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Abstract

Aluminium toxicity is today considered to be the most critical factor 

limiting plant growth in vast areas of acid soils of the world. But very 

little research has been conducted on the impact of A1 toxicity on tree 

species in general, and eucalypts in particular.

In this study, a series of experiments was conducted aimed at 

investigating the impact of A1 toxicity on the growth of Eucalyptus 

camaldulensis. The experiments included interrelationships of A1 with 

Ca, P and moisture stress.

Initially, using glasshouse pot trials and 3 acid soils, the growth 

of 22 eucalypt species from various provenances was found to vary in 

shoot height and shoot weight in three acid soils. Two better performing 

tropical species (E. camaldulensis and  E. citriodora) and two poor 

performing species (E. gummifera and E. saligna) were selected from the 22 

species for experiments at the next phase.

These four species differed in their response to conventional 

liming and to soil moisture stress in a different selected acid soil high in 

exchangeable A1 and low in exchangeable Ca and available P. Although 

the growth of E. camaldulensis was poor, in terms of percentage increase 

in dry matter produced, this species demonstrated a maximal response to 

liming and was selected for the remaining experiments. In the same acid 

soil, E. camaldulensis also responded to Ca and P application (and also to 

their interaction) and not at all to K, S or Mo. The application of Ca alone 

did not increase the growth of E. camaldulensis but the higher levels of Ca 

resulted in an increase in soil pH and a decrease in exchangeable Al. 

Phosphorus increased growth earlier in treatments receiving both Ca and

P.
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Considering the importance of Ca supply to plants in an acid 

soil, an attempt was made to raise soil Ca levels while having a 

minimum impact on other acidity related factors. It was found that the 

addition of Ca from CaCC>3 and CaSC>4 at a ratio of 2 :1 raised soil Ca to the 

same level as does an addition of equal amounts of Ca from a single source 

of CaCC>3 or CaSC>4 but affects the soil pH and exchangeable A1 and Mn 

much less than does the single source.

When liquid media was used high A1 in general had a negative 

effect while Ca had a positive effect on root and shoot growth of E. 

camaldulensis. Adverse effects of A1 toxicity were most severe for fine 

root growth. The root peripheries of seedlings grown in a high A1 

nutrient solution were heavily thickened. These adverse effects on root 

and shoot growth and the thickening of the root periphery were partly 

ameliorated by the application of higher amounts of Ca. Low levels of A1 

accompanied by high Ca improved shoot height, shoot weight and total 

biomass to a greater extent than treatments with nil Al. Fineness of fine 

root [defined as (fine root length)/(fine root weight)], and Al concentration 

in mature leaves of seedlings, appeared to be two good phytoindicators of 

Al toxicity in E. camaldulensis seedlings.

When P was included along with Ca and Al, both Ca and P 

ameliorated Al toxicity affecting seedling growth and improved the 

nutrient absorption rate. The beneficial effects of Ca and P treatments are 

related to increased concentrations of Ca and P in the roots rather than a 

decrease in Al concentrations in the seedlings.

In pots using soil as a lower layer under sand, high Al levels 

and moisture stress both independently and interactively, affected root 

growth and the development of E. camaldulensis seedlings. Mineral
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concentrations of Ca, Mg, A1 and P differed between shoot, top root and 

bottom roots and also for different treatment combinations. The effect of 

m oisture stress on Ca, Mg and A1 concentrations in the seedling shoots 

was statistically significant. In terms of mineral concentrations in the 

seedlings grown in sand pots, A1 had a lesser effect in sand than it had on 

seedlings grown in nutrien t solution under the same or comparable 

treatm ent combinations.

Eucalyptus camaldulensis displays an interm ediate level of 

tolerance to A1 when compared to other tree species. There are many tree 

species both more tolerant and more sensitive to A1 toxicity than this 

species.



CHAPTER 1

GENERAL INTRODUCTION
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1. GENERAL INTRODUCTION

The problem  of soil acidity and its harm ful effects on 

agricultural production has been known since early times but research in 

this area did not begin until the 19th century. To date many aspects of soil 

acidity have not been researched adequately, when compared to the 

pervasiveness of the problem. The problem of soil acidity can be fully 

analysed only in relation to its impact on plant grow th and in such 

research many interrelated factors affecting plant growth need to be taken 

into consideration.

Vast areas of the world are covered by acid soils. They are more 

common in the tropical regions (FAO, 1975); occupying about 81% of 

hum id tropical America, about 56% of hum id tropical Africa and about 

38% of hum id tropical Asia and the Pacific land masses. The importance 

of the problem for Australia may be realised from the fact that in humid 

tropical Queensland, almost all soils have a pH of less than 5.5.

On strongly acidic soils most plants produce less than their full 

potential due to one or more of the following factors: low pH per se, 

toxicities of A1 and Mn; deficiency or low availability of Ca, Mg, P, Mo 

a n d /o r restricted microbiological activity. Under natural conditions, acid 

soil toxicity is not a single factor, but rather a complex of these factors in 

combination, affecting the growth of plants. Though acid soil is defined 

in terms of low pH, one of the major growth limiting factors for plants is 

A1 toxicity in the acid soil. However, A1 solubility is highly pH 

dependent. In general, in a simple system such as aluminium hydroxide 

w ith water, A1 exists as Al3+ at a pH < 4.0 and above that as hydroxy 

aluminium complexes. With a decrease in pH, A1 solubility increases and
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basic cations are released from the exchange complex and become 

vulnerable to leaching loss.

Because of the high economic retu rn  per hectare from 

agricultural crops, the influence of these factors on arable soils has been 

more widely studied during the past two decades. In agricultural systems, 

A1 toxicity may be alleviated by liming, or avoided by growing A1 tolerant 

plant varieties (Pratt, 1966; Adams and Moore, 1983). Studies have also 

concentrated on the influence of Ca and other ions in alleviating A1 

toxicity of soils (Hoyt et al, 1974; Alva et al, 1987). The interaction of some 

of these soil acidity related factors with m oisture conditions has also 

received some attention for agricultural soils (Horsnell, 1984).

H ow ever forest soils, which usually  have m anagem ent 

problems which are at least as serious as agricultural soils and are less 

suitable for agricultural purposes, have not been studied. For example 

most Australian forest soils are acid to highly acid. Although Australia 

has not suffered from artificial soil acidification as countries in the 

northern hem isphere (Blackburn and McLeod, 1983), many acid forest 

soils in Australia are high in Al and low in Ca with the potential for Al 

toxicity and Ca deficiency (Humphreys and Truman, 1964; Khanna et al, 

1986). Similarly in Bangladesh, where although very few forest soils have 

been surveyed, a major part of those m apped have a pH less than 5.0 

(Hossain et al, 1979). Studies on the influence of acid soil factors on the 

grow th of tree crops have been few and there has been even less 

monitoring of eucalypt species on these soils.

In order to examine these issues a number of hypotheses have 

been postulated; these are based on an extensive literature review 

(Chapter 2).
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1) Despite the fact that eucalypts appear to be adapted to 
Australian conditions, their growth is adversely affected by 
soil acidity and different species differ in their responses to 
soil acidity.

2) Aluminium toxicity is the most crucial aspect of the soil 
acidity problem. It is possible to demonstrate the adverse 
effects of A1 toxicity on eucalypt growth.

3) The mechanism of depressed growth in high A1 systems is 
through the effects of A1 on root growth and especially on 
fine root growth. The growth of fine roots by eucalypts 
requires an optim um  ratio of Ca and A1 in the growth 
m edium  and high A1 concentrations depress fine root 
growth.

4) Other nutrients are also affected by acidity and in addition to 
Ca, the levels of P in the growth medium will interact with 
A1 and will change the toxic effect of the Al.

5) The nutrient absorption rate will vary due to Al, Ca and P 
concentrations.

6) Soil m oisture levels will influence the effects of Al on 
growth and mineral uptake by Eucalyptus camaldulensis.

The objective of this research is to test these hypotheses and by 

so doing to further analyse the ways in which Al toxicity affects the 

growth of eucalypts. Therefore, a number of experiments were conducted. 

From amongst nearly 600 endemic species one, E. camaldulensis, which is 

widely present in Australia and is grown commercially in other tropical 

and subtropical countries, was selected. The subsequent experiments were 

used to make a detailed study of the performance of this species, as 

affected by the soil acidity factors. The performance of E. camaldulensis 

was studied by focussing on the following aspects of the grow th of 

seedlings: (a) seedling growth parameters, (b) mineral concentration in
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different parts of the seedlings, (c) nutrient uptake rate by the seedlings, 

(d) growth and development of roots in the subsoil and (e) accumulation 

of A1 and other cations in the root periphery of A1 stressed seedlings.

An outline of the sequence of experiments and the objective of each 

experiment:

1) The modification of Ca and A1 levels in a soil by 
amendments.

In order to examine just how A1 or Ca affects growth, these 

characteristics must be varied whilst holding as many other soil variables 

as constant as possible. Soils with differing Ca and A1 levels under 

natural conditions are likely to differ in other characteristics and the usual 

liming treatment changes several more characteristics simultaneously. 

Therefore, attempts were made in this study to amend soil Ca and A1 

levels whilst having a minimum impact on the other soil characteristics 

(Chapter 3).

2) Selection of an eucalypt species.

In order to select a tree species which would adequately 

demonstrate the effects of acidity a number were tested. The performance 

of 22 eucalypt species in three natural acid soils and the responses of 4 

selected species to liming and moisture levels were monitored. They 

were all grown in an acid soil. Insufficient information on the growth of 

eucalypts in acid soils necessiated this screening process (Chapter 4).

3) The growth responses of E. camaldulensis in A1 rich acid soil.

The growth responses of E. cam aldulensis to additions of Ca, P, 

K, S and Mo were evaluated when the seedlings were grown in a fourth
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selected acid soil -  high Al, low pH, low Ca and low available P. This 

experiment was conducted to examine which nutrients limit the growth 

of E. camaldulensis in an acid soil so that the growth of the seedlings may 

be boosted by fertilization (Chapter 5).

4) The response of E. camaldulensis to varying Al and Ca levels.

The response of this species to varying Al and Ca levels in 

w ater cu lture  was exam ined. Various grow th param eters were 

monitored. The mineral concentration in young leaves, m ature leaves 

and fine roots of E. camaldulensis were examined to establish a suitable 

phytoindicator for Al (Chapter 6).

5) How do Al stressed E. camaldulensis seedlings respond in 
terms of root efficiency ?

Since Al in the plant tissues appears to inhibit root growth, a 

study on the efficiency of Al stressed E. camaldulensis roots was 

undertaken in nutrient culture solution. Adverse effects of Al on the 

efficiency of roots of E. camaldulensis was exam ined with respect to 

n u trie n t absorp tion . N utrient absorption rates by seedlings were 

m easured at different times and under different treatment combinations. 

The ameliorating role of Ca and P against Al toxicity was also examined. 

Successive harvests of seedlings from different treatm ent combinations 

allowed an examination of how the treatm ent effects changed as the 

seedlings grew older (Chapter 7).

6) The accumulation of Al in the root periphery.

If the adverse effects of Al on root m orphology and total 

seedling growth is ameliorated by high Ca and high P, it is important to 

examine whether the thickening of roots by Al stressed seedlings of E.
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camaldulensis was caused by the accumulation of high amounts of A1 in 

the root periphery and further, if high Ca and P reduced these A1 levels. 

Therefore, the influence of high Ca and P on the concentration of A1 and 

other cations in the root periphery of A1 stressed E. camaldulensis was 

examined (Chapter 8) using nutrient solution.

7) The effects of A1 in a lower layer on growth and mineral 
concentration.

Once the effects on roots in n u trien t so lu tion  w ere 

demonstrated the next stage was to examine the changes as roots came in 

contact w ith higher A1 concentrations in the soil. Therefore this 

experiment was designed to demonstrate the effects of Ca, A1 and P on the 

developm ent and growth of E. camaldulensis roots in a soil high in Al. 

Since different measures of root growth were found to vary significantly 

due to Al toxicity (Chapter 6), this experiment was planned to examine 

the effects on root grow th and developm ent of E. camaldulensis as its 

roots enter lower layers with high Al toxicity in the soil growth medium. 

The effects were examined in both sand and soil as growth mediums 

(Chapter 9).

8) The effects of Al and moisture stress in a lower layer on 
growth and mineral concentration.

The severity of Al toxicity is affected by m oisture stress. 

Therefore, the effects of Ca, AI, P and moisture stress on growth and 

mineral uptake by E. camaldulensis were examined in a two layer sand 

medium. The earlier experiments were conducted in nutrient solution 

and did not include the effect of moisture levels. This experiment was 

conducted using sand as the growth m edium  and the interaction of 

m oisture stress along with Al, Ca and P on growth param eters and 

nutrient uptake in E. camaldulensis were demonstrated (Chapter 9).
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In conclusion, from these experiments it was hoped to show the 

adverse effects of A1 toxicity on different aspects of E. camaldulensis 

growth. It was also expected to reveal interactions among Al, Ca, P and 

moisture stress affecting E. camaldulensis growth. Thus, it was expected 

to highlight the mechanism by which A1 toxicity was ameliorated by high 

Ca and P levels through interpretation of mineral concentration, nutrient 

uptake rate, accumulation of cations in the root periphery, and root 

growth and development.



CHAPTER 2

LITERATURE REVIEW
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2. LITERATURE REVIEW

2.1. Introduction

Acid soils are widespread throughout the world. They develop from 

silicic parent material, from intense weathering or from human 

activities through inappropriate management. Acid soils occupy about 

81% of humid tropical America, about 56% of humid tropical Africa and 

about 38% of humid tropical Asia and the Pacific. Problems associated 

with acid soil infertility have engaged the attention of agriculturists since 

early historical times.

The objective of the present chapter is to review previous 

research on soil acidity relating to A1 toxicity, alleviation of A1 toxicity by 

Ca and P and the impact of soil moisture status on these variables as 

revealed by plant growth. This review highlights different aspects of A1 

toxicity and related problems to identify the issues which have not been 

adequately studied. Sections 2.2 to 2.6 relate to aspects of soil acidity and 

A1 toxicity and form the general background to this study. Sections 2.7 to 

2.9 are more directly related to the present research and include detailed 

discussion to highlight the contributions made by previous research so 

that gaps can be identified to better design the present research.

2.2. Sources of acidity in soil.

Sources of acidity in soil are many and they may be discussed under two 

broad categories: natural acidification and man made acidification.

2.2.1. Natural acidification

Acid soils may develop from parent material poor in bases and/or from 

intense weathering (Adams, 1981 b). Generally the older and more
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weathered soils are more acidic than young soils. Most soil and plant 

processes involve the production and consum ption of protons and 

acidification of a soil is the consequence of a net production of protons 

(Khanna and Ulrich, 1985). Some of the processes such as uptake of 

nutrients, m ineralization of organic substances, weathering of minerals, 

leaching of ions etc. were term ed "internal" processes. Supplementary 

sources of protons to the forest ecosystem are from sources such as 

atm ospheric inputs and these were term ed "external" to the system 

(Khanna and Ulrich, 1985).

When rainfall exceeds evapotranspiration for a larger part of 

the year, soil leaching takes place. Such leaching gradually removes 

soluble salts, more readily soluble minerals and bases and consequently 

the soil becomes progressively more acidic (Conyers, 1986). For a range of 

soil types from different rainfall zones of south-eastern New South 

W ales, Conyers established  that at a given pH, the am ount of 

exchangeable A1 in surface soil tends to increase with increasing average 

annual rainfall.

2.2.2. Man-made acidification

Com pared to natural processes, m an-m ade acidification is much more 

extensive and generally results from the mismanagement of soil. There 

are a variety of ways that a soil can be rendered acid by human activity. 

Local and extremely acidic conditions can also arise from mine spoils 

containing iron pyrites (FeS2 ) or other sulfides being exposed to the air. 

The pyrite oxidizes to H 2 SO4  and Fe(OH ) 3  (Bohn et al, 1979). Use of acid 

forming nitrogenous fertilizers may cause soil acidification (Pierre et al, 

1971). In rank order the acidifying effect of different nitrogenous 

fertilizers was reported to be ammonium sulphate > ammonium nitrate 

> urea > calcium nitrate (Helyar and Porter, 1989). In coming to such a
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conclusion they assumed that nitrification was complete in the soil and 

losses of N were similar for each fertilizer. Also heavy application of 

liquid N P K fertilizers to a slightly acidic forest soil has recently been 

reported to lower the pH below the critical value 4.2 at which A1 begins to 

be released onto exchange sites (Khanna et al, 1991). Acidity produced by 

agricultural practices is much more extensive geographically.

In more general terms, removal of basic cations in harvested 

crops may develop soil acidity (Kamprath and Foy, 1971). This occurs if 

the cations removed are not replaced by adequate fertilization. In that 

case acidic cations (H and Al) are left to dominate the available sites on 

soil particles. Removal of greater amounts of inorganic cations than 

anions in plant products (Riley and Barber, 1969) has also been identified 

as potentially important factor in the development of acid soils. This is 

more important in the case of nitrogen fixing rhizobium since legumes 

absorb more cations than anions from the soil when nitrogen is obtained 

almost entirely from the atmosphere (Nyatsanga and Pierre, 1973; 

Haynes, 1983). Growth of subterranean clover pasture over a long period 

in southern Australia has accumulated organic matter in soil and 

decreased the soil pH (Kohn et al, 1977; Lee, 1980; Williams, 1980; 

Bromfield et al, 1983). More recently Ritchie and Dolling (1985) reported 

that the initial soil pH and organic anion concentration (i.e., the percent 

dissociation of soluble organic acids when released into the soil) 

determine the acidifying effect of organic matter. Introduction of certain 

tree species can result in increased soil acidity. In Australia, Feller (1978) 

reported that a greater quantity of acid was found in the soil under Pinus 

radiata compared to Eucalyptus obliqua. In the former case, soil also 

contained lower quantities of exchangeable cations.
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In recent years increasing concern about the effect of acid rain 

on soils has developed. It is more critical for heavily industrialized 

regions or areas under prevailing weather from such industrialized 

regions. The combustion of large amounts of fuel result in the discharge 

of nitrous oxide and sulphur dioxide gases which in contact with rainfall 

are converted to acid and return to earth. Ulrich et al (1980) and Fowler 

et al (1985) reported acid inputs from the atmosphere. The extent to 

which acid rain will induce decrease in pH  or increase in Al saturation 

will depend on soil conditions. In Australian agricultural ecosystems 

acid inputs other than carbonic acid in rainfall are minor (Blackburn and 

McLeod, 1983).

In ag ricu ltu ra l ecosystem s acid ification  resu lts from  

agriculturally induced increases in losses of the products of acid reactions 

in the C and N cycles. The important losses are of nitrate (e.g., leaching, 

runoff) and of organic anions (e.g., product and waste product removal). 

In agricultural ecosystems the rate of soil acidification can be more rapid 

than that in natural ecosystems (Siman et al, 1974; Helyar, 1976; Haynes, 

1981). Cregan and Helyar (1986) estimated acid additions of 3 - 5 kmoles 

H +/h a /y e a r  for fertilized annual legume based pasture or pasture crop 

rotation in the 700 - 900 mm rainfall zone.

2.3. D istribution of A lum inium  in soils

A lum inium  is ubiquitous in the earth's crust, being the third most 

abundant element, second most plentiful oxide and the most plentiful 

m etallic element. It occurs as prim ary minerals (micas, feldspars), 

secondary minerals (clay minerals) and ores (bauxite). The total Al 

concentration in surface soils is generally of the same magnitude as that 

of the earth 's crust. Exceptions occur w here the soils have a 

predom inance of silica sands due to the influence of sandy parent

i
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material or where the soil has lost much of its A1 by intensive 

weathering. Ritchie (1989) described the distribution of A1 in soil as the 

net result of two sets of reactions. The first of these is the competition 

between ligands for A1 where the ligands may be soluble species, or 

ligands on particles that can react with cations (i.e., adsorption) or species 

that can precipitate A1 ions. The second is the competition between A1 

and other cations for ligands.

The forms of A1 in soils may be summarized as follows:

A. Solid phase A1

i. That which is freely exchangeable with other cations.

ii. Organic complexes.

iii. Non crystalline coatings on soil particles.

iv. Discrete amorphous phases.

v. Structural A1 in primary and secondary minerals.

vi. Oxides and hydroxides of Al.

B. Soil solution Al.

i. The monomeric and polymeric hydroxy species of Al.

ii. Ion associations of Al with sulphate [AISO4 2+, A1(S04)2+] 
and Al with fluoride (A1F2* , A1F2+ , AIF30 , A1F4") and

iii. Soluble Al-P, Al-P-Si, Al-OH-Si and Al-organic matter 
complexes.

In aqueous solution Al3+ does not remain as a free ion, but it is 

surrounded by six molecules of water forming A l f ^ O ^ 3*- As pH 

increases, protons are removed from the coordinated waters giving a 

series of hydrolysis products:
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A1(H20)63+ + h 2o

A1(H20)5 (OH)2+ + h 2o  

A1(H20)4 (OH)2+ + h 2o  

A1(H20 )3 (OH)30 + h 2o  

A1(H20)2 (OH)4- + h 2o

pK values

A1(H20)5 (OH)2+ + h 3o + -5.02

A1(H20)4 (OH)2+ + h 3o + -9.30

A1(H20)3 (0H)3° + h 3o + -14.99

A1(H20 )2 (OH)4- + h 3o + - 23.33

A1(H20) (OH)52- + h 3o + - 34.24

Each hydrolysis reaction liberates hydrogen ions and lowers 

the solution pH unless a source of hydroxyl is present with which the 

hydrogen can react. This stepwise production of hydrogen ions is similar 

to that which occurs in the dissociation of polyprotonated acids. In 

addition to hydrolysis, A1 may also precipitate as solid phase gibbsite, 

Al(OH)3 whenever the solubility product of this mineral is exceeded.

In addition to the above mentioned monomeric A1 species, A1 

may also form soluble polymers with hydroxyl ions alone or in 

conjunction with phosphate or silicate ions (Bache, 1963; Hsu, 1968; 

Blarney et al, 1983). When the solution OH : A1 is low, most of the A1 

remains as the monomeric form (Wada and Wada, 1980) although the 

equilibrium between monomeric and polymeric forms is slowly 

established (Hsu, 1968). Some of the polymeric forms of Al identified by 

different authors are summarized below (Nair, 1978; Huang, 1988).
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Author(s) and year 

Bottero et al (1980) 

Matijevic et al (1961)

Polymeric Al form 

A12(0H)2(H20)84+

A18(OH)204+
Al8(OH)222+
Al8(OH)24

Al6(OH)153+

Al3(OH)8+

Al4(OH)84+
Al7(OH)165+

Al2(OH)24+
Al13(OH)327+

Brosset et al (1954) 

Raupach (1957) 

Fripiat et al (1965)

Aveston (1965)

2.4. Phytotoxicity of Aluminium

During the early days of soil acidity research, criteria for acidity removal 

were focussed on pH control (Truog, 1946). In this long held view, lime 

recommendations were based on the amount of lime required to bring a 

soil to a given pH (Brady, 1984; Thompson and Troeh, 1978) and a 

number of methods have been developed to determine the lime 

requirement of an acid soil (Coleman and Thomas, 1967). Reeve and 

Sumner (1970) reported exchangeable Al to be a suitable criterion for the 

measurement of lime requirement and found much less lime was 

required for Al control (for maximum crop production) than was needed 

to raise soil pH to 6.5. The inadequacy of soil pH as a single predictor of 

lime requirements became evident with progressive research on soil 

acidity and liming. Once the position of Al in soil acidity had been 

established, liming of acid soil began to be aimed at neutralizing Al (and 

Mn) rather than to raising the soil pH.

Traditionally, Al toxicity to plants has been evaluated by 

measuring total concentration of Al in soil or by applying known
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amounts of AI to the plant growth medium (Munns, 1965; Andrew et al, 

1973; Carvalho et al, 1980; Bouma et al, 1981). This total soil Al may 

comprise both monomeric and polymeric Al and the fate of Al added to 

the growing medium is decided by factors such as pH, ionic strength, and 

P and Ca concentration of the growing medium. Total quantity of either 

of these forms of Al may be misleading as a measure with respect to 

toxicity. The question obviously arises which form of Al is more toxic. 

This debate persisted for rather a long time and innumerable studies 

were carried out using different forms of Al as a criterion for measuring 

Al toxicity and/or lime requirements of acid soils (Table 2.1).

Exchangeable Al has been used by many researchers as a 

measure of phytotoxic Al in soil (For example, Reeve and Sumner, 1970; 

Anandan et al, 1985; Flores et al, 1988). Pearson (1975) advocated using 

the soil solution rather than exchangeable cations on the grounds that 

the soil solution more directly reflects the soil chemical environment to 

which the plant root system is exposed. Alva et al (1986 b) compared:

(i) the concentration of total Al;

(ii) the concentration of monomeric Al; and

(iii) the sum of activities of monomeric Al species (Z a ai mono)

in solution as an index of Al toxicity to 5 different crops and concluded 

that Z a ai mono was the best index. Alva et al (1986 d) reported that 

among the individual Al monomers relative root length of soybean was 

correlated to (in order): Al(OH)2+ > A1S0 4 + > Al(OH)2+ > Al3+. Cameron 

et al (1986) concluded from the measurement of barley roots in nutrient 

solution that root elongation correlated better with Al3+ when compared 

with Al complexed with SO4 2_ and F. Tanaka et al (1987) confirmed 

these results with barley roots while adding that the degree of retardation 

in root length elongation was controlled by the activity of Al3+ rather
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than its concentration. Very recently Conyers et al (1991) reported that in 

pot trials with barley, exchangeable Al expressed as: Al/effective CEC, 

0.01M CaCl2  extractable total and monomeric Al, Al3+ activity in 0.01M 

CaCl2  were all better indicators of the infertility of acid soils than soil pH.

The toxic levels of metal cations in the soil solution were 

reported to depend primarily on their ratio to base cations, especially of 

Ca (Meiwes et al, 1986). Rost - Siebert (1985) also reported that the molar 

ratio of Ca/Al in the nutrient solution determined the growth and 

activity of roots of spruce and beech. The ratio Ca/Al in fine (less than 2 

mm diameter) and medium ( 2 - 5  mm diameter) roots of spruce was also 

used to characterize soil acidity (Murach, 1984; Ulrich et al, 1984). Wright 

and Wright (1987) suggested that the ratio of a £ a2+/£ a ai mono was a

better predictor of Al toxicity. In contrast to monomeric Al, however 

Wagatsuma and Kaneko (1987) reported that polymeric Al ions are 

preferentially absorbed by roots and finally considerably inhibit root 

elongation. Foy (1987) summarized the best measure of potential Al 

toxicity to a given plant as the molar activity of Al (monomeric) in the 

soil solution. However, this determination is too complicated for 

routine use and Foy (1987) concluded that from a practical point of view 

percentage Al saturation is the most useful predictor of Al toxicity. 

Meiwes et al (1986) indicated that when the equivalent fraction of Ca on 

the exchange sites falls to values lower than 0.15, the soil solution ceases 

to be dominated by Ca. A decrease in the equivalent fraction of Ca is 

accompanied by a corresponding increase in the equivalent fraction of Al. 

A list of the different indices of Al toxicity used and the authors using 

them on different plants is shown in Table 2.1. From the table it may be 

seen that more recent studies use different Al species or their 

combination while earlier studies relied on exchangeable Al, Al 

saturation, or Al added to the growing medium as indices of Al toxicity.
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Table 2.1. Some examples of indices of A1 toxicity used by different 
authors.

Index Author and year

pH Magistad (1925)

Exchangeable Al Evans and Kamprath (1970), Reeve and Sumner (1970),

Farina et al, (1980 ), Anandan et al (1985), Foy (1987), Foy et al 

(1987 b), Hoyt and Nyborg (1987), Miranda and Rowell (1987), 

Flores et al (1988), Foy et al (1989).

Total added Al Cate and Sukhai (1964), Foy and Brown (1964), Munns (1965), 

Foy et al (1969), Andrew et al (1973), Mullette (1975), 

McCormick and Steiner (1978), Huett and Menary (1980), 

Carvalho et al (1981), Duncan et al (1983), Arp and Ouimet

(1986) , Ryan et al (1986), Truman et al (1986), Bilski and Foy

(1987) , Hecht-Buchholz et al (1987), Paganelli et al (1987), 

Wagatsuma et al (1987b), Fageria et al, (1989 a), Hai et al 

(1989), McLaughlin and James (1989), Keltjen (1990).

Total soil solution Al Gonzalez-Erico et al (1979), Carvalho et al (1980), Adams and 

Moore (1983), Adams and Hathcock (1984), Foy (1987), Joslin 

and Wolfe (1988).

Al3+ Cameron et al (1986), Jarvis and Hatch (1986), Tanaka et al 

(1987), Conyers et al (1991), Edmeades et al (1991).

a  a i 3+ Adams and Lund (1966), Brenes and Pearson (1973), Pavan 

et al (1982), Lee and Pritchard (1984), Bruce (1986), Shuman et 

al (1990), Dahlgren et al, 1991.

^ ^  Al mono Blarney et al (1983), Alva et al (1986 b), Alva et al (1986 d), 

Hetherington et al (1986), Alva et al (1987); Wright and 

Wright (1987).

Solution Ca/Solution A1 Rost-Siebert (1983), Meiwes et al (1986), Truman et al (1986).

Exch. Ca/Exch.Al Wright and Wright (1987)

Exch. Ca/
(Exch. Ca + Exch. Al)

Smit et al (1987 a).
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2.5. Factors affecting alum inium  toxicity 

2.5.1. Mineralogy and weathering

By far the largest portion of A1 in most soils and sediments is in A1 

bearing clay m ineral crystals in octahedral and to a lesser extent in 

tetrahedral coordination with oxygen (McLean, 1976). During weathering 

of prim ary minerals A1 is released and then crystalised as secondary 

minerals, largely aluminosilicates. Even a relatively highly weathered 

soil usually  has the bulk of its A1 rem aining  as part of the 

aluminosilicate minerals (McLean, 1976). Clay type and proportion in 

soil, and the structural and surface properties of clay minerals have 

enormous influences on A1 transformation. The concentration of A1 in 

the soil solution is determ ined by the solubility of A1 containing 

m inerals (Lindsay, 1979). Gibbsite is im portant in controlling A1 

solubilities in highly weathered soils, whereas other aluminosilicates are 

more likely to control A1 solubilities in more moderately weathered soils 

(Marion et al, 1976). Some of the A1 containing m inerals may be 

am orphous or crystalline (e.g., Al oxide, kaolinite) and the solubility of 

the am orphous form of these minerals is about 100 times that of the 

crystalline form (Adams, 1981 a). Adams (1981 a) ranked Al containing 

clay minerals according to the concentration of Al that each would 

m aintain in soil solution at equilibrium and at the same pH as follows: 

A l(OH ) 3  (amorph.) > A ^S^O s (OH ) 4  (amorph.) > halloysite > gibbsite > 

kaolinite > montmorillonite. The mineralogy of a soil also influences 

the supply of Al to the soil solution through its effect on cation exchange 

capacity (CEC) and thus on the potential level of exchangeable Al (Bell 

and Edwards, 1987). As weathering continues, the CEC of soils decreases 

as higher capacity minerals such as montmorillonite, vermiculite and 

illite are replaced by kaolinite and then by iron and aluminium oxides.
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Therefore, the amount of A1 has been found to decrease with intensity of 

weathering (Tessens and Shamsuddin, 1983) but A1 saturation is often 

high in weathered soils such as Oxisols and Ultisols (Sanchez, 1976).

2.5.2. pH

Aluminium concentration is highly affected by the pH of the 

environment. This has been clearly demonstrated by Magistad (1925) 

who dissolved a defined quantity of A ^fS O ^ in a series of flasks, added 

different amounts of NaOH to bring the solution to desired pH levels 

and then measured the concentration of A1 remaining in solution. He 

found that in the pH range of 4.7 - 7.5 the solubility of A1 was quite low. 

This is the pH range where A1 is precipitated and remains so as the 

relatively insoluble Al(OH)3. Tanaka et al (1987) also reported that total 

A1 concentration and the ratios of Al containing ions to the total Al in a 

solution vary, depending upon the pH. They reported that total Al 

concentration starts to decrease when the pH increases above about 4.0 

and reaches below 1 ppm at about pH 4.8. A slight change in the pH of 

the environment changes the relative proportion of different Al species 

which in turn affects Al toxicity to plants. Figure 2.1 shows the relative 

distribution of different soluble Al species as a function of pH at an ionic 

strength of 0.1 M (after Marion et al, 1976). For any given exchange 

capacity, the actual amount of exchangeable Al is strongly influenced by 

pH and decreases rapidly to very low values at about pH 5.5 (Juo, 1977). 

In conventional liming practice aimed at raising soil pH, the beneficial 

effects of lime are largely related to the precipitation of phytotoxic levels 

of soluble and exchangeable Al (Haynes, 1982).
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Figure 2.1. The relative distribution of the soluble AI species 

as a function of pH (Marion et al, 1976).

Although Al solubility is highly pH dependent, soil pH is a 

poor measure of Al toxicity and acid soil infertility (Adams and Lund, 

1966; Richburg and Adams, 1970; Conyers et al, 1991). This is because 

increasing soil pH by liming may simultaneously ameliorate several 

other acid soil infertility factors. Therefore, there is no 'critical' pH value 

with respect to Al toxicity. However, McCormick and Amendola (1983) 

reported that for soils having similar parent materials and clay minerals, 

pH alone may be useful in predicting Al toxicity to a given plant.

In solutions with low OH : Al ratios, most of the Al occurs as 

monomeric Al species. Aluminium polymers are formed under certain 

conditions, particularly on addition of OH" ions although a rapid 

equilibrium does not exist between monomeric and polymeric Al ions 

(Hsu, 1968). Wada and Wada (1980) found that the proportion of 

polymeric Al species in solution increased linearly from ~ 2% with an 

OH : Al ratio of 0, to ~ 95% when the OH : Al ratio was 2.7. Blarney et al 

(1983) suggested that the ameliorating effect of OH" resulted from the
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reduction in the concentration of monomeric A1 in solution, either 

through polymerization or precipitation of Al. They further reported 

that Al polymers were formed with the additions of OH" only when Al 

concentrations originally were less than 50 pM in solution but not at 

concentrations greater than 100 pM.

2.5.3. Presence of other ions

Toxicity of Al is affected by the presence of other ions in soil solution. 

There are many reports of alleviation of Al toxicity by the presence of P 

and Ca (P and Ca will be discussed in section 2.8). Recently Alva et al 

(1986 a) suggested that K, Mg or NH4 also directly alleviated Al toxicity in

soybean and subterranean clover.

Ions already present in the root medium, or changes in their 

concentration, may affect Al toxicity through effects on the ionic strength 

of the medium. When a salt or a fertilizer is added to soil, it increases 

ionic strength of the soil solution and thus decreases the activity 

coefficients of the ions already present in soil solution due to an increase 

in the ionic strength. Therefore, addition of salt and/or fertilizer to high 

Al soils will result in a decrease in the activity of Al. However, for soils 

having solution Al in equilibrium with exchangeable, structural or 

organic combination Al, a decrease in the ionic strength will affect the 

solubility of these forms of Al. For example, polymeric forms of Al may 

be transformed into monomeric forms at high ionic strength and may 

outweigh the decreasing effect in the activity of Al (Bell and Edwards, 

1987). Blarney et al (1983) illustrated the importance of ionic strength as 

a factor affecting plant response to Al concentration. They reported that 

in a nutrient solution with ionic strengths less than 900 pM, the Al 

polymers formed, remained in solution, but the polymers were not 

detected in solutions of higher ionic strengths. Alva et al, (1986 a)
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reported that the effect of A1 toxicity on the root elongation of 

subterranean clover was better alleviated by Ca when ionic strength of 

the solution was raised. They added the required amounts of ionic 

strength adjusting' solution containing 1.25 M KNO3, 0.5 M Mg (N C ^ . 6 

H 2O and 0.25 M. NH4NO 3 to raise the ionic strength of the nutrient 

solution to the same level as one of the high A1 treatment levels.

2.5.4. Organic matter

The role of organic matter in ameliorating the toxic effect of soil acidity 

was recognised in very early research (Mattson and Hester, 1933) and 

similar results have been published during the last two decades (Evans 

and Kamprath, 1970; Reeve and Sumner, 1970; Hoyt, 1977; Bloom et al, 

1979; Hargrove and Thomas, 1981).

Organic matter reduces the availability of Al in soil solution by 

forming Al organic matter complexes (Thomas, 1975) and this is the 

reason why plants grow more satisfactorily in organic soils at a 

considerably lower pH than on mineral soils. This is true in organic soils 

even when the total Al is quite high (Farina et al, 1982). Therefore, 

attempts had been made to correlate soil organic matter with lime 

requirements for acid soils. Keeney and Corey (1963) found organic 

matter to be significantly related to lime requirements (r = 0.62) while a 

function of a pH organic matter interaction defined as (pH 6.5 - soil pH) x 

(% organic matter) correlated even better with the lime requirement (r = 

0.884).

The mechanism for the interaction of organic matter and Al 

toxicity was reported as the carboxyl groups. These include the main 

functional groups involved in cation exchange and in acidity in organic 

matter (Broadbent and Bradford, 1952). This was later confirmed by
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Schnitzer and Skinner (1963) who found that A1 would react with 

organic matter up to a 6 : 1 molar ratio indicating six carboxyl groups per 

organic matter molecule. Hue et al (1986) grouped carboxylic acids on 

the basis of their effectiveness as Al detoxifiers: (i) strong (citric, oxalic, 

tartaric); (ii) moderate (malic, malonic, salicylic); and (iii) weak (succinic, 

lactic, formic, acetic, phthalic). The Al detoxifying capacities of these acids 

were positively correlated with the relative position of OH/COOH groups 

on their main C chain; positions that favoured the formation of stable 5 

or 6 bond ring structures with Al were least toxic.

