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ABSTRACT 

The process of zoospore formation has been studied in the Oomycetes 

Phytophthora cinnamomi and Phytophthora palmivora. The aims of this study were to 

elucidate the structural mechanisms that bring about, firstly, the orderly cleavage of the 

multinucleate sporangia of these organisms and, secondly, the polarized distribution of 

organelles in the uninucleate zoospores formed during the cleavage process. This study 

was undertaken because of the limited nature of our general understanding of the 

formation of fungal zoospores and because zoosporogenesis is an ideal process for the 

study of cell differentiation. 

The first part of this study was an ultrastructural examination of chemically-fixed 

sporangia of P. cinnamomi. The spatial distributions of three different vesicle types 

were monitored during cleavage. Identification of the vesicles was assisted by 

immunogold labelling, using monoclonal antibodies specific for each vesicle type. It 

was shown that the vesicles acquired their characteristically polarized distributions at 

different stages of cleavage. The process of cleavage itself appeared to involve a two­

stage process. Specialized cleavage vesicles were firstly positioned at the boundaries of 

each future subdivision, then once alignment was complete, vesicle fusion brought about 

compartmentalization. 

In the second part of this study sporangia of P. cinnamomi and P. palmivora 

were examined ultrastructurally after rapid-freezing freeze-substitution. The data from 

this approach suggested an entirely different mode of cleavage to that seen with chemical 

fixation. Cleavage elements were evident as vesicles only in preliminary stages, and 

therefore appeared as flattened membrane-bound structures that extended along the 

future subdivision boundaries. Their interconnection completed cleavage. It is proposed 

that freeze-fixation provides superior preservation of the cleavage systems and that the 

vesicles seen in late-stage chemically-fixed sporangia result from artefactual vesiculation 

of the extended cleavage elements. The fusion of pre-aligned vesicles has been proposed 

to explain the process of cytokinesis not only in other species of Phytophthora but in a 

wide variety of other eukaryotes. All these studies have, however, relied upon the 

examination of chemically-fixed material and must now be regarded with some 

suspicion. 

The study of the cleavage process in sporangia prepared by both of the above 

methods was assisted by immunogold labelling, using a monoclonal antibody that bound 

to the contents of the cleavage elements. This antibody also bound to the sporangial 

dictyosomes, indicating that these were the source of the cleavage membranes. The 

antibody did not bind, however, to certain large vacuoles in the sporangium, a result 

which argues against previous suggestions of these vacuoles as sources of zoosporic 
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plasma membrane in Phytophthora. Immunoblotting indicated that the antibody bound 

to a number of high molecular proteins, possibly glycosylated. These proteins form part 

of a dense matrix material that is found inside the developing cleavage system, and 

which fills the extracellular spaces at the completion of cleavage. It is proposed that this 

matrix material may be a gel whose swelling produces the force to burst the sporangium 

and allow zoospore release. 

The third part of this study used immunofluorescence microscopy to examine the 

distribution of microtubules in the sporangium of P. cinnamomi. Prior to the beginning 

of cleavage, extensive astral arrays of microtubules were seen, each array emanating 

from a point adjacent to the pear-shaped nucleus. These arrays defined equal-sized 

cytoplasmic domains around the nuclei. During the course of cleavage these arrays 

gradually changed into the characteristic arrays that have been previously described in 

the zoospore. 

The fourth part of the study examined the possibility that these microtubules, and 

also actin microfilaments, might be involved in: (1) the regular spacing of sporangial 

nuclei; (2) structural regulation of the cleavage process and (3) polarization of the 

vesicles that had been examined in the first part of this study. Immunofluorescence 

microscopy of sporangia of P. cinnamomi that had been treated with the anti­

microfilament drug, cytochalasin D, demonstrated that this drug caused cleavage to 

proceed in an abnormal manner, but did not effect nuclear positioning and the general 

disposition of the microtubular arrays. The three vesicle types examined in the first part 

of this study were concentrated along distinct subsections of the abnormal cleavage 

planes. These subsections could be identified by their spatial relationships to the nuclei, 

and in this regard, the vesicles exhibited analogous distributions to those seen in 

normally cleaved sporangia. In sporangia treated with oryzalin, an antimicrotubule drug, 

there was complete depolymerization of microtubules, randomization of nuclear 

positioning and abnormal cleavage. The three vesicle types were localized to the 

abnormal cleavage planes, but were not concentrated in any particular subsections. 

These results indicate that cytoskeletal elements and especially microtubules play a 

major role in many aspects of zoosporogenesis in P hytophthora. A number of new 

models are proposed to explain how microtubules might regulate cleavage and organelle 

positioning. 

The findings of this study represent a major advance in our understanding of 

fungal zoosporogenesis. It is likely that when the techniques used in the present study 

are applied to other zoosporic systems there will be a similar clarification of the 

processes of cleavage to that which has occurred in Phytophthora. 
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STRUCTURAL ASPECTS OF FUNGAL 

ZOOSPORE FORMATION 

1.1 INTRODUCTION 

The most characteristic feature of those organisms commonly classified as the 

lower fungi is the production of motile zoospores: flagellated, uninucleate cells bounded 

only by a plasma membrane. Zoospores are one of many types of spores produced by 

these fungi, which most commonly exhibit a hyphal mode of growth. While other spore 

types are usually produced sparingly and are designed for long-term survival in adverse 

conditions, zoospores develop in large numbers and are suited to short-range dispersal in 

favourable conditions (Heath, 1976). Their production usually occurs within relatively 

large specialized structures called sporangia. 

One of the hallmarks of fungal zoosporogenesis is that, with limited exceptions, 

the processes of cytokinesis and karyokinesis have been uncoupled. As a result the 

sporangium is typically multinucleate, and can remain in this state for some time, 

waiting until there is sufficient water in the immediate environment to allow dispersal of 

the zoospores (Lange & Olson, 1983). Once these conditions arise, the multinucleate 
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cytoplasm is rapidly cleaved in a simultaneous fashion to produce a number of 

uninucleate zoospores. The major significance of the zoospore in the life cycle of the 

lower fungi is that, once liberated from the sporangium, the zoospore can actively seek 

out a suitable environment for growth of the hyphal phase, which the zoospore is able 

to reform (Carlile, 1983). Such suitable environments often include other organisms, 

especially plants, whose viability may be weakened or destroyed by the invasion of 

fungal pathogens. 

Of the lower fungi , it is the Oomycetes which cause more plant diseases than any 

other group (Alexopoulos & Mims, 1979), being responsible for serious losses in native 

and agricultural plant communities. Members of the Oomycete genus, Phytophthora, 

have, for example, been responsible for the catastrophic devastation of the Irish potato 

crops late last century (P. infestans) and the depletion of large areas of native bushland 

in Western Australia (P. cinnamoml). In diseases caused by Phytophthora, and most 

zoosporic pathogens, the zoospores are the primary units of dissemination. 

Understanding the mechanisms that underlie their development might therefore provide 

clues as to how to prevent their production and hence control the diseases they cause. 

As a result there is now a considerable body of work which pertains to structural aspects 

of fungal zoospore formation (reviewed by Heath, 1976; Olson et al. 1981). 

Studies of zoospore formation have also been motivated by the recognition that 

zoosporogenesis provides a model process for the study of cell differentiation and 

developmental controls (Lange & Olson, 1983). The zoospore contains a variety of 

structures that facilitate motility, and a diverse array of other structures and organelles 

most of which exhibit a high degree of spatial ordering (reviewed by Heath, 1976; Lange 

& Olson, 1983). As such, the organization of the zoospore represents a major increase 

in complexity over that seen in the sporangium. The elucidation of how these changes 

occur in sporangia may shed light on similar processes in other systems which are not so 

amenable to experimental manipulations. 
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Despite the wealth of studies that have examined structural aspects of fungal 

zoosporogenesis, many key questions of this topic remain unanswered. For example, 

there is considerable confusion as to what is the true source of the membranes that 

partition the sporangium during cleavage (Heath, 1976). Also, little is known about how 

these membranes come to develop in the correct positions, or how each zoospore 

acquires a requisite complement of organelles (Olson et al. 1981). The lack of 

understanding of these and other issues of fungal zoosporogenesis probably results from 

the limitations of the techniques that have been used to address them. Studies to date 

have involved conventional electron microscopy of chemically fixed material. Thin 

section analysis is, however, not well suited to the assessment of spatial interrelationships 

in a structure as large as a sporangium. There have only been limited serial section 

analyses of sporangia (Olson et al. 1981; Armbruster, 1982). Also, it is difficult to 

evaluate the possible functions of cellular structures on purely morphological evidence. 

Lastly, membranes are sometimes poorly preserved by chemical fixation (Hausmann, 

1977; Mersey & McCully, 1978). Some of these difficulties have been surmounted, at 

least partly, in other systems by the use of recently developed structural techniques, such 

as those involving monoclonal antibodies, freeze-substitution and fluorescence 

microscopy. The research of this thesis is an attempt to further our understanding of the 

structural basis of fungal zoosporogenesis by application of these new techniques in a 

study of sporangial cleavage in Phytophthora. 

1.2 AN OVERVIEW OF SELECTED ASPECTS OF FUNGAL 

ZOOSPOROGENESIS 

This section addresses various structural aspects of fungal zoosporogenesis which 

specifically pertain to the research of this thesis, but which also involve most of the key 

issues of this topic. The survey is based on the literature that has examined those fungi 

grouped within the Division Mastigomycota (sensu Alexopoulos & Mims, 1979), 
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the taxon in which almost all zoosporic fungi have traditionally been grouped. In some 

recent classifications (e.g., Margulis et al. 1989) the zoosporic fungi have been split into 

a number of different protoctistan phyla in consideration of their diverse evolutionary 

ancestry. 

1.2 .1 Sources of additional membrane required during cleavage 

In any cell division process the membranous surface area of the resulting cells 

will be greater than that of the parent cell. Therefore, either the parent cell membrane 

must stretch or new membrane must be synthesized. While membrane stretching has at 

times been proposed to account for the relatively small increase in surface area that 

occurs during animal cytokinesis (Rappaport, 1986), in most cases of fungal 

zoosporogenesis there is such a dramatic increase that, with limited exception (Hoch & 

Mitchell, 1972, 1975), some other source of additional membrane has been suggested. 

The sources most commonly proposed are dictyosomes or dictyosome-analogoues (Hohl 

& Hamamoto, 1967; Lessie & Lovett, 1968; Elsner et al. 1970; Heintz, 1970; Williams 

& Webster, 1970; Travland & Whisler, 1971; Chong & Barr, 1973; McNitt, 1974; 

Schnepf et al. 1978; Taylor & Fuller, 1981; Lange et al. 1984, 1989; Lin & Leu, 1984; 

Martin & Miller, 1986; Sewall et al. 1986). Such suggestions have largely been based 

purely on morphological evidence but are in agreement with the proposed role of 

dictyosomal membranes in cytokinesis in other systems (Pickett-Heaps, 1975; Gunning, 

1982). 

In addition to dictyosomes, a great variety of other structures have been proposed 

as sources of the additional membrane required during fungal zoosporogenesis: 

endoplasmic reticulum (Lucarotti & Federici, 1984); vesicles pinched off either the 

plasma membrane (Renaud & Swift, 1964; Barron & Hill, 1974) or large central 

vacuoles (Williams & Webster, 1970); dense body vesicles (Gay & Greenwood, 1966; 

Gay et al. 1971; Olson et al. 1981; Armbruster, 1982); multi vesicular bodies (Temmiok 

& Campbell, 1968) and many other vesicles or vacuoles of unknown origin (Bland & 
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Amerson, 1973; Gotelli, 1974; Armbruster, 1982). As far back as 1976, Heath proposed 

that such a variety of sources for the zoosporic membranes might represent a confused 

state of affairs. This view is supported by the multiplicity of sources that have been 

proposed even in the same organism. For example, Armbruster (1982) proposed that 

three different vesicles supplied zoosporic membranes in all three Saprolegnialian 

species that she studied. In Phytophthora capsici, cleavage membranes have been 

proposed to be derived both from the membrane of large central vacuoles that are often 

seen in the sporangium of this species and also from dictyosomes (Williams & Webster, 

1970). Heath (1976) suggested that identification of the true source of cleavage 

membranes would not be possible until specific morphological or histochemical markers 

were available. Some progress has recently been made in this regard, especially in the 

case of the Chytridiomycete, Allomyces. As discussed by Sewall et al. (1986), 

Allomyces lacks typical Golgi complexes composed of stacked cisternae, but studies 

using trans-Golgi markers (Feeney & Triemer, 1979) and Golgi-disrupting drugs (Sewall 

et al. 1986) indicate that in this genus dictyosomal analogues, consisting of single 

endomembrane elements, provide the additional membrane required during 

zoosporogenesis. 

The difficulties of discerning these elements at the ultrastructural level are 

believed to be responsible for the proposals of numerous other sporangial structures as 

sources of zoosporic membrane in Allomyces (Sewall et al. 1986). It may well be that 

the use of membrane markers in further studies of zoosporogenesis in other fungi could 

also lead to a similar clarification to that which has occurred in Allomyces. 

1.2.2 The mode of sporangial partitioning 

The process of sporangial cytokinesis in the Mastigomycota is a more complex 

affair than normal cell division because, with the exception of the Orders Labyrinthulales 

and Thraustochytriales, (sensu Alexopoulos & Mims, 1979), the multinucleate 

sporangium is subdivided by a number of simultaneous subdivisions. In Section 1.2.3, 
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consideration will be given as to how cleavage might be regulated, but first the manner 

in which the membranous partitions actually form must be considered. 

Data exist which support a variety of partitioning processes occurring during 

zoosporogenesis. The processes can be basically divided into three categories: 

(a) Fusion of pre-aligned vesicles. In this model specialized vesicles line up 

along the future planes of cleavage, and when alignment is complete, fusion of these 

vesicles results in the formation of zones of separation, bounded on either side by 

membrane derived from that of the vesicles. The plane of vesicles may lie between the 

cytoplasmic domains of two developing zoospores, or, in the case of a zoospore forming 

in the sporangial cortex, between the cytoplasm of that zoospore and the sporangial 

plasma membrane. Such processes account for all, or most, of sporangial cleavage in 

each of the species of Phytophthora in which cleavage has been studied in detail (see 

review by Hemmes, 1983). Similar processes have been also reported in other 

Oomycetes and Chytridiomycetes (Blonde! & Torian, 1960; Barron & Hill, 1974; 

Lunney & Bland, 1976). A somewhat less developed version of this process has been 

described in many other zoosporic fungi, in which vesicles or vacuoles are aligned along 

portions of the future cleavage planes. Completion of cleavage involves fusion and 

expansion of these structures (Gay & Greenwood, 1966; Heintz, 1970; Gay et al. 1971; 

Chong & Barr, 1973; Lange et al. 1984). 

(b) Progressive extension of cleavage fu."ows. The most commonly reported 

mode of partitioning involves some sort of furrowing process. Such furrowing may be 

initiated (i) at the plasma membrane, proceeding centripetally (Heintz, 1970; Chong & 

Barr, 1973; McNitt, 1974); (ii) at the tonoplast, proceeding centrifugally (Gay & 

Greenwood, 1966; Gay et al. 1971; Hoch & Mitchell, 1972, 1975) or (iii) from any 

number of indeterminate, and often multiple, locations within the general system of 

developing cleavage planes (Gay & Greenwood, 1966; Temmink & Campbell, 1968; 

Lessie & Lovett, 1968; Heintz, 1970; Chong & Barr, 1973; McNitt, 1974; Olson et al. 

1981; Armbruster, 1982; Lange et al. 1984). In furrowing processes, extension is 
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commonly reported to follow from the addition of small vesicles or cisternae either 

behind or at the leading edge of the furrow (Heintz, 1970; Travland & Whisler, 1971 ; 

Chong & Barr, 1973; Olson et al. 1981; Lange et al. 1984). 

( c) Direct incorporation of existing membrane surfaces . As far as can be 

ascertained from what are often incomplete descriptions, it would appear that with few 

exceptions the plasma membranes of at least some zoospores in any particular fungal 

sporangium derive at least in part from direct incorporation of pre-existing membrane 

surfaces. The most extreme example is Aphamomyces euteiches in which it has been 

proposed that no new membrane synthesis occurs during cleavage; the zoosporic 

membranes are said to be derived from incorporation of the sporangial plasmalemma and 

an evaginating tonoplast (Hoch & Mitchell, 1972, 1975). In most cases, however, some 

contributions are reported to be made from both the existing surfaces and membranes 

formed de novo. In large sporangia, however, where some of the developing zoospores 

are surrounded solely by other zoospores, the central zoospores may lack any 

contribution from a pre-existing membrane. The opposite extreme to the case of 

Aphanomyces is found in several species of Phytophthora. In P. infestans and P. capsici 

it is thought that none of the zoosporic plasma membranes are formed by direct 

incorporation of existing membrane surfaces. In these species, the membranes are 

thought to originate from cleavage vesicles that themselves derive from dictyosomes 

and/or recycling of the membrane of the large central vacuole (Elsner et al. 1970; 

Williams & Webster, 1970). In Phytophthora palmivora, however, it would appear that 

the central vacuolar membrane is directly incorporated (Hohl & Hamamoto, 1967). 

The literature on membranous partitioning during zoosporogenesis is confusing, 

for a number of reasons. Firstly, a great variety of processes have been proposed by 

which the partitioning membranes are thought to form. These include, as documented 

above, the fusion of pre-aligned vesicles, enlargement of vesicles, expansion of large 

central vacuoles, furrowing, and incorporation of existing membrane surfaces. In any 

one species up to four of these processes have been proposed (e.g., Gay & Greenwood, 
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1966). Secondly, different combinations of these processes have been proposed for 

closely related or even the same species. For example, in Saprolegniaferax it has been 

described that the large central vacuole may sometimes be directly incorporated into the 

developing cleavage planes and at other times not (Gay & Greenwood, 1966). The same 

variation also exists between species of Phytophthora : in P. palmivora (formerly P. 

parasitica) the large central vacuole has been proposed to be directly incorporated (Hohl 

& Hamamoto, 1967), while this has not been described in any other species of this 

genus. 

Another feature of possible concern in many descriptions of sporangial cleavage 

is the apparent lack of order in the process of partitioning. This is somewhat perplexing 

considering that one would expect that the subdivision of a such a complex system as a 

multinucleate sporangium would require an orderly mechanism. 

1.2.3 Structural regulation of the cleavage process 

Successful cell division requires that the planes of cleavage develop in an 

appropriate position. From a structural point of view, this achievement has several 

aspects: firstly, there must be some marking out of the appropriate positions, and 

subsequently the development of the partitioning membranes must be spatially restricted 

to these positions. Secondly, if any additional membrane is required for cleavage, then it 

must be brought to the region where cleavage is to occur. From studies of cytokinesis in 

plant and animal cells a considerable body of research has documented the roles of 

microtubules and microfilaments in these aspects of cleavage regulation (Gunning, 1982; 

Rappaport, 1986). There is strong evidence to suggest that these cytoskeletal structures 

are also involved in the regulation of sporangial cleavage. The strongest support comes 

from studies which have shown that antimicrotubule and antimicrofilament drugs disrupt 

the normal course of cleavage, causing the formation of abnormally-shaped, 

multinucleate masses of cytoplasm that are eventually released from the sporangium 
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(Slifkin, 1967; Schnepfetal. 1978; Schnepf&Heinzmann, 1980; Olson&Lange, 1983; 

Oertel & Jelke, 1986). 

Ultrastructural evidence has also provided some support for the role of 

microtubules in the regulation of the cleavage process, with numerous reports of 

sporangial microtubules, most of which describe microtubular arrays radiating away from 

a point near each sporangial nucleus (Lessie & Lovett, 1968; Heath & Greenwood, 

1971; McNitt, 1974; Hoch & Mitchell, 1975; Schnepf et al. 1978). The disposition of 

these arrays has led to several models for their role in cleavage, most notably that of 

Heath & Greenwood (1971). In this model, based on studies of Saprolegnia, the arrays 

of nucleus-based microtubules stabilize the cytoplasm around each nucleus, leaving less 

stable regions between the nuclei through which cleavage vacuoles preferentially expand. 

As discussed by Heath ( 1976) the ultrastructural evidence is not, however, entirely 

satisfactory because in some zoosporic fungi microtubular arrays are not seen in the 

sporangium. In addition, as noted by Heath et al.(1982) there is a lack of adequate data 

to assess how, or even if, the microtubules from adjacent nuclei might interact with each 

other. These problems probably derive in part from the notoriously inconsistent 

preservation of fungal microtubules and microfilaments in material prepared for electron 

microscopy (Lange & Olson, 1983; Cho & Fuller, 1989; Heath, 1990). In the case of 

actin, for example, there is a complete absence of reports of microfilaments in any fungal 

sporangium examined ultrastructurally. Preliminary studies using fluorescence 

techniques indicate, however, that actin is indeed present in sporangia of Saprolegnia 

(Heath, 1991). Even if microtubules and microfilaments were well preserved, they are 

extremely small, and this exacerbates the difficulties associated with serial sectioning 

enough of a sporangium to acquire the information necessary to deduce the spatial 

interrelationships of cytoskeletal elements and the developing cleavage planes. 
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1.2.4 Apportioning of organelles 

The major objective of zoosporogenesis is to package the minimal ingredients for 

producing a new organism into an efficiently mobile unit (Heath, 1976). What might 

these "minimal ingredients" be and how does each zoospore obtain its requisite 

complement of them? The primary purpose of the zoospore is to carry the hyphal DNA 

to another location, so the nucleus is the most important structure in any zoospore. The 

presence of one, and only one, nucleus in each zoospore would be guaranteed if cleavage 

were controlled by the nucleus-based microtubule model proposed by Heath & 

Greenwood (1971) and discussed above. These arrays might also be involved in spacing 

the nuclei apart (Heath, 1976), thus ensuring that each nucleus acquires an adequate and 

equal portion of cytoplasm. Regular spacing of sporangial nuclei prior to the completion 

of cleavage has also been reported in zoosporic fungi (Hohl & Hamamoto, 1967; 

Schnepf et al. 1978; Armbruster, 1982). Unfortunately the paucity of information about 

the distribution of microtubules in these systems does not allow us to understand how 

the nucleus-based arrays may bring about the spacing of the nuclei. 

A second critical set of structures are the flagella. Their presence in zoospores 

follows naturally from the intimate association, seen in the sporangium, between the 

nucleus and the centrioles or basal bodies from which the flagella develop (Hohl & 

Hamamoto, 1967; Elsner et al. 1979; Williams & Webster, 1970; Chong & Barr, 1973; 

Gotelli, 1974; Heath, 1976; Lunney & Bland, 1976; Schnepf et al. 1978; Armbruster, 

1982; Lange et al. 1984). Mitochondria are always present in zoospores (Lange & 

Olson, 1983) and their presence may be assured by being randomly distributed in large 

numbers in the sporangium. 

Regarding many other zoosporic structures, we can only speculate as to whether 

they represent some of the "minimal ingredients" required for functioning of the 

zoospore and/or reestablishment of the hyphal phase. It is difficult to be certain what 

may or may not be necessary. For example, while Oomycete zoospores regularly contain 

prominent water expulsion vacuoles which are thought to regulate internal osmolarity, 
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these structures are not found in all uniflagellate zoospores (Lange & Olson, 1983 ). 

Also, many structures within zoospores are proposed to be food stores, and while it is 

commonly assumed that zoospores rely totally upon stored reserves (Carlile, 1983) this 

is extremely difficult to prove. For zoospores to reform the hyphal phase, they rely upon 

their ability to encyst upon a suitable substrate. While Gubler & Hardham (1988) have 

demonstrated that specific vesicles within the zoospores of P. cinnamomi are involved in 

this process, there is as yet no evidence to prove that these vesicles are necessarily 

required for encystment to occur. While we are now acquiring valuable information 

about the function of these and many other zoosporic organelles, nothing is known about 

how they might be apportioned. 

1.2.5 Spatial organization of organelles 

It has been amply documented that the nuclei and organelles of zoospores are 

commonly positioned or distributed in a highly defined manner (see reviews by Bracker, 

1967; Heath, 1976; Lange & Olson, 1983). Fig 1.1 illustrates diagramatically some of 

the previously described aspects of zoospore organization in P. cinnamomi (Hardham, 

1987a), the species upon which most of the research of this thesis is focussed. In many 

fungi, some features of zoospore organization are already evident prior to the 

commencement of the cleavage process. In the previous section it was noted that basal 

bodies are commonly associated with sporangial nuclei and this association is retained 

throughout cleavage. Dictyosomes, also, are commonly found adjacent to the nucleus in 

zoospores (reviewed in Heath, 1976) and sporangia (Chapman & Vujicic, 1965; King et 

al. 1968; Williams & Webster, 1970; Schnepf et al. 1978; Miller et al. 1985) of many 

species. Indeed, the dictyosomes are usually found close to the nucleus-associated 

centrioles or basal bodies in all cells that contain these structures (Raven et al. 1981 ). 

