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Dr. Who to companion Follow me! I've got a better idea. 

Companion Why? What is your idea? 

Dr. Who I don't know. That's the trouble 

with good ideas. They only 

come a bit at a time. 
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ABSTRACT 

A quantitat ive technique for constructing sexual cysts 

(macrocys ts) , in D. discoidcum is described. This technique was used 

to show that macrocysts can be formed with a single zygote ahd that sex 

hormone activity in D. discoideum is more complex than the simple one 

way system previously proposed. 

Mat.i11g in D. discoideum was s hown to be controlled by 2 

alleles at a single -locus (matA and mata). A system of vegetative 

incompatibility has been discovered in D. discoideum and was also shown 

to be controlled by only the mating-type locus. Amoebae of opposite 

mating-type (matA· and mata) will form macrocysts but not parasexual 

(vegetative) diploids, whereas amoebae of the same mating-type (matA + 

matA or mata + mata) will form parasexual diploids but not macrocysts. 

This phenomenon was examined in a series of sexual and parasexual .crosses 

between independent wild isolates of either mating-type and tester 

strains of NC4 (matA) and Vl2 (mata) origin. This finding was further 

supported by genetic analysis of three rare parasexual diploids 

("illegitimat,e " diploids) which were formed between amoebae of opposite 

mating-type . These diploids were shown to be homozygous for vegetative 

in~ompatibility and mating-type. 

Th0 l i t0rc1tur0 on vcqctc1tj.vc i.ncomrc1.tjbi lity 1n the fungi, 

. . 
cra~;[;<'.1 , l:. 

rcvicwcct . Way s of overcoming vegetative incompatibility are discussed 

and sugges ions are made towards constructing a system in which sexual 

t111d pur,1 ~;c~xu<1l (_Jc11clic ,'1n.:1Jysis cc111 be performed u~dng strains derived 

from S j ll g 1 e W i ] d j ~; 0 ] a l C • 
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GENERAL INTRODUCTION 

The cellular slime mould Dictyostelium discoideum has become a 

popular organism for studies of differentiation because of its well 

dcfiilcd , ycl::. !=-;i.mpJc , etscxuo.l cycle of development ( f:i.g . 1.). The short 

life-span and naked amoeboid state have made this lower eukaryote 

amenable to biochemical studies (Loomis, 1975). However, the sequence 

of biochemical events underlying developmental processes must always 

begin at the gene. A workable parasexual cycle has already provided a 

good foundiltion for genetic analysis in D. discoideum (Fig. 2), but 

sexual genetic analysis is not yet possible on a routine basis 

(Jacobson & Lodish, 1975). Access to both parasexual and sexual genetic 

analysis in D. discoideum would make this organism an even more attractive 

model system for the study of basic problems in cell biology. 

D. discoideum has a haploid chromosome number - of seven (Brody & 

Williams, 1974; Robson & Williams, 1977) and in the wild is 

predominantly a haploid organism. However, rare diploids are spontaneously 

formed at low frequency and in the laboratory can be selected and 

maintained indefinitely as stable diploid cultures (Loomis, 1969; Katz 

& Sussman , 1972 ; Welker & Deering , 1976; Newell et al., 1977; Williams, 

1978) . In a diploid population , haploids arise spontaneously at a low 

frequency (Brody & Williams, 1974) and these can be purified using 

selective methods (Katz & Sussman , 1972; Williams et al ., 1974a). 

Alternatively haploidisation can be induced using the fungicide ben late 

(Williams & Barrand , 1978) . This conversion from haploid to diploid and 

back again , plus mitotic crossing-over, represents a complete parasexual 

cycle (Fig. 2) (Pontecorvo, 1956). Since the haploid and diploid phases 

of the parasexual cycle of D. discoideum are both stable and can proceed 

through the whole 6.scxual life cycle (Pig . 1), the allclism of mutations 

can be determined by complementation analysis (Williams & Newell, 1976). 
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Mitotic crossing-over is a rare event (10- 3 to 10-
4 

in D. discoideurn, 

Mosses et al., 1975) and therefore in the parasexual cycle genetic 

markers on the same linkage group are rarely recombin_ed. Since 

chromosomes assort randomly during haploidisation of the diploid, 

mutations can be readily assigned to a linkage group (Pontecorvo & 

Kafer , 19 S 8 ) . In other organ·isms meiotic crossing-over is a frequent 

event so that during the sexual cycle genetic marke·rs on the same 

cllromof-jOm · cJrc frequently recombined . This fct1ture of meiosis enables 

2. 

genetic markers on the same chromosome to be readily assigned positions 

with resp ct to each other and to the centromere (e.g. in the fungi; 

Kafer , 1977). Hence with an integrated system of parasexual and sexual 

genetics , mutations could be readily mapped and the genetic regulation 

of biochemical events controlling morphogenesis .or other fundamental 

processes of cell bioloyy could be greatly facilitated. 

The par asexual sys tern of D. discoideu_rn has been established 

using the wild isolate NC4. Since this strain is now well marked 

genetically it would be advantageous to construct the sexual genetic 

system around it. There are other advantages in working with only one 

basic isolate as illustrated in the fungi (Kafer, 1977). Problems, 

such as inconsistent map distances , have been encountered in sexual 

analysis of the heterothallic fungus Neurospora crassa through working 

with strains of different origin (Fincham & Day , 1971). Strain NC4 is 

a hcterothallic strain of D. discoidcum and therefore requires a partner 

of opposite mating-type (2.1.) before a sexual reaction will proceed 

(l'ig . 3) . ~t this stage we arc faced with the possibility of establishing 

a scxu 1 system between the well marked strain NC4 and another, perhaps 

unrelated , strcJin of opposite mating-type . In view of the problems 

associat d with basinq a sexual system on crosses between different wild 

isola. e (as :in N. cru.ssu) this s:ituc1tio11 would be best avoided. Indeed, 
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3. 

past attempts to cross strain NC4 sexually with a strain of opposite 

mating-type but of different origin (V12) have presented problems. The 

sexual cyst (macrocyst) can be germinated at only low frequency and 

after a long dormant period (Nickerson & Raper, 1973b ; Wallace, 1977). 

Poor macrocyst germination may be, in part , a result of the genetic 

background 'differences between matA and mata strains . 

One way of minimising the genetic differences between opposite 

mating-type strains may be . to isolate two new strains on the same day 

and from the same soil sample. Such strains would almost certainly 

be closely related . For this reason attempts were made to isolate 

Australian D. discoideurn (see Appendix A) . 

Another way to obtain strains of similar background ('isogenic') 

for use in sexual genetic analysis is to physiologically manipulate 

NC4 and Vl2 themselves . As a result of recent reports of sex hormone 

activity in D. discoideum (O ' Day & Lewis , 1975 & 1977; MacHac & 

,Bonner, 1975) it was thought that meiosis could be induced in 'isogenic' 

strains of the same mating type (e.g. derivatives of NC4) by 

application of sex hormone. Indeed, genetic evidence has shown that 

'selfing' can be ind~ced in heterothallic strains of Neurospora by 

application of sex hormone (Vigfusson & Cano, 1974). Such an approach 

in D. discoideurn is discussed in Chapter 1. 

Eventually it became apparent that a third approach using 

' parasexual genetics offered the most potential for obtaining isogenic 

strains of opposite mating-type. It was reasoned that if parasexual 

diploids could be constructed between NC4 and Vl2, the mating~type 

locus could be mapped using par a s exual gene tics. Dy manipulating the 

segregatio11 of the diploid, one could then construct an NC4 haploid of 

Vl2 m.J.ting-Lypc. 'l'hi s aI:Jproach is described in Chu.pter 2 and a way of 

integrating sexual and paras exual genetic analysis bas ed on the well 

marked strain, NC4, is presented. 



4. 

CHAPTER 1 QUANTITATIVE ANALYSIS OF MACROCYST FORMATION 

1.1 INTRODUCTION 

Conditions favouring macrocyst formation in thG cellular slime 

moulds were first established for 'self-crossing ' (i.e. homothallic) 

strains of Dictyostelium mucoroides and Dictyostelium minutum 

(Blaskovics & Raper, 1957). Erdos et al. (1972) reported presumptive 

evidence for meiosis in the developing macrocyst of a homothallic strain 

of Polysphondylium violaceum . A search for mating-types (Clark et al., 

1973; Erdos et al., 1973b) has since then shown that many strains and 

species of dictyostelid slime moulds are heterothallic. Therefore the 

macrocyst is now known as the sexual structure of cellular slime moulds 

and is commonly formed between amoebae of opposite mating-type. 

Before any method for increasing the frequency of macrocyst 

germination can be explored, the process of macrocyst formation must be 

understood. To this end it would be desirable to establish a quantitative 

technique for making macrocysts. Various modifications to three basic 

methods for making macrocysts are currently used in other laboratories. 

Two of these involve growing strains of opposite mating-type together in 

the dark, on 0 . 1% LP-agar pre-spread with bacteria: One is a wet method 

(i:e. agar plates flooded with water Nickerson & Raper, 1973a) and , 

the other a dry method (Polysphondylium pallidum forms macrocysts more 

frequently when the plates are not flooded : Francis, 1975). The amoebae 

arc left to eat the bacteria, starve and develop into macrocysts without 

being perturbed . A third method involves growing the amoebae in liquid 

culture , wasl1ing the amoebae by centrifugation , suspending them in 

saline and shaking on a reciprocal shaker (Filosa & Dengler , 1972). 

None of these techniques have been used to quantify macrocyst 
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formation. In this chapter , I describe attempts to establish a 

quantitative technique of macrocyst formation in D. discoideurn following 

upon the earlier study by Powell (1974) in this laboratory . With such 

a technique it may be possible to answer such questions as 'Are all 

cells capable of zygote formation? ' ' How many zygotes are required to 

make one m~crocyst?' and ' What role if any do sex hormones (O'Day & 

Lewis , 1975 & 1977; MacHac & Bonner , 1975) play in D. discoideurn? ' 

l.2 Ml\TERJT\LS 1\ND METHODS 

1. 2 . A Materials 

All media and chemicals are described in Appendix B . 

1 . 2 . B Maintenance of stocks 

( i) Bacteria 

Klebsiella aerogenes is used as a food source for growth of 

· 0 0 
D. discoideurn. It is grown for 2 days at 21 C and then stored at 4 C 

clonally on SM-agar or in bulk supply as mass plates on SM-agar. 

K. aerogenes is scraped from a mass plate (stored in the cold for less 

than 3 weeks) into S.S . and 0 . 1 ml aliquots are used as inocula for 

nutrient agar plates . 

(ii) D. discoideurn 

All strains are described in Appendix B. 

Current stocks of D. discoideurn are maintained as streak clones 

0 at 21±1 Con SM-agar , prespread with K. aerogenes; they are restreaked 

weekly. The stocks are stored in opaque plastic boxes loosely covered 

with aluminium foil in a lighted room ( :. semi-light). For long term 

storage of D. discoideurn, -3 x 10 8 
- 10 9 clonally derived spores are 

suspended in approximately 0 . 2 ml of normal horse serum (CSL Australia) 

and then dried on to washed , dry-sterilised , silica gel (6-20 mesh). 

- 0 . 
When these silica gel stocks are stored at 4 C the . spores remain viable 
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for several years . 

1 . 2 . C 'Quantitative-technique ' of macrocyst formation 

Amoebae of the strains to be crossed were grown separately on 

' ' 
either L.l?-ayar or SM-agar together with K. acrogenes, ancJ were incubated 

in the dark (petri plates were wrapped in a double layer of aluminium 

foil) or in the light (unwrapped petri- plates were placed upside down 

about 2 feet beneath a daylight fluorescent light). The plates were 

inoculated with the required number of amoebae ( 10
11 

- 4 x 10 
5 

depending 

on the strain) to produce ' clearing ' p l ates in 48±lhr . Plates are said 

to be ' clearing ' when the amoebae have almost completely eaten the 

available bacteria but a r e not yet aggregation competent. 

The ' clearing ' amoebae were harvested from the agar by dis­

lodging them with a sterile b~nt glass rod spreader into 20 ml ice cold 

sterile distilled water . They wer~ washed 3 times by centrifugation 

(Sorvall SS34 head ) at l . SK for 2 minutes in sterile distilled water. 

The final pellet was resuspended at 5 x 10 7 amoebae/ml in sterile 

distilled water . The amoebal density was determined by haemacytometer 

counts. 

Clear plastic , flat bottomed , Linbro tissue culture dishes 

(FB-16-24-TC) were prepared in advance with sterile 20mM CaCl2 (final 

concentration in 1 ml). The washed amoebae were added to the wells at 

the required concentration ; either 5 x 10 6 amoebae of each strain per 

well (e.g . Table 8 - Chapter 2) or a series of dilutions ranging from 

5 x 10 6 to 5 x 10 1 amoebae of each strain (e.g. Table 1 - Chapter 1). 

The viability of the washed amoebae was tested at this stage 

by plating them clonally on to SM-agar with K. aerogenes and incubating 

at 21±1°c . The number of colonies could be counted after 4 or 5 days 

and hence the percentage viability calculated . 
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The culture dishes were wrapped in a double layer of foil 

and incubated, without shaking, at 21±1°C . After 7 days of incubation, 

the dishes were unwrapped and the number of macrocysts were counted 

using an Olympus CK inverted microscope at 40 x magnification. 

1. 3 RESULTS 

1. 3 . A Quantitative analysis of macrocyst formation in D. discoideum 

( i) Characterisation of macrocysts 

A macrocyst is a spherical structure with a loose multi-layered 

primary wall, a more compact rigid secondary wall ,and a triple layered 

pliable tertiary wall (Erdos et al., 19 .72) . In this work rnacrocysts of · 

D. discoideum have been classified as either fully developed (in which 

all three walls are clearly visible) or poorly developed (in which only 

the primary or primary and secondary walls are visible); they vary in 

size from 20µ - 80µ (Fig.4). The poorly developed macrocysts include 

both immature macrocysts that have the potential to become fully developed, 

and under-developed macrocysts that never proceed past the development of 

the secondary wall. The number of under-developed macrocysts produced 

after 7 days in a cross varies from 0% to 95% of the total number of 

macrocysts present , depending to some extent on the strain used. For 

example in tests performed in 2.3 . A, homothallic strain AC4 consistently 

formed about 90% fully developed macrocysts, whereas homothallic strain 

Za- 3a , when 'selfed ', consistently formed less than 10% fully developed 

macrocysts . lleterothallic crosses invariably fall between these two 

extremes . No attempt has been made to determine why poorly developed 

macrocysts are so commonly formed. 

(ii) Effect of amoebal growth conditions on macrocyst formation 

The 'quantitative-technique ' (1 . 2.C> separates macrocyst 

formation into two stages : growth of amoebae and incubation of amoebae 

under conditions favouring macrocyst formation . In previous attempts to 



Fully developed rnacrocysts of hornothallic strain, AC4 
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and underdeveloped rnacrocysts (ud) . Fully developed rnacrocysts ( fd) 

arc also shown: M~crocysts were formed between strains WS582 & HU299. 

Fig . 4 MQcrocysts of Dictyostclium discoidcurn 
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quantify macrocyst formation, Powell (1974) established that incubation 

of amoebae in the dark in 20mM CaCl2 resulted in good macrocyst production. 

These incubation conditions have been used in all of the studies reported 

here. 

I have investigated the effect of different growth conditions 

on subr;c<1ucn t macrocys t formation. In four cxpcrjmcnts I crossed strains 

of opposj l:.c m.Jl.in9-l:.ypc, TS12 (matl\l) a.nd Vl2 (mu.ta2), in various pairwise 

cornul11u.Liu11s Lo dcLcu11l11c Llw c.Cfccl of 11<:JllL vu u~rk or of different 

growth media on mu.crocyst formation. 

( a) The eff~ct on macrocyst production of using different growth 

media prior to macrocyst formation 

Amoebae of TS12 (matAl) and Vl2 (mata2) were grown separately in 

the dark on either SM-agar or LP-agar. SM-agar is the rich nutrient 

medium normally used for maintenance of stocks (1.2.B{ii)). LP-agar is 

a low nutrient medium which is unbuffered and therefore low in phosphate. 

Amoebae were harvested separately and incubated together in the dark in 

20mM CaC1 2 {1 . 2 .C). The effect of prior growth medium on macrocyst 

production is shown in Fig . S . Qualitatively all four experiments gave 

the ~; , trnc' r cs itl t-s ,rncl these wc~ r.<' consi st0nt wj t-:h the findings of Nickerson & 

Raper (1973a); i.e. a medium low in phosphate (LP) favours macrocyst 

production . Quantitatively there was considerable variation from one 

experiment to the next (see error bars : Fig. S) . 

(b) 'l'hc effect on mc1crocyst production of growth in the light 

v~~ Lho cl t1rk prior Lo m<lcrocyst formc-1tion - - ------- --------~._ _____ ------

Amoebae were grown separately on LP-agar in either the light or 

the dark (1.2.C) prior to harvesting for macrocyst formation. The effect 

of 'prior' ligl1t conditions is shown in Fig . b . The four experiments all 

gave the same qualitative results , and these agreed with the findings of 
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Fig . 5 The effect on macrocyst production of using different growth 

media prior ko macrocyst formation . 

• Amoebae were pregrown in the dark on LP-agar . 

A Amoebae were pregrown in the dark on SM- agar . 

· ---- Strain TS12 constant at s X 10 6 amoebae ; strain Vl2 

diluted from s X 10 6 amoebae to s X 10 1 amoebae . 

Struin Vl2 constant at S x 10 6 amoebae ; 
) 

strain TS12 

diluted from S x 10 6 amoebae to S x 1 0 1 amoebae~ 
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The effect on macrocyst production of growth in the light 

vs the dark prior to macrocyst formation . 

e DK TS12/DKV12 

.• DK 'l'Sl2/LTV17. 

0 ~T TS12/LTV12 

0 LT 'I'Sl2/DKVJ2 

l 11 ;1 I I nf t IH'li<' rxpcr i rnc'1ll·! ; t· J10 ,,1110l'b,-1e~ we're CJrow11 on LP-,1.qc1r . 

DK represents yrowth of amoebae ir1 the dark ; LT represents 

CJ row l ll or ,1.111ocbcJ.c i..11 tlic l i qll t . 

- --Slrc1.i11 'l'Sl2 co11stc111L ,lt '.) x lOG cJ.moebae; slraln Vl2 

d j l u L c~d r rom ~i x 10 r. , u11ocuac Lo S x 10 1 umocuc:ic . 

---- S .rL1 L11 V 12 cons La11 t ul 5 x 10 h dmocbac ; s trcJ.in TS12 

diluted from 5 x 10 6 illTioebae to 5 x 10 1 amoebae . 
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Nickerson & Raper (1973a) and Erdos et al ., (1976) i.e . growth of 

amoebae in the dark favours macrocyst production . 

By performing this experiment quantitatively , the effect of 

light was shown to be partially dependent upon the relative concentration 

of each strain. For instance when 5 x 10 6 TS12 amoebae were combined 

with 5 x 10 6 Vl2 amoebae , the macrocyst production was high regardless 

of whether the amoebae were grown in the light or the dark. However , 

6 ~1en 5 x 10 ilmocbnc of one strain (TS12 or V12) grown in the light were 

combined with 5 x 10 5 amoebae of the other strain , there were almost 

no macrocysts formed regardless qf whether the diluted strain was grown 

in the light or the dark (Fig . 6) . 

(iii) The significance of the quantitative-technique in determining 

the relative importance of matl\ and mata strains on macrocyst 

formation 

By varying the concentration of one strain in relation to the 

other (c . q. as described in Table 1) information can be obtained of a 

kind not c1vailc1hJe using a qualitative approach. From Fig . 5 alone it 

has been shown that within the environmental conditions tested (i.e. 

growth in the dark on either SM-agar or LP-agar), a constant supply of 

excess TS12 amoebae favoured macrocyst formation more so than a constant 

supply of excess Vl2 amoebae . This effect was shown to be related to 

the matjng-type of the strain rather than to the strain itself in a 

s er ics of cxpcr imcn Ls ou tl incd in Table 2. The conclu~., ion from thcs c 

e xperim nts is th.:i.t the matl\l strain plays an importu.nt role in macrocyst 

forma ion and that when excess matl\l amoebae (5 x 10 6
) are available, any 

individual mata2 amoeba can form a macrocyst . The reverse is not true 

( see Tab 1 c 2 ) . In fact no macrocysts were formed until about 100 matl\l 

amoeb e were added to a large excess (5 x 10 6
) of mata2 amoebae (Table 1). 

llowever, that the mata2 amoebae are not passive during macrocyst formation 



TABLE l 

Quantitative analysis of macrocyst formation under favourable conditions 

between strains TS12 and Vl2 

Number of 
amoebae of 
strain TS12 

(matAl) 

I 
5 X 10 6 

5 X 10 5 

5 X 10 4 

5 X 10 3 

5 X 10 2 

5 X 10 1 

Number of 
amoebae of 
strain Vl2 

(mata2) 

5 X 10 6 

5 X 10 5 

5 X 10 4 

5 X 10 3 

5 X 10 2 

5 ~ 10 1 

I 
5 X 10 6 

I 

Total number 
of amoebae 
in cross 

l X 10 7 

5.5 X 10 6 

5 . 05 X 10 6 

5.01 X 10 6 

5.00 X 10 6 

5 . 00 X 10 6 

5 . 5 X 10 6 

5.05 X 10 6 

5.01 X 10 6 

5.00 X 10 6 

5.00 X 10 6 

Number of 
fully 
developed 
macrocysts 
formed ( ± SE) * 

174 + 34 

144 + 83 

107 ± 72 

87 + 64 

34 + 87 

18 + 17 

106 + 56 

72 + 46 

27 + 16 

3 + 6 

0 

These resul.ts are the average of 4 experiments in which TS12 and Vl2 were 

grown on LP-agar in the dark (Fig . 5) and then crossed using the 

'quan titative-technique ' of macrocyst formation (1.2.C). 