There are reports of depressions in plant growth when organic 

rich acid soils were limed (Friesen et al, 1980; Hargrove and Thomas, 

1981; Anandan et al, 1985). Such depressions were generally considered 

as a pH induced micronutrient deficiency. However, Farina et al (1982) 

found that the yield depression correlated with a simultaneous increase 

in Al uptake by maize. A positive relationship existed between organic 

matter content and growth response pattern: marked depression only 

occurred on highly organic soils. Hargrove (1986) has shown that the Al 

organic matter complex may be solubilized in the pH range of 5 to 7 and 

thereby become available to plant roots and subject to plant uptake. This 

may be considered as a likely mechanism for explaining Al uptake and 

plant growth depression at around neutral pH values.
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2.6. Effects of soil acidity

2.6.1. Effects on nutrient uptake by plants

The most important infertility factor in acid soil is A1 toxicity and its 

effects will be reviewed in section 2.7. The second most important 

growth limiting factor is Mn toxicity and it can occur at a slightly higher 

critical pH limits than does A1 toxicity and in some cases it may be the 

dominant problem (Bromfield et al, 1983). In addition to soil pH, Mn 

toxicity in soil is determined by: the amount of easily reducible Mn 

present in soil, microbial activity and soil aeration. Therefore, it can 

occur even at a pH of 6.0 or above in poorly drained or compacted soils 

where reducing conditions bring divalent Mn into solution (Foy, 1983). 

Symptoms of Mn toxicity are confined to the plant tops whereas roots are 

more affected by A1 toxicity (Foy, 1974). Plant species may vary markedly 

in their susceptibility to Mn (Robson and Loneragan, 1970; Culvenor, 

1985). Soil acidity per se has marked effects on nutrient uptake. Excess 

H + ions affect root membrane permeability, compete with other cations 

for absorption sites and interfere with their uptake (Foy, 1984). Acid soils 

are usually deficient in Mo too. Molybdenum is strongly adsorbed on 

hydrous Fe oxides and with decreasing pH, adsorption increases reaching 

a maximum at pH 4.0 (Barrow, 1978).

2.6.2. Effects on microbial activity and nitrogen fixation

The activity of microorganisms is responsible for the decomposition of 

organic matter and this is one of the important mechanisms by which 

inorganic nitrogen is made available for plant growth. Microorganisms 

are sensitive to their environment and their activity can be severely 

curtailed at low pH or increased by liming (Alexander, 1977; Edmeades et 

al, 1981; Hojito et al, 1987). However, the magnitude of this lime
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response depends on the initial pH, rate of liming and soil organic matter 

level (Singh and Beuchamp, 1986). Several researchers have suggested 

that lime controls the m ineralization of organic m atter and this is the 

mechanism for lime response in the field (Cullen and Grigg, 1971; Awad 

and Edwards, 1977; Sarathchandra and Edmeades, 1985). Soil acidity can 

limit biological fixation of atmospheric N. A wide range of temperate 

and tropical pasture legumes have been shown to grow well in acid 

conditions provided adequate N and Ca are supplied (Loneragan and 

Dowling, 1958; Munns, 1965; Andrew, 1976).

Edmeades et al (1981) attributed the increase in microbial 

activity to a change in pH  whereas Nyborg and Hoyt (1978) concluded 

from their incubation and field studies that the m ineralization of 

nitrogen is generally a tem perature effect and nitrification was not 

statistically related to base saturation, soluble Fe or Al or Mn. Cook et al 

(1985) suggested that an increase in microbial activity after liming may 

result from an increase in the amount of water in the soil due to liming, 

since microbial activity is related to the moisture status of soil (Wilson 

and Griffin, 1975; Orchard and Cook, 1983). Sarathchandra and Upsdell 

(1981) also reported that liming with Ca(OH)2 increased biomass C level 

and CO2 evolution reflecting increases in biological activity in the soil.

2.6.3. Effects on plant growth

Whenever there is a change in pH of the plant root zone, many factors 

are changed sim ultaneously. Some of the changes may have no 

significant effect on plants, but many may be crucial depending on 

circumstances. The direct effects of the H+ ion on plant growth are 

difficult to determine because of the other confounding factors in soil 

acidity. H ow ard and Adams (1965) found a drastic reduction in the 

growth rate of cotton taproots below pH 4.2. Lund (1970) found that H+
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was toxic to soybean taproots at pH 4.75 and below, when solution Ca was 

very low. W ith increasing Ca levels, H + toxicity was increasingly 

ameliorated. Foy (1984) considered that in most acid soils (pH < 4.0) , 

A l3 + and Mn2+ toxicities were more im portant than H+ toxicity, 

particularly for non legumes. However, H + ion toxicity may restrict the 

survival and activity of rhizobium or of other soil m icroorganism s 

(Moore, 1974). Excess H + ions can affect root membrane permeability and 

thus interfere with nutrient uptake and transport. Foy (1984) reported a 

reduction in uptake of Ca, Mg, Mn, Zn, P and Cu due to excess H+ ions.

2.7. Effects of aluminium

2.7.1. Effects on plant nutrients

Polym er A1 species exert im portan t influences on soil physical 

properties, particularly in m aintaining the stability of soil aggregates. 

H ydroxy  A1 and  Fe in te rlayers restric t the sw elling of Na 

m ontm orillonite (El Rayah and Rowell, 1973) and in this respect, A1 

species are more effective than Fe. The tensile strength, liquid limit and 

shear stress are also significantly affected by hydroxy A1 interlayers 

(Davey and Low, 1971). With an increase in H + levels in soil solution 

there is an increase in the solubility of A1 which may occupy cation 

exchange sites. As the process continues, A1 dominates the exchange 

positions replacing Ca and Mg and ultimately the soil becomes very low 

in base cations necessary to support plant growth (Kamprath and Foy, 

1971). This process is crucial for the hum id tropics where weathering 

processes have already resulted in a low CEC (Adams, 1981 b).

The chem istry of soil A1 can play a dom inant role in 

controlling both P solubility and its uptake by plants. At low pH, soil P 

availability is decreased through precipitation of Al, Fe and Mn
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phosphates and through P adsorption onto the surfaces of hydrated A1 

and Fe oxides (Juo and Fox, 1977) and on the weathered edges of clay 

particles (Barrow, 1978). Liming acid soil often increases P uptake by 

plants by decreasing A1 toxicity rather than increasing phosphate 

availability per se (Haynes and Ludecke, 1981). On the otherhand 

precipitation of exchangeable Al3+ as polymeric hydroxy A1 cations, 

following liming, creates new highly active phosphate adsorbing surfaces 

(Haynes, 1982). Therefore, liming acid soil may even reduce P uptake by 

plants. To get rid of P adsorption by polymeric hydroxy A1 cations, 

Haynes (1982) suggested drying of limed acid soil before P application so 

that crystallization of the amorphous hydroxy A1 polymers may occur.

2.7.2. Effects on microbial activity and nitrogen fixation

Aluminium toxicity can restrict biological fixation of atmospheric 

nitrogen by limiting the growth of host plants (Jarvis and Hatch, 1985), 

the growth of rhizobium (Thornton and Davey, 1983; Wood et al, 1984; 

Wood and Cooper, 1988) and/or its nodulation (Carvalho et al, 1981, 1982 

b; Murphy et al, 1984; Coventry et al, 1985; Jarvis and Hatch, 1986; Alva 

et al, 1987; Simpson et al, 1987). Nodule numbers may be reduced 

and/or nodulation may be delayed (Hartel and Alexander, 1983; Jarvis 

and Hatch, 1985; Kim et al, 1985 b; Alva et al, 1987). However, Al 

concentrations which have strong inhibitory effects on nodulation, were 

found to have no effect on the functioning of nodules in N fixation 

(Carvalho et al, 1982 a). Carvalho et al showed that N fixation by well 

nodulated plants of three Stylosanthes species was independent of 

solution Al concentration as high as 100 pM. Growth of rhizobium was 

markedly restricted by Al concentrations to as low as 10 |iM (Thornton 

and Davey, 1983; Wood et al, 1984) or even lower (6.4 jiM, Kim et al, 1985 

a). It is now well documented that rhizobium is more sensitive to Al



28

toxicity than is the growth of host plants (Robson and Loneragan, 1970; 

Carvalho et al, 1982 b; Kim et al, 1985 a; Alva et al, 1987) although 

Munns et al (1981) reported that the susceptibility of the host plant to Al 

toxicity was the effective limitation to growth and nitrogen fixation. 

Carvalho et al (1980) reported that Al toxicity depressed growth more 

severely in six Stylosanthes which depended on N fixation for N supply 

than in those which received fertilizer N. In this case Al delayed 

nodulation in 5 out of 6 species, while it reduced the number and the dry 

weight of nodules in all species.

2.7.3. Effects on plant growth

There are a number of studies summarizing the effects of Al on plant 

growth (Table 2.2) where indicator crops were related to maximum Al 

level used and growth media. In most of these studies, the indicator 

plants were agricultural crops, but in a few, tree species were included. 

Most research has been carried out using plants grown in nutrient 

solution, in pots in glasshouse (using soil or sand), or field experiments. 

Some researchers used a combination of growing media to confirm 

findings between projects. Experiments vary widely in terms of the 

length of growth period for the plants. The period ranges from less than 

a week in some experiments (Kinraide and Parker 1987 - 2 days; Alva et 

al 1987 - 4 days; Lee and Foy 1986 - 3-15 days) to using existing trees in a 

forest in some studies (Joslin et al, 1988).
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The fact that A1 toxicity affects plant growth adversely is well 

documented (Table 2.2) although there are a few reports of beneficial 

effects of A1 on plant growth and these will be discussed later in this 

Section. According to the existing literature, the net effect of A1 on plant 

growth can be discussed in terms of:

(a) effects on roots,

(b) effects on nutrient uptake and plant growth, and

(c) beneficial effects of Al.

These will be discussed separately despite the fact that it may be argued 

that effects on nutrient uptake and plant growth may be manifestations 

of effects on roots.

Effects on roots

Symptoms of Al toxicity are first and most acutely observed in roots. 

Many plant growth studies related to soil acidity/Al toxicity have dealt 

with the study of roots (e.g.; Simpson et al, 1977; Pinkerton and 

Simpson, 1981; Blarney et al, 1983; Lee and Pritchard 1984; Cameron et 

al, 1986; Hetherington et al, 1986; Smit et al 1987 a; Wagatsuma et al 

1987; Joslin and Wolfe, 1988; Aitken et al, 1990). The roots of Al affected 

plants are characteristically stubby and thick in appearance. The root tips 

and lateral roots may become thickened and turn brown. In addition, the 

whole root system may develop a coralloid appearance with many 

thickened lateral roots and lacking in fine branching (Bell and Edwards, 

1987). Various characteristics of roots such as total root length, root 

elongation, root branching, fine root length, root regeneration potential 

etc have been taken into consideration. Whatever the measure of root 

growth used, less roots are produced as a result of Al toxicity and less
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volume of soil will be exploited by the plants under A1 toxic conditions 

thereby resulting in a decrease in the uptake of water and nutrients.

A lum inium  toxicity curtails root elongation (Adams and 

Lund, 1966; Blarney et al, 1983; Alva et al, 1986 d; Cameron et al, 1986), 

and the tip of the roots where cell division and elongation growth are 

localized, is the region most affected. Cotton seedling root penetration 

was significantly reduced by subsurface Al in strongly acid soil or in 

nutrient solution (Adams and Lund, 1966). Jarvis and Hatch (1986) 

reported that high Al levels in the nutrient solution resulted in a 

reduction in root extension of white clover. Hetherington et al (1986) 

exposed 9 cultivars of sugarcane which differed in Al tolerance, to a range 

of Al concentrations and found that a 50% reduction in root length 

occurred with 10 to 160 fiM Al in solution. Adams and Moore (1983) 

reported that Al in the illuviated horizon was more toxic to cotton root 

penetration than were higher am ounts of Al in eluviated horizons. 

They assum ed that this contradiction was due to Al chelation in 

eluviated horizons with organic matter rendering them less harmful to 

plants. Adams and Pearson (1970) compared the effects of subsoil acidity 

on root penetration in cotton and peanut. Cotton root growth was 

alm ost com pletely inhibited  by subsoil acidity but no apparent 

detrim ental effect on peanut roots were observed. To explain these 

resu lts , they noted that cotton roots created a m ore acid root 

environm ent in the nutrient solution and that the peanut had a greater 

propensity  for preferential absorption of lower valency ions to the 

exclusion of higher valency ions.

Alva et al (1986 d) studied the relationships between root 

length of soybean and the calculated activities of Al monomers in 

nutrient solution. By varying the amounts of Al at different pH's, they
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established a range of different A1 monomers. Relative root length of 

soybean was highly correlated with Z a ai mono (R2 = 0.91). Also, among 

the individual m onomers, relative root length was highly correlated 

with the calculated activity of AKOH^* (R2 = 0.87). Alva et al (1986 b) 

proposed that Z a ai mono was the best index of Al toxicity in terms of root 

length of soybean, alfalfa, subterranean clover and sunflower, all grown 

in nutrien t solution and under a wide range of other characteristics. 

W right and W right (1987) assessed soil acidity related limitations to 

growth in limed and unlimed acid soil. They found that Z a  ai mono was 

a better predictor of root grow th than any individual Al species. 

Cameron et al (1986) reported that root elongation of barley correlated 

(negatively) with Al3+ concentration but not with total soluble Al or Al 

complexes with F" and SC>42".

Cate and Sukhai (1964) reported that in the absence of nutrient 

solution, water soluble Al as low as 1 - 2 ppm markedly inhibited the 

grow th of rice roots. H igher concentrations prevented root growth 

altogether. Similar effects of Al on growth of Norway spruce seedlings 

under low nutrient supply was reported by Hecht-Buchholz et al (1987). 

Joslin and Wolfe (1989) reported that fine root branching in red oak 

seedlings in a glasshouse study was more sensitive than either root 

biomass production or root elongation to levels of soil Al. Paganelli et al 

(1987) in their experiment with sensitivity of loblolly pine to Al used 

another m easure of root growth: 'root regeneration potential' (RRP), 

which is the total length of new roots greater than 2 mm in length 

produced over a specific period of time. They found that both total 

num ber and total length of new white roots produced declined with as 

little as 5 mg Al per litre of solution.



39

Pinkerton and Simpson (1981) assessed the root and shoot 

growth of four tropical and two temperate summer legumes in deep acid 

soil profiles. They found that liming resulted in a larger and more 

im m ediate effect on root growth, particularly on fine root length, as 

compared to the effect on shoot growth. They suggested that the ratio of 

fine root length to shoot weight is a better indicator of tolerance to 

subsoil acidity. The effects of differing levels of soil acidity and P 

deficiency on root grow th and P absorption by Townsville Stylo a n d  

D esm odium  Greenleaf were studied  in acutely P deficient soil in 

columns by Pinkerton and Simpson (1983). The species differed in their 

response to lime and P and there was little response to lime by either 

species at low P rates. At the highest P rate, there was a large interaction 

between lime and P placement for Desmodium Greenleaf. M cLaughlin 

and James (1989) reported that subsurface A1 affected the growth and 

uptake of surface applied  P by w heat seedlings in a split root 

sand/solution culture experiment. They found that increased supply of P 

on the surface enhanced subsurface root growth, only in the absence of 

Al. In contrast to this study, Miranda and Rowell (1987) reported that the 

addition of P to topsoil caused good growth of wheat regardless of subsoil 

acidity: root growth increased in both layers and P (labelled with 32P) 

taken up from the topsoil was translocated to roots in the subsoil. They 

explained that the translocated P inactivated the root Al and allowed the 

roots to grow and take up more P from the acid subsoil despite a 

reduction in inflow. Shuman et al (1990) also reported a negative 

correlation between sorghum  root weight and soil Al levels which was 

significant for topsoils but nonsignificant for subsoils.

Attempts were also made to find relationship between root 

growth of Al stressed seedlings and effects on root morphology. Fleming 

and Foy (1968) reported that differential Al tolerance of two wheat
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varieties was associated with morphological damage to root tips and 

lateral roots. M orphological abnorm alities in onion root systems 

(measured over a period of 24 hours) treated with A1 were explained by 

an inhibitory effect of A1 on either cell division or cell extension 

(Clarkson, 1965). He concluded that cell division was highly sensitive to 

Al. Similar results were also reported for snapbean and cotton roots 

(Naidoo et al, 1978). They further reported that Al and P coprecipitated 

on or in the outer cells of the root cap and major elements detected in 

spot analysis of nuclei, cytoplasm and cell walls were AI, P, S and Ca. 

M atsum oto et al (1976) reported  that pea root elongation was 

considerably inhibited by Al3+ > 10_4M and absorbed Al3+ in roots was 

localized in the epidermis and region where cell division is active (e.g., 

root tips) as revealed under microscope and electromicroprobe X-ray 

analysis (EMX). W agatsuma et al (1987 a) reported that cell damage 

occurred only in the epidermis in the Al tolerant oat plants, epidermis 

and outer cortex in the Al sensitive maize plants, and epidermis and 

almost all of the cortex in barley plants highly sensitive to Al. In very Al 

sensitive species, cells at the root tip develop necrotic patches and in 

young roots the root tip may die back completely as reported by Edwards 

et al (1976) for peach seedlings and Thornton et al (1986) for loblolly pine 

seedlings.

Effects on nutrient uptake and plant growth

Presence of Al in the root environment and its uptake by roots tends to 

reduce the concentration of other mineral nutrients especially Ca, Mg 

and P in the plant (Foy et al, 1978). Andrew et al (1973) studied the 

growth and chemical composition of legumes in nutrient solution with 

various levels of Al. A lum inium  treatm ents reduced the Ca 

concentration in the tops of all species. The effects of Al on growth,
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uptake and mineral nutrient efficiency ratios (defined as dry shoot 

weight/element in shoot) were investigated by Baligar et al (1987) on 23 

barley cultivars. The cultivars differed with respect to shoot and root 

weights. Overall shoot contents of Ca, Mg, Mn, Fe, P, S, K and Na 

showed significant positive correlations with shoot and root dry weight 

and an inverse relation with treatment Al levels and shoot Al 

concentration. Except for Ca, Mg and Mn, overall inverse relationships 

were observed between levels of Al and efficiency ratios.

Fageria et al (1989 a) demonstrated reduced root and shoot 

growth in rice due to high Al levels. The effect was greater in roots while 

the uptake and P use efficiency was highly correlated with the growth of 

the rice plant. Fageria et al (1989 b) studied growth and nutrient 

utilization of alfalfa and bean. Bean plants were far less sensitive to 

acidity than alfalfa. Root and shoot growth of both species were 

negatively correlated with exchangeable Al. Bean was more efficient 

than alfalfa in taking up Ca and Mg. Foy and Brown (1964) studied Al 

tolerance in 4 different plant species grown in nutrient solution or soil. 

The activity of Al was controlled by adding a chelating agent to the 

nutrient solution and lime to the soil. Al tolerance was closely associated 

with the ability of plants to absorb and utilize P in the presence of excess 

Al.

Oat cultivars differed significantly in tolerance of acid soil (Foy 

et al, 1987 b). The sensitive cultivars tended to accumulate higher 

concentrations of P, Al and Fe and lower concentration of K and Mn. Hai 

et al (1989) also reported that an Al tolerant rice cultivar accumulated 

more Al than the resistant cultivar. Al tolerance of two soybean varieties 

were studied by Foy et al (1969). Al toxicity was associated with a decrease 

in concentrations of Ca in the tops and roots of both varieties, but this
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effect was much more pronounced in the A1 sensitive variety. A1 

interfered in the uptake and use of Ca to different degrees.

On the basis of the A1 level in soil solution, toxicity effects of 

A1 restricted growth in six Stylosanthes species (Carvalho et al, 1980). 

Maximum yield was associated with a reduction in Al saturation to less 

than 5% of the effective CEC. Joslin and Wolfe (1988) suspected Al was 

the major cause of biomass reduction in red spruce and also found that 

soil parameters of Al and biomass response had a good correlation. 

Haynes and Ludecke (1981) reported that decreasing the Al toxicity by 

liming resulted in substantial increases in shoot yield of two legumes but 

the increase in root yield was small. Relative yield of both species 

significantly correlated with the Al content of shoots. Compared to 

limed soil, plants grown in unlimed soil had a greater percentage of P, 

Al, Mn and N accumulated in roots of both species.

Huett and Menary (1980) reported the uptake of less cations in 

tops and roots of cabbage, lettuce and kikuyu grass from nutrient solution 

with high Al treatments. Hecht-Buchholz et al (1987) reported that excess 

Al and Mn decreased Ca and Mg concentration in spruce needles and 

roots. Joslin et al (1988) also reported that high Al in soil resulted in low 

Ca and Mg uptake in spruce. Root Al was much higher than in foliage, 

while the roots from the B horizon had the highest Al and such 

measurement was a better indicator of Al. Thornton et al (1986) reported 

that concentrations of Al in the roots were 50 to 100 times higher than 

that in shoots of honeylocust. Low levels of Al increased Ca, Mg and P 

concentrations in shoots while higher Al levels reduced plant nutrient 

contents.

Duncan et al (1983) reported that in sorghum the most tolerant 

plants to acid soil field stress were also the least affected by Al toxicity in
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nutrient solutions. Keltjens and Loenen (1989) reported that 5 tree 

species grown in nutrient solution were highly tolerant to A1 up to the 

highest A1 levels (30 mg/1). The species differed in their mineral uptake 

but in none did A1 reduce other nutrient concentrations or the Ca/Al 

ratio to values below a critical level.

Cambraia et al (1989) reported that A1 reduced the nitrate 

uptake and had a direct effect on nitrate reductase and consequently on 

nitrate reduction. A correlation between nitrate reductase tolerance and 

plant tolerance to Al was observed. However, the soil solution 

concentration of Ca in many acid soils is sufficient for plant growth 

under Al free conditions (Kamprath, 1978).

Beneficial effects of Al

Aluminium is generally considered to be phytotoxic to plants. But 

various claims have been made for its beneficial effects when it is present 

or applied at low levels. Macleod and Jackson (1965) reported that Al 

concentrations of 0.1 to 0.2 mg/1 in nutrient solution increased the 

growth of alfalfa and red clover seedlings. Ryan et al (1986) reported that 

Douglas fir and western red cedar displayed similar or better growth in 

nutrient solutions containing 175 mg/1 Al than in solutions without Al 

at pH 3.0. Mclean and Gilbert (1927) reported that 3 to 13 mg/1 Al 

stimulated plant growth but higher concentrations were toxic. Truman 

et al (1986) observed an increase in root and shoot P in Pinus  radiata 

with an increase in solution Al level. The beneficial effects of low levels 

of Al (usually < 20 mg/1) have also been attributed to facilitated uptake 

of Al-P complexes (Humphrey and Truman, 1964; Bartlett and Riego, 

1972; Mullette, 1975). Stimulatory effects of Al (1.6 mM) on the growth 

of tea plants in the presence of 0.8 mM of P were reported by Konishi et al
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(1985). They concluded that A1 plays a regulatory role in the effective 

absorption and utilization of P.

The effect of A1 concentration on the uptake of mineral 

nutrients by rice plants from dilute nutrient solution was studied by Hai 

et al (1989). Aluminium stimulated dry matter production and nutrient 

uptake below a threshold. The value of this threshold was influenced by 

the nutrient solution composition and the cultivar studied. Foy (1974) 

suggested increased Fe solubility and availability in the growth medium 

resulted from Al hydrolysis and suggested therefore, that a lower pH 

benefits plant growth.

2.8. Role of Calcium and Phosphorus in alleviating Aluminium toxicity

There have been m any reports describing a decrease in Al toxicity 

induced by high levels of other elements. Calcium and P are the most 

im portant elements with a strong capacity for alleviating Al toxicity. 

Calcium  perform s an essential role in m aintaining selective ion 

absorption by roots (Epstein, 1961). Alum inium  uptake by roots is 

passive and the initial process involves exchanging Ca from free space 

(Huett and Menary, 1979). Therefore, a high Ca treatm ent is likely to 

reduce Al transport to the stele of plant roots.

Lance and Pearson (1969) reported an Al induced inhibition of 

Ca uptake from nu trien t solution was avoided by increasing Ca 

concentrations in the nutrient solution. H uett and M enary (1980) 

reported that a higher Ca treatment reduced Al concentrations in tops of 

cabbage, lettuce and kikuyu grass. Horst (1987) reported that increasing 

the Al supply depressed the Ca concentration in all root tips in cowpea 

seedlings and an increasing Ca supply completely eliminated inhibition 

of root elongation by Al. In general, there is a positive relationship
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between AI tolerance and Ca efficiency. Rhue and Grogan (1977) reported 

that Ca and Mg equally protected seedlings from A1 toxicity and they used 

this criteria to screen corn for A1 toxicity. An increase in Ca 

concentration in acid soil was reported to decrease A1 toxicity (Munns, 

1965; Rhue and Grogan, 1977). Alva et al (1986 c) reported that increasing 

the Ca concentration over a range of 500 - 15,000 \ xM  substantially 

decreased Al toxicity in different plants. They viewed the protection of 

roots by Ca against Al toxicity to be a 'partial exclusion of Al by Ca'.

The amelioration of Al toxicity by Ca application has also been 

analysed as the relationship Ca/Al (or other forms of a ratio between the 

two) and plant growth. From their limited data Wright and Wright 

(1987) suggested that a £ a2 +/Z a ai mono could be a promising predictor of

Al toxicity and suggested additional measurements of root growth 

covering more values of Ca/Al. Smit et al (1987 a) reported that at very 

low pH, root length was correlated with Ca/(Ca + Al), but at a higher soil 

pH, exchangeable Al and exchangeable Ca were not good predictors in 

determining total root length. Recently the counteracting effect of Al and 

Ca has been analysed in terms of a Ca - Al balance (CAB) (Noble et al, 

1988). There have been various criticisms of the theoretical validity of 

the CAB (Kinraide and Parker, 1989; Grauer and Horst, 1991) and very 

recently Noble and coworkers (Fey et al, 1991) accepted some criticism 

and produced a new formulation which indicates that this concept is not 

yet widely accepted.

There are also reports where Ca did not alleviate Al toxicity. 

Horsnell (1985) reported that the addition of CaS0 4  increased the Al 

concentration in soil solution and reduced the plant growth. However, 

when CaS04  salt was used to increase the Ca status of soil it also lowered 

the soil pH, increased the Mn concentration, and EC and Al levels did
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not fall as much as they did with the usual lime treatments. Due to an 

increase in ionic strength and the lowering of pH, monomeric A1 

concentration may even be increased in the system (Marion et al, 1976). 

Rios and Pearson (1964) reported that increasing the Ca concentration to 

5000 pM did not overcome the toxic effects of 19 pM Al on cotton root 

weights. Clarkson and Sanderson (1971) found that 15000 pM Ca did not 

alleviate the toxic effects of 50 and 150 pM Al on barley root growth. 

There are probably other reasons for the conflicting effects of Ca on Al 

toxicity such as: use of applied nominal Al as a measure of Al 

concentration, the variety of plants grown under different conditions and 

locations, the differing nutrient solution composition, the different 

growth parameters measured, and the adjustment of nutrient solution 

pH and thereby the concentration of monomeric Al (Marion et al, 1976).

Humphreys and Truman (1964) reported that high Al in the 

nutrient solution also required higher P to attain good growth of Pinus 

radiata seedlings which indirectly means P has an ameliorating effect 

against Al at low concentration. Bartlett and Riego (1972) considered P to 

serve a double function in acid soils as:

(i) an essential nutrient and

(ii) a precipitator of Al.

Hsu (1968) found that the addition of phosphate to an Al solution 

formed soluble complexes with monomeric Al species and precipitated 

polymeric Al species. Blarney et al (1983) reported that the ameliorating 

effect of P resulted from the reduction in the concentration of 

monomeric Al in solution, either through polymerization or 

precipitation. Alva et al (1986 c) observed that with an increasing P/Al 

molar ratio, concentrations of total and monomeric Al decreased and 

root elongation of different crops increased.
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Research on the effect of P in alleviating A1 toxicity has given 

divergent results. Hai et al (1989) reported that the alleviating effect of P 

on Al toxicity was slight and Munns (1965) reported that depressing the 

effect of Al toxicity in alfalfa and lucerne could not be remedied by 

increasing the P supply, until the added P actually caused Al to 

precipitate. O ther studies on the interaction between Al and P in 

influencing plant growth have been mentioned (Section 2.7.3) and they 

also support the different interactions between Al and P for different 

crops.

With regard to cation amelioration of Al toxicity in wheat, 

Kinraide and Parker (1987) speculated that competition between the 

cation and Al for external binding sites on the roots may account for most 

of the amelioration. Lee and Foy (1986) determined changes in organic 

acid concentration of Al tolerant and Al sensitive cultivars in nutrient 

solution. Results indicated that the Al tolerant cultivar has a higher 

potential for Al chelation and detoxification than does the Al sensitive 

cultivar. Therefore, they suggested that an Al chelation mechanism may 

be involved in differential Al tolerance within the species.

2.9. Soil water as a factor in the response to lime

Liming is the usual practice prescribed for the amelioration of soil acidity 

and like all other experiments related to plant growth, sufficient water is 

usually m ade available for liming experiments. Water is seldom used as 

a variable. In fact, the dissolution of lime and the movement of Ca2+ 

(and Mg2+) down into the subsoil is dependent on the presence of water. 

Neutralization of acid subsoils and the rate of neutralization is strongly 

dependent on the rate of dissolution and hydrolysis of added lime to 

enable the form ation of O H ' ions (Adams, 1981 b). This is further
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governed by various reactions such as acid-base equilibria, complexation 

w ith  organic and inorganic ligands, oxidation-reduction and ion 

exchange adsorption  (M attigod et al, 1981). At any instant, A1 

concentration will, therefore, depend on the rate at which these reactions 

occur and the rate of biological uptake. Although it is quite obvious that 

the presence of water is essential for the action of lime on soil and plant 

grow th  there is no definitive data on the specific am ount and 

distribution of water required for such action. Simpson et al (1979) 

observed root and shoot response in lucerne to liming in acid soil at a 

soil m oisture level of pF 2 to 2.5. In a pot experiment carried out with 

high Al soil, Horsnell (1984) found an increase of 50% in the dry weight 

of clover tops when lime was added to soil at a low moisture (70% field 

capacity) level but very little response was observed when lime was 

applied at 100% field capacity. Growth of roots was not considered in this 

experiment. Similarly a pasture response to lime was reported in New 

Zealand by Shannon et al (1984) who found the largest relative responses 

to liming in summer an d /o r autumn and the smallest responses or even 

a depression in spring. Rowe (1982) reported similar results from 

Tasmania. Further, Simpson et al (1987) reported a decline in numbers 

of Rhizobium trifoli in limed acid soil during the dry summer period. 

This phenom ena was termed 'the Seasonal Pattern' to lime response. 

Very few researchers have investigated this aspect of soil acidity and 

liming in detail although a few explanations have been put forward.

(i) An increase in soil m oisture content due to liming was 
suggested to be a possible cause of this seasonal pattern 
(Thomson, 1982; During et al, 1984).

(ii) Available phosphate accumulated in the soil during the 
winter period of slow growth and this is then better able to 
support the burst of spring growth (Scott and Cullen, 
1965).
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(iii) The high phosphorus status of soil in spring is due to 
release of phosphate from organic residues and soil 
organic matter (Saunders and Metson, 1971).

(iv) And by alleviating A1 toxicity, liming increases rooting 
volume which results in better plant growth during times 
of moisture stress (Shannon et al, 1984).

2.10. Conclusions

Complex acid soil factors affect the growth of higher plants either 

independently or often together. They may also promote or inhibit the 

survival and functions of microorganisms in soil. It is now well known 

that Al toxicity severely affects root growth while total plant growth is 

also reduced. The latter is assumed to be due to less roots and thereby the 

exploitation of less soil for nutrients and water. However, there is no 

report yet available as to whether morphological abnormalities of Al 

effected root systems cause a loss in root efficiency in the absorption of 

plant nutrients or simply whether the lower volume of root is the main 

cause of poor plant growth. As a result of Al toxicity, there is a reduction 

in the am ount of mineral nutrients absorbed and this is well established. 

It is difficult to separate the effects of Al toxicity and Ca deficiency because 

high levels of Al are usually associated with low levels of Ca in acid soils, 

and re liab le  d iagnostic  techniques p a rticu la rly  for assessing 

phytotoxicities of Al, which apply across a range of soils, are not available 

(Adams and Lund, 1966; Carvalho et al, 1980).

Studies on the effect of Al toxicity on plants have individually 

covered different aspects of root and shoot growth and mineral nutrient 

absorption. Aluminium toxicity has also been examined in relation to 

Al quantity in the growing medium relative to other elements such as Ca 

and P. Concentrations of Al relative to Ca in plants have also been
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considered. However, it is difficult to come to a conclusion regarding the 

whole process of A1 toxicity for a particular species from the same study. 

A comprehensive study of more aspects of the effects of A1 on the same 

species may reveal more insights into A1 toxicity effects.

The interrelationship between A1 and Ca has been widely 

studied. The problem related to low Ca is undoubtedly a major problem 

associated with A1 toxicity, but for a comprehensive treatment of the 

problem, other important factors which usually pose infertility problems 

in A1 toxic soils need to be identified and studied. The other important 

factor in relation to A1 toxicity which has received inadequate attention 

in past research is the influence of P. Some studies looked at the 

ameliorating effect of P on the adverse effects of A1 toxicity on plant 

growth. But the role of P needs to be analysed in association with Ca, 

both of which are common deficiency problems in many acid soils such 

as the soil used for this study.

Indirect evidence (e.g., effects of season of application) suggests 

that important interactions occurred between soil moisture levels and 

acidity problems. Therefore, direct and detailed study of this interaction 

and its effect on different aspects of plant growth is important.

Most research related to soil acidity and A1 toxicity has been 

carried out with agricultural crops. Very little information is available 

on the effect of soil acidity and A1 toxicity on tree species. There are some 

limited reports on the growth of native eucalypts under acid conditions 

and changes consequent upon liming. But no such specific report is 

available on A1 tolerance/sensitivity nor its alleviation by Ca or P 

addition. This oversight may be due to the fact that tree species are 

considered to be more tolerant to high levels of A1 when compared to 

agricultural crops. This thesis, therefore analyses the acidity problem and
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specifically the AI toxicity problem taking into account interrelationships 

with Ca, P and moisture levels. These analyses are based on a tree species

widely grown in Australia and other tropical coun tries------Eucalyptus

camaldulensis.



CHAPTER 3

GENERAL METHODS
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3. GENERAL METHODS

In this Chapter only general aspects of materials and methods will be 

described. Materials and methods specific to particular Chapters will be 

described therein.

3.1. Soil selection

The soil selection for the preliminary experiments is described in Section 

4.2; acid soils were collected from sites 1, 2, 3, 4, 5, 6, 7 and 8 of the Cotter 

catchment area (Figure 4.1 presented on P 78) as identified by Talsma 

(1983). From these, three sites were selected which will be described in 

detail in Section 4.2. Later an acid soil even higher in exchangeable A1 

and lower in exchangeable Ca than the previous soils was selected 

(Section 4.3). For this purpose, 14 soil samples from 6 new sites in the 

Cotter catchment area and 7 samples from three sites from compartment 

152 of the Uriarra forest were previewed. One site from compartment 

152 of the Uriarra forest was finally selected (Section 4.3).

3.2. Soil collection and processing

Soils were collected from carefully exam ined sites and depths in 

polythene bags. If the field moisture content was high (much more than 

about 20%) then the soil was air dried in the shade to about 20% moisture 

content before being sieved. Soil samples used for site selection were 

passed through a 2 mm sieve, while soil collected for plant growth 

experiments was sieved through 5 mm sieves. Following sieving, soils 

were mixed thoroughly either in a small cement mixer when bulk 

collection was made or by hand for smaller quantities. After sieving and 

mixing, soils for chemical analysis were stored in a cold room until the 

completion of analyses. All analyses on soil were carried out at about
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20% moisture conditions and then results expressed on an oven dried 

basis after oven drying a sub sample taken at the time of analysis. Soils 

used in plant growth experiments were stored in open heavy duty 

polythene bags in a cool, dry place.

3.3. Soil analysis

3.3.1. General

pH

Soil pH was measured both in water (pHw) and in 0.01 M CaCl2 solution 

(pHs) with a glass electrode pH meter (Anax) after 30 minutes of shaking. 

The sample was made up at a soil : water or salt solution ratio of 1 : 5.

Electrical conductivity

Electrical conductivity (EC) (mS/cm) was measured using a conductivity 

meter (Radiometer, CDM 3). For soils, the measurement was made on 

the same extract as for pHw (i.e., at a soil : water ratio of 1 : 5). For soil 

solutions, EC was measured on a 1 : 1 extract.

Particle size analysis

Particle size distribution was determined by the hydrometer method 

(Bouyoucos, 1928).

Organic matter

Soil organic matter was determined by a chromic acid digestion method 

which is based on spontaneous heating by dilution of H2SO4 (Walkley 

and Black, 1934).
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Field capacity

Field capacity was determined by packing soil above gravels in a large 

cylinder. The soil surface was flooded by adding water and then allowed 

to drain freely for 48 hours while its surface was kept covered to check 

evaporation. The moisture content was determined as the field capacity 

(Wilde et al 1979). Moisture content at 0.1 bar was also determined, but 

only for com partm ent 152 soil using a pressure plate. The moisture 

content thus obtained was lower (27.7%) when compared to the field 

capacity determined (46.6% ) for the same soil.

3.3.2. Extraction m ethods

Extractable cations

For the initial soil selection, exchangeable cations were extracted by 

shaking the soil w ith IM KC1. Three extractants were compared for 

determ ining exchangeable Ca, Al, Mn, Mg, K and Na for compartment 

152 soils. These were: IM KCl, 1M NH4C1 and 0.1M BaC^. Values for Ca, 

Al, Mn, Mg and K were not significantly different between those obtained 

with IM  KC1 and 1M NH4C1 although 0.1M BaCl2 extracted significantly 

less Al and Mn than the other two. The amount of Na extracted was 

significantly different for each extractant (Figure 3.1, for display values of 

cations were m ultiplied by factors). Since 1M NF^Cl extract has the 

advantage of allowing K m easurem ent from the same extract it was 

decided to use it for soil analysis for the rem aining study. Recently 

Shuman and Duncan (1990) also reported that IM KC1 and IM NH4CI 

compared favourably in extracting Al from 248 soil samples. Slightly 

more Al was extracted by IM NH 4CI which is also true in the present 

case. Finally soil samples were shaken for 1 hour with 1M NIT4CI at a 

soil to solution ratio of 1 to 20 and then the suspension was filtered
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through Whatman No 42 filter paper. Different cations were estimated 

from the filtrate by methods described in the Section 3.3.3.