While basal bodies are physically linked to the nuclei via microtubules, it is unclear how 

dictyosomal positioning is maintained. 



12 

Most other sporangial components, however, are usually described as having 

random spatial distributions prior to cleavage. There must therefore be mechanisms by 

which some of these structures acquire their highly polarized distributions in the mature 

zoospore. Unfortunately, nothing is known about what these mechanisms might be. 

1.3 OBJECTNES AND EXPERIMENTAL APPROACHES 

The objective of this thesis was to gather data that might provide answers to some 

of the unresolved questions of fungal zoosporogenesis. In particular, the research would 

address those issues that have been outlined in Sections 1.2.1-1.2.5. The Oomycete 

genus Phytophthora offered itself as the ideal system for this study for several reasons. 

Firstly, the availability of a range of monoclonal antibodies to many components of the 

released zoospore (Hardham et al. 1990) promised to facilitate the tracking of these 

components in the sporangium during the cleavage process. In particular it was hoped 

that some of these monoclonal antibodies might act as markers for the cleavage 

membranes, and thus help to identify their true source. Secondly, the zoospores of 

several species of this genus, and especially P. cinnamomi and P. palmivora, were well 

characterized and had proved to be amenable to some of the experimental procedures to 

be used, namely immunofluorescence microscopy and freeze- substitution (Hemmes, 

1983; Hardham, 1987a, b: Cho&Fuller, 1987, 1989). Thirdly, most of the unresolved 

issues of fungal zoosporogenesis, such as confusion over the origins and mode of 

development of the cleavage membranes, also pertain to members of the genus 

Phytophthora (Sections 1.2.1-1.2.2). Resolution of these problems in Phytophthora 

therefore promised to shed some light upon those that exist across the spectrum of 

zoosporic fungi. Finally, although the main motivation for choosing the topic of 

zoosporogenesis was to use it as a model system for a study of cellular morphogenesis, 

Phytophthora contains some of the most economically and environmentally important 
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plant pathogens, and basic information about zoospore development may assist programs 

to control the diseases caused by these fungi. 

The experimental approaches taken to achieve these aims were as follows. In the 

experiments of Chapters 2 and 3, electron microscopy was used to follow the 

ultrastructural changes that occur during the normal process of cleavage. Immunogold 

labelling, using the monoclonal antibodies referred to above, was used to assist these 

studies. The electron microscopy of Chapter .;2, involved examination of sporangia 

preserved by chemical fixation. Some of the results of this approach, namely those 

involving the appearance of the cleavage membranes were, however, inconsistent. The 

experiments of Chapter 3 were undertaken partly to elucidate the source of the 

inconsistencies observed in Chapter 2.. Rapid freezing and freeze-substitution were used 

as the methods of fixation for the experiments of Chapter 3 because these techniques are 

known to provide optimal preservation of membranes (McCully & Canny, 1985). Rapid 

freezing and freeze-substitution provide excellent preservation of most cellular 

components, so it was hoped that valuable information might be gained about many 

sporangial structures. The study of the normal course of cleavage was completed by the 

experiments of Chapter 5 in which immunofluorescence microscopy was used to study 

the distribution of sporangial microtubules during the process of cleavage. Some of the 

hypotheses suggested by the experiments of Chapters 2, 3 and 5 involved the possible 

involvement of microtubules and microfilaments in a range of cleavage processes, so 

these models were tested by examining the effects of anti-cytoskeletal drugs upon the 

cleaving sporangium (Chapter 6). Chapter 4 is a methodological study of a structural 

artefact that was noted in the experiments of Chapter 3. The findings of Chapters 2, 3 

and 4 have been published as separate papers (Hyde et al. 1991 a, band c respectively). 



Fig 1.1 

CHAPTERl FIGURE LEGEND 

A diagrammatic representation of some structural features of the 

released zoospore of P. cinnamomi. The top diagram shows a surface 

view of the reniform zoospore, looking into the longitudinal groove that 

distinguishes the ventral surface. Two flagella originate in the groove. 

The anterior flagellum is coated with short projections (mastigonemes) 

which are not present on the posterior whiplash flagellum. The bottom 

diagram illustrates the distribution of certain organelles that might be 

seen if the zoospore was sectioned transversely, at right angles to the 

axis of the groove. The nucleus (N) is pear shaped and its narrow pole 

points towards the groove. Two basal bodies (for code, see below), 

from which the flagella extend, are associated with the narrow pole. 

Near the groove, a water expulsion vacuole (WEV) is present, and 

dictyosomes are concentrated around it. Other organelles are 

concentrated either at the ventral (ventral vesicles) or dorsal (dorsal 

vesicles, large peripheral vesicles and peripheral cisternae) surfaces. 

Mitochondrial profiles are also shown : these generally lie further away 

from the plasma membrane than profiles of other organelles, and are, in 

fact interconnected. 

® Ventral vesicle 

e Dorsal vesicle 

Q Large peripheral vesicle 

~ Mitochondrion 
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ULTRASTRUCTURE OF ZOOSPOROGENESIS 

IN PHYTOPHTHORA. I. A STUDY OF 

CHEMICALLY FIXED SPORANGIA OF 

P. CINNAMOMI 

2.1 INTRODUCTION 

The genus Phytophthora (Order Peronosporales, Class Oomycetes) contains 

many important plant pathogens, including the historically prominent P. infestans, cause 

of late blight in potato, and P. cinnamomi, most notorious for its devastation of the jarrah 

forests of Western Australia and avocado crops throughout the world. The transmission 

of infection in diseases caused by Phytophthora is mediated primarily by the 

dissemination and encystment of motile biflagellate zoospores which develop within 

large multinucleate sporangia. In some species, the prior dispersal of detachable 

sporangia significantly widens the potential infective radius. One valuable approach in 

examining the roles of sporangia and zoospores in the infection process has been the 

study of their ultrastructure. 



15 

Zoosporogenesis, the formation of zoospores within the sporangium, has been 

examined in several species of Phytophthora (Chapman & Vujicic, 1965; Hohl & 

Hamamoto, 1967; King et al . 1968; Elsner et al. 1970; Williams & Webster, 1970; 

Hemmes, 1983). These studies indicate some features consistent within the genus but 

there are several important variations, most notably regarding the relationship between 

vesicles involved in the cleavage process and certain large cytoplasmic vacuoles. These 

vacuoles have been suggested as both a source (Williams & Webster, 1970) and a sink 

(Hohl & Hamamoto, 1967) for cleavage vesicles, while some studies report no 

relationship. Understanding these differences is one of many problems that remain 

unresolved, not only within Phytophthora but across the spectrum of zoosporic fungi. 

Central issues include identifying how cytoplasmic domains are established within the 

sporangium, and how each zoospore acquires the requisite complement of cellular 

structures. P. cinnamomi is an ideal system in which to address questions of 

zoosporogenesis since the ultrastructure of the zoospore itself is well characterised 

(Hardham, 1987 a,b) and there is a wide range of immunological markers available for 

this species (Hardham et al. 1990). In this, the first ultrastructural study of the 

sporangium of P. cinnamomi, I have employed conventional electron microscopy and 

immunogold labelling to describe some of the key events of zoosporogenesis, and have, 

for the first time, identified the source and fate of cleavage vesicles using 

immunospecific markers. 

2.2 MATERIALS AND METHODS 

2.2.1 Organism 

The culture of P. cinnamomi (DAR 52646) used in this study was induced to 

produce sporangia and zoospores by the method of Hardham & Suzaki (1986). Briefly, 

a hyphal culture was grown on miracloth disks placed on nutrient agar. After 4-5d the 

disks were transferred to 250ml erlenmyer flasks containing nutrient broth. The 
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formation of sporangia was induced by replacing the broth with a mineral salts solution 

for 19h after which zoosporogenesis was induced by rinsing the culture in cold distilled 

water. Sporangia were collected in tufts of mycelium. 

2.2.2 Light microscopy 

Observations were made on zoosporogenesis in living sporangia using a Zeiss 

Photoscope III fitted with Nomarski interference contrast optics. Measurements of 

sporangial length were made using an eye-piece ocular fitted to the microscope. 

DNA in sporangia fixed in a mixture of 0.2% glutaraldehyde and 4% 

paraformaldehyde in 50 mM Pipes buffer (pH 7) was stained with 20 µg/ml Hoechst 

33662 (Sigma Chem. Co.) for lh and observed using UGI and UG5 exciter filters, an 

FT395 beam splitter and LP420 and KP560 barrier filters. 

2.2.3 Electron microscopy 

Observations were made on sporangia prepared by five methods: 

A.Sporangia were fixed in 2% glutaraldehyde in 50 mM Pipes buffer for 2h at 

room temperature, then washed twice in 100 mM Pipes buffer, once in 25 mM sodium 

phosphate buffer, then postfixed in 1 % Os04 in 25 mM sodium phosphate buffer and 

rinsed in buffer. All solutions were at pH 6.8-7 .2. Cells were then dehydrated through 

a graded series of acetone solutions and embedded in Spurr's (Spurr, 1969) resin in 

flat-bottomed moulds. 

B.Sporangia were processed as in A but were dehydrated through a graded 

ethanol series and embedded in LR White resin in beam capsules. 

C.Sporangia were fixed in 2 % glutaraldehyde in 100 mM cacodylate buffer 

containing 5 mM CaCl2 (pH 6.8) for 2h at room temperature. After washing in 100 mM 

cacodylate buffer, cells were postfixed for lb in a solution of 1 % Os04, 0.8% KFeCN, 

100 mM cacodylate buffer and 5 mM CaCl2 (Hepler, 1981). Cells were then processed 

as in procedure above. 

D.Sporangia were processed as in C but lOmM, instead of lOOmM, cacodylate 

buffer was used at all steps. 
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E.Sporangia were fixed in 1 % glutaraldehyde in 100 mM Pipes buffer (pH 

6.8-7.2) for 2h at room temperature. After washing in buffer, sporangia were 

dehydrated in a graded ethanol series. Washing and dehydration steps up to 50% 

ethanol were at 4 ° C, while further dehydration was at - 20 ° C. The cells were then 

infiltrated with Lowicryl K4M resin for 24h at -20° C, then transferred to flat-bottomed 

aluminium weighing trays and polymerised under ultraviolet light for 48h at -20 ° C, 

followed by 24h at room temperature. 

Embedded material was cut using a Reichert Ultracut E ultramicrotome and 

Diatome diamond knife. Sections were stained in 2 % aqueous uranyl acetate for 10 min 

or 5 min and Reynolds' lead citrate (Reynolds,1963) for 5 min or 1 min, for Spurr' s 

(Spurr, 1969) and Lowicryl K4M embedded material respectively. Immunogold 

labelling of sections from Lowicryl K4M embedded material followed the method of 

Gubler & Hardham (1988) and used monoclonal antibodies (mAbs) Cpa-2, Lpv-1 , 

Cpw-1 and Vsv-1 (Table 2.1). These bind to the four different types of peripheral 

vesicles of the zoospore (Fig 1.1). The use of a number of different primary antibodies 

serves as a control for non-specific antibody binding, a problem that was not, in any 

case, suggested by the results. Photomicrographs of material studied by light microscopy 

were taken on Kodak Panatomic X film ( differential interference optics) or Kodak T-Max 

400 (fluorescence optics). 

2.2.4 Sampling and examination of embedded material 

The process of zoosporogenesis was examined by sampling sporangia at various 

times during the 70-75 min between induction and zoospore release. Sections of over 

' 
800 sporangia from 13 sequences of zoosporogenesis were examined. All preparation 

regimes provided good preservation of most cellular features , but as the mechanisms of 

zoosporogenesis were gradually deduced, it became evident that vesicles involved in the 

cleavage process were poorly preserved in up to 50% of sporangia prepared by methods 

A,B,C and E. Vesicle preservation was improved by method D. While general 

observations are based on consideration of sections from all 13 sequences, any numerical 

or otherwise definitive statements, unless otherwise indicated, relate to the inspection of 
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sections of 231 sporangia prepared by Method D and sampled at the following times: 

Pre-induction [number of sporangia (n) = 20]; Post-induction: 15 min (n=14); 20 min 

(n=12); 25 min (n=16); 30 min (n=20), 35 min (n=15); 40 min (n=13); 45 min (n=20); 

50 min (n=25); 55 min (n=l 9) ; 60 min (n=l 7); 65 min (n=20) and 70 min (n=20). 

Sporangial cross-sections were chosen in a random manner and were used in a series of 

qualitative and semi-quantitative analyses. The synchrony of the cleavage process was 

high within any one run, and, generally, different sequences were comparable. 

Table 2.1 Specificities of monoclonal antibodies, originally raised against 

components of zoospores of P. cinnamomi, to vesicles in the sporangium. 

Monoclonal Antibody 

Cpw-1 

Cpa-2 

Lpv-1 

Vsv-1 

2.3 RESULTS 

Vesicle Labelled 

Cleavage vesicle (strong) 

Peripheral cistema (weak) 

Dictyosomes 

Dorsal vesicle 

Large peripheral vesicle 

Ventral vesicle 

2.3.1 The mature sporangium (pre-induction) 

Micrograph Label 

C 

arrows 

D 

d 

L 

V 

Living sporangia are a pale cream colour with a uniformly granular appearance. 

A basal septum separates the sporangial cytoplasm from that of the hypha and a thick 

translucent wall tapers sharply at the margin of a broad discoidal plug which caps the 
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apex (Fig 2.1). The sporangia are typically ovoid and 52.7 ± 13.5 µm (n = lOO) in 

length. Nuclei within the mature sporangia are regularly spaced (Figs 2.2-2.3). In small 

sporangia they occur in the cortical cytoplasm only, but in large sporangia some nuclei 

are internal (Fig 2.3). As is typical ofbiflagellate zoospores (Lange & Olson, 1983) the 

nuclei are pyriform in shape. The narrow poles of nuclei in the cortex are directed 

towards the sporangial wall (Fig 2.4), while those of the internal nuclei appear 

unoriented. 

There is a marked polarisation in the distribution of certain components around 

the nuclei. In the cortex, basal bodies were always associated with the narrow nuclear 

pole (Fig 2.4). Ninety three percent of cortical nuclear profiles (n=44) had more 

dictyosomes in the region between the nucleus and the wall than in an equivalent area 

around the opposite pole of the nucleus (Fig 2. 3). Clusters of small bodies, which were 

mostly vesicular (especially in material prepared by method C, as verified by serial 

sectioning) were also more common near the narrow pole than at the other pole of the 

nucleus in 75% (n=45) of cases (Fig 2.3). These vesicles had flocculent contents. 

Immunolabelling of these vesicles with mAb Cpw-1 (Fig 2.5) made it possible to track 

their fate throughout zoosporogenesis and subsequently they will be called cleavage 

vesicles. Small structures, morphologically similar to those referred to as microbody-like 

organelles in zoospores of P. cinnamomi (Hardham, 1987a), were also common in the 

regions of cytoplasm between the nuclei and the wall (Fig 2.4) . These regions often 

appeared as clear zones, because apart from the four above- mentioned elements other 

large structures were less commonly seen in them (Fig 2.3). Clear zones containing 

cleavage vesicles, dictyosomes, basal bodies and microbody-like structures were also 

associated with the narrow poles of internal nuclei (Fig 2.3). 

Of the four types of peripheral vesicles in the mature zoospore, three are already 

present in the pre-induction sporangium, being identifiable by morphological similarity 

and immunogold labelling. These vesicles are the large peripheral vesicles (Figs 2. 6-2. 7) 

and two types of small peripheral vesicle, the ventral (Fig 2.6) and dorsal (Fig 2. 7) 

vesicles. They are labelled by mAbs Lpv-1, Vsv-1 and Cpa-2 respectively (Table2.l). 
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The names of these vesicles refer to their relative size and location in the zoospore. No 

distributional patterns were evident in the sporangium at this stage, apart from the rarity 

of these vesicles in the clear zones. The fourth vesicle type, the peripheral cistema, was 

not seen. 

Other structures present in pre-induction sporangia include lipid bodies and 

mycolaminaran bodies, endoplasmic reticulum and mitochondria with short, tubular 

cristae (Figs 2.4,2.8). Presumptive mastigoneme packets are often seen in close 

association with mitochondria (Fig 2 .8), an observation common in the Oomycetes 

(Gotelli , 1974; Martin & Miller, 1986). In 75% of sections, one to three vacuoles 

similar in size to the nuclei were seen in the sporangial interior (Fig 2.9). 

The sporangial wall, in Spurrs' embedded material, appears to have up to five 

distinct layers, the outermost being an electron-dense fringe which continues over the 

apical plug (Figs 2.3,2.6,2.9). The inner sporangial wall is continuous with the inner 

layer of the basal septum (Fig 2.10). A thinner layer on the hyphal side of the septum 

is continuous with the inner layer of the hyphal wall . Sandwiched between these layers 

is a disk of material similar to that described as "slime substance" by Williams & 

Webster (1970), some of which is also entrapped within the inner layer of the septum. 

The papillar material at the apex appears homogeneous (Fig 2.3) except for the outer 

dense fringe . 

2.3.2 Expansion of the cleavage vesicle clusters 

(first 20 min after induction) 

During the first 20 min after zoosporogenesis is initiated by a cold shock, large 

clusters of cleavage vesiclesappear throughout the sporangium (Figs 2.11-2.12). One 

large cluster is commonly seen between each cortical nucleus and the sporangial wall, 

filling up the area that appeared as a clear zone before induction. At the sporangial apex 

an especially large cluster appears to result from the merger of clusters associated with 

several nuclei whose narrow poles are preferentially angled towards the plug. A large 
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apical cluster was seen in 50 % of sporangial profiles at 15 and 20 min. Each nucleus 

within the sporangial interior also appears to have an accompanying large cluster near the 

narrow pole. Some small clusters were seen near dictyosomes at other sites, most 

commonly at the broad poles of cortical and internal nuclei (Fig 2.13). 

Immunolabelling with mAb Cpw-1 suggests that the cleavage vesicles may be 

derived from the dictyosomes. Material labelled by Cpw-1 occurred in both the cleavage 

vesicles and the cistemae of the dictyosomes (Fig 2 .14). The level of binding to 

dictyosomes was low but consistent, with every membrane stack showing some staining. 

Gold particles bound to the flocculent contents of the cleavage vesicles and were closely 

associated with their membrane. Occasionally, profiles of vesicles morphologically 

similar to cleavage vesicles were seen that had DO associated gold particles. 

During this period flagellar growth began with extension of the microtubules of 

the basal bodies past a terminal plate into large cleavage vesicles, commonly called 

axonemal vacuoles (Fig 2.15). Cytoplasmic microtubules were associated with the basal 

bodies. The microbody-like organelles seen earlier were also common in the expanded 

clusters (Fig 2.12), especially at the apex of the sporangium. In 97% of cases at 15 and 

20 min these organelles were also seen lined up along substantial portions of the 

sporangial perimeter (Fig 2.12). By the end of this period, the proportion of sporangia 

with one or more large central vacuoles had dropped to 58 % . 

2.3.3 Dispersal of the cleavage vesicle clusters (20-50 min post induction) 

2.3.3.1 Organization of the cortical cleavage plane 

Between 20 and 35 min after induction, the vesicle clusters associated with the 

narrow poles of cortical nuclei disappear, except for the large aggregation at the apex 

(Figs 2.16,2.19). Concurrently, a plane of cleavage vesicles gradually forms at the 

sporangial periphery, parallel to the the wall (Figs 2 .16-2 .17). These two developments 

are complete by 35 min (Fig 2.21). Microtubules fan out from the basal bodies of the 
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cortical nuclei, running close to the internal surface of the vesicles in the cortical plane 

(Fig 2.18). Flagellar growth continues throughout the sporangium at least until 35 min 

when the proportion of sections with one or more flagellar profiles first reaches 100%. 

In the cortex the axonemal vacuoles run obliquely towards the periphery of the 

sporangium (Fig 2.19). Axonemal vacuoles bind Cpw-1 as does the plasma membrane 

ensheathing the flagella (Fig 2.17). 

Between 25 and 50 min after induction, the cleavage vesicles in sporangia 

prepared by procedures A, B,C and E often appeared fused. At about 30-35 min it was 

common to see a sizable shell of cytoplasm cut off by fusion of the cortical cleavage 

vesicles (Fig 2.20) and large spirally arranged vacuoles, apparently formed by fusion of 

the vesicles of the internal clusters (Fig 2.16). The thickness of the cortical shell of 

cytoplasm was less in material fixed late in this period of development than in material 

fixed earlier. Sporangia containing these features were also often strongly plasmolysed. 

When the buffer concentration was lowered (procedure D) fusion of cleavage vesicles at 

this stage of development was greatly reduced. The proportion of sporangia with a shell 

of cortical cytoplasm at 30 min dropped from 42% (n=l 7) in a sequence fixed in a high 

osmolarity buffer to 17% (n=20) using the diluted buffer. 

2.3.3.2 Organization of the internal cleavage planes 

Between 25 and 50 min after induction, cleavage vesicles of the internal clusters 

gradually disperse (Fig 2.22). At 25 min, 25% of sporangia have at least one internal 

cluster showing some sign of dissociation, a proportion that rises to 100% by 35 min. At 

the latter time, the most common pattern of dispersal involves two chains of vesicles 

which arch away from the narrow nuclear pole and then loop back on either side of the 

nucleus (Fig 2.22). Microtubules were sometimes seen radiating from the basal bodies 

of the internal nuclei (Fig 2.23) but their infrequent occurrence made it difficult to 

determine any relationship to the cleavage vesicle patterns. Flagella extend at 

approximately right angles to the long axis of the nucleus (Fig 2.24). 
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About the time internal chains of cleavage vesicles are first seen, there is a rapid 

onset of a close association between cleavage vesicles and the large peripheral vesicles 

(Fig 2.22). This is evident in 10% of sporangia at 30 min, rising to 85-90% at 35 min 

and later times up to 50 min. Co-localisation is more obvious in the sporangial interior 

than in the cortex (Fig 2.22). 

As dispersal approaches completion, wavy chains of cleavage vesicles are seen 

surrounding areas of cytoplasm which often contain a centrally-placed nuclear profile 

(Fig 2.25). By 45 min, the cytoplasm of 50% of sporangia was partitioned by flexuous 

lines of vesicles. By 50 min, 84% of sporangia exhibited this or a more advanced 

pattern. Axonemal vacuoles lie in the system of vesicles (Fig 2.26). In the final stage of 

organization, chains of vesicles run in approximately straight lines, often meeting in 

groups of three separated by angles of about 120°. They form a network of polygons. 

Mitochondrial profiles occur predominantly near the boundaries of the polygonal 

domains. In most sporangial profiles at this stage, fusion of the vesicles of the cortical 

cleavage plane will have begun, or may even be almost completed (Fig 2.26). 

While the last non-apical cortical clusters are seen at 30 min, clusters at the apex 

persist much longer, albeit in decreasing frequency, and only finally disappear at 45 min. 

From about this time onwards, the apical papillar material is thicker than previously. 

Between 20-50 min, the associated congregations of microbody-like organelles 

dissociate and near the end of this period, are only seen near the wall (Fig 2.27). They 

are no longer evident when cortical fusion is complete. The large central vacuoles were 

present in only 2 of 15 sporangia at 35 min and have completely disappeared by 45 min. 

2.3.4 Cleavage and release (50-75 min post-induction) 

During this period the sporangia become fully cellularised and the zoospores 

achieve their mature form prior to release. The external surface of the cleaved cytoplasm 

is furrowed by a mesh of grooves that divide the surface into a network of regular 

hexagons (Fig 2.28) within which nuclei are centrally located (Fig 2.29). Within each 
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hexagon a water expulsion vacuole can be seen expanding and contracting. Their cycles 

are not synchronised within the sporangium. Towards the end of this period flagellar 

beating can be detected at the periphery of the cytoplasm. 

The cytoplasmic cleavage noted above results from fusion within and between 

the cortical and internal vesicle planes and the axonemal vacuolar system. Within the 

sporangial population fusion is first seen to commence at about 50 min in both the cortex 

and the interior (Figs 2.26,2.30). In any one sporangium however, fusion is always more 

advanced within the cortical plane and is sometimes complete, except for a section at the 

apex, before internal fusion has begun. Fusion of the axonemal vacuoles with other 

vesicles of the cleavage planes brings about externalisation of the flagella within the 

intercellular spaces (Figs 2.26,2.30). Fusion is typically retarded directly below the 

papillum (Fig 2.26) and may still be incomplete at 70 min when cleavage is finished in 

the rest of the sporangium. 

In the sporangial interior, the membrane of the cleavage vesicles is partitioned 

between adjacent zoospore initials in the formation of their plasma membranes (Figs 

2.30-2.33). In the cortex, the cleavage vesicles become appressed against the sporangial 

plasma membrane before fusing. Thus only some of the membrane of the cortical 

vesicles may contribute to that of the zoospores and the rest may remain with the 

sporangial plasma membrane (Fig 2.27). When cleavage is complete, the Cpw-1 

positive antigen is closely associated with the plasma membrane of the zoospore initials 

and with the flocculent material which, having been released by vesicle fusion, now lies 

within the intercellular spaces (Fig 2.33). Gold particles are mainly associated with the 

outer surface of the membrane. 