* Only fully developed macrocysts were scored in these experiments. 

SE = Standard error of mean 



TABLE 2 

The relative importance of matA and mata on macrocyst formation 

Numbers of amoebae 

5 X 10 6 5 X 10 l 

matAl x mata2 

mata2 x matAl 

Crosses * 

HU l 

X9 

X 

X 

TS12 x 

NP158 X 

NP158 X 

Vl2 X 

NP158 

NP1 58 

Vl2 

HU l 

X9 

TS 1 2 

Average number of 
macrocysts formed 

7 

20 

24 

0 

0 

0 

Strains derived from the matAl strain NC4 (HUl , X9 and TS12) or the mata2 

strain Vl2 (NP158 and V12 ) were crossed ( ' quantitative-technique ' 1 . 2 . C) 

so that 5 x 10 6 amoebae of one strain were combined with 5 x 10
1 

amoebae 

of the other strain in the combinations shown. 

* Two types of crosses were performed : ( i) 5 ~ 10 6 mat Al amoebae + 

5 x 10 1 mata2 amoebae OR · (ii) 5 x 10 6 mata2 amoebae + 5 x 10
1 

matAl 

amoebae . 

The HUl x NP158 crosses were performed twice . HUl and NP158 were 

grown on SM-agar in semi- light . They were harvested , washed and diluted 

as for the ' quantitative- technique ' (1 . 2 . C). The X9 x NP158 crosses 

were performed 3 times . X9 and NP158 were grown on SM-agar in semi-light 

and th e n used as for the ' quantitative - technique '. The TS12 x Vl2 crosses 

were performed 4 times . TS12 and Vl2 were grown on LP-agar in the dark and 

were then used as for the ' quantitative-technique '. 

The nwnber of macrocysts includes poorly developed macrocysts as 

well as fully de veloped macrocysts . 
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is appare nt from experiments in which amoebae of matAl or mata2 were each 

grown under different environmental conditions (e . g . in the light vs the 

dark) . The key experiments illustrating this point are shown in Fig . 6. 

Consider the experiments where excess amoebae of the mata2 strain, Vl2, 

we re combined ·with dilutions of the matAl strain , TS12 . When both strains 

were grown in the light (~~~~~-o~~~~~-) almost no macrocysts were 

formed . However , when Vl2 was grown in the dark and TS12 in the light 

a high number of macrocysts were formed. This 

shows that the dark grown mata2 strain is contributing to macrocyst 

formation . 

Thus , both the matAl strain and the mata2 strain play anactive 

role in macrocyst formation. 



1.4 DISCUSSION 

1 . 4.A Quantitative analysis of macrocyst formation 

By quantifying rnacrocyst formation in D. discoideum , I have 

souyht to increase the understanding of macrocyst formation beyond the 

limitations of qualitative studies . The ' quantitative-technique' 

11. 

described herein (1 . 2 . C), separates the growth phase of amoebae from the 

phase of macrocyst development . (The amoebae of each strain are grown 

separately before they are combined for macrocyst development). Therefore 

one can examine separately the effect on macrocyst production of altering 

the growth conditions of amoebae or the environmental conditions of 

macrocyst development. In this Chapter, I describe experiments in which 

only the growth phase was varied . Qualitatively my results support 

previous reports in. which LP-agar and the absence of light were shown to 

favour macrocyst production (Nickerson & Raper, 1973a; Erdos et al., 1976). 
--

The reports of Nickers·on & Raper (1973a) and Erdos ct al. (1976) did not 

distinguish between the growth of amoebae vs. macrocyst development. 

Powell (]974) show~d that the absence of light and phosphate were 

essential during macrocyst development. My results show that a low 

phosphate medium and darkne s s arc also critical during the growth of 

amoebae prior to macrocyst development. 

( i) Are the progeny of one macrocyst the product of one meiosis? 

l\t germination, over one hundred amoebae can emerge from a 

single macrocys t (Wallace, 19 77) . Therefore a macro cyst could co0ceivably 

have more than one meiosis. Either a single zygote could divide 

mitotically prior to mitosis (thus producing in effect several zygotes) 

or s cv0 r ,1 l zyqo t-c~, could he tr c1.prcd i n th c r., a.me mac rocys · at th c tj me of 

its formation . For reasons outlined in 2.4.D and 2.4.F(iii), mitotic 

division of n zyqotc (i.e . a dirlojd co11taining both mating-types) is 



unlikely . Wallace (1977) has presented genetic evidence that in some 

circumstances more than one zygote is present in macrocysts of 

D. discoidewn . However , since he formed macrocysts after growing high 

numbers of amoebae of each ma ting- type tog_ether , it was to be expected 

that, by chance , some macrocysts would include more than one zygote . I 

have shown that by mixing SO mata2 amoebae with excess matAl amoebae, 

an average of 18 fully developed macrocysts were formed (Table 1) . 

Assuming a random distribution of the SO mata2 amoebae it is unlikely 

that more than one zygote would be included in any macrocyst . This is 

12. 

an important advantage for future sexua l genetic anal ysis in D. discoideum, 

since it means that we have the potential to analyse the products of 

a single meiosis . 

(ii) A suggested improvement to the quantitative-technique 

A maJor problem with the ' quantitative- technique' of macrocyst 

formation was the high degree of quantitative variation from one 

experiment to the next , even when environmental parameters were controlled 

(Figs. S & 6) . It is possible to exclude cell viability as a cause of 

the fluctuation , since in all of the four experiments reported in Fig.6 , 

the cell viability was consistently high . The greatest variable factor 

of the quantitative technique was the growth stage of the amoebae when 

harvested . The growth of amoebae was not uniform on a clearing plate 

and varied depending on how well the amoebae had been spread on to the 

agar . Therefore it is possib le that the high degree of quantitative 

variation encountered in these experiments was due to differences of 

amoebal ' age ' . 

A change of approach is needed. It is suggested that amoebae 

be grown in liquid culture in the future so that a synchronous population 

of amoebae can be harvested at a precise stage of amoebal growth or 

starvation. 



1.4 . B The role of sex hormone activity in D. discoideum 

From the experiments described in this Chapter certain 

conclusions can be made about the mechanisms involved in macrocyst 

formo io11. I!: war; nl1ow11 in J. . 3 . 7\(ii i) tl1at Uw ml tl\l P.trn.i.n is 

ctctively involved in macrocyst formation (when excess mata2 amoebae 
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were available , no rnacrocys ts were formed un L:il abouL 100 matl\.l amod..>c.1e 

were prese11t). This result indicated that a system of recognition was 

operating between the amoebae of opposite mating-type clurlng . macrocyst 

formation . Since the mata2 strain also played an active role during 

rnacrocyst formation (1 . 3 . A (iii ) )_, any recognition system operating 

between the two strains must be a feedback system rathe r than a s i mple 

one way recognition system . This is contrary to current reports in the 

literature in which a simple one way system of sex hormone activity in 

D. discoideum has been proposed (O ' Day & Lewis , 1975 & 1977; MacHac & 

Bonner , 1975) . These authors described a system in which NC4 was the 

secreter of hormone and Vl2 the responder. However , recent attempts 

to repeat the findings of O ' Day & Lewis (1975) using the same isolates 

and techniques have been unsuccessful (Wallace, 1977). 

tn early experiments I attempted to demonstrate a one way 

system of sex hormone activity by adding supernatant from washed 

amoebae of one ~train back to amoebae of a strain of opposite mating­

type . This approach was also unsuccessful . However, in view of my 

evidence for a more complex system of recognition, the failure of these 

experiments is perhaps understandable . It is helpful to note ·that 

similar problems were encountered during initial attempts to demonstrate 

sex hormone activity 1 n the fungi . Banbury (195~) was unable to induce 

zyCJophorc' producti.011 1 n the Phycomycctc , Mucor mucedo by exposing the 

lllYCl l i111n 01 Olll' ~;l ,o1i11 lo .:1. 1iJ l ri:1lC' 01 LllC ol Ji0r , Il0WCV(' 1, when cl 

filLrc Le of u. combi11ecJ ( 1-) and (-) cultur wc1s added back to the (+) 
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strain , zygophores were produced . Hence , Banbury (1954) indicated the 

requirement for two sequential steps in the initial sexual expression 

of Mucor mucedo . Sequential feedback systems have now been shown to 

initiate and regulate sexual interaction in many different fungi 

(e . g . the most thoroughly researched are Ascobolus , Achlya , Mucor and 

and Neurospora : Machlis, 1966; Raper , 1967 ; Barksdale , 1969; 

. vigfusson & Cano, 1974) . Therefore it is possible that by searching 

for a sequential system of sex hormone activity in D. discoideum, a 

more reproducible system will be demonstrated . 

Defore sex hormones can be used to induce ' selfing ' between 

strains derived from the same basic isolate (General Introduction ) it 

will be necessary firstly to develop a more reliable technique for 

14. 

quantitative analysis and secondly to establish the balance of hormones 

required to induce macrocyst formation . 
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CHAPTER 2 VEGETATIVE INCOMPATIBILITY AT THE MATING-TYPE LOCUS 

IND . DISCOIDEUM 

2 .1. INTRODUCTION 

Attempts to form parasexual diploids between strains of 

opposite mating-type in D. discoideum have generally been unsuccessful 

(Williams unpublished). Only one such diplojd, DP72 , has been · reported 

in the literature (Mosses et al ., 1975) . This lack of 

opposite mating-type diploids suggests that a system of 'self' 'not-

self' incompatibility is operating in D. dis,coideum as it does in a wide 

range of organisms from fungi through to man (2.4.H). It was therefore 

I / 

considered likely that an attempt to construct isogenic strains of 

opposite mating-type using a parascxual genetic approach (General 

Introduction) would present problems . 

The literature on incompatibility systems in the lower eukaryotes 

has been examined in the hope of exposing the nature of these problems. 

There are two w,ell documented systems of incompatibility operating in the 

lower eukaryotes : sexual and asexual. To avoid confusio~, the former 

will be r~ferred to in the context of mating and mating-types, and the 

latter will be referred to as vegetative incompatibility . 

2 .1.A Mating-type systems in the lower eukaryotes 

In the fungi and other lower eukaryotes, mating is controlled by 

mating-type genes , which operate regardless of whether or not there are 

any morphological sex structures (Raper, 1964; Bergman , et al. 1969; 

Carlile 1973). He t e rothaJli s m, in which s uccessful mating occurs only 

between strains of different mating-type, is a common system 

of sexual r eprodu ction for those organisms . 1I omothalli s m, in which mating 

occurs between genetically identical organisms is also widespread through-
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out the lower eukaryotes (Carlile, 1973) . 

The genetic basis of mating has been well documented in the 

fungi . It ranges in complexity from a simple one l ocus- 2 allele system 

Lo J lliCJllly c~volv<.'c1 l..wo C1.cl:.or-nmllt c1llclic ;1ynlcm ( c . q . 'lwo muting 

L:ypc ,ill c' lc"'!; at ,1 si119lc Jocus , in L:hc Phyc·omycctcs .:rnd 

l\s comycc Les : for yencral reviews sec Wlliteliousc , 1949 ; Haper , 1966; 

Finchum & Day , 1971 ; Esser & Blaich , 1973. I\ number of alleles at 

Lwo dLJ ic.tcttl curnplcx loci, 111 L11c U<.1.sldlornyccll~S : 

1971 ; Papazian , 1951) . In the Myxomycetes (acel lular slime moulds) 

two amoebae fuse to form a plasmodium , the first step in the sexual 

cycle . This is governed by a one locus-multiple allele mating system 

(i . e . a number of alleles at a single locus ; e.g. in Physarum : Henney 

& Henney , 1968 ; Dee , 1966 ; and in Didymium iridis : Collins , 1963). 

Few details of mating in'the cellular slime moulds are yet known. 

Mating-types were first recognised in the cellular slime moulds by 

Clark et al . (1973) and Erdos et al. (1973b) and since then the mating-

type systems of a number of species have been examined . It has been 

shown , however, that in the eight species examined for mating competence 

(macrocyst formation) , both heterothallism and homothallism are found. 

Two mating-types have been defined in Polysphondylium pallidum (Francis, 

1975 ; Eisenberg & Francis , 1977) , although non-mating and homothallic 

strains were also reported (Eisenberg & Francis, 1977) . Clark (1974) 

violucoum were te sted for mu.crocyst formation , that P . violaccum has two 

sy ngen s cu.c h wi.th two muting-types . She reports some overlap of the two 

<Jl" <H1p:, liowovt r, .: 11\Ci ~;o it- i :; po;;:,:il>l' th,1l: t·hl'rc urc in [,1cL only two 

mt1LirnJ-lYL> C'....i tn ll.1i s ~.;pcc;jc~~ - 'l'en of L:.lic forl:.y-llinc strc.1i lls tested in 

T11 c1 r;tucly on m,1tinq jn 

Lhc s1wc _1-c~· Di.cLyo!;t li.um giyontcum , Erdos ct al . (1975) claim that there 
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are four mating-types expressed. Of the forty isolates tested, seventeen 

expressed one or another of the proposed four mating types, sixteen 

produced no macrocysts in any of the tests performed and seven of the 

isolates gave inconsistent mating reactions. No homothallic strains 

have been reported for D. giganteum . A report on mating in Dictyostelium . 

purpureum (Clark et al. 1973), indicates that of the eight isolates tested, 

four express one of two mating-types and four are apparently asexual. 

Dictyosteliurn rosarium expresses three mating-types (Chang, 1976) and 

only homothallic strains of Dictyostelium mucoroides and Dictyosteliurn 

minutum have so far been reported (Clark et al. 1973; Nickerson & Raper, 

1973a). Of particular importance to this thesis are the mating reactions 

in the cellular slime mould Dictyostelium discoideurn. Erdos et al. (1973b) 

and Clark et al . (1973) define a system with two mating-types in this 

species , although both groups also describe some apparently asexual 

strains . In addition , Erdos et al. ( 197 3ti describ,e one homothallic 

strain (selfer) and two bisexual strains (i.e. non selfing, but 

successfully make macrocysts when paired with strains of each mating-type). 

Erdos et al . (1973N and Wallace (1977) suggest that these bisexual strains 

are expressing a third mating-type allele in D. discoideurn. 

While the lit~rature on mating in the cellular slime moulds is, 

as yet , essentially restricted to the discovery of mating-types, it is 

plausible that many of the species operate on a simple one ~ocus-2 allele 

genetic basis . In particular the evidence for a one locus-2 allele mating 

system in D. discoideum is quite strong, since most isolates express one 

of two mating-types . Strains which do not fit this simple scheme (e.g. 

asexual , homothallic and bisexual strains) are re-examined here. The 

evidence for a third mating-type allele (Erdos et al., 1973b; Wallace, 

1977) is thus reassessed critically (2 . 4 . C). 
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2 . 1 . B Vegetative Incompatibility 

In the fungi, vegetative fusion in the form of hyphal anastomosis, 

results in heterokaryon formation . Failure to form stable heterokaryons 

is a common phenomenon , but details of the genetic control are in general 

unknown (Carlile, 1973). An exception is found in the 

Ascomy cstcs ,Aspergillus and Neurospora in which extensive studies on 

vegetative incompcitibility reveal that stable hetcrokaryon formation 

<l< '])('nd:; 1qic?11 i<l<'tll i ly .it: .-1 11111nbcr or cli ffcr('11t llr1 ! 0rokoryon 

incompc1tibili y (hct) loci (Garnjobst & Wilson , 1956; Jinks & Grindle, 

J9G3 ; l<wrn1 f:., Riipcr , ]0()7 ; Mylyk , 1075). 

In N. crassa one of the het loci is shown to be coincident with 

or very c losely linke d to the mating-type locus , which is a single locus 

with 2 alleles (Newmeyer , 1970) . Hence strains of opposite matirig-

type , that are identical at all other het loci , will sti ll not make stable 

heterokaryons . 

A similar system of intra-specific somatic fusion has also been 

reported for the Myxomycetes . Stable plasmodial fusion only occurs 

between plasmodia with identical ' f ' factor ~ (Carlile, 1973). As in 

N. cra~;scJ. t.h vcyetutivc incomp.:1tibi.lity system of the Myxomycctcs is 

polygenic (e . g . in Phys arum polycephalum and Didymium iridis: see 

Carlile, 1973; Clark & Collins , 1973; 

Clark , 1977) . 

Physarum cinereurn: see 

CyLotoxic reactions have been observed to occur in both N. crassa 

and the Myxomyceles as a result of vegetative incompatibility. Such 

reactions are often lethal and generally follow after plasmogamy (Garnjobst 

& Wilson, 1956; Clark & Collins, 1973) . Pre-plasrnogamy blocks to 

stable heterokaryon formation have not been ruled out as alternative 

responses to vegetative incompatibility (Carlile, 1973). 



Systems of vegetative incompatibility .have not been reported 

for any of the cellular slime moulds, even though vegetative fusion 
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of amoebae (the first step in parasexual diploid formation) is 

extensively used for parasexual genetic analysis o f D. discoideum . 

However , the studies on D. discoideurn have almost exclusively employed 

parasexual diploid formation in strains derived from a single wild 

isolate (NC4). 

Parascxuality is not well documented in the heterothallic fungi, 

even though it may be prevalent (Van Tuyl, 1977') . Only in the homothallic 

species Aspergillus nidulans and specie~ lacking a sexual cycle (e.g. 

Penicillium chrysogenum and Aspergillus niger) has it been described in 

any detail (Pontecorvo, 1956; Fincham & Day, 1971). While N. crassa has 

a similar mating system to the cellular slime mould , D. discoideum , it has 

11 0 s l: c.t..!Jlc d Lpl o .i cl pl1c:isc ( l'c rkin s 0,1 Ua.rry , 1Sl77) a.ncJ so a. complete pa.rasexual 

cycle involving diploid formation and haploidisation via aneuploidy has 

not been described. For these reasons , direct parallels concerning 

vegetative incompatibility in parasexual systems cannot be made between 

the fungi and D. discoideum . However, in the light of the studies on 

control of heterokaryosis in N. crassa it is perhaps likely that 

parasexual diploid formation in D. discoideurn is controlled by a system 

of vegetative incompatibility . This chapter describes a detailed 

investigation of the genetic control on parasexual diploid formation 

in D. discoideurn and looks for possible links between - vegetative 

incompatibility (i.e. failure to form vegetative diploids between two 

haploid strains) and the mating-type locus. 
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2. 2 . MATERIALS AND METHODS 

2 . 2 . A Materials 

All media and chemicals are described in Appendix B. 

2 . 2 . B Maintenance of s tocks 

All strains are described in Appendix B . Details of strain 

maintenance are described in 1.2 . B . 

2.2.C 

( i) Quantitative technique 

See 1 . 2 . C. 

(ii) . Toothpick technique 

'l'his tcchniq_ue was used for routine ma L:.ing- type L:.cs ts. One ml 

of sterile 20mM CaCl2 was dispensed into each of 24 flat bottomed clear 

plastic wells (capacity -3.2ml) of a sterile Linbro FB-16-24TC multi­

'.vell dish . Amoebae of two strains , one of known mating-type , were picked 

into each well from stock streak clones on SM-agar using a sterilised 

conically pointed wooden toothpick. In ' selfing ' experiments, only one 

strain was picked into each well. For good macrocyst production large 

picks of cells were required (approximately 106 tC? 2xl0 6 amoebae per pick). 

The multi-well dish was swirled briefly and gently before covering with 

foil for dark incubation. The dish was not shaken during incubation 

0 and was stored at 21±1 C for seven days . The multi-well dish was then un-

wrapped and scored for macrocysts, using an Olympus CK inverted microscope 

at 40 x ma~nification. Several attempts to use the 96 well Linbro tissue 

culture dish FB-96-TC or Falcon 3040 with lid 3041 (0 . 1ml 20mM CaCl2 per 

well) prov d unsuccessful since macrocysts were ·rarely formed even in 

mating-type tests between sexually competent strains . Each well in these 

dishes has a capacity of only 0 . 35ml and so perhaps the failure was 

related to the smaller size of the well . 
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2 . 2 .D Parasexual diploid formation 

( i) Co-aggregation of amoebae 

Vegetative amoebae of the same mating-type, taken from clearing 

plates and co-aggregated on filters (Loomis, 1969) or in liquid (Williams 

unpublished) for less than 2 hours, form parasexual diploids at a 

frequency of approximately 10- 7 
• However, when they are co-aggregated 

for more than 15 hours, the frequency of parasexual diploid formation 

plateaus at approximately 10-s (Williams unpublished). Therefore, to 

increase the frequency of parasexual diploid formation, the amoebae to 

be crossed were always co-aggregated. 