EZ 1MKC1 
0  1MNH4C1 
□  0.1 M BaC12

Ca x 100 Mn x 1000 Mg x 10 Na x 20 K x 10

Cations

Figure 3.1. Exchangeable cations extracted by different extractants. For 
significant differences, vertical bars represent l.s.d. (P < 0.01).

Extraction of soil solution

Soil solutions were extracted at a soil: water ratio of 1 : 1 (w/v). Since the 

proportion of water in soil will alter the actual soil : water ratio for such a 

small amount of water, separate aliquots were oven dried at 105°C 

beforehand to estimate the amount of water already present in soil. This 

figure for water content was accounted for when calculating the amount 

of water required to make a 1 : 1 soil : water ratio. The suspension was 

shaken for 1 hour, centrifuged and then filtered through Whatman No 

42 filter paper. The soil solution was stored in a cold room until 

completion of all analyses. Cations were analysed by the same methods 

used for extractable cations.
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Available phosphorus

Available phosphorus was extracted by shaking the soil for 30 minutes 

with 0.5 M N aH C 03 at pH 8.5 at a soil : solution ratio of 1 : 20 (Olsen et al, 

1954). The concentration of P in the extract was then determined by the 

methods below (Section 3.3.3). (Determination of P by the ammonium 

lactate method also gave similar results).

Extractable mineral nitrogen

Ammonium and nitrate ions were extracted by shaking soil for 1 hour 

with 2M KC1 at a soil : solution ratio of 1 : 10 (Bremner, 1965). The 

extracts were analysed for ammonium and ammonium plus nitrate and 

then nitrate was calculated by the difference.

3.3.3. Estimation methods

Aluminium

Aluminium was determined by several methods. During the earlier soil 

selection, the ferron method (Belyaeva, 1966), which was being followed 

in the Forestry Departm ent, Australian National University, was used. 

This m ethod is based on the principle that ferron forms a colourless 

complex with Al and a green complex with Fe. These complexes are 

stable. The Al ferron complex has an absorption maximum at 370 m \i 

while the Fe ferron complex has maxima at 370 mp and 600 m |i. 

Therefore, spectrophotometrically Fe is measured at 600 mp and the total 

Fe plus Al at 370 mp. The amount of Al is then calculated by difference. 

Based on th is p rin c ip le , Al w as m easu red  using  an UV 

spectrophotom eter (Pye Unicam SP 1800). However, considering the 

large num ber of samples to be analysed in the remaining experiments, 

another method, the aluminon method (Hsu, 1963) on an autoanalyzer, 

was tested. To eliminate the interference from iron in the aluminon
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m ethod, ascorbic and thioglycollic acids were used (Cabrera et al, 1981). 

Finally an atomic absorption method or an ICP method was followed. 

Monomeric Al was determined by ion chromatography (Willett, 1989).

Other cations

Calcium , Mg, Na, K and Mn now as extract concentraton, were 

determ ined by atomic absorption spectrophotometer (Varian SpectrAA- 

20).

Inductively coupled plasma (ICP) emission spectroscopy was 

used for estimating mineral concentration in plant samples described in 

Chapter 7. Ashing and H 2 O 2 -H 2 SO4  digestion were compared beforehand 

using Division of Forestry and Forest Products standard samples and 

some shoot and root samples from the current study which had a wide 

variation in mineral concentration were included. Both extracts were 

analyzed for Ca, Mg, K, Al and P on the ICP and both digests gave 

comparable results (Figure 3.2).

Extractable mineral nitrogen

Total mineral N (am m onium  + nitrate) was m easured from extracts 

(Section 3.3.2) by an automated colorimetric procedure (Heffernan, 1985). 

For am m onium  analysis, the extract was m ade alkaline with sodium 

hydroxide and am m onia, continuously distilled and absorbed in 

hydrochloric acid. The amm onium  chloride was continuously sub 

sam pled and then reacted w ith hypochlorite and sodium  phenate 

(containing acetone as a catalyst) to form an indophenol blue complex. 

Nitrate plus ammonium were measured from extracts which were made 

alkaline w ith sodium  hydroxide and then titanous sulphate was 

im m ediately added prior to continuous distillation. N itrate and
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am m onium  ions were reduced to ammonia so that the sub sample 

contained ammonium plus nitrate as the ammonium ion.

Available Phosphorus

Phosphorus was extracted (Section 3.3.2) and then estim ated by an 

autom ated procedure which develops colour at 95°C with ammonium 

molybdate in H2SO4 and ascorbic acid (Colwell, 1965).

3.4. Plant growth

Seed source

All seeds used in this series of experiments were provided by the 

Australian Tree Seed Centre, Division of Forestry and Forest Products, 

CSIRO, Canberra, A C T .  Towards the end of the study there were no 

more seeds of E. Camaldulensis from the seedlot 10886 (used in initial 

experiments) and therefore its closest substitute (seedlot 10885) was used 

for further studies. These seeds were collected from approximately the 

same place as 10886.

Raising of seedlings

Initially seeds were germ inated in a 5 cm deep germ ination tray 

containing a vermiculite perlite mixture (1 : 1). Due to a high pH in 

some later vermiculite, germination was then carried out in a mixture of 

perlite, sand and peat moss at a ratio of 2 : 1 : 1. From two weeks after 

germ ination  the seedlings w ere w atered  w ith dilu te, m odified 

Hoagland's solution (Thomson, 1988).

Transplantation of seedlings

At the time of transplantation (usually between 3 and 6 weeks old) 

healthy and uniform  sized seedlings were uprooted with as little
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distrubance to the roots as possible, transplanted imm ediately and 

w atered. Tranplanting usually took place during the late afternoon. 

During hot sunny periods freshly transplanted pots were placed under 

shade for a few days before transferring them to the glasshouse.

Plant growth environment

All p lant growth experiments were conducted either in a controlled 

environment glasshouse or in phytotrons and the pots were arranged in 

a completely randomized design.

3.5. The nutrient solution

The composition of nutrient solution used throughout the tenure of the 

study is shown in Table 3.1. This is a modified Hoaglands' solution 

which was successfully used by Thomson (1988) for E. camaldulensis and 

related species. W herever necessary, modifications were made to this 

composition to include nutrient treatments and these are shown in the 

respective Chapters.

3.6. Chemical analysis of seedlings 

Cations

Initially plant samples were wet digested in an HNO3 - HC1 mixture (3 :1) 

(Heffernan, 1985) using 0.25 gm samples. In some cases (Chapter 7, 8 and 

9) an H2O2-H2SO4 digest was made (Heffernan, 1985) using a 0.1 g sample 

for estim ating the cations w ith ICP. When sufficient samples were 

available, they were ground to pass through a 20-mesh screen on a Wiley 

mill. O therw ise the whole sam ple ( le a f /ro o t/sh o o t/o r  the whole 

seedling) was digested. Cations were estimated by methods described 

earlier in this Chapter.
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Phosphorus was estim ated from the same extract by an 

autom ated procedure using ammonium vanadate (Jackson, 1958).

Nitrogen

Plant samples were digested with H 2S 04 using K2S 04 as a catalyst to raise 

the boiling point of the H 2S 0 4 (Jackson 1958). The digest was diluted and 

an aliquot analyzed for N using an autoanalyzer. The principle of this N 

determ ination is based on a colorimetric method in which an emerald 

green colour is formed by the reaction of ammonia, sodium salicylate, 

sodium  nitroprusside and sodium hypochlorite in a buffered alkaline 

m edium  at a pH of 12.8 to 13.0. The ammonia salicylate complex is read 

at 660 nm.

3.7. Calculation of Aluminium species

In an aqueous m edium  A1 exists in different forms depending on the 

solution chemistry, mainly solution pH. The quantities of the different 

im portant forms of A1 for the different treatm ents (A1 levels in the 

nu trien t solution experim ents) were calculated using the computer 

program 'Titrator' version 2.2 (Cabaniss, 1987) on an IBM PC.

A fter p rep a rin g  n u trien t so lu tions pH  and electrical 

conductivity (EC) were measured. Where necessary pH was adjusted to a 

predeterm ined value by adding dilute acid or alkali, EC was measured 

after adjusting the pH. Ionic strength was calculated by using the 

relationship \ l  =  0.013 EC where \x is the ionic strength based on 

concentrations expressed in mole litre '1 and EC was expressed in mS 

(Griffin and Jurinak, 1973).
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Table 3.1. Composition of the nutrient solution used.

Chemical Requirem ents ml stock per 10 L 
nutrient solution

KNO3 75.83 g /L 20

C a(N 03)2.4H 20 118.08 g/L 40

NH4H 2P 0 4 57.52 g/L 10

M gS04. 7H20 61.62 g /L 20

MnCl2. 4H20 0.197 g/L 10

ZnS04- 7H 2O 1.15 g/L 10

CUSO4. 5H20 0.626 g/L 10

Na2Mo04. 2H2O 0.242 g /L 10

h 3b o 3 0.744 g/L 10

Fe EDTA* 4

* EDTA: 5.0 gm NaOH was dissolved in 800 ml distilled water. Then 33.2 
gm EDTA (disodium salt) and 24.9 gm FeSO^ 7H2O were added, made 
up to 1L volume and aerated overnight.

Nominal levels of Ca, Al, P, S, Mg and P were used as their 

total concentrations in the system. The following are the equilibrium 

reactions (Lindsay, 1979) for the im portant forms of A1 which had 

substantial proportions of the element in the system:

Equilibrium reaction log K

Al3+ + H20  — A10H2+ -5.02

A13+ + 2H20  — Al(OH)2+ -9-30

A13+ + 3H20  ^  Al(OH)3 -14.99

A13+ + SO42- — A1S04+ 3.20
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3.8. Calculation of activities of Calcium and Aluminium.

To calculate the activities of Ca, the relationship used was:

(Equation 3.1)

a i = activity of Ca; 

c j = concentration of Ca;

Y i = activity coefficient.

Ionic strengths of the nutrient solutions were calculated as:

Ionic strength = 0.013 EC (Griffin and Jurinak, 1973).

Values of the activity coefficient (y i) were obtained from the 

Debye-Huckel equation (as mentioned by Lindsay, 1979) for different 

ionic strengths. A graph was then plotted (shown in Appendix 3.1) for 

activity coefficients against ionic strengths and then particular ionic 

strengths of different nutrient solutions were extrapolated to obtain the 

corresponding activity coefficient values. Then the activity of Ca was 

calculated using those values of activity coefficients in equation 3.1.

For calculating the activity of the sum of the monomeric A1 

species (£ a AI mono)/ concentrations of individual A1 species were

calculated using the computer programme 'Titrator' (Section 3.7), then 

activities of the species were calculated using Debye-Huckel equation 

(Lindsay, 1979). Individual activities were added to obtain E a Al mono. 

The symbol a Al this thesis refer to E a Al mono-

3.9. Calculations, graphics and statistical analysis

Most calculations were carried out using the program  'Excel'; graphs 

were p lo tted  using the softw are 'Cricket g raph ', som etim es in

a i = c i T i- 

Where:
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combination with 'MacDraw'. All programs were mounted on an Apple 

M acintosh microcomputer. Statistical analyses were carried out either 

using the program  'Statworks' on an Apple Macintosh microcomputer 

or by using the program  GENSTAT on an A ustralian  N ational 

University VAX main frame computer.

3.10. Amendments in soil

3.10.1. Introduction

Calcium and A1 levels in soil form an essential component of this 

project. It was therefore, necessary to either find soils in nature with 

varying Ca and A1 levels or alter soil Ca and A1 levels under laboratory 

conditions. Soils w ith differing Ca and A1 levels under natural 

conditions are likely to differ in other characteristics as well, making it 

difficult to isolate differences in plant responses which could be solely 

assigned to levels of Ca and A1 in the soils. Soils rich in Ca are generally 

high in pH and vice versa. The pH level reflects the solubility of mineral 

elements, m ineralization of soil organic matter and element uptake by 

plants. Further, the levels of soluble A1 in soils are determ ined by 

various factors such as soil mineralogy, pH, solution ionic strength, 

organic matter, and the presence of other elements such as P, Ca, and /o r 

Mg. Furthermore, there may be variations in soil physical and biological 

conditions even at sites close to one another. Therefore, in experiments 

which involve the variation of A1 and Ca in soils, it is more convenient 

to alter the levels of these elements in the same soil under laboratory 

conditions.

The use of soil amendments to alter soil acidity by liming is an 

ancient and com m on practice. Recently m any experim ents have 

included soils where Ca and A1 levels were altered. For example, Adams
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and Moore (1983) treated a soil: with CaS0 4  to correct a Ca deficiency; 

with Ca(OH)2 to correct a Ca deficiency and A1 toxicity; and with MgO to 

correct an A1 toxicity and aggravate a Ca deficiency.

The objective of the present experiment was to devise 

appropriate treatments which would vary the levels of A1 and Ca in a 

single original soil without affecting other chemical characteristics in any 

significant way. Initially the experiments were conducted to produce 

soils of varying A1 and Ca levels to grow E. camaldulensis. To change 

soil Ca a combination of lime and CaSC>4 (in addition to their separate 

treatments) was tested and the accompanied changes in soil pH, 

exchangeable Ca, Al, Mn, K, Mg and available P were compared to single 

separate additions of CaSC>4 and CaCC^.

The soil used for experiments described in Chapters 4.3, 4.4 and 

5 was high in exchangeable Al, but was found to have no monomeric A1 

in soil solution (as revealed by ion chromatography, Willett, 1979). 

Therefore, exchangeable and solution Al were increased in the soil to 

levels where some monomeric Al appeared in solution.

3.10.2. Materials and methods for amending soil Calcium levels

The same soil used for the experiments described in Section 4.3 was used 

for this experiment. Soil was collected in bulk and four hundred and 

eighty three gms of field moist soil (equivalent to 400 gm of oven dry 

soil) was transferred to each preweighed polythelene bag inside a plastic 

pot. Soil was treated with pure CaCC>3 at the rate of 4940, 9880 and 14820 

kg/ha. This covers a range from little to excess lime as revealed by the 

Shoemaker et al (1961) method. This method showed that 8650 kg/ha 

and 10380 kg/ha of lime were required for this soil to reach a pH of 6.0 

and 6.4 respectively. Identical treatments were also made with CaSÜ4
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which contained the same am ounts of Ca as was added by CaCÜ3 

treatm ents of the soil. Three additional treatments were included with 

equal amounts of Ca to 9880 kg CaCOß/ha from a combination of CaCOj 

and CaSC>4 at a proportion of:

(a) 1 : 2,

(b) 1 : 1, and

(c) 2 : 1.

All treatm ents were replicated 4 times. The chemicals were mixed 

thoroughly with the soil. The soil was wetted to 70% field capacity and 

the pots were placed in a glasshouse w ith controlled tem perature 

facilities (day/night = 25/15°C).

Pots were sampled at the end of 1, 2, 4, 8, 12 and 16 weeks for 

chemical analysis. Before sam pling, soil in each pot was mixed 

thoroughly. At the end of each week (whether sampling was made or 

not), soil in each pot was mixed thoroughly and wetted back to 70% field 

capacity. Soils were analysed for pH w, pH s, EC, exchangeable Ca, Mg, K, 

Mn and A1 at field moisture conditions (Section 3.3)'and the results were 

converted to an oven dry basis. At the end of 16 weeks the soil solution 

(1 : 1) was extracted (Section 3.3) and pH, EC and total cations were 

analyzed in addition to exchangeable data. Values for 0.5M NaHCOß 

extractable P were extremely low in all treatm ents and were not 

continued after the second week.

3.10.3. Materials and methods for amending soil Aluminium levels

After a prelim inary trial to select the treatm ent range, field moist soils 

were treated with 0, 10, 25, 50 and 75 mg A l/kg  soil in the form of 

AICI3.6H 2O in solution. Treated soils were wetted to field capacity and 

kept on a laboratory bench. An electric fan was used to expedite drying of 

the soil. Soil samples were mixed individually and wetted again to field
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capacity when they dried to ~ 40% field capacity. After four such cycles of 

drying and wetting over about three weeks, they were analysed in a moist 

condition for soil solution (1 : 1) pH, EC, cations and monomeric A1 

(Section 3.3.2).

3.10.4. Results

Figures 3.3, 3.4 and 3.5 are presented to show the changes in some 

chemical characteristics of soil with different Ca sources over a period of 

16 weeks. The treatments selected for the figures were: control, 

intermediate levels of CaS0 4  and CaCOß sources, and the combined 

treatments [(a), (b) and (c) from Section 3.10.2]. It may be seen from 

Figure 3.3a that pHs increased from week 1 to week 2 and then decreased 

in all treatments until the 4th week; in some treatments pHs decreased 

further up to the 6th week and after that were almost stable for all 

treatments. The maximum decrease in pHs was in the case of the CaCC>3 

treatment of soil where pHs was the highest.

There was not much variation in the EC of the 1 : 5 soil slurry 

over the 16 week period (Figure 3.3. b). All treatments raised EC; the rise 

being very little in the case of the CaCC>3 treatment and a maximum rise 

occurred in the case of the CaSÜ4 treatment. In combined treatments, 

the proportion of CaSC>4 determined the rise in EC.

Concentrations of exchangeable Ca were also fairly steady up to 

12 weeks and there was a little rise in Ca concentration between 12 and 16 

weeks (Figure 3.4 a). All treatments raised the Ca levels to almost the 

same values.
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pHs/control
pHs/CaS04
pHs/CaC03
pHs/a
pHs/b
pHs/c

1000

— EC/control  
— EC/CaS04
.... EC/CaC03
-----o—  EC/a
~ “  EC/b
— o—  EC/c

e 6oo

Week after Ca treatment

Figure 3.3. Changes in (a) pHs and (b) EC of soils of selected treatments 
over the incubation period. Bars represent SE of the mean, 
a, b and c indicate treatment combinations of CaC03and CaS04 
at a ratio of 1 : 2,1 :1 and 2 : 1 respectively.
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Figure 3.4. Changes in (a) Exchangeable Ca and (b) Exchangeable A1 of soils 
of selected treatments over the incubation period. Bars represent 
SE of the mean, a, b and c indicate treatment combinations of 
CaCO^ and CaS04 at a ratio of 1 : 2,1 :1 and 2 :1 respectively.
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Calcium treatments which maintained high exchangeable A1 

levels have shown a slight decrease in A1 levels up to the 12th week (e.g.; 

In control, A1 declined from 66.0 me/kg after one week to 54.9 me/kg 

after 12 weeks and in CaSC>4 treated soils A1 declined from 60.2 me/kg 

after one week to 44.4 me/kg after 12 weeks) (Figure 3.4 b). There was 

very little decline after that. Treatments which resulted in low A1 levels 

have shown little or no decline. Since all the treatments under 

comparison had equal amounts of Ca, it is the source of Ca which affected 

A1 levels.

Figure 3.5 shows total changes in exchangeable Ca, Al, Mg, K 

and Mn over the incubation period, compared to their respective initial 

(1 week) control values. Soil solution values for each cation after 16 

weeks was subtracted from the corresponding exchangeable values to 

calculate the actual amount of each cation in exchangeable positions. To 

calculate initial exchangeable values, soil solution values were taken to 

be zero. There was an increase in the exchangeable Ca for all the Ca 

treatments; the increase was more with CaCC>3 treatments and for 

combined treatments where the proportion of CaCC>3 was higher (Figure 

3.5). There was a decrease in the exchangeable A1 for all Ca treatments; 

the decrease was smaller with the CaSC>4 treatments. Since there was a 

slight decrease in the soil pH over this period, it is not possible to explain 

the behaviour of A1 with the available data. There was not much 

variation in the exchangeable Mg, K and Mn.
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The characteristics of the soil solution were considered in the 

case of A1 treated soil since the main aim was to examine the presence 

and quantity  of m onom eric A1 in soil solution as a result of A1 

treatment. The effects of A1 treatments on soil solution characteristics 

are shown in Table 3.2. An increase in A1 levels caused a consistent 

decrease in pH from 5.64 (control) to 3.72 (highest Al). Also there was an 

increase in EC of the soil solution from 62 m S/cm  to 503 m S/cm . 

Likewise there was an increase in the concentration of the cations Ca, Mg, 

K, Mn and Al. The increase was small for Ca and Mn but Mg, K and Al 

concentrations increased substantially.

Table 3.2. Effects of Al treatm ent on chemical characteristics of soil 
solution.

Al treatment level (mg/kg)

Characteristics 0 10 25 50 75

Soil solution pH 5.64 4.28 3.97 3.77 3.72

Soil solution EC, m S/cm 62 105 210 365 503

Cations in soil solution (mg/kg):

Ca 0.5 0.7 1.4 1.4 2.6

Mg 0.1 2.7 8.3 14.8 22.5

N a 3.5 9.5 14.0 12.0 13.5

K 2.0 7.2 12.1 16.2 22.6

M n 0.0 0.1 0.4 0.6 1.3

Al 0.8 0.3 0.8 3.2 10.1

Al (monomeric) - - 0.7 2.8 8.1



73

Most im portantly, m onomeric A1 began to appear in soil 

solution beginning with a treatm ent level of 25 mg A l/kg  soil. The 

quantities of monomeric A1 varied significantly. They were 8.1 mg /k g  

when A1 was added at 75 mg A l/kg  soil which is about 10% of the added 

am ount whereas the am ount of monomeric A1 in soil solution only 

reached 5% when A1 was added at 50 mg A l/kg soil.

3.10.5. Discussion and conclusion

The main aim of the experiments described in this Section was to select a 

Ca source which w ould raise Ca levels w ithout affecting other 

param eters significantly. A second aim was to select an A1 treatm ent 

which would raise soil A1 status to the desired levels of monomeric A1 in 

soil solution. Since it is obvious that addition of more Ca salts will raise 

soil Ca status to higher values, emphasis was given to which Ca source 

w ould have the m inim um  effect on other characteristics (rather than 

which treatm ent raised Ca, and by how much). Therefore, treatments 

containing the same amount of Ca were compared (Figures 3.3, 3.4 and 

3.5).

It is difficult to compare the results of the present experiment 

with those in the literature. Attempts such as this to raise soil Ca levels 

and subsequently examine the impact on other chemical characteristics 

are not very common. Generally lime is added to an acid soil by a level 

which is p redeterm ined by a 'lime requirem ent' assessm ent (e.g., 

Shoemeker et al, 1961). In screening studies for acid or A1 tolerance, 

usually acid soil or Al toxic soil is limed at different rates to obtain a 

range of acidity (Carvalho et al, 1980; Smit et al, 1987 b) or Al toxicity 

(Krizek and Foy, 1988; Joslin and Wolfe, 1988) and the plants are grown 

on for tolerance tests. This entanglement of factors leads to a great deal 

of confusion. Further there are also reports of the effects of liming on
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plant growth which include simultaneous nutrient availability 

evaluation during (Martini and Mutters, 1985 a; b) or after plant growth 

(Anandan et al, 1985). Reports are also available describing specifically 

the raising of soil Ca to predetermined levels by adding CaCOß, Ca(OH)2 

etc (Simpson et al, 1977; Howard and Adams, 1965), but again the side 

effects of such treatments are not considered.

Anandan et al (1985) analyzed the liming of an acid sandy loam 

which then had peanuts grown for 105 days. They reported a rise in pH 

from 4.3 to 6.9 and a rise in exchangeable Ca from 4.3 to 24.3 me/kg. 

Although these changes were reported under field conditions as well as 

in pot cultures where plants were grown and irrigated, these results may 

be compared to the present data in terms of variation in pH, Ca and Al. 

Their effects (pH, exchangeable Ca and Al) are all smaller compared to 

the present experiment. For example, in the present experiment, pHw 

and exchangeable Ca increased by 0.52 units and 47.57 me/kg respectively 

under a lime treatment of 4990 kg/ha compared to 2.6 units and 20 

me/kg respectively under a lime treatment of 2250 kg/ha (Anandan et al, 

1985). The differences in post treatment Ca levels were quite high. 

However, their soil was initially more acid (by about one unit of pH) and 

the soils were subjected to plant growth, irrigation and possible leaching. 

A substantial part of the Ca (added as lime) may have been absorbed by 

the growing plants or may have been leached out [(Jarvis (1987) reported 

loss of Ca from soil columns after irrigating limed acid soil)]. A 

treatment of 1723 kg CaCC^/ha reduced the exchangeable Al to a trace 

(Ananadan et al, 1985) whereas in the present experiment exchangeable 

Al was present even at 9880 kg CaCC^/ha treatment. However, the effect 

of a Ca addition would have been different had this study been conducted 

under field conditions where downward movement of Ca would have 

occurred (Pearson et al, 1961; Juo and Ballaux, 1977).
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The stability of pH, exchangeable Ca and A1 during the present 

experim ent may be compared with that of Martini and Mutters (1985 a; 

b). In their experiment both pH and exchangeable A1 became stable 

earlier than in the present experiment. In their experiment Ca levels 

increased up to 16 weeks for the high lime treatment soils whereas lime 

rates were less in the present experiment and Ca here remained fairly 

steady up to 12 weeks and then increased slightly until 16 weeks.

When all the analyses for Ca treated soils in the present 

experiment are reviewed together, the combined 3 treatment, (c) did not 

alter the Mn level at all. The pHs under the CaSC>4 treatment was closer 

to the control but this treatm ent increased the Mn status in the soil 

which is an im portant acid soil factor. The CaCOß treatment raised the 

p H s and lowered Mn and A1 levels more than treatm ent (c). This 

treatment, although it lowered the exchangeable A1 level, had A1 which 

was still higher than the CaCC>3 treatment. In conclusion, soil Ca levels 

in low Ca acid soils such as the present one can be raised by adding Ca 

from a combined CaCC>3 and CaSC>4 source at a ratio of 2 : 1. This will 

raise Ca levels but will not alter other characteristics to a significant 

extent.

In order to bring small amounts of monomeric A1 into the soil 

solution AICI3 6H20  was added to soil. Higher A1 treatments resulted in 

greater quantities of other cations (including Al) in soil solution. This 

effect may be due to the displacem ent of other cations by Al in the 

exchange complex. Since the addition of Al causes a change in soil 

chemical characteristics, including the pH  and concentrations of Mg, K 

and Na in soil solution, emphasis must be given to the selection of an Al 

treatm ent which brings monomeric Al into soil solution while other 

chemical characteristics are not significantly affected.



CHAPTER 4

THE PERFORMANCE OF EUCALYPT SPECIES IN ACID SOILS
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4. THE PERFORMANCE OF EUCALYPT SPECIES IN ACID SOILS 

4.1. Introduction

Plant species, and cultivars w ithin species, vary w idely in their 

sensitivity and tolerance to acid soil infertility factors. Australian native 

eucalypts grow right across a vast range of edaphic factors. Very subtle 

changes in species distribution mirror a changing mosaic of land with 

very gradual changes of soil nutrients and soil m oisture regimes 

(Florence, 1963). The distribution of each species or association of species 

reflects a difference in preference for environm ental conditions. 

However, reports on the performance of different eucalypt species in 

natural acid soils are rare.

One of the objectives of the research described in this Chapter 

was to select species for future experiments on the effects of A1 toxicity 

and related factors on the growth of eucalypts. For this purpose two 

experiments were carried out. In the first (Section 4.2) 22 eucalypt species 

were grown in three soils of differing acidity. On the basis of their 

performance in these soils a preliminary selection of four species was 

made. In the second experiment (section 4.3) the response of these four 

selected species to lime amendments was investigated in another soil 

which was higher in exchangeable A1 and lower in exchangeable Ca and 

available P than the soils used in the first experiment. Thus, on the 

results of these experiments, one species was finally selected for future 

experiments.

Though the objective of this research was the selection of 

particular species, a subsidiary aim was to begin to fill the gap in basic 

information on the growth of eucalypts in Australian acid soils. The first 

experiment showed the comparative pattern of growth of a variety of
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eucalypt species in acid soils, meaning that the influences of a variety of 

acidity factors could begin to be observed. The second group of 

experiments (Sections 4.3 and 4.4) showed how the performance of four 

selected species varied with lime or moisture levels respectively.

4.2. Growth of 22 eucalypt species in three different acid soils

4.2.1. Selection of soils and eucalypt species

A soil survey by Talsma (1983) on the Cotter catchment area, A. C. T 

provided the data for a preliminary selection of soils. Soil samples were 

collected from sites 1, 2, 3, 4, 5, 6, 7 and 8, (Figure 4.1) all of which were 

identified as acid soil sites by Talsma (1983). Because of the well known 

interaction of A1 with soil organic matter, this complication was excluded 

by removing organic matter rich surface soils and these horizons were 

excluded from the collection. Soils were collected from a variety of 

depths below the A^ horizon. After collection, soil material was sieved 

(2 mm sieve) and stored in a cold room until the completion of analyses.

Soil description including pH in water (pHw), pH in 0.01M 

CaCl2 solution (pHs), particle size distribution, organic matter content, 

and exchangeable Ca, Mn and Al, were made by the methods described in 

Chapter 3. The characteristics which were used for selection of the three 

soils for this experiment are presented in Table 4.1. The following 

further criteria (once acidity was established) were considered in the 

selection of soils: (a) similar parent materials, (b) low in organic matter 

content, (c) low in clay content, (d) low in exchangeable Mn, (e) low in 

gravel and/or stone content and (g) a wide range in exchangeable Ca and 

Al. Vehicular access to the site for bulk soil collection was also taken into 

consideration in the final selection.
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Figure 4.1. Location map showing the selected sites from the Cotter area, A. C. T.
(Talsma, 1983). Compartment 152 of the Uriarra forest is also shown as A 
on the map.
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The final selection of sites and then soils ensured that all 

belonged to the same volcanic rocks parent material (Talsma, 1983) . Clay 

content of these soils varied from 7.5 g/100 g to 20.0 g/100 g. Soils from 

sites 8 (both depths) and 6 (20 - 30 cm) had high clay contents and were 

excluded from selection. Soils from sites 2 (both depths), 3 (10 - 20 cm) 

and 7 (20 - 30 cm) were high in gravel and/or stone and were excluded 

from selection. Organic matter content of the soils also varied widely; 

from 0.86 to 4.23 g/100 g. Soils from sites 1 (10-20 cm), 2 (20 - 30 cm) and 

5 were excluded because of their high organic matter content. 

Exchangeable Mn content of the soils ranged from 0.06 to 3.09 me/kg. 

Soil from site 4 (10 - 20 cm) had the highest Mn content followed by those 

from site 4 (20 - 30 cm), site 2 (both depths) and 7 (10-20 cm). Therefore, 

these soils were also excluded from selection. After elimination of soils 

as described so far, soils from sites 3 (20 - 30 cm), 6 (10 - 20 cm) and 1 (20 - 

30 cm) remained. These soils varied widely in exchangeable Ca (14.86 

me/kg to 40.97 me/kg), exchangeable A1 (0.84 me/kg to 6.81 me/kg) and 

the ratio of exchangeable Ca : exchangeable A1 (2.18 to 48.77) which 

fulfilled the selection criteria. The sites 3, 6 and 1 were located at an 

elevation of 710, 750 and 710 m respectively. Talsma (1983) classified the 

soil from site 6 as a red podzolic and from sites 1 and 3 as yellow earths. 

Soils from sites 3, 6 and 1 were termed soil 1, 2 and 3 respectively and this 

nomenclature is used throughout this and later Chapters.

Bulk quantities (approximately 150 kg) of each soil were 

collected for the pot experiment, air dried and sieved through a garden 

sieve ( approximately 5 mm mesh size). Soils were analyzed for pH, 

organic matter, exchangeable Ca, Al, K and Mg, available P, extractable 

mineral N and field capacity.
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The eucalypt species used:

The eucalypt species selected for this experiment included those growing 

naturally under conditions of varying soil pH. Some species (E. 

camaldulensis, E. citriodora and E. tereticornis ) which are being grown 

in Bangladesh (the authors home country) were also included. Table 4.2 

provides a list of the eucalypt species (arranged alphabetically) and a 

description of the area from which seeds were collected. These species 

represent a good geographical coverage (Table 4.2) and six Australian 

states were covered. The species selected cover a range of altitudes from 0 

to 1225 m, latitudes from 17°38' to 38°4'S and longitudes from 115°45' to 

153°12'E.

4.2.2. The pot experiment

Air dry soil, in amounts equivalent to 1940 gm oven dry weight, was 

placed in each pre weighed polythene bag inside a plastic pot. Seven 

week old seedlings were transplanted at a rate of three seedlings per pot 

and the pots were placed in the glasshouse. The glasshouse 

environment was controlled to give day and night temperatures of 25 

and 16°C respectively. There were five replicates. When the seedlings 

were established (after two weeks), the pots were thinned to two 

seedlings per pot and the soil in each pot was covered with 40 g of plastic 

beads (as mulch). Since the soil was very poor a basal dose of urea 

dissolved in water was applied at a rate of 30 mg N per kg of soil. 

Otherwise very poor growth would have made it difficult to observe any 

treatment effect. Shoot heights were recorded initially and then weekly, 

beginning with the 8th week after transplantation. Seedlings were 

harvested at 20 weeks after transplantation and shoot weight was 

recorded after oven drying the seedlings at 70°C for 48 hours.
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ĉ<U

3
-T3 

« a
5 S

2 o t3 
• 2 •£ 
*C)

§•5*EX. CO •r*
“a 03

<3
vfe.
S
£36c

<3XuK
X
o
CO
CJ
B

2 5

c -2
C =2
Q  <U

B B

3
cuX
O

•2
E

CO• m

3
<u3
co
o

uj ui ui ui ui uj

CO
Of
B
cu

x  ca

« C3 —>i 3 :~
O r 56. co„ S O CO

s.  *■ ^  2

CO*4.
V._«3

co
5

C3 ®
K £

.*> 3X v,Q CU

«  W m q uj uj ui ui w uj ui

cloLO
oBOOo

CN
rH

9
LO
£CN

LQ CO 
00 LO

S  9
ONLO £  3CN O LO LO LO

COo
ONCO

5co
LO

OO
o

3
CN

XCvX ■cf

c / i c o c o c o c o c o c o t o c n c o c n c o c o c o c o c o

C N cO ^ L O nO C x COOn CN CO LO X OO On O r-H CN r—■ CN CN CN

S 
11

97
8 

E.
 

vi
m

in
al

is
 

B
lu

nd
el

ls
 F

la
t, 

A
.C

.T
. 

68
5

S
12

24
0 

E.
 y

al
at

en
si

s 
N

 o
f 

C
oo

kt
ow

n,
 Q

ld
. 

30

So
ur

ce
: 

T
re

e 
Se

ed
 C

en
tr

e,
 D

iv
is

io
n 

of
 F

or
es

tr
y 

an
d 

Fo
re

st
 P

ro
du

ct
s,

 C
.S

.I
.R

.O
., 

C
an

be
rr

a,
 A

.C
.T

.



83

Chemical analysis of harvested seedlings

Since the total sample size was too large for complete analysis, chemical 

analyses were carried out on only six selected species. These six species 

were the best, interm ediate and the worst performing species in these 

soils in terms of shoot weight (Table 4.5). The species chosen were, best: 

E. c a m a ld u le n s is ,  E. p i lu la r is ; intermediate: E. d ives ,  E. d ec ip ien s ; worst: 

E. g u m m i fe r a  and E. y a la te n s i s .  However, the perform ance of each 

species varied in each of the three soils and the same species was not 

ranked identically in all three soils.

In some cases the seedlings were very small and there was 

insufficient biomass available for analysis from the two seedlings grown 

in a single pot. Therefore, seedlings from more than one replicate pot 

were combined to make one sample. Where the shoot weighed in excess 

of the required amount, it was ground and sub sampled for digestion. 

Otherwise the whole shoot was digested for analysis. For N, plant 

samples were digested with H 2SO4 (Jackson, 1958). For cations and P, 

samples were digested with HNO3-HCI (Heffernan, 1985). From the 

digest, N was estim ated  colorim etrically using an autoanalyzer 

(Heffernan, 1985). Phosphorus was also estim ated by an autom ated 

procedure using am m onium  vanadate (Jackson, 1958). Potassium, Ca, 

Mg, Mn and N a w ere estim ated  using an atom ic absorption 

spectrophotometer.

4.2.3. Results and discussion

Table 4.3 compares the characteristics of the three soils selected for the 

experiment. Soil 1 was the most acid and soil 2 intermediate and soil 3 

least acid. Soil 1 had pH w and pH s of 5.34 and 4.28 respectively, its 

exchangeable A1 content was 6.81 m e/kg  and the highest of all these soils
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while its exchangeable Ca level of 14.86 m e/kg  was the lowest. The 

percentage of A1 saturation was also the highest in soil 1 (22.94). 

Exchangeable Mg in soil 1 and 2 were similar (6.78 and 7.66 m e/kg  

respectively) but was much higher in soil 3 (21.28 m e/kg). The organic 

matter content was low in all three soils, and lowest in soil 1 (0.86 g/100 

g). Extractable mineral N followed the same trend as organic matter.

Table 4.3. Important characteristics of the three soils used.

