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Abstract

After the introductory chapter, this thesis comprises four main chapters before

concluding in chapter 6. The thesis undertakes a systematic analysis of the con-

tinuation value based method for sequential decision problems originally due to

Jovanovic (1982). Although recently this technique is widely employed in a va-

riety of economic applications, its theoretical connections to the traditional value

function based method, relative efficiency, and optimality/analytical properties

have hitherto received no general investigation. The thesis fills this gap.

On the one hand, the thesis shows that the operator employed by this method

(referred to below as the Jovanovic operator) is semiconjugate to the traditional

Bellman operator and has essentially equivalent dynamic properties. In particu-

lar, under general assumptions, any fixed point of one of the operators is a direct

translation of a fixed point of the other. Iterative sequences generated by the

operators are also simple translations. After adding topological structure to the

generic setting, the thesis shows that the Bellman and Jovanovic operators are

both contraction mappings under identical assumptions, and that convergence

to the respective fixed points occurs at the same rate.

To ensure sufficient generality for economic applications, the optimality and sym-

metry analysis has been embedded separately in (a) spaces of potentially un-

bounded functions endowed with generic weighted supremum norm distances,

and (b) spaces of integrable functions with divergence measured by Lp norms.

Unbounded rewards are allowed provided that they do not cause continuation

values to diverge. Moreover, the theory mentioned above is established for im-

portant classes of sequential decision problems, including:

• standard optimal stopping problems (chapter 2),

• repeated optimal stopping problems (chapter 3), and

• dynamic discrete choice problems (chapter 4).
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On the other hand, despite these similarities, the thesis shows that there do re-

main important differences between the continuation value based method and

the traditional value function based method in terms of efficiency and analytical

convenience.

One of these differences concerns the dimensionality of the effective state spaces

associated with the Bellman and Jovanovic operators. First, aside from a class of

problems for which the continuation dynamics are trivial, the effective state space

of the continuation value function is never larger than that of the value function.

Second, for a broad class of sequential problems, the effective state space of the

continuation value function is strictly lower dimensional than that of the value

function. Another key difference is that continuation value functions are typi-

cally smoother than value functions. The relative smoothness comes from taking

expectations over stochastic transitions. In each scenario, it is highly advanta-

geous to work with the continuation value method rather than the traditional

value function method.

The thesis systematically characterizes these hidden advantages in terms of model

primitives and provides a range of important applications (chapters 2 and 5).

Moreover, by exploiting these advantages, the thesis develops a general theory

for sequential decision problems based around continuation values and obtains

a range of new results on optimality, optimal behavior and efficient computation

(chapter 5).
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Chapter 1

Introduction

A large variety of decision making problems involve choosing when to act in the

face of risk and uncertainty. Examples include deciding if or when to accept a job

offer, exit or enter a market, default on a loan, bring a new product to market, ex-

ploit some new technology or business opportunity, or exercise a financial or real

option (see, e.g., McCall (1970), Jovanovic (1982), Hopenhayn (1992), Dixit and

Pindyck (1994), Ericson and Pakes (1995), Peskir and Shiryaev (2006), Arellano

(2008), Perla and Tonetti (2014), Fajgelbaum et al. (2017), and Schaal (2017)).

Sequential decision problems regarding optimal timing of decisions can be solved

using standard dynamic programming methods based around the Bellman equa-

tion. There is, however, an alternative approach—introduced by Jovanovic (1982)

in the context of industry dynamics—that focuses on continuation values. The

idea involves calculating the continuation value directly, using an operator re-

ferred to below as the Jovanovic operator. This technique is now well-known to

economists and routinely employed in a variety of economic applications (see,

e.g., Gomes et al. (2001), Ljungqvist and Sargent (2008), Lise (2013), Moscarini

and Postel-Vinay (2013), Fajgelbaum et al. (2017), and Schaal (2017)).1

1To our best knowledge, Jovanovic (1982) is the first technically sophisticated economic re-

search that exploits the continuation value structure. Closest early studies that we can track typ-

ically focus on exploiting reservation rules (e.g., reservation wage, reservation cost, etc.) rather

than continuation values. Their approach covers a narrower range of problems since reservation

rules do not exist in many important applications. Moreover, to construct reservation rule struc-

tures, extra monotonicity properties are usually required and the models have to be transformed

differently in different applications. As to be shown, continuation values avoid these problems

while they are closely related to both value functions and reservation rules (if exist). Exploiting

the continuation value structure is an important generalization of earlier studies.

1
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Motivation

Despite the existence of these two parallel and commonly used methods, their

theoretical connections and relative efficiency have hitherto received no general

investigation. One cost of this status quo is that studies using continuation value

methods have been compelled to provide their own optimality analysis piece-

meal in individual applications (see, e.g., Jovanovic (1982), Moscarini and Postel-

Vinay (2013), or Fajgelbaum et al. (2017)), which fosters unnecessary replication

and inhabits applied researchers seeking off-the-shelf results. A second cost is

that the most effective choice of method vis-a-vis a given application is often un-

known ex-ante, and revealed only by experimentation in particular settings.

What is this thesis about?

This thesis undertakes the first systematic analysis of the relationship between

these two methods. Within several generic frameworks that cover a broad range

of sequential decision problems, we show that the Bellman operator and Jovanovic

operator have essentially equivalent dynamic properties in a sense to be made

precise. Despite these similarities, we further show that there are important ad-

vantages associated with the continuation value based method, both in terms of

the dimensionality of effective state spaces associated with the Bellman and Jo-

vanovic operators and in terms of the relative smoothness of their respective fixed

points. Finally, we exploit these advantages and develop a general theory for se-

quential decision problems based around continuation values. A range of new

results on optimality, optimal behavior and efficient computation are established.

What is Chapter 2 about?

In chapter 2, we begin the analysis in a generic optimal stopping setting. As

a first step, we show that the Bellman operator and the Jovanovic operator are

semiconjugate, implying that any fixed point of one of the operators is a direct

translation of a fixed point of the other, and that iterative sequences generated by

the operators are also simple translations. We then add topological structure to

the generic setting and show that, the Bellman and Jovanovic operators are both

contraction mappings under identical assumptions, and that convergence to the

respective fixed points occurs at the same rate.

To ensure sufficient generality for economic applications, we allow for unbounded

reward functions provided that they do not cause continuation values to diverge.

To that end, the optimality and symmetry analysis is conducted separately in
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• a space of potentially unbounded functions endowed with the weighted

supremum norm distance, and

• a space of integrable functions with divergence measured by Lp norm.

Although the results stated above elucidate the natural similarity between the

Bellman and Jovanovic operators, there do however remain important differences

in terms of efficiency and analytical convenience. One of these differences con-

cerns the dimensionality of the effective state spaces associated with each opera-

tor. We show that

(1) aside from a class of problems for which the continuation dynamics are triv-

ial in a sense to be made precise, the effective state space of the continuation

value function is never higher dimensional than that of the value function,

and

(2) for an important class of problems, referred to below as continuation de-

composable problems, the effective state space of the continuation value

function is strictly lower dimensional than that of the value function.

Lower dimensionality simplifies both theory and computation. To illustrate, we

study the time complexity of iteration with the Jovanovic and Bellman operators

and quantify the difference analytically. The efficiency gains of working with the

Jovanovic operator are shown to be very large—typically orders of magnitude.

Our theoretical findings are augmented by numerical results. In a typical ex-

periment involving job search, computation time falls from 4.4 days with value

function iteration (via Bellman operator) to 24 minutes using continuation value

iteration (via Jovanovic operator), in line with the predictions of the time com-

plexity based analysis.

What is Chapter 3 about?

The theory of chapter 2 is developed within a standard optimal stopping frame-

work, where the agent aims to find an optimal stopping time that terminates the

sequential decision process permanently. However, in many problems of interest

to economists, the choice to stop is only temporary. Typically, agents return to the

sequential decision problem with positive probability after termination.

In chapter 3, we extend our theory to address this kind of problem, which we

refer to as the repeated optimal stopping problem. As in chapter 2, we show that

the Bellman and Jovanovic operators are semiconjugate in a generic setting, so
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that any fixed point of one of the operators is a direct translation of a fixed point

of the other, and that any iterative sequence generated by one of the operators is

also a simple translation of that generated by the other.

Topological structure is then added to the generic setting. Similar as in chapter 2,

we consider both weighted supremum norm and Lp-norm topologies in order to

treat potentially unbounded rewards. Based on the general theory established in

the previous step, we show that the Bellman operator and Jovanovic operator are

both contraction mappings under identical assumptions, and that convergence to

the respective fixed points occurs at the same rate. All these theoretical results are

established based on the same assumptions as those of chapter 2.

What is Chapter 4 about?

The theory of chapters 2–3 is developed for sequential decision problems with the

key state component (i.e., the state variables that appear in the reward functions)

evolving as an exogenous Markov process. Although such frameworks cover a

wide range of binary choice sequential problems, there are other cases in which

the key state component follows a controlled Markov process (i.e., evolutions

of the key states are affected at least partially by some control variables). Such

structures are common for sequential decision problems where agents are faced

with more than two choices.

In chapter 4, we extend our theory to cover this class of problems, which we

refer to as dynamic discrete choice problems. We show that the Bellman and Jo-

vanovic operators are semiconjugate in general, with the same implications as

those of chapters 2–3. The optimality and symmetry analysis is then embed-

ded into a space of potentially unbounded functions endowed with a generic

weighted supremum norm. Once again, we show that the Bellman and Jovanovic

operators are both contraction mappings under identical assumptions, with the

same rate of convergence to their respective fixed points. These properties are es-

tablished by constructing a metric that evaluates the maximum of the weighted

supremum norm distances along each dimension of the candidate function space.

What is Chapter 5 about?

Another important advantage associated with the continuation value method not

discussed so far is that continuation values are typically smoother than value

functions. The relative smoothness comes from taking expectations over stochas-

tic transitions. Like lower dimensionality, increased smoothness helps on both

the analytical and the computational side. On the computational side, smoother
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functions are easier to approximate. On the analytical side, greater smoothness

lends itself to sharper results based on derivatives.

In chapter 5, we propose a general theory for sequential decision problems based

around continuation values and related Jovanovic operators, heavily exploiting

the advantages discussed so far. We obtain:

(1) conditions under which continuation values are: (a) continuous, (b) mono-

tone, and (c) differentiable as functions of the economic environment;

(2) conditions under which parametric continuity holds (often required for proofs

of existence of recursive equilibria in many-agent environments);

(3) conditions under which threshold policies are: (a) continuous, (b) mono-

tone, and (c) differentiable.

In the latter case we derive an expression for the derivative of the threshold rel-

ative to other aspects of the economic environment and show how it contributes

to economic intuition.

The closest counterparts to these results in the existing literature are those con-

cerning individual applications. Our theory generalizes and extends these results

in a unified framework. Some results, such as differentiability of threshold poli-

cies, are new to the literature to the best of our knowledge.



Chapter 2

Continuation Value Methods for

Sequential Decisions: Convergence

Properties and Efficiency

2.1 Introduction

In this chapter, we begin a systematic analysis of the relationship between the tra-

ditional value function based method and the continuation value based method

in a generic optimal stopping setting. In particular, section 2.2 outlines the prob-

lem, longer proofs and the characterization of continuation nontriviality are de-

ferred to the appendix, while the rest of the chapter is structurized as follows:

Section 2.3 explores the symmetric theoretical properties of the Bellman and Jo-

vanovic operators in terms of fixed points and convergence. In particular, sec-

tion 2.3.1 shows that the Bellman operator and the Jovanovic operator are semi-

conjugate. The implications are mentioned in the previous chapter. In sections

2.3.2–2.3.3, we add topological structure to the generic setting and show that the

Bellman operator and Jovanovic operator are both contraction mappings under

identical assumptions, and that convergence to the respective fixed points occurs

at the same rate.

To ensure sufficient generality for economic applications, we embed our optimal-

ity and symmetry analysis separately in (a) a space of potentially unbounded

functions endowed with a generic weighted supremum norm distance (section

2.3.2), and (b) a space of integrable functions with divergence measured by Lp

norm (section 2.3.3). In particular, unbounded rewards are allowed provided that

6



2.2. SET UP 7

they do not cause continuation values to diverge. In the first case, we draw on and

extend work on dynamic programming with unbounded rewards found in sev-

eral important studies, including Boyd (1990), Rincón-Zapatero and Rodrı́guez-

Palmero (2003), Martins-da Rocha and Vailakis (2010), Jaśkiewicz and Nowak

(2011), Jaśkiewicz et al. (2014), Kamihigashi (2014) and Bäuerle and Jaśkiewicz

(2018). The theory we develop in the second case is new to the literature, to the

best of our knowledge.

Despite the essentially equivalent dynamic properties between the Bellman and

Jovanovic operators established in section 2.3, section 2.4 reveals several impor-

tant advantages associated with the continuation value based method. One is

that, for continuation decomposable problems, the effective state space of the

continuation value function is strictly lower dimensional than that of the value

function. We characterize this important class of problems in terms of the struc-

ture of reward and state transition functions.

Lower dimensionality simplifies both theory and computation. As an illustration,

section 2.4 studies the time complexity of iteration with the Jovanovic and Bell-

man operators and quantifies the difference analytically. These large efficiency

gains—typically measured in orders of magnitude—arise because, in the pres-

ence of continuation decomposability, continuation value based methods miti-

gate the curse of dimensionality, one of the primary stumbling blocks for dynamic

programming (Rust (1997)).

Section 2.5 provides a range of important applications that are continuation de-

composable. In particular, numerical results from these applications are in line

with the predictions of the time complexity based analysis of section 2.4.

2.2 Set Up

This section presents a generic optimal stopping problem and the key operators

and optimality concepts. As a first step, we introduce some mathematical tech-

niques and notation used in this chapter.

2.2.1 Preliminaries

Let N be the set of natural numbers and N0 := {0} ∪N. For a, b ∈ R, let a ∨ b :=

max{a, b}. If f and g are functions, then ( f ∨ g)(x) := f (x) ∨ g(x). Given a
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Polish space Z and Borel sets B, let mB be all B-measurable functions from Z to

R. Given κ : Z→ (0, ∞), the κ-weighted supremum norm of f : Z→ R is

‖ f ‖κ := sup
z∈Z

| f (z)|
κ(z)

.

If ‖ f ‖κ < ∞, we say that f is κ-bounded. The symbol bκZ denotes all B-measurable

functions from Z to R that are κ-bounded.

Given a probability measure π on (Z, B) and a constant p ≥ 1, let

‖ f ‖p :=
(∫
| f |p dπ

)1/p
.

Let Lp(π) be all (equivalence classes of ) functions f ∈ mB for which ‖ f ‖p < ∞.

Both (bκZ, ‖ · ‖κ) and (Lp(π), ‖ · ‖p) form Banach spaces.

A stochastic kernel P on Z is a map P : Z×B → [0, 1] such that z 7→ P(z, B) is

B-measurable for each B ∈ B and B 7→ P(z, B) is a probability measure for each

z ∈ Z. For all t ∈ N, Pt(z, B) :=
∫

P(z′, B)Pt−1(z, dz′) is the probability of a state

transition from z to B ∈ B in t steps, where P1(z, B) := P(z, B). A Z-valued

stochastic process {Zt} on some probability space (Ω, F ,P) is called P-Markov if

P{Zt+1 ∈ B |Ft} = P{Zt+1 ∈ B | Zt} = P(Zt, B)

P-almost surely for all t ∈ N0 and all B ∈ B. Here {Ft} is the natural filtration

induced by {Zt}. In what follows, Pz evaluates probabilities conditional on Z0 =

z and E z is the corresponding expectations operator.

2.2.2 Optimal Stopping

Let (Z, B) be a measurable space. For the purposes of this chapter, an optimal

stopping problem is a tuple (β, c, P, r) where

• β ∈ (0, 1) is discount factor,

• c ∈ mB is a flow continuation reward function,

• P is a stochastic kernel on (Z, B), and

• r ∈ mB is a terminal reward function.
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The interpretation is as follows: At time t an agent observes Zt, the current re-

alization of a Z-valued P-Markov process {Zt}t≥0, and chooses between stop-

ping and continuing. Stopping generates terminal reward r(Zt) while continuing

yields flow continuation reward c(Zt). If the agent continues, the time t + 1 state

Zt+1 is observed and the process repeats. Future rewards are discounted at rate

β.

AnN0-valued random variable τ is called a (finite) stopping time ifP{τ < ∞} = 1

and {τ ≤ t} ∈ Ft for all t ≥ 0. Let M denote all such stopping times. The value

function v∗ for (β, c, P, r) is defined at z ∈ Z by

v∗(z) := sup
τ∈M

E z

{
τ−1

∑
t=0

βtc(Zt) + βτr(Zτ)

}
. (2.1)

A stopping time τ ∈ M is called optimal if it attains the supremum in (2.1). As-

sume that the value function solves the Bellman equation1

v∗(z) = max
{

r(z), c(z) + β
∫

v∗(z′)P(z, dz′)
}

. (2.2)

The corresponding Bellman operator is

Tv(z) = max
{

r(z), c(z) + β
∫

v(z′)P(z, dz′)
}

.

The continuation value function associated with this problem is defined at z ∈ Z by

ψ∗(z) := c(z) + β
∫

v∗(z′)P(z, dz′). (2.3)

Using (2.2) and (2.3), we observe that ψ∗ satisfies

ψ∗(z) = c(z) + β
∫

max
{

r(z′), ψ∗(z′)
}

P(z, dz′). (2.4)

Analogous to the Bellman operator, the continuation value operator or Jovanovic

operator Q is constructed such that the continuation value function ψ∗ is a fixed

point of

Qψ(z) = c(z) + β
∫

max{r(z′), ψ(z′)}P(z, dz′). (2.5)

2.3 Symmetries Between the Operators

In this section we show that Bellman and Jovanovic operators are semiconju-

gate and discuss the implications. The semiconjugate relationship is most easily

1A sufficient condition is that E z

(
supk≥0

∣∣∣∑k−1
t=0 βtc(Zt) + βkr(Zk)

∣∣∣) < ∞ for all z ∈ Z, as

can be shown by applying theorem 1.11 (claim 1) of Peskir and Shiryaev (2006). Later we pro-

vide alternative versions of sufficient conditions that are closer to our primitive set up (see, e.g.,

appendix 2.E).
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shown using operator-theoretic notation. To this end, let Ph(z) :=
∫

h(z′)P(z, dz′)

for all integrable function h ∈ mB and observe that the Bellman operator T can

then be expressed as T = RL, where

Rψ := r ∨ ψ and Lv := c + βPv. (2.6)

(For any two operators we write the composition A ◦ B more simply as AB.)

2.3.1 General Theory

Let V be a subset of mB such that v∗ ∈ V and TV ⊂ V . The set V is understood

as a set of candidate value functions. (Specific classes of functions are considered

in the next section.) Let C be defined by

C := LV = {ψ ∈ mB : ψ = c + βPv for some v ∈ V} . (2.7)

By definition, L is a surjective mapping from V onto C. It is also true that R maps

C into V . Indeed, if ψ ∈ C, then there exists a v ∈ V such that ψ = Lv, and

Rψ = RLv = Tv, which lies in V by assumption.

Lemma 2.3.1. On C, the operator Q satisfies Q = LR, and QC ⊂ C.

Proof. The first claim is immediate from the definitions. The second follows from

the claims just established (i.e., R maps C to V and L maps V to C).

The preceding discussion implies that Q and T are semiconjugate, in the sense that

LT = QL on V and TR = RQ on C. Indeed, since T = RL and Q = LR, we have

LT = LRL = QL and TR = RLR = RQ as claimed. This leads to the next result:

Proposition 2.3.1. The following statements are true:

(1) If v is a fixed point of T in V , then Lv is a fixed point of Q in C.

(2) If ψ is a fixed point of Q in C, then Rψ is a fixed point of T in V .

Proof. To prove the first claim, fix v ∈ V . By the definition of C, Lv ∈ C. Moreover,

since v = Tv, we have QLv = LTv = Lv. Hence, Lv is a fixed point of Q in C.

Regarding the second claim, fix ψ ∈ C. Since R maps C into V as shown above,

Rψ ∈ V . Since ψ = Qψ, we have TRψ = RQψ = Rψ. Hence, Rψ is a fixed point

of T in V .
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The following result says that, at least on a theoretical level, iterating with either

T or Q is essentially equivalent.

Proposition 2.3.2. Tt+1 = RQtL on V and Qt+1 = LTtR on C for all t ∈ N0.

Proof. That the claim holds when t = 0 has already been established. Now

suppose the claim is true for arbitrary t. By the induction hypothesis we have

Tt = RQt−1L and Qt = LTt−1R. Since Q and T are semiconjugate as shown

above, we have Tt+1 = TTt = TRQt−1L = RQQt−1L = RQtL and Qt+1 =

QQt = QLTt−1R = LTTt−1R = LTtR. Hence, the claim holds by induction.

The theory above is based on the primitive assumption of a candidate value func-

tion space V with properties v∗ ∈ V and TV ⊂ V . Similar results can be estab-

lished if we start with a generic candidate continuation value function space C

that satisfies ψ∗ ∈ C and QC ⊂ C . Appendix 2.A gives details.

2.3.2 Symmetry under Weighted Supremum Norm

Next we impose a weighted supremum norm on the domain of T and Q in or-

der to compare contractivity, optimality and related properties. The following

assumption generalizes the standard weighted supremum norm assumption of

Boyd (1990).

Assumption 2.3.1. There exist a B-measurable function g : Z → R+ and con-

stants n ∈ N0 and a1, · · · , a4, m, d ∈ R+ such that βm < 1, and, for all z ∈ Z,∫
|r(z′)|Pn(z, dz′) ≤ a1g(z) + a2, (2.8)

∫
|c(z′)|Pn(z, dz′) ≤ a3g(z) + a4, (2.9)

and
∫

g(z′)P(z, dz′) ≤ mg(z) + d. (2.10)

The interpretation is that bothE z|r(Zn)| andE z|c(Zn)| are small relative to some

function g such that E zg(Zt) does not grow too fast.2 Slow growth in E zg(Zt) is

imposed by (2.10), which can be understood as a geometric drift condition (see,

e.g., Meyn and Tweedie (2009), chapter 15). Note that if both r and c are bounded,

then assumption 2.3.1 holds for n := 0, g := ‖r‖ ∨ ‖c‖, m := 1 and d := 0.

2One can show that if assumption 2.3.1 holds for some n, then it must hold for all integer

n′ > n. Hence, to verify assumption 2.3.1, it suffices to find n1 ∈ N0 for which (2.8) holds,

n2 ∈ N0 for which (2.9) holds, and that the measurable map g satisfies (2.10).
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Assumption 2.3.1 reduces to that of Boyd (1990) if we set n = 0. Here we admit

consideration of future transitions to enlarge the set of possible weight functions.

The value of this generalization is illustrated in section 2.5.

Theorem 2.3.1. Let assumption 2.3.1 hold. Then there exist positive constants m′ and

d′ such that for `, κ : Z→ R defined by3

`(z) := m′
(

n−1

∑
t=1

E z|r(Zt)|+
n−1

∑
t=0

E z|c(Zt)|
)
+ g(z) + d′ (2.11)

and κ(z) := `(z) + m′|r(z)|, the following statements hold:

(1) Q is a contraction mapping on (b`Z, ‖ · ‖`), with unique fixed point ψ∗ ∈ b`Z.

(2) T is a contraction mapping on (bκZ, ‖ · ‖κ), with unique fixed point v∗ ∈ bκZ.

The next result shows that the convergence rates of Q and T are the same. In stat-

ing it, L and R are as defined in (2.6), while ρ ∈ (0, 1) is the contraction coefficient

of T derived in theorem 2.3.1 (see (2.B.1) in appendix 2.B for details).

Proposition 2.3.3. If assumption 2.3.1 holds, then

R(b`Z) ⊂ bκZ and L(bκZ) ⊂ b`Z,

and for all t ∈ N0, the following statements are true:

(1)
∥∥Qt+1ψ− ψ∗

∥∥
` ≤ ρ

∥∥TtRψ− v∗
∥∥

κ
for all ψ ∈ b`Z.

(2)
∥∥Tt+1v− v∗

∥∥
κ
≤
∥∥QtLv− ψ∗

∥∥
` for all v ∈ bκZ.

Proposition 2.3.3 extends proposition 2.3.2 and lemma 2.A.1 (see appendix 2.A),

and their connections can be seen by letting V := bκZ and C := b`Z. Notably,

claim (1) implies that Q converges as fast as T, even when its convergence is

weighted by a smaller function (since ` ≤ κ).

The two operators are also symmetric in terms of continuity of fixed points. The

next result illustrates this, when Z is any separable and completely metrizable

topological space (e.g., any Gδ subset of Rn) and B is its Borel sets.

Assumption 2.3.2. (1) The stochastic kernel P is Feller; that is, z 7→
∫

h(z′)P(z, dz′)

is continuous and bounded on Z whenever h is. (2) c, r, `, z 7→
∫
|r(z′)|P(z, dz′),

and z 7→
∫
`(z′)P(z, dz′) are continuous.4

3If assumption 2.3.1 holds for n = 0, then `(z) = g(z) + d′ and κ(z) = m′|r(z)|+ g(z) + d′. To

guarantee that ` and κ are real-valued, here and below, we assume thatE z|r(Zt)|, E z|c(Zt)| < ∞

for t = 1, · · · , n− 1, which holds trivially in most applications of interest.
4A sufficient condition for assumption 2.3.2-(2) is: g and z 7→ E zg(Z1) are continuous, and

z 7→ E z|r(Zt)|,E z|c(Zt)| are continuous for t = 0, ..., n (with n as defined in assumption 2.3.1).
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Proposition 2.3.4. If assumptions 2.3.1–2.3.2 hold, then ψ∗ and v∗ are continuous.

2.3.3 Symmetry in Lp

The results of the preceding section for the most part carry over if we switch the

underlying space to Lp. This section provides details.

Assumption 2.3.3. The state process {Zt} admits a stationary distribution π and

the reward functions r, c are in Lq(π) for some q ≥ 1.

Theorem 2.3.2. If assumption 2.3.3 holds, then for all 1 ≤ p ≤ q, we have5

(1) Q is a contraction mapping on
(

Lp(π), ‖ · ‖p
)

of modulus β, and the unique fixed

point of Q in Lp(π) is ψ∗.

(2) T is a contraction mapping on
(

Lp(π), ‖ · ‖p
)

of modulus β, and the unique fixed

point of T in Lp(π) is v∗.

The following result implies that Q and T have the same rate of convergence in

terms of Lp-norm distance.

Proposition 2.3.5. If assumption 2.3.3 holds, then for all 1 ≤ p ≤ q,

R
(

Lp(π)
)
⊂ Lp(π) and L

(
Lp(π)

)
⊂ Lp(π).

Moreover, for all 1 ≤ p ≤ q and t ∈ N0, the following statements hold:

(1)
∥∥Qt+1ψ− ψ∗

∥∥
p ≤ β

∥∥TtRψ− v∗
∥∥

p for all ψ ∈ Lp(π).

(2)
∥∥Tt+1v− v∗

∥∥
p ≤

∥∥QtLv− ψ∗
∥∥

p for all v ∈ Lp(π).

Proposition 2.3.5 is an extension of proposition 2.3.2 and lemma 2.A.1 (see ap-

pendix 2.A) in an Lp space, and their connections can be seen by letting V =

C := Lp(π).

2.4 Asymmetries Between the Operators

The preceding results show that T and Q exhibit dynamics that are in many

senses symmetric. However, for a large number of economic models, the effec-

tive state space for Q is lower dimensional than that of T. This section provides

5We typically omit phrases such as “with probability one” or “almost surely” in what follows.

Indeed, functional equivalences and uniqueness of fixed points are up to a π-null set.
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definitions and analysis, with examples deferred to section 2.5. Throughout, we

write

Z = X× Y and Zt = (Xt, Yt)

where X is a Borel subset of Rk and Y is a Borel subset of Rn.

2.4.1 Continuation Decomposability

We call an optimal stopping problem (β, c, P, r) continuation decomposable if c and

P are such that

(a) (Xt+1, Yt+1) and Xt are independent given Yt and

(b) c is a function of Yt but not Xt.

Condition (a) implies that P(z, dz′) can be represented by the conditional distri-

bution of (x′, y′) given y, denoted below by Fy(x′, y′). On an intuitive level, con-

tinuation decomposable problems are those where some state variables matter

only for terminal rewards.

The significance of continuation decomposability is that, for such models, the

Jovanovic operator can be written as

Qψ(y) = c(y) + β
∫

max
{

r(x′, y′), ψ(y′)
}

dFy(x′, y′).

Thus, Q acts on functions defined over Y alone. In contrast, assuming that all

state variables are non-trivial in the sense that they impact on the value function,

T continues to act on functions defined over all of Z = X × Y. The set Y is k

dimensions lower than Z.

Remark 2.4.1. Indeed, for most applications of interest (aside from a class of prob-

lems for which the continuation dynamics are trivial in a sense to be made pre-

cise), the effective state space of the continuation value function is never larger

than that of the value function, the fixed point of the Bellman operator. Appendix

2.D characterizes continuation nontriviality in detail and provides a formal proof

of the (weakly) lower state dimension of the continuation value function.

2.4.2 Complexity Analysis

One way to compare the efficiency of Q and T is to consider the time complexity

of continuation value function iteration (CVI) and value function iteration (VFI).

Both finite and infinite space approximations are considered.
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Finite Space

Let X = ×k
i=1X

i and Y = ×n
j=1Y

j, where Xi and Y j are subsets ofR. Each Xi (resp.,

Y j) is represented by a grid of Ki (resp., Mj) points. Integration operations in both

VFI and CVI are replaced by summations. We use P̂ and F̂ to denote the transition

matrices (i.e., discretized stochastic kernels) for VFI and CVI respectively.6

Let K := Πk
i=1Ki and M := Πn

j=1Mj with K = 1 for k = 0. Let n > 0. There are KM

grid points on Z = X× Y and M grid points on Y. The matrix P̂ is (KM)× (KM)

and F̂ is M × (KM). VFI and CVI are implemented by the operators T̂ and Q̂

defined respectively by

T̂~v :=~r ∨ (~c + βP̂~v) and Q̂~ψy := ~cy + βF̂(~r ∨ ~ψ).

Here ~q represents a column vector with i-th element equal to q(xi, yi), where

(xi, yi) is the i-th element of the list of grid points on X× Y. Let ~qy denote the

column vector with the j-th element equal to q(yj), where yj is the j-th element of

the list of grid points on Y. The vectors ~v,~r, ~c and ~ψ are (KM)× 1, while ~cy and
~ψy are M× 1.

Infinite Space

We use the same number of grid points as before, but now for continuous state

function approximation rather than discretization. In particular, we replace the

discrete state summation with Monte Carlo integration. Assume that the transi-

tion function of the state process follows

Xt+1 = f1(Yt, Wt+1), Yt+1 = f2(Yt, Wt+1), {Wt}
IID∼ Φ.

After drawing U1, · · · , UN
IID∼ Φ, with N being the MC sample size, CVI and VFI

are implemented by

Q̂ψ(y) := c(y) + β
1
N

N

∑
i=1

max {r ( f1(y, Ui), f2(y, Ui)) , h〈ψ〉 ( f2(y, Ui))}

and T̂v(x, y) := max

{
r(x, y), c(y) + β

1
N

N

∑
i=1

g〈v〉 ( f1(y, Ui), f2(y, Ui))

}
.

Here ψ = {ψ(y)}, with y in the set of grid points on Y, and v = {v(x, y)}, with

(x, y) in the set of grid points on X× Y. Moreover, h〈·〉 and g〈·〉 are interpolating

functions for CVI and VFI respectively. For example, h〈ψ〉(z) can be understood

as interpolating the vector ψ to obtain a function h〈ψ〉 and then evaluating at z.

6See Tauchen and Hussey (1991) for a general discussion of discretization methods.
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Time Complexity

Table 2.1 provides the time complexity of CVI and VFI, estimated by counting

the number of floating point operations. Each such operation is assumed to have

complexityO(1).7 Function evaluations associated with the model primitives are

also assumed to be of order O(1).

Table 2.1: Time complexity: VFI v.s CVI

Cmplx. VFI: 1-loop CVI: 1-loop VFI: n-loop CVI: n-loop

FS O(K2M2) O(KM2) O(nK2M2) O(nKM2)

IS O(NKM log(KM)) O(NM log(M)) O(nNKM log(KM)) O(nNM log(M))

Note: For IS approximation, binary search is used when we evaluate the interpolating function at a given point.
The results hold for linear, quadratic, cubic, and k-nearest neighbors interpolations.

For both finite space (FS) and infinite space (IS) approximations, CVI provides

better performance than VFI. For FS, CVI is more efficient than VFI by order

O(K), while for IS, CVI is more efficient than VFI by orderO (K log(KM)/ log(M)).

For example, if we have 250 grid points in each dimension, then in the FS case,

evaluating a given number of loops will take around 250k times longer via CVI

than via VFI, after adjusting for order approximations.

See appendix 2.C for a proof of the results in table 2.1.

2.5 Applications

We consider six applications. For the first two cases, we discuss optimality, con-

tinuation decomposability and compare the numerical efficiency of the Bellman

and Jovanovic operators. For the remaining cases, we discuss only continuation

decomposability. For numerical works we apply infinite space (IS) approxima-

tion with N = 1000 and use linear interpolation for function approximation. All

simulations of this section are processed in a standard Julia environment on a

laptop witha a 2.9 GHz Intel Core i7 and 32GB RAM.8

7Floating point operations are any elementary actions (e.g., +,×, ∨, ∧) on or assignments with

floating point numbers. If f and g are scalar functions onRn, we write f (x) = O(g(x)) whenever

there exist C, M > 0 such that ‖x‖ ≥ M implies | f (x)| ≤ C|g(x)|, where ‖ · ‖ is the sup norm.
8The Julia code needed to replicate all of the applications discussed in this section, to-

gether with alternative versions written in Python, can be found at https://github.com/jstac/

continuation_values_public.

https://github.com/jstac/continuation_values_public
https://github.com/jstac/continuation_values_public
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2.5.1 Job Search

Consider a worker who receives current wage offer wt and chooses to either ac-

cept and work permanently at that wage, or reject the offer, receive unemploy-

ment compensation c0 and reconsider next period (see, e.g., McCall (1970) or Pis-

sarides (2000)). The wage process {wt}t≥0 is assumed to be

wt = ηt + θtξt, where ln θt = ρ ln θt−1 + ln εt (2.12)

and {ξt}, {εt} and {ηt} are positive IID innovations that are mutually indepen-

dent. We interpret θt as the persistent component of labor income and allow it

to be nonstationary. When ηt is constant it can be interpreted as social security.9

Viewed as an optimal stopping problem,

• the state is z = (w, θ), with stochastic kernel P defined by (2.12),

• the terminal reward is r(w) = u(w)/(1− β), where u is a utility function,

• and the flow continuation reward c is the constant u(c0).

The model is continuation decomposable, as can be seen by letting Xt := wt and

Yt := θt. In particular, c does not depend on wt and (wt+1, θt+1) is independent of

wt given θt. Hence the effective state space for Q is one-dimensional while that of

T is two-dimensional. Letting Fθ(w′, θ′) be the distribution of (wt+1, θt+1) given

θt, the Bellman operator satisfies

Tv(w, θ) = max
{

u(w)

1− β
, u(c0) + β

∫
v(w′, θ′)dFθ(w′, θ′)

}
,

while the Jovanovic operator is

Qψ(θ) = u(c0) + β
∫

max
{

u(w′)
1− β

, ψ(θ′)

}
dFθ(w′, θ′).

Whether or not assumptions 2.3.1–2.3.3 hold depends on the primitives. Suppose

for example that

u(w) =
w1−γ

1− γ
with u(w) = ln w when γ = 1.

9Similar dynamics appear in many labor market, search-theoretic and real options studies (see

e.g., Gomes et al. (2001), Low et al. (2010), Chatterjee and Eyigungor (2012), Bagger et al. (2014),

and Kellogg (2014)).
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We focus here on the case γ = 1 and 0 ≤ ρ < 1, although other cases such

as γ > 1 and −1 < ρ < 0 can be treated with similar arguments.10 We take

εt ∼ LN(0, σ2). Regarding assumptions 2.3.1–2.3.2, we assume that {ηt}, {η−1
t }

and {ξt} have finite first moments.

The reward function for this dynamic program is unbounded above and below,

and the state space is likewise unbounded. Nevertheless, we can establish the

key optimality results from section 2.3 as follows. First, choose n ∈ N0 such that

β exp(ρ2nσ2) < 1, and let

g(z) = g(w, θ) = θρn
.

To verify (2.8), we make use of the following technical lemma, which is obtained

from the law of motion (2.12), and provides a bound on expected time n wages in

terms of initial condition θ0 = θ. The proof is in appendix 2.B.

Lemma 2.5.1. For all n ∈ N0, (a) there exist a pair An, B ∈ R such that E θ |ln wn| ≤
An θρn

+ B, and (b) θ 7→ E θ| ln wn| is continuous.

Now (2.8) can be established, since, conditioning on θ0 = θ,

E θ|r(wn)| =
E θ| ln wn|

1− β
≤ An

1− β
θρn

+
B

1− β
=

An

1− β
g(w, θ) +

B
1− β

.

Condition (2.9) is trivial because c is constant. To see that condition (2.10) holds,

note that ρ ∈ [0, 1), so, conditioning on θ0 = θ once more,

E θ g(w1, θ1) = E (θρε1)
ρn

= θρn+1
exp(ρ2nσ2/2) ≤ (θρn

+ 1) exp(ρ2nσ2).

Hence (2.10) holds with m = d = exp(ρ2nσ2). Assumption 2.3.1 has now been

established. By theorem 2.3.1 and proposition 2.3.3, Q and T are contraction map-

pings with the same rate of convergence. The above analysis also implies that

assumption 2.3.2 holds (see footnote 4), so proposition 2.3.4 implies that both v∗

and ψ∗ are continuous.

We can also embed this problem in Lp(π). To verify assumption 2.3.3, we assume

that the distributions of {ηt} and {ξt} are represented respectively by densities µ

and ν, and that {ηt}, {η−1
t } and {ξt} have finite q-th moments.

Since ρ ∈ [0, 1), the state process {(wt, θt)} has stationary density

π(w, θ) = f ∗(θ) p(w|θ),
10One can also treat the nonstationary case ρ = ±1 under some further parametric assump-

tions using the weighted supremum norm techniques developed above. Details are provided in

chapter 5 of this thesis.
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where f ∗(θ) = LN(0, σ2/(1− ρ2)) and
∫

A p(w|θ)dw =
∫
{η+θξ∈A} µ(η)ν(ξ)d(η, ξ).

Then the next lemma (proved in appendix 2.B) implies that assumption 2.3.3

holds.