(a) Washed cell technique 

This technique is a quantitative technique for parasexual 

diploid formation (Williams et al., 1974b). Linbro FB-16-24-TC multi-

well dishes were prepared in advance with sterile incubation solutions: 

distilled H20, 20mM K/K phosphate pH 7.5, 20mM K/K phosphate pH6.5, 

20mM CaCl2 . 21I20 , 30 % Bonners salt solution (30% S.S.) and 20mM KCl 

(final concentration in 1 ml). The strains to be crossed were harvested 

in sterile distilled water , from ' semi-light ' grown clearing SM-agar 

plates as for the ' quantitative-technique' of macrocyst production (1.2.C) 

and diluted to a concentration of 5 x 10 7 amoebae per ml. 5 x 10 6 amoebae 

of each of the two strains to be ·crossed were added to each well and the 

7 volume adjusted to 1 ml (i.e. 10 amoebae per ml final concentration). 

'l'he l ·~.:;~;u-.. cullurc d_ish wtJ. s 
0 

~:; l1u.kc11 c1.t 2LL1 C 011 cin orbj tc1.l shc1.kcr at 150 

cycles per minute for 17-18 hours . The shaken .suspensions of amoebae 

were transferred, using sterile pastcur pipettes, into sterile test tubes 

u.11d whirlimixec1. The sti:1rving amoebae often c:i.ggre9c::ttc into 'balls' 

characl:.cristic of the st.rain (Powell , 1974) ancl whirlimixing is generally 

required to disrupt them . A known volume of C'ach suspension and an O. 1 ml 



suspension of K. aerogenes were plated on to SM-agar using a sterile 

bent glass rod spreader. 

(b) Multi-well pick technique 
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This technique is used for rout.inc pc1.rascxual diploid formation 

(Williams & Newell , 1976). 0 . 1 ml of sterile 20mM CaCl2 was dispensed 

into each of 96 flat bottomed clear plastic wells (capacity -0.35ml) of 

a sterile Linbro tissue culture dish FB-96-TC . Experiments using this 

96 well tissue culture di s h gnvc good results c1nd so it was used in 

preference to the tissue culture dish Falcon FB - 16- 24TC in which only 

twenty four crosses can be performed per dish . 

Amoebae of the strains to be c r ossed were picked using .a sterile 

toothpick from the growing edge of str eak clonal plates and swirled 

into the designated well . Small picks were used (about 5 x 10 5 amoebae 

per pick)- . The multi - well dish was shaken at 150 cycles/min at 21±1°c 

on an orbital shaker for 17- i ·s hours . The contents of each wel l were 

sucked up and down several times using a 100µ1 Oxford sampler with 

sterile tip to disaggregate the amoebae . The entire contents of the 

well were then plated onto either SM- agar or SM- agar containing cobal tous 

chloride (2 . 2.D(ii)) . 

(ii) Parascxual divloid se lection 

Parasexual diploid formation is a rare event (about 10- 5 in 

co-aggregated amoebae of the same mating-type) and so techniques have been 

dt'V<'i(l11< 'd l<> :;<:l<'<'l ivc , Jy kil I th<' p,1r<·11l.1l l1,1J_>loi<I:;, wl1il~;l t1.lluwinq L.lH· 

K ( l l: z £,;, s l l ~; ! ; 111 d 11 ' I () 7 2 ; V l C J. k Cr N f) CC' r in g ' 

Newell cl:. al ., l'J/"/; Willjc.tms, l<J7H). Two sclcct.ivc L:echnlques 

h<1vc~ b' '11 w-;cJ i.11 l !1 i.~; s tudy ,111d arc referred to as U1c ' comvlcmcnting ts 

Lc'cl11d qul' ' c.111d ' Ls domincJ.n t cabal t technique'. 
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( a) Complementing ts technique 

This technique can only be used between strains each carrying 

recessive complementing growth temperature sensitive (ts) mutations. 

After incubation, the co-aggregated amoebae (2.2.D(i)) were transferred 

to a growth environment (SM-agar spread with K. aerogenes) at the restrictive 

temperature , 26 . 8±0 . 3°c. 

The diploids were heterozygous at both ts loci and therefore grew 

at 26 . 8° (Loomis , 1969; Williams et al ., 1974b). If the ts mutations in 

the parental haploids are at all leaky they can cause problems of leaky 

growth at the restrictive temperature. However, diploids are usually 

' punchy ' whereas leaky growth is diffuse and therefore diploids can be 

easily distinguished in most cases . Since diploids have a larger spore 

size than haploids (Sussman & Sussman , 1962; Sinha & Ashworth, 1969; 

Katz & Sussman, 1972), ' punchy ' haploids caused by reversion of the ts 

mutation were excluded by examining the spore size of all colonies that 

grew at the restrictive temperature. . All diploids were then checked for 

parental markers (e.g. spore shape, fruiting body pigment, drug markers) 

to exclude rare isogenic diploids. Diploids het~rozygous for parental 

markers were purified by clonal passage at the permissive temperature on 

SM-agar and dried on to silica gel for storage (1.2.B(ii)). 

(b) Ts dominant cobalt technique 

The 'complementing ts technique' has the disadvantage that both 

parental haploids must carry recessive , non allelic , ts mutations . The 

' ts dominant cobalt technique ' p~ovides a means of selecting parasexual 

diploids in which only one parental haploid has to be genetically marked 

(Williams , 1978) . This enabled selection of parasexual diploids between 

genetically marked haploids and unmarked wild isolates (2.3.B). 

A strain carrying a ts mutation and a dominant mutation which 
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allows growth on SM-agar containing cobaltous chloride was co-aggregated 

with a wild type strain in the usual way (2.2.D(i)). The amoebae were 

then transferred to SM-C0Cl 2· 6H20 (3 00 or 350 µg/ml ) agar spread with a 

mpcr,,t-urc, 2G . 8_f-o . J
0

c . The wild type parent is sensitive to cobaltous 

cllloriclc, r111c1 the cohnl.t rcsi~;l:ant pc1rcnt js ts . The diploid, however , 

j~, Lr (t:;/t) ,111d i!, rc'~;ist·. crnt to colx ill:.our; c l1l oric.l' (e.g. £.Qg-354/+ 

hybrjd diploi.ds survive under these selective conditions. Diploid 

colo1d c~~ W(~t:l'! cllcckcd [or ycllol:ypc un<.1 dried on to silica g·cl os described 

in ( a) above . 

2 . 2 . E IIaploidisation of parasexual diploids 

( i) Selection of haploid segregants using recessive drug resistance 

mutations 

In most experiments haploids bearing a recessive drug resistance 

mutation were selected from diploids heterozygous for that drug resistance 

' 
mutation by plating the diploid on SM-agar containi.ng the drug (Katz & 

Sussman , 1972). Between 5 x 10 3 and 5 x 10 4 diploid amoebae (depending 

on the diploid) were plated on to SM-agar c6ntaining either methanol 2% 

(v/v), cycloheximide (500 µg/ml) or cobaltous chloride (350 µg/rnl). 

Drug resistant haploids and diploids homozygous for the mutation began 

to appear between 4 and 7 days. Haploid segregants were used for further 

genetic analysis only if they were of independent origin . To avoid 

sclec inq multiples of the same haploidisation event (multiplication of 

haploids in a diploid population could occur before exposure to the drug), 

haploids were· assumed to be of independent origin only if they were 

<Jt'no pjcd ll y djffcrc.'nt or i.f they were clcri.vcd from scpu.ratc platings 

o[ di[f~rcnL diploic.1 clo11c[.; . lL:1ploid c1nd djploic.1 colonies were 

distinguished on the basis of spore size (Sussman & Sussman , 1962; 
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Sinha & Ashworth , 1969; Katz & Sussman , 1972). Haploid colonies were 

purified by clonal passage on SM-agar before checking the genotype, 

except when a large number of haploids was to be characterised (e.g. 

,111.ilyi;ir; or c:ro'.;'.;111(_J-ovc'r 011 lilll<il(JC group T1 of DU7.GO - 2.3 . D(ij~i)) 

111 tllit; c,1!;c i11110('b,1t' rrom LllL' de~;in,,1 clo11e were pickc.~d on to the 

0 
appropriate tester plates (drug plates , SM-agar at 21 and SM-Qgar 

at 26.8°) dircclly from tl1e original selective plate. Haploids were 

s tor aye . 

The same principle of haploidisation applies to selection of 

haploids in liquid axcnic medium (Williams et al . , 1974b ) . Axenic 

growth in NC4 derived strains is a recessive character. Therefore 

dipJoids heterozygous for axenic growth can b~ selectively haploidised 

in axenic medium , since only the axen1c haploids will grow. Axenic 

medium was used to select haploids from diploid DU260 (2 . 3 . D(i)) . Strain 

NP158, the mata2 parent of DU260 is an axenic grower but the other 

pc1rent , IIUl , is non-axcnic and so the djploid wc1s expected to be 

heterozygous for axenic growth. Hence eight individual 125ml sterile 

flctsks cc1ch with 25ml c1xcnic medium were incubated with between 10 4 and 

5 . 
10 amoebae/ml from separate clones of DU260 . The flasks were shaken 

0 
at 21±1 Con an orbital shaker at 150 cycles/min . Amoebae and spores 

were counted periodically . Representative haploid segregants of the 

cli ffcrC'nt phenotypes from cc1.ch fJc1sk were puri fiC'd by clonal passage 

on SM-c1gu.r. They were chc1ractcriscd for rarcntc1l mc1rkcrs and dried on 

to siJ i cc1 ge .l for s toru<JC . 

Sc lee tion of haploid scg rcga11 ts using 2011y/ml 1J c 11 J a Le -

SM-ayar 

Hccen LJ y u Leclmique for haplo.idisalion of diploids has been 

described in which selective markers are not required (Williams & 
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Barrand, 1978). When diploids are plated clonally on nutrient agar 

containing low levels (between 20 µg/ml and 50 µg/ml) of the fungicide 

ben late, essentially pure haploid segregants of one genotype arise from 

each clone. The advantage of this technique is that many haploids of 

independent clonal origin can be obtained from one 20 µg/ml ben late -

SM-agar plaLc . This teclrniy_ue is used for some of the more recent work 

described in this thesis (e.g. haploidisation of diploid DU454; see 

2 .3. F) . 

2 . 2 . F Chromosome staining 

funoebae were washed in distilled H2 0, fixed in methanol : 

acetic acid (3:1 v/v) and air dried on to clean slides. They were 

stained with 10 % Curr 's improved R66 Giemsa stain in M/15 Sorensen's 

phosphate buffer , pH6 .8. (Brody & Williams, 1974; Robson & Williams, 

19 77) . 

2 . 2. G Photography 

Spores on a haernacytometer slide were photographed using an 

Olympus BHT microscope with Polaroid Large Format Camera Back: PM-10-

M with 3~" x 4~" Polaroid Back. Colonies of D. discoideum on SM-agar 

plates were photographed using a Polaroid MP-4 Land Camera. Polaroid 

Type 665 negative/positive land film, 8 .3 x 10.3 cm was used. 
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2 . 3 . RESULTS 

To transfer the mating-type locus (mat) into another genetic 

background firstly requires a knowledge of its position infue genome . 

r,1 LIH~ J>.iri1:1r,xunl cyr;I<' lll('n~ in a low 1reqtH'11cy o[ n~cnm!Jinotion oo 

C'.:1ch cl1rnmor:0111C"' '.i('(Jrf'<Ji1l<'r: ,1'.: ,1 ninq]c, 1 ink.iqe: CJroup (Pont .corvo F:i 

Ko [ c r , l ~SU ) . 'l'licrcforc using a diploid ·heterozygous for mating-type, 

one should b~ aule to assign mat to a linkage group using parasexual 

yc11~Lic~. l\LL 't11pls Lo c1oss sl.ro.l11s ul OlJl o!:.d~~ 111uL.Luy-Ly.1:Jc8 NC4 (mutl\l) 

and Vl2 (mata2) have been largely unsuccessful (Williams unpublished), 

either because of a vegetative incompatibi l ity at the mating-type locus, 

(as in Ncuros_b)ora : Newmeyer et gl . , 197 3 ; Griffiths & Delange , 1978) 

or because of problems peculiar to that cross . To investigate the 

nature of the incompatibility , parasexual crosses were performed on a 

number of independent wild isolates , each belonging to one of four mating 

classes ; heterothallic , homothallic, asexual or bisexual. D. discoideum 

has not been isolated in Australia (see Appendix A) and so a range of 

American wild isolates of known mating competence were used ('received 

from Professor K. B . Raper, see : Erdos e t a 1 . , 19 7 3 b) . All strains 

were tested for both mating competence and parasexual diploid formation 

in crosses with tester strains of each mating-type . 

2 . 3 . A Mating competence of independent wild isolates of 

D. discoideum 

l\ quick und reliable technique for making macrocysts , referred 

I 

to as Lile ' too thplck technique' , was devised to simplify ma ting- type 

tests (see Methods 2.2.C(ii)). The reliability of this technique was 

determined by using it to check. the mating competence of the strains 

obtained from Professor Raper. The results (Table 3) show that all 

strc.1lns, except WSJUOb , comply to the mating classification of Erdos 



TABLE 3 

Mating competence of independent wild-isolates of D. discoideum 

Mating class* Wild isolate Mating-type of tester-strain 

Heterothallic 

Homothallic 

Asexual 

Bisexual 

WS472 

WS195-6 

WS205-4 

WS583 

WSS-1 

tHU188 

tHU182 

WS655 

WS7 

WS582 

WS656 

AC4 

Za-3a 

WS57-6 

WS269a 

WS380b 

WS584 

WS526 

WS216-2 

WS112b 

(WSlO) 

(WS585) 

matA 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

mata 

+ 

+ 

+ 

+ 

+ 

+ 

( +) 

+ 

+ 

+ 

( +) 

+ 

+ 

Independent wild isolates were tested for their ability to make macrocysts 
when paired with tester strains of either mating-type, using the ' toothpick 
technique ' (2. 2 . C(ii)) . The tester strains used were : matA,WS583, HU235, 
HU 1 or TS 12; ma ta , WSS 8 2 , HU89 . +; mac rocys ts formed: - ; no 
macrocysts formed: ( +) ; poorly developed macrocysts formed infrequently. 

* The wild isolates are grouped into mating classes according to the-
classification by Erdos et al . (1973b). Exceptions are strains WS655, WS656 

--
& Za-3a, which have not been classified in the literature. 

t Strains WSlO and WS585 were diploids when received from Professor 
Raper ; they were haploidised by plating clonally on ben late (20 µg/ml) -
SM-agar (Williams & Barrand, 1978). 
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et al., (1973~ . Strain WS380b formed poorly developed macrocysts Ln one 

out of three tests with strains of mata mating-type . Therefore, this 

strain could tentatively be called a heterothallic strain of low matA 

mating competence , rather than an asexual strain , as classified by 

Erdos et al. (1973b). Further evidence presented in section 2 . 3.B supports 

this reclassification . Strains WS655 , WS656 and Za-3a have not yet been 

referred to in the literature . Strain WS655 was matA and WS656 was mata 

(confirming Professor Rap e r ' s unpublished observations) . Using the 

'toothpick technique' Za- 3a was found to ' self' and is therefore 

homothallic . 

The ' toothpick technique ' was used in a study of comparati v e 

mating strengths of homothallic and bisexual strains (Table 4). These 

strains were tested for their capacity to ' self ' and their ability to 

make macrocysts when crossed with tester strains of either mating-type. 

AC4 has a strong mating reaction in all combinations. Strain Za-3a is 

a weak 'selfer ' and expresses the matA mating-type more strongly than 

the mata mating-type . Strains WS112b and WS216-2 do not self, but 

express the mata mating-type more strongly than the matA mating-type. 

2 . 3. B Parasexual diploid formation between independent wild isolates 

of D. discoideum and tester strains of either mating-type 

A quick technique for routinely making parasexual diploids was 

devised by Williams & Newell (1976) and in this thesis is termed the 

'multi-well pick technique' (see Methods 2 . 2.D(i)b). The same independent 

wild isolates used in 2.3 . A were tested for parasexual diploid 

formation in crosses with tester strains of either mating-type (Table 5). 

Since wild isolates grow at the restrictive temperature, it was necessary 

to use a fusion technique other than the commonly used 'complementing ts 

technique ' (see Methods 2 . 2 . D(ii)a). The 'ts dominant cobalt technique' 



TABLE 4 

Mating strengths of homothallic and bisexual wild isolates 

when ' selfed ' and when paired with tester strains of either 

mating-type 

Wild 
isolate 

' Selfing ' reaction Matirig - type of tester strain 

matAl mata2 

AC4 +++ +++ +++ 

Za-3a + ++ +++ 

WS112b ++ + 

WS216-2 ++ + 

Bomothallic and bisexual wild isolates were ' selfed ' or paired with 

tester strains of each mating-type using the 'toothpick technique' 

(see Methods 2 . 2 .C(ii)). Three experiments gave the same results. 

Tester sfrains . were: matAl : HU235 or TS12; mata2 : HU89 or WS582. 

+++: Strong mating reaction (more than 50 fully developed macrocysts 

formed) ; 

++: Moderately strong mating reaction (10-50 fully developed macrocysts 

formed) ; 

+: Weak mating reaction (less than 10 fully developed macrocysts 

formed) ; 

No mating reaction (no macrocysts formed). 
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TABLE 9 

Parasexual diploid formation between haploid segregants of DU260 and 

tester strains HU180 (matAl) and HM3 (mata2) 

Phenotypic 
group 

A 

B 

C 

D 

E 

F 

G 

l I 

Strain 
tested* 

HU167 

HU169 

HU173 

IIU1 71 

HU168 

HU170 

HU172 

IIU177 

HU174 

11Ul75 

IIU17G 

lllJl 7 8 

HU193 

HU195 

1IU197 . 

11 LJ I t)(> 

1IU 202 

1IU19 2 

11Ul~9 

Parasexual diploid fo~rnation 

Tester 

HU180 
( ma tAl) 

( - ) 

(-) 

( - ) 

(-) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

( - ) 

.:i· 
( - ) 

( - ) 

( - ) 

( - ) 

( - ) 

strpins 

HM3 
(mata2) 

-** 

. - - - - - - --- . - - -- - - --- ---- --- ---- --·--- ---·------------
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TABLE 10 

Parasexual diploid formation between haploid segregants of diploid DU260 

and tester strains of each mating-type 

Phenotypic 
group 

A 

B 

C 

D 

E 

F 

G 

H 

matAl parent 
of DU260 

Strain 
te s ted 

HU167 

HU97 

HU107 

HU1 68 

HU104 

HUlOl 

HU178 

HU193 

HU195 

HU197 

HU196 

HU202 

HU192 

HU199 

HUl 

Parasexual diploid fonnation 

HU77 
(rnatAl) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Tester strains 

HU180 
(matAl) 

( - ) 

(-) 

( - ) 

+ 

+ 

+ 

+ 

+ 

( - ) 

(-) 

( - ) 

( - ) 

( - ) 

( - ) 

( - ) 

HM3 
(ma ta2) 

Haploid segregants of diploid DU260 , and HUl the matAl parent , were crossed 
(mu] -i-we]l pick technique 2 . 2 . D(i)b) with testers rains IIU77 (matAl), 
IIU180 (matAl) and HM3 (mata2) and the presence or absence of parasexual 
diploids was scored ; + · parasexual diploids detected within 7 days; 
(-): no parasexual diploids detected within 7 days , but slow growing 
diploids detected at low frequency (~10- 6

) within 14 days; -· no 
parasexual diploids detected within 14 days . 
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IfUl, since crosses be tween I-IUl and I1Ul80 produced partially ts diploids. 

However, since HU77 for~s parasexual diploids readily with all DU260 

haploid segregants and also with the parental strain HUl,evidence for 

c1.1w tllcr V<..!SJC tc:1 tj_ vc incornp.:.:i tib i li ty locus in D. dis coidc um is not 

sustained. A similar problem to that of HUl x IIU180 crosses has been 

observed previously with other mutant strains of NC4 (Williams & Newell, 

1976) . 

As would be expected from the postulated involvement of mating­

type with vegetative incompatibility, the crosses between all haploid 

segregants and the mata2 tester strain , HM3 , were unsuccessful (Tables 

9 & 10) . However , in one experiment, inconclusive evidence for 

parasexual diploid formation between strains HU177 and HM3 was obtained 

( see Table 9 ) . The colony had round spores ( sprA) of diploid size , 

(sprA inherited from strain HU177, see Appendix B) . Since the diploid 

was lost during attempts to purify it , a definitive investigation of 

its genotype by checking for other markers could not be made. Diploids 

are normally characterised by checking spore size and shape , fruiting 

body colour, morphological characteristics , drug markers and if there 

is s ti 11 doubt chromosome number · ( 2. 2. D (ii) a) . The ·diploid could have 

been an isogenic diploid of EIU177 or a hybrid between HM3 and HU177 

(sprA is a dominant spore shape marker). During the experiments described 

in Tables 0 and JO approximately 4 x 10 7 amoebae were plated in crosses 9 & lO 

LH, 1 w (., c, 11 ! ; t 1 • .·1 i 11 ! ; o r n 11 ti u ~; ; L c.' 111 n L i , HJ - Ly pc~ ( i . <' • lJl~ L w c c' , 1 1 1 M J u 1 1 c1 1 w p 1 o i c 1 

Therefore , on the basis of the estimated frequency of 

illegitimu.te diploid formation (10-o to 2 x 10-o see 2 . 3.C) one would 

not have expecteu to detect an illegitimate diploid during these 

e xperiments . ll owe ver , when these results are combined with the results 

of other s uch crosses (rrable 15) the detection of an illegitimate diploid 

---



was statistically likely. 

In summary therefore it appears that diploid DU260 expresses 

only one mating-type allele and only one vegetative incompatibility 

allele, both of which arc of the matAl parental type. 