C haracteristics S o il 1 S o il 2 Soil 3

Clay (g/100 g soil) 13.75 15.00 13.75

Field capacity (g/100 g) 22.50 20.90 27.80

pH w 5.34 5.53 5.94

PHS 4.28 4.43 4.73

Organic matter (g/100 g) 0.86 2.20 1.40

NH4-N (mg/kg) 1.50 4.20 2.12

NO3-N (m g/kg) 0.43 1.48 0.52

Available P (m g/kg) 0.40 14.43 0.19

Exch. K (me/kg) 1.16 2.15 0.91

Exch. Ca (me/kg) 14.86 15.42 40.97

Exch. Mg (me/kg) 6.78 7.66 21.28

Exch. A1 (me/kg) 6.81 4.71 0.84

Exch. Mn (me/kg) 0.08 0.12 0.06

Ca (m e/kg)/A l (me/kg) 2.18 3.27 48.77

Soils varied in available P (0.19 to 14.43 m g/kg) and soil 2 had 

the highest available P (14.43 m g/kg). Thus soil 2 had the highest organic 

matter, m ineral N and available P for the three soils studied. These
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variations in the acidity related properties of soils were useful in the 

comparison of the performance of the eucalypt species.

Performance of the tree species:

Performance is discussed in terms of two parameters: shoot height (cm) 

and dry shoot weight (mg/seedling). Table 4.4 shows data on shoot 

height at harvest from the three soils. Data are arranged in descending 

order of performance in soil 1 which is the most acidic. The least 

significant difference (LSD) in shoot height among the soils is also shown 

in the table. Shoot heights ranged from 3.89 cm for E. melliodora in soil 

3 to 44.08 cm for E. camaldulensis (a) in soil 2. Taking the average for all 

soil types, shoot height ranged between 11.19 and 21.36 cm. On the basis 

of average shoot height, E. occidentals, E. camaldulensis (a) and E. 

viminalis were the best performing species and E. saligna, E. yalatensis 

and E. blakelyi were the poorest ones. Appendix 4.1 shows fortnightly 

shoot heights beginning at the 8th week after transplantation. This table 

shows that the species which grew better had, in general, consistently 

higher shoot heights during the entire period although they were very 

similar at the 8th week after transplantation. The opposite was true for 

species growing slowly. The variation in shoot height among the three 

soils was significant (P = 0.05) for all the species indicating that species 

varied not only in their growth rate but also in their erectness.
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Table 4.4. Shoot heights (cm) at harvest of different species in the three 
soils (arranged in order as shoot height in soil 1).

Species Soil 1 Soil 2 Soil 3 LSD (0.05) Average

E. in m in a l i s 14.57 32.78 8.43 4.83 18.59

E. citr iodora 13.40 31.29 10.20 4.68 18.30

E. o cc id en ta l is 13.09 38.98 12.02 4.04 21.36

E. p i lu la r is 11.39 24.93 8.98 2.23 15.10

E. m a n n i fe r a 11.35 36.26 6.69 3.53 18.10

E. albens 10.84 21.60 7.32 2.24 13.25

E. ca m a ld u le n s is  (a) 10.82 44.08 6.31 4.29 20.40

E. c a m a ld u len s is  (b) 10.77 29.35 5.57 5.24 14.34

E. d ec ip ien s 10.47 28.90 7.27 3.99 15.55

E. g u m m i fe r a 9.61 17.38 8.64 3.53 11.88

E. d iv e s 9.55 24.88 5.41 3.28 13.28

E. rossii 8.82 28.55 5.75 3.59 14.37

E. m a c r o r h y n c h a 8.81 26.54 5.40 4.02 13.58

E. b lake ly i 8.80 21.74 4.56 4.51 11.70

E. calcicola 8.08 24.48 4.19 2.69 12.25

E. p o p u ln e a 8.04 27.29 4.48 2.36 13.27

E. sa ligna 7.67 20.31 5.60 4.32 11.19

E. te re t ico rn is 7.33 29.10 4.90 2.38 13.78

E. p o ly a n th e m a s 7.27 25.08 4.67 1.81 12.34

E. y a la te n s is 6.60 21.49 5.68 4.43 11.26

E. m e l l io d o ra 5.74 26.79 3.89 2.67 12.14

E. m ic ro th e ca 5.72 31.77 5.09 3.19 14.19

Average 9.49 27.77 6.41 14.56

Table 4.5 shows shoot weights (m g/seedling) of the species in 

the three soils. The species are again arranged in descending order of
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shoot weights observed in soil 1 and values of LSD for shoot weight are 

also shown. The shoot weight varied from 2344 m g/seedling for E. 

camaldulensis (b) in soil 2 to only 21 m g/seedling for E. melliodora in 

soil 3. The last column in the table shows the average shoot weight of 

the species in three soils and this ranged from 909 to 211 m g/seedling. 

Based on Table 4.5 it is possible to group the species on their performance 

in soil 1 into good, medium and poor. Some of the species did not 

perform equally well in all the soils. Rejecting those that have major 

inconsistencies in their performance the species may be grouped as:

Good: E. camaldulensis (b), E. pilularis, E. macrorhyncha,
E. citriodora, and E. occidentalis.

Interm ediate: E. calcicola, E. rossii, E. dives, and E. saligna.

Poor: E. blakelyi, E. melliodora, E. polyanthemas, and E.
yalatensis.

In all soils the species E. gummifera and  E. saligna show ed 

physiological d isorders in their leaves from about 12 weeks after 

transplanting. After about 16 weeks, E. rossii, E. occidentalis and E. 

calcicola also developed similar symptoms in some soils (necrosis and 

purple blotches on older leaves). The symptoms were similar to those 

reported for phosphorus deficiency in E. pilularis (Truman and Turner, 

1972). Before harvest, leaves of E. saligna were shed in soil 1 and 3 and 

leaves of E. gummifera were shed from seedlings in soil 3.

From Table 4.5 the variation in performance of the species 

across the three soils can be seen. The variation is significant. This inter 

soil difference in growth indicates that the factors that accompany acid 

soil characteristics are important in determining seedling growth. This is 

a fundam entally im portant conclusion.
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Table 4.5 Shoot weights (m g/seedling) of different species in the three 
soils (arranged in order of shoot weight in soil 1).

Species Soil 1 Soil 2 Soil 3 LSD (0.05) A verage

E. c a m a ld u le n s is  (b) 305 2344 78 452 909

E. p i lu la r is 291 2093 140 349 841

E. d iv e s 206 1410 73 158 563

E. m a c r o r h y n c h a 189 1948 80 536 739

E. d e c ip ien s 183 1400 79 342 554

£. a lbens 178 974 85 146 412

E. rossi i 169 1414 73 324 552

E. calcicola 159 1481 46 193 562

E. v i m i n a l i s 154 1090 47 5 430

E. g u m m i f e r a 146 596 137 237 293

E. o c c id e n ta l i s 132 1572 116 251 607

E. c a m a ld u le n s i s  (a) 129 1915 47 412 697

E. c itr iodora 126 1577 96 510 600

E. blake ly i 121 1084 42 374 416

E. p o p u ln e a 101 1233 31 188 455

E. te re t ic o rn is 100 1563 59 141 574

E. m a n n i fe r a 97 1159 22 257 426

E. sa ligna 80 1224 42 305 449

E. p o l y a n t h e m a s 60 782 26 62 289

E. y a la te n s is 46 557 31 189 211

E. m ic ro th e c a 41 1468 32 227 514

E. m e l l io d o ra 37 1019 21 183 359

Average 139 1359 64 521

The soils varied in a number of characteristics. Soil 2 was 

severalfold higher in available P than soil 1 and soil 3. Also soil organic
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matter and extractable mineral N were much higher in soil 2. Soil 3 was 

higher than soil 1 with respect to organic matter, extractable mineral N, 

pH, exchangeable Ca and Mg, but lower in available P. Growth of all the 

species was best in soil 2 and was poorest in soil 3. There is thus reason 

to hypothesize that low P is the reason for such poor growth in soils 1 

and 3. Ashton (1976) found that the levels of P determined by both total 

digestion and NaHCÜ3 extraction correlated strongly with the growth of 

E. regnans and E. sieberi (shoot height and shoot dry weight) in pot 

experiments. McColl (1969) reported changes in the eucalypt species 

growing on the south coast of New South Wales depending on a gradient 

of moisture and nutrient status. For instance these characteristics varied 

from ridge to gully sites and parallelled changes in eucalypt association. 

He found that concentrations of leaf P and bark Ca of dominant trees on 

various sites correlated strongly with the corresponding soil nutrients. 

In pot experiments with soil from these sites he found that 6 eucalypt 

species had better growth in the soil with high P levels. These findings 

are similar to the present study: the species differed widely in their

performance in the three acid soils which varied in other properties, and 

especially their P levels.

Mineral concentrations in selected eucalypt species are shown 

in Table 4.6. The table also shows the ANOVA for individual elements 

with respect to the three soils and 6 species. Aluminium concentrations 

were very low (below the detection limit of atomic absorption 

spectrophotometer). It can be seen that the mineral composition for all 

elements significantly differed between species. Except for N, seedling 

mineral composition for all other elements differed significantly across 

the soils. It should be mentioned that equal amounts of N were added to 

all soils during the growth of seedlings and therefore it is likely that 

seedling N results do not reflect the soils natural levels.
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Except for Mg and Na, there were significant soil by species 

interactions in m ineral composition. However, the difference in P 

concentrations in seedlings grown on different soils is quite high. 

Seedlings grown in soil 2 were high in P compared to seedlings in soils 1 

and 3; probably due to higher P and organic m atter in that soil. 

Available P levels of the soils were highly correlated (r2 = 0.81) with 

seedling P concentration. In general, the species E. dives, E. gummifera 

and E. yalatensis showed higher mineral accumulation. Since in E. 

gummifera and E. yalatensis shoot yield was very low and the material 

consisted of succulent leaves and stems, their mineral concentration was 

likely to be high. For E. dives, it may have been the characteristics of the 

species.

Concentrations of Ca, Mg and P were much lower in E . 

camaldulensis than in the other species particularly in soil 2 where 

overall growth was better. This is probably due to the large size of the 

seedlings. On the other hand E. pilularis was of about the same size in 

soil 2 but the mineral concentrations were quite different. A striking 

difference in mineral accumulation is the very low Na content in all the 

soils by E. decipiens which may also be a characteristic of the species.
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Table 4.6. Mineral concentrations of selected eucalypt species grown in the 
three acid soils.

Soil and species
N P K Ca Mg Mn N a

Percent mg/kg

Soil 1

£. c a m a ld u le n s i s 1.50 0.07 1.22 0.35 0.16 453 577

E. p i lu la r i s 1.31 0.05 0.75 0.40 0.25 309 1429

E. d iv e s 2.56 0.09 1.98 0.44 0.20 590 2285

E. d ec ip ie n s 1.68 0.07 0.92 0.54 0.26 572 68

E. g u m m i f e r a 1.84 0.10 1.08 0.65 0.26 480 1529

E. y a la te n s i s 2.55 0.09 1.29 0.58 0.37 759 1146

Soil 2

£. c a m a ld u le n s i s 1.19 0.13 1.22 0.33 0.13 391 405

E. p i lu la r is 1.13 0.18 0.95 0.46 0.30 359 992

E. d ives 1.66 0.28 1.89 0.45 0.21 442 1048

E. d ec ip ien s 1.89 0.19 1.11 0.54 0.30 755 157

£. g u m m i fe r a 2.53 0.24 1.67 1.09 0.40 719 1229

E. y a la te n s i s 2.92 0.23 2.04 1.11 0.44 1364 910

Soil 3

£. c a m a ld u le n s i s 1.59 0.05 1.01 0.40 0.19 571 876

E. p i lu la r is 1.24 0.03 0.71 0.37 0.28 332 1909

E. d ives 1.83 0.04 1.28 0.43 0.21 517 1432

£. dec ip iens 1.55 0.04 0.69 0.42 0.28 461 97

£. g u m m i fe r a 1.90 0.08 0.89 0.48 0.22 374 1804

E. y a la te n s is 1.69 0.05 0.71 0.37 0.29 362 1697

ANOVA:

Between soil 2.94 252.97** 37.67** 7.87** 4.25* 4.48* 6.06*’

Between species 12.00** 11.05** 22.28** 5.67** 12.58** 4.27* 15.13

Between soil x species 3.00* 4.46** 4.06** 2.42* 1.74 2.50* 1.40

* * and * indicate the F-ratio is significant at <1 % and < 5% level respectively.
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4.2.4. Conclusions for the selection of species for the liming experiment

The lime response experiment which follows was conducted to judge 

whether eucalypt species improve their perform ance when soils are 

conventionally limed. For this purpose E. camaldulensis (b) and E. 

citriodora were chosen because they are useful for Bangladesh and 

showed a reasonable high level of growth in all soils. Eucalyptus  

gummifera  and E. saligna were selected to represent the poorer 

performing species. In addition to poor growth, these two species also 

showed symptoms of physiological disorders. If only acidity related 

problems were responsible for poor growth and physiological disorders, it 

could be expected that they would respond to liming more than the 

species which grew better in the acid soils. From this point in the thesis 

E. camaldulensis will mean E. camaldulensis (b) [the parentheses (a) or 

(b) after £. camaldulensis will be dropped].

4.3. Responses of four eucalypt species to lime

4.3.1. Selection of soil

For this experiment it was planned to use a highly acid soil (and high in 

exchangeable Al) which was specially selected. In order to illustrate fully 

the response to liming of different eucalypt species, the soil was chosen 

so that it was low in exchangeable Ca. Other characteristics such as Mn 

and soil organic matter levels could complicate and confuse the effects. 

Therefore, variations in other acid soil factors were minimized to better 

define the effects of the chosen (important) variables.

Twenty one soil samples (from 9 locations) from the Cotter 

catchment area (Talsma, 1983) and compartment 152 of Uriarra forest 

were previewed. Soils from three profiles from compartm ent 152 of
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Uriarra forest and six profiles from Cotter catchment area were collected. 

Soils were sampled at various depths, sieved (2 mm sieve) and stored in 

the cold room until the completion of analyses for pHw, pHs, organic 

matter, exchangeable Ca, Mg, Mn and A1 (methods described in Chapter 

3). All the soils are high in exchangeable A1 and low in exchangeable Ca 

contents (Table 4.7). Exchangeable A1 varied from 31.44 me/kg to 72.74 

me/kg and exchangeable Ca varied from 0 me/kg to 0.26 me/kg (Table 

4.7). The pHw varied from 4.95 to 5.67 and pHs from 3.74 to 4.20. All the 

soils from Uriarra and a few from Compartment 152 were high in 

organic matter (varied from 0.40 to 8.34 g/100 g). Exchangeable Mn for all 

the soils were below 0.06 me/kg and exchangeable Mg ranged from 0.17 

me/kg to 11.37 me/kg (Table 4.7).

All the soils from Uriarra and samples 4, 5 and 6 from Cotter 

(Table 4.7) were excluded from selection due to their high organic matter 

content. From the remaining 4 soils (No. 1, 2, 3 and 7), organic matter 

was lowest (0.40 g/100 g) in soil 3, but its A1 content was much lower than 

the others and therefore this soil was also excluded; emphasis in this 

experiment was on high A1 content. Samples 1 and 2 had lower A1 

contents. Sample 7 had the highest level of A1 (66.00 me/kg) and lowest 

pH w (5.35). Therefore sample 7 (site 3, depth 20 - 30 cm, compartment 

152) was selected for use in this experiment.

This soil is a yellow earth developed on Paddys River volcanics 

which include dacite and mudstone. The site is located at the Blue 

Range, Brindabella, A C T  about 25 km west of Canberra (35°17"S and 

148°52"E). The site is at an altitude of 850 m, and has a slope of 

approximately 3° to 5° to the south-west (location shown on Figure 4.1).
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The soil collected was further analysed for exchangeable K and 

Na, available P, extractable mineral N, and the lime requirement and 

field capacity determ ined (Table 4.8). Available P in this soil was 

extremely low, extractable mineral N was 16.10 m g /k g  and the lime 

requirement to achieve a pH of 6.0 was 8650 kg/ha. The percentage of A1 

saturation was also very high in this soil (91.24).

Table 4.8. Characteristics of the soil used for the liming experiment.

Properties Values

Clay (g/100 g) 28.60

Organic matter (g/100 g) 1.69

pHw 5.35

PHS 4.04

Exchangeable Ca (me/kg) 0.18

Exchangeable Mg (me/kg) 4.02

Exchangeable Na (me/kg) Tr.

Exchangeable K (me/kg) 2.08

Exchangeable Mn (me/kg) 0.06

Exchangeable A1 (me/kg) 66.00

Extractable mineral N (m g/kg) 16.10

Available P (m g/kg) Tr.

Lime requirement to attain pH 6.0 8650 kg/ha

Field capacity (g/100 g) 46.60

Ca (me/kg)/A1 (me/kg) 0.006
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4.3.2. The pot experiment

Soil was collected in bulk and transferred at one kg/pot (equivalent to 812 

gm oven dry soil) to pre weighed polythelene bag lined plastic pots. The 

soil was treated with reagent grade CaC03 at 0, 4940 and 9880 kg/ha. This 

covered a range from deficient to excess lime requirement for this soil to 

reach a pH of 6.0. Thirty five day old seedlings of E. camaldulensis, E. 

citriodora, E. gummifera and E. saligna were transplanted at three 

seedlings/pot on 28/10/88. After one week in the shade, the pots were 

thinned to two seedlings/pot and were transferred to a glasshouse. 

During the growth period 60 mg N /kg soil was applied as urea in 

solution in two split doses of 30 mg N /kg soil each time.

Shoot heights were recorded during growth (Appendix 4.2) and 

at harvest. The seedlings were harvested after 8 months; shoots and 

roots were collected, washed in distilled water, dried in an oven at 70°C 

for 48 hours and weighed.

4.3.3. Results, discussion and conclusion

Table 4.9 includes the effects of liming on some growth parameters of the 

seedlings. Percentage increases in the growth parameters on the highest 

lime level are shown in the last column. Shoot height, shoot dry weight 

and the ratio (root dry weight)/(shoot dry weight) of E. camaldulensis 

was significantly affected (p < 0.05) by liming. Shoot height and shoot 

weight responded positively and increased from 3 to 5.3 cm and from 0.12 

g/seedling to 0.2 g/seedling respectively. Although the absolute increases 

were small, percentage increases over control were quite high. The effect 

on root weight was very small and as shoot weight increased on liming, 

the root/shoot ratio decreased progressively from 1 to 0.7.
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Table 4.9. The response of selected eucalypt species to liming.

Species Growth parameter

Control

Treatment 

Lime 1 Lime 2

% rise in 
Lime 2 over 
control

E. ca m a ld u len sis Shoot height (cm)* 3.00 3.00 5.30 77

Shoot weight (gm/seedling)* 0.12 0.13 0.20 67

Root weight (gm/seedling) 0.12 0.11 0.11 (-) 8
Total biomass (gm/seedling) 0.24 0.24 0.31 29

Root/shoo t* 1.00 0.85 0.55 (-) 45
E. c itr iodora

Shoot height (cm)** 10.50 9.90 14.50 38

Shoot weight (gm/seedling) 0.32 0.22 0.33 3

Root weight (gm/seedling) 0.18 0.15 0.23 28

Total biomass (gm/seedling) 0.50 0.37 0.56 12

Root/shoot 0.56 0.68 0.70 25

E. gum m ifera

Shoot height (cm)*1* 9.20 6.60 8.10 (-) 12

Shoot weight (gm/seedling) 1.08 0.87 1.06 (-) 2

Root weight (gm/seedling) 0.52 0.41 0.40 (-) 23

Total biomass (gm/seedling) 1.61 1.28 1.46 (-) 9

Root/shoot 0.48 0.47 0.38 (-) 21

E. saltgna

Shoot height (cm) 4.00 4.50 5.80 45

Shoot weight (gm/seedling) 0.06 0.06 0.10 67

Root weight (gm/seedling) 0.07 0.04 0.05 (-) 29

Total biomass (gm/seedling) 0.13 0.10 0.15 15

Root/shoot 1.17 0.67 2.00 71

** and * indicate significant differences among treatments at < 1% and < 5% levels 
respectively.

In the case of E. ci tr iodora  shoot height was affected 

significantly (p < 0.01) by liming and it increased from 10.5 cm in the 

control to 14.5 cm under lime at level 2. Other growth parameters also 

increased at the highest lime level, but the differences were not 

statistically significant. The lower level of increased lime resulted in a 

decrease in all growth parameters.
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In the case of E. gummifera, all growth parameters responded 

negatively to liming. However, only the effect on shoot height was 

significant (p < 0.01) decreasing from 9.2 cm in the control to 8.1 cm at the 

highest lime level. Thus this species responds negatively to high lime 

contents in soils.

The g row th  of E. saligna was sim ilar to that of E . 

camaldulensis, responding positively to liming. Most growth parameters 

of E. saligna showed an increase with increasing lime. The increases 

were however, smaller than those of E. camaldulensis in both absolute 

values and percentage terms and were not statistically significant for any 

of the parameters.

In the present experiment, some grow th param eters of E. 

camaldulensis responded both positively and significantly. Since the 

percentage increase in these growth parameters were high, this species 

was considered to be more sensitive to acid soil factors than the other 

three species. Further, it is an important species grown extensively in 

overseas tropical areas. Therefore, E. camaldulensis was selected for 

future experiments.

The shoot weights of E. camaldulensis in this soil were much 

less when compared to the acid soils described in section 4.2. The reason 

for this difference probably lies in the soil properties. The present soil is 

much more acidic, its exchangeable A1 and % A1 saturation are much 

higher and available P and exchangeable Ca much lower. The shoot dry 

weight of E. camaldulensis was much less than that of E. gummifera and 

E. citriodora in this soil whereas its performance in the two most acidic 

soils of the previous experiment (section 4.2) was substantially better 

compared to E. gummifera and E. citriodora. Therefore, E. camaldulensis 

is more sensitive (than E. gummifera and E. citriodora) to soil conditions
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in- this soil compared to the conditions in the previous experiment (i.e., 

high Al, low P and Ca).

The response to lime varies widely from species to species but 

generally demonstrates positive effects on the growth of plants in acid 

soil. For example, Carvalho et al (1980) reported a positive lime response 

in six Stylosanthes species; Hoyt and Nyborg (1987) reported a positive 

lime response in barley, rape, red clover and alfalfa and Sing et al (1986) 

reported the same in maize. These lime responses are usually considered 

to be the result of a decrease in Al concentration in soil. Reports on the 

effect of liming as such are not available for tree species although a 

population of E. oblicjua from an acidic soil provenance showed severe 

chlorosis, slow growth and low survival rates when grown in more 

alkaline calcareous soil, but grew very well on fertile acid soil (Anderson 

and Ladiges, 1978).

On the otherhand there are also reports of lime induced yield 

depressions in maize (Farina et al, 1982; Friesen et al, 1980). In some 

cases yield depressions have been attributed to lime induced P deficiency 

(Sumner, 1979) although deficiencies of Mg, K and some trace elements 

have also been reported (Sumner et al, 1978).

Organic matter acts as an important Al source in highly 

weathered soils (Juo and Kamprath, 1979), therefore an increase in the 

decomposition of Al rich organic matter may release Al to bind soil P. 

This may cause an imbalance in P nutrition. Also Hargrove (1986) has 

shown that the Al organic matter complex may be solubilized in the pH 

range 5 to 7 making released Al available to plant roots and thus cause 

toxicity.
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These studies have shown contrasting performances of 

different species to liming. However they were based on widely different 

experiments. The present research shows that the response to liming is 

quite different for various eucalypt species on different soils. This 

confirms the fact that contrasting results observed in other studies were 

due to both differences in the soil and experimental conditions and to the 

ways in which individual species respond to otherwise similar 

conditions.

4.4. The response of eucalypt species to soil moisture stress

The analysis of the response of eucalypt species to soil moisture stress 

consists of two experiments. First, the four eucalypt species for which the 

lime response was examined (section 4.3) were tested for their response 

to soil moisture stress in the same acid soil without any amendments. In 

the second experiment the response of the selected species, E . 

camaldulensis, to soil moisture stress was examined in the same soil 

after the soil was amended with lime and the addition of 'P.

4.4.1. The response of four eucalypt species to soil moisture stress

4.4.1.1. Material and methods

One kilogram of air dry (812 g oven dry weight), sieved (5 mm mesh size) 

soil was transferred to each pre weighed bag inside a plastic pot. A plastic 

access tube (16 mm internal diameter) was inserted vertically in the 

centre of each pot before packing the soil. The lower ends of the tubes 

were filled with cotton wool to prevent soil entry and the upper ends 

were covered with a cap to prevent evaporation via the tube. As it is 

difficult to water soils in pots to a uniform moisture regime which is 

below field capacity, the plastic access tube was used to overcome 

problems (Bachelard, 1986) when moisture stress was implemented. Five
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week old seedlings of E. camaldulensis, E. citriodora, E. gummifera and E. 

saligna were transplanted at three seedlings to a pot. After establishment, 

the seedlings were thinned to two per pot. After 12 weeks, 30 mg N/kg 

soil was applied in solution as urea. After another 15 weeks, a further 30 

mg N /kg soil was applied in the same way. The soil surface of the pots 

were covered with about 5 mm of plastic pellets as a mulch.

Three pots were allocated to each of the four moisture stress 

levels 23 weeks after transplantation. At this stage shoot heights were 

measured and the pots were selected to provide seedlings of identical 

heights and vigour for each moisture stress level. All the pots were 

watered to field capacity. The estimated pot weights required for specified 

moisture levels of 40, 53, 67 and 80% of field capacity were calculated. 

Thereafter the pots were watered daily to moisture stress weights. About 

half the water was added through the tube and the remaining half was 

added on the soil surface. Daily losses of water were recorded for the 

levels and an average minima of 35.5, 46.5, 58.4, 70.1% (of field capacity) 

respectively were reached before watering. Shoot heights were recorded 

before the moisture stress was imposed and then every two weeks until 

harvest at 18 weeks after the moisture stress began (Appendix 4.3). The 

seedlings were cut at the soil surface, the shoots were washed in distilled 

water and dried in an oven for 48 hours at 70°C. The roots were washed 

out of the soil and then dried in the same manner.

4.4.I.2. Results and discussion

The parameters used to evaluate the effects of soil moisture stress on the 

eucalypt species were shoot height at harvest, shoot dry weight, total 

seedling biomass and the ratio root/shoot (Figure 4.2). The species 

differed in their response to moisture stress. At the lowest moisture 

level, average shoot height ranged from 2.9 cm to 3.7 cm for E .
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cam aldu lensis , 11.7 cm to 14.6 cm for E. citriodora, 6.8 cm to 7.8 cm for E. 

g u m m ife r a  and from 4.8 cm to 5.2 cm for E. saligna  (values of shoot 

height before the beginning of moisture stress are not shown).

Shoot height of all the species increased slightly with an 

increase in soil moisture level except for E. citriodora, in which shoot 

height declined beyond a field capacity of 67% (i.e., at 80%). Shoot dry 

weight and total seedling biomass increased in E. cam aldulensis and E. 

sa ligna  with an increase in the soil moisture level. Shoot weight and 

total biomass increased first, and then declined beyond 67% and 53% of 

field capacity for E. citriodora and E. gum m ifera  respectively (i.e., 80% 

and 67% respectively). In the case of E. gum m ifera both shoot weight and 

total biomass declined with moisture levels at 67% or wetter and in the 

case of E. citriodora these parameters declined beyond a moisture level of 

53% of field capacity. In E. citriodora and E. saligna total root weight 

decreased at higher moisture levels as did the root/shoot ratio which 

declined for all species. A decrease in root/shoot ratio resulted from an 

increase in moisture level; it was greater in absolute terms in E . 

cam aldu lensis and E. saligna than for the other two species.

In general, growth of all the species was very poor and they 

produced a low biomass even over the long growing period. Some of the 

E. ca m a ld u len s is , E. citriodora and E. g um m ifera  and many E. saligna  

seedlings showed some physiological disorders. The disorders occurred 

in older leaves and after about 12 weeks from transplantation. The 

symptoms were brown to dark brown spots in older leaves; in a few cases 

edges of leaves became purple. In E. gum m ifera  some leaves became 

yellowish and in E. saligna some developed signs of necrosis and purple 

edges.
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The generally very poor grow th of seedlings, may have 

concealed the small response of the species to soil m oisture stress. 

Therefore, to further study the influence of soil moisture stress, only E.  

c a m a l d u l e n s i s  was selected for later experiments. This time the moisture 

stress was imposed after the growth was boosted by adding lime, P and N 

to the soil.

4.4.2. The response of E. camaldulensis to soil moisture stress 

4.4.2.1. Materials and methods

This experim ent was conducted along similar lines to the previous 

moisture stress experiment. The differences were that there was only 

one species but at five moisture levels and seedling growth was boosted 

by adding lime and P to the soil. Lime was added to the soil at a rate of 

9880 kg pure CaCOg/ha and thoroughly mixed. After three wetting and 

drying cycles which took about two weeks and then thorough mixing, 

one kilogram of air dry soil (equivalent to 852 gm oven dry weight) was 

transferred to each pre weighed bag inside a plastic pot. A plastic access 

tube was inserted vertically. Three week old E. ca m a ld u l en s i s  seedlings 

were transplanted, three seedlings per pot. After establishment, the 

seedlings were thinned to two per pot and 100 mg P and 45 mg N /k g  soil 

were added in the form of NH 4H 2PO4 dissolved in water. After 5 weeks, 

a second dose of N at 35 mg N /k g  soil was applied in the form of 

N H 4NO3. The soil surface of the pots were covered with approximately 5 

mm of plastic pellets as mulch.

Nine weeks after transplantation 15 pots with healthy and 

uniformly sized seedlings were selected. Three pots were allocated to 

each of the 5 moisture stresses so that identical heights and vigour were
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represented in the different moisture stress levels. Watering of pots 

proceeded in the same way as earlier experiments except that the 

specified moisture levels were now 40, 50, 60, 70 and 80% of field capacity. 

Daily losses of water were recorded and for these same levels an average 

minimum of 35, 43, 48, 56 and 63% of field capacity respectively was 

reached just before watering. Shoot heights were recorded before the 

stress was imposed and then every two weeks until harvest (Appendix 

4.4).

Seedlings were cut off at the soil surface after 6 weeks of stress, 

washed in distilled water and dried in oven for 48 hours at 70°C. Roots 

were washed free of soil, cleaned and fine root lengths were measured 

using the 'Comair root length scanner' before drying in an oven.

4.4.2.2. Results and discussion

Soils were analyzed after seedlings were harvested and found to have a 

pHs of 4.99, exchangeable Ca of 66.9 me/kg and exchangeable A1 of 8.9 

me/kg. To evaluate the effects of soil moisture stress on E . 

camaldulensis growth seedling parameters examined included shoot 

height at harvest, shoot weight, root weight, fine root length, total 

biomass and root/shoot ratio (Figure 4.3). Shoot height, shoot weight 

and root weight all increased as moisture levels increased. At a moisture 

level of 40% of field capacity the seedlings did not die, but the most 

recently initiated leaf pairs in those pots died and shoot height 

increments almost ceased. Overall growth of the seedlings in this 

treatment was almost completely inhibited after the moisture stress was 

applied. All moisture levels over 40% and up to 60% of field capacity 

resulted in a steep rise in shoot height, shoot weight, total biomass and 

fine root length. Increases in seedling growth parameters between 60 and 

80% field capacity were less steep. Between 70 and 80% all parameters
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except shoot height almost levelled out. Fine root length showed a 

decline beyond the 60% field capacity level.

In the previous experim ent (Section 4.4.1), the response of 

growth param eters to soil moisture stress were found to be much lower 

in E. camaldulensis. One im portant reason for this is that the overall 

growth of seedlings in the unam ended soil was very poor. Eucalyptus 

camaldulensis responded much more strongly to soil moisture stress in 

this experiment, due to boosting growth by applying P and lime.
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Figure 4.3. Effect of soil moisture stress on the growth paramaters of E. catnaldulensis 
(a) Shoot height and fine root length and (b) shoot weight, root weight 
and total biomass. Bars represent SE of the mean; in some cases they are 
small and lie within the symbol.
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IDENTIFICATION OF NUTRIENT DEFICIENCY FOR 
E. CAMALDULENSIS IN THE SELECTED SOIL
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5. IDENTIFICATION OF NUTRIENT DEFICIENCY FOR E 

CAMALDULENSIS IN THE SELECTED SOIL

5.1. Introduction

The growth of the four selected eucalypts (E. camaldulensis, E. citriodora, 

E. gummifera and E. saligna) was extremely poor in the acid soil (Section 

4.3) despite amendment with N and different rates of lime. Therefore, it 

became important to examine what the nutrient limiting factors for the 

growth of E. camaldulensis were in this soil. This information is useful 

for boosting the growth of the seedlings for other experiments. The 

nutrients which may improve the growth of E. camaldulensis w ill 

probably show an additional interaction with Ca and thereby stimulate the 

growth.

Therefore there were two experimental phases: In the first the 

response of E. camaldulensis to different nutrients which are usually 

deficient in acid forest soils (P, K, S and Mo) was examined. In the second, 

nutrients found to stimulate E. camaldulensis growth in the first phase, 

were applied in combination with Ca.

5.2. The response of E. camaldulensis to phosphorus, potassium, sulphur 
and molybdenum

5.2.1. Materials and methods

Characteristics of the soil used were reported previously (Table 4.8). Soil 

was transferred to plastic pots at equivalent amounts to 315 gm oven dry 

soil per pot and six week old E. camaldulensis seedlings were transplanted. 

Four seedlings were planted per pot and pots replicated three times. Ten 

days after transplantation, an initial fertilization using solutions 

containing nutrients were added (Table 5.1). The chemical salts used for P,
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K and S also contained N and this was included in the calculations for the 

amount of NH4NO3 required. The pots were transferred to a phytotron. 

Conditions for growth included 16 hour day length and day and night 

temperatures of 25 and 15°C respectively. After 7 weeks a second 

fertilization, this time containing only N was applied in solution at 40 mg 

N /kg  soil. Twelve weeks after transplantation the seedlings were 

harvested at ground level, washed and dried in the oven at 70°C for 48 

hours and oven dry weight recorded.

Table 5.1. The treatment levels applied and chemicals used.

Nutrient Treatment levels (mg/kg soil) 

Control T 1 T 2

Chemical used (A.R.)

P 0 10 50 NH4H2PO4

K 0 40 80 KNO3

S 0 10 40 (NH4)2S04

Mo 0 2 10 Na2MoC>4. 2H2O

N 100 100 100 NH4NO3

5.2.2. R esults

Average weights of shoot produced for different treatments during the 12 

weeks are given in Table 5.2. None of the K, S and Mo treatments 

showed significantly different values from the control. Application of 10 

and 50 mg P/kg soil increased shoot weight production to 0.156 and 0.325 

g/seedling respectively (from 0.041 g/seedling for the control). Application 

of 50 mg P /kg soil resulted in an increase of about eight fold in shoot 

weight production. No visual deficiency symptoms were observed for any 

seedling during this short period of growth. On the basis of these results, 

the response of E. camaldulensis to P applications was tested in factorial 

combinations with Ca in the second phase of this experiment.
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Table 5.2. Effect of P, K, S and Mo treatments on the shoot weights 
(g/seedling) of the E. camaldulensis seedlings.

Nutrient

Control

Treatment

T1 T2

F-ratio

P 0.041 0.156 0.325 29.41**

K 0.041 0.045 0.043 0.26

S 0.041 0.036 0.039 1.82

Mo 0.041 0.039 0.038 0.20
** indicates that the F ratio is significant at < 1% level.

5.3. The response of E. camaldulensis to calcium and phosphorus

5.3.1. Materials and methods

5.3.1.1. Soil calcium treatment

Calcium was added in this experiment from a combination of CaCC>3 and 

CaS04 at a ratio of 2 : 1 for all the Ca treatments (on the basis of findings 

presented in Chapter 3). Levels of Ca used were equivalent amounts of 

Ca to 0, 5,000, 10,000 and 15,000 kg pure CaCOß/ha. These treatment 

levels will be referred to as Ca0, Ca5, Câ Q and Ca15 respectively in 

subsequent discussion.

The required amounts of Ca were added to air dry soil and 

thoroughly hand mixed. Soils were wetted to field capacity inside plastic 

pots (bottom sealed) in the glasshouse and allowed to dry and mixed 

again. This wetting and drying was repeated three times over a period of 

11 weeks. Soil samples from each Ca treatment level were collected and 

stored in the cold room until the completion of analyses.
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5.3.1.2. The pot experiment

At the end of 11 weeks, soils from each of different bulk treatments were 

mixed (separately) and transferred to plastic pots at a rate equivalent to 

315 gm oven dry so il/po t. Four week old E. camaldulensis seedlings 

from same seedlot (Chapter 4) were transplanted, three seedlings per pot 

on 23/7/89.

5.3.1.3. Treatment with phosphorus

Twelve days after transplanting, P was applied to each pot at rates of 0, 

10, 25, 50 and 100 mg P /k g  soil (oven dry basis) in the form of NH4H 2PO4 

dissolved in water. At this stage seedlings were of a similar size and 

vigour in all P treatments. Because all pots received different amounts of 

N (45% of P) corresponding to the different P levels from NH 4H 2PO 4; 

supplem entary N was applied using NH 4N O 3 to make total application 

of N up to 45 mg N /k g  soil. After four days of P treatment the pots were 

transferred to the phytotron under conditions of 16 hours day length and 

day and night tem peratures of 25°C and 15°C respectively. A second 

dose of N (45 mg N /k g  soil) was added 6 weeks after transplanting 

(N H 4 N O 3). Seedlings were harvested 10 weeks and 4 days after 

transplantation.

5.3.2. Results

The effects on the shoot height and shoot dry weight of Ca and P 

application are presented in Figure 5.1 while the effects on root weight 

and total seedling biomass are presented in Figure 5.2. There is a 

similarity between responses to Ca and P treatments for all the growth 

parameters. Responses to the P treatments were different in the presence 

or the absence of Ca. In the presence of Ca (all levels) all the growth 

parameters increased sharply up to 25 mg P /k g  soil treatment. Beyond
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that, the increase in growth parameters was small up to 50 mg P /kg  soil 

and after that increases were negligible. There were even small decreases 

in the shoot weight, root weight and total biomass beyond 50 mg P /kg  

soil when the P treatment was accompanied by Ca. In contrast to these, 

w hen P was applied alone, growth param eters increased consistently 

even up to the h ighest P level, producing  alm ost straightline 

relationships (Figures 5.1 and 5.2).