Lemma 2.5.2. The reward functions r and c are in Lq(π).

By theorem 2.3.2 and proposition 2.3.5, Q and T are both contraction mappings

with the same rate of convergence (in Lp norm distances, for all 1 ≤ p ≤ q).

Finally, we compare the numerical efficiency of the Bellman and Jovanovic op-

erators. Table 2.2 compares the time taken for CVI and VFI under different grid

sizes. In tests 1–6 (50 loops), CVI is on average 261 times faster than VFI. More-

over, as we increase the grid size of θ and w, computation time for VFI grows

exponentially. Table 2.3 continues the analysis by comparing CVI and VFI under

different levels of risk aversion (δ) and income persistency (ρ). Among tests 1–8

(50 loops), CVI is 267 times faster than VFI on average.

Recall from section 2.4.2 that CVI creates an order O(K log(KM)/ log(M)) speed

up over VFI for the MC algorithm. In this model, K and M are respectively the

number of grid points for wt and θt. As shown in table 2.2–2.3, CVI is approx-

imately K times faster than VFI in each test, which is broadly in line with the

theory.

Table 2.2: Time in seconds under different grid sizes

Time & Size Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Grid size (θ, w) (200, 200) (200, 400) (300, 200) (300, 400) (400, 200) (400, 400)

Loop 10
VFI 29.70 62.47 43.78 95.19 59.47 128.73

CVI 0.325 0.176 0.259 0.268 0.361 0.348

Loop 20
VFI 58.37 125.64 87.44 190.22 118.75 257.32

CVI 0.493 0.339 0.517 0.529 0.726 0.688

Loop 50
VFI 114.38 314.30 218.62 475.78 297.34 644.57

CVI 1.014 0.824 1.277 1.289 1.786 1.757

We set ρ = 0.75, β = 0.95, c̃0 = 0.6, δ = 1, γu = 10−4, v = LN(0, 10−6) and h = LN(0, 5× 10−4). The grid
points for (θ, w) lie in [10−4, 10]2.

2.5.2 Search with Learning

Consider a job search problem with learning (see, e.g., McCall (1970), Pries and

Rogerson (2005), Nagypál (2007), or Ljungqvist and Sargent (2012)). The setup is
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Table 2.3: Time in seconds under different δ and ρ values

Time & Value Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

Value (δ, ρ) (2, 0.8) (2, 0.7) (2, 0.6) (3, 0.8) (3, 0.7) (3, 0.6) (4, 0.8) (4, 0.7)

Loop 10
VFI 69.75 67.86 66.61 69.80 67.68 66.70 69.96 67.84

CVI 0.205 0.161 0.163 0.375 0.394 0.386 0.372 0.371

Loop 20
VFI 139.23 135.86 133.11 139.17 135.44 132.93 139.44 135.53

CVI 0.371 0.320 0.320 0.745 0.778 0.765 0.741 0.738

Loop 50
VFI 349.08 339.84 333.24 346.93 339.10 331.86 348.84 338.53

CVI 0.866 0.834 0.794 1.908 1.894 1.895 1.850 1.837

We set β = 0.95, c̃0 = 0.6, γu = 10−4, v = LN(0, 10−6) and h = LN(0, 5× 10−4). The grid points for (θ, w) lie in
[10−4, 10]2 with 300 points each.

as in section 2.5.1, except that {wt}t≥0 follows

ln wt = ξ + εt, where {εt}t≥0
IID∼ N(0, δε).

Here ξ is an unobservable mean over which the worker has prior ξ ∼ N(µ, δ).

The worker’s current estimate of the next period wage distribution is f (w′|µ, δ) =

LN(µ, δ + δε). If the current offer is turned down, the worker updates his belief

after observing w′. By Bayes’ rule, the posterior satisfies ξ|w′ ∼ N(µ′, δ′), where

δ′ = ν(δ) := 1/ (1/δ + 1/δε) and µ′ = φ(µ, δ, w′) := δ′ (µ/δ + ln w′/δε). Viewed

as an optimal stopping problem,

• the state is z = (w, µ, δ), and for each map h, the stochastic kernel P satisfies∫
h(z′)P(z, dz′) =

∫
h
(
w′, φ(µ, δ, w′), ν(δ)

)
f (w′|µ, δ)dw′

• the reward functions are r(w) = u(w)/(1− β) and c ≡ u(c0).

The model is continuation decomposable with Xt := wt and Yt := (µt, δt), since r

does not depend on (µt, δt) and the next period state (wt+1, µt+1, δt+1) is indepen-

dent of wt once µt and δt are known. Letting Fµ,δ(w′, µ′, δ′) be the distribution of

(wt+1, µt+1, δt+1) given (µt, δt), the Bellman and Jovanovic operators are, respec-

tively,

Tv(w, µ, δ) = max
{

u(w)

1− β
, u(c0) + β

∫
v(w′, µ′, δ′)dFµ,δ(w′, µ′, δ′)

}

and Qψ(µ, δ) = u(c0) + β
∫

max
{

u(w′)
1− β

, ψ(µ′, δ′)

}
dFµ,δ(w′, µ′, δ′).

Again, the domain of the candidate function space is one dimension lower for Q

than T.
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Regarding optimality, suppose, for example, that the CRRA parameter γ is greater

than 1. (The case γ = 1 can be treated along similar lines.) Let n = 1 and let

g(w, µ, δ) = e(1−γ)µ+(1−γ)2δ/2.

Condition (2.8) holds, since, conditioning on (µ0, δ0) = (µ, δ),

E µ,δ |r(w1)| =
E µ,δ w1−γ

1
1− β

=
e(1−γ)2δε/2

1− β
g(w, µ, δ).

Condition (2.9) is trivial since c is constant. Condition (2.10) holds, since, condi-

tioning on (µ0, δ0) = (µ, δ), the expressions of µ′ and δ′ imply that

E µ,δ g(w1, µ1, δ1) = e(1−γ)2δ1/2+(1−γ)δ1µ/δ
E µ,δ w(1−γ)δ1/δε

1 = g(w, µ, δ).

Hence assumption 2.3.1 holds. Theorem 2.3.1 and proposition 2.3.3 imply that Q

and T are contraction mappings with the same rate of convergence. The analysis

above also implies that assumption 2.3.2 holds (see footnote 4), so v∗ and ψ∗ are

continuous by proposition 2.3.4.

Finally, table 2.4 compares CVI and VFI under different grid sizes. In tests 1–

10, CVI is on average 132 times faster than VFI. In test 10, VFI takes more than

4.4 days, while CVI takes 24 minutes. Table 2.5 compares CVI and VFI under

different level of risk aversion. CVI is shown to be 98 times faster than VFI on

average. Again, these numerical results are close to the prediction of the theory

in section 2.4.2.

Table 2.4: Time in seconds under different grid sizes

Time & Size Test 1 Test 2 Test 3 Test 4 Test 5

Size (w, µ, γ) (50, 50, 50) (1, 1, 1)× 102 (2, 1, 1)× 102 (1, 2, 1)× 102 (1, 1, 2)× 102

Loop 20
VFI 685.2 5242.0 10455.1 10584.9 11443.4

CVI 14.5 61.3 60.3 134.6 131.7

Loop 50
VFI 1823.2 13020.2 26001.7 26365.2 27149.1

CVI 35.8 164.6 149.6 342.7 338.3

Time & Size Test 6 Test 7 Test 8 Test 9 Test 10

Size (w, µ, γ) (2, 2, 1)× 102 (2, 1, 2)× 102 (1, 2, 2)× 102 (2, 2, 2)× 102 (3, 3, 3)× 102

Loop 20
VFI 21649.6 22267.9 21042.4 42567.8 152349.0

CVI 119.3 144.4 246.1 236.7 576.9

Loop 50
VFI 54143.5 55687.4 52578.4 106386.0 380220.0

CVI 297.0 367.8 679.2 589.9 1430.6

We set β = 0.95, γε = 1, c̃0 = 0.6 and δ = 3. The grid points for (w, µ, γ) lie in [10−4, 10]× [−10, 10]× [10−4, 10].
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Table 2.5: Time in seconds under different risk aversion levels

Time & Value δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 Mean

Loop 10
VFI 3137.1 2606.9 2615.1 2618.3 2606.5 2625.7 2701.6

CVI 25.0 25.7 30.4 30.5 30.6 30.5 28.8

Loop 20
VFI 6323.8 5206.8 5220.0 5226.9 5221.5 5242.8 5406.9

CVI 48.4 48.9 60.8 60.8 61.3 60.9 56.9

Loop 50
VFI 15976.6 13026.4 13066.7 13159.4 13099.6 13135.4 13577.3

CVI 118.9 118.9 151.9 152.3 152.8 152.6 141.2

We set β = 0.95, γε = 1, and c̃0 = 0.6. The grid points of (w, µ, γ) lie in [10−4, 10]× [−10, 10]× [10−4, 10]
with (100, 100, 100) points.

2.5.3 Firm Entry

Consider a condensed version of the firm entry problem in Fajgelbaum et al.

(2017). At the start of period t, a firm observes a fixed cost ft and then decides

whether to incur this cost and enter a market, earning stochastic payoff πt, or

wait and reconsider next period. The sequence { ft} is IID, while the current pay-

off πt is unknown prior to entry. The firm has prior belief φ(π; θt), where φ is a

distribution over payoffs that is parameterized by a vector θt. If the firm does not

enter then θt is updated via Bayesian learning. In an optimal stopping format,

• the state is z = ( f , θ), with stochastic kernel P defined by the distribution of

{ ft} and the Bayesian updating mechanism of {θt},

• the terminal reward is the entry payoff r( f , θ) =
∫

πφ(dπ; θ)− f ,

• and the flow continuation reward c ≡ 0.

This model is continuation decomposable, as can be seen by letting Xt := ft and

Yt := θt. In particular, since { ft} is IID, ( ft+1, θt+1) is independent of ft given θt.

Let Fθ( f ′, θ′) be the distribution of ( ft+1, θt+1) given θt. The Bellman operator is

Tv( f , θ) = max
{∫

πφ(dπ; θ)− f , β
∫

v( f ′, θ′)dFθ( f ′, θ′)

}
,

while the Jovanovic operator is

Qψ(θ) = β
∫

max
{∫

πφ(dπ; θ′)− f ′, ψ(θ′)

}
dFθ( f ′, θ′).
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2.5.4 Research and Development

Firm’s R&D decisions are often modeled as a sequential search process for better

technologies (see, e.g., Jovanovic and Rob (1989), Bental and Peled (1996), Perla

and Tonetti (2014)). Each period, an idea of value st is observed, and the firm

decides whether to put this idea into productive use, or develop it further by in-

vesting in R&D. The former choice yields a payoff r(st, kt), where kt is the amount

of capital input. The latter incurs a fixed cost c0 > 0 (that renders kt+1 = kt − c0)

and creates a new technology st+1 next period. Let {st}
IID∼ µ. Viewed as an

optimal stopping problem,

• the state is z = (s, k), and for given map h, the stochastic kernel P satisfies∫
h(z′)P(z, dz′) =

∫
h
(
s′, k− c0

)
µ(ds′),

• the terminal reward is r(s, k) and the flow continuation reward is c ≡ −c0.

This model is also continuation decomposable, as can be seen by letting Xt := st

and Yt := kt. Let Fk(s′, k′) be the distribution of (st+1, kt+1) given kt. The Bellman

and Jovanovic operators are respectively

Tv(s, k) = max
{

r(s, k),−c0 + β
∫

v(s′, k′)dFk(s′, k′)
}

and Qψ(s) = −c0 + β
∫

max
{

r(s′, k′), ψ(s′)
}

dFk(s′, k′).

2.5.5 Real Options

Consider a general financial/real option framework (see, e.g., Dixit and Pindyck

(1994), Alvarez and Dixit (2014), and Kellogg (2014)). Let pt be the current price of

a certain financial/real asset and λt another state variable. The process {λt} is Φ-

Markov and affects {pt} via pt = f (λt, εt), where {εt}
IID∼ µ and is independent

of {λt}. Let K be the strike price of the asset. Each period, the agent decides

whether to exercise the option now (i.e., purchase the asset at price K), or wait

and reconsider next period. In an optimal stopping format,

• the state is z = (p, λ), and for given map h, the stochastic kernel P satisfies∫
h(z′)P(z, dz′) =

∫
h
(

f (λ′, ε′), λ′
)

µ(dε′)Φ(λ, dλ′),
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• the terminal reward (exercise the option now) is r(p) = (p− K)+,

• and the flow continuation reward is c ≡ 0.

The model is continuation decomposable, with Xt := pt and Yt := λt. Let

Fλ(p′, λ′) be the distribution of (pt+1, λt+1) conditional on λt. The Bellman and

Jovanovic operators are, respectively,

Tv(p, λ) = max
{
(p− K)+, β

∫
v(p′, λ′)dFλ(p′, λ′)

}
and Qψ(λ) = β

∫
max

{
(p′ − K)+, ψ(λ′)

}
dFλ(p′, λ′).

2.5.6 Transplants

In health economics, a well-known problem concerns the decision of a surgeon

to accept/reject a transplantable organ for the patient (see, e.g., Alagoz et al.,

2004). The surgeon aims to maximize the reward of the patient. Each period,

she receives an organ offer of quality qt, where {qt}
IID∼ G. The patient’s health

ht evolves according to a H-Markov process if the surgeon rejects the organ. If

she accepts this organ for transplant, the operation succeeds with probability

p(qt, ht), and confers benefit B(ht) to the patient, while a failed operation results

in death. The patient’s single period utility when alive is u(ht). Viewed as an

optimal stopping problem,

• the state is z = (q, h), and for a given map f , the stochastic kernel P satisfies∫
f (z′)P(z, dz′) =

∫
f (q′, h′)G(dq′)H(h, dh′),

• the terminal reward (accept the offer) is r(q, h) = u(h) + p(q, h)B(h),

• and the flow continuation reward is c(h) = u(h).

This model is continuation decomposable by letting Xt := qt and Yt := ht. Let

Fh(q′, h′) be the distribution of (qt+1, ht+1) given ht. The Bellman and Jovanovic

operators are respectively

Tv(q, h) = max
{

u(h) + p(q, h)B(h), u(h) + β
∫

v(q′, h′)dFh(q′, h′)
}

and Qψ(h) = u(h) + β
∫

max
{

u(h′) + p(q′, h′)B(h′), ψ(h′)
}

dFh(q′, h′).
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Appendix 2.A Some Lemmas

To see the symmetric properties of Q and T from an alternative perspective, we

start our analysis with a generic candidate continuation value function space. Let

C be a subset of mB such that ψ∗ ∈ C and QC ⊂ C . Let V be defined by

V := RC = {v ∈ mB : v = r ∨ ψ for some ψ ∈ C } . (2.A.1)

Then R is a surjective map from C onto V , Q = LR on C and T = RL on V .

The following result parallels the theory of section 2.3.1, and is helpful for deriv-

ing important convergence properties once topological structure is added to the

generic setting, as to be shown.

Lemma 2.A.1. The following statements are true:

(1) LV ⊂ C and TV ⊂ V .

(2) If v is a fixed point of T in V , then Lv is a fixed point of Q in C .

(3) If ψ is a fixed point of Q in C , then Rψ is a fixed point of T in V .

(4) Tt+1 = RQtL on V and Qt+1 = LTtR on C for all t ∈ N0.

Proof. The proof is similar to that of propositions 2.3.1–2.3.2 and thus omitted.

Lemma 2.A.2. Under assumption 2.3.1, there exist b1, b2 ∈ R+ such that for all z ∈ Z,

(1) |v∗(z)| ≤ ∑n−1
t=0 βt

E z[|r(Zt)|+ |c(Zt)|] + b1g(z) + b2.

(2) |ψ∗(z)| ≤ ∑n−1
t=1 βt

E z|r(Zt)|+ ∑n−1
t=0 βt

E z|c(Zt)|+ b1g(z) + b2.

Proof. Without loss of generality, we assume m 6= 1 in assumption 2.3.1. By that

assumption, E z|r(Zn)| ≤ a1g(z) + a2, E z|c(Zn)| ≤ a3g(z) + a4 and E zg(Z1) ≤
mg(z) + d for all z ∈ Z. For all t ≥ 1, by the Markov property (see, e.g., Meyn and

Tweedie (2009), section 3.4.3),

E zg(Zt) = E z [E z (g(Zt)|Ft−1)] = E z
(
E Zt−1 g(Z1)

)
≤ mE zg(Zt−1) + d.

Induction shows that for all t ≥ 0,

E zg(Zt) ≤ mtg(z) +
1−mt

1−m
d. (2.A.2)

Moreover, for all t ≥ n, applying the Markov property again yields

E z|r(Zt)| = E z [E z (|r(Zt)||Ft−n)] = E z
(
E Zt−n |r(Zn)|

)
≤ a1E zg(Zt−n) + a2.
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By (2.A.2), for all t ≥ n, we have

E z|r(Zt)| ≤ a1

(
mt−ng(z) +

1−mt−n

1−m
d
)
+ a2. (2.A.3)

Similarly, for all t ≥ n, we have

E z|c(Zt)| ≤ a3E zg(Zt−n) + a4 ≤ a3

(
mt−ng(z) +

1−mt−n

1−m
d
)
+ a4. (2.A.4)

Let S(z) := ∑t≥1 βt
E z [|r(Zt)|+ |c(Zt)|]. Based on (2.A.2)–(2.A.4), we can show

that

S(z) ≤
n−1

∑
t=1

βt
E z[|r(Zt)|+ |c(Zt)|] +

a1 + a3

1− βm
g(z) +

(a1 + a3)d + a2 + a4

(1− βm)(1− β)
.

(2.A.5)

Since |v∗| ≤ |r|+ |c|+ S and |ψ∗| ≤ |c|+ S, the two claims hold by letting b1 :=
a1+a3
1−βm and b2 := (a1+a3)d+a2+a4

(1−βm)(1−β)
.

Lemma 2.A.3. Under assumption 2.3.1, the value function solves the Bellman equation

v∗(z) = max
{

r(z), c(z) + β
∫

v∗(z′)P(z, dz′)
}

= max {r(z), ψ∗(z)} .

Proof of lemma 2.A.3 (method 1). By theorem 1.11 of Peskir and Shiryaev (2006), it

suffices to show that E z

(
supk≥0

∣∣∣∑k−1
t=0 βtc(Zt) + βkr(Zk)

∣∣∣) < ∞ for all z ∈ Z.

This is true since with probability one we have

sup
k≥0

∣∣∣∣∣k−1

∑
t=0

βtc(Zt) + βkr(Zk)

∣∣∣∣∣ ≤ ∑
t≥0

βt[|r(Zt)|+ |c(Zt)|], (2.A.6)

and by the monotone convergence theorem and lemma 2.A.2 (see (2.A.5) in ap-

pendix 2.A), the right hand side of (2.A.6) is Pz-integrable for all z ∈ Z.

An alternative way of proof of lemma 2.A.3 is provided in appendix 2.E.
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Appendix 2.B Main Proofs

Proof of theorem 2.3.1. Let d1 := a1 + a3 and d2 := a2 + a4. Since βm < 1 by as-

sumption 2.3.1, we can choose positive constants m′ and d′ such that

m + d1m′ > 1, ρ := β(m + d1m′) < 1 and d′ ≥ (d2m′ + d)/(m + d1m′ − 1).

(2.B.1)

Regarding claim (1), we first show that Q is a contraction mapping on b`Z with

modulus ρ. By the weighted contraction mapping theorem (see, e.g., Boyd (1990),

section 3), it suffices to verify: (a) Q is monotone, i.e., Qψ ≤ Qφ if ψ, φ ∈ b`Z

and ψ ≤ φ; (b) Q0 ∈ b`Z and Qψ is B-measurable for all ψ ∈ b`Z; and (c)

Q(ψ + a`) ≤ Qψ + aρ` for all a ∈ R+ and ψ ∈ b`Z. Obviously, condition (a)

holds. By (2.5) and (2.11), we have

|(Q0)(z)|
`(z)

≤ |c(z)|
`(z)

+ β
∫ |r(z′)|

`(z)
P(z, dz′) ≤ (1 + β)/m′ < ∞

for all z ∈ Z, so ‖Q0‖` < ∞. The measurability of Qψ follows immediately from

our primitive assumptions. Hence, condition (b) holds. By the Markov property

(see, e.g., Meyn and Tweedie (2009), section 3.4.3), we have∫
E z′ |r(Zt)|P(z, dz′) = E z|r(Zt+1)| and

∫
E z′ |c(Zt)|P(z, dz′) = E z|c(Zt+1)|.

Let h(z) := ∑n−1
t=1 E z|r(Zt)|+ ∑n−1

t=0 E z|c(Zt)|, then we have

∫
h(z′)P(z, dz′) =

n

∑
t=2
E z|r(Zt)|+

n

∑
t=1
E z|c(Zt)|. (2.B.2)

By the construction of m′ and d′, we have m+ d1m′ > 1 and (d2m′+ d+ d′)/(m+

d1m′) ≤ d′. Assumption 2.3.1 and (2.B.2) then imply that

∫
κ(z′)P(z, dz′) = m′

n

∑
t=1
E z[|r(Zt)|+ |c(Zt)|] +

∫
g(z′)P(z, dz′) + d′

≤ m′
n−1

∑
t=1

E z[|r(Zt)|+ |c(Zt)|] + (m + d1m′)g(z) + d2m′ + d + d′

≤ (m + d1m′)
(

m′

m + d1m′
h(z) + g(z) + d′

)
≤ (m + d1m′)`(z). (2.B.3)

Since ` ≤ κ, this implies that for all z ∈ Z, we have∫
κ(z′)P(z, dz′) ≤ (m + d1m′)κ(z) and

∫
`(z′)P(z, dz′) ≤ (m + d1m′)`(z).

(2.B.4)



28 2.B. MAIN PROOFS

Hence, for all ψ ∈ b`Z, a ∈ R+ and z ∈ Z, we have

Q(ψ + a`)(z) = c(z) + β
∫

max
{

r(z′), ψ(z′) + a`(z′)
}

P(z, dz′)

≤ c(z) + β
∫

max
{

r(z′), ψ(z′)
}

P(z, dz′) + aβ
∫

`(z′)P(z, dz′)

≤ Qψ(z) + aβ(m + d1m′)`(z) = Qψ(z) + aρ`(z).

So condition (c) holds, and Q : b`Z→ b`Z is a contraction mapping of modulus ρ.

Moreover, lemma 2.A.3 and the analysis related to (2.4) imply that ψ∗ is indeed

a fixed point of Q under assumption 2.3.1. Lemma 2.A.2 implies that ψ∗ ∈ b`Z.

Hence, ψ∗must coincide with the unique fixed point of Q under b`Z, and claim (1)

holds.

The proof of claim (2) is similar. In particular, using (2.B.4) one can show that

T : bκZ → bκZ is a contraction mapping of the same modulus. We omit the

details.

Proof of proposition 2.3.4. Let b`cZ be the set of continuous functions in b`Z. Since

` is continuous by assumption 2.3.2, b`cZ is a closed subset of b`Z (see e.g., Boyd

(1990), section 3). To show the continuity of ψ∗, it suffices to verify that Q(b`cZ) ⊂
b`cZ (see, e.g., Stokey et al. (1989), corollary 1 of theorem 3.2). For fixed ψ ∈
b`cZ, let h(z) := max{r(z), ψ(z)}, then there exists G ∈ R+ such that |h(z)| ≤
|r(z)| + G`(z) =: h̃(z). By assumption 2.3.2, z 7→ h̃(z) ± h(z) are nonnegative

and continuous. For all z ∈ Z and {zm} ⊂ Z with zm → z, the generalized Fatou’s

lemma of Feinberg et al. (2014) (theorem 1.1) implies that∫ (
h̃(z′)± h(z′)

)
P(z, dz′) ≤ lim inf

m→∞

∫ (
h̃(z′)± h(z′)

)
P(zm, dz′).

Since limm→∞
∫

h̃(z′)P(zm, dz′) =
∫

h̃(z′)P(z, dz′) by assumption 2.3.2, we have

±
∫

h(z′)P(z, dz′) ≤ lim inf
m→∞

(
±
∫

h(z′)P(zm, dz′)
)

,

where we have used the fact that for all sequences {am} and {bm} in R with

lim
m→∞

am exists, we have: lim inf
m→∞

(am + bm) = lim
m→∞

am + lim inf
m→∞

bm. Hence,

lim sup
m→∞

∫
h(z′)P(zm, dz′) ≤

∫
h(z′)P(z, dz′) ≤ lim inf

m→∞

∫
h(z′)P(zm, dz′), (2.B.5)

i.e., z 7→
∫

h(z′)P(z, dz′) is continuous. Since c is continuous by assumption,

Qψ ∈ b`cZ. Hence, Q(b`cZ) ⊂ b`cZ and ψ∗ is continuous, as was to be shown.

The continuity of v∗ follows from the continuity of ψ∗ and r and the fact that

v∗ = r ∨ ψ∗.
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Proof of proposition 2.3.3. Let C := b`Z and V := bκZ. Let V := RC and C := LV
as defined respectively in (2.A.1) and (2.7). Our first goal is to show that V ⊂ bκZ

and C ⊂ b`Z.

For all v ∈ V , by definition, there exists a ψ ∈ C such that v = Rψ = r ∨ ψ.

Since C = b`Z, we have |ψ| ≤ M` for some constant M < ∞. Without loss

of generality, we can let M > 1/m′, where m′ is defined as in theorem 2.3.1 (see

(2.B.1) in the proof of theorem 2.3.1). Hence, |v| ≤ |r|+ |ψ| ≤ M(m′|r|+ `) = Mκ,

i.e., ‖v‖κ < ∞. Moreover, v is measurable since both r and ψ are. Hence, v ∈ bκZ.

Since v is arbitrary, we have V ⊂ bκZ.

For all ψ ∈ C, by definition, there exists v ∈ V such that ψ = Lv = c + βPv. Since

V = bκZ, we have |v| ≤ Mκ for some constant M < ∞. By (2.B.3) in the proof of

theorem 2.3.1, |ψ| ≤ |c|+ ‖v‖κ` ≤ (1/m′+ ‖v‖κ)`, i.e., ‖ψ‖` < ∞. Moreover, ψ is

measurable by our primitive assumptions. Hence, ψ ∈ b`Z. Since ψ is arbitrary,

we have C ⊂ b`Z.

Regarding claim (1), for all ψ ∈ C , based on lemma 2.A.1 and theorem 2.3.1, we

have∣∣∣Qt+1ψ(z)− ψ∗(z)
∣∣∣ = ∣∣LTtRψ(z)− Lv∗(z)

∣∣ = β
∣∣P(TtRψ)(z)− Pv∗(z)

∣∣ .

Since we have shown in the proof of theorem 2.3.1 that
∫

κ(z′)P(z, dz′) ≤ (m +

m′d1)`(z) for all z ∈ Z (see equation (2.B.3)), by the definition of operator P, for

all z ∈ Z, we have∣∣P(TtRψ)(z)− Pv∗(z)
∣∣ ≤ ∫ ∣∣(TtRψ)(z′)− v∗(z′)

∣∣ P(z, dz′)

≤ ‖TtRψ− v∗‖κ

∫
κ(z′)P(z, dz′)

≤ (m + m′d1)‖TtRψ− v∗‖κ `(z).

Recall ρ := β(m + m′d1) < 1 defined in (2.B.1). The above results imply that

‖Qt+1ψ− ψ∗‖` ≤ β(m + m′d1)
∥∥TtRψ− v∗

∥∥
κ
= ρ

∥∥TtRψ− v∗
∥∥

κ

for all ψ ∈ C . Hence, claim (1) is verified.

Regarding claim (2), for all v ∈ V , propositions 2.3.1–2.3.2 and theorem 2.3.1

imply that∣∣∣Tt+1v(z)− v∗(z)
∣∣∣ = ∣∣(RQtL)v(z)− Rψ∗(z)

∣∣
≤
∣∣QtLv(z)− ψ∗(z)

∣∣ ≤ ‖QtLv− ψ∗‖` `(z)
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for all z ∈ Z, where the first inequality is due to the elementary fact that |a ∨ b−
c ∨ d| ≤ |a− c| ∨ |b− d| for all a, b, c, d ∈ R. Since ` ≤ κ by construction, we have∣∣Tt+1v(z)− v∗(z)

∣∣
κ(z)

≤
∣∣Tt+1v(z)− v∗(z)

∣∣
`(z)

≤
∥∥QtLv− ψ∗

∥∥
`

for all z ∈ Z. Hence,
∥∥Tt+1v− v∗

∥∥
κ
≤
∥∥QtLv− ψ∗

∥∥
` and claim (2) holds.

Proof of theorem 2.3.2. Since r, c ∈ Lq(π), by the monotonicity of the Lp-norm, we

have r, c ∈ Lp(π) for all 1 ≤ p ≤ q. Our first goal is to prove claim (1).

Step 1. We show that Qψ ∈ Lp(π) for all ψ ∈ Lp(π). Notice that for all z ∈ Z,

|Qψ(z)|p ≤ 2p|c(z)|p + (2β)p
[∫ ∣∣r(z′)∣∣ ∨ ∣∣ψ(z′)∣∣ P(z, dz′)

]p

≤ 2p|c(z)|p + (2β)p
∫ [∣∣r(z′)∣∣ ∨ ∣∣ψ(z′)∣∣]p P(z, dz′)

≤ 2p|c(z)|p + (2β)p
(∫ ∣∣r(z′)∣∣p P(z, dz′) +

∫ ∣∣ψ(z′)∣∣p P(z, dz′)
)

,

where for the first and the third inequality we have used the elementary fact that

(a + b)p ≤ 2p(a ∨ b)p ≤ 2p(ap + bp) for all a, b, p ≥ 0, and the second inequality

is based on Jensen’s inequality. Then we have ‖Qψ‖p < ∞, since the above result

implies that∫
|Qψ(z)|p π(dz) ≤ 2p

∫
|c(z)|pπ(dz) + (2β)p

∫ ∫ ∣∣r(z′)∣∣p P(z, dz′)π(dz)

+ (2β)p
∫ ∫ ∣∣ψ(z′)∣∣p P(z, dz′)π(dz)

= 2p
∫
|c(z)|pπ(dz) + (2β)p

∫ ∣∣r(z′)∣∣p π(dz′)

+ (2β)p
∫ ∣∣ψ(z′)∣∣p π(dz′)

= 2p‖c‖p
p + (2β)p‖r‖p

p + (2β)p‖ψ‖p
p < ∞,

where the first equality follows from the Fubini theorem and the fact that π is a

stationary distribution. We have thus verified that Qψ ∈ Lp(π).

Step 2. We show that Q is a contraction mapping on
(

Lp(π), ‖ · ‖p
)

of modulus

β. For all ψ, φ ∈ Lp(π), we have

|Qψ(z)−Qφ(z)|p = βp
∣∣∣∣∫ [r(z′) ∨ ψ(z′)− r(z′) ∨ φ(z′)

]
P(z, dz′)

∣∣∣∣p
≤ βp

∫ ∣∣r(z′) ∨ ψ(z′)− r(z′) ∨ φ(z′)
∣∣p P(z, dz′)

≤ βp
∫ ∣∣ψ(z′)− φ(z′)

∣∣p P(z, dz′),
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where the first inequality holds by Jensen’s inequality, and the second follows

from the elementary fact that |a∨ b− c∨ d| ≤ |a− c| ∨ |b− d| for all a, b, c, d ∈ R.

Hence,∫
|Qψ(z)−Qφ(z)|p π(dz) ≤ βp

∫ ∫ ∣∣ψ(z′)− φ(z′)
∣∣p P(z, dz′)π(dz)

= βp
∫ ∣∣ψ(z′)− φ(z′)

∣∣p π(dz′),

and we have ‖Qψ−Qφ‖p ≤ β ‖ψ− φ‖p. Thus, Q is a contraction on Lp(π) of

modulus β.

Since
(

Lp(π), ‖ · ‖p
)

is a Banach space, based on the contraction mapping the-

orem, Q admits a unique fixed point in Lp(π). In order to prove claim (1), it

remains to show that ψ∗ ∈ Lp(π) and that ψ∗ is a fixed point of Q.

Step 3. We show that ψ∗, v∗ ∈ Lp(π). Since |ψ∗(z)| ∨ |v∗(z)| ≤ ∑∞
t=0 βt

E z[|r(Zt)| ∨
|c(Zt)|], we have [∫

|ψ∗(z)|pπ(dz)
]
∨
[∫
|v∗(z)|pπ(dz)

]
≤
∫ ( ∞

∑
t=0

βt
E z[|r(Zt)| ∨ |c(Zt)|]

)p

π(dz). (2.B.6)

Since π is stationary, the Fubini theorem implies that∫
E z|r(Zt)|pπ(dz) =

∫ ∫
|r(z′)|pPt(z, dz′)π(dz) =

∫
|r(z′)|pπ(dz′) = ‖r‖p

p.

Similarly, we have
∫
E z|c(Zt)|pπ(dz) = ‖c‖p

p. Let E · f (Zt) denote the function

z 7→ E z f (Zt). By the Minkowski and Jensen inequalities, for all n ∈ N, we have∥∥∥∥∥ n

∑
t=0

βt
E ·[|r(Zt)| ∨ |c(Zt)|]

∥∥∥∥∥
p

≤
n

∑
t=0

βt ‖E ·[|r(Zt)| ∨ |c(Zt)|]‖p

≤
n

∑
t=0

βt
[∫

E ·[|r(Zt)| ∨ |c(Zt)|]pπ(dz)
]1/p

≤
n

∑
t=0

βt
[∫

(E z|r(Zt)|p +E z|c(Zt)|p)π(dz)
]1/p

=
n

∑
t=0

βt (‖r‖p
p + ‖c‖

p
p
)1/p ≤

(
‖r‖p

p + ‖c‖
p
p
)1/p

1− β
< ∞. (2.B.7)

Moreover, by the monotone convergence theorem, we have∥∥∥∥∥ n

∑
t=0

βt
E ·[|r(Zt)| ∨ |c(Zt)|]

∥∥∥∥∥
p

→
∥∥∥∥∥ ∞

∑
t=0

βt
E ·[|r(Zt)| ∨ |c(Zt)|]

∥∥∥∥∥
p

. (2.B.8)

Together, (2.B.7)–(2.B.8) imply that
∥∥∑∞

t=0 βt
E ·[|r(Zt)| ∨ |c(Zt)|]

∥∥
p < ∞. By (2.B.6),

we have ‖ψ∗‖p ∨ ‖v∗‖p < ∞ and thus ψ∗, v∗ ∈ Lp(π).
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Step 4. We show that v∗ is a fixed point of T and ψ∗ is a fixed point of Q, i.e.,

‖Tv∗ − v∗‖p = 0 and ‖Qψ∗ − ψ∗‖p = 0. We provide two methods of proof.

• (Method 1) It suffices to show that Tv∗ = v∗ and Qψ∗ = ψ∗ π-almost surely.

To that end, by theorem 1.11 of Peskir and Shiryaev (2006) and the analysis

related to (2.4), it suffices to show that

E z

(
sup
k≥0

∣∣∣∣∣k−1

∑
t=0

βtc(Zt) + βkr(Zk)

∣∣∣∣∣
)

< ∞ π-almost surely.

This obviously holds since the left side is dominated by ∑∞
t=0 βt

E z[|r(Zt)| ∨
|c(Zt)|], which is finite π-almost surely as step 3 shows that it is an object of

Lp(π).

• (Method 2) Lemma 2.E.1 (see appendix 2.E) shows that Tv∗ = v∗ π-almost

surely, hence ‖Tv∗ − v∗‖p = 0. Regarding ψ∗, note that

‖Qψ∗ − ψ∗‖p = ‖LRψ∗ − Lv∗‖p = β‖P(r ∨ ψ∗)− Pv∗‖p.

Since ψ∗ := c + βPv∗ and lemma 2.E.1 implies that v∗ = r ∨ (c + βPv∗)

π-almost surely, we have v∗ = r ∨ ψ∗ π-almost surely. Jensen’s inequality

then implies that∫
|P(r ∨ ψ∗)(z)− Pv∗(z)|pπ(dz)

=
∫ ∣∣∣∣∫ [(r ∨ ψ∗)(z′)− v∗(z′)]P(z, dz′)

∣∣∣∣p π(dz)

≤
∫ ∫

|(r ∨ ψ∗)(z′)− v∗(z′)|pP(z, dz′)π(dz)

=
∫
|(r ∨ ψ∗)(z′)− v∗(z′)|pπ(dz′) = 0.

Hence, ‖Qψ∗− ψ∗‖p = β‖P(r ∨ ψ∗)− Pv∗‖p = 0. We have thus shown that

v∗ is a fixed point of T and ψ∗ is a fixed point of Q.

Steps 1–4 imply that claim (1) holds. The proof of claim (2) is similar and thus

omitted.

Proof of proposition 2.3.5. Let C = V := Lp(π), and let V := RC and C := LV
as defined respectively in (2.A.1) and (2.7). Our first goal is to show that V , C ⊂
Lp(π).

For all v ∈ V , there exists a ψ ∈ C such that v = Rψ = r ∨ ψ. Since C = Lp(π)

and r ∈ Lp(π) by assumption 2.3.3, we have v ∈ Lp(π). Hence, V ⊂ Lp(π). For
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all ψ ∈ C, there exists v ∈ V such that ψ = Lv = c + βPv. Since V = Lp(π)

and π is stationary, Jensen’s inequality implies that Pv ∈ Lp(π). Since c ∈ Lp(π),

Minkowski’s inequality then implies that ψ ∈ Lp(π). Hence, C ⊂ Lp(π), as

claimed.

Regarding claim (1), for all ψ ∈ C , based on lemma 2.A.1, theorem 2.3.2, Jensen’s

inequality and Fubini’s theorem, we have∥∥∥Qt+1ψ− ψ∗
∥∥∥

p
=

[∫ ∣∣∣Qt+1ψ(z)− ψ∗(z)
∣∣∣p π(dz)

]1/p

=

[∫ ∣∣LTtRψ(z)− Lv∗(z)
∣∣p π(dz)

]1/p

= β

[∫ ∣∣PTtRψ(z)− Pv∗(z)
∣∣p π(dz)

]1/p

≤ β

[∫ ∫ ∣∣TtRψ(z′)− v∗(z′)
∣∣p P(z, dz′)π(dz)

]1/p

= β

[∫ ∣∣TtRψ(z′)− v∗(z′)
∣∣p π(dz′)

]1/p
= β

∥∥TtRψ− v∗
∥∥

p .

Regarding claim (2), for all v ∈ V , based on propositions 2.3.1–2.3.2 and theorem

2.3.2, we have∥∥∥Tt+1v− v∗
∥∥∥

p
=

[∫ ∣∣∣Tt+1v(z)− v∗(z)
∣∣∣p π(dz)

]1/p

=

[∫ ∣∣RQtLv(z)− Rψ∗(z)
∣∣p π(dz)

]1/p

≤
[∫ ∣∣QtLv(z)− ψ∗(z)

∣∣p π(dz)
]1/p

=
∥∥QtLv− ψ∗

∥∥
p .