During the 50-70 min period many developments occur within each domain to 

bring about maturation of the zoospores. The ventral and dorsal vesicles move to their 

final locations, the latter type moving later than the former (Figs 2.31-2.33). At 60 min, 

in 82% of zoospore initials where the ventral surface is identifiable, the ventral vesicles 

are seen near it, while the dorsal vesicles are concentrated at the dorsal surf ace in only 
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47% of cases. The location of the large peripheral vesicles at the zoospore surface (Figs 

2.31-2.32) follows automatically from their continued close association with the 

cleavage vesicles. Mitochondrial profiles show a similar distribution, but are not as 

close to the plasma membrane as the large peripheral vesicles (Fig 2.32). Their cristae 

appear to be longer than previously and membranous annuli are often seen within the 

matrix (Fig 2.32), features that become progressively more common during 

zoosporogenesis. Presumptive mastigoneme packets are still seen at the end of this 

period (Fig 2.32) but no mastigonemes were seen on any flagellum. 

The fourth surface-associated vesicle of the zoospore, the peripheral cisterna, 

appears at about 50 min (Figs 2.32-2.33). It is seen directly below the newly-formed 

plasma membrane, even when other regions of the sporangium may not yet be cleaved. 

After immunolabelling with Cpw-1, small numbers of gold particles are seen on the 

peripheral cisternae (Fig 2.33). What is now an increasingly distinct inner layer of the 

thickened papillar material (Fig 2.34) also irnmunolabels with Cpw-1 (Fig 2.35). There 

was no staining of the papillar material at the pre-induction stage. 

Initially after fusion, profiles of zoospore initials retain the polygonal geometry 

of the pre-fusion domains. Between 60-70 min the contours become more rounded and 

a groove develops in the zoospore surface adjacent to the narrow nuclear pole (Fig 2.36). 

This grooved surface is defined as ventral. When identifiable in the cortical zoospore 

initials it always (n=62) faces towards the sporangial wall. The large water expulsion 

vacuole lies adjacent to the groove (Fig 2.37). The area around the water expulsion 

vacuole contains numerous small vacuoles, vesicles and dictyosomes but lacks other 

large organelles. Ventral vesicles are common close to the groove (Fig 2.37) but the 

three other peripheral vesicles do not usually associate with the membrane opposite the 

narrow nuclear pole either before or after the groove develops. From the onset of fusion 

nuclear profiles become progressively more irregular and elongated than before (Figs 

2.30,2.36). Of other large structures, the lipid bodies and mycolaminaran bodies appear 
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gradually closer to the nucleus from about 50 min on (Fig 2.36) and are uncommon in 

the cortex of the mature zoospore. 

The release of zoospores in P. cinnamomi has been described at the light 

microscope level by Gisi et al. (1979). Ultrastructurally, the wall of the discharge 

vesicle (Figs 2.38-2.39) is fibrous and continuous with the tapered margin of the 

sporangial wall. 

2.4 DISCUSSION 

From a structural viewpoint there are seven major developments during 

zoosporogenesis in P. cinnamomi. Domains are established and then separated. After 

separation, the contours of the zoospore initials become more rounded, and the ventral 

surfaces of cortical initials face outwards. By the end of the process organelles are 

apportioned and correctly positioned within each zoospore initial. Finally, the papillar 

material at the sporangial apex undergoes changes before the zoospores are released. 

The deployment of cleavage vesicles in the future planes of cleavage is the first 

definite indication that domain boundaries have been set. However, the regular spacing 

of the nuclei before induction suggests that domain boundaries may be set, but not 

identifiable using the present techniques, long before 50 min. Most, if not all, of the 

nuclei are probably transported into the sporangium from the hypha (Hemmes, 1983) 

and spacing of the nuclei must occur as the sporangium develops. Limited arrays of 

microtubules associated with each narrow pole have been noted in ultrastructural studies 

of Saprolegniaferax (Heath & Greenwood, 1971) and may be involved in positioning 

the nuclei within the sporangium, as is the case for the extensive arrays noted in other 

syncytial systems (Menzel, 1986; Karr & Alberts, 1986; van Lammeren, 1988). Heath 

& Greenwood (1971) proposed that the cleavage elements might travel between regions 

of cytoplasm stabilised by microtubules around each nucleus. In P . cinnamomi no 
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microtubules were observed before induction although the pyriform shape of the nucleus 

may be indicative of their presence (Lange & Olson, 1983). 

After induction, nuclear-associated microtubules run along, and possibly delimit, 

the inner boundary of the cortical plane of cleavage vesicles involved. Instead of 

restricting cleavage vesicle movement, microtubules could be involved in vesicle 

transport, as noted in other systems (Schnapp et al. 1985; Scholey et al. 1985). The 

striking patterns of cleavage vesicle dispersal in the sporangial interior also point to a 

dependence on some cytoskeletal infrastructure. Microtubules probably control the 

rounding up of the zoospore initials (Lange & Olson, 1983) and a possible tension in the 

microtubules that run between the nuclear- associated basal bodies and the zoospore 

surface could bring about the change in nuclear shape seen towards the end of cleavage. 

The production of cleavage vesicles in Phytophthora species, as in other 

zoosporic fungi has most commonly been ascribed to the activity of dictyosomes (e.g. 

Hohl & Hamamoto, 1967; Elsner et al. 1970; Chong & Barr, 1973; Taylor & Fuller, 

1981). Williams & Webster ( 1970) however considered the large central vacuole to be 

the main source of cleavage vesicles in P. capsici. Hohl & Hamamoto (1%7) noted that 

cleavage vesicles coalesced after induction to form or enlarge the central vacuole of P. 

palmivora (formerly P. parasitica). Both cleavage vesicles and large vacuoles are 

present in P. cinnamomi. The immunogold labelling of sporangia with mAb Cpw-1 has 

revealed that the cleavage vesicles and dictyosomes share a common antigenic component 

which is not associated with the large vacuoles. The observations strengthen the case for 

the dictyosomal origin for the cleavage vesicles. Some vesicle profiles, morphologically 

similar to cleavage vesicles, however, had no associated gold particles and these may 

represent vesicles derived from the large vacuoles. The binding of mAb Cpw-1 to 

axonemal vacuoles supports the common opinion that they form by cleavage vesicle 

fusion (e.g. King et al. 1968; Williams & Webster, 1970). 

The geometric arrays of the fully organized cleavage vesicle system have been 

noted in other fungi, including Phytophthora species (e.g. Hohl & Hamamoto, 1967; 
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Lunney & Bland, 1976). The polygonal patterning of fully cleaved sporangia can be 

attributed to the physics of packing (Thompson, 1942) and it provides the minimal 

surface area in relation to volume of the zoospore initials. Such geometry at the stage 

just before fusion , however, is unexpected, since the aligned planes of vesicles do not 

separate physically discrete units . 

A number of studies of zoosporogenesis in Phytophthora (Hohl & Hamamoto, 

1967; Elsner et al 1970; Williams & Webster, 1970) describe a cytoplasmic remnant 

which is cut off outside the plane of cortical vesicles and which is presumably resorbed 

before the end of zoosporogenesis. Such a remnant was also seen in P. cinnamomi when 

high osmolarity buffers were used during fixation. Lowering the fixative osmolarity 

decreased the frequency of occurrence of the remnant. Apparent vesicle fusion can be 

induced during fixation (Hausmann, 1977) and it is proposed that this remnant in 

chemically fixed sporangia of P. cinnamomi is an artefact. In vivo, vesicles of the 

cortical cleavage plane may gradually become positioned closer, and finally become 

appressed, to the sporangial plasma membrane before fusing . In this process no 

cytoplasmic remnant is formed and only the sporangial plasma membrane and some of 

the membrane of the cortical vesicles remain behind. This interpretation is supported by 

the decreasing thickness of the remnant in sporangia fixed at later times of the 

developmental sequence. 

Early fusion in the sporangial interior was also judged to be artefactual primarily 

because unfused vesicles still predominated in many sporangia at later stages, and 

because lowering the fixative osmolarity reduced the occurrence of vesicle fusion in the 

sporangial interior. The examination of material fixed by non-chemical means, such as 

rapid freezing, is needed to evaluate these interpretations. 

In the present study I have used mAb Cpw-1 as a marker for the cleavage vesicles 

within the sporangia. After cleavage, the Cpw-1 antigen becomes mostly located on the 

surface or between the zoospore initials. Peripheral cistemae were weakly labelled. In 

released zoospores, mAb Cpw-1 binds to the peripheral cistemae and the dictyosomes 
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but not to the plasma membrane (Hardham et al. 1990). Thus during or after release, 

the Cpw-1 antigen on the zoospore surface is apparently lost. Zoospores of Chytridium 

confervae possess a carbohydrate coat within the discharge vesicle (Taylor & Fuller, 

1981) but this had not been noted in free-swimming zoospores (Barr & Hartmann, 1976). 

The material contained in the cleavage vesicles could be an osmoticum involved in the 

uptake of water into the sporangium before zoospore release, as suggested for Pythium 

proliferum (Lunney & Bland, 1976) . 

Apart from the peripheral cistemae, water expulsion vacuole and plasma 

membrane, the other structures of the zoospore are already evident in the pre-induction 

sporangium. In particular the large peripheral, ventral and dorsal vesicles are present 

and must either flow in from the hypha or be produced during sporangial maturation. 

Adequate allocation of many sporangial organelles amongst the zoospores during 

cleavage probably follows as a consequence of them being almost randomly scattered 

throughout the cytoplasm at the start of the sequence. The close association of the large 

peripheral vesicles and cleavage vesicles, also noted in P. megaspenna (Hemmes, 1983), 

suggests a more sophisticated mechanism for regulating distribution whereby the large 

peripheral vesicles are tagged to elements that must be evenly aliquotted during 

compartmentalisation. Similarly, a continued association with the narrow nuclear poles 

throughout zoosporogenesis ensures the presence and correct positioning of the 

dictyosomes and basal bodies in each zoospore. Other elements, namely the dorsal and 

ventral vesicles, mitochondria, mycolaminaran and lipid bodies only take up their final 

positions after the zoospore initial domains have been clearly established. The processes 

involved in their movements are as yet unidentified. 

The change in thickness and structure of the apical papillar material probably 

allows the eventual pressure-driven distension of this material in the formation of the 

discharge vesicle. The apical cytoplasm shows several specialized features which may 

relate to these changes. The especially large and persistent cleavage vesicle cluster seen 

at the apex appears to derive from dictyosomes of several nuclei preferentially angled 
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towards the plug. Such aggregations have been noted in other species (Williams & 

Webster, 1970; Lunney & Bland, 1976). The disappearance of these clusters coincides 

with changes in the structure of the papillar material, suggesting some involvement of 

the cleavage vesicles (Williams & Webster, 1970; Taylor & Fuller, 1981), a view 

supported by the heavy staining of the inner layer of the plug by mAb Cpw-1. If 

cleavage vesicles contain an osmoticum then the thickening of the papillar material may 

be swelling due to an induced uptake of water. The apical concentration of 

microbody-like organelles and the retarded fusion of the apical section of the cortical 

cleavage plane may be important for changes to the papillar material to allow release. 

While the preferential angling of apical nuclei has not been described before, the 

more general feature of the orientation of the narrow nuclear pole of cortical nuclei 

towards the sporangial wall has been noted in several Phytophthora species (Williams & 

Webster, 1970; Elsner et al. 1970) and other Oomycetes (Armbruster, 1982). In P. 

cinnamomi the orientation of the nuclei, as well as their spacing, is established during 

maturation of the sporangia. The cortical nuclei maintain their orientation throughout 

zoosporogenesis, indicating that, even before induction, the future dorso-ventral axis of 

the zoospore is already established in a domain of cytoplasm surrounding each nucleus. 

The orientation of the cortical nuclei underpins the establishment of the cortical cleavage 

plane since cleavage vesicle production is concentrated at the narrow nuclear poles. The 

microtubule model proposed by Heath & Greenwood ( 1971) to explain the delimitation 

of cleavage vesicle dispersal might also probably require precise orientation of domains 

with respect to each other. The arrangement seen in P. cinnamomi might be one 

workable solution. 

This study has shown that the mature sporangium of P. cinnamomi is structurally 

ordered at two levels of organization, the first involving arrangement of elements within 

the domains and the second involving orientation of the domains themselves. This 

hierarchical system is central to co-ordinating the highly co-operative processes by which 

the network of cleavage vesicle planes is established. Immunogold labelling has also 
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indicated that, in P. cinnamomi, dictyosomes and not large vacuoles are the source of 

cleavage vesicles. I believe that, unless optimal fixation methods are used, artefactual 

fusion of cleavage vesicles may occur and make it difficult to interpret possible 

relationships between these vesicles and other organelles. These findings suggest that 

the role of large vacuoles during cleavage in other Phytophthora species may need to be 

reassessed. Zoosporogenesis in P hytophthora may be more consistent than previously 

envisaged. 



Figs 2.1-2.2 

Fig 2.1 

Fig 2.2 

CHAPTER2 FIGURE LEGENDS 

Mature sporangia of P. cinnamomi before induction of 

zoosporogenesis. 

The ovoid sporangium has a granular cytoplasm, separated from the 

hypha by a basal septum. At the apex is a plug of papillar material. 

Differential interference contrast optics. X1050. 

Hoechst 33662 staining of sporangial nuclei. X700. 





Figs 2.3-2.10 Structure of mature sporangia of P. cinnamomi before induction of 

zoosporogenesis. Figs 2.5-2.7 cells embedded in Lowicryl K4M resin; 

other figures, cells embedded in Spurr' s resin. 

Fig 2.3 

Fig 2.4 

Fig 2.5 

Fig 2.6 

Fig 2.7 

Fig 2.8 

Fig 2.9 

Fig 2.10 

Longitudinal section of sporangium with dense cytoplasm, basal septum 

(s) and apical papillar material (p) . Near each nucleus is a clear zone 

(z), in which clusters of cleavage vesicles (c) and dictyosomes (D) are 

seen. Clear zones near cortical nuclei are close to the wall. X3500. 

Nuclei are pyriform in shape and their narrow poles lie in clear zones 

with cleavage vesicles (c) and dictyosomes (D). Microbody-like 

organelles are also common here (m). They are typically smaller than 

ventral and dorsal vesicles (Figs 2.6-2.7), have a more irregular outline 

and a homogeneous matrix. One of a pair of basal bodies (arrow) is at 

the narrow pole. Narrow poles of nuclei in the sporangial cortex point 

towards the wall (w). Other structures include lipid bodies (Li), 

mycolaminaran bodies (my) and endoplasmic reticulum (E). X19,500. 

Labelling of cleavage vesicles (c) with mAb Cpw-1 followed by sheep 

anti-mouse IgG-AulO (Cpw-1-AulO). X27,000. 

Large peripheral vesicles (L) and ventral vesicles (v) near wall (w). 

Ventral vesicles typically have a partly striated matrix in Spurr's 

material. X26,500. 

Large peripheral vesicles (L). Dorsal vesicle (d) labelled with mAb Cpa-

2 followed by sheep anti-mouse IgG-AulO. Part of the dorsal vesicles 

typically has a marbled appearance in all types of resin. X27 ,500. 

Packet of tubular structures, probably mastigonemes, near 

mitochondrion. X63,000. 

Large vacuole in sporangial interior. X4500. 

Basal septum. A central layer of "slime substance" is surrounded by 

inner and outer layers continuous with the sporangial and hyphal walls 

respectively. X9,200. 





Figs 2.11-2.15 Features of sporangia of P. cinnamomi during the first 20 min after 

induction of zoosporogenesis. Fig 2.14, cell embedded in Lowicryl 

K4M; other figures, cells embedded in Spurr's. 

Fig 2.11 

Fig 2.12 

Fig 2.13 

Fig 2.14 

Fig 2.15 

After induction large clusters of cleavage vesicles (c) are seen near each 

nucleus. Large peripheral vesicles (L) are evident. X5,000. 

Microbody-like organelles (m) are common in the large clusters of 

cleavage vesicles (c) and also line up around the sporangial periphery. 

X15,000. 

Small cluster of cleavage vesicles (c) at the broad pole of cortical 

nucleus. Dictyosomes (D) are seen nearby and close to the wall. 

Xll,500. 

Labelling of cleavage vesicles (c) and dictyosomal cisternae (D) with 

Cpw-1-Au10. X44,000. 

Flagellar growth begins by extension of the microtubules of the basal 

body past a terminal plate (arrow) into a large cleavage vesicle, the 

axonemal vacuole. X43,000. 





Figs 2.16-2.20 Organisation of the cortical cleavage plane in P. cinnamomi (20-35 

min post-induction). Figs 2.16,2.19,2.20, embedded in Spurr's. Figs 

2.17-2.18, embedded in Lowicryl K4M. 

Fig 2.16 

Fig 2.17 

Fig 2.18 

Fig 2.19 

Fig 2.20 

By 35 min cortical clusters of cleavage vesicles have dispersed to form 

a plane of vesicles parallel to the wall. One large cortical cluster remains 

at the apex. Internal clusters are still seen, and in this section appear 

fused, probably artefactually. X4500. 

Cpw-1-Au 10 labelling of vesicles of the cortical cleavage plane (c), 

axonemal vacuole and plasma membrane ensheathing the flagella 

(arrowhead). X20,000. 

Microtubules (arrows) fan out from basal bodies (F) at the narrow pole 

of a cortical nucleus. Some microtubules run parallel to the cortical 

cleavage vesicles (c), labelled by mAb Cpw-1-Au10. X27,500. 

Flagellum (F) in an axonemal vacuo le which runs obliquely towards the 

sporangial periphery, in this case the apex (p) with cleavage vesicle (c) 

cluster below. X18,000. 

Shell of cytoplasm cut off by early fusion of the cortical cleavage plane 

in material fixed with high osmolarity buffer. X4300. 





Fig 2.21 Organisation of the cortical cleavage plane. Between 20-35 min after 

induction the percentage of sporangial sections with a fully organised 

array of cleavage vesicles parallel to the wall rises sharply (A). 

Concurrently, the large cleavage vesicle clusters (o) that have developed 

earlier in the cortex, disappear. (For numbers of sporangia sampled at 

each time point see Materials and Methods). 
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Figs 2.22-2.24 Organisation of the internal cleavage planes in sporangia of P. 

cinnamomi. I. Early features (20-40 min after induction). 

Fig 2.22 

Fig 2.23 

Fig 2.24 

Cleavage vesicles which disperse from narrow poles of internal clusters 

often arch out and then loop back around the nucleus. Large peripheral 

vesicles (L) closely associate with the cleavage vesicles from this time 

on, especially in the .;porangial interior. Spurr's resin. X5,300. 

Microtubules (arrows) fanning out from the basal bodies (asterisk) of 

internal nucleus. LR White resin. X50,000. 

Flagellar growth in the sporangial interior is approximately at right 

angles to the long axis of the nucleus. Spurr's resin. X15,000. 





Figs 2.25-2.27 Organisation of the internal cleavage planes in sporangia of P. 

cinnamomi. II. Later features (40-50 min after induction). Spurr's 

resin. 

Fig 2.25 

Fig 2.26 

Fig 2.27 

At 40min, wavy lines of cleavage vesicles surround two internal nuclei. 

The cytoplasm around the small profile of a cortical nucleus (n) is 

bordered only by the cortical cleavage plane. X9300. 

The internal planes are fully organised and border uninucleate domains. 

Cortical fusion is complete except at the apex (a) . Some flagellar 

profiles are extracellular (large arrow), while others remain in axonemal 

vacuoles (small arrow). Mitochondria (arrowheads) are common near 

domain boundaries. X4000. 

Before fusing, cleavage vesicles of the cortical plane apparently become 

appressed against the sporangial plasma membrane. Microbody-like 

organelles (arrow) and ventral vesicles (v) lie near the wall. X18,000. 





Figs 2.28-2.29 Fully cleaved sporangia of P. cinnamomi. 

Fig 2.28 Hexagonal outlines border individual zoospore initials of the sporangial 

cortex. The prominent water expulsion vacuoles of cortical zoospore 

initials face outward. Differential interference contrast optics of live 

material. Xl 700. 

Fig 2.29 Hoechst 33662 staining of nuclei centrally placed within the hexagonal 

outlines of zoospore initials. X2200. 





Figs 2.30-2.35 Compartmentalisation of sporangia of P. cinnamomi (50-65 min after 

induction). Spurr's resin except Figs 2.33,2.35, Lowicryl K4M resin. 

Fig 2.30 

Fig 2.31 

Fig 2.32 

Fig 2.33 

Fig 2.34 

Fig 2.35 

Fusion of the vesicles of the internal planes completes 

compartmentalisation. Profiles of flagella (arrow) lie in the intercellular 

space. X3500. 

Large peripheral vesicles (L) at the surface of a newly formed zoospore 

initial. Dorsal vesicles (d), labelled with mAb Cpa-2-Au 10, are seen 

further from the surf ace. X24,500 

At a later stage than Fig 2.31, dorsal vesicles (d) are seen near the 

plasma membrane as are the large peripheral vesicles (L). Peripheral 

cisternae (arrowhead) lie below the plasma membrane. Membranous 

annuli are evident in mitochondrial profiles (asterisks) which are 

common in the cortex of the zoospore initials. Mastigoneme packets are 

present (arrow). X16,000. 

In a section labelled with Cpw-1-Au 10, gold particles are closely 

associated with the plasma membrane of the zoospore initials and the 

flocculent material in the intercellular space. Peripheral cisternae 

(arrow) bind Cpw-1-Au10 at low levels. Dorsal vesicles (d) lie in the 

zoospore cortex. X37 ,000. 

Papillar material at maximum thickness with a distinct inner layer (i). 

X13,000. 

Cpw-l-Au10 heavily labels the inner layer (i) of the papillar material. 

X16,000. 





Fig 2.36 

Fig 2.37 

Fig 2.38 

Fig 2.39 

From about 65 min the zoospore initials round up and a groove 

develops (arrow) in the surface near the narrow pole of the nucleus. 

Nuclear profiles become irregular. Spurr's resin. X3,800. 

Outward facing water expulsion vacuole (WEV) in the clear zone region 

of a cortical zoospore initial. Numerous vacuoles and small vesicles are 

seen nearby. Ventral vesicles (v) are seen at the surface in this region. 

Spurr's resin. X16,000. 

Zoospores exit the sporangium into a fragile discharge vesicle (dv). 

Boxed area shown at higher magnification in Fig 2.39. Spurr's resin. 

X2,300. 

The wall of the discharge vesicle. Spurr's resin. X16,000. 
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ULTRASTRUCTURE OF ZOOSPOROGENESIS 

IN PHYTOPHTHORA. II. A STUDY OF 

FREEZE-SUBSTITUTED SPORANGIA OF 

P. CINNAMOMI AND P. PALM/VORA 

3.1 INTRODUCTION 

From the great number of ideas that have been put forward to explain the genesis 

of the additional plasma membranes required by cells formed during cytokinesis 

(Pickett-Heaps, 1972a; Rappaport, 1971; 1986), two principal models have emerged. 

The first involves a two stage process in which vesicles are aligned along some part or 

all of the future plane of cleavage, this part then being established by fusion of the 

vesicles. The second model involves the progressive extension or stretching of the 

partitioning membranes along some part or all of the developing cleavage plane, without 

any observed prealignment of vesicles. Examples supportive of both mechanisms have 

been reported in animal (Thomas, 1968; Rappaport, 1986), plant (Gunning, 1982; 
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Volker, 1972), fungal (Hawker & Gooday, 1967; Cole, 1986) and protoctistan (sensu 

Margulis et al. 1989: Rawlence, 1973; Lokhorst & Segaar, 1989) systems. 

In a previous study of chemically fixed sporangia of the notorious plant 

pathogen, Phytophthora cinnamomi, I employed electron microscopy to examine the 

process by which the infectious, motile zoospores of this organism are formed. I 

concluded that formation of the zoosporic plasma membranes during sporangial cleavage 

followed the first of the models described above, that is, fusion of prealigned vesicles 

(Chapter 2). This process has also been described for P. palmivora (formerly P. 

parasitica, Hohl & Hamamoto, 1967) and all other species of Phytophthora for which 

the mechanism of zoosporic plasma membrane genesis has been described (review by 

Hemmes, 1983). In my previous study, however, I noted that the appearance of 

elements of the cleavage system of P. cinnamomi showed some marked variations 

which did not conform to the vesicle alignment model and which were related to the 

osmolarity of the fixative (Chapter 2). These variations led me to suggest that my 

conclusions be tested by examining sporangia prepared by rapid freezing, a procedure 

which is considered to provide better preservation of membrane morphology than 

chemical fixation. 

