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Abstract 

The work presented in this thesis examines the contribution of macrophages in the host 

response to LCMV and the capacity of class I MHC-restricted T cells to initiate macrophage 

recruitment to sites of LCMV-infection. Imrnunhistochemical staining for the macrophage 

marker, F4/80, and for the class II MHC glycoproteins that serve as a marker of macrophage 

activation, shows that there is a substantial increase in the number of activated macrophages in 

the liver and brain of LCMV-infected mice. Adoptive transfer studies indicate that the DTH 

response that recruits these macrophages to the brain is mediatied by Lyt2+, class I 

MHC-resticted T cells. 

In the liver, the increased content of activated macrophages following LCMV-infection, 

apparently results from the localisation of F4/80+, Ia+ monocytes, large numbers of which 

attach to the walls of the sinuses and the central and hepatic veins. The increased number of 

Ia+ sinusoidal macrophages is preceded by an influx of lymphocytes which are frequently in 

close association with macrophages. Foci of F4/80-, ra- mononuclear cells (probably T cells) 

develop both in the liver parenchyma and periportally. Only after there is evidence of cell 

death within the lesions, is there infiltration of these areas by F4/80+, Ia+ cells. 

LCMV-infection of the brain is followed by a predominantly lymphocytic infiltration of 

the leptomeninges. However, 22% of the inflammatory cells are macrophages, approximately 

half of which are Ia+. Phagocytic macrophages are generally Ia+. Adoptive transfer studies in 
' 

which immune spleen cells are injected intravenously into immunosuppressed, LCMV-infected 

mice indicate that a Lyt2+, L3T4- cell population is responsibe for the localisation of F4/80+ 

macrophages to the CNS. The macrophage accumulation in immunosuppressed, 

LCMV-infected mice given immune T cells differs from that found in immunocompetent mice, 

in that there is a much larger contibution by macrophages, but fewer of these macrophages are 

ra+. 

Quantitation of the inflammatory response in the CSF of immunosuppressed, 

LCMV-infected mice receiving immune spleen cells, demonstrates that the DTH response in 

the CNS is initiated by Lyt2+, L3T4- immune cells. Although Lyt2-depletion of the immune 

transfer population prevents the acute inflammatory response in the CNS, evidence of DTH 

may be found in the brain at later time points. This is apparently due to expansion of surviving 

Lyt2+ precursors in the donor population. H-2 compatibility at the D locus between donor and 

recipients is sufficient to initiate a DTH response: these D-restricted T cells are also Lyt2+, 

L3T4-. T cell reactivity to LCMV in the spleens of recipient mice are of donor origin. 

Thus, macrophage activation and recruitment to sites of LCMV-infection is initiated by 

class I MHC-resticted T cells. Close association between macrophages ~nd lymphocytes in the 

early stages of infection, as well as the different localisation of these cell types in the liver, 

suggests a distinct funtional role for macrophages in the immune response to LCMV. 
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This thesis is concerned with the involvement of macrophages in the immune response 

to lymphocytic choriomeningitis virus (LCMV), a response that is mediated by T lymphocytes. 

As an introduction, I will provide background information on the nature of the adaptive 

immune response effected by T lymphocytes, the role of macrophages in immunity and the 

viral disease which I have used as a model to study these aspects of immunity. 

1.1 T LYMPHOCYTES. 

1.1.1 Cell-Mediated Immunity - A Historical Perspective. 

That cells are important in mediating a number of immunological phenomena was 

established by adoptive transfer studies in which viable lymphoid cells from donors exposed to 

an antigenic stimulus were infused into naive recipie11ts. Landsteiner and Chase ( 1942) found 

that delayed-type hypersensitivity (DTII) to simple compounds could be transferred to naive 

guinea pigs by peritoneal cells from previously exposed animals. Tuberculin reactivity could 

also be transferred by immune cells from the spleen and lymph nodes (Chase, 1945; Bloom 

and Chase, 1967) but was not transferred with immune serum (Bloom and Chase, 1967). 

Mitchison (1953, 1954, 1955) also used an adoptive transfer protocol to demonstrate 

cell-mediated resistance to an allogeneic lymphosarcoma. Immunity could be conferred to a 

naive recipient by the transfusion of cells (and not serum) from the draining lymph node of a 

syngeneic animal that was in the process of rejecting that tumor. Furthermore, survival of 

allogeneic cells in previously sensitised animals could be prolonged if they were transplanted 

in a Millipore filter, and therefore impervious to cellular infiltration 0V eaver et al., 1955). 

Small lymphocytes were thought to be the immunologically competent cells (Medawar, 

1958; Billingham et al., 1962). On transfer into semiallogeneic rats, they changed rapidly into 

dividing cells with new morphological characteristics. Lymphocytes were implicated in the 

rejection of skin grafts (Gowans et al., 1962; Billingham et al., 1954; Billingham and Silvers, 

1963), graft-versus-host disease (GVHD) (Billingham and Brent, 1959) and in providing 

immunological tolerance (Gowans et al., 1962). Lymphocytes were known to reside in the 

lymphoid system but different organs varied in their ability to provide adoptive immunity 

(Billingham and Brent, 1959), and model systems of immunity varied with respect to which 

lymphoid organs had reactive cells (Mitchison, 1954; Billingham and Brent, 1959). 

Anti-lymphocyte serum (ALS) raised against thoracic duct lymphocytes depleted the 

levels of lymphocytes circulating in the blood and destroyed large areas of the spleen and 

lymph nodes (Gray et al., 1966; Monaco et al., 1966). Such treatment was accompanied by 

prolonged allograft survival in rats 0V oodruff and Anderson, 1963) and mice (Monaco et al., 

1966). Also, immunity to the facultative intracellular bacterium, Listeria monocytogenes, 

could be transferred by splenocytes or thoracic duct cells from immune mice and this 



protection was abrogated by treatment of the transfer immune population with ALS 

(Mackaness, 1969; Mackaness and Hill, 1969; McGregor et al., 1970). 
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Lymphocytes are a heterogenous population. This fact was established by experiments 

in which the Bursa of Fabriscius in chickens (Graetzer et al., 1963; Szenberg and Warner, 

1962; Aspinall et al., 1963) and the thymus in neonatal mice were removed. Lymphocytes 

were divided both functionally and on their site of differention into bursa-derived, 

immunoglobulin (Ig)-producing B cells and thymus-derived T cells. 

The functional importance of thymus-derived lymphocytes, or T cells, was established 

by thymectomy of mammalian neonates. Such surgery decreased the ability of mice to reject 

grafts as adults (Miller, 1961, 1962; Martinez et al., 1962), to perform DTH responses 

(Amason et al., 1962) and to mount a GVHD reaction to allogeneic thoracic duct cells (Nliller 

and Mitchell, 1967). Neonatal thymectomy of mice resulted in severe depletion of 

lymphocytes from the lymph nodes and spleen (Miller, 1961), a lack of small lymphocytes in 

the blood and Peyer's patches and a severe wasting disease (Miller, 1962). These areas of 

lymphocyte depletion were found to correspond to those affected by treatment with ALS (Taub 

and Lance, 1968) and anti-thymocyte serum (Turk and Willoughby, 1967), and could be 

restored by intravenous (i.v.) transfer of thymus cell suspensions (Parrott et al., 1966). 

Immunologically competent T cells are generated from resting precursors in the thymus 

(Sturman, 1978). These were thought to be phenotypically identical to peripheral T cells 

(Scollay et al., 1978; Scollay, 1982) but they probably do not lose the thymic cell surface 

marker, Jl lD, until they have left the thymus (McKinnon and Ceredig, 1986). Differentiation 

of .lymphocytes within the thymus leads to the acquisition of a number of serologically 

detectably cell surface antigens (reviewed in Katz, 1977; McKenzie and Potter, 1979). In the 

mouse, the Thy-1 alloantigen, originally designated q, was the first to distinguish T from B 

lymphocytes and is now the standard T cell marker (Raff 1969, Lepault and Weissman, 1981; 

McKenzie and Potter, 1979). The ontogeny of the Thy-1 marker has been reviewed by 

Crawford and Barton (1986). Thymocytes also acquire Lyt antigens (Boyse et al., 1968; 

Mathieson et al., 1979, Scollay and Weissman, 1980; Lepault et al., 1983). All T cells 

express Lytl but with variable density, such that the most readily detectable levels are found 

on the Lyt2-;3- subset of lymphocytes (Mathieson et al., 1979; Ledbetter et al., 1980). 

Traditionally, the helper T cell subset has been defined by expression of the Lytl but not the 

Lyt2/3 antigens, the latter being restricted to the cytotoxic/suppressor subset (Cantor and 

Boyse, 1975). 

Function of T lvmnhocvtes. 

It had been shown that T cells do not produce Igs and thymectomised animals 

maintained intact antibody responses (Aspinall, et al ., 1963; Graetzer et al., 1963) and Davies 

and coworkers (1967) had shown that T cells did not produce immunoglobulins, humoral 

responses to some antigens, such as sheep erythrocytes, were impaired (Miller and Mitchell, 
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1967). It became evident that two cell types were involved in effecting the antibody response. 

While the antibody response following neonatal thymectomy, could be restored by transfer of 

thymocytes, impaired responses due to sublethal irradiation required infusion of thymocytes 

and bone marrow cells together, and was not reconstituted with separate transfer of these cell 

populations (Nfiller and Mitchell, 1968; Mitchell and Miller, 1968; Nossal et al., 1968; i\!1anin 

and Miller, 1968). Therefore it was proposed that both antigen-reactive thymus-derived 

lymphocytes and bone marrow-derived immunoglobulin-producing cells interacted to effect the 

humoral antibody response (Claman et al., 1966; Davies et al., 1967; Mitchison, 1971). 

Adoptive transfer studies established the role of T cells in eliciting the DTH response to 

both bacterial and viral antigens. Blanden and Langman (1972) found that the cellular 

response to listeria was abrogated in thymectomised, bone marrow-reconstituted mice, but 

could be restored by transfer of thymocytes. Also the DTH response and protection conferred 

on recipients by transfer of listeria-immune lymphocyte populations was abrogated by 

treatment of those populations with anti-Thyl serum plus complement (Blanden and Langman, 

1972; Lane and Unanue, 1972; Kaufmann et al., 1979). The cellular response to the 

mousepox virus, ectromelia, was also shown to be mediated by Thyl + cells (Blanden 1970, 

1971a,b). 

The importance of T cells in the recovery from viral infections has also been established 

from adoptive transfer studies (reviewed in Zinkernagel and Doherty, 1979). The transfer of 

protection against ectromelia by virus-immune spleen cells did not depend on the presence of 

antibody, interferon or macrophages in the transfer inoculum. Control of virus replication and 

recovery from infection was abrogated by T cell depletion of the transfer population (Blanden 

1970, 1971a,b). Transfer of immune T cells to influenza- (Yap and Ada,1978; Wells et al., 

1981) and cytbmegalovirus- (Starr and Allison, 1977; Ho, 1980) infected mice has also been 

shown to result in reduced virus titres in organs. Other viral infections which are controlled by 

the T cell activity include Venezualan equine encephalomyelitis virus (Rabinowitz and Adler, 

1973), herpes simplex virus, type 1 (Rager-Zisman and Allison, 1976) and flavivirus (Jacoby 

et al., 1980). 

The in vitro cytotoxicty of immune lymphoid cells for target cells bearing the sensitising 

antigen, previously demonstrated by Rosenau and Moon (1961) and Koprowski and 

Fernandes (1962), and quantitated by the 51Cr-release assay of Brunner and co leagues (1968) 

was shown to be mediated by T lymphocytes. Cerottini and coworkers (1970a,b) found that 

allo-reactive cytotoxic cells but not allo-antibody producing cells were generated in the thymus. 

They also showed that anti-Thy 1 antibody and complement treatment prevented cytotoxicity 

but not antibody production by sensitised spleen cells. Cytotoxic immune cells reactive to 

viruses were also demonstrated to be T and not B cells (Gardner et al., 1974a,b; Yap and Ada, 

1977). They were non-adherent, sensitive to complement treatment with anti-Thyl serum but 

not anti-immunoglobulin serum, did not express Fe receptors on their cell membranes and 

required direct contact with the target cells to effect cytolysis. Graft destruction was thought 



1 - 4 

to be one in vivo correlate of T cell cytotoxicity. Sprent and Miller (1971) demonstrated that 

thoracic due~ Thyl + cells that were cytotoxic for allogeneic cells in vitro were also capable of 

initiating graft rejection and GVHD on transfer into allogeneic recipients. 

In vitro studies of T cell function also established the importance of soluble mediators in 

both the regulation and the effector mechanisms of the immune response. Bloom and Bennett 

(1966) described the release, in culture, of a macrophage inhibition factor (MIF) from 

sensitised lymphocytes. Other soluble factors that affected leukocytes in vitro were also 

described: a mitogenic factor that triggered lymphocyte proliferation (Gordon and Maclean, 

1965); chemotatic factors for macrophages (Ward et al., 1970), eosinophils (Cohen and Ward, 

1971), basophils (Kay and Austyn, 1972) and neutrophils (Czuprynski et al., 1985; Lukacs et 

al., 1985); and colony stimulating factors for bone marrow cells (Metcalf and Johnson, 1978). 

The generic term of 1ymphokine' was given to such immunoregulatory soluble factors 

released from lymphocytes (Dumonde et al., 1969). These facors were apparently the in vitro 

correlate of the mediators of DTH reaction and Bennet and Bloom (1968) did find that injection 

of lymphocyte-derived factors into animals elicited a DTH response. 

Lymphokine release by T cells could be stimulated in primary cultures with mitogens 

(Watson and Mochizuki, 1980) and alloantigen (Kirchner et al., 1979). They were also 

produced by cultured T cells obtained from mice infected with viruses (Ihle et al., 1981 a). 

Thus, a wide range of both in vivo and in vitro functions can be attributed to T 

lymphocytes. 

1.1.2 MHC-Resriction of T Lymphocytes. 

The Nlajor Histocompatibility Complex (MHC). 

Gorer and colleagues initially demonstrated that a blood group gene locus in mice 

controlled the rejection of tumors transplanted between different strains of mice. Their protein 

products were designated as antigen II. Seven to 14 genetic loci were found to control the fate 

of tumor grafts. These were designated Hand numbered sequentially (Gorer et al., 1948; 

Snell, 1948). Tissue rejection across the H-2 locus was particularly rapid and consequently 

the murine H-2 became known as the major histocompatibility complex (MHC). All other H 

loci were designated as minor or non-H-2 antigens. 

The protein products and organisation of the MHC gene region have been described in 

detail (reviewed by Klein et al., 1981; Hood et al., 1983; Klein et al., 1983). The H-2 

complex of the mouse are divided into four regions named arbitrarily K, S, I and D. Each 

subregion contains a varying number of loci and these code for three structural classes of 

antigen, classes I-III. 

The products of the K and D regions products display marked homology in sequence 

and structure and are designated class I 1v1HC antigens. They are integral membrane proteins. 
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The K region of the MHC codes for 2 distinct molecules (Ivanyi and Demant, 1981; 

Tryphonas et al., 1983) and the D region codes for 4: D (Shimada and Nathenson, 1969; 

Reyes et al., 1982); L (Lemmonier et al., 1975); M (Ivanyi and Demant, 1979; Sears and 

Pollizi, 1980); and R (Hansen et al:, 1981; Ivanyi and Demant, 1981). Not all these molecules 

are found in every mouse strain. The class I MHC antigens are ubiquitously distributed on 

mammalian cells and can be found to a some extent on all cell types. The lymphoid tissues 

have the highest levels of expression while in the brain, skeletal muscle and testes, class I 

molecules are barely detectable (Klein, 1975). Class I MHC antigens are the classical 

transplantation antigens that allow discrimination of self from non-self. 

The class II molecules, or I region associated (Ia) antigens, are also integral membrane 

proteins. The molecules consist of 2 noncovalently associated polypeptide chains These a. 
and~ chains are encoded by subregions of the I region, I-A and I-E. The cell membrane I-A 

molecule is made up of the Aa. and A~ polypeptides, whereas the I-E molecule is made up of 

Ea, encoded by the I-E subregion and AE(E~), encoded by the I-A subregion (Jones et al., 

1978; Cook et al., 1979). 

The distribution of Ia molecules is largely restricted to cells of the lymphomyeloid 

lineage. They are constituitively expressed by B cells and both lymphoid and interdigitating 

dendritic cells (Steinman et al., 1979; Tew et al., 1982). The level of expression of Ia on 

macrophages is less consistent and is probably, to a large extent, regulated by immune 

processes (Wong et al., 1983; Papiernik et al., 1986; Strassmann et al., 1986). While it is 

evident that activated human T cells synthesise and express class II MHC molecules (Charron 

et al., 1980; Brown et al., 1984), it is disputed whether murine T cells can synthesise Ia 

antigens, although they appear to absorb these molecules from the surrounding milieu (Lorber 

et al., 1982). Detectable levels of class II MHC antigens can be found on non-lymphomyeloid 

cells such as gut epithelia (Parr and McKenzie, 1979) and sperm (Hammerling, 1976) while a 

number of cell types are induced to express Ia during immune reactions (Nlason et al. , 1981; 

Schreiner et al., 1984; Pujol-Borrell et al., 1986). In the brain Ia expression appears to be 

restricted to reactive astrocytes (Traugott et al., 1985; \,Vong et al., 1984, 1985; Frank et al., 

1986; Massa et al., 1986). I-A/E molecules are involved in the induction and regulation of 

immune responses. 

The class III MHC molecules encoded at the S region are not histocompatibility antigens 

but, rather, components of the complement pathway (Atkinson et al., 1982). 

MHC-Restriction ofT Cell Reactivitv. 

The role of the MHC in controlling graft rejection was elaborated by in vitro studies. 

Mixed lymphocyte cultures of cells from 2, MHC-incompatible mouse strains resulted in a 

rapid proliferative response (Bain et al., 1964). It was further estimated that 1-3% of all T 

cells are reactive to cells bearing foreign MHC (Simonsen, 1967; Wilson et al ., 1968). 

However, although H-2 was initially defined by graft rejection and a substantial proportion of 
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T cells are specific for allo-MHC antigens, subsequent studies indicated a much broader 

influence of the MHC on T lymphocyte function. 

Class II MHC genes were found to control the induction and extent of the immune 

response to simple polypeptide antigens such as poly-L-lysine (McDevitt and Chinitz, 1969; 

McDevitt et al., 1972). For nude mice to mount an antibody response to sheep erythrocytes it 

was necessary to adoptively transfer thymocytes of the same H-2 haplotype (Kindred and 

Shreffler, 1972) and similar compatibility between T and B cells was necessary in the 

hapten-carrier system of antibody production (Katz et al., 1973a). MHC matching was also 

required for immune guinea pig T cells to proliferate in response to antigen-pulsed 

macrophages (Rosenthal and Shevach, 1973). Such observations led to the concept of 

immune response (Ir) genes which, in the cases cited above, were found to map to the I region 

of the MHC. It was hypothesised by Katz and colleagues (1973b) that a "physiological 

interaction" between both antigen-specific receptors and H-2 products on T cells, and the 

complementary recognition sites on somatic cells, was necessary for generation of the immune 

response. 

The concept that immune responses are "restricted" by the MHC was elucidated by 2 

independent studies on the cytotoxic activity of activated T cells. Zinkernagel and Doherty 

(197 4a) demonstrated that virus-immune T cells killed infected target cells only if they shared 

the same H-2 antigens. Concurrently, Shearer (1974) found that the cytotoxicity of T 

lymphocytes for chemically modified cells was also NlHC-restricted. 

These papers initiated a cascade of work that further elucidated the requirement for 

MHC recognition and showed similar restriction for various immune responses. Cell lines that 

lacked detectable NlHC antigens were not susceptible to lysis by either virus-immune 

(Zinkernagel and Oldstone, 1976; Doherty et al., 1977) or anti-minor (Bevan and Hyman, 

1977) cytotoxic T cells. Furthermore, antibodies raised against class I MHC molecules were 

able to block anti-viral T cell cytotoxicity (Koszinowski and Ertl, 1975). It was shown that 

synthetic lysosomes only stimulated virus-immune T cells when viral and H-2 molecules were 

present in the same vesicle (Finberg et al., 1978; Loh et al., 1979). 

MHC-restriction was demonstrated for the cytotoxic T cell response to minor 

histocompatibility antigens (Be':'an, 1975 a,b), including the male H-Y antigen (Gordon et al., 

197 5) and to many different viruses (reviewed in Zinkernagel and Doherty, 1979). In vivo 

restriction of T cell activity has also been observed for a number of infectious diseases: listeria 

(Zinkernagel, 1974); ectromelia (Blanden et al., 1975; Kees and Blanden, 1976); influenza 

(Yap and Ada, 197 ); and the intracellular protozoan Theileria parva (Eugui and Emery, 

1981). 

Compatibility at the K and/or D region of the MHC (but not the I region) was shown to 

be sufficient for recognition of virus-infected cells by cytotoxic immune cells (Blanden et al., 

1975). Likewise, adoptively transferred ectromelia-immune T cells effected virus clearance in 

naive recipients only if Kand/or D molecules were shared by donor and recipient mice (Kees 
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and Blanden, 1976). Also virus-specific memory responder cells are stimulated to divide in 

vitro by virus-infected cells that were similarly restricted (Pang et al., 1976). 

The recognition of MHC molecules by T cells is very specific, even more so than that of 

antibody for its complementary antigen. A single point mutation ar the K region is sufficient to 

abrogate the capacity of cytotoxic T cells to lyse virus-infected target cells (Blanden et al., 

1976; Zinkernagel, 1976a) and to clear infectious virus in vivo (Kees and Blanden, 1976). 

This mutation was not serologically detectable (McKenzie et al., 1976). The most frequently 

observed mutations that affect target cell recognition occur in the second external domain of the 

class I MHC molecules (Klein et al.,1983). 

An "altered-self' hypothesis for MHC restriction was proposed to explain 

MHC-restriction (Doherty and Zinkemagel, 1975c). Clonally expressed T cell receptors 

specifically recognised antigenic determinants that were generated by the association of "self' 

MHC molecules with "foreign" antigen on the target cells. In contrast, Katz and Benacerraf 

(1975) extended the "physiological interaction" hypothesis to suggest that a "dual-receptor" 

recognised foreign antigen independently of the MHC. The former hypothesis was favoured 

by the finding that antiviral effector T cells from F 1 hybrids consisted of 2 populations each 

recognising one or other of the parental strains. There was no evidence that individual F 
1 

effectors could recognise infected targets from both parental stains as predicted by the 

"physiological interaction" hypothesis (Zinkemagel and Doherty, 197 4b ). Further support for 

the concept of a single receptor was provided by the molecular biological examination of the T 

cell receptor (Hood et al., 1985). 

Class I versus Class II MHC-Restriction. 

MHC-restriction limits T cell function to cell-associated antigens. Recognition of 

soluble antigen only occurs after it has been processed by an antigen presenting cell (APC) and 

expressed on the surlace of that cell. Examples of APC that are capable of endocytosing 

soluble antigen and re-expressing it on the plasma membrane are macrophages and dendritic 

cells. However, unlike that of macrophages, presentation of soluble antigen by dendritics is 

apparently restricted by its limitted phagocytic capacity and occurs without intracellular 

degradation (Kapsenberg et al., 1986). 

Experiments with virus-immune T cells suggest that those antigens which need to be 

processed by an APC generate class II MHC restricted responses while antigens that are 

independently incorporated into the cell membrane are more likely to associate with the class I 

MHC products. Ertl (1981) examined the ability of different preparations of virus and APCs 

to restimulate T cells that had been primed in vivo with infectious Sendai virus. The resultant 

effector populations were tested for their ability to effect class I or class II MHC-restricted 

DTH. Class II restriction occurred only when the APCs were macrophages from the spleen or 

peritoneal cavity, and were therefore capable of endocytosing and processing the antigen. 

Class I MHC-restriction was not limited to APC that could process antigen, but the virus 
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preparation used had to be either infectious or capable of fusing with the cell membrane. 

Sugamurer and colleagues (1978) had previously shown that the ability of class I-restricted 

cytotoxic T lymphocytes (CTL) to lyse Sendai virus-infected target cells was dependent on the 

fusion activity of the virus envelope (i. e. the capacity of viral antigens to be directly 

incorporated into the target cell membrane). 

The lipid envelope of Sendai virus has a particularly high fusion activity and no viral 

genome or protein synthesis is required to generate target cells that can be lysed by CTL 

reactive to this virus (Schrader and Edelmann, 1977). For other viruses such as ectromelia 

and herpes simplex virus, incorporation of viral antigens into target cells that can be lysed by 

class I-restricted T cells only occurs if the virus is infectious and if cellular protein synthesis is 

not impaired (Ada et al., 1976; Pfizenmaier et al., 1977). Restriction of influenza-reactive 

CTL to Kand D molecules only occurs in mice that are infected with live virus (Braciale and 

Yap,1978). Priming with inactivated influenza virus, however, generates only a class II 

MHC-restricted response (Leung and Ada, 1980). 

Further studies with influenza virus demonstrated that cytolosis of virus-infected cells 

by CTL that were restricted by either class I or class II MHC antigens, was determined also by 

the nature in which virus antigens were incorporated into the cell membrane. Class I 

MHC-restricted CTL, specific for the influenza hemagglutinin antigen, recognised only those 

target cells in which new hemagglutinin protein synthesis had occurred. Whereas, class II 

MHC-resticted CTL selectively recognised target cells that had been exposed to soluble 

hemagglutinin (Morrison et al., 1986). 

The importance of glycoprotein metabolism in generating virus-infected targets capable 

of being lysed by class I-restricted CTL is suggested by the ability of glycosylation inhibitors 

to abrogate the lysis of targets infected with herpes simplex virus (HSY), (Lawman et al., 

1980; Carter et al., 1981). However, this effect may have been due to inhibition of either 

virus metabolism or the synthesis of class I MHC molecules. That virus metabolism is 

probably the most important factor was suggested by experiments with temperature-sensitive 

mutants of HSY. Target cell sensitivity was decreased when infected with the mutants at their 

nonpermissive temperature, although cells infected with the wild-type virus were lysed 

(Lawman et al., 1980). The importance of viral protein synthesis was also implicated with 

experiments on temperature-sensitive mutants of vesicular stomatitis virus (Hale et al., 1978; 

Zinkernagel et al., 1978). 

Although infectious virus is apparently required for generation of a class I 

MHC-restricted response, it can not be assumed that, in all cases, the viral antigen recognised 

has been incorporated into the plasma membrane as a native protein. Townsend and 

colleagues (1986) have demonstrated that newly synthesised proteins that lack the hydrophobic 

signal peptide required for insertion of the protein into lipid membranes, can still be presented 

to class I MHC-restricted CTL. They used a reconstructed hemagglutinin molecule of the 

influenza virus, lacking the signal peptide, and incorporated into a carrier vaccinia virus. 
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Hemagglutinin specific CTL were capable of lysing infected cells even though the protein 

could not be detected on the cell surface with specific antibodies. The authors have suggested 

that 2 pathways exist for the presentation of antigens to T cells, one dealing with recently 

synthesised proteins, the other with endocytosed soluble proteins. This hypothesis explains 

the ability of virus-reactive CTLs to recognise non-transmembrane viral antigens, such as the 

nucleoprotein. Proteins that are newly synthesised in the cytoplasm of an infected cell are 

presented at the cell surface independently of the processing mechanism used by such APCs as 

macrophages and dendritic cells. The 2 distinct presentation pathways for synthesised versus 

endocytosed proteins, as suggested by Townsend and his coworkers, may be the factor which 

determines by which class of MHC molecules T cells are restricted. 

Thus, as a generalisation, the nature of a foreign substance is important in determining 

the class of MHC by which reactive T cells are restricted. Soluble antigens require processing 

by specialised APC and appear to generate a T cell response restricted to Ia molecules. 

K,D-restricted activity occurs when antigen is incorporated into the cell membrane 

independently of the processing pathway of the APC. 

Activation of T Cells. 

That antigen alone is not a sufficient stimulus to generate an immune response was 

demonstrated by Lafferty and coworkers (1974) and Schendel and Bach (1975) . These 

workers found that pretreatment of the stimulator population in an ivILR with either ultra-violet 

irradiation or a 1hr incubation at 45°C destroyed the proliferative response. The stimulating 

MHC antigens, however, remained serologically intact. Also, activation of resting T cells in 

an MLR or by mitogens requires cell-to-cell contact with metobolically active stimulator cells 

(Paetkau et al., 197 6; Larsson and Coutinho, 1979; Lafferty et al., 1980). 

Not all viable cell types, though, are capable of activating T cells. Stimulatory capacity 

is restricted to a few hemopoietic cell lines such as macrophages and dendritic cells (Sunshine 

et al., 1982; ivlinami et al., 1980). Most stimulator cells express class II ivIHC molecules. 

Even mitogens that activate T cells polyclonally are not able to do so in the absence of an Ia+ 

cell population (Habu and Raff, 1977; Ahmann et al., 1978). Ia antigens, however, are not 

directly related to the stimulatory process. Some Ia- tumor cell lines have the capacity to 

activate resting T cells (Lafferty et al, 1980) and Ia+ B cells do not provide stimulation in an 

MLR (Glimcher et al., 1982) even though they are capable of processing antigen and 

re-expressing it in association with Ia molecules in such a way as to be recognised by T cells 

that are already activated (Lanzavecchia, 1985). 

Cell types that are not normally capable of activating T cells acquire that capacity when 

cell-free supernatants from mitogen stimulated T cells are added to the culture (Talmage et al., 

1977). One factor that is able to act as a costimulator is interleukin 1 (IL-1 ), a lymphokine that 

is released from macrophage-derived cell lines and macrophages that have been triggered by 

lipopolysaccharide (LPS) or activated T cells (Mizel et al., 1978; Farrar et al., 1980) 
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Thus, apart from foreign antigen it is apparent that a second signal is required to 

stimulate resting T cells. This soluble mediator is released by specialised hemopoietic cells that 

usually express class II MHC antigens. 

1.1.3 Function of Class I and Class II 1\!IHC-Restricted T Cells. 

Upon activation by APCs that present antigen and also release a costimulatory factor, T 

cells express receptors for interleukin-2 (IL-2). This lymphokine was initially termed T cell 

growth factor (TCGF) because it was required for the maintenance of primed T cells in vitro 

and for the generation of T cell clones (Gillis and Smith, 1977; Schreier et al., 1980). It 

received the less specific name of IL-2 (Aarden et al., 1980) because it was also capable of 

affecting the response of thymocytes to mitogen (Mills et al., 1976) and the differentiation and 

proliferation of B cells (Watson et al., 1979; Zubler at al., 1984). As well as being a 

proliferative signal, IL-2 is capable of inducing the differentiation of Lyt2+ cells to the 

cytotoxic state (Yoshimoto et al., 1985). 