Hence, the second claim holds. This concludes the proof.

Proof of lemma 2.5.1. Recall that if X ∼ LN(µ, σ2), then EXs = esµ+s2σ2/2 for all

s ∈ R. By (2.12), the distribution of θn given θ0 = θ follows LN
(

ρn ln θ, σ2 ∑n−1
i=0 ρ2i

)
.

Hence, E θ θn = θρn
exp

[
σ2(1−ρ2n)
2(1−ρ2)

]
.

Since w = η + θξ and | ln w| ≤ 1/w + w, we have | ln wn| ≤ η−1
n + ηn + θnξn.

Hence,

E θ| ln wn| ≤ E θ

(
η−1

n + ηn + θnξn

)
= µ1 + µ2 + µ3E θθn = Anθρn

+ B, (2.B.9)

where µ1, µ2 and µ3 are respectively the mean of η−1
n , ηn and ξn, B := µ1 + µ2 and

An := µ3 exp
[

σ2(1−ρ2n)
2(1−ρ2)

]
. Claim (a) is verified.

To verify claim (b), consider a sequence θ(m) → θ. By the Fatou’s lemma,

E θ

(
η−1

n + ηn + θnξn ± | ln wn|
)
≤ lim inf

m
E θ(m)

(
η−1

n + ηn + θnξn ± | ln wn|
)

.
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Since θ 7→ E θ

(
η−1

n + ηn + θnξn
)

is continuous by (2.B.9), the above inequality

yields

±E θ| ln wn| ≤ lim inf
m

(
±E θ(m) | ln wn|

)
,

i.e., limmE θ(m) | ln wn| = E θ| ln wn|. Hence, θ 7→ E θ| ln wn| is continuous, as

claimed.

Proof of lemma 2.5.2. Since w = η + θξ and | ln w| ≤ w + 1/w, we have | ln w|q ≤
3q(η−q + ηq + θqξq). By the assumption on {ηt} and {ξt}, taking expectation (w.r.t

π) yields

E | ln w|q ≤ 3q(E η−q +E ηq +E ξq
E θq) < ∞.

Since r(w) = ln w/(1 − β), this inequality implies r ∈ Lq(π). Moreover, c ∈
Lq(π) is trivial since c is constant.
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Appendix 2.C Proof of Time Complexity

To prove the results of table 2.1, we introduce some elementary facts on time

complexity:

(a) The multiplication of an m× n matrix and an n× p matrix has complexity

O(mnp). See, for example, section 2.5.4 of Skiena (2008).

(b) The binary search algorithm finds the index of an element in a given sorted

array of length n in O(log(n)) time. See, for example, section 4.9 of Skiena

(2008).

For finite space (FS) approximation, time complexity of VFI (1-loop) reduces to

the complexity of matrix multiplication P̂~v, which is of order O(K2M2) based

on the shape of P̂ and ~v and fact (a) above. Similarly, time complexity of CVI

(1-loop) is determined by F̂(~r ∨ ~ψ), which has complexity O(KM2). The n-loop

complexity is scaled up by O(n).

For the infinite space (IS) case, let O(g) and O(h) denote respectively the com-

plexity (of single point evaluation) of the interpolating functions g and h. Count-

ing the floating point operations associated with all grid points inside the inner

loops shows that the one step complexities of VFI and CVI areO(NKM)O(g) and

O(NM)O(h), respectively. Since binary search function evaluation is adopted for

the indicated function interpolation mechanisms (see table 2.1 note), and in par-

ticular, since evaluating g at a given point uses binary search k + n times, based

on fact (b) above, we have

O(g) = O
(

k

∑
i=1

log(Ki) +
n

∑
j=1

log(Mj)

)
= O(log(KM)).

Similarly, we can show thatO(h) = O(log(M)). Combining these results, we see

that the claims of the IS case hold, concluding our proof of table 2.1 results.
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Appendix 2.D Continuation Nontriviality

In this section, we show that under certain general assumptions, the number of

state variables that the continuation value function must track is never larger than

the equivalent number for the value function.

For a generic optimal stopping problem, a policy is a map σ : Z → {0, 1}, with 0

indicating the decision to continue and 1 indicating the decision to stop. A policy

σ is called optimal if τ∗ := inf {t ≥ 0 | σ(Zt) = 1} is an optimal stopping time

(recall section 2.2.2). Clearly, σ∗ defined as follows is an optimal policy in our set

up:

σ∗(z) := 1 {r(z) ≥ ψ∗(z)} (z ∈ Z).

Notably, without further assumptions, we can construct a setting in which the

domain of v∗ is of strictly lower dimension than the domain of ψ∗, as illustrated

by the following example.

Example 2.D.1 (A Heuristic Counterexample). Let (x, y) be the state vector and

M be a positive constant. We consider the following optimal stopping problem:

• the stochastic kernel is represented by the probability density f (x′|x, y) with

f (x′|x, y) = h(x′|x, y) if x 6= x0 and f (x′|x, y) = g(x′|x) if x = x0,

• the terminal reward satisfies 0 ≤ r(x) < M, and

• the flow continuation reward satisfies

c(x) = − M
1− β

if x 6= x0 and c(x) = M if x = x0.

Under this set up, we have 0 ≤ v∗(x) ≤ M
1−β . Furthermore,

(1) if x 6= x0, then: v∗(x) = r(x) > ψ∗(x, y) since

ψ∗(x, y) =
−M
1− β

+ β
∫

v∗(x′)h(x′|x, y)dx′ ≤ −M
1− β

+
βM

1− β
< 0 < r(x);

(2) if x = x0, then: ψ∗ is a function of x only, and v∗(x) = ψ∗(x) > r(x) since

ψ∗(x) = M + β
∫

v∗(x′)g(x′|x)dx′ ≥ M > r(x).
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Hence, the value function follows

v∗(x) = max{r(x), ψ∗(x, y)}

= max
{

r(x), c(x) + β
∫

v∗(x′) f (x′|x, y)dx′
}

,

and the dimensionality of domain(ψ∗) is strictly higher than that of domain(v∗).

Intuitively, ψ∗ is invariant with respect to y at x = x0 (the only point at which ψ∗

dominates r), though it is a function of both x and y elsewhere.

Of course, example 2.D.1 above is constructed artificially and has no much eco-

nomic intuition. However, it clearly indicates the kind of scenarios that might be

ignored innocuously when we study an optimal stopping problem. First of all,

in example 2.D.1, the state variable y has no effect on the optimal policy, i.e., σ∗

is not a function of y. Second, exiting is always the optimal choice expect at the

single point x = x0. The following definition rules out these trivial scenarios.

Let E denote the set of state values z ∈ Z at which r > ψ∗. We call an optimal

stopping problem continuation nontrivial if11

(a) E has non-empty interior, and on E, r is not everywhere constant with re-

spect to each of its arguments.

(b) σ∗ is not everywhere constant with respect to each argument of ψ∗ that is

not an argument of r.

Most applications of interest to economists are continuation nontrivial. If both r

and ψ∗ are continuous, for example, then E has non-empty interior if and only if

there exists a point z0 ∈ Z at which r > ψ∗. Intuitively, condition (b) means that

any state variable that affects the continuation value but not the terminal reward

can also affect the optimal policy. These conditions can be established for all the

examples provided in section 2.5.

For continuation nontrivial problems, the effective state space for the continua-

tion value function is never larger than that of the value function:

Proposition 2.D.1. If an optimal stopping problem is continuation nontrivial, then

(1) the domain of v∗ is of (weakly) higher dimension than the domain of ψ∗, and

(2) v∗ is a function of all the state variables.
11For a given function Rn 3 (x1, · · · , xn) 7→ f (x1, · · · , xn) ∈ R, we say that f is not everywhere

constant with respect to xi if there exist x′i , x′′i ∈ R such that f (x1, · · · , xi−1, x′i , xi+1, · · · , xn) 6=
f (x1, · · · , xi−1, x′′i , xi+1, · · · , xn) for some (x1, · · · , xi−1, xi+1, · · · , xn) ∈ Rn−1.
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Proof of proposition 2.D.1. Regarding claim (1), since the problem is continuation

nontrivial, condition (a) implies that E has non-empty interior and r is not ev-

erywhere constant on E with respect to each of its arguments. Since in addition

v∗ = r on E, any state variable that affects r must also affect v∗.

Let y be an arbitrary state variable that affects ψ∗ but not r (if there is no such state

variable then the proof is done). Since the problem is continuation nontrivial,

condition (b) implies that there exist y1, y2 and z−1 such that σ∗(y1, ·) = 1 and

σ∗(y2, ·) = 0 at z−1, where z−1 denotes a realization of the vector of all state

variables excluding y. Hence, r(·) ≥ ψ∗(y1, ·) and r(·) < ψ∗(y2, ·) at z−1. Since

y has no effect on r, we have v∗(y1, ·) = r(·) < ψ∗(y2, ·) = v∗(y2, ·) at z−1. This

implies that y is an argument of v∗. Since y is chosen arbitrarily, we know that

any state variable that affects ψ∗ must also affect v∗. Hence, claim (1) holds.

Regarding claim (2), since a state variable must affect either r or ψ∗ (or both), and

we have shown above that any state variable that affects r or ψ∗ also affects v∗, we

know that v∗ must be a function of all the state variables. Claim (2) is verified.
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Appendix 2.E More on Principle of Optimality

In this section, we look at the principle optimality from an alternative perspective.

In particular, we show that under assumption 2.3.1, the value function solves

the Bellman equation (i.e., (2.2) holds), while under assumption 2.3.3, the value

function solves the Bellman equation π-almost surely (i.e., (2.2) holds π-almost

surely).

To see the problem from an alternative perspective, suppose that, at date t, an

agent is either active or passive. When active, the agent observes Zt and chooses

whether to continue or exit. Continuation results in a current reward c(Zt) and

the agent remains active at t + 1. Exit results in a terminal reward r(Zt) and

transition to the passive state. From there the agent has no action available.

We introduce another state process {It}t≥0 to indicate the current status of the

agent, and a control process {Jt}t≥0 to indicate the agent’s action. In particular,

It =

{
0, if passive

1, if active
and Jt =

{
0, if exit

1, if continue

Then the value function of the problem is given by

V∗(z0, i0) := sup
{Jt}t≥0

E z0,i0

{
∞

∑
t=0

βtF(Zt, It, Jt)

}
, (2.E.1)

where the reward function F is

F(z, i, j) := r(z) · 1(i = 1, j = 0) + c(z) · 1(i = 1, j = 1).

To see the connection with the set up of section 2.2.2, notice that

V∗(· , 0) = 0 and V∗(· , 1) = v∗. (2.E.2)

Moreover, let P̃ be the stochastic kernel related to the state process {(Zt, It)}t≥0.

The Bellman equation corresponding to the problem stated in (2.E.1) is

V(z0, i0) = max
j0∈{0,1}

{
F(z0, i0, j0) + β

∫
V(z1, i1)P̃((z0, i0), j0; d(z1, i1))

}
. (2.E.3)

Equivalently, V(z0, 0) = 0 and12

V(z0, 1) = max
{

r(z0), c(z0) + β
∫

V(z1, 1)P(z0, dz1)

}
. (2.E.4)

Note that (2.E.4) is the functional equation corresponding to (2.2). Hence, to show

that (2.2) holds (pointwise/π-almost surely), it suffices to show that V∗ defined

in (2.E.2) solves (2.E.3) (pointwise/π-almost surely).
12Note that if It = 0, then F(Zt, It, Jt) = 0. Since the agent is already in the passive state, there

is no action available, and It′ = 0 with probability one for all t′ ≥ t. Hence, V(z0, 0) = 0.
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An alternative proof of lemma 2.A.3. Under assumption 2.3.1, the Bellman equation

(2.E.3) is well-defined. To see this, let ψ̃ be the unique fixed point of Q under b`Z

obtained from claim (1) of theorem 2.3.1. Then Ṽ defined below solves (2.E.3):

Ṽ(·, 0) := 0 and Ṽ(·, 1) := r ∨ ψ̃ ∈ bκZ.

To prove the stated claim, it remains to show that any solution V to the Bellman

equation (2.E.3) with V(· , 1) ∈ bκZ satisfies V = V∗. Note that for all feasible

plan {jt}t≥0 and K ∈ N, we have

V(z0, i0) ≥ F(z0, i0, j0) + β
∫

V(z1, i1)P̃((z0, i0), j0; d(z1, i1))

≥ F(z0, i0, j0)+

β
∫ [

F(z1, i1, j1) + β
∫

V(z2, i2)P̃((z1, i1), j1; d(z2, i2))
]

P̃((z0, i0), j0; d(z1, i1))

= F(z0, i0, j0) + βE
j0
z0,i0

F(Z1, I1, j1) + β2
E

j0,j1
z0,i0

V(Z2, I2) ≥ · · ·

≥
K

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt) + βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1). (2.E.5)

Since V(· , 0) ≡ 0 and V(· , 1) ∈ bκZ, there exists G ∈ R+ such that |V| ≤ Gκ. The

Markov property then implies that∣∣∣E j0···jK−1
z0,i0

V(ZK, IK)
∣∣∣ ≤ GE z0κ(ZK)

= G

(
m′

n−1

∑
t=0

E z0 [|s(Zt+K)|+ |c(Zt+K)|] +E z0 g(ZK) + d′
)

. (2.E.6)

From (2.A.2)–(2.A.4) (the proof of lemma 2.A.2) we know that, for all z0 ∈ Z and

t ∈ N0,

E z0 g(Zt) ≤ mtg(z0) +
1−mt

1−m
d,

and for all z0 ∈ Z and t ≥ n (recall that d1 := a1 + a3 and d2 := a2 + a4),

max{E z0 |r(Zt)|,E z0 |c(Zt)|} ≤ d1

(
mt−ng(z0) +

1−mt−n

1−m
d
)
+ d2.

Substituting these results into (2.E.6), we can show that, for all (z0, i0) ∈ Z ×
{0, 1},∣∣∣βK

E
j0···jK−1
z0,i0

V(ZK, IK)
∣∣∣ ≤ 2Gd1m′

n−1

∑
t=0

[
(βm)Kmt−ng(z0) + βK 1−mK+t−n

1−m
d
]

+ G
[
(βm)Kg(z0) + βK 1−mK

1−m
d
]
+ βKG(d′ + 2nd2m′).

Since βm < 1, this implies that limK→∞ βK
E

j0···jK−1
z0,i0

V(ZK, IK) = 0 for all (z0, i0) ∈
Z× {0, 1}. Let K → ∞, then (2.E.5) implies that, for all {jt}t≥0,

V(z0, i0) ≥
∞

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt).
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Hence, V ≥ V∗. Notice that since (2.E.3) is a binary choice problem, there exists

a plan { j̃t}t≥0 such that (2.E.5) holds with equality in each step, which implies

V ≤ V∗. Hence, V = V∗, as was to be shown. This concludes the proof.

Lemma 2.E.1. Under assumption 2.3.3, v∗ satisfies (2.2) π-almost surely.

Proof. Under assumption 2.3.3, the Bellman equation (2.E.3) is well-defined (π-

almost surely). To see this, let ψ̃ be the unique fixed point of Q under
(

Lq(π), ‖ · ‖q
)

obtained from claim (1) of theorem 2.3.2. Then Ṽ defined by

Ṽ(· , 0) := 0 and Ṽ(· , 1) := r ∨ ψ̃ ∈ Lq(π)

solves (2.E.3) π-almost surely.

To prove the stated claim, it remains to show that any solution V to the Bellman

equation (2.E.3) with V(· , 1) ∈ Lq(π) satisfies V = V∗ π-almost surely. For all

feasible plan {jt}t≥0 and (z0, i0) ∈ Z× {0, 1}, since V(· , 0) ≡ 0, we have∣∣∣E j0···jK−1
z0,i0

V(ZK, IK)
∣∣∣ ≤ E j0···jK−1

z0,i0
|V(ZK, IK)| ≤ E z0 |V(ZK, 1)|.

Hence, for all (z0, i0) ∈ Z× {0, 1},

sup
{jt}t≥0

∣∣∣E j0···jK−1
z0,i0

V(ZK, IK)
∣∣∣ ≤ E z0 |V(ZK, 1)|. (2.E.7)

Since π is stationary, Jensen’s inequality yields∫
[E z0 |V(ZK, 1)|]q π(dz0) =

∫ [∫
|V(z′, 1)|PK(z, dz′)

]q
π(dz)

≤
∫ ∫

|V(z′, 1)|qPK(z, dz′)π(dz) =
∫
|V(z′, 1)|qπ(dz′) = ‖V(· , 1)‖q

q < ∞.

Let E · f (Zt) denote the function z 7→ E z f (Zt). The Minkowski inequality then

implies that for all n ∈ N,∥∥∥∥∥ n

∑
t=0

βt
E ·|V(Zt, 1)|

∥∥∥∥∥
q

≤
n

∑
t=0

βt ‖E ·|V(Zt, 1)|‖q

=
n

∑
t=0

βt
[∫

[E z|V(Zt, 1)|]qπ(dz)
]1/q

≤
n

∑
t=0

βt‖V(· , 1)‖q ≤
∞

∑
t=0

βt‖V(· , 1)‖q < ∞.

Moreover, by the monotone convergence theorem,∥∥∥∥∥ n

∑
t=0

βt
E ·|V(Zt, 1)|

∥∥∥∥∥
q

→
∥∥∥∥∥ ∞

∑
t=0

βt
E ·|V(Zt, 1)|

∥∥∥∥∥
q

.
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Together, we have
∥∥∑∞

t=0 βt
E ·|V(Zt, 1)|

∥∥
q < ∞, which implies that

lim
K→∞

βK
E z0 |V(ZK, 1)| = 0 π-almost surely.

Then, by (2.E.7), for all i0 ∈ {0, 1},

lim
K→∞

[
sup
{jt}t≥0

∣∣∣βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1)
∣∣∣] = 0 π-almost surely.

Hence,

sup
{jt}t≥0

[
lim

K→∞

∣∣∣βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1)
∣∣∣] = 0 π-almost surely. (2.E.8)

For all feasible plan {jt}t≥0, i0 ∈ {0, 1} and K ∈ N, (2.E.5) implies that

V(z0, i0) ≥
K

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt) + βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1). (2.E.9)

Letting K → ∞ and taking supremum with respect to {jt}t≥0 yield

V(z0, i0) ≥ sup
{jt}t≥0

lim
K→∞

K

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt)

+ sup
{jt}t≥0

lim
K→∞

βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1). (2.E.10)

Together, (2.E.8) and (2.E.10) imply that V ≥ V∗ π-almost surely.

Since (2.E.3) is a binary choice problem, there exists a plan { j̃t}t≥0 such that (2.E.9)

holds with equality for all K ∈ N. (2.E.8) then implies that V ≤ V∗ π-almost

surely. In summary, we have V = V∗ π-almost surely. This concludes the proof.



Chapter 3

Extension I: Repeated Optimal

Stopping

3.1 Introduction

In the standard optimal stopping framework of chapter 2, the agent aims to find

an optimal stopping time that terminates the sequential decision process perma-

nently. However, in many problems of interest, the choice to stop is only tempo-

rary. Typically, agents have chances to return to the sequential decision problem

once they have terminated.

To see a standard example, in the job search problem, after the agent accepts an

offer and gets employed (i.e., terminates the sequential decision process), the re-

sulting job contract could be cancelled later on, in which case the agent is unem-

ployed again and has to search for a new job on the market. See, for example,

Rendon (2006), Ljungqvist and Sargent (2008), Poschke (2010), Chatterjee and

Rossi-Hansberg (2012), Lise (2013), Moscarini and Postel-Vinay (2013), and Bag-

ger et al. (2014).

Another related example is sovereign default, in which case a country decides

whether to default on an international debt (termination) or not (continuation).

Default leads to a period of exclusion from international financial markets. The

exclusion is not permanent, however. With positive probability, the country ex-

its autarky and begins borrowing from international markets again. See, for ex-

ample, Choi et al. (2003), Albuquerque and Hopenhayn (2004), Arellano (2008),

Alfaro and Kanczuk (2009), Arellano and Ramanarayanan (2012), Bai and Zhang

(2012), Chatterjee and Eyigungor (2012), Mendoza and Yue (2012), and Hatchondo

43
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et al. (2016).

In this chapter, we extend the theory of chapter 2 to address this kind of problem,

referred to below as the repeated optimal stopping problem. In particular, section

3.2 sets up the problem, longer proofs are provided in the appendix, while the rest

of the chapter is structurized as follows:

Section 3.3 shows that the Bellman and Jovanovic operators are semiconjugate in

a generic setting. The implications are the same as those of chapter 2. Topological

structure is then incorporated to the generic setting. Section 3.4 considers a gen-

eral weighted supremum norm topology, while section 3.5 considers the Lp-norm

topology, both of which allow for bounded or unbounded rewards. Based on the

general theory of section 3.3, we show that the Bellman operator and Jovanovic

operator are both contraction mappings under identical assumptions, and that

convergence to the respective fixed points occurs at the same rate.

For weighted supremum norm topology, our goal is achieved by constructing

a metric that evaluates the maximum between the weighted supremum norm

distance of candidate continuation value functions and the same type of distance

for candidate terminal value functions.1 For the case of Lp-norm topology, the

metric is constructed based on the Lp-norm of the maximum between the relative

distance of candidate continuation values and the relative distance of candidate

terminal values.

Notably, although in the repeated optimal stopping framework the state process

is a controlled Markov process (i.e., the evolution of the state process is affected at

least partially by a control variable) and complicates the dynamics somewhat, the

key state component (i.e., the state variables that appear in the reward functions)

evolves as a standard Markov process. We show that, due to this reason, the

structures and results of the previous chapter carry over at no additional cost.

3.2 Repeated Optimal Stopping

Unless otherwise specified, we continue to use the notation of chapter 2 through-

out this chapter. Recall that for all integrable function h ∈ mB,

Ph(z) :=
∫

h(z′)P(z, dz′).

1In this chapter, terminal value function refers to the maximal expected discounted lifetime re-

wards from choosing termination, while terminal reward function refers to the single period reward

obtained from terminating. Formal definitions are provided in section 3.2.
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To put our problem in a general setting, suppose that, at date t, an agent is either

active or passive. When active, the agent observes Zt and chooses whether to con-

tinue or exit. Continuation results in a flow continuation reward c(Zt) and the agent

remains active at t + 1. Exit results in a terminal reward s(Zt) and transition to the

passive state. From there the agent has no action available, but will return to the

active state at t + 1 and all subsequent periods with probability α. The agent aims

to maximize the expected discounted lifetime rewards.

Let {It}t≥0 and {Jt}t≥0 denote respectively the agent’s status and action in each

period, where

It =

{
0, if passive

1, if active
and Jt =

{
0, if exit

1, if continue

Then the state process is {(Zt, It)}t≥0 and the state space is Z× {0, 1}. The value

function of the problem is given by

V∗(z0, i0) := sup
{Jt}t≥0

E z0,i0

{
∞

∑
t=0

βtF(Zt, It, Jt)

}
, (3.2.1)

where V∗(·, 0) =: r∗ and V∗(·, 1) =: v∗ are respectively the maximal expected

discounted lifetime rewards in the passive and active states, and F is the reward

function defined by

F(z, i, j) := s(z) · 1(j = 0) + c(z) · 1(i = 1, j = 1).

We call r∗ the terminal value function. Under certain assumptions, v∗ and r∗ satisfy2

v∗(z) = max
{

r∗(z), c(z) + β
∫

v∗(z′)P(z, dz′)
}

(3.2.2)

and

r∗(z) = s(z) + αβ
∫

v∗(z′)P(z, dz′) + (1− α)β
∫

r∗(z′)P(z, dz′). (3.2.3)

Given v and r, we define

`(z; v, r) := s(z) + αβ
∫

v(z′)P(z, dz′) + (1− α)β
∫

r(z′)P(z, dz′). (3.2.4)

The corresponding Bellman operator is

T

(
v

r

)
(z) =

(
max{`(z; v, r), c(z) + β

∫
v(z′)P(z, dz′)}

`(z; v, r)

)
.

2Later we provide sufficient conditions based on our primitive set up. See, for example, lem-

mas 3.A.3–3.A.4 in appendix 3.A.
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The continuation value function associated with this problem is defined at z ∈ Z by

ψ∗(z) := c(z) + β
∫

v∗(z′)P(z, dz′). (3.2.5)

By (3.2.2), (3.2.3) and (3.2.5), ψ∗ and r∗ satisfy

ψ∗ = c + βP(r∗ ∨ ψ∗) and r∗ = s + αβP(r∗ ∨ ψ∗) + (1− α)βPr∗. (3.2.6)

Now we define the continuation value operator or Jovanovic operator Q by

Q

(
ψ

r

)
(z) =

(
c(z) + β

∫
(r ∨ ψ)(z′)P(z, dz′)

s(z) + αβ
∫
(r ∨ ψ)(z′)P(z, dz′) + (1− α)β

∫
r(z′)P(z, dz′)

)
.

3.3 General Theory

In this section we show that Bellman and Jovanovic operators are semiconjugate

in the repeated optimal stopping framework and discuss the implications. As in

chapter 2, we use operator-theoretic notation. Observe that the Bellman operator

T can be expressed as T = RL, where for each (ψ, r) and (v, r),

R

(
ψ

r

)
:=

(
r ∨ ψ

r

)
and L

(
v

r

)
:=

(
c + βPv

s + αβPv + (1− α)βPr

)
. (3.3.1)

(Recall that for any two operators we write the composition A ◦ B simply as AB.)

Let V be a subset of mB × mB such that (v∗, r∗) ∈ V and TV ⊂ V . The set V
generalizes the candidate value function space of chapter 2 in the sense that it

contains an additional candidate terminal value function space. (Specific classes

of functions are considered in the next two sections.) Let C be defined by

C := LV =

{(
ψ

r

)
∈ mB ×mB :

(
ψ

r

)
= L

(
v

r

)
for some

(
v

r

)
∈ V

}
.

By definition, L is a surjective mapping from V onto C. It is also true that R

maps C into V . Indeed, if (ψ, r) ∈ C, then there exists a (v, r) ∈ V such that

(ψ, r) = L(v, r), and R(ψ, r) = RL(v, r) = T(v, r), which lies in V by assumption.

Lemma 3.3.1. On C, the operator Q satisfies Q = LR, and QC ⊂ C.

Proof. The first claim is immediate from the definitions. The second follows from

the claims just established (i.e., R maps C to V and L maps V to C).
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The preceding discussion implies that, as in chapter 2, Q and T are semiconjugate

in the sense that LT = QL on V and TR = RQ on C. Indeed, since T = RL and

Q = LR, we have LT = LRL = QL and TR = RLR = RQ as claimed. This leads

to the following results, the key results of this section.

Proposition 3.3.1. The following statements are true:

(1) If (v, r) is a fixed point of T in V , then L(v, r) is a fixed point of Q in C.

(2) If (ψ, r) is a fixed point of Q in C, then R(ψ, r) is a fixed point of T in V .

Proof. To prove the first claim, fix (v, r) ∈ V . By the definition of C, L(v, r) ∈ C.

Moreover, since (v, r) = T(v, r), we have QL(v, r) = LT(v, r) = L(v, r). Hence,

L(v, r) is a fixed point of Q in C. Regarding the second claim, fix (ψ, r) ∈ C. Since

R maps C into V as shown above, R(ψ, r) ∈ V . Since (ψ, r) = Q(ψ, r), we have

TR(ψ, r) = RQ(ψ, r) = R(ψ, r). Hence, R(ψ, r) is a fixed point of T in V .

The next result, which parallels proposition 2.3.2, implies that iterating with ei-

ther T or Q is essentially equivalent, at least on a theoretical level.

Proposition 3.3.2. Tt+1 = RQtL on V and Qt+1 = LTtR on C for all t ∈ N0.

Proof. That the claim holds when t = 0 has already been established. Now

suppose the claim is true for arbitrary t. By the induction hypothesis we have

Tt = RQt−1L and Qt = LTt−1R. Since Q and T are semiconjugate as shown

above, we have Tt+1 = TTt = TRQt−1L = RQQt−1L = RQtL and Qt+1 =

QQt = QLTt−1R = LTTt−1R = LTtR. Hence, the claim holds by induction.

The theory above is based on the primitive assumption of a generic (augmented)

candidate value function space V with properties (v∗, r∗) ∈ V and TV ⊂ V . Sim-

ilar results can be established if we start with a generic (augmented) candidate

continuation value function space C that satisfies (ψ∗, r∗) ∈ C and QC ⊂ C .

Appendix 3.A outlines the main idea.

3.4 Symmetry under Weighted Supremum Norm

In this section, we impose a weighted supremum norm on the domain of T and Q

in order to compare contractivity, optimality and related properties. The follow-
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ing assumption generalizes the standard weighted supremum norm assumption

of Boyd (1990).3

Assumption 3.4.1. There exist a B-measurable function g : Z → R+ and con-

stants n ∈ N0, a1, · · · , a4, m, d ∈ R+ such that βm < 1, and, for all z ∈ Z,∫
|s(z′)|Pn(z, dz′) ≤ a1g(z) + a2, (3.4.1)∫
|c(z′)|Pn(z, dz′) ≤ a3g(z) + a4, (3.4.2)

and
∫

g(z′)P(z, dz′) ≤ mg(z) + d. (3.4.3)

Similar to the previous chapter, we require that the expected rewards E z|s(Zn)|
and E z|c(Zn)| are small relative to some function g such that E zg(Zt) does not

grow too fast. Moreover, the following statements are true:

• If both s and c are bounded, then assumption 3.4.1 holds for n := 0, g :=

‖r‖ ∨ ‖c‖, m := 1 and d := 0.

• If assumption 3.4.1 holds for some n, then it must hold for all integer n′ > n.

• To verify assumption 3.4.1, it suffices to find n1 ∈ N0 for which (3.4.1) holds,

n2 ∈ N0 for which (3.4.2) holds, and that the measurable map g satisfies

(3.4.3).

• Assumption 3.4.1 reduces to that of Boyd (1990) if we set n = 0.

Let d1 := a1 + a3 and d2 := a2 + a4. Choose m′, d′ > 0 such that

m + d1m′ > 1, ρ := β(m + d1m′) < 1 and d′ ≥ d2m′ + d
m + d1m′ − 1

. (3.4.4)

Let the weight function κ : Z→ R+ be defined by

κ(z) := m′
n−1

∑
t=0

E z [|s(Zt)|+ |c(Zt)|] + g(z) + d′. (3.4.5)

Consider the product space (bκZ × bκZ, ρκ), where ρκ is a metric on bκZ × bκZ

defined by

ρκ

(
( f1, f2), ( f ′1, f ′2)

)
= ‖ f1 − f ′1‖κ ∨ ‖ f2 − f ′2‖κ.

Lemma 3.A.5 (see appendix 3.A) shows that (bκZ× bκZ, ρκ) is a complete metric

space. Recall ρ ∈ (0, 1) defined in (3.4.4). The following result shows that Q and

T are both contraction mappings under identical assumptions.
3Indeed, assumption 3.4.1 is equivalent to assumption 2.3.1 of chapter 2, since the terminal

reward s of this chapter corresponds to r of the previous chapter. In particular, we admit con-

sideration of future transitions to enlarge the set of possible weight functions. We have seen the

value of this generalization in the standard optimal stopping framework in section 2.5.
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Theorem 3.4.1. Under assumption 3.4.1, the following statements hold:

(1) Q is a contraction mapping on (bκZ× bκZ, ρκ) with modulus ρ.

(2) The unique fixed point of Q in bκZ× bκZ is (ψ∗, r∗).

(3) T is a contraction mapping on (bκZ× bκZ, ρκ) with modulus ρ.

(4) The unique fixed point of T in bκZ× bκZ is (v∗, r∗).

The next result shows that the convergence rates of Q and T are the same. In

stating it, L and R are as defined in (3.3.1), while again ρ ∈ (0, 1) is the contraction

coefficient defined in (3.4.4).

Proposition 3.4.1. If assumption 3.4.1 holds, then

R(bκZ× bκZ) ⊂ bκZ× bκZ and L(bκZ× bκZ) ⊂ bκZ× bκZ,

and for all t ∈ N0, the following statements are true:

(1) ρκ(Qt+1(ψ, r), (ψ∗, r∗)) ≤ ρ ρκ(TtR(ψ, r), (v∗, r∗)) for all (ψ, r) ∈ bκZ× bκZ.

(2) ρκ(Tt+1(v, r), (v∗, r∗)) ≤ ρκ(QtL(v, r), (ψ∗, r∗)) for all (v, r) ∈ bκZ× bκZ.

Proposition 3.4.1 extends proposition 3.3.2 and lemma 3.A.1, and their connec-

tions can be seen by letting V = C := bκZ× bκZ.

As in chapter 2, the two operators are also symmetric in terms of continuity of

fixed points. The next result illustrates this, when Z is any separable and com-

pletely metrizable topological space (e.g., any Gδ subset of Rn) and B is its Borel

sets.

Assumption 3.4.2. (1) The stochastic kernel P is Feller; that is, z 7→
∫

h(z′)P(z, dz′)

is continuous and bounded on Z whenever h is. (2) c, s, κ and z 7→
∫

κ(z′)P(z, dz′)

are continuous.

Proposition 3.4.2. If assumptions 3.4.1–3.4.2 hold, then ψ∗, r∗ and v∗ are continuous.

3.5 Symmetry in Lp

In this section, we show that the results of the preceding section for the most part

carry over if we switch the underlying space to Lp.
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Consider (Lp(π)× Lp(π), dp), where for all ( f1, f2), ( f ′1, f ′2) ∈ Lp(π)× Lp(π),

dp
(
( f1, f2), ( f ′1, f ′2)

)
:= ‖| f1 − f ′1| ∨ | f2 − f ′2|‖p.

Lemma 3.A.5 (see appendix 3.A) shows that (Lp(π) × Lp(π), dp) is a complete

metric space.

Assumption 3.5.1. The state process {Zt} admits a stationary distribution π and

the reward functions s, c are in Lq(π) for some q ≥ 1.

The following result shows that Q and T are both contraction mappings on Lp(π)×
Lp(π) under identical assumptions.4

Theorem 3.5.1. If assumption 3.5.1 holds, then for all 1 ≤ p ≤ q, we have

(1) Q is a contraction mapping on (Lp(π)× Lp(π), dp) of modulus β.

(2) The unique fixed point of Q in Lp(π)× Lp(π) is (ψ∗, r∗).

(3) T is a contraction mapping on (Lp(π)× Lp(π), dp) of modulus β.

(4) The unique fixed point of T in Lp(π)× Lp(π) is (v∗, r∗).

The next result implies that Q and T have the same rate of convergence in terms

of the Lp-norm distance defined above.

Proposition 3.5.1. If assumption 3.5.1 holds, then for all 1 ≤ p ≤ q,

R
(

Lp(π)× Lp(π)
)
⊂ Lp(π)× Lp(π)

and L
(

Lp(π)× Lp(π)
)
⊂ Lp(π)× Lp(π).

Moreover, for all 1 ≤ p ≤ q and t ∈ N0, the following statements are true:

(1) dp
(
Qt+1(ψ, r), (ψ∗, r∗)

)
≤ βdp

(
TtR(ψ, r), (v∗, r∗)

)
for all (ψ, r) ∈ Lp(π) ×

Lp(π).

(2) dp
(
Tt+1(v, r), (v∗, r∗)

)
≤ dp

(
QtL(v, r), (ψ∗, r∗)

)
for all (v, r) ∈ Lp(π)× Lp(π).

Proposition 3.5.1 is an extension of proposition 3.3.2 in an Lp framework, and

their connections can be seen by letting V = C := Lp(π)× Lp(π).

4As in section 2.3.3, we omit phrases such as ”with probability one” or ”almost surely”

throughout this section. Indeed, functional equivalences and uniqueness of fixed points are up to

a π-null set.
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Appendix 3.A Some Lemmas

To see the symmetric properties of Q and T from an alternative perspective, we

start our analysis with a generic candidate continuation value function space. Let

C be a subset of mB×mB such that (ψ∗, r∗) ∈ C and QC ⊂ C . Let V be defined

by

V := RC =

{(
v

r

)
∈ mB ×mB :

(
v

r

)
= R

(
ψ

r

)
for some

(
ψ

r

)
∈ C

}
.

(3.A.1)

Then R is a surjective map from C onto V , Q = LR on C and T = RL on V . The

following result parallels the theory of section 3.3, and is helpful for deriving im-

portant convergence properties once topological structure is added to the generic

setting, as to be shown.

Lemma 3.A.1. The following statements are true:

(1) LV ⊂ C and TV ⊂ V .

(2) If (v, r) is a fixed point of T in V , then L(v, r) is a fixed point of Q in C .

(3) If (ψ, r) is a fixed point of Q in C , then R(ψ, r) is a fixed point of T in V .

(4) Tt+1 = RQtL on V and Qt+1 = LTtR on C for all t ∈ N0.

Proof. The proof is similar to that of propositions 3.3.1–3.3.2 and thus omitted.

Lemma 3.A.2. Under assumption 3.4.1, there exist b1, b2 ∈ R+ such that

max {|v∗(z)|, |r∗(z)|, |ψ∗(z)|} ≤
n−1

∑
t=0

βt
E z[|s(Zt)|+ |c(Zt)|] + b1g(z) + b2.

Proof of lemma 3.A.2. Without loss of generality, we assume m 6= 1 in assumption

3.4.1. By that assumption, E z|s(Zn)| ≤ a1g(z) + a2, E z|c(Zn)| ≤ a3g(z) + a4 and

E zg(Z1) ≤ mg(z) + d for all z ∈ Z. For all t ≥ 1, by the Markov property (see,

e.g., Meyn and Tweedie (2009), section 3.4.3),

E zg(Zt) = E z [E z (g(Zt)|Ft−1)] = E z
(
E Zt−1 g(Z1)

)
≤ mE zg(Zt−1) + d.

Induction shows that for all t ≥ 0,

E zg(Zt) ≤ mtg(z) +
1−mt

1−m
d. (3.A.2)

Moreover, for all t ≥ n, applying the Markov property again yields

E z|s(Zt)| = E z [E z (|s(Zt)||Ft−n)] = E z
(
E Zt−n |s(Zn)|

)
≤ a1E zg(Zt−n) + a2.
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By (3.A.2), for all t ≥ n, we have

E z|s(Zt)| ≤ a1

(
mt−ng(z) +

1−mt−n

1−m
d
)
+ a2. (3.A.3)

Similarly, for all t ≥ n, we have

E z|c(Zt)| ≤ a3E zg(Zt−n) + a4 ≤ a3

(
mt−ng(z) +

1−mt−n

1−m
d
)
+ a4. (3.A.4)

Let S(z) := ∑t≥0 βt
E z [|s(Zt)|+ |c(Zt)|]. Based on (3.A.2)–(3.A.4), we can show

that

S(z) ≤
n−1

∑
t=0

βt
E z[|s(Zt)|+ |c(Zt)|] +

a1 + a3

1− βm
g(z) +

(a1 + a3)d + a2 + a4

(1− βm)(1− β)
.