(iii) Analysis of crossing-over in linkage group II of DU260 

36. 

When diploid DU260 was initially haploidised on meth 2% -

SM-agar (2.3.D) the frequency of haploid segregants detected which 

resulted from cross-over diploids, (i . e. yellow methanol resistant, ts · 

haploids: Fig. 7) appeared to be higher than normally expected. 

Normally one expects white, methanol resistant ts, haploids, 

whiA acrA tsgD 
and white or yellow, methanol resistant, 

ts, diploids 

acrl\ 

I 
(tsgD +) - r- I 

wh.i.A acrA (tsgp +) 

I I 
wh .i.1\ 

0 ~ -
or 

0 0 

whil\ acrl\ (tsgD +) + acrl\ (tsgD +) 

but v e ry rarely, yellow , methanol resistant, ts haploids 

+ , acrl\ t sg lJ 
) . This could only be analysed accurately by 

scoring the ploidy and spore colour of every colony that appeared during 

haploidisation of DU260 on methanol 2% - SM-agar. Such an analysis was 

made in conjunction with isolating a large nwnber of haploid 

segregants of independent origin fo~ mating-type analysis (2.3.D(i)). 

Approximately 2 x 10 4 amoebae of DU260 were plated on to each of eighty 

meth 2% - SM-agar plates together with K. aerogenes. The amoebae for 

each plate were taken from a different clone of DU260 on SM-agar to ensure 

that haploid segregants on each plate were of independent origin. With 

4 2 x 10 amoebae per plate , only between two and five haploids were 

e xpec c d to appcur on each plate , thus allowing colonies late to appear 

(e.g . slow growers) to be detected . The fast growing colonies were 



DU260 

Fig . 7 

llUl derived 
homolo9ue 

NP158 derived 
homologue 

after selection 
on meth 2% -
SM- agar 

whiA acrA 

whiA acrA 

whi l\ c1.cr.l\ 

+ + 

whiA acrA 
0 

0 

+ acr.l\ 

(ts g:D + ) 

( -s9D + ) 

Yellow, methanol 

5'2.0S ,ye... , tr, 

+ ~_prB ) 
diploids 

( + sprB) 

cross-over distal to whiA 
but proximal to acrA 

(tsgD + ) 

Yellow, methanol 
resistant, ts 

( tsgD + ) 
diploids 

haploidisation 

(tsgD + ) + acrA (tsgD + ) 
or o 

Equal numbers of yellow 
and white meth 2% resistant, 
ts , haploids 

A graphical demonstration of haploidisation on meth 2% -

SM-agar after a cross-over distal to whiA and proximal 

to acrAl on linkage-group II of diploid DU260 . 
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picked after 6 days and the slow growers after 8 days of incubation on 

meth 2% - SM-agar. 
0 

The colonies were picked on to SM21 (SM-agar at 

0 0 0 21±1 C) , SM26.8 (SM-agar at 26 . 8±0.3 C) and meth 2% - SM-agar for 

further characterisation. Of the eighty plates only seventy seven could 

be used in this analysis , since three were overgrown with large numb.ers 

of fast growing haploids within six days after plating . These large 

numbers of fast growing haploids , were vrobably the products of 

multiplicfltion of haploids derived from a single h?ploidisation event 

several generations before the time of plating . 

The following results arc based on anulysis of 136 haploid 

clones and 102 diploid clones obtained on these 77 meth 2% - SM-agar 

plates : 

( 1) 

( 2) 

( 3) 

Total number of cells plated = (2 x 10 4
) x 77 

Total number of methanol resistant, ts, haploids 
scored = 136 

Frequency of haploidisation = 
136 

1. 54 X 1~ 
= 

Total number of methanol resistant, ts, diploids 

= 102 (12 white + 90 yellow) 

8.8 X 10-s 

Frequency of cross-over 
between wliiA and acrA-

= 
90 

1. 54 X 10 6 , 
= 5. 8 X 10 -s 

Expected frequency of cross-over+ haploidisation 
(assuming these events to be unrelated) 

= (1) X (2) 

= S 1 10
-9 

. X 

-r.: 
( rj . 0 X ] () ,) ) 

Total number of yellow , methanol resistant, ts haploids 

= 7 

Total number of haploids derived from cross-over diploids 

= 14 (i.e. yellow + equal number of white) (Fig. 7) 

('l'his assumes that only one haploid arises from the haploid­
jsation of a diploid; sec Williams & Darrand , 1978.) 



( 4) Observed frequency of cross- over+ haploidisation 

14 
= 

= 

1 . 54 X 10 6 

- 5 
9 .1 X 10 

Frequency of cross-over diploids which haploidise 

( 4) 
= ( 2 ) 

9 . 1 X 10- 6 

= 5 . 8 X 10- s 

= 1.6 X 10- 1 

i . e . approximately 16% of cross- over diploids , haploidise . 

These results indicate that the frequency of cross-over between the 
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spore colour marker (whiA) and the methanol resistance marker (acrA) on 

linkage group II of DU260 is s~milar to that found in matAl/matAl diploids 

and DP72 whic~ like DU260 , is another diploid formed between strains of 

opposite mating type (Williams unpublished) . 

It has been shown previously that when diploids are haploidised, the 

ratio nf haploids to cross-over diploids varies markedly depending on 

the strains used (Mosses et al ., 1975) . From this result it was 

postulated that haploidisation and mitotic crossing- over are independent 

events . However, the results detailed above show that these two events 

are not entirely unrelated as previously thought. Approximately 16% 

of cross-over diploids haploidise, compared to approximately 0,01% (see 

( 1) above) in normal diploids . Such a .result has now been observed 

in a diploid formed between strains of the same mating-type (Williams 

unpublished). Therefore this phenomenon is not related only to 

illegitimate diploids, and is not considered further. 



39. 

2 .3.E Analysis of DP72 by characterisation of haploid segregants 

Diploid DP72 was not analysed as extensively as DU260. Haploid 

segregants were obtained by haploidisation of DP72 on meth 2% - SM-agar 

and on cobaltous chloride 350 µ g/ml - SM-agar. The haploids were 

characterised into phenotypic groups (Table 11 and Appendix B) and were 

tested for mating-type using the ' toothpick technique' . 

(i) M.iti11(J-lypc .:.111uly:;i~; of lloploid r,cc_Jrcsionts 

7\ll sc9 rcgont.s were scxucJ.lly competent , and all cxprcs_scd the 

mat a md Ll11y- type (Table lJ) . Hence this preliminary investigation 

suggests that illegitimate diploid , DP72 , has only one mating-type 

allele . 

(ii) Parasexual diploid formation between haploid segregants of 

DP72 and tester strains of each mating-type 

Representative haploid segregants of each phenotypic group 

(A , Band C) of DP72 were tested for their ability to make parasexual 

diploids whe n crossed with a mata2 tester strain (HM3 or HU156) and a 

matAl tester strain , (HU128 , HU180 or HU154) (Table 1 2 )- . Par asexual 

diploids were detected when haploid segregants were crossed with the 

mata2 tester strain but not when crossed with the matAl tester strain. 

Therefore it appears that DP72 has only one vegetative incompatibility 

allele and that it is of the mata2 parental type. 

2 .3 . F l\nalysis of DU454 by characterisation of haploid segregants 

The mating-type analysis of haploid segregants of illegitimate 

diploids DU260 and DP72shows that only one mating-type is expressed 

(DU260 haploid segregants = matAl; DP72 haploid segregants = mata2) 

One could hypothesise that illegitimate diploids can be formed between 

haploids of opposite mating-type only when one of the mating-type 

alleles is excluded (either functionally or physically) . A way of 

; 



Haploid 

segregants 

Tester 
strain 

TS12 
(matAl) 

WS582 
(mata351) 

TABLE 11 

Mating-type of haploid segregants from DP72 

Mucrocyst formation 

Phenotypic group of DP72 haploid 

segregants* 

A B C 

X37 X49 X39 X42 X44 

+ + + + + 

Parental 

strains 

X23 NP84 

(matAl) (mata2) 

+ 

+ N.D. 

Representative independent haploid segregants of diploid DP72 were paired 

with tester strains of each mating - type and after 7 days were scored for 

macrocysts ( ' toothpick technique ' 2 . 2 . C(ii)) . 

+ : macrocysts formed ; 

no mac rocysts forme d ; 

N . D .: not de termine d . 

* Th haplo id scgr c gants arc classified into group s according to their 



TABLE 12 

Parasexual diploid formation between haploid segregants of DP72 and 

tester strains of either mating- type 

Ilaploid 
segregants 

Mating type 
of tcs ter 
strain 

matAl 

matc:i2 

Parasexual diploid formation 

Phcnotypic group of DP72 
haploid segregants 

A B C 

X37 X39 X42 

I- + + 

Parental 
strains 

X23 
(matAl ) 

+ 

NP84 
(mata2 ) 

+ 

Repre s entative independent haploid segregants of diploid DP72 were paired 

with te s ter strains of matAl (HU128 , HU180 or HU154) and mata2 (HM3 or 

HU156) . Each cross was performed in at least two experiments using the 

' multi-well pick technique ' (2.2 . D(i)b) in combination with the 

' cnmpl C'nirn1 t· i 11CJ l;; t·cc:hn i qu0 ' (?..?.. D (ii)<,) . 

No paras xual diploids detected in any experiment . 
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definitively testing this hypothesis would be to search for the mating­

type locus on each of the seven linkage groups. To do this one would 

need to construct an illegitimate diploid in which all of the linkage 

groups ?re recognisable i.e ., a diploid with a marker on each of the 

seven linkage groups. To this end , the diploid DU454 was constructed 

recently (2.3 . C). Strain DU454 has six of the seveh linkage groups 

marked (linkage group Vis stil l uncharucterised genetically in D. 

discoioeum) and is heterozygous for all parental markers (Appendix B). 

This was detennined during a preliminary investigation of seventeen 

independent haploid segregants of DU454. The diploid was haploidised 

on SM-agar containing either 2% methanol, 350µg/ml cobaltous chloride, 

500 µg/ml cycloheximide or 20 µg/ml ben late. 

(i) Mating-type analysis of haploid segregants 

The seventeen haploids are sexually competent, but all express 

the same mating-type; matAl (Table 13). However, an analysis of the 

genotype of these haploids showed that some of the chromosomes of 

DU454 did not segregate randomly during haploidisation. All of the 

haploids are cycloheximide resistant , a- mannosidasc negative and all 

but two hc1vc whi to spo r o co lour even thoucih the oiplo .id is clearly 

sensitive to cyclohcximjde (. ·. cycAl/+) , a - mannosidase positive 

( :. manAl/+) and has yellow spores ( :. whiAl/+). No attempt has yet 

been made to analyse DU454 more thoroughly , as was done for DU260. 

These preliminary results are consistent with the hypothesis that 

parasexual diploids can be made between strains of opposite mating-

type only when just one parental mating-type allele is functional. 

However , since all class~s of segregants have not been analysed it is 

stiJ l possiblo .hut DlJllSli possesses the mutu2 mating-type allele. 
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TABLE 13 

M~ting-type of haploid segregants from DU454 

Independe nt 
haploid 
segregants * 

HU299 

llU301 

HU315 

HU320 

HU300 

HU305 

HU314 

HU321 

HU308 

HU312 

HU316 

HU318 

HU311 

IIU313 

HU319 

HU317 

IJ U3 29 

Pa r e nta l 
haploids 

I!U 2 2 7 
(ma tAl) 

HU8 9 
(mata 2 ) 

Source of linkage 
groupst 

I II 

X X 

X X 

X X 

·X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

III 

N . D. 

N . D. 

N.D . 

N.D . 

N. D. 

N . D. 

N.D . 

N.D . 

N.D . 

N . D. 

N. D. 

N . D . 

N. D. 

N. D. 

N.D. 

X(Z+X) N . D. 

X Z N. D. 

X X X 

z z z 

IV 

X 

X 

X 

X 

z 

z 

z 

z 

X 

X 

X 

X 

z 

z 

z 

X 

X 

X 

z 

VI 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

z 

VII 

X 

X 

X 

X 

X 

X 

X 

X 

z 

z 

z 

z 

z 

z 

z 

z 

X 

X 

z 

Macro cyst formation 

Mating-type of 
strain 

matAl 

+ 

tester 

mata2 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 



I 

I 

I 

l 

I 

! 
' 1, 

11 

II 
11 

Ii 
'I 
I 

II 

l 

I 

t 
i 

II 

' ii 

l 
I, 

t. 

(ii) Parasexual diploid formation between ·haploid segregants of 

DU454 and tester strains of each mating-type 

41. 

Sixteen of the seventeen haploid segregants of DU454 were tested 

1-n one e xperiment for their ability to make parasexual diploids when 

crossed with tester strains of each mating-type. Table 14 shows that 

six of the sixteen haploids made parasexual diploids when ~ros se d with 

tester strains of matAl mating-type but not when crossed with the mata2 

tc.::i ter s tr.::iin , c1nd the rcmc.1ining ten haploid scgrcgan ts did not make 

parasexual diploids when crossed with tester strains of either mating-

type . 

In view of the preliminary nature of this experiment the failure 

of the ten haploids to produce parasexual diploids is not considered to 

be significant . Repeat experiments should be performed with alternative 

tester strains to avoid superficial incompatibilities of the kind 

encountered in similar crosses between HU180 and haploid segregants of 

DU260 . These results though limited, are consistent with the hypothesis 

that parasexual diploids can be formed between strains only' of the same 

mating-type and further that the mating-type locus codes for vegetative 

incompatibility. 

2 .3.G Further attempts to find both mating-type alleles in 

illegitimate diploids D. discoideum 

Using another approach in the search for both mating-type 

alleles in illegitimate diploids, strains DU260 , DP72 and DU454 were 

tested for their ability to 'self' (using the 'toothpick technique': 

2 . 2.C(ii)) No macrocysts were formed by any of these diploids when 

' selfed' . Although this supports the hypothesis that illegitimate 

diploids possess only one mating-type allele it does not prove it. 

Bisexual wild isolates do not self, but may possess both mating-type 

-
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Par asexual 

Independent 
haploid 
segregants 

HU299 

HU301 

HU315 

HU320 

HU300 

I1U305 

110314 

HU321 

HU308 

HU312 

HU316 

tHU318 

HU311 

HU313 

HU319 

I-IU317 

HU329 

Parental 
haploids 

HU227 
( ma tAl) 

HU89 
(ma ta2) 

TABLE 14 

diploid formation between h aploid segregants of DU454 and 

tester strains of either mating-type 

Source of linkage 
groups* 

I 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

II 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

III 

N.D. 

N.D. 

N.D. 

N.D. 

N. D. 

N. D. 

N. D. 

N. D. 

N. D. 

N.D. 

N. D. 

N.D . 

N. D. 

N. D. 

N. D. 

X (X+Z) N. D. 

X z N. D. 

X X X 

z z z 

IV 

X 

X 

X 

X 

z 

z 

z 

z 

X 

X 

X 

X 

z 

z 

z 

X 

X 

X 

z 

VI 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

z 

VII 

X 

X 

X 

X 

X 

X 

X 

X 

z 

z 

z 

z 

z 

z 

z 

z 

X 

X 

z 

Parasexual diploid 

Mating-type of 

matAl 

+ 

+ 

+ 

+ 

+ 

N. D. 

+ 

+ 

strain 

formation 

tester 

mata2 

N. D. 

+ 

--

--



alleles (see Discussion 2 . 4.C). 

2 . 3. f I C nc t · c bc1ck_9-round problems of illcgitimettc diplo~ds 

Although the two illegitimate diploids, DU260 and DP72 show 

nuru1ct L (_J1uwl11, Lite l1l11iJ uJ d u~0r0y.:1 11UJ oL Ll1cu~ dlvloidll Lil!:.JlJluy 

cJelecLlve growlh morplloloyles as a result of cJelcLerlous couwinations 

of the parental chromosomes. ·The h aploid segregan ts of DU454 display 

no such grow Lh abnormalities, pos s.ib ly because the parental haploids 

of DU4:J4 arc parlially 'isoyenic '. The morpho_logy of all these strai ns 

is described in Appendix B. 

2.3 .I Relationship of parasexual diploid formation to the mating­

_ty_rc J ocus __ j n _Q. discoideum 

Independent haploid wild isolates have been tested for their 

cJbiliLy Lo · rnc1kc pctroi..;cxucJ.l di.J?loi.us willl Lester st.rains of each 

mating-type (see 2 . 3.B) , as have independent haploid segregants of 
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illegitimate diploids DU260, DP72 and DU454 (see 2.3 . D(ii), 2.3.E(ii) 

and 2.3.F(ii) respectively) . Strain IIU89, another independently 

derived huploid of mixed NC4-Vl2 genotype (see 2.3.C) has also . been 

tested for its ability to make parasexual diploids with tester strains 

of each mating-type. In addition , control experiments were performed 

in which strains of the same mating-type were crossed parasexually. 

The results, summarised i 'n Table 15, show that parasexual diploids are 

formed -10 3 times more frequently in crosses between strains of the same 

mating-type than in crosses between strains of opposite mating-type. 

Therefore there is a vegetative incompatibility between strains of 

opposite mating-type . This incompatibility is expressed regardless of 

wh her the cross is performed between strains of different genotype 

(e.g . tester strains x wild isolates: see 2.3.B) or between strains of 

similar gcno type (e.g . IIU89 x IIU2 2 7 see 2. 3. C) . Throughout the .course 
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TABLE 15 

Quantitative date on parasexual diploid formation between 

strains of like and unlike mating-type 

Mating Types 
of strains 

crossed 

matA/matA 

matA/mata 

mata/matA 

mata/mata 

Origin of 
strains 
crossed* 

NC4/NC4 

NC4-Vl2/NC4 

Other 
Isolates/NC4 

NC4/Vl2 

NC4-Vl2/Vl2 

Other 
Isolates/Vl2 

Vl2/NC4 

NC4 - Vl2/NC4 

Other 
Isolates/NC4 

Vl2/Vl2 

NC4-Vl2/Vl2 

Other 
Isolates/Vl2 

Total Number 
of cells 
tested t 

(approximate) 

1.5 X 10 8 

2 X 10 7 

2 .5 X 10 8 

1 1 10 8 
• X 

2 X 10 7 

1.7 X 10 8 

6 X 10 6 

8 X 10 7 

6 X 10 6 

Number of 
diploids 
isolated 

384 

40 

l** 

0 

as above 

0 

5 

186 

4 

Frequency 
of parasexual 

diploid 
formation 

after 7 days. 
(approximate)*** 

4 6 10
-5 

. X 

1 2 10
-8 

. X 

9.1 X 10- 9 

(1) 

6 X 10- 9 (4) 
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of this work , no more than one vegetative incompatibility locus has 

been detected . Furthermore , all available evidence suggests that this 

locus is either linked to or coincident with the mating-type locus . 

2 . 3 .J Can vegetative incompatibility be overcome by transferring 

cytophagic cells to conditions selective for parasexual diploids? 

Cytophagic cells are binucleate cells formed by the fusion of 

two starving amoebae of opposite mating-type during the early stages of 

sexual reproduction in D. discoideum (Fig . 3) . Two well marked sexually 

competent strains of opposite mating-type, HU89 (mata2) and HU235 (matAl), 

were used in a quantitative experiment to test whether or not cytophagic 

cells could form parasexual diploids and divide mitotically when 

provided with a food supply . Amoebae of strains HU89 and H0235 were 

mixed and · incubated using a modification of the 'quantitative technique' 

for macrocyst formation (1.2.C). Modifications of the technique 

included 1) variation of incubation solutions (30% S.S. and 40mM NaCl 

were used in addition to the usual 20mM CaCl2); 2) interruption of 

starvation by transfer of the suspension containing deve loping macrocysts 

to growth medium at 26 . 8±0.3°c. 

The procedure is most easily explained in the form of a figure 

(see Fig. 8) . Eight replicate trays, such as the one shown in Fig . 8, 

were prepared and wrapped in foil for dark incubation (see ' quantitative 

technique ' : 1.2 . C) . At each time interval (7,11,19,24,34,45,99 and 

190 hours after wrapping the trays in foil) one of the eight trays was 

unwrapped, ex~mined for macrocysts and 0 . 6 ml of the suspension from 

each well was transferred to growth· medium (LP or SM agar with K. aerogenes) 

and then placed at the restrictive temperature , 26.8±0.3°C. The entire 

contents of each well . were removed and whirlimixed before taking a 0.6ml 

sample to ensure that the clumps of cells were disrupted. 
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Fig . 8 

1 

A 

B 

C 

D 

Experimental procedure for transferring cytophagic cells 

from conditions favouring macrocyst production to conditions 

selective for parasexual diploids 

Incubation Solution Growth Medium (+ K. 
aerogenes) on to which 

20mM CaCl 30% S.S. 40mM amoebal suspension 
NaCl (0. 6ml per well) was 

plated. 
2 3 4 5 6 

s·x· 10 6 HU89 ~ SM27° 
x · 10 6 

. 
-< 5 IIU2-3 5 )-

5 x
0

l0 6 HU89 l . 0 

6 LP27 
5 X 10, · HU235 

5 X 10 6 BU89 ~ SM27° 
10 6 HU235 5 X -+ 

5 X 10 6 HU89 ~ LP27° 
10 6 5 X HU235 -+ 

Graphical layout of tissue-culture dish Falcon FB-16-24TC with 24 wells. 
Each well contained 1ml of the appropriate incubation solution. 

