = �v21, v22 … v2Q� is the set of symbols. Q is the number of 

observation symbols that corresponds to the physical output 

observation series O2𝑡𝑡 of CMHMM, the output of series O𝐻𝐻𝑡𝑡 of the 

HMM and the output of series O𝑀𝑀𝑡𝑡 of the Markov model. For ease 

of understanding, we use S𝑀𝑀 = {sM1, sM2 … sMQ} to describe states 

in the Markov model. S𝑀𝑀 = V2. 

4) π1 = {π1i} for size N defines the initial probability distribution of 

HMM, π1i = P(S𝐻𝐻(t =  0) = SHi) , where 𝜋𝜋1𝑖𝑖  represent the 

probability of being in State i at the beginning of the experiment (i.e., 

at Time t = 0). 

5) A1 = {a1ij} for size N × N defines the transition matrix of HMM with 

a1ij = P(s𝐻𝐻(t) = sHj|s𝐻𝐻(t − 1) = sHi)  the conditional probability 

from HMM hidden State i to hidden State j. 

6) B1= {b1ik}  of size N × M defines the emission probability with 

b1ik = P(O1(t) = v1k|s𝐻𝐻(t) = sHi),  the probability of observing 

O1𝑡𝑡 at State i. 
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7) B2= {b2il}  of size N × Q defines the emission probability with 

b2il = P(O𝐻𝐻(t) = v2l|s𝐻𝐻(t) = sHi), the probability of observing O𝐻𝐻𝑡𝑡 

at State i. 

8) π2 = {π2i} for size Q defines the initial probability distribution of 

Markov model, π2i = P(S𝑀𝑀(t =  0) = SMi), where 𝜋𝜋2𝑖𝑖  represents 

the probability of being in State i at the beginning of the experiment 

(i.e., at Time t = 0). 

9) A2 = {a2ij}  for size Q × Q defines the transition matrix of the 

Markov model with a2ij = P�s𝑀𝑀(t) = sMj�s𝑀𝑀(t − 1) = s𝑀𝑀𝑖𝑖�,  the 

conditional probability from Markov model State i to State j. 

Additionally, there are two observation series, O1𝑡𝑡 and O2𝑡𝑡; O1𝑡𝑡 is only 

affected by the HMM part, whereas O2𝑡𝑡 is affected by the HMM part and the 

Markov model part. Here, OHt describes the effect of the HMM part, while OMt 

denotes the effect of the Markov model part. 

4.3.3 Three fundamental questions for CMHMM 

Just as for the HMM model, to work with CMHMM, the following three 

fundamental questions should be resolved: 

1. Evaluation: given the model λ= (A1, A2, B1, B2, π1, π2) how do we 

compute P(O|λ), the probability of occurrence of the observation 

sequence 𝑂𝑂 = �
𝑂𝑂11,𝑂𝑂12 …𝑂𝑂1𝑇𝑇
𝑂𝑂21,𝑂𝑂22 …𝑂𝑂2𝑇𝑇

�. 

2. Decoding: given the observation sequence O and a model λ, how do 

we choose a state sequence �
𝑞𝑞11,𝑞𝑞12 … 𝑞𝑞1𝑇𝑇
𝑞𝑞21, 𝑞𝑞22 … 𝑞𝑞2𝑇𝑇�  that best explains the 
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observations. Here,[𝑞𝑞11,𝑞𝑞12, … 𝑞𝑞1𝑇𝑇] is the state sequence of the HMM 

and [𝑞𝑞21, 𝑞𝑞22, … 𝑞𝑞2𝑇𝑇] is the state sequence of the Markov model. 

3. Learning: given a model and the observation sequence 𝑂𝑂 =

�
𝑂𝑂11,𝑂𝑂12 …𝑂𝑂1𝑇𝑇
𝑂𝑂21,𝑂𝑂22 …𝑂𝑂2𝑇𝑇

�, how do we adjust the model parameters (A1, A2, B1, 

B2, π1, π2) to best explain the observed data. 

In the CMHMM mode, the O2𝑡𝑡  is affected by the HMM part and the 

Markov model part, where OHt describes the effect of the HMM model part 

and OMt denotes the effect of the Markov model part. We will answer the 

above questions using the revised forward–backward algorithm to compute the 

P(O|λ) (evaluation problem), the revised Viterbi algorithm to resolve the 

decoding problem and the revised Baum–Welch algorithm to address the 

learning problem. 

The revised forward–backward algorithm for CMHMM: 

We follow the idea of breaking a complex problem down into a collection 

of simpler sub–problems, to solve each of these sub–problems only once and 

to store the solutions for later use, rather than recomputing them. For our 

CMHMM model, the revised forward–backward algorithm is shown below: 

Let 𝛼𝛼𝑡𝑡(𝑖𝑖) = 𝑃𝑃(�
𝑂𝑂11,𝑂𝑂12 …𝑂𝑂1𝑡𝑡
𝑂𝑂21,𝑂𝑂22 …𝑂𝑂2𝑡𝑡

� , 𝑞𝑞𝐻𝐻𝑡𝑡 = 𝑠𝑠𝐻𝐻𝑖𝑖|𝜆𝜆)  be the probability of the 

partial observation sequence �
𝑂𝑂11,𝑂𝑂12 …𝑂𝑂1𝑡𝑡
𝑂𝑂21,𝑂𝑂22 …𝑂𝑂2𝑡𝑡

� to be produced by all possible 

state sequences that end at State 𝑖𝑖 − 𝑡𝑡ℎ of HMM at Time t. In the CMHMM 

model, 𝑂𝑂2𝑡𝑡 is the observation and the state of the Markov model at Time t. 