Once primed and receptive for IL-2, T cells are capable of carrying out a number of 

functions including the lysis of specific target cells and the release of lympholcines. Such 

functions are triggered by interaction of the effector T cell with its specific cell-associated 

antigen. At this stage it is no longer necessary for the target cell to be metabolically active 

( Andrus and Lafferty, 19 81). Also, 1 ymphokine release from activated T cell clones can be 

elicited by mitogens in the absence of APCs (Ely et al., 1981). Antigen alone is sufficient 

stimulus for triggering effector T cell functions. 

Class I and class II MHC-restricted T cells can be distinguished phenotypically by 

antigens that are acquired during development in the thymus (Swain, 1983). In the murine 

system, KID-restriction correlates with expression of the Lyt2 marker defined by Cantor and 

Boyse (1975), while Ia-restricted T cells express the L3T4 antigen (Dialynas et al., 1983). 

Traditionally, the two subsets of T cells were also distinguished on a functional basis. 

Class I MHC-restriction implied cytotoxic/suppressor function, while class II N1HC-restricted 

T cells were the lymphokine-releasing, helper/DTH subset (Huber et al., 1976; Vadas et al., 

1976; Zinkernagel and Doherty, 1979; Hollander, 1982). The restriction of cytotoxic activity 

to Lyt2+ T cells, however, is not absolute: a number of instances in which killing is restricted 

by class II MHC antigens have been described (Wagner et al., 1975; Meuer et al., 1983; Spits 

et al., 1983; Kaplan et al., 1984; Yasukawa and Zarling, 1984; Jacobson et al., 1985; 

Morrison et al., 1986). Likewise, class I-restricted T cell clones can release lymphokines 

(Dennert et al., 1981; Morris et al., 1982; Kelso and Glasebrook, 1984). 

T cell clones and hybridomas have proved to be powerful tools in the analysis of T cell 

function. Although some lines are constituitive producers of lymphokines ( Nabel et al., 1981; 

Howard et al., 1979; Jones et al., 1981; Stull and Gillis, 1981), others are stimulated to 
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release them by rnitogenic or antigenic stimuli (Kappler et al., 1981; Katz et al., 1980; 

Schrader et al., 1980; Nathan et al., 1981; Glasebrook et al., 1981). T cell clones 

(Prystkowski et al., 1982) and hybridomas (Zlotnik et al., 1983; Kelso and Glasebrook, 

1984) are also capable of synthesising and releasing more than one lymphokine. 

A number of authors have examined the NlliC restriction of T cell function using cell 

lines whose effector capacity is triggered by antigens or rnitogens. Kelso and coworkers 

(1982) found that the majority of T cell clones that are reactive to alloantigens, minor 

histocompatibility antigens or Moloney leukaemia virus, released macrophage activating factor 

(MAF), independently of the class of NIHC molecules by which they were restricted. They 

also found that there was no correlation between the cytolytic capacity of the clones and their 

capacity to release such lymphokines as IL-2 and the colony stimulating factor for granulocytes 

and macrophages (GM-CSF). However, apart from some exceptions, most IL-2 releasing 

clones were not cytotoxic. 

Kelso and MacDonald (1982) also looked at the precursor frequency of cytotoxic and 

lymphokine-releasing T cells from an MLR. They used limit dilution techniques to generate 

clones from Lyt2+ or Lyt2- precursors and these were tested for both T cell functions. 

Production of MAF and GM-CSF was detected from both Lyt2+ and Lyt2- lines. IL-2 release 

was found predominantly in the latter cell lines. CTL were only generated from Lyt2-bearing 

precursors, but in this study it would have been impossible to detect class II NIHC-restricted 

killing because the ra- tumor cell line, P815, was the only target used. Similar results were 

obtained in a study looking at precursors from rnitogen stimulated T cell populations (Gueme 

et al., 1984). These authors, however, found that about half of the Lyt2+ clones could release 

IL-2. 

The MHC-restriction pattern of T cells that clear influenza virus infections has also been 

examined. Specific class I-restricted cytotoxic clones can inhibit viral replication in vivo as 

well as inducing a DTH reaction (Lin and Askonas, 1981). Of 2 cytotoxic clones, Taylor and 

Askonas (1983) found that only the one that produced y-interferon, in vitro, on contact with its 

appropriate target cell (Morris et aL, 1982) was capable of clearing virus in vivo. Thus, in this 

case the cytotoxic capacity of T cells was not critical for in vivo function. However, the 

restriction pattern of the T cells is important. Leung and Ada (1 982) demonstrated that class I, 

and not class II, NI.HC-restricted T cells could clear influenza virus infection in mice. On the 

other hand, class II MHC-restricted immune cells, which are generated by priming with 

inactivated virus (Leung and Ada, 1980), initiate immunopathology in the lungs of infected 

animals (Leung and Ada, 1980; Liew and Russell, 1983). 

In summary, although class I and class II NlHC-restricted T cells can be distinguished 

phenotypically, a clear functional distinction is not possible. Both subsets are capable of a 

range of effector activities. Which of these are important for T cell function, in vivo, is 

difficult to delineate. 
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1.2 MACROPHAGES 

It was the Russian zoologist, Elie Metchnikoff, who first recognised the importance of 

macrophages. Working in Paris at the end of the nineteenth century with the fresh water flea, 

Daphnia magma, he demonstrated the capacity of phagocytes to engulf fungal spores. In lacer 

investigations of mammalian infections, he observed that macrophages from infected animals, 

compared to those from uninfected animals, had an enhanced capacity to ingest and kill 

bacteria. Since his time much information has been gleaned on the various macrophage cell 

types and their function. 

1.2.1 Ontogeny and Heterogeneity of Macrophages. 

All blood cell types are referred to as hematopoietic cells. In adult mammals they are 

usually generated from stem cells in the bone marrow and to a lesser extent in the spleen 

(Metcalf and Moore, 1971 ). Transfer of bone marrow cells to irradiated mice leads to the 

formation, in the spleen, of cell colonies containing differentiating erythroid, myeloid and 

lymphoid cells (reviewed in Metcalf and Moore, 1971; Till and McCulloch, 1980). The stem 

cells responsible for generating these colonies are referred to as colony-forming units 

(CFU)-spleen. Their clonal nature was established by use of bone marrow cells with 

chromosomal abnormalities or enzymic markers (Whang et al., 1963; Wu et al., 1968; Trentin 

et al., 1967; Adamson et al., 1976; Fialkow et al., 1977). Colonies can be either a single cell 

lineage or a mixed population of cell types. Stem cells that give rise to only granulocytes and 

macrophages are referred to as GM-CFU. While dividing, spleen colony stem cells either 

differentiate into precursors of particular blood types or are renewed as multi potential cells 

(Siminovitch et al., 1963) 

The most immature cell of the macrophage lineage that can be identified in vivo is the 

promonocyte (van Furth et al., 1970), although in tissue culture a more primitive monoblast 

can be distinguished (Goud et al., 1975). Circulating monocytes are derived from rapidly 

proliferating promonocytes (van Furth and Diesseldorf-Dulk, 1970; van Furth et al., 1970) 

and ultimately differentiate into the tissue macrophages of the peritoneum, lungs, liver and skin 

(Volkman and Gowans, 1965a,b; Volkman, 1966; Virolainen, 1968; Howard, 1970). 

A great deal of heterogeneity is observed in the macrophage population; both between, 

and within, different tissues. Resident macrophages from diverse anatomical sites differ 

extensively in their morphology and eD.zyme content, as well as such functional capacities as 

Fe-mediated phagocytosis, cytotoxicty for bacteria and tumor cells, and chemotaxis (Walker, 

1974, 1976; Kastello and Canonico, 1981). 

Within the same tissue, heterogeneity is observed because of the different stages of 

macrophage differentiation that are encountered. Different morphological (Hirsch and 
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Fedorko, 1970) and functional (Cohn and Benson, 1965) properties result from cell 

populations at various stages in the maturation from blood monocytes to resident 

macrophages, as well as the different states of activation of those macrophages (Walker, 

1976). 

F4/80 Antigen. 

Although there is great heterogeneity in macrophage populations, they appear to be 

phenotypically distinguishable, in the mouse, by the expression on the cell surface of a specific 

antigenic marker, F4/80. This antigen was defined by Austyn and Gordon (1981) and is 

recognised by the non-cytotoxic, rat monoclonal antibody which is also designated F4/80. 

Immunoprecipitation after biosynthetic and lactoperoxidase labeling has shown that the 

antigenic determinant is part of a 160,000 daltons plasma membrane glycoprotein (Austyn and 

Gordon, 1981). 

During differentiation of macrophages from bone marrow cells in culture, F4/80 is first 

expressed on preadherent progenitors. Its level of expression increases with maturation and it 

can be found on all macrophage colonies derived in vitro (Hirsch et al., 1981). Levels of 

F4/80, however, have been observed to decrease, along with those of Fe receptors, on 

macrophages from ECG-activated mice (Ezekowitz et al., 1982). 

F4/80 is uniquely expressed on cells of the macrophage lineage. It is not expressed on 

other blood cell types such as B and T lymphocytes, polymorphonucleucytes and erythrocytes; 

nor is it present on the Steinman-Cohen dendritic cell found in mouse lymphoid tissue (Austyn 

and Gordon, 1981; Nussenzweig et al., 1981). 

Immunohistochemical staining for the F4/80 marker has shown it to be present on all 

known tissue macrophage populations and absent from cells which are clearly not 

macrophages. In normal mice, F4/80+ resident macrophages have been located in 

hematopoietic and lymphoid tissues (Hume et al., 1983b ), kidney (Hume et al., 1984b ), liver 

(Hume et al., 1984c), skin (Hume et al., 1983b), endocrine organs (Hume et al., 1984a), 

bone and connective tissues (Hume and Gordon, 1983). They are also associated with the 

epithelia of a number of organs (Hume et al., 1984c ). F4/80 antigen has also been 

demonstrated on macrophages that migrate into the developing retina, that phagocytose dying 

neurones and that differentiate into microglial cells (Hume et al., 1983a). F4/80+ microglia in 

the brain probably have a similar derivation (Perry et al., 1985). 

Thus, the F4/80 marker has proved to be very useful in studying macrophage 

localisation in a wide variety of organs. Use of this marker in an absorption, indirect binding 

assay has also been made to estimate the total macrophage content of adult mouse tissues (Lee 

et al., 1985). 

Macrophage Activation. 

Macrophages are induced to differentiate in response to both immunological and 
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non-immunological stimuli. Traditionally, those induced by sterile agents such as 

thioglycollate and peptone mediators are referred to as 'elicited' macrophages (Cohn, 1978; 

Hume and Gordon, 1982). Sterile inflammatory macrophages can be differentiated from 

resting cells functionally by increased spreading on glass surfaces, pinocytosis and 

antibody-mediated phagocytosis; and enzymatically by increased plasminogen activator, 

collagenase and acid phosphatase, and decreased 5'-nucleotidase. N1acrophages that have been 

stimulated by lymphok:ines from activated T cells or by bacterial products such as endotoxin 

are referred to as 'activated' macrophages. These activated macrophages are microbicidal, 

tumoricidal and have an enhanced capacity to release reactive oxygen products as well as the 

enzymes associated with the generation of and protection from these products (Cohn, 1978; 

Hume and Gordon, 1982). 

Models of macropohage activation have, in the past, assumed a regular progression 

from monocytes to elicited macrophages and finally to activated macrophages (Cohn, 1978). 

More recently, however, Adams and Hamilton (1984) have postulated a more complex model 

of macrophage development based on the fact that more than 2 stages of activation can be 

detected and that macrophages from the various stages may or may not be able to progress 

from one to the other. 

Macrophages are activated by various compounds. Bacteria and bacterial products such 

as the LPS endotoxins, N-formyl-methionone and the adjuvant muramyl dipeptide are potent 

stimulators of macrophage chemotoxis and activity. These effects are mediated independently 

from those of lymphokines and different mechanisms of activation are used by these 2 classes 

of .stimulators (Onazaki and Hashimoto, 1985). 

Activation of macrophages by microbial products has been reviewed by Murray (1984) 

and Nogueira and Cohn (1984) and will not be discussed further. Macrophage recruitment 

and activation during viral diseases is most likely effected by the activity of activated T cells, 

and the effect of lymphokines on macrophages will be dealt with in greater detail. 

1.2.2 Lymphokine Regulation of Macrophages. 

Approximately 100 lymphokine activities have been described (Waksman, 1980) but 

these do not result from an equal number of distinct molecules. Many lymphokines have 

multiple effects (Gresser et al., 1979). Those that regulate macrophage activity can be broadly 

classed into; - colony stimulating factors, migration inhibitors and chemoattractants, and 

activators of enhanced macrophage effector function. An example of the last category is the 

interferons. Although both a- and ~- interferon are known to be macrophage activators 

(Schultz, 1980) and can enhance IL-1 secretion from human monocytes (Arenzana-Seisdedos 

and Virelizier, 1983), they are not lymphocyte products (Wilkinson and N1orris, 1983) and 

therefore will not be discussed further. 
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Colonv Stimulating Factors. 

The regulation of the growth and maturation of macrophages from bone marrow stem 

cells by colony stimulating factors has been reviewed by Metcalf and Johnson (1978) and 

Metcalf (1986). In general, the colony stimulating factors that control the various stages of 

development are not derived from lymphocytes but are found in the conditioned medium of 

various non-hematepoietic tissues (Stanley et al., 1978; Burgess and :tvletcalf, 1980; Metcalf, 

1986). Macrophages, themselves, exert control over their own hemopoiesis and are one of the 

primary producers of colony stimulating factor, especially when activated (Cline et al., 197 4; 

Ruschetri and Chervenick,1974; Burgess and Metcalf,1980). 

That the continual turnover of CFU-spleen is dependent on lymphokines, however, is 

indicated by the ability of products from activated T cells to increase the numbers of these 

multipotential stem cells and by the inability of bone marrow from thymectomised or nude 

mice to reconstitute irradiated hosts (Zipori and Trainin, 1973). The lymphokine responsible 

is probably interleukin 3 (IL-3), also known as multi-colony stimulating factor, burst 

promoting activity, P-cell stimulating factor and hemopoietic growth factor (reviewed in Ihle 

and Weinstein, 1985; Metcalf, 1986). IL-3 was originally defined by its ability to induce 20 

a-hydroxysteroid dehydrogenase in spleens of nude mice (Ihle et al., 1981 b ). These authors 

suggested that the induced enzyme was a pre-T cell marker but it has since been found in 

nonlymphoid cell lines and long term bone marrow cultures (Hapel et al., 1985a). 

Another activity of IL-3 that was defined in 1981 by Schrader was its capacity to 

support the growth, in vitro, of the mast cell-like, P cells. It has since been shown to be a 

growth factor for pluripotential stem cells and for multiple lineages of progenitor stem cells 

from the bone marrow (Bazill et al., 1983; Ihle et al., 1983; Schrader et al., 1983). Once 

cloned (Fung et al., 1984), the protein produced by the IL-3 gene was found to stimulate the 

growth of stem cells for granulocytes/macrophages, eosinophils, megakaryocytes, and 

erythrocytes as well as multi-potential colony forming cells from the fetal liver and adult bone 

marrow (Hapel et al., 1985b). Its stimulation of GM-CFU in the bone marrow (Koike et al., 

1986), monocytes and peritoneal exudate macrophages (Chen and Clark, 1986) is synergised 

by colony stimulating factors that are released from macrophages. 

IL-3 is released by alloantigen activated T cells (Hodgkin et al., 1985) and lymphocytes 

reactive to Moloney sarcoma virus (Ihle et al., 198 la) and murine cytomegalovirus (Sinikas et 

al., 1985). Its mechanism of action involves the redistribution of protein kinase C from the 

cytosolic cell compartment to the membrane of target cells (Farrar et al., 1985). 

Lvmphokines Affecting Macrophage Migration. 

Nligration inhibition factor (MIF) was described in early studies on the DTH reaction to 

tuberculosis. A capillary tube method for analysing the inhibition of macrophage migration 

was used by both David (1966) and Bloom and Bennett (1 966) to demonstrate the activity of 

MlF, a soluble mediator derived from the interaction of lymphocytes with antigen. The 
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production of NIIF in vitro has traditionally been associated with the in vivo DTH reaction 

(David and David, 1972; Pick, 1977). It is released by activated T cells triggered by their 

specific antigen (Yoshida et al., 1973; Landolfo et al., 1978) as well as a number of T cell 

clones (Jones et al., 1981). Biochemically, N1IF has been characterised thoroughly (Remold 

and Mednis, 1979). 

A less well characterised lymphokine affecting macrophage migration is the macrophage 

aggregation factor (MAgF). Although, Badenoch-Jones and coworkers (1981) have 

developed an accurate assay for this lymphok:ine, it is not well understood. However, it is 

produced by sensitised T cells (Lolekha et al., 1970) and its activity can be separated from that 

of MIF by the use of antisera (Postlethwaite and Kang, 1976). 

A lymphokine that acts as a chemoattractant, macrophage chemotactic factor (MCF) has 

also been described but, again, is not well characterised. It has also been referred to as 

lymphocyte chemotatic factor and is released by antigen-reactive T cells (Boetcher and Meltzer, 

1975; Ward and Volkman, 1975). The most obvious in vivo function for this lymphokine is 

in the recruitment of mononuclear phagocytes to sites of DTH (reviewed in Ewan and 

Yoshida, 1979). 

Lvmphokines that Activate Macrophages. 

Macrophage activation, as measured by increased microbicidal activity was first 

observed for the development of immunity to tuberculosis (Lurie, 1942). These observations 

were extended by Mackaness (1960,1962,1964) for the staphylococal and listeria! bacteria. It 

was also Mackaness who determined that lymphoid cells were involved in conferring increased 

bacterial resistance on macrophages (Mackaness, 1969, 1971), an observation that was 

confirmed by the adoptive transfer of T cells resulting in macrophage activation (Blanden and 

Langman, 1972; Lane and Unanue, 1972). The ability of activated macrophages to 

phagocytose antibody-coated bacteria and to present antigen to sensitised T cells is also 

dependent on the activity of splenic lymphocytes (Ron et al., 1981). 

One lymphokine released by antigen-reactive T cells and capable of activating 

macrphages is w1AF. Initially its activity was biochemically inseparable from that of MIF but 

they have been shown to be distinct molecules (Kniep et al., 1981). MAF enhances the 

resistance of macrophages to infection by intracellular bacteria (Krakenbuhl and Remington 

1971; Simon and Sheagren, 1971). Other signs of macrophage activation by MAF include 

increased cytotoxicity for tumor cells and increased adherence to glass (Nathan et al., 1971; 

Hibbs et al., 1977). The activation of macrophages to cytotoxicity by NIAF is distinct from the 

that induced by LPS (devVeger et al., 1986). 

A lymphokine with similar activities to that of MAF is y-interferon. :High yields of this 

lymphokine can be derived from MLRs (Kirchner et al., 1979) and its activity is probably 

enhanced by the capacity of macrophages to internalise extracellular molecules, suggested by 

studies using liposome-incapsulated lymphok.ines (Kleinermann et al.,1985; Koff et al., 
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1985). 

Interferon induces a number of activities characteristic of activated macrophages. There 

is increased spreading on and adherence to glass (Shultz et al., 1978), enhanced levels of the 

cytoplasmic enzyme lactate dehydrogenase (Schultz, 1980), and the induction of transferrin 

receptor (Hamilton et al., 1984) and Ia (Wong et al ., 1983; Gershon et al., 1985; Papiernik et 

al., 1986; S trassmann et al., 1986) expression on the cell membrane. Monoclonal antibodies 

raised to this lymphokine are able to inhibit the ability of supernatants from mitogen-stimulated 

murine spleen cells to induce the induction of both microbicidal activity and Ia expression on 

elicited macrophages (Schreiber et al., 1985). Moreover, these authors found that distinct 

topographical domains on the interferon molecules, identified by different monoclonals, were 

responsible for either anti-viral or MAF activity. The ability of y-interferon that is released 

locally, to induce Ia expression on macrophages has been demonstrated for phagocytes in the 

thymic reticulum (Papiernik et al., 1986). Interferon- g is also capable of inducing class II 

MHC expression on a number of non-hematopoietic cell types but the receptor on these cells is 

different from that of mononuclear phagocytes (Orchansky et al., 1986). 

The functional capacities of activated macrophages that are induced by y-interferon 

include increased antibody-mediated phagocytosis (Donahoe and Huang, 1973; Hamberg et 

al., 1980), enhanced tumoricidal activity (Schultz et al.,1977; Schultz and Chirigos, 1978; 

Mannel and Falk, 1983), decreased support for the growth of intracellular bacteria (Schultz et 

al., 1978) and virus (Virelizer et al., 1977), increased cytotoxicity for virus infected cells 

(Koff et al., 1985), as well as the induction IL-1 activity (Newton, 1985). These 

multiltudenous effects indicate the significant role that interferon plays in potentiating the 

effector function of macrophages. 

In recent years it has become apparent that MAF and y-interferon are the same molecule 

(reviewed in Schreiber and Celada, 1985). Both the antiviral and macrophage activating 

properties of supernatants from T cell hybridomas were neutralised by antibodies to 

y-interferon (Pace et al., 1983). Svedersky and coworkers (1984) have shown that any MAF 

activity in culture supernatants, that is not associated with anti-viral activity, can be blocked by 

an antibody to cloned y-interferon. As well as the functional identity between the :2 

lymphokines (Schulz and Kleinschmidt, 1983; Murray et al., 1985), they are also 

biosynthetically and physicochemically identical (Shreiber et al., 1983; Fukazawa et al., 

1984). 

Thus, a variety of lymphokines facilitate the involvement of macrophages in the immune 

response to infection. They effect recruitment of mononuclear phagocytes by stimulating the 

proliferation of bone marrow stem cells as well as inhibiting migration of macrophages away 

from the site of inflammation. The macrophage activating lymphokine, y-interferon, is vital in 

inducing the full effector capactiy of macrophages. This results in the induction of Ia 

expression on the macrophage cell surface; a convenient marker of activation. 
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1.2.3 ivlacrophage Function. 

Macrophages are important both in the initiation of the immune response and in its 

· execution. Because of their ability to process antigen, as well as producing the costimulatory 

factor IL-1, macrophages are capable of activating T cells. Once activated, T cells can be 

triggered to release lymphokines by any cell bearing antigen and MHC molecules, but 

macrophages are one of a few cell types capable of processing foreign antigen to present in 

association with Ia molecules. Recruitment and activation of inflammatory macrophages by 

lymphokines then initiates a plethora of macrophage effector functions. 

Antigen Presentation and T Cell Activation. 

The role of macrophages in initiating the immune response has been reviewed 

extensively (Persson et al., 1978; U nanue, 197 8, 1981, 1984; Grey and Chesnut, 1985). The 

ability of macrophages to present soluble antigen is dependent on an active internal processing 

step that is blocked by chloroquine (Ziegler and Unanue, 1981). Macrophage-like accessory 

cells are required to present antigen to virus-immune T cells (Pang and Blanden, 1976; 

Blanden et al., 1977; Leung et al., 1981) and to T cells that 'help' antibody responses (Erb and 

Feldmann, 1975 a, b, c). Different classes of macrophage are able to act as APCs, including 

human monocytes (Bjerke and Gaudernack, 1985). Presentation of soluble antigen on the cell 

surface, following internalisation and processing by macrophages, results in a tight coupling 

between the antigen and Ia molecules (Puri et al., 1985; Unanue and Allen, 1986). 

To activate resting T cells it is necessary that foreign antigen is presented on the cell 

membrane of macrophages that also bear the class II NlHC molecules (Rosenthal, 1978; 

Unanue, 1981). Macrophages are heterogenous for Ia antigen expression and it is only those 

that express class II MHC molecules that are capable of activating resting T cells (Cowing et 

al., 1978; Beller and Unanue, 1980, 1981; Beller et al., 1980; Unanue, 1984). The 

requirement for Ia molecules on the cell surface of stimulatory macrophages does not 

necessarily imply that recognition of foreign antigen and Ia is obligatory, since, in this case, 

only class II MHC-restricted T cell responses would be generated. The necessity for Ia 

expression probably reflects the facr that only activated macrophages can stimulate resting T 

cells. Macrophage activation results in both Ia expression and the ability to release the 

costimulatory factor necessary for T cell stimulation, IL-1. 

IL-1, initially termed lymphocyte activating factor (LAF), was first described by Gery 

and Waksman (1 972) for its mitogenic effects on thymocytes and its ability to costimulate the 

proliferative response of T cells. IL-1 promotes the production by T cells of their own growth 

factor, IL-2 (Smith et al., 1980). It is released by macrophages triggered with both bacterial 

products and activated T cells (Farrar et al., 1980; Mizell et al., 1978; Oppenheim et al., 1979) 

and from macrophage cell lines (Lachman et al, 1977; Cowing et al., 1978; Mizel et al., 1978; 

Mizel and Rosentreitch, 1979; Booth et al., 1983 ). It is also produced by other cell types 
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thought to be involved in activating T cells, such as dendritic and Langerhan cells (Steinman, 

1981; Fisher et al., 1983; Sauder et al., 1984). 

As well as its costimulatory activity, IL-1 has many other capacities including that of 

endogenous pyrogen (Bernheim et al., 1980; Nlurphy et al., 1980; Sztein et al., 1981), 

stimulation of B cell activation along with anti-immunoglobulin antibodies (Howard et al., 

1983) and stimulation of fibroblast proliferation (Schmidt et al., 1982). Differentiation, in 

vivo, of the costimulatory function of IL-1 from its other functions may result from its location 

on the surface of the macrophage rather than its release into the blood stream. A 

membrane-associated form of IL-1 has been identified (Kurt-Jones et al., 1985) and has been 

shown to be necessary for stimulating T cell lines and clones (Unanue and Allen, 1986). 

Ia expression and IL-1 production by macrophages are not necessarily linked 

functionally. This is suggested by the finding that the ra- cell line, P815, is able to stimulate 

alloreactive T cells (Lafferty et al., 1980) while Ia+ aveolar macrophages have a limited 

capacity to release IL-1 (Yvewers et al., 1984) and are poor stimulators of the MLR (Lipscomb 

et al., 1986). Contrary evidence, however, is the finding that antibodies to the human class II 

MHC molecules are able to induce the release of IL-1 from monocytes (Palacios, 1985) or 

block its release from murine macrophages (Durum et al., 1984). 

Macrophages are also capable of releasing an inhibitor of IL-1, and it is apparent that 

some immunosuppressive viruses, such as the respiratory syncitial virus, are potent inducers 

of this inhibitor (Roberts et al., 1986). 

The role of IL-1 as an immunological mediator has been reviewed by Durum and 

colleagues (1985) and it is apparent that the ability of macrophages to initiate T cell activation is 

dependent on their capacity to release this interleukin. 

Cvtotoxic Function of Macrophages. 

The microbicidal and tumoricidal activity of macrophages is probably due to the release 

of toxic substances, (reviewed by Cohn and Scott, 1982). These include enzymes such as 

lysozymes, neutral proteases and esterases. Bacteria and fungi containing peptidoglycans that 

are catabolised by 1 ysosymes are killed by macrophages releasing this enzyme (Brumfitt and 

Glynn, 1961; Collins and Pappagianis, 1974; Gadebusch and Johnson, 1966). Neutral 

proteases and esterases have been implicated in the killing of tumor cells by macrophages 

(Adams et al., 1980; Piessens and Shanna, 1980) and the secretion of arginase by phagocytes 

is capable of inhibiting the growth of arginine-dependent tumors (Currie and Basham, 1978). 

The myeloperoxidase-mediated system of phagocytes also generates potent cytotoxicity for 

bacteria (Klebanoff, 1968), fungi (Howard, 1973), and viruses (Belding et al., 1970). 

Macrophages are also able to generate potent oxidising agents by a metabolic event 

known as the 'respiratory burst'. Products generated include hydrogen peroxide, the hydroxyl 

radicals, superoxide anions and singlet oxygen (reviewed in Davies and Bonney, 1979). 

Activation of macrophages results in their increased respiratory burst response (Pabst et al., 
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1980; Bryant et al., 1982). In many instances enhanced microbicidal activity can be correlated 

with their capacity to release reactive oxygen products (Johnston et al., 1978; Nathan and 

Root, 1977; Wilson et al., 1980). The oxidative metabolism of macrophages is also capable of 

restricting infection of vesicular stomatitis virus (Rager-Zisman et al., 1982). Because of the 

high toxicity and non-specific nature of the oxygen products, phagocytes have developed a 

protective system of enzymes that can reduce the reactive species (Voetman and Roos, 1980). 

Other secretory products that are capable of cytotoxic activity are thymidine which 

blocks deoxyribonuclic acid (DNA) synthesis of cenain tumors (Stadecker et al., 1977), a 

labile cytotoxine (Macfarlan and White, 1980), a listericidal substance (Bast et al., 1974) and a 

tumor necrotising factor (Mannel et al., 1980). 

Another killing mechanism used by macrphages is antibody-dependent cell cytoxicity 

(ADCC). Through their Fe receptors, macrophages can lyse cells that are coated with 

immunoglobulin in the absence of complement (Sissons and Oldstone, 1980). Examples of 

virus infected cells that are lysed by the ADCC mechanism include HSY (Ramshaw, 1975, 

Kohl et al., 1979), influenza (Greenberg et al., 1977), measles and vaccinia (Perrin et al., 

1977 a,b) viruses. 

Role of Macrophages in Protection from Viral Infections. 

Although activated macrophages are able to kill or inhibit the growth of a wide range of 

organisms both in vitro and in vivo, this discussion will be restricted to the role they play in 

viral infections. 

The importance of macrophages in resistance to viral infections has been inferred by 

their recruitment to sites of infection and by studies using cytotoxic agents to remove 

macrophages in vivo (reviewed in Mogensen, 1979). Blanden (1974) noted that mononuclear 

phagocytes, identified by injecting animals with carbon ink, accumulated at sites of ectromelia 

infection. Regression of infectious foci followed this accumulation (Blanden 1971 b). When 

recruitment of macrophages is enhanced with the use of such immunomodulators as 

Cornyebacterium par-vum, there is an increased resistance to virus infections (Larson et al., 

1972; Mak et al., 1983). The in vivo treatment of animals with certain agents such as silica 

(Allison et al., 1966) can severely deplete their macrophage population. Use of such agents 

has implied the importance of this cell type in resistance to viral infections (Zisman et al., 

1970; du Buy, 1975; Haller et al., 1976; Turner and Ballard, 1976). 