(3.A.5)

Since max{|v∗|, |r∗|, |ψ∗|} ≤ S by definition, the stated claim holds by letting

b1 := a1+a3
1−βm and b2 := (a1+a3)d+a2+a4

(1−βm)(1−β)
.

Lemma 3.A.3. Under assumption 3.4.1, v∗ and r∗ satisfy (3.2.2)–(3.2.3).

Proof of lemma 3.A.3. We use P̃ to denote the stochastic kernel related to the state

process {(Zt, It)}t≥0. The corresponding Bellman equation of the problem stated

in (3.2.1) satisfies

V(z0, i0) = max
j0∈{0,1}

{
F(z0, i0, j0) + β

∫
V(z1, i1)P̃((z0, i0), j0; d(z1, i1))

}
. (3.A.6)

Note that the Bellman equation defined above is equivalent to the following two

equations5

V(z0, 1) = max
{

V(z0, 0), c(z0) + β
∫

V(z1, 1)P(z0, dz1)

}
(3.A.7)

and

V(z0, 0) = s(z0) + αβ
∫

V(z1, 1)P(z0, dz1) + (1− α)β
∫

V(z1, 0)P(z0, dz1).

(3.A.8)

Under assumption 3.4.1, the Bellman equation is well-defined (i.e., a solution ex-

ists). To see this, let (ψ̃, r̃) be the unique fixed point of Q under bκZ× bκZ obtained

from claim (1) of theorem 3.4.1. Then Ṽ defined by

Ṽ(·, 0) := r̃ ∈ bκZ and Ṽ(·, 1) := r̃ ∨ ψ̃ ∈ bκZ (3.A.9)

5Note that if it = 0, then jt = 0 and F(zt, 0, jt) = F(zt, 0, 0) = s(zt), i.e., the agent has no choice

since he/she is already in the passive state. In this case, it+1 = 1 with probability α and it+1 = 0

with probability 1− α. Hence, V(z0, 0) follows the rule stated in (3.A.8).
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solves the equation system (3.A.7)–(3.A.8).

Moreover, since (3.A.7)–(3.A.8) are the functional equations related to (3.2.2)–

(3.2.3), and that (3.A.7)–(3.A.8) are equivalent to (3.A.6), to prove the stated claim,

it suffices to show that any solution V to (3.A.6) with (V(· , 0), V(· , 1)) ∈ bκZ×
bκZ satisfies V = V∗. Note that for all feasible plan {jt}t≥0, we have

V(z0, i0) ≥ F(z0, i0, j0) + β
∫

V(z1, i1)P̃((z0, i0), j0; d(z1, i1))

≥ F(z0, i0, j0)+

β
∫ [

F(z1, i1, j1) + β
∫

V(z2, i2)P̃((z1, i1), j1; d(z2, i2))
]

P̃((z0, i0), j0; d(z1, i1))

= F(z0, i0, j0) + βE
j0
z0,i0

F(Z1, I1, j1) + β2
E

j0,j1
z0,i0

V(Z2, I2) ≥ · · ·

≥
K

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt) + βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1) (3.A.10)

for all K ∈ N. Since (V(· , 0), V(· , 1)) ∈ bκZ× bκZ, there exists G ∈ R+ such that

|V| ≤ Gκ. The Markov property then implies that∣∣∣E j0···jK−1
z0,i0

V(ZK, IK)
∣∣∣ ≤ GE z0κ(ZK)

= G

(
m′

n−1

∑
t=0

E z0 [|s(Zt+K)|+ |c(Zt+K)|] +E z0 g(ZK) + d′
)

. (3.A.11)

From (3.A.2)–(3.A.4) (the proof of lemma 3.A.2) we know that, for all z0 ∈ Z and

t ∈ N0,

E z0 g(Zt) ≤ mtg(z0) +
1−mt

1−m
d,

and for all z0 ∈ Z and t ≥ n,

max{E z0 |s(Zt)|,E z0 |c(Zt)|} ≤ d1

(
mt−ng(z0) +

1−mt−n

1−m
d
)
+ d2.

Substituting these results into (3.A.11), we can show that, for all (z0, i0),∣∣∣βK
E

j0···jK−1
z0,i0

V(ZK, IK)
∣∣∣ ≤ 2Gd1m′

n−1

∑
t=0

[
(βm)Kmt−ng(z0) + βK 1−mK+t−n

1−m
d
]

+ G
[
(βm)Kg(z0) + βK 1−mK

1−m
d
]
+ βKG(d′ + 2nd2m′).

Since βm < 1, this implies that limK→∞ βK
E

j0···jK−1
z0,i0

V(ZK, IK) = 0 for all (z0, i0) ∈
Z× {0, 1}. Let K → ∞, then (3.A.10) implies that, for all {jt}t≥0,

V(z0, i0) ≥
∞

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt).

Hence, V ≥ V∗. Notice that since (3.A.6) is a binary choice problem, there exists

a plan { j̃t}t≥0 such that (3.A.10) holds with equality in each step, which implies

V ≤ V∗. Hence, V = V∗, as was to be shown. This concludes the proof.
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Lemma 3.A.4. Under assumption 3.5.1, v∗ and r∗ satisfy (3.2.2)–(3.2.3) π-almost surely.

Proof. Recall the two equivalent versions of Bellman equations defined respec-

tively in (3.A.6) and (3.A.7)–(3.A.8) (see the proof of lemma 3.A.3). Under as-

sumption 3.5.1, the Bellman equation is well-defined (π-almost surely). To see

this, let (ψ̃, r̃) be the unique fixed point of Q under
(

Lq(π)× Lq(π), dq
)

obtained

from claim (1) of theorem 3.5.1. Then Ṽ defined by

Ṽ(· , 0) := r̃ and Ṽ(· , 1) := r̃ ∨ ψ̃

solves the equation system (3.A.7)–(3.A.8) π-almost surely.

Since (3.A.7)–(3.A.8) are the functional equations corresponding to (3.2.2)–(3.2.3),

and that (3.A.7)–(3.A.8) are equivalent to (3.A.6). It remains to verify that any so-

lution V to the Bellman equation (3.A.6) with (V(· , 0), V(· , 1)) ∈ Lq(π)× Lq(π)

satisfies V = V∗ π-almost surely. For all feasible plan {jt}t≥0 and (z0, i0) ∈
Z× {0, 1}, we have∣∣∣E j0···jK−1

z0,i0
V(ZK, IK)

∣∣∣ ≤ E j0···jK−1
z0,i0

|V(ZK, IK)| ≤ E z0 [|V(ZK, 0)| ∨ |V(ZK, 1)|] .

Hence, for all (z0, i0) ∈ Z× {0, 1},

sup
{jt}t≥0

∣∣∣E j0···jK−1
z0,i0

V(ZK, IK)
∣∣∣ ≤ E z0 [|V(ZK, 0)| ∨ |V(ZK, 1)|]. (3.A.12)

Since π is stationary, Jensen’s inequality yields∫
{E z0 [|V(ZK, 0)| ∨ |V(ZK, 1)|]}q π(dz0)

=
∫ [∫

|V(z′, 0)| ∨ |V(z′, 1)|PK(z, dz′)
]q

π(dz)

≤
∫ ∫

|V(z′, 0)|q ∨ |V(z′, 1)|qPK(z, dz′)π(dz)

=
∫
|V(z′, 0)|q ∨ |V(z′, 1)|qπ(dz′) ≤ ‖V(· , 0)‖q

q + ‖V(· , 1)‖q
q < ∞.

Let E · f (Zt) denote the function z 7→ E z f (Zt). The Minkowski inequality then

implies that for all n ∈ N,∥∥∥∥∥ n

∑
t=0

βt
E ·[|V(Zt, 0)| ∨ |V(Zt, 1)|]

∥∥∥∥∥
q

≤
n

∑
t=0

βt ‖E ·[|V(Zt, 0)| ∨ |V(Zt, 1)|]‖q

=
n

∑
t=0

βt
[∫
{E z[|V(Zt, 0)| ∨ |V(Zt, 1)|]}q π(dz)

]1/q

≤
n

∑
t=0

βt [‖V(· , 1)‖q
q + ‖V(· , 1)‖q

q
]1/q ≤

∞

∑
t=0

βt [‖V(· , 1)‖q
q + ‖V(· , 1)‖q

q
]1/q

< ∞.
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Moreover, by the monotone convergence theorem,∥∥∥∥∥ n

∑
t=0

βt
E ·[|V(Zt, 0)| ∨ |V(Zt, 1)|]

∥∥∥∥∥
q

→
∥∥∥∥∥ ∞

∑
t=0

βt
E ·[|V(Zt, 0)| ∨ |V(Zt, 1)|]

∥∥∥∥∥
q

.

Together, we have
∥∥∑∞

t=0 βt
E ·[|V(Zt, 0)| ∨ |V(Zt, 1)|]

∥∥
q < ∞, which implies that

lim
K→∞

βK
E z0 [|V(ZK, 0)| ∨ |V(ZK, 1)|] = 0 π-almost surely.

Then, by (3.A.12), for all i0 ∈ {0, 1},

lim
K→∞

[
sup
{jt}t≥0

∣∣∣βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1)
∣∣∣] = 0 π-almost surely.

This implies that

sup
{jt}t≥0

[
lim

K→∞

∣∣∣βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1)
∣∣∣] = 0 π-almost surely. (3.A.13)

For all feasible plan {jt}t≥0, i0 ∈ {0, 1} and K ∈ N, (3.A.10) implies that

V(z0, i0) ≥
K

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt) + βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1). (3.A.14)

Letting K → ∞ and taking supremum with respect to {jt}t≥0 yield

V(z0, i0) ≥ sup
{jt}t≥0

lim
K→∞

K

∑
t=0

βt
E

j0···jt−1
z0,i0

F(Zt, It, jt)

+ sup
{jt}t≥0

lim
K→∞

βK+1
E

j0···jK
z0,i0

V(ZK+1, IK+1). (3.A.15)

Together, (3.A.13) and (3.A.15) imply that V ≥ V∗ π-almost surely.

Since (3.A.6) is a binary choice problem, there exists a plan { j̃t}t≥0 such that

(3.A.14) holds with equality for all K ∈ N. (3.A.13) then implies that V ≤ V∗

π-almost surely. In summary, we have V = V∗ π-almost surely. This concludes

the proof.

Recall (bκZ× bκZ, ρκ) constructed in section 3.4.

Lemma 3.A.5. (bκZ× bκZ, ρκ) is a complete metric space.

Proof. We first show that ρκ is a well-defined metric. We only prove the triangular

inequality since the other required properties of a metric hold trivially for ρκ. For

all ( f1, f2), ( f ′1, f ′2), ( f ′′1 , f ′′2 ) ∈ bκZ× bκZ, we have

ρκ

(
( f1, f2), ( f ′1, f ′2)

)
= ‖ f1 − f ′1‖κ ∨ ‖ f2 − f ′2‖κ

≤
(
‖ f1 − f ′′1 ‖κ + ‖ f ′′1 − f ′1‖κ

)
∨
(
‖ f2 − f ′′2 ‖κ + ‖ f ′′2 − f ′2‖κ

)
≤ ‖ f1 − f ′′1 ‖κ ∨ ‖ f2 − f ′′2 ‖κ + ‖ f ′′1 − f ′1‖κ ∨ ‖ f ′′2 − f ′2‖κ

= ρκ

(
( f1, f2), ( f ′′1 , f ′′2 )

)
+ ρκ

(
( f ′′1 , f ′′2 ), ( f ′1, f ′2)

)
.
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Hence, the triangular inequality holds, and ρκ is a well-defined metric.

Regarding completeness, let {( fn, hn)} be a Cauchy sequence of (bκZ× bκZ, ρκ).

Then { fn} and {hn} are two Cauchy sequences of the Banach space (bκZ, ‖ · ‖κ).

Hence, ‖ fn − f ‖κ → 0 and ‖hn − h‖κ → 0 as n → ∞ for some f , h ∈ bκZ. This

implies that ( f , h) ∈ bκZ× bκZ and that ρκ (( fn, hn), ( f , h)) = ‖ fn − f ‖κ ∨ ‖hn −
h‖κ → 0 as n→ ∞. Hence, completeness is established.

Recall (Lp(π)× Lp(π), dp) constructed in section 3.5.

Lemma 3.A.6. (Lp(π)× Lp(π), dp) is a complete metric space.

Proof. We first show that dp is a well-defined metric. We only verify the triangular

inequality since the other required properties of a metric obviously holds for dp.

For all ( f1, f2), ( f ′1, f ′2), ( f ′′1 , f ′′2 ) ∈ Lp(π)× Lp(π), we have

| f1 − f ′1| ∨ | f2 − f ′2| ≤
(
| f1 − f ′′1 |+ | f ′′1 − f ′1|

)
∨
(
| f2 − f ′′2 |+ | f ′′2 − f ′2|

)
≤ | f1 − f ′′1 | ∨ | f2 − f ′′2 |+ | f ′′1 − f ′1| ∨ | f ′′2 − f ′2|.

The Minkowski inequality then implies that

dp
(
( f1, f2), ( f ′1, f ′2)

)
= ‖| f1 − f ′1| ∨ | f2 − f ′2|‖p

≤
∥∥| f1 − f ′′1 | ∨ | f2 − f ′′2 |+ | f ′′1 − f ′1| ∨ | f ′′2 − f ′2|

∥∥
p

≤
∥∥| f1 − f ′′1 | ∨ | f2 − f ′′2 |

∥∥
p +

∥∥| f ′′1 − f ′1| ∨ | f ′′2 − f ′2|
∥∥

p

= dp
(
( f1, f2), ( f ′′1 , f ′′2 )

)
+ dp

(
( f ′′1 , f ′′2 ), ( f ′1, f ′2)

)
.

Hence, the triangular inequality is verified, and dp is a well-defined metric.

For completeness, let {( fn, hn)} be a Cauchy sequence of
(

Lp(π)× Lp(π), dp
)
.

Then { fn} and {hn} are Cauchy sequences of the Banach space (Lp(π), ‖ · ‖p).

Hence, ‖ fn − f ‖p → 0 and ‖hn − h‖p → 0 as n → ∞ for some f , h ∈ Lp(π). This

implies that ( f , h) ∈ Lp(π)× Lp(π) and that

dp (( fn, hn), ( f , h)) = ‖| fn − f | ∨ |hn − h|‖p ≤ ‖| fn − f |+ |hn − h|‖p

≤ ‖ fn − f ‖p + ‖hn − h‖p → 0

as n→ ∞. Hence, completeness is established. This concludes the proof.
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Appendix 3.B Main Proofs

Proof of theorem 3.4.1. By the Markov property, we have∫
E z′ |s(Zt)|P(z, dz′) = E z|s(Zt+1)| and

∫
E z′ |c(Zt)|P(z, dz′) = E z|c(Zt+1)|.

Let h(z) := ∑n−1
t=0 E z[|s(Zt)|+ |c(Zt)|], then we have∫

h(z′)P(z, dz′) =
n

∑
t=1
E z[|s(Zt)|+ |c(Zt)|]. (3.B.1)

By the construction of m′ and d′ in (3.4.4), we have m + d1m′ > 1 and (d2m′ + d +

d′)/(m + d1m′) ≤ d′. Assumption 3.4.1 and (3.B.1) then imply that∫
κ(z′)P(z, dz′) = m′

n

∑
t=1
E z[|s(Zt)|+ |c(Zt)|] +

∫
g(z′)P(z, dz′) + d′

≤ m′
n−1

∑
t=1

E z[|r(Zt)|+ |c(Zt)|] + (m + d1m′)g(z) + d2m′ + d + d′

≤ (m + d1m′)
(

m′

m + d1m′
h(z) + g(z) + d′

)
≤ (m + d1m′)κ(z).

(3.B.2)

In the next, we use this result to prove the stated claims.

Step 1. We prove claim (1). We first show that Q : (bκZ × bκZ, ρκ) → (bκZ ×
bκZ, ρκ). For all z ∈ Z and (ψ, r) ∈ bκZ× bκZ, we define

(z; ψ, r) := c(z) + β
∫

max{r(z′), ψ(z′)}P(z, dz′)

and

̃(z; ψ, r) := s(z) + αβ
∫

max{r(z′), ψ(z′)}P(z, dz′) + (1− α)β
∫

r(z′)P(z, dz′).

Then there exists G ∈ R+ such that for all z ∈ Z,

|(z; ψ, r)|
κ(z)

≤ |c(z)|
κ(z)

+
βG
∫

κ(z′)P(z, dz′)
κ(z)

≤ 1
m′

+ β(m + d1m′)G < ∞

and

| ̃(z; ψ, r)|
κ(z)

≤ |s(z)|
κ(z)

+
βG
∫

κ(z′)P(z, dz′)
κ(z)

≤ 1
m′

+ β(m + d1m′)G < ∞.

This implies that (· ; ψ, r) ∈ bκZ and ̃(· ; ψ, r) ∈ bκZ. Hence, Q(ψ, r) ∈ bκZ× bκZ,

and Q is a self-map on bκZ× bκZ.

Next, we show that Q is a contraction on (bκZ× bκZ, ρκ). For all (ψ1, r1), (ψ2, r2) ∈
bκZ× bκZ, we have ρκ (Q(ψ1, r1), Q(ψ2, r2)) = I ∨ J, where

I := ‖βP(r1 ∨ ψ1)− βP(r2 ∨ ψ2)‖κ
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and

J := ‖αβ[P(r1 ∨ ψ1)− P(r2 ∨ ψ2)] + (1− α)β(Pr1 − Pr2)‖κ.

For all z ∈ Z, we have

|P(r1 ∨ ψ1)(z)− P(r2 ∨ ψ2)(z)| ≤
∫
|r1 ∨ ψ1 − r2 ∨ ψ2| (z′)P(z, dz′)

≤
∫
(|ψ1 − ψ2| ∨ |r1 − r2|)(z′)P(z, dz′)

≤ (‖ψ1 − ψ2‖κ ∨ ‖r1 − r2‖κ)
∫

κ(z′)P(z, dz′)

≤ ρκ ((ψ1, r1), (ψ2, r2)) (m + d1m′)κ(z),

where the second inequality follows from the elementary fact |a ∨ b− a′ ∨ b′| ≤
|a− a′| ∨ |b− b′|. Recall ρ := β(m + d1m′) defined in (3.4.4). We then have

I ≤ β(m + d1m′)ρκ ((ψ1, r1), (ψ2, r2)) = ρ ρκ ((ψ1, r1), (ψ2, r2)) .

Similar arguments yield J ≤ ρ ρκ ((ψ1, r1), (ψ2, r2)). In conclusion, we have

ρκ (Q(ψ1, r1), Q(ψ2, r2)) = I ∨ J ≤ ρ ρκ ((ψ1, r1), (ψ2, r2)) .

Hence Q is a contraction mapping on (bκZ× bκZ, ρκ) with modulus ρ, and claim (1)

is verified.

Step 2. We show that claim (2) holds. Lemma 3.A.3 shows that (3.2.2)–(3.2.3)

hold under assumption 3.4.1. Then from (3.2.6) we know that (ψ∗, r∗) is indeed

a fixed point of Q. Moreover, lemma 3.A.2 implies that (ψ∗, r∗) ∈ bκZ × bκZ.

Hence, (ψ∗, r∗) must coincide with the unique fixed point of Q under bκZ× bκZ,

and claim (2) holds.

Step 3. We prove claim (3). We first show that T : (bκZ × bκZ, ρκ) → (bκZ ×
bκZ, ρκ). For all (v, r) ∈ bκZ× bκZ, let `(z; v, r) be defined as in (3.2.4), and let

˜̀(z; v, r) := max
{
`(z; v, r), c(z) + β

∫
v(z′)P(z, dz′)

}
.

Then there exists G ∈ R+ such that for all z ∈ Z,

|`(z; v, r)|
κ(z)

≤ |s(z)|
κ(z)

+
βG
∫

κ(z′)P(z, dz′)
κ(z)

≤ 1
m′

+ β(m + d1m′)G < ∞

and

| ˜̀(z; v, r)|
κ(z)

≤ max
{
|`(z; v, r)|

κ(z)
,
|c(z)|
κ(z)

+
βG
∫

κ(z′)P(z, dz′)
κ(z)

}
≤ 1

m′
+ β(m + d1m′)G < ∞.
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This implies that ˜̀(· ; v, r) ∈ bκZ and `(· ; v, r) ∈ bκZ. Hence, T(v, r) ∈ bκZ× bκZ.

Next, we show that T is a contraction on (bκZ× bκZ, ρκ). For all fixed (v1, r1) and

(v2, r2) in bκZ× bκZ, we have ρκ (T(v1, r1), T(v2, r2)) = I ∨ J, where

I := ‖`(· ; v1, r1) ∨ (c + βPv1)− `(· ; v2, r2) ∨ (c + βPv2)‖κ

and

J := ‖`(· ; v1, r1)− `(· ; v2, r2)‖κ.

For all z ∈ Z, we have

|`(z; v1, r1)− `(z; v2, r2)|

= |αβ[Pv1(z)− Pv2(z)] + (1− α)β[Pr1(z)− Pr2(z)]|

≤ αβ
∫
|v1(z′)− v2(z′)|P(z, dz′) + (1− α)β

∫
|r1(z′)− r2(z′)|P(z, dz′)

≤ αβ‖v1 − v2‖κ

∫
κ(z′)P(z, dz′) + (1− α)β‖r1 − r2‖κ

∫
κ(z′)P(z, dz′)

≤ αβ(m + d1m′)‖v1 − v2‖κ κ(z) + (1− α)β(m + d1m′)‖r1 − r2‖κ κ(z)

≤ ρ (‖v1 − v2‖κ ∨ ‖r1 − r2‖κ) κ(z) = ρ ρκ ((v1, r1), (v2, r2)) κ(z).

Hence, J ≤ ρ ρκ ((v1, r1), (v2, r2)). Moreover, for all z ∈ Z, we have

|`(z; v1, r1) ∨ (c + βPv1)(z)− `(z; v2, r2) ∨ (c + βPv2)(z)|

≤ |`(z; v1, r1)− `(z; v2, r2)| ∨ [βPv1(z)− βPv2(z)]

≤ |`(z; v1, r1)− `(z; v2, r2)| ∨
(

β
∫ ∣∣v1(z′)− v2(z′)

∣∣ P(z, dz′)
)

≤ [ρ ρκ ((v1, r1), (v2, r2)) κ(z)] ∨
(

β‖v1 − v2‖κ

∫
κ(z′)P(z, dz′)

)
≤ [ρ ρκ ((v1, r1), (v2, r2)) κ(z)] ∨ [ρ ‖v1 − v2‖κκ(z)] = ρ ρκ ((v1, r1), (v2, r2)) κ(z).

Hence, I ≤ ρρκ ((v1, r1), (v2, r2)). In conclusion, we have

ρκ (T(v1, r1), T(v2, r2)) = I ∨ J ≤ ρ ρκ ((v1, r1), (v2, r2)) .

Hence T is a contraction mapping on (bκZ× bκZ, ρκ) with modulus ρ, and claim (3)

is verified.

Step 4. We show that claim (4) holds. Lemma 3.A.2 and 3.A.3 imply respectively

that (v∗, r∗) ∈ bκZ × bκZ and that (v∗, r∗) is a fixed point of T. Hence, (v∗, r∗)

must coincide with the unique fixed point of T under bκZ× bκZ, and claim (4)

holds. This concludes the proof.
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Proof of proposition 3.4.1. Let V = C := bκZ× bκZ. The fact that RC ⊂ bκZ× bκZ

is obvious, and using the Markov property, we can easily show that LV ⊂ bκZ×
bκZ.

Regarding claim (1), for all (ψ, r) ∈ C , we have

ρκ

[
Q

(
ψ

r

)
,

(
ψ∗

r∗

)]
= ρκ

[
LR

(
ψ

r

)
, L

(
v∗

r∗

)]
= ρκ

[
L

(
r ∨ ψ

r

)
, L

(
v∗

r∗

)]
= I ∨ J,

where

I := β‖P(r ∨ ψ)− Pv∗‖κ

and

J := β‖α[P(r ∨ ψ)− Pv∗] + (1− α)(Pr− Pr∗)‖κ.

Notice that for all z ∈ Z, (3.B.2) implies that

|P(r ∨ ψ)(z)− Pv∗(z)| ≤
∫
|(r ∨ ψ)(z′)− v∗(z′)|P(z, dz′)

≤ ‖r ∨ ψ− v∗‖κ

∫
κ(z′)P(z, dz′)

≤ ‖r ∨ ψ− v∗‖κ(m + d1m′)κ(z).

Hence, β‖P(r ∨ ψ)− Pv∗‖κ ≤ β(m + d1m′)‖r ∨ ψ− v∗‖κ = ρ ‖r ∨ ψ− v∗‖κ, and

I ≤ ρ ‖r ∨ ψ− v∗‖κ ≤ ρ (‖r ∨ ψ− v∗‖κ ∨ ‖r− r∗‖κ) = ρ ρκ (R(ψ, r), (v∗, r∗))

Similarly, for all z ∈ Z, we have

|Pr(z)− Pr∗(z)| ≤ ‖r− r∗‖κ(m + d1m′)κ(z).

Hence, β‖Pr− Pr∗‖κ ≤ β(m + d1m′)‖r− r∗‖κ = ρ ‖r− r∗‖κ, and

J ≤ αβ‖P(r ∨ ψ)− Pv∗‖κ + (1− α)β‖Pr− Pr∗‖κ

≤ αρ ‖r ∨ ψ− v∗‖κ + (1− α)ρ ‖r− r∗‖κ

≤ ρ (‖r ∨ ψ− v∗‖κ ∨ ‖r− r∗‖κ) = ρ ρκ (R(ψ, r), (v∗, r∗)) .

In summary, we have

ρκ (Q(ψ, r), (ψ∗, r∗)) = I ∨ J ≤ ρ ρκ (R(ψ, r), (v∗, r∗))

and claim (1) holds for t = 0. Now suppose claim (1) is true for arbitrary t. By

the induction hypothesis we have

ρκ(Qt(ψ, r), (ψ∗, r∗)) ≤ ρ ρκ(Tt−1R(ψ, r), (v∗, r∗))
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for all (ψ, r) ∈ bκZ× bκZ. Since Q and T are semiconjugate as shown in section

3.3, we have

ρk

[
Qt+1

(
ψ

r

)
,

(
ψ∗

r∗

)]
= ρk

[
QtQ

(
ψ

r

)
,

(
ψ∗

r∗

)]
≤ ρ ρk

[
Tt−1RQ

(
ψ

r

)
,

(
v∗

r∗

)]

= ρ ρk

[
Tt−1TR

(
ψ

r

)
,

(
v∗

r∗

)]
= ρ ρk

[
TtR

(
ψ

r

)
,

(
v∗

r∗

)]

for all (ψ, r) ∈ bκZ× bκZ. Hence, claim (1) holds by induction.

Regarding claim (2), for all (v, r) ∈ bκZ× bκZ, we have

ρκ

[
T

(
v

r

)
,

(
v∗

r∗

)]
= ρκ

[
RL

(
v

r

)
, R

(
ψ∗

r∗

)]

= ρκ

[
R

(
c + βPv

s + αβPv + (1− α)βPr

)
, R

(
ψ∗

r∗

)]
= Ĩ ∨ J̃,

where

Ĩ := ‖s + αβPv + (1− α)βPr− r∗‖κ

and

J̃ := ‖[s + αβPv + (1− α)βPr] ∨ (c + βPv)− r∗ ∨ ψ∗‖κ.

Since

|[s + αβPv + (1− α)βPr](z) ∨ (c + βPv)(z)− r∗(z) ∨ ψ∗(z)|

≤ |[s + αβPv + (1− α)βPr](z)− r∗(z)| ∨ |(c + βPv)(z)− ψ∗(z)|

for all z ∈ Z, we have

J̃ ≤ ‖s + αβPv + (1− α)βPr− r∗‖κ ∨ ‖c + βPv− ψ∗‖κ,

and thus

ρκ

[
T

(
v

r

)
,

(
v∗

r∗

)]
= Ĩ ∨ J̃ ≤ ‖s + αβPv + (1− α)βPr− r∗‖κ ∨ ‖c + βPv− ψ∗‖κ

= ρκ

[(
c + βPv

s + αβPv + (1− α)βPr

)
,

(
ψ∗

r∗

)]
= ρκ

[
L

(
v

r

)
,

(
ψ∗

r∗

)]
.

Hence, claim (2) holds for t = 0. Now suppose that the claim holds for arbitrary

t. By the induction hypothesis we have

ρκ

(
Tt(v, r), (v∗, r∗)

)
≤ ρκ

(
Qt−1L(v, r), (ψ∗, r∗)

)
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for all (v, r) ∈ bκZ× bκZ. Since Q and T are semiconjugate as shown in section

3.3, we have

ρκ

[
Tt+1

(
v

r

)
,

(
v∗

r∗

)]
= ρκ

[
TtT

(
v

r

)
,

(
v∗

r∗

)]
= ρκ

[
Qt−1LT

(
v

r

)
,

(
ψ∗

r∗

)]

= ρκ

[
Qt−1QL

(
v

r

)
,

(
ψ∗

r∗

)]
= ρκ

[
QtL

(
v

r

)
,

(
ψ∗

r∗

)]
.

Hence, claim (2) holds by induction. This concludes the proof.

Proof of proposition 3.4.2. Let bκcZ be the set of continuous functions in bκZ. Since

κ is continuous by assumption 3.4.2, bκcZ is a closed subset of bκZ (see e.g., Boyd

(1990), section 3). To show the continuity of ψ∗ and r∗, it suffices to verify that

Q(bκcZ× bκcZ) ⊂ bκcZ× bκcZ (see, e.g., Stokey et al. (1989), corollary 1 of theo-

rem 3.2). For all (ψ, r) ∈ bκcZ× bκcZ, there exists G ∈ R+ such that |r(z)∨ψ(z)| ≤
Gκ(z). By assumption 3.4.2, z 7→ Gκ(z)± r(z) ∨ ψ(z) are nonnegative and con-

tinuous. For all z ∈ Z and {zm} ⊂ Z with zm → z, the generalized Fatou’s lemma

of Feinberg et al. (2014) (theorem 1.1) implies that (note that P(zm, ·) w→ P(z, ·)
since P is Feller)∫ [

Gκ(z′)± r(z′) ∨ ψ(z′)
]

P(z, dz′) ≤ lim inf
m→∞

∫ [
Gκ(z′)± r(z′) ∨ ψ(z′)

]
P(zm, dz′).

Since limm→∞
∫

κ(z′)P(zm, dz′) =
∫

κ(z′)P(z, dz′) by assumption 3.4.2, we have

±
∫

r(z′) ∨ ψ(z′)P(z, dz′) ≤ lim inf
m→∞

[
±
∫

r(z′) ∨ ψ(z′)P(zm, dz′)
]

,

where we have used the fact that for all sequences {am}, {bm} ⊂ R with lim
m→∞

am

exists, we have: lim inf
m→∞

(am + bm) = lim
m→∞

am + lim inf
m→∞

bm. Hence,

lim sup
m→∞

∫
r(z′) ∨ ψ(z′)P(zm, dz′) ≤

∫
r(z′) ∨ ψ(z′)P(z, dz′)

≤ lim inf
m→∞

∫
r(z′) ∨ ψ(z′)P(zm, dz′),

i.e., z 7→
∫

r(z′) ∨ ψ(z′)P(z, dz′) is continuous. Similarly, one can show that

z 7→
∫

r(z′)P(z, dz′) is continuous. Since s and c are continuous by assumption

3.4.2, we have Q(ψ, r) ∈ bκcZ× bκcZ. Hence, Q(bκcZ× bκcZ) ⊂ bκcZ× bκcZ and

(ψ∗, r∗) is continuous, as was to be shown. The continuity of v∗ follows from the

continuity of ψ∗ and r∗ and the fact that v∗ = r∗ ∨ ψ∗.

Proof of theorem 3.5.1. For all z ∈ Z and (ψ, r) ∈ Lp(π)× Lp(π), define

(z; ψ, r) := c(z) + β
∫
(r ∨ ψ)(z′)P(z, dz′) (3.B.3)
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and

̃(z; ψ, r) := s(z) + αβ
∫
(r ∨ ψ)(z′)P(z, dz′) + (1− α)β

∫
r(z′)P(z, dz′). (3.B.4)

Then, by definition, the Jovanovic operator Q satisfies

Q

(
ψ

r

)
(z) =

(
(z; ψ, r)

̃(z; ψ, r)

)
.

For all z ∈ Z and (v, r) ∈ Lp(π)× Lp(π), recall `(z; v, r) defined by (3.2.4), and

let
˜̀(z; v, r) := max

{
`(z; v, r), c(z) + β

∫
v(z′)P(z, dz′)

}
. (3.B.5)

Then, by definition, the Bellman operator T satisfies

T

(
v

r

)
(z) =

(
˜̀(z; v, r)

`(z; v, r)

)
.

Since s, c ∈ Lq(π), by the monotonicity of the Lp-norm, we have s, c ∈ Lp(π) for

all 1 ≤ p ≤ q.

Proof of claim (1). Step 1. We show that Q(ψ, r) ∈ Lp(π)× Lp(π) for all (ψ, r) ∈
Lp(π)× Lp(π). For all z ∈ Z and (ψ, r) ∈ Lp(π)× Lp(π), we have

| ̃(z; ψ, r)|p ≤ 3p|s(z)|p + (3αβ)p
[∫
|r(z′)| ∨ |ψ(z′)|P(z, dz′)

]p

+ [3(1− α)β]p
[∫
|r(z′)|P(z, dz′)

]p

≤ 3p|s(z)|p + (3αβ)p
∫ [
|r(z′)| ∨ |ψ(z′)|

]p P(z, dz′)

+ [3(1− α)β]p
∫
|r(z′)|pP(z, dz′)

≤ 3p|s(z)|p + (3αβ)p
∫
|ψ(z′)|pP(z, dz′)

+ (3β)p[αp + (1− α)p]
∫
|r(z′)|pP(z, dz′),

where for the first and third inequality we have used the elementary fact that

(∑n
i=1 ai)

p ≤ np (∨n
i=1ai

)p ≤ np ∑n
i=1 ap

i for all positive {ai}n
i=1 and p, and the

second inequality is due to Jensen’s inequality. Since s, ψ, r ∈ Lp(π) and π is the

stationary distribution of P, Fubini theorem then implies that∫ [∫
|ψ(z′)|pP(z, dz′)

]
π(dz) =

∫
|ψ(z′)|pπ(dz′) = ‖ψ‖p

p < ∞

and ∫ [∫
|r(z′)|pP(z, dz′)

]
π(dz) =

∫
|r(z′)|pπ(dz′) = ‖r‖p

p < ∞.
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The above inequalities then imply that
∫
| ̃(z; ψ, r)|pπ(dz) < ∞, i.e, ‖ ̃(· ; ψ, r)‖p <

∞. Similarly, we can show that
∫
|(z; ψ, r)|pπ(dz) < ∞, i.e, ‖(· ; ψ, r)‖p < ∞.

Hence, Q(ψ, r) ∈ Lp(π)× Lp(π), as was to be shown.

Step 2. We show that Q is a contraction mapping on (Lp(π)× Lp(π), dp) of mod-

ulus β. For all z ∈ Z and (ψ1, r1), (ψ2, r2) ∈ Lp(π)× Lp(π), we have

| ̃(z; ψ1, r1)− ̃(z; ψ2, r2)|p

=

∣∣∣∣αβ
∫
(r1 ∨ ψ1 − r2 ∨ ψ2)(z′)P(z, dz′) + (1− α)β

∫
(r1 − r2)(z′)P(z, dz′)

∣∣∣∣p
≤
[

αβ
∫
|r1 ∨ ψ1 − r2 ∨ ψ2|(z′)P(z, dz′) + (1− α)β

∫
|r1 − r2|(z′)P(z, dz′)

]p

≤
[

β
∫
|r1(z′)− r2(z′)| ∨ |ψ1(z′)− ψ2(z′)|P(z, dz′)

]p

≤ βp
∫ [
|r1(z′)− r2(z′)| ∨ |ψ1(z′)− ψ2(z′)|

]p P(z, dz′).

Similarly, for all z ∈ Z and (ψ1, r1), (ψ2, r2) ∈ Lp(π)× Lp(π), we have

|(z; ψ1, r1)− (z; ψ2, r2)|p =

∣∣∣∣β ∫ (r1 ∨ ψ1 − r2 ∨ ψ2)(z′)P(z, dz′)
∣∣∣∣p

≤
[

β
∫
|r1 ∨ ψ1 − r2 ∨ ψ2|(z′)P(z, dz′)

]p

≤
[

β
∫
|r1(z′)− r2(z′)| ∨ |ψ1(z′)− ψ2(z′)|P(z, dz′)

]p

≤ βp
∫ [
|r1(z′)− r2(z′)| ∨ |ψ1(z′)− ψ2(z′)|

]p P(z, dz′).

By the definition of dP and Fubini theorem, we have

dp (Q(ψ1, r1), Q(ψ2, r2))

=

[∫
|(z; ψ1, r1)− (z; ψ2, r2)|p ∨ | ̃(z; ψ1, r1)− ̃(z; ψ2, r2)|pπ(dz)

]1/p

≤
[∫

βp
∫
[|r1(z′)− r2(z′)| ∨ |ψ1(z′)− ψ2(z′)|]pP(z, dz′)π(dz)

]1/p

= β

[∫
[|r1(z′)− r2(z′)| ∨ |ψ1(z′)− ψ2(z′)|]pπ(dz′)

]1/p
= βdp ((ψ1, r1), (ψ2, r2)) .

Hence, we have shown that Q is a contraction on Lp(π)× Lp(π) of modulus β.

Claim (1) is now established.

Proof of claim (2). Since
(

Lp(π)× Lp(π), dp
)

is a complete metric space, based

on the contraction mapping theorem, Q admits a unique fixed point in Lp(π)×
Lp(π). In order to prove claim (2), it suffices to show that (ψ∗, r∗) ∈ Lp(π) ×
Lp(π) and that (ψ∗, r∗) is a fixed point of Q.
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Step 1. We show that v∗, r∗, ψ∗ ∈ Lp(π). Notice that

|v∗(z)| ∨ |r∗(z)| ∨ |ψ∗(z)| ≤
∞

∑
t=0

βt
E z[|s(Zt)| ∨ |c(Zt)|].