In this study I re-investigate zoospore formation in P. cinnamomi and P. 

palmivora using rapid freezing, both at ambient and high pressure, followed by freeze 

substitution (RF-FS). My studies have been assisted by the use of a monoclonal 

antibody that labels cleavage elements in P. cinnamomi and P. palmivora. This is the 

first time, to my knowledge, that rapid freezing has been used to study cytokinesis in any 

eukaryotic organism for which vesicle alignment has been proposed to play a role in 

partitioning membrane formation. The results indicate that cleavage of the sporangium 

follows not from the fusion of prealigned vesicles as suggested by chemical fixation but 

rather from the progressive extension of partitioning membranes. I believe that the 

apparent misinterpretation of the cytokinetic process that has occurred in Phytophthora 

may reflect a much wider problem, involving studies of a great variety of eukaryotic 
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organisms. I also report other novel observations of sporangial structure and partially 

characterize an extensive extracellular matrix which derives from the contents of the 

cleavage system and which may play a role in zoospore release. 

3.2 MATERIALS AND METHODS 

3.2.1 Organisms and sampling 

The cultures of P. cinnamomi (DAR 52646) and P. palmivora used in this study 

were induced to produce sporangia and zoospores by the methods of Hardham & Suzaki 

(1986). Briefly, sporangial formation was induced by transfer of mycelium to a nutrient 

poor medium; sporangial cleavage was induced by treatment with cold distilled water. 

Zoospores were released at about 50 min (P . cinnamomi) and 20 min (P . palmivora) 

after a cold shock. Samples were taken before induction of cleavage and at intervals 

between induction and release. 

3.2.2 Freeze fixation 

3.2.2.1 High pressure freezing 

Wet tufts of mycelium with attached sporangia were placed in gold specimen 

holders (Balzers BBl 13142-1) with mineral salts solution (Hardham & Suzaki, 1986, 

for pre-induction) or distilled water (post-induction) filling the remaining space. Pairs of 

holders were clamped together and frozen in a Balzers HPM O 10 hyperbaric freezer. 

After freezing, the holders were snapped apart under liquid nitrogen and transferred to 

the substitution medium. 

3.2.2.2 Plunge freezing 

Tissue was frozen on formvar covered loops following the procedures of 

Lancelle et al. (1986). To place tissue on the loop, a novel approach was used. The loop 

was held in place on the platform of a dissecting microscope by plasticine. About 8-
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10/'l of distilled water or mineral salts solution was placed on the upper face of the loop. 

A tiny tuft of lightly blotted mycelium was then placed in this drop and spread out using 

fine forceps. The water was then sucked up by a paper wick and the loop rapidly 

transferred to the plunging device. 

3.2.3 Freeze substitution and preparation for electron microscopy 

General procedure: Tissue frozen by the above methods was freeze substituted 

using the procedures of Lancelle et al. (1986). The method was modified by the 

inclusion of 0.05% uranyl acetate in the substitution medium, and after 36h at-80"C, the 

vials were first warmed to -30"C for 10h before being brought to room temperature. 

Tissue was then rinsed in acetone several times, and stained en bloc in 5% uranyl acetate 

in methanol for 2h. After rinsing with acetone, the tissue was infiltrated with Epon resin 

and polymerized. Sections were stained for 3-5 min in Reynolds' lead citrate 

(Reynolc:Ls, 1 q63) 

Immunolabellingprocedure: For material destined for immunogold labelling, the 

freeze substitution, infiltration and polymerization procedures of Lancelle and Hepler 

( 1989) were followed with the inclusion of a 1 Oh stage at -30"C prior to bringing the 

samples to room temperature during freeze substitution. The material was then 

embedded in LR White resin. Infiltration and polymerization with UV light were carried 

out at room temperature. Immunolabelling of sections on gold grids followed the 

methods of Gubler & Hardham (1988). Monoclonal antibody (mAb) Cpw-1 was used. 

This mAb has been previously shown to have a strong affinity for elements of the 

cleavage system and weaker binding to dictyosomes and peripheral cistemae in sporangia 

of P. cinnamomi (Chapter 2). After immunolabelling, sections were stained with 2 % 

aqueous uranyl acetate for 20-30 min, followed by 2 min in lead citrate. 

3.2.4 Immunoblot analysis 

Proteins from freeze dried samples were solubilized in SDS sample buffer 

(63mM-Tris HCl buffer, pH 6.8, containing 2% SDS, 50mM dithiothreitol, 0.001 % 
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bromphenol blue and 10% glycerol) for 5 min at 100°c. After heating, samples were 

centrifuged and the supernatant kept on ice until use . Solubilized proteins were 

separated by homogeneous (7% or 12% acrylarnide) or gradient (5% to 20% acrylarnide) 

SOS-PAGE (Laemmli, 1970) and transferred to nitrocellulose (Towbin et al. 1979). 

After transfer, the nitrocellulose sheets were stained with 0.2% Ponceau S in 3% 

trichloroacetic acid, cut into strips and blocked with 5% skim milk powder in Tris­

buffered saline (TBS: lOmM Tris-HCl, pH 7.5 containing 150mM NaCl). After 1-2h, 

the strips were washed with TBS containing 0.5% Tween 20 (TBST). They were then 

incubated with antibodies in ascites fluid (diluted 1/800 in TBST containing 3% bovine 

serum albumin) for lh, washed five times with TBST for 5 min each, and then incubated 

for 45 min with sheep anti-mouse IgG antibodies conjugated to alkaline phosphatase. 

After washing twice in TBST, twice in TBS and once in enzyme substrate buffer (ESB: 

lOOmM Tris-HCl, pH 9.5 containing lOOmM NaCl and 50mM MgCl), bound 

phosphatase was detected by immersing the strips in enzyme substrate containing 0.44% 

Nitro Blue Tetrazolium (Sigma, St. Louis, U.S.A.) and 0.33% 5-brom-4-chloro-3-

indolyl-phosphate (Boehringer Mannheim, Germany) in ESB. Prior to antibody 

incubation, some strips were treated for lh with either Pronase E (Sigma, 1 mg/ml in 

50mM Tris-HCl, pH 7 .5) or sodium periodate (20mM in sodium acetate buffer, pH 4.5). 

3.3 RESULTS 

3.3.1 Sporangia before and during early cleavage 

The most notable feature of sporangia rapidly frozen before the induction of 

cleavage and during early post-induction stages was that these were the only sporangia in 

which large discrete cleavage vesicles were observed. These vesicles were most evident 

in regions of the cytoplasm that were close to the basal body associated pole of a nucleus 

and relatively free of other major organelles (Figs 3.1,3.3). In P. cinnamomi, cleavage 

vesicles were especially numerous in these regions (Fig 3.1). In both species the basal 
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body associated poles of nuclei in the sporangial cortex pointed towards the wall (Figs 

3.1,3.3). During early post-induction, irregularly shaped cleavage elements were often 

seen around the nuclear pole (Fig 3.2). 

A significant difference between the two species was the presence of a single 

large vacuole in the centre of the sporangium of P. palmivora (Fig 3.3). The vacuole 

was evident before induction, and was often ringed by a multilayered array of rough 

endoplasmic reticulum (Fig 3.3). Such arrays have not previously been described in 

Phytophthora and nothing comparable was seen in P. cinnamomi, which has a series of 

smaller central vacuoles (Chapter 2). In these and later stages microtubules were seen 

radiating from the basal bodies of both species (Fig 3.1). In P. palmivora, limited 

flagellar (Fig 3.3) and cleavage plane development was sometimes evident prior to 

induction. 

The conformation of elements of the developing cleavage system, at these and 

later times, was directly comparable in high pressure and plunge frozen sporangia. With 

the exception of the large peripheral vesicles, other sporangial components were also 

equally well preserved by both techniques. The large peripheral vesicles were well 

preserved in plunge frozen sporangia but not in high pressure frozen material (Fig 3.3; 

Chapter 4). 

3.3.2 Formation of cortical and internal cleavage planes 

Subsequent stages of cleavage involved the formation of a single, cortical 

cleavage plane parallel to the sporangial wall and a series of internal cleavage planes 

separating uninucleate domains. In both species organization of the cortical plane 

proceeded more rapidly than that of the internal planes. 

The first indications of the development of the cortical plane were extended 

cleavage elements which lay mainly parallel to the sporangial wall (Fig 3.4). These 

cleavage elements were frequently irregularly arranged (Fig 3.4), especially at the apex 

of the sporangium, and were apparently of greater surface area than would ultimately be 



38 

required. Several sporangial structures appeared to be associated with the development 

of the cleavage elements. The contents of elongated cisternae at the trans face of the 

Golgi apparatus often appeared similar to those of cleavage elements (Figs 3.2,3.5). A 

trans Golgi network sometimes appeared to interconnect these cisternae with cleavage 

elements (Fig 3.5). Small coated and uncoated vesicles were often numerous adjacent to 

cleavage elements and dictyosomes, and blebs were frequently seen on the surface of the 

elements (Figs 3.5,3.6). Discrete cleavage vesicles of the type seen earlier (Fig 3.1) were 

not evident at this or any later stages. Serial section analysis revealed that occasional 

circular profiles suggestive of such vesicles (Fig 3.4) were continuous with the extended 

cleavage elements. 

By the time the cortical cleavage plane was fully developed (Fig 3.7), most of the 

irregular and superfluous elements of the cortical plane had disappeared. This reduction 

occurred more rapidly in P. cinnamomi than in P. palmivora. Flagella were evident 

within the developing (Fig 3.4) and completed (Fig 3.7) cortical cleavage plane which is 

part of the future extracellular space of the cleaved sporangium. The fully developed 

cortical cleavage plane cut off a shell of cytoplasm between itself and the sporangial 

plasma membrane (Fig 3.7). This shell occasionally had connections to the main 

cytoplasm. Apparent cytoplasmic islands (Figs 3.7-3.8) which were evident in the 

cortical cleavage plane often proved to be projections of the shell or of the main 

cytoplasm when checked by serial sectioning. 

The cleavage planes which will surround the internal nuclei of P. cinnamomi 

appeared to develop initially as membranous sheets extending back behind the nucleus 

from the narrow pole region (Fig 3.9). The distal edges of these sheets were commonly 

dilated (Fig 3.9). As in the case of the developing cortical cleavage plane, there were 

often very irregular arrangements of cleavage elements around the narrow poles of 

internal nuclei. These irregularities disappeared as cleavage progressed. In P. 

palmivora, there was no direct evidence of a polar basis to cleavage element extension in 

the sporangial interior. This may, however, reflect the difficulty of capturing 
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intermediate stages of development in this species due to the rapidity of its cleavage 

process (Hohl & Hamamoto, 1967). In both species, cleavage progressed as the 

partitioning membranes continued to extend throughout the cytoplasm, interconnecting 

with each other to delineate the future zoospores (Figs 3 .10-3 .12). Serial sectioning 

indicated that the membranes extended as sheets, in this latter period at least. Just prior 

to release, the zoospores rounded up and the intercellular spaces became more obvious 

(Fig 3.13). The central vacuoles of both species disappeared during cleavage; there was 

no indication of their fate. The cortical shell of cytoplasm described earlier (Fig 3. 7) had 

also disappeared in both species by the completion of cleavage. This occurred at a later 

stage of internal cleavage in P. palmivora than in P. cinnamomi ( compare Figs 3 .10 and 

3 .11). Prior to its disappearance the shell became thinner and often fragmented (Fig 

3.8). My evidence suggests that this fragmentation involved localized fusion of the outer 

membrane of the cortical cleavage plane with the plasma membrane of the sporangium 

(Fig 3.8). Serial sectioning showed that the fragments were often interconnected and 

were occasionally continuous with the main cytoplasm. The inner membrane of the 

cortical plane was retained and formed part of the plasma membrane of the zoospores. 

Apart from the cleavage system and an extracellular matrix described below, two 

other novel features of sporangial structure were evident in this study. First, sinuous 

projections of cytoplasm were observed within the water expulsion vacuoles of both 

species and the membrane surrounding these vacuoles had numerous vesicles and blebs 

associated with it (Figs 3.11-3.12). Second, peripheral cistemae (flattened organelles 

previously described in sporangia of P. cinnamomi at late stages of cleavage only; 

Chapter 2) were evident in both species from very early cleavage stages (Fig 3.5) 

onwards and they were much more extensive in the zoospore initials (Figs 3.11,3.12) 

than previously observed. 

3 .3 .3 The extracellular matrix 

A notable and previously undescribed feature of sporangia was the dark, grainy 

appearance of material within the cleavage system (Figs 3.1-3.2,3.4-3.12). When 
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cleavage was complete, this material was external to the zoospore initials, forming an 

extracellular matrix (Figs 3.11-3.13). Variability in the apparent density of this material 

was marked in high pressure frozen material (e.g. Figs 3.3,3.8). In plunge frozen 

material, a consistent decrease in density was evident in sporangia sampled just prior to 

zoospore release (Fig 3.13). 

The extracellular matrix of both species was labelled by mAb Cpw-1 (Figs 3.14-

3.16). A thick layer of extracellular matrix was typically seen at the sporangial apex and 

showed particularly strong binding of mAb Cpw-1 (Fig 3.15). The sporangial wall also 

showed some binding of mAb Cpw-1, especially near the sporangial apex (Fig 3.15), 

suggesting that the antigen is leaking outwards. As in P. cinnamomi (Chapter 2), the 

central vacuole of P. palmivora was not labelled by mAb Cpw-1 (Fig 3.16). The 

antigen(s) recognized by Cpw-1 were identified on immunoblots of sporangial extracts. 

In P. cinnamomi, Cpw-1 bound to several broad bands with apparent molecular weights 

between 60 and 330kD (Fig 3.17). Similar results were obtained for P. palmivora (data 

not shown). The cleavage state of sporangia had no bearing on the number of bands 

detected. Pronase treatment of the transferred proteins of P. cinnamomi abolished 

antibody binding; treatment with periodate did not (Fig 3.17). 

3.4 DISCUSSION 

3.4.1 A new model for sporangial cleavage in Phytophthora 

The results of this study describe a significantly different process of partitioning 

membrane formation to that previously reported during zoosporogenesis in P. palmivora 

and P. cinnamomi (Hohl & Hamamoto, 1967; Chapter 2). There was no evidence that 

cleavage follows from the fusion of prealigned vesicles, but rather the data indicate that 

subdivision of the sporangium results from the progressive extension and eventual 

interconnection of membranous sheets. These new findings are summarized and 

compared with the previous model in Fig 3.18. I consider that the discrepancy between 
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this and previous reports arises from the different techniques used to preserve sporangia, 

namely chemical fixation and RF-FS. 

RF-FS is considered superior to chemical fixation for the preservation of cell 

structure generally and membranous components particularly (Lancelle et al. 1985; 

1986; Gilkey & Staehelin, 1986; Cresti et al. 1987; Howard & O ' Donnell, 1987). 

Chemical fixation may cause artefactual alterations in the morphology of membranous 

components. In a comparative study of wall-destined vesicles in freeze substituted and 

chemically fixed hyphae of the Oomycete Saprolegnia, for example, Heath et al. (1985) 

observed in frozen material densely staining tubular elements that became partially 

vesiculated and lost their contents following chemical fixation. Also, studies by 

McCully and co-workers have shown that in petiolar hairs of certain plants the 

membranous canalicular system, which is visible as elongated strands in living cells, 

becomes highly vesiculated during chemical fixation (O'Brien et al. 1973; Mersey & 

McCully, 1978) but retains its in vivo morphology when rapidly frozen (McCully & 

Canny, 1985). I propose that the data from sporangia preserved by RF-FS also more 

faithfully represent the structure of the living cell, and that the apparent alignment of 

vesicles seen in previous studies of cleavage in Phytophthora probably resulted from 

artefactual vesiculation during chemical fixation of membranous sheets similar to those 

seen in this study. Since the cleavage membranes of chemically fixed sporangia do not 

vesiculate during the final stages of zoosporogenesis, the network of aligned vesicles 

seen earlier (Fig 3.18) can readily be misinterpreted as an intermediate stage in the 

cleavage process. In addition, rather than occurring within specialized "axonemal 

vacuoles" (Hohl & Hamamoto, 1967; Hemmes, 1983; Chapter 2), flagellar development 

is shown by RF-FS to occur within the general system of cleavage planes. 

3.4.2 Genesis of the cleavage membranes 

The present study provides evidence that development of the cleavage planes, at 

least in P. cinnamomi, begins in regions near the basal body associated nuclear poles 
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where dictyosomes are concentrated and cleavage vesicles are initially clustered. The 

disappearance of the cleavage vesicles coincides with the formation of the first expanses 

of cleavage membranes, indicating that cleavage vesicles may be incorporated into the 

developing cleavage planes. Irregular cleavage elements that are seen in early post­

induction stages may be transitional stages in the transformation of cleavage vesicles 

into more extended forms. Further expansion of the partitioning membranes appears to 

involve the contribution of membrane from dictyosomes, some of whose cisternae 

appear interconnected with developing cleavage elements through a trans Golgi network. 

This is the first report of a trans Golgi network in Phytophthora; the network may be 

disrupted during chemical fixation. Coated and uncoated vesicles, often seen near 

dictyosomes and cleavage elements, may also be involved in membrane augmentation 

during cleavage element extension. These observations are in agreement with previous 

proposals of a dictyosomal origin for cleavage elements in Phytophthora (Hohl & 

Hamamoto, 1967; Elsner et al. 1970; Chapter 2). Vesicles may be transported to the 

edge of the expanding system, which is characteristically dilated, or could be 

incorporated close to the nuclear pole. The vesicles and blebs could also play a role in 

membrane retrieval during development of the cleavage system. 

The absence of any structural interconnection between the large vacuoles and the 

cleavage system and the lack of labelling of the vacuolar contents with mAb Cpw-1 

indicate that the large vacuoles do not play a role in the cleavage process. 

3.4.3 Implications of this study for cytokinesis in other eukaryotes 

To my knowledge, this is the first published study to employ rapid freezing 

instead of chemical fixation to study cytokinesis in any system in which partitioning 

membrane formation would be expected to involve the fusion of prealigned vesicles. As 

such it represents the fairest test yet of this model, given the unpredictable preservation 

of membrane form by chemical fixation. The apparent failure of the alignment/fusion 

model in this study of zoosporogenesis in P. cinnamomi and P. palmivora has wide-
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ranging implications for my understanding of cytokinesis in other eukaryotes. It has 

already been proposed (Schroeder, 1970; Rappaport, 1971; 1986) that the small body of 

studies which report vesicle alignment during cytokinesis in animal cells suffers from the 

use of a chemical fixation protocol that leads to vesiculation of the furrowing 

membranes. To my knowledge, there has been no consideration of similar vesiculation 

during cytokinesis in non-animal systems, although many studies have expressed 

concern over the difficulty of discerning whether apparent vesicles, seen in single cross­

sections, might actually be part of a continuous system (Burr & West, 1970; Marchant & 

Pickett-Heaps, 1971; Zaar & Kleinig, 1975). Wilson et al. (1990) have recently outlined 

a theoretical basis for the general case of vesiculation of membranes by chemical 

fixatives. For reasons given below I believe that artefactual vesiculation of partitioning 

membranes may have occurred in many studies of a wide variety of eukaryotes, 

especially protoctists. 

3.4.4 Absence of loosely arranged vesicles 

Many of the studies that report vesicle alignment in protoctistan systems (e.g. 

Goodman & Rusch, 1970; Porter, 1972; Mims, 1973) have one, possibly critical, feature 

in common with the suspect animal reports and the chemical fixation studies of 

zoosporogenesis in Phytophthora. In all cases, a stage is described where vesicles are 

arranged in a row corresponding to the future plane of cleavage, but there is no prior 

stage described where the vesicles are loosely arranged in this region. A loose 

arrangement of vesicles is, however, typically described during early cell plate formation 

in plants (Hepler & Jackson, 1968; Gunning, 1982). It is commonly believed that this 

loose arrangement in plant cells arises because the vesicles are in the process of moving 

towards the future zone of cleavage from either side of it (Hepler & Jackson, 1968; 

Gunning, 1982). The absence of such a stage in some protoctistan systems might be 

explained by the possibility that cleavage vesicles move along the future plane of 

cleavage before coming to rest in that plane and fusing. In other cases, insufficient 
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sampling of cells from different stages of cleavage may have resulted in the loose 

arrangement of vesicles having gone undetected. Alternatively, if the neatly arranged 

stage is itself an artefact of preparation then a prior loose stage may not be required for 

whatever is the true process of membrane genesis. The present study, when viewed in 

the light of previous studies of zoosporogenesis in Phytophthora, suggests that the 

absence of a loosely arranged stage may well be a good indicator that the neatly arranged 

stage is an artefact. 

3.4.5 Taxonomic heterogeneity 

The taxonomic distribution of organisms in which vesicle alignment/fusion has 

been described is perplexing. Since this process is commonly considered an 

evolutionarily advanced feature of cytokinesis (Pickett-Heaps, 1972a; Rawlence, 1973), 

one might expect to trace clear lines of ancestry for this character back through the taxa 

in which it appears towards some primitive organism in which it first evolved. The 

impossibility of doing this is best illustrated by considering the protoctista. The vesicle 

alignment model has been proposed for a large number of phylogenetically distant 

protoctistan taxa, in many of which there have also been reports of the more primitive 

mechanism, namely progressive extension of the partitioning membranes (Table 3.1). In 

a number of cases the two mechanisms have been proposed in reports describing 

cytokinesis at different (e.g. Labyrinthula sp., Plasmodiophora brassicae, Oedogonium 

cardiacum, Table 3.1) or even the same (Physarum polycephalum, Spirogyra sp., Table 

3.1) stage of the life cycle in the one genus or species. 

While taxonomic heterogeneity such as this may have a variety of natural sources 

(Fowke & Pickett-Heaps, 1969; Coss & Pickett-Heaps, 1973; Watson et al. 1985) 

another possibility is that some variability has arisen from methodological complications 

such as those seen in this study. It is interesting that, with limited exception (Lucarotti 

& Federici, 1984), apparently the only eukaryotes that exhibit, during cytokinesis, a 

loose arrangement of vesicles similar to that seen in higher plant cell plate formation are 
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certain green algae (Phyla Conjugaphyta and Chlorophyta, sensu Margulis et al. 1989: 

e .g. Fowke & Pickett-Heaps, 1969; Pickett-Heaps & Fowke, 1970; Floyd et al. 1972; 

Pickett-Heaps, 1973; Marchant & Pickett-Heaps, 1973). The green algae and higher 

plants are commonly considered to be phylogenetically related (Pickett-Heaps , 1972a) 

and these two groups may represent the true evolutionary lineage of cytokinesis 

involving vesicle alignment/fusion. Cell plate formation has been proposed to occur in 

some brown algae (Rawlence, 1973; Markey & Wike, 1975) but these descriptions do 

not include the loosely arranged stage and may be cases of artefactual vesiculation. 

Table 3.1 Some protoctistan phyla in which both of the main modes of cell cleavage 

occur. 

Phylum 

Oomycota 

Labyrinthulom ycota 

Plasmodiophorom ycota 

Vesicular alignment/fusion 

Phytophthora capsici 

Williams & Webster, 1970 

Labyrinthula sp. 

Porter, 1972 

Plasmodiophora brassicae 

Williams & McNabola, 1967 

Progressive extension 

Saprolegnia ferax 

Gay & Greenwood, 1966 

Labyrinthula sp. 
Perkins & Amon, 1969 

Plasmodiophora 

brassicae 

Garber & Aist, 1979 

Plasmodial Slime Moulds Physarum polycephalum Physarum 

polycephalum 

Chlorophyta 

Xanthophyta 

Conjugaphyta 

Phaeophyta 

Goodman & Rusch, 1970 

Oedogonium cardiacum 

Coss & Pickett-Heaps, 1973 

Zaar & Kleinig, 1975 

Oedogonium 

cardiacum 

Coss & Pickett-Heaps, 1973 

Pseudobumilleriopsis pyrenoidosa Botrydiopsis alpina 
Deason, 1971 Lokhorst & Segaar, 1989 

Spirogyra sp. 
Fowke & Pickett-Heaps, 1969 

Ascophyllum nodosum 

Rawlence, 1973 

Spirogyra sp. 
Fowke & Pickett-Heaps, 1969 

Chorda tomentosa 

Toth, 1974 
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I believe that descriptions of cell plate formation in plants and certain green algae 

have features that make them distinct from, and more credible than reports of vesicle 

alignment/fusion in other eukaryotes. Nevertheless, the possiblity remains that cell plate 

membranes which have formed in vivo from the fusion of aligned vesicles may exhibit 

a temporary labile phase, similar to that shown by cleavage membranes in Phytophthora, 

during which they are susceptible to vesiculation by chemical fixation. 