Amoebae of each strain were pregrown on SM-agar in the dark 
at 21±1°c before preparation for dark incubation (see 
'quantitative technique': 1.2.C). 

Amoebae of each strain were pregrown ·on LP-agar in the dark 
at 21±1°c before preparation for dark incubation (see 
' quantitative technique': 1.2.C). 

Wells Al, Bl, Cl and Dl were used to check the viability of each strain. 
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Two growth plates were used per well so that only 0 . 3ml of 

amoebal suspension was plated on to ·one growth plate. (This was done 

0 
to avoid problems of 'leaky ' growth at 26 . 8±0 . 3 C). The growth plates 

were examined for up to 14 days after plating . No parasexual diploids 

were detected on any of the growth plates (Table 16). No macrocysts 

were detected in any of the trays examined between 7 and 45 hours after 

zero time (see Table 16 ). However, at 99 hours after zero time a total 

m.-:icrocy ~, ts were. sc.orocl ( '1.'uble lG ) . In this experiment the viability 

of the IIU 235 amoebae pregrown on LP-agar was unusually low (=13 %) 

b ccc.1u sc l h e c J cc:1rj ng pJ.utcs w re too ' young ' . ( ' Young ' amoebae are 

The ' age' of amoebae 

is considered to be a critical factor affecting macrocyst formation 

(1.'1.7\(li)) and therefore accounts for the low macrocyst yield c1t 99 

and 190 hours in the treatments using amoebae pregrown on LP-agar. In 

this experiment there were 142 macrocysts formed/4 x 10 7 amoebae in the 

20mM CaC1 2 treatment at 190 hours i.e . 35 macrocysts/10 7 amoebae (Table 

lG) . In chapter 1 the average macrocyst production for LP grown amoebae 

under the same conditions was 174 macrocysts/10 7 amoebae (Fig. 5) i.e. 
I 

5 x the number of macrocysts reported in Table 16 . The amoebae pregrown 

on SM-agar were ' well cleared' and this resulted in good macrocyst 

production , comparable to that found for macrocyst experiments in 

chapter 1 (Fig . 5). 

Using the results of macrocyst production (Table 16) one can 

make predictions regarding expected parasexual diploid formation. For 

instance at 190 hours after zero time, wells A2 , A3 , B2 and B3 (Fig. 8) 

collectively contained 730 macrocysts . l\t 99 hours the same wells of 

a replicate plate collectively cont~ined 34 macrocysts . Therefore 

between O and 99 hours , approximately 700 cytophagic cells at various 



' 

Time 9-fter zero 
time (hours)t 

'· , -~' 

7-45 

99 

190 

.... 

TABLE 16 

Transfer of presumptive sexual diploids to growth conditions selective for parasexual diploids 

Prior growth 
medium at 21°** 

S~·1 

L? 

S~1 

L? 

S!•1 

LP 

Nwnber of macrocysts formed* 

20rnM 

CaCl2 

( - ) 

( - ) 

34 

( - ) 

730 

142 

30% 
S.S . 

(-) 

( - ) 

10 

4 

'240 

s 

40rnM 

NaCl 

(-) 

( - ) 

( - ) 

(-) 

8 

( - ) 

Nwnber of parasexual diploids 
detected~ 

Incubation solutions 

2 Om.111 

CaCl2 
30% 
S . S . 

40 ITL1'1 
NaCl 

Growth medium for parasexual 
diploid isolation at 27° 

SM LP SM LP SM LP 

~,LO . N . D. N . D. N . D . 

N . D . N.D. ~~ . D . N . D . N . D. N . D. 

~ 

1fE ~ =-~:.. ~ -- -··--= - :e- ------ r -=, ,__ - ---·. ~· .. ........__-: :::C _:_~=---- --:.. :a: ~:--a ~---;.-. ----z~seJ, 



45. 

stages of development were present in these wells . 60% of each well 

was plated on to 2 plates of either SM or LP agar (Fig . 8) together 

with K. aerogenes and placed at the restrictive temperature 26 . 8±0.3°C . 

If cytophagic cells were able to form parasexual diploids and divide 

mitotically in the presence of a food supply , one would have expected 

to detect in the order of 400 parasexual diploids on these 'early ' 

plates (i . e . between O and 99 hour samples) . No p.arasexual diploids 

were detected , however , and so it is probable that cytophagic cells 

can not be induced to form parasexual diploids by switching the 

conditions of development in this way . 
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2 . 4 . DISCUSSION 

2 . 4.A General approach 

The ultimate aim of this research is to establish strains of 

r od i ·1 y \111clc r<Jo m i os is , so that the ad vun tages of both the sexual and 

parusexual cycles can be exploited . Delayed macrocyst germination is 

at present the major obstacle to sexual genetic analysis in D. discoideum 

(Wc1l lu.cc , 19 7 7 ) . 'l'hc problem may be in part u.l levia ted by -removing genetic 

bc:ickgrou11d differences . This could be achieved by transferring the mating-

type locus of one parental strain into the background of the other . 

Before such manipul ation of the mating- type l _ocus can begin , it is 

necessary to map its position in the genome . One approach to mapping 

the mating-type locus would be to construct parasexual diploids between 

strains of opposite mating-type and to determine the linkage of mat 

using haploidisation (Katz & Sussman , 1972 ; Williams et al., 1974a) . . 

However , my results show that such a simple approach is not possible in 

O. discoideum . Parasexual diploids possessing both mating-types have 

not been detected because of a system of vegetative incompatibility . 

Therefore the task of mapping the mating-type locus ·has become more 

complicated . In fact , the emphasis of this thesis was shifted to an 

examination o·f vegetative incompatibility rather than the germination 

of macrocysts . 

2 .4 . B Genetic background differences in D. discoidcum 

The problem of interbreeding strains of different genetic 

background has been discussed in relation to macrocyst germination 

(General Introduction) . One might expect hybrids to express problems 

of genetic background in other cell functions as shown in systems such 

as N. crassa (Kafer , 1977) or Phycomyces (Eslava et al., 1975). Two 



diploids of D. discoideum , DP72 and DU260 formed between haploids of 

different geographical origin , have been examined in some detail and 

haploid segregants from them do indeed express problems which are 

possibly related to a deleterious combination of parenta l chromosomes. 

( i ) 1,: r r_c_ ·~ .:s .. o_f _ _ g_c_n __ t _i_c __ b~-i_c}< .9.Fo~l::!_d_ c-1_~:_!_f c rcn ccs on .9. row th and 

(! i r f c· r o n t i c1 t i on · i n h a pl o i cl s C' <J r c <J c1 n ts o f DP 7 2 and DU 2 6 0 

SomL' J1aplo.i.d scgreyu.nts of DP72 (e.g. strains X49 and X37 : 

47. 

!..j,, /\1>p1..;11Lllx. JJ) :iLL' vc.;1y t;.Luw yruwc.;LS, p1..;Lltd1>~J uuc'-tuuu u.C Ll1ul1· L1..;11L1011cy 

Lo d.l[J l!l' •11LL.1Lu i 11 L!1t; prt;uence of d Loud HUL>p.ly (l> L1clur.Lc1) . Normal 

strains will not aggregate while there is food available , but X49 and 

X37 aggregate in the middle of a lawn of bacteria . 

'l'hese may be interesting strains for use in the study of 

the switch from vegetative growth to aggregation , since they seem to be 

permanently prograrmned into the latter stage of development (Rickenberg 

et al . , 19 7 5 ; Marin , 1977). 

Haploid segregants of phenotypic groups D and G of DU260 (e.g. 

s trc1ins I!lJl 70 c1nd I1U 202 : see l\ppendi x B) grow exceedingly slowly, 

although unlike X49 and X37 they differentiate normally . Strains HU178 

c1nd IIU202 were mc1intc.1inecl on streak clone plates (1 . 2 . B(ii )) and were 

found to sector ut hiCJh frcguency fi:1st 0row1.nCJ coJonies , of 

characteristic morphology (s ee photo : Fig . 9) . Although this unusual 

phenomenon has not been extensiv ely analysed , the following observations 

of fer u tcnlc1t i.v xpl c1nuti on . The spores of the s]ow growing colonies 

sectors were of constc1.nt haploid size (e.g . sec photo : Pig . 9) . Since 

diplc,id - 11,IJ>ltJicl 11c,1n1l,1t io11 ,111cl l 11.il. llH' f.i::L qrow111r_1 co1011i<':: m,1y huvc 



Fig . 9 

(x \·5") 

(A) Colony morphology of haploid segregant , HU202 : 

(a) slow grow.er ; (b ) fast growing sector 

(B) Spores of slow grower 

(C) Spores of fast grower 

Slow growing haploid segregants of DU260 sector fast growing 

colonies at high frequency 



,. 

1a 

11 

r. 

I 

.i 

I 

l 

:, 

.. 

,, 
J 

' I 

. ,. 

t 

I' 

I 
ll 

I 

H 

48. 

represented a fast growing purely haploid sector. Some years ago 

~ussman published several papers on such a phenomenon but no firm 

conclusions were drawn (Ennis & Sussman, 1958; Sussman & Ennis, 1959; 

Sussman & Sussman, 1962) . Improved cytological techniques (Brody & 

Williams, 1974 ; Robson & Williams, .1977) make a more definitive 

study of this phenomenoD possible . A cursory cytological examination 

of the slow growing HU178 does indeed support the prediction that 

HU178 is a stable strain of mixed pl6idy (haploid-diploid). 

All the above effects are unrelated to the mating-type and 

to vegetative incompatibility (2.4.E). All the factors segregate 

independently of mating-type and , in particular, the mating competence 

is the same for Loth slow growers (e.g . IIU178 & I-IUlOl) and their fast 

growing sectors . 

(ii) Effects of genetic background differences on mating competence 

in haploid segregants of DU260 

Haploid segregants of phenotypic groups C and D derived from 

DU260 (e . g. strains HU104 and HUlOl , see Appendix B) are impotent 

(Table 7) . An analysis of the segregation pattern of impotence suggests 

possible linkage of the impotence factor to the HUl derived linkage 

group II (no methanol sensitive haploids are impotent). However, 

a second unspecified NP158 derived linkage group must also be involved 

(only 50% of the methanol resistant haploids are impotent: Table 7). 

It is proposed that impotence results from a clashing combination of 

parental chromosomes and thus is another expression of the genetic 

background differences between parental haploids HUl and NP158 . 

(iii) Progress in overcoming genetic background differences 

In a recent experiment, a third parasexual diploid, DU454, was 

formed between strains of opposite mating-type. This diploid was, 
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however , formed between two partially 'isogenic' strains, HU89 x HU227. 

Strain HU89 is a haploid possessing both NC4 and Vl2 chromosomes. It 

has a very NC4-like appearance but a Vl2 mating- type; HU227 is derived 

totally from NC4 . No haploid segregants from DU454 have shown such 

gross problems as those described for certain haploid segregants of DP72 

and DU260 . Therefore , even though 'isogenic' strains of opposite ma ting-

type have not yet been obtained , strains recently constructed may have 

largely overcome the major genetic background problems . 

2 . 4.C Regulation of mating in D. discoideum - the number of alleles 

at the mating-type locus 

During experiments in which the ' toothpick technique ' was 

tested for reliability (2 . 3 . A) the mating- competence of a series of 

American wild isolates of D. discoideum was re-examined (Erdos et al., 

1973b) . The results of these experiments suggest that mating in 

D. discoideum is con~rolled by two alleles at a single locus and not 

three alleles as suggested by others (Table 3 ; Erdos et al ., 1973b; · 

Wallace , 1977). These findings, although not directly related to 

vegetative incompatibility , are interesting in themselves and so will 

be discussed here . 

There is a general agreement that mating in D. discoideum is 

controlled by alleles at a single locus since no contradictory evidence · 

has been presented . Furth~rmore , most of the evidence supports a two 

allele mating-type system of control (Erdos et al. , 1973b). However, 

the possible existence of more than two alleles at this locus has been 

postulated , in order to explain the unusual mating behaviour of strains 

WS112b and WS216-2 (Erdos et al., 1973b ; Wallace, 1977). These two 
--

strains produce macrocysts successfully when crossed with strains of 

either mating-type matA or mata but they do not 'self' (Erdos et al . , 1973b). 
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My additional evidence discussed below, is consistent with strains 

WS112b and WS216-2 being pseudo-homothallic rather than representing 

strains with a third mating-type allele. True homothallic strains, 

AC4 and Za-3a, ' self ' and therefore may possess both matA and mata 

mating-type alleles. More complex explanations for homothallism 

are possible but will not be considered here (see 2.4 . G(iii)). 

Unlike AC4 which produces large numbers of macrocysts when 'selfed' 

or when mixed with strains of either mating-type , Za-3a is a weak ~elfer' 

and expresses the matA mating-type more strongly than the mata mating-

type (Table 4). The strains WS112b and WS216-2 do not self and both 

express the mata mating-type more strongly than the matA mating-type. 

I have shown (Table 2) that the balance of mating-type alleles present 

in a cross (taken as the cell number ratio of the matA strain : mata 

strain) significantly affects macrocyst production. It is essential 

to have a high number of amoebae of mating-type matA participating in 

the cross to ensure good macrocyst production . It is proposed that 

strains WS112b and WS216-2 are in fact pseudo-homothallic, but unlike 

Za-3a, which has a fully competent matA reaction, WS112b and WS216-2 

have a matA reaction of low competence and are therefore unable to make 

macrocysts when ~elfed'. The mating reaction of strains WS112b and 

WS216-2 can hence be explained without referring to a third allele. 

Wallace (1977) although claiming that these strains do have a third 

allele , admits the alternative that they may carry both ma ting- · 

type alle l es mata and matA. 

In this study the asexual wild isolates of D. discoideum 

(Erdos et al., 1973b) that could b e analysed successfully made parasexual 

diploids wh e n crossed with the matA tester strain, but not when crossed 

with mata t e ster strains (see Table 5) . On the basis of the vegetative 

incompatibility r e a c tion of th e se crosses (see 2.4.D) one could predict 
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that asexual strains conform to the one locus - 2 allele system of 

mating as proposed tor the heterothallic strains above,and that for 

some reason macrocyst production is inhibited in these strains. In 

::;uppo.r · of lhi.s pn'diction, th ' uscxual strain ' WSJBOb in one experiment, 

produced JTu.,crocysts when crossed with tl1e mata tester strain WS582 (i.e. 

WS380b appears to be a heterothallic matA strain of very poor mating 

competence). 

2 . 4 . D Characterisation of .vegetative incompatibi lity in 

D. discoideum by an investigation of independent 

wild-isolates 

Strains derived from NC4 and Vl2 form parasexual diploids with 

great difficulty . It was considered that a system of vege tative 

incompatibility could be operating either at the mating-type locus as 

in Neurospora (Beadle & Coonradt , 1944; Gross, 1952; Newmeyer,1970), 

or through some other incompatibility specific to the NC4-Vl2 cross. 

To investigate these alternatives, the independent wild isolates of 

varJ.ous mating classes, as reported by Erdos ct al., (1973b)were tested 

for their ability to make parasexual diploids when crossed with tester 

strains of either mating-type (s ee Results 2.3.B). Regulation of somatic 

cell fusion has not previously been examined in cellular slime moulds, 

but the comprehensive studies on vegetative incompatibility in the 

primitive Ascomycetes, N. crassa and Aspergillus sp . (Garnjobst & Wilson, 

l<JSC1; Jinks t;, Crindl , l<JG3; Kwon & Haper, 19G 7; Mylyk, 1975), have 

provided a most useful conceptual framework since in mariy respects 

the regulation of vegetative incompatibility in the two groups of 

organisms is analogous . The requirement for identity at the het loci 

for hetcrokaryon formation in the primitive Ascomycetes is analagous to 

the requircm~nt for identity at the mating-type locus for par asexual 

diploid formation in D. discoidewn. However the system of vegetative 
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incompatibility is controlled at only one locus in D. discoideum 

compared to genes at a number of different loci, one of which is the 

mating-type locus , in the primitive Ascomycetes . This difference has 
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a significant effect that is best illustrated by comparing the frequency 

of vegetative compatibility between wild isolates . All of the eleven 

heterothallic wild isolates of D. discoideum tested were vegetatively 

compatible with strains of the same mating-type. Mylyk (1976) 

performed 64 crosses between different wild isolates of N. crassa of 

the same mating-type and found only two strains with identity at 5 het 

loci e xamin ed . 

The invariable relationship between mating-type and vegetative 

incompatibility i1l wilcl isolates of D . discoideum i s considered to be 

strong evidence for the two functions being controlled at the same locus. 

The mating- type loc u s has been shown conclusively to have s uch a dua·l 

function in N . cras sa (Griffiths & Delange , 1978). 

A further affinity of vegetative incompatibility with the 

mating-type loc us in _9. discoideum is demonstrated by strains thought 

to possess both mating-type alleles (i. e . homothallic and bisexual 

strains : 2 . 4 . C) . In all cases the strains appeared to be vegetatively 

incompatible with strains of either mating-type (2.3.B). 

2 .4. E Further evidence concerning the relationship of v egetative 

i ncompu. tj bili ty w i Ll1 l l 1e m,1 l i tlCJ-typc locus in .Q. . · gj_~wn using 

(JCllC L i_cc.1Lly chclLdC Lcr iscd !j Lrc.1i ll ! . ..i 

( i) Ilaploid segrcgants of illegitimcJ.te diploids express only 

one mating-type allele 

The studies described in 2 . 3 . B using independent wild isolates 

w re followed by a detailed investigation of the vegetative 

incompatibility using genetically characterised strains (2.3 . D) It 
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seemed significant that illegitimate diploids (i.e. parasexual diploids 

formed between strains of opposite mating-type : 2.3.C) gave rise to 

haploid segregants of only one mating-type when haploidised. Of the 

three ·illegitimate diploids so far formed, two scgrcyato. 

h,1ploicts of -~cl__ tl\ l ( i. c. diploids DU2 GO and DU 4 54 ) and one 

segregateshaploids of mat~2 (i.e. diploid DP72) (see Tables 7,11 & 13). 

This rc,r;ul 1- s11qq0s t.s thc1.t 01 -ho.r the m0tinq-typc locus has become 

liomo:1.yqnu !~ <ff t· ll, t· 011<' or t· l1<' rnr011t·. t1l m,1t-.inc1-typ0 ,1U Jes hus been 

nmtc1t0ci nur.inq :iJlcqi.Umc1t:c c!i.pl.oid formation. This is supported by 

the fL11<1i 11CJ thc.1.t t.hc · Jir 'diploids do not ' f;elf ' when tested for 

mating-competence (2.3.G) . Hence it appears that parasexual diploids 

cannot be formed hctwccn strains of opposite mating-type while both 

mating-type alleles arc being expressed. 

(ii) Haploid segregants of illegitimate diploids express only 

one vegetative incompatibility allele 

As determined in the study on independent wild isolates 

( 2. 3 .. B) , vegetative incompatibility and mating-type are invariably 

linked. In addition haploid segregants of illegitimate diploids 

DP72 , DU260 and DU454 arc vege tatively incompatible with tester strains 

of opposite mating-type, but are all vegetatively compatible with 

tester strains of the same mating-type (see Tables 10, 12 & 14). There­

fore it follows that haploid segregants of illegitimate diploids express 

0 n J y O 11 (' V C ( J (' t ,1 L i V C i 11 CO m]) t1 t i b i 1 i t y t1 ] 1 e l C u s w (; l l u ~ o, n l y On C m i1 ting­

type a.l]elc. 

(iii ) Siynif.i.cc111cc o.f iorming illcyitimciLc diploid s Ll10l ha.vc 

iclcnlily .J.t bolll tile vegetative incompatibility loc us and the 

mo L.i.11y-type locus 

It is signi[i cant thut in a ll three of the illQgitimate diploids 

formed, the v egetative incompatibility locus and the mating-type locus 
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express only one parental allele and that for both loci the allele is 

inherited fromthe same parent. Since the formation of illegitimate 

diploids selects for overcoming vegetative incompatibility, one would 

expect identity only at the vegetative incompatibility locus. The 

chance of losing (effe~tively) the mating-type locus as well as the 

vegetative incompatibility locus in all three diploids is equal to the 

(mutation frequency) 3 = (10- 6
)

3 - 18 = 10 i . e. there is a very low chance 

of effectively changing two loci simultaneously by mutation. However, 

a possible alternative, which fits the avai·lable data and allows the 

two functions to be controlled by separate , but linked, genes is that 

. homozygosis at the vegetative iBcompatibility locus results from a 

cross-over event. The vegetative incompatibility and mating-type could 

become simultaneously homozygous if the mating-type locus is distal to 

the vegetative incompatibility locus and there is a cross-over proximal 

to the vegetative incompatibility locus. 

(iv) Evidence that a cross-over event in DU260 provisionally maps 

the mating-type locus 

Illegitimate diploids DP72 and DU454 are of no use for mapping 

the mating-type locus of D. discoideum . Illegitimate diploid DU260, 

however, does provide a possible lead to locating the mating-type locus. 