Although the implication is often that macrophages resolve infections that are already 

established, they are also capable of forming a barrier to infection by intrinsically restricting 

viral growth. This capacity varies between diff~rent strains of animals and virus, but there is a 

distinct correlation between the ability of a virus to grow in macrophages, in vitro, and the 

pathogenicity fo the infection, in vivo. This has been demonstrated for lymphocytic 

choriomeningitis virus (LCMV) (Tosilini and Nlims, 1971), HSY-type 2 (Mogensen, 1977), 

Wesselsbron virus (Olson et al., 1975) and mouse hepatitis virus (Virelizier, 1981). 
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Nlacrophages from older animals are often a more efficient barrier than those from young 

animals. Peritoneal macrophages from both suckling and adult mice are infected in vitro by 

HSV but only those from young mice supported the spread of infection to other cells 

(Johnson, 1964). When transferred to young mice, macrophages from adults confer 

resistance to subsequent infection (Mogensen, 1978). The intrinsic antiviral activity of 

macrophages is probably related to their ability to either phagocytose and degrade the virus as 

occurs in influenza virus infection of mouse macrophages (Rodgers and Mims, 1981 ), or to 

the restriction of viral replication in the cytoplasm (reviewed in Stahlman et al., 1982). 

Activation of macrophages during viral infection increases their intrinsic antiviral 

activity. Activated macrophages can be recovered from the lungs of mice infected with 

influenza virus (Mak et al., 1983) and these have an increased resistance to in vitro infection 

with influenza virus (Rodgers and Mims, 1981) that is associated with the release of lysozyn1e 

and hydrogen peroxide (Rodgers and Mims, 1982). Activation of peritoneal macrophages by 

C. parvum results in the abortive infection with ectromelia in which virus attaches to the cell 

membranes but does not replicate in the cytosol (Cohen et al. , 1984). 

Macrophages also display extrinsic antiviral activity in that they can either inhibit viral 

replication in normally permissive cells or kill virus-infected cells (Stahlman et al., 1982). 

Viral plaque formation and replication in fibroblast cultures can be inhibited by macrophages 

from animals infected with herpes simplex virus (Morahan et al., 1977). Also, both resident 

and elicited peritoneal macrophages are capable of restricting the in vitro replication of mouse 

hepatitis virus in permissive cells (Stahlman et al., 1982) and elicited macrophages are 

cytostatic for cells infected with Sendai and influenza viruses (Golman and Hogg, 1978). 

Activated macrophages can selectively destroy virus-infected but not uninfected cells, 

by a mechanism independent of ADCC. Systems in which such killing has been shown 

include infection of mice with influenza (Watanabe and McKenzie, 1982; Mak et al., 1983) 

and reoviruses (Letvin et al., 1982), herpes and vaccinia infection of hamsters (Chapes and 

Tompkins, 1979) and herpes infection of humans (Stan wick et al., 1980, 1982). 

The process by which macrophages are able to kill virus-infected cells is not 

understood. More information is available on the method used to inhibit viral growth in 

co-cultured cells but even this mechanism remains an enigma in most cases. For the 

multiplicaion of HSV, Wildy and colleagues (1982) showed that arginase released by 

macrophages depleted the quantity of arginine that is required for the replication of this virus. 

These authors have also suggested that the antiviral activity of macrophages in many systems 

may be due to the release of interferons. 
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1.3 L Yw'IPHOCYTIC CHORIOwIENINGITIS VIRUS. 

LCMV is an arenavirus which is a natural pathogen of mice. It is, in general, a nonlytic 

virus and its propagation does not cause obvious damage to the host cell. LCrv1V can persist in 

immunocompromised mice with continual production of large amounts of virus, but with only 

minor effects on the health of the animals. In immunocompetent mice, however, the 

lymphocytic response to the virus can result in resolution of the infection, or 

imrnunopathological damage. Many excellent reviews on LCMV have been published 

(Hotchin, 1971; Lehmann-Grube, 1971, 1984; Cole and Nathanson, 1974; Doherty and 

Zinkernagel, 1974; Gilden, 1975; Bro-Jorgensen, 1978; Buchmeier et al., 1980; Oldstone et 

al; 1985). This section will consider the evidence that indicates a role for class I 

MHC-restricted T cells in the immune response and also the immunopathogenesis of the acute 

disease of the disease following LCMV infection. Data that indicate the involvement of 

macrophages in 1 ymphocytic choriomeningitis (LCNI) will also be discussed. 

1.3.1 Class I MHC-Restriction of the T Cell Response to LCMV. 

It was Rowe (1956) who suggested that inflammatory cells played a crucial role in the 

induction of LCM. He found that protection from the disease was conferred on adult mice that 

were pretreated with x-irradiation. This protection was associated with leukopenia and 

decreased inflammation of the chorio-meninges, lungs and liver. LCM was thus due to the 

reactivity of the host to the virus. However, because survivors were no longer susceptible to 

the disease on intracerebral (i.e.) rechallenge with the virus, Rowe believed that irradiation had 

not interferred with immunity. 

Hotchin and coworkers confnmed that protection from LCM was associated with 

leukopenia and decreased meningeal infiltration, but found no effect on virus replication. They 

proposed that the decreased immune response resulting from irradiation conferred on adult 

mice a tolerance to the virus, similar to that seen in neonatally infected animals (Collins et al., 

1961; Hotchin and Weigand, 1961). Thus, the lymphocytic response to LCMV was thought 

to be responsible both for viral clearance and the pathological consequences of infection 

(Hotchin, 1962). 

By infecting adult mice that had been thymectomised as neonates, Rowe and colleagues 

(1963) were able to show that both LCM disease and viral clearance were effected by T cells. 

This finding was confirmed by East and coworkers (1964) and Hotchin and Sikora (1964). 

The ability of anti-thymocyte serum (Hirsch et al., 1967) and anti-lymphocyte serum (Gledhill, 

1967; Lundstedt and Volkert, 1967) to protect mice from LCM, also supported the view that T 

cells were responsible for the induction of the disease. 

Hotchin (1962) proposed that LCMV-infected cells produced a surface antigen that was 



1 - 23 

recognised as foreign by the immune system. He suggested that sensitised lymphocytes 

eradicate infected cells in a manner similar to that of graft rejection. This hypothesis was borne 

out by the finding that skin and adenocarcinoma cells from LCN1V-carrier mice were rejected 

by syngeneic uninfected hosts in the same time span as that of allografts (Holterman and 

Majde, 1971). Also Lundstedt (1969) showed cytotoxic activity of LCMV-immune spleen 

cells for LCMV-infected L-cells. This was the first in vitro demonstration of anti-viral 

cytotoxicity and conf'lffiled the view that it was LCMV-induced modifications on the cell 

surface that were recognised by immune cells. 

More substantial evidence that T cells were responsible for inducing LCivl came with the 

use of antibodies specific for T cells, immunogenetics and LCMV-reactive T cell clones, in 

combination with an adoptive transfer model of the disease. 

Immunosuppressive agents, such as cortisone and methotrexate, had been used to 

induce a virus-carrier state in adult mice infected with LCMV (Hannover Larson, 1969), and 

Gilden and coworkers (1972a) demonstrated that cyclophosphamide (Cy) was an equally 

potent inducer of the carrier state. Transfer of LCNlV-immune spleen cells into such mice 

resulted in the development of symptoms typical of LCM (Gilden et al., 1972b). That T cells 

were resposible for inducing the disease was demonstrated when the capacity of immune cells 

to transfer LCM was abolished by treatment with anti-Thyl serum plus complement (Cole et 

al., 1972; Doherty and Zinkernagel, 1975a). Zinkernagel and Doherty (1973) also showed 

that T cells which had been sequested to the cerebrospinal fluid (CSF) after i.e. inoculation of 

the virus, were cytotoxic for LCMV-infected target cells and that this cytotoxicity was depleted 

by. treatment of CSF cells with anti-Thyl and complement. 

As discussed in Section 1.1, studies on the killing of infected target cells by 

LCMV-immune spleen cells were instrumental in showing the MHC-restriction of T cell 

responses (Zinkernagel and Doherty, 1974a). This restriction was for the Kand D regions 

only; class II 11:HC molecules were not restriction elements for LCMV-reactive CTL (Blanden 

et al., 1975; Doherty and Zinkernagel, 1975b; Marker and Andersen, 1976). Not only is the 

in vitro cytotoxic response to LCMV-infected cells MHC-restricted, but induction of LCM 

disease by the transfer of immune cells in to immunosuppressed, infected mice only occurs if 

the donors and recipients are compatible at the class I region of the MHC (Doherty et al., 

1976b; Doherty and Allan, 1985). Funhermore in congeneic C57BL/10 mice, susceptibility to 

cerebral symptoms has been mapped to the D region of the NlHC (Zinkemagel et al. , 1985). 

Virus clearance from spleens of mice receiving adoptively transferred immune spleen cells is 

also restricted by the K and D region of the MHC. Recognition of the I region is neither 

sufficient nor necessary for in vivo function of LCMV-reactive T cells (Zinkemagel and 

Welsh, 1976). 

With the development of LCMV-reactive T cell clones, it became possible to show 

definitively that single cloned lines of Class I MHC-restricted T cells are capable of both 

inducing the immunopathological symptoms of LC 1, as well as effecting viral clearance. 
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Baenziger and colleagues (1986) demonstrated that cloned Lyt2+/L3T4-, LC;vlV-reactive T cell 

lines were able to induce cerebral disease in immunosuppressed, infected recipients when 

injected intracerebrally. When inoculated peripherally, these cells effected a severe respiratory 

and wasting syndrome, presumably due to lodgement of injected cells in the lungs of recipient 

mice. In immunocompetent mice LCM disease could be prevented if cloned T cells were 

admixed with the virus inoculum before i.e. injection, indicating the capacity to clear virus 

infection before the immunological consequences of the disease were manifest. Cloned CTL 

were also able to clear virus from the spleens (to which they migrated) of acutely infected mice 

within 20-30hr of cell injection (Byrne and Oldstone, 1984, 1986). 

Thus, it is well established that the immune response to acute infection with LCMV, 

both in inducing disease and in clearing viral infection, is restricted by class I MHC molecules. 

1.3.2 Involvment of Macrophages in the Host Response to LCMV. 

Involvement of macrophages during the response to the acute infection of mice with 

LCMV was first recorded in the histological descriptions of Lillie and Armstrong (1945) and 

subsequently by many authors, including Lerner and Haas (1958), Gilden et al., (1972b), 

Cole and Nathenson (1974), Walker et al., (1975) and Schwendemann et al., (1983). 

Macrophages and monocytes were observed amongst inflammatory cells infiltrating the central 

nervous system (CNS). 

Activation of macrophages during LCMV infection, as measured by increased resistance 

to listeria infection, was reported by Blanden and :Nlims in 1973. They found that activation 

correlated with peak T cell activity. Buchmeier and coworkers (1980) also observed an 

increase in the size, number and vacuolation of macrophages from mice infected by the 

intraperitoneal route. Peak activation occurred 2-3 days after that of T cell cytotoxicity. 

Activation was not seen in nude mice and is therefore likely to depend on T cell function. In 

the adoptive transfer model used by Lehmann-Grube and coworkers (1986), however, there 

was no evidence that macrophages were activated by transferred LCMV-immune spleen cells 

to resist listeria infection, even though such resistance was observed in mice acutely infected 

with the LCMV. 

Only a few papers have questioned the role played by macrophages in LCMV infection. 

Tosilini and Mims (1971) noted that LCMV could grow in peritoneal exudate macrophages, 

but that this ability varied between different strains of mice. Mouse strains that were most 

resistant to infection had macrophages that did not support viral replication. Also, resident 

macrophages were apparently the first cells to be infected (Tosilini and Mims, 1971; Lohler 

and Lehmann-Grube, 1981). These observations led to the postulate that macrophages were 

an initial barrier to LCMV infection. Thomsen and coworkers (1983b) supported this view 

with the finding that treatment of mice with carrageenan or silica 2hr before virus infection 
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resulted in increased blood titres of LCMV. Funher examination of this phenomenon by 

Thomsen and Volkert (1983) showed that an irradiation-insensitive, carrageenan-sensitive cell 

population (presumably resident macrophages) was important in restricting viral replication in 

the early stages of infection. 

A role for non-resident macrophages in the immune response to LCMV has been 

implicated in adoptive transfer experiments in which a radio-sensitive population was 

necessary for effective viral clearance. When transferred into mice on the same day of 

infection, primary immune T cells cleared virus from the animals within 5 days. This ability 

was abrogated by irradiation of the recipients prior to T cell transfer. Therefore, transferred 

cells need a radiosensitive cell population to remove virus. This population is not T cells, 

since adoptively transferred cells can clear virus in nude mice, and is most likely to be 

monocytes (Thomsen and Volkert, 1983). To accept that macrophages are involved, however, 

it would be necessary to use a more definitive macrophages marker such as F4/80. 

Most of the inference for a role for macrophages in acute LCMV infection derives from 

the DTH reaction observed to accompany infection with this virus. Tosilini and Mims (197 1), 

who first tested peripherally-infected mice for their ability to mount a DTH response to LCMV 

injected into the footpad, found that it had a similar time course in its development to that of T 

cell cytotoxicity in the spleen. They also found that the DTH response in the footpad could be 

transferred to recipients with i.v. injection of immune spleen cells. This adoptive transfer of 

DTH (footpad swelling) to LCMV by immune spleen cells is, like the transfer of disease 

symptoms, restricted by the Kand D regions of the MHC (Zinkemagel, 1976b). 

However, because the neurological disease, LCM, could be induced rapidly in 

recipients that had increased susceptibility to listeria infection, due to Cy or cortisone 

treatment, Zinkernagel and Doherty (1975) proposed that macrophages were not important in 

the induction of fatal LCM. This view has been challenged recently (Thomsen and Volkert, 

1983; Thomsen et al., 1983a,b; Marker et al., 1985). Pretreatment of mice with Cy, in 

contrast to treatment 3-5 days after virus injection (Gilden et al., 1972a), did not prevent the 

development of T cell cytotoxicity in the spleens of infected mice but did decrease the footpad 

swelling that follows challenge with infected cells. Drug pretreatment afforded protection from 

mortality 7-8 days after i.e. inoculation, as well as footpad swelling 7-8 days after prin1ary 

intraplantar infection (Thomsen et al., 1983a). In the same study, it was found that spleen 

cells from drug-treated infected animals that were adoptively transferred to naive recipients, 

were able to confer the capacity to mount a DTH response to LCMV. Thus, the authors 

suggested that the capacity of the immune lymphoid cells to elicit DTH or to lyse virus-infected 

cells was not impaired by Cy pretreatment, but the capacity of ancillary cells such as 

macrophages to respond to these T cells was inhibited. In a subsequent paper, it was shown 

that the differential effect of Cy pretreatment on the cytotoxic and DTH response was 

dose-dependent with doses as low as 80mgfkg of the drug being able to inhibit footpad 

swelling after intraplantar infection, while up to 150 mg/kg could be tolerated before an effect 
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on cytotoxicicy of spleen cells was detected. Using a regime in which Cy treatment inhibits 

footpad swelling but not T cell cytotoxicity, the authors found that virus clearance from the 

blood was impaired for the same length of time that the DTH response was impaired. Because 

treatment of mice with agents that are cytotoxic for macrophages also prevented virus clearance 

from infected mice, the authors conc_luded that the ability of T cells to elict macrophage effector 

function, rather than their ability to lyse infected cells, was crucial for resolving the infection 

(Thomsen et al., 1983b). 

In both of the papers discussed above, Thomsen and his coworkers inferred that the 

same T cell population that was cytotoxic for infected cells in vitro was capable of eliciting the 

DTH response in the footpad. The effect of pretreatment with Cy on the DTH reaction was 

due to suppression of ancillary cells and not T cells. After finding that the impairment of the 

DTH response in mice responding to a high i.e. dose of LCMV correlated with the ability to 

survive infection and because lymphoid cells from high dose responders were still unable to 

elicit DTH when transferred into naive recipients, this group altered their stance and suggested 

that there were 2 distinct subsets of class I Nl.HC-restricted T cells, one that was cytotoxic and 

the other mediating DTH responses (Marker et al., 1985). However, the fact that these 

authors found no difference between high and low dose responders in the cytotoxic capacity of 

inflammatory cells from the CNS suggests, in itself, that the DTH response in the brain had 

remained intact. If there had been no DTH in the CNS with the consequent recruitment of 

non-cytotoxic ancillary cells, there should be a higher concentration of cells with cytotoxicity 

activity and the dose response to infected targets would be enhanced. Thus, although immune 

cells from high-dose responders had a reduced capacity to induce footpad swelling on adoptive 

transfer to naive animals, it would seem that they are still capable of initiating an inflammatory 

response in the CNS. 

Determination of DTH response by measurement of footpad swelling in the experiments 

discussed above is open to criticism. Although statistically significant results are reported 

within each experiment the range in measurements between different experimental systems is 

large. When footpad swelling is measured after challenge with live virus, positive results are 

in the range of 4-37 x 10-2 mm increase in footpad thickness. Positive swelling measured after 

challenge with virus-infected cells ranges between 47 and 84 x 10-2 mm, while the negative 

control values from uninfected mice vary from 16 to 26 x 10-2 mm and this is not statistically 

different from the other negative values from Cy-pretreated infected animals (20-42 x 10-2 

mm). These latter negative control values vary non-significantly by the same amount as the 

total positive values reported after challenge with virus alone (Thomsen et al., 1983a). A 

similar difference between these two systems of measuring fsotpad swelling can also be seen 

in the experiments alleging that mice responding to a high dose of LCMV generate T cells that 

are defective in mediating DTH, and in some cases significant differences between high and 

low dose responders could only be measured on one of three days following challenge 

(Marker et al., 1985). Thus, these observations and the fact that very small increases in the 
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width of the footpad are measured (sometimes only 20 x 10-2 mm), leads one to question the 

value of using footpad swelling, in these experiments, as an accurate measure of the DTH 

response. 

A more accurate measurement of DTH, and a more relevant one, is the number of 

inflammatory cells in the CSF. Recruitment of cells to the CNS during infection, reflects the 

capacity of class I-restricted T cells to initiate an inflammatory response (Doherty et al., 

197 6b ). Doherty and Allan (1985) have shown that pretreatment of mice with Cy has little 

effect on either the cytotoxic capacity of LCMV-reactive spleen cells, or their capacity to induce 

an inflammatory response in the CNS. Furthermore, unlike the DTH response in the footpad, 

the inflammatory response to LCMV in the CSF was not inhibited by Cy pretreatment of the 

recipients (Doherty and Allan, 1985). Thus, although the DTH response in the footpad is 

class I MHC-restricted (Zinkernagel, 1976b), footpad swelling probably does not accurately 

reflect the inflammatory response occurring in the relevant target organ, the brain. 

The DTH response in the CNS of LCMV-infected mice involves the nonspecific 

recruitment of cells that express the glycoprotein marker, Pgp. Macrophages are among the 

cell types that express this marker (Trowbridge et al., 1982) and by flowcytometric analysis of 

morphology are in CSF during LCM. Immune spleen cells transferred into bone marrow 

reconstituted radiation chimeras recruit cells of bone marrow origin to the CNS, even though 

these are of a different Pgp allele to that of the donor T cells (Doherty, Allan and Ceredig; 

manuscript in preparation). That is, although the T cells that accumulate in LCMV-infected 

brain are restricted by the MHC haplotype of the radiation-resistant, virus-infected cell 

population (Doherty and Allan, 1986), the recruited cells are derived from the 

radiation-sensitive bone marrow compartment. 

In contrast to the conclusions of Thomsen, Marker and their coworkers that were 

described above, it has been suggested by Baenziger and colleagues (1986) that the induction 

of LCM disease is dependent on the cytotoxic capacity of virus-immune T cells rather than 

their ability to recruit bone marrow-derived cells to the CNS. With their work on 

LCMV-reactive T cell clones, these authors found that the induction of cerebral LCM disease, 

in contrast to DTH in the footpad, was independent of radiosensitive bone marrow cells. They 

found that the ability of clones to induce footpad swelling in pre-irradiated, infected recipients 

was enhanced by bone marrow reconstitution, whereas mortality due to i.e. inoculation of T 

cells did not require such reconstitution. However, there are a number of variables between 

the 2 disease systems that were not taken into account. Footpad swelling in non-reconstitiuted 

mice was not absent but reduced compared with those transplanted with bone marrow. 

Because inflammation in the CNS is lethal, it would be difficult to detect an enhanced response 

following reconstitution. In any case no experiments on cerebral LCM in which irradiated mice 

received bone marrow reconstitution were reported. A decrease in the time to mortality 

following reconstitution may have been detected, if such an experiment had been performed. 

Also, the time after irradiation at which footpad swelling and LCM mortality were measured 



1 - 28 

differed by 1-3 days. Because the footpad response is measured earlier the contribution of 

cells derived from reconstituted bone marrow may be more significant. 

The capacity of LCivlV-reactive T cells to release lymphokines involved in the 

recruitment and activation of macrophages has not been reported extensively. Each of the four 

class I MHC-restricted, LCMV-specific T cell clones tested by Oldstone's group released 

y-interferon when co-incubated with syngeneic, virus-infected target cells (Andersson et al. , 

1985). Presumably other factors are also produced. 

In summary, macrophages are observed in the cell infiltrates of LCMV-infected organs. 

They can be infected by this virus and they are activated during viral infection. Class I 

MHC-restricted T cells are responsible for mediating DTH during LCMV infection and are 

capable of releasing at least one of the lymphokines responsible for activating macrophages, 

suggesting that this cell type may be functioning to recruit mononuclear cells to sites of LC:tv1V 

infection. 

1.4 SCOPE OF THIS THESIS. 

Acute LCM disease is mediated and resolved by class I MHC-restricted, Lyt2+ T cells. 

A role for class II MHC-restricted, L3T4+ T cells during LCMV infection has not been 

defined. However, the DTH response which is traditionally associated with the latter cell type, 

is conspicuous in this disease. The extent to which macrophages, a major component of the 

DTH response, are involved in the immune response to LCMV is not well understood. It is 

also not known whether their recruitment during infection is mediated by class I or class II 

MHC-restricted T cells. 

To investigate these problems, the experiments reported in this thesis aimed to 

determine the in situ localisation of macrophages during acute LCMV infection and, in 

addition, to investigate whether Lyt2+ T cells are responsible for the recruitment of 

macrophages to sites of virus infection. 



Chapter 2 

Materials and Methods 
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2.1 Mice. 

The C57BU6J, C57BL/10.A (B 10.A), C57BU6.H-2bml (B6.H-2bm1 ), C57BU6Ka 

Thyl.1 (B6Ka Thyl.1), C57BL/10.D2 (B10.D2) and C57BU10.BYR (BlO.BYR) mice were 

all bred at the John Curtin School of Medical Research (JCSNfR) and used at 7-12 weeks of 

age. All mice, except those referred to in Chapter 3, were bred under specific-pathogen-free 

(SPF) conditions. The experiments described in Chapter 3 were done before SPF conditions 

were re-established in the animal breeding unit The H-2 haplotypes of these mouse strains are 

given in the table 2.1. 

TABLE 2.1 H-2 COMPOSffiON OF MOUSE STRAINS USED. 

Strains K I D 

I-A I-E/C 

C57BL/6J b b b b 

B6.H2bml bml b b b 

B6Ka Thyl.1 b b b b 

BlO.BYR q k k b 

BIO.A k k k d d 

B10.D2 d d d d d 
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2.2 Viruses. 

LCMV strains were originally obtained from Dr F. Lehmann-Grube (University of 

Hamburg, Germany) and have been maintained at the JCSMR since 1974. The 

viscerotropic WE3 strain of LCMV was grown in BHK-21 cells, for inoculation into mice, 

and in L929 fibroblasts, for infection of tissue culture. The neurotropic Armstrong E350 

(Arm) virus was grown in suckling mouse brain, and prepared as a 10% brain homogenate. 

For the Ann strain and the WE3 strain grown in BHK-21 cells, the minimal dose that 

was lethal for 50% of inoculated mice (LD5o) was determined following intracerebal (i.e.) 

injection into adult mice. This in vivo titration system is considered to be approximately 

10-fold more sensitive than existing in vitro techniques (Varho et al., 1981). For the WE3 

strain grown in L929 cells, plaque forming units (p.f.u.) were determined by titration on 

Vera cell monolayers. 

Virus stocks were diluted in 0.2M borate-buffered gelatine saline (pH 7.2-7.4). 

2.3 Media. 

Dulbecco's Modified Eagle's Medium (DMEM) was prepared by dissolving 10g of 

medium powder (GIBCO, Grand Island, NY, USA; product code 430-2100) per litre of 

doµble distilled deionized water and was supplemented with 2g/l of sodium bicarbonate, 

6mg/l of folic acid, 36mg/l of L-asparagine, 116mg/l of L-arginine and 4g/l of glucose. 

RPW 1640 was prepared according to manufacturers instruction, by dissolving 

10.4g of medium powder (GIBCO, Grand Island, NY, USA; product code 430-1800) per 

litre of double distilled deionized water containing 2g sodium bicarbonate. 

DMEM and RPW were sterilised by filtration through a 0.22µm membrane and were 

supplemented with 100 i.u. penicillin/ml, lOOµg streptomycin/ml and 50µg neomycin/ml. 

Heat-inactivated newborn bovine serum (NBS) and foetal calf serum (FCS) were 

prepared by incubation at 56°C for 30rnin. Serum batches from the Flow Laboratories 

(North Ryde, N.S.W., Australia) were selected on their ability to support the growth of 

mitogen-stimulated lymphocytes. 

2.4 Monoclonal antibodies. 

Antibodies used for immunohistochemical staining. 

Both primary antibodies were rat imrnunoglobulins of the IgG2b subclass. The 

optimum working concentration of tissue culture supernatants containing antibody was 
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determined by titration in the staining procedure described in section 2.8. The sensitivities 

of the two antib<Xiies for their antigen on fixed tissue was judged to be similar by the ability 

to stain areas in the spleen known to express these antigens. 

F4/80: The hybridoma cell line F4/80 secretes antibody to the F4/80 antigen, a 

mouse plasma membrane glycoprotein specific for cells of the monocyte/macrophage lineage 

(Austyn and Gordon, 1981). 

Anti-la: The hybridoma M5/l 14.15.2 (TIB 120, American Type Culture Collection) 

produces an anti-Ia antibcxiy which binds to common antigenic determinants present on 

molecules encoded at the I-A b,d.q and I-Ed.k regions of the mouse MFIC (Bhattachrya et al. 

1981). 

Antibcxlies used for complement-dependent depletion of spleen cell populations. 

The optimum concentration of the antibody preparations was determined by titration 

in a complement-dependent depletion assay on normal thymocytes. 

Anti-Lyt2: The hybridoma 3.168.8 secretes a rat immunoglobulin of the IgM 

subclass recognising a determinant on the Lyt2 molecule of mouse T lymphocytes 

(Sarmiento et al., 1980). 

Anti-L3T4: The hybridoma LICR.LAU.RLl 72.4 (RLl 72) secretes a rat IgM 

recognising a determinant on the L3T4 molecule (Ceredig et al., 1985). 

Anti-Thyl.1: Mouse IgM antibody from the Tl 1D7e hybridoma was obtained from 

Olac Ltd., Blackthorne, Oxon, England (Lake et al., 1979). 

Anti-Thy 1.2: Mouse IgM antibody from the F7D5 hybridoma was also obtained 

frqm Olac Ltd., Blackthorne, Oxon, England (Lake et al., 1979). 

Hybridoma cell lines were grown in supplemented DMEM containing 10% FCS. 

2.5 Fixative. 

Periodate-lysine-paraformaldehyde (PLP) was prepared according to the method of 

McLean and Nakane (1974). The final composition of the fixative was; 0.01M sodium 

M-periodate, 0.07511 L-lysine, 0.037M sodiom phosphate buffer and 2% 

paraf ormaldehyde. 

Stock solutions of lysine-phosphate buffer were stored at -20°C. L-lysine HCl 

(BDH, Poole, England) at a concentration of 0.2M was adjusted to pH 7.4 with O. lM 

NazHP0
4 

and the volume was adjusted to give O.lM L-lysine HCl with O.lM sodiom 

phosphate buffer (4:1 ratio of O.lM N~HP04 and O.lM NaHiP0 4). 

Eight percent weight/volume paraformaldehyde solution was prepared on the day of 

use. Paraformaldehyde was dissolved in distilled water by heating to approximately 60°C 
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and adding sufficient lON NaOH to clear the solution. 

Paraformaldehyde was combined with the lysine-phosphate buffer in a ratio of 3: 1 

and sodium m-periodate powder (AJAX, Sydney, Australia) was added to give a final 

periodate concentration of 0.01M. The PLP fixative was adjusted to pH 7.4 using lON 

NaOH. 

2.6 Perfusion of mice for immunohistochemistry. 

Mice were anaesthetized with ether and perfused by inserting a plastic cannula (pp50) 

into the left ventricle. When liver samples were required the inferior vena cava was cut 

above the renal veins and below the liver. This avoided perfusion of the lungs. When 

perfusing the brain, the circulation to the lower body was stopped by clamping the 

descending aorta and vena cava above the diaphram, and outward flow of perfusate was 

obtained by cutting the right atrium 

Blood was cleared by perfusion for 2-3 min with phosphate-buffered saline (PBS) 

containing heparin (2 units/ml heparin (CSL, Melbourne, Australia)). The animals were 

then perfused with 100-200ml PLP fixative and the fixative was cleared with a further 10-15 

min perfusion with heparinised PBS. All perfusions were carried out at a pressure of 

approximately 120mm Hg, by maintaining the height of the perfusion fluid above the animal 

at about 160cm. 

2.7 Tissue preparation for immunohistochemistry. 

The right lobe of the liver, or the brain, was removed from perfused mice and stored 

in 1 % sucrose in 0.05M scx:lium phosphate buffer (pH 7 .4 ), before being processed for 

embedding in paraffin. Tissue was dehydrated and embedded in low temperature melting 

point (42-44°C) paraffin RAL wax (Stansen, Sydney, Australia), by 20 min immersions in 

the following solutions: once in 70% ethanol, twice in 90% ethanol, twice in absolute 

ethanol, twice in chloroform and twice under vacuum in RAL wax melted at approximately 

50°C. After embedding in Ral wax, sections were cut and placed on multispot microscope 

slides (Hendley-Essex, Laughton, England). Liver sections (Chapter 3) were cut at 4µm 

thickness, brain sections from experiments described in Chapter 4.2.1 and 4.2.2 were 8µm 

thick and those from Chapter 4.2.3 were 6µm thick. 
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2.8 Immunohistochemistry. 