The forward procedure is a recursive algorithm for calculating 𝛼𝛼𝑡𝑡(𝑖𝑖) for the 

observation sequence of increasing length. The first step is Initialisation; we 
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calculate the 𝛼𝛼𝑡𝑡(𝑖𝑖) when t = 1. The 𝛼𝛼1(𝑖𝑖) is the joint probability of the event; 

the Observation 1 is 𝑂𝑂11 and the Observation 2 is 𝑂𝑂21. These two events are 

independent. The probability of the first event is 𝜋𝜋1𝑖𝑖𝑏𝑏1𝑖𝑖(𝑂𝑂11). The probability 

of the second event, given that the hidden state is at 𝑠𝑠𝑖𝑖, is the sum probability 

of  [𝑏𝑏2𝑖𝑖(𝑂𝑂H1)] ∗ 𝜋𝜋2𝑂𝑂𝑀𝑀1 when 𝑂𝑂𝐻𝐻1 + 𝑂𝑂𝑀𝑀1 = 𝑂𝑂21. Similarly, we can calculate the 

𝛼𝛼𝑡𝑡(𝑖𝑖) when 𝑡𝑡 = 2, 3 …  𝑇𝑇. 

 

The revised forward algorithm for CMHMM. 

1. Initialization:   

𝛼𝛼1(𝑖𝑖) = 𝜋𝜋1𝑖𝑖𝑏𝑏1𝑖𝑖(𝑂𝑂11) ∗ ∑ �[𝑏𝑏2𝑖𝑖(𝑂𝑂H1)] ∗ 𝜋𝜋2𝑂𝑂𝑀𝑀1�𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑂𝑂𝐻𝐻1+𝑂𝑂𝑀𝑀1=𝑂𝑂21         

1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 

2. Recursion: for 𝑡𝑡 = 2,3, … ,𝑇𝑇, and for 𝑖𝑖 = 1,2, … ,𝑁𝑁,  

𝛼𝛼𝑡𝑡(𝑖𝑖) = {[∑ 𝛼𝛼𝑡𝑡−1(𝑘𝑘)𝛼𝛼1𝑠𝑠𝑖𝑖𝑁𝑁
𝑠𝑠=1 ]𝑏𝑏1𝑖𝑖(𝑂𝑂1𝑡𝑡)} ∗ ∑ �𝑏𝑏2𝑖𝑖(𝑂𝑂𝐻𝐻𝑡𝑡) ∗𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑂𝑂𝐻𝐻𝑡𝑡+𝑂𝑂𝑀𝑀𝑡𝑡=𝑂𝑂2𝑡𝑡

𝑎𝑎2(𝑂𝑂2,(𝑡𝑡−1),𝑂𝑂𝑀𝑀𝑡𝑡) �. 

3. Termination: 𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ 𝛼𝛼𝑇𝑇(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 .   

 

Similarly, a symmetrical backward variable 𝛽𝛽𝑡𝑡(𝑖𝑖) =

𝑃𝑃(�
𝑂𝑂1,𝑡𝑡 + 1,𝑂𝑂1,𝑡𝑡 + 2 …𝑂𝑂1,𝑇𝑇
𝑂𝑂2,𝑡𝑡 + 1,𝑂𝑂2 ,𝑡𝑡 + 2 …𝑂𝑂2,𝑇𝑇

� |𝑞𝑞𝐻𝐻𝑡𝑡 = 𝑖𝑖, 𝜆𝜆) is defined as the conditional probability 

of the partial observation sequence �
𝑂𝑂1,𝑡𝑡 + 1,𝑂𝑂1,𝑡𝑡 + 2 …𝑂𝑂1,𝑇𝑇
𝑂𝑂2,𝑡𝑡 + 1,𝑂𝑂2,𝑡𝑡 + 2 …𝑂𝑂2,𝑇𝑇

� from 𝑡𝑡 + 1 to the 

end, to be produced by all state sequences that start at State 𝑖𝑖 − 𝑡𝑡ℎ. The 

backward procedure calculates recursively backward variables reversing 

throughout the observation sequence. 
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The revised backward algorithm for CMHMM. 
1. Initialization:  𝛽𝛽T(𝑖𝑖) = 1       1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 

2. Recursion: for 𝑡𝑡 = T − 1, T − 2, … , 1, and for 𝑖𝑖 = 1,2, … ,𝑁𝑁, 

𝛽𝛽𝑡𝑡(𝑖𝑖) = ∑ {𝛼𝛼1𝑖𝑖𝑠𝑠𝑏𝑏1𝑠𝑠�𝑂𝑂1,(𝑡𝑡+1)�𝛽𝛽𝑡𝑡+1(𝑘𝑘) ∗𝑁𝑁
k=1

∑ [𝑏𝑏2𝑠𝑠�𝑂𝑂2,𝐻𝐻(𝑡𝑡+1)� ∗ 𝑎𝑎2�𝑂𝑂2𝑡𝑡 ,𝑂𝑂𝑀𝑀(𝑡𝑡+1)�}𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑂𝑂𝐻𝐻(𝑡𝑡+1)+𝑂𝑂𝑀𝑀(𝑡𝑡+1)=𝑂𝑂2(𝑡𝑡+1) . 