3.4.6 The extracellular matrix and its possible role in zoospore release 

The results describe, for the first time in Phytophthora, the presence of a dense, 

grainy material filling elements of the developing cleavage system and forming an 

extracellular matrix which surrounds the zoospores in the fully cleaved sporangium (Fig 

3.18). The passage of this material during cleavage was traced, in both species, by 

immunogold labelling using mAb Cpw-1. In chemically fixed material of P. cinnamomi, 

mAb Cpw-1 binds to flocculent material inside the cleavage system (Chapter 2). This 

material probably represents all that remains after chemical fixation of the dense matrix 

seen in freeze fixed sporangia. Polyacrylamide gel electrophoresis indicates that Cpw-1 

binds to one, or more, proteins with apparent molecular weights between 60 and 330kD. 

Although antibody binding was not abolished by periodate treatment, the smearing of the 

bands is suggestive of extensive glycosylation of the antigen (Goldkom et al. 1989). 

Extracellular material, often referred to as mucilage, has been described 

surrounding the spores, sperms and similar structures of many protoctists (Moore, 1965; 

Pickett-Heaps, 1972b; Scott& Dixon, 1973; Toth, 1974; Lunney & Bland, 1976; Franke 

et al. 1977; Duckett & Peel, 1978) and fungi (Ingold, 1968) with several reports noting 

its origin from cleavage elements (Moore, 1965; Scott & Dixon, 1973; Lunney & Bland, 

1976; Franke et al. 1977). The major significance of this material is its proposed 

capacity to act as a swelling gel (de Bary, 1887; Ingold, 1968; Pickett-Heaps, 1972b; 

Toth, 1974; Lunney & Bland, 1976; Duckett & Peel, 1978) or as an osmoticum (Ingold, 

1971 ; Scott & Dixon, 1973) which may be involved in events leading to rupture of the 
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storage organ and release of its contents. Although the swelling gel model has been 

considered theoretically plausible to explain sporangial discharge in P hytophthora 

(MacDonald & Duniway, 1978; Gisi & Zentmyer, 1980) there has never, until now, 

been evidence of any extracellular material extensive enough to be seriously considered. 

There is indirect evidence that the extracellular matrix described herein might swell, 

since the volume occupied by it apparently increases just prior to zoospore release. If 

swelling does occur this may account for some or all of the force needed for bursting the 

sporangium. 

Alternatively, the extracellular matrix material may operate as an osmoticum. 

Numerous studies of Phytophthora have proposed that sporangial discharge results from 

an osmotically driven increase in hydrostatic pressure (reviewed in Gisi, 1983). One 

deficiency of the hydrostatic model is that it relies on the existence of a semipermeable 

barrier across which the hypothetical osmoticum exerts its influence (Gisi & Zentmyer, 

1980). The present study indicates that the sporangial membrane disappears too early (at 

least in P. cinnamomi) for it to have any role in this process. A similar dilemma in other 

systems has been addressed by examining the possibility that the sporangial wall itself 

may act as a semipermeable barrier (Money & Webster, 1988; 1989; Money, 1990). 

While further work is needed to assess the applicability of this proposal in P hytophthora, 

if swelling of an extracellular matrix is responsible for sporangial discharge, then no 

semipermeable barrier is required. 

In conclusion I would like to point out that this study is another dramatic 

example of the superiority of rapid freezing procedures over chemical fixation for the 

preservation of cell structure. In particular, the maintenance of the apparent true form of 

the developing cleavage planes and the trans Golgi network in Phytophthora 

demonstrates again the effectiveness of rapid freezing in bringing to light extensive 

membrane systems which have gone undetected in chemically fixed material. 



CHAPTER3 FIGURE LEGENDS 

Figs 3.1-3.3 Early stages of zoosporogenesis in Phytophthora, seen in freeze 

substituted sporangia from plunge frozen (Figs 3.1, 3.2) and high 

pressure frozen material (Fig 3.3). 

Figs3.1,3.3 In P. cinnamomi (Fig 3.1) and P. palmivora (Fig 3.3), cleavage 

elements (C) evident as vesicles, and dictyosomes (D) lie near the basal 

body (B) associated pole of the nucleus (N) which, for these cortical 

nuclei, points to the sporangial wall (W). Development of the flagella 

(F) has begun. In the high pressure frozen cell (Fig 3.3) cleavage 

elements do not contain the dense material seen in the plunge frozen cell 

and large peripheral vesicles (L) are not well preserved. The 

sporangium of P. palmivora contains one large central vacuole (V), 

ringed by layers of rough endoplasmic reticulum (Fig 3.1: X28,000; Fig 

3.3: X21,000). 

Fig 3.2 Irregularly shaped cleavage elements (C) in P. cinnamomi. An 

elongated cisterna (P) at the trans face of a dictyosome has a similar 

appearance to the cleavage elements (X26,000). 





Figs 3.4-3.7 

Fig 3.4 

Fig 3.5 

Fig 3.6 

Fig 3.7 

Development of the cleavage plane parallel to the sporangial wall in 

Phytophthora sporangia. Figs 3.4-3.5: P. palmivora; others: P. 

cinnamomi. All cells plunge frozen. 

Extended cleavage elements (C), mainly parallel to the sporangial wall, 

seen in the sporangial cortex. Cross-sections of tubular portions (T) of 

the elements sometimes give a misleading impression (as confirmed by 

serial section analysis) of vesicle alignment. Flagella (F) are seen 

within the cleavage elements (X9,500). 

An elongated cisterna (P) at the trans face of a dictyosome has a similar 

appearance to cleavage elements (C, C'). A trans golgi network appears 

to interconnect this cisterna with the uppermost cleavage element (C'). 

Blebs (boxed area) are seen on the surface of this cleavage element, and 

small coated (circled area) and uncoated (arrowhead) vesicles are seen 

nearby. Peripheral cisternae (arrows) run parallel to the lower cleavage 

element (X33,000). 

Membrane blebs, coated (arrow) and possibly uncoated (arrowhead), 

seen on the surface of a cleavage element. A coated vesicle lies nearby 

(boxed area, X43,000). 

Flagella (F) and apparent cytoplasmic fragments (stars) are seen within 

the fully developed cortical cleavage plane which cuts off a shell of 

cytoplasm (s) between itself and the wall (Xl0,000). 





Figs 3.8-3.11 Development of the internal cleavage planes of Phytophthora 

sporangia. Fig 3.8: high pressure frozen cell; others: plunge frozen. 

Fig 3.8 A fragmented cortical shell of cytoplasm (s) at the sporangial apex in P. 

cinnamomi. Fragmentation appears to involve localized fusion with the 

sporangial plasma membrane (arrows). Large cytoplasmic fragments 

(stars) are evident within the cortical cleavage plane (Xl 7,000). 

Fig 3.9 

Fig 3.10 

Fig 3.11 

Extended cleavage elements run back behind the basal body associated 

pole of an internal nucleus (asterisk). The distal edges (arrows) are 

dilated (P. cinnamomi; X8,500). 

At a later stage than Fig 3.9, cleavage elements almost delineate the 

future zoospore domains. The cortical cytoplasmic shell has 

disappeared (P. cinnamomi; X6,500). 

In a sporangium of P. palmivora, in which internal cleavage is more 

advanced than that shown in P. cinnamomi in Fig 3.10, some of the 

cortical shell of cytoplasm is still evident (s). Peripheral cisternae 

(arrows) lie near the future plasma membranes of the zoospores. A 

water expulsion vacuole (arrowhead) is evident in one zoospore initial 

(X3,000). 





Figs 3.12-3.13 Final stages of cleavage in P hytophthora. Plunge frozen cells. 

Fig 3.12 Fully cleaved zoospore initial of P. cinnamomi. Peripheral cisternae 

(arrows) lie parallel to the zoospore plasma membrane. Sinuous 

cytoplasmic projections are seen inside the water expulsion vacuole 

(WV). Blebs are evident on the vacuolar membranes and small vesicles 

(boxed area) are seen nearby (X9,500). 

Fig 3.13 Rounded zoospores seen in the final stages of cleavage in P. 

cinnamomi. Extracellular matrix material (E) fills the spaces between 

the zoospores (X8,000). 





Figs 3.14-3.16 Labelling of contents of cleavage elements and extracellular matrix 

material with mAb Cpw-1, visualized using a second antibody, sheep 

anti-mouse IgG-Au10. All cells high pressure frozen. 

Fig 3.14 

Fig 3.15 

Fig 3.16 

Labelling of cleavage elements of the internal (C) and cortical (C') 

cleavage planes in P. cinnamomi (XS l ,000). 

Dense labelling of the thick plug of extracellular matrix material at the 

apex of a sporangium of P. palmivora. The sporangial wall (w) is also 

labelled (X41,000). 

Labelling of part of the internal cleavage planes (C) of a sporangium of 

P . palmivora. The large central vacuole (V) is not labelled above 

background (X40,000). 
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Fig 3.17 Irnmunoblot characterization of antigen(s) reacting with mAb Cpw-1. 

Sporangial proteins of P . cinnamomi were separated on a SDS­

polyacrylamide gradient gel, electrophoretically blotted, stained with 

Ponceau S (lane a) and probed with Cpw-1, followed by peroxidase­

conjugated secondary antibody (lane b). Lanes c and d show strips 

pretreated with Pronase and periodate, respectively, before antibody 

incubations. Positions of molecular weight markers (Mr x 10-3) are 

shown on the right. 
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Fig 3.18 

A : 

B,B': 

C,C': 

D: 

A diagrammatic comparison of the process of sporangial cleavage in P . 

cinnamomi suggested by rapid freezing-freeze substitution (A-B-C-D) 

with the previous model (A-B '-C' -D) based on observations of 

chemically fixed material. Many features of the first sequence are also 

true for P. palmivora; and many aspects of the second sequence 

(especially stage C') are shared by other Phytophthora species studied 

by chemical fixation. In these diagrams, shading represents 

extracellular matrix material. In actual sections, the matrix material 

appeared much denser in sporangia prepared by rapid freezing, as 

opposed to chemical fixation. 

Before induction of cleavage and shortly afterwards, specialized 

cleavage vesicles ( •) and dictyosomes ( 111) are found concentrated at 

definable poles of nuclei. The poles of cortical nuclei point towards the 

sporangial wall. Nuclei are evenly spaced within the coenocytic 

sporangium. 

In the next stage, in rapidly frozen sporangia (B), paired sheets of 

membrane loop back from the poles of nuclei in the sporangial interior. 

In the cortex, one pair of membrane sheets runs parallel to the 

sporangial wall, and cuts off a shell of cytoplasm between the outer of 

the two membranes and the sporangial wall. In chemically fixed 

material (B ') similar patterns are seen but these involve planes of 

discrete vesicles. 

Next, in frozen sporangia (C), the membranous sheets in the sporangial 

interior extend and interconnect with each other and the inner of the two 

cortical membranes, thus subdividing the sporangium into uninucleate, 

membrane-bound domains. The outer cortical membrane and the 

cortical shell of cytoplasm disappear. In chemically fixed material (C'), 

the cortical plane of vesicles and the cytoplasmic shell have disappeared 

but planes of vesicles still demarcate domains around the nuclei. 

In the final stage both rapidly frozen and chemically fixed sporangia 

contain fully formed zoospores with a rounded shape and a groove 

opposite the nuclear pole. Matrix material fills the extracellular space. 



A 

....... () ......... . . . . . 
..... ~· ... :Q: ..... 
• \...._lE. • • • : •••• ,11 : ~ •• : ! . .. ····· . 
f *./""\ !. Q \ r--t } ... 
• i;'-..J · *"': \._./'",t . . ..... . 

Fig.18 



48 4 

SPORANGIAL STRUCTURE IN 

PHYTOPHTHORA IS DISRUPTED AFTER 

HIGH PRESSURE FREEZING 

4.1 INTRODUCTION 

As an increasing number of studies indicates the superiority of rapid freeze 

fixation over chemical fixation for the preservation of cell structure (McCully & Canny, 

1985; Lancelle et al. 1986; Cresti et al. 1987; Kiss et al. 1990), interest has grown in 

developing techniques for applying high hydrostatic pressure during the process of 

freezing. This has been motivated by knowledge of the capacity of high pressure (HP) to 

facilitate the freeze fixation of much larger samples of biological material than can be 

preserved, without ice-crystal damage, by freezing at ambient pressure (Moor & Riehle, 

1968; Dahl & Staehelin, 1989). Most recent studies of high pressure freezing (HPF) 

have utilized the Balzers HPM 010 hyperbaric freezer and have obtained excellent 

results (Dahl & Staehelin, 1989; Lichtscheidl et al. 1990); any undesired effects of the 

high pressure (2100atm) applied in this apparatus have not been considered of significant 
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concern (reviewed in Kiss et al. 1990). Since these reports are limited, however, in 

number and in the range of organisms they examine, the general applicability of the 

technique will only be known as more studies are completed. 

The sporangia of Phytophthora cinnamomi and P. palmivora are ideal systems in 

which to study the effects of HPF. Their ultrastructure has previously been studied in 

detail using chemical fixation (Hohl & Hamamoto, 1967; Chapter 2), and a range of 

monoclonal antibodies has been generated which show specificity for various cellular 

components of these species (Hardham et al. 1990). Most significantly, the small size of 

the sporangia makes them suitable for freeze fixation at ambient pressure, thus enabling 

a comparison and evaluation of the HP frozen material. In this study I compare the 

ultrastructure of sporangia of P. cinnamomi and P. palmivora that have been pressurized 

prior to fixation in a Balzers hyperbaric freezer or a French pressure cell to that of 

sporangia plunge frozen at ambient pressure. 

4.2 MATERIALS AND METHODS 

4.2.1 Organisms and sampling 

The cultures of P. cinnamomi (DAR 52646) and P. palmivora (1732) used in this 

study were induced to produce sporangia and zoospores by the methods of Hardham & 

Suzaki (1986). Briefly, sporangial formation was induced by transfer of mycelium to a 

nutrient poor medium; sporangial cleavage was induced by treatment with cold distilled 

water. Samples were taken before induction of cleavage and at intervals between 

induction and release of zoospores. 

4.2.2 Freeze fixation 

4.2.2.1 High pressure freezing 

Wet tufts of mycelium with attached sporangia were placed in gold specimen 

holders (Balzers BB113142-1) with mineral salts solution (Hardham & Suzaki, 1986, 
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for pre-induction) or distilled water (post-induction) filling the remaining space. Pairs of 

holders were clamped together and frozen in a Balzers HPM O 1 O hyperbaric freezer. 

After freezing, the holders were snapped apart under liquid nitrogen and transferred to 

the substitution medium. 

4.2.2.2 Plunge freezing 

Tissue was frozen on formvar covered loops following the procedures of Lancelle 

et al. (1986). 

4.2.3 Freeze substitution and preparation for electron microscopy of freeze fixed 

material 

General procedure: Tissue frozen by the methods above was freeze substituted 

using the procedures of Lancelle et al. (1986). The method was modified by the 

inclusion of 0.05% uranyl acetate in the substitution medium, and after 36h at -80°C, the 

vials were first warmed to -30°C for 10h, before being brought to room temperature. 

Tissue was then rinsed in acetone several times, and stained en bloc in 5% uranyl acetate 

in methanol for 2h. After rinsing with acetone, the tissue was infiltrated with Epon resin 

and polymerized. Sections were stained for 3-5 min in Reynold's lead citrate. 

Immuno/abelling procedure: HP frozen material destined for immunogold 

labelling was prepared using the freeze substitution, infiltration and polymerization 

procedures of Lancelle & Hepler (1989) with the inclusion of a 10h stage at -30°C, prior 

to bringing the samples back to room temperature during freeze substitution. Infiltration 

and polymerization with UV light were carried out at room temperature. 

Immunolabelling of sections on gold grids followed the methods of Gubler & Hardham 

(1988). Monoclonal antibodies (mAbs) Lpv-1, Cpa-2 and Vsv-1 were used. These 

mAbs have been previously shown to have affinities for three different vesicles found at 

the periphery of developing zoospores in sporangia of P. cinnamomi (Chapter 2). After 
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immunolabelling, sections were stained with 2% aqueous uranyl acetate for 20-30 min, 

followed by 2 min in lead citrate. 

4.2.4 Pressurization of sporangia in a French pressure cell, their chemical fixation 

and preparation for electron microscopy 

Between 40-50 min after the induction of cleavage, mycelia of P. cinnamomi were 

placed with distilled water in a French pressure cell (American Instrument Co., 

Maryland, USA) within which the pressure was raised to approx. 1360atm for about 1 s, 

then released. After retrieval from the French pressure cell, sporangia were fixed and 

infiltrated using techniques detailed in Method E of Chapter 2. Immunolabelling of 

sections was as described above except that sections were stained with 2% uranyl acetate 

and Reynold's lead citrate for 5 min and 1 min respectively. 

4.3 RESULTS 

4.3.1 Freeze fixed sporangia of P. cinnamomi and P. palmivora 

Both HPF and plunge freezing provided excellent and comparable fixation of most 

sporangial structures in P. cinnamomi and P. palmivora. There were, however, some 

variations between sporangia prepared by the different procedures, the most significant 

of which are described below. 

The first difference concerned structures described in previous studies of the two 

species (Hardham et al. 1990; Chapter 2) as large peripheral vesicles (LPVs). LPVs 

were present in plunge frozen sporangia (Fig 4.1; Table 4.1) at all stages of cleavage but 

were not seen in HP frozen sporangia. During early stages of cleavage in plunge frozen 

sporangia, LPV s showed no distinct distributional arrangement but in advanced stages 

they were close to the plasma membranes of future zoospores (Fig 4.1). 
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Table 4.1 Presence ( +) or absence ( ·) of certain vesicles and irregularly shaped structures in 

normal and pressurized sporangia of P. cinnamomi and P. palmivora 

Monoclonal antibody Plunge-freezing High-pressure High 

bound by freezing pressure-treated 

vesicle/structure (Balzers HPM 010) (French pressure cell) 

P. cinnanwmi 

Large peripheral vesicle Lpv-1 + + 

Large irregular structure Lpv-1 + + 

Dorsal surface vesicle Cpa-2 + + + 

Ventral surface vesicle Vsv-1 + + + 

P . palmi vora 

Large peripheral vesicle + 

Large irregular structure + 

The second difference involved large irregularly shaped structures with granular 

contents that were observed at all stages of cleavage in HP frozen sporangia (Figs 4.2-

4.5) but never in plunge frozen sporangia (Fig 4.1). A small portion of the perimeter of 

these structures was often bounded by membrane (Fig 4.2). During early stages of 

cleavage, the distribution of the irregular structures showed no distinct pattern (Fig 4.2). 

When cleavage was advanced, however, they had a distribution (Fig 4.3) similar to that 

described above for LPVs in cleaved plunge frozen sporangia. lmmunolabelling of LR 

White embedded sections of HP frozen sporangia of P. cinnamomi showed that the 

irregular structures were the only sporangial elements labelled by mAb Lpv-1 (Fig 4.4), 

and that these structures were not labelled by mAbs Cpa-2 (Fig 4.5) or Vsv-1. Dorsal 

and ventral surface vesicles of P. cinnamomi (Chapter 2) were observed in both HP and 

plunge frozen sporangia of this species. They were identified by their characteristic 

morphologies and mAb binding (Fig 4.5; Table 4.1). 
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The third difference concerned the percentage of sporangia affected by ice-crystal 

damage. This was higher in material prepared by plunge freezing, especially that of P. 

cinnamomi which has, on average, larger sporangia than P. palmivora. 

4.3.2 Sporangia of P. cinnamomi pressurized in a French pressure cell 

In cleaved sporangia of P. cinnamomi that had been subjected to HP in a French 

pressure cell, very large mottled structures (Fig 4.6) were observed at the periphery of 

the developing zoospores. These structures were labelled by mAb Lpv-1 (Fig 4.6). 

Intact LPVs were also observed in these sporangia and were labelled by mAb Lpv-1 (Fig 

4.6). Dorsal and ventral surface vesicles were evident, being identified by their 

characteristic morphologies and antibody binding (Table 4.1). 

4.4 DISCUSSION 

4.4.1 Disruption of sporangial structure inPhytophthora by high pressure freezing 

The results suggest that the disruption of sporangial structure caused by the HPF 

procedure used in this study was brought about by the breakage of LPVs. LPVs, which 

were observed in plunge frozen sporangia and have previously been described in 

chemically fixed material of Phytophthora (Hardham et al. 1990; Chapter 2), 

consequently appear in HP frozen sporangia as large irregular structures. These 

structures retain the patterns of spatial distribution and, for P. cinnamomi, the mAb Lpv-

1 binding characteristic of LPVs in this species (Hardham et al. 1990; Chapter 2). There 

was no evidence that any other cell structures were affected in the same fashion as the 

LPVs. In particular, two other vesicle types that have previously been noted to occur at 

the periphery of developing zoospores of P. cinnamomi, the dorsal and ventral surface 

vesicles (Chapter 2), were observed in HP frozen sporangia of this species . 

Nevertheless, since the LPV s represent a significant fraction of sporangial contents, their 
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apparent expansion following HPF causes considerable passive disruption of sporangial 

structure. 

I believe that the feature of the HPF procedures most likely to have led to the 

disruption of LPV s is the pressure itself. The strongest evidence for this is the normal 

appearance of LPVs in sporangia which, apart from being plunge frozen , were prepared 

for electron microscopy by procedures identical to those used for HP frozen sporangia. 

Evidence which indicates that HP can directly cause expansion of LPV s is found in the 

observation in this study of very large mAb Lpv-1 binding structures in sporangia of P. 

cinnamomi that had been pressurized in a French pressure cell. The French pressure cell 

is not, however, an ideal method for assessing the effects of high pressure because, 

before being chemically fixed, the material is also exposed to the potentially deleterious 

effects of decompression. Below, I consider possible ways by which the application of 

high pressure may lead, directly or indirectly, to general structural damage in a sample. 

Possible direct causes include shearing forces or shockwaves generated within the 

sample in the period between the commencement of pressurization and the completion 

of freezing. This period includes 20-30 msec at 2100atm before freezing commences 

(Gilkey & Staehelin, 1986). Another possible direct cause, proposed by Dahl & 

Staehelin (1989), is that air bubbles trapped in the specimen holders may cause 

deformation of samples during pressurization or thawing. Nevertheless, I feel it is 

unlikely that there was any systematic or incidental introduction of bubbles in this study 

because (1) the procedure I used for sample loading was the same that has previously 

been employed successfully with other tissues and (2) over thirty separate samples were 

frozen at HP and the artefact was evident in all sporangia examined in each sample. 

Additionally, preliminary evidence suggests that LPVs in germinating cysts of P. 

cinnamomi are disrupted by HPF (Hardham & Mendgen, unpublished data), even though 

the material was prepared by procedures that have previously been used to avoid the 

occurrence of air bubbles (Welter et al. 1988). 
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Dahl & Staehelin (1989) also suggest an indirect way inwhich high pressure may 

bring about structural damage. At 2100atm water solidifies as ice II and III, both of 

which are denser than water. These ices may undergo a phase transition to the more 

voluminous ice I during the long periods involved in freeze substitution. 

If any of the possible causes outlined above are responsible for the expansion of 

LPVs seen in HPF frozen material , it is not clear how expansion of such an extensive 

nature may have been brought about. Previous chemical fixation studies have, however, 

indicated that LPV s of P. cinnamomi are especially sensitive organelles and will rupture 

if fixative osmolarity is too low (Hardham, 1985). It is possible that the same 

characteristic of LPV s that causes this sensitivity also makes them more liable to react 

to whatever is responsible for the damage seen in HP frozen material. This characteristic 

may concern the membrane of the LPV or its contents , which in P. cinnamomi, are rich 

in high molecular weight glycoproteins (Gubler & Hardham, 1990). 

To ascertain whether the disruption of LPVs occurs during HPF or subsequent 

freeze substitution, examination of sporangia prepared by freeze fracture and freeze 

etching techniques should be helpful. 

4.4.2 Implications for the future use of high pressure freezing 

In the design of the Balzers hyperbaric freezer , 2100atm was selected as the 

operating pressure because, by its effects on the freezing properties of water, it 

minimizes the restrictions imposed by the poor heat conductance of water upon the size 

of samples that can be frozen without ice damage (Dahl & Staehelin, 1989). While long 

exposures to pressures of this magnitude are known to damage many biological tissues 

(Zimmerman, 1971), it has been thought that the brevity of exposure involved in the use 

of the Balzers freezer might avoid tissue damage of any major concern (Gilkey & 

Staehelin, 1986). While the excellent results obtained by previous use of the instrument 

indicate that this is true for a number of animal, plant and fungal tissues (Welter et al. 

1988; Dahl & Staehelin, 1989; Lichtscheidl et al. 1990), the present study suggests that 
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the assumption is not universally valid. It is unlikely that this study will remain an 

isolated case because LPV s are found throughout the Oomycetes (Beakes, 1986); 

preliminary work already indicates that the LPVs of Olpidiopsis also do not survive the 

process of HPF-freeze substitution (Martha Powell, personal communication). Kiss et 

al. (1990) have reported minor bursting of mucilage vesicles in HP frozen Arabidopsis 

roots. This may be a less extreme example of the phenomenom I have described in this 

study. For any tissue that is found to be sensitive to freezing in the Balzers instrument, 

and which is too large to be frozen at ambient pressure without ice damage, then it may 

be profitable to freeze at a pressure lower than 2100atm. 