Vegetative incompatibility in D. discoideum could be overcome 

as a result of mitotic recombination leading to homozygosis at the 

mettirHJ-Lype locus. Such cJ.ll event would render any m.:1rkcrs distal to 

tho mzi ti nq- typo lo us homozyqous. There fore homozygos is for any 

chromo s omc1l marker in cm illcgi timate diploid could indica tc the 

position of the mu.ti11g- type locus. The spore shape marker, sprl\, 

located on linkage group I in D. discoidcum, is homozygous in DU260 (see 

J·'iy: Jl /\i >Lic: 11dix 11), thus using this argwnent Lhe mating-type locus is 
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located on linkage group I . Wallace, (1977) using limited meiotic 

analysis suggested that the ma ting~type· locus was not on linkage group 

I because it segregated independently of cycA. However, it is common 

in lower eukaryotes (e . q . A. nidulans and S. cerevisiae) for each chromosome 

t-o compri SC' sc vcro J meiotic J.j nkagc grours (Kafer, 1977; Sherman & 

Lawrence, 1974) and so these results arc not necessarily contradictory. 

2.4.F A search for the physiological cause of vegetative 

incompatibility 

By discovering the physiological basis of vegetative 

incompatibility one could perhaps find a way of overcoming it. There 

are three stages of parasexual diploid formation at which vegetative 

incompatibility could act. These are: plasmogamy, karyogamy and cell · 

division of the diploid . 

( i) Plasmogamy 

In the Myxomycetes and N. crassa, which are lower eukaryotes 

in which vegetative incompatibility has bee n extensively studied, it 

appears that recognition of the incompatibility between two 'unlike' 

colonies occurs after plasmogamy (Carlile, 1973; Clark & Collins, 1 973 ; 

Garnjobst & Wilson, 1956). Carlile (1973) suggests that the 'f' locus 

in · the acellular slime mould Physarum polycephalum does not inhibit 

initiation of fusion but prevents the maintenance of stable protoplasmic 

bridges between plasmodia. In the acellular slime mould Didymium iridis 

the failure of stable plasmodial fusion is also found to be due to a 

reaction after plasmogamy (Clark & Collins, 1973). The fungus N. crassa, 

which has a similar genetic regulation of vegetative incompatibility 

to D. discoideum (see 2 . 4.D), also imposes a block to stable somatic 

fusion after plasmogamy (Garnjobst & Wilson , 1956). The plasma membrane 

itself has been implicated in this incompatibility reaction in N. crassa 



(Williams & Wilson, 1966) and this is supported by the fact that the 

mating-type locus has been linked to the control of structure in the 

plasma membrane (Kappy & Metzenberg, 1967). 

Whereas strains of opposite mating-type are incompatible 

56. 

during somatic fusion of N. crassa, the same strains fuse compatibly 

during sexual reproduction, supposedly because sexual interaction is 

mediated by specialised structures (Perkins & Barry , 1977) . In D. discoideum 

both mating and somatic fusion require a union between morphologically 

indistinguishable amoebae , and, since haploids of opposite mating-type 

fuse succ~ssfu lly during macrocyst formation, one must assume that the 

same haploids fuse successfully during parasexual diploid formation. 

An experiment was performed in which amoebae of opposite mating-type 

were incubated under macrocyst forming conditions and then transferred 

to growth conditions selective for mitotically dividing parasexual 

diploids ( 2 . 3 . J) . No par asexual· diploids w.ere formed and hence it may 

be concluded that vegetative incompatibility is imposed some time after 

plasmogamy . 

(ii) Karyogamy 

The fate of opposite mating-type nuclei during parasexual 

diploid formation can be examined genetically. Homozygosis at the 

mating-type locus via mitotic recombination is one proposed mechanism 

for overcoming vegetative incompatibility during illegitimate diploid 

formation in D. discoideum (see 2.4.E (~ii)). Mitotic recombination 

is only possible after nuclear fusion , and so any evidence for this 

proposed mechanism would indicate successful nuclear fusion and hence 

that vege tative incompatibility imposes a block after karyogamy. 

Circums tantiu.1 evidence for hornozygosis at the mating-type locus via 

mitotic recombination in illegitimate diploid DU260 , is discussed in 

section 2 .4. E(iv) . 



( iii) Cell division of the diploid 

( a) Cell cycle block 

It is conceivable that diploids formed between haploids of 

opposite mating-type are 1n effect zygotes and can only divide 

meiotically. In the yeast , Saccharomyces cerevisiae haploids of 

opposite mating-type fuse to form a zygote which can then divide 

meiotically or mitotically depending upon the medium on which it 1s 

placed (Slti.lo c l c.11 ., llJ'/ H; Gunge & Nakatomi, 1972). In view of 
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this , a preliminary experiment , in which attempts were made to redirect 

zygotes of D. discoideurn into a growth phase, was performed (see Results 

2 .3.J). No stable parasexual diploids were detected. However, yeast 

zygotes are quite simple structures when compared to the sexual 

structure of D. discoideum ii.e. the macrocyst) and are probably much 

more easily switched to a cycle of mitotic division. In cellular slime 

moulds the binucleate cytophagic cell (prezygote) is surrounded by 

peripheral cells very early in its. development (Erdos, Nickerson & 

Raper , 1972; Filosa & Dengler, 1972) and even begins to phagocytose its 

neighbours before becoming a diploid (Wallace, 1977). It is therefore 

possible that, at the time of diploid formation, zygotes of D. discoideum 

are irreversibly locked into the sexual cycle and so further attempts to 

find appropriate conditions for switching ~ygotes into the vegetative mode 

were not pursued. 

(b) Unstable diploids 

It could be s ugge sted that parasexual diploids, when formed 

between strains of opposite mating-type are so unstable that when placed 

in a growth environment they haploidise either mitotically or meiotically. 

llowevcr , some of bhe haploid segrcgants so formed would have a combination 

of parental chromosomes lacking in ts mutations, such that they could 

grow at the restrictive temperature. Therefore, had this occurred, tr 



haploid recombinant segregants would undoubtedly have been isolated 

during the numerous attempts at illegitimate diploid formation (in all 

such experiments any tr colonies ·were checked for phenotypic 

characteristics such as spore size, shape and colour , diffusible brown 

pigment, colony morphology and , in some cci.'ses drug markers; all of 

these colonies were tr revertants of the parental haploids and were 

found at the expected reversion frequency for the ts mutations used} 
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Collectively , the evidence concerning the physiological cause 

of vegetative incompatibility between strains of opposite mating-type 

most favours a cell cycle block in which the diploid is locked into the 

sexual cycle and hence can divide only by meiosis. 

2 .4. G Attempts to overcome vegetative incompatibility and thus provide 

a system in which sexual and parasexual genetics can be used in 

crosses between the same strains 

Two possible ways of overcoming vegetative incompatibility have 

been considered while discussing the search for the physiological cause 

of vegetative incompatibility. They are: 

( i) Identity at the mating-type locus via a cross-over event 

By becoming homozygous at the ma ti.ng-type locus ( and hence 

vegetative incompatibility locus) via a process of crossing-over the 

two strains become vegetatively compatible (see 2.4 . F(ii)) . The mechanism 

is of no immediate value, since the haploid segregants of diploids so 

formed would be all of the same mating-type and would still be vegetatively 

incompatible with strains of opposite mating-type . 
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(ii) Transfer of the zygote to a growth environment 

Zygotes of S. ccrevisiae can be redirected from meiosis to 

mitosis by transfer to a growth envi ronment (Shilo et al. , 1978; 

Cunqc F.i Nukatomi , ]07?.) . Ilowcvcr , for rcc:isons discussed in section 

2 . 4 . F(iii)a , it is considered unproductive to pursue this approach in 

D. discoideum . 

Several other possible mechanisms for overcoming vegetativ e 

incompatibility in D. d i scoidcurn are : 

(iii ) Selection of a "mutator- type " mu tation ;to control i nter-

conversion of mating-type alleles 

One could select a "mutator- type " mutation of the kind shown 

to cause ' homothallism ' in yeast , i . e . , there are genes in S . cerevisiae, 

unlinked to the mating-type locus , which control the interconversion 

of a to a or a to a (mating-type alleles). They are detected by 

sporulation in a ' single ' mating-type population (Hopper & Hall, 1975; 

Ilarashima et al ., l<J74 ; Blamire & Melnick , 1975). There is no evidence 

for such genes in D. discoideum, since in the numerous intra-mating-type 

tests performed, no macrocysts have been detected . Therefore, as in 

Neurospora (Griffiths & Delange , 1978) , the mating-type alleles in 

D. discoideum appear to be very stable . 

(iv) Deletion of one mating-type allele 

Deletion of one mating-type allele is shown to remove vegetative 

incompatibility in bisexual heterokaryons of Neurospora (Delange & 

Criffiths, l07S). ' Esc~p~d ' homokaryons were not jsolatcd in the study 

of Delzrnge & C.rif fi.ths (1975) zind the dcletjon wus thoucJht to be lethal. 
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Even if it were - possible to obtain viable cells with a 

deleted mating-type locus in D. discoideum, these strains would be of 

little value for sexual genetics since the capacity to mate would be 

lost. 

(v) Isolation of modifier genes to suppress vegetative 

incompatibility 

One could isolate modifier genes which suppress vegetative 

incompatibility at the mating-type locus, such as 'tol' or 'tol'-like 

genes in Neurospora (Newmeyer, 1970; Metzenberg & Ahlgren, 1973) and 

CSP or ste mutation0 in yeast (Hopper & Hall, 1975; Mackay & Manney, 

1974). The recessiv e mutation 'tol', which is unlinked to mating-type, 

suppresses vegetative incompatibility at the mating type locus without 

inhibiting the mating reaction in N. crassa (Newmeyer , 1970). Isolation 

of such a mutant in D. discoideum would be invaluable since any strain 

into which it was transplanted could undergo both the sexual and 

parasexual cycle with a strain of opposite mating-type. In N. crassa 

' tol ' was isolated in a haploid strain carrying a duplication which 

resulted in heterozygosity for mating-type (Newmeyer, 1970). 

(vi) Selection of mutations al the mating-type locus itself 

Mutations at the mating-type locus have been reported in many 

fungi. e.g . _§_ . cerevisiae (MacKay & Manney, 1974; Kassir & Simchem, 1976), 

Schizosaccharomyccs pombe (Meade & Gutz , 197 6 ), Schizophyllum commune 

(H,:1pcr & Raper, 1973 ) and N. crassa (Griffiths & Delange , 1978). 

The mutational approach is potentially of great value for 

isolating str~ins of D. discoideum that can be us ed for both sexual and 

parasexual genetic analysis . A mutational approach would require 

s lccti.on of ('itl1cr a mating mutant from a vegetative compatible strain 

(i. e . say a matA strain ·that functionally expresses mata in its mating 
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reaction), or a mutant rendered vegetatively compatible from a 

vegetatively incompatible strain (i.e. say a mata strain that 

functionally expresses a matA vegetative incompatibility reaction when 

crossed parasexually with . another matA strain). 

The first approach (i.e. a change to the mating reaction) has 

a theoretical problem . The mating-type alleles in D. discoideum are 

very stable (2.4.G(iii)) and therefore it is possible that the mating-

Lypc yc11c:_; cnn11ot be muL.ll cd in such u !:.q_)cci fie woy cv n by induced . 

mutation. 

The second approach has been attempted successfully in N. crassa 

in which the mating-type alleles are als.o very stable (Griffiths & 

Delange , 1978). Normally (A+ a) heterokaryons grow very poorly. 

However Griffiths and Delange (1978) selected vigorous (A+ a) heterokaryons 

after mutagenising the 'a' parent. On analysis of these heterokaryons 

they demonstrated the loss of the 'a' vegetative incompatibility function. 

Griffiths & Delange (1978) argue that the (A+ a) combination actively 

inhibits heterokaryon formation and that their approach therefore selects 

for loss of an active (inhibitory) function by mutation to an inactive 

state. Most of the mutants obtained by Griffiths & Delange (1978) were 

effectively asexual due to simultaneous loss of mating competence . 

However , in two out of 30 mutants the vegetative incompatibility was lost 

while th mating functions were retained. 

/\11 .-:111c1Loqot1:; 111ul0Liollc1l opuroi1ch coulc1 be us e d in D. discoidcum. 

It is hoped Lhat , by muL1ti11g a mata2 strain , a mutant could be selected 

which is vegetatively compatible with a matAl strain (i.e. can 

succes sfully m<lke parascxual diploids witl1 a matAl t e ster strain) and 

yet retains ils mala2 mating competellce, thus prou.uciny a mutant that 

could be used 00Ll1 s 'XU<llly c111d vara s exu<llly in cro!...ises wi.L11 L11e sc.une 

strain . 



In D. discoideum , the strain HU89 would be a suitable 

~reatment' strain , since it is of mata2 mating-type and is already 

partially NC4 in its chromosomal make-up (see Results 2.3.C). The 

mating-type locus could be readily mapped using parasexual genetics 

even in strains which had lost their mating capacity. The remaining 

Vl2 chromosomes could then be easily exchanged with NC4 chromosomes 

in steps towards ~sogenicity'. 

2 .4.II Spec-ulc1tio11s on o vo lutionary advancement of incompatibility 

systems 

Throughout a wide range of organisms it has been shown that 

cells can recognise the difference between 'self' and 'not self': 

The highly evolved immune system of verte brates, the relatively simple 

allogenic reaction · in compound ascidians and self incompatibility in 

flowe ring plants serve as examples (Burnet , 197,1; 

Watanabe, 1957; Oka, 1970). 

Klein, 1975; Oka & 
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Burne t (1971 ), in a review on evolution of immunity , states that 

" recognition must a lways be a basic phenomenon of i mmunity". In the 

compound ascidian Rotryllus , fusion of colonies is controlled by a 

"single locus multiple alle l e " system (Oka , 1970) . Oka (1957, 197 0 ) 

has shown that colonies of Botryllus fuse s uccessfully whe n they have 

at least one a lle l e in common at tha t locu s , but that fertilisation 

app ars to be possi.blc on ly between co l o nie s which do not f use . Burnet 

n'<T><p1i li ot1 ,rncl r~ JH'c ·11l ;1lc '.r: ll1 ;1t- t· hC' d 0n t· n1c li v c' r0.r~1ionsc to v0(Jc - c1-J.V C 

inlcraclion between two unlike colonies mc1y represent the phenotypic 

cxpr '~;:; i o1 1 or c111c l'!,Lrttl CJC)11c:; L.o L11c immu11c :;y:;L<'m . Oku (]970) and 

Hurncl (l<J'/1 ) din,c l c1LLcnL.io11 Lo Llic sim.i J ariLy of :~clf-slcrilily itl 

Bo ryllu!3 u t1c..l ~;cJf-i11co1npc1LiuiliLy in Lil e fluweri 11 y pL:111Ls . In bolh of 

these systems Lh 're is a positiv <2 recognition syste m which triggers a 



63. 

destructive reaction. Indeed , the plant kingdom offers many examples 

of recognition systems , but the literature will not be reviewed here, 

as it is beyond the scope of this thesis. 

l\n0Lh0r workc ... r , Kl0in (197r.::), cx<1m1n0A the jmmun response in 

the vertebrat6s and states that it is a polygenically controlled trait 

of which the major histocompatibility complex (~IC) is a part. Klein 

speculates that the MIIC , which is a complex group of genes controlling 

u1logrc1£t rco.ctions u.nd immune response in vertebrates , has evolved from 

an already complex ,gene by in trachromosomal duplication . Klein also 

suggesls that the complex ancestral gene could have evolved from the 

invertebrate incompatibility systems , s uch as the ma ting sys tern .of the 

fungus Scllizophyllum commune . Both the ~IC and the mating sys tern of 

.§_ . commune provide a means of cell type recognition via a cell surface 

reaction a11c.l both systems arc controlled by Lwo closely linked highly 

polymorphic regions of the genome (Klein , 1975). The MHC, in 

controlling allograft reactions and immune response, trig9ers a destructive 

interaction when the organism recognises ' not self' interference. This 

is fundillTlentally different from the rnc1ting system of.§_. commune which 

requires a ' not self ' recognition for a successful non-destructive inter­

action (i.e. interacting haploids of S. commune must have different sex 

factors for a successful mating to occur) . While the mating system of 

S. commune was chosen as an example of a possible ancestral incompatibility 

syst rn partly becasue of its complexity, there may be more value in 

looking at the vegetative incompatibility system of fungi in which 

' unlike ' alleles induce an active response (e . g . in N. · cras sa ; Griffiths 

& Delange, 1978) . N. crassa is a primitive Ascornycete and, as described 

pr viou s ly in this chc1rrcr , hr1.s a one Jocus - 2 al]ele mating-type system, 

the alleJes of whi ch control vegetative fusion as well as sexual 

reproduction (see _2 . 4 . D) .. In N. crassa a 'not self ' recognition during 
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vegetative interaction between hyphae of opposite mating-type triggers 

a destructive reaction and is therefore analogous, although at a 

grossly simplified level, to the immune response in vertebrates. It 

is apparent that within the fun ~Ji alone the complexity of the mating 

system has greatly increased during evolution (e.g. the mating system 
I 

of N. crassa vs. S. commune) ahd it is perhaps feasible that a complex 

i11compc:itibility system such c:i.s that of the immune response in vertebrates 

could h<1vc evolved from tile simple mating-type locus, via vegetative 

incompatibility of the lower eukaryotes. 

A maJor drawback in comparing recognition systems of the fungi 

to those of animals is that, in contrast to animal cells, fungal cells 

are encased in a cell wall and the cell wall has been shown to have some 

control on fusion in several species of fungi (Dales & Croft, 1977; 

Sipiczki & Ferenczy , 1977a; 1977b; Gunge & Tamaru, 1978). 

It is possible that the large numbers of het loci in the fungi 

(other than the mating-type locus) are in some way associated with the 

cell wall (Dales & Croft, 1977). D. discoideum, which has no cell wall, 

is more simple since it has only one vegetative incompatibility gene 

which is located at the mating-type locus. The complexity of the mating-

type locu s and the associated vegetative incompatibility in D. discoideum 

seems similar to that of N. crassa, but D. discoideu~ has the advantage 

that vegetative incompatibility at the mating-type locus can be studied 

wil11oul Ll1c it\l< t· fc 'n' 11 cc or ulhC'r V('qclctlivc.' i11compet jbiJi.L_y .loci. Since 

D . di!;coid011m 1 ;;, 11;1kC'rl .-1mo0hc1 it h,1 s the arldirionti.l advantaqc of being 

more c1mc11ub1c Lo lJj ochc ml cc11 ~;LucJics thc111 Lhe funyi . llencc D. discoidcum 

is bccomi11y <1 11 at rc:ictivc sysLcm for sLudi. cs 011 ~:;jmple ' self ' - ' not self' 

rCCUCJll i.L.io11 . 
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APPENDIX A ISOLATION OF AUSTRALIAN CELLULAR SLIME MOULDS 

1 . INTRODUCTION 

Cellular slime moulds have been isolated from _forest soils and 

decaying forest litter in both temperate and tropical regions throughout 

the world , with the greatest diversity of species occurr ing in the 

tropical and subtropical zones (Cavender , 19 73 ; Olive , 1975 ; Cavender , 

l 97Gc1 c ncl b) . Tile Di ctyof;tclium. mucoroidcs complex is the most wide­

spread species . It has been isolated on all of the five continents 

surveyed (Cavender , 1973) . It is the dominant species in Europe and 

East Africa (Cavender , 1969a and b) and shares dominance with other 

species such as Polysphondylium pallidum , Polysphondyliwn violaceum , 

Dictyostelium purpurcum and sometimes Dictyostelium polycephalum and 

Dictyostcliwn minutum , in S . E . Asia , l\mcrica and Canada (Cavender and 

Raper , 1965 ; Cavender & Raper , 1968 ; Cavender , 1972 ; Cavender , 1976b). 

D. di scoideum is a rare species of cellular slime mould , having been 

isolated only on the American continent (Raper , 1935 ; Cavender & Raper, 

19 65 ; Cavender & Raper , 1968) . 

Australian cellular slime moulds have not been described 

previously'. During attempts to isolate Australian D. discoideum (for 

reasons outlined in the Gener~l Introduction) a survey has been made 

of the dictyostelid microflora in soils of three areas of virgin 

Australian bush . The surveys were : (1) A seasonal survey of the 

Brind~ella Range, A. C . T . (2) A comprehensive study of a transect in 

New England Nc1Lio11al Pc1rk , N.S . W. (3) An exc1mination of some soil 

samples from Lizard Island , Queens land . 

2 . M/\'J'l·: ru /\ I ,S l\N [) Ml~'l'I IODS 

2 . /\ 

l\ll mcdic1 c1nd chemicals arc described in Appendix B . 
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2 . B Method of isolating and storing cellular slime moulds 

We used an adaptation of the method described by Cavender 

& Raper (1965a) for isolating cellular slime moulds from the wild. 

Soil samples were collected , with a spatula , from just below the leaf 

litter . 1wo samples were taken at each site ; a 1 ml sample 

and a "spare " sample of about S ml . The samples were collected in 

sterile graduated 10 ml plastic tubes and lids we r e lightly secured . 