Hence, we have[∫
|v∗(z)|pπ(dz)

]
∨
[∫
|r∗(z)|pπ(dz)

]
∨
[∫
|ψ∗(z)|pπ(dz)

]
≤
∫ ( ∞

∑
t=0

βt
E z[|s(Zt)| ∨ |c(Zt)|]

)p

π(dz). (3.B.6)

By Jensen’s inequality, we have

‖E z[|s(Zt)| ∨ |c(Zt)|]‖p =

[∫ (∫
|s(z′)| ∨ |c(z′)|Pt(z, dz′)

)p
π(dz)

]1/p

≤
[∫ ∫

[|s(z′)| ∨ |c(z′)|]pPt(z, dz′)π(dz)
]1/p

=

[∫
E z[|s(Zt)| ∨ |c(Zt)|]pπ(dz)

]1/p
.

Since π is stationary, the Fubini theorem implies that∫
E z|s(Zt)|pπ(dz) =

∫ ∫
|s(z′)|pPt(z, dz′)π(dz) =

∫
|s(z′)|pπ(dz′) = ‖s‖p

p.

Similarly, we have
∫
E z|c(Zt)|pπ(dz) = ‖c‖p

p. Let E · f (Zt) denote the function

z 7→ E z f (Zt). The Minkowski inequality and the results established above then

imply that for all n ∈ N,∥∥∥∥∥ n

∑
t=0

βt
E ·[|s(Zt)| ∨ |c(Zt)|]

∥∥∥∥∥
p

≤
n

∑
t=0

βt ‖E ·[|s(Zt)| ∨ |c(Zt)|]‖p

≤
n

∑
t=0

βt
[∫

E z[|s(Zt)| ∨ |c(Zt)|]pπ(dz)
]1/p

≤
n

∑
t=0

βt
[∫

(E z|s(Zt)|p +E z|c(Zt)|p)π(dz)
]1/p

=
n

∑
t=0

βt (‖s‖p
p + ‖c‖

p
p
)1/p ≤

(
‖s‖p

p + ‖c‖
p
p
)1/p

1− β
< ∞. (3.B.7)

Moreover, by the monotone convergence theorem, we have∥∥∥∥∥ n

∑
t=0

βt
E ·[|s(Zt)| ∨ |c(Zt)|]

∥∥∥∥∥
p

→
∥∥∥∥∥ ∞

∑
t=0

βt
E ·[|s(Zt)| ∨ |c(Zt)|]

∥∥∥∥∥
p

. (3.B.8)

Together, (3.B.7)–(3.B.8) imply that
∥∥∑∞

t=0 βt
E ·[|s(Zt)| ∨ |c(Zt)|]

∥∥
p < ∞. By (3.B.6),

we have ‖v∗‖p ∨ ‖r∗‖p ∨ ‖ψ∗‖p < ∞ and thus v∗, r∗, ψ∗ ∈ Lp(π).
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Step 2. We show that (v∗, r∗) is a fixed point of T and (ψ∗, r∗) is a fixed point of

Q, i.e., dp (T(v∗, r∗), (v∗, r∗)) = 0 and dp (Q(ψ∗, r∗), (ψ∗, r∗)) = 0. The former ob-

viously holds since lemma 3.A.4 shows that T(v∗, r∗) = (v∗, r∗) π-almost surely.

Regarding the latter, note that

dp (Q(ψ∗, r∗), (ψ∗, r∗)) = dp (LR(ψ∗, r∗), L(v∗, r∗)) = dp (L(r∗ ∨ ψ∗, r∗), L(v∗, r∗))

= ‖|βP(r∗ ∨ ψ∗)− βPv∗| ∨ |αβP(r∗ ∨ ψ∗)− αβPv∗| ‖p = β‖P(r∗ ∨ ψ∗)− Pv∗‖p.

Since ψ∗ := c+ βPv∗ and lemma 3.A.4 implies that v∗ = r∗ ∨ (c+ βPv∗) π-almost

surely, we have v∗ = r∗ ∨ ψ∗ π-almost surely. By Jensen’s inequality,∫
|P(r∗ ∨ ψ∗)(z)− Pv∗(z)|pπ(dz) ≤

∫ ∫
|(r∗ ∨ ψ∗)(z′)− v∗(z′)|pP(z, dz′)π(dz)

=
∫
|(r∗ ∨ ψ∗)(z′)− v∗(z′)|pπ(dz′) = 0.

Hence, dp (Q(ψ∗, r∗), (ψ∗, r∗)) = β‖P(r∗ ∨ ψ∗)− Pv∗‖p = 0. The second claim is

verified.

Proof of claim (3). Step 1. We show that T(v, r) ∈ Lp(π)× Lp(π) for all (v, r) ∈
Lp(π)× Lp(π). For all z ∈ Z and (v, r) ∈ Lp(π)× Lp(π), we have

|`(z; v, r)|p ≤ 3p|s(z)|p + (3αβ)p
[∫
|v(z′)|P(z, dz′)

]p

+ [3(1− α)β]p
[∫
|r(z′)|P(z, dz′)

]p

≤ 3p|s(z)|p + (3αβ)p
∫
|v(z′)|pP(z, dz′)

+ [3(1− α)β]p
∫
|r(z′)|pP(z, dz′),

where again the first inequality is based on the elementary fact that (∑n
i=1 ai)

p ≤
np (∨n

i=1ai
)p ≤ np ∑n

i=1 ap
i for all positive {ai}n

i=1 and p, and the second inequality

is due to Jensen’s inequality. Since s, v, r ∈ Lp(π) and π is the stationary distribu-

tion of P, Fubini theorem implies that∫ [∫
|v(z′)|pP(z, dz′)

]
π(dz) =

∫
|v(z′)|pπ(dz′) = ‖v‖p

p < ∞

and ∫ [∫
|r(z′)|pP(z, dz′)

]
π(dz) =

∫
|r(z′)|pπ(dz′) = ‖r‖p

p < ∞.

Based on the above results, we have
∫
|`(z; v, r)|pπ(dz) < ∞, i.e., ‖`(· ; v, r)‖p <

∞. Similarly, since c, v ∈ Lp(π), one can show that c + βPv ∈ Lp(π). Then∫
| ˜̀(z; v, r)|pπ(dz) ≤

∫
|`(z; v, r)|pπ(dz) +

∫
|c(z) + βPv(z)|pπ(dz) < ∞,
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i.e., ‖ ˜̀(· ; v, r)‖p < ∞. Hence, T(v, r) ∈ Lp(π)× Lp(π), as was to be shown.

Step 2. We show that T is a contraction mapping on (Lp(π)× Lp(π), dp) of mod-

ulus β. For all z ∈ Z and (v1, r1), (v2, r2) ∈ Lp(π)× Lp(π), we have

|`(z; v1, r1)− `(z; v2, r2)|p

=

∣∣∣∣αβ
∫
(v1 − v2)(z′)P(z, dz′) + (1− α)β

∫
(r1 − r2)(z′)P(z, dz′)

∣∣∣∣p
≤
[

αβ
∫
|v1 − v2|(z′)P(z, dz′) + (1− α)β

∫
|r1 − r2|(z′)P(z, dz′)

]p

≤
[

β
∫
|v1(z′)− v2(z′)| ∨ |r1(z′)− r2(z′)|P(z, dz′)

]p

≤ βp
∫ [
|v1(z′)− v2(z′)| ∨ |r1(z′)− r2(z′)|

]p P(z, dz′).

Similarly, for all z ∈ Z and (v1, r1), (v2, r2) ∈ Lp(π)× Lp(π), we have

| ˜̀(z; v1, r1)− ˜̀(z; v2, r2)|p

≤
[
|`(z; v1, r1)− `(z; v2, r2)| ∨

(
β
∫
|v1 − v2|(z′)P(z, dz′)

)]p

≤ |`(z; v1, r1)− `(z; v2, r2)|p ∨
[

βp
∫
|v1(z′)− v2(z′)|pP(z, dz′)

]
≤ βp

∫ [
|v1(z′)− v2(z′)| ∨ |r1(z′)− r2(z′)|

]p P(z, dz′).

The definition of dp and Fubini theorem then imply that

dp (T(v1, r1), T(v2, r2))

=

[∫
|`(z; v1, r1)− `(z; v2, r2)|p ∨ | ˜̀(z; v1, r1)− ˜̀(z; v2, r2)|pπ(dz)

]1/p

≤
[∫

βp
∫
[|v1(z′)− v2(z′)| ∨ |r1(z′)− r2(z′)|]pP(z, dz′)π(dz)

]1/p

= β

[∫
[|v1(z′)− v2(z′)| ∨ |r1(z′)− r2(z′)|]pπ(dz′)

]1/p
= βdp ((v1, r1), (v2, r2)) .

Hence, T is a contraction on Lp(π)× Lp(π) of modulus β. Claim (3) is verified.

Proof of claim (4). We only need to verify that (v∗, r∗) ∈ Lp(π)× Lp(π) and that

(v∗, r∗) is a fixed point of T. These results have been established in the proof of

claim (2). The proof is now complete.

Proof of proposition 3.5.1. We first prove claim (1). For all (ψ, r) ∈ Lp(π)× Lp(π),

dp

[
Q

(
ψ

r

)
,

(
ψ∗

r∗

)]
= dp

[
Q

(
ψ

r

)
, L

(
v∗

r∗

)]
= ‖I ∨ J‖p,
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where

I := β|P(r ∨ ψ)− Pv∗| and J := β|α[P(r ∨ ψ)− Pv∗] + (1− α)(Pr− Pr∗)|.

Notice that

I ∨ J ≤ β {(P|r ∨ ψ− v∗|) ∨ [αP|r ∨ ψ− v∗|+ (1− α)P|r− r∗|]}

≤ βP (|r ∨ ψ− v∗| ∨ |r− r∗|) .

Hence, by Jensen’s inequality and Fubini theorem, we have

‖I ∨ J‖p ≤ β

{∫ [∫
|r(z′) ∨ ψ(z′)− v∗(z′)| ∨ |r(z′)− r∗(z′)|P(z, dz′)

]p
π(dz)

}1/p

≤ β

{∫ ∫
[|r(z′) ∨ ψ(z′)− v∗(z′)| ∨ |r(z′)− r∗(z′)|]pP(z, dz′)π(dz)

}1/p

= β

{∫
[|r(z′) ∨ ψ(z′)− v∗(z′)| ∨ |r(z′)− r∗(z′)|]pπ(dz′)

}1/p

= β dp (R(ψ, r), (v∗, r∗)) .

Hence, dp (Q(ψ, r), (ψ∗, r∗)) ≤ β dp (R(ψ, r), (v∗, r∗)), and claim (1) holds for t =

0. Now suppose claim (1) holds for arbitrary t. By the induction hypothesis we

have dp
(
Qt(ψ, r), (ψ∗, r∗)

)
≤ β dp

(
Tt−1R(ψ, r), (v∗, r∗)

)
for all (ψ, r) ∈ Lp(π)×

Lp(π). Since Q and T are semiconjugate as shown in section 3.3, we have

dp

[
Qt+1

(
ψ

r

)
,

(
ψ∗

r∗

)]
= dp

[
QtQ

(
ψ

r

)
,

(
ψ∗

r∗

)]
≤ βdp

[
Tt−1RQ

(
ψ

r

)
,

(
v∗

r∗

)]

= βdp

[
Tt−1TR

(
ψ

r

)
,

(
v∗

r∗

)]
= βdp

[
TtR

(
ψ

r

)
,

(
v∗

r∗

)]
.

Hence, claim (1) holds by induction.

Regarding claim (2), for all (v, r) ∈ Lp(π)× Lp(π), we have

dp

[
T

(
v

r

)
,

(
v∗

r∗

)]
= dp

[
T

(
v

r

)
, R

(
ψ∗

r∗

)]
= ‖ Ĩ ∨ J̃‖p,

where (recall ` and ˜̀ defined respectively in (3.2.4) and (3.B.5))

Ĩ := |`(· ; v, r)− r∗| and J̃ := | ˜̀(· ; v, r)− r∗ ∨ ψ∗|.

Hence,

Ĩ ∨ J̃ = |`(· ; v, r)− r∗| ∨ | ˜̀(· ; v, r)− r∗ ∨ ψ∗|

≤ |`(· ; v, r)− r∗| ∨ [|`(· ; v, r)− r∗| ∨ |c + βPv− ψ∗|]

= |`(· ; v, r)− r∗| ∨ |c + βPv− ψ∗|
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and we have

dp (T(v, r), (v∗, r∗)) ≤ ‖|`(· ; v, r)− r∗| ∨ |c + βPv− ψ∗|‖p = dp (L(v, r), (ψ∗, r∗)) .

Thus, claim (2) holds for t = 0. Suppose claim (2) holds for arbitrary t. Then the

induction hypothesis implies that dp
(
Tt(v, r), (v∗, r∗)

)
≤ dp

(
Qt−1L(v, r), (ψ∗, r∗)

)
for all (v, r) ∈ Lp(π)× Lp(π). Since Q and T are semiconjugate as shown in sec-

tion 3.3, we have

dp

[
Tt+1

(
v

r

)
,

(
v∗

r∗

)]
= dp

[
TtT

(
v

r

)
,

(
v∗

r∗

)]
≤ dp

[
Qt−1LT

(
v

r

)
,

(
ψ∗

r∗

)]

= dp

[
Qt−1QL

(
v

r

)
,

(
ψ∗

r∗

)]
= dp

[
QtL

(
v

r

)
,

(
ψ∗

r∗

)]
.

Hence, claim (2) holds by induction. This concludes the proof.



Chapter 4

Extension II: Dynamic Discrete

Choices

4.1 Introduction

In chapters 2–3, the key state component (i.e., the state variables that appear in

the reward functions) of the sequential decision problems evolves as an exoge-

nous Markov process. Although such frameworks cover a wide range of binary

choice sequential problems, there are other cases in which evolution of the key

states follows a controlled Markov process (i.e., the evolution is affected at least

partially by some control variables). Such settings are common for sequential

decision problems where agents have more than two choices.

A standard example in economics is on-the-job search, where an employed worker

can choose from quitting the job market and taking the unemployment compen-

sation, staying in the current job for a stochastic wage return, or searching for

a new job. In general, the worker’s productivity (key state component) evolves

according to different transition laws depending on whether the worker stays in

the current job or search for a new one. See, for example, Jovanovic (1987), Bull

and Jovanovic (1988), and Gomes et al. (2001). Other examples in economics can

be found at Crawford and Shum (2005), Cooper et al. (2007), Vereshchagina and

Hopenhayn (2009), Low et al. (2010), and Moscarini and Postel-Vinay (2013).

In econometrics, such problems are generally called dynamic discrete choice mod-

els, and the framework is widely employed in both theoretical and empirical

studies. See, for example, Rust (1988), Eckstein and Wolpin (1989), Rust (1994),

Aguirregabiria and Mira (2002), Bajari et al. (2007), Norets (2009, 2010), Aguirre-

70
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gabiria and Mira (2010), and Su and Judd (2012).

In this chapter, we extend our theory to cover this class of problems, which we re-

fer to as dynamic discrete choice problems in line with the econometric literature.

Section 4.3 shows that the Bellman and Jovanovic operators are semiconjugate in

general, with the same implications as those of chapters 2–3. In section 4.4, we

add a generic weighted supremum norm topology and show that the Bellman

and Jovanovic operators are both contraction mappings under identical assump-

tions, and that convergence to the respective fixed points occurs at the same rate.

These properties are established by constructing a metric that evaluates the max-

imum of the weighted supremum norm distances along each dimension of the

candidate function space.

On the other hand, the dynamics of the current setting are more complicated to

some degree. Since the key state component is in general a controlled Markov

process with its evolution governed by an N-choice control variable, it is hard to

exploit the ergodicity structures of the state process. As a result, establishing the

symmetric properties under the Lp-norm topology is more challenging. For that

reason, the Lp framework is left for future research.

4.2 Dynamic Discrete Choices

Unless otherwise specified, the notation of chapter 2 will continue to be used

throughout this chapter.

To treat this type of problem generally, suppose that in period t, the agent ob-

serves Zt and makes choices among N alternatives. Let {It}t≥0 be the sequence of

control variables with It = i if the agent chooses alternative i ∈ {1, · · · , N}. A se-

lection of It results in a current reward F(Zt, It), or rIt(Zt) for simplicity. The state

process {Zt}t≥0 evolves according to a controlled Markov process with stochastic

kernel P(Zt, It; dZt+1), or more simply PIt(Zt, dZt+1). In particular, Pi(z, dz′) can

be interpreted as the transition probability of {Zt} if alternative i is selected in the

current period. The agent aims to find an optimal policy {I∗t }t≥0 that maximizes

the expected discounted lifetime rewards.

The value function of the problem is defined by

v∗(z) := sup
{It}t≥0

E z

{
∞

∑
t=0

βtF(Zt, It)

}
. (4.2.1)
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Under certain assumptions, v∗ satisfies1

v∗(z) = max{ψ∗1(z), · · · , ψ∗N(z)}, (4.2.2)

where for i = 1, · · · , N,

ψ∗i (z) = ri(z) + β
∫

v∗(z′)Pi(z, dz′). (4.2.3)

We call ψ∗i the continuation value associated with alternative i, which can be inter-

preted as the maximal expected discounted lifetime reward from choosing i. The

Bellman operator corresponding to this problem is

Tv(z) = max
i∈{1,··· ,N}

{
ri(z) + β

∫
v(z′)Pi(z, dz′)

}
.

Define the continuation value function as ψ∗ := (ψ∗1 , · · · , ψ∗N). Then (4.2.2)–(4.2.3)

imply that ψ∗i can be written as

ψ∗i (z) = ri(z) + β
∫

max{ψ∗1(z′), · · · , ψ∗N(z
′)}Pi(z, dz′) (4.2.4)

for i = 1, · · · , N. For each ψ := (ψ1, · · · , ψN) and z ∈ Z, the continuation value

operator or Jovanovic operator is defined as

Qψ(z) = Q


ψ1

· · ·
ψN

 (z) =


r1(z) + β

∫
(ψ1 ∨ · · · ∨ ψN)(z′)P1(z, dz′)

· · ·
rN(z) + β

∫
(ψ1 ∨ · · · ∨ ψN)(z′)PN(z, dz′)

 . (4.2.5)

4.3 General Theory

In this section, we show that Bellman and Jovanovic operators are semiconjugate

in a generic framework and discuss the implications. As in chapters 2–3, the

semiconjugate relationship is shown using operator-theoretic notation. To this

end, for all integrable function h ∈ mB and i ∈ {1, · · · , N}, let

Pi h(z) :=
∫

h(z′)Pi(z, dz′).

Observe that the Bellman operator T can then be expressed as T = RL, where for

each ψ = (ψ1, · · · , ψN) and v,

Rψ := ∨N
i=1ψi and Lv := (r1 + βP1v, · · · , rN + βPNv). (4.3.1)

(Recall that for any two operators we write the composition A ◦ B simply as AB.)

1Later we provide sufficient conditions based on our primitive set up. See, for example, lemma

4.A.2 in appendix 4.A.
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Let V be a subset of mB such that v∗ ∈ V and TV ⊂ V . The set V is understood as

the set of candidate value functions. (Specific classes of functions are considered

in the next section.) Let C be defined by2

C := LV =
{

ψ = (ψ1, · · · , ψN) ∈ ×N
i=1mB : ψ = Lv for some v ∈ V

}
.

By definition, L is a surjective mapping from V onto C. It is also true that R maps

C into V , as in chapters 2–3. Indeed, if ψ ∈ C, then there exists a v ∈ V such that

ψ = Lv, and Rψ = RLv = Tv, which lies in V by assumption.

Lemma 4.3.1. On C, the operator Q satisfies Q = LR, and QC ⊂ C.

Proof. The first claim is immediate from the definitions. The second follows from

the claims just established (i.e., R maps C to V and L maps V to C).

The preceding discussion implies that Q and T are semiconjugate, in the sense that

LT = QL on V and TR = RQ on C. Indeed, since T = RL and Q = LR, we have

LT = LRL = QL and TR = RLR = RQ as claimed. This leads to the key results

of this section listed and proved in the following:

Proposition 4.3.1. The following statements are true:

(1) If v is a fixed point of T in V , then Lv is a fixed point of Q in C.

(2) If ψ is a fixed point of Q in C, then Rψ is a fixed point of T in V .

Proof. To prove the first claim, fix v ∈ V . By the definition of C, Lv ∈ C. Moreover,

since v = Tv, we have QLv = LTv = Lv. Hence, Lv is a fixed point of Q in C.

Regarding the second claim, fix ψ ∈ C. Since R maps C into V as shown above,

Rψ ∈ V . Since ψ = Qψ, we have TRψ = RQψ = Rψ. Hence, Rψ is a fixed point

of T in V .

The next result, which parallels propositions 2.3.2 and 3.3.2, implies that, at least

on a theoretical level, iterating with either T or Q is essentially equivalent.

Proposition 4.3.2. Tt+1 = RQtL on V and Qt+1 = LTtR on C for all t ∈ N0.

Proof. That the claim holds when t = 0 has already been established. Now

suppose the claim is true for arbitrary t. By the induction hypothesis we have

2We define ×N
i=1mB := mB× · · · ×mB. Moreover, the definition of C implies that for all ψ =

(ψ1, · · · , ψN) ∈ C, there exists a fixed element v ∈ V such that ψi = ri + βPiv for all i = 1, · · · , N.
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Tt = RQt−1L and Qt = LTt−1R. Since Q and T are semiconjugate as shown

above, we have Tt+1 = TTt = TRQt−1L = RQQt−1L = RQtL and Qt+1 =

QQt = QLTt−1R = LTTt−1R = LTtR. Hence, the claim holds by induction.

The theory above is based on the primitive assumption of a candidate value func-

tion space V with properties v∗ ∈ V and TV ⊂ V . Similar results can be estab-

lished if we start with a generic candidate continuation value function space C

that satisfies ψ∗ ∈ C and QC ⊂ C . Appendix 4.A outlines the main idea.

4.4 Symmetry under Weighted Supremum Norm

As in chapters 2–3, we next impose a weighted supremum norm on the domain of

T and Q in order to compare contractivity, optimality and related properties. The

following assumption is a generalization of the standard weighted supremum

norm assumption of Boyd (1990).

Assumption 4.4.1. There exist a B-measurable function g : Z → R+ and con-

stants a, b, m, d ∈ R+ such that βm < 1, and, for all z ∈ Z and i, j = 1, · · · , N,∫
|ri(z′)|Pj(z, dz′) ≤ a g(z) + b (4.4.1)

and
∫

g(z′)Pi(z, dz′) ≤ mg(z) + d. (4.4.2)

The interpretation is that E z|ri(Z1)| is small relative to some function g such that

E zg(Zt) does not grow too fast. Slow growth of E zg(Zt) is imposed by the ge-

ometric drift condition (4.4.2) (see, e.g., Meyn and Tweedie (2009), chapter 15).

Note that the following statements hold:

(a) If both r and c are bounded, then assumption 4.4.1 holds for g := ∨N
i=1‖ri‖,

m := 1 and d := 0.

(b) Assumption 4.4.1 reduces to the standard weighted supremum norm as-

sumption of Boyd (1990) if instead of imposing condition (4.4.1), we assume

that there exist a, b ∈ R+ such that ∨N
i=1|ri(z)| ≤ ag(z) + b.

Regarding claim (b), notice that the latter condition implies the former since con-

dition (4.4.2) holds. Here we admit consideration of one-step future transition to

enlarge the set of possible weight functions.
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Choose m′, d′ ∈ R++ such that

Nm′a + m > 1, ρ := β(Nm′a + m) < 1 and d′ ≥ Nm′b + d
Nm′a + m− 1

. (4.4.3)

Let the weight function κ : Z→ R+ be defined by

κ(z) := m′
N

∑
i=1
|ri(z)|+ g(z) + d′. (4.4.4)

As mentioned in chapter 2, (bκZ, dκ) is a complete metric space, where

dκ(v, ṽ) := ‖v− ṽ‖κ for all v, ṽ ∈ bκZ.

Consider the product space
(
×N

i=1bκZ, ρκ

)
, where for all ψ = (ψ1, · · · , ψN) and

ψ̃ = (ψ̃1, · · · , ψ̃N) in ×N
i=1 bκZ, the distance ρκ is defined by

ρκ(ψ, ψ̃) := ∨N
i=1‖ψi − ψ̃i‖κ.

Lemma 4.A.3 (see appendix 4.A) shows that
(
×N

i=1bκZ, ρκ

)
is a complete metric

space.

Recall ρ ∈ (0, 1) defined in (4.4.3). The following result shows that Q and T are

both contraction mappings under identical assumptions.

Theorem 4.4.1. Under assumption 4.4.1, the following statements hold:

(1) Q is a contraction mapping on
(
×N

i=1bκZ, ρκ

)
of modulus ρ.

(2) The unique fixed point of Q in ×N
i=1bκZ is ψ∗ = (ψ∗1 , · · · , ψ∗N).

(3) T is a contraction mapping on (bκZ, dκ) of modulus ρ.

(4) The unique fixed point of T in bκZ is v∗.

The next result shows that the rate of convergence of Q and T to their respective

fixed points is the same. In stating it, R and L are as defined in (4.3.1), and ρ ∈
(0, 1) is the contraction coefficient defined in (4.4.3).

Proposition 4.4.1. If assumption 4.4.1 holds, then

R
(
×N

i=1bκZ
)
⊂ bκZ and L (bκZ) ⊂ ×N

i=1bκZ,

and for all t ∈ N0, the following statements are true:

(1) ρκ

(
Qt+1ψ, ψ∗

)
≤ ρ dκ

(
TtRψ, v∗

)
for all ψ ∈ ×N

i=1bκZ.

(2) dκ

(
Tt+1v, v∗

)
≤ ρκ

(
QtLv, ψ∗

)
for all v ∈ bκZ.



76 4.5. APPLICATION: ON-THE-JOB SEARCH

Proposition 4.4.1 extends proposition 4.3.2 and lemma 4.A.1, and their connec-

tions can be seen by letting V := bκZ and C := ×N
i=1bκZ.

Similar to chapters 2–3, the Bellman and Jovanovic operators are also symmetric

in terms of continuity of fixed points, as illustrated by the following result.

Assumption 4.4.2. The following conditions hold for all i ∈ {1, · · · , N}:

(1) The stochastic kernel Pi is Feller; that is, z 7→
∫

h(z′)Pi(z, dz′) is continuous

and bounded on Z whenever h is.

(2) ri, κ and z 7→
∫

κ(z′)Pi(z, dz′) are continuous.

Proposition 4.4.2. If assumptions 4.4.1–4.4.2 hold, then ψ∗ and v∗ are continuous.

4.5 Application: On-the-Job Search

Consider a standard on-the-job search framework (see, e.g., Bull and Jovanovic

(1988) and Gomes et al. (2001)). Each period, an employee has three choices: quit

the job market, stay in the current job, or search for a new job. Let c0 be the value

of leisure and θ be the worker’s productivity at a given firm, with (θt)t≥0
IID∼

G(θ). Let p be the current price. The price sequence (pt)t≥0 is Markov with

transition probability F(p′|p) and stationary distribution F∗(p). It is assumed that

there is no aggregate shock so that F∗ is the distribution of prices over firms. The

current wage of the worker is pθ. The value function satisfies v∗ = ψ∗1 ∨ ψ∗2 ∨ ψ∗3 ,

where

ψ∗1(p, θ) := c0 + β
∫

v∗(p′, θ′)dF∗(p′)dG(θ′)

denotes the expected value of quitting the job, while

ψ∗2(p, θ) := pθ + β
∫

v∗(p′, θ)dF(p′|p)

is the expected value of staying in the current firm, and

ψ∗3(p, θ) := pθ + β
∫

v∗(p′, θ′)dF∗(p′)dG(θ′)

represents the expected value of searching for a new job. Bull and Jovanovic

(1988) assumes that there are compact supports [θ, θ̄] and [p, p̄] for the state pro-

cesses (θt)t≥0 and (pt)t≥0, where 0 < θ < θ̄ < ∞ and 0 < p < p̄ < ∞. This

assumption can be relaxed based on our theory. Let the state space be Z := R
2
+.

Let µp :=
∫

p dF∗(p) and µθ :=
∫

θ dG(θ).
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Assumption 4.5.1. There exist a Borel measurable map g̃ : R+ → R+, and con-

stants m̃, d̃ ∈ R+ such that βm̃ < 1, and, for all p ∈ R+,

(1)
∫

p′ dF(p′|p) ≤ g̃(p),

(2)
∫

g̃(p′)dF(p′|p) ≤ m̃g̃(p) + d̃,

(3) µp, µθ < ∞ and µg̃ :=
∫

g̃(p)dF∗(p) < ∞.

Let m̃ > 1 and m̃′ ≥ d/(m̃− 1), then assumption 4.4.1 holds by letting g(p, θ) :=

θ(g̃(p) + m̃′), m := m̃ and d := µθ(µg̃ + m′). By theorem 4.4.1, Q is a contrac-

tion mapping on
(
×3

i=1b`Z, ρ`
)
. Obviously, assumption 4.5.1 is weaker than the

assumption of compact supports.
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Appendix 4.A Some Lemmas

To see the symmetric properties of Q and T from an alternative perspective, we

start our analysis with a generic candidate continuation value function space. Let

C be a subset of ×N
i=1mB such that ψ∗ = (ψ∗1 , · · · , ψ∗N) ∈ C and QC ⊂ C . Let V

be defined by

V := RC =
{

v ∈ mB : v = ∨N
i=1ψi for some ψ = (ψ1, · · · , ψN) ∈ C

}
. (4.A.1)

Then R is a surjective map from C onto V , Q = LR on C and T = RL on V . The

following result parallels the theory of section 4.3, and is helpful for deriving im-

portant convergence properties once topological structure is added to the generic

setting, as to be shown.

Lemma 4.A.1. The following statements are true:

(1) LV ⊂ C and TV ⊂ V .

(2) If v is a fixed point of T in V , then Lv is a fixed point of Q in C .

(3) If ψ is a fixed point of Q in C , then Rψ is a fixed point of T in V .

(4) Tt+1 = RQtL on V and Qt+1 = LTtR on C for all t ∈ N0.

Proof. The proof is similar to that of propositions 4.3.1–4.3.2 and thus omitted.

Lemma 4.A.2. Under assumption 4.4.1, v∗ and ψ∗ satisfy (4.2.2)–(4.2.3).

Proof of lemma 4.A.2. The Bellman equation corresponding to the problem stated

in (4.2.1) is

v(z0) = max
i0∈{1,··· ,N}

{
ri0(z0) + β

∫
v(z1)Pi0(z0, dz1)

}
. (4.A.2)

Under assumption 4.4.1, this Bellman equation is well-defined. In particular, if

ψ̃ := (ψ̃1, · · · , ψ̃N) is the unique fixed point of Q under ×N
i=1bκZ obtained from

theorem 4.4.1, then ṽ := ∨N
i=1ψ̃i ∈ bκZ solves the Bellman equation (4.A.2). It

remains to verify that any solution v ∈ bκZ to the Bellman equation defined by

(4.A.2) satisfies v = v∗. Note that for all feasible plan {jt}t≥0, we have

v(z0) ≥ rj0(z0) + β
∫

v(z1)Pj0(z0, i0)

≥ rj0(z0) + β
∫ [

rj1(z1) + β
∫

v(z2)Pj1(z1, dz2)

]
Pj0(z0, dz1)

= rj0(z0) + βE
j0
z0 rj1(Z1) + β2

E
j0 j1
z0 v(Z2) ≥ · · ·

≥
K

∑
t=0

βt
E

j0···jt−1
z0 rjt(Zt) + βK+1

E
j0···jK
z0 v(ZK+1) (4.A.3)
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for all K ∈ N. Since v ∈ bκZ, there exists G ∈ R+ such that |v| ≤ Gκ. Thus,∣∣∣E j0···jK−1
z0 v(ZK)

∣∣∣ ≤ GE j0···jK−1
z0 κ(ZK)

= G ·
(

m′
N

∑
i=1
E

j0···jK−1
z0 |ri(ZK)|+E

j0···jK−1
z0 g(ZK) + d′

)
. (4.A.4)

Based on the Markov property, for all z0 ∈ Z and t ∈ N0,

E
j0···jt−1
z0 g(Zt) = E

j0···jt−2
z0 E

jt−1
Zt−1

g(Zt) ≤ mE j0···jt−2
z0 g(Zt−1) + d

≤ · · · ≤ mtg(z0) +
1−mt

1−m
d,

and for all t ≥ 1 and i = 1, · · · , N,

E
j0···jt−1
z0 |ri(Zt)| = E

j0···jt−2
z0 E

jt−1
Zt−1
|ri(Zt)| ≤ aE j0···jt−2

z0 g(Zt−1) + b

≤ · · · ≤ a
(

mt−1g(z0) +
1−mt−1

1−m
d
)
+ b. (4.A.5)

Substituting these results into (4.A.4), we can show that limK→∞ βK
E

j0···jK−1
z0 v(ZK) =

0 for all z0 ∈ Z. Let K → ∞, from (4.A.3) we know that, for all {jt}t≥0,

v(z0) ≥
∞

∑
t=0

βt
E

j0···jt−1
z0 rjt(Zt).

Hence, v ≥ v∗. Notice that since (4.A.2) is a discrete choice problem, there exists

a plan {it}t≥0 such that (4.A.3) holds with equality in each step, which implies

v ≤ v∗. Hence, v = v∗, as was to be shown.

Recall
(
×N

i=1bκZ, ρκ

)
constructed in section 4.4.

Lemma 4.A.3.
(
×N

i=1bκZ, ρκ

)
is a complete metric space.

Proof. We first show that ρκ is a well-defined metric. We only prove the triangular

inequality since the other required properties of a metric hold trivially for ρκ. For

all f = ( f1, · · · , fN), f ′ = ( f ′1, · · · , f ′N), f ′′ = ( f ′′1 , · · · , f ′′N) ∈ ×N
i=1bκZ, we have

ρκ

(
f , f ′

)
= ∨N

i=1‖ fi − f ′i ‖κ ≤ ∨N
i=1
(
‖ fi − f ′′i ‖κ + ‖ f ′′i − f ′i ‖κ

)
≤ ∨N

i=1‖ fi − f ′′i ‖κ + ∨N
i=1‖ f ′′i − f ′i ‖κ = ρκ

(
f , f ′′

)
+ ρκ

(
f ′′, f ′

)
.

Hence, the triangular inequality holds and ρκ is a well-defined metric.

To show that the space is complete, let { fn} = {( f 1
n , · · · , f N

n )} be a Cauchy

sequence of (×N
i=1bκZ, ρκ). Then for all i ∈ {1, · · · , N}, { f i

n} is a Cauchy se-

quence of the Banach space (bκZ, ‖ · ‖κ), and thus ‖ f i
n − f i‖κ → 0 as n → ∞

for some f i ∈ bκZ. This implies that f := ( f 1, · · · , f N) ∈ ×N
i=1bκZ and that

ρκ ( fn, f ) = ∨N
i=1‖ f i

n − f i‖κ → 0 as n → ∞. Hence, completeness is estab-

lished.
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Appendix 4.B Main Proofs

Proof of theorem 4.4.1. Step 1. We prove claim (1). By assumption 4.4.1 and the

construction of m′ and d′ in (4.4.3), for all z ∈ Z and i = 1, · · · , N, we have∫
κ(z′)Pi(z, dz′) = m′

N

∑
j=1

∫
|rj(z′)|Pi(z, dz′) +

∫
g(z′)Pi(z, dz′) + d′

≤ (Nm′a + m)

[
g(z) +

Nm′b + d + d′

Nm′a + m

]
≤ (Nm′a + m)κ(z).

(4.B.1)

Next, we show that Q maps
(
×N

i=1bκZ, ρκ

)
into itself. For all ψ = (ψ1, · · · , ψN) ∈

×N
i=1bκZ and i ∈ {1, · · · , N}, we define

hi(z) := ri(z) + β
∫

max{ψ1(z′), ..., ψN(z′)}Pi(z, dz′). (4.B.2)

Then there exists G ∈ R+ such that for all z ∈ Z and i ∈ {1, · · · , N},∣∣∣∣hi(z)
κ(z)

∣∣∣∣ ≤ ∣∣∣∣ri(z)
κ(z)

∣∣∣∣+ βG
∫

κ(z′)Pi(z, dz′)
κ(z)

≤ 1
m′

+ βG(Nm′a + m) < ∞.

Hence, Qψ ∈ ×N
i=1bκZ and Q is a self-map on ×N

i=1bκZ, as was to be shown.

We then show that Q is a contraction on
(
×N

i=1bκZ, ρκ

)
. For all ψ, ψ̃ ∈ ×N

i=1bκZ,

we have ρκ(Qψ, Qψ̃) = ∨N
j=1 Jj, where

Jj =
∥∥∥βPj

(
∨N

i=1ψi

)
− βPj

(
∨N

i=1ψ̃i

)∥∥∥
κ

(j = 1, · · · , N)

For all z ∈ Z and j ∈ {1, · · · , N}, we have∣∣∣Pj

(
∨N

i=1ψi

)
(z)− Pj

(
∨N

i=1ψ̃i

)
(z)
∣∣∣

≤
∫ ∣∣∣(∨N

i=1ψi

)
(z′)−

(
∨N

i=1ψ̃i

)
(z′)

∣∣∣ Pj(z, dz′)

≤
∫ (
∨N

i=1|ψi − ψ̃i|
)
(z′)Pj(z, dz′)

≤
(
∨N

i=1‖ψi − ψ̃i‖κ

) ∫
κ(z′)Pj(z, dz′)

≤ (Nm′a + m)
(
∨N

i=1‖ψi − ψ̃i‖κ

)
κ(z).

Hence, Jj ≤ β(Nm′a + m)
(
∨N

i=1‖ψi − ψ̃i‖κ

)
= ρ ρκ(ψ, ψ̃) for all j ∈ {1, · · · , N},

and we have

ρκ(Qψ, Qψ̃) = J1 ∨ · · · ∨ JN ≤ ρ ρκ(ψ, ψ̃).

Thus, Q is a contraction mapping on
(
×N

i=1bκZ, ρκ

)
of modulus ρ.

Step 2. The proof of claim (2). Lemma 4.A.2 shows that under assumption 4.4.1,

(4.2.2)–(4.2.3) hold, which implies that v∗ is a fixed point of T. From (4.2.4) we
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know that ψ∗ is a fixed point of Q. To prove claim (2), it remains to show that

ψ∗ ∈ ×N
i=1 bκZ. Notice that for all z ∈ Z and i ∈ {1, · · · , N}, there exists a feasible

plan {jt}t≥1 such that

|ψ∗i (z)| =
∣∣∣∣∣ri(z) +

∞

∑
t=1

βt
E

i j1···jt−1
z rjt(Zt)

∣∣∣∣∣ ≤ |ri(z)|+
∞

∑
t=1

βt
E

i j1···jt−1
z |rjt(Zt)|.