Immunoperoxidase staining was carried out according to the method based on that of 

Hsu et al. (1981) and modified by Hume and Gordon (1983), using reagents (Vectastain 

Kit, PK4004) supplied by Vector Laboritories, Birmingame, CA, USA. 

Sections were dewaxed with three 20sec immersions in xylenes, rehydrated with 

10sec each in 2 x 90% ethanol, 2 x 70o/o ethanol, 1 x 50% ethanol and rinsed in PBS. 

The staining procedure involved the following steps: 

-blocking reagent: 30min incubation with diluted rabbit serum (Vectastain Kit) plus 1 % 

goat anti-mouse IgG absorbed against rat IgG (Cappel, West Chester, PA, USA). 

-blocking reagent flicked off. 

-primary antibody: 2-3hr incubation with monoclonal antibodies described in section 2.4. 

-PBS wash. 

-endogenous peroxidase block: 30min immersion in 0.3% Hi02 (Pacific, Rozelle, 

Australia, 30% weight/weight) in methanol. 

-PBS wash. 

secondary antibody: 1-2hr incubation with biotinylated rabbit anti-rat IgG (Vectastain Kit). 

-PBS wash. 

-avidin-biotin complex: 1-2hr incubation with avidin-biotin-peroxidase complex (V ectastain 

Kit). 

-PBS wash. 

- neroxidase substrate: 1-15min incubation with excess cliaminobenzidine 

(3,3'-cliaminobenzicline tetrahydrochloride, grade II, Sigma, St Louis, MO, USA) in PBS 

plus lOmM imiclizole (pH 7.4, Sigma, St Louis, MO, USA), plus 0.0225% ~02• 

-counterstain: lmin in Mayer's Haematoxylin (GURR BDH, Poole, England). 

-mounting: slides were dehydrated through graded alcohols, cleared in xylenes and 

mounted under coverslips with Histoclad (Clay Adams, Parsippany, NJ, USA). 

All incubations were carried out at room temperature in a humidified atmosphere. 

PBS washes involved two Smin incubations in saline. The edges of the slides and the areas 

between sections were wiped dry so that incubation solutions did not run between sections. 

Antibody against mouse IgG was added to the blocking reagent to prevent any 

cross-reaction of the biotinylated secondary antibody-reagent with mouse IgG as well as 

possible non-specific cytoplasmic staining (Hume and Gordon, 1983). The optimal 

concentration of primary antibodies was detennined by titration in this staining procedure. 

Imidizole was added to the peroxidase susbstrate to intensify the colour of the reaction 

product as suggested by Strauss ( 1982). 
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2.9 Classification of cells on immunohistochemical sections. 

Kupffer cells lined the sinusoids of the liver and had a ruffled cytoplasmic membrane 

that stained for the F4/80 antigen. 

Resident macrophages of the brain were F4/80+ cells in uninfected brain that spread 

along the meningeal membranes or along the capillary walls of the choroid villi. 

Monocytes were identified as mononuclear inflammatory cells with crescent-shaped 

nuclei. 

Rounded macrophages in brain sections were inflammatory F4/80+ cells that were 

not obviously attached to, or spread along, the meningeal membranes. They appeared loose 

and rounded within the meningeal spaces. 

Stretched macrophages in brain sections were those F4/80+ cells that were attached 

to, or spread along, the meningeal membranes of LCMV-inf ected mice. They resembled the 

resident macrophages seen in uninfected animals. 

Lymphocytes were small inflammatory mononuclear cells that had dense, 

darkly-stained nuclei and a low cytoplasm to nucleus ratios. Some obvious lymphocytes in 

virus-infected tissue were also Ia+ and were probably B cells. Larger F4/80- mononuclear 

cells with paler nuclei and a higher percentage of cytoplasm were probably lymphoblasts 

(blasts) and for the purpose of this thesis were classified as such. 

2.10 Numerical analysis of immunohistochemical sections. 

The % liver involvement in inflammation was determined by examination of tissue 

sections under a grid at 1 OOx magnification. The tissue under 100 intersecting grid points 

per field was scored as positive or negative and 4 fields of view were examined for each 

section. This point-count methcxi of planimetry provides an accurate determination of the 

volume fraction of a randomly distributed component within a specimen (Elias and Hyde, 

1983). 

The occurrence of F4/80+ and Ia+ cells, lymphocytes, and interactions between these 

cell types in the liver sinuses, was quantitated using a Zeiss projection microscope. Counts 

were made for 4 fields of view, which did not include large blood vessels or foci of 

inflammation. The images were projected on to a 605 cm2 area, representing a final 

magnification of 850x. 

For brain tissue, numerical analysis was performed on inflammatory cells in sections 

from those mice in which a sufficiently heavy infiltration allowed statistically significant 

examination. This occurred in only two groups of mice, after 7 days of infection (section 

4.2.1) and 3 days after immune spleen cell transfer (section 4.2.2). Five hundred to eight 

hundred inflammatory cells from approximately 10 randomly chosen areas within the 
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meninges were counted. One tissue section from each animal was used for each of the 

antigens examined. Cells scored were monocytes, resident tissue macrophages, rounded 

macrophages, mononuclear cells that were unstained for antigen (lymphocytes and 

presumptive blasts), cells that were unstained for antigen and possessed an irregularly 

shaped nucleus, and pyknotic nuclei of dead cells. The numbers of pyknotic nuclei 

engulfed by stained cells were counted independently. Data were expressed as the 

percentage of the total number of cells scored. 

2.11 Adoptive transfer model for the induction of LCM. 

Donor mice were injected in the tail vein with 1,000 LD50 of WE3 LCMV. Immune 

spleen cells from these mice were used 8d later as a source of primary cytotoxic T 

lymphocytes (CTL). Single cell suspensions were prepared as described in section 2. 12 

and in some experiments were treated with antibodies and complement as described in 

section 2.13. Cells were fmally washed 3 times in serum-free DMEM or RPMI and 

resuspended at the appropriate concentration to allow the transfer of the stated cell dose in 

0.5ml of serum-free medium. 

Recipients were injected i.e. with 1,000 LD50 of Arm LCMV. They were 

immunosuppressed 5 days later by a single i.p. injection of Cy (Endoxan, Asta-Werke A-G, 

Bielefeld, FRG) at a dose of 200mg/kg body weight. On the following day, spleen cells 

were transferred to recipient mice i.v .. This adoptive transfer model is outlined in Fig 2.1. 

2.12 Preparation of single cell suspensions of spleen or lymph node. 

Organs were removed asceptically from mice that had been killed by cervical 

dislocation. Single cell suspensions were prepared by mincing the tissue finely and 

pressing it gently through a fine stainless steel mesh sieve into DMEM or RPMI 

supplemented with 10% FCS. Large clumps of tissue were removed by rapidly passing the 

suspension through a cotton wool plug in the base of a glass funnel. After rinsing the 

cotton wool thoroughly with medium, the suspension was centrifuged at 400g for 7min at 

4 °C and resuspended in fresh medium. A viable cell count was performed on cells mixed 

with an equal volume of 0.1 % trypan blue dye dissolved in PBS. Viable cells excluded 

dye. 
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2.13 Antibody and complement-dependent depletion of immune cells. 

Single cell suspensions, at a concentration of 1-2 x 107 cells/ml of DMEM or RPMI 

supplemented with 10% FCS, were incubated with the appropriate concentration of 

cytotoxic antibody for 15-30min in a 37°C water bath. Low-toxicity rabbit complement was 

then added and the cells incubated for a further 45-60min. Cells were shaken each 

10-15min during the incubation periods. After complement treatment, cells were 

centrifuged at 400g for 7min and resuspended in fresh medium. 

Complement was prepared from rabbit serum which had low toxicity for mouse 

thymocytes. Serum was absorbed with agarose at 0°C (Type 1, Sigma, St Louis, MO, 

USA) according to the method of Cohen and Schlesinger (1970) and stored at -70°C. The 

optimum concentration for use was determined by titration with anti-Thy 1 antibody on 

normal thymocytes. 

2.14 Quantitation of meningitis. 

Mice were anaesthetized with 0.3-0.Sml of the anaesthetic, avertin. Avert.in was 

prepared by dissolving 1.0g 2,2,2-tribromoethanol (Fluka AG, Switzerland) in 1ml 

2-methyl-2-butanol (Fluka AG, Swizerland). The solution was diluted to a final volume of 

50ml with hot tap water (50°C) and shaken vigorously to mix. Mice were exanguinated by 

bleeding from the axilla and heart. Samples of CSF were then obtained from the cistema 

magna by a method adapted from Carp et al. (1971 ) and described by Doherty (1973). 

Skin and muscle were reflected from the atlanto-occipital region to expose the dura mater 

covering the cisterna magna. A small hole was made in this membrane with a 26 gauge 

needle. Using a 20µ1 pipette (Microcaps, Drummond, Philadelphia, Pa, USA) with its 

holder attached to a 1ml syringe, slight negative pressure was applied to aspirate the CSF. 

Using this method 10-15µ1 of clear fluid can be obtained from healthy mice. Brain 

swelling in mice with severe LCM, however, reduces the space within the cistema magna 

and less CSF can be obtained. 

CSF samples were diluted in 0.1 % trypan blue dye and counted in a 

haemocytometer. Cell counts are expressed as mean + standard error from the mean (SEM) 

log10 cells per µl of CSF. 

2.15 Cytotoxicity assay. 

The cytotoxic assay utilized MC57G fibroblasts (H-2b) as target cells. Monolayers 

were grown on 75cm2 tissue culture flasks (Nunc, Roskilde, Denmark) in RPMI 
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supplemented with 10% NBS and passaged with a split ratio of approximately 1/3, using 

0.25% trypsin in PBS. Monolayers were washed 3 times with sterile PBS, 44-48 hrs 

before use, and were infected with WE3 LCMV at approximately five infectious units of 

virus per target cell. During the infection period, fibroblast growth was limited by using 

media containing only 2% NBS. On the day of use, infected and uninfected monolayers 

were treated with trypsin, pelleted and resuspended at a concentration of approximately 3 x 

106/ml in medium containing 10% FCS. Cells were incubated with lOOµCi/ml Na51 Crl\ 

(Amersham Int Ltd., Amersham, U.K.) for l-2hr at 37°C. After washing with 3 changes 

of medium, target cells were res us upended at 106 viable cells per ml. 

Effector cell populations to be tested for cytotoxic activity were prepared in DMEM or 

RPMI containing 10% FCS and a number of 2-fold dilutions in triplicate were prepared in 

round bottom 96-well microtitre trays (Linbro, Flow Laboratories, McClean, Virginia, 

USA) in a final volume of 0.1ml. Each well received 0.1ml 51Cr- labelled target cell 

suspension. Spontaneous 51 Cr release was determined by mixing 0.1ml medium and 0.1ml 

target cell suspension. Total releasable chromium was determined by mixing 0.1ml target 

cell suspension with 0.1ml Triton X detergent. Duplicate assays were set up for infected 

and uninfected target cells. 

Cell mixtures were incubated for 7-8hr at 37°C in a humidified atmosphere of 10% 

CO2 in air. At the end of this period, 0.1ml supernatant was collected from each well 

without disturbing the cells. Supematants were counted for lmin in a gamma scintillation 

counter. 

Percentage lysis of target cells was calculated by the formula: 

% release by immune cells - % release in n1edium 

% total release - % release in medium 

Percentage specific lysis was determined by subtracting the% lysis of uninfected targets 

from the% lysis of infected targets for each dilution of effector cells. 

2.16 Statisitical analysis. 

For the numerical evaluation of liver histological sections ( chapter 3), one way 

analysis of variance was used to determine the significance of the changes occurring during 

infection, compared with the variance within groups of animals. For each quantitation, the f 

value obtained was <0.0001 (i.e. the probability that the variation that occured during 

infection was due to the variation between animals was <0.0001 ). 

The significance in the difference between inflammatory cell counts from CSF of 

mice with adoptively transferred LCM was determined using the Wilcoxan rank analysis 

test. 
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2.17 Electronmicroscopy 

Specimens were fixed in 3% gluteraldehyde and O. lM cacodylate buffer (pH 7.4) for 

3 hours, then post-fixed in 1 % osmium tetroxide in O.lM cacodylate buffer (pH 7.4) for 

one and half hours. Samples were then 'En-bloc' stained with 1 % aqueous uranyl acetate 

for one and a half hours, dehydrated and embedded in 'Spurrs' resin, sections were cut on a 

LKB ultramicrotome III and stained in 'Reynolds' lead citrate. Micrographs were taken on 
a Philips 301 electronmicroscope. 

2.18 Light Photomicrography. 

Histological sections were photographed with a Leitz V ario-Orthomat camera attached 

to a Leitz Orthoplan microscope and using a Leitz CB 16.5 blue filter. 
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Macrophages in the Liver of LCMV-Inf ected Mice 
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3.1 INTRODUCTION 

Experimental infection with the viscerotropic (WE3) strain of LCMV produces a 

generalised disease in adult mice which is non-fatal for most mouse strains (Tosilini and 

Mims, 1971). After i.v. injection the virus causes marked infection and pathological changes 

in the liver and spleen, as detected by viral titrations, and both immunofluorescent staining for 

viral antigens and routine histological studies (Tosilini, 1970; Tosilini and Mims, 1971; 

Lehmann-Grube et al., 1985). Virus titres peak in the blood d4-9 after inoculation, fall 

dramatically on d9-12 and are virtually absent by dl6 (Marker and Volkert, 1973). The 

cellular immune response to the virus, as measured by both DTH: footpad swelling (Tosilini 

and Mims, 1971) and in vitro cytotoxicity of spleen and lymph node cells for infected targets 

(Marker and Volkert, 1973), is maximal 8-lOd after inoculation. 

The immunological response and histological consequences of LCMV infection are due 

to the activation of class I MHC-restricted T lymphocytes (Doherty and Zinkernagel, 197 4; 

Doherty et al., 1976b; Zinkernagel and Welsh, 1976; Byrne and Oldstone, 1984; Allan and 

Doherty, 1985a; chapters 5). Although the effector function of this subset of T cells was 

traditionally thought to be restricted to cytotoxicity of infected targets (Hollander, 1982), there 

is increasing evidence that Lyt2+ effectors can induce severe inflammatory process in murine 

LCM (Zinkernagel, 1976b; Allan and Doherty, 1985a, chapter 6). It is not clear whether T 

cells acting alone resolve viral infection (Blanden, 1974): mononuclear phagocytes may also 

play a role through the clearance of virus as suggested by Thomsen and Volkert (1983). 

To gain an understanding of the role that macrophages play in the immune response to 

LCMV, their distribution in infected liver was determined using immunohistochemical 

analysis. Activated macrophages were recognised by their expression of the class II MHC 

antigens, as well as the macrophage marker, F4/80. 

Reference will be made to various anatomical features of the liver during this chapter. 

The following is a brief account of these areas. 

Hepatocytes are arranged in interconnecting plates that are distributed radially with 

respect to terminal branches of the hepatic veins. These branches have been designated central 

veins because of their location at the centres of hexagonally shaped units of the liver 

parenchyma that constitute the liver lobules. There is no layer of connective tissue between 

these lobules in the mouse (as there is in the adult pig), the boundaries being defined by the 

regularly distributed portal tracts. The portal tracts consist of branches of the portal vein, the 

hepatic artery and a bile ductule, enclosed in a common investment of connective tissue. Bile 

ducts can be distinguished histologically by their cuboidal epithelium. The cross sectional 

appearance of these vessels is often ref erred to as the portal triad. 

The plates of liver cells are exposed on either side to the blocxi that flows in 

interconnecting parallel channels or sinusoids. The sinusoids are lined with both endothelial 

cells and resident macrophages, the Kupffer cells. Blood enters the hepatic sinusoids from 
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small branches of the hepatic artery and portal vein, flows through the lobule centripetally, and 

leaves via the central vein (Fig 3.1). 

A more functional unit of the liver than that defined by the lobule is the acinus. 

Rappaport (1958) defined the simple liver acinus as a small parenchymal mass arranged 

around the axis of the portal tract, and lying between two or more central veins. The acinus is 

divided into three zones, the former being nearest the portal tract and the incoming blood 

supply, the last located close to the central veins (Fig 3.2). 

Both the parenchymal and vascular distribution of macrophages during LCMV-infection 

of the liver has been investigated. 
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3.2 RESULTS. 

Eight to twelve week old C57BU6J mice were inoculated i.v. with 300 i.e. mouse 

LD50 of WE3 LCMV. Groups of 2-4 animals were sampled from dl to d8 and on dlO, 12, 

14, 17, and 28 post-infection (p.i.). Four uninfected control mice were given gelatine saline 

dilutent only. The right caudate lobe of the liver was removed and processed as described in 

section 2.7. Serial sagittal sections were prepared for immunohistochemical analysis. The 

staining procedure is described in section 2.8 and the primary antibodies used were F4/80, 

anti-Ia or, as a control, normal horse serum. No immunohistochemical staining was observed 

in sections with control serum. 

The cellular infiltrate in the livers of mice infected with LCMV was essentially 

mononuclear in nature. Large numbers of infiltrating monocytes and lymphocytes were first 

detected at 5 or 6 days after infection, reaching a peak from d7 to dlO and resolving by dl 7. 

Foci of inflammatory cells developed both perivascularly and in the liver parenchyma. The 

percentage of the liver involved in these foci was determined by planimetric analysis, (Section 

2.10). Much inflammatory activity was also observed outside these foci, throughout the liver 

lobule. This activity was quantitated by counting particular cell types in areas of the liver 

which did not contain focal lesions (Section 2.10). 

The following is a detailed analysis of the kinetic and qualitative aspects of the 

inflammatory process at various anatomical sites. 

3.2.1 Inflammatory Cells within The Liver Vasculature. 

In uninfected liver, the expression of F4/80 antigen was restricted to the resident 

sinusoidal macrophage population, the Kupffer cells, 7% of which express Ia antigens. 

Vascular endothelial cells which also line the sinuses were F4/80-, Ia-. 

During LCMV infection there was an increase in the number of F4/80+, Ia+ cells lining 

the sinuses. Fig 3.3 depicts quantitatively the change in the number of macrophages lining the 

sinuses during the course of infection. There was an initial increase in Ia-, F4/80+ 

macrophages (dl-5) and maximum numbers of sinusoidal macrophages were seen at d8-14. A 

proportion of the F4/80+ sinusoidal macrophages remained Ia-, as indicated by the differences 

in frequency between intra-sinusoidal F4/80+ and Ia+ cells, throughout the course of the 

disease process (Fig 3.3). At the time of maximum sinusoidal macrophage numbers, d8-14, 

approximately 50-75% were Ia+. The relative differences in the intensity of staining for F4/80 

and Ia are not simply the result of a difference in the sensitivity of the antibodies, since staining 

for both antigens was strong in normal spleen tissue. In general, F4/80+ and Ia+ cells in the 

sinusoids showed the morphology of Kupffer cells. 

The kinetics of monocyte localization and attachment to the central and hepatic veins 
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was similar to that of Ia+ cells in the sinuses. Monocytes were identified as F4/80+, Ia+ cells 

with cresent-shaped nuclei (Fig 3.4). They were observed attached to blood vessel walls from 

d5-17, with large numbers seen d7-12. Histological sections were scored from 0-4 for 

increasing numbers of monocytes and the results are summarised in Fig 3.5. When associated 

with larger vessels, most monocytes were seen in ~entral/hepatic veins (Fig 3.6), with a few 

attached to portal veins on d8 only. Monocytes were also observed in the sinuses of the liver 

with varying degrees of plasma membrane extensions along the sinusoidal walls. Thus, they 

appeared to take on the morphology and location of Kupffer cells. Here, monocytes have been 

defined as those cells with cresent-shaped nuclei and F4/80+ membranes. However, there 

was also a discreet population of cells with similar morphology but which were F4/80-. These 

cells appeared earlier (d4 p.i.) in central veins and sinuses and continued as a minority of the 

monocyte population ( <5%) till dl4 p.i. (Fig 3.4). 

Attachment of a smaller number of lymphocytes to blood vessel walls was also 

observed from d5-12 but, in contrast to monocytes, they were often seen in portal veins. 

Cells with typical lympohocyte morphology were counted in sections stained for F4/80 or Ia 

(Fig 3.7). They included both small, densely nucleated lymphocytes and larger lymphoblasts 

with paler nuclei. These cells were F4/80- but 8-30% were found to be Ia+. In both cases 

significant numbers of lymphocytes were present in sinuses from d6, peaked on d7 and then 

declined steadily until dl 7 (Fig 3.7). This preceded the localisation of maximal numbers of 

intravascular Ia+ macrophages by one to two days (compare Fig 3.3 and Fig 3.7). Small 

lymphocytes were more predominant early in infection (d4-6) with blasts becoming more 

dominant later (d7-14). 

Many of the lymphocytes were intimately associated with F4/80+ macrophages in the 

sinuses (Fig 3.8). Again, the numbers of such interactions were assessed quantitatively in 

sections stained with either the F4/80 or the anti-Ia reagent (Fig 3.9). Close association 

between macrophages and lymphocytes was seen early in infection (dl-4) at which time the 

macrophages involved were Ia-. A sharp increase in the number of lymphocytes and 

macrophages in contact with each other was observed to peak at d8. There was a 

corresponding increase in the number of these macrophages which were Ia+. However, peak 

contact between lymphocytes and Ia+ macrophages occurred 2 days later than that observed 

with the total macrophage population. A comparison of the data in Fig 3.7 and Fig 3.9 

indicates that as many as one in four of these intravascular lymphocytes were associated with 

F4/80+ cells on d8, or with Ia+ cells on dlO. 

Some cells in the walls of blood vessel expressed Ia as early as d5, at a time when they 

were F4/80- (Fig 3.10). By dl4 most vessel walls were strongly Ia+ but were also positive 

for F4/80. Ia expression, however, was much stronger with a band of cells under the vessel 

walls expressing the Class II NlHC antigens (Fig 3.11 ). Close examination of Ia+ vessels , 

revealed that the majority of the class II NlHC antigen was expressed on perivascular 

capillaries early in infection (for example on d5). Such capillaries were probably part of the 
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peribilary capillary plexus formed by branches of the hepatic artery (Hansen, 1978). Later in 

infection, the band of Ia staining around vessels was apparently due to staining of infiltrating 

cells (Fig 3.12). 

3.2.2 Focal Inflammatory Lesions. 

Inflammatory lesions developed within the liver as the disease progressed and Fig 3.12 

depicts, quantitatively, the extent of the liver involved. A few small lymphocyte aggregates 

were seen in uninfected animals but, with LCMV infection, the extent of inflammation rose 

dramatically. The liver was highly inflamed from d6-14 with a peak at d8, and returning to 

normal on dl 7-28. Inflammatory lesions were seen perivascularly, especially around the 

portal triad (Fig 3.6), zone 1 of Rappaport's liver acinus as well as in zone 2 of the liver 

parenchyma. Foci were rarely seen in zone 3 close to the central veins. 

Initially, on dl-2, the few foci present generally contained polymorphonuclear 

leukocytes (PMN) associated with F4/80+ macrophages many of which were also Ia+, 

especially those in perivascular foci (Fig 3.13). PMNs were seen in the liver until d4 p.i. 

From this stage onward lesions generally consisted of large pale cells (presumptive 

lymphoblasts) arranged in sheets to form perivascular cuffs, or in fairly tight spheres within 

the liver lobule (Fig 3.14). Until dlO these foci also contained smaller densely-nucleated 

lymphocytes. 

Initially, the perivascular foci were predominantly lymphocytic, being comprised of 

mononuclear cells which were essentially F4/80-, Ia-, while the F4/80+, Ia+, monocytes were 

associated mainly with the sinusoids and the central hepatic veins (Fig 3.6). By d7, some 

evidence of cell death, presumably of lymphocytes, was seen in these perivascular foci, 

though most sites were still devoid of F4/80+ cells. Numerous pyknotic nuclei were evident 

in the foci from infected livers taken on dl O or d 12 when macrophage infiltration from the 

edge of the lesion was observed (Fig 3.15). Within a further 2 days (d14), the parenchymal 

(Fig 3.16a) and perivascular (Fig 3.16b) foci became heavily infiltrated with F4/80+, Ia+ 

cells, and many of the lymphocytes now appeared to be Ia+ (Fig 3.16c). Thus, the intimate 

association of lymphocytes and macrophages in these perivascular inflammatory sites was a 

late process, which seems to have been involved with resolution of the lesion. 
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3.3 DISCUSSION. 

From the above results, the inflammatory response to LCMV in the liver can be divided 

into 3 distinct stages. At the earliest stage, dl-4, when virus would be present in the liver 

(Tosilini, 1970), there is a minor inflammatory response involving PMN (Fig 3.13) and an 

increase in the number of Ia- sinusoidal macrophages (Fig 3.3). In the second stage of the 

inflammatory response, d5-8, there is extensive infiltration of the liver with lymphocytes and 

Ia+, F4/80+ monocytes. The former cells are destined particularly for inflammatory foci, that 

develop primarily around the portal triad but also in Rappaport's zone 2 of the liver acinus. 

The monocytes take up the normal sinusoidal location of Kupffer cells. The final stage of the 

disease process on dl0-17 involves inflammatory cell death within the foci, and infiltration by 

activated macrophages resulting in the resolution of the inflammatory lesions. There is an 

accompanying decline in the sinusoidal inflammation. 

The following discussion will consider the localisation and role of both macrophages 

and lymphoid cells during LCMV infection of the liver, as well as the early PMN and Kupffer 

cell response seen in the first 4 days after virus inoculation. 

Localisation of Macrophages in LCMV-Infected Liver. 

Monocytes and macrophages localised to the sinusoids, and the central and hepatic 

veins of LCMV-infected livers. They infiltrated perivascular and lobular foci of inflammation 

after there was evidence of cell death in these lesions. 

The initial localisation of F4/80+ cells to efferent blocxi vessels may result from the 

accumulation, at these sites, of factors which can induce macrophage migration. Pilaro et al., 

(1985) have also observed a pericentral accumulation of macrophages in the livers of rats 

treated with the analgesic, acetaminophen (AA). The medium from isolated hepatocytes treated 

with AA was chemoattractive for isolated Kupffer cells. Thus, it is likely that the pericentral 

localisation of phagocytes observed by those authors results from the drainage of chemotactic 

factors from AA-damaged hepatocytes into the central veins. Likewise, macrophage migration 

factors which are released from stimulated, LCMV-reactive T cells in the sinusoids and 

inflammatory foci may accumulate in the central and hepatic veins. Cell debris, which is also 

seen in the lumina of veins in LCMV-infected liver (Tosilini, 1970), would provide added 

attractant for macrophages. Localisation of phagocytes to the draining regions of the liver 

provides an ideal mechanism for the clearance of cell debris and viral products from the 

inflamed organ. 

Infiltration of inflammatory foci by activated macrophages, occurring after the 

appearance of pyknotic nuclei, was probably a response to cell death in these lesions. A 

similar response to cell death was observed in periportal inflammatory foci of mice and rats 

during GVHD (Takacs et al., 1985). 
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Ia Expression on Macrophages in LCMV -Infected Livers. 

In the results reported here, 7o/o of Kupffer cells in uninfected controls were found to 

express class II MHC antigens. This value is not consistent with the findings of some other 

workers. Richman et al., (1979) found that 50-80% of Kupffer cells isolated from mouse 

liver were Ia+. Also, staining of frozen liver sections from mice that had been injected i.v. 

with colloidal carbon, revealed that all phagocytic sinusoidal cells were F4/80+, Ia+ and Fe 

receptor+ (Lepay et al., 1985b ). In contrast, Momburg et al., ( 1986) found no expression of 

class II MHC antigens on Kupffer cells in frozen sections of mouse liver. Intravenous 

interferon-y treatment, however, induced Ia expression on these cells. The authors also found 

that, although Kupffer cells were Ia-, they did express the invariant chain that is noncovalently 

associated with the a- and P- chains of the class II MHC antigens. Antisera raised against Ia 

antigens would be likely to recognise the invariant chain on Kupffer cells. Thus the finding of 

Ia expression by resident macrophages of the liver is equivocal and would depend on the 

specificity of the used. The 7% positive value found in this study may represent the true level 

of class II MHC expression in the liver or, alternatively, the procedure used may not have been 

sensitive enough to detect cells bearing low levels of Ia antigens. 

F4/80+ monocytes entering the liver during LCMV infection expressed class II MHC 

molecules. These cells appeared to adopt the typical Kupff er cell position in the liver and 

between 50-70% of sinusoidal F4/80+ cells from d8-14 of infection were also Ia+ (Fig 3.3). 

The sinusoidal macrophages that do not express class II MHC antigens may be resident 

Kupffer cells which are refractory to activation, or may represent inflammatory macrophages 

on. which Ia antigen expression is transient (Beller et al., 1980; Scher et al., 1980; Steeg et 

al.,1980; Steinman et al., 1980; Ezekowitz et al.,1982) . 

Macrophage-activating lymphokines released from stimulated LCMV-reactive T cells 

may act to induce class II MHC molecules on macrophages or may maintain expression on 

cells which are already Ia+. Precedents for each of these possibilities can be found in the 

literature. Momburg et al., (1986) and Lepay et al., (1985a) have shown that i.v. 

administration of recombinant interferon-y is capable of inducing Ia expression on Kupffer 

cells of otherwise untreated mice. 

Ia expression on cells in inflammatory foci generally parallelled that of F4/80, indicating 

that infiltrating macrophages are activated. However, on d14, when foci are heavily 

infiltrated, cells other than macrophages had acquired Ia antigens (Fig 3.16). This may reflect 

the capacity of T cells to absorb class II MHC antigens (Lorber et al., 1982). 

Role of Macrophages in LCIVIV-Infected Liver. 