In general, a large increase in all the growth parameters were 

recorded for the C a^P so  treatment. This combination resulted in a 

maximum for both shoot yield and total seedling biomass production. 

When accompanied by Ca, the application of P beyond 50 mg P /k g  soil 

resulted  in a decline of total biomass yield. In some cases other 

param eters slightly  increased . All the grow th param eters were 

significantly different (at varying levels) for different Ca and P treatments 

(Table 5.3).

Table 5.3. F ratios for the ANOVA on the effects of Ca and P treatments 
on growth parameters of E. camaldulensis seedlings.

Parameters Between Ca Between P Between Ca x P

Shoot height 16.94** 112.26** 2.36*

Shoot weight 27.13** 125.20** 3.44**

Root weight 14.77** 111.18** 2.49*

Total biomass 27.38** 136.50** 3.37**

R oot/shoot 6.14** 10.20** 1.86

** and * indicate significance levels of < 1.0% and < 5.0% respectively.
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Figure 5.1. Effect of P at different Ca levels on the (a) shoot height and (b) shoot 
weight of E. camaldulensis. Vertical bars represent l.s.d. (P < 0.05).
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Figure 5.2. Effect of P at different Ca levels on the (a) root weight and (b) total biomass 
of E. camaldulensis. Vertical bars represent l.s.d. (P < 0.05).
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Results of the chemical analyses of soil 11 weeks after the Ca 

treatment are presented in Table 5.4. They are quite similar to those 

presented in Chapter 3. With an increase in the level of Ca, pHs, EC and 

exchangeable Ca increased consistently and exchangeable A1 decreased 

consistently. There was very little effect on exchangeable Mg, K and Mn. 

It may be mentioned that Ca treatment is not expected to have any effect 

on soil physical conditions within such a short time.

Table 5.4. Effect of Ca treatments on soil chemical characteristics.

Treatments pHs EC Exchangeable cations (me/kg)
mS/cm --------------------------------------------------

Ca A1 Mn Mg K

Cao 4.01 10 0.5 45.8 0.08 3.8 3.0

Ca5 4.44 97 32.9 27.2 0.09 4.5 3.0

C a 10 4.81 240 70.9 13.8 0.05 4.6 2.9

C a 15 5.22 585 110.2 1.2 0.03 3.9 2.9

5.3.3. Discussion and conclusion

Plant growth responses to Ca treatments in a low Ca acid soil may vary 

(Chapter 2). In the present experiment, the soil Ca level was very low 

(exchangeable Ca in control was 0.5 me/kg soil). But the response of E. 

camaldulensis seedlings to an addition of Ca alone was also small. 

Available soil P was also extremely low (below detection limits) in the soil 

and the addition of P alone gave a marked response.

When Ca treatments were accompanied by additional P, even 

greater increases in growth were recorded. Therefore, many low Ca, acid 

soils may appear to have adequate Ca (Kamprath, 1978) but when overall 

plant growth is considered, an application of other nutrients, may make
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the Ca contents inadequate. In the present experiment the seedlings did 

not seem to suffer from Ca deficiency as such, since Ca alone did not 

increase E. camaldulensis growth to any extent, but increased addition of 

Ca to soil resulted in a decrease in exchangeable A1 and an increase in soil 

pH (Table 5.4). These changes may have enhanced growth because P 

became effective in growth earlier in treatments receiving both Ca and P. 

But when P was applied alone, it had to counter the toxic effect of A1 

(Blarney et al, 1983; Alva, 1986) and then improve growth. Therefore, the 

effect of P was slow when applied in isolation. Dell et al (1983) examined 

the response of 5 glasshouse grown eucalypt species to P in clay (pH 4.0) 

treated with or without lime. They reported that in the presence of a 

complete fertilizer, except for lime and P, seedlings made poor growth. 

Application of P (as calcium phosphate) promoted root and shoot growth 

in all species. Lime alone had no positive effect. Their CaPC>4 treatment 

may be compared to the combined Ca and P treatment in the present 

experiment and the responses were also both very high.

It was concluded from the two experiments described in this 

chapter that in addition to N, application of Ca equivalent to 10,000 kg 

CaCC^/ha accompanied by 50 mg P/kg soil will boost the growth of E. 

camaldulensis in this acid soil.



CHAPTER 6

THE RESPONSE OF E. CAMALDULENSIS TO DIFFERENT 
CALCIUM AND ALUMINIUM LEVELS IN NUTRIENT

SOLUTION
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6. THE RESPONSE OF E. CAMALDULENSIS TO CALCIUM AND 
ALUMINIUM LEVELS IN NUTRIENT SOLUTION

6.1. Introduction

In acid soils A1 toxicity and Ca deficiency are the two main factors 

limiting the growth of many plants (Chapter 2). Experiments described 

in Chapter 5 showed that the growth of E. camaldulensis in an A1 rich 

acid soil im proved significantly with the addition of Ca. Detailed 

analyses are therefore required to examine the effects of A1 and Ca on the 

growth of E. camaldulensis; one of the objectives of the present study. It 

is also necessary to establish suitable indicator(s) describing the 

phytotoxicity of Al in E. camaldulensis, since these are not well defined. 

Seedling growth in nutrient solution media was chosen for this study 

since it made m anipulattion of treatm ent levels more efficient without 

affecting other elements. More importantly it made monitoring of roots 

during the growth of the seedlings more practical.

6.2. Materials and methods 

6.2.1. Treatments

This experiment had four Ca (5, 10, 50 and 100 mg/1, equivalent to 0.125, 

0.25, 1.25 and 2.5 mmol) and five A1 (0, 0.25, 2.5, 20 and 50 mg/1, 

equivalent to 0, 0.009, 0.09, 0.74 and 1.85 mmol) treatm ents in 

combination. There were four replicates per treatm ent in each of 20 

treatment combinations. In addition four bottles were kept as blanks to 

determine water loss through evaporation. The nutrient solution used 

for this experim ent was a slight modification of Hoaglands' solution 

(Chapter 3, Table 3.1) which was successfully used by Thomson (1988) for 

E. camaldulensis and related species. Final nutrient solutions were
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made up  in 10 litre buckets from concentrated solutions (Table 6.1) using 

deionized water (EC = ~ 2 pS/cm ). Aluminium in the solution came 

from reagent grade AICI3.6H2O and Ca from C a(N 03)2. 4H20 . The 

norm al Ca concentration of the nu trien t solution was 80 mg/1. 

Therefore, when the Ca level was lower in the treatment, consequently 

N was also low ered. The difference in the am ount of N was 

compensated for by adding N in the form of NH4NO3 and to get higher 

Ca levels extra Ca was added in the form of CaCl2. 2H20  so that the total 

concentration of N remained the same throughout the treatments while 

varying the Ca concentrations. The pH of the nutrient solutions varied 

from 5.39 to 3.06. Nutrient solutions were changed initially after 11 days 

and then the period between changes was reduced to 7 days as the 

seedlings grew in size.

6.2.2. Glasshouse conditions and experimental set up

On 26 /6 /89  two six week old seedlings were transferred to each 2.5 litre 

plastic bottle containing nutrient solution (half normal strength). Round 

holes were cut into the screw cap lid of the plastic bottle to accommodate 

corks which provided mechanical support for the seedlings. Another 

small hole was made in the lid to allow a polythene tube for aeration. 

The seedlings were supported by wrapping a short section of the stem 

with cotton wool and then wedging the stem through one side of the 

cork which was pre cut for the purpose. After one week the nutrient 

solution was changed to full strength and the seedlings were thinned to 

one seedling per pot. After one more week of full strength nutrient 

solution, treatm ents were imposed. At this time seedling heights were 

m easured and the mean height was made as uniform as possible by 

selecting pots across the various treatment combinations.



119

Table 6.1. The composition of nutrient solution for different treatment 
combinations.

Stock solutions Requirements ml stock per 10 L
nutrient solution

A1 stock for 0.25 mg/1 Al: 1.12 gm AICI3.6H2O/5OO ml. 10

A1 stock for 2.5 mg/1 Al: 11.18 gm A1C13.6H20  /500 ml. 10

Al stock for 20 mg/1 Al: 89.42 gm A1C13.6H20 /L . 20

Al stock for 50 mg/1 Al: 89.42 gm A1C13.6H20 /L . 50

Ca stock for 5 mg/1 Ca: 3.69 gm Ca(N03)2.4H 20 /500  ml 
18.75 gm NH4NO3/5OO ml

40

Ca stock for 10 mg/1 Ca: 7.38 gm Ca(N03)2. 4H20/500  ml 
17.50 gm NH4NO3/5OO ml

40

Ca stock for 50 mg/1 Ca: 36.90 gm Ca(N 03)2. 4H2O/500 ml 
7.50 gm NH4N 0 3/500 ml

40

Ca stock for 100 mg/1 Ca: 59.04 gm Ca(N03)2.4H 20 /500  ml 40
9.19 gm CaCl2. 2H2O/500 ml.

Composition of nutrients common to all treatments:

Chemical Requirements ml stock per 10 L
nutrient solution

k n o 3 75.83 g /L 20
NH4H2P 04 28.76 g/500 ml 10
MgS04. 7H20 30.81 g/500 ml 20
MnCl2. 4H20 0.197 g/L 10
ZnS04. 7H20 1.15 g/L 10
CuS04. 5H20 0.626 g/L 10
Na2M o04. 2H20 0.242 g/L 10
h 3bo3 0.744 g/L 10
Fe EDTA* 4

* EDTA: 5.0 gm NaOH was dissolved in 800 ml distilled water. Then 33.2 
gm EDTA (disodium salt) and 24.9 gm FeS04 7H20  were added, made up 
to 1L volume and aerated overnight.
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The experim ent was conducted during the w inter m onths 

(July-August) in a glasshouse. The glasshouse had an average maximum 

day tem perature of 26°C and an average minimum night tem perature of 

18°C during the tenure of the experiment. Extra light was provided in 

the morning and in the evening by fluorescent tubes to extend the day 

length to 12 hours. The nutrient solutions were aerated for 15 minutes 

every hour using an air pump.

When nutrient solutions were replaced, the lid of the bottle 

w ith the seedling in it was put aside and the weight of the bottle 

including solution was recorded. Each time, before the nutrient solution 

was changed, the weight of the bottle was recorded. Water loss was 

calculated as the difference between these two weights and then the loss 

of water from bottles which contained no seedling were subtracted from 

this difference to get the transpiration loss.

Shoot heights and root lengths were recorded for each seedling 

at the beginning of the treatment. Thereafter, shoot heights and root 

lengths were measured for about each two week interval on a date which 

coincided with the date for change of nutrient solution.

Seedlings were photographed twice: 25 days after the beginning 

of treatm ents and at harvest. Two seedlings from each treatm ent 

combination were photographed together. Some close up photographs of 

roots and shoots severely affected by A1 treatm ent were also taken. 

Photographs taken at harvest were unfortunately damaged beyond use 

during developm ent so those taken after 25 days are presented here. 

However, the same trends in treatment effects were followed.

The outline of the topmost expanded leaf of three seedlings of 

each treatm ent was traced at harvest. Leaf area and length were
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m easured from the tracing by an Image Analyser system using Sigma 

scan version 3.10 software on an IBM PC AT. The mean width of each 

leaf was calculated as leaf area/length.

6.2.3. Harvest

After 47 days of imposing treatments the seedlings were harvested. The 

shoots were partitioned into: lower leaves (3rd and 4th leaf pairs from 

the base), top two imm ature leaf pairs and the rest of the leaves and 

stems. Roots were harvested in two fractions: coarse (> 1 mm diameter) 

and fine (< 1 mm diameter). The number of root branches (> 1 cm in 

length) in the middle 5 cm of the primary roots were counted. Fine roots 

were cut into small pieces and total lengths were measured using the 

'Comair Root Length Scanner'. Samples were dried at 70°C for two days 

before recording their weights.

6.2.4. Thin sections of roots

Root tips ( 3 - 4  cm long) were cut and preserved in formalin acetic acid 

(FAA). They were fixed in 2.5% glutaraldehyde, dehydrated and 

em bedded in spruce resin. One micron transverse thin sections of the 

embedded roots were cut (at about 1 cm distance from the tip) with an 

ultramicrotome and stained with toluodine blue in Na phosphate buffer. 

The thin sections were exam ined under a light m icroscope and 

photographs were taken to show the effects of treatm ents on root 

anatomy.

6.2.5. Chemical analyses of harvested seedlings

Young leaves, m ature leaves and fine roots from harvested seedlings 

were digested with HNO3 and HC1. From the digest, P was determined by 

an automated procedure using ammonium vanadate. Calcium, Mg, K,
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Mn, and Al were measured using an atomic absorption 

spectrophotometer (details of analytical methods are presented in 

Chapter 3).

6.3. Results

6.3.1. Effects of treatments on seedling growth

Plate 6.1. shows the effects of A1 treatments on the growth of seedlings 25 

days after treatment at two levels of Ca while varying A1 levels: (a) 5 mg 

Ca /I and (b) 100 mg Ca/1. It can be seen from the plates that when the Ca 

level was low (Plate 6.1.a), growth of both shoot and root was severely 

affected with an increase in A1 level, particularly at the two highest A1 

levels. At high Ca levels (Plate 6.1.b), the growth of shoot and root was 

restricted by the high A1 level, but not as severely as in case of low Ca. 

Overall, shoot and root growth was better in the case of high Ca.

Plate 6.2 shows a close up of the adverse effects of A1 on the 

seedlings at an A1 concentration of 50 mg/1 accompanied by (a) lowest (5 

mg/1) and (b) highest (100 mg/1) Ca treatments. At low Ca levels (Plate 

6.1 a) the roots of the seedlings were thickened and fine roots were 

lacking. At high Ca levels (Plate 6.1 b) seedlings had some fine roots and 

they also showed root branching. In both cases [(a) and (b)], mature 

leaves showed toxicity symptoms although the seedlings in (b) grew 

bigger in terms of both shoot and root size. Within about two weeks of 

imposing the treatments, symptoms of A1 toxicity appeared in older 

leaves (3rd and the 4th leaf pairs from the base) in seedlings of the high 

A1 treatment started to show loss of turgor at leaf tips and margins. 

Gradually this symptom progressed to the midrib after which the affected 

parts became necrotic. No apparent toxicity symptoms were observed in 

young leaves. This symptom may be assumed to be due to A1 toxicity.
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Plate 6.2. E. camaldulensis seedlings at (a) Ca 5  A1 5 9  and (b) Ca jpo A1 5 0  treatments 

after 25 days of treatment.
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Shoot grow th was m easured in terms of shoot height and 

shoot weight. Root related param eters were: primary root length, fine 

root length, fine root weight, ratio of (fine root length)/(fine root weight), 

and root branching. In addition, total biomass, ratio of shoot w eight/root 

weight, transpiration, transp ira tion /to ta l biomass ratio and leaf width 

were also examined. Shoot height and root length were m easured 5 

times during the grow th period and these two param eters will be 

presented on a time scale. Other growth parameters were measured at 

harvest. Table 6.3 includes the F ratios of the ANOVA to examine the 

effects of A1 and Ca treatments on various growth parameters. Since it 

was observed that the effects of A1 and Ca were not proportional to their 

treatment levels, the effects of both linear and quadratic forms of A1 and 

Ca were included in the ANOVA.

Shoot height and weight

Figure 6.1 is a graphical display of the shoot height of the'seedlings under 

different Ca and A1 treatm ents over the growing period. In figures 

treatm ent A1 levels were used and ranges of corresponding I  a mono 

values are are shown in Table 6.2. For convenience, one graph was 

plotted for each of the four Ca levels but they have the same l.s.d. bars. 

From the figure it can be seen that shoot height increased consistently 

over the growing period. Initially the shoot height increment was slow 

and for the period up to 14 days after the treatments began, there was 

little difference between shoot heights for various treatments. After that 

seedlings with low Ca and high A1 lagged behind the other treatment 

combinations with respect to shoot height. At each Ca level, lower shoot 

heights were observed for increasing A1 levels. The adverse effect of A1 

gradually declined as higher levels of Ca were applied. For example at a
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Ca level of 5 mg /l, shoot height decreased from 39.6 cm to 20.6 cm when 

the A1 level was raised from 0 to 50 mg/1. But at a Ca level of 100 mg/1 

the shoot height was 50.5 cm at 0.25 mg Al/1 and 44.7 cm at 50 mg Al/1. 

With higher Ca, the shoot height of high A1 seedlings became almost 

equal to the shoot height of seedlings in the nil A1 treatment. Shoot 

heights were higher at 0.25 mg Al/1 treatment than under the nil A1 

treatment. The ANOVA table (Table 6.3) includes data which show that 

shoot heights were significantly different for A1 and Ca treatments and 

their interaction (A1 x Ca and A1 quadratic x Ca).

Table 6.2. Correspondence of treatment A1 levels with 
calculated I  a A1 mono.

Treatment A1 level ^ ^ Al mono
(mg/1) (UM)

0.25 6.58 - 6.71

2.5 61.13-62.07

20.0 369.30 - 390.30

50.0 708.60 - 759.40

The response of the seedlings to Ca and A1 treatments in terms 

of shoot weight (Figure 6.2 a) showed results similar to those reported for 

shoot heights. Under high A1 conditions lower shoots were produced. 

When the Ca level was raised this effect was less prominent. For 

example, at a Ca concentration of 5 mg/1, shoot weight decreased from 

2.67 g/seedling at low A1 to 1.11 g/seedling at 50 mg Al/1. At high Ca 

concentrations (100 mg/1) shoot weight decreased from 3.45 g/seedling at 

0.25 mg Al/1 to 2.77 g/seedling at 50 mg Al/1. The differences in shoot 

weights were statistically significant for both A1 and Ca treatment levels 

but not for their interaction.
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Total biomass

The effect of A1 and Ca treatments on total biomass of the seedlings is 

presented in Figure 6.2 c. The effect on total biomass is similar to that for 

shoot weight which is the major component of biomass. Biomass was 

also significantly different for A1 and Ca treatments but not for their 

interaction.

Table 6.3. F ratios for the ANOVA on the effects of A1 and Ca treatments 
on different growth parameters of E. camaldulensis seedlings.

Factors

Parameter A1 A l2 Ca C a2 A l x C a A l2 x Ca A l x C a 2 A l2 x C a 2

Shoot height 39.90** 0.37 34.49** 3.84 9.55** 4.42* 0.46 0.45

Root length 63.43** 1.49 18.52** 4.11* 11.00** 0.19 0.41 1.53

Shoot weight 9.60** 0.01 10.59** 0.36 0.87 2.02 0.15 0.92

Root weight 1.09 0.59 4.42* 0.87 1.26 1.02 0.26 1.47

Total biomass 7.80** 0.06 9.67** 0.47 1.00 1.91 0.17 1.06

Fine root length 24.15** 1.88 86.23** 0.01 1.97 5.82* 0.00 2.30

Fine root length/ 
fine root weight

184.79** 7.38** 197.49** 6.87* 0.17 0.47 2.83 2.39

Root branching 8.07** 0.76 0.34 0.43 0.12 0.33 0.01 0.01

Leaf width 13.09** 1.45 6.35* 1.22 1.29 0.00 1.18 5.19**

Transpiration 25.84** 1.23 12.13** 2.43 12.08** 1.10 1.61 1.02

Transpiration/ 
total biomass

5.66* 4.17* 0.87 1.52 2.40 0.52 1.47 0.14

** and * indicate level of significance at < 1 % and < 5% level respectively.
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Figure 6.2. Effects of Ca and Al levels on (a) shoot weight, (b) root weight 
and (c) total biomass of E. camaldulensis seedlings. Vertical bars 
represent l.s.d. (P < 0.05).
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Root length and root branching

Primary root lengths m easured during the growth period are shown in 

Figure 6.3. As in the case of shoot height, four graphs were plotted, one 

for each Ca level. It can be seen from the graphs that the primary roots 

were shorter for high A1 treatments. This effect was more prominent at 

lower Ca levels. At Ca concentrations of 5, 10, 50 and 100 mg/1, the 

difference in prim ary root lengths between 0.25 mg Al/1 and 50 mg Al/1 

were 33, 38, 26 and 9 cm. However, an A1 treatment of up to 2.5 mg/1 did 

not have any adverse effect on primary root length even at the lowest Ca 

level (Figure 6.3 a). Root lengths at 20 and 50 mg Al/1 progressively 

became closer to the situation at lower A1 levels as Ca concentration 

increased; at the highest Ca level root lengths of different levels of A1 

treatm ent were only slightly different from each other. Differences in 

prim ary root length due to A1 and Ca treatm ents (both linear and 

quadratic) w ere significant bu t only their linear in teraction was 

statistically significant (Table 6.3).

The num ber of root branches in the m iddle 5 cm of the 

primary root are presented in Figure 6.4 a. It may be seen from the figure 

that the number of root branches decreased from 22 at nil Al, to 13 at the 

highest Al level. The number of root branches was significantly different 

only for Al treatments (Table 6.3). Even the lowest Al level caused a large 

reduction in the num ber of root branches as compared to the nil Al 

treatment. Unlike other shoot and root growth parameters, a decrease in 

the root branching (due to high Al) was not ameliorated by an increase in 

the Ca level.
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Figure 6.4. Effects of Ca and Al levels on (a) number of branches in 5 cm 
root, (b) fine root length and (c) (fine root length)/(fine root 
weight) of E. camaldulensis seedlings. Vertical bars represent 
l.s.d. (P < 0.05).
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Fine root length

The effect of A1 and Ca treatments on the total length of fine roots is 

presented in Figure 6.4 a. Fine root length was found to be highly 

sensitive to both A1 and Ca levels. The fine root length decreased with 

an increase in the A1 level and increased with an increase in the Ca level. 

An increase in the Ca level however, did not bring the primary root 

length to the same levels as for a low or nil A1 treatment. Fine root 

length was significantly different for A1 and Ca levels and also for their 

interaction (A1 quadratic x Ca) (Table 6.3).

Fine root length/fine root weight (FRL/FRW)

This ratio defines a measure of the fineness of fine roots. It was highly 

sensitive to A1 and Ca treatment levels (Figure 6.4 c). It may be seen from 

the figure that as A1 treatment levels rise, the lines representing 

FRL/FRW at various Ca levels shift downwards. The downward shift 

was consistent and pronounced at all levels of A1 above 0.25 mg/1. At 

each A1 level, as the Ca level was increased, the index showed a rise. The 

ameliorating effect of Ca was however, lower for this parameter when 

compared to the other parameters discussed so far. Values for FRL/FRW 

were significantly different for both A1 (linear and quadratic) and Ca 

(linear and quadratic) but not for their interaction (Table 6.3).

Total root weight

The effect of A1 and Ca levels on root weight were less systematic than on 

other root parameters. In most cases, a higher A1 was associated with 

lower root weight and higher Ca level significantly increased it and 

counteracted the effect of high Al. This parameter is not considered as a 

good indicator of the effects of Al and Ca treatments (Table 6.5). The
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reason is that an increase in A1 level makes the root thicker and this 

causes root weight to increase. This counteracts the negative effect of A1 

on root weight which is caused by the growth of fewer roots. Similar 

reasons hold for the effect of Ca which ameliorates the effect of A1 and 

enhances root growth but makes them finer.

Relative growth reduction due to A1

In general, an increase in the A1 level reduced the grow th of the 

seedlings as m easured by different growth parameters. This adverse 

effect was not the same for all parameters. Those which were reduced 

more due to high A1 may be considered more sensitive to Al. To 

compare this reduction among the growth parameters, Table 6.4 presents 

'relative growth reduction due to Al' (RGR) for the param eters which 

were found to differ significantly for Al and Ca treatments. The RGR was 

calculated by the technique of Baligar et al (1987).

RGR = [1 - (growth with Al)/(growth without Al)] x 100.

Table 6.4. Relative growth reduction of E. camaldulensis seedlings due 
to Al.

T r e a t m e n t  

A l l e v e l  
(m g /1 )

Relative growth reduction in

S h o o t
h e ig h t

S h o o t
w e ig h t

P r im a r y  r o o t  
l e n g t h

F in e  r o o t  
l e n g t h

F in e  r o o t  l e n g t h /  
f in e  r o o t  w e ig h t

R o o t
b r a n c h in g

0 .25 - 3 .8 2 7.39 - 4 .1 9 7 .32 - 2 .2 0 2 2 .73

2.5 1 .2 0 4 .6 7 - 6 .0 6 7 .77 3 .65 3 6 .3 6

20 6 .2 2 16 .73 19 .88 2 9 .5 0 2 9 .0 5 3 1 .82

50 2 6 .7 9 3 4 .2 4 3 7 .2 7 4 0 .6 0 4 9 .0 2 40 .91



135

The maximum decrease in RGR occurred in fine root length and (fine 

root length)/(fine root weight) and these parameters of E. cam aldulensis 

may be considered most sensitive to A1 toxicity (Table 6.4).

Relationship of growth parameters with a A1/a Ca

In the above analysis, the effects of A1 and Ca levels on the seedling 

growth parameters have been shown as individual effects. In general, all 

the growth parameters responded negatively to A1 levels and positively 

to Ca levels. That is, they affected seedling growth in opposite directions. 

Further, the effects of each of these were also influenced by the levels of 

the other, that is, by their interaction.

Since the effects of A1 and Ca were opposed, an analysis of 

whether a A l / a c a ac ŝ as a single factor and if it can explain the variance

in growth parameters satisfactorily, is presented. Some recent studies 

used different forms of relationship between Ca and A1 for this purpose 

(e.g., Ca - A1 balance, Noble et al, 1988), but these are not yet widely 

accepted and were criticised on theoretical validity (Kinraide and Parker, 

1989; Grauer and Horst, 1991). Therefore in this analysis, the simple 

relationship between a £a and a Ai were used. However, in many recent 

studies the ratio a c a/ a ai was used whereas in the present study a A l / a 

Ca was used. It was chosen since otherwise the values of the ratio in 

some cases would have been indeterminate (because of nil Al treatment 

level). For this purpose correlation coefficients were calculated for the 

growth parameters against a A l / a Ca and the values of R2 are presented

in Table 6.5. For all the growth parameters, polynomial regression (2nd 

order) explained the variance better than a simple regression. Therefore, 

the values of R2 in Table 6.5 are from respective polynomial regression 

equations.
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The relationships between the growth parameters and a ^ i / a  

Ca are presented in Figure 6.5 along with the equations best fitted to the 

relationships and associated R2.

Table 6.5 Values of R2 for the variation due to a A l /a Ca f°r 
different growth parameters.

Growth parameter R2

Fine root length/ 
fine root weight

0.61

Root length 0.56

Shoot height 0.42

Fine root length 0.33

Shoot weight 0.15

Total biomass 0.11

Root branching 0.04

Root weight 0.02

6.3.2. Effects of treatments on water transpiration

Transpiration loss was measured during the treatment period to examine 

whether Ca and A1 treatments had any effect on the amount of water 

transp ired  by the grow ing seedlings. The effect of A1 and Ca 

concentrations on transp ira tion  was highly significant but their 

interaction was not. The am ount of water transpired by seedlings 

(m l/seed ling /day) in each treatment is presented in Figure 6.6 b. The 

amount of water transpired was highest (59 m l/seedling/day) in the low 

A1 plus high Ca treatment and lowest (18 m l/seedling/day) in the high
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A I. plus low Ca. In general an increase in A1 levels decreased 

transpiration and an increase in Ca level increased transpiration. When 

the size of the seedlings (dry m atter produced) was considered as a 

covariant the am ount of w ater transpired  varied only among A1 

treatm ents (at 5% level) which indicate that the effects of Ca and 

interaction between Ca and A1 on transpiration were primarily related to 

the size of the seedlings in each treatment.

6.3.3. Effects of treatments on leaf width

From the leaves traced at harvest, toutlines from nil A1 and maximum 

A1 are shown in Plate 6.3. With an increase in A1 levels the leaves 

became more linear as opposed to a lanceolate shape. Leaves were wider 

when the Ca concentration increased at a given A1 level. As an index to 

quantify leaf w idth, the ratio between mean leaf w idth and maximum 

leaf w idth is used. A high value indicates that the leaves are narrower. 

The values of this index are plotted against A1 and Ca treatments in 

Figure 6.6 a. The change of leaves to a linear form as A1 levels increased, 

indicates a stress effect on the seedlings; this effect is similar in nature to 

that which occurs with leaves under moisture stress (Andrew, 1973) and 

moisture and nutrient stresses (Gibson and Bachelard, 1989). Leaf width 

differed significantly for A1 treatments but not for the Ca or Ca by A1 

interaction.

6.3.4. Effects of treatments on the anatomy of roots

The prim ary roots of E. c a m a ld u le n s is  stopped growing when high A1 

concentrations w ere accompanied by low Ca, (i.e, in the A ^gC as 

treatment) (Plate 6.2). This resulted in slow secondary root formation. 

All the roots became thicker, particularly at the tips which appeared
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Plate 6.3. Tracings of young leaves (actual size) of seedlings from no A1 (top row) and 
maximum A1 (bottom row) at different Ca levels (mg/1). From left to right: 
Ca5, Ca10, Ca50 and Ca100>
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Figure 6.6. Effects of Ca and Al levels on (a) leaf width and (b) 
transpiration of E. camaldulensis seedlings. Vertical 
bars represent l.s.d. (P < 0.05).
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brow nish in colour. To examine whether these effects on roots were 

accompanied by changes in the root periphery, transverse thin sections of 

the roots of seedlings from treatments with a contrasting Ca and A1 level 

were prepared. Light microscope photographs of the root thin sections 

are presented in Plate 6.4. On the basis of these photographs the 

following observations may be made about root peripheries.

i. A treatment constituting high A1 in the presence of low 
Ca (Ca5Al5 o) results in a thickening of the root periphery, 
dam age to the epiderm is and developm ent of the 
hypodermal layer.

ii. At the same distance from the tips, roots of the 
CaiQoAlo . 2 5  treatm ent were not thickened and the 
epidermis was not damaged.

iii. Increasing the Ca level in the presence of high A1 
(Ca|oo^^5o) im proves the situation although there 
remains some thickening of the root periphery.

6.3.5. Effects of treatments on mineral concentrations in seedlings 

A lum inium

Aluminium concentrations in m ature leaves and fine roots at different 

A1 and Ca treatments are presented in Figure 6.7. Analysis showed that 

there was no A1 in young leaves. In mature leaves (Figure 6.7 b), the A1 

concentration was very low at the shown A1 levels of 0.25 and 2.5 mg/1. 

There was not much difference in the tissue A1 concentration between 

these two treatm ents. At a treatm ent A1 level of 20 m g/1, the A1 

concentration in mature leaves increased several fold and at 50 mg/1, the 

tissue A1 concentration increased even more than proportionately. 

These increases were statistically significant for treatment A1 levels and 

for the A1 by Ca interaction, but not for the Ca treatment level.
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Al 0.25 
---- *—  Al 2.5

..... 55?  Al 20
— O — Al 50

-------

Ca level in mg/1

Figure 6.7. Effects of Ca and Al levels on Al concentrations in E. camaldulensis seedlings, 
(a) Al concentration in young leaves were zero and are not plotted, (b) in 
m ature leaves and (c) in fine roots. Vertical bars represent l.s.d. (P < 0.05).



144

The AI concentrations in fine roots (Figure 6.7 c) were more 

sensitive to treatment levels of both A1 and .Ca than A1 concentration in 

mature leaves. The A1 concentration in fine roots clearly increased for 

all A1 levels. At all A1 levels, the Ca treatment increased A1 

concentration in fine roots. The only exception was the lowest A1 level 

(0.25 mg/1). These increases in A1 concentration were significant for both 

A1 and Ca treatments and also for their interaction. Correlation 

coefficients (R2) for A1 concentration in mature leaves were 0.66 and 0.70 

when compared with £ a m0no aRd total added A1 respectively, whereas 

the R2 for the A1 concentration in fine roots were 0.41 and 0.40 

respectively. The concentration of A1 in fine roots was much higher 

(maximum of 9 mg Al/kg root tissue compared to a maximum of 0.6 mg 

Al/kg mature leaf) than the A1 concentration in mature leaves (note the 

difference in the scale of the y axis in the two graphs).

Calcium

Calcium concentrations in young leaves, mature leaves and fine roots 

are presented in Figure 6.8. Aluminium treatment levels of 0.25 and 2.5 

mg/1 significantly increased the Ca concentration in young leaves (Figure 

6.8 a); the increase was larger in the case of 0.25 mg/1 than for 2.5 mg/1 of 

Al. This increase occurred at all levels of Ca. Further increases in the A1 

level (20 and 50 mg/1) decreased the Ca concentration, but the decrease 

was not significant. At all Al levels, the Ca levels significantly increased 

Ca concentration in young leaves. The absolute increase was however, 

larger in the presence of lower Al treatments (0.25 and 2.5 mg Al/1).
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Figure 6.8. Effects of Ca and A1 levels on Ca concentrations in E. camaldulensis 
seedlings, (a) in young leaves, (b) in mature leaves and (c) in fine 
roots. Vertical bars represent l.s.d. (P < 0.05).
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In m ature leaves (Figure 6.8 b) all A1 levels significantly 

decreased the Ca concentration except in the case of 0.25 mg Al/1. 

Further, Ca concentrations at the two highest A1 levels were almost the 

sam e as at all Ca levels. An increase in the treatm ent Ca level 

significantly increased the Ca concentration at all A1 levels although in 

absolute terms, the increases were smaller in the presence of high A1 

compared to nil or low Al.

Calcium concentrations in fine roots were significantly higher 

in the lowest (0.25 m g/) Al treatment. The next higher Al level (2.5 

mg/1) did not have any effect but the two highest (20 and 50 mg/1) Al 

levels significantly reduced the Ca concentration in fine roots. The Ca 

concentrations at these two Al levels were almost the same as at all Ca 

levels. Calcium  treatm ent levels significantly increased the Ca 

concentration in fine roots although the increase was small at higher Al 

levels.

In general, Ca concentrations were highest in m ature leaves 

followed by young leaves and then fine roots (except for the Ca 

concentration in fine roots at the C a ^ A lo  25 treatment).

M agnesium

Magnesium concentrations in the seedlings are shown in Figure 6.9. In 

young leaves the effect of Al was different for low and high Ca levels. At 

Ca levels of up to 50 mg/1, low Al levels (0.25 and 2.5 mg/1) increased the 

Mg concentration while higher Al levels decreased the Mg concentration. 

The decrease in Mg concentration at 20 mg Al/1 however, was not 

significant. At a Ca concentration of 100 mg/1, Mg concentrations were 

lowered w hen accompanied by 0, 0.25 and 2.5 mg Al/1, but when
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Figure 6.9. Effects of Ca and Al levels on Mg concentrations in E. camaldulensis 
seedlings, (a) in young leaves, (b) in mature leaves and (c) in fine 
roots. Vertical bars represent l.s.d. (P < 0.05).
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accom panying AI levels were 20 and 50 mg/1, Mg concentrations 

increased further but not significantly.

In mature leaves (Figure 6.9 b) in the presence of low Ca (5 and 

10 mg/1), Mg concentrations at the two highest A1 levels (20 and 50 mg/1) 

decreased significantly. When Ca treatment levels were also raised, the 

Mg concentration declined with low A1 levels but at 20 and 50 mg Al/1, 

the Mg concentration increased further. At the highest Ca treatm ent 

level, the Mg concentration at different A1 treatm ents was not 

significantly different.

In fine roots, lower A1 treatm ent levels (0.25 and 2.5 mg/1) 

increased the Mg concentration (Figure 6.9 c). Higher A1 levels (20 and 50 

mg/1) significantly decreased Mg concentrations. The effects of A1 

treatments on Mg concentrations were more prominent at higher than at 

lower Ca levels. The increase in the treatment Ca level increased the Mg 

concentration at all A1 levels, but at the two highest A1 levels the 

increases were not significant. In general, Mg concentrations were 

highest in young leaves followed by m ature leaves and then fine roots.

Phosphorus

Phosphorus concentrations in the seedlings are presented in Figure 6.10. 

In general, interm ediate levels of A1 (0.25 to 20 mg/1) resulted in 

maximum P concentrations in young leaves at different Ca levels. The 

differences in P due to A1 were significant although in absolute terms the 

differences w ere small. Phosphorus concentra tions were not 

significantly different for Ca treatm ent levels or for the A1 by Ca 

interaction.
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Figure 6.10. Effects of Ca and Al levels on P concentrations in E. camaldulensis 
seedlings, (a) in young leaves, (b) in mature leaves and (c) in fine 
roots. Vertical bars represent l.s.d. (P < 0.05).
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Table 6.6. F ratios for the ANOVA on the effects of A1 and Ca treatments 
on concentrations of Al, Ca, Mg and P in different parts of E. 
camaldulens is  seedlings.

Factors

A l A l2 C a C a 2  A l  x C a  A l2 x C a A l x C a 2 A l2  x C a 2

Al (mature leaves) 326.92** 1.37 4.54* 1.76 24.64** 5.67* 0.26 1.08

Al (fine roots) 476.68** 47.59** 136.04** 37.65** 15.09** 60.79** 14.13** 5.99*

Ca (young leaves) 10.23** 1.66 280.02** 0.43 10.66** 5.47* 0.43 0.00

Ca (mature leaves) 64.24** 26.66** 116.09** 7.87** 12.55** 8.06** 0.23 0.00

Ca (fine roots) 48.61** 8.79** 218.48** 18.62** 46.06** 21.20** 11.93** 6.12*

Mg (young leaves) 50.83** 1.18 16.78** 1.65 28.03** 1.99 2.95 0.49

Mg (mature leaves) 78.59** 3.90 29.55** 0.25 17.17** 2.26 0.27 0.51

Mg (fine roots) 75.20** 2.31 68.07** 1.05 9.62** 2.59 3.23 3.50

P (young leaves) 0.36 8.60** 4.81* 0.55 0.74 1.58 0.40 0.88

P (mature leaves) 0.54 2.51 0.26 0.03 0.40 2.94 0.00 0.74

P (fine roots) 9.65** 9.53** 25.20** 5.91* 19.46** 8.08** 4.37* 0.07

** and * indicate level of significance at < 1 % and < 5% level respectively.

In mature leaves P concentration showed an increasing trend 

due to higher Al treatment levels. Except in one case, P concentrations 

were always higher at higher Al levels compared to the nil Al treatment. 