Notice that (4.A.5) (see the proof of lemma 4.A.2) implies that for all t ≥ 1 and

{jt}t≥1, we have

E
i j1···jt−1
z |rjt(Zt)| ≤ a

[
mt−1g(z) +

1−mt−1

1−m
d
]
+ b.

Since βm < 1, there exist constants a1, a2 ≥ 0 such that, for all z ∈ Z,

|ψ∗i (z)| ≤ |ri(z)|+ a1g(z) + a2.

This implies that ψ∗i ∈ bkZ for all i ∈ {1, · · · , N} and ψ∗ ∈ ×N
i=1bκZ. Hence, the

unique fixed point of Q in ×N
i=1bκZ must be ψ∗. Claim (2) is verified.

Step 3. We prove claim (3). We first show that T maps (bκZ, dκ) into itself. For all

v ∈ bκZ and z ∈ Z, assumption 4.4.1 and (4.B.1) imply that

|Tv(z)|
κ(z)

≤ max
i∈{1,··· ,N}

{
|ri(z)|
κ(z)

+
β
∫
|v(z′)|Pi(z, dz′)

κ(z)

}
≤ max

i∈{1,··· ,N}

{
1

m′
+

β‖v‖κ

∫
κ(z′)Pi(z, dz′)
κ(z)

}
≤ 1

m′
+ β(Nm′a + m)‖v‖κ.

Hence, ‖Tv‖κ < ∞ and Tv ∈ bκZ. We have shown that T is a self-map on

(bκZ, dκ). Next, we show that T is a contraction mapping on (bκZ, dκ) of mod-

ulus ρ. For all v, ṽ ∈ bκZ, we have

dκ(Tv, Tṽ) =
∥∥∥∨N

i=1(ri + βPiv)−∨N
i=1(ri + βPiṽ)

∥∥∥
κ

≤ ∨N
i=1‖βPiv− βPiṽ‖κ = β ∨N

i=1 ‖Piv− Piṽ‖κ, (4.B.3)

where the inequality is due to the fact that for all z ∈ Z,∣∣∣∨N
i=1(ri + βPiv)(z)−∨N

i=1(ri + βPiṽ)(z)
∣∣∣ ≤ ∨N

i=1 |βPiv(z)− βPiṽ(z)| .

Note that for all z ∈ Z and i ∈ {1, · · · , N}, (4.B.1) implies that

|Piv(z)− Piṽ(z)| ≤
∫
|v(z′)− ṽ(z′)|Pi(z, dz′)

≤ ‖v− ṽ‖κ

∫
κ(z′)Pi(z, dz′) ≤ (Nm′a + m)‖v− ṽ‖κ κ(z).

Hence, β‖Piv − Piṽ‖κ ≤ ρ‖v − ṽ‖κ = ρ dκ(v, ṽ) for all i ∈ {1, · · · , N}. Then

(4.B.3) implies that dκ(Tv, Tṽ) ≤ ρdκ(v, ṽ) for all v, ṽ ∈ bκZ, i.e., T is a contraction

mapping on (bκZ, dκ) of modulus ρ. Claim (3) is verified.
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Step 4. Regarding claim (4), it suffices to show that v∗ is a fixed point of T and

that v∗ ∈ bκZ. The former has been established in step 2. Regarding the latter,

since in step 2 we have shown that ψ∗i ∈ bκZ for all i ∈ {1, · · · , N}, we then have

v∗ = ∨N
i=1ψ∗i ∈ bκZ. This concludes the proof.

Proof of proposition 4.4.1. Let V := bκZ and C := ×N
i=1bκZ. The fact that RC ⊂ V is

obvious, and we can easily verify by applying the Markov property that LV ⊂ C .

Regarding claim (1), for all ψ ∈ C , based on lemma 4.A.1 and theorem 4.4.1, we

have

ρκ(Qt+1ψ, ψ∗) = ρκ(LTtRψ, Lv∗) = β ∨N
i=1 ‖Pi(TtRψ)− Piv∗‖κ.

Since we have shown in the proof of theorem 4.4.1 that
∫

κ(z′)Pi(z, dz′) ≤ (Nm′a+

m)κ(z) for all z ∈ Z and i ∈ {1, · · · , N} (see equation (4.B.1)), by the definition of

operator P, for all z ∈ Z and i ∈ {1, · · · , N}, we have∣∣Pi(TtRψ)(z)− Piv∗(z)
∣∣ ≤ ∫ ∣∣(TtRψ)(z′)− v∗(z′)

∣∣ Pi(z, dz′)

≤ ‖TtRψ− v∗‖κ

∫
κ(z′)Pi(z, dz′)

≤ (Nm′a + m)‖TtRψ− v∗‖κ κ(z).

Hence, ‖Pi(TtRψ) − Piv∗‖κ ≤ (Nm′a + m)‖TtRψ − v∗‖κ for all i ∈ {1, · · · , N}.
Recall ρ := β(Nm′a + m) < 1 defined in (4.4.3). We then have

ρκ(Qt+1ψ, ψ∗) ≤ β(Nm′a + m)
∥∥TtRψ− v∗

∥∥
κ
= ρ dκ(TtRψ, v∗)

for all ψ ∈ C . Hence, claim (1) is verified.

Regarding claim (2), for all v ∈ V , propositions 4.3.1–4.3.2 and theorem 4.4.1

imply that∣∣∣Tt+1v(z)− v∗(z)
∣∣∣ = ∣∣(RQtL)v(z)− Rψ∗(z)

∣∣ ≤ ∨N
i=1
∣∣(QtLv)i(z)− ψ∗i (z)

∣∣
≤ ∨N

i=1‖(QtLv)i − ψ∗i ‖κ κ(z) = ρκ(QtLv, ψ∗) κ(z)

for all z ∈ Z, where the first inequality is due to the elementary fact that | ∨N
i=1 ai−

∨N
i=1bi| ≤ ∨N

i=1|ai − bi|. Hence, dκ(Tt+1v, v∗) =
∥∥Tt+1v− v∗

∥∥
κ
≤ ρκ(QtLv, ψ∗)

for all v ∈ V and claim (2) holds.

Proof of proposition 4.4.2. Let bκcZ be the set of continuous functions in bκZ. Since

κ is continuous by assumption 4.4.2, bκcZ is a closed subset of bκZ (see e.g., Boyd

(1990), section 3). To show the continuity of ψ∗, it suffices to verify: Q(×N
i=1bκcZ) ⊂
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×N
i=1bκcZ (see, e.g., Stokey et al. (1989), corollary 1 of theorem 3.2). For each fixed

ψ = (ψ1, · · · , ψN) ∈ ×N
i=1bκcZ, there exists G ∈ R+ such that

∣∣∣∨N
j=1ψj(z)

∣∣∣ ≤ Gκ(z)

for all z ∈ Z. By assumption 4.4.2, z 7→ Gκ(z)± ∨N
j=1ψj(z) are nonnegative and

continuous. For all z ∈ Z and {zm} ⊂ Z with zm → z, since P is Feller, we

have Pi(zm, ·) w→ Pi(z, ·) for all i ∈ {1, · · · , N}. The generalized Fatou’s lemma of

Feinberg et al. (2014) (theorem 1.1) then implies that, for all i ∈ {1, · · · , N},∫ [
Gκ(z′)±∨N

j=1ψj(z′)
]

Pi(z, dz′) ≤ lim inf
m→∞

∫ [
Gκ(z′)±∨N

j=1ψj(z′)
]

Pi(zm, dz′).

Since limm→∞
∫

κ(z′)Pi(zm, dz′) =
∫

κ(z′)Pi(z, dz′) by assumption 4.4.2, we have

±
∫
∨N

j=1ψj(z′)Pi(z, dz′) ≤ lim inf
m→∞

[
±
∫
∨N

j=1ψj(z′)Pi(zm, dz′)
]

,

where we have used the fact that for all sequences {am}, {bm} ⊂ R with lim
m→∞

am

exists, we have: lim inf
m→∞

(am + bm) = lim
m→∞

am + lim inf
m→∞

bm. Hence,

lim sup
m→∞

∫
∨N

j=1ψj(z′)Pi(zm, dz′) ≤
∫
∨N

j=1ψj(z′)Pi(z, dz′)

≤ lim inf
m→∞

∫
∨N

j=1ψj(z′)Pi(zm, dz′),

i.e., z 7→
∫
∨N

j=1ψj(z′)Pi(z, dz′) is continuous for all i ∈ {1, · · · , N}. Since ri is

continuous by assumption, Qψ ∈ ×N
i=1bκcZ. Hence, Q

(
×N

i=1bκcZ
)
⊂ ×N

i=1bκcZ

and ψ∗ is continuous, as was to be shown. The continuity of v∗ follows from the

continuity of ψ∗ = (ψ∗1 , · · · , ψ∗N) and the fact that v∗ = ∨N
j=1ψ∗j .



Chapter 5

Optimal Timing of Decisions: A

General Theory Based on

Continuation Values

5.1 Introduction

In the previous few chapters, we have shown that the Bellman operator and Jo-

vanovic operator have essentially equivalent dynamic properties, while for most

problems of interest to economists, the dimensionality of the effective state space

associated with the former is at least as large as that related to the latter, and often

strictly so (recall section 2.4 and appendix 2.D of chapter 2).

Another important asymmetry between the value function based method and the

continuation value based method not discussed so far is that continuation values

are typically smoother than value functions. For example, in job search problems,

the value function is usually kinked at the reservation wage, while the continua-

tion value function is smooth. In this and other settings, the relative smoothness

comes from taking expectations over stochastic transitions, since integration is a

smoothing operation.

Like lower dimensionality, increased smoothness help on both the analytical and

the computational side. On the computational side, smoother functions are easier

to approximate. On the analytical side, greater smoothness lends itself to sharper

results based on derivatives, as elaborated on below.

In this chapter, we provide a general theory for sequential decision problems

based around continuation value functions and the Jovanovic operator, heav-

84
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ily exploiting the advantages discussed so far. The theory is established for the

optimal stopping framework. Extensions can be made to accommodate other

classes of sequential decision problems. Moreover, our analysis is conducted in

the weighted supremum norm topological framework constructed in chapter 2.

Analysis in the Lp-norm topological framework is left for future research.

Section 5.2 reviews the general optimality theory and provides a variety of ex-

amples. Section 5.3 discusses the properties of continuation values. In particular,

we obtain conditions under which continuation values are continuous (section

5.3.1), monotone (section 5.3.2), and differentiable (section 5.3.3) as functions of

economic environment, and conditions under which parametric continuity holds

(section 5.3.4). The latter is often required for proofs of existence of recursive

equilibria in many-agent environments.

Section 5.4 then discusses the properties of optimal policies. After formulating

the threshold state problems in section 5.4.1, section 5.4.2 provides conditions

under which threshold policies are (a) continuous, (b) monotone, and (c) dif-

ferentiable. In the latter case we derive an expression for the derivative of the

threshold relative to other aspects of the economic environment and show how it

contributes to economic intuition.

In terms of connections to the existing literature, these results are related to the

theoretical results of Norets (2010), which provides sufficient conditions for con-

tinuity and differentiability of the expected value functions in a dynamic discrete

choice framework.1 Closest counterparts to the theory of this chapter in the ex-

isting literature are those concerning individual applications.

For example, Jovanovic (1982) shows that the continuation value function asso-

ciated with an incumbent firm’s exit decision is monotone and continuous (theo-

rem 1). Chatterjee and Rossi-Hansberg (2012) shows that the continuation value

1The difference between this framework and the optimal stopping framework is discussed in

chapter 4. To compare with the theory of this chapter, aside from the different sequential de-

cision frameworks, Norets provides sufficient conditions for differentiability with respect to the

model parameters, an important topic not covered by this chapter. On the other hand, the results

of this chapter are sharper. While Norets treats unbounded rewards via the standard weighted

supremum norm method of Boyd (1990), our theory extends that by exploiting extra future tran-

sition structures (recall assumptions 2.3.1, 3.4.1 and 4.4.1). Moreover, while Norets (2010) assumes

that the stochastic kernel related to the state process admits a density representation, our theory

of optimality and continuity works for more general state transitions (recall theorem 2.3.1 and

proposition 2.3.4). Finally, this chapter explores a range of properties of the threshold policies, a

topic not treated in Norets (2010).



86 5.2. OPTIMALITY RESULTS REVISIT

function (the value of not using a project) is continuous and increasing in the

average revenue (lemma 1, section 2.1). In a model of oil drilling investment,

Kellogg (2014) provides sufficient conditions for the existence of a threshold pol-

icy (a reservation productivity at which the firm is indifferent between drilling a

well or not), and conditions under which this policy is decreasing in the average

oil price and increasing in the dayrate (conditions (i)–(v), section B).

The theory of this chapter generalizes and extends these results in a unified frame-

work. Some results, such as differentiability of threshold policies, are new to the

literature to the best of our knowledge.

Section 5.5 provides a list of important applications that illustrate the advantages

of working with the continuation value based method over the traditional value

function based method. Finally, longer proofs are deferred to the appendix.

5.2 Optimality Results Revisit

This section reviews the key optimality result derived in chapter 2 and provides

a range of examples.

5.2.1 Preliminaries

Unless otherwise specified, we continue to use the notation of chapter 2 through-

out this chapter. Moreover, the following definitions are required for our analysis.

Let R+ := [0, ∞) and R++ := (0, ∞). For a stochastic kernel P on (Z, B) and a

B-measurable function h : Z→ R, let

(Pnh)(z) :=: E zh(Zn) :=
∫

h(z′)Pn(z, dz′) for all n ∈ N0,

with P0h := h and Ph := P1h. We say that P is stochastically increasing if Ph is

increasing for all increasing function h ∈ bZ. When Z is a Borel subset of Rm, a

density kernel on Z is a measurable map f : Z×Z→ R+ such that
∫
Z f (z′|z)dz′ = 1

for all z ∈ Z. We say that P has a density representation if there exists a density

kernel f such that P(z, B) =
∫

B f (z′|z)dz′ for all z ∈ Z and B ∈ Z .

5.2.2 Optimality Results: Review and Examples

Recall the benchmark set up and the theoretical results established in section

2.2.2, section 2.3.2 and appendix 2.D of chapter 2. In particular, for a generic
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optimal stopping problem, a policy is a map σ : Z → {0, 1}, with 0 indicating the

decision to continue and 1 indicating the decision to stop. A policy σ is called

optimal if τ∗ := inf {t ≥ 0 | σ(Zt) = 1} is an optimal stopping time.

Theorem 5.2.1. Let assumption 2.3.1 hold. Then there exist positive constants m′ and

d′ such that for ` : Z→ R defined by

`(z) := m′
(

n−1

∑
t=1

E z|r(Zt)|+
n−1

∑
t=0

E z|c(Zt)|
)
+ g(z) + d′, (5.2.1)

the following statements hold:

(1) Q is a contraction mapping on (b`Z, ‖ · ‖`).

(2) The unique fixed point of Q in b`Z is ψ∗.

(3) The policy defined by σ∗(z) = 1{r(z) ≥ ψ∗(z)} is an optimal policy.

Proof. The first two claims are established in theorem 2.3.1. Moreover, a simple

extension of theorem 1.11 of Peskir and Shiryaev (2006) shows that

τ∗ := inf {t ≥ 0 : v∗(Zt) = r(Zt)}

is an optimal stopping time. Claim (3) then follows from the definition of the

optimal policy and the fact that v∗ = r ∨ ψ∗.

In the following, we provide some typical examples.

Example 5.2.1. Consider a job search problem where a worker aims to maxi-

mize expected lifetime rewards (see, e.g., Jovanovic (1987), Cooper et al. (2007),

Ljungqvist and Sargent (2008), Robin (2011), Moscarini and Postel-Vinay (2013),

Bagger et al. (2014)). She can accept current wage offer wt and work permanently

at that wage, or reject the offer, receive unemployment compensation c̃0 and re-

consider next period. Let wt = w(Zt) for some idiosyncratic or aggregate state

process {Zt}t≥0. The terminal reward is r(z) = u(w(z))/(1− β), the lifetime re-

ward associated with stopping at state z. Here u is a utility function and β is the

discount factor. The flow continuation reward is the constant c0 := u(c̃0).

A common specification for the state process {Zt}t≥0 ⊂ Z := R is

Zt+1 = ρZt + b + εt+1, {εt}t≥1
IID∼ N(0, σ2), ρ ∈ [−1, 1]. (5.2.2)

The Jovanovic operator for this problem is

Qψ(z) = c0 + β
∫

max
{

u(w(z′))
1− β

, ψ(z′)
}

f (z′|z)dz′. (5.2.3)
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where f (z′|z) = N(ρz + b, σ2). Let w(z) := ez and let utility have the CRRA form

u(w) =
w1−δ

1− δ
(if δ ≥ 0 and δ 6= 1) and u(w) = ln w (if δ = 1). (5.2.4)

Since the terminal reward is unbounded, traditional solution method based on

the Bellman operator and sup norm contractions are not generally valid. More-

over, since {εt} has unbounded support, the local contraction method fails.2 But

theorem 5.2.1 can be applied. Consider, for example, δ ≥ 0, δ 6= 1 and ρ ∈ [0, 1).

Choose n ∈ N0 such that β e ρnξ < 1, where ξ := ξ1 + ξ2 with ξ1 := (1− δ)b and

ξ2 := (1− δ)2σ2/2. Observe that3∫
e(1−δ)z′Pn(z, dz′) = bn e ρn(1−δ)z, where bn := eξ1 ∑t−1

i=0 ρi+ξ2 ∑t−1
i=0 ρ2i

. (5.2.5)

It follows that assumption 2.3.1 holds when g(z) = eρn(1−δ)z,

m = d = eρnξ , a1 =
bn

(1− β)(1− δ)
, a2 = a3 = 0, and a4 = c0.

Specifically, since r(z) = e(1−δ)z/((1− β)(1− δ)), an application of (5.2.5) gives∫
|r(z′)|Pn(z, dz′) = bn e ρn(1−δ)z 1

(1− β)(1− δ)
= a1g(z) + a2,

which is (2.8). Condition (2.9) is trivial. Condition (2.10) holds because∫
g(z′)P(z, dz′) = eρn+1(1−δ)zeρnξ1+ρ2nξ2 ≤ (g(z) + 1) eρnξ = mg(z) + d. (5.2.6)

Hence, theorem 5.2.1 applies. The cases ρ = 1, δ = 1 and ρ ∈ [−1, 0] can be

treated using similar methods. Appendix 5.B provides details.

Remark 5.2.1. The use of n-step transitions in assumption 2.3.1 has certain ben-

efits. For example, if {Zt}t≥0 is mean-reverting, as time iterates forward, the

initial effect tends to die out, making the conditional expectations E z|r(Zn)| and

E z|c(Zn)| flatter than the original rewards. As a result, finding an appropriate g-

function with geometric drift property becomes easier. Typically, if ρ ∈ (−1, 1) in

example 5.2.1, without using future transitions (i.e., n = 0 is imposed),4 one need

a further assumption βe|ξ1|+ξ2 < 1 (see appendix 5.B), which in some circum-

stances puts nontrivial restrictions on the key parameters β and δ. Using n-step

transitions, however, such restrictions are completely removed.
2The method requires an increasing sequence of compact sets {Kj} such that Z = ∪∞

j=1Kj and

Γ(Kj) ⊂ Kj+1 with probability one, where Γ : Z 7→ 2Z is the feasibility correspondence of the state

process {Zt} (see, e.g., Rincón-Zapatero and Rodrı́guez-Palmero (2003), theorems 3–4). This fails

in the current case, since Γ corresponds to (5.2.2) and shocks have unbounded support.
3Recall that for X ∼ N(µ, σ2), we have E esX = esµ+s2σ2/2 for any s ∈ R. Based on (5.2.2), the

distribution of Zt given Z0 = z follows N
(

b ∑t−1
i=0 ρi, σ2 ∑t−1

i=0 ρ2i
)

.
4Indeed, in this case, our assumption reduces to the standard weighted supremum norm as-

sumption. See, e.g., section 4 of Boyd (1990), or assumptions 1-4 of Durán (2003).
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Example 5.2.2. Recall the job search problem with learning discussed in section

2.5.2 of chapter 2.5 Basically, the set up is as in example 5.2.1, except that {wt}t≥0

follows

ln wt = ξ + εt, {εt}t≥0
IID∼ N(0, γε),

where ξ is the unobservable mean of the wage process, over which the worker

has prior ξ ∼ N(µ, γ). The worker’s current estimate of the next period wage

distribution is f (w′|µ, γ) = LN(µ, γ + γε). If the current offer is turned down,

the worker updates his belief after observing w′. By the Bayes’ rule, the posterior

satisfies ξ|w′ ∼ N(µ′, γ′), where

γ′ = 1/ (1/γ + 1/γε) and µ′ = γ′
(
µ/γ + ln w′/γε

)
. (5.2.7)

Recall that the utility of the worker follows (5.2.4). For any integrable function h,

the stochastic kernel satisfies∫
h(z′)P(z, dz′) =

∫
h(w′, µ′, γ′) f (w′|µ, γ)dw′, (5.2.8)

where µ′ and γ′ are defined by (5.2.7). Moreover, the Jovanovic operator follows

Qψ(µ, γ) = c0 + β
∫

max
{

u(w′)
1− β

, ψ(µ′, γ′)

}
f (w′|µ, γ)dw′. (5.2.9)

We have shown that if δ ≥ 0 and δ 6= 1, then assumption 2.3.1 holds with n := 1,

g(µ, γ) := e(1−δ)µ+(1−δ)2γ/2, m := 1 and d := 0. In particular, we have∫
w′1−δ f (w′|µ, γ)dw′ = e(1−δ)2γε/2 · e(1−δ)µ+(1−δ)2γ/2 (5.2.10)

and

E µ,γg(µ′, γ′) :=
∫

g(µ′, γ′) f (w′|µ, γ)dw′ = g(µ, γ) = mg(µ, γ) + d. (5.2.11)

Indeed, the case δ = 1 can also be treated. Appendix 5.B gives details.

Remark 5.2.2. From (5.2.8) we know that the conditional expectation of the re-

ward functions in example 5.2.2 is defined on a space of lower dimension than

the state space. Although there are 3 states, E z|r(Z1)| is a function of only 2 ar-

guments: µ and γ. Hence, using future transitions in assumption 2.3.1 makes it

easier to find an appropriate g-function. Indeed, if the standard weighted sup-

norm method were applied, one need to find a g̃(w, µ, γ) with geometric drift

property that dominates |r| (see, e.g., section 4 of Boyd (1990), or, assumptions

1–4 of Durán (2003)), which is not as obvious due to the higher state dimension.
5The notation will be changed a little bit in order to maintain coherence of the current chapter.
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Remark 5.2.3. From (5.2.9), we see that the continuation value is a function of

(µ, γ). However, since current rewards depend on w, the value function depends

on (w, µ, γ). Thus, the former is lower dimensional than the latter.

With unbounded rewards and shocks, solution methods based on the Bellman

operator with respect to the supremum norm or local contractions fail in the next

few examples. However, theorem 5.2.1 can be applied. (See appendix 5.B for

proofs.)

Example 5.2.3. Consider an infinite-horizon American call option (see, e.g., Peskir

and Shiryaev (2006) or Duffie (2010)) with state process be as in (5.2.2) and state

space Z := R. Let pt = p(Zt) = eZt be the current price of the underlying asset,

and γ > 0 be the riskless rate of return (i.e., β = e−γ). With strike price K, the

terminal reward is r(z) = (p(z)− K)+, the reward of exercising the option, while

the flow continuation reward is c ≡ 0. The Jovanovic operator for the option

satisfies

Qψ(z) = e−γ
∫

max{(p(z′)− K)+, ψ(z′)} f (z′|z)dz′.

If ρ ∈ (−1, 1), we can let ξ := |b|+ σ2/2 and fix n ∈ N0 such that e−γ+|ρn|ξ < 1,

so assumption 2.3.1 holds with g(z) := eρnz + e−ρnz and m = d := e|ρ
n|ξ . (If

e−γ+ξ < 1, then assumption 2.3.1 holds with n = 0 for all ρ ∈ [−1, 1].)

Example 5.2.4. Suppose that, in each period, a firm observes an idea with value

Zt ∈ Z := R+ and decides whether to put this idea into productive use or develop

it further, by investing in R&D (see, e.g., Jovanovic and Rob (1989), Bental and

Peled (1996), Perla and Tonetti (2014)). The first choice gives reward r(Zt) = Zt.

The latter incurs fixed cost c0 > 0. Let the R&D process be governed by the

exponential law (with rate parameter θ > 0)

F(z′|z) := P(Zt+1 ≤ z′|Zt = z) = 1− e−θ(z′−z) (z′ ≥ z). (5.2.12)

The Jovanovic operator satisfies

Qψ(z) = −c0 + β
∫

max{z′, ψ(z′)}dF(z′|z).

In this case, assumption 2.3.1 is satisfied with n := 0, g(z) := z, m := 1 and

d := 1/θ.

Example 5.2.5. Consider a firm exit problem (see, e.g., Hopenhayn (1992), Ericson

and Pakes (1995), Asplund and Nocke (2006), Dinlersoz and Yorukoglu (2012),

Coşar et al. (2016)). In each period, an incumbent firm observes a productivity
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shock at, where at = a(Zt) = eZt and Zt ∈ Z := R obeys (5.2.2), and decides

whether or not to exit the market next period. A fixed cost c f > 0 is paid each

period and the firm’s output is q(a, l) = alα, where α ∈ (0, 1) and l is labor

demand. Given output and input prices p and w, the reward functions are r(z) =

c(z) = Ga(z)
1

1−α − c f , where G = (αp/w)
1

1−α (1− α)w/α. The Jovanovic operator

is

Qψ(z) =
(

Ga(z)
1

1−α − c f

)
+ β

∫
max

{
Ga(z′)

1
1−α − c f , ψ(z′)

}
f (z′|z)dz′.

For ρ ∈ [0, 1), choose n ∈ N0 such that βeρnξ < 1, where ξ := b
1−α + σ2

2(1−α)2 .

Then assumption 2.3.1 holds with g(z) := eρnz/(1−α) and m := d := eρnξ . Other

parameterizations (such as the unit root case ρ = 1) can also be handled.

5.3 Properties of Continuation Values

This section studies some further properties of the continuation value function.

5.3.1 Continuity

We begin by stating conditions under which the continuation value function is

continuous. Recall that we have established a general result on continuity in

section 2.3.2 of chapter 2—proposition 2.3.4. The next result treats the special

case when P admits a density representation. Note that continuity of r is not

required.

Corollary 5.3.1. If assumption 2.3.1 holds, P admits a density representation f (z′|z)
that is continuous in z, and that c, ` and z 7→

∫
|r(z′)| f (z′|z)dz′,

∫
`(z′) f (z′|z)dz′

are continuous, then ψ∗ is continuous.

Remark 5.3.1. If r and c are bounded, then assumption 2.3.2-(1) and the conti-

nuity of r and c are sufficient for the continuity of ψ∗ (by proposition 2.3.4). If in

addition P has a density representation f , then the continuity of c and z 7→ f (z′|z)
is sufficient for ψ∗ to be continuous by corollary 5.3.1.

Example 5.3.1. In the job search model of example 5.2.1, ψ∗ is continuous. As-

sumption 2.3.1 holds, as shown. P has a density representation f (z′|z) = N(ρz +

b, σ2) that is continuous in z. Moreover, c ≡ c0, g and z 7→ E zg(Z1) are continu-

ous, and z 7→ E z|r(Zt)| is continuous for all t ∈ N (see (5.2.5)–(5.2.6)). Hence, `

and z 7→ E z`(Z1) are continuous, and the conditions of corollary 5.3.1 are satis-

fied.
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Example 5.3.2. In the adaptive search model of example 5.2.2, assumption 2.3.1

holds for n = 1, as shown. By (5.2.8) and lemma 5.A.1, P is Feller. Moreover,

c ≡ c0, and r, g and (µ, γ) 7→ E µ,γ|r(w′)|,E µ,γg(µ′, γ′) are continuous (see

(5.2.10)–(5.2.11)), where we define E µ,γ|r(w′)| :=
∫
|r(w′)| f (w′|µ, γ)dw′. Hence,

assumption 2.3.2 holds (recall footnote 4 of chapter 2). By proposition 2.3.4, ψ∗ is

continuous.

Example 5.3.3. Recall the option pricing model of example 5.2.3. By corollary

5.3.1, we can show that ψ∗ is continuous. The proof is similar to example 5.3.1,

except that we use |r(z)| ≤ ez + K, the continuity of z 7→
∫
(ez′ + K) f (z′|z)dz′,

and lemma 5.A.1 to show that z 7→ E z|r(Z1)| is continuous. Appendix 5.B pro-

vides details.

Example 5.3.4. Recall the R&D decision problem of example 5.2.4. Assumption

2.3.1 holds for n = 0. For all bounded continuous function h : Z → R, lemma

5.A.1 shows that z 7→
∫

h(z′)dF(z′|z) is continuous, so P is Feller. Moreover, r, c

and g are continuous, and z 7→ E zg(Z1) is continuous since∫
|z′|P(z, dz′) =

∫
[z,∞)

z′θe−θ(z′−z) dz′ = z + 1/θ.

Hence, assumption 2.3.2 holds. By proposition 2.3.4, ψ∗ is continuous.

Example 5.3.5. Recall the firm exit model of example 5.2.5. Through similar anal-

ysis to examples 5.3.1 and 5.3.3, we can show that ψ∗ is continuous. Appendix

5.B gives details.

5.3.2 Monotonicity

We now study monotonicity under the following assumption.6 In the assump-

tion, the latter statement holds whenever r is increasing and P is stochastically

increasing (recall section 5.2.1).

Assumption 5.3.1. The function c is increasing, as is

z 7→
∫

max{r(z′), ψ(z′)}P(z, dz′)

for all increasing ψ ∈ b`Z.

Proposition 5.3.1. If assumptions 2.3.1 and 5.3.1 hold, then ψ∗ is increasing.
6We focus on the monotone increasing case. The monotone decreasing case is similar.
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Example 5.3.6. In example 5.2.1, assumption 2.3.1 holds. If ρ ≥ 0, the density

kernel f (z′|z) = N(ρz + b, σ2) is stochastically increasing in z. Since r and c are

increasing, assumption 5.3.1 holds. By proposition 5.3.1, ψ∗ is increasing.

Similarly, for the option pricing model of example 5.2.3 and the firm exit model

of example 5.2.5, if ρ ≥ 0, then ψ∗ is increasing. Moreover, ψ∗ is increasing in

example 5.2.4. The details are omitted.

Example 5.3.7. For the adaptive search model of example 5.2.2, r(w) is increasing,

µ′ is increasing in µ, and f (w′|µ, γ) = N(µ, γ + γε) is stochastically increasing in

µ, soE µ,γ(r(w′)∨ψ(µ′, γ′)) is increasing in µ for all candidate ψ that is increasing

in µ. Since c ≡ c0, by proposition 5.3.1, ψ∗ is increasing in µ.

5.3.3 Differentiability

Suppose Z = Z1 × · · · × Zm ⊂ Rm, with typical element z = (z1, · · · , zm). Given

h : Z → R, let Dj
i h(z) be the j-th partial derivative of h with respect to zi. For a

density kernel f , let Dj
i f (z′|z) := ∂j f (z′|z)/∂(zi)j.

Assumption 5.3.2. Dic(z) exists for all z ∈ int(Z) and i = 1, · · · , m.

Let z−i := (z1, · · · , zi−1, zi+1, · · · , zm). Given z0 ∈ Z and δ > 0, let Bδ(zi
0) := {zi ∈

Zi : |zi − zi
0| < δ} and let B̄δ(zi

0) be its closure.

Assumption 5.3.3. P has a density representation f , and, for i = 1, · · · , m,

(1) D2
i f (z′|z) exits for all (z, z′) ∈ int(Z)× Z;

(2) (z, z′) 7→ Di f (z′|z) is continuous;

(3) There are finite solutions of zi to D2
i f (z′|z) = 0 (denoted by z∗i (z

′, z−i)), and,

for all z0 ∈ int(Z), there exist δ > 0 and a compact subset A ⊂ Z such that

z′ /∈ A implies z∗i (z
′, z−i

0 ) /∈ Bδ(zi
0).

Remark 5.3.2. When the state space is unbounded above and below, a sufficient

condition for assumption 5.3.3-(3) is: there are finite solutions of zi to D2
i f (z′|z) =

0, and, for all z0 ∈ int(Z), ‖z′‖ → ∞ implies |z∗i (z′, z−i
0 )| → ∞.

Assumption 5.3.4. k is continuous and
∫
|k(z′)Di f (z′|z)|dz′ < ∞ for all z ∈

int(Z), k ∈ {r, `} and i = 1, · · · , m.

The following provides a general result for the differentiability of ψ∗.
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Proposition 5.3.2. If assumptions 2.3.1 and 5.3.2–5.3.4 hold, then ψ∗ is differentiable

at interior points, and, for all z ∈ int(Z) and i = 1, · · · , m,

Diψ
∗(z) = Dic(z) +

∫
max{r(z′), ψ∗(z′)}Di f (z′|z)dz′.

To obtain continuous differentiability we add the following:

Assumption 5.3.5. For i = 1, · · · , m, the following conditions hold:

(1) z 7→ Dic(z) is continuous on int(Z);

(2) k and z 7→
∫
|k(z′)Di f (z′|z)|dz′ are continuous on int(Z) for k ∈ {r, `}.

Proposition 5.3.3. If assumptions 2.3.1, 5.3.3 and 5.3.5 hold, then z 7→ Diψ
∗(z) is

continuous on int(Z) for i = 1, · · · , m.

Example 5.3.8. Recall the job search model of example 5.2.1. It can be shown that,

with h(z, a) := ea(ρz+b)+a2σ2/2/
√

2πσ2,

(a) the two solutions of ∂2 f (z′|z)
∂z2 = 0 are z∗(z′) := z′−b±σ

ρ ;

(b)
∫ ∣∣∣ ∂ f (z′|z)

∂z

∣∣∣dz′ = |ρ|
σ

√
2
π ;

(c) eaz′
∣∣∣ ∂ f (z′|z)

∂z

∣∣∣ ≤ h(z, a) exp
{
− [z′−(ρz+b+aσ2)]2

2σ2

}
|ρz′|+|ρ(ρz+b)|

σ2 ;

(d) the two terms on both sides of (c) are continuous in z;

(e) the integration (w.r.t. z′) of the right side of (c) is continuous in z.

By remark 5.3.2 and (a), assumption 5.3.3-(3) holds. Based on (5.2.5), conditions

(b)–(e), and lemma 5.A.1, one can show that assumption 5.3.5-(2) holds. The other

conditions of proposition 5.3.3 are straightforward. Hence, ψ∗ is continuously

differentiable.

Example 5.3.9. Recall the option pricing problem of example 5.2.3. Through sim-

iliar analysis, one can show that ψ∗ is continuously differentiable (see appendix

5.B for proofs). Figure 5.1 illustrates. While ψ∗ is smooth, v∗ is kinked at around

z = 3 in both cases.7

Example 5.3.10. Recall the firm exit model of example 5.2.5. Through similar

analysis to examples 5.3.8–5.3.9, one can show that ψ∗ is continuously differen-

tiable (see appendix 5.B for proofs). Figure 5.2 illustrates. While ψ∗ is smooth, v∗

is kinked at around z = 1.5 when ρ = 0.7, and has two kinks when ρ = −0.7.8

7We set γ = 0.04, K = 20, b = −0.2, σ = 1, and consider ρ = ±0.65.
8We set β = 0.95, σ = 1, b = 0, c f = 5, α = 0.5, p = 0.15, w = 0.15, and consider respectively

ρ = 0.7 and ρ = −0.7.
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Figure 5.1: Comparison of ψ∗ and v∗ (Option Pricing)

Figure 5.2: Comparison of ψ∗ and v∗ (Firm Exit)

5.3.4 Parametric Continuity

Consider the parameter space Θ ⊂ Rk. Let Pθ, rθ, cθ, v∗θ and ψ∗θ denote the stochas-

tic kernel, exit and flow continuation rewards, value and continuation value func-

tions with respect to the parameter θ ∈ Θ, respectively. Similarly, let nθ, aiθ, mθ,

dθ and gθ denote the key elements of assumption 2.3.1 with respect to θ. Define

n := sup
θ∈Θ

nθ, m := sup
θ∈Θ

mθ, d := sup
θ∈Θ

dθ and ā := ∑4
i=1 sup

θ∈Θ
aiθ.

Assumption 5.3.6. Assumption 2.3.1 holds at all θ ∈ Θ, with βm < 1 and n, d, ā <

∞.

Similar to theorem 5.2.1, one can show that if assumption 5.3.6 holds, then there

exist positive constants m′ and d′ such that for ` : Z×Θ→ R defined by

`(z, θ) := m′
(

n−1

∑
t=1

E
θ
z|rθ(Zt)|+

n−1

∑
t=0

E
θ
z|cθ(Zt)|

)
+ gθ(z) + d′,
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Q is a contraction mapping on b`(Z×Θ) with unique fixed point (z, θ) 7→ ψ∗θ (z),

where E θ
z denotes the conditional expectation with respect to Pθ(z, ·).

Assumption 5.3.7. The following conditions hold:

(1) Pθ(z, ·) is Feller; that is, (z, θ) 7→
∫

h(z′)Pθ(z, dz′) is continuous for all con-

tinuous bounded function h : Z→ R.

(2) (z, θ) 7→ cθ(z), rθ(z), `(z, θ),
∫
|rθ(z′)|Pθ(z, dz′),

∫
`(z′, θ)Pθ(z, dz′) are con-

tinuous.

The following result is an extension of proposition 2.3.4.

Proposition 5.3.4. If assumptions 5.3.6–5.3.7 hold, then (z, θ) 7→ ψ∗θ (z) is continuous.

Example 5.3.11. Recall the job search problem of example 5.2.1. Let Θ := [−1, 1]×
A× B× C, where A, B are bounded subsets of R++,R, respectively, and C ⊂ R.

A typical element of Θ is θ = (ρ, σ, b, c0). Proposition 5.3.4 implies that (θ, z) 7→
ψ∗θ (z) is continuous. The proof is similar to example 5.3.1.

5.4 Optimal Policies

This section provides a systematic study of optimal timing of decisions when

there are threshold states, and explores the key properties of the optimal policies.

We begin in the next section by imposing assumptions under which the optimal

policy follows a reservation rule.

5.4.1 Set Up

Let Z be a subset of Rm with Z = X× Y, where X is a convex subset of R, Y is a

convex subset ofRm−1, and the state process {Zt}t≥0 takes the form {(Xt, Yt)}t≥0.