The first histological evidence of macrophage function in LCMV-infected liver was 

increased adherence between Kupffer cells and lymphocytes. An initial increase, on dl-4, 

involved F4/80+, Ia- sinusoidal macrophages while a later, more pronounced increase 

involved both Ia+ and Ia- macrophages (Fig 3.9). Because of the time necessary to activate T 
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cells, it is unlikely that macrophage activity occurring on dl-4 is due to lymphocyte activity, 

and the increased adherence to Kupffer cells seen during this period may be a function of the 

macrophages. McCuskey et al., (1982), using in situ high resolution light microscopy, have 

shown increased adherence of lymphocytes to Kupffer cells within 15rnin of endotoxin 

treatment Early uptake of virus inoculum and infection of Kupffer cells with LCMV (Tosilini, 

1970) may also stimulate increased contact between these cells and lymphocytes. 

· Once lymphocyte activation has occurred, infected sinusoidal macrophages may act as 

presenting cells to stimulate T cell effector function. Isolated mouse Kupffer cells are capable 

of presenting antigen to both myoglobin- and mitogen-reactive T cells (Richman et al., 1979). 

Rogoff and Lipski (1980) have shown that guinea pig Kupffer cells take up and present 

antigen to primed T cells and support mitogen-induced T cell proliferative responses. 

However, since reactive T cells in LCMV-infected mice are likely to be class I MHC-restricted, 

any infected cells expressing these MHC molecules and viral antigen would be able to act as 

antigen presenting cells. Thus, adherence of lymphocytes to Kupffer cells need not reflect the 

ability of the phagocytic cells to present particulate antigen, but is probably a consequence of 

the high rate of infectivity of Kupffer cells compared with, for example, endothelial cells 

(Tosilini, 1970). 

It is possible that the major effector functions performed by macrophages are carried out 

by cells which localise to the liver during the response to LCMV infection; the resident Kupffer 

cells being terminally differentiated, may be refractory to activation and unable to mount a 

response specific for viral infection. The activation to express respiratory burst activity by 

liver macrophages is apparently restricted to newly recruited macrophages. Matsuo et al., 

(1985) found increased release of reactive oxygen intermediates (ROI) by Kupffer cells 

isolated fom ECG-treated rats and attributed this activity to the increased yield of Kupffer 

cells. Lepay et al., (1985a) found that Kupffer cells isolated from normal mice were deficient 

in ROI releasing ability even after particulate stimulation with zymosan or with phorbol ester 

treatment They found that this deficiency correlated with impaired toxicity for toxoplasma and 

leishmania. In a later study, Lepay et al., (1985b) showed that cell-mediated immunity in 

murine listeriosis was correlated with an influx into the liver of macrophages capable of 

generating ROI. One might conclude that Kupffer cells represent an end stage in the 

differentiation of macrophages and are refractory to activation signals. Such a possibility is 

supported by the analysis of LCMV-infected liver. An incomplete overlap in the Ia and F4/80 

antigen staining profiles of sinusoidal macrophages, as well as the observation that 

inflammatory monocytes are also Ia+, suggests that it is the resident Kupffer cell population 

which remains Ia-. 

However, there is also evidence in the literature indicating that Kupffer cells are able to 

react to inflammatory stimuli. Lepay et al., (1985a), themselves, showed increased Ia 

expression on isolated Kupffer cells that were treated with interferon-y. Such enhanced 

expression of the class II MHC antigens is associated with macrophage activation (Beller et 
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al., 1980; Scher et al.,1980; Steeg et al.,1980; Ezekowitz et al.,1982). Pilaro et al., (1985) 

found that isolated Kupffer cells were stimulated to increase their phagocytic activity and ROI 

release following treatment with hepatocyte degradation products of analgesics. Isolated 

Kupffer cells also respond to MAP with increased tumoricidity (Stuk:art et al., 1985). More 

significantly (as far as the anti-viral response is concerned), isolated Kupffer cells have an 

increased capacity to inhibit virus replication in infected cells, following treatment with LPS 

(Keller et al., 1985). Thus, it would appear that Kupffer cells are not refractory to stimulation 

by inflammatory process. The incomplete overlap of F4/80 and Ia antigen profiles of 

sinusoidal macrophages, in LCMV-infected liver, must therefore be attributed to the transient 

nature of Ia expression. 

Because infiltration of inflammatory foci by activated macrophages appears to occur 

after there are signs of cell death in these foci, it is probable that these phagocytes are important 

in the clearance of cell debris. Localisation of monocytes and macrophages to the draining 

regions of the liver is also suggestive of a phagocytic function for F4/80+ cells during LCMV 

infection. Such localisation would optimise the clearance of viral and dead cell products from 

the blood before it passes out of the liver. 

Apart from their phagocytic and antigen-presenting functions, activated macrophages 

are probably more directly involved in virus elimination. The restriction of viral replication in 

macrophages that are activated has been implicated for several different classes of viruses, 

including vesicular stomatitis (Rager-Zisman et al., 1982; Belardelli et al., 1984), influenza 

(Rogers and Mims, 1982; Mak and Ada, 1984) and ectromelia (Cohen and Bubel, 1983; 

Cohen et al.,1984) viruses. Activated macrophages have been shown to lyse cells infected 

with herpes simplex (Koff et al., 1983), influenza (Mak and Ada, 1984) and vaccinia (Chapes 

and Tompkins, 1979) viruses. More importantly, activated macrophages have an extrinsic 

anti-viral activity that inhibits viral growth in target cells with which they are co-cultivated 

(Hayashi et al., 1980; Morse and Morahan, 1981; Stohlman et al., 1982; Wildy et al. , 1982; 

Keller et al., 1985). Wildy et al., (1982) found that arginase activity released by activated 

macrophages can restrict several arginine-requiring viruses. In the case of other viruses such 

as herpes simplex, it is likely that activated macrophages release a factor which alters host cell 

metabolism (Morse and Morahan, 1981). Hayashi et al., (1980) also found that the anti-viral 

activity of PEC did not require phagocytosis but was, rather, attributable to the cytostatic 

effects of macrophages on target cells. That such extrinsic anti-viral activity can also occur in 

the liver has been demonstrated by Keller et al., (1985), who showed that LPS treatment of 

isolated Kupffer cells conferred on these cells the ability to restrict vaccinia replication in 

co-cultivated target cells. 

Localisation of Lymphocytes and Blasts. 

Lymphocytes and blasts accumulated in the liver sinusoids and aggregated into 

inflammatory foci around the portal tract and, less frequently, in zone 2 of the liver acinus. 
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Small lymphocytes predominated early (d4-6) , giving way to blasts later in the disease. In 

previous studies of LCMV-infected liver, which did not extend past 7 days p.i., lymphocytic 

infiltration began on d4 (Tosilini, 1970) and d5 (Wilsnack and Rowe, 1964). Tosilini and 

Mims (1971) also observed marked infiltration of 'the portal tracts and sinusoids of infected 

liver. 

This accumulation did not correspond in location to previous descriptions of viral 

antigen distribution in infected liver. Following i.p. injection of a viscerotropic strain of 

LCMV, Wilsnack and Rowe (1964) first detected viral antigen 3d post inoculation and the liver 

was still heavily infected on d7. Antigen in the liver was largely confined to the parenchymal 

cells and Kupffer cells were rarely infected. Involved hepatocytes were usually found in foci 

of 10 to 20 cells, and infrequently as single infected cells. The distribution of infected cells 

was not restricted to either periportal or lobular regions of the liver (Wilsnack and Rowe, 

1964). 

Tosilini (1970) gave a more detailed analysis of the distribution of LCMV antigen in 

infected liver. He used the same virus strain and route of inoculation as used in this chapter, 

but the amount of virus injected was much higher (107LD50 compared with 300LD5o). Five 

minutes after inoculation, viral antigen was detected in the Kupffer cells. It had disappeared 

within an hour, reappearing after 11hr, presumably following an infectious cycle in the 

Kupffer cells. By d4-6, 50-60% of these cells were infected. Increasing numbers of 

hepatocytes were also infected from d.2-6. Infected endothelial cells were present in some 

hepatic and portal veins by 18hrs p.i. In contrast to the findings reported in this chapter, 

Tosilini found necrotic foci of infected hepatocytes. Only rarely were pyknotic nuclei of 

parenchymal cells seen in the experiment reported in this chapter. This discrepancy may be 

due to the different doses of LCMV inoculated or, more likely, to the use of different mouse 

strains. Tosilini (1970) used WEHI mice which he later found to be particularly susceptible to 

LCMV infection compared with C57Bl/6 mice (Tosilini and Mims, 1971). Necrotic lesions 

tended to be mid-zonal in distribution and hepatic cells around portal tracts and central veins 

were least affected (Tosilini, 1970). 

Although the two studies showed differences in the distribution of viral antigen with 

respect to Kupff er cells, they found no indication of a predominance of virus in periportal cells 

and, in fact, there appeared to be a preference for lobular cells. Periportal accumulation of 

inflammatory cells has also been reported in GVHD in rats and mice (Takacs et al., 1985), and 

in hepatitis A. infection of the owl monkey (Keenan et al., 1984). There is also no correlation 

between lymphocyte accumulation and antigen distribution in these cases. In GVHD, where 

there is selective destruction of bile duct epithelium, the antigen responsible for stimulating the 

inflammatory response is distributed throughout the liver. The majority of infiltrating cells are 

Lyt2+ and would react with allo-class I MHC antigens which are most strongly expressed on 

sinusoidal endothelial cells (Lautenschlager et al., 1984). Likewise, hepatitis A virus which, 

like LCMV is noncytopathic, is found in Kupffer cells throughout the liver (Huang et al., 
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1979; Shimizu et al., 1982). The possibility exists that the level of expression of H-2 on 

lobular cells is down-regulated during viral infection, so that, although viral antigen is present, 

the T cell restricting element may be absent Such regulation, however would not explain the 

localisation of lymphocytes during GVHD. Thus, periportal accumulation of lymphocytes is 

not a function of the distribution of reactive antigen. It appears that the architecture of the 

liver, itself, influences the distribution of inflammatory cells. 

Role of Lymphocytes in LCMV-Infected Liver. 

It has not been possible to study the nature of the inflammatory lymphocytes using cell 

surface markers. Of the lymphocytes in the sinusoids 8-30% are Ia+ and are probably B cells. 

However, absence of Ia staining in the discrete inflammatory foci suggests that few B 

lymphocytes are present in these lesions. Therefore, there must be some selection of 

lymphocytes that move from the sinusoids to the foci. It is likely that the majority of these 

cells are Lyt2+, class I MHC-restricted T cells. The correlation of findings from functional 

analysis in vitro and the adoptive transfer of immune spleen cells and cloned cytotoxic T 

lymphocyte lines has indicated that such cells mediate the elimination of LCMV (Doherty et al., 

1976b; Zinkernagel and Welsh, 1976; Byrne and Oldstone, 1984; Allan and Doherty, 1985a). 

There is also specific recruitment of class I MHC-restricted T cells to the liver during infection 

with viscerotropic LCMV (Zinkernagel et al., 1986). In addition, recruitment of Lyt2+ T cells 

in the mouse and oxs+ T cells in the rat to periportal inflammatory foci has been demonstrated 

for GVHD (Takacs et al., 1985). 

From the results reported in this chapter, there is no evidence that it is the cytotoxic 

function of Lyt2+ T cells which is responsible for virus elimination from the liver. Pyknotic 

nuclei, although numerous among the lymphoid cells of inflammatory foci, are rare in the 

parenchyma. T cell-mediated virus clearance therefore probably depends on the release of 

lymphokines from activated lymphocytes. Such lymphokines as y-interferon may act directly 

on infected cells to inhibit viral replication. More importantly, lymphokines which effect 

macrophage proliferation, migration and activation would contribute to the anti-viral nature of 

the inflammatory response. This postulate is supported by the observation that a sharp peak in 

the number of lymphocytes infiltrating the liver precedes a more prolonged influx of F4/80+, 

Ia+ cells (compare Fig 3.3 and Fig 3.7). 

Thus, it is likely that T cells and macrophages co-operate in the resolution of LCMV 

infection in the liver. 

Initial PMN and Kupffer Cell Response. 

The initial PMN inflammatory response and increase in Ia- Kupffer cells occurred 

before there was time for lymphocyte activation and presumably was related more directly to 

the virus inoculated. The PMN s observed did not have eosinophilic cytoplasm when stained 

with haematoxylin and eosin, and were presumably neurrophils and not eosinophils. 
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Activation of the neutrophil response possibly occurs in response to connective tissue 

injury (Ogawa et al., 1985). Infection with the non-lyric LCMV is unlikely to generate 

products of tissue damage but the virus inoculum itself, homogenised guinea pig lung, would 

contain such products. This possibility could be tested by inoculating a homogenate of normal 

guinea pig lung. Within 5 mins of i.v. LCMV inoculation, 90% of the virus had been cleared 

from the blood with accompanying localisation of viral antigen to the Kupffer cells (Tosilini, 

1970). Thus, the liver is likely to contain a some of the inoculum tissue debris which would 

provide a chemoattractive source for polymorphs. It should be stressed that the PMN 

inflammatory response is minor especially when compared with the later massive influx of 

lymphocytes and macrophages. A minor invasion of PMN was also observed in LCMV 

infection of the CNS (Chapter 4) but occurred at the final stages of the disease when there was 

abundant inflammatory cell death. 

There was also an increase in the number of Kupffer cells during the first 5 days of 

infection, distinct from that seen on d8-14, in that it was not accompanied by a similar increase 

in Ia+ sinusoidal macrophages (Fig 3.3). These separate increases in the number of Kupffer 

cells may represent the 2 sides of the controversy over the origin of Kupff er cells that is 

epitomised by the papers of van Furth (1980) and Wisse (1980). The former author 

expounded the view that Kupff er cells are derived from blood monocytes quoting evidence 

provided by experimental work on chimeras, 3H-thymidine-labelled cells and cytochemical 

analysis; while the latter believed they were generated by mitosis of Kupffer cells. 

Wisse has more recently modified his stand and conceded that monocyte-derived 

phagocytes are found in the liver, at least in response to zymosan injection, although these 

macrophages maintain ultrastructural and cytochemical characteristics that are distinct from 

those of the resident Kupffer cells (Bouwens and Wisse, 1985). Also, irradiation of either the 

bone marrow or the liver has demonstrated that 38% of the increased number of Kupffer cells 

occurring, in response to zymosan, is derived from the former site and 61 % from the latter 

(Bouwens et al., 1986). Thus it would seem that sinusoidal macrophages can arise from either 

local proliferation of Kupff er cells or recruitment from the blood monocyte pool. 

In the experiment described in this chapter, it is possible that the increased numbers of 

sinusoidal macrophages seen on dl-5 resulted from the division of local Kupffer cells. This 

division may be stimulated by the presence of effete PMNs, such an effect of dead neutrophils 

having been demonstrated in vitro on resident peritoneal macrophages of mice (Yui and 

Yamazaki, 1986). The rise in the number of sinusoidal macrophages seen on d8-14, however, 

was probably derived from the blood, since influx of monocytes into the liver preceded this 

increase and because there was a concomittant rise in the number of Ia+ macrophages (the 

class II MHC antigens also being expressed on monocytes). 

Bouwens and Wisse (1985) suggest that newly arrived sinusoidal macrophages, 

derived from blood monocytes, remain distinct from the resident Kupffer cells. They found 

that, following i.v. injection of zymosan into rats, monocytes adhered to sinusoids and central 
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veins but not to the larger draining hepatic veins. The authors suggested that monocytes 

developed into macrophages which moved slowly through the liver and left via the central 

veins. They were no longer adherent to the vessel walls by the time blood had drained into the 

hepatic veins. In support of this view they quoted unpublished evidence of McCuskey who 

used in vivo microscopy of living rat liver to show small mononuclear phagocytes slowly 

migrating through the sinusoids before disappearing in the central veins. In LCMV-infected 

liver, however, increased attachment of Ia+ monocytes to the liver vasculature precedes the 

rise in Ia+ sinusoidal macrophages (Fig 3.3). Thus, observed monocytes are likely to be 

entering rather than leaving the liver. Also, unlike the observations of Bouwens and Wisse 

(1985), monocyte attachment to hepatic veins was common (Fig 3.6). This would not be 

expected of cells leaving the liver, which would presumably detach from the vasculature walls 

before the blood had drained from the central veins into the hepatic veins. 

Thus, the initial response to LCMV-infection of the liver involves a minor invasion by 

PMN, death of which may stimulate the division of Kupffer cells. Increased numbers of 

sinusoidal macrophages that occur later in infection probably derive from invading monocytes. 

In summary, the histological evidence suggests that both lymphocytes and macrophages play a 

significant role in the pathogenesis of LCMV infection of the liver. These 2 cell types were 

observed together in the sinusoids during virus infection, where they appeared to be closely 

associated. However, the acccumulation of lymphocytes into periportal inflammatory foci, 

and the localisation of macrophages and monocytes to the central and hepatic veins, suggest 

that these cell types play distinct functional roles that necessitate different anatomical 

localisation. It is also apparent that the effector function of macrophages during LCMV 

infection is associated with their activation and expression of class II MHC antigens. 
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Figure 3.1. Diagrammatic representation of the radial disposition of the liver cell 

plates and sinusoids around the terminal hepatic venule or central vein, showing the 

centripetal flow of blood (large arrows) from branches of the hepatic artery and portal 

vein, and the centrifugal flow of bile (small arrows) to the small bile duct in the 

portal space. (Copied from Bloom and Fawcett (1975), p694). 
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Figure 3.2. Diagram illustrating the functional unit of liver parenchyma (the 

acinus) according to Rappaport (1958). It consists of the parenchyma centered around 

the terminal branches of the hepatic artery and portal vein. Cells in Zone 1 nearest 

these vessels have first access to the incoming blood, while the cells of Zone 2 are 

less favored and those of Zone 3 near the central veins are least favorably situated. 

(Copied from Bloom and Fawcett (1975), p695). 
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Figure 3.3. The number of F4/80+ (..&.) and Ia+ <•) cells lining liver sinuses during the 

course of LCMV infection was assessed using a projection microscope at 850x 

magnification. These cells include both resident KC and recruited macrophages. The 

vertical axis represents the number of cells counted in four fields of view. Points represent 

the mean + standard error for 2-4 mice. Error bars not marked when they fall within the 

area symbol. 



Figure 3.4. Day 8-infected liver, F4/80: F4/80+ monocytes with cresent-shaped nuclei 

adhere to the walls of a central vein. One F4/80- cell with a cresent-shaped nucleus can be 

seen on the lower left-hand side of the vessel. Magnification x500. 
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Figure 3.5. The extent of monocyte infiltration into the liver of each animal was 

histologically scored from O (no infiltration) to 4 (maximal infiltration). Points represent the 

mean for 2-4 mice. 
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Figure 3.6 Day 12-infected liver, F4/80: the portal triad of a large potal vein (PV), 

hepatic artery and bile duct is seen on the left, and a hepatic vein (HV) is located to the right 

of it. There is extensive perivascular cuffing around the portal triad, particularly in the 

region of the bile duct Adherence of monocytes is restricted to the walls of the hepatic 

vein. Magnification x 125. 
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Figure 3.7. The number of lymphocytes in the liver sinuses of mice infected with LCMV 

was assessed using a projection microscope at 850x magnification. The total numbers of 

lymphocytes from four fields of view were counted using liver sections stained either for 

F4/80 (e) or Ia (JI). Lymphocytes were identified by morphology only on the section 

stained for Ia. On sections stained for F4/80 the criteria included that lymphocytes were 

F4/80-. Essentially similar results were found in each case. Points represent the mean+ 

standard error for 2-4 mice. 



Figure 3.8. Day 4-infected liver, F4/80: examples of the close association between 

lymphocytes and sinusoidal macrophages are inc;licated by the arrows. Magnification x500. 
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Figure 3.9. The number of lymphocytes within the sinuses which were attached to 

F4/80+ (A) or Ia+ {Jl) sinusoidal macrophages (as seen in Figure 9) were counted in four 

fields of view at 850x magnification using a projection microscope. Points represent the 

mean + standard error for 2-4 mice. 



Figure 3.10. Day 5-infected liver, Ia: two blood vessels can be seen, one of which 

stains positively for Ia antigens. Magnification x312. 

I 

Figure 3.11. Day 14-infected liver, Ia: a band of cells below the blood vessel stain 

positively for Ia antigens. Positively stained sinusoidal macrophages can also be seen. 

Magnification x500. 
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Figure 3.12. The severity of inflammation was determined by scoring tissue for the 

presence of inflammatory cells at 100 intersecting points of a grid at lOOx magnification. 

The results were expressed as a percentage of those points that were positive. Four fields of 

view were examined for each liver section, and the points represent the mean+ standard 

error for 2-4 mice. The point dot analysis is described in Elias and Hyde (1983). 

Figure 3.13. Day 2.:infected liver, Ia: a foci of polymorphonuclear cells interwined by 

Ia+ cells can be seen. Magnification x500. 



Figure 3.14. Day 10-infected liver, Ia: the parenchymal focus (arrow) consists of a 

compact sphere of lymphoid cells. Magnification x312. 
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Figure 3.15. Day 12-infected liver, Ia: pyknotic nuclei (arrows) can be seen in this 

perivascular cuff of a portal triad. Magnification x312. 



Figure 3.16. 

A. Day 14-infected liver, F4/80: infiltration of parenchymal foci with 

F4/80+ cells can be seen. Most sinusus are lined with F4/80+ cells at this 

stage of infection. Magnification x500. 

B. Day 14-infected liver, F4/80: infiltration of a perivascular foci can be 

seen. Pyknotic nuclei are marked by arrows. Magnification x500. 

C. Day 14-infected liver, Ia: the same inflammatory focus as shown in 

Fig 3.16b; staining for Ia is much more intense than F4/80 because the 

antigen is apparently expressed not only on incoming macrophages but on 

many of the lymphoid cells in the focus. Magnification x500. 
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Chapter 4 

Macrophages in the Brain of LCMV-Infected Mice 
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4.1 INTRODUCTION. 

Intracerebral inoculation of LCMV into adult mice results in the classical disease of the 

CNS that was first described by Rivers and Scott (1936) and has been reviewed by a number 

of authors (Lehmann-Grube, 1971; Cole and Nathanson, 1974; Doherty and Zinkemagel, 

1974). Five days after infection, mice develop a nondescript illness with ruffled fur, hunched 

posture and inactivity. They show signs of neurological impairment on d6-8, with increased 

irritability and the development of clonic convulsions. The latter can be induced when the 

animals are disturbed, particularly when they are spun by the tail. Convulsions often terminate 

in extensor spasms of the hind legs and death. 

Clinical symptoms coincide with severe inflammatory changes in the CNS. Acute LCM 

is, essentially, a disease of the CNS membranes and choroid plexus. Little effect on the brain 

parenchyma is observed. Viral distribution within the brains of acutely infected mice is 

restricted to the meninges, the epithelium of the choroid plexus, and the ventricular ependyma 

(Wilsnack and Rowe, 1964; Tosolini and Mims, 1971; Gilden et al., 1972a; Gilden, 1975; 

Walker et al., 1975; Camenga et al., 1977; Schwendemann et al., 1983; Marker et al., 1985) 

and viral antigen has also been observed in the Virchow-Robin spaces (Tosolini and Mims, 

1971). Infiltration of mononuclear cells into the leptomeninges, the choroid plexus and the 

ventricles of i.e. infected mice is well documented (reviewed in Lehmann-Grube, 1971). The 

contribution of cells of the macrophage lineage to the development of disease is not clear. As 

described in this chapter, results obtained from immunohistochemical staining for activation 

(Ia) antigens and the macrophage marker, F4/80, indicate that activated macrophages form a 

substantial proportion of the irutltrating cells. 

Since meningitis is triggered by Lyt2+, class I MHC-restricted T cells (reviewed in 

Zinkernagel and Doherty, 1979; chapter 5) further experiments were designed to determine 

whether Lyt2+ T cells also recruit the macrophages. Although Lyt2-, class II MHC-restricted 

T cells have been traditionally associated with DTH function (Huber et al., 1976; Vadas et al., 

1976; Zinkernagel and Doherty, 1979; Hollander, 1982) it has been reported that DTH to 

LCMV, measured by foot pad swelling, is mediated by class I MHC-restricted T cells 

(Zinkemagel, 197 6b ). 

The role of T cell subsets in recruiting macrophages was investigated by transfer of 

immune cell populations to immunosuppressed, LCMV-infected recipients based on the 

protocol of Gilden and colleagues (1972a,b). Recipient mice infected intracerebally with Arm 

LCMV were immunosuppressed 5 days later with 150mg/kg Cy, a procedure which prevents 

the acute disease usually observed 6 to 8 days after infection and abrogates the development of 

cytotoxic T cell activity (Gilden et al., 1972a, Allan and Doherty, 1985b). One day after Cy 

treatment recipients were given immune spleen cells depleted of Lyt2+ or L3T4+ cells by 

monoclonal antibcxiy and complement treatment (section 2.13). Brains were examined by 

immunohistology. 



4-2 

The histological observations are described in relation to the meninges, the 

Virchow-Robin spaces, the choroid plexus and the ventricles. Two of the membranes lining 

the surf ace of the brain, the pia mater and the arachnoid together form the leptomeninges. 

Apart from the fact that the arachnoid is avascular, the two membranes are structurally similar 

and are probab!y derived from a single layer. They are mainly composed of interlacing 

collagenous bundles surrounded by fine elastic networks. Among the cells of the membranes 

are fixed macrophages. These macrophages have been described in ultrastructural 

(Dobrovol'skii, 1984) and immunohistochemical (Perry et al., 1985; Esiri and McGee, 1986) 

studies. 

The pia and arachnoid membranes are separated by the subarachnoid space, which is 

filled with CSF. They remain connected by trabeculae that traverse this space. Larger blood 

vessels entering and leaving the brain are surrounded by pia mater and a continuation of the 

subarachnoid space. These perivascular spaces are termed Virchow-Robin spaces and extend 

in increasingly attenuated form as far as the arterioles and venules. 

The choroid plexuses are found in each of the ventricles where they are a major site of 

formation of CSF. They are formed by invaginations of vascular mater, containing a core of 

connective tissue with many wide capillaries overlayed by simple cuboidal epithelium. CSF 

passes through the ventricles to the cistema magna, where it is possible to sample the fluid, 

and then circulates in all directions through the subarachnoid space surrounding the brain. 

CSF leaves the CNS through the arachnoid villi which project into the dural sinuses. 

Immunohistochemical examination was performed on the brains of mice infected with 

LCMV with the intent of determining the extent of infiltration of the brain by activated 

macrophages and the ability of Lyt2+ T cells to mediate this recruitment Particular attention 

was paid to the meninges, and the fourth ventricle, including its choroid plexus. The results 

described in this chapter encompass three different experiments: 1) LCM disease initiated by 

i.e. inoculation of Arm strain LCM virus; 2) LCM disease transferred into 

immunosuppressed, infected mice with immune spleen cells; and 3) LCM disease transferred 

with immune spleen cells that were depleted of either Lyt2+ or L3T4+ cells. 
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4.2 RESULTS. 

4.2.1 LCM DISEASE FOLLOWING INTRACEREBRAL INOCULATION. 

Following i.e. inoculation of C57BL/6J mice with 1()3 LD
50 

of Arm strain LCM virus, 

clinical signs of LCM appeared first on d6 p.i .. The mice were hunched, their fur was ruffled, 

and trembling could be detected in their tails. By d7 p.i. the mice were moribund. 

Mice were sampled for immunohistochemical analysis on d4, d5, d6 and d7 p.i. and, as 

a control, on d4, d5 and d6 following i.e. injection of gelatine saline. A description of F4/80 

and Ia antigen distribution in the brains of gelatine saline injected controls will be given first 

before proceeding with descriptive and numerical analyses of infected mice. 

UNINFECTED MICE. 

Resident macrophages of the meninges were located primarily on the pial membrane. 

They were observered, usually, as dense F4/80+ staining stretched along the surface of the 

brain (Fig 4.1) but were also present on the lining of some pial blood vessels. Occasional 

F4/80+ membrane staining was observed on the outside of larger blood vessels traversing the 

subarachnoid space and on the inner surface of the arachnoid ·membrane. Some of these 

leptomeningeal macrophages stained strongly for Ia antigens. More rounded and apparently 

loosely attached macrophages were occasionally observed in the subarachnoid space, as were 

small dense lymphocytes. Monocytes that were F4/80+ and Ia+ were observed more rarely. 

Within the choroid plexus, F4/80+ cells were found in the stroma of the choroid villi 

(Fig 4.2). They lined the blood capillaries that supply the epithelium and their morphology 

resembled that of Kupffer cells in the liver, having a ruffled cytoplasm. Small dense 

lymphocytes were occasionally seen within the capillary lumen. In general, about 30% of the 

resident macrophages of the choroid plexus also stained for Ia antigens. Endothelial cells of 

the capillary walls and other cells of the plexus were ra-. 

F4/80 staining was not observed in the ependyma of the ventricles, but in two of nine 

mice examined, F4/80+ cells were attached to the ventricle ependyma or the ventricular side of 

the choroid plexus (Fig 4.2). 

Macrophages were also associated with the vasculature of the CNS. Although not 

observed frequently, both perivascular (Fig 4.3) and luminal macrophages were detected in 

capillaries of the brain parenchyma. More predominant was the perivascular location of 

macrophages around the large blood vessels that invaginate the brain along the various fissures 

of both the cortex and the cerebellum. The location of F4/80 staining in these Virchow-Robin 

spaces probably reflects the presence of resident macrophages in the accompanying pial lining. 
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Some cells with similar morphology and location within the Virchow-Robin spaces of the 

fissures also stained for Ia antigens, as was seen with some of the pial macrophages. 

Capillary macrophages, however, did not stain for the class II Nll-IC antigens, suggesting 

differences in behavior, origin or activation state of these macrophages. 

Another major perivascular site of macrophages within the CNS was the area postrema 

located at the pointed, caudal end of the floor of the fourth ventricle (Fig 4.4). This is a highly 

vascular area with large capillaries resembling blood sinusoids. Its endothelium is fenestrated 

like that of the choroid plexus and is permeable to compounds which do not normally penetrate 

the walls of other vessels in the CNS (Zeman and Innes, 1963; Netsky and Shuangshoti, 

1975; Leslie, 1986). · These cells were never observed to express Ia antigens. 

Although microglia within the brain parenchyma have been shown previously to stain 

for the F4/80 antigen (Hume et al., 1983a; Perry et al., 1985), they did not in these sections. 

Ia expression on parenchymal cells was observed occasionally. The majority of these positive 

cells were isolated cells with star-like processes, but sometimes groups of such cells were 

observed (Fig 4.5). Positive parenchymal cells did not resemble, morphologically, the 

microglia seen by Hume et al. (1983a) and Perry et al. (1985), their processes being more 

dense. Their star-like appearance suggests that they are astrocytes. 