However, these differences in P concentration were not significant, 

probably due to greater variation between replicates. The differences in P 

concentration were also not significant for Ca or for the Al by Ca 

interaction.

Phosphorus concentrations in fine roots (Figure 6.10 c) were 

significantly increased by higher Al levels. At higher Ca concentrations, 

the increases were larger than at low Ca. When Ca treatment levels were 

increased beyond 50 mg/1, P concentration slightly decreased at 0 and 0.25 

mg Al/1. The differences in P concentration in fine roots were highly
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significant for AI and Ca treatments and also for their interaction. The P 

concentration was lower in young leaves and more or less similar in 

mature leaves and fine roots.

6.4. Discussion 

6.4.1. Growth

The present experiment examined the effects of A1 and Ca on growth 

parameters of E. camaldulensis. Different parameters did not respond to 

A1 and Ca levels in the same way and some growth parameters were 

more sensitive than others. Shoot height, shoot weight and total 

biomass are the growth parameters most commonly used to evaluate 

seedling performance under any treatment. Existing studies on A1 

toxicity have focussed mainly on roots: root elongation, root length, root 

branching etc.

In the present study the growth of E. camaldulensis seedlings 

was significantly influenced by Ca and A1 treatments as measured by 

shoot height, shoot weight and total biomass. There are very few studies 

which discuss the effects of A1 and Ca levels on shoot growth of tree 

species and could provide a basis of comparison for eucalypt growth with 

the present study. Keltjen and Loenen (1989) studied the effects of A1 on 

5 tree species (Douglas fir, Scots pine, larch, oak and birch). In the case of 

Douglas fir a significant increase in shoot and root growth was observed 

at 5 mg Al/1, while beyond that shoot dry matter was unaffected and root 

growth was significantly reduced. Larch and oak showed a positive shoot 

and root dry matter response to A1 at high levels (A1 up to 30 mg/1). 

Birch and Scots pine were unaffected by A1 treatments. Compared to all 

these species, E. camaldulensis may be considered more sensitive to A1
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because its total biomass declined when A1 reached more than 2.5 mg/1 

unless the Ca was raised to a very high level. However, compared to 

Populus (Steiner et al, 1984), black spruce (Hutchinson et al, 1986) and 

honeylocust (Thornton et al, 1986), E. camaldulensis may be considered 

more tolerant to Al as these species were adversely affected at a lower Al 

concentration. Joslin and Wolfe (1988) also found a reduction in shoot 

weight in red spruce when soil solution Al levels were increased to 1.65 

mM in forest soil.

In the present study, m easures of root grow th were also 

examined. Among these, total root weight was less affected by Al or Ca 

although other measures such as prim ary root length, fine root length, 

the ratio (fine root length)/(fine root weight) and root branching were 

significantly different for various Al and Ca treatments. The very low 

fine root length under the high Al treatment and its significant increase 

with increasing Ca level indicates that in the presence of high Ca, Al is 

not so toxic. Calcium is required in the meristematic regions (root and 

shoot) of young seedlings for growth and development. Roots are the 

organ in contact with the growth medium and fine roots have a much 

large number of exchange sites for Al than do tap roots or stems in young 

seedlings (Thornton et al, 1986). Therefore, the presence of high Al in 

the root environm ent limits fine root growth by reducing the Ca intake. 

In the present experiment Ca concentrations in fine roots were much 

lower at low Ca when the Al treatment was high. With increasing Ca, 

both fine root length and the Ca concentration in fine roots increased and 

this supports the above explanation. Kinraide and Parker (1987) also 

reported competition between Al and other cations for binding sites in 

wheat roots.
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Blarney et al (1983) found that in 4 days relative root length of 

soybeans sharply declined up to the X a A1 mono of 40 fiM, then remained 

fairly steady up to the highest level of 160 jiM. In the present experiment, 

root length remained unaffected at a Z a Ai mono of 62 pM even when the 

Ca level was low. Root length decreased at and above a I a Ai mono °f 380 

pM when Ca levels were low, indicating that E. camaldulensis is more 

tolerant to Al levels than are soybeans. This experiment shows that root 

length increased consistently with Ca levels even when accompanied by 

high Al levels and this result agrees with those of Alva et al (1986 a) and 

Rhue and Grogan (1977).

The interaction effect of Al and Ca was examined as the ratio 

between the two. The value of R2 was significant for all the equations but 

the variance in different growth parameters explained by the equations 

varied widely. Thus the ratio a A l / a Ca is a significant factor in

explaining the performance of the growth parameters. However, the 

values of R2 were sometimes low indicating that a Al/a Ca not the

only explanator of variation for the growth parameters. Wright and 

Wright (1987) reported that a ca2+ in soil solution did not successfully 

explain root and shoot growth of subterranean clover but a ^ a2+/Z a 

mono m s°h solution correlated better with the relative growth index. 

Rost-Siebert (1983) reported that roots of Norway spruce seedlings grown 

in nutrient solution were adversely affected only when the Ca/Al was 

low (< 1). Some studies used the Ca/Al ratio separately for each Ca level 

(Alva and Edwards, 1990) while others used a single Ca/Al for the whole 

range (Wright and Wright, 1987). Although the former approach may 

obtain a better relationship, the latter approach was used in this study 

because it is then possible to obtain a generalised effect over a wide range.
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An examination of root thin sections indicated the presence of 

an epidermis in the CaiooAlo.25 treatment which implies that the roots 

were fast growing. The damaged epidermis in the high A1 treatments 

with low Ca implies that root elongation was adversely affected. The 

effect of high A1 on root morphology is in conformity with the existing 

literature. Wagatsuma et al (1987 a) reported that cell damage occurred in 

the epidermis in Al tolerant oat plants, while the adverse effect in 

sensitive plants (e.g. barley) was found throughout the whole cortex. 

Due to a lack of similar studies, it is not possible to compare the effects of 

increased Ca in alleviating the effect of Al on root anatomy. A thickened 

root periphery in low Ca plus high Al treated seedlings is likely to restrict 

the movement of water (including nutrients) into the cortex.

6.4.2. Mineral concentrations

The effect of treatments on the mineral concentration of some elements 

known to be affected by Al was examined. Rather than analyzing the 

whole seedling or shoot and root as is usually done, in this study young 

leaves, mature leaves and fine roots were analyzed separately to examine 

which part of the seedling was more sensitive to Al toxicity and to find a 

suitable phytoindicator of Al toxicity for E. camaldulensis.

In general, higher Al levels increased Al and P concentrations 

and decreased Ca concentration. Magnesium concentration was 

increased at low Al levels and decreased at high Al. Higher Ca levels 

increased Ca and Al concentration and decreased Mg concentration. The 

P concentration in leaves was not affected by Ca, while root P was 

increased by Ca at high Al levels only.

A decrease in Ca and Mg concentration in leaves was a result of 

the high Al in the root environment. Alternatively Al already absorbed
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may be due to excess A1 reducing Ca and Mg transport to the tops (Foy et 

al 1978). The latter effect was not completely overcome by high Ca levels. 

Under similar conditions with wheat, Johnson and Jackson (1964) 

suggested that high Al levels completely inactivated a portion of the Ca 

accumulating mechanism. In mature leaves (a major component of the 

total shoot), higher Al treatments reduced the Ca concentration, but Al 

beyond 20 mg/1 did not reduce the Ca concentration any further 

indicating a limitation to this effect. Competition between Al and Ca or 

Mg for binding sites in the roots is considered a possible mechanism for 

reduced Ca uptake in the presence of high Al (Kinraide and Parker, 1987). 

Similar reductions in Ca and Mg concentrations by higher Al treatments 

were reported for other plants. For example, cabbage, lettuce and kikuyu 

grass (Pluett and Menary, 1980), pine (Truman et al, 1986), and spruce 

(Joslin et al, 1988) showed this effect. Magnesium concentration was also 

used as a criteria for screening Al tolerance in corn (Rhue and Grogan, 

1977).

Phosphorus concentrations were significantly increased by 

higher Al levels, although in many cases the absolute increase was small. 

In existing studies, the effect of Al on P concentrations is contrary to this 

finding. There are many reports of adverse effects of Al on P 

concentration in plants (McCormick and Borden, 1974; Naidoo et al, 

1978; Foy et al, 1978; Fageria et al, 1989 a; Alva and Edwards, 1990). Foy 

et al (1978) noted that Al tolerance may be closely related to the efficient 

use of P. Fageria et al (1989 a) also expressed similar views. However, 

White (1976) reported a stimulatory effect of Al on P uptake. Using 32P to 

study the transport of P in lucerne, he found that the stimulus to uptake 

of P by Al was confined to the acid extractable pool which comprised 

mainly free space P.
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Among the elements, A1 concentrations in fine roots were 

m uch higher than in leaves (more particularly in the m ature leaves). 

Root A1 concentration was about 15 times higher than A1 in leaves 

indicating that only a small portion of the absorbed A1 was translocated 

to the mature leaves. This also suggests that once taken up, A1 becomes 

immobilized in the tissues and is not translocated to the more actively 

growing parts (Attiwill, 1981). This ratio would have been even wider if 

the whole shoot was analyzed as a composite sample, since young leaves 

were free from any Al. The higher A1 in roots when compared to shoots, 

is in agreement with many agricultural crops (Andrew et al, 1973; Huett 

and Menary, 1980; Fageria et al, 1989 a) and tree species (Arp and 

Ouimlet, 1986; Thornton et al, 1986; Joslin et al, 1988). Thornton et al 

(1986) reported 50 to 100 times higher Al in roots compared to shoots in 

honeylocust. Keltjen (1990) reported 5 to 10 times higher Al in nutrient 

solution grown roots of Douglas fir than in shoots. Joslin et al (1988) also 

reported much higher Al in roots from the B horizon than in shoots in 

the case of spruce.

In the present experim ent increases in Ca treatm ent level 

increased both Ca and Al concentration in the leaves and at the same 

time increased total seedling grow th which implies that when Ca 

concentrations in seedlings are high, higher Al concentrations are not so 

toxic. This also implies that lower Ca concentrations are the main 

problem w ith Al toxicity in E. camaldulensis seedlings, a conclusion 

which is similar for kikuyu grass (Awad et al, 1976). There are many 

reports of decreasing Al toxicity when applying large amounts of Ca (e.g., 

Rhue and Grogan, 1977; Alva et al 1986 a; Alva et al, 1986 c). All these 

authors report shoot and root growth (different measures) and the 

uptake of nutrient elements such as Ca, Mg, N, P, K etc at higher Ca.
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H ow ever, repo rts  on w hether h igher Ca actually  reduced  A1 

concentration in plants are rare. Huett and Menary (1980) studied the 

grow th and nutrient uptake of cabbage, lettuce and kikuyu grass as 

affected by pH, A1 and Ca. They found that high Ca treatments increased 

root A1 concentrations in kikuyu grass and reduced shoot A1 in all three. 

In the present study root A1 increased at higher Ca levels but shoot A1 

significantly increased only at the highest A1 treatment level.

6.4.3. Phytoindicators of Aluminium for £. camaldulensis seedlings.

The conclusions above help in the search for a suitable phytoindicator of 

A1 toxicity in E. camaldulensis. Some measures of root growth (fine root 

length, fineness of fine root, and root branching) were significantly 

reduced by increasing A1 levels. Among them, fineness of the fine roots 

was found to be an important growth parameter most sensitive to A1 and 

Ca. Very few earlier studies focussed on this parameter. Pinkerton and 

Simpson (1981, 1983) considered fine root length to be one of the most 

im portant param eters affected by high levels of Al. However the 

assessm ent of fineness can be much more sensitive than attem pting 

actually to m easure diameters. For instance the measure of fineness used 

in this experiment was defined as the root length per unit weight, i.e, 

(fine root length)/(fine root weight). Thus the less the root weight per 

unit of root length, the finer the root and hence this measure provided a 

means to overcome any fineness measurement problem.

Aluminium concentrations in fine roots correlated well with 

I  a Ai mono or nominal Al (R2 of 0.45 and 0.40 respectively). And Al 

concentrations in mature leaves correlated more strongly with both Z a 

AI mono aRd nominal AI (R2 of 0.65 and 0.69 respectively). Joslin et al 

(1988) reported that Al concentrations in fine roots from the B horizon
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strongly correlated with different measures of soil A1 but shoot A1 was a 

weak phytoindicator of soil Al. Hutchinson et al (1986) also reported a 

weak correlation of shoot Al with Al in the growth medium. However, 

in these reports on shoot Al, a composite shoot sample was analyzed in 

contrast to the present study where mature and young leaves were 

analyzed separately. Therefore, under similar conditions mature leaf Al 

rather than shoot Al may be considered to be a suitable phytoindicator of 

Al toxicity in studies with small seedlings of E. cam aldulensis. The use 

of mature leaf Al as a phytoindicator of Al toxicity may be even more 

useful when the collection of fine roots is difficult. This conclusion is 

also supported by Al toxicity symptoms which appeared in mature leaves 

after about two weeks of Al treatment.



CHAPTER 7

EFFECTS OF ALUMINIUM, CALCIUM AND PHOSPHORUS 
ON THE GROWTH OF, AND NUTRIENT ABSORPTION RATE 

BY E. CAMALDULENSIS SEEDLINGS
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7. EFFECTS OF ALUMINIUM, CALCIUM AND PHOSPHORUS ON 
THE GROWTH OF, AND NUTRIENT ABSORPTION RATE BY E.

_ CAMALDULENSIS SEEDLINGS.

7.1. Introduction

In the previous experiment (Chapter 6) high A1 adversely affected the 

growth of E. camaldulensis seedlings, especially their roots. These effects 

were less severe when Ca levels were high. Also high P levels 

significantly increased the growth of E. camaldulensis seedlings in an 

acid soil, low in P and exchangeable Ca and high in exchangeable A1 

(Chapter 5). Therefore, it was necessary to include P along with various 

levels of A1 and Ca when examining the interaction of P, A1 and Ca on 

the grow th of E. Camaldulensis: the objective of this experim ent.

Further, the performance of seedlings needs to be evaluated sequentially 

over a period of time through successive harvests (whereas in the 

previous experiments only one final harvest was made).

A reduction in seedling growth was associated with stunted 

fine root growth, so the question was raised whether the stunted roots 

are less efficient in their functioning. One im portant measure of root 

efficiency is the nutrient absorption rate (Brewster and Tinker 1972). 

Therefore, a secondary objective of these experiments was to examine the 

effects of Al, Ca and P on root efficiency of the seedlings as measured by 

nutrient absorption rate at different points in time.

Eucalyptus camaldulensis seedlings were grown in nutrient 

solution using treatment combinations including two levels of Al, two 

levels of Ca and two levels of P. Successive harvests of seedlings from 

each treatm ent combination were made and growth param eters were 

recorded and mineral nutrient absorption rates determined.
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7.2, Materials and methods

The general set up of the experiment and environmental conditions in 

the glasshouse were identical to those described in Chapter 6.

7.2.1. Treatments

As the aim of the experiment was to investigate the effect of high A1 on 

the root efficiency of E. camaldulensis and the role of high levels of Ca 

and P in alleviating effects of Al, only one high and one low level each of 

Al, Ca and P were included in the experiment These were 0.25 and 50 

mg Al/1; 5 and 100 mg Ca/1 and 7.5 and 30 mg P/1. For Ca and Al, these 

levels correspond to the lowest and highest levels used in the previous 

experiment (Chapter 6). For P, the two levels were half and double the 

normal P level in nutrient solution so that the two P levels varied 

widely. In all there were (2 X 2 X 2 =) 8 treatment combinations and five 

replicates. To allow for successive harvests, initially each replicate had 

two bottles of four seedlings. Therefore, after harvesting Tq samples 

(before the beginning of treatments), there were 80 bottles to begin 

treatments.

Deionized water (EC approximately 2 pS) was used to prepare 

nutrient solutions. Chemicals used to obtain the desired levels of 

treatments are shown in Table 7.1.
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Table 7.1. The com position of nu trien t solutions used for different 
treatm ent combinations.

Stoclc s o lu t io n s R e q u ir e m e n ts  m l s to ck  per 50 L

n u tr ie n t s o lu t io n

A1 stock for 0.25 mg Al/1: 1.12 gm A1C13.6H20 /5 0 0  ml. 50

A1 stock for 50 mg Al/1: 89.42 gm A1C13 .6H2 0 /L . 2 0 0

Ca stock for 5 mg Ca/1: 3.69 gm Ca(N 03)2. 4H20 /5 0 0  ml 
18.75 gm NH4N 0 3/500 ml

2 0 0

Ca stock for 100 mg Ca/1: 59.04 gm Ca(N 03)2. 4H20 /5 0 0  ml 
9.19 gm CaCl2. 2H20 /500  ml.

2 0 0

P stock for 7.5 mg P/1: 13.92 gm N H 4 H 2 P 0 4  /L. 
5.16 gm NH 4 N 0 3  

75.75 gm KNO3

1 0 0

P stock for 30 mg P/1: 55.68 gm NH 4 H 2 P 0 4  /2L 
50.56 gm KNO3

18.63 gm KC1
80.64 gm NH 4 N 0 3

2 0 0

C o m p o s it io n  o f  n u tr ie n ts c o m m o n  to a ll treatm ents:

C h em ica l R e q u ir e m e n ts  m l stock  per 50 L
n u tr ien t s o lu t io n

MgS04. 7H20 30.81 g/500 ml 1 0 0

MnCl2. 4H20 0.197 g/L 50
ZnS04. 7H20 1.15 g/L 50
CuS04. 5H20 0.626 g /L 50
Na 2 M o04. 2H20 0.242 g/L 50
H 3 BO3 0.744 g /L 50

Fe EDTA* 2 0

* EDTA: 5.0 gm NaOH was dissolved in 800 ml distilled water. Then 33.2 
gm EDTA (disodium  salt) and 24.9 gm FeS04i 7 H 2 O were added, made 
up to 1L volume and aerated overnight.
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7.2.2. Nutrient solution pH adjustment

The two levels of A1 used in this experiment differed greatly in nutrient 

solution pH which is another acid soil factor by itself. It was therefore 

decided to maintain the same pH for all the treatments. Chosing a pH 

level is complicated because a lower pH affects seedling growth itself and 

increasing the pH reduces the proportion of monomeric A1 in the system. 

Therefore, a compromise between these two had to be made. The 

computer program Titrator', version 2.2 (Cabaniss, 1987) was used to detail 

the effect pH would have on A1 species as it changed from 3 to 6. The 

treatment combination used was the one with the highest levels of of Ca, 

A1 and P (i.e. CaiooPsoAlso) in nutrient solution (Figure 7.1). A pH of more 

than 3.7 decreases the amount of monomeric A1 sharply. It may be seen 

from the figure that at a pH of 3.7 most of the A1 is present in the 

monomeric form, thus implying the absence of any precipitation of Al. 

Therefore, it was decided to maintain the nutrient solution at a pH of 3.7 by 

adding either dilute HC1 or dilute NaOH. After adding the required 

amounts of all chemicals including acid or alkali, the solution pH was 

finally checked and adjusted on the following day.

7.2.3. Seedling growth

Five week old seedlings of E. camaldulensis were transferred to 2.5 litre size 

plastic bottles at four seedlings per bottle and bottles filled with half 

strength nutrient solution. After one week, these dilute nutrient solutions 

were replaced by normal strength solutions; the actual treatment started 

two weeks after that. At the start of the treatment, seedling heights were 

recorded and by swapping seedlings from one bottle to another before 

treatments began it was possible to ensure that bottles for each treatment 

had seedlings of a similar size and vigour. From the time treatments began 

seedlings were grown for a maximum period of six weeks.
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- ~ + -  MOH2+

r  60- Al(OH)2+

A1SQ4+

Total A1 Mono

Al(OH)3 ppt

pH of solution

Figure 7.1. Change in the concentration of different forms of A1 

with a change in solution pH.

7.2.4. Harvest and agronomic data

Shoot heights were recorded weekly. Seedlings were harvested at the 

start of treatments (Tq), after two days and then at the end of one, two, 

four and six weeks. At Tq, three seedlings were harvested to make up 

one sample to ensure enough material for chemical analyses. After two 

days and one and two weeks two seedlings were harvested to make up 

one sample. After 4 and 6 weeks each seedling included sufficient 

material for a sample.

7.2.5. Chemical analysis of seedlings

Two digestion methods were compared: ashing or an H2SO4 and H2O2 

digestion method (Chapter 3). The results were comparable (Figure 3.2) 

and the H2SO4 and H2O2 digestion method was chosen for its simplicity.
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Shoot and root samples were ground to pass through a 20 

mesh screen on a Wiley mill and then digested. Phosphorus, Ca, Mg, 

and_Al were analysed by Inductively Coupled Plasma (ICP) spectroscopy 

as described in Chapter 3.

7.3. Results

7.3.1. Seedling growth

Figures 7.2 to 7.6 show the change in seedling growth parameters during 

the 6 week period after treatments began. The A1 levels of 0.25 mg/1 and 

50 mg/I shown in the figures correspond to ranges of 6.58 to 6.71 and 733 

to 827 jiM in terms of I  a mono- eac^ figure, the upper portion 

shows the effect when P was at the lower level (7.5 mg/1) and the lower 

portion represents the higher P level (30 mg/1) respectively for various 

Ca and A1 combinations. Values of l.s.d. (< 5% level) are also shown in 

each figure. Since both the figures were drawn from the same sample, 

they have the same l.s.d. bars.

Shoot weight, root weight and total biomass have a common 

pattern of change with the course of time. During the first week, the rate 

of growth was very slow. During the second to fourth weeks seedlings 

started to grow better; during the 5th and 6th weeks the rate of growth 

was steeper.

Figure 7.2a shows that in the presence of 7.5 mg P/1, shoot 

weight growth was fastest for high Ca plus low A1 seedlings and at the 

end of the 6 week period it was significantly higher than in others. 

Among the other 3 treatment combinations shoot weight was minimum 

in the low Ca plus high A1 treatment though they did not differ 

significantly. In the presence of 30 mg P/1 (Figure 7.2 b) the curves for 

high Ca plus high A1 and the curves for high Ca plus low A1 almost



165

overlapped, they were significantly higher than the other two treatment 

combinations. At the last harvest, shoot weight in the CasA^o treatment 

w assignificantly higher than in the Ca5Alo.25 treatment.

The patterns for the response of root weight (Figure 7.3) were 

similar to shoot weight, except that in the presence of 30 mg P/1, the root 

weights after 28 days were higher for high Ca plus high A1 than for high 

Ca plus low Al; for shoot weights these two overlapped. Initially the 

root weight increment was slower than in case of shoot weight and 

treatm ent effects on root weights were visible only after the 4th harvest. 

But the relative position of different treatment combinations in terms of 

shoot weight and root weight were similar. The difference in root weight 

between the treatments Ca5 Al5o and C a ^ A ^ o  was significant which was 

not the case in shoot weight.

The pattern  for total biomass (Figure 7.4) was similarly 

influenced by Ca, Al and P as for the case of shoot weight. However, 

biomass was influenced more by shoot weight than by root weight.

The pattern of change of shoot height (Figure 7.5) and root 

length (Figure 7.6) have some similarities with shoot weight and root 

weight, but sometimes the differences due to treatment combinations did 

not show any clear trend. Shoot height dem onstrated a change even 

during the first 7 days. The steepness of increase during the 5th and 6th 

weeks was less for shoot height than for shoot weight. The relative 

position of the curves for shoot height during the period 2 to 6 weeks was 

similar to the curves for shoot weight. In the initial two weeks, there 

w as little  d ifference in shoot he igh t increm ents am ong the
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Ca5A10.25
Ca5A150

CalOOAlO.25
Cal00A150

2  2 -

Ca5A10.25
Ca5A150

------------ □—

Cal00A10.25 
Cal 00 A 150

0

Days after treatment

Figure 7.2. Shoot weight increment of £. camaldulensis seedlings at different 
Ca and A1 treatments when (a) P level was fixed at 7.5 mg/1 and 
(b) P level was fixed at 30 mg/1. Vertical bars represent l.s.d.
(P < 0.05).
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to 3 -

Ca5A10.25

Ca5A150

------- □ -  _

to 2 -
CalOOAlO.25

Cal00A150

0

Ca5A10.25--------------□—

Ca5A150

CalOOAlO.25

Cal00A150

Days after treatment

Figure 7.3. Root weight increment of E. camaldulensis seedlings at different 
Ca and A1 treatments when (a) P level was fixed at 7.5 mg/1 and 
(b) P level was fixed at 30 mg/1. Vertical bars represent l.s.d.
(P < 0.05).
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Ca5A10.25
Ca5A150

--------------□—

Cal00A10.25
Cal00A150—  - o —

Ca5A10.25------- □ -  _

CalOOA1506 4 -

Days after treatment

Figure 7.4. Total biomass increment of £. camaldulensis seedlings at different 
Ca and A1 treatments when (a) P level was fixed at 7.5 mg/1 and 
(b) P level was fixed at 30 mg/1. Vertical bars represent l.s.d.
(P < 0.05).
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treatm ents. Shoot heights were significantly higher in high Ca 

treatments irrespective of A1 and P levels.

The pattern  of effects on prim ary root lengths was not as 

systematic as for the other parameters, though the general pattern was a 

rise with time and the low A1 plus high Ca curve was the highest. At 6 

weeks, the case of 7.5 mg P/1, high Ca plus low A1 produced the longest 

root while the roots growing in low Ca plus low A1 were the shortest. 

This pattern was similar for root weight. One point needs to be clarified 

about the pattern of change of root length over time. That is, for some 

treatm ent combinations, the root length showed an absolute decline over 

time. This happened because root length in any treatment combination 

at a particular instant was the mean root length of seedlings harvested at 

that time and therefore the root length of the same group of seedlings 

were not compared.

These differences in the responses of different grow th 

param eters of E. camaldulensis to A1 at different Ca and P levels indicate 

that A1 interacts with Ca and P to influence seedling growth parameters.

The statistical significance of the influence of treatment levels 

and their interactions on the seedling growth parameters are presented 

in Table 7.2. The data show that with the exception of shoot height, Ca 

had a significant F value for all the growth parameters. The F values of 

the interaction of A1 and P were significant for most of the parameters.
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Ca5A10.25
------ 4------  Ca5A150

Cal00A10.25 
-o------ CalOOA150

Ca5A10.25------- □ _  -

Ca5A150
Cal00A10.25

CalOOA150

Days after treatment

Figure 7.5. Shoot height increment of £. camaldulensis seedlings at different 
Ca and A1 treatments when (a) P level was fixed at 7.5 mg/1 and 
(b) P level was fixed at 30 mg/1. Vertical bars represent l.s.d.
(P < 0.05).
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Ca5A10.25—  - a - -

Ca5A150
Cal00A10.25

Cal00A150----- o----

------ □-----  Ca5A10.25

Ca5A150
Cal00A10.25

Days after treatment

Figure 7.6. Primary root length increment of £. camaldulensis seedlings at different 
Ca and A1 treatments when (a) P level was fixed at 7.5 mg/1 and (b) P 
level was fixed at 30 mg/1. Vertical bars represent l.s.d. (P < 0.05).
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Table 7.2. F ratios for the ANOVA on different growth param eters 
with respect to treatments.

Source of 

varia tion

Shoot

w eight

Root

weight

Total

biomass

Shoot

heigh t

Root

length

A1 1.30 2.47 1.67 0.39 3.56

Ca 29.32** 22.20** 29.76** 0.25 19.56**

P 5.71* 0.19 4.01* 0.07 2.71

Time: Lin. 1076.51** 1218.27** 1198.27** 2075.90** 122.05**

Quad. 130.80** 172.90** 151.49** 4.11* 13.52**

A1 x Ca 1.59 0.14 1.20 3.21 5.48*

A1 xP 3.70 5.16* 4.34* 5.32* 2.02

Ca x P 0.83 0.04 0.59 0.04 0.07

A1 x Time (lin.) 1.99 4.69* 2.73 1.97 0.00

A1 x Time (quad.) 0.16 0.64 0.26 1.22 1.11

Ca x Time (lin.) 49.54** 47.21** 52.91** 59.71** 4.76*

Ca x Time (quad.) 7.29** 14.36** 9.45** 0.04 1.35

P x Time (lin.) 8.76** 0.30 6.16* 0.06 0.12

P x Time (quad.) 0.32 0.05 0.15 0.26 0.00

A1 x Ca x P 0.56 1.01 0.71 2.97 0.01

A1 x Ca x Time (lin.) 5.54* 1.47 4.69* 8.01** 0.23

A1 x Ca x Time (quad). 3.08 2.60 3.20 0.01 3.39

A1 x P x Time (lin.) 7.53** 12.91** 9.37** 3.38 2.37

A1 x P x Time (quad). 1.99 4.63* 2.72 0.22 0.22

Ca x P x Time (lin.) 1.60 0.28 1.28 0.40 0.52

Ca x P x Time (quad) 0.42 0.50 0.48) 0.01 0.13

A1 x Ca x P x Time (lin) 0.97 1.64 1.20 1.93 0.35

** and * indicate level of significance at < 1% and < 5% respectively.
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The difference in growth parameters over time was always 

significant; the seedlings are obviously expected to grow over time. Both 

linear and quadratic effects of time were significant for all the growth 

parameters. The significant quadratic effect of time implies that the rate 

of growth of the parameters, change significantly as they grew older.

7.3.2. Nutrient absorption rate

The absorption rates of Al, Ca, Mg and P by the seedlings during the 6 

week period of growth were examined. The absorption rates were 

calculated as total uptake (shoot + root) of an element (mg) per unit of 

fresh root weight (g) at any time. Separate figures are presented for each 

element at the two levels of P. Table 7.3 shows the F ratios of the 

multivariate ANOVA for different growth parameters with respect to 

treatments.

The absorption rate for Al increased with an increase in the Al 

level (Figure 7.7). At low Al treatment level, an increase in the Ca or P 

level did not affect the already low Al absorption rate. But at high Al 

level, an increase in the Ca level raised the Al absorption rate when the P 

level was low. When the P level was higher, this effect was less 

prominent. In most cases, the absorption rate of Al was lower when the 

P level was high. As the seedlings grew bigger, the absorption rate of Al 

remained fairly constant when treatment Al level was low.
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Table 7.3. F ratios for the ANOVA on absorption rate of different 
nutrient elements with respect to treatments.

Source of 

variation A1 Ca P

A1 710.52** 59.10** 225.62** 25.48**

Ca 1.36 418.70** 49.52** 7.55**

P 11.01** 11.94** 13.06** 96.56**

Time: lin. 12.72** 344.98** 57.53** 27.14**

quad 16.95** 143.61** 13.12** 2.50

A1 x Ca 1.34 48.17** 37.02** 0.00

Al xP 6.98** 4.80* 0.00 0.33

Ca x P 3.58 17.02** 4.65* 5.40*

A1 x Time (lin.) 19.26** 13.47** 26.65** 7.04**

A1 x Time (quad.) 11.96** 2.32 23.62** 4.43*

Ca x Time (lin.) 6.02* 70.87** 9.83** 4.24*

Ca x Time (quad.) 0.25 13.06** 3.76 1.99

P x Time (lin.) 6.65* 15.32** 1.82 3.63

P x Time (quad.) 2.53 0.64 19.57** 10.95**

A1 x Ca x P 2.98 1.83 0.01 3.79

A1 x Ca x Time (lin.) 4.72* 9.69** 1.16 3.71

A1 x Ca x Time (quad). 0.03 0.01 4.32* 0.66

A1 x P x Time (lin.) 7.55** 2.75 3.61 2.98

A1 x P x Time (quad). 4.87* 0.73 0.40 1.28

Ca x P x Time (lin.) 0.56 21.61** 3.16 1.17

Ca x P x Time (quad) 0.36 0.08 3.05 3.19

A1 x Ca x P x Time (lin) 1.08 2.96 0.14 0.37

** and * indicate level of significance at < 1% and < 5% respectively.
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When the Ca level was high the absorption rate for Ca was 

significantly reduced by high A1 levels (Figure 7.8). At a low Ca level, 

high A1 did not influence the Ca absorption rate throughout the 

treatment period. High P also reduced the Ca absorption rate and when 

both A1 and P were higher, their total effect was less than their additive 

reduction. For the first two weeks, the absorption rate of Ca declined 

sharply with time and thereafter declined very slowly. The adverse effect 

of A1 on the Ca absorption rate remained more or less stable after two 

weeks.

The Mg absorption rate was significantly reduced by high A1 

levels (Figure 7.9) at any level of Ca or P. The absorption rate of Mg was 

reduced in most cases by the increase of Ca and P treatments. When Ca, 

A1 and P levels were low, the absorption rate of Mg was significantly 

higher than other treatment combinations and remained fairly constant 

at 0.78 mg M g/g of fresh root. The Mg absorption rate for the remaining 

treatment combinations in Figure 7.9a declined sharply during the first 

two weeks and did not change much after two weeks. When the P level 

was high (Figure 7.9 b) there was a slow declining trend in the absorption 

rate except for the Ca5Alo.25 treatment combination in which case the 

absorption rate increased from the 4th week. The absorption rate was 

significantly lower when the Ca level was high.

The P absorption rate was significantly reduced by high A1 

levels (Figure 7.10) and this effect was more prominent at low, than at 

high P levels. At identical Ca and A1 levels, the P absorption rate was 

slightly higher at the high P treatment level. With time, the P absorption 

rate generally declined, but in many cases the decrease was small and in a 

few even a contrary pattern was observed.
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Ca5A10.25
Ca5A150
Cal00A10.25
Cal00A150

----------□—

' • ' « S ' - r n _

Ca5A10.25
Ca5A150
Cal00A10.25
CalOOA150

Days after treatm ent

Figure 7.7. A bsorption rate of A1 (mg A l/g  fresh root) at different dates after 
treatm ent, at different Ca and A1 levels w hen (a) P level was fixed at 
7.5 m g/1 and (b) P level was fixed at 30 mg/1. Vertical bars represent 
l.s.d. (P < 0.05).
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-  -  -□-----  Ca5A10.25
Ca5A150

Cal00A10.25

Cal00A150

0 10 20 30 40 50

Ca5A10.25------------□—

Ca5A150
Cal00A10.25

CalOOA150

0 10 20 30 40 50
Days after treatment

Figure 7.8. Absorption rate of Ca (mg Ca/g fresh root) at different dates after 
treatment, at different Ca and A1 levels when (a) P level was fixed at 
7.5 mg/1 and (b) P level was fixed at 30 mg/1. Vertical bars represent 
l.s.d. (P < 0.05).
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Ca5A10.25
Ca5A150

Cal00A10.25
Cal00A150

Ca5A10.25

Ca5A150

Cal00A10.25
Cal00A150

Days after treatm ent

Figure 7.9. A bsorption rate of Mg (mg M g /g  fresh root) at different dates 
after treatm ent, at different Ca and  A1 levels w hen (a) P level 
w as fixed a t 7.5 m g/1 and (b) P level was fixed a t 30 m g/1. 
Vertical bars represent l.s.d. (P < 0.05)
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Ca5A10.25

Ca5A150
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Cal00A150

Ca5A10.25
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--------------□—

Cal00A10.25
Cal00A150

0 10 20 30 40 50
Days after treatment

Figure 7.10. Absorption rate of P (mg P /g  fresh root) at different dates after 
treatment, at different Ca and A1 levels when (a) P level was fixed 
at 7.5 mg/1 and (b) P level was fixed at 30 rng/1. Vertical bars 
represent l.s.d. (P < 0.05).
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The relationship of nutrient absorption rate with a A1/a £a

In Chapter 6 it was found that the ratio a A1/a Ca explained the variation 

of some of the growth parameters quite well. Here a further attempt is 

made to analyze whether the a Aj/a Qa ratio can explain the variation in 

the absorption rate for Al, Ca, Mg and P. Figure 7.11 shows the scatter 

diagram and best fit equations for these analyses. However, the R2 was in 

general, small though it was significant for Ca and Mg. Therefore, in 

terms of their effect on nutrient absorption rate, Al and Ca levels may be 

more relevant as independent factors than as a ratio.

7.4. Discussion

7.4.1. Seedling growth

The effects of Ca, Al and P treatments on growth parameters of E. 

camaldulensis seedlings for 6 weeks period revealed that in general, high 

Al significantly reduced the growth of E. camaldulensis seedlings when 

Ca and P levels were low. An increase in Ca and/or P levels ameliorated 

the deleterious effects of Al. An increase in the Ca level increased the 

growth of E. camaldulensis, but an increase in the P level decreased the 

growth when Ca and Al were low and improved growth when Ca and/or 

Al were high.
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Table 7.4. Increase in growth parameters with an increase in the P level 
at different A1 and Ca levels.

Growth parameter Increase from 

Ca5A10.25p7.5 t0 

Ca5A10.25p30

Increase from 

Ca5Al5QP7.5 t0 

Ca5A150p30

Increase from 

Ca100A150p7.5 t0 

Ca100A150p30

Shoot height (cm) * - 6.7 (21.1)** 4.30 (11.3) 0.20 (0.4)

Root length (cm) - 9.7 (25.0) 0.50 (1.2) 3.30 (6.6)

Shoot dry wt. (g/seedling) - 0.22 (4.4) 1.33 (27.1) 2.62 (41.9)

Root dry wt. (g/seedling) - 0.37 (22.7) 0.27 (16.6) 0.60 (26.8)

Total biomass (g/seedling) - 0.59 (9.0) 1.60 (24.5) 3.22 (37.9)

* Negative sign preceding a number means that growth actually declined.

** Figures in the parenthesis indicate percent increase or decrease over lower P level.

The effect of P on seedling growth parameters at different Ca 

and A1 levels is compared (for the last harvest) in Table 7.4. It can be seen 

from the table that high P alone is in fact harmful in terms of the growth 

of E. camaldulensis seedlings. In fact the increased level of P is about 

double the optimum level of P (15.5 mg/1) for E. camaldulensis grown in 

nutrient solution (Thomson, 1988) and was included in this study to 

assess the ameliorative role of high P on A1 toxicity.