3. Termination:  

𝑃𝑃(𝑂𝑂|𝜆𝜆) = ∑ {𝜋𝜋1𝑖𝑖𝛽𝛽1(𝑖𝑖) ∗𝑁𝑁
𝑖𝑖=1 ∑ �[𝑏𝑏2𝑖𝑖(𝑂𝑂H1)] ∗ 𝜋𝜋2𝑂𝑂𝑀𝑀1�}𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑂𝑂𝐻𝐻1+𝑂𝑂𝑀𝑀1=𝑂𝑂21 . 

 

The revised Viterbi algorithm for CMHMM: 

The revised Viterbi algorithm chooses the state sequence that best 

maximises the likelihood of the state sequence for the given observation 

sequence. In the CMHMM, we have two state sequences: the state sequence 

of the HMM part 𝑞𝑞11, 𝑞𝑞12 … 𝑞𝑞1𝑇𝑇 and the state sequence of the Markov model 

part 𝑞𝑞𝑀𝑀1, 𝑞𝑞𝑀𝑀2, … , 𝑞𝑞𝑀𝑀𝑇𝑇  Let 𝛿𝛿𝑡𝑡(𝑖𝑖, 𝑗𝑗)  be the maximal probability of state 

sequences for the length t that end the HMM part in State 𝑖𝑖 and the HMM part 

in State 𝑗𝑗 and produce the first t observations for the given model: 

 𝛿𝛿𝑡𝑡(𝑖𝑖, 𝑗𝑗)

=
max

�
𝑞𝑞11, … 𝑞𝑞1(𝑡𝑡−1)
𝑞𝑞𝑀𝑀1, … 𝑞𝑞𝑀𝑀(𝑡𝑡−1)

� {𝑃𝑃 ��
𝑞𝑞11, … 𝑞𝑞1(𝑡𝑡−1)
𝑞𝑞𝑀𝑀1, … 𝑞𝑞𝑀𝑀(𝑡𝑡−1)

� , 𝑞𝑞1𝑡𝑡 = 𝑖𝑖, 𝑞𝑞𝑀𝑀𝑡𝑡 = 𝑗𝑗, �
𝑂𝑂11, …𝑂𝑂1𝑡𝑡
𝑂𝑂21, …𝑂𝑂2𝑡𝑡

� �𝜆𝜆�} 

(4-14) 

 

The revised Viterbi algorithm for CMHMM. 

1. Initialization: 

  𝛿𝛿1(𝑖𝑖, 𝑗𝑗) = π1𝑖𝑖𝑏𝑏1𝑖𝑖(𝑜𝑜11)*∑ �𝑏𝑏2𝑖𝑖(𝑂𝑂H1) ∗ 𝜋𝜋2𝑖𝑖�𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑂𝑂𝐻𝐻1+𝑆𝑆2𝑗𝑗=𝑂𝑂21 ; 
𝜓𝜓1(𝑖𝑖, 𝑗𝑗) = 0   

1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑄𝑄 
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2. Recursion: for 𝑡𝑡 = 2,3, … , T, and for 𝑖𝑖 = 1,2, … ,𝑁𝑁;  𝑗𝑗 = 1,2, … , Q 

𝛿𝛿𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑎𝑎𝑥𝑥𝑠𝑠,𝑎𝑎{[𝛿𝛿𝑡𝑡−1(𝑘𝑘, 𝑙𝑙)𝑎𝑎1𝑠𝑠𝑖𝑖]𝑏𝑏1𝑖𝑖(𝑜𝑜1𝑡𝑡)

∗ � �𝑏𝑏2𝑖𝑖(𝑂𝑂𝐻𝐻𝑡𝑡) ∗ 𝑎𝑎2�𝑂𝑂2,(𝑡𝑡−1), 𝑆𝑆2𝑖𝑖� �
𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑂𝑂𝐻𝐻𝑡𝑡+𝑆𝑆2𝑗𝑗=𝑂𝑂2𝑡𝑡

} 

𝜓𝜓𝑡𝑡(𝑖𝑖, 𝑗𝑗) = argmax𝑠𝑠,𝑎𝑎 (𝛿𝛿𝑡𝑡(𝑖𝑖, 𝑗𝑗)) 

3. Termination: 𝑃𝑃∗ =
𝑚𝑚𝑎𝑎𝑥𝑥

1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑄𝑄{𝛿𝛿T(𝑖𝑖, 𝑗𝑗)} 

𝑞𝑞𝑇𝑇∗ = [𝛿𝛿𝑇𝑇(𝑖𝑖, 𝑗𝑗)]1≤𝑖𝑖≤𝑁𝑁
𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚  

4. Backtracking:𝑞𝑞𝑡𝑡∗ = 𝜓𝜓𝑡𝑡+1(𝑞𝑞𝑡𝑡+1∗ ) 𝑡𝑡 = 𝑇𝑇 − 1,𝑇𝑇 − 2, … ,1 

 

The revised Baum–Welch algorithm for CMHMM: 

In the CMHMM model, we have the HMM part and the Markov model 

parts. We revise the Baum–Welch algorithm to estimate the parameters of the 

HMM model part and the parameters of the Markov model part. For the HMM 

model part, the revised Baum–Welch algorithm determines the locally optimal 

parameters by essentially using four equations: one for the initial probabilities 

𝜋𝜋1, one for the transition probabilities 𝛼𝛼1𝑖𝑖𝑖𝑖, one for the emission probabilities 

𝑏𝑏1𝑖𝑖𝑠𝑠 and one for the emission probabilities 𝑏𝑏2𝑖𝑖𝑎𝑎. 