In summary, macrophages are located along the leptomeninges, and perivascularly in 

the choroid plexus and Virchow-Robin spaces. Some of these macrophages express Ia 

antigens. 

LCMV-INFECTED MICE. 

The most notable histological outcome of LCMV infection was the influx of 

inflammatory cells into the subarachnoid space of the meninges with involvement of the 

choroid plexus occurring later. A slight inflammation was already present in mice on d4 after 

i.e. infection with LCMV, the first day of observation. The severity of inflammation was 

similar on the following day, with extensive infiltration occurring on d6 and d7. Fifty percent 

of the infected mice were dead on d7, and the remaining 4 animals, which were perfused for 

immunohistochemical analysis, were moribund. In this experiment, there was no clinical 

evidence of recovery from infection. The observations will be discussed by anatomical site: 

meninges, choroid plexus, ventricles and parenchyma. 

a. Meningeal inflammation. 
In general, inflammation within the meninges consisted of a loose accumulation of 

infiltrating cells within the subarachnoid space. At the later stages of infection, on d6 and d7, 

more compact regions of inflammatory cells formed. They occurred in areas where the 

arachnoid membrane lies very close to the pial membrane and no trabeculae are seen traversing 
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the subarachnoid space. 

During the course of infection, there was no apparent increase in the number of 

'resident', F4/80+ macrophages lining the meningeal membranes. These macrophages, lining 

the meningeal membranes, during LCM disease will be referred to as 'srretched macrophages'. 

In contrast, rounded macrophages, (those that had not stretched along the meningeal 

membranes), approximately half of which expressed Ia antigens, increased in number during 

LCMV infection. They were apparent on d4, d5 and d6 p.i. but were most numerous on d7 

(Fig 4.6). Likewise monocytes, though fewer in number, were present on d4, d5 and d6 with 

more substantial numbers observed on d7. Cells that were morphologically identified as 

monocytes in this location were generally negative for Ia expression and a minority ( <5%) 

were also negative for the F4/80 antigen (Fig 4.6). 

Although macrophages constituted a significant proportion of the infiltrating cells, most 

cells were negative for both F4/80 and Ia staining. Many of these were obviously 

lymphocytes, having small dense nuclei and a low cytoplasm to nucleus ratio. The 

morphology of other cells (larger, irregularly-shaped with a higher proportion of cytoplasm 

and a pale nucleus) was consistent with their being activated lymphocytes or blasts. A 

significant number of small lymphocytes were seen in the meninges early in infection, a stage 

at which the level of inflammation was fairly minor and they were very numerous on d6 before 

a slight decline on d7 p.i.. A minor subpopulation of these ( < 10%) stained for Ia antigens and 

were probably B lymphocytes. Blast cells also appeared in large numbers on d6, but again 

fewer were seen on the following day (Fig 4.6). 

Although the number of lymphocytes and blasts had fallen by d7, the overall level of 

inflammation remained very high, the lymphocytes and blasts being replaced in number by a 

cell type which had a very indented, irregularly shaped nucleus (Fig 4.6). These cells were 

not PMNs since they did not have granular cytoplasms. However, a minor neutophil 

infiltration into the meninges was observed on d7 after infection. Cell death, as determined by 

the presence of pyknotic nuclei, was another obvious feature of the inflammatory exudate on 

d7 p.i. (Fig 4.6). It is possible that those cells with irregularly shaped nuclei were also dead 

or dying cells. Because this could not be determined by light microscopy, CSF samples were 

taken from mice infected i.e. for 7 days with LCMV and examined under the transmission 

electron microscope (EM). Forty mice were needed to obtain sufficient inflammatory cells 

from the cistema magna to yield a pellet large enough for EM processing. 

Dead cells, with obviously disrupted cytoplasm and plasma membrane, were observed 

(Fig 4.7 A). There were also many cells at a less advanced stage of cell death (Fig 4.7E). 

These cells retained a largely intact plasma membrane, but the nuclear envelope had 

degenerated and coarse granularity of the chromatin was observed. Condensation of the 

cytoplasm was also obvious. Those cells with irregularly shaped nuclei were not readily 

identified under EM, possibly because of the thinness of the sections. However, because 

these cells, seen under the light microscope, appeared to replace the large numbers of 
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lymphocytes and blasts present on d6 p.i. (Fig 4.8B), and because the EM study showed there 

were many dying cells that still retained their plasma membrane, it is likely that cells with 

irregularly-shaped nuclei were in the process of dying. These cells were possibly dying 

lymphocytes and/or blasts, cell types which appeared in very large numbers on d6 of infection. 

Examples of pyknotic nuclei of presumptive lymphocytes were also seen (Fig 4.7B lower right 

hand corner, and Fig 4.7F). 

Activated macrophages were obviously involved in the phagocytosis of these dead cells. 

Numerous rounded F4/80+, Ia+ cells (Fig 4.6), and, more rarely, monocytes and stretched 

'resident' macrophages were observed to contain engulfed pyknotic nuclei. Macrophages and 

monocytes from CSF samples examined under EM were also seen with engulfed material (Fig 

4.7C,D). 

There was also evidence that meningeal cells were dying during the later stages of 

infection (d6,7 p.i.). In many cases it was difficult to clearly distinguish such dead cells from 

those in the overlying infiltrate, but on numerous occasions pyknotic nuclei of pial cells were 

seen and the clear spaces surrounding them indicated that the cytoplasm of these cells had 

been in the brain parenchyma (Fig 4.8a,b). 

b. Inflammation in the choroid plexus. 

There appeared to be no change with time or in comparison to controls, in the number 

of macrophages lining the blood capillaries of the choroid plexus or the extent of Ia staining of 

these cells. Inflammation within the vasculature of the villi of the choroid plexus was a 

relatively late and unusual event, with extensive lymphocytic infiltration being observed in 

only one of the d7 infected animals (Fig 4.9 - compare with Fig 4.10). 

Much more notable was the inflammation under the choroid plexus in the space between 

the brain parenchyma and the villi, and in the stalk of the plexus (Fig 4.10). These spaces 

surround the blood vessels supplying the plexus and, as such, may be considered 

Virchow-Robin spaces. First to appear at this location were elongated, 'stretched', F4/80+, 

Ia+ cells. These macrophages were seen in the non-inflamed d4 infected animals, were most 

plentiful on d5 p.i. (Fig 4.11) and were still obvious on d6 and d7. A few lymphocytes were 

closely associated with the macrophages (an indication of this association is given in Fig 

4.12). By d6 and d7, they were no longer the predominant inflammatory cell type, being 

superceded by a large influx of lymphocytes and blasts. Also present in d7 infected animals 

were pyknotic nuclei and the irregularly nucleated cells described previously. Rounded 

F4/80+, Ia+ macrophages were less prominent 

c. Inflammation in the ventricles. 
As with inflammation in the choroid plexus, the appearance of infiltrating cells in the 

ventricles of infected mice was a relatively late event compared with that in the meninges. By 

d7 p.i. considerable numbers of macrophages, lymphocytes and blasts were attached to the 
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ventricle walls and in one case there was substantial damage to this wall, judged by the 

presence of pyknotic nuclei and disruption of the ependymal layer. Macrophages within the 

ventricles were sometimes located on the choroidal epithelium and damage to this layer was 

observed in the one mouse from the d7 infected group whose plexus was heavily infiltratecL 

d. Inflammation in the parenchyma. 

Relatively little inflammation was observed in the brain parenchyma. Occasionally, 

tissue sections passed through the needle tract left from the virus inoculation. In the brain 

parenchyma of the needle track area, F4/80+ and Ia+ cells, some of which contained pyknotic 

nuclei, could be observed. 

Perivascular cuffing with lymphocytes or blasts was observed only very occasionally 

and tended to be around larger vessels which were probably not capillaries but arterioles with 

surrounding leptomeninges. Inflammatory cells were observed within some parenchymal 

vessels and the neuropil surrounding such vessels sometimes contained pyknotic nuclei (Fig 

4.13). 

In general, pyknotic nuclei in the brain parenchyma were scarce, though significant 

considering their relative absence in gelatine saline injected controls. They were most 

frequently observed in the nasal lobes, especially in mice infected for 7 days, where there was 

also a slight, concomitant increase in the number of perivascular macrophages. 

e. Numerical evaluation. 

A numerical analysis of the area with the most intense inflammation, the meninges, was 

made on mice infected for 7 days with LCMV (Chapter 2.10). The areas within the meninges 

from which cells were counted were chosen randomly. The accuracy of these counts is 

indicated by the similar values obtained for cell types which were scored independently in 

sections stained with either F4/80 or anti-Ia antibodies (Table 4.1 ), for example pyknotic 

nuclei (8.0 + 2.0 and 10.1 + 2.2 respectively) and cells with irregularly shaped nuclei (20.9 + 

0.9 and 23.0 + 3.7 repectively). 

Approximately 20% of inflammatory cells were macrophages (Table 4.1), the majority 

being rounded rather than resident cells or monocytes. A minor subpopulation of these 

contained engulfed pyknotic nuclei with similar numbers being counted in sections stained 

independently for F4/80 and class II MHC antigens. Fewer monocytes stained for Ia. When 

the total number of macrophages staining for F4/80 was compared with those staining for Ia 

from the same animal, about 50% were found to be activated to express class II MHC antigens 

(Table 4.1). 

In summary, a predominantly lymphocytic infiltration of the leptomeninges followed the 

i.e. inoculation of LCMV. Twenty-two percent of the inflammatory cells were of the 

macrophage lineage and approximately half of these expressed the class II MHC antigens. 
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Large numbers of dying inflammatory cells were present on the final day of examination. An 

early accumulation of stretched macrophages occurred in the Virchow-Robin space beneath the 

choroid plexus. These macrophages were often closely associated with lymphocytes. 

Inflammation ·of choroid villi and ventricles was a late event. 

4.2.2 TRANSFERRED DISEASE. 

Acute LCM disease can also be induced by transfer of immune spleen cells into 

immunosuppressed mice infected with the virus (Chapter 2.11, Fig. 2.1). Both the clinical 

manifestations (Gilden et al., 1972b, reviewed in Allan et al., in press) and inflammatory 

response, as measured by CSF cell counts, are very similar to that induced by i.e. inoculation 

of the virus. In this study, C57BL/6J mice were injected i.e. with Arm strain LCMV at the 

same time as those injected for the i.e. study described above and the same stocks of virus and 

mice were used. The two studies are therefore internally controlled and allow comparisons for 

the same time points after virus inoculation. Recipients received 107 immune spleen cells from 

primed donor mice. A control group of immunosuppressed mice, which did not develop acute 

LCM disease, received normal spleen cells. Cy-treated mice were sampled for 

immunohistological analysis on the day of spleen cell transfer (dO) and from both immune and 

normal cell transfer groups on the following 3 days. On the final day of sampling, one animal 

from the immune transfer group was dead and the remaining 4 mice were moribund. 

a. The effect of immunosuppression on the histology of cerebral LCM. 

The mice taken on the day of cell transfer corresponded to those described earlier which 

were taken 6 days after i.e. infection, except that they had received Cy treatment on d5. A 

marked decrease in the level of inflammation was observed following immunosuppression, 

and the compact areas of lymphocytes and blasts observed in immunocompetent mice (see 

4.2.la) did not develop. 

In the control groups of mice that received normal spleen cells on the day after Cy 

treatment, there was a marked decrease in the level of Ia expression on resident macrophages 

of the choroid plexus, the membranes of the Virchow-Robin spaces and the meninges. 

b. Meningeal inflammation. 

The extent of inflammation in the meninges was slight on the first two days following 

immune cell transfer and it was only on the third day after transfer that large numbers of 

infiltrating cells were observed. 

On the 2 days following transfer, however, there was induction of class II MHC 

expression on some resident macrophages. In contrast, resident macrophages remained Ia- in 

mice receiving normal spleen cells. The entry of some lymphocytes on the first day, 
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accompanied by a few blasts and monocytes on the second day, foil owing transfer of immune 

cells, was observed. Also apparent was the appearance of pyknotic nuclei in both 

inflammatory and meningeal cells (Fig 4.14). Such cell death was observed in the previous 

study only when the meninges was highly inflamed. 

The severity of inflammation on the third day after transfer of activated T cells was 

similar to that of immunocompetent mice infected for 6 or 7 days. Most predominant were 

F4/80+ cells, but only a few were positive for class II MHC antigens (compare Fig 4.15 , A 

and B). Both rounded macrophages and monocytes were numerous. Lymphocytes and 

blasts, though also numerous, were not the major cell type as seen previously in the menigitis 

of i.e. infected animals. Also in striking contrast, was the scarcity of cells with irregularly 

shaped nuclei. Pyknotic nuclei, though, were equally abundant, and some were engulfed by 

F4/80+ cells (Fig 4.16). 

c. Inflammation in the choroid plexus. 

Ia staining of the resident macrophages lining the capillaries of the choroid plexus villi 

was similar to that of the gelatine saline-injected controls in the dO Cy-control group. On 

subsequent days following transfer of normal spleen cells or, on dl and d2 following transfer 

of immune spleen cells, no class II MHC antigen could be detected in the choroid plexus. 

Small numbers of Ia+ were observed in the choroid plexuses of the d3 immune transfer group. 

This decrease in Ia expression was dramatic. Ia expression on other resident macrophages 

(such as those of the Virchow-Robin space) and the meningeal membranes was also reduced in 

th~ dO Cy-control group, and was virtually absent in the Cy-treated groups that received 

normal spleen cells. 

The area under the plexus showed no inflammation until the third day after immune cell 

transfer. At this stage, there were large numbers of rounded macrophages and lymphocytes. 

Monocytes, F4/80+ and occasionally Ia+, were seen, as well as some cells with irregularly 

shaped nuclei. Pyknotic nuclei, some engulfed by macrophages, were notable. In general, the 

villi of the choroid plexus remained uninvolved in the inflammatory response. 

d. Inflammation in the ventricles. 

Inflammation within the ventricles was much more severe in this form of LCM disease 

than that described earlier, and was accompanied by disruption of the ventricle wall and 

ependymal cell death (Fig 4.17 a,b ). There were numerous round macrophages, some 

containing pyknotic nuclei and, even more numerous, were F4/80+ monocytes. Few of these 

cells stained for Ia. Lymphocytes and blasts were also abundant. 

e. Numerical evaluation. 
Numerical evaluation confirmed the differences observed between the direct and 

transferred forms of LCM disease ( Table 4.1). A greater proportion of the inflammatory cells 
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were F4/80+ (45.3% compared with 21.9%). All macrophage types, rounded and stretched, 

as well as monocytes, were increased in number. However, there was no increase in the 

number of phagocytosing macrophages. A significant decrease in the level of Ia staining was 

confirmed. Less than 20% of the total macrophage population expressed class II MHC 

antigens compared with approximately 50% of those in the normal infection. The other 

significant difference was the scarcity of cells with irregularly shaped nuclei in mice with the 

transferred disease. 

In summary, although the clinical development of LCM disease following transfer of 

immune cells was similar to that following i.e. inoculation of the virus, there were 

considerable differences in the nature of the inflammatory exudate in the meninges. Most 

pronounced was a much larger contribution by cells of the macrophage lineage in the 

transferred disease. There was also a relative absence of cells with irregularly-shaped nuclei 

and the level of Ia staining of both inflammatory and resident macrophages was much lower. 

This probably reflects the use of a high dose of Cy in the recipients. Inflammation in the 

ventricles and destruction of the ependymal layer was more severe in this form of the disease. 

4.2.3 L YT2 AND L3T4 DEPLETION OF THE TRANSFERRED IMMUNE 

CELLS. 

To determine the cell type that was responsible for the recruitment of macrophages 

observed in the study described above, antibody and complement depletion of the immune cell 

population prior to transfer,was performed to remove either Lyt2 or L3T4 bearing cells 

(Chapter 2.13). 

Treatment with the anti-Lyt2 or anti-L3T4 antibodies plus complement removed 45.5% 

and 9.5% of the immune spleen cells respectively. Complement treatment alone had no effect 

on the number of live cells or on the cytotoxic activity of the immune spleen cells. Removal of 

L3T4 bearing cells also had no effect on the cytotoxicity, whereas it was substantially reduced 

by anti-Lyt2 treatment. Cytotoxic activity was determined by the method described in section 

2.15 and the percent specific lysis at the effector to target ratio of 25: 1 was as follows: 

untreated immune spleen cells, 38%; spleen cells treated with C only, 36%; L3T4-depleted 

spleen cells, 30%; and Lyt2-depleted spleen cells, 8%. 

The same protocol as that described above for inducing transferred LCM disease 

(section 4.2.2) was used, except that 1.75 x 107 spleen cells were given to recipient mice. The 

groups of transferred cells were; immune spleen cells which were treated with 1) complement 

only, 2) anti-Lyt2 mAb plus complement, 3) anti-L3T4 mAb plus complement and 4) a control 

group of normal spleen cells. 
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The development of LCM disease in this experiment differed somewhat from that 

observed in the previous experiment in that the severity of inflammation at 3 days after transfer 

of immune cells was much reduced. This reflects the variation between experiments which is 

found when using this protocol of disease induction. Inflammation, as severe as that found in 

the previous experiment, was seen at later time points when activation of naive cells in the 

transfer inoculum could be expected. The nature of the disease which develops in mice that 

survive longer than 3 days after immune cell transfer will be discussed in chapter 5. For the 

purpose of this chapter, only the acute disease which develops within the first few days of 

transfer will be considered. 

The meninges of mice receiving normal or Lyt2-depleted cells showed little evidence of 

inflammation on either d2 or d3 after cell transfer. 

There was essentially no qualitative difference in the nature of the inflammatory 

response for the immune and the L3T4-depleted transfer groups, although the extent of 

inflammation in the latter was slightly less. In the following description they will be referred 

to, together, as the group receiving immune spleen cells. 

Minor inflammation was observed in the groups receiving immune cells on d.2, but on 

d3 a mcxierate level of infiltration was observed. The major infiltrating cell type, F4/80- and 

Ia-, contained obvious lymphocytes and many blasts. F4/80+ monocytes were present. Ia+ 

rounded macrophages and fewer Ia+ monocytes were seen. Cell death, determined by the 

presence of pyknotic nuclei, was also observed. 

In the villi of the choroid plexus, there was an absence of Ia expression by resident 

mqcrophages until the third day after transfer, when the immune cell group had relatively high 

levels of class II MHC expression. 

Again, the more significant inflammation of the choroid plexus was not in the villi, but 

in the space between the plexus and the brain parenchyma. On the second day after transfer of 

immune cells there was a localisation of stretched Ia+ macrophages and a few lymphocytes to 

this area. By the third day following transfer more extensive inflammation was seen in this 

area in the immune transfer groups with an influx of lymphocytes and some blasts. 

Ventricular inflammation in the immune group on d3 was much more severe than any 

seen in the previous experiment, even though meningeal inflammation was comparatively 

moderate (Fig 4.18). Also in contrast to the previous experiment, most of the macrophages at 

this site expressed Ia antigens. Lymphoblasts were present and deterioration of the ependymal 

wall was apparent (Fig 4.19). 

In summary, this experiment determined that reduction of Lyt2+ cells in the transfer 

population reduced the extent of meningitis and the recruitment and activation of macrophages. 

Depletion of L3T4 bearing cells, however, had little effect on these parameters. 
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4.3 DISCUSSION. 

Immunohistochemical staining for the F4/80 antigen has determined the localisation of 

macrophages during LCM (Sections 4.2.1 and 4.2.2). Macrophages constitute about 20% of 

the inflammatory cells in LCM induced by i.e. inoculation and 45% in LCM resulting from 

adoptive transfer of immune cells (Table 4.1 ). Macrophages are recruited to the CNS by 

Lyt2+ cells (Section 4.2.3). 

Macrophage localisation. 

Monocyte entry into the meninges was most prominent in the disease transferred by 

immune cells. In both forms of LCM induction, however, the expression of class II MHC 

antigens on monocytes was very low in comparison to the level on other types of macrophages 

(Table 4.1 ). This suggests that activation to express Ia antigens occurred in the brain in 

response to locally released lymphokines, and was not a feature of circulating monocytes. 

Although Ia expression by monocytes remained low throughout infection, a slight 

increase was observed in that few Ia- monocytes were observed in very inflamed meninges at 

the end of the disease. At this stage, also, F4/80- monocytes were far less obvious than earlier 

in the disease. The levels of F4/80 antigen has previously been shown to decrease on some 

stimulated macrophages and appears to correlate with increased plasma membrane fluidity in 

conjunction with increased adherence or spreading (Austyn and Gordon, 1981; Ezekowitz et 

al., 1982). The decreased expression of this antigen on monocytes that was observed in the 

eru;-ly stages of the disease may reflect increased plasma membrane spreading and motility 

associated with the recruitment of the monocytes into this locality. 

Monocytes presumably differentiate into fully functional macrophages within the CNS, 

although they are, themselves, capable of phagocytosis. F4/80+ and Ia+ cells with cresent 

shaped nuclei, containing phagocytosed pyknotic nuclei, were observed and EM analysis has 

also revealed that monocytes contain phagocytosed material (Fig 4.7D). Schwendemann et al. 

(1983) have also observed phagocytic monocytes during EM examination of brain tissue from 

mice inoculated i.e. with LCMV. The ability of monocytes to contribute to an inflammatory 

response without further differentiation into more mature macrophages has been demonstrated 

in a number of other systems (Feinman et al., 1986; Tweardy et al., 1986; Wright et al., 1986) 

and it is likely that the same is true in LCM disease. However, monocytes contributed only a 

minor portion of the total F4/80+ population (Table 4.1) and their functional importance was 

probably outweighed to some extent by other more numerous macrophages. 

Many monocytes were found in the ventricles of mice 3 days after immune cell transfer. 

This was accompanied by severe meningitis which also contained numerous monocytes, but 

there were far fewer monocytes in the equally severe inflammation under the choroid plexus or 

within the plexus villi. Therefore, it seems unlikely that monocytes infiltrate the ventricles via 

the choroidal epithelium. It is possible Lhat infiltration into the ventricles was retrograde from 
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the subarachnoid space, where there was an abundant supply of rnonocytes, via the cistema 

magnum back to the ventricles, and occurred against the flow of CSF. Walker and colleagues 

( 197 5), however, found ultrastructural evidence of leukocyte migration from the choroid 

capillaries, through the epithelial linings into the ventricles. In this case, though, the villi of 

the choroid plexus were infiltrated heavily. 

The most predominant of the F4/80+ cells in the inflammatory infiltrate were those that 

were apparently detached from the meningeal membranes and were round in shape. More than 

half these macrophages, in the disease following i.e. inoculation of LCMV, expressed the Ia 

activation antigens, while only 20~ of those in the disease induced by adoptive transfer were 

positive for class II MHC (Table 4.1). This reflects the generally low level of Ia expression in 

mice treated with Cy. Is Ia expression necessary for efficient macrophage function? In 

animals infected for 7 days with LCMV the same percentage of Ia+ cells as F4/80+ cells 

contained engulfed pyknotic nuclei, suggesting that phagocytic activity is restricted to activated 

macrophages. Engulfed nuclei probably indicate a constant proportion of the macrophages 

with phagocytic activity in the two forms of disease in which there was a similar level of dead 

cells. In this case, it would appear that, although there were many more macrophages in the 

transferred form of the disease, there was not a similar increase in the number showing 

evidence of phagocytoses. This observation supports the view that it is activated 

macrophages, expressing the class II MHC antigens, which are functional in phagocytosis. 

There was no apparent increase in the number of resident macrophages associated with 

the general inflammation within the meninges. However, there was specific localisation of 

stretched F4/80+, Ia+ cells in the Virchow-Robin space under the choroid plexus. Since these 

macrophages appeared at around the same time as the first infiltrating lymphocytes, they are 

probably not mobilised by local T cell activation. Lymphocytes were often seen in close 

contact with these macrophages which were possibly acting as a targeting population for other 

incoming inflammatory cells 

The relative absence of Ia expression on resident macrophages in the choroid plexus of 

Cy-treated mice, with no observable effect on F4/80 expression, suggests that Ia expression is 

regulated by a Cy sensitive mechanism. Immunosuppression may decrease the level of 

circulating or local lymphokines which maintain Ia expression on resident macrophages. The 

fact that class II MHC antigen is again expressed in the choroid plexus within three days after 

transfer of immune spleen cells but not after transfer of normal cells, also suggests that 

resident macrophages can be activated by local inflammation. Thus, it would appear that 

resident macrophages can be activated by an immunological stimulus. 

Although the resident macrophages of the brain parenchyma, the microgli~ have 

previously been shown to stain for the F4/80 antigen (Hume et al., 1983a; Perry et al., 1985), 

F4/80+ microglial cells were not observed in the studies reported here. Lack of F4/80 antigen 

expression probably reflects the greater sensitivity of this antigen to denaturation with PLP 

fixation as compared with the 0.5 o/o gluteraldehyde as used by Hume et al., (1983a) and Perry 
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et al., ( 1985). This suggests that the density of the macrophage marker on microglia is 

somewhat lower than that on circulating macrophages, and other resident macrophages such as 

those of the choroid plexus and meninges. 

Difference in the macrophage populations between the two forms of LCM 

disease. 

One of the most obvious differences in disease resulting from the two forms of 

induction of LCM was the difference in the relative numbers of F4/80+ cells in the 

inflammatory exudate - a higher proportion of macrophages being observed in the transferred 

disease. This did not seem to affect the outcome of the infection with respect to the mortality 

rate, but it is still an interesting phenomenon. One explanation is that activated macrophages 

which were present in the transferred cell population were infiltrating the brain along with 

immune T cells. However, Ceredig et al (manuscript in preparation), using the same tranfer 

model have shown that the cells infiltrating the CNS are of both host and donor origin. They 

made use of the two different alleles of the Pgp (Trowbridge et al., 1982) and Thy-1 antigens, 

and flowcytometric analysis of CSF exudate cells to differentiate between transferred and 

recipient inflammatory cells that infiltrate the CNS. T cells in the CSF were of donor origin 

and also expressed the donor Pgp allele, while non-T cells were all of recipient origin. Thus, 

it seems unlikely that macrophages that originate from the donor immune population contribute 

to the meningeal inflammation. 

Macrophage localisation to the CNS would most likely occur in response to 

lymphokines released from activated immune T cells recognising virus-infected brain cells. It 

is possible that the distribution of immune T cells given i.v. in transferred LCM recruit 

macrophages more effectively than T cells localised after i.e. inoculation of the virus. 

Alternatively, priming of donors with the viscerotropic WE3 strain of LCMV may activate T 

cells which produce a range of lymphokines more conducive to macrophage recruitment than 

that of lymphocytes primed with the neurotropic Arm strain of virus. 

An alternative explanation for the relative abundance of macrophages in LCM resulting 

from the adoptive transfer of T cells, is that the immune response which had already been 

initiated in the mice by d5 of infection, before immunosuppression, was sufficient to initiate 

the mobilisation of macrophages from precursors in the bone marrow. Four days later (3 days 

after transfer) many more macrophages would then be available to respond to a new wave of 

infiltration initiated by the transferred immune spleen cells. Lymphocyte activation had, 

indeed, occurred by d5 after i.e. inoculation, as demonstrated by the appearance of this cell 

type within a mildly inflamed meninges. Stimulation of these lymphocytes by virus infected 

cells in the brain would therefore result in the release of lymphokines that would effect 

mobilisation and activation of macrophages. 

A preferential sparing effect on macrophages by Cy may then have allowed the 

proliferation of this cell type to continue uninterrupted by the drug treatment Macrophages 
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and monocytes, in general, appear to be more resistant to the immunosuppressive effects of Cy 

than lymphoid cells, although administration of the drug results in an initial monocytopenia 

(d3-5) followed by extreme monocytosis (Buhles and Shifrine, 1977). The drug, however 

appears to have no direct effect on the survival or viability of monocytes in vitro (Balow et al., 

1977) while, in vivo, the radiosensitive influx of macrophages from blood monocytes into 

peritoneal tumors continues after Cy treatment (Dye and North, 1980). 

In many instances, Cy appears to enhance macrophage activity. More macrophage 

granulomas develop in the peritoneum of ECG-inoculated mice, if they are pretreated with Cy 

(Birman and Mariano, 1981). Receptor-mediated phagocytosis and incorporation of 
3H-thymidine of macrophages accumulating in the DTH response to SRBC is enhanced 

following drug treatment (Birman and Mariano, 1981). Such an increase in specific 

phagocytosis of peritoneal exudate cells has been demonstrated to peak on dl following Cy 

administration and returning to normal levels by d13 (Giordano and Isturi~ 1983). Other 

workers, however, have found no change in the phagocytic capacity of peritoneal exudate 

macrophages following drug treatment (Luster et al., 1981). The sparing effect for 

macrophages by Cy appears to extend to their precursors in the bone marrow in that, although 

general spleen colony forming units are greatly reduced by in vitro treatment with Cy 

metabolites, granulocyte-macrophage colony forming units are relatively spared both in vitro 

(de Jong et al., 1985) and in vivo (Buhles and Shifrine, 1978). 

It is not known why the macrophage lineage is relatively unaffected by this drug. They 

do not proliferate less than other cell types whose functions are suppressed, and their response 

to growth factors is unlikely to differ from those of other cells to keep them in a less 

susceptible stage of the cell-cycle. The possibility that their DNA repair mechanisms are more 

capable of overcoming with Cy alkylation seems unlikely since macrophage responses which 

are sensitive to DNA damage by y-rays are not susceptible to the drug (Dye and North, 1980). 

It is more likely that this cell lineage is capable of inactivating Cy metabolites before they 

initiate DNA damage. It is also conceivable that the strongly electophilic nature of alkylat:ing 

agents (Connors, 1975) makes them more susceptible to the antioxidant machinery of the 

macrophage. Evidence supporting this possibility is the finding that resistance of pluripotent 

hematopoietic cells to Cy is abrogated by inhibitors of the enzyme aldehyde dehydrogenase 

(Kohn and Sladek, 1985). 

Thus, Cy treatment of LCMV-infected mice may suppress the T cell response to the 

virus without affecting the proliferation and differentiation of monocytes and macrophages. 

The fact that macrophages did not accumulate in the CNS in the first few days following drug 

administration probably resulted from the absence of migration inhibition factors that would 

normally be released from activated T cells. It would be interesting to determine the relative 

contribution of macrophages to the inflammation in mice suppressed by y-irradiation. This 

form of immunosuppression is known to inhibit the replication of mononuclear phagocytes. 