On returning to the laboratory , the soil samples were stored overnight 

at 4°c . (The ! spare ' 0 
samples were stored at 4 C until required.) On 

the following day the 1 ml samples were diluted to a final volume of 

2 . 0ml with S . S. They were whirlimixed v igorously until the soil was 

completely suspended and then 0·. l ml of each suspension was plated on 

to Hay agar together with O. + ml of a thick suspension of K. aerogenes. 

l\n Oxford sampler (100pl) was found to be the most effective implement 

for transferring the thick soil suspension. The plates were incubated 

0 
at 2lil C. Colonies of cellular slime moulds began to appear after 4 · 

days . TI1e larger dictyostelid slime moulds could be identified with the 

naked eye , but in on.1cr to identify smaller cellular s lime moulds 

(e.g. D. minutum) , the Hay agar plates we re examined using a Leitz 

binocular microscope at lOx magnification . Olive (1975) was us ed as 

a guide to the classification of cellular slime moulds. Spores'were 

taken from the mature fruiting bodies, using a sterile wooden toothpick 

and were deposited into a drop of sterile S.S . on an SM/5 agar plate, 

prespread with K. aerogenes. The spores were streaked across the plate 

using a sterile platinum loop . In this way the isolates were purified 

by clonal passage. Spores of the purified colony were dried onto silica 

gel for storage (1.2.B) . 
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3 . RESULTS 

3 . A A seasonal survey of the Brindabella Range , A. C.T . 

Soil samples were taken from the same six sites at various 

times throughout the year . Each sit~ differed in altitude, vegetational 

cover , soil type and aspect (Table 17) . The seasonal distribution of 

dictyostelid slime rroulds is shown in relation to these variables 

(Table 17). The sheltered more temperate sites (sites 5 and 8) suppo rt 

the highest annual slime mould population of the six sites tested . 

These sites have their highest sl i me moul d population in late spring. 

The more exposed sites have their h i ghes t s l ime mould population in the 

autumn . However , the numbers of co l onies scored per gram o f soi l are 

too low to make reliable correlations with any of the environmental 

variables . The D. mucoroides complex (probably including D. giganteum) 

was the most abundant and most frequently isolated species . It was 

isolated at all of the six sites . P . pallidurn and D. minuturn have been 

isolated at two of the sites although infrequently and P . violaceurn was 

only isolated once at one site . All of these species were isolated on 

Hay agar and were purified by clonal passage ·on SM/5 agar for storage 

on silica gel (2 . B above) . Two other possible species of cellular 

slime mould were isolated in addition to the four above . One was 

similar in appearance to Dictyosteliurn lacteurn . It was abundant at 

all sites and had very tiny fruiting -bodies . However, since the 

spore J1 eanswere firmly .attached to the stalk, it was difficult to collect 

spores on the end of a sterile toothpick without either touching the 

plate or without collecting the stalk as well. Repeated attempts to 

purify this isolate were hindered by fungal contamination. Although 

amoebae were present in the vicinity of the fruiting body the isolate 

could not , with certainty , be classified as a cellular slime mould. 

Therefore th se data haV been excluded from Table 17. The other isolate 



TABLE 17 

The distribution of dictyostelid slime moulds in the Brindabella Range, A.C.T. 

Altitude Site Aspect Soil Understorey Cover Av. number of cellular · speciest 
(metres) slime moulds/gm. soil* 

early late early late 
spring spring autumn winter · spring spring autumn winter 

750 8 sheltered washed out none casuarinas 20 140 N.D. 20 a,d a,c - a 
gully N. gravelly, 

twiggy 

' 
900 5 very moist and wattles , sma ll tall gums 60 180 20 10 a,c a a a 

she ltered mossy gums , tussock (- lOOft.) 
N.W. fallen I ."( grass , 

~ 

trees 

1200 2 steep rocky moist r elatively tall straight 0 0 20 I 80 - - a a 
well pro- . lots char- open, wattles gums 
tected coal tussock grass, I 

I s. straggly ' 
bushes 

1200 1 exposed, mo is t, open , sparse snow gums 10 0 20 0 a - b 
steep s mal l stones bracken, 
N.E. r oots of tussock grass i 

I grass 

1450 3 exposed, mois t, short bushy straggly 20 20 40 10 b a a - a 
fl a t windy humus,small shrubs , lots snowgums 
S.E. rocks. dry d e ad timbe r 

1450 4 moderately moist,lots straggly shrubs relatively 0 0 40 0 - a a 
protected small stones lots tussock I d ens e snow-
s.w. grass gums 

The soil samples were treated as described in the MATERIALS AND METHODS (2.B). 

* The average number of cellular slime moulds /gm. soil = the averac;e nuri:::i e r o:Z colonies/0 .1 r,J. soil sus?ension x 20. 

t a • D. mucoroides complex; b • P. pallidum; c • D. rninutum; d s P. violaceum. 

I 

"\ 



had similar compound fruiting structures to D. polycephalum 

but since some isolates of D. mucoroides occasionally fruit with a 

similar clumping pattern , the isolate in question was not classified 
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as D. poJyc_0:)palurn in Table 17 . D. discoideum was not detected at any 

of the sites sampled . 

3 . B A comprehensive survey of a transect in the New England 

Nu.Lional Park , N. S . W . . 

The Brindabella Range is largely subalpine and varies from 

harsh exposed country with sparse straggly snow gums to more sheltered 

temperate sclerophyll forest . Eucalypt is the major hardwood throughout. 

Since D. discoideum was not detected in the Brindabellas , we decided to 

survey a more temperate area . New England National Park was chosen 

because it has a large range in altitude , with a correspondingly large 

range in vegetation from subtropical to subalpine. Furthermore , the 

forests were largely virgin bush.and included stands of Antartic beech 

which offered a different leaf litter and had a different type of 

understorey to that of the eucalypt . A transect was taken in which the 

vegetation ranged from subtropical to temperate rain forest . Soil 

samples were coJlected from the forest floor on either side of a fire 

trail (but well away from the trail) at intervals of about 200 metres . 

The results of the survey have been tabulated to show the distribution 

of dictyostclid slime moulds in relation to altitude (Table 18). The 

VC'CJC' tt1 Li 011 v.1.d <' cl with c1 l t-i tuct . The h.i.9hc~.; t soj l sc\.ITlrles were taken 

from lhC' floor of lwoch forest (1100-)300 motrcf;). Even though the 

soils were very moi s t and the leaf litter thick, the cellular slime mould · 

popuL.1 Lio11 w·t1~ ~; u rpr i :; j n9 J.y s rnc1ll. From ubou l 7 00-1100 metres the 

v<.'<Jctalio11 could he~ cla :;~;ificc.1 z1~; cJry scl('.rophyll. forc i,L. l\lthou9h the 

cellular slime moulds isolated during tl1is survey were isolated in this 



,,l 

J 

i 

ll 

I 

I 

!I 

\ 

I 

.! 

TABLE 18 

The distribution of dictyostelid slime moulds of New England National 

t Park , N.S . W. 

Range in 
altitude 
(metres) 

Type of 
vegetation 

Major 
hardwood 

Number 
of sites 
samples 

Numbe r of 
species 
detected 

Ave. numbe·r 
of cellular 
slime moulds/ 
gm. soil* 

500 - 700 subtropical eucalyp t 10 3 8 

700 - 900 13 4 27 

dry sclerophyll eucalypt 
900 - 1100 9 4 32 

1100 - 1300 temperate Antarctic 18 1 7 
rainforest beech 

The soil samples were treated as described in the MATERIALS AND METHODS 2.B. 

Three 1 ml samples were taken from each site and these were examined on 

returning to the laboratory (3 to 5 days after collection) . The total number 

of colonies detected were : 71 D. mucoroides , 25 P . pallidurn , 12 P. violaceum, 

2 D. purpureum and 1 D. minuturn . An examination of the 'spare ' soil samples, 

9 days later , gave similar results to those tabulated above and the numbers of 

colonies detected in this second experiment were: 55 D . mucoroides, 

19 P . pallidurn , 2 P . violaceurn, 1 D. purpureurn and 1 D. minutum. 

* Th~ average number of cellular s lime moulds/gm soil = number of 

colonies per site pe r hay agar plate x 20 . 

t This survey was conducted in early spring . 
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section. The transect ended at the base of the valley. The creek bed 

at the base of the vall~y was surrounded by subtropical rainforest 

( - 500-700 metres) . The major hardwood was still eucalypt , but the 

1inc'le:rs 1-on'y wc1s t-hi ck ,1ncl incl uocd more ferns , bracken and mosses than 

did the higher altitudes . These samples were taken mainly from the 

banks of the small creek , but the soil was quite dry . 

Ov~rall the density of cellular slime moulds appeared to be un-

rclaLcd Lo soil mo .i.slurc . The mo.is t soil of the~ beech forest u.nd the 

dry soil of tile creek bed both contai11ed a low density of slime moulds . 

There were also moist as .well as dry . samples containing a high density 

of slime moulds . Some samples yielded particularly high numbers of 

dictyostelid slime moulds but the corresponding sample sites had no 

obvious environmental variables in common . 

D. mucoroides was the most common species of cellular slime 

mould found in New England National Park . It was found at 50% of the 

sites sampled . P . pallidum was also quite common . It was found at 20% 

of the sites samples . The species P . violaceum , D. purpureum and 

D. minutum were less common . They were found at 10%, 4% and 2% of the 

sites respectively. 

3 . C An examination of cellular slime moulds from several sites 

' on Lizard Island , Queensland 

Dr l\urian Gibus collected soil from several sites o{ different 

vegetation on Lizard Island, an island situated off the north east 

coast of Queensland . Tl1is provideg quite a different habitat to those 

already studied in Australia . The survey was based on very few samples. 

However the distribution of cellular slime moulds (Table 19 legend) 

was similar to that found elsewhere in Australia . 



TABLE 19 

The distribution of dictyostelid slime moulds on Lizard Island, QLD 

Type of 
vegetation 

rainforest 

dry sclerophyll 

scrub 

pandoras 

wet mangrove 

under the 

mangrove 

Number of 
sites 
sampled 

4 

3 

3 

1 

6 

Av. number of 
cellular slime 
moulds/gm.soil 

35 

7 

10 

Species 
isolated* 

a,e 

C 

b 

The soil samples which were collected by Dr. Adrian Gibbs , were treated 

as described in the MATERIALS AND METHODS (2.B). 

* In this survey the total number of colonies detected was: 

6 D. mucoroides complex (a); 3 P. pallidum (b); 

1 D. minutum (c); 1 D. purpureum (e) . 
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3.D Strains with interesting features 

Several of the isolates had features of particular interest. 

These features were unrelated to the work described in this thesis and 

so will not be discussed in detail here . The strains are briefly 

described in Table 20 . 

4 . DISCUSSION 

The surveys described in this Appendix were primarily initiated 

in a search for D. discoideum . Therefore the emphasis has been on 

examining the common dictyostelid slime moulds of a large number of 

samples rather than on examining the complete microflora of any 

particular area . The data collected hav~shown that all of the maJor 

dictyostelid species exist in Australia , although at lower density than 

elsewhere in the world . Much of the arable land in Australia has be~n 

used for agriculture and therefore the remaining virgin bushland is 

apt to be marginal . This is perhaps why the three areas of virgin bush­

land surveyed support a low density of cellular slime moulds . 

The aim of isolating D. discoideum was to obtain two strains 

of opposite mating-type from the same soil sample. It was supposed that 

such strains would be virtually isogenic and that macrocysts formed between 

them could therefore germinate more readily (see General Introduction). 

Wallace (1977) has in fact used this approach with American wild isolates 

of D. discoideum . However , he showed that macrocysts so formed did not 

germinate more readily . 

Since D. discoideum was not isolated at any of the sites surveyed 

and in view of the recent findings of Wallace (1977) , the search for 

Australian D. discoideum was discontinued . 
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Strain 
name 

ANUll 

ANU12 

ANU13 

ANU4 

ANU60 

ANU84 

ANU85 

ANU86 

ANUllO 

ANU120 

ANU95 

ANU135 

ANU143 

ANU97 

ANU103 

ANU118 

ANU121 

TABLE 20 

Strains with interesting features 

Species 

D. mucoroides 

D. mucoroides 

P. violaceum 

P. pallidum 

D. mucoroides 

D. mucoroides 

D. mucoroides 

unknown species 

P. pallidum 

Isolation 
area 

Brindabellas 

Brindabellas 

N.E.N.P.* 

N.E.N.P. 

N.E.N.P. 

N.E.N.P. 

N.E.N.P. 

N.E.N.P. 

N.E.N.P. 

Date of 
isolation 

May, 1976 

Feature of 
particular interest 

Large aggregation 
territories on H 20 

agar but normal small 
territories on LPS 
agar 

.. 
April 1976 Temperature sensitive 

for growth (ts) 
restrictive temperatur-e 
= 26.8±0.3°C , 

October,1977 Irregular branching; 
doesn't always branch; 
has a curly stalk and 
possibly a basal 
disc(?). 

October,1977 

Haploids with round 
spores instead of 

the usual wild type 
elliptical shape. 

Stalks branch more 
October,1977 than is usual for 

D. mucoroides 

October,1977 
Very pale yellow 
spore heads, curly 
stalk and possibly 
a basal disc (doesn 't 
look like D.discoidell!W 

October,1977 Very short species , 
possibly a tall 
D. minutum. 

October,1977 Brown pigment ed 
species of unknown 
type - possibly a 
crampon base. 

October,1977 
I 

I 

Large spores -
possibly diploid 

* N.E.N.P. - New England National Park 
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APPENDIX B STRAINS , MEDIA AND CHEMICALS 

1 . STRAINS 

The strains of D . discoideurn used in this thesis are described in 

Tables 21 , 22 , 23 , 24 , 25 , 26 and 27 . 

Haploid segregants of DU260 have been c l ass i fied into phenotypic 

groups . The morphological features of representative strains from these 

phenotypic groups are shown in Fig . 10 . 

Evidence is presented in Fig . 1 1 to show that the spore shape 

marker , sprA , is homozygous in DU260 . 

l . A Nomenclature 

Genetic nomenclature in D. discoideum follows the system of 

Demerec et al ., (1966 ) Genetics 54 , 61. In this system each mutation 

is described by a three letter gene symbol , a capital letter locus code 

and an isolation number . To be consistent with this system the mating-

type locu s , formerly called "mating type " (Erdos, et al., (1973b), has 

been redesignated mat. The respective mating-types are called matA and 

mc:1ta ins tcc1d of mc:1ting i::.ypc l\1 and ma ting type l\ 2 . Strain NC4 has been 

given i s olaLio11 number 1 ( :. rnatl\l insteu.d of mating type l\ 1 ) and Vl2 

isolation number 2 (.". mata2 instead of mating type A2) . Other wild 

isolates arc give n diffcr c 11t isolation numbers to distinguish them from 

Llic NCt1 L111<.I Vl:2. ldlclcs ; c . y. WS472 i s llk1U\JS3 ('l'u.!Jlc 27). 



'l'l\OLE 21 

Phenot;t~e ,'lnd qcnot;tEO of h<1ploid se9 ro9nnt s from DL1260 

St r ai n* Phonotypic Phenotype t Gcnotypo'f 

Group Parental Linkage Groups Mntin g- ly 

Sp.Col.. Pig .• G.Res ., Heth . • Sp. Sh. , Fb . H., Ab .• G.Ra., Ax. I II IV mat 

HU97 

HU167 
A w B NG R RD T WI F NG X X X matl\l 

HU169 

HU173 

HU107 
B y B NG R RD T WI F NG X X + Z X matAl 

HU171 

HU104 

HU168 

HU170 C w NB NG R ' RD T WI MS NG X X z matAl 

HU172 

HU177 

HUlOl 

HU174 

HU175 D w B NG R RD/TE MT N SL NG X X X matAl 

HU176 

HU178 

HU193 E y B NG s TE/Rp MT WI F NG X z X matAl 
HU195 

HU197 F y B NG s RD/TE T N MS NG X z X matAl 

HU196 
G y B NG s TE/RD s N s NG X z X matAl 

HU202 

HU192 
H y B NG s TE/RD s WI z.'S NG X z X matAl 

HU199 

* Haploid segregants of pte~otypic groups A, B, C and D were derived from DU260 by p lating the diploid on methanol 2% - SM-agar. 

Haploid segregants of phenotypic groL-ps E , F , G and H were derived from DU260 by suspending the dip l oid in axenic medium. 

t The symbols used to describe the phenotypes are: fruiting body height (Fb.H.); width of aggregation band (Ab.); growth 

rate of co l ony measured as dia=eter of colony on nutrient agar plate (G. Ra . ) ; spore colour (Sp . Col.); fruiting body pigment (Pig.) 

growth at r estrictive temperat~re 27°c (G.Res.) ; methanol (Meth) ; spor e shape (Sp.Sh.); axenic medium (Ax.) ; sensitive (S); 

res istant (R); 1 ellow (Y) ; ·,1hite (W) ; brown (B); not brow n (NB); growth (G); no growth (NG) ; r ound (RD); th in elliptic 

(TE); round plus ellipticai (RD/TE) or (TE/RD) with p r edominant spore shape as nu.rnerator; 

short (S); wide (WI); narrow (ll) ; corona (C); slow (SL); moderately s l ow (MS) ; 

'f I, II and IV r efer to li r~age groups cne , two and four respecti vely . 

tall (T); 

fast (F). 

moderately tall (MT); 

Symbols X and Z r ei:resent the linkage g r oups from parental strains HUl (matl1l) and NP158 (mata2) respectively . 
I 

~13 ~l 
whiAl acr/\1 ~12 + + bwnAl 

X: I 0 II o=T =T t IV o =r= ? matAl 

Z: I 0-------- II 0 I V ? ~ -350 , mata2 
+ + + + + sprB axe + 

The symbols used to describe ~roe ~utant loci of X and Y are: temperature- sensitive for growth at the restric tive temperature, 

26 . B O.J0 c (~ rour.d spor e shape ( s , r /\ ) ; thin elliptical spore shape (sprB) ; white spore head (whi/\ ) ; 

rcsislancc Lo me hanol (a i:: rA ) ; brc,,,•n pigDY.!nt (tr,1nA ) . 



-.. 

TN3LE 22 

Phenotype and ge notyp e of haploid segregants from DP72 

Strain* Phenotypic 
Group 

t 
Phenotype Parental 

Linkage Groups 

Genotypet 

Mating-type 

Sp. Col., Pig., G. Res., Meth., Sp. Sh., Fb. H., Ab., G. Ra., Co., Ax. , II VII 

X37 s NG X z ma t a 2 --
X49 A w NB NG R E MS A s s G X z 

X39 B w NB NG R E T C F R NG X X ma ta2 

X42 y NB NG R E T NC F I ND ND (X+Z) N.D. 
mata2 

X44 C y NB NG R E T C F R NG (X+Z) X 

* Haploid segregants X37, X39 and X42 were derived from DP72 by plating approximately 2 x 10 4 dip loid amoebae on to SM-agar 
I 

containing 2% methanol (v/v). Haploid segre gant X49 was derived from DP72 by suspending diploid ameobae in axenic medium. 

Haploid segregant X44 was derived from DP72 by plating approximately 2 x 10 4 diploid amoebae on to SM-agar containing 350 µg/ml 

cobaltous chloride. Both X42 and X44 were originally kept because they are recombinant for l.g.II,showing a ~ross-over between 

whiA and acrA i.e. 
whiA+ acrAl (ts gD12 sprB+) · 

t The symbols used to describe the phenotyp·es have been defined in Tables 21 & 23, except for corona (C); no corona (NC); 

absent (A) not done (N.D.). 

*· II and VII refer to linka ge groups two and seve n respectively. 

Symbols X and Z represent the linkage groups from parental strains X23 (matAl) and NF84 (mata2 ) respectively. 

X II 

z II 

whiAl 
0 =r 

+ 

acrAl (tsgD12 

=F =F 

+ ( + 

+ + cobAl 

! l VII 0 ==r= ;? matAl 

VII ;? ma ta2, ~-350 
sprB2) axe + 

I I 

The symbols used to describe the mutant loci of X and Z have been defined in Table 21, except cobAl (resistance to cobaltous 

chloride). 

' · . 
' 



Strain* 

HU299 

HU301 

HU315 

HU320 

HU300 

HU305 

HU314 

HU321 

HU308 

HU312 

HU316 

HU318 

HU311 

HU313 

HU319 

HU317 

HU329 

'l'AULE 2J 

rhonotype t 

Sp.Col., Pig., G.Res. , ~k'th., Co., Cy., Ar*.*, Fb.H., Ab., Sp .Sh., Ma. 

w 

w 

w 

w 

w 

w 

w 

w 

w 

w 

w 

w 

w 

w 

w 

y 

y 

NB 

NB 

NB 

NB 

B 

B 

B 

B 

NB 

NB 

NB 

NB 

B 

B 

B 

NB 

NB 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

NG 

s tt 

R/S -!-t 
... 

s I 

...... 
s · 

R/St t 

5
7t 
.)..J.. 