𝜋𝜋1𝑖𝑖 =
E (Number of times a sequence started with s𝐻𝐻𝑖𝑖)

E (Number of times a sequence started with any state)
 

(4–

14) 

𝛼𝛼1𝑖𝑖𝑖𝑖

=
E (Number of times the state changed from s𝐻𝐻𝑖𝑖  to s𝐻𝐻𝑖𝑖)

E (Number of times the state changed from s𝐻𝐻𝑖𝑖  to any state)
 

(4–

15) 

𝑏𝑏1𝑖𝑖𝑠𝑠

=
E(Number of times the state was s𝐻𝐻𝑖𝑖  and the observation was  v

E (Number of times the state was s𝐻𝐻𝑖𝑖))
 

(4–

16) 
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𝑏𝑏2𝑖𝑖𝑎𝑎

=
E(Number of times the state was s𝐻𝐻𝑖𝑖  and the observation was  

E (Number of times the state was s𝐻𝐻𝑖𝑖))
 

(4–

17) 

 

For the Markov model part, the locally optimal parameters are determined 

by essentially using two equations: one for the initial probabilities 𝜋𝜋2 and  

one for the transition probabilities 𝛼𝛼2𝑖𝑖𝑖𝑖. 

𝜋𝜋2𝑖𝑖 =
E (Number of times a sequence started with s𝑀𝑀𝑖𝑖)

E (Number of times a sequence started with any state)
 

(4–

18) 

𝛼𝛼2𝑖𝑖𝑖𝑖

=
E (Number of times the state changed from s𝑀𝑀𝑖𝑖 to s𝑀𝑀𝑖𝑖)

E (Number of times the state changed from s𝑀𝑀𝑖𝑖 to any state)
 

(4–

19) 

 

These six equations are used to recalculate the parameters of the model. 

The process continues until the stopping criterion has been reached. 

 
The revised Baum–Welch Algorithm for CMHMM. 

1. Initialization: pre–set model parameters  

2. Recursion: for HMM part, we define 𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑞𝑞𝐻𝐻𝑡𝑡 = 𝑆𝑆𝐻𝐻𝑖𝑖 , 𝑞𝑞𝐻𝐻(𝑡𝑡+1) =

𝑆𝑆𝐻𝐻𝑖𝑖|𝑂𝑂, 𝜆𝜆) as the probability of moving from state 𝑆𝑆𝐻𝐻𝑖𝑖 at 𝑡𝑡 to 𝑆𝑆𝐻𝐻𝑖𝑖 at 

𝑡𝑡 + 1; 𝛾𝛾𝑡𝑡(𝑖𝑖) = ∑ 𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖=1  as the probability of starting in 𝑆𝑆𝐻𝐻𝑖𝑖  at 𝑡𝑡. 

We note 𝑃𝑃2 = ∑ [𝑏𝑏2𝑖𝑖�𝑂𝑂2,𝐻𝐻(𝑡𝑡+1)� ∗𝑛𝑛ℎ𝑛𝑛𝑛𝑛 𝑂𝑂𝐻𝐻(𝑡𝑡+1)+𝑂𝑂𝑀𝑀(𝑡𝑡+1)=𝑂𝑂2(𝑡𝑡+1)

𝑎𝑎2�𝑂𝑂2𝑡𝑡 ,𝑂𝑂𝑀𝑀(𝑡𝑡+1)�}. Based on the forward–backward algorithm, 

𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗) =
𝛼𝛼𝑡𝑡(𝑖𝑖)�𝑎𝑎1𝑖𝑖𝑖𝑖𝑏𝑏1𝑖𝑖(𝑂𝑂1(𝑡𝑡+1)� ∗ 𝑃𝑃2]𝛽𝛽𝑡𝑡+1(𝑗𝑗)

∑ ∑ 𝛼𝛼𝑡𝑡(𝑖𝑖)𝑎𝑎1𝑖𝑖𝑖𝑖𝑏𝑏1𝑖𝑖(O1(𝑡𝑡+1) ∗ P2)𝛽𝛽𝑡𝑡+1(𝑗𝑗)𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

 

Then we recalculate the model parameters 𝜋𝜋1𝑖𝑖 , 𝛼𝛼1𝑖𝑖𝑖𝑖 , 𝑏𝑏1𝑖𝑖𝑠𝑠  and 

𝑏𝑏2𝑖𝑖𝑠𝑠. 

𝜋𝜋1𝚤𝚤� = 𝛾𝛾1(𝑖𝑖) 
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𝛼𝛼1�𝑖𝑖𝑖𝑖 =
∑ 𝜉𝜉𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑇𝑇−1
𝑡𝑡=1

∑ 𝛾𝛾𝑡𝑡(𝑖𝑖)𝑇𝑇−1
𝑡𝑡=1

 

𝑏𝑏�1𝑖𝑖𝑠𝑠 =
∑ (𝛾𝛾𝑡𝑡(𝑗𝑗)𝑇𝑇
𝑡𝑡=1 |𝑂𝑂1𝑡𝑡 = 𝑣𝑣1𝑠𝑠)

∑ 𝛾𝛾𝑡𝑡(𝑗𝑗)𝑇𝑇
𝑡𝑡=1

 

𝑏𝑏�2𝑖𝑖𝑠𝑠 =
∑ (𝛾𝛾𝑡𝑡(𝑗𝑗)𝑇𝑇
𝑡𝑡=1 |𝑂𝑂𝐻𝐻𝑡𝑡 = 𝑣𝑣2𝑠𝑠)