There may, also, be a negative feedback loop on macrophage recruitment which is 
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dependent on the presence of activated macrophages such as those that express Ia antigens. 

Thus, in the disease induced by transferred immune cells, where the ratio of Ia+ to Ia_ 

macrophages was lower, there may have been a continual recruitment of macrophages from the 

blocxi stream to supplement the number which were activated. Circulating rnonocytes may 

have matured into end stage macrophages without µie influence of lymphokines from activated 

T cells during the first 3 days after Cy administration, and consequently became refractory to 

these lymphokines. Dye and North (1980) found a similar effect of Cy on the tumoricidal 

activity of peritoneal cells which could not be activated by endotoxin 6 days after treatment 

with the drug even though large numbers of macrophages had accumulated in the peritoneum 

of the tumor bearing mice. The authors suggested that Cy had no direct effect on macrophage 

function, but decreased the levels of sensitised lymphocytes which were providing stimulation 

for tumoricidal activation. 

Thus, a number of factors possibly contribute to the observed predominance of 

macrophages in LCM induced by the transfer of immune cells. Sparing of mononuclear 

phagocytes, in contrast to lymphoid cells, by Cy is probably a significant factor in this 

phenomenon. 

Brain Surface Pathology. 

Pathological destruction of cells lining the surfaces of the brain has not, in the past, 

been reported for infection with the Ann strain of LCMV. This includes the leptomeninges as 

well as the ependyma and choroid plexus of the ventricles, all of which show widespread 

infection with the virus (Tosilini and Mims, 1971, Walker et al., 1975). Some deterioration of 

epithelial cells in the choroid plexus was observed in mice whose LCM disease was extended 

with the use of anticonvulsants (Walker et al., 1975). Schwendemann et al. (1983), however, 

did find evidence of cell death in the meninges and choroidal epithelia of mice 6 days after i.e. 

infection with the WE strain of LCMV. 

In the study presented in this chapter, apparent destruction of meningeal cells was 

observb:l at the latter stages of LCM disease. Because extensive cell death within the 

inflammatory exudate was also occurring, it is difficult to establish the full degree of this 

destruction, as pyknotic inflammatory cells lying close to the pial and arachnoid membranes 

may have been mistaken for meningeal cells. However, the occasional observance of 

indentations in the brain surface containing pyknotic nuclei strongly suggested that at least 

some leptomeningeal deterioration was occurring. 

Much more obvious was the destruction of cells lining the walls of the ventricles. 

Here, pyknotic, necrotic ctr1d absence of easily defined, ependymal cells were observed. Such 

deterioration of the ventricle walls was seen frequently in mice with transferred LCM, but 

observed in only one mouse on d7 after i.e. inoculation. It generally occurred in the vicinity of 

small clumps of inflammatory cells which consisted of lymphocytes, blasts, monocytes or 

macrophages. Although minor ependymitis has been reported by other workers (Walker et al., 
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1977; Schwendemann et al., 1983) pathological changes in the lining of the ventricles was not 

observed (Tosilini and Mims, 1971; Walker et al.,1975), even when LCM disease was 

extended with the use of anticonvulsants CW alker et al., 1977). Destruction of ependymal cells 

probably plays no role in the development of clinical LCM disease. Mims and Murphy ( 1973) 

observed a complete stripping of the ependymal lining, and Schwendemann and Lohler (1979) 

also found pathological alterations to the ventricle walls, in mice that had recovered from the 

neurological complications of Sendai virus infection. 

No pathological disturbance of the choroid plexus was detected in this study, an 

observation which is in agreement with that of Tosilini and Mims (1971). Ultrastructural 

studies of the plexus of LCMV infected mice, however, has shown that minor loss of 

microvilli from some epithelial cells does occur (Walker et al., 1977). The authors suggest 

that this loss is insufficient to markedly affect CSF production. Infection with the WE strain 

of LCMV, however, does result in death of cells in the choroidal epithelium (Schwendemann 

et al., 1983). 

Presumably cell death in the ependyma and leptomeninges results from the 

inflammatory response to infected cells. One might assume that, since this response is 

mediated by Lyt2+ T cells, cell death is effected by the cytotoxic activity of these cells which 

recognise virus antigen in association with class 1 MHC molecules on the surface of infected 

cells. Such cytotoxicity, although readily demonstrated against target cells in vitro, has not 

been clearly shown in vivo. Studies in other systems in which tissue damage is mediated by 

Lyt2+ T cells suggest that it is not the cytotoxic activity of these cells which is responsible. In 

these studies cyclosporine A, a drug which inhibits lymphokine release from activated 

lymphocytes without affecting their cytotoxic potential, was found to inhibit the ability of 

transferred T cells to, 1) effect class I MHC restricted GVHR (Hodgkin et al., 1984), 2) 

initiate an immune response to influenza in the lungs of infected mice (Schiltknecht and Ada, 

1985a,b) or 3) effect rejection of pancreatic islet allografts (Hodgkin et al., 1985). Since the 

cytotoxic potential of the transferred cells remained intact, the authors concluded that it was not 
J 

this arm of the T cell defense which was responsible for tissue damage. It is possible that the 

lymphokine release inhibited by cyclosporine was required for the recirculation of activated T 

cells rather than for the initiation of tissue damage. However, the drug prevented graft 

rejection when T cells were transplanted together with the graft (Hodgkin et al., 1985) and 

footpad swelling was inhibited in allogeneic mice injected directly into the footpad with 

activated T cells (Hcxigkin et al., 1984). Under both of these conditions lymphocyte 

recirculation is not required. Cyclosporin A treatment also spares the majority of mice acutely 

infected with LCMV (Saron et al., 1984), supporting the view that mortality is not due to T 

cell cytotoxicity. 

It also seems likely that the Lyt2+ T cell response to LCMV does not evoke strong 

cytotoxicity activity in vivo. Certainly viral clearance from the brain parenchyma of carrier 

mice can be achieved by cloned Lyt2+ T cells without cell death or even close contact between 
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lymphocytes and infected brain cells (Oldstone et al., 1986). However, Schwendemann et al. 

(1983), using electron microscopy, claim that occasional contact between lymphoblasts and 

potential target cells in the leptomeninges and choroid plexus as well as the close spatial 

association between blasts and some dead cells, is indicative of T cell mediated cytolysis. 

However, close contact between the virus-MHC complex on the target cells and the T cell 

receptor on the effector cells must occur for both lymphokine release and cytotoxic activity. 

Furthermore, Pfau and colleagues (1985), working with an 'aggressive' and a 'docile' strain 

of LCMV, found that the cytotoxic capacity of T cells within the meningeal infiltrate was 

similar for i.e. infection with both viruses, even though only the 'aggressive' strain caused 

cerebral disease. Thus, the possibility that cell damage in the brains of infected mice results 

from the DTH response, rather than the cytotoxic activity of class I MHC-reactive T cells , can 

not be excluded. Such damage may be mediated by macrophages. 

In summary, histological examination of the brains of mice infected with LCMV 

indicates that both lymphocytes and macrophages are prominent in the meningeal infiltrate. 

Macrophages that localised at the base of the choroid plexus early in the disease, and those that 

were obviously phagocytic at later stages of infection, were activated to express the class II 

MHC antigens. Infiltrating monocytes, however, were generally ra-. This suggests that 

activation of macrophages occurs at the site of inflammation. 

The proportion of macrophages in the disease induced by transfer of immune cells into 

immunosuppressed mice was considerably higher than that in the disease following i.e. 

inoculation. However, at the time when the disease was clinically manifest, the overall level of 

meningeal inflammation was similar in both forms of LCM induction. This suggests that the 

relative concentrations of lymphocytes and macrophages is not crucial in determining the 

pathology of the disease. The predominance of macrophages in the disease induced by 

transfer of immune spleen cells possibly resulted from a sparing of this cell type by the 

immunosuppressive drug, Cy. 

,, Removal of L3T 4 + cells from the transfer immune population had no effect on 

macrophage or lymphocyte recruitment to the brain, whereas Lyt2-depletion severely reduced 

inflammation. Thus, it is likely that class II MHC-restricted T cells are not important in the 

DTH response in LCM. Class I MHC-restricted T cells are responsible for initiating the 

infiltration of leukocytes into the CNS. 

Immunosuppression with Cy reduced the level of Ia expression on both resident and 

inflammatory macrophages. Therefore, maintenance and induction of class II MHC on 

macrophages results from the activity of a Cy-sensitive cell type, probably T lymphocytes. 

Cell death in both the inflammatory exudate and the lining of the brain parenchyma was 

a predominant feature in mice with LCM. However, there appears to be no correlation 

between the extent of this cell death and the clinical consequences of the disease. 
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Table 4.1 Numerical Analysis of Inflammatory Cells in the Meninges of Mice 

with LCM. 

DAY 7 LCMV INFECTION DAY 3 TRANSFER 

F4/80 Ia F4/80 Ia 

Monocytes (cresent-shaped 2.8 + 0.8 
nuclei) 

0.6 ±0.46 6.1+1.0 0.03±0.05 

Rounded macrophages 16.0 + 3.6 9.0+2.0 31.9 + 1.8 6.2 + 0.9 

Stretched resident 
macrophages 3.2 + 0.6 1.9 + 1.2 7.4+ 2.8 2.3 +0.6 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Total percentage of cells 

stained 21.9 + 4.6 11.5 + 3.0 45.3 + 1.0 8.5 + 1.2 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Rounded macrophages 
containing pyknotic 
nuclei 1.5 ±0.8 1.4 ±0.8 1.7 + 0.8 0.8 +0.2 

Stretched resident 
macrophages containing 
pyknotic nuclei 0 0.07±0.1 0.5 + 0.45 0.1 + 0 

Unstained mononuclear * 
cells 48.3 + 6.4 56.7 + 11.4 46.2 + 3.4 82.5 + 1.8 

Cells with irregularly * 
shaped nuclei 20.0 + 0.9 23.0 + 3.7 0.3 + 0.36 0.6 + 0.26 

Pyknotic nuclei * 8.0+ 2.0 10.1 + 2.2 10.4 + 2.5 9.3 + 1.0 

Numerical analysis (Chapter 2.10) was performed on inflammatory cells in brain sections 

from mice seven days after inoculation with LCMV and 3 days after the adoptive transfer of 

immune cells into inf ecte~ immunosuppressed recipients. Data for each cell type are 

expressed as the percentage+ S.E. of the total number of cells counted. 

* Although counts were made on sections stained for F4/80 or Ia, these figures refer to cells 

that did not stain for either antibody. 
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Figure 4.1 Gelatine saline-injected control brain, F4/80: examples of F4/80+ cells on the 

pial membrane at the surface of the brain are indicated by black arrows and those on the 

arachnoid membrane are indicated by white arrows. Because two brain sections were side by 

side, there are two arachnoid membranes seen in this photogragh. The dura mater rarely 

remained intact during removal of the brain from the skull. Magnification x300 

., ) 

Figure 4.2 Gelatine saline-injected control brain, F4/80: in the choroid plexus of the 4th 

ventricle, F4/80+ cells line capillaries of the villi and some are also present on the venticular 

surface of the choroidal epithelium (arrows). Magnification x370 



Figure 4.3 Gelatine saline-injected control brain, F4/80: perivascular F4/80+ cells are seen 

in the brain parenchyma Magnification x730 

,, ) 

Figure 4.4 Gelatine saline-injected control brain, F4/80: F4/80+ cells line the sinusoids of 

the area postrema at the caudal end of the 4th ventricle. Magnification x230 



Figure 4.5 Gelatine saline-injected control brain, Ia: Ia+ cells with star-like processes are 

seen in the brain parenchyma. Magnification x460 

,. ) 

Figure 4.6 Day 7-infected brain, F4/80: meningeal inflammation consists of F4/80+ 

macrophages, monocytes with cresent-shaped nuclei (large white arrows), pyknotic nuclei 

(small white arrows), lymphocytes, blasts and cells with irregularly shaped nuclei (black 

arrows). F4/80+ cells containing phagocytosed pyknotic nuclei can be seen (double arrows) 

and in the cell indicated on the right, both the nucleus of the macrophage and the pyknotic 

nuclei can be distinguished. Variation in the extent of F4/80 staining of moncytes can be seen 

on the two examples indicated. Magnification x600 



Figure 4.7 Electronmicrographs of CSF cells taken from mice 

on d7 after LCMV inoculation 

A. Dead cells with disrupted cytoplasm and cell membrane. Variation can 

be seen in the extent of nuclear degeneration. Bar= 1 Oµm. 

B. Healthy presumptive lymphoblasts (centre, left and upper edge) and 

two dead cells (lower middle and lower right). Bar=lµm. 

C. Activated macrophage with extended pseudopods and phagocytic 

vessicle containing engulfed material (arrow). Bar=lµm. 

D. Monocyte with cresent-shaped nucleus and phagocytic vessicle 

containing engulfed material (arrow) . Bar=lµm. 
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Figure 4.7 continued. 

E. Examples of dying cells at a less advanced stage of cell death than those 

seen in A, Band F. The nuclear membrane has degenerated, condensation 

of the cytoplasm is observed and, at higher magnification (not shown), 

course granularity of the chromatin was seen. Bar=lµm. 

F. Condensed chromatin in the pyknotic nucleus of a lymphocyte. 

Bar=lµm. 
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Figure 4.8 Pyknotic nuclei in the pial membrane. 

A. Day 7-infected brain: F4/80. A pyknotic nucleus on the brain surface is indicated by an 

arrow. The area immediately surrounding this nucleus in the brain parenchyma is clear, 

indicating disruption of the cytoplasm. Magnification x970 

B. Day 7-infected brain: I_a. Pyknotic nuclei on the brain surface are indicated by arrrows. 

A large number of inflammatory cells with irregularly shaped nuclei can be seen in the 

meningeal infiltration. Magnification x600 



Figure 4.9 Day 7-infected brain, F4/80: the villi of the choroid plexus are infiltrated with 

both F4/80+ and F4/80- cells. Inflammation of the choroidal villi was seen in only 1 of 4 mice 

that had been infected with LCMV for 7 days. Magnification x300. 

, 
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Figure 4.10 Day 7-infected brain, F4/80: in general, the villi of the choroid plexus were 

not inflamed and infiltrating cells were restricted to the base of the plexus. Magnification 

x200. 



Figure 4.11 Day 5-infected brain, F4/80: an accumulation of F4/80+ macrophages are 

stretched along the base and in the stalk of the choroid plexus. Magnification x380. 

Figure 4.12 Day 5-infected brain, F4/80: close association between lymphocytes and 

F4/80+ macrophages at the base of the choroid plexus are indicated by arrows. Magnification 

x750. 
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Figure 4.13 Day 7-infected brain, Ia: inflammation can be seen in parenchymal vessels 

of the brain (large arrows). Pyknotic nuclei can also be seen in the brain parenchyma 

(small arrow). Magnification x340 

.. 



Figure 4.14 Day 2 after immune transfer, Ia: the level of meningeal inflammation on d2 

after transfer of immune spleen cells is low. Pyknotic nuclei in the pial membrane are 

indicated by arrows. Magnification x970. 
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Figure 4.15 A. Brain taken on d3 after transfer of immune cells, F4/80: F4/80+ and 

F4/80- cells, and pyknotic nuclei (arrows) can be seen in the meningeal infiltrate. 

Magnification x300. B. Brain taken on d3 after transfer of immune cells, Ia: a serial section 

of the brain shown in A is stained for Ia here. Only a few of the F4/80+ cells appear to be ra+. 

Magnification x300. 



Figure 4.16 Brain taken on d3 after transfer of immune cells, F4/80: meningeal 

inflammation on d3 after transfer of immune spleen cells is high. An example of an F4/80+ 

cell with an engulfed pyknotic nucleus, in which the macrophage nucleus is also apparent, is 

indicated by the large arrow. Examples of 'stretched' macrophages are indicated by the small 

arrows. Magnification x480. 
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Figure 4.17 Damage to the ependymal wall of the fourth ventricle on d3 after 

transfer of immune spleen cells into immunosuppressed, infected mice. F4/80: 

A. Inflammation within the ventricle and disruption of the ependymal wall can be seen. 

Magnification x390. 

B. A pyknotic nucleus of a cuboidal cell in the ependymal lining is indicated by the small 

arrow. There is a macrophage (F4/80+) adherent to this section of the ventricle wall. A 

pyknotic nuclei in the underlying vasculature (large arrow) can also be seen. Magnification 

x970. 
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Figure 4.18 Brain taken on d3 after transfer of C-treated immune cells, Ia: substantial 

infiltraion of both Ia+ and ra- inflammatory cells into the ventricle can be seen. Magnification 

x240. 
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Figure 4.19 Brain taken on d3 after transfer of C-treated immune cells into 

immunosuppressed infected mice, Ia: damage to the ependymal wall of the fourth ventricle can 

be seen. A pyknotic nucleus of a cuboidal cell in the ependymal lining is indicated by the small 

arrow and disruption of the ventricle wall is indicated by the large arrow. Magnification x930. 



Chapter 5 

Lyt2+, L3T4· T Cells Induce DTH in the Brain of LCMV-Infected Mice 
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5.1 li'ITRODUCTION 

Results discussed in the preceding chapters have demonstrated that the inflammatory 

response to LCMV infection involves the localisation of both lymphocytes and macrophages to 

sites of infection. Immunohistochemical staining for F4/80 and Ia antigens indicate a role for, 

and the activation of, mononuclear phagocytes during LCM. However, the protocol used for 

the preparation of tissue for histological examination, while providing good morphology and 

preservation of these markers, did not preserve such T lymphocyte antigens as Thy 1, Lyt2 or 

L3T4. Thus, the important question of the role played by various T cell subsets during LCM 

could not be approached using the immunohistochernical technique that had yielded substantial 

information on the distribution of activated macrophages. 

To establish the relative importance of Lyt2+ and L3T4+ T cells in LCM, an adoptive 

transfer protocol was used to induce the disease. This protocol has been described in Chapter 

2.11 and is outlined in Fig. 2.1. Briefly, infected immunosuppressed recipients received 

immune spleen cells which had been depleted of the test cell population. Using a similar 

protocol, Cole et al., (1972) and Doherty and Zinkemagel (1975a) have previously shown that 

a Thy-1 + population in the transferred immune cells is required for the induction of LCM. 

It is likely that the immune response to LCMV infection is mediated by the class 1 

MHC-restricted subset of T cells (Zinkernagel and Doherty, 1979). Such T cells are likely to 

bear the Lyt2 marker (Swain, 1983). LCMV-reactive CTL only lyse target cells which are 

compatible at either the Kor D regions of the MHC (Blanden et al., 1975; Doherty and 

Zinkemagel, 1975b; Marker and Andersen, 1976; Zinkernagel and Doherty, 1979). 

Complete reduction of this cytotoxic response is achieved by treatment of the immune cell 

population with anti-Lyt2 antibody and C, but not with anti-Lytl antibody and C, (Varho et 

al., 1981; Allan and Doherty, 1985a). Likewise, in the adoptive transfer model of LCM 

induction, acute disease only occurs when the donor and recipient are compatible for at least 

one class I MHC allele (Doherty et al., 1976b; Doherty and Allan, 1985). 

, 1Though the transfer of Lyt2-depleted virus-immune T cells into Cy-suppressed, 

virus-infected recipients resulted in a dimunition of both mortality and virus clearance from the 

brain, the onset and magnitude of the inflammatory response was not obviously modified 

(Allan and Doherty, 1985a). However, the immunosuppressive regime used in this study, 

administration of Cy 2d before virus inoculation, was probably suboptimal. When 

demonstrating that transferred cells are Thyl + and class I MHC-restricted, Cole and 

coworkers, (1972) and Doherty and colleagues, (1976b) administered the drug 2-3 days after 

infection of the recipients. Gilden et al., (1972a) had previously demonstrated that maximum 

protection from LCM is achieved if mice are immunosuppressed 3-5d after virus inoculation. 

Also Allan and Doherty (1985b) have since shown that complete abrogation of the CTL 

response is only seen if the drug is administered 4 or 5 days after virus exposure. Thus , 

although Allan and Doherty (1985a) found that Lyt2 depletion of the transfer cells reduced 
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their capacity to clear virus and induce LCM death, a reduced ability to cause inflammation 

may have been masked by residual host T cell activity in the recipients. 

In the experiments reported in this chapter, adoptive rransfer experiments with LyLL

and L3T4- depleted immune cells were performed to study the relative importance of these T 

cell subsets in induction of LCM. Long term studies were performed to see whether Lyt2+ 

immune cells can emerge in Cy-treated mice and whether the CTL are of donor or host origin. 

An immunosuppressive regime that minimised recipient CTL activity was used. 

' 1 
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5.2 RESULTS 

5.2.1 The acute inflammatory response to LC~IV in the C~S is mediated by 

Lyt2+ T cells. 

To investigate the relative contributions of L3T4 + and Lyt2+ cells in the induction of 

LCM, spleen cells were adoptively transferred from C57BL/6J mice to infected, 

immunosuppressed recipients of the same strain. Before transfer, immune cells were treated 

with mAb plus C (section 2.13) to remove L3T4+ or Lyt2+ cell populations. Anti-L3T4 

treatment removed 20% of the spleen cells and had no effect on the CTL activity for 

LCMV-infected targets. Anti-Lyt2 treatment removed 40% of the cells and was associated 

with a marked reduction in capacity to mediate cytotoxicity (Fig. 5. lA). At a dose of 1.8 x 

107
, spleen cells were transferred to 6 mice in each of the following groups: mice receiving 1) 

immune cells treated with Conly; 2) cells treated with anti-L3T4 antibody plus C; and 3) cells 

treated with anti-Lyt2 antibody plus C. A control group of recipients received no cells. 

Three days after transfer, recipient mice were analysed for the extent of inflammation in 

CSF (Fig 5.lB) and for the cytotoxic activity in spleen (Fig 5.lC) and lymph nodes (Fig 

5. lD). Mice that had received cells treated with either anti-L3T4 antibody +Corwith C 

alone, had high levels of cytotoxicity in their spleens and a high CSP inflammatory response. 

Those mice injected with the anti-Lyt2 plus C-treated population had a much reduced level of 

cytotoxicity and CSF inflammation. The latter was not significantly different from animals that 

received no cells. The cytotoxicity measured in the lymph nodes of recipient mice reflected 

that measured in the spleens, but was at a lower level. 

There was an apparent enhancement of the ability of transferred cells to cause 

inflammation in the CSP, following the removal of L3T4+ cells. This was probably due to 

enrichment of the Lyt2+ population. This was tested in the following experiment where the 

dose of cells transferred reflected the number remaining after depletion of the T cell subsets. 

. C57BL/6J donors and recipients were again used. Anti-L3T4 plus C treatment removed 

20% of the donor spleen cell population and anti-Lyt2 treatment removed 31 %. Cells were 

transferred at a dose of 2 x 107 from each of the following groups: 1) C-treated immune cells; 

2) L3T4- cells; 3) Lyt2- cells; and as a control 4) spleen cells from normal, untreated donors. 

In addition, groups of mice received spleen cell inocula from antibody and C treated 

populations that were equivalent to the Conly treated group with respect to the undepleted 

cells, i.e., 1.6 x 107 anti-L3T4 and 1.38 x 107 anti-Lyt2 treated cells were transferred. 

Three days after transfer, there was no cytoto~c activity in the spleens and low levels of 

inflammation in the CSF, of mice receiving normal spleen cells or Lyt2-depleted immune cells 

(Fig 5.2). Cytotoxic activity and CSF inflammation were present in the recipients of immune 

and L3T4 depleted populations and there was no increase in the number of cells in the CSF of 

recipients receiving the L3T4- dose of cells that reflected the cell number remaining after 
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treatment (Fig 5.2). 

Thus, the cell population that initiates LCM following adoptive transfer of immune cells 
is Lyt2+, L3T4-. 

5.2.2 H-2 compatibility at the D locus between donor T cells and the 

recipient is sufficient to induce LCM. 

To see whether class I MHC restriction is sufficient for the induction of LCM, donor 

spleen cells (B 10.BYR) were transferred into B6J-I-2bml recipients that were H-2 compatible 

only at the D locus of the MHC for H-2Db. The H-2 haplotype of the mouse strains used are 

given in Table 2.1. L3T4+ and Lyt2+ cell depletions were performed on the transfer immune 

populations, depleting 10% and 35% of the cells, respectively. Recipients received 1.5 x 107 

immune cells treated with 1) Conly; 2) anti-L3T4 plus C; 3) anti-Lyt2 plus C; or 4) 0.75 x 

10
7 

cells from the L3T4-depleted population. Two control groups were mice that received no 

cells and mice that received immune cells from H-2 incompatible donors (B 10.D2). The latter 

immune population was capable of inducing CSF inflammation in B 10.A recipients which are 

compatible at the D and L loci (3.3 + 0.1 log10cells/µl CSF). 

Animals compatible only at H-2D which received immune cells treated with Conly or 

anti-L3T4 plus C developed high levels of cytotoxicity in their spleens and high cell counts in 

their CSF. Removal of Lyt2+ cells from the transfer population reduced the spleen 

cytotoxicity and CSF inflammation to the level of the two control groups (Fig 5.3). 

Thus, H-2 compatibility at the D locus between donor and recipient, is sufficient for the 

transfer of LCM. D-restricted immune T cells are Lyt2+, L3T4-. 

5.2.3 Cytotoxic T cells in the spleen of mice with transferred LCM are of 

donor origin. 

To establish whether the cytotoxic T cells in the spleens of mice with transferred LCM 

originate from the donor or recipient, Thy 1.1 donors (B6Ka Thyl.1) and Thy 1.2 recipients 

(C57BL/6J) were used. Donor spleen cells were treated with either Conly or with anti-Lyt2 + 

C. The latter treatment abrogated their capacity to lyse LCMV-infected MC57G target cells 

(Fig5.4A). Recipient mice received 1.0 x 107 C- treated or Lyt2- immune cells. Four days 

after transfer, CSF inflammation in mice that received C-treated immune cells (Fig 5.4B) was 

again correlated with high cytotoxicity in the spleen (Fig 5.4C). Anti Thyl.l plus C treatment 

removed SOo/o of the recipient spleen cell population and reduced cytotoxic levels as effectively 

as treatment with anti-Lyt2 plus C. Depletion of Thy 1.2+ cells reduced the cell numbers by 

43% bur had no effect on cytocoxicity (Fig 5.4C). Meningitis was significantly reduced in 
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mice receiving Lyt2- immune cells (Fig 5.4B) and cytotoxicity of recipient spleen was low 

(Fig 5.4D). However, residual cytotoxic activity of donor Thy 1.1 + cells was suggested by the 

apparent enhancement of lysis following anti-Thy 1.2 treatment (Fig 5.4D). 

Thus, T cell reactivity to LCMV in the spleens of mice with transferred LCM is derived 
from the donor spleen cells. 

5.2.4 Depletion of Lyt2+ cells from the transfer population does not prevent 

LCM at 7 days post transfer. 

On some occasions, C57BL/6J mice survived the CNS inflammatory response that 

occurred 3 days after transfer. In the two passive transfer experiments described in Chapter 4, 

one had a much higher level of histological and clinical evidence of CNS inflammation than the 

other. In the first experiment, mice receiving immune spleen cells were moribund, and one 

was dead, on d3 post transfer. In the second experiment, the equivalent clinical state was not 

reached until 1-2 days later. The CNS inflammation of animals on d5 post transfer was 

histologically equivalent to that seen in the previous experiment on d3. Thus, the clinical 

symptoms of LCM are closely correlated with the histological development of the disease. 

The latter experiment, in which there was late development of LCM, will now be 

considered. Histologically, the brains of mice receiving Lyt2-depleted cells resembled those 

receiving normal spleen cells. When compared to those receiving Conly or anti-L3T4 plus C 

treated immune cells, there was little evidence of CNS inflammation on d3 (Chapter 4). On d5 

post transfer, 2 mice that had received C-treated immune cells, one that had received 

L3T4-depleted cells and 2 that had received Lyt2-depleted cells were examined histologically. 

Meningeal inflammation in all these mice was extensive, equivalent in severity and extent of 

macrophage infiltration to that seen 3d after transfer in the previous experiment. Depletion of 

Lyt2+ cells from the immune transfer population abolished their capacity to induce 

histologically detectable meningitis on d3 post transfer (Chapter 4), but by d5 there was no 

detectable difference in the extent of inflammation between mice receiving depleted or 

undepleted populations. Clinically, mice in all groups were huddled on d5 post transfer and 

one animal in the group receiving normal speen cells died from LCM on d6. 

On d7, inflammatory cells in the CSF were counted and the cytotoxic activity in the 

spleen measured in the remaining mice. The numbers of mice were: 1) 4 receiving cells treated 

with Conly; 2) 7 receiving L3T4- cells; 3) 7 receiving Lyt2-cells; and 4) 9 receiving normal 

cells. The inflammatory cell count was not performed on mice receiving normal spleen cells 

but was high in all other groups (Fig 5.5A). Spleen cell cytotoxicity was high for all groups 

of mice (Fig 5.5B), including those receiving normal spleen cells. 

Thus, although Lyt2-depleted immune spleen cells and normal spleen cells are unable to 

induce LCN1 at 3d post transfer, LCM reactivity as measured by spleen cell cytotoxicty and 

CSF inflammation can develop at a later date. 
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5.3 DISCUSSION 

It is now accepted that the Lyt phenotype generally defines the MHC-restriction pattern, 

rather than the functional status, of T cell subsets (Swain, 1983). The experiments reported 

here demonstrate that the depletion of Lyt2+, but not L3T4+, cells from LCYlV immune spleen 

cells reduces their capacity to lyse virus infected target cells and their ability to induce acute 

inflammation (d3-4 post transfer) in the CNS of immunosuppressed, infected recipient mice. 

These results confinn the notion that the immunopathological consequences of LCMV 

infection are mediated by class I MHC-restricted T cells, as previously shown by the necessity 

for the donor and recipient to share at least one class I MHC allele (Doherty et al., 197 6a,b; 

Doherty and Allan, 1985). The fact that compatibility at the D locus of the MHC is sufficient 

for induction of CSF inflammation has been commned, and the effector cells were shown to 

be Lyt2+ (Fig 5.3A). 