These results imply that high P did not affect E. camaldulensis 

growth in nutrient solution by removing a P deficiency because increased 

P did not improve growth at low Ca or low Ca plus low A1 treatments. 

Since P improved growth only at high A1 or high A1 in combination 

with high Ca, it may be assumed that the beneficial effects of P on growth 

parameters is via the amelioration of Al. Furthermore the role of P was 

more effective in the case of high Al plus high Ca than in case of high Al 

alone indicating an interdependence between the three elements.
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-• Where P ameliorates the toxicity of A1 and improves growth

this research is in conformity with other findings on maize (Bartlett and 

Reigo, 1972) and soybean, sunflower, subterranean clover and alfalfa 

(Alva et al, 1986 c). Positive growth responses in the presence of high A1 

and high P were reported for other plants. Konishi et al (1985) reported 

that the toxic effect of high P (0.8 mM when 0.1 mM was optimum) was 

am eliorated and the growth and P uptake of tea plants grown in a 

nutrient solution maintained at a pH of 4.5 were enhanced by 1.6 mM Al. 

Bartlett and Riego (1972) reported that P prevented Al toxicity in maize 

only when P in the solution precipitated Al.

Another possible explanation for the positive growth response 

of P only when Al and /o r Ca were high, is that when both P and Al were 

high, some P was used to counteract the toxic effects of Al and therefore 

toxicity of both Al and P were reduced. However, this argum ent is 

difficult to conclude because the equilibrium species calculated do not 

suggest any precipitation of alum inium  phosphate under the set 

conditions. An alternative explanation in support of the present 

findings may be draw n from the study by Blarney et al (1983) who 

reported that even in solutions which were undersaturated with respect 

to alum inium  phosphate, progressive losses of monomeric Al have 

occurred. They also reported that losses due to the formation of soluble 

polymeric complexes of Al and P, are essentially non phytotoxic. Alva 

(1986) studied the effect of aging on a solution containing different 

amounts of P, Al and Ca for a period of 21 days. He found that at high P 

levels, total and monomeric Al decreased markedly after 3 days. After 21 

days of aging, losses of up to 34 and 60% respectively of total and 

m onom eric Al had occurred. At high Ca and Al levels the P 

concentration decreased by up to 50 percent.
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Unlike P, Ca may have improved growth both by removing a 

Ca deficiency and by ameliorating an A1 toxicity. In fact the lower Ca 

leveL in this experiment (5 mg/1) was much lower than the optimum Ca 

level for E. camaldulensis in nutrient solution (80 mg Ca/1, Thomson, 

1988). In Chapter 6 also, a Ca level of 5 mg/1 was found to be insufficient 

for E. camaldulensis growth. The am eliorating role of Ca on E. 

camaldulensis seedlings was discussed earlier (Chapter 6).

The interactions over time of some of the treatments were also 

significant. The significant increase in seedling growth parameters with 

time is obvious, but more importantly there are differences due to an 

interaction betw een time and the other treatm ents. An interaction 

between Al, Ca and time and between Al, P and time were significant for 

most param eters (Table 7.3). These imply that as the seedlings grow 

older, the influence of Ca, Al and P and their interactions change. For 

example, it was seen from Figure 7.4b that at the end of 6 weeks when 

both Ca and P were higher, seedlings treated with high Al produced the 

same biomass as those under low Al. Low Ca pius high Al seedlings 

even superseded the low Ca plus low Al seedlings after 4 weeks in terms 

of biomass production. Therefore, it may be hypothesized that as the 

seedlings grow, they become more tolerant of high Al.

The change in the impact of Al on plants with longer growth 

periods has also been reported in other studies though the interaction 

among Al, time and other factors ameliorating Al (Ca and P especially) 

were not included. To explain higher Al sensitivity in cassava at early 

growth stages, M anrique (1987) suggested that the sensitivity of Al shifts 

among plant components as plants develop, with leaves and storage 

components (stems and roots) as the most sensitive tissues to Al at early 

plant growth and root enlargement stages respectively.
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However, it should be m entioned that in the present study, 

there were only two treatment levels of each of Ca, A1 and P which were 

widely spaced and the effect of any intermediate level(s) could have been 

different. The experiments at only two levels were useful to fulfil the 

aim of this section which was to examine if and how, high Ca and P 

levels protect the seedlings from A1 toxicity as m easured by seedling 

growth.

7.4.2. Nutrient absorption rate

The growth of a plant is a rate process and the absorption of nutrients is 

an essential part of that growth. If the absorption rate does not keep pace 

with the growth rate, the plant becomes deficient (Brewster and Tinker, 

1972). However, the proportion of root to whole plant, the distribution 

of nutrients in the plant and the utilization of nutrients may also modify 

the relationship between absorption rates and plant growth. Therefore, 

absorption rates at any time may not have a strong relationship with 

growth performance. The crucial role of the absorption rate lies in the 

ability of a plant to utilize absorbed nutrients.

Williams (1948) first suggested that root activity should be 

expressed as uptake rate per unit dry weight, a m easure also used by 

Welbank (1962), who called it the 'specific absorption rate'. Scott Russell 

and Saunderson (1967) found that an uptake rate in solution culture was 

related more closely to root volume than to surface area, which suggests 

that the param eter based on fresh weight may be preferable and some 

other studies also (Brewster and Tinker, 1972) used fresh root weight for 

calculating absorption rates. In this study absorption rates were 

calculated on the basis of fresh root weight.
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The effect of A1 on the absorption rate of A1 was different at 

low levels of Ca and P than at high levels of Ca and/or P. High P 

decreased the A1 absorption rate of seedlings and checked the decrease in 

the Mg absorption rate resulting from high Al. The effect of Ca on the 

absorption rate of Al was in general positive in the presence of high Al. 

It appeared that P had a greater effect when compared to that of Ca in 

influencing the absorption rate of the seedlings.

Although these effects on the absorption rates of Ca, Mg and P 

are related to Al levels, there are reports that an increase in the uptake of 

some cations may not be a direct treatment effect but brought about by the 

capacity of the plants to preserve a cationic balance (van Itallie, 1948). 

There may also be an interaction effect between some of the elements or 

an effect over time which influences the absorption rates.

Another major interest of this analysis was to examine how 

the effect of Al on nutrient absorption rate was influenced by time. The 

effect of Al on absorption rates of Ca, Mg and P was found to decline over 

time which is quite to be expected as the seedlings grow older. The 

interaction between time and Al treatment levels was found to be 

significant when considering the absorption rates of Ca, Mg and P (Table 

7.3).

This Chapter tested one of the hypotheses that followed from 

Chapter 6 relating to Al toxicity effects on root efficiency. In the 

following Chapter another hypothesis relating to accumulation of cations 

in Al stressed E. camaldulensis seedlings will be tested.



CHAPTER 8

EFFECTS OF CALCIUM AND PHOSPHORUS ON 
ALUMINIUM AND OTHER CATIONS IN THE ROOTS OF 

E. CAMALDULENSIS GROWN IN HIGH ALUMINIUM MEDIA
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8.- EFFECTS OF CALCIUM AND PHOSPHORUS ON ALUMINIUM 
AND OTHER CATIONS IN THE ROOTS OF E. CAMALDULENSIS 
GROWN IN HIGH ALUMINIUM MEDIA

8.1. Introduction

High levels of A1 in the growth medium adversely affect root growth of 

E. ca m a ld u l en s i s  causing a reduction in fine root length and the fineness 

of fine roots (Chapter 6). Roots grown in a high A1 medium were found 

to be thickened with layers of small cells in the root periphery. When 

high A1 was accompanied by high Ca these m alfunctions were less 

adverse. An increase in the treatm ent Ca level increased Ca 

concentration in fine roots by up to about 8 times and increased A1 

concentration by up to about three times thus changing the ratio of 

(concentration of Al)/(concentration of Ca) in the root (Chapter 6). The 

ratio of a ^ / a ^ a  in treatments explained a large percentage of variation 

in root related grow th param eters of E. c a m a l d u l e n s i s  se e d lin g s . 

Therefore Al had a negative effect and Ca had a positive effect on growth 

parameters.

The objective of the experiment described in this Chapter is to 

understand the physiological role of various elements in terms of their 

accum ulation in the root periphery and their im plications for the 

thickening of that periphery. Therefore, the experiment was designed to 

find how the total and desorbable forms of Ca, Al and Mg in the root 

periphery are changed with varying Ca levels. These Ca levels when 

applied with a high Al level resulted in a different ayy /a^a  ratio in the 

grow th medium. Phosphorus significantly improves E. c a m a ld u l e n s i s  

growth and also interacts with Ca in high Al acid soil (Chapter 5). For E. 

c a m a l d u l e n s i s  grown in nutrient solution, various Ca, Al and P levels
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interacted to influence the growth of the shoot and root (Chapter 7). 

Therefore, P was also included as a treatment in the present experiment.

8.2. Materials and methods

Seedlings were propagated by cutting from a single seedling of E. 

camaldulensis which was in turn grown from the seedlot 10886 (Table 

4.2). The aim was to eliminate any genetic variability between seedlings. 

When the cuttings developed roots, they were transplanted into potting 

mix in small pots and when these cuttings reached a size big enough for 

fresh cuttings, the process was repeated until sufficient seedlings were 

available for the experiment1. In the last lot, when the cuttings 

developed roots, they were transplanted and placed in half strength 

nutrient solution (Table 3.1) instead of potting mix. After one week the 

half strength nutrient solution was changed to full strength.

After two weeks in full strength nutrient solution, uniform 

and healthy seedlings were selected for experimentation. Since high A1 

was found to be responsible for an adverse effect on root growth, the high 

A1 level in this experiment was chosen to match the highest A1 level (50 

mg/1) used in Chapter 6. Two levels of Ca treatments (5 and 100 mg/1) 

were applied, so that the effect of the ratio a ^ /a ^ a  could be examined. 

Phosphorus levels were 7.5 and 30 mg P/1. Each treatment had four 

replications and the same nutreint solutions as in Chapter 7 were used 

(Table 7.1).

After 30 days under the treatments, the seedlings were 

harvested. The fine roots were separated and washed twice quickly in 

distilled water to remove nutrient solution. To desorb cations from the

1 This process took about 9 months to produce sufficient cuttings for this experiment. 
For this reason, it could not be used for earlier experiments.
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root periphery the roots were then soaked in 3 mM citric acid (Ownby 

and Popham, 1989), first for 5 minutes and then for another 25 minutes 

(30 minute) in fresh solution. These two desorption times were assumed 

to represent extracellular (5 minutes) and cellular (next 25 minutes) 

desorption of cations. The roots were washed with distilled water and 

dried in the oven at 70° C for two days and then analysed for total cations 

with ICP (Section 3.6.) after digesting the root tissues with H2SO4 - H2O2 

(Heffernan, 1985).

8.3. Results

Cations desorbed in the first 5 minutes and in the additional 25 minutes 

were calculated separately. These amounts when added to the cation 

concentrations in the H2SO4 - H2C>2 digest represent the total 

concentration of each cation in the root tissue.

The association between treatment a ^ / a ^ a  ratio and the 

amount of cations desorbed in the 5 minutes and in the additional 25 

minutes are shown in Figure 8.1. The amount of A1 desorbed was not 

affected by the treatment aAi/^Ca while the amount of Ca desorbed 

showed a negative association. Magnesium showed a positive 

correlation although the R2 was small.

Figure 8.2 shows the effects of P and Ca treatments on the 

amounts of cations desorbed from the root periphery. Calcium and P 

significantly enhanced the desorption of Ca at 5 and additional 25 

minutes. When both Ca and P treatment levels were raised, Ca 

desorption increased several fold (both at 5 minutes and 25 minutes, 

although the Ca desorbed in 5 minutes was much higher).
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Figure 8.2. Cations desorbed in (a) 5 minutes and (b) an additional 25 
minutes. Vertical bars represent l.s.d. (P < 0.05).
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The amount of desorbed A1 was not reduced by higher Ca 

levels, when P was at 7.5 mg/1; it in fact slightly increased, at both 5 

minutes and the additional 25 minutes desorption (Figure 8.2). 

Aluminium desorbed at both 5 and 25 minutes was significantly lower 

for high P treatments when high P was accompanied by high Ca.

Magnesium concentrations were much lower compared to 

other cations at both desorption times. It was reduced by an increase in 

Ca level and was increased by a higher P level when the higher P level 

was accompanied by higher Ca.

Table 8.1 gives the results of an ANOVA on the effects of Ca 

and P treatments on 5 and the additional 25 minute desorption of the 

cations and the total concentration of elements in the root. Calcium 

desorption was significant for both Ca and P treatments; A1 and Mg (5 

minutes only) desorptions were significantly different for P treatments 

only.

To examine the relative amounts of each of the three cations 

in the extracellular spaces and cellular materials, the desorbed amount of 

each cation is expressed as a percentage of the total of the three cations 

(Al, Ca and Mg); both for 5 minutes and for the additional 25 minutes 

(Figure 8.3). This figure therefore shows directly the effects of the 

different treatments on the extracellular and cellular cations. At any 

treatment combination a large proportion of the total cations both in the 

extracellular and cellular positions is occupied by Al. At higher Ca and P, 

Ca occupies the large proportion mostly at the cost of Al. Therefore at 

higher Ca plus P treatments, Al was much reduced in the root periphery; 

although total Al concentration in the root did not differ significantly.
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Table 8.1. F ratios for the ANOVA on variation due to Ca and P 
treatments in Ca, A1 and Mg desorbed and total Ca, Al, Mg 
and P in Al injured roots of £. ca m a ld u len s is .

Element Desorption Form of Variation due to

time (min.) expression Ca P Ca x P

Ca 5 Cone, (mg/kg) 10.10** 8.08* 4.24

% total in root 0.32 7.40* 5.18*

Additional 25 Cone (mg/kg) 8.93** 7.47* 2.21

% total in root 0.03 4.48* 0.05

Total (mg/kg) 13.42** 5.56* 2.01

Al 5 Cone (mg/kg) 0.05 15.24** 2.8

% total in root 0.13 7.38* 0.08

Additional 25 Cone (mg/kg) 0.24 9.44** 2.72

% total in root 0.43 8.94** 0.25

Total (mg/kg) 0.04 0.23 1.00

Mg 5 Cone (mg/kg) 1.66 6.15* 0.62

% total in root 0.92 4.00 0.13

Additional 25 Cone (mg/kg) 4.49 4.69 1.46

% total in root 5.87* 1.83 0.87

Total (mg/kg) 1.57 14.42** 0.10

P Total (mg/kg) 0.00 18.52** 0.82

** and * indicate level of significance at < 1% and < 5% respectively.
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Figure 8.3. Cations (Ca, A1 and Mg) desorbed in (a) 5 minutes and 
(b) an additional 25 minutes expressed as percentage of 
total of these cations.
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To exam ine the influence of treatm ents on the cations 

desorbed from the root periphery, it is also useful to look at the 

relationship betw een the extent of cations desorbed and the total 

concentration of Ca, Al, Mg and P in the root. The influence of elements 

in the root that are not part of the treatments in the present experiment 

may also be examined through this procedure. Moreover the influence 

of elements deliberately changed by the treatments can be shown directly 

rather than as associated with the treatm ent levels. To examine these 

relationships, Table 8.2 presents a summary of the values of R2 between 

total concentration of each element in the root and the quantity of 

desorbed cations at 5 minute and at the additional 25 m inute reading 

(actual scatter diagrams are presented in Appendices 8.1 to 8.5). The 

relationship of desorbed cations with total P was included since the 

quantity  of cations desorbed was significantly different for the P 

treatments alone as well as in combination with Ca (Table 8.1).
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Table 8.2. Correlation coefficients (R2) between desorbed cations and 
total concentrations of different elements in the roots.

Desorption time 

and element

Total Ca Total Al Total P Total Mg Total Al/Ca

5 min. Al 0.16 0.27* 0.30* 0.34* 0.13

Additional 25 min. Al 0.13 0.38* 0.28* 0.21* 0.16

5 min. Ca 0.97** 0.00 0.12 0.07 0.42*

Additional 25 min. Ca 0.96** 0.01 0.09 0.10
4»

0.45*

5 min. Mg 0.04 0.12 0.14 0.82** 0.03

Additional 25 min Mg 0.00 0.14 0.10 0.69** 0.00
** and *  indicate level of significance at <1% and < 5% respectively.

All the cations desorbed, correlated strongly with their 

respective total concentrations in the roots (Table 8.2). For Ca, the 

correlation coefficient was close to one, whereas for Al, they were 0.27 

and 0.38 for 5 and additional 25 minute desorptions respectively, 

indicating that Al in the root periphery is only moderately related to its 

total concentration in the root. The correlation between Mg desorbed 

and total Mg was quite high (0.82 and 0.69 for 5 and 25 minute 

desorptions respectively). Desorbed Al correlated positively with total Al 

but negatively with total P and total Mg levels in the root. Aluminium 

desorption was negatively influenced by total Ca concentrations in the 

roots, and this effect was similar to the effect of Ca levels. The effect of 

total Al concentrations on Ca desorption was not significant. In contrast, 

the values of R2 for the ratio (total Al concentration)/(total Ca 

concentration) against Ca desorption were significant.
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8.4. Discussion

These results provide an explanation of the differences in the 

thicknesses of root peripheries in terms of the differences in 

concentrations of elements in those peripheries. The hypothesis, that a 

high Ca level in situations of high A1 protects the root periphery by 

reducing the A1 concentration thereby reducing thickening, is only 

weakly established. Such a reduction in A1 in the root periphery 

occurred only when P was high. The results from Chapter 6, where Ca 

helped to protect the root periphery from thickening, does not contradict 

the present conclusions because the P level in that experiment was 15.5 

mg/1, which was double the lesser treatment in this experiment. 

However, the presence of a higher P level in that nutrient solution 

helped the roots to discriminate between Ca and A1 in the root periphery 

(Figure 8.2). When comparing the percentage of A1 desorbed in 5 

minutes and at the additional 25 minutes reading with the desorption of 

the other cations, more A1 was desorbed both from intercellular spaces (5 

minutes desorption) and cellular material (additional 25 minutes 

desorption). In regards to the absorption of A1 into the roots, it is 

possible that the damage to the cell membrane reduces its barrier 

function and A1 passively permeates into protoplasts (Wagatsuma 1984).

The protection of the root periphery due to higher Ca levels 

and thus a lower a ^ i / a Ca ratio, may also be due to the larger 

concentration of Ca in the root periphery and in the total root; these 

reflect the lower aAi/^Ca ratios (Chapter 6 and also in the present 

experiment). However, to some extent the protective effect of Ca 

occurred even at lower P levels though it was reinforced by a high P 

treatment. The effects of P may also be similar in nature. In addition P
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may play a role by significantly increasing the Ca and Mg concentrations 

in the roots.

Though it has not been tested directly, the root may be 

protected from developing a thick periphery by the presence of higher 

concentrations of Ca, P, and/or Mg in the root (not only in the periphery) 

since total concentrations of these elements in the roots reduced the 

concentrations of A1 in the root periphery.



CHAPTER 9

GROWTH OF E. CAMALDULENSIS AS AFFECTED BY 

ALUMINIUM APPLIED IN A LOWER LAYER OF THE 

GROWTH MEDIUM
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9. GROWTH OF E. CAMALDULENSIS  AS AFFECTED BY 
ALUMINIUM APPLIED IN A LOWER LAYER OF THE GROWTH 

.MEDIUM

9.1. Introduction

High A1 affects root growth of E. camaldulensis in nutrient solution and 

the adverse effects of a high A1 and high ^A l/a c a ratio are larger for roots 

than other growth parameters (Chapter 6). Also Al, Ca and P interact to 

influence root efficiency (as measured by nutrient absorption rate) of E. 

camaldulensis seedlings in nutrient solution (Chapter 7). In addition a 

high percentage of Al accumulates in the root periphery of Al injured E. 

camaldulensis roots and this effect was significantly reduced when high 

Al was accompanied by high Ca and P (Chapter 8). Further, the growth of 

E. camaldulensis responded negatively to soil m oisture stress when 

grown on a high Al soil and especially when P and Ca were applied on 

that soil (Chapter 4). Variation in moisture levels could not be included 

in experim ents conducted in nutrient solution (Chapters 6 and 7). 

Therefore, the present experiments were designed to examine the role of 

moisture stress, Ca and P in modifying the effect of Al toxicity on root 

growth and development, total seedling growth and nutrient uptake by 

E. camaldulensis. The established seedlings were confronted with the Al 

and other treatments in the lower layer of a two layer growth medium to 

demonstrate the changes.

One experim ent was conducted using soil as the treatment 

medium (lower layer) after establishing the seedlings in sand (used as top 

layer). The soil was the same as that used in other experiments in the 

initial phase (Chapters 3, 4.3 and 5) and was modified with Ca, Al and P. 

This modified soil was used to demonstrate the effect of treatments on 

seedling growth parameters and specifically on the roots in the soil.
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In the second experiment in this series, the effect of A1 and 

other factors were tested by using sand as the growth medium in both 

layers. Sand has the advantage of being a solid medium of growth where 

other factors including m oisture stress can be easily controlled and 

known. This is true particularly for monomeric Al. In soil, monomeric 

A1 is affected by organic m atter, pH and other factors which are not 

complications in the sand. The experiment with sand had two parts: the 

first part consisted of Ca, Al and P treatments and the seedlings were 

harvested early (after four weeks). The second part included moisture 

stress in addition to the treatm ents mentioned above and these were 

harvested three weeks later (i.e., after 7 weeks).

9.2. Materials and methods for soil pots

Pots used for this experiment were m ade out of PVC pipe (85 mm 

internal diameter). Each pot was made by combining two separate pieces 

of pipe and these "pots" were paired vertically. The top pot was 11.7 cm 

long and held one kg of the river sand used. The bottom half was 15.1 

cm long and held 0.76 kg of soil (oven dry weight basis). Both top and 

bottom pots were split vertically into two halves and joined again with 

tape before filling. This was done to make root separation from the 

growing medium easy at harvest. The bottom of the lower pots was 

covered with fine shade cloth to allow drainage while holding in the 

growth medium. River sand was used for the initial transplantation and 

establishment of the seedlings. The sand was sieved with a garden sieve 

(about 5 mm mesh) and soaked in 3% HC1 for 3 days, washed until C1“ 

free (tested with dilute AgNC>3 solution) and dried. The particle size 

distribution of sand used was determined by dry sieving and is shown in 

Table 9.1. The pots were filled with sand and five week old seedlings 

were transplanted at a rate of three seedlings per pot. After establishment



201

(in about a weeks time), the seedlings were thinned to two per pot and 

were given dilute nutrient solution twice a week until the beginning of 

treatments. To avoid the complication of a transplantation shock to 

roots being confused with treatments, the seedlings were transplanted 

into sand in the top pot and grown there for 5 weeks when the roots had 

started to appear at the bottom. Then the actual treatment began by 

joining a treated soil pot underneath. Prior to this joining, the top pots 

were flushed several times with water so that nutrient solutions in the 

upper pots were washed out. Seedling heights were measured and pots 

were distributed throughout the treatments so that at the beginning total 

seedling heights were almost the same in all the treatments. Both halves 

of the pots were then combined and the joint sealed by packaging tape 

making the two pots into a single long pot (26.8 cm). Before combining 

top and bottom pots the perforated polythene sheet from the bottom of 

the upper pot was carefully removed.

Table 9.1. Particle size distribution of the river sand used.

Size group (mm) % sand by weight

5.00 - 2.00 10.37

2.00 - 1.00 54.40

1.00-0.50 26.18

0.50 - 0.25 7.96

< 0.25 1.09

There were two Ca treatments, 0 and an equivalent amount of 

Ca to 9880 kg pure CaCC^/ha. Soils requiring a Ca treatment were treated 

with CaCÜ3 and CaS04 at a ratio of 2 : 1. After three wetting and drying 

cycles over two weeks, soils were ready for potting. Aluminium and P 

treatments were applied after potting. Levels of A1 (from AICI3. 6 H20)
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were 0, 25 and 75 mg Al/kg soil and levels of P (from NH4H2PO4) were 0 

and 50 mg P/kg soil. Calcium and P levels selected for this experiment 

were based on the results in Chapter 5. The A1 levels were selected so 

that some monomeric A1 remained in soil solution (Section 3.10). The 

soil solution in this natural soil was free from monomeric A1 although 

exchangeable A1 was quite high. In all there were (2 Ca x 3 A1 x 2 P =) 12 

treatment combinations each with 5 replicates.

Initially N was added at 40 mg N /kg soil including the amount 

which came from the NH4H2PO4. Later N was added in a solution made 

up from NH4NO3 at 40 mg/kg soil at both 3 weeks and 6 weeks after the 

treatments started. Watering was done with tap water and no other 

nutrient was added. Seedlings were harvested 7 weeks after imposing 

treatments; the shoots, the top and bottom pots were separated and the 

top pot roots and bottom pot roots separated, washed and dried.

9.3. Materials and methods for sand pots

Except for the use of sand in the lower pot this experiment parallels that 

for soil pots (Section 9.2). Nutrient solution was used for watering once 

treatment began. The effect of soil moisture stress on the seedlings was 

included in this experiment.

The levels of treatment were the same as for experiments 

described in Chapter 7 (i.e., 0.25 and 50 mg Al/1, 5 and 100 mg Ca/1 and 7.5 

and 30 mg P/1) and the nutrient solutions were made exactly the same 

way (Table 7.1). An adjusted nutrient solution pH of 3.7 ensured that A1 

was in monomeric form and P in solution. There were (2 Ca x 2 A1 x 2 P 

=) 8 treatment combinations and 5 replicates of each. To begin with 

treatments were the same as for soil pots except that the lower pots also 

contained sand. These lower pots were watered with the different
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treatm ent nutrient solutions. The pots were placed on saucers and 

thereafter nutrient solutions were added to these saucers. The treatment 

w as-started with 15 pots for each treatm ent combination. Seedlings in 

one third of the pots were harvested after 4 weeks. At this stage moisture 

stress was imposed on half of the remaining pots in combination with 

other treatments. At the end of another three weeks all the remaining 

seedlings were harvested. After harvesting, the shoots, the top and 

bottom pots were separated and the top pot roots and bottom pot roots 

separated, washed and dried.

9.3.1. Moisture stress

With sand as a growing medium, it is difficult to specify a moisture stress 

situation in terms of (percentage of) field capacity. Further, since two 

pots were combined to make one it was not possible to put in an access 

tube to partly water the pots (Chapter 4). Since the imposition of 

moisture stress was the main objective rather than a quantification of the 

stress, an arbitrary technique was used to impose moisture stress.

W hen first applying the m oisture stress the saucers were 

watered with excess nutrient solution. Next morning excess solution 

was rem oved from the saucer and the pots including saucer were 

weighed (Wj). Then no nutrient solution was added until the seedlings 

showed clear signs of wilting and the pots were weighed again (W2). 

From that point the pots were watered to a level well below field capacity 

[W2 + (W| - W2V2] whenever the pot weights approached the weight at 

wilting point (W2).

9.3.2. Chemical analysis of harvested seedlings

Shoots and roots (top and bottom) of seedlings from sand pots (both 

harvests) were separately analyzed for mineral concentration. Samples



204

were ground in a Wiley mill and then digested with H 202 and H2S 0 4. 

A lum inium  was analyzed by ICP, Ca and Mg by atomic absorption 

spectrophotom eter and P was determ ined colorimetrically using an 

autoanalyzer (Chapter 3).

9.4. Results and discussion

9.4.1. Treatment effects in soil pots

Alum inium , Ca and P treatm ents affected grow th param eters of E. 

c a m a l d u l e n s i s  (Figure 9.1). Both shoot and root parameters varied in a 

similar fashion. A comparison of growth parameters between the zero 

and highest A1 levels show that in general, nearly all the measured 

growth parameters were negatively affected by higher Al. The exceptions 

are the bottom roots of the Ca^Pj treatment and the shoot heights of the 

CaoPo treatment.

Higher Ca levels raised the values of each of the growth 

param eters, especially when Al was at the highest level. Similarly, 

higher P levels also improved seedling growth and caused an upward 

shift in growth parameters. These shifts occurred for top root, bottom 

root, shoot w eight and biomass. The F ratios from the ANOVA for 

different growth parameters with respect to treatments are presented in 

Table 9.2.

Though all the growth parameters showed a downward trend 

w ith an increase in Al levels, the trends were in general steeper for 

bottom root and top root as compared to shoot weight and biomass. A 

comparison of the effects of Al levels on bottom root and top root may be 

made from the relative reduction in these parameters due to an increase 

in Al from zero to the highest level. The relative reduction in bottom 

root (RRBR) being defined as:
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(bottom root at zero A1 level) - (bottom root at the highest A1 level)
RRBR = ------------------------------------------------------------------------------  x 100.

(bottom root at zero A1 level)

Similarly, the relative reduction for top root growth was also 

calculated and Table 9.3 includes these values. The relative reduction 

due to an increase in A1 was found to be greater for bottom root growth 

for each combination of Ca and P treatments, as well as when all Ca and P 

treatments were combined. For the whole sample, the relative reduction 

due to increase in A1 was 26% for bottom root growth and 21% for top 

roots. Since the bottom roots received the treatments directly, the 

adverse effects of A1 were more prominent here compared to top root 

where the treatment effects were transmitted.

Table 9.2. F ratios for the ANOVA on different growth parameters in 
soil pots with respect to treatments.

Source of 

variation

Shoot

height

Shoot

weight

Top

root

Bottom

root

Total

root

Total

biomass

Ca 53.40** 86.63** 19.02** 3.64 11.25** 58.09**

P 9.93** 10.09** 4.98* 5.27* 5.47* 9.03**

A1 1.19 4.60* 2.28 2.90 2.68 4.19*

Ca x P 0.73 6.20* 0.59 0.14 0.07 3.33

Ca x A1 0.08 0.29 0.10 0.33 0.15 0.06

P x A1 0.87 0.25 0.12 0.14 0.03 0.14

Ca x P x A1 0.41 0.26 0.42 0.74 0.56 0.36

** and * indicate level of significance at < 1% and < 5% respectively.



206

<5----- -------- 0 ~

8 3 0 -

N , (c)

H 0.8-

A1 level (mg/kg)

- a

A1 level (mg/kg)

------□----- CaOPO
------ $----- CaOPl

....... »'....... CalPO

— — -0“ — - CalPl

Figure 9.1. Effects of A1 treatment levels under different Ca and P treatment 
combinations in soil pots on the (a) shoot height, (b) shoot weight, (c) top 
root weight, (d) bottom root weight and (e) total biomass of 
E.camaldulensis seedlings. Vertical bars represent l.s.d. (P < 0.05).
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Table 9.3. The relative reduction in bottom  and top roots of E.
camaldulensis due to an increase in A1 from nil to the highest 
level under each Ca and P treatment combination in the soil 
pots.

Ca and P level Relative reduction (%) in 
Bottom root Top root

CaoPo 25 17

CaoP] 42 30

C a ^ Q 24 30

C a i p i 17 11

All Ca & P treatment 
com binations

26 21

An increase in Ca or Ca and P levels reduced the relative 

reduction in root growth. Phosphorus alone increased the relative 

reduction. However, P alone or in combination with Ca increased root 

growth, but when P treatments were accompanied by A1 treatments, the 

decrease in root growth was more than in case of treatments without P 

(Figure 9.1). Although the relative reduction in bottom root due to high 

A1 was higher at Ca0P^ treatment, it was influenced by higher root 

growth when Ca0Pj treatment was not accompanied by A1 (Table 9.3). In 

fact the effect of P on all the growth parameters was significant (Table 9.2).

Some studies which have dealt with agricultural crops and 

subsoil acidity, reported an improvement in root growth in the subsoil 

after liming (Pinkerton and Simpson, 1981, 1983; Simpson et al, 1979). 

However, liming simultaneously improves soil Ca and eliminates other 

acidity factors (pH, Mn etc) in their research. In the present study an
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improvement of soil Ca alone increased root growth of E. cam aldulensis 

in the subsoil. Under similar conditions of high A1 and low Ca in the 

subsoil, root elongation of lucerne was reported to be adversely affected 

(Simpson et al, 1979) and to improve on liming. The results of the 

present experiment show that the adverse effects of Al toxicity on root 

growth of E. cam aldulensis is similar to that for agricultural crops. The 

findings of the present study are also more conclusive in outlining the 

importance of subsoil Ca for root growth and development.

9.4.2. Treatment effects in sand pots 

9.4.2.I. Growth parameters

The results for the seedlings harvested after four weeks (Figure 9.2) 

demonstrate that the effect of Al on bottom and top roots was negative at 

treatment levels of Ca5 P3 Q and CaiooPz.s- When the treatment level was 

Ca5 ? 7  5  and C sl̂ qP^o, there was no clear pattern. In some cases, top root 

weight showed a slight increase at higher Al levels. The negative effect 

of Al was observed to be systematic for shoot height, shoot weight and 

biomass; the effect on biomass was mainly due to the contribution of 

shoot weight. Table 9.4 gives ANOVA data for the difference in growth 

parameters due to differences in treatment levels.

These data imply that the effect of treatments were 

immediately transmitted to the shoot even in cases where the effect was 

not felt on root weight itself. The relative reduction due to the high Al 

treatment was greater for bottom roots (Table 9.5). Thus even within this 

short period, development of bottom roots was more adversely affected 

(as compared to top roots) by high Al.
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Table 9.4. F ratios for the ANOVA on different growth parameters of 
seedlings in sand pots (harvested after 4 weeks) with respect 
to treatments.

Source of 

variation

Shoot

height

Shoot

weight

Top

root

Bottom

root

Total

root

Total

biomass

Ca 0.33 0.00 0.08 0.02 0.01 0.00

P 0.00 1.72 0.00 0.23 0.07 1.13

A1 7.59** 5.21* 0.01 2.09 0.58 3.72

Ca x P 5.26* 0.02 0.22 0.00 0.09 0.00

Ca x A1 1.48 0.04 0.01 0.00 0.01 0.02

Px A1 0.01 0.13 0.03 0.29 0.02 0.05

Ca x P x A1 0.45 0.42 1.01 1.28 1.29 0.64

** and * indicate level of significance at < 1% and < 5% respectively.

Table 9.5. The relative reduction in bottom and top roots of £.
camaldulensis due to an increase in A1 treatments when 
seedlings were grown in sand and harvested after 4 weeks.

Relative reduction (%) in
Level of Ca and P ---------------------------------

________ Treatment _____Bottom root Top root_____________

Ca5P7.5 10 -11

Ca5P30 21 11

CaiOO15 7.5 36 9

Ca100P 30 -2 -9

All Ca and P 
treatment combinations

17 1
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Figure 9.2. Effects of A1 treatment levels under different Ca and P combinations in sand 
pots after 4 weeks on (a) shoot height, (b) shoot weight, (c) top root weight, 
(d) bottom root weight and (e) total biomass of E. camaldulensis seedlings. 
Vertical bars represent l.s.d. (P < 0.05).
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The effect of A1 levels on the growth parameters of sand pot 

seedlings were measured on material harvested 7 weeks after treatment 

began (Ca and P levels are shown in Figures 9.3 and 9.4). Treatment 

effects on any growth parameter with or without moisture stress are 

shown side by side in the figures. The results of ANOVA for different 

growth parameters with respect to treatments are presented in Table 9.6.

All growth parameters showed a decline with A1 (except for the 

top roots in only one treatment combination) (Figures 9.3 and 9.4). With 

an increase in either P or Ca, the value of growth parameters increased 

and the increase was greater when the A1 level was higher. The adverse 

effects of A1 on the growth parameters were less severe under moisture 

stress conditions.

The effect of treatments on root growth in each layer, the 

relative reduction in top and bottom root weights due to increase in Al, 

for two groups of seedlings, with and without moisture stress are 

presented in Table 9.7.

It can be seen that the relative reduction in bottom root weight 

is much larger than in top root weight for both moisture stress and nil 

moisture stress situations (with the exception of the Ca^oo^o treatment).

The nil moisture stress picture from this harvest can be 

compared to Table 9.5 which shows the situation from the earlier harvest 

which did not include moisture stress. The relative reduction in both 

top and bottom roots is much larger in the second harvest. This implies 

that when Al toxicity occurs at a lower layer its adverse effects in relation 

to the initial situation is larger after a longer growth period.
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No moisture stress Moisture stress

Ca5P7.5

Ca5P30

Cal00P7.5

Cal00P30

Ca5P7.5
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CalOOP7.5

-  -  Cal00P30

3.0

2.5.

2.0 -

1.5

1.0 .

0.5.

0.0

• —  Q —  Ca5P7.5

— *-----  Ca5P30

. sa-.......  Cal00P7.5

- - 0 ~ -  Cal00P30
____________ _

^  v. ..

------ A

•>:

(a)

0.25

Ca5P7.5

Ca5P30

CalOOP7.5

“ - 0 - -  CalOOP30

Ca5P7.5

Ca5P30

Cal00P7.5

- - 0 - -  Cal00P30

A1 level (mg/1) A1 level <mg/D

Figure 9.3. Effects of A1 treatment levels under different Ca and P combinations in sand pots 
after 7 weeks on (a) top root weight, (b) bottom root weight and (c) total root 
weight of E. camaldulensis seedlings. Vertical bars represent l.s.d. (P < 0.05).
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No moisture stress

Ca5P7.5 
----- *—  Ca5P30

-----^—  Cal00P7.5

CalOOP30

Moisture stress

Ca5P7.5 
Ca5P30 

Cal00P7.5 

Cal00P30

Ca5P7.5
----- *----- Ca5P30

...... SS-  Cal00P7.5
Cal00P30

A1 level (mg/1)

-  -  Ca5P7.5
-----*----  Ca5P30

Cal00P7.5 
- - O ' -  Cal00P30

A1 level (mg/1)

Figure 9.4. Effects of A1 treatment levels under different Ca and P combinations in sand pots 
after 7 weeks on (a) shoot weight and (b) biomass of E. camaldulensis seedlings. 
Vertical bars represent l.s.d. (P < 0.05).
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Table 9.6. F ratios for the ANOVA on different growth parameters of 
seedlings in sand pots with respect to treatments (harvested 7 
weeks after treatment began).