∑ 𝛾𝛾𝑡𝑡(𝑗𝑗)𝑇𝑇
𝑡𝑡=1

 

For the HMM part, we define δ(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑞𝑞𝑀𝑀𝑡𝑡 = 𝑆𝑆𝑀𝑀𝑖𝑖 ,𝑞𝑞𝑀𝑀(𝑡𝑡+1) =

𝑆𝑆𝑀𝑀𝑖𝑖|𝑂𝑂, 𝜆𝜆) as the probability of moving from state 𝑆𝑆𝑀𝑀𝑖𝑖 at 𝑡𝑡 to 𝑆𝑆𝑀𝑀𝑖𝑖 at 

𝑡𝑡 + 1; δ𝑡𝑡(𝑖𝑖) = ∑ δ𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖=1  as the probability of starting in 𝑆𝑆𝑀𝑀𝑖𝑖 at 𝑡𝑡. 

Then recalculate the model parameters 𝜋𝜋2𝑖𝑖, 𝛼𝛼2𝑖𝑖𝑖𝑖 

𝜋𝜋2𝚤𝚤� = δ1(𝑖𝑖) 

𝛼𝛼2�𝑖𝑖𝑖𝑖 =
∑ δ𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑇𝑇−1
𝑡𝑡=1

∑ δ𝑡𝑡(𝑖𝑖)𝑇𝑇−1
𝑡𝑡=1

 

 

3. Termination: when the difference in the measure of the likelihood 

function between two consecutive iterations is less than a threshold 

or the maximal number of iterations is exceeded.  

 

The Baum–Welch Algorithm and the revised Baum–Welch Algorithm 

for CMHMM are special cases of the Expectation Maximization (EM) 

algorithm (Bilmes, 1998). The EM algorithm (Dempster et al., 1977) is an 

iterative method of finding the maximum–likelihood estimate of parameters 

in statistical models from a given data set when there are unobserved latent 

variables in the model.  

The EM iteration alternates between performing an expectation (E) 

step and a maximization (M) step. The E step finds the expectation of the 

log–likelihood evaluated with respect to the unknown data given the 

observed data and the current parameter estimates. The M step finds 

parameters that maximise the expected log–likelihood. Each iteration is 



 

110 
 

guaranteed to increase the log–likelihood and the algorithm is guaranteed to 

converge to a local maximum of the likelihood function. 

 

4.4 Applications of the proposed CMHMM model in stock price prediction 

4.4.1 Data 

For this research, we consider only one and a half years (Jan 2015–Jun 

2016) of stock price returns and news items sentiment. For the stock price, we 

examine the DJIA index. Figure 4.4 shows the daily closing prices of the DJIA 

index during the period from January 2015 to June 2016. 

 

 

Figure 4.5 Daily closing prices of the DJIA index (Jan 2015–Jun 2016) 
 

 

Our raw news items data were obtained from the RPNA database (see 

Appendix for further details). The database contains a unique observation for 
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every article and includes the date and time at which each news article was 

released, a unique firm identifier and several variables that quantify the content 

and form of each article.  

There are 39 fields that are used to describe each news item. For this 

research, we only consider only some of these fields, such as the time stamp, 

the company name, the relevance of the news, the event sentiment and the 

novelty of the news. The ‘relevance’ score ranging from 0 to 100 indicates how 

strongly a news story is related to the entity under examination and a score of 

100 suggests the article is highly relevant. For a news story with a relevance 

score of 100, the ENS represents its novelty value; the first story reporting a 

categorised event receives a novelty score of 100. The ESS represents the 

news sentiment for a given entity, ranging from 0 to 100, where 0 indicates 

extremely negative news, 50, neutral news and 100, extremely positive news. 

We have ascertained the relevance of the news to the 29 stocks based 

on the field ‘company name’ and summarised the statistics of the daily news 

volume and news sentiment. To analyse the effect of the news on the stock 

market, we describe the news that happens before the stock market’s opening 

on Day 𝑖𝑖 as the news of Day 𝑖𝑖 − 1. To build the daily news volume and news 

sentiment series, we need to consider the market hours of the NASDAQ stock 

market and the NYSE, which run from 9:30a.m. to 4:00p.m. Further, we need 

to consider summer daylight–savings time to pre–process our data set, as 

2:00am on 9 March 2014, 8 March 2015 and 13 March 2016 will become 

3:00am and 2:00am on 2 November 2014 and 1 November 2015 will become 

1:00am.  
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For each news item, the ESS represents the news sentiment for a given 

entity, ranging from 0 to 100, where 0 indicates extremely negative news, 50 

indicates neutral news and 100 indicates extremely positive news. To easily 

understand the effect of the news, we use –50 to indicate extremely negative 

news, 0 to designate neutral news and +50 to connote extremely positive news 

for each item. We only consider all news sentiment of the DJIA components. 

Table 4.1 shows the basic statistics for the daily total news sentiment of DJIA 

and DJIA components and Figure 4.5 describe daily total sentiment of the DJIA 

components during Jan 2015 to Jun 2016. 

 
 
Table 4. 1 The basic statistics for the daily total news sentiment (Jan 2015–Jun 
2016) 
 
 Symbol Mean Median Max Min Std. dev. 