In conclusion I would like to put the results of this study into perspective by 

pointing out that while HPF does not appear as good as plunge freezing for the fixation 

of Phytophthora sporangia, in several respects it provides better preservation of this 

material than I have previously obtained with chemical fixation. For example, I have 

never been able to achieve successful immunolabelling of LR White embedded 

sporangia that have been chemically fixed (personal observation) but I obtained excellent 

results with this resin in HP frozen material. More significantly, the conformation of the 

developing cleavage system was undisturbed even in those sporangia most affected by 

HPF whereas in chemically fixed material this system is severely disrupted (Chapter 3). 



Fig 4.1 

Fig 4.2 

Fig 4.3 

Fig 4.4 

Fig 4.5 

Fig 4.6 

CHAPTER4 FIGURE LEGENDS 

Large peripheral vesicles (arrows) lined up along a cleavage plane in a 

plunge frozen sporangium of P. cinnamomi (Xll,500). 

Large irregularly shaped structures (i) in a high pressure frozen, 

uncleaved sporangium of P. palmivora. Membrane (arrows) surrounds 

some areas of these structures (X23,000). 

Large irregularly shaped structures (i) at the periphery of future 

zoospores in a fully cleaved, high pressure frozen sporangium of P. 

cinnamomi (X7 ,800). 

Large irregularly shaped structures (i) immunolabelled by monoclonal 

antibody Lpv-1 and visualized using a second antibody, sheep 

antimouse IgG-Au10. Cleaved, high pressure frozen sporangium of P. 

cinnamomi (X31,500). 

Dorsal surface vesicle (arrow) immunolabelled by monoclonal antibody 

Cpa-2. A large irregularly shaped structure (i) nearby is not labelled 

with this antibody. Cleaved, high pressure frozen sporangium of P. 

cinnamomi (X33,500). 

Very large mottled structures (m) and large peripheral vesicles (arrows), 

both labelled by monoclonal antibody Lpv-1, in a cleaved sporangium 

of P. cinnamomi that had been pressurized in a French pressure cell and 

then chemically fixed (X 34,000). 
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CONFOCAL MICROSCOPY OF DOMAIN­

LIMITING MICROTUBULE ARRAYS IN 

CRYOSECTIONED SPORANGIA OF 

PHYTOPHTHORA CINNAMOMI 

5.1 INTRODUCTION 

5 

The aim of this study is to increase our understanding of the structural 

mechanisms that regulate the orderly process of cleavage within the multinucleate 

sporangia of zoosporogenic fungi. There are several key questions that remain 

unresolved in this area. For example, what restricts the development of the cleavage 

membranes to within the zones of cleavage? Are the positions of the future cleavage 

planes predicted or established in some way prior to the onset of cleavage? Finally, what 

brings about and maintains the regular spacing of nuclei typically reported before and 

during cleavage (Heath & Greenwood, 1971; Hohl & Hamamoto, 1967; Williams & 

Webster, 1970; Chapters 2, 3). 
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From previous studies of the zoosporogenic fungi a commonly accepted model 

has emerged which addresses some of these questions (Heath & Greenwoo~ 1971; Olson 

et al. 1981; Lange & Olson, 1983). The fundamental proposal of this model is that, 

before and during cleavage, arrays of microtubules emanate from near each nucleus, 

marking out the sporangial cytoplasm into a number of equal-sized uninucleate domains, 

the boundaries of which exist at the junctions, or between the margins, of adjacent 

arrays. The ultrastructural evidence for this proposal has not, however, been altogether 

satisfying because, although nucleus-based arrays have been reported in the sporangia of 

many fungi (Heath & Greenwood, 1971; Gotelli, 1974; Hoch & Mitchell, 1975; Olson 

et al., 1981; Armbruster, 1982; Lange & Olson, 1983) they are not always present at 

critical stages (Heath, 1976). Moreover, while microtubules have occasionally been 

described as extending to the domain boundaries (Olson et al. , 1981; Hoch and Mitchell , 

1975), it has never been clearly demonstrated that these microtubules are present in the 

quantity one would expect if they were domain-limiting structures as it has, for instance, 

with other non-fungal systems (Karr & Alberts, 1986; Menzel, 1986). 

Despite these shortcomings, the model still remains attractive, partly because 

there are no strong alternatives and also because a number of studies have demonstrated 

that treatment of sporangia with antimicrotubule drugs leads to a disruption of the orderly 

nature of cleavage and nuclear positioning (Slifkin, 1967; Schnepf & Heinzmann, 1980; 

Olson et al. 1981; Heath et al. 1982; Olson & Lange, 1983). It is possible that techninal 

problems may be responsible for the scarcity of observations of microtubules in those 

cytoplasmic regions where the domain boundaries would be expected to exist. Such 

problems include the difficulty of detecting, with thin-section analysis, cellular structures 

as small as microtubules and incomplete preservation of the cell's microtubule 

population. But even if we do accept the model, its predictive value suffers greatly from 

the lack of information regarding microtubular arrangements at the domain boundaries: 

it is impossible to determine what interactions the arrays may have at the boundaries 

either with each other or with the developing cleavage planes. 
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In this study I have further investigated the spatial distribution of microtubules 

and flagella within the pre-cleavage and cleaving sporangium of P. cinnamomi. In 

previous studies of the sporangium of this species (Chapters 2,3) , electron microscopy 

has provided detailed information about the cleavage process and general cytoplasmic 

organization within the sporangium, but has failed to provide an overall picture of 

sporangial microtubule organization any more satisfactory than those from studies of 

other zoosporogenic fungi. Prompted by a recent study which used immunofluorescence 

microscopy to examine the flagellar rootlet system of the released zoospore of P. 

cinnamomi (Hardham, 1987b), I have applied this technique to the sporangium. The 

technique for the zoospore was modified by freezing and cryosectioning the chemically­

fixed sporangia. This approach has provided new information regarding the extent of 

sporangial microtubular arrays, and should draw the attention of mycologists to the 

potential of cryosectioning as an adjunct to immunofluorescence studies of fungal 

structures. 

5.2 MATERIALS AND METHODS 

5.2.1 Organisms and sampling 

The culture of P. cinnamomi (DAR 52646) used in this study was induced to 

produce sporangia by the methods of Hardham & Suzaki (1986). Briefly, sporangial 

formation was induced by transfer of mycelium to a nutrient poor medium; sporangial 

cleavage was induced by treatment with cold water. For fluorescence microscopy, 

samples were taken before induction of cleavage and at intervals between induction and 

release of zoospores. 
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5.2.2 Preparation of samples for fluorescence microscopy 

5.2.2.1 Enzyme treated sporangia 

Sporangia destined to be treated with wall-digesting enzymes were fixed in 4% 

paraformaldehyde in 50 mM Pipes buffer with 2 mM MgS04 and 5 mM EGTA for 1 

hour at room temperature, then rinsed once in 100 mM Pipes buffer and twice in 

phosphate buffered saline (PBS : 150 mM NaCl, 20 mM sodium phosphate buffer). 

They were then treated with 1 % Triton X 100 in PBS for 1 h, rinsed three times in PBS 

and treated with various mixtures of commercially available wall-digesting enzymes 

such as Macerase, Cellulysin (Calbiochem, La Jolla, Ca.), Cellulase Onozuka RlO 

(Yakult, Honsha, Tokyo) and Driselase (Fluka, Buchs, Switzerland). All solutions were 

at pH 6.8, except for the enzyme mixtures which were at pH 4.5. None of these mixtures 

were effective in removing the sporangial wall. 

After enzyme treatment, sporangia were incubated in Amersham anti-~-tubulin 

diluted 1 :300 in PBS containing 1 % bovine serum albumin and 0.02% NaN3 at 37°C for 

45-60 min, rinsed three times in PBS then incubated at 37°C for 45-60 min with a 

fluorescein isothiocyanate-(FITC) conjugated sheep antimouse antibody (SAM : Silenus 

Lab Pty Ltd, Dandenong, Australia) diluted 1 :30 in PBS, with 1 % bovine serum albumin 

and 0.02% NaN3. After rinsing two times in PBS, the mycelial tuft containing the 

sporangia was lightly blotted and spread out on a slide in a drop of mowiol (Wick & 

Duniec, 1986) containing the nonfade additive paraphenylenediamine (0.1 % ). A 

coverslip was placed over the preparation, and the slide was left overnight before 

observation to allow penetration of the paraphenylenediamine and setting of the mowiol. 

5.2.2.2 Cryosectioned sporangia 

In the development of an immunofluorescence protocol for cryosectioned 

sporangia, various aspects of the procedure, such as fixative composition, section 

thickness, extracting detergent concentration and duration of antibody incubation were 

modified numerous times. The protocol which provided the most consistently effective 
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visualization of microtubules is detailed below. A tuft of mycelium was fixed for 2 h at 

room temperature in 4% paraformaldehyde, 2 mM MgS04, 5 mM EGTA, 10% dimethyl 

sulfoxide and Triton XlOO in 50 mM Pipes buffer, pH 6.8, then rinsed as for post-fixed 

enzyme-treated cells. The tuft was then lightly blotted to compact the mycelium, placed 

in liquid Tissue-Tek (Miles Inc., Elkhart, IN, USA) inside a plastic mould (Cryomold, 

Miles Inc.) and plunged into liquid nitrogen. The frozen block was then stored at -20°C 

before sectioning the same, or following, day. Sectioning was done on a Reichert 

Cryotome (2800 Frigocut E) set to cut 10 µm sections. The sections readily transferred 

onto a breath-moistened gelatin-coated glass slide placed just above the ribbon. Gelatin 

coating of slides was done at least the night before and followed Jensen's (1962) 

method. Sections were left to settle onto the slide for at least 15 mins, then rinsed once 

in PBS, immersed in 5% Triton XlOO in PBS for 1 h, rinsed three times in PBS and then 

incubated for 2 - 4 h in the primary antibody as described for enzyme-treated cells. 

Rinsings, secondary antibody incubation and mounting in moviol were also as described 

for enzyme-treated cells except that the incubation duration was either 4 h (at 37°C) or 

overnight (at 4°C). Some preparations were also stained, after rinsing off the secondary 

antibody, with 0.2 µg/ml DAPI in PBS for 25 mins at room temperature, in order to 

label DNA. 

5.2.3 Microscopy 

Microtubule-associated fluorescence was detected either by use of Zeiss 

Axioplan and Axiovert microscopes equipped with epifluorescence optics or by use of 

an Axiovert microscope adapted for confocal optics (Biorad MRC600). These 

approaches provided equivalent direct visualization of microtubule-associated 

fluorescence but less detail was lost in the process of photographically recording the 

confocal-generated images. DAPI staining was observed by fluorescence microscopy, 

using the Zeiss microscopes. 
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5.2.4 Observations and 3-D reconstruction of cleaved sporangia 

To assess the spatial disposition of zoospore initials within cleaved sporangia, 

sporangia were sampled at a time when cleavage was complete but before rounding up 

had occurred (Chapters 2,3). Sporangia were fixed, dehydrated and embedded using the 

procedures detailed in Method D of Chapter 2. The sporangia were then serial sectioned 

(1.5 µm thickness), placed on glass slides , stained with Toludine Blue , and 

photographed. One sporangium was reconstructed to 85% of its full size (17 out of 20 

sections) by tracing zoospore outlines from photographs into a 3-D reconstruction 

program (PC3D, Vers. 5.0, Jandel Scientific, Corte Madera, CA). 

5.3 RESULTS 

5.3.1 Microtubule arrays in sporangia prior to cleavage 

In cryosectioned sporangia sampled prior to the induction of cleavage, tubulin­

associated fluorescence indicated the presence of extensive astral arrays of microtubules 

(Figs 5.1-5.3). One array emanated from a distinct pole of each approximately pear­

shaped nucleus (Figs 5.3 and 5.4). For those nuclei in the sporangial cortex, the poles 

from which the arrays emanated always pointed towards the sporangial walls (Fig. 5.4). 

The pattern of microtubule distribution appeared radial when sectioned in planes 

perpendicular to the polar axes of the nuclei (Figs 5.1-5.2). Other planes of section 

revealed different patterns (Fig 5.3). The various patterns evident within sporangia 

suggested a common form for all arrays, which is illustrated diagrammatically in Fig 5.5. 

The relationship of arrays to each other, and to the domains they appear to 

demarcate, is best seen in Fig 5.2. Microtubules from each array extend to, and past, the 

hypothetical domain borders, and at times even appear to run as continuous structures 

between the arrays. The extent of microtubule distribution shown in Fig 5.2 and 

depicted in Fig 5.5 was apparent, when viewed directly through the microscope, in many 

sporangia sampled at this and some later times. The finer details of the arrays were, 
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however, usually extremely difficult to record photographically owing to high levels of 

background fluorescence and to swamping of the weak fluorescence at the array margins 

by the strong labelling of the flagella and more central regions of the arrays. 

5.3.2 Basal bodies and early flagellar development 

In whole, enzyme-treated sporangia and some sporangial cross-sections from 

cryosectioned material, there was no detectable labelling of cytoplasmic microtubules. 

In these preparations, flagella and flagellar-associated tubulin structures were, however, 

labelled, with details of their structure being all the more evident because of the lack of 

other fluorescence (Figs 5.6 - 5.8). In enzyme-treated sporangia sampled prior to 

cleavage, numerous spots of fluorescence were seen (Fig 5.6) and these had a similar 

distribution to the foci of the arrays described in the previous section. More detailed 

images of these spots, from confocal microscopy of cryosectioned sporangia, showed 

that each consisted of two small spots of intense fluorescence associated with a third 

more diffusely labelled region (Fig 5.7). The two intense spots are likely to correspond 

to the basal bodies seen at this stage with electron microscopy (Chapters 2,3). After the 

induction of cleavage, the basal body fluorescence presumably becomes continuous with 

that of the developing flagella (Fig 5.8). 

Evidence suggests that the apparent absence of cytoplasmic microtubules in 

whole sporangia and some cryosectioned sporangia (such as those in Figs 5.6-5.8) is due 

to problems of antigen accessibility. When a block containing sporangia sampled at 20 

min post-induction was sectioned at 10 µm thickness, 31 % of cross-sections had the 

same pattern as that shown in Fig 5.8, while the remainder had staining similar to that 

shown in Fig 5.9. When the same block was sectioned at 25 µm, the percentage of 

sporangia only showing flagellar labelling (as in Fig 5.8) rose to 70%. It is possible that 

these sporangia had their cut surf ace against the glass slide, and that their upper surf ace 

was uncut and thus antibody access was restricted. The percentage of sporangia lacking 

a cut, exposed surface within the section would increase with greater section thickness. 
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Antibody penetration is likely to be limited in such cross-sections, since the sporangial 

wall appears to inhibit the entry of antibodies. 

5.3.3 Microtubule arrays and flagella in cleaving and cleaved sporangia 

In sporangia sampled at 10, 20 and 30 min after the induction of cleavage, 

microtubule arrays appeared similar to those seen at the precleavage stage. Aspects of 

these arrays can be seen in Figs 5.9-5.11. In sporangia that had prominent cytoplasmic 

microtubule labelling, flagellar development was first clearly evident in the 30 min 

samples (Figs 5.10 and 5.11); but it is likely that short stubs of fluorescence seen within 

arrays at 20 min (Fig 5.9) correspond to the flagellar initials seen in sporangia from this 

time that had no cytoplasmic microtubule labelling (e.g., Fig 5.8). 

In sporangia sampled at 40 min (Figs 5.12-5.13), microtubule arrays were not so 

obviously radial as those seen earlier. Flagella from this time on had a more sinuous 

form (Figs 5.12-5.13) than that at 30 min. At 50 min, the array form was similar to that 

seen at 40 min, and some indications of sporangial cleavage were given by the disrupted 

appearance of cytoplasmic background fluorescence (not shown). By 60 min, cleavage 

was completed and the individual zoospores still possessed microtubular arrays (Figs 

5.14-5.15), which in some cases clearly possessed some of the characteristic features of 

microtubule rootlets in released zoospores (Fig 5.15; Hardham, 1987b). 

5.3.4 Hyphal microtubules 

In cryosectioned hyphae, microtubules were predominantly linear and often 

appeared to emanate from, and run between, the evenly spaced nuclei (Figs 5.16-5.17). 

5.3.5 Arrangement of zoospores in cleaved sporangia 

The sporangium reconstructed using the 30 computer program was 62 µm long 

and contained 23 zoospore initials (Figs 5.18-5.19). Of these, only one had no contact 
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with the sporangial wall and it lay in the centre of the sporangium (Fig 5.19). Larger 

sporangia contained one or more internal zoospores, while smaller sporangia had none. 

5.4 DISCUSSION 

The results from this study indicate that the nucleus-associated microtubule 

arrays of precleavage and cleaving sporangia of P . cinnamomi are sufficiently extensive 

to be seriously considered as structural regulators of the cleavage process. Before 

discussing the details and implications of these findings, a general point needs to be 

made regarding how closely the microtubular distributions described in this study might 

reflect those that exist in the living sporangium. 

Lancelle et al. (1987) have suggested that immunofluorescence procedures may 

cause artefactual bundling of microtubules that are spaced apart in vivo. In a previous 

immunofluorescence study of microtubule arrangements in the zoospore of P . 

cinnamomi (Hardham, 1987b), however, very consistent images were obtained of the 

complex flagellar rootlet system and these images correlated well with those from 

electron microscopic serial sectioning; these results argue against any gross distortion of 

microtubular arrangements in this system due to the preparatory procedures for 

immunofluorescence microscopy. Nevertheless, we cannot rule out the possibility that 

some of the fluorescent strands seen in the present study represent a condensation of 

adjacent microtubules within the astral arrays of the living cell; and that the astral arrays 

are therefore perhaps even more complex and extensive than described herein. 

5.4.1 The possible roles of sporangial microtubule arrays in: 

( a) Nuclear spacing and orientation 

In Chapter 2 I stressed the significance of the regular spacing and orientation of 

nuclei in the precleavage sporangium for the later orderly progress of cleavage plane 

development. The precleavage relationships of the astral microtubular arrays, to the 
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nuclei and to each other, suggest possible ways in which nuclear spacing and orientation 

may themselves be established. 

Several previous studies have implicated nucleus-based arrays in the maintenance 

of nuclear positioning (Slifk:in, 1967; Olson et al . 1981; Heath et al. 1982) but the 

limited extent of the arrays has prompted the conclusion that microtubular anchoring of 

the nucleus is effected by interactions between the nucleus-associated microtubules and 

the cytoplasm (Heath et al. 1982). It is now clear from this study that the microtubules 

from adjacent arrays could also be interacting in some way, perhaps by static cross­

linking (Tilney, 1971) or dynamic anti parallel interactions (Hogan & Cande, 1990) as 

has been proposed in models of mitosis . Both these models require some degree of 

overlapping and this is consistent with the arrays seen in P. cinnamomi (e.g., Fig 5.2). In 

combination with interactions between microtubules and the sporangial plasma 

membrane, interactions between microtubules of adjacent arrays would seem to provide 

an adequate model for the maintenance of the position of nuclei in the sporangial cortex. 

The radial aspects of the arrays of these nuclei are in direct opposition to each other (Fig 

5.2, and diagrammatic representations, Figs 5.20-5.21). 

The presence of extensive astral arrays in the precleavage sporangium also 

invites speculation as to their possible role in establishing nuclear spacing during 

sporangial development. Mechanisms have been proposed, in models of mitosis, by 

which microtubules of opposing arrays could generate pushing forces against each other, 

either by direct pushing as the microtubules extend (Salmon, 1989) or by dynamic 

antiparallel interactions (Hogan & Cande, 1990). In radial arrays capable of generating 

such forces, the amount of force per unit area that can be generated at the margin of the 

array decreases with increasing array diameter, since microtubule density at the margin 

also accordingly decreases. Such considerations indicate that, in a closed system with a 

number of spatially disordered array-generating nuclei, an equilibrium would be reached 

when all the available space was filled and when the lengths of the array radii were 

equal, or in other words when the nuclei were equidistantly spaced. 
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Such a model would seem particularly workable for establishing the orderly 

spacing of cortical nuclei during sporangial development in P. cinnamomi for the same 

reasons that made a microtubule-microtubule interaction model so attractive for 

maintaining the spacing of these nuclei. The model does not however explain the 

polarity of the cortical nuclei. This feature may be a consequence of the development 

of the sporangium as a hyphal swelling, since, at least in some other Oomycetes (Heath 

& Kaminsk:yj , 1989), the hyphal nuclei are similarly oriented with their basal-body poles 

towards the wall. It is unlikely that karyokinesis plays any role in nuclear spacing during 

sporangiogenesis in P. cinnamomi. Although there have been rare reports of mitosis 

within sporangia of Phytophthora (Laviola, 1974 [cited in Hemmes, 1983]; Jelke et al. 

1987), it is believed that sporangial nuclei are, in this genus, most commonly derived 

solely from those already existing in the hypha (Hemmes, 1983). 

The mechanisms I have described above could also be involved in the 

maintenance and/or establishment of nuclear spacing in hyphae of Phytophthora. The 

long, apparently continuous strands of fluorescence seen in this study, running between 

the evenly-spaced nuclei, might for example actually consist of two opposing sets of 

microtubules which originate at the nuclei and overlap somewhere in between. Some 

support for this model is provided by the descriptions of long bundles of hyphal 

microtubules in electron microscopic images of Phytophthora infestans (Temperli et al., 

1990) and P. cinnamomi (Dearnaley, unpublished observations). The reported shortness 

of nucleus-associated microtubules in the hyphae of some fungi (Heath & Kaminsk:yj, 

1989) argues against the universality of this model. 

The observations in this study of zoospore arrangement in cleaved sporangia also 

help to explain a commonly reported feature of nuclear arrangement in fungal sporangia, 

namely the cortical location of most, or all, nuclei (Williams & Webster, 1970; Heath 

& Greenwood, 1971; Chapter 2). The three-dimensional reconstruction demonstrates 

that in an average-sized sporangium of P. cinnamomi nearly all zoospores lie within the 

cortex. One can predict that such a sporangium would have, prior to cleavage, the same 
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disposition of undivided uninucleate domains (Figs 5.21-5.22). Hence the predominant 

location of nuclei in the cortex of sporangia of this, and no doubt other sizes, is a natural 

geometrical consequence of the relative dimensions of sporangia and the domains they 

contain. 

(b) Marking out the positions of the future cleavage zones, and spatial 

restriction of cleavage membrane extension to the zones of cleavage 

The arrangements of the microtubules of the astral arrays at various stages before 

and after the induction of cleavage indicate that the arrays may be involved in marking 

out the future zones of cleavage, and also, in causing, either directly or indirectly, the 

development of the cleavage system to be restricted to within these zones. 

Figs 5.21 and 5.22 illustrate that the precleavage arrays described in this study 

are ideally suited for the marking out of the positions of the future cleavage planes. 

Regarding microtubular regulation of sporangial cleavage, previous studies have 

suggested two models, and a third is proposed here. Schrader (1938) suggested that 

sporangial "asters" might act directly as physical barriers to restrict cleavage plane 

development to the appropriate zones. In the second model (Heath & Greenwood, 1971) 

microtubules are proposed to act indirectly. The cytoplasmic zones through which the 

cleavage membranes will migrate are proposed to contain few microtubules, and thus to 

lack an hypothesised stabilization existing in the remaining microtubule-rich cytoplasm 

as a consequence of many microtubular-cytoplasmic interactions. The third model 

draws upon the phragmoplast model suggested for cytokinesis in higher plants and some 

green algae (Gunning, 1982). In this model, the future plane of cleavage exists at the 

junction of two opposing sets of microtubules. Vesicles, from which the cleavage 

membranes are derived, migrate along the microtubules, stop in the junctional region and 

fuse to form the zone of separation. 

One or more of these models could be involved in cleavage plane formation in P. 

cinnamomi. In the development of the cortical cleavage plane, the phragmoplast model 
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is obviously unworkable (see Fig 5 .22) , but either of the remaining models appears 

feasible , considering the extensive network of microtubules that lies in the cytoplasm 

beneath where the cortical plane will form . Evidence from electron microscopy indicates 

that microtubules are closely associated with the membranes of the developing cortical 

plane (Fig 2.18). 

In the sporangial interior, the physical barrier model is generally the least 

attractive. It is hard to imagine, for example, that, during the development of cleavage 

planes between the cortical domains (Fig 5.22) , the microtubules from directly opposing 

arrays retract somehow to open up a channel for cleavage planes to pass through. It is 

possible, however, that those microtubules arising from the internal nuclei and running 

parallel to the cleavage planes which develop near the narrow poles (Fig 5.22) , could 

function as physical barriers in a similar fashion to that proposed for the analogous 

microtubules of the cortical nuclei. 