Source of 

variation

Shoot

height

Shoot

weight

Top

root

Bottom

root

Total

root

Total

biomass

Ca 0.70 3.20 2.96 6.72* 5.40* 4.05*

P 7.79** 23.34** 1.21 7.79** 4.10* 17.23**

A1 58.73** 58.09** 11.61** 55.10** 32.43** 53.36**

WS 30.02** 49.71** 20.54** 35.00** 32.28** 47.37**

Ca x P 0.18 0.04 1.52 0.82 0.12 0.06

Ca x A1 0.56 0.88 1.46 1.04 1.56 1.13

PxAl 2.35 0.04 5.08* 11.03** 9.04** 1.11

Ca x WS 0.15 0.02 0.00 2.20 0.49 0.01

P x WS 3.24 0.14 0.14 3.45 0.43 0.22

A1 x WS 5.69* 0.65 2.10 8.12** 5.17* 6.64*

Ca x P x A1 0.16 0.33 0.00 0.86 0.18 0.30

Ca x P x WS 0.41 0.33 0.02 0.31 0.12 0.28

Ca x A1 x WS 0.00 1.21 0.61 0.08 0.39 0.99

P x A1 x WS 1.46 0.17 0.02 1.20 0.18 0.19

Ca x P x A1 x WS 1.60 0.01 1.16 1.68 0.00 0.00

*** and ** indicate level of significance at < 1% and < 5% respectively.
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Table 9.7. Relative reductions in bottom  root and top root as A1 
increased, for seedlings in sand pots harvested 7 weeks after 
treatments began.

R elative red u ction  (%) in

L evel o f Ca and  
P treatm ent

N o  m oisture stress seed lin gs M oisture stress seed lin gs

Bottom  root Top root Bottom  root Top root

C a5 p 7.5 55 9 44 28

C a5 p 30 37 21 14 9

C a 100p 7.5 51 22 34 35

C a100p 30 16 9 10 - 9

All Ca and P 41
treatm ent com b in ation s

26 25 17

Another point of interest from this part of the experiment was 

an analysis of the effects of m oisture stress on seedling growth. The 

effects of m oisture stress include top, bottom and total root weights 

(Figure 9.3) and shoot weight and total biomass (Figure 9.4). Seedlings 

under stress show lower growth in terms of each param eter for any 

treatm ent combination; the position of the lines representing stressed 

seedlings are in general lower. It can also be seen from Table 9.6 that the 

variation in all the growth parameters were significantly different for the 

m oisture stress treatment. But of more interest and the reason for 

including moisture stress in this experiment was the chance to examine 

the interaction of moisture stress with other treatments, particularly Al. 

The data in Table 9.6 also show that the variations in shoot height, 

bottom  root, total root and total biomass were significantly different for 

the Al and moisture stress interaction.
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-. Shoot heights were recorded each week and these are shown

for various treatment combinations and moisture stress (Figure 9.5). 

After the stress was imposed (from week 4), the shoot height increment 

lines are much less steep for all treatment combinations, reflecting a 

lower growth rate.

The relative reduction in root weight and shoot weight due to 

an increase in A1 in situations with or without moisture stress are shown 

in Table 9.8. It can be seen that the relative reduction due to A1 is less for 

total root and shoot weight under moisture stress. There is no obvious 

explanation for the lessened effect of high A1 under moisture stress than 

under an adequate moisture supply. Krizek and Foy (1988) and Krizek et 

al (1988) reported that moisture stress exacerbated the stress effects of A1 

(in high Al acid soil) in the case of sunflower and barley respectively 

which is in contrast with the findings of the present study. A decrease in 

accessibility to water of Al injured roots and/or a decrease in the 

availability of essential nutrient elements were suggested to be the 

possible reasons behind this. But these factors are not applicable to the 

present situation since watering was made with nutrient solution. This 

may partly explain the difference in the results obtained. Chemical 

analyses of these seedlings were carried out (Section 9.4). The results of 

the chemical analyses may suggest reasons for the lessened effect of Al 

toxicity under a moisture stress situation.
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Table 9.8. The relative reduction in shoot weight and total root weight as 
A1 increased, for seedlings in sand pots harvested 7 weeks after 
treatment.

R ela tiv e  r e d u c t io n  (%) in

L ev e l o f  C a  an d  
P trea tm en t

N o  m oistu re  stress M o istu re  stress

S h o o t  w e ig h t R oot w e ig h t S h o o t  w e ig h t R o o t w e ig h t

C a 5 p 7 .5 5 4 5 2 3 7 3 5

C a 5 p 3 0 4 5 6 0 3 4 1 2

C a 1 0 0 p 7 .5 4 1 3 7 4 1 3 4

C a 1 0 0 p 3 0 2 7 1 2 2 6 - 4 1

A ll tr e a tm e n ts 4 1 3 3 3 4 2 1

9.4.2.2. Mineral nutrient concentration

Shoot, top roots and bottom roots of seedlings harvested after 4 and 7 

weeks of treatment were chemically analyzed for their Ca, Mg, A1 and P 

concentrations. Figures 9.6 and 9.7 include the results of chemical 

analysis of seedlings harvested after 4 weeks and Figures 9.8 to 9.11 

represent seedlings harvested after 7 weeks of treatment. Table 9.9 and 

9.10 present the F ratios from the multivariate ANOVA for treatment 

effects on the mineral concentration of seedlings harvested after 4 weeks 

and 7 weeks of treatment respectively.

The Ca concentration in the bottom roots is not affected by 

higher levels of A1 (Figure 9.6). In the top roots and shoots, Ca 

concentrations slightly decreased due to higher A1 in all treatment 

combinations. The only exception was the CajooP7.5 treatment in the case 

of top roots. The Mg concentration in shoot and bottom roots decreased 

in all treatment combinations due to higher Al. The only exceptions
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Figure 9.6. Effects of Al treatment levels under different Ca and P combinations in sand pots 
after 4 weeks. Calcium and Mg concentration in (a) shoot, (b) top root and (c) 
bottom root of E. camaldulensis seedlings. Vertical bars represent l.s.d. (P < 0.05).
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Figure 9.7. Effects of A1 treatment levels under different Ca and P combinations in sand 
pots after 4 weeks. Aluminium and P concentration in (a) shoot, (b) top root 
and (c) bottom root of E. camaldulensis seedlings. Vertical bars represent l.s.d. 
(P < 0.05).
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Figure 9.8 Effects of Al treatment levels under different Ca and P combinations in sand 
potsafter 7 weeks. Calcium concentration in (a) shoot, (b) top root and (c) 
bottomroot of E. camald.ulen.sis seedlings. Vertical bars represent l.s.d. (P < 0.05).
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were the top roots when P was high. These results indicate that, 

although lesser in amount, higher A1 levels lim it the Ca and Mg 

translocation to shoots.

The A1 and P concentrations in the seedlings harvested after 4 

weeks of treatm ent show that A1 concentrations in the bottom and top 

roots were higher when both Ca and P were low (Figure 9.7). Higher 

levels of A1 increased the concentration of A1 in top roots in all 

treatm ent combinations, but the concentration of A1 in bottom roots 

remained more or less the same. Shoot A1 concentrations were much 

lower when compared to top and bottom roots. This is in agreement 

with the findings presented in Chapters 6 and 7 and also of others (Arp 

and Ouimlet, 1986; Thornton et al, 1986; Joslin et al, 1988). Shoot A1 

concentrations increased severalfold at higher levels of Al but only when 

both Ca and P treatment levels were low. There was little increase in Al 

concentrations when only Ca was high.

The results on Al concentrations in shoot and roots imply that 

the m ovem ent of Al from the bottom  root (com paratively recently 

developed) to the top root was not limited by higher Ca and P levels, but 

movement of Al to the seedling top was restricted by Ca and P levels, 

both individually and collectively.

Phosphorus concentrations in shoot, top and bottom roots 

were similarly affected by different treatments. At low Al levels, the P 

concentration was higher at higher P levels. But at the high Al level, 

higher P treatm ent did not result in an increase in P concentrations in 

any of the shoots and roots.

Figure 9.8 shows the Ca concentration in seedlings harvested 7 

weeks after treatment. Concentrations of Ca were consistently greater
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under high Ca treatments in both shoots and roots. In general, root Ca 

concentrations were reduced more than shoot Ca by higher A1 levels. 

T h e .sh o o t Ca concentration was higher in m oisture stressed pots 

compared to pots without, particularly when treatm ent Ca levels were 

high.

The Mg concentration of the seedlings is in most cases lower in 

higher A1 treatm ents (Figure 9.9). The shoot Mg concentration was 

slightly increased in pots both with and w ithout m oisture stress, at 

higher A1 levels when Ca levels were high.

The A1 concentrations in shoots, top and bottom roots are 

presented in Figure 9.10. Aluminium concentration was lowest in the 

shoots and highest in bottom roots while the A1 concentration in the top 

roots is at an intermediate level (note the difference in the y axis scale of 

the figures). The increase in A1 concentrations due to higher A1 

treatment levels was less affected by Ca and P levels in bottom roots than 

in top roots and shoots. This difference in root and shoot A1 

concentrations indicates that high Ca and P levels more greatly restrict A1 

translocation to the shoot than the absorption of A1 by the roots.

A lum inium  concentrations in bottom roots in the moisture 

stressed pots were higher compared to those pots without moisture stress 

under otherwise identical treatments. Shoots in moisture stressed pots 

had higher A1 concentrations as compared to the no stress situation.

Phosphorus concentrations in the seedlings (Figure 9.11) show 

that in all cases higher P resulted in higher P concentrations in the 

seedlings. Higher A1 treatments resulted in a decrease in P concentration
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Figure 9.9. Effects of A1 treatment levels under different Ca and P combinations in sand
pots after 7 weeks. Magnesium concentration in (a) shoot, (b) top root and (c) 
bottom root of E. camaldulensis seedlings. Vertical bars represent l.s.d. (P < 0.05).
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Figure 9.11. Effects of A1 treatment levels under different Ca and P combinations in sand 
pots after 7 weeks. Phosphorus concentration in (a) shoot, (b) top root and (c) 
bottom root of E. camaldulensis seedlings. Vertical bars represent l.s.d. (P < 0.05).
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Table 9.9. F ratios for the ANOVA on m ineral concentration of 
seedlings in sand pots (harvested after 4 weeks) with respect to 
treatm ents.

Sample
Source of 

variation Ca

Mineral concentration 

Mg A1 P

Shoot Ca 1.27 2.54 3.45 14.80**

P 24.24** 0.26 1.45 105.88**

A1 3.40 9.56** 5.16* 50.07**

Ca x P 0.46 0.05 1.23 2.34

Ca x A1 0.11 0.15 2.67 1.21

P x  A1 0.46 1.59 6.13* 59.32**

Ca x P x A1 0.02 0.09 1.61 0.79

Top root Ca 56.03** 6.24* 5.64* 0.04

P 0.13 25.11** 2.56 35.42**

A1 8.81** 5.02* 16.55** 15.37**

Ca x P 0.44 1.55 0.83 0.98

Ca x A1 0.27 0.55 0.00 1.08

P x  A1 3.43 8.13** 0.83 18.74**

Ca x P x A1 5.50* 0.89 1.23 0.13

Bottom root Ca 39.61** 9.84** 2.78 1.09

P 1.32 0.45 7.18* 54.94**

A1 0.16 7.58** 0.07 39.20**

Ca x P 0.44 0.16 1.27 0.39

Ca x A1 0.13 1.84 1.47 0.39

P x  A1 0.06 1.92 0.00 21.55**

Ca x P x A1 1.14 1.27 0.31 0.06

* *  and * indicate level of significance at < 1% and < 5% respectively.
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in. all cases in pots without any moisture stress. On the other hand, in 

moisture stressed pots, P concentrations in seedlings were lower at low P 

levels compared to those without moisture stress. In these latter cases, 

higher A1 treatments did not affect P concentrations.

A consideration of the concentration of Ca, Mg, A1 and P in 

seedlings of different treatment combinations for pots with and without 

moisture stress did not yield a plausible explanation as to why moisture 

stressed pots suffered less adverse effects. There were no obvious abrupt 

differences in the concentration of these elements between seedlings 

from moisture stress and unstressed treatments.

A comparison of seedling shoot Ca concentrations in sand pots 

here and those described in Chapter 7 at the same treatment levels, 

shows that the effect of A1 was less pronounced in the present case. Also 

Mg concentrations (at low Ca and P levels when Mg concentration was 

high) were less affected by Al. In Chapter 7 an increase in the P at high A1 

levels increased shoot P concentrations which did not occur here. These 

differences in the concentration of Ca, Mg and P between nutrient 

solution (Chapter 7) and the present experiment (where the same 

nutrient solutions were used) was probably due to the difference in 

growth media. Recently Horst et al (1990) reported that in comparison 

with solution culture, in sand culture a ten times higher Al supply was 

necessary to inhibit root elongation of soybean to a comparable degree. 

These authors suggested that enhanced exudation of organic complexors 

in the sand culture, reduced activities of monomeric Al species and 

therefore the seedlings can withstand higher Al level. These 

explanations are in conformity with the data in the present study.
I  S I  !  ■'
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10. GENERAL DISCUSSION AND SUMMARY

Vast areas of the world are covered by acid soils and soil acidity is a major 

growth limiting factor for both agricultural crops and forest trees. 

Aluminium toxicity is the most critical aspect of soil acidity. In recent 

years extensive research has been directed towards the problem posed by 

A1 toxicity in relation to agricultural crops. However, despite the fact that 

forest soils are often highly acid, the problem of A1 toxicity has received 

little attention in relation to trees.

The present research examined the major aspects of A1 toxicity 

on the growth and nutrient absorption of tree seedlings by using 

experiments on an important eucalypt species namely, E. camaldulensis. 

It focussed on the adverse effects of A1 toxicity and its interrelationships 

with Ca, P and moisture stress. The experiments were undertaken in the 

glasshouse and took into account various combinations of the above 

factors. This chapter provides a general discussion of the findings and on 

this basis, some suggestions are also made for further research in this 

area.

To begin with, preliminary experiments were conducted with 

22 eucalypt species using glasshouse pot trials to select a species whose 

performance in acid forest soils would demonstrate the important 

interrelationships of soil acidity factors (Chapter 4). The species showed a 

wide variation in their performance in acid soils. Some selected species 

also differed significantly in their ability to absorb mineral elements. 

Four eucalypt species (E. camaldulensis, E. citriodora, E. gummifera and 

E. saligna) selected from the 22, were tested for their response to 

conventional liming in a soil high in exchangeable A1 whilst low in 

exchangeable Ca and available P (Section 4.3). From amongst these four,
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E. camaldulensis showed a maximum response to liming by increasing 

growth despite the fact that total growth remained very poor in the acid 

forest soil under study. The poor performance of E. camaldulensis in A1 

rich acid soil and the large percentage response to liming demonstrated 

the adverse effects of A1 on growth, as suggested in the hypothesis in 

Chapter 1. This adverse effect was further confirmed in the second phase 

experiments where it was dealt with in greater detail. It appears from 

these findings that E. gummifera is more tolerant to acid conditions 

including high Al, low P and Ca which usually accompanies soil acidity. 

Such a conclusion confirms the findings of McColl (1969) who reported 

that E. gummifera is well adapted to harsh conditions like high Al and 

low P and Ca levels. Therefore, this important species may be considered 

suitable for growing in similar acid soils.

The growth of E. camaldulensis responded significantly to 

added Ca and P when grown in a pot trial using the same acid soil in 

which the liming experiment was conducted (Chapter 5). This finding 

was utilized in a later experiment for boosting the growth of E . 

camaldulensis for examining root growth and development as affected by 

Ca, P and Al treatments applied in a lower layer of a soil (Section 9.2).

A conventional remedy for both soil acidity and Al toxicity is 

to lime (for example, Coleman et al, 1958; Anandan et al, 1985; 

Bromfield et al, 1987). For agricultural production and land 

management, this convention is widely accepted. In the usual liming 

procedure there is a simultaneous addition of Ca and reduction in the 

toxicities of Al and Mn, improved availability of Mg, P and Mo and 

improved microbial activity. Thus for research purposes, the specific 

mechanism by which liming improves growth remains unresolved; due 

to the difficulties in isolating the effect of each of these individual factors
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from the liming. Therefore, in Chapter 3 of this thesis (Section 3.10) a 

treatment combination was established so that the soil Ca level could be 

raised while causing a minimal impact on the other characteristics, 

particularly pH and exchangeable A1 and Mn. The addition of Ca from 

CaCC>3 and CaSC>4 at a ratio of 2 : 1 raised the soil Ca to an identical level 

as that of a single Ca source such as CaCOß, but there was a minimal 

change in pH, exchangeable A1 or Mn. This technique could then be used 

for soil modification in the remaining experiments such as those 

described in Chapter 9. This methodological finding will be very useful 

for research in soil acidity dealing with Ca. However, the quantity and 

proportion of CaCOj and CaSC>4 required under any specific set of soil 

conditions may be different and will need to be determined.

In the next phase, an experiment was conducted using water 

culture to intensively investigate the effects of A1 toxicity and the 

ameliorative role of Ca on the growth of E. camaldulensis. In general, A1 

has a negative effect and Ca a positive effect on the root and shoot growth 

of E. camaldulensis; these changes were evaluated by different measures 

of root and shoot growth. Low levels of A1 accompanied by high Ca 

levels improved some growth parameters to an even greater extent than 

treatments involving no Al. The adverse effects of high A1 were partly 

ameliorated by applying high levels of Ca. Primary root length, fine root 

length and fineness of the fine root [as defined by (fine root length)/(fine 

root weight)] were among the parameters most sensitive to high levels of 

Al. The root periphery of seedlings in high Al treatments were heavily 

thickened. The thick periphery of roots grown in this high Al medium 

were able to recover when the Ca levels were increased. Although the 

high Ca level protected (at least partly) the seedlings from Al toxicity, in 

terms of growth and thickened root periphery, the high Ca level did not 

reduce Al concentrations in fine roots or in mature leaves. The
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reduction due to A1 reported in other studies (e.g., Huett and Menary,

1980) . Therefore, in the present research the protection against A1 toxicity

given by high Ca did not operate by reducing the A1 uptake, but by 

increasing the Ca concentration in the seedlings. Therefore, the main 

problem with A1 toxicity is the low Ca content in the seedlings which has 

in turn resulted from low Ca contents or higher A1 contents, in the 

growth medium. The ratio of in the growth medium was

significant in explaining the performance of growth parameters of E. 

camaldulensis, but its explanatory power varied between the parameters. 

The order in which they correlated with ^A l/^C a  were: (fine root 

length)/(fine root weight) > root length > shoot height > fine root length 

> shoot weight > total biomass > root branching > root weight. The 

parameters where the explanatory power was small demonstrate that 

other factors are also responsible for toxicity.

In earlier studies, fine root length (Pinkerton and Simpson,

1981) and A1 concentration in fine roots (Joslin et al, 1988) were 

considered to be more sensitive to Al levels while shoot Al (whole 

shoot) concentration was reported to be unsuitable as a predictor of Al 

toxicity (Hutchinson et al, 1986; Joslin et al, 1988). However, in the 

present study young and mature leaves were analyzed separately and the 

Al concentration in mature leaves appeared to be a suitable 

phytoindicator for Al toxicity in E. camaldulensis seedlings. Fine root 

length responded significantly to Al level but fineness of fine roots 

responded even better to Al treatment levels. Between these two 

parameters (fineness of fine root and Al concentration in mature leaves), 

the Al concentration in mature leaves would be a useful phytoindicator 

of Al toxicity in E. camaldulensis seedlings, particularly when separation 

of fine roots or measurement of roots is difficult (e.g., from a solid 

growth medium). Thus this experiment established the hypothesis that
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AI toxicity adversely affects E. camaldulensis growth and Ca ameliorates 

it. This experiment further shows the responsiveness of various growth 

parameters and mineral concentration in young leaves, mature leaves 

and fine roots. Not only are previous studies on these aspects of E. 

camaldulensis lacking, but a comprehensive study dealing with several 

interrelated aspects of the effect of A1 toxicity is not available for any tree 

species. However, these findings, particularly on the phytoindicator for 

E. camaldulensis needs confirmation in varying growth conditions, 

across seedlings of varying ages and A1 tolerance levels and also for trees 

in a forest stand.

Based on the findings described so far, it became necessary to 

conduct additional experiments to examine specific aspects of the impact 

of A1 toxicity on the growth of E. camaldulensis.

i. Whether P and Ca interact with each other and with A1 
levels to ameliorate A1 toxicity and what is the nature of 
such an interaction over a growth period ?

ii. Do A1 affected roots become less efficient in terms of 
nutrient absorption rates ?

iii. How do Ca and P ameliorate the problem of the 
thickening of root peripheries of seedlings grown in a 
high A1 medium ?

iv. How do subsoil Al, Ca and P levels affect the growth and 
the mineral concentrations of E. camaldulensis and how 
does moisture stress interact with these factors ?

Three further experiments were conducted where both Ca and 

P levels were varied to examine their effects and interactions in 

ameliorating Al toxicity. The first of these three experiments saw 

seedlings grown in nutrient solution and harvested successively. This 

meant that the effect of growth period may be examined with other
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treatments while monitoring seedling growth and nutrient absorption 

rate (the first two questions above). The adverse effects of high A1 was 

ameliorated by either or both P and Ca and further the adverse effects 

decreased over time as the seedlings grew older. Although liming is not 

prescribed for forest soils (Schaedle et al, 1989) on economic grounds, for 

initial establishment of E. camaldulensis seedlings, at least localized 

liming may be useful, since the seedlings were found to increase Al 

resistance as they grew. The ameliorating effect of P and Ca were 

interrelated and reinforced each other. These interrelated effects 

occurred for the seedling growth parameters as well as for absorption 

rates of Al, Ca, Mg and P. The absorption rate is a measure of root 

efficiency and this has important implications for the sustained growth 

of a plant. In this experiment the absorption rate of Al by the roots 

increased with an increase in the Ca treatment level. Yet, an increase in 

Ca led to a boost in the growth of both roots and shoots. These findings 

provide a test for the hypothesis that the effect of Al was dependent on 

the growth period and that such an effect is influenced by the interaction 

of Ca and P treatment levels (hypothesis 4 and 6 in Chapter 1).

To answer the third question above (the role of the high Ca 

and P levels in ameliorating the thickening of the root periphery), 

seedlings were grown in an high Al media. It was found that the higher 

Ca levels alone did not reduce Al in the root periphery or in the total 

root to any large extent but they increased the concentration of Ca in the 

periphery and in the total root. When both Ca and P were higher, the Ca 

concentration in the root periphery increased at the cost of Al. From 

these results it may be suggested that in a high Al growth medium, 

seedlings benefit from increased Ca and P levels through increased Ca 

and P concentration in the whole root as well as in the periphery. This is
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another reflection that higher Ca and P levels interact to accentuate their 

ameliorating influence against A1 toxicity.

To answer the fourth question (the effect of Al, Ca and P and 

moisture stress in the lower layer on root growth and mineral 

concentration), another experiment examined the effects of Al and other 

treatments (Ca and P and moisture stress) imposed in the bottom layer of 

a two layer growth medium. In one phase, soil was used in the bottom 

layer and in another sand was used. Aluminium toxicity reduced root 

development and thereby reduced the root weight in the subsoil by a 

greater extent than the reduction caused to roots in the upper layer. 

However, adverse effects of high Al in the bottom layer did spread to the 

shoot height and weight. In addition, moisture stress adversely affected 

the seedlings growth in both high and low Al treatments and the extent 

of the adverse effects were higher in the low Al situation. Mineral 

concentrations of Ca, Mg, Al and P in the shoot, top root and bottom root 

which were analyzed separately, did not indicate any possible explanation 

for the lessened effect of moisture stress on high Al seedlings. However, 

it may be noted that the growth of seedlings under moisture stress was 

already very poor and therefore, the stress effect of Al was likely to be 

smaller in magnitude. Further, since the seedlings were provided with 

nutrient solution, the question of nutrient availability and movement as 

in soil (Krizek and Foy, 1988; Krizek et al, 1988) does not arise. These 

experiments thus established the hypothesis that soil moisture levels 

influence the effect of Al on growth of E. camaldulensis (hypothesis 7 in 

Chapter 1) and also demonstrated how the adverse effects of subsoil Al 

are transmitted to both root and shoot growth. Since the less severe 

effect of Al toxicity in a stressed situation was due to the fact that 

moisture stress did not affect nutrient availability, this aspect needs 

further study where moisture stress may have such an effect. Therefore,
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the response to A1 toxicity in interaction with moisture stress may be 

extended to field conditions to include more levels of both A1 and 

moisture stress.

The harmful effects of A1 as reflected in decreased seedling 

growth was associated with a simultaneous decrease in the Ca 

concentration in the seedlings (Chapter 6) and Ca absorption rate 

(Chapter 7). The decrease in the Ca concentration in seedlings resulting 

from higher A1 may therefore, be viewed as a major cause of growth 

reduction (Keltjen, 1990) and this is more acute when the Ca level in the 

growth medium is low. These conclusions are also supported by the 

results (Section 9.4.1) where A1 treated soils were used as a subsoil and a 

comparatively lower A1 level (compared to experiments with nutrient 

solution and with sand as subsoil) resulted in a significant reduction in 

seedling growth (since soil Ca level was very low).

When all the results on the amelioration of A1 toxicity by Ca 

are reviewed together it is evident that higher levels of Ca do not I

significantly reduce A1 uptake from the growth medium but they do 

significantly improve seedling growth. Higher levels of Ca increased Ca 

concentration in all parts of the seedlings (Chapter 6), improved the
I

absorption rate of Ca (Chapter 7), increased the Ca concentration and 

relative amounts of Ca in the root periphery (Chapter 8) and in addition 

led to growth improvements in all experiments.

Presence of a high level of P in A1 toxic situations helped to 

reduce the adverse effect of A1 on the growth of eucalypt species. This 

was indicated in the first instance by better growth of most species in one 

of the acid soils which had a higher available P in addition to high A1 

(Chapter 4). This finding was supported by another experiment on one 

acid soil with low P where raising the P level improved seedling growth
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(Chapter 5). The final experiments further confirmed this by varying P, 

A1 and Ca in nutrient solution and in sand. When consideration is 

given to the ameliorating role of P, its high level actually reduce A1 

concentration in the growth medium by forming soluble polymeric A1 

complexes on aging (Alva, 1986). These are non phytotoxic (Blarney et al, 

1983) and are associated with the better growth performance of E. 

camaldulensis .  In addition, P may play an indirect role by significantly 

increasing Ca concentration in roots which then protects seedlings from 

Al toxicity. Thus even though both Ca and P help to ameliorate Al 

toxicity, their modes of action are different.
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Appendix 3.1. Relationship between ionic strength (p) and activity coefficient ( T ^) 
for A1 (Values for ionic strength and activity coefficient were obtained 
from Lindsay, 1979).
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A p p e n d ix  3.2 . C h a n g e  in  s o il  p H w / 
t r e a tm e n t .

p H s a n d EC w i th  t im e a f te r  C a

T reatm ent W k l W k 2 W k 4 W k 6 W k 12 W k 16 W k 16
(so il so lu tion )

P H w

C ontro l 5.45 5.57 5.43 5.55 5.34 5.26 5.90

CaSÜ4 -1 4.48 4.62 4.51 4.53 4.49 4.48 4.22

CaSÜ4 - 2 4.39 4.53 4.41 4.42 4.39 4.37 4.13

CaSC>4 - 3 4.36 4.49 4.37 4.38 4.37 4.36 4.12

C a C 0 3 -1 6.07 6.20 5.94 5.94 5.82 5.78 5.43

C a C 0 3 - 2 6.69 6.75 6.47 6.40 6.34 6.14 5.45

C a C 0 3 - 3 7.22 7.40 7.07 6.90 6.85 6.69 5.27

C om bined -1 4.76 4.86 4.87 4.77 4.79 4.83 4.47

C om bined - 2 5.09 5.19 5.08 5.05 5.05 5.00 4.46

C om bined - 3 5.42 5.49 5.37 5.30 5.25 5.23 5.25

P H S

C ontrol 4.04 4.25 4.07 4.03 4.02 4.04

C a S 0 4 -1 4.20 4.34 4.21 4.18 4.20 4.19

CaSÜ4 - 2 4.22 4.37 4.25 4.21 4.23 4.23

C aS 04  - 3 4.24 4.39 4.25 4.24 4.24 4.26

C a C 0 3 -1 4.82 4.91 4.77 4.71 4.68 4.67

C a C 0 3 -2 5.72 5.81 5.53 5.37 5.35 5.29

C a C 0 3 -3 6.41 6.65 6.27 6.08 6.04 5.95

C om bined -1 4.52 4.64 4.57 4.63 4.58 4.57

C om bined - 2 4.83 4.92 4.77 4.81 4.76 4.73

C om bined - 3 5.14 5.19 4.99 5.01 4.97 4.94

EC (m S/cm ) 

C ontro l 9 9 11 12 15 19 56

C a S 0 4 -1 413 349 376 338 307 309 1031

CaSC>4 - 2 805 853 868 854 807 803 2393

CaSC>4 - 3 1273 1248 1220 1315 1200 1298 2478

C a C 0 3 -1 17 31 15 15 19 19 58

C a C 0 3 - 2 24 21 21 18 20 24 77

C a C 0 3 -3 53 36 35 28 29 36 73

C om bined -1 640 630 590 653 645 581 1850

C om bined - 2 460 478 418 405 425 444 1240

C om bined - 3 340 338 310 290 285 297 960
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Appendix 3.3. Change in exchangeable Ca, Al and C a/A l with time after 
Ca treatment.

Treatment Wk 1 Wk 2 Wk 4 Wk 6 Wk 12 Wk 16 Wk 16
(soil solution)

Ca (me/kg)

Control 0.17 0.19 0.38 0.47 0.73 1.10 0.00
CaSC>4 -1 41.46 35.33 42.22 40.52 45.78 52.82 9.91

CaS04 - 2 82.88 79.07 85.92 83.95 90.30 91.17 34.48

CaS04 - 3 122.05 125.12 132.43 120.67 133.64 140.93 37.94

CaC03 -1 40.89 40.44 40.22 40.33 41.35 48.67 0.09

CaC03 - 2 79.00 78.22 76.75 75.40 76.78 86.05 0.31

CaC03 - 3 108.08 114.84 110.86 108.23 109.16 120.43 0.67

Combined -1 86.19 84.40 90.42 89.44 88.69 91.75 26.89

Combined - 2 81.09 78.80 77.92 79.44 83.70 91.20 16.04

Combined - 3 87.16 86.70 82.35 84.14 80.73 89.41 12.17

A1 (me/kg)

Control 66.00 66.90 68.00 64.80 54.90 53.90 0.03
CaS04 -1 63.90 61.80 60.40 56.60 44.80 45.30 0.28

CaS04 -2 60.20 54.80 57.50 56.10 44.40 44.80 1.13

CaS04 - 3 60.70 58.00 61.40 54.80 42.30 44.40 1.19

CaC03 -1 29.50 28.10 26.30 25.90 24.00 24.30 0.04

CaC03 - 2 4.00 4.10 4.60 4.70 4.60 4.90 0.09

CaC03 -3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Combined -1 39.40 37.20 31.10 32.70 27.60 28.20 0.13

Combined - 2 25.90 24.00 22.60 23.20 20.50 21.20 0.04

Combined - 3 16.10 15.50 15.50 16.70 14.20 15.10 0.01

(Ca/Al)

Control 0.00 0.00 0.01 0.01 0.01 0.02 0.02
CaS04 -1 0.65 0.57 0.70 0.72 1.02 1.17 35.39

CaS04 - 2 1.38 1.44 1.49 1.50 2.03 2.04 30.51

CaS04 -3 2.01 2.16 2.16 2.20 3.16 3.17 31.88

CaC03 -1 1.39 1.44 1.53 1.56 1.72 2.00 2.25

CaC03 -2 19.75 19.08 16.68 16.04 16.69 17.56 3.44

CaC03 -3 * * * * * * *

Combined -1 2.19 2.27 2.91 2.74 3.21 3.25 206.85

Combined - 2 3.13 3.28 3.45 3.42 4.08 4.30 401.00

Combined - 3 5.41 5.59 5.31 5.04 5.69 5.92 1217.00

Al levels in these cases were zero, respective Ca values may be seen in paragraph above.



269

Appendix 3.4. Change in exchangeable Mg, Mn and K with time after 
Ca treatment.

T reatm ent W k 1 W k 2 W k 4 W k 6 W k 12 W k 16 W k 16
(so il so lu tion )

M g  (mie/kg)

C o n tro l 4.02 3.68 3.96 4.02 4.38 4.35 0.02

C a S 0 4 -1 4.27 3.76 3.86 4.55 5.15 5.28 1.43

C a S 0 4 - 2 4.19 3.52 3.94 4.55 5.17 5.29 2.44

C a S 0 4 - 3 4.17 3.54 3.94 4.72 5.09 5.34 2.54

C a C 0 3 -1 3.81 3.19 3.35 4.08 4.74 4.93 0.04

C a C 0 3 - 2 2.68 2.09 2.09 2.92 3.56 3.74 0.05

C a C 0 3 - 3 1.92 0.99 0.83 1.59 2.02 2.33 0.04

C o m b in ed  -1 3.98 3.48 4.41 4.62 4.97 5.65 1.77

C o m b in ed  - 2 3.72 3.12 4.06 4.38 4.84 5.17 1.17

C o m b in ed  - 3 3.62 2.97 3.73 4.14 4.45 4.92 0.87

M n  (m e/k g )

C o n tro l 0.06 0.07 0.03 0.03 0.04 0.04 0.00

C a S 0 4 -1 0.10 0.10 0.04 0.05 0.07 0.07 0.09

C a S 0 4 - 2 0.09 0.14 0.05 0.06 0.07 0.07 0.17

C a S 0 4 - 3 0.10 0.17 0.05 0.06 0.07 0.07 0.17

C a C 0 3 -1 0.05 0.05 0.02 0.02 0.03 0.03 0.00

C a C 0 3 - 2 0.04 0.05 0.02 0.02 0.02 0.02 0.00

C a C 0 3 - 3 0.03 0.02 0.01 0.01 0.01 0.01 0.00

C o m b in ed  -1 0.06 0.02 0.04 0.04 0.05 0.05 0.08

C o m b in ed  - 2 0.05 0.02 0.03 0.03 0.04 0.04 0.04

C o m b in ed  - 3 0.05 0.02 0.02 0.02 0.03 0.04 0.02

K (m e/k g )

C o n tro l 2.08 3.51 3.05 3.72 3.81 3.88 0.05

C a S 0 4 - 1 2.33 3.21 3.01 3.71 3.78 3.90 0.38

C a S 0 4 - 2 2.14 2.15 2.95 3.71 3.75 3.87 0.47

C a S 0 4 - 3 2.16 1.94 3.06 3.67 3.67 3.94 0.49

C a C 0 3 -1 2.11 1.97 3.09 3.68 3.66 3.87 0.05

C a C 0 3 - 2 2.10 2.06 3.03 3.60 3.49 3.82 0.05

C a C 0 3 - 3 2.02 2.08 2.79 3.51 3.39 3.61 0.05

C o m b in ed  -1 3.14 3.12 3.75 3.82 3.64 3.83 0.32

C o m b in e d  - 2 3.10 3.07 3.64 3.81 3.67 3.78 0.24

C o m b in e d  - 3 3.18 3.20 3.51 3.88 3.59 3.72 0.20
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Appendix 4.4. Shoot height increments (cm) of E. camaldulensis after 
beginning of soil moisture stress.

M oisture le v e l  
(% fie ld  capacity)

W eek 2 W eek 4 W eek 6 W eek  12

40 19.6 20.4 20.5 20.6

50 19.5 22.4 23.4 25.3

60 19.7 24.3 28.5 33.3

70 19.7 25.8 32.1 37.1

80 19.6 27.3 35.3 41.9
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Appendix 8.1. Relationship between total Ca concentration in the root and (a) 
Aluminium (b) Calcium and (c) Magnesium desorbed in 5 minutes 
(left hand scatters) and an additional 25 minutes (right hand scatters).
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Appendix 8.2. Relationship between total A1 concentration in the root and (a) Aluminium 
(b) Calcium and (c) Magnesium desorbed in 5 minutes (left hand scatters) 
and an additional 25 minutes (right hand scatters).



284

5 minutes

y = 1089.0 - 0.66003x RA2 = 0.343

•o 2000 -

•o 1000 -

200 400 600 800 1000 1200 1400

Additional 25 minutes

y = 2514.2-1.36Q5X RA2 = 0.213

3000-

2000-

1000-

200 400 1000 1200 1400

y = 53.168+ 0.43479x RA2 = 0.069 y = 29.415 + 0.53675x RA2 = 0.104

^  1500 ' 1500 '

1000 - 1000 -

500 500-

200 400 1000 1200 1400 200 400 600 800 1000 1200 1400

y =  -61.057+  0.16463x RA2 = 0.818 y = - 78.458 + 0.22336x RA2 = 0.687

o 100-

200 400 600 800 1000 1200 1400200 400 600 800 1000 1200 1400

Total M g (m g/kg)

(c)

Appendix 8.3. Relationship between total Mg concentration in the root and (a) Aluminium 
(b) Calcium and (c) Magnesium desorbed in 5 minutes (left hand scatters) 
and an additional 25 minutes (right hand scatters).
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5 minutes Additional 25 minutes

(a)

(b)

(c)

Appendix 8.4. Relationship between total P concentration in the root and (a) Aluminium 
(b) Calcium and (c) Magnesium desorbed in 5 minutes (left hand scatters) 
and an additional 25 minutes (right hand scatters).
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Appendix 8.5. Relationship between total Al/total Ca concentration in the root and (a) 
Aluminium (b) Calcium and (c) Magnesium desorbed in 5 minutes (left 
hand scatters) and an additional 25 minutes (right hand scatters).