 DJIA 95.81 84 509 –107 90.51 

1 MMM 1.90 0 119 –39 12.54 

2 DD 1.70 0 146 –41 12.40 

3 MCD 1.56 0 148 –44 15.45 

4 XOM 1.38 0 54 –57 11.55 

5 MRK 3.74 0 108 –31 12.24 

6 AXP 1.82 0 120 –62 13.45 

7 GE 15.27 0 166 –32 27.37 

8 MSFT 4.85 0 87 –32 14.48 

9 PFE 5.31 0 180 –56 19.50 

10 HD 3.14 0 194 –39 20.45 

11 PG 1.03 0 158 –45 15.06 

12 BA 7.31 0 228 –56 23.56 

13 INTC 2.93 0 87 –81 14.67 

14 TRV –1.24 0 13 –43 4.44 

15 CAT –0.57 0 130 –80 12.95 

16 IBM 7.78 0 117 –65 15.94 

17 UTX 4.38 0 123 –62 17.66 

18 CVX 1.22 0 66 –134 12.82 

19 JNJ 4.03 0 135 –87 18.05 
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20 VZ 3.93 0 196 –52 18.46 

21 CSCO 3.79 0 173 –47 19.51 

22 JPM 4.47 0 142 –59 16.38 

23 WMT 1.07 0 113 –51 14.82 

24 KO 3.92 0 179 –51 19.09 

25 DIS 2.42 0 109 –65 14.02 

26 UNH 2.16 0 149 –43 15.37 

27 GS 2.72 0 236 –121 19.99 

28 NKE 1.01 0 145 –196 20.19 

29 V 2.76 0 182 –57 18.02 

This table presents the summary descriptive statistics for the daily total news sentiment (from 
Jan 2015 to Jun 2016) for the 29 stocks used in this study. The summary statistics include 
mean value (Mean), median value (Median), maximum (Max), minimum (Min) and standard 
deviation (Std. dev.). 

 
 
 

 

Figure 4.6 Daily total sentiment of the DJIA components (Jan 2015–Jun 2016) 
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4.4.2 The prediction method based on CMHMM 

 
In our CMHMM model, we have two observation series; one is O1𝑡𝑡, which 

corresponds to the set of symbols V1 = {v11,  v12  … v1M}; the other is O2𝑡𝑡, 

which corresponds to the set of symbols V2 = �v21, v22  … v2Q�. Using the 

prediction method based on CMHMM, we consider the news sentiment for the 

Observation Series O1𝑡𝑡 and the log stock returns for the Observation Series 

O1𝑡𝑡. The first step using the CMHMM is to discretise the news sentiment series 

and the stock returns series. After this, we can use the data to produce a 

trained CMHMM model or to discern the probability of occurrence for the 

observation sequence. 

 During the training procedure for the CMHMM model, the parameters of 

the model λ(S, V1, V2,π1, A1, B1, B2,π2, A2)  are adjusted to maximise the 

probability that the given observation sequence O will be generated by the 

model. This is called the learning problem and was solved by the revised 

Baum–Welch algorithm. During the test period, the revised forward–backward 

algorithm is used to calculate probability. 

Figure 4.6 shows the training period wherein CMHMM is used for 

prediction. We form the initial parameters of the CMHMM model and then 

update these parameters using the revised Baum–Welch algorithm based on 

the discretised news sentiment and stock returns. When the algorithm 

converges, a trained CMHMM model is produced. Using different test data, we 

can obtain a number of trained CMHMM models. 
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Figure 4.6 The training period using CMHMM for prediction 
 

Figure 4.7 shows the test period wherein CMHMM is used for prediction. 

For a given, discretised news sentiment and stock returns series, the 

probability of the occurrence of these observation sequences is calculated by 

the revised forward–backward algorithm for all trained CMHMM models. The 

model with the largest 𝑃𝑃(𝑂𝑂|𝜆𝜆) is selected. The raw data employed to train this 

CMHMM model are used to predict the test data. That is, we consider the test 

data with the same future movement as the raw data which are used to obtain 

the largest 𝑃𝑃(𝑂𝑂|𝜆𝜆). 

 

 

 
Figure 4.7 The test period using CMHMM for prediction 
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4.4.3 Empirical results 

The data set has been divided into a training set (spanning one year from 

2 January 2015 to 31 December 2015) and a test set (spanning six months 

from 2 January 2016 to 30 June 2016). We use the training set to build the 

model and the test set to evaluate the trading strategy. 

For the HMM algorithms, there are several existing general–purpose 

software programmes, such as MATLAB and R, which are implementations of 

the various HMM algorithms. However, for our CMHMM model, it is necessary 

to code functions to implement the algorithms. In our simulations, we utilise 

MATLAB for coding. 

The first step of our simulation is discretising the news sentiment series 

and the stock returns series. For the news sentiment, we calculate the daily 

∑(ESS − 50) for the 29 DJIA index components and produce the daily news 

sentiment series. (We consider the news that reported public holidays as 

having occurred the previous weekday.) We use 20 as the cut-off for 

discretising this news sentiment series—that is, we classify all daily total news 

sentiment with a value of less than –20 as Group 1, daily total news sentiment 

between –20 and 20 (−20 ≤  daily total news sentiment ≤  20) as Group 2 

and daily total news sentiment larger than 20 as Group 3. We then obtain a 

discretised daily news sentiment series; for example, {2 1 3 3 2 1 3}. 