Here {Xt}t≥0 and {Yt}t≥0 are stochastic processes on X and Y respectively. We

assume throughtout section 5.4 that the optimal stopping problem is continuation

decomposable (recall section 2.4.1 of chapter 2). The stochastic kernel P(z, dz′)

can then be represented by the conditional distribution of (x′, y′) on y, denoted

as Fy(x′, y′), i.e., P(z, dz′) = P((x, y), d(x′, y′)) = dFy(x′, y′).

Assumption 5.4.1. r is strictly monotone on X. Moreover, for all y ∈ Y, there

exists x ∈ X such that r(x, y) = c(y) + β
∫

v∗(x′, y′)dFy(x′, y′).
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With assumption 5.4.1 in force, we call Xt the threshold state and Yt the environment.

We call X the threshold state space and Y the environment space. Under assumption

5.4.1, the reservation rule property holds: there is a decision threshold x̄ : Y → X

such that when x attains x̄, the agent is indifferent between stopping and contin-

uing, i.e., r(x̄(y), y) = ψ∗(y) for all y ∈ Y. The optimal policy then follows

σ∗(x, y) =

{
1{x ≥ x̄(y)}, if r is strictly increasing in x

1{x ≤ x̄(y)}, if r is strictly decreasing in x
(5.4.1)

5.4.2 Results

The next few results mainly rely on the implicit function theorem.

Proposition 5.4.1. Suppose assumption 5.4.1 holds, and that either the assumptions of

proposition 2.3.4 or of corollary 5.3.1 (plus the continuity of r) hold. Then x̄ is continu-

ous.

Regarding parametric continuity, let x̄θ be the decision threshold w.r.t. θ ∈ Θ.

Proposition 5.4.2. If assumptions 5.3.6–5.3.7 and 5.4.1 hold, then (y, θ) 7→ x̄θ(y) is

continuous.

A typical element of Y is y =
(
y1, · · · , ym−1). Given h : Y → R and l : X× Y →

R, we define Dih(y) := ∂h(y)/∂yi, Dil(x, y) := ∂l(x, y)/∂yi and Dxl(x, y) :=

∂l(x, y)/∂x. The next result shows that the decision threshold is continuously

differentiable with respect to the environment under certain assumptions, and

provides an expression for the derivative.

Proposition 5.4.3. Let assumptions 2.3.1, 5.3.3, 5.3.5 and 5.4.1 hold. If r is continu-

ously differentiable on int(Z), then x̄ is continuously differentiable on int(Y), with

Di x̄(y) = −
Dir(x̄(y), y)− Diψ

∗(y)
Dxr(x̄(y), y)

for all y ∈ int(Y) and i = 1, · · · , m.

The intuition behind this expression is as follows: Since (x, y) 7→ r(x, y)− ψ∗(y)

is the premium of terminating the sequential decision process, which is null at

the decision threshold, the change in this premium in response to instantaneous

changes of x and y cancel out. Hence, the rate of change of x̄(y) with respect to yi

is equivalent to minus the ratio of the marginal premiums of yi and x. See (5.5.3)

for an application in the context of job search.

The next result considers monotonicity and applications are given below.

Proposition 5.4.4. Let assumptions 2.3.1, 5.3.1 and 5.4.1 hold. If r is defined on X and

is strictly increasing, then x̄ is increasing.
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5.5 Applications

Let us now look at applications in some more detail, including how the preceding

results can be applied and what their implications are. In contrast with chapter

2, all simulations of this section are processed in a standard Python environment

on a laptop with a 2.9 GHz Intel Core i7 and 32GB RAM, unless otherwise spec-

ified. Moreover, integration is computed via Monte Carlo with 1000 draws, and

function approximation is via linear interpolation. For unbounded problems, we

set ψ∗ outside the grid range to its value at the boundary.9

5.5.1 Search with Learning

Recall the adaptive search model of example 5.2.2 (see also examples 5.3.2 and

5.3.7). The value function satisfies

v∗(w, µ, γ) = max
{

u(w)

1− β
, c0 + β

∫
v∗(w′, µ′, γ′) f (w′|µ, γ)dw′

}
,

while the Jovanovic operator is given by (5.2.9). This is a threshold state sequen-

tial decision problem, with threshold state x := w ∈ R++ =: X and environment

y := (µ, γ) ∈ R × R++ =: Y. By the intermediate value theorem, assump-

tion 5.4.1 holds. Hence, the optimal policy is represented by a reservation wage

w̄ : Y → R at which the worker is indifferent between accepting and rejecting the

offer. By examples 5.3.2 and 5.3.7 and propositions 5.4.1 and 5.4.4, w̄ is increasing

in µ and continuous. The intuition behind this monotonicity is that more opti-

mistic agent (higher µ) expects higher offers to be realized.

By theorem 5.2.1, we can compute the reservation wage by iterating with Q. In

doing so we set β = 0.95, γε = 1.0, c̃0 = 0.6, and consider different levels of risk

aversion: δ = 3, 4, 5, 6. The grid points of (µ, γ) lie in [−10, 10]× [10−4, 10] with

200 points for the µ grid and 100 points for the γ grid.

In Figure 5.3, the reservation wage is increasing in µ, which agrees with our anal-

ysis (see example 5.3.7). The reservation wage is increasing in γ when µ is small

and decreasing in γ when µ is large. Intuitively, although a pessimistic worker

(low µ) expects to obtain low offers on average, the downside risks are mitigated

because compensation is obtained when the offer is turned down. A higher level

9Changing the number of Monte Carlo samples, the grid range and grid density produces

similar results in our simulations. See, for example, Fukushima and Waki (2013) and Pál and

Stachurski (2013), for systematic analysis of related numerical algorithms.
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Figure 5.3: The reservation wage

of uncertainty (higher γ) provides a better chance of high offers. For an optimistic

(high µ) worker, however, the insurance of compensation has less impact. With

higher level uncertainty, the risk-averse worker has incentive to enter the labor

market at an earlier stage so as to avoid downside risks.

In computation, value function iteration (VFI) takes more than one week, while

continuation value iteration (CVI), being only 2-dimensional, takes 178 seconds.10

5.5.2 Firm Entry

Consider a firm entry problem in the style of Fajgelbaum et al. (2017). Each pe-

riod, an investment cost ft ∈ R is observed, where { ft}
IID∼ h with

∫
| f |h( f )d f <

10We terminate the iteration at precision 10−4. The time of CVI is calculated as the average of

the four cases (σ = 3, 4, 5, 6). Moreover, to implement VFI, we set the grid points of w in [10−4, 10]

with 50 points, and combine them with the grid points for µ and γ to run the simulation.
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∞.11 The firm then decides whether to incur this cost and enter the market to earn

a stochastic dividend xt or wait and reconsider. Let

xt = ξt + εx
t , {εx

t }
IID∼ N(0, γx),

where ξt and εx
t are respectively a persistent and a transient component, with

ξt = ρξt−1 + ε
ξ
t , {εξ

t}
IID∼ N(0, γξ).

A public signal yt+1 is released at the end of each period t, where

yt = ξt + ε
y
t ,

{
ε

y
t
} IID∼ N(0, γy).

The firm has prior ξ ∼ N(µ, γ) that is updated after observing y′ if the firm

chooses to wait. The posterior satisfies ξ|y′ ∼ N(µ′, γ′), with

γ′ = 1/
(

1/γ + ρ2/(γξ + γy)
)

and µ′ = γ′
(
µ/γ + ρy′/(γξ + γy)

)
. (5.5.1)

The firm has utility u(x) = (1− e−ax) /a, where a > 0 is the absolute risk aver-

sion coefficient. The terminal and flow continuation rewards are respectively

r( f , µ, γ) := E µ,γ[u(x)]− f =
(

1− e−aµ+a2(γ+γx)/2
)

/a− f

and c ≡ 0.12 This is a threshold state problem, with threshold state x := f ∈ R =:

X and environment y := (µ, γ) ∈ R×R++ =: Y. The Jovanovic operator is

Qψ(µ, γ) = β
∫

max
{
E µ′,γ′ [u(x′)]− f ′, ψ(µ′, γ′)

}
p( f ′, y′|µ, γ)d( f ′, y′),

where

p( f ′, y′|µ, γ) = h( f ′)l(y′|µ, γ) with l(y′|µ, γ) = N(ρµ, ρ2γ + γξ + γy).

As our primitive set up, we let

n := 1, g(µ, γ) := e−µ+a2γ/2, m := 1 and d := 0,

and define ` according to (5.2.1). Moreover, let f̄ : Y → R be the reservation cost.

Proposition 5.5.1. The following statements are true:

(1) Q is a contraction mapping on (b`Y, ‖ · ‖`) with unique fixed point ψ∗.

11Generally, we allow for ft < 0, which can be interpreted as investment compensation.
12Since in general { ft} can be supported onR and the terminal reward is unbounded, solution

methods based on the Bellman operator with respect to the supremum norm or local contractions

fail on the theoretical side. However, the theory we develop can be applied.
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(2) The reservation cost is f̄ (µ, γ) = E µ,γ[u(x)]− ψ∗(µ, γ).

(3) ψ∗ and f̄ are continuous functions.

(4) If ρ ≥ 0, then ψ∗ is increasing in µ.

Remark 5.5.1. Note that the first three claims of proposition 5.5.1 place no restric-

tion on the range of ρ values, the correlation coefficient of {ξt}.

Figure 5.4: The perceived probability of investment

In simulation, we set β = 0.95, a = 0.2, γx = 0.1, γy = 0.05, and h = LN(0, 0.01).

Let ρ = 1, γξ = 0, and let the grid points of (µ, γ) lie in [−2, 10]× [10−4, 10] with

100 points for each variable.

Figure 5.4 plots the perceived probability of investment P
{

f ≤ f̄ (µ, γ)
}

. As ex-

pected, this probability is increasing in µ and decreasing in γ, since a more opti-

mistic firm (higher µ) is more likely to invest, and with higher level uncertainty

(higher γ) the risk averse firm prefers to delay investment so as to avoid down-

side risks.13 In terms of computation time, VFI takes more than one week, while

CVI takes 921 seconds.14

13This result parallels propositions 1–2 of Fajgelbaum et al. (2017).
14We terminate the iteration at precision 10−4. To implement VFI, we set the grid points of f in

[10−4, 10] with 50 points, and combine them with the grid points for µ and γ to run the simulation.
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5.5.3 Search with Permanent and Transitory Components

Recall the job search problem introduced in section 2.5.1 of chapter 2.15 In partic-

ular, the state process follows

wt = ηt + θtξt, ln θt = ρ ln θt−1 + ln ut, ρ ∈ [−1, 1]. (5.5.2)

Here {ξt}
IID∼ h and {ηt}

IID∼ v are positive processes with finite first moments,∫
η−1v(η)dη < ∞, {ut}

IID∼ LN(0, γu), and {ξt}, {ηt} and {θt} are independent.

We interpret θt and ξt respectively as the persistent and transitory components of

income, and ηt as social security. The Jovanovic operator is

Qψ(θ) = c0 + β
∫

max
{

u(w′)
1− β

, ψ(θ′)

}
f (θ′|θ)h(ξ ′)v(η′)d(θ′, ξ ′, η′),

where

w′ = η′ + θ′ξ ′ and f (θ′|θ) = LN(ρ ln θ, γu).

This is a threshold state problem, with threshold state w ∈ R++ =: X and envi-

ronment θ ∈ R++ =: Y. Let w̄ be the reservation wage. Recall the risk aversion

coefficient δ in (5.2.4).

Proposition 5.5.2. Suppose that δ = 1 and ρ ∈ (−1, 1).

• Choose n ∈ N0 such that βeρ2nγu < 1.

• Let g(θ) := θρn
+ θ−ρn

and m = d := eρ2nγu .

• Let ` be defined as in (5.2.1).

Then the following statements hold:

(1) Q is a contraction mapping on (b`Y, ‖ · ‖`) with unique fixed point ψ∗.

(2) The reservation wage is w̄(θ) = e(1−β)ψ∗(θ).

(3) ψ∗ and w̄ are continuously differentiable, and

w̄′(θ) = (1− β)w̄(θ)ψ∗′(θ). (5.5.3)

(4) If ρ ≥ 0, then ψ∗ and w̄ are increasing in θ.

Remark 5.5.2. If βeγu/2 < 1, claims (1)–(3) of proposition 5.5.2 remain true for

|ρ| = 1, and claim (4) is true for ρ = 1.

15The notation will be changed a little bit in order to maintain coherence of the current chapter.
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The intuition behind the expression (5.5.3) for the derivative of w̄ is as follows:

Since the terminating premium is zero at the reservation wage, the overall effect

of changes in w and θ cancel out. Hence, the rate of change of w̄ with respect

to θ equals the minus ratio of the marginal premiums of θ and w at the decision

threshold, denoted respectively by −ψ∗′(θ) and [(1− β)w̄(θ)]−1.

Proposition 5.5.3. Suppose that δ ≥ 0, δ 6= 1 and ρ ∈ (−1, 1).

• Choose n ∈ N0 such that β eρ2n(1−δ)2γu < 1.

• Let g(θ) := θ(1−δ)ρn
+ θ−(1−δ)ρn

and m = d := eρ2n(1−δ)2γu .

• Let ` be defined as in (5.2.1).

Then the following statements hold:

(1) Q is a contraction mapping on (b`Y, ‖ · ‖`) with unique fixed point ψ∗.

(2) The reservation wage w̄(θ) = [(1− β)(1− δ)ψ∗(θ)]
1

1−δ .

(3) ψ∗ and w̄ are continuously differentiable, and

w̄′(θ) = (1− β)[w̄(θ)]δ ψ∗′(θ).

(4) If ρ ≥ 0, then ψ∗ and w̄ are increasing in θ.

Remark 5.5.3. If βe(1−δ)2γu/2 < 1, then claims (1)–(3) of proposition 5.5.3 remain

true for |ρ| = 1, and claim (4) remains true for ρ = 1.

Remark 5.5.4. Since the terminating premium is 0 at the reservation wage, the

overall effect of changes in w and θ cancel out. Hence, the rate of change of w̄

w.r.t. θ equals the ratio of the marginal premiums of θ and w at the decision

threshold, denoted respectively by ψ∗′(θ) and w̄(θ)−δ/(1 − β), as documented

by claim (3).

Group–1 Experiments

In simulation, we set β = 0.95, δ = 1, c̃0 = 0.6, γu = 10−4, v = LN(0, 10−6),

h = LN(0, 5 × 10−4), and consider the parametric class problem of ρ ∈ [0, 1],

with 100 grid points. Grid points of θ lie in [10−4, 10] with 200 points, and are

scaled to be more dense when θ is smaller.

When ρ = 0, {θt}
IID∼ LN(0, γu), in which case each realized θ will be forgotten

at future stages. As a result, the continuation value is independent of θ, yielding
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Figure 5.5: The reservation wage

a reservation wage parallel to the θ-axis, as shown in figure 5.5. When ρ > 0, the

reservation wage is increasing in θ, which is intuitive because higher θ implies a

better current situation. Since a higher degree of income persistence (higher ρ)

prolongs the mean-reverting process, the reservation wage tends to decrease in ρ

in bad states (θ < 1) and increase in ρ in good states (θ > 1).

Table 5.1: Time in seconds under different grid sizes (group–1 expr.)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

CVI 0.141 0.125 0.125 0.813 0.812 0.812 1.062 1.062 1.063

VFI 171.63 284.01 440.75 277.19 1078.27 1488.78 1075.22 1622.09 2696.09

We set ρ = 0.75, β = 0.95, c̃0 = 0.6, δ = 1, γu = 10−4, v = LN(0, 10−6) and h = LN(0, 5× 10−4). Grid points
for (θ, w) lie in [10−4, 10]2, and the grid sizes for (θ, w) in each test are: Test 1: (200, 200), Test 2: (200, 300),
Test 3: (200, 400), Test 4: (300, 200), Test 5: (300, 300), Test 6: (300, 400), Test 7: (400, 200), Test 8: (400, 300),
and Test 9: (400, 400). For both CVI and VFI, we terminate the iteration at a precision level 10−4. We run the
simulation 10 times for CVI, 5 times for VFI, and calculate the average time (in seconds).

Table 5.1 provides a numerical comparison between CVI and VFI under different

grid sizes. In tests 1–9, CVI is 1733 times faster than VFI on average, and outper-

forms VFI more strongly as we increase the grid size. For example, as we increase

the grid size of w and π, there is a slight decrease in the speed of CVI, while the

speed of VFI drops exponentially (see, e.g., tests 1, 5 and 9).
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Group–2 Experiments

Figure 5.6: The reservation wage

The benchmark set up is the same as in group–1 experiment of section 5.5.3, ex-

cept that we set δ = 2.5. We consider parametric class problems of ρ. ρ ∈ [0, 1]

and ρ ∈ [−1, 0] is treated separately, with 100 grid points in each case. Grid points

of θ lie in [10−4, 10] with 200 points, and are scaled to be more dense when θ is

smaller.

When ρ = 0, {θt}
IID∼ LN(0, γu), in which case each realized θ will be forgotten

in future stages. As a result, the continuation value is independent of θ, yielding

a reservation wage parallel to the θ-axis, as shown in figure 5.6.

When ρ > 0, the reservation wage is increasing in θ, which is natural since a

higher θ implies a better current situation. Further, since a higher degree of in-

come persistence (higher ρ) prolongs the mean-reverting process, the reservation

wage tends to decrease in ρ in bad states (θ < 1) and increase in ρ in good states

(θ > 1).

When ρ < 0, the reservation wage decreases in θ initially and then starts to in-

crease in θ afterwards. Intuitively, a low or a high θ is more favorable than a

medium level θ since it allows the agent to take advantage of the countercyclical

patterns.

The relative numerical efficiency of VFI and CVI is shown in table 5.2. The inter-

pretation is similar to group–1 experiment of section 5.5.3.
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Table 5.2: Time in seconds under different grid sizes (group–2 expr.)

Time Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

CVI 0.300 0.295 0.294 0.453 0.450 0.448 0.620 0.618 0.622

VFI 277.33 364.68 527.83 355.92 558.06 870.41 451.06 795.90 1191.43

We set ρ = 0.75, β = 0.95, c̃0 = 0.6, δ = 2.5, µη = 0, γη = 10−6, γξ = 5× 10−4, and γu = 10−4. The grid points
for (θ, w) lie in [10−4, 10]2, and the grid sizes for (θ, w) in each test are Test 1: (200, 200), Test 2: (200, 300), Test 3:
(200, 400), Test 4: (300, 200), Test 5: (300, 300), Test 6: (300, 400), Test 7: (400, 200), Test 8: (400, 300), and Test 9:
(400, 400). For both CVI and VFI, we terminate the iteration at a precision level 10−4. We run the simulation 10
times for CVI, 5 times for VFI, and calculate the average time (in seconds).

5.5.4 Firm Exit with Learning

Consider agent’s learning in a firm exit framework (see, e.g., Jovanovic (1982),

Pakes and Ericson (1998), Mitchell (2000), Timoshenko (2015)). Let q be firm’s

output, C(q) be a cost function, and C(q)x be the total cost, where the state pro-

cess {xt}t≥0 satisfies

ln xt = ξ + εt, {εt}t≥0
IID∼ N(0, γε),

where ξ denotes the firm’s type. At the beginning of each period, the firm ob-

serves x and decides whether to exit the industry or not. The prior belief is

ξ ∼ N(µ, γ), so the posterior after observing x′ is ξ|x′ ∼ N(µ′, γ′), where

γ′ = (1/γ + 1/γε)
−1 and µ′ = γ′

(
µ/γ + (ln x′)/γε

)
.

Let π(p, x) = max
q

[pq− C(q)x] be the maximal profit (the flow continuation re-

ward), and r(p, x) be the profit from other industries (the terminal reward, or the

opportunity cost of staying in the current industry), where p is price. Consider,

for example, C(q) := q2, and the price sequence {pt}t≥0 satisfies

ln pt+1 = ρ ln pt + b + ε
p
t+1, {εp

t }t≥0
IID∼ N(0, γp).

Let z := (p, x, µ, γ) ∈ R2
+ ×R×R+ =: Z. Then the Jovanovic operator satisfies

Qψ(z) = π(p, x) + β
∫

max{r(p′, x′), ψ(z′)}l(p′, x′|p, µ, γ)d(p′, x′),

where

l(p′, x′|p, µ, γ) := h(p′|p) f (x′|µ, γ), with

h(p′|p) := LN(ρ ln p + b, γp) and f (x′|µ, γ) := LN(µ, γ + γε).

Unbounded rewards can be treated via our methodology. Notice that

π(p, x) = p · q∗(p, x)− x · C [q∗(p, x)] ,
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where q∗(p, x) := (C′)−1(p/x). Since C(q) := q2, we have q∗(p, x) = p/2x and

π(p, x) = p2/4x. The following results can be established via our methodology.

Proposition 5.5.4. Suppose ρ ∈ (−1, 1) and that for some h1, h2 ∈ R+,

|r(p, x)| ≤ h1p2/x + h2.

We set up the model primitives as follows:

• Define ξ := 2(|b|+ γp).

• Choose n ∈ N0 such that βe|ρ
n|ξ < 1.

• Choose δ > 0 such that δ ≥ e|ρ
n|ξ/ (e|ρ

n|ξ − 1
)

.

• Let g(p, µ, γ) :=
(

p2ρn
+ p−2ρn

+ δ
)

e−µ+γ/2.

• Let m := e|ρ
n|ξ and d := 0.

• Let ` be defined as in (5.2.1).

Then the following statements hold:

(1) Q is a contraction mapping on (b`Z, ‖ · ‖`) with unique fixed point ψ∗.

(2) If in addition r is continuous, then ψ∗ is continuous.

The next result shows that the assumptions on r can be further relaxed.

Proposition 5.5.5. Suppose ρ ∈ (−1, 1) and for some h1, · · · , h5 ∈ R+,

|r(p, x)| ≤ h1p2/x + h2p2 + h3x−1 + h4x + h5.

We set up the model primitives as follows:

• Define ξ := 2(|b|+ γp).

• Choose n ∈ N0 such that βe|ρ
n|ξ < 1.

• Choose δ > 0 such that δ ≥ e|ρ
n|ξ/

(
e|ρ

n|ξ − 1
)

.

• Let g(p, µ, γ) :=
(

p2ρn
+ p−2ρn

+ δ
) (

e−µ+γ/2 + 1
)
+ e−µ+γ/2 + eµ+γ/2.

• Let m := e|ρ
n|ξ and d := 0.

• Let ` be defined as in (5.2.1).

Then the following statements are true:

(1) Q is a contraction mapping on (b`Z, ‖ · ‖`) with unique fixed point ψ∗.

(2) If in addition r is continuous, then ψ∗ is continuous.
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5.5.5 Search with Learning II

Consider the adaptive search model of Ljungqvist and Sargent (2012) (section

6.6). The model is as example 5.2.1, apart from the fact that the distribution of

the wage process h is unknown. The worker knows that there are two possible

densities f and g, and puts prior probability πt on f being chosen. If the current

offer wt is rejected, a new offer wt+1 is observed at the beginning of next period,

and, by the Bayes’ rule, πt updates via

πt+1 = πt f (wt+1)/[πt f (wt+1) + (1− πt)g(wt+1)] =: q(wt+1, πt). (5.5.4)

The state space is Z := X× [0, 1], where X is a compact interval ofR+. Let u(w) :=

w. The value function of the unemployed worker satisfies

v∗(w, π) = max
{

w
1− β

, c0 + β
∫

v∗(w′, q(w′, π))hπ(w′)dw′
}

,

where

hπ(w′) := π f (w′) + (1− π)g(w′).

This is a typical threshold state problem, with threshold state x := w ∈ X and en-

vironment y := π ∈ [0, 1] =: Y. As to be shown, the optimal policy is determined

by a reservation wage w̄ : [0, 1]→ R such that when w = w̄(π), the worker is in-

different between accepting and rejecting the offer. Consider the candidate space

(b[0, 1], ‖ · ‖). The Jovanovic operator is

Qψ(π) = c0 + β
∫

max
{

w′

1− β
, ψ ◦ q(w′, π)

}
hπ(w′)dw′. (5.5.5)

Proposition 5.5.6. Let c0 ∈ X. The following statements are true:

(1) Q is a contraction on (b[0, 1], ‖ · ‖) of modulus β, with unique fixed point ψ∗.

(2) The reservation wage w̄(π) = (1− β)ψ∗(π).

(3) ψ∗ and w̄ are continuous.

Since the computation is 2-dimensional via value function iteration (VFI), and

is only 1-dimensional via continuation value function iteration (CVI), we expect

the computation via CVI to be much faster. We run several groups of tests and

compare the time taken by the two methods. All tests are processed in a standard

Python environment on a laptop with a 2.5 GHz Intel Core i5 and 8GB RAM.
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Group-1 Experiments

This group documents the time taken to compute the fixed point across different

parameter values and at different precision levels. Table 5.3 provides the list of

experiments performed and table 5.4 shows the result.

Table 5.3: Group-1 experiments

Parameter Test 1 Test 2 Test 3 Test 4 Test 5

β 0.9 0.95 0.98 0.95 0.95

c0 0.6 0.6 0.6 0.001 1

Note: Different parameter values in each experiment.

Table 5.4: Time in seconds under different parameter values

(group–1 expr.)

Test/Method/Precision 10−3 10−4 10−5 10−6 10−7 10−8

Test 1
VFI 114.17 140.94 174.91 201.77 228.59 255.67

CVI 0.67 0.92 1.16 1.43 1.71 1.94

Test 2
VFI 181.78 234.58 271.89 323.22 339.87 341.55

CVI 0.95 1.49 1.80 2.27 2.69 3.11

Test 3
VFI 335.78 335.87 335.28 335.91 338.70 334.21

CVI 1.77 2.68 3.08 3.03 3.03 3.06

Test 4
VFI 154.18 201.05 247.72 294.90 335.32 335.00

CVI 0.79 1.22 1.65 2.06 2.50 2.91

Test 5
VFI 275.41 336.02 326.33 327.41 327.11 327.71

CVI 1.33 2.12 2.79 2.99 2.97 2.97

Note: We set X = [0, 2], f = Beta(1, 1) and g = Beta(3, 1.2). The grid points of (w, π) lie in [0, 2] ×
[10−4, 1− 10−4] with 100 points for w and 50 for π. For each given test and level of precision, we run
the simulation 50 times for CVI, 20 times for VFI, and calculate the average time (in seconds).

As shown in table 5.4, CVI performs much better than VFI. On average, CVI is

141 times faster than VFI. In the best case, CVI is 207 times faster (in test 5, VFI

takes 275.41 seconds to achieve a level of accuracy 10−3, while CVI takes only

1.33 seconds). In the worst case, CVI is 109 times faster (in test 5, CVI takes 2.99

seconds as opposed to 327.41 seconds by VFI to attain a precision level 10−6).
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Group-2 Experiments

In applications, increasing the number of grid points provides more accurate nu-

merical approximations. This group of tests compares how the two approaches

perform under different grid sizes. The setup and result are summarized in table

5.5 and table 5.6, respectively.

Table 5.5: Group-2 experiments

Variable Test 2 Test 6 Test 7 Test 8 Test 9 Test 10

π 50 50 50 100 100 100

w 100 150 200 100 150 200

Note: Different grid sizes of the state variables in each experiment.

Table 5.6: Time in seconds under different grid sizes (group–2 expr.)

Test/Precision/Method 10−3 10−4 10−5 10−6 10−7 10−8

Test 2
VFI 181.78 234.58 271.89 323.22 339.87 341.55

CVI 0.95 1.49 1.80 2.27 2.69 3.11

Test 6
VFI 264.34 336.20 407.52 476.01 508.05 509.05

CVI 0.96 1.39 1.82 2.30 2.73 3.14

Test 7
VFI 355.40 449.55 545.51 641.05 679.93 678.28

CVI 0.92 1.37 1.79 2.22 2.84 3.07

Test 8
VFI 352.76 447.36 541.75 639.73 678.91 677.52

CVI 1.94 2.74 3.58 4.42 5.30 6.14

Test 9
VFI 526.72 670.19 812.66 951.78 1017.29 1015.15

CVI 1.81 2.68 3.68 4.33 5.23 6.08

Test 10
VFI 706.34 897.07 1086.15 1278.27 1354.37 1360.07

CVI 1.83 2.72 3.51 4.40 5.21 6.10

Note: We set X = [0, 2], β = 0.95, c0 = 0.6, f = Beta(1, 1) and g = Beta(3, 1.2). The grid points of (w, π) lie
in [0, 2]× [10−4, 1− 10−4]. For each given test and precision level, we run the simulation 50 times for CVI, 20
times for VFI, and calculate the average time (in seconds).

CVI outperforms VFI more obviously as the grid size increases. In table 5.6 we

see that as we increase the number of grid points for w, the speed of CVI is not

affected. However, the speed of VFI drops significantly. Amongst tests 2, 6 and

7, CVI is 219 times faster than VFI on average. In the best case, CVI is 386 times

faster (while it takes VFI 355.40 seconds to achieve a precision level 10−3 in test
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7, CVI takes only 0.92 second). As we increase the grid size of w from 100 to 200,

CVI is not affected, but the time taken for VFI almost doubles.

As we increase the grid size of both w and π, there is a slight decrease in the speed

of CVI. Nevertheless, the decrease in the speed of VFI is exponential. Among

tests 2 and 8–10, CVI is 223.41 times as fast as VFI on average. In test 10, VFI

takes 706.34 seconds to obtain a level of precision 10−3, instead, CVI takes only

1.83 seconds, which is 386 times faster.

Group-3 Experiments

Since the total number of grid points increases exponentially with the number

of states, the speed of computation will drop dramatically with an additional

state. To illustrate, consider a parametric class problem with respect to c0. We

set X = [0, 2], β = 0.95, f = Beta(1, 1) and g = Beta(3, 1.2). Let (w, π, c0) lie in

[0, 2]× [10−4, 1− 10−4]× [0, 1.5] with 100 grid points for each. In this case, VFI is

3-dimensional and suffers the ”curse of dimensionality”: the computation takes

more than 7 days. However, CVI is only 2-dimensional and the computation

finishes within 171 seconds (with precision 10−6).

In figure 5.7, we see that the reservation wage is increasing in c0 and decreasing

in π. Intuitively, a higher level of compensation hinders the agent’s incentive of

entering into the labor market. Moreover, since f is a less attractive distribution

than g and larger π means more weight on f and less on g, a larger π depresses

the worker’s assessment of future prospects, and relatively low current offers

become more attractive.
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Figure 5.7: The reservation wage

Appendix 5.A A Continuity Lemma

Let (X,X , ν) and (Y,Y , u) two measure spaces. Lemma 5.A.1 below can be shown

by the Fatou’s lemma. The idea of proof is similar to proposition 2.3.4 below.

Lemma 5.A.1. Let p : Y×X → R be a measurable map that is continuous in x. If there

exists a measurable map q : Y× X → R that is continuous in x with q ≥ |p| on Y× X,

and that x 7→
∫

q(y, x)u(dy) is continuous, then x 7→
∫

p(y, x)u(dy) is continuous.

Proof. Since q(y, x) ≥ |p(y, x)| for all (y, x) ∈ Y × X, we know that (y, x) 7→
q(y, x)± p(y, x) are nonnegative measurable functions. Let (xn) be a sequence of

X with xn → x. By Fatou’s lemma, we have∫
lim inf

n→∞
[q(y, xn)± p(y, xn)]u(dy) ≤ lim inf

n→∞

∫
[q(y, xn)± p(y, xn)]u(dy).

From the given assumptions we know that lim
n→∞

∫
q(y, xn)u(dy) = q(y, x). Com-

bine this result with the above inequality, we have

±
∫

p(y, x)u(dy) ≤ lim inf
n→∞

(
±
∫

p(y, xn)u(dy)
)

,

where we have used the fact that for any two given sequences (an)n≥0 and (bn)n≥0

of Rwith lim
n→∞

an exists, we have: lim inf
n→∞

(an + bn) = lim inf
n→∞

an + lim inf
n→∞

bn. So

lim sup
n→∞

∫
p(y, xn)u(dy) ≤

∫
p(y, x)u(dy) ≤ lim inf

n→∞

∫
p(y, xn)u(dy).

Therefore, the mapping x 7→
∫

p(y, x)u(dy) is continuous.
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Appendix 5.B Main Proofs

5.B.1 Proof of Section 5.2 Results.

In this section, we prove examples 5.2.1–5.2.5. Note that in examples 5.2.1, 5.2.3

and 5.2.5, the stochastic kernel P has a density representation f (z′|z) = N(ρz +

b, σ2).

Proof of example 5.2.1. Case I: δ ≥ 0 and δ 6= 1.

In this case, the terminal reward is r(z) := e(1−δ)z/((1− β)(1− δ)). Since∫
e(1−δ)z′ f (z′|z)dz′ = a1eρ(1−δ)z

for some constant a1 > 0, induction shows that for all t ∈ N,∫
e(1−δ)z′Pt(z, dz′) = at eρt(1−δ)z ≤ at

(
eρt(1−δ)z + eρt(δ−1)z

)
(5.B.1)

for some constant at > 0. Recall ξ1 and ξ2 defined in example 5.2.1, and let

ζ := |ξ1|+ ξ2.

• If ρ ∈ (−1, 1), then we can choose n ∈ N0 such that βe|ρ
n|ζ < 1. Let

g(z) := eρn(1−δ)z + eρn(δ−1)z and m = d := e|ρ
n|ζ . Then condition (2.8) holds.

Condition (2.9) holds trivially since c is constant. It remains to verify condi-

tion (2.10). Since ξ1 + ξ2 ≤ ζ, we have16

∫
g(z′) f (z′|z)dz′ = eρn+1(1−δ)z eρnξ1+ρ2nξ2 + eρn+1(δ−1)z e−ρnξ1+ρ2nξ2

≤
(

eρn+1(1−δ)z + eρn+1(δ−1)z
)

e|ρ
n|ζ

≤
(

eρn(1−δ)z + eρn(δ−1)z + 1
)

e|ρ
n|ζ = mg(z) + d. (5.B.2)

Since βm = βe|ρ
n|ζ < 1, g satisfies the geometric drift condition (2.10), and

assumption 2.3.1 is verified.

• If ρ ∈ [−1, 1] and βeζ < 1, by (5.B.1)–(5.B.2) one can show that assumption

2.3.1 holds with n := 0, g(z) := e(1−δ)z + e(δ−1)z and m := d := eζ .

16To obtain the second inequality of (5.B.2), note that either ρn+1(1− δ)z ≤ 0 or ρn+1(δ− 1)z ≤
0. Assume without loss of generality that the former holds, then eρn+1(1−δ)z ≤ 1 and 0 ≤ ρn+1(δ−
1)z ≤ [ρn(δ− 1)z] ∨ [ρn(1− δ)z]. The latter implies that eρn+1(δ−1)z ≤ eρn(1−δ)z + eρn(δ−1)z. Com-

bine this with eρn+1(1−δ)z ≤ 1 yields the second inequality of (5.B.2).
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• If ρ ∈ [0, 1] and βeξ < 1, by (5.2.5)–(5.2.6) one can show that assumption

2.3.1 holds with n := 0, g(z) := e(1−δ)z and m = d := eξ , where ξ :=

ξ1 + ξ2 ≤ ζ.

The latter two scenarios show that we can treat nonstationary state process at the

cost of some additional restrictions on parameter values.

Case II: δ = 1. In this case, we assume further that β|ρ| < 1.

The terminal reward is r(z) = z/(1− β). Let n := 0, g(z) := |z|, m := |ρ| and

d := σ + |b|. Since {εt}t≥0
IID∼ N(0, σ2), by Jensen’s inequality,∫

g(z′) f (z′|z)dz′ = E z|Z1| ≤ |ρ||z|+ |b|+E |ε1|

≤ |ρ||z|+ |b|+
√
E (ε2

1) = |ρ||z|+ |b|+ σ = mg(z) + d.

Since βm = β|ρ| < 1, assumption 2.3.1 holds. This concludes the proof. (Notably,

since |ρ| ≥ 1 is not excluded, wages can be nonstationary provided that they do

not grow too fast.)

Proof of example 5.2.2. It remains to prove that assumption 2.3.1 holds for δ = 1.

Let n := 1, g(µ, γ) := e−µ+γ/2 + eµ+γ/2, m := 1 and d := 0.

Since | ln a| ≤ a + 1/a for all a > 0, we have: |u(w′)| ≤ w′ + w′−1, and then∫
|u(w′)| f (w′|µ, γ)dw′ ≤ eµ+(γ+γε)/2 + e−µ+(γ+γε)/2 = eγε g(µ, γ). (5.B.3)

Similarly as in the case of δ ≥ 0 and δ 6= 1, one can show that

E µ,γg(µ′, γ′) =
∫

g(µ′, γ′) f (w′|µ, γ)dw′ = g(µ, γ).

Hence, assumption 2.3.1 holds in both cases. This concludes the proof.

Proof of example 5.2.3. The terminal reward is r(z) = (ez − K)+. Notice that∫
ez′ f (z′|z)dz′ = eρz eb+σ2/2.

Induction shows that for all t ∈ N,∫
ez′Pt(z, dz′) = at eρtz ≤ at

(
eρtz + e−ρtz

)
for some constant at > 0.
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• If ρ ∈ (−1, 1), we can let ξ := |b|+σ2/2 and fix n ∈ N0 such that e−γ+|ρn|ξ <

1. Let g(z) := eρnz + e−ρnz and m = d := e|ρ
n|ξ . The above inequality implies

that condition (2.8) holds. Condition (2.9) holds trivially. Moreover,∫
g(z′) f (z′|z)dz′ =

∫
eρnz′ f (z′|z)dz′ +

∫
e−ρnz′ f (z′|z)dz′

= eρn+1z eρnb+ρ2nσ2/2 + e−ρn+1z e−ρnb+ρ2nσ2/2 (5.B.4)

≤
(

eρn+1z + e−ρn+1z
)

e|ρ
nb|+ρ2nσ2/2

≤
(

eρnz + e−ρnz + 1
)

e|ρ
nb|+ρ2nσ2/2

≤
(

eρnz + e−ρnz + 1
)

e|ρ
n|ξ = mg(z) + d.

Hence, condition (2.10) holds. Assumption 2.3.1 is true for ρ ∈ (−1, 1).

• If ρ ∈ [−1, 1] and e−γ+ξ < 1, then similar analysis shows that assumption

2.3.1 holds with n = 0, g(z) := ez + e−z and m = d := eξ .

Hence, assumption 2.3.1 holds in example 5.2.3.

Proof of example 5.2.4. Notice that the density kernel corresponding to the transi-

tion probability F is f (z′|z) = θ e−θ(z′−z) for z′ ≥ z.