S ' I 

5
tt 

R 

R 

R 

R 

R 

R 

R 

R 

s 

R 

R 

R 

R 

R 

R 

R 

R 

s 

s 

s 

s 

s 

s 

s 

s 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

s 

s 

s 

s 

R 

R 

R 

R 

s 

s 

s 

s ' 

R 

R 

R 

s 

s 

T 

T 

T 

MS 

T 

MT 

MT 

MS 

T 

T 

T 

Mr 

MS 

MS 

MS 

MT 

MT 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

WI 

wr 

R 

Ex."< 

Exx 

E 

E 

E 

E 

R 

R 

R 

R 

E 

E 

E 

R 

TE 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

I 

X 

X 

X 

X 

X 

X 

Genotype;· 

Par~ntal Linkjgo Gr o ups 

II IV VI VII 

X X X X 

X z X X 

X X X z 

X z X z 

X+Z X X z 

z X X X 

Mating-tyr· 

mat/\1 

matAl 

matAl 

matAl 

matAl 

matAl 

diploid amoebae 
* Haploid segregants HU299, HU320 and HU321 , were selected from DU454 by plating app r oximately 3 x 10 4 ion to SM-agar containing 

HU 318, 
350 µg/ml cobaltous chloride. Haploid segregants HU3 05, HU308, HU316, HU317,AHU319 and HU329 were selected from DU454 by plating 

approximately 3 x 10 4 diploid amoebae on to SM-agar containing 500 µg/ml cycloheximide. Haploid segregants HU300, HU301 and HU311 

were selected from DU454 by pla~ing approximately 2 x 10 4 diploid amoebae on to SM-agar containing 20 µg/ml ben late. Haplo id 

segregants HU31 2 , HU313, HU314 and HU3 15 were derived from DU454 by plating approximately 40 diploid amoebae on to SM-agar containing 

20 µg/ml hen late. 

t The symbols used to describe t he phenotypes have been define d in Table21 except for additional phenotypes which are: cobalt 

(Co); cycloheximide (Cy ); arsenate (Ar); partial resistance (R/S ); rroderately tall (MT); a -mannos idase (Ma); absent (A); 

thin elliptical spore shape (TE). 

t I, II, IV, VI and VII r efe r to linkage groups one, two, four, six and seven respectively; linkage group III was not scored and 

V was unmarked. 

Symbols X and Z r epresent the inhe rited li nkage g roups from par ental strains HU227 (matAl) and HU89 (ma ta2) r espectively . 

~ l X: I o>------t-_.... __ 
ars-351 wh iAl acrAl t sfD12 + + 'i~) acrD ;.;. manAl cob-3 53 

II 
--, 

I I T VI T -, 0 T=T IV 0 0 VII 0 

II er--! Iv · 0 VI VII 
+ + + + + sprB axe~* (bwnA +) + + + 

The symbols used to describe the mutant loci of X and Z are: r esistance t o cycloheximide (cycA); r esis tance to arsenate (ars) 

white spor e head (whiA); resistance to methano l (acrA); thin elliptical spore shape (sprB); r ound spor e s hape (sprH) ; resi s tan ~( 

to acri flavin C acrD) ; b r own ;::,i c;:"1E:,, (bwnA ) ; c,.-mannosidase posi tive (man A ) ; dominant resistance to cobalt (cob- 353) . 

xx the spo re shape is e llip · ca l despi te the presence o f sprH , due t o an unmapped s,:,orc shape s uppr essor mutation. 

tt methanol ~ns1 t1v1ty here rE:su lts from t he p r esence of an unmapped a c r A s uppresso r. 

these markers (L, l u, .!:.:.:.1- E'J) wi: re no scored. 

** Anom al ous r esults ···e r e: obtained f or ars due to the presence o f ars - 351 suppres sor mutation (s ). 



T/\BLE 24 

Ph e notYJ;'e and gc'no type of i ll cq it im . .ltc> diploids 

Diploid Parents Phenotype• 

Sp.Col., Pig ., G. Res ., Sp . Sh. , Fb.H., Ab. , Meth ., Co ., Cy., Ar., Ax., G.Ra. 

DP72 X23 X NP 84 

(matAl) (mata2) y NB G E T C s s ND ND NG F II 

VII 

DU260 HUl x NP158 

(rnatAl) (rnata2) y NB G RD T N s ND ND ND NG MF I 
' 

II 

IV 

I 
DU454 HU227 X HU89 

(matAl) (mata2 ) y NB G E MS WI s s s s N.D. MF 

II 

III 

IV 

VI 

VII 

* The symbols used to describe the phenotypes have been defined in Table 21 & 23 . 

t Genotype 

Mapped mark e rs 

whiAl acrAl (Fl2 i) 
0 T T 
0 t 1 I 

spr~~) + 

~l 

+ 

0 
tsrE13 sprl 

0 i&? spfAl 

whiAl acrAl ( tsgD12 +) 
0 

. I 
+ + ( + sprB2) 

0 ~ 
+ 

cycAl 

+ 

ars-351 

I whiAl acrAl (tsgD12 +) 
0 -,- T =r= I I 

01 I I I I I 
+ + + ( + sprB 2) 

tsgAl 

+ 

(+ sprH351) acrD3 69 
0 I 

(~1 +) + 

rnanAl 

+ 

cob-353 

+ 

I 

t I, II, III, IV, V I and 'III refer to linkage groups one , two , three, four , six and seven respective ly. 

The symbols u sed to describe the mutant loci have been defined in Tables 21 & 23 . 

unma pped 
marker s 

~- 3 50 

mata2 

~-350 

rnata2 

rnatAl 



I 

!I 
1, 

1, 

11 

11 

'" 
'J 

11 

Strain 

NC4 

Vl2 

X2 

Parent o r 
Source* 

(1) 

(2) 

(3) 

(3) 

(4) 

(5) 

(6) 

(7) 

(3) 

(4) 

NP84 

(8) 

(6) 

(9) 

DPl 

(10) 

DU220 

(11) 

(12) 

HU89 

whi 

+ 

+ 

+ 

Al 

Al 

Al 

Al 

+ 

+ 

+ 

+ 

-900 

+. 

+ 

Al 

+ 

Al 

+ 

+ 

+ 

+ 

+ 

+ 

Al 

bwn 

+ 

+ 

Al 

Al 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Al 

+ 

Al 

Al 

+ 

Al 

Al 

Al 

Al 

Al 

Al 

+ 

+ 

Al 

012 

012 

012 

012 

Ci 

B3 

-350 

-350 

-901 

El3 

Al 

012, El3 

Al 

B3 

-350 

TABLE 25 

Basic haploid strains 

+ 

+ 

+ 

Al 

acr 

+ 

+ 

+ 

Al 

cob 

+ 

+ 

+ 

+ 

+ Al Al 

Al (Al,0369) + 

Al + + 

+ + + 

+ ' A2 + 

+ 

+ 

-900 

+ 

Al 

+ 

+ 

Al 

+ 

Al 

+ 

Al 

+ 

+ 

+ 

+ 

0369 

A351 

+ 

A2 

+ 

A352 

+ 

A352 

-356 

A352 

Al 

+ 

+ 

+ 

+ 

+ 

+ 

-354 

+ 

+ 

+ 

-364 

+ 

-364 

+ 

-353 

+ 

B2 

+ 

+ 

+ 

H351 

+ 

+ 

+ 

B2 

B2 

+? 

Al 

H351 

Al 

+ 

+ 

B2 

+ 

B2 

+ 

B2 

+ 

t Genotype 

ebr 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

-350 

+ 

+ 

+ 

+ 

Al 

+ 

+ 

+ 

+ 

+ 

mat 

Al 

a2 

Al 

Al 

Al 

Al 

Al 

Al 

Al 

a2 

a2 

a2 

Al 

Al 

Al 

Al 

Al 

a2 

man 

+ 

+ 

+ 

+ 

+ 

Al 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Al 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

axe 

+ 

+ 

Al, Bl 

+ 

ars 

+ 

+ 

+ 

+ 

+(Bl?) + 

+ + 

+ + 

(Al,Bl?) + 

Al,Bl + 

-350 

-350 

+ 

+ 

Al,Bl 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

A]. Bl + 

(?) + 

+ + 

Bl + 

+ + 

Bl -355 

+ + 

Bl(?) -355 

+ -351 

ben 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

· + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

X9 

X23 

XMl 

TS12 

NP7 

NP12 

NP84 

NP158 

HM3 

M28 

HPS83 

HUl 

HU32 

HU77 

HU89 

HU128 

HU156 

HU180 

HU184 

HU208 

HU214 

HU232 

HU1 28 

HU156 

DU383 

DU348 

DU431 + 

+ 

+ 

Al 

-350 

Al 

-350 

C7 

D12,El3 

El3,H 

+ 

+ 

+ 

+ + -353 

Al 

Al 

+ 

+ 

+ 

+ 

Al 

a2 -

Al 

a2 

Al 

Al 

Al 

+ 

+ 

+ 

+ AlBl(?) -351 -351 AS 

* (1) Raper, 1935; (2) Erdos et al., 1973b; (3) Williams et~-, 1974a; (4) Mosses et al., 1975; (5) Free, Schimke & 

Loomis, 1976; (6) Katz & Sussman, 1972; (7) Kessin et al., . 1974; (8) Vl2-M2, received from R. Kay; (9) Welker & Deering, 1978; 

(12) Williams & Barrand, (10) Williams, 1978; (11) HU89 is a haploid segregant obtained from a cross between NP158 & HUl (2.3.C); 

-+--M28- -AX3---+ 
1978. The important feature of this strain is that it has a recombined linkage group II i.e. 

V 

Parent strains : DPl = M28 x TS12 (This lab) ; 

TS12 on meth 2% - SM-agar L.G. II of HU77 = 

acrA2 

DU220, diploid with mitotic crossover on L.G. II obtained by plating DP32 = NP12 x 
whiAl acrA2 tsgD+ 

o ==r= ~-1- -~I- N.B. tsgD has been crossed out; DU348 = HU154 

(Williams & Barrand, 1978 ) x X55 (Ratner & Newell, 1978); DU383 HU180 x NP7; DU43 1 = Ml-46 (Free, Schimke & Loomis, 1976) x 

HU214. 

t The symbols used to describe the geno t ype are: whiA: white spore; whi+: yellow spore; bwnA: formation of brown pigment ; 

bwn+: no brown pigment formed; tsg-: t emperature sensitive for growth; tsg+: growth at the r estric tive temperature; CfCA: growth 

in the presence of cycloheximide (500 µg/ml ); acr: gr~wth in the presence of acriflavin (100 µg/ ml) or methanol 2% (acrA only) ; 

cob: growth in the presence of cobaltous chloride (350 µg/ml); sp rB: thin elliptical spore shape; sprH: round spore shape; sprA: 

round spore shape; ebr : growth in presence of ethidium bromide (35 µg/ml); mat : mating-type; manA: absence of a -ma nnosidase; 

axe: growth in axenic medium; ars: growth in the presence of arsenate (1.5 mg/ml); ben: growth in the presence of ben late (600 µg/ml); 

bsg: unable to grow on Baci llus subti li s . 

In this table+ denotes wild-type and the diffe r en t lette r s deno te different mutant loci. Where a mutation hasn't been mapped to a 

particular l ocus - p r ecedes the isolation number. 
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. * Strain Parent* 

HU225 ou403 · 

Tl\BLE 26 

Phenotype and genotype of well marke d strains 

t 
Phenotype 

Sp.Col., Pig., G.Res., Sp.Sh., Fb.H., Ab., Meth., Co., Cy., Ar., Ma., Be., 

w NB NG E MS WI R/S R R R A R/S 

I 

Genotype 

Linkage Groups 

I II III 

~l whiAl tsgAl 

acrAl 

t sgD12 

ars-351 

IV V VI VII 

manAl c ob-353 

'-.: 

HU226 DU405 w NB NG R MS WI R R s R 'A R t sgE13 whiAl tsgAl 

b e n-3 51 acrA l 

manAl cob-353 , 

HU227 DU405 w NB NG R MT WI R/S 

HU234 DU428 w NB NG R MT WI R 

HU235 DU429 W· NB NG R MT WI R 

* DU403 and DU405 HU214 (Table 25) x HPS83 (Table 25); 

R R R/S A R/S 

R R s A R/S 

R R R/S A R/S 

-- ---
tsgD12 

sprAl ars -351 

cycAl 

cycAl 

cycAl 

wh iAl 

acrAl 

t sgD12 

ars - 351 

whil\l 

acrAl 

t sgD12 

whil\l 

acrA l 

t sgD12 

ars-351 

tsgAl sprH 
351 

tsgAl sprH 
351 

tsgAl sprH 
351 

manAl c o b-353 

manAl cob -353 

manAl cob-353 

DU428 and DU429 were selected as mitotic cross-over diploids for 

linkage group I from DU403 on SM-agar containing 500 µg/ml cycloheximide. 

t 

'f 

The symbols used to describe phenotype have been defined in Tables 21 and 23, except for growth on 600 µg/ml ben late (Be). 

I 
All strains constructed in this laboratory. 

~ ... 
__ ----1oolL__ - -- - .:-,,. "!. 

, 

~ 

·, _:a,,: 
,.., 



J 

i 

11 

I 

I 

I 

I 

Strain* 

WS472 

WS195-6 

WS205-4 

WS583 

WS5-l 

WSlO 

WS585 

WS655 

WS7 

WS582 

WS656 

AC4 

Za-3a 

WS57-6 

WS 269a 

WS3 80b 

WS584 

WS526 

WS 216- 2 

WS112b 

HU1 82 

HU188 

TABLE 27 

Phenotype and mating- type of American wild isolates of D. discoide um 

Sp< Col., 

PY 

PY 

PY 

PY 

PY 

PY 

PY 

PY 

PY 

PY 

PY 

PY 

PY 

y 

y 

y 

DY 

DY 

y 

y 

PY 

PY 

Phe notype t 

Sp . Sh. , 

HE 

HE 

HE 

HE 

HE 

DE 

DE 

HE 

HE 

HE 

HE/o 

HE/o 

HE 

HE 

HE 

HE 

HE 

HE 

HE 

HE 

HE 

HE 

Fb. H. 

T 

T 

T 

T 

T 

T 

MT 

MT 

T 

T 

T 

MS 

T 

T 

T 

T 

s 

MS 

T 

T 

MT 

T 

. t Mating-type 

Ab 

C matA 353 

C matA 354 

C matA 355 

C matA 352 

C matA 356 

WI matA 3 73 

C matA 374 

WI matA 357 

C · mata 358 

C mata 351 

C mata 359 

WI matA 360/mata 

ND matA 362/mata 

ND mat- 364 

ND mat- 365 

ND matA 366 

WI mat- 367 

ND mat- 368 

ND matA 369/mata 

C matA 371/mata 

C matA 374 

WI matA 373 

361 

363 

370 

372 

These American wild isolates were received from Professor K.B. Raper. They were derived 

independently of each other . 

The symbols used to describe the phenotypes are : 

shape (Sp. Sh . ); fruiting body height (Fb . H.); 

spore colour (Sp. Col . ); spore 

aggregation band (~b); pale 

yellow (PY); yellow (Y); dark yel low (DY); haploid elliptical (HE) ; diploid 

elliptical (DE); haploid elliptical & slightly oval (HE/o) ; tall (T); moderately 

tall (MT); moderately short (MS); short (S) ; corona (C) ; wide but no corona (WI); 

not determined (ND) . 

t Each of the wild isolate strains were tested for mating-type and given 

individual isolation numbers to indicate thei r independence. The homothallic and 

bisexual strains have been assigned both mating- type alleles (each with separate 

isolation numbers) , even though this postulate has not been proved . Asexual strains 

have been give n an isolation numb e r only . 
_. 



Fig . 10 

Parental Strains 

HUl NP158 

Diploid 

DU260 

Morphological features of diploid DU260 and its parental 

strains , HUl and NP158. Representative haploid segregants 

of DU260 are shown over the page . The phenotypic group of 

each haploid segregant is shown in parenthesis . Full · 

details of the phenotype and genotype of the segregants 

are given in Table 21 . The colonies were photographed as 

described in 2 . 2 . G. ( Mo.~ . X 2} 



11Ul67 (l\) HU107 (B) 

HU104(C) HU178(D) 

llU1 9S (l~) HUl. 9 7 (1') 

II Ul 9 G ( c; ) II U199 (H) 



Fig. 11 Evidence to show that sprA is homozygous in diploid DU260 

Haploids HUl and NP158 are the parental haploids of diploid 

DU260. Hapl'oid HUlOl is a haploid segregant of DU260 and was 

!·1<'l0ctc'cl 011 SM-,Hylr c r1t ·c1in.in<J 7.'t, inc,u1c:rnol (.". npr:-n -1-) . llc1rJ.oi.c1 

1IU197 is a haploid segregant of DU260 and was selected in 

cJ.xcnic medium. It is yellow and methu.nol sensitive and there-

fore is expected to carry sprB . The spore shape of HU197 is a 

further cros.::ics 

hc1vc proved tJ1c:1.t [IU197 contc:1.ins both sprl\ and sprB . Diploid 

DUS31 was constructed by crossing IIU197 x 11U77. Strain IIU77 

is a haploid containing neither sprA nor sprB . DU260 is 

heterozygous aL sprB since sprB haploids (e.g. IIU197) and sprB+ 

haploids (e.g. HUlOl) can be segregated. All DU260 haploid 

segregants contain sprA . 

It is evident from DU531 that neither sprA nor sprB is fully 

expressed when in the same strain. However, in DU260, round 

spore shape (sprA) is fully expressed. This finding, together 

with the fc1ct that all haploid segregants of DU260 contain sprA , 

indicates that , in DU260, sprA is homozygous. 

* Spores on a haemacytometer slide were photographed as 

described in 2 . 2 . G. The bar represents lOw. 

'l'he symbols used to describe spore phcnoty_b.)c arc: 

round spore (R) ; thin elliptical spore (TE); mixture of round 

and thin cl lip ti cal spores ( H/'l'E) ; ell lpL.icc1l-oval spores (E/0) ; 

elliptical spores (E). 

+- I c111c1 JI refer to linkage groups one and two respectively. 

Only th spore shape markers of each strain have been shown; 

round spore shape (sprl\); thin elliptical spore shape (sprB); 

wild-type (+). 



Strain Spore Shape* 

HUl 

NP158 

HUlOl 

- .. J .• l -. I • 
" r • ' • •• ' 

HU197 

HU77 

DU531 

DU260 

Spore 
Phenotype·!· 

R 

TE 

R 

R/TE 

E 

E/0 

R 

I 

sprA 
o I 

+ 

o I 

sprA 

o I 

sprA 

o I 

+ 
0--+----

sprA 
0 I 
0 I 

+ 

sprA 
o---+--

0--1 
sprA 

Genotypet 

II 

+ 
o I 

sprB 
o I 

+ 
o I 

sprB 

o I 

+ 
o I 

sprB 
0 I 
0 

+ 

sprB 
0--1-
0___,___1 



72. 

2 . MEDil\ 

The composition and preparation of the culture media and solutions 

in this study are listed below. 

For drug supplemented media, the required amount of sterile drug 

solution was added to sterilised SM-agar after autoclaving and just before 

pouring . The drug plates prepared in this way were (final concentration 

shown in parenthesis) methanol (2% v/v); cycloheximide ( 500 Jig/ml) 

ethidi um bromide ( 35 µg/ml) sodium arsenate (1.5 mg/ml) ben late 

(600 µg/ml or 20 µg/ml); acriflavin (100 µg/ml). 

Composition of culture media Preparation 

and solutions 

SM-agar 

Difeo Bacto Peptone 10.0 g 

Glucose 10.0 g 
Sterilise by 

Mg S011•7II;;,0 1.0 g autoclaving for 20 min 

K Il;;,P011 2. 2 
at 15 lbs/sq. in. 

g 
Allow to cool to 

K2 IIPO L1 1.0 g 
60°C approx. before 

Oxoic.l Yc.:lS l::. 1':xLrucL 1.0 g pouring . 

Cu.lbiocl1cm u.gu.r 11 . 0 g 

Distilled water 1.0 1 

L_P_-ac;_c1. r 

Difeo Bacto Pcptone 10.0 g 

10 . 0 g 
l\s [or SM-0.90.r. 

Lactos e 

Di f co agar 15.0 g 

] . 0 1 



Axenic rnedi urn 

Oxoid Bacteriological Peptone 

Oxoid Yeast Extract 

Glucose 

Na2HPOr1·12H2 0 

KH2P04 

Dihydro streptomycin sulphate 

Distilled water 

Hay agar 

Old weathered & dry grass 

KH2P04 

Na2HP04·l 2H2 0 

Calbiochern agar 

Water 

Bonners Salt solution 

NaCl 

KCl 

CaCl2 

Distilled water 

LPS u.9c1r 

KCl 

MgCl2 · GII20 

Kl! 2POt1 

( s.s.) 

Dihydro streptomycin sulphate 

Difeo agar 

14 . 3 g 

7 . 15 g 

15 . 4 g 

1 . 28 g 

0 . 48 g 

0. 25 g 

1 . 0 1 

1 0 . 0 g 

1 . 5 g 

0 . 75 g 

12 . 0 g 

1 . 0 1 

0.6 g 

0.75 g 

0 . 3 g 

1.0 1 

1 . 5 g 

0 . 5 g 

5 . 45 g 

0 . 5 g 

15 . 0 g 

73. 

Preparation 

Sterilise by 

autoclaving for 20 min 

at 15lbs/sq . in. adjust 

to pH7 . 0 with NaOH 

Autoclave gra ss in 

1 litre water for 5 min 

at 20lbs/sq . in . Add 

filtrate of boiled 

grass to salts and agar. 

Autoclave for 20 min . at 

15lbs/sq . in . Pour into 

petri plates. 

Sterilise by autoclaving 

for 20 min. at 15lbs/ 

sq.in . 

As for SM-agar 



II20 agar 

Dihydro streptomycin sulphate 

Difeo agar 

Dis tilled water 

0 . 25 g 

15.0 g 

1.0 l 

74. 

Preparation 

As for SM-agar 
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DU PONT: 

SICMT\ 

UNIVAR 

CHEMICALS 

ben late (50% benornyl) . 

ocri FJ ;:-iv Ln 

sulphate ; 
(n ~utral ); cyc lohcximidc ; 
ethidiurn bromide . 

75. 

dihydrostrcptomycin 

lactose; glucose ; methanol ; sodiwn arseDate . 

l\ll other chcmicu.ls were of the highest reu.gcnt grade available. 

. 
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