For the stock returns, we use the DJIA opening prices to produce the 

daily log returns series ri, defined as ri = ln (𝑝𝑝𝑖𝑖 + 1
𝑝𝑝𝑖𝑖

). We use 0.01 as the cut-

off for discretising this return series—that is, we classify daily log returns with 

values of less than –0.01 as Group 1, daily log returns between –0.01 and 0.01 

(–0.01 ≤  𝑑𝑑aily log return ≤  0.01) as Group 2 and daily log returns larger 
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than 0.01 as Group 3. This observation series O2 is the sum effect of OHi and 

OMi; OH1, OH2 … OHt is the effect of the HMM model and OM1, OM2  … OMt is 

the effect of the Markov model. We define the sum operations between OH 

and OM as shown in Table 4.2.  

 

Table 4. 2 The basic operations between OH and OM 
 

𝐎𝐎𝐇𝐇 𝐎𝐎𝐌𝐌 𝐎𝐎𝟐𝟐 

Group 1 Group 1 Group 1 

Group 1 Group 2 Group 1 

Group 1 Group 3 Group 2 

Group 2 Group 1 Group 1 

Group 2 Group 2 Group 2 

Group 2 Group 3 Group 3 

Group 3 Group 1 Group 2 

Group 3 Group 2 Group 3 

Group 3 Group 3 Group 3 

This table presents the summary operations between OH and OM. OH, OM are input; O2 is the 
output. 

 
Figure 4.8 shows the trading strategy based on CMHMM. We assume 

we have fixed money to buy stock (That is the DJIA index). We only can buy 

stock or sell stock; we cannot borrow money or short stock. Before the opening 

of the market, we use CMHMM to predict the direction of the DJIA index 

movement. If the movement is uptrend and the asset status is 0 (hold money), 

we buy the stock. If it is downtrend and the asset status is 1 (hold stock), we 

sell the stock. We also update the asset status. If we hold stock, the asset 

status is 1; if we hold money, the asset status is 0. 
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Figure 4.18 The trading strategy using CMHMM 

 

Table 4.3 shows the performance of the proposed trading strategies. We 

use different observation lengths (from 16 to 20) to train the CMHMM model 

and assess the proposed trading strategies. The best performance is when the 

observation length is 18 and the return is 10.23%. The worst performance is 

when the observation length is 16 and the return is 5.05%. However, all of 

these performances are better than those of the DJIA index, which returns 2.98% 

during the test period.  
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Table 4.3 The performance characteristics of the CMHMM prediction model 
 
Observation length Return (%) 

16 5.05 

17 3.40 

18 10.23 

19 6.30 

20 7.10 

DJIA index 2.98 

 

 

4.5 Conclusion 

 
The goal of this research is to develop methods for modelling and 

forecasting stock market data. One of the main reasons for this is that most 

existing applications of HMMs in finance use stock returns or stock prices for 

the observations, assuming that they are independent in accordance with the 

requirements of the HMM model. In this chapter, we have proposed a new 

model (CMHMM), in which the observation is conducted using a Markov model 

and an HMM model. The new model provides a flexible, general–purpose 

approach for modelling various dynamic systems that can be observed through 

univariate or multivariate time series. We have discussed the evaluation, 

decoding and learning problems associated with the CMHMM as well as the 

application of the CMHMM, whereby news sentiment functions as one 

observation and the stock return as the other. The proposed model adheres to 

the nature of the stock market. The empirical results of the trading strategy 

provided by the CMHMM show the potential applications of the proposed 

model. 
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For this research, we have used only news sentiment and stock prices 

for the observation series; however, other time series, such as those produced 

by social media, may be considered. In future research, we will consider such 

data to improve our model. 
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Chapter 5: 

Conclusions and future works 

5.1 Conclusions 

Our implicit goal in this thesis is to bridge the gap between academic and 

practical approaches by proposing methods and procedures that are 

theoretically sound and, at the same time, easily accessible for stock market 

prediction. In addition to exploring nonlinear model applications in the stock 

market, we have sought to investigate the relationship between news and the 

stock market. 

In this thesis, we discussed the stock market prediction abilities of the 

ANN model, the kNN algorithm and our proposed CMHMM model. The 

empirical results, using past stock prices and news sentiment, show the 

potential trading methods based on each of these models. 

Further, the empirical results from this dissertation contribute to an 

understanding of the relationship between news and the stock market. For 

instance, we find that news volume is not the Granger cause of stock price 

change, but that it contributes to portfolio variance both in– and out–of–sample; 

conversely, news sentiment is the Granger cause of stock price change and 

positive news sentiment contributes to the portfolio return in–sample, while 

negative news sentiment contributes to the portfolio return out–of–sample—as 

a consequence of investor overreaction to it. 
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5.2 Future works 

In this dissertation, we have discussed the relationship between news 

and the stock market and explored methods for forecasting stock price 

movement and portfolio optimisation using nonlinear models based on past 

stock prices and news items. However, there is still significant work that can 

be done to accurately predict stock price movement. 

5.2.1 Forecasting financial market movement with state–space models 

State–space models were first used in the control theory for the modelling 

of continuously changing, unobserved state variables, which may be estimated 

by the Kalman filter. The Kalman filter algorithm plays a central role in the 

modelling and can also be used to estimate and further predict the states of 

state–space models. 

Recently, scholars have extended the state–space model in the domain 

of economics and finance. For instance, Balke and Wohar (2002) employ a 

state–space model to explore the dynamics of the log price–dividend ratio 

alongside long– and short–term interest rates, real dividend growth and 

inflation. They find that the advantage of the state–space approaches is that 

they can parsimoniously model the low–frequency movements present in the 

data. Al-Anaswah and Wilfling (2011) use a state–space model with Markov 

switching to detect speculative bubbles in the financial market. They estimate 

a two–regime Markov–switching specification for the unobservable bubble 

process, which includes a scenario in which the bubble survives and one in 
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which it collapses. Škovránek et al. (2012) present a macroeconomic model to 

investigate the behaviour of the national economies of the three 

Commonwealth countries. The model, based on state–space modelling, uses 

state variables to describe the behaviour of a system, the gross domestic 

product, inflation and the unemployment rate. 