Removal of the L3T4 subpopulation from immune cells sometimes (Fig 5. lB), though 

not always (Fig 5.3A), enhances their capacity to induce acute cerebral LCM. This probably 

results from the enrichment for Lyt2+ effector cells in the transfer population. When the 

number of transferred.cells is not adjusted for the decreased cell number after antibody and C 

treatment, no enhancement is observed (Fig 5.2A, column C). Doherty et al., (1976b) found 

that the capacity of immune cells to induce inflammation was dose responsive, 2 x 107 immune 

cells having a greater effect on recipient mortality than 1 x 107 cells. However, Doheny and 

Zinkernagel (1975a) found that 108, 5 x 107, and 2.5 x 107 cells were equally effective in 

causing recipient mortality. Likewise, Allan and Doherty (1985b) found that 1.5 x 107 and 2 x 

107 transferred immune cells induced the same level of CSF inflammation and mortality. 

Thus, the dose responsiveness of LCM induction by transferred immune cells must have a 

plateau which begins around 1-2 x 107 cells. This was the range of cell doses used in this 

study. The capacity of transferred cells to induce LCM would be determined by a number of 

factors, including the potency of the immunisation used to generate the cells. The number of 

cells, transferred might not, therefore, be the sole factor in determining the efficiency of the 

inoculum to induce LCM. Thus, the variation in the enhancing effect following depletion of 

the L3T4+ subpopulation may be due to variation in the potency of the transferred inoculum. 

Use of the B6Ka Thyl.1 mice as donors of immune cells for syngeneic Thyl.2+ 

recipients, confirmed that LCMV-reactive CTL in recipient mice, 4 days after transfer, were of 

donor origin (Fig 5.4C). Within this time span, there is no evidence of any residual recipient 

CTL activity. In fact, removal of recipient T cells (Thy 1.2+) had an enhancing effect on 

spleen cell cytotoxicity which probably resulted from the enrichment of Thyl.1 + effector cells. 

This enhancement is most prominent when examining the CTL reactivity of mice receiving 

Lyt2-depleted Thyl.1 + cells. These mice have very low levels of both meningitis and spleen 

CTL activity (Figs 5.4 B,D). However, depletion of the spleen cell population of Thyl.2+, 

but not Thyl.1 + or Lyr2+ cells, appears to unmask a low level of cytotoxicity in the recipients. 



5-7 

Thus, there exists the possibilty that, 4d after transfer of Lyt2-depleted immune cells, some 

reactivity to LCMV is emerging. 

This cellular response in mice receiving Lyt2-depleted cells is also seen histologically on 

d5 after transfer (section 5.2.4), and is apparent on d7 when CSF cell counts and spleen CTL 

activity are high (Fig 5.5). Mice receiving normal spleen cells also suffer clinically from LCM 

from d5-7 post transfer and have high levels of spleen cell cytotoxicity on d7 (Fig 5.5B). 

One possible explanation for the late development of LCN1 is that Cy treatment only 

delays, rather than abolishes, the CTL response to LCMV. This is unlike! y in view of the 

effectiveness of Cy immunosuppression in preventing the onset of LCN1 disease and in 

establishing a virus carrier state. Administration of 150mg/kg of Cy to BALB/c mice 3d after 

i.e. inoculation of LCMV resulted in only 10% mortality from LCM, 1-2 weeks later (Gilden 

et al., 1972a). While Allan and Doherty (1 985b) found a 100% mortality rate in C57Bl/6 mice 

at dl4 p.i. for the same immunosuppressive regime, there was less than 20% mortality if the 

drug was administered Sd after inoculation (the time point used in this study). Therefore, it is 

likely that the delayed development of LCM in mice receiving normal or Lyt2-depleted immune 

transfer populations results from the activity of donor cells. 

Doherty and Zinkernagel (1 975a) and Zinkernagel et al., (1975) also found, in a 

number of experiments, that mice receiving normal spleen cells died 6-9 days later. Doherty et 

al., (1976b) found a similar delayed mortality but in only 38% of recipients. The time span 

between the transfer of normal cells and the development of LCM disease seen in the 

experiments reported here ( 6-7 days), is compatible with the stimulation and proliferation of 

naive LCMV-specific precursors within the transfer population. 

In the case of delayed development of LCM following the transfer of Lyt2-depleted 

immune cells, it is less likely that naive LCMV-reactive cells are being stimulated after transfer, 

since these would have been stimulated to proliferate during the initial immunising procedure. 

Anti-Lyt2 plus C treatment would then have removed these reactive CTL. Perhaps the 

difference in virus strain between priming and challenge has resulted in the delayed 

development of LCM. The immune donor cells were derived from mice primed with the WE3 

strain of LCMV and recipients were inoculated with the neurotropic Armstrong strain. 

Therefore, there is possibly a sub-population of CTL that respond to the latter strain and, if not 

cross-reactive to the immunising strain, would remain naive at the stage of transfer. Although 

all strains of LCMV are serologically cross-reactive (Rowe et al., 1970; Matthews, 1982), 

Dutko and Oldstone (1983) have demonstrated that the two strains of virus used in this study 

differ extensively on the basis of their RNase T1 fingerprint patterns. The authors have 

suer crested that these strain differences account for their varying biological properties. Parekh 00 

and Buchmeier (1 986) also demonstrated that distinct antigenic sites could be distinguished on 

different strains of LCMV by monoclonal antibodies. In particular, they found a neutralising 

site on the Armstrong CA- 1371 virus that was specific for this strain and was absent in the 

WE strain. Studies by Oldstone's group established that strains of LC1'1V could also be 
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distinguished on the capacity of primary CIL to kill a panel of target cells infected with the 

various virus strains (Ahmed et al., 1984). Nloreover, the authors found that the degree of 

cross-reactive immunity was dependent not only on the virus strain but also on the major 

histocompatibility haplotype of the infected animals. Thus, within the group of LCrvI viruses, 

the CTL response is not completely cross-reactive. However, Ahmed and coworkers (198-+) 

did not find that the Arm and WE virus strains could be distinguished in C57BL/6J mice. 

Even if there were determinants of the Ann strain that were not recognised by WE3 immune 

CTL and could stimulate a cytotoxic response in the transfer cell population, one would expect 

that these naive Lyt2+ cells would also be depleted during the antibody treatment. Such cells , 

however, might express lower levels of Lyt2 than the larger activated blasts. Such a situation 

occurs for expression of class I MHC glycoproteins during the cell cycle of Con A-treated 

spleen cells (Muller et al., 1986). 

A more likely explanation for the delayed onset of LCM in mice receiving Lyt2 depleted 

immune cells, is that the antibody treatment, though greatly reducing the cytotoxicity of the 

transfer population, did not remove all activated CTL. The possibilty that some cytotoxic cells 

remain is indicated by the presence of low levels of activity in the depleted populations at the 

higher E:T ratios (for example, Fig 5. lA). Such residual cells would require time to multiply 

in the host before they could effect LCM disease. 

The possibility that the later appearence of LCM is due to the activity of the L3T4 

population is unlikely, in view of the fact that mice receiving Thyl-depleted immune cells also 

show a delayed onset of mortality (Doherty and Zinkernagel, 1975a). 

In conclusion, the results reported in this chapter demonstrate that acute inflammation in 

the CSF of immunosuppressed, infected mice is mediated by donor Lyt2+ T cells. 

Immunohistological analysis has shown that a large proportion ( 45%) of the inflammatory 

cells infiltrating the meninges are macrophages. Therefore, in LCMV infection, class I 

MHC-restricted T cells have the capacity to elicit a DTH response that involves the recruitment 

of monbnuclear phagocytes. Depletion of the L3T4 + T cell subset does not qualitatively 

change the nature of the inflammatory response (Chapter 4), but can, in some circumstances, 

influence the extent of inflammation through enrichment of the Lyt2+ cell population. 



Figure 5.1 The acute inflammatory response to LCMV in the CNS is 

mediated by Lyt2+ T cells. 

A: Cytotoxic activity of the transfer cell populations. Single cell suspensions of 

immune spleen cells from C57BL/6 mice that had been primed 8d previously with 1000 

LD50 of WE3 LCMV, were 1) untreated, 2) treated with Conly, 3) treated with 

anti-Lyt2 + C, or 4) treated with anti-L3T4 + C. Cytotoxicity was measured as% 

specific lysis of 51Cr-labelled MC57G LCMV-infected target cells. 

B: CSF cell counts of recipient C57BL/6 mice 3d after cell transfer. Syngeneic 

recipients had been inoculated i.e. with 1000 LD50 of Arm LCMV, given 200 mg/kg of 

Cy i.p. 5d later and immune spleen cells after a further 24hr. Mice received: A) 

C-treated immune cells; B) L3T4-depleted immune cells; C) Lyt2-depleted immune 

cells; or D) normal spleen cells. The cell counts were compared using Wilcoxan rank 

analysis . . The values for C and D were significantly less than those for A and B 

(p<0.01). There was no significant difference between A and B or between C and D. 

C: Cytotoxic activity in the spleens of mice receiving 1) C-treated immune cells, 2) 

L3T4-depleted immune cells, 3) Lyt2-depleted immune cells, or 4) normal spleen cells. 

D: Cytotoxic activity of lymph node cells of mice receiving 1) C-treated immune cells, 

2) L3T4-depleted immune cells, 3) Lyt2-depleted immune cells, or 4) normal spleen 

cells. Cell suspensions were derived from a pool of the cervical, ax.illary and 

mesenteric lymph nodes of recipient mice. 

All log values given are to the base 10. 
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Figure 5.2 Adjustment of the dose of cells transferred to reflect the 

number remaining after antibody and complement treatment. 

A: CSF cell counts of recipient C57BL/6 mice 3d after cell transfer. Recipients had 

been inoculated i.e. with 1000 LD50 of Arm LCMV, given 200 mg/kg of Cy i.p. 5d 

later and immune spleen cells after a further 24hr. Donor spleen cells were from 

C57BL/6 mice that had been primed 8d previously with 1000 LD50 of WE3 LCMV. 

Mice received: A) 2 x 107 C-treated immune cells; B) 2 x 107 L3T4-depleted immune 

cells; C) 1.6 x 107 L3T4-depleted immune cells; D) 2 x 107 Lyt2-depleted immune 

cells; E) 1.3 x 107 Lyt2-depleted immune cells; or F) 2 x 107 normal spleen cells. The 

cell counts were compared using Wicoxan rank analysis. The values for C, D, E and F 

were significantly less than those for A and B (p<0.02). The values for D, E and F 

were significantly less than that for C (p<0.02). 

B: Cytotoxic activity in the spleens of mice receiving 1) 2 x 107 Lyt2-depleted immune 

cells, 2) 2 x 107 C-treated immune cells, 3) 2 x 107 L3T4-depleted immune cells, or 4) 

1.6 x 107 L3T4-depleted immune cells. Cytotoxicity was measured as % specific lysis 

of 51 Cr-labelled MC57G LCMV-infected target cells. 

All log values given are to the base 10. 
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Figure 5.3 H-2 compatibility at the D locus between donor T cells and 

the recipient is sufficient to induce LCM. 

A: CSF cell counts of recipient B6.H-2bml mice 4d after cell transfer. Recipients had 

been inoculated i.e. with 1000 LD50 of Ann LCMV, given 200 mg/kg of Cy i.p. 5d 

later and immune spleen cells after a further 24hr. Donor spleen cells were from mice 

that had been primed 8d previously with 1000 LD50 of WE3 LC:tvlV. Mice received: A) 

1.5 x 107 C-treated B 10.BYR immune cells; B) 1.5 x 107 L3T4-depleted B 10.BYR 

immune cells; C) 0.75 x 107 L3T4-depleted BlO.BYR immune cells; D) 1.5 x 107 

Lyt2-depleted BlO.BYR immune cells; E) no cells; or F) 1.5 x 107 immune B 10.D2 

cells. The cell counts were compared using Wicoxan rank analysis. The values for D, 

E and F were significantly less than those for A, B and C (p<0.02). The values for D, 

E and F were significantly less than that for C (p<0.02). 

B: Cytotoxic activity in the spleens of mice receiving 1) 1.5 x 107 C-treated B 10.BYR 

immune cells, 2) 1.5 x 107 L3T4-depleted B 10.BYR immune cells, 3) 1.5 x 107 

Lyt2-depleted B 10.BYR immune cells, 4) no cells, or 5) 1.5 x 107 immune B 10.D2 

cells. Cytotoxicity was measured as % specific lysis of 51 Cr-labelled MC57G 

LCMV-infected target cells. 

All log values given are to the base 10. 
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Figure 5.4 Cytotoxic T cells in the spleen of mice with transferred LCwl 

are of donor origin. 

A: Cytotoxic activity of the transfer cell populations. Single cell suspensions of 

immune spleen cells from B6Ka Thyl.1 mice that had been primed 8d previously with 

1000 LD50 of WE3 LCMV, were 1) untreated, 2) treated with complement only, or 3) 

treated with anti-Lyt2 + C. Cytotoxicity was measured as % specific lysis of 
51 Cr-labelled MC57G LCMV-infected target cells. 

B: CSF cell counts of recipient C57BL/6 mice 4d after cell transfer. Recipients had 

been inoculated i.e. with 1000 LD50 of Arm LCMV, given 200 mg/kg of Cy i.p. 5d 

later and immune spleen cells after a further 24hr. l\llice received: A) C-treated immune 

cells; or B) Lyt2-depleted immune cells. The cell counts were significantly different 

when compared using vVilcoxan rank analysis (p<0.01 ). 

C: Cytotoxic activity in the spleens of mice receiving C-treated immune cells. 

Recipient spleen cells were 1) untreated, 2) treated with anti-thyl.2 + C, 3) treated with 

anti-thyl.1 + C, or 4) treated with anti-Lyt2 + C. 

D: Cytotoxic activity in the spleens of mice receiving immune cells treated with 

anti-Lyt2 + C. Recipient spleen cells were 1) untreated, 2) treated with anti-thyl.2 + 

C, 3) treated with anti-thyl.1 + C, or 4) treated with anti-Lyt2 + C. 

All log values given are to the base 10. 
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Figure 5.5 Depletion of Lyt2+ cells from the transfer population does 

not prevent LCM at 7 days post transfer. 

A: CSF cell counts of recipient C57BL/6 mice 7 d after cell transfer. Recipients had 

been inoculated i.e. with 1000 LD50 of Arm LCMV, given 200 mg/kg of Cy i.p. 5d 

later and immune spleen cells after a further 24hr. Donor spleen cells were from 

C57BL/6 mice that had been primed 8d previously with 1000 LD50 of WE3 LCMV. 

Mice received: A) 1.75 x 107 C-treated immune cells; B) 1.75 x 107 L3T4-depleted 

immune cells; or C) 1.75 x 107 Lyt2-depleted immune cells. The cell counts were not 

significantly different when compared using Wicoxan rank analysis. 

B: Cytotoxic activity in the spleens of mice receiving 1) 1.75 x 107 C-treated immune 

cells, 2) 1..75 x 107 L3T4-depleted immune cells, 3) 1.75 x 107 Lyt2-depleted immune 

cells, or 4) 1. 7 5 x 10 7 normal cells. Cytotoxicity was measured as % specific 1 ysis of 
51 Cr-labelled MC57G LCMV-infected target cells. 

All log values given are to the base 10. 
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In this thesis, the extent to which macrophages are involved in the host response to 

LCMV has been investigated. Their distribution in infected liver and brain was determined by 

immunohistochemical analyses. Activated macrophages were recognised by expression of 

class II MHC antigens, as well as the macrophage marker, F4/80. The ability of Lyt2+ T cells 

to mediate this recruitment in the CNS was determined using an adoptive transfer model for 

inducing LCM disease. The results obtained showed that there was both recruitment and 

specialised localisation of macrophages to sites of virus infection. This recruitment was 

effected by class I MHC-restricted T cells. 

That lymphocytes are responsible for recruiting macrophages to LCMV-infected liver 

was suggested by the fact that peak levels of infiltration by lymphocytes (Fig 3.7) preceded 

that of monocytes (Fig 3.5) and sinusoidal macrophages (Fig 3.3). In the CNS, use of the 

adoptive transfer model enabled identification of the T cell sub-population that recruits 

macrophages during LCM. Immunohistochemically defined, F4/80+, macrophages infiltrated 

the leptomeninges of virus-infected, immunosuppressed mice after transfer of immune spleen 

cells (section 4.2.2). The transfer studies demonstrated that the responsible subset was class I 

MHC-restricted and Lyt2+. When the transfer population was depleted of Lyt2-bearing cells, 

but not when it was depleted of L3T4+ cells, macrophage infiltration was abrogated (section 

4.2.3). Similarly, Lyt2-depletion, but not L3T4-depletion, inhibited the capacity of immune 

spleen cells to initiate a DTH response as determined by measuring the number of 

inflammatory cells in the CSF (section 5.2.1). Macrophages constitute a significant proportion 

of .these CSF cells, as judged by flowcytometric analysis of their 90° light scatter properties 

and distribution of the Pgp marker (Ceredig, Doherty, Allan; manuscript in preparation). 

Further indication that class 1 MHC-restricted T cells are responsible for effecting the DTH 

response in the brain, was the observation that cells adoptively transferred to mice compatible 

only at the D region of the MHC were able to initiate CSF inflammation, and this inflammation 

was abrogated following removal of Lyt2+ cells from the transfer population (section 5.2.2). 

, A role for class II MHC-restricted, L3T4+ T cells in initiation of the influx of 

macrophages into the CNS also seems unlikely because of the failure to observe such cells in 

the CSF inflammatory exudate. Work of Ceredig and colleagues (1987) has clearly 

demonstrated that, in both the transferred disease and that following i.e. inoculation of the 

virus, most Thy-1 + cells in the CSF are Lyt-2+. It is possible, though, that L3T4+ cells have 

been retained in the neural tissue. However, a predominance of class I MHC-restricted T cells 

was detected, by immunohistochemical staining, in perivascular cuffs in the brains of multiple 

sclerosis patients (Hauser et al., 1986). Whereas, in experimental allergic encephalomyelitis, a 

disease known to be mediated by class II MHC-restricted T cells (Hauser et al.,1984; Brostoff 

and Mason, 1986), the majority of lymphocytes in the perivascular cuffs were class II 

MHC-restricted; Lytl +, Lyt2- in the mouse (Sriram et al., 1982) and W3/25+ in the rat (Polman 

et at., 1986). Therefore, in diseases of the CNS that are mediated by a particular T cell subset, 
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there appears to be little contribution by lymphocytes of the other subset. 

Thus, class 1 NlHC-restricted T cells are responsible for the DTH response to LC1'1V in 

the CNS of infected mice, a response which involves the recruitment of macrophages to the 

brain. Lymphokines likely to be involved in macrophage recruitment are y-interferon, MIF, 

MAF, IL3 and GM-CSF (reviewed in Schrader et al., 1984; Gemsa et al., 1985; Waksman, 

1985; Metcalf, 1986). It is not known what the spectrum of lymphokines produced by 

LCMV-reactive T cells is, but release of these lymphokines from class I NlHC restricted 

lymphocytes is known to occur (Dennert et al., 1981; Kelso et al., 1982; Kelso and 

MacDonald, 1982; Morris et al., 1982; Guerne et al., 1984; Kelso and Glasebrook, 1984). 

LCMV-specific, class I MHC-resticted T cells are also capable of lysing virus-infected target 

cells in vitro (Zinkemagel and Doherty, 1974a; Blanden et al., 1975; Marker and 

Andersen,1976; Varho et al., 1981; Doherty and Allan,1986), and inducing clinical symptoms 

of LCM (Doherty et al., 1976b; Doherty and Allan, 1985; Zinkemagel et al., 1985). Whether 

the same Lyt2+ T cells are responsible for all these effector functions is unknown. The 

development of LCMV-reactive clones with different capacities to mediate these functions 

would detennine whether they are coexpressed and their relationship to each other. Such 

variation in function between T cell lines has been demonstrated in other non-viral systems ( 

Kelso et al., 1982; Guerne et al., 1984; Nlosmann et al., 1986). However, the analysis of in 

vitro capacities of clones would not necessarily determine the functions of particular T cell 

subsets that were stimulated and functional during the in vivo immune response. 

During LCMV infection, in the experiments reported in this thesis, macrophages 

localised to areas of infected tissue which were, in some cases, distinct from those areas 
' 

infiltrated by lymphocytes. This was particular noticeable in infected liver where the 

anatomical features are uniformly dispersed and readily identifiable. Macrophages were 

initially absent from periportal and zonal lymphocytic foci and incoming monocytes 

accumulated in efferent rather than afferent blood vessels, suggesting a preferential localisation 

in areas that drained the lymphocytic foci (Chapter 3). This accumulation maybe determined 

by the ooncentration of NlIF released from lymphocytes in both the sinusoids and the 

inflammatory foci. Equivalent drainage sites were not readily distinguished in the CNS 

sections described in Chapter 4. They would be expected to occur where CSF drains through 

the arachnoid villi into the major dural sinuses and along the olfactory nerves. J\1eticulous 

sectioning of the brain to locate these areas would be useful in determining whether 

macrophages accumulate at drainage sites in the CNS. 

In general, an increase in the number of macrophages in LCMV-infected organs was 

a~companied by an increase in the number of cells that expressed Ia antigens. The infiltration 

of infected organs by activated macrophages was preceded by (chapter 3), or concomitant with 

(chapter 4), an influx of lymphocytes. Release of y-interferon from activated T cells on 

interaction with virus-infected target cells may have been responsible for the activation of 

macrophages to express class II MHC antigens. 
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There was variation in the extent of macrophage activation, as measured by the levels of 

Ia expression, in liver and brain and with the different infection procedures used. 01lost 

monocytes entering the liver expressed class II 011HC antigens (Chapter 3). Activation of 

monocytes to express Ia during viscerotropic infection with the WE3 strain of LC01lV may 

have resulted from extensive release of y-interferon from activated T cells in many organs 

including the bone marrow and spleen. Thus, monocytes entering the liver may already have 

been subjected to the influence of lymphokines in their organ of origin. In the CNS, fewer of 

the monocytes infiltrating the meninges were activated, especially on the initial days of 

examination and in mice that had been immunosuppressed (Chapter 4). Intracerebral 

inoculation of adult mice with the neurotropic, Arm LCMV does not result in the infection of 

viscerotropic organs (Tosilini and Mims, 1971). Thus, in the experimental system used here, 

the first exposure of monocytes to activating lymphokines may not occur until they have 

reached the brain. 

Local release of y-interferon is possibly important in inducing class II NlHC expression 

on resident macrophages as well as infiltrating monocytes. Immunosuppression with Cy 

virtually abolished Ia expression from all resident macrophages in the choroid plexus, 

meninges and Virchow-Robin spaces of the brain (Chapter 4). This effect probably resulted 

from the depletion of T cell factors that were necessary for maintaining Ia levels. The 

possibility that y-interferon is important in such maintenance could be tested by the in vivo 

administration of this lympohokine during Cy immunosuppression. Re-expression of Ia 

antigens on some macrophages followed the transfer of immune, but not normal, spleen cells. 

Such Ia+ macrophages, however, may have been derived from the influx of macrophages into 

the brain, stimulated by the transferred immune cells. Although there was no observable 

difference in the number of F4/80+ cells before or after Cy treatment to suggest that this was 

the case, it would be necessary to use the appropriate morphometric techniques to accurately 

measure the extent of expression of the two antigens on inflammatory cells that have localised 

to the surfaces of the brain. · 

, The functional importance of macrophages in the immune response to LCMV is difficult 

to determine. A carrageenan-sensitive, irradiation-insensitive cell population, most likely 

macrophages, has been implicated in the control of LCMV replication early in infection, and it 

has been suggested that resident macrophages are an initial barrier to viral spread (Thomsen 

and Volkert, 1983; Lehmann-Grube et al., 1986). The role of macrophages as a first line of 

defense in viral infections has been reviewed by Mogensen (1979). It seems unlikely, 

however, that resident macrophages are able to resist infection by LCMV. This virus grows 

readily in peritoneal macrophages (Tosilini and Nlims, 1971) and infection. in the liver is 

preceded by an apparent replicative cycle of the virus in Kupffer cells (Tosilini, 1970). 

The role of resident macrophages early in infection may be in stimulating T cell activity, 

i.e. the carrageenan-sensitive cells are responsible for initiating the immune response, rather 

than acting as a physical barrier to the virus. The initial increase in the number of Kupffer cells 
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within 5 days of viscerotropic inoculation (Fig 3.3), suggests the possibility of such a role for 

resident macrophages. However, these sinusoidal macrophages did not express class II 011HC 

antigens. Although such expression and stimulatory capacity are not strictly linked (Laffeny et 

al., 1980; Glimcher et al., 1982), macrophage populations that are capable of initiating 

immune responses are generally ra+ (Unanue, 1984). Furthermore, although carrageenan 

treatment implicates the importance of resident macrophages early in the response to LC?vlV, it 

has no effect on the ability of mice to mount a cytotoxic T cell response to LC?vlV (Marker and 

Volkert, 1973; Thomsen and Volkert, 1983). Thus the ability of resident macrophages to 

restrict viral spread must be dependent on functional capacities other than that of T cell 

activation. 

One functional role played by macroppages recruited to sites of LCMV infection, which 

was discerned by immunohistochemical analysis , was that of phagocytosis of pyknotic nuclei. 

Death of inflammatory cells during LCMV infection was evident during the later stages of the 

infection. Pyknotic nuclei were observed in inflammatory foci in the liver (Chapter 3) and 

among cells of the meningeal infil trate (Chapter 4) . Such cell death, in the liver, preceded the 

infiltration of foci by activated macrophages and, in the CNS, was accompanied by the 

appearance of phagocytosing macrophages. Thus, a 'mopping up' role can be defined for 

mononuclear phagocytes during the resolution of LCMV infection. Macrophages that perform 

this function were activated to express class II MHC antigens. 

What other functions are performed by activated macrophages that are recruited to areas 

of virus infection, remains unknown. A role in virus clearance has been implicated in adoptive 

transfer experiments. An irradiation-sensitive, carrageenan-insensitive effector population was 

required for elimination of virus from the spleens of LCMV-infected mice which were 

examined 4 days after transfer of immune cells (Thomsen and Volkert, 1983). 

Lehmann-Grube and colleagues (1985), however, found that such a population did not play an 

auxiliary function in the reduction of spleen viral titres. Virus reduction was mediated within 2 

days of transfer of, as few as, 200 immune T cells. Such clearance could be effected within 6 

hours i a larger number of CTL were transferred - hardly sufficient time to allow for the 

recruitment and activation of macrophages. McIntyre and coworkers (1985), also, have 

suggested that non-specific mediators of virus clearance are unlikely to be operational within 

the first 2 days of immune cell transfer. In mice co-infected with LCMV and another 

arenavirus, Pichindie virus , only the virus for which immune spleen cells were specific was 

cleared from spleens after cell transfer. If macrophages were responsible for virus clearance in 

this case, one would expect an equal effect on the the two viruses which were shown to infect 

cells lying in close proximity in the spleen (McIntyre et al., 1985). 

The discrepancy in the resul ts and conclusions found by these 2 groups of workers may 

reflect the time points at which viral elimination was measured. Undoubtedly, macrophages 

are not involved in the initial restriction of viral replication occurring early after the transfer of 

small numbers of immune cells (Lehmann-Grube et al., 1985). However, measurments of 
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reduced viral tirres after a longer time span (Thomsen and Vol.ken, 1983) may be indicative of 

the importance of macrophages in clearing virions from organs in which viral replication has 

been contained. The localisation of macrophages to sites which drain areas of infection, as 

was seen in the liver (Chapter 3), may reflect their capacity to remove virus particles that have 

been released into the blood stream. 

The functional importance of macrophages in the pathology of LCN1 has not been 

elucidated. Thomsen and coworkers ( 1983a) have suggested that the major contribution to the 

development of LCM disease is the DTH response to the virus, with macrophages playing a 

pivotal role. This conclusion is based on the fact that protection from the disease in 

Cy-pretreated mice correlated with decreased footpad DTH responses. Cenainly, a major 

DTH response does occur in the brains of infected mice as judged by an extensive influx of 

inflammatory cells into the CSF (Chapter 4). However, to determine definitively a 

pathological role for macrophages, it would be necessary to show protection from LCM with 

the in vivo removal of this cell type, followed by re-expression of the disease after macrophage 

replacement. 

The mechanism by which the immune response to viral antigen in the CNS causes the 

neurological symptoms and death associated with LCMV has not been elucidated. Symptoms 

are analogous to those of tentorial coning, a condition that results from the build up of pressure 

above the sheet of dura mater separating the cerebrum from the cerebellum (the tentorium) 

(Plum and Posner, 1972; Jennett, 1970). What causes supratentorial pressure in mice with 

LCM is speculative. 

It is unlikely that the breakdown of the blood-brain-barrier contributes to increased 

intracranial pressure in LCM, since no edema can be detected by measuring the difference 

between infected and uninfected brains in their ratio of wet to dry weight (Camenga et al., 

1977) or density on percoll gradients (Thumwood, Doherty and Allan; pers. comm.). The 

possibility that clinical symptoms result from the breakdown of the CSF-blood barrier 

(Doherty and Zinkemagel, 1974) could be supported by the observation of damage to the 

epenclyma and meninges in mice suffering from LCM (Chapter 4). However, extensive 

damage to both the ependyma and choroidal epithelium which occurs during the latter stages of 

Sendai virus infection is not associated with neurological symptoms. (Nlims and Murphy, 

1973). 

Increased intracranial pressure could result from impairment of CSF resorption across 

the arachnoid villi or along the olfactory nerves. Such impairment may result from increased 

viscosity of CSF (Welch, 1975) which, in LCNl, could result from the extensive death of 

inflammatory cells in the subarachnoid space (Chapter 4) with the consequent accumulation of 

cell debris. The inflammatory exudate itself may alter the fluid viscosity. Doherty and 

Zinkemagel (1974) have, however demonstrated that neurological symptoms similar to those 

of LCM do not accompany massive infiltration of cells into the CSF during either tumor 

growth and rejection or severe meningitis following toga- and herpes- virus infections. 



6-6 

What may be imponant in effecting the putative blockage of CSF resorption, however, 

is the anatomical localisation of inflammatory cells. If, in the meninges as in the liver, there is 

specific accumulation of macrophages at sites that drain areas of LClvlV-reactive T cells, CSF 

resorption through arachnoid villi may be impaired. To investigate this hypothesis, it would 

be important to determine whether there is specific accumulation of macrophages at CSF 

outflow sites. 

In summary, the work presented in this thesis has shown that Lyt2+, class I 

MHC-restricted T cells generated during the immune response to LCMV are capable of 

recruiting activated macrophages to sites of virus infection. In the liver, at least, the 

localisation of macrophages to anatomical sites distinct from that of lymphocytes suggests that 

mononuclear phagocytes play a distinct functional role during viral infection . 

.., 
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