Both of the remaining models appear feasible for some aspects of internal 

cleavage. The phragmoplast model seems ideally suited to formation of the planes that 

form between the cortical domains (Fig 5 .22). Electron microscopic studies of higher 

plant phragmoplasts (Gunning, 1982) indicate that microtubules of the opposing arrays 

overlap in the junctional region: in P. cinnamomi overlapping was also evident in this 

region, albeit not in such a concentrated fashion as that seen in higher plants. Also, in 

P. cinnamomi, as in higher plants (Gunning, 1982), small Golgi-derived vesicles appear 

to be a source of cleavage plane membrane, and although no associations were seen 

between these vesicles and microtubules with electron microscopy (Chapters 2,3) , this 

could be a consequence of poor preservation of microtubules and/or vesicles. An 

especially appealing feature of the phragmoplast model is that the dictyosomes are 

concentrated in the cytoplasm near the focus of each microtubule array (Chapters 2, 3). 

If some of the products of the dictyosomes are destined for incorporation into the 

cleavage planes, as was proposed in Chapters 2 and 3, then they must reach the sites at 

which they will be utilized. This movement could involve directed transport along the 

--
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astral microtubules towards the regions where cleavage planes are developing. Directed 

microtubular transport of cellular organelles has been proposed to occur in many systems 

(Williamson, 1986; McKerracher & Heath, 1987) and in addition to transporting 

cleavage material in P. cinnamomi , astral microtubules could also play a role in 

establishing the polarized distributions of the four peripheral vesicles of the zoospore 

(Fig 1.1). 

Regarding the role of the cytoplasmic stabilization model in the sporangial 

interior, the data indicate that microtubules are not absent in all the regions where the 

cleavage planes will form : for example, between the cortical domains. Nevertheless, 

microtubular density would still be lowest in these regions, given the radial nature of the 

arrays, and this is consistent with Heath and Greenwood's model. It is possible, also, 

that the stabilization model might work in concert with the phragmoplast mechanism, 

with vesicles being fed into the advancing cleavage plane behind its leading edge. Olson 

et al., (1981), in a study of zoosporogenesis in Allomyces catenoides, noted that the 

incorporation of cleavage vesicles followed this pattern. It is tempting to speculate that 

in P. cinnamomi, the motive force for the extension of the cleavage planes might be 

derived from swelling of the matrix material inside the cleavage elements (Chapter 3). 

In the present study it was not possible to verify whether changes in array 

structure precede or follow any specific development of the cleavage system: while we 

could identify cleavage planes in fully subdivided sporangia, the developing planes were 

not readily apparent. Additionally, we had no success in using a monoclonal antibody 

(Cpw-1) to identify the developing cleavage planes in cryosectioned sporangia (Chapter 

6) because although this antibody exhibits strong binding to the contents of cleavage 

elements in freeze-substituted sporangia, in chemically-fixed material not only are most 

of the contents apparently lost but the cleavage elements themselves become 

artefactually vesiculated. 

Finally, it is also possible that astral microtubules exert their influence upon the 

spatial aspects of cleavage via their regulation of some other cytoskeletal network, for 
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instance an actin microfilament system. Studies using anti-microfilament drugs suggest 

that actin is involved in the regulation of cleavage (Schnepf et al. 1978; Oertel & Jelke, 

1986; Heath, 1991) and preliminary results from an immunofluoresence study indicate 

that actin is distributed on either side of the developing cleavage planes in Saprolegnia 

(Heath, 1991 ). Further drug and immunofluorecence studies are needed to clarify what, 

if any, interactions may be occurring between networks of these two cytoskeletal 

elements. 

5.4.2 Concluding remarks 

As well as providing new and important details of microtubular arrangements in 

sporangia of Phytophthora, the present study demonstrates the potential value of 

cryosectioning as an adjunct to immunofluorescence studies of large fungal structures. 

With regard to further investigation of the ideas raised in this chapter it is to be hoped 

that rapid-freezing freeze-substitution used in combination with cryosectioning and 

immunofluorescence microscopy may allow a correlated study of cleavage plane 

development and changes in microtubular array structure. Such a study would be 

valuable not only for providing this specific information but as a means to investigate a 

much more general question: why did electron microscopic examination of rapidly­

frozen freeze-substituted sporangia (Chapter 3) not indicate the extent of the 

microtubular arrays seen in this study? 

Part of the answer to this question may lie in the difficulties of assessing the 

extent of microtubular distribution by thin-section analysis, but it is also possible that the 

total microtubular population was not preserved by the procedures used prior to 

examination. Cho & Fuller (1989) have doubted whether rapid-freezing freeze­

substitution of zoospores of P. palmivora provides better preservation of microtubules 

than chemical fixation. In my electron microscopic studies of sporangia, this was not so 

: for example, with rapid-freezing at least some microtubules were evident prior to the 

induction of cleavage (Chapter 3), which was not the case with chemical fixation 



,' 
·, 

72 

(Chapter 2). In an immunofluorescence study of microtubules in hyphae of Uromyces, 

freeze-substituted material provided better results than chemically fixed (Hoch & 

Staples, 1985). 

Taken together, these various results indicate that as yet we have no simple 

explanation as to why incomplete preservation of microtubules apparently occurs in 

electron microscopic studies of fungi, even, at least in some cases, when rapid-freezing 

freeze-substitution has been employed as the means of fixation. 



Figs 5.1-5.4 

Fig 5.1 

Fig 5.2 

Figs 5.3-5.4 

CHAPTERS FIGURE LEGENDS 

Microtubules and nuclei in the sporangium of P. cinnamomi, sampled 

before the induction of cleavage. Cryosectioned material treated with 

antitubulin-sheep antimouse-FITC (Figs 5.1-5.3) and DAPI (Fig 5.4). 

Extensive arrays of microtubules, regularly spaced throughout the 

sporangial cytoplasm. X850. 

Microtubules emanate from a focal point and extend beyond the 

boundaries of adjacent arrays. X2300. 

In these photographs of the same double-labelled section, it is evident 

that the focal points of the arrays shown in Fig 5.3 are adjacent to 

distinct poles of the nuclei and that for nuclei in the sporangial cortex, 

these poles are adjacent to the sporangial periphery (Fig 5.4). X2100. 





Fig 5.5 A diagrammatic representation of the full extent of the nucleus-based 

microtubule arrays seen prior to, and up to 30 min after, the induction of 

cleavage. 



Fig.5.5 



Figs 5.6-5.9 

Fig 5.6 

Fig 5.7 

Fig 5.8 

Fig 5.9 

Variant patterns of tubulin-associated fluorescence in sporangia sampled 

prior to, and 20 min after, the induction of cleavage. 

In an enzyme-treated whole sporangium sampled before induction no 

microtubule arrays are seen; instead regularly-spaced spots are evident. 

X760. 

In a cryosectioned sporangium sampled before induction regularly­

spaced structures are evident, consisting of two bright spots and a fuzzy 

area between the two spots. X1250. 

In a cryosectioned sporangium sampled 20 min after induction, two 

short flagellar initials emanate from regularly-spaced foci. X1200. 

In a cryosectioned sporangium sampled at 20 min, extensive 

microtubule arrays are evident. Short stubs of fluorescence seen in 

some arrays may be flagellar initials. X1200. 





Figs 5.10-5.15 Tubulin-associated fluorescence in cryosectioned sporangia sampled 

between 30 and 60 min after the induction of cleavage. 

Fig 5.10 

Fig 5.11 

At 30 min flagellar initials extend beyond the boundaries of the radial 

arrays. X1600. 

More developed flagellar growth, seen in another sporangium from a 30 

min sample. X700. 

Figs 5.12-5.13 Two optical sections of the same sporangium, from a 40 min sample. 

Fig 5.14 

Fig 5.15 

Microtubule arrays are evident but are not as obviously radial as at 

earlier times. Flagella now appear longer and more sinuous. X2000. 

Completed cleavage in a 60 min sporangium. Microtubules are evident 

within the individual zoospores. Xl 100. 

In some sporangia, zoospores showed evidence of the characteristic 

microtubular flagellar rootlet system. The posterior rootlets of one 

zoospore initial are seen here in a 60 min sporangium (arrowhead). 

X1800. 





Figs 5.16-5.17 Two photographs of the same double-labelled section, showing, on the 

left, longitudinal arrays of microtubules which run between regularly 

spaced nuclei (on the right) in a hypha of P. cinnamomi. One nucleus 

appears to be in a short branch of the hypha. XlOOO. 





Fig 5.18 Three dimensional reconstruction of a cleaved sporangium of P. 

cinnamomi, using 17 of 20 sections comprising the whole sporangium. 

Individual zoospores are shown in different colours; this sporangium 

contained 23 zoospores. 





Fig 5.19 The same sporangium as shown in Fig 5.18, but rotated through 90°. Of 

the 23 zoospores in this sporangium, only one had no contact with the 

sporangial wall, shown here in blue. 





Figs 5.20-5.22 Diagrammatic representations of the proposed relationships between 

microtubule arrays, nuclei, domain boundaries and cleavage planes at 

different stages of zoosporogenesis in a sporangium of P. cinnamomi 

with similar dimensions to that shown in Figs 5.18-5.19. 

Figs 5.20-5.21 Pre-induction sporangium, shown in surface view and longitudinal 

section. The cortical nuclei have their astral arrays oriented towards the 

wall. The regions where adjacent arrays meet or overlap mark out the 

sporangium into a number of uninucleate, equal-sized domains. 

Fig 5.22 This figure shows possible relationships between the microtubule arrays 

and the developing cleavage planes described in Chapter 3. Note that 

the cortical cleavage plane lies parallel to the outermost microtubules of 

the cortical arrays, while most of the internal planes are likely to 

develop between opposing sets of microtubules. 



Fig. 5.20, 5.21 , 5.22 
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THE EFFECTS OF ORYZALIN AND 

CYTOCHALASIN D UPON CLEAVAGE AND 

THE POSITIONING OF ORGANELLES AND 

NUCLEI WITHIN THE SPORANGIUM OF 

P. CINNAMOMI 

6.1 INTRODUCTION 

In Chapter 5 I have described and discussed the presence of extensive nucleus­

based microtubule arrays within the uncleaved and cleaving sporangium of 

Phytophthora cinnamomi. It was suggested that these arrays may be involved in the 

structural regulation of some of the events of zoosporogenesis described in Chapters 2 

and 3. In particular it was proposed that the arrays could play a role in the maintenance 

of nuclear spacing and orientation, cleavage plane development and the directed 

movement of various organelles within the sporangium. While previous studies 

(discussed in Chapter 5) have already indicated that nucleus-based microtubule arrays 
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may be involved in nuclear positioning and cleavage, nothing is known about the role of 

microtubules, or any other cytoskeletal element, in sporangial organelle movements. 

Since microtubules and microfilaments are thought to be involved in organelle 

movements in other fungal (McKerracher & Heath, 1987) and non-fungal (Schnapp et 

al. 1985; Scholey et al. 1985; Williamson, 1986) systems, further investigation of the 

role of the cytoskeleton in sporangial organelle positioning is attractive . The 

sporangium of P . cinnamomi is an ideal system in which to study this matter. It has 

been shown (Chapters 2, 3) that at least five types of structures (mitochondria, large 

peripheral vesicles, ventral vesicles, dorsal vesicles and peripheral cisternae) acquire, 

during the process of cleavage, highly concentrated distributions at, or near, the future 

zoospore periphery. The peripheral distributions of these structures also exhibit a second 

order of polarization : they are not distributed equally around the entire periphery but are 

localized at or near either the future ventral or dorsal surfaces of the developing zoospore 

(Chapter 2). 

In this study I have investigated the roles of microtubules and microfilaments in 

the development of these polarities, and other aspects of zoosporogenesis, by examining 

sporangia of P. cinnamomi treated either with oryzalin or cytochalasin D, drugs known, 

respectively, for their anti-microtubule (Morejohn et al. 1987; Cleary & Hardham, 1988) 

and anti-microfilament (Yahara et al. 1982; Cooper,1987) properties. The effects of 

these drugs upon mitochondrial and vesicular distributions have been monitored by 

standard and confocal fluorescence microscopy of cryosectioned sporangia labelled with 

chemical dyes and monoclonal antibodies specific to three of the four vesicles detailed 

above. 

..... 
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6.2 MATERIALS AND METHODS 

6. 2 .1 Organism 

The culture of P. cinnamomi (DAR 52646) used in this study was induced to 

produce sporangia and zoospores as described previously (Chapter 2). In these 

experiments, zoospore release regularly occurred at about 65 min after exposure to cold 

shock. 

6.2.2.Microscopy of living untreated and drug-treated sporangia 

The process of cleavage and zoospore release was monitored in living sporangia 

that had been incubated either with various concentrations of cytochalasin D (CD:Sigma, 

St Louis, Mo.) or oryzalin (3-5-dinitro-N4,N4
- dipropylsulfanilamide; Lilly Research 

Laboratories, Greenfield, IN) , or (for controls) with appropriate concentrations of the 

chemicals that were used as solvents for the two drug treatments (dimethyl sulfoxide 

[DMSO] and acetone respectively) . CD concentrations ranged between 10-100,µM 

(0.025-0.25 % DMSO) and oryzalin between 0.1-1.0;M (0.1-1.0% acetone). The drugs 

and solvents were added to the growth medium (mineral salts solution, Chapter 2) 20 min 

prior to the induction of cleavage and were included in the distilled water in which 

sporangia were incubated during the process of cleavage. Samples were taken at various 

times after the induction of cleavage and observed using differential interference contrast 

optics on a Zeiss Axioplan microscope. 

6.2.3 Microscopy of fixed, cryosectioned sporangia 

Sporangia destined for cryosectioning were sampled either before the induction 

of cleavage or between 60-65 min after induction. CD, oryzalin, DMSO and acetone 

were added to the incubation media as described above for living sporangia. The fixation 

and cryosectioning techniques have been described previously (Chapter 5). Sections 

were treated with five monoclonal antibodies (mAbs) whose specificities have been 

described previously (Vsv-1, Cpa-2, Lpv-1 , Cpw-1: see Table 2.1; anti-.B-tubulin: see 
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Chapter 5). The incubations, rinsing and mounting procedures for sections treated with 

anti-~-tubulin were as described previously (Chapter 5) . The general procedures for 

treatments with the other mAbs were similar except that shorter incubations were used 

(45 min for primary and secondary antibodies) and primary antibodies were used either 

as undiluted supernatants, or diluted to 1 µg/ml in the case of purified Cpa-2 antibody. 

Some preparations were also stained for DNA as described in Chapter 5. Fluorescence 

in sections was viewed using either a standard fluorescence microscope (Axioplan or 

Axiovert) or a microscope equipped with confocal optics (Biorad MRC600). When 

using the confocal microscope either single or multiple, accumulated optical sections 

were used to produce images which best illustrated characteristic patterns. Sections were 

also viewed using differential interference contrast optics either on standard or confocal 

microscopes. Most experiments were repeated at least twice; all the experiments 

involving sampling of drug-treated sporangia at 60-65 min were repeated three times, 

using concentrations that had been found to affect cleavage in a consistent fashion (lµM 

oryzalin; lOOµM CD). To check that sporangial cleavage was not induced by the 

addition of drugs or solvents, some sporangia from each of the drug treatments and the 

controls were not cold-shocked, but were left in the incubating media for 60 min, after 

which 100 sporangia from each treatment were observed. There were no signs of 

cleavage in any of these sporangia, nor were there any released zoospores. Thus it 

would seem likely that all cleaved sporangia that were examined in the experiments of 

this study did not begin to cleave until after the application of the cold shock. 

6.3 . RESULTS 

6.3.1 Effects of cytochalasin D and oryzalin on living sporangia 

Observations of living sporangia that had been incubated in media containing 

either CD or oryzalin indicated that both of these drugs caused gross perturbations of the 

normal cleavage process. This was in contrast to the control treatments in which fully 
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cleaved sporangia appeared identical to those described in Chapter 2 (Fig. 6.1). In CD­

treated sporangia viewed just before release, the cleavage planes were clearly evident but 

they lacked the polygonal relationships typical of those in control cells (Fig 6.2) . A 

common feature of these sporangia was the presence of extensive uncleaved regions 

running parallel to the sporangial wall (Fig 6.2) . CD-treated sporangia released their 

contents as irregularly-shaped cytoplasmic masses , usually possessing many active 

flagella. Smaller fragments were highly motile. Many active water expulsion vacuoles 

were evident within the released cytoplasm, two or three often being present even in 

some of the smaller fragments. 

Abnormal cleavage was most consistently observed in sporangia incubated in 

lOOµM CD. Lower concentrations of CD (20µM and 60µM) also caused abnormalities 

but not as effectively. In control treatments for the lOOµM treatment, DMSO (0.25%) 

appeared to cause slight irregularities in the shapes of small numbers of the released 

zoo spores. 

When viewed just before release, oryzalin-treated sporangia appeared similar to 

those treated with CD. Upon release the sporangial contents consisted of highly 

irregular cytoplasmic masses (Fig 6.3) but, unlike those from CD-treated cells, these 

masses possessed no flagella and were non-motile. Active water expulsion vacuoles 

were, however, present (Figs 6.4 and 6.5). After release, the larger fragments sometimes 

proceeded to subdivide, pinching off small, spherical regions (Figs 6.4 and 6.5). After 

extended periods (15-20 min) this process was, however, reversed as small adjacent 

fragments fused together (Fig 6.6). This process appeared to relate to a loss of vitality, 

since water expulsion activity ceased and the fused masses eventually took up so much 

water that they became spherical and burst. 

The shapes of the released zoospores from sporangia used as controls for the 

oryzalin treament (incubated in media with 1 % acetone) were consistently normal. 



6.3.2 Cryosectioned sporangia 

6.3.2.1 Controls, pre-induction 
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There were no differences in the predominant patterns of DAPI and mAb 

associated fluorescence of acetone and DMSO treated control sporangia sampled prior to 

induction, so these results will be considered together. Tubulin-associated fluorescence 

was distributed in the characteristic astral arrays described in uncleaved sporangia in 

Chapter 5 (Fig 6.7). DAPI staining showed that, as previously described (Chapters 2, 3 

and 5), the nuclei were regularly spaced, with the narrow poles of cortical nuclei 

pointing towards the wall (Fig 6.8). Small bright spots of fluorescence in DAPI-stained 

sporangia are likely to correspond to mitochondrial DNA, and will henceforth be 

referred to as mitochondria. Mitochondria were for the most part randomly distributed, 

but were usually less abundant near the narrow nuclear poles (Fig 6.8). The fluorescence 

associated with mAbs V sv-1, Cpa-2 and Lpv-1 showed similar distributions to that of 

the mitochondria (Figs 6.9-6.11). The large gaps in fluorescence evident in many 

sporangia treated with the vesicle-specific mAbs (e.g. Figs 6.9 and 6.11) were shown, by 

combined DAPI-mAb staining, to correspond to regions occupied by nuclei and the clear 

zones, that, as previously described (Chapters 2 and 3) are associated with the narrow 

nuclear poles (Figs 6.8 and 6.9: same section, double-labelled). 

6.3.2.2 Oryzalin treatment, pre-induction 

Sporangial cryosections from sporangia incubated in lµM oryzalin and labelled 

with anti-!3-tubulin-SAM-FITC exhibited no microtubule-associated fluorescence (Fig 

6.12). Roughly circular gaps in the background fluorescence of cryosections of these 

sporangia probably correspond to nuclei, and these had a dull ring of fluorescence 

around them (Fig 6.12). DAPI staining showed that the regular spacing of nuclei was 

lost; few nuclei were seen in the sporangial cortex, and when observed in this region 

they exhibited no polarity towards the sporangial wall (Fig 6.13). 
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Mitochondrial distribution in oryzalin-treated sporangia appeared similar to that 

of controls, but clear zones (Fig 6.13) did not regularly correspond to the presence of 

nuclei. Fluorescence associated with mAbs Vsv-1, Cpa-2 and Lpv-1 showed similar 

distributions to that of mitochondria (Figs 6.14-6.16). 

6.3.2.3 CD treatment, pre-induction 

The patterns of DAPI and mAb associated fluorescence in uninduced sporangia 

incubated in lOOµM CD showed no significant differences from those of controls (Figs 

6.17-6.20). 

6.3.2.4 Controls, 60-65 min post-induction 

There were no differences in the predominant patterns of DAPI and mAb 

associated fluorescence of acetone and DMSO treated control sporangia sampled just 

prior to release. Tubulin-associated fluorescence indicated the presence of flagella and 

microtubule arrays, as previously described in Chapter 5 (Fig 6.22). DAPI staining 

illustrated that the cortical nuclei retained their polarity during cleavage, and that the 

distribution of mitochondria became highly polarized towards the zoos pore periphery 

(Fig 6.23). Mitochondria were not, however, evenly distributed along the entire 

periphery, being absent from much of those surfaces of the zoospores towards which the 

narrow nuclear pole pointed. These regions are the future ventral surfaces of the 

zoospores. As was seen in material prepared for electron microscopy (Chapter 2), the 

future ventral surfaces of cortical zoospores are always adjacent to the sporangial wall 

(Fig 6.23). 

Fluorescence associated with mAb V sv-1 showed exactly the reverse distribution 

to that shown by the mitochondria: it was localized to those regions identifiable (by 

combined DAPI-mAb staining) as the future ventral surfaces of the zoospores (Fig 6.24). 

The patterns associated with mAbs Cpa-2 and Lpv-1 were basically the same as that 
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described for the mitochondria (Figs 6.25 and 6.26), being concentrated on the future 

dorsal surfaces. 

6.2.3.5 Oryzalin treatment, 60-65 min post-induction 

Anti-~-tubulin- SAM-FITC labelling of oryzalin-treated sporangia sampled just 

prior to release indicated a complete absence of cytoplasmic microtubules and flagella 

(Fig 6.27). Background fluorescence indicated that the cytoplasm was cleaved, but in a 

highly irregular fashion (Fig 6.27). The patterns of abnormal cleavage were similar to 

those seen in living, oryzalin-treated sporangia. Optical serial sectioning with the 

confocal microscope showed that regions of cytoplasm that appeared as isolated 

fragments in single sections (e.g. Fig 6.27) were often interconnected. DAPI staining 

indicated that the nuclei lacked the spacing and polarity of those in control treatments 

and that the mitochondria were not localized along the abnormal cleavage planes (Fig 

6.28). 

In contrast to the mitochondria, the fluorescence associated with mAbs, V sv-1, 

Cpa-2 and Lpv-1 did, in many sporangia, show strong localization to the abnormal 

cleavage planes (Figs 6.29-6.31). This fluorescence was, for the most part, distributed 

along the entire length of the abnormal planes (e.g. Figs 6.29 and 6.31). Combined 

DAPI-rnAb staining indicated that gaps did not regularly correspond to the presence of 

nuclei. 

6.2.3.6 CD treatment, 60-65 min post-induction 

In CD-treated sporangia sampled just before release, flagella and cytoplasmic 

microtubules were evident (Fig 6.32). These structures emanated from a series of focal 

points, most of which were adjacent to the sporangial wall (Fig 6.32). DAPI staining 

indicated that cortical nuclei retained the spacing and polarity seen at the pre-induction 

stage (Fig 6.33). The patterns of abnormal cleavage, evident in DAPI-stained material, 

were similar to those seen in living, CD-treated sporangia. Mitochondrial distribution 
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was highly polarised, being localized to all portions of the abnormal cleavage planes 

except those opposite the narrow nuclear poles (Figs 6.33 and 6.37). 

As was the case for control treatments from this time, Vsv-1 fluorescence showed 

the reverse distribution to that just described for mitochondria, being highly localized 

opposite the narrow nuclear poles, at least in the case of cortical nuclei (Figs 6.33 and 

6.34 : same section, double-labelled). Cpa-2 and Lpv-1 fluorescence showed similar 

distributions to that of mitochondria, as was also the case for control treatments (Figs 

6.35 and 6.36). 

6.3.2.7 Cpw-1 labelling 

Since mAb Cpw-1 labels the contents of the developing cleavage system in 

material prepared for electron microscopy (Chapters 2 and 3), an attempt was made to 

use it to track cleavage plane development by immunofluorescence microscopy. 

However, the fixative used, paraformaldehyde, appeared to cause vesiculation of the 

developing planes in the same manner as that described for glutaraldehyde (Chapter 3). 

In addition, at the completion of cleavage there was little labelling in the intercellular 

spaces (Fig 6.38), where one would expect it to be strongest. This is probably a 

consequence of the extraction of the antigen by the procedures involved with chemical 

fixation and preparation for electron microscopy, as proposed in Chapters 2 and 3. 