In future studies, we will construct a model of news sentiment and stock 

prices in state–space form, which we will estimate using the Kalman filter. In 

the empirical analysis, we will apply our methodology to real–world datasets 

and predict stock price movement.  

5.2.2 Analysis of high–frequency financial data using non–linear models 

In Essays 1 and 3, we considered daily news information and stock 

returns and, in Essay 2, we utilised weekly data to build a trading strategy or 

portfolio. The main reason that we used daily/weekly data is that we needed 

to decrease the trade number to account for the trading fees.  

News information and stock prices are high–frequency data. Recent 

research has used ANNs or HMMs to analyse such high–frequency financial 

data. For instance, Lahmiri (2014) presents a forecasting model that integrates 

the discrete wavelet transforming and backpropagation neural networks for 

predicting financial time series. The model uses low– and high–frequency 

components, obtained through the decomposition of the financial time series 

data by discrete wavelet transformation, as input variables for forecast future 

stock prices. Arévalo et al. (2016) use deep neural networks to forecast the 

next one–minute average price. The deep neural networks model is trained on 

the current time (hour and minute) as well as the n–lagged one–minute 
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pseudo–returns, price standard deviations and trend indicators. Cartea and 

Jaimungal (2013) employ an HMM to examine how the intraday dynamics of 

the stock market have changed and how to use this information to develop 

trading strategies at high frequencies. 

These existing studies use high–frequency financial data, only 

considering stock prices to predict stock price movement. In our future work, 

we will consider high–frequency news information and stock prices to build a 

prediction model based on neural networks or HMMs.  
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Appendix: RavenPack News Analytics (RPNA) 
In this research, we use data on public news from RPNA, Edition 3.0. 

RavenPack (http://www.ravenpack.com/) is one of the most well–known 

providers of news analytics data. Another well–known provider is Thomson 

Reuters News Analytics (TRNA). News analytics is a relatively new tool based 

on AI and designed to improve the understanding of news events. 

RPNA collect corporate news items (from the year 2000) from all public 

sources, including the Dow Jones, Barron’s and the Wall Street Journal. There 

are two categories of editions: Global Equities and Global Macro. Global 

Equities editions contain only entities that are classified as companies. These 

companies include over 40,000 listed stocks from the world’s equity markets, 

which spread across the Americas, Europe and the Asia–Pacific. Global Macro 

editions contain all entities that are not classified as companies. RavenPack 

analyses news on over 200 economies, delivering data on more than 138,000 

places, 2,500 financially relevant organisations, 155 currencies and 82 

commodities. In this thesis, we use the Global Equities editions dataset. 

There are 39 fields used to describe each news item in the Global 

Equities editions (and 27 fields per news item in the Global Macro editions); 

these include the time stamp, the entity ID, the company name, the relevance 

of the news, the event category, the event sentiment, the novelty of the news, 

the composite sentiment score of the news, the story event count and the story 

ID. Some of these fields, such as event category and event sentiment, are 

generated by RPNA through content analysis. 
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The ‘time stamp’ is used to record the UTC at which the news occurred. 

RavenPack uses the ‘relevance’ variable to differentiate between news items 

where the corporation is the main object of the original news source and news 

items where the name of the corporation is mentioned only tangentially. The 

relevance variable attributes values from 0 to 100 and a score of 100 indicates 

that an article is highly relevant. 

For a news story with a relevance score of 100, the ENS represents its 

novelty value. The first story to report a categorised event will receive a novelty 

score of 100. The novelty scores of subsequent stories about the same event 

will follow a decay function (i.e., 100, 75, 56, 42, 32, 24, 18, 13, 10, 8, 6, 4, 3, 

2, 2, 1, 1, 1, 1, 0 …). 

The ESS measures whether a particular news item contains favourable 

or unfavourable information about the underlying corporation. This variable 

represents the news sentiment for a given entity, ranging from 0 to 100, where 

0 indicates extremely negative news, 50 indicates neutral news and 100 

indicates extremely positive news. 

In terms of the sentiment, RavenPack uses a proprietary computational 

linguistic analysis algorithm to quantify positive and negative perceptions of 

facts and opinions reported in the textual content of the news (Shi et al., 2016a). 

The core of this algorithm can be divided into two steps. First, a group of 

financial experts manually tag a set of stories and build up a historical database 

of words, phrases, combinations and other word–level definitions that have 

affected the target company, market or asset class. Then, the text in the 

specific news story is compared with the historical database and the 
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sentiments score is generated by automated computer classification using a 

Bayes Classifier. 

Many researchers use RPNA to analyse the financial market. For 

instance, Smales (2014) examines the market reaction of leading Australian 

stocks to stock–specific news flow over an extended period. The study concurs 

with previous literature that news items are critically relevant to identifying 

significant effects. Akbas et al. (2016) find that high short interest is predictive 

of negative public news based on RPNA. Shi et al. (2016a) analyse how the 

hourly return volatility of S&P100 stocks from 2000 to 2010 are linked to the 

various linguistics–based sentiment scores of the news releases. 
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