Let n := 0, g(z) := |z|, m := 1 and d := 1/θ. Obviously, condition (2.8) holds

since |r(z)| ∨ |c(z)| ≤ |z|+ c0 for all z ∈ Z. Condition (2.9) holds trivially. More-

over, by the elementary properties of the exponential distribution,∫
g(z′)P(z, dz′) =

∫
|z′| f (z′|z)dz′ =

∫
[z,∞)

z′θ e−θ(z′−z) dz′ = z +
1
θ

.

Hence, condition (2.10) holds, and assumption 2.3.1 is verified.

Proof of example 5.2.5. The reward functions are r(z) = c(z) = Ge
1

1−α z − c f . Note

that ∫
e

1
1−α z′ f (z′|z)dz′ = e

ρ
1−α z e

b
1−α+

σ2

2(1−α)2 .

Induction shows that for all t ∈ N,∫
e

1
1−α z′Pt(z, dz′) = at e

ρt
1−α z (5.B.5)

for some constant at > 0. Let ξ := b
1−α + σ2

2(1−α)2 and ζ := |b|
1−α + σ2

2(1−α)2 .

• If ρ ∈ [0, 1), then we can choose n ∈ N0 such that βeρnξ < 1. Let g(z) :=

e
ρn

1−α z and m = d := eρnξ . Then conditions (2.8)–(2.9) hold. Moreover, condi-

tion (2.10) and thus assumption 2.3.1 hold since∫
g(z′) f (z′|z)dz′ = e

ρn+1
1−α z e

ρnb
1−α+

ρ2nσ2

2(1−α)2 ≤
(

e
ρn

1−α z + 1
)

e
ρnb
1−α+

ρ2nσ2

2(1−α)2 (5.B.6)

≤ [g(z) + 1] eρnξ = mg(z) + d.
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• Indeed, if ρ ∈ [0, 1] and βeξ < 1, then similar analysis shows that assump-

tion 2.3.1 holds for n = 0, g(z) := e
1

1−α z and m = d := βeξ .

• If ρ ∈ (−1, 1), then we can choose n ∈ N0 such that βe|ρ
n|ζ < 1. Let

g(z) := e
ρn

1−α z + e
ρn

α−1 z and m = d := e|ρ
n|ζ . Then conditions (2.8)–(2.9) hold.

Moreover, condition (2.10) and thus assumption 2.3.1 hold since

∫
g(z′) f (z′|z)dz′ ≤ e

ρn+1
1−α z e

ρnb
1−α+

ρ2nσ2

2(1−α)2 + e
ρn+1
α−1 z e

ρnb
α−1+

ρ2nσ2

2(1−α)2

≤
(

e
ρn+1
1−α z + e

ρn+1
α−1 z

)
e
|ρnb|
1−α +

ρ2nσ2

2(1−α)2

≤
(

e
ρn

1−α z + e
ρn

α−1 z + 1
)

e|ρ
n|ζ = mg(z) + d.

• Indeed, if ρ ∈ [−1, 1] and βeζ < 1, then similar analysis shows that assump-

tion 2.3.1 holds for n = 0, g(z) := e
1

1−α z + e
1

α−1 z and m = d := βeζ .

Hence, assumption 2.3.1 holds in example 5.2.5.

5.B.2 Proof of Section 5.3 Results.

Proof of corollary 5.3.1. Let b`cZ be the set of continuous functions in b`Z. Since `

is continuous by assumption, it is easy to show that b`cZ is a closed subset of b`Z.

To verify the continuity of ψ∗, it suffices to show that Q(b`cZ) ⊂ b`cZ (see, e.g.,

Stokey et al. (1989), corollary 1 of theorem 3.2).

For all ψ ∈ b`cZ, there exists G ∈ R+ such that |ψ| ≤ G`, so we have:

|max{r(z′), ψ(z′)} f (z′|z)| ≤ [|r(z′)|+ G`(z′)] f (z′|z).

Based on the given assumptions, z 7→ [|r(z′)|+ G`(z′)] f (z′|z) is nonnegative and

continuous for all z′ ∈ Z, and z 7→
∫
[|r(z′)|+ G`(z′)] f (z′|z)dz′ is continuous. By

lemma 5.A.1, z 7→
∫

max{r(z′), ψ(z′)} f (z′|z)dz′ is continuous. Combined with

the fact that c is continuous, we know that Qψ ∈ b`cZ. So ψ∗ is continuous.

Proof of example 5.3.3. For primitive set ups, recall option pricing model given by

example 5.2.3.

• P admits a density representation f (z′|z) = N(ρz + b, σ2) such that z 7→
f (z′|z) is continuous in z for all z′ ∈ Z.
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• Since |r(z)| ≤ ez + K and z 7→
∫

ez′ f (z′|z)dz′ is continuous, lemma 5.A.1

shows that z 7→ E z|r(Z1)| is continuous. Also, E z|r(Z1)| ≤ a1eρz + K for

some constant a1 > 0. To apply induction, suppose that z 7→ E z|r(Zt−1)| is
continuous and that

E z|r(Zt−1)| ≤ at−1eρt−1z + K

for some constant at−1 > 0. Since z 7→
∫

at−1eρt−1z f (z′|z)dz′ = ateρtz for

some constant at > 0, which is continuous, applying lemma 5.A.1 again

yields: z 7→ E z|r(Zt)| = E z (E Z1 |r(Zt−1)|) is continuous and E z|r(Zt)| ≤
ateρtz + K. Hence, z 7→ E z|r(Zt)| is continuous for all t ∈ N.

• In addition, g is continuous, and (5.B.4) implies that z 7→ E zg(Z1) is contin-

uous. Hence, ` and z 7→
∫
`(z′) f (z′|z)dz′ are continuous.

• The reward function c is continuous.

Based on corollary 5.3.1, ψ∗ is continuous. This concludes the proof.

Proof of example 5.3.5. For primitive set ups, recall the firm exit model of example

5.2.5.

• P admits a density representation f (z′|z) = N(ρz + b, σ2) such that z 7→
f (z′|z) is continuous in z for all z′ ∈ Z.

• From equation (5.B.5) we know that z 7→ E z|r(Zt)|,E z|c(Zt)| are continu-

ous for all t ∈ N.

• Moreover, g is continuous, and (5.B.6) implies that z 7→ E zg(Z1) is contin-

uous. Thus, ` and z 7→
∫
`(z′) f (z′|z)dz′ are continuous.

• The reward function c is continuous.

Based on corollary 5.3.1, ψ∗ is continuous, as was to be shown.

Proof of proposition 5.3.1. Standard argument shows that b`iZ, the set of increasing

functions in b`Z, is a closed subset. To show that ψ∗ is increasing, it suffices to ver-

ify that Q(b`iZ) ⊂ b`iZ (see, e.g., Stokey et al. (1989), corollary 1 of theorem 3.2).

The assumptions of the proposition guarantee that this is the case.
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In the next, we prove differentiability and smoothness. We define

µ(z) :=
∫

max{r(z′), ψ∗(z′)} f (z′|z)dz′

and µi(z) :=
∫

max{r(z′), ψ∗(z′)}Di f (z′|z)dz′.

Lemma 5.B.1. Suppose assumption 2.3.1 holds, and, for i = 1, · · · , m

(1) P has a density representation f such that Di f (z′|z) exists, ∀(z, z′) ∈ int(Z)× Z.

(2) For all z0 ∈ int(Z), there exists δ > 0, such that for k ∈ {r, `},∫
|k(z′)| sup

zi∈B̄δ(zi
0)

∣∣Di f (z′|z)
∣∣dz′ < ∞ (z−i = z−i

0 ).

Then: Diµ(z) = µi(z) for all z ∈ int(Z) and i = 1, · · · , m.

Proof of lemma 5.B.1. For all z0 ∈ int(Z), let {zn} be an arbitrary sequence of int(Z)

such that zi
n → zi

0, zi
n 6= zi

0 and z−i
n = z−i

0 for all n ∈ N. For the δ > 0 given by (2),

there exists N ∈ N such that zi
n ∈ B̄δ(zi

0) for all n ≥ N. Holding z−i = z−i
0 , by the

mean value theorem, there exists ξ i(z′, zn, z0) ∈ B̄δ(zi
0) such that

∣∣∣4i(z′, zn, z0)
∣∣∣ :=

∣∣∣∣∣ f (z′|zn)− f (z′|z0)

zi
n − zi

0

∣∣∣∣∣
=
∣∣∣Di f (z′|z)zi=ξ i(z′,zn,z0)

∣∣∣ ≤ sup
zi∈B̄δ(zi

0)

∣∣Di f (z′|z)
∣∣ .

Since in addition |ψ∗| ≤ G` for some G ∈ R+, we have: for all n ≥ N,

(a)
∣∣max{r(z′), ψ∗(z′)}4i(z′, zn, z0)

∣∣ ≤ (|r(z′)|+ G`(z′)) sup
zi∈B̄δ(zi

0)

|Di f (z′|z)|,

(b)
∫
(|r(z′)|+ G`(z′)) sup

zi∈B̄δ(zi
0)

|Di f (z′|z)| dz′ < ∞, and

(c) max{r(z′), ψ∗(z′)}4i(z′, zn, z0)→ max{r(z′), ψ∗(z′)}Di f (z′|z0) as n→ ∞,

where (b) follows from condition (2). By the dominated convergence theorem,

µ(zn)− µ(z0)

zi
n − zi

0
=
∫

max{r(z′), ψ∗(z′)}4i(z′, zn, z0)dz′

→
∫

max{r(z′), ψ∗(z′)}Di f (z′|z0)dz′ = µi(z0).

Hence, Diµ(z0) = µi(z0), and the claim of the lemma is verified.
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Proof of proposition 5.3.2. Fix z0 ∈ int(Z). By assumption 5.3.3 (2)–(3), there exist

δ > 0 and a compact subset A ⊂ Z such that z′ /∈ A implies z∗i (z
′, z−i

0 ) /∈ Bδ(zi
0),

hence, for z−i = z−i
0 ,

sup
zi∈B̄δ(zi

0)

|Di f (z′|z)| = |Di f (z′|z)|zi=zi
0+δ ∨ |Di f (z′|z)|zi=zi

0−δ =: hδ(z′, z0).

By assumption 5.3.3-(2), there exists G ∈ R+, such that for z−i = z−i
0 ,

sup
zi∈B̄δ(zi

0)

|Di f (z′|z)| ≤ sup
z′∈A,zi∈B̄δ(zi

0)

|Di f (z′|z)| · 1(z′ ∈ A) + hδ(z′, z0) · 1(z′ ∈ Ac)

≤ G · 1(z′ ∈ A) +
(
|Di f (z′|z)|zi=zi

0+δ + |Di f (z′|z)|zi=zi
0−δ

)
· 1(z′ ∈ Ac).

Assumption 5.3.4 then shows that condition (2) of lemma 5.B.1 holds. By assump-

tion 5.3.2 and lemma 5.B.1, Diψ
∗(z) = Dic(z) + µi(z) for all z ∈ int(Z), as was to

be shown. This concludes the proof.

Proof of proposition 5.3.3. Since assumption 5.3.5 implies assumptions 5.3.2 and

5.3.4, by proposition 5.3.2, Diψ
∗(z) = Dic(z) + µi(z) on int(Z). Since Dic(z)

is continuous by assumption 5.3.5-(1), to show that ψ∗ is continuously differen-

tiable, it remains to verify: z 7→ µi(z) is continuous on int(Z). Since |ψ∗| ≤ G` for

some G ∈ R+,∣∣max{r(z′), ψ∗(z′)}Di f (z′|z)
∣∣ ≤ (|r(z′)|+ G`(z′))|Di f (z′|z)|, ∀z′, z ∈ Z. (5.B.7)

By assumptions 5.3.3-(2) and 5.3.5-(2), both sides of (5.B.7) are continuous in z,

and z 7→
∫
[|r(z′)|+ G`(z′)]|Di f (z′|z)|dz′ is continuous. Then z 7→ µi(z) is con-

tinuous by lemma 5.A.1. This concludes the proof.

Proof of example 5.3.9. For primitive set ups, recall the option pricing problem given

by example 5.2.3. For all a ∈ R, let

h(z, a) := ea(ρz+b)+a2σ2/2/
√

2πσ2. (5.B.8)

• Assumption 2.3.1 holds, as shown in example 5.2.3.

• The solutions to ∂2 f (z′|z)
∂z2 = 0 are z∗(z′) = z′−b±σ

ρ . This implies that assump-

tion 5.3.3 holds.

• r is continuous, and we have shown in the proof of example 5.3.3 that ` is

continuous. Note that

eaz′
∣∣∣∣∂ f (z′|z)

∂z

∣∣∣∣ ≤ h(z) e−[z
′−(ρz+b+aσ2)]2/(2σ2) |ρz′|+ |ρ(ρz + b)|

σ2 . (5.B.9)
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Both sides of (5.B.9) are continuous in z and the integration of the right side

term (w.r.t. z′) is continuous. Lemma 5.A.1 implies that z 7→
∫

eaz′
∣∣∣ ∂ f (z′|z)

∂z

∣∣∣dz′

is continuous. Hence, z 7→
∫

g(z′)
∣∣∣ ∂ f (z′|z)

∂z

∣∣∣dz′ is continuous (by the defini-

tion of g). Moreover, the proof of example 5.3.3 shows that

E z′ |r(Zt)|
∣∣∣∣∂ f (z′|z)

∂z

∣∣∣∣ ≤ (at eρtz′ + K
) ∣∣∣∣∂ f (z′|z)

∂z

∣∣∣∣ .

Lemma 5.A.1 shows that z 7→
∫
E z′ |r(Zt)|

∣∣∣ ∂ f (z′|z)
∂z

∣∣∣dz′ is continuous for all

t ∈ N. Hence, assumption 5.3.4 and condition (2) of assumption 5.3.5 hold.

• Since c ≡ 0 is obviously continuously differentiable, condition (1) of as-

sumption 5.3.5 holds.

Based on proposition 5.3.3, ψ∗ is continuously differentiable.

Proof of example 5.3.10. For primitive set ups, recall the firm exit model of example

5.2.5. For all (z, a) ∈ Z×R, let h(z, a) be defined as in (5.B.8).

• Assumption 2.3.1 holds, as was shown in example 5.2.5.

• The solutions to ∂2 f (z′|z)
∂z2 = 0 are z∗(z′) = z′−b±σ

ρ . This implies that assump-

tion 5.3.3 holds.

• r is continuous, and we have shown in the proof of example 5.3.5 that ` is

continuous. Recall (5.B.9) in the proof of example 5.3.9. Both sides of (5.B.9)

are continuous in z and the integration of the right side term (w.r.t. z′) is

continuous. Lemma 5.A.1 implies that z 7→
∫

eaz′
∣∣∣ ∂ f (z′|z)

∂z

∣∣∣dz′ is continu-

ous. Hence, z 7→
∫

g(z′)
∣∣∣ ∂ f (z′|z)

∂z

∣∣∣dz′ is continuous (by the definition of g).

Moreover, (5.B.5) implies that

E z|r(Zt)| = E z|c(Zt)| = Gat eρtz/(1−α) − c f .

Hence, z 7→
∫
E z′ |r(Zt)|

∣∣∣ ∂ f (z′|z)
∂z

∣∣∣dz′ and z 7→
∫
E z′ |c(Zt)|

∣∣∣ ∂ f (z′|z)
∂z

∣∣∣dz′ are

continuous for all t ∈ N. Hence, assumption 5.3.4 and condition (2) of

assumption 5.3.5 hold.

• Since c is continuously differentiable, condition (1) of assumption 5.3.5 holds.

Based on proposition 5.3.3, ψ∗ is continuously differentiable.
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Proof of proposition 5.3.4. Consider the Banach space (b`(Z × Θ), ‖ · ‖`) and the

continuation value operator Q : b`(Z×Θ)→ b`(Z×Θ) defined by

Qψθ(z) = cθ(z) + β
∫

max{rθ(z′), ψθ(z′)}Pθ(z, dz′).

Based on theorem 5.2.1, (z, θ) 7→ ψ∗θ (z) is the unique fixed point of Q in b`(Z×
Θ). Let b`c(Z × Θ) be the set of continuous functions in b`(Z × Θ). Since ` is

continuous, b`c(Z × Θ) is a closed subset. To show the continuity of (z, θ) 7→
ψ∗θ (z), it suffices to show that Q : b`c(Z×Θ)→ b`c(Z×Θ).

For all candidate (z, θ) 7→ ψθ(z) in b`c(Z × Θ), there exists G ∈ R+ such that

|ψθ(z)| ≤ G`(z, θ) for all (z, θ) ∈ Z×Θ, so |rθ(z)|+G`(θ, z)±max{rθ(z), ψθ(z)} ≥
0. Based on assumptions 5.3.7 and Feinberg et al. (2014) (see theorem 1.1), for all

(zm, θm)→ (z, θ), we have∫ [
|rθ(z′)|+ G`(θ, z′)±max{rθ(z′), ψθ(z′)}

]
Pθ(z, dz′)

≤ lim inf
m→∞

∫ [
|rθm(z

′)|+ G`(θm, z′)±max{rθm(z
′), ψθm(z

′)}
]

Pθm(zm, dz′).

Since assumptions 5.3.7 implies that

lim
m→∞

∫ [
|rθm(z

′)|+ G`(θm, z′)
]

Pθm(zm, dz′) =
∫ [
|rθ(z′)|+ G`(θ, z′)

]
Pθ(z, dz′),

we have

lim sup
m→∞

∫
max{rθm(z

′), ψθm(z
′)}Pθm(zm, dz′)

≤
∫

max{rθ(z′), ψθ(z′)}Pθ(z, dz′) ≤ lim inf
m→∞

∫
max{rθm(z

′), ψθm(z
′)}Pθm(zm, dz′),

where we have used the elementary fact that for given sequences (am)m≥0 and

(bm)m≥0 ofRwith lim
m→∞

am exists, we have: lim inf
m→∞

(am + bm) = lim
m→∞

am + lim inf
m→∞

bm.

So we have

lim
m→∞

∫
max{rθm(z

′), ψθm(z
′)}Pθm(zm, dz′) =

∫
max{rθ(z′), ψθ(z′)}Pθ(z, dz′).

Since (z, θ) 7→ cθ(z) is continuous by assumption, (z, θ) 7→ Qψθ(z) is continu-

ous. This implies that Q is a self-map on b`c(Z× Θ). Hence, (z, θ) 7→ ψ∗θ (z) is

continuous. This concludes the proof.

5.B.3 Proof of Section 5.4 Results

Proof of proposition 5.4.2. Define F : X × Y × Θ → R by F(x, y, θ) := rθ(x, y) −
ψ∗θ (y). Without loss of generality, assume that (x, y, θ) 7→ rθ(x, y) is strictly in-

creasing in x, then F is strictly increasing in x and continuous. For all fixed
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(y0, θ0) ∈ Y×Θ and ε > 0, since F is strictly increasing in x and F(x̄θ0(y0), y0, θ0) =

0, we have

F(x̄θ0(y0) + ε, y0, θ0) > 0 and F(x̄θ0(y0)− ε, y0, θ0) < 0.

Since F is continuous with respect to (y, θ), there exists δ > 0 such that for all

(y, θ) ∈ Bδ((y0, θ0)) := {(y, θ) ∈ Y×Θ : ‖(y, θ)− (y0, θ0)‖ < δ}, we have

F(x̄θ0(y0) + ε, y, θ) > 0 and F(x̄θ0(y0)− ε, y, θ) < 0.

Since F(x̄θ(y), y, θ) = 0 and F is strictly increasing in x, we have

x̄θ(y) ∈
(
x̄θ0(y0)− ε, x̄θ0(y0) + ε

)
, i.e., |x̄θ(y)− x̄θ0(y0)| < ε.

Hence, (y, θ) 7→ x̄θ(y) is continuous, as was to be shown.

5.B.4 Proof of Section 5.5 Results

Proof of proposition 5.5.1. Regarding claims (1)–(2), the terminal reward satisfies∣∣r( f ′, µ′, γ′)
∣∣ ≤ 1/a +

(
ea2γx/2/a

)
· e−aµ′+a2γ′/2 + | f ′|. (5.B.10)

Using (5.5.1), we can show that (recall the first claim of footnote 3)∫
e−aµ′+a2γ′/2P(z, dz′) =

∫
e−aµ′+a2γ′/2l(y′|µ, γ)dy′ = e−aµ+a2γ/2. (5.B.11)

Let µ f :=
∫
| f |h( f )d f . Combining (5.B.10)–(5.B.11) yields∫ ∣∣r( f ′, µ′, γ′)

∣∣ P(z, dz′) ≤
(
1/a + µ f

)
+
(

ea2γx/2/a
)
· e−aµ+a2γ/2. (5.B.12)

By (5.B.11)–(5.B.12), assumption 2.3.1 holds for n := 1, g(µ, γ) := e−aµ+a2γ/2,

m := 1 and d := 0. Moreover, the intermediate value theorem shows that as-

sumption 5.4.1 holds. By theorem 5.2.1 and (5.4.1) (section 5.4.1), claims (1)–(2)

hold.

Regarding claim (3), P is Feller by (5.5.1) and lemma 5.A.1. By (5.5.1), both

sides of (5.B.10) are continuous in (µ, γ). By (5.B.11), the conditional expecta-

tion of the right side of (5.B.10) is continuous in (µ, γ). Lemma 5.A.1 implies

that (µ, γ) 7→ E µ,γ|r(Z1)| is continuous. Since in addition g is continuous and

g(µ, γ) = E µ,γg(µ′, γ′) by (5.B.11), assumption 2.3.2 holds. Claim (3) then fol-

lows from propositions 2.3.4 and 5.4.1.

Since l is stochastically increasing in µ for ρ ≥ 0, claim (4) holds by proposition

5.3.1. This concludes the proof.
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Proof of proposition 5.5.2. For claims (1)–(2), since w = η + θξ and | ln w| ≤ 1/w +

w, we have∫
| ln w′|P(z, dz′) ≤

∫
(1/η′ + η′)v(η′)dη′ +

∫
ξ ′h(ξ ′)dξ ′ ·

∫
θ′ f (θ′|θ)dθ′

= µ−η + µ+
η + µξ · eγu/2θρ, (5.B.13)

where µ+
η :=

∫
ηv(η)dη, µ−η :=

∫
η−1v(η)dη and µξ :=

∫
ξh(ξ)dξ. Hence,17

∫
| ln w′|Pt(z, dz′) ≤ a(t)1 θρt

+ a(t)2 ≤ a(t)1

(
θρt

+ θ−ρt
)
+ a(t)2 (5.B.14)

for some a(t)1 , a(t)2 > 0 (do not depend on θ) and all t ∈ N. Let n, g, m and d be

defined as in section 5.5.3. Then since θρn+1
+ θ−ρn+1 ≤ θρn

+ θ−ρn
+ 1 for θ > 0

and ρ ∈ [−1, 1], we have∫
g(θ′) f (θ′|θ)dθ′ =

(
θρn+1

+ θ−ρn+1
)

eρ2nγu/2 ≤ mg(θ) + d. (5.B.15)

Hence, assumption 2.3.1 holds. Assumption 5.4.1 holds by the intermediate value

theorem. Claims (1)–(2) then follow from theorem 5.2.1 and (5.4.1) (section 5.4.1).

Regarding claim (3), it is straightforward to show that θ 7→ f (θ′|θ) is twice differ-

entiable for all θ′, that (θ, θ′) 7→ ∂ f (θ′|θ)/∂θ is continuous, and that

∂2 f (θ′|θ)/∂θ2 = 0 has two solutions : θ = θ∗(θ′) = ãi eln θ′/ρ, i = 1, 2

where ã1, ã2 > 0 are constants. If ρ > 0 (< 0), then θ∗(θ′) → ∞ (0) as θ′ →
∞, and θ∗(θ′) → 0 (∞) as θ′ → 0. Hence, assumption 5.3.3 holds. Based on

(5.B.13)–(5.B.15) and lemma 5.A.1, assumption 5.3.5 holds. Claim (3) then holds

by propositions 5.3.3 and 5.4.3.

As f (θ′|θ) is stochastically increasing (ρ > 0), claim (4) holds by propositions

5.3.1 and 5.4.4. This concludes the proof.

Proof of proposition 5.5.3. Proof of claim (1). Since

w′1−δ =
(
η′ + θ′ξ ′

)1−δ ≤ 2
(

η′1−δ + θ′1−δξ ′1−δ
)

, (5.B.16)

we have∫
w′1−δP(z, dz′) ≤ 2

∫
η′1−δv(η′)dη′ + 2

∫
ξ ′1−δh(ξ ′)dξ ′

∫
θ′1−δ f (θ′|θ)dθ′

= 2e(1−δ)µη+(1−δ)2γη/2 + 2e(1−δ)2(γξ+γu)/2 θ(1−δ)ρ. (5.B.17)

17Recall that if X ∼ LN(µ, σ2), then EXs = esµ+s2σ2/2 for all s ∈ R.
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Induction shows that∫
w′1−δPt(z, dz′) ≤ a(t)1 + a(t)2 θ(1−δ)ρt ≤ a(t)1 + a(t)2

(
θ(1−δ)ρt

+ θ−(1−δ)ρt
)

(5.B.18)

for some a(t)1 , a(t)2 > 0 and all t ∈ N. Define g as in the assumption, then∫
g(θ′) f (θ′|θ)dθ′ =

(
e(1−δ)ρn+1 ln θ + e−(1−δ)ρn+1 ln θ

)
e(1−δ)2ρ2nγu/2 (5.B.19)

≤
(

e(1−δ)ρn ln θ + e−(1−δ)ρn ln θ + 1
)

e(1−δ)2ρ2nγu/2

= [g(θ) + 1] e(1−δ)2ρ2nγu/2 ≤ mg(θ) + d.

Hence, assumption 2.3.1 holds. Claim (1) then follows from theorem 5.2.1.

Proof of claim (2). Assumption 5.4.1 holds by the intermediate value theorem.

Claim (2) then follows from theorem 5.2.1, assumption 5.4.1 and (5.4.1).

Proof of claim (3). Note that the stochastic kernel P has a density representation in

the sense that for all z ∈ Z and B ∈ Z ,

P(z, B) =
∫
1
{
(η′ + ξ ′θ′, θ′) ∈ B

}
v(η′)h(ξ ′) f (θ′|θ)d(η′, ξ ′, θ′).

Moreover, it is straightforward (though tedious) to show that θ 7→ f (θ′|θ) is twice

differentiable for all θ′, that (θ, θ′) 7→ ∂ f (θ′|θ)/∂θ is continuous, and that

∂2 f (θ′|θ)/∂θ2 = 0 if and only if θ = θ∗(θ′) = ãi eln θ′/ρ, i = 1, 2 (5.B.20)

where ã1, ã2 = e
γu
ρ

(
− 1

2ρ±
√

1
4ρ2 +

1
γu

)
. If ρ > 0, then θ∗(θ′) → ∞ as θ′ → ∞ and

θ∗(θ′)→ 0 as θ′ → 0. If ρ < 0, then θ∗(θ′)→ 0 as θ′ → ∞ and θ∗(θ′)→ ∞ as θ′ →
0. Hence, assumption 5.3.3 holds. Based on (5.B.16)–(5.B.19) and lemma 5.A.1, we

can show that assumption 5.3.5 holds. By proposition 5.3.3, ψ∗ is continuously

differentiable. Since assumption 5.4.1 holds and r is continuously differentiable,

by proposition 5.4.3, w̄ is continuously differentiable.

Proof of claim (4). Note that c ≡ c0 is a constant, and that

r(w) = r(η + ξθ) = (η + ξθ)1−δ/[(1− β)(1− δ)]

is increasing in θ, and, when ρ > 0, f (θ′|θ) is stochastically increasing in θ. Hence,

assumption 5.3.1 holds. By propositions 5.3.1 and 5.4.4, ψ∗ and w̄ are increasing

in θ.

In the next, we are going to proof the results of section 5.5.4. Based on our the-

ory, it suffices to verify that there exist a measurable map g(p, µ, γ) and n ∈ N0,

a1, · · · , a4, m, d ∈ R+ such that βm < 1 and
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•
∫
|π(p′, x′)|Pn(z, dz′) ≤ a1g(p, µ, γ) + a2,

•
∫
|r(p′, x′)|Pn(z, dz′) ≤ a3g(p, µ, γ) + a4, and

•
∫

g(p′, µ′, γ′)l(p′, x′|p, µ, γ)d(p′, x′) ≤ mg(p, µ, γ) + d.

We first provide a useful lemma.

Lemma 5.B.2. For all a ∈ R, we have∫
eaµ′+a2γ′/2 f (x′|µ, γ)dx′ = eaµ+a2γ/2.

Proof. Notice that µ′ = b1µ + b2 ln x′, where b1 = γε
γ+γε

and b2 = γ
γ+γε

.∫
eaµ′+a2γ′/2 f (x′|µ, γ)dx′

= ea2γ′/2
∫

eab1µ+ab2 ln x′ f (x′|µ, γ)dx′ ≤ ea2γ′/2eab1µ
∫

x′ab2 f (x′|µ, γ)dx′

= ea2γ′/2 eab1µ eab2µ+a2b2
2(γ+γε)/2 = eaµ ea2γγε/[2(γ+γε)] ea2γ2/[2(γ+γε)] = eaµ+a2γ/2.

Hence, the claim holds, completing our proof.

Proof of proposition 5.5.4. Regarding claim (1), note that we have∫
|π(p′, x′)|l(p′, x′|p, µ, γ)d(p′, x′) =

1
4

∫
p′2h(p′|p)dp′

∫
x′−1 f (x′|µ, γ)dx′

=
1
4

e2(ρ ln p+b)+2γp e−µ+(γ+γε)/2 = p2ρ e−µ+γ/2 · 1
4

e2b+2γp+γε/2.

Induction then shows that for all t ∈ N,∫
|π(p′, x′)|Pt(z, dz′) = at p2ρt

e−µ+γ/2 ≤ at

(
p2ρt

+ p−2ρt
+ δ
)

e−µ+γ/2 (5.B.21)

for some constant at > 0. Similar properties can be obtained for r. So g can chosen

as in the set up and conditions (2.8)–(2.9) of assumption 2.3.1 hold. Moreover,∫
g(z′)l(p′, x′|p, µ, γ)d(p′, x′)

=
∫ (

p′2ρn
+ p′−2ρn

+ δ
)

h(p′|p)dp′ ·
∫

e−µ′+γ′/2 f (x′|µ, γ)dx′

=
(

p2ρn+1
e2ρnb+2ρ2nγp + p−2ρn+1

e−2ρnb+2ρ2nγp + δ
)

e−µ+γ/2 (5.B.22)

≤
[
e|ρ

n|ξ
(

p2ρn+1
+ p−2ρn+1

)
+ δ
]

e−µ+γ/2

≤
[
e|ρ

n|ξ
(

p2ρn
+ p−2ρn

+ 1
)
+ δ
]

e−µ+γ/2

≤ e|ρ
n|ξ
(

p2ρn
+ p−2ρn

+ δ
)

e−µ+γ/2 = mg(p, µ, γ) + d,

where to get the last inequality we have used the definition of δ. Hence, assump-

tion 2.3.1 holds. Claim (1) then follows from theorem 5.2.1.
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Regarding claim (2), by the dominated convergence theorem, we can show that

P has the Feller property. The rewards π and r are continuous by assumption.

Based on equation (5.B.21), (p, µ, γ) 7→
∫
|π(p′, x′)|Pt(z, dz′) is continuous for

all t ∈ N. Since |r(p, x)| ≤ h1p2/x + h2 and (p, µ, γ) 7→
∫
(p′2/x′)P(z, dz′) is

continuous, from lemma 5.A.1 we know that (p, µ, γ) 7→
∫
|r(p′, x′)|P(z, dz′) is

continuous. Also,∫
|r(p′, x′)|P(z, dz′) ≤ h(1)1 p2ρ e−µ+γ/2 + h(1)2

for some constants h(1)1 , h(1)2 ≥ 0. To apply induction, suppose that

z 7→
∫
|r(p′, x′)|Pt−1(z, dz′) ≤ h(t−1)

1 p2ρt−1
e−µ+γ/2 + h(t−1)

2

for some constants h(t−1)
1 , h(t−1)

2 ≥ 0, and that it is continuous in (p, µ, γ). Since

for some constant at > 0, we have∫
p′2ρt−1

e−µ′+γ′/2P(z, dz′) = at p2ρt
e−µ+γ/2,

which is continuous, applying lemma 5.A.1 again yields: z 7→
∫
|r(p′, x′)|Pt(z, dz′)

is continuous and
∫
|r(p′, x′)|Pt(z, dz′) ≤ h(t)1 p2ρt

e−µ+γ/2 + h(t)2 for some con-

stants h(t)1 , h(t)2 ≥ 0. Moreover, g is continuous and from equation (5.B.22) we

know that (p, µ, γ) 7→
∫

g(p′, µ′, γ′)P(z, dz′) is continuous. Hence, assumption

2.3.2 holds. Based on proposition 2.3.4, ψ∗ is continuous.

Proof of proposition 5.5.5. Regarding claim (1), note that for some a1, · · · , a6 ∈ R+,

we have ∫
|r(p′, x′)|l(p′, x′|p, µ, γ)d(p′, x′)

≤ a1p2ρ e−µ+γ/2 + a2p2ρ + a3 e−µ+γ/2 + a4 eµ+γ/2 + a5.

Induction then shows that for all t ∈ N,∫
|r(p′, x′)|Pt(z, dz′)

≤ a(t)1 p2ρt
e−µ+γ/2 + a(t)2 p2ρt

+ a(t)3 e−µ+γ/2 + a(t)4 eµ+γ/2 + a(t)5

≤ a(t)6

[(
p2ρt

+ p−2ρt
+ δ
) (

e−µ+γ/2 + 1
)
+ e−µ+γ/2 + eµ+γ/2 + 1

]
for some constants a(t)1 , · · · , a(t)5 > 0 and a(t)6 = a(t)1 ∨ · · · ∨ a(t)5 . Hence, g can

be chosen as in the set up, and conditions (2.8)–(2.9) of assumption 2.3.1 hold.
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Moreover,∫
g(p, µ, γ)l(p′, x′|p, µ, γ)d(p′, x′)

=
(

p2ρn+1
e2ρnb+2ρ2nγp + p−2ρn+1

e−2ρnb+2ρ2nγp + δ
) (

e−µ+γ/2 + 1
)
+ e−µ+γ/2 + eµ+γ/2

≤
[
e|ρ

n|ξ
(

p2ρn+1
+ p−2ρn+1

)
+ δ
] (

e−µ+γ/2 + 1
)
+ e−µ+γ/2 + eµ+γ/2

≤
[
e|ρ

n|ξ
(

p2ρn
+ p−2ρn

+ 1
)
+ δ
] (

e−µ+γ/2 + 1
)
+ e−µ+γ/2 + eµ+γ/2

≤ e|ρ
n|ξ
(

p2ρn
+ p−2ρn

+ δ
) (

e−µ+γ/2 + 1
)
+ e−µ+γ/2 + eµ+γ/2 ≤ mg(p, µ, γ) + d,

where we have used the definition of δ in the third inequality. Hence, assumption

2.3.1 holds. Claim (1) then follows from theorem 5.2.1.

The proof of claim (2) is similar to that of proposition 5.5.4 and thus omitted.

Proof of proposition 5.5.6. Regarding claim (1), notice that assumption 2.3.1 holds

trivially due to bounded rewards. Then claim (1) holds by theorem 5.2.1.

Regarding claim (2), we let X = [wl, wh] ⊂ R+. Since c0 ∈ X, we have

v∗(w, π) ∈ [wl/(1− β), wh/(1− β)],

and then

c0 + β
∫

v∗(w′, π′)hπ(w′)dw′ ∈ [wl/(1− β), wh/(1− β)].

By the intermediate value theorem, assumption 5.4.1 holds. By theorem 5.2.1 and

(5.4.1), claim (2) holds.

Regarding claim (3), P satisfies the Feller property by lemma 5.A.1. Since the

reward functions are continuous, the continuity of ψ∗ follows from proposition

2.3.4 (or remark 5.3.1). Then the continuity of w̄ follows from proposition 5.4.1.

Hence, claim (3) is verified. This concludes the proof.



Chapter 6

Conclusions

This thesis undertakes the first systematic analysis of the continuation value based

method for sequential decision problems.

On the one hand, we show that the Jovanovic and Bellman operators are semicon-

jugate, implying that any fixed point of one of the operators is a direct translation

of a fixed point of the other. Iterative sequences generated by the operators are

also simple translations. We then add topological structure to the generic setting,

and embed our optimality and symmetry analysis respectively in (a) spaces of po-

tentially unbounded functions endowed with generic weighted supremum norm

distances, and (b) spaces of integrable functions with divergence measured by Lp

norms. In each setting, we show that the Bellman and Jovanovic operators are

both contraction mappings under identical assumptions, and that convergence

to the respective fixed points occurs at the same rate. The theory is established

for important classes of sequential decision problems, including:

(1) standard optimal stopping problems (chapter 2),

(2) repeated optimal stopping problems (chapter 3), and

(3) dynamic discrete choice problems (chapter 4).

On the other hand, the thesis reveals several important differences between the

continuation value based method and the traditional value function based method

in terms of efficiency and analytical convenience. The former is shown to be

highly advantageous over the latter in a wide range of problems.

In chapter 2, we show that, for most problems of interest to economists, the di-

mensionality of the effective state space associated with the Jovanovic operator

is no larger than that related to the Bellman operator (see appendix 2.D), while

128



129

for continuation decomposable problems, the dimensionality of the effective state

space associated with the Jovanovic operator is strictly smaller than that related

to the Bellman operator (see section 2.4). In the latter case, continuation value

iteration obtains an O(K) speed up over value function iteration for finite space

approximation, and an O(K log(KM)/ log(M)) speed up for infinite space ap-

proximation (see table 2.1).

In chapter 5, we show that continuation value functions are typically smoother

than value functions, yielding sharper analytical properties related to derivatives.

We propose a general theory for sequential decision problems based around con-

tinuation value functions and the Jovanovic operator, heavily exploiting the ad-

vantages discussed above. We obtain:

(1) conditions under which continuation values are: (a) continuous, (b) mono-

tone, and (c) differentiable as functions of the economic environment;

(2) conditions under which parametric continuity holds (often required for proofs

of existence of recursive equilibria in many-agent environments);

(3) conditions under which threshold policies are: (a) continuous, (b) mono-

tone, and (c) differentiable.

In the latter case we derive an expression for the derivative of the threshold rel-

ative to other aspects of the economic environment and show how it contributes

to economic intuition.

The closest counterparts to these results in the existing literature are those con-

cerning individual applications. Our theory generalizes and extends these results

in a unified framework. Some results, such as differentiability of threshold poli-

cies, are new to the literature to our best knowledge.
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