Cpw-1 labelling in cleaved, cryosectioned sporangia material was mainly 

restricted to the zoospore periphery.reflecting, most likely, the adherence of some 

extracellular matrix material to the zoospore plasma membranes, and labelling of the 

peripheral cisternae (Fig. 6.38). This pattern was also seen in abnormally cleaved 

sporangia that had been incubated in oryzalin (Fig. 6.39). As was also seen in normally­

cleaved sporangia prepared for electron microscopy (Chapters 2 and 3), a plug of 

extracellular matrix material at the sporangial apex was labelled by mAb Cpw-1 in, in 

this study, both normal and oryzalin-treated sporangia (Figs 6.38-6.39). 
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6.4 DISCUSSION 

6.4.1 Establishment of the polarized distribution of the peripheral vesicles 

The results of this study indicate that, in the establishment of the polarized 

distributions of the three peripheral vesicles examined herein, there are differing 

cytoskeletal requirements for , firstly , the general peripheral concentration of these 

vesicles and, secondly, the localization of these vesicles along either the ventral or dorsal 

sub-domains of the periphery. The reader is referred to Fig 6.40 for a diagrammatic 

summary of the results pertinent to this discussion. 

6.4.2 Establishment of the general peripheral localization of peripheral vesicles 

With regard to generating the first, general aspect of peripheral polarization the 

results indicate that neither microtubules nor microfilaments are necessarily required. 

In cleaved sporangia that had been incubated in media containing oryzalin or CD, all 

three vesicle types were concentrated along some part or all of the abnormal cleavage 

planes. There is strong evidence to suggest that this polarization occurred in the absence 

of any active microtubules or microfilaments. Firstly, while microtubule-associated 

fluorescence could be visualized in control sporangia, this was not the case in sporangia 

treated with oryzalin. With respect to the CD experiments, while the experiments do not 

demonstrate what effects this drug may have had on microfilaments, it is unlikely that 

any such structures that might exist in the sporangium before the drug treatment would 

still be functional after extended exposure to 100 µM concentrations of CD. CD is the 

most potent and specific of the anti-actin group of cytochalasins and affects actin-related 

processes in some systems at concentrations as low as 0.2 µM (Yahara et al. 1982; 

Cooper, 1987). Previous studies of Oomycete zoosporogenesis have shown that CD, or 

the less potent cytochalasin B, affects sporangial actin and/or cleavage at concentrations 

of between one fifth and one tenth of that used in this study (Oertel & Jelke, 1986; Heath 

1991). These findings have led to proposals that actin is involved in regulation of the 
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cleavage process. Given the profound effects of CD upon cleavage in this study, it may 

well be that this effect also reflects a disturbance of some as-yet-undescribed actin 

network in the sporangium of P. cinnamomi. 

The results of this study do not preclude the possibility that microtubules and/or 

microfilaments are directly involved in bringing about the general peripheral disposition 

of these vesicles under natural conditions. Nevertheless it now seems worthwhile to 

consider the possibility of alternative mechanisms: in any case we need to understand 

how this localization may have occurred under the experimental conditions. The model 

that seems most promising involves two processes: (1) the peripheral vesicles move 

randomly throughout the sporangial cytoplasm until (2) they come into contact with 

receptors on the zoospore plasma membrane which bind the vesicles and prevent their 

further movement. Ultrastructural support for this model is provided by the close 

contacts between all three vesicle types and the plasma membrane of the developing and 

fully-formed zoospores (see Figs 2.31-2.33, 2.37, 2.41). While not all vesicle profiles 

contact the plasma membrane, such contacts may occur outside the particular plane 

sampled by thin-sectioning. Interestingly, in my electron microscopic images of rapidly­

frozen cleaved sporangia there are nearly always gaps in the extensive network of 

peripheral cisternae where peripheral vesicles are adjacent to the plasma membrane (e.g. 

Figs 3.12, 4.1). This pattern can also be seen in images of rapidly-frozen zoospores of P. 

palmivora (Cho & Fuller, 1989). Binding of vesicles by plasma membrane receptors has 

been suggested in other systems (Pearse, 1988). If this model is operating within the 

normally cleaving sporangium, then the sequential nature of locali2.ation shown by the 

three vesicles (Chapter 2) indicates perhaps that either three different receptors become 

activated sequentially or that the vesicles acquire their binding capacity at different 

stages. 
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6.4.3 Establishment of the ventral or dorsal surface localizaion of peripheral 

vesicles 

While the results provide no evidence for cytoskeletal involvement in general 

aspects of peripheral localization , they do suggest that microtubules, but not 

microfilaments, are necessary for the distributional restriction of the ventral vesicles to 

the ventral surface domains, and of the dorsal and large peripheral vesicles to the dorsal 

surface domains. In oryzalin-treated sporangia that had undergone abnormal cleavage 

none of the three vesicle types were concentrated at any particular part of the aberrant 

planes. In CD-treated sporangia, however, although there was an equivalent disturbance 

of the cleavage process, each of the three vesicle types was restricted to a specific portion 

of the abnormal cleavage planes. The region occupied by each of the vesicle types was 

spatially oriented, with respect to the narrow nuclear pole, in a similar fashion to the 

ventral and dorsal surface domains occupied by the vesicles in normally cleaved 

sporangia. 

Given that microtubules appear to be necessary for the localization of the three 

vesicle types to their respective peripheral domains, there are various possibilities as to 

what roles they may be playing in this process. 

Firstly, if different membrane receptors are involved in binding each of the three 

vesicle types, as was proposed above, then microtubules may be involved in spatial 

restriction of the various receptors to either the ventral or dorsal surface domains. It is 

well known that membrane proteins of many different cell types can be restricted to 

localized domains within the plasma membrane, and cytoskeletal elements have often 

been proposed as effectors of such restrictions (Stya & Axelrod, 1983; McClosky & Poo, 

1984). 

In P. cinnamomi, the microtubule arrays of the cleaving sporangium are oriented 

in such a way that any contacts they might have with the developing dorsal and ventral 

surfaces will be of different sorts. Since the most radial portions of the arrays run 

parallel to the developing ventral surface (e.g. see Fig 5.22), the possibility arises of 

-
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many lateral contacts between microtubules and the plasma membrane in this region. 

Contacts of this type were seen in electron microscopic images (Fig 2.18). For the 

dorsal surface, however, there is only the possibility of much less frequent end-on type 

contacts with the distal ends of the microtubules. These differences may have some 

significance in any cytoskeletal mechanisms that establish the proposed restriction of 

membrane receptors to either the dorsal or ventral surface domains. 

The different orientations of the array microtubules towards the dorsal and ventral 

surfaces suggest an additional way in which sorting of the vesicles to the different 

surfaces might occur. For example, if the dorsal and large peripheral vesicles could be 

selectively transported along the array microtubules to their distal ends, then these 

vesicles would naturally end up near some part of the dorsal surface. Once near this 

surface their position could be stabilized by interactions with some membrane receptor 

or the transporting microtubules. 

6.4.4 Establishment of the polarized distribution of mitochondria 

The results indicate that mitochondrial localization during cleavage requires the 

presence of an intact microtubule cytoskeleton. In oryzalin-treated sporangia sampled 

at 60-65 min, mitochondria were randomly distributed, whereas in control and 

CD-treated sporangia from this time mitochondria were concentrated along the cleavage 

planes, except for those portions opposite the narrow nuclear poles. Heath et al.(1982) 

have also reported that mitochondrial movements, in hyphae, are inhibited by anti­

microtubule drugs but not by cytochalasin D. These findings suggest perhaps that the 

polarization of mitochondrial distribution during normal cleavage may involve transport 

along the microtubules, and/or microtubular stabilization of mitochondria in the zoospore 

cortex. While my electron microscopic studies have not indicated frequent contacts 

between mitochondria and microtubules, this could well be a consequence of poor 

microtubule preservation. In fungal hyphae microtubules have more associations with 

mitochondria than have any other organelles (Heath & Heath, 1978). The membrane 

---
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receptor model proposed above for peripheral vesicle polarization would not seem 

appropriate for mitochondria because profiles of these structures, as seen in electron 

micrographs, were rarely adjacent to the plasma membrane of developing zoospores 

(Chapter 2). Peripheral cisternae were usually interposed between the mitochondria and 

the plasma membrane. 

6.4.5 Effects of oryzalin and CD upon cleavage and nuclear positioning 

The effects of CD and oryzalin upon nuclear positioning and/or cleavage were 

generally similar to those that have previously been described in studies of Oomycete 

sporangia treated with cytochalasins and anti-microtubule drugs (Slifkin 1967; Schnepf 

et al. 1978; Olson et al. 1981; Heath et al. 1982; Olson & Lange, 1983; Oertel & Jelke, 

1986; Heath, 1991 ). The results demonstrate for the first time, however, that the effects 

of cytochalasins upon sporangial cleavage are independent of any effect upon the 

microtubular cytoskeleton. As yet there are no clues as to the role played by actin in 

sporangial cleavage. The findings of this study support the proposals made in Chapter 5 

regarding the roles of microtubules in cleavage and nuclear positioning in P. cinnamomi. 

The labelling, by mAb Cpw-1, of the abnormal cleavage planes in oryzalin-treated 

sporangia indicates that these abnormal planes still originate from the same source as 

normal cleavage membranes. 

The continued cleavage of sporangial contents after release, seen in the oryzalin­

treated material, has not been previously described. The mode of cleavage, involving a 

constriction process similar to that described for animal cells (Rappaport, 1986) was very 

different from that suggested by electron microscopy for regular sporangial cleavage, 

and warrants further investigation. 

Finally, the efficacy of oryzalin in causing total depolymerization of cytoplasmic 

and flagellar microtubules should draw the attention of other mycologists to the potential 

of this drug for experimental purposes. There has been considerable inconsistency in the 

efficacy of other antimicrotubule agents in bringing about total depolymerisation of 
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microtubules (Heath, 1978; McKerracher & Heath, 1978; Temperli et al. 1991). 

Oryzalin should now be tested upon other fungal organsims, this being the first report of 

its use in such systems. 

-



Figs 6.1-6.6 

Fig 6.1 

Fig 6.2 

Fig 6.3 

Fig 6.4-6.5 

Fig 6.6 

CHAPTER 6 FIGURE LEGENDS 

Aspects of normal and drug-perturbed cleavage in living sporangia 

of P. cinnamomi. All sporangia (in figures of this chapter) that 

are specified as CD-treated have been incubated in lOOrM CD 

and 0.25 % DMSO; all oryzalin-treated sporangia have been 

incubated in Ir M oryzalin and 1 % acetone. Differential 

interference contrast optics. 

Cleaved sporangium from control treatment (0.25% DMSO) for 

CD experiments. X390. 

Abnormally cleaved sporangium incubated in 100 µMCD. X550. 

Released contents of an abnormally cleaved sporangium incubated 

in 1 µM oryzalin. X420. 

Continued cleavage of released contents from a sporangium 

incubated in lµM oryzalin (arrowheads). The fragments 

indicated by arrowheads in Fig 6.4 have prominent water 

expulsion vacuoles. X620. 

Fusion of some of the fragments seen in Figs 6.4 and 6.5 , seen 

15 min after Fig 6.5 was photographed. X410. 





Figs 6.7-6.36 Patterns of fluorescence, either prior to the induction (Columns A-C) or 

at the completion (Cols D-F) of cleavage, in sporangia of P. cinnamomi 

that had been incubated either in 0.25% DMSO or 1 % acetone control 

treatments (Cols A,D), 1 µM oryzalin (Cols B, E) or 100 µM 

cytochalasin D (Cols C,F) and then cryosectioned and labelled with 

sheep antimouse-FITC, following incubations with mAbs anti-13-tubulin 

(Row i), Vsv-1 (Row iii), Cpa-2 (Row iv) or Lpv-1 (Row v). Row ii 

shows sporangial cryosections labelled with DAPI. In Cols A-C, 

arrowheads point to gaps in either mitochondrial (Row ii) or vesicle­

associated (Rows iii-v) fluorescence in the sporangial cortex. As shown 

in Figs 6. 8 and 6.9 (which are from one and the same section), the 

positions of gaps in vesicle-associated fluorescence regularly 

correspond to the positions of nuclei; but vesicle-free zones near the 

poles of nuclei also probably contribute in part to these gaps. In Cols 

D-F, arrowheads point to large gaps in cortical cleavage plane­

associated fluorescence of either mitochondria (Row ii) or peripheral 

vesicles (Rows iii-v). These gaps are regularly found opposite the 

narrow nuclear poles (e.g. Figs 6.23 and 6.33). Figs 6.33 and 6.34 show 

the relationship between Vsv-1 associated fluorescence and narrow 

nuclear poles in the same section. The arrow in Fig 6.33 indicates a 

region of the sporangium in which mitochondrial polarization is most 

evident. All images are derived from confocal microscopy except DAPI 

stained sections and Fig 6.9. Magnifications Fig 6.7, X570; Fig 6.8, 

X7 60; Fig 6.9, X7 60; Fig 6.10, X690; Fig 6.11, X960; Fig 6.12, X 1000; 

Fig 6.13, X960; Fig 6.14, X720; Fig 6.15, X550; Fig 6.16, X690; Fig 

6.17, X880; Fig 6.18, X800; Fig 6.19, X700; Fig 6.20, X760; Fig 6.21, 

X700; Fig 6.22, X940; Fig 6.23, X710; Fig 6.24, X870; Fig 6.25, X620; 

Fig 6.26, X720; Fig 6.27, X840; Fig 6.28, X640; Fig 6.29, X860; Fig 

6.30, X650; Fig 6.31, X860; Fig 6.32, X900; Fig 6.33, X630; Fig 6.34, 

X580; Fig 6.35, X880; Fig 6.36, X890. 
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Figs 6.22-6.36 For explanation, see previous legend. 
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Fig 6.37 Cryosection of released contents of a cleaved sporangium incubated in 

100 µM CD. DAPI staining shows peripheral polarization of 

mitochondria, and gaps in mitochondrial fluorescence near nuclear poles 

(arrowheads) X790. 

Figs 6.38-6.39 Cryosections of cleaved sporangia incubated in 1 % acetone (Fig 6.38) 

or 1 µM oryzalin (Fig 6. 39) and labelled with mA b Cpw-1. 

Fluorescence is mostly associated with the cleavage planes, and is also 

evident in association with an apical plug (arrowheads) Fig 6.38 X800; 

Fig 6.39 X670. 





Fig 6.40 The effects of oryzalin (ii) and cytochalasin D (iii) upon the normal (i) 

distributions of (a) microtubules; (b) nuclei; (c) mitochondria; (d) 

ventral vesicles; (e) dorsal vesicles and (f) large peripheral vesicles in 

cleaved sporangia of P. cinnamomi. These diagrams draw upon the 

results of this study the electron microscopic observations of vesicle and 

mitochondrial distributions in Chapters 2 and 3. In regions a,c,d-f the 

typical positions of nuclei are shown in light shading. 



Fig. 6.40 
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ZOOSPOROGENESIS IN PHYTOPHTHORA: A 

DISCUSSION OF ITS IMPLICATIONS FOR 

THE LOWER FUNGI 

7.1 INTRODUCTION 

The findings of this thesis have demonstrated the effectiveness of recent technical 

developments, such as immunofluorescence microscopy and freeze substitution, in 

shedding some light upon some of the unresolved issues of fungal zoosporogenesis. In 

Chapter 1 I outlined a number of these problem areas. One area of confusion was related 

to the multiplicity of structures that have been proposed as possible sources of the 

zoospore plasma membranes. In the present study the evidence strongly suggested that 

the dictyosomes are the sole source of these membranes. There was no evidence to 

suggest that the membranes of large central vacuoles play any role in cleavage, either by 

being directly incorporated or recycled, as suggested in previous studies of Phytophthora 

(Hohl & Hamamoto, 1967; Williams & Webster, 1970). These findings parallel, to a 

large extent, those of Sewall et al, (1986) who have questioned the previously proposed 
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role of non-dictyosomal structures as sources of additional membrane in Allomyces 

zoosporogenesis. It is likely that any further studies of fungal zoosporogenesis which 

use cleavage element markers and/or freeze substitution will also be able to identify the 

source of cleavage membranes in a more convincing manner. 

A second area of concern involved the variety of processes that have been 

suggested as being responsible for the formation of the partitioning membranes. It is all 

too evident that the results of the freeze substitution studies of this thesis must cast doubt 

over any description of sporangial cleavage that invokes either complete, or partial, 

alignment of "cleavage vesicles". I have already detailed the important implications of 

this finding for our understanding of cytokinesis in a wide variety of other eukaryotes 

(Chapter 3). 

Regarding the other two partitioning processes that were outlined in Chapter 1, 

namely furrowing and direct incorporation of existing membranes, the results argue 

against the occurrence of the latter mechanism in Phytophthora, in contrast to previous 

evidence (Hohl & Hamamoto, 1967). Thus, in all species of Phytophthora studied so far 

it appears that all the zoospore membranes are formed completely de novo. Considering 

how freeze substitution has clarified this matter in Phytophthora, further investigation of 

this issue in other zoosporic fungi is now called for, especially since direct incorporation 

of existing membrane surf aces has been described or implied in every other study of 

fungal zoosporogenesis. 

The research of this thesis has also broadened our understanding of several other 

aspects of zoosporogenesis and provided many results that confirmed the findings of 

previous studies. To conclude this thesis I would like to address these issues by trying to 

tie together the abundance of information that was revealed by the various experimental 

approaches. There is now, in the case of P. cinnamomi, arguably more information 

relating to the structural basis of zoosporogenesis than for any other zoosporic fungus. I 

believe it is worthwhile to now attempt to integrate this information, and try to evaluate 

its significance in understanding the process of fungal zoosporogenesis. 
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7.2 A NEW WAY OF LOOKING AT FUNGAL ZOOSPOROGENESIS 

In presenting this synthesis I will be proposing a new way of conceiving the 

"problem" of zoosporogenesis. Reviews of this topic (e.g. Heath, 1976; Olson et al, 

1981) have considered that the central issue of zoosporogenesis to be: "how does but one 

nucleus and the associated spore organelles come to be packaged together?" (Olson et al, 

1981 ). Inherent, it would seem, in this question is the assumption that, at some stage, 

the sporangium is a jumbled collection of nuclei and organelles whose reorganization 

during the process of zoosporogenesis must be coordinated with the development of the 

cleavage planes. If one begins with such an assumption then zoosporogenesis appears to 

be quite a remarkable process, requiring considerable adaptation on the part of the 

organism. The results of the present study, however, lead one to question this 

assumption. The sporangium of P. cinnamomi is highly organized even before the 

process of cleavage begins. The future zoospore domains are already demarcated and we 

can even predict the location of their future ventral and dorsal surfaces. Microtubular 

arrays with several basic features in common with those of the zoospore are already 

present. Some organelles, namely the basal bodies and dictyosomes, occupy a similar 

location within the domains to that which they will have in the zoospores. 

These organizational features of the uncleaved sporangium, and especially the 

existence of microtubule-defined uninucleate domains, could of course be considered as 

preparatory steps by which the sporangium is gearing up for cleavage. I believe, 

however, that a more accurate assessment of this organization is that it derives from an 

interaction between two "influences" unconnected with the requirements of orderly 

cleavage. These influences are first, the apparent requirement, in non-streaming 

coenocytic systems, for a constant volume of cytoplasm to be associated with each 

nucleus (see references and discussion in McNaughton & Goff, 1990); and second, the 
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likely evolution of many, if not all, lower fungi from a flagellate ancestor (Barr, 1983) 

and the continued utilization of a zoosporic life-cycle stage by these fungi . 

Regarding the constant volume relationship, this has shown to be maintained, in 

a wide variety of non-fungal systems, by radial arrays of microtubules that emanate, in a 

symmetrical manner, from around the nucleus (Menzel, 1986; Brown & Lemmon, 1988, 

1989; McNaughton & Goff, 1990). It is likely that these microtubules derive from the 

nuclear envelope (Bakhuisen et al, 1985). The volume of cytoplasm that appears to be 

defined by these arrays is in proportion to the DNA content of the nucleus (Goff, 1987; 

McNaughton & Goff, 1990) or even, in the case of abnormal mitosis, to the number of 

"lagging" chromosomes (Brown & Lemmon, 1989). Although there is no real 

understanding of why this phenomenon occurs it has been proposed that the nuclei of 

any given system interact effectively only with a certain volume of cytoplasm 

(Hartmann, 1928: cited in McNaughton & Goff, 1990). 

Irregardless of what causes their development, the prevalence of microtubule­

based, constant-volume nuclear domains in a wide variety of organisms would lead one 

to expect that they would also exist in a non-streaming coenocytic system such as a 

fungal sporangium. This has, of course, been borne out by the present study, and we can 

extrapolate, given the common reporting of nucleus-based arrays, that this phenomenon 

is widespread in the zoosporic fungi. 

The arrays seen in the lower fungi, however, differ in two respects from those 

seen in other non-fungal coenocytic systems. They are asymmetrically located with 

respect to the nucleus, and, rather than deriving from the nuclear envelope, they emanate 

from material associated with the nucleus-associated basal bodies or centrioles (Heath & 

Greenwood, 1971). These features are also almost universally present in the microtubule 

rootlet systems of lower fungal zoospores (Heath, 1976; Olson & Lange, 1983). Since 

the lower fungi are believed to have evolved from flagellate ancestors (Barr, 1983) it 

seems likely that the microtubular arrays seen in the sporangium are in fact probably 

adaptations of "zoosporic" arrays, and not the other way around. The main motive 
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influence for the adaptation is likely to be the constant volume requirement, and not the 

events of cleavage. The constant volume requirement is also probably responsible for 

the observations, in this study, of regularly spaced hyphal nuclei. This phenomenon also 

appeared to involve nucleus-based arrays of microtubules. 

The main influence of zoosporogenesis itself upon the organization of sporangial 

structures probably derives from the fact that it represents the persistence of the flagellate 

stage in the life cycle of the lower fungi. As such there is a pressure for the retention of 

the nucleus-associated centrioles, a constant feature of lower fungal hyphal nuclei 

(Heath, 197 6). In eukaryotic tissues which do not produce motile cells, centrioles are 

not present (Raven et al, 1981). 

From the above discussion it is evident that far from being a remarkable 

achievement, the production of equal-sized uninucleate flagellate zoospores is in fact 

almost inevitable. Indeed it would involve considerable effort on the part of the fungus 

to produce anything else. Of course, zoospores are much more than just flagellated, 

equal-sized, nucleated cells, and so the true problem of zoosporogenesis now emerges: 

given that zoospores are going to be formed by "cutting out" those portions of cytoplasm 

defined by the constant-volume microtubule arrays, how can these arrays be most 

efficiently utilized during zoosporogenesis? 

The present study indicates that considerable use is made of the microtubular 

arrays in the process of cleavage and organelle positioning. The most elegant feature of 

the cleavage process in Phytophthora is the degree of "co-operation" between sporangial 

arrays. Adjacent domains do not cleave independently but utilise a common furrow. As 

proposed in Chapter 5, this may involve a phragmoplast-like system in which Golgi­

derived membrane precursors are transported along the microtubules of opposing arrays. 

Alternatively, cleavage furrows might preferentially extend along the junctions of 

opposing arrays because microtubular density is lowest here. It is also possible that 

microtubules regulate a microfilament system which is itself the direct regulator of 

cleavage. Such a model is consistent with the observed effects upon cleavage of the 
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anti-microfilament drug, cytochalasin D (Chapter 6, and references therein). A 

particularly interesting aspect of cleavage was that any contacts between microtubules 

and the developing cleavage planes would be of two different types due the asymmetry 

of the microtubule arrays (Chapter 5). At the zoospore surface that develops opposite 

the focus of the array, any contacts would be lateral, whereas along the future dorsal 

surface only end-on interactions could occur. As discussed in Chapter 5, this may result 

in different mechanisms of cleavage regulation for these two surfaces. 

While the asymmetrical nature of the microtubule arrays is perhaps a 

complicating factor for the process of cleavage, it appears to have been used to 

advantage in the regulation of organelle positioning. Recent studies of the zoospores of 

Sapro/egnia and P. cinnamomi (Lehnen & Powell, 1989; Hardham & Gubler, 1990) 

have demonstrated that the polarized distribution of peripheral vesicles along either the 

ventral or dorsal surface of the zoospore has important consequences for the process of 

encystment. The present study indicates that sporangial microtubular arrays are involved 

in these polarizations. Moreover, both of the models proposed (Chapter 6) to effect 

these polarizations, namely localization of membrane receptors and directed transport, 

could take advantage of the different orientations or types of contact that the 

microtubules have with the ventral and dorsal surfaces. 

P. cinnamomi, and no doubt other zoosporic fungi, use nucleus-associated 

microtubular arrays for a variety of purposes. In the zoospore they have been proposed 

to anchor the flagella and to determine cell shape (Heath et al, 1982). In the coenocytic 

stages they not only space the nuclei apart but assist in many ways in the transition back 

to the flagellate phase. The specific shape of the array shows considerable flexibility in 

adapting to the form most suited to the life-cycle stage in which it is present. This 

adaptability and the multiplicility of uses made of this structure are remarkable examples 

of cellular economy. 

* * * 
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