Statistical Mechanics of Fluctuating Membranes

by
P. Pieruschka

MSc, University of Canterbury, New Zealand (1990)

A thesis submitted for the degree of Doctor of Philosophy of the

Australian National University

September 1994







Preface

This thesis is the result of research conducted at the Department of Applied Mathematics,
Research School of Physical Sciences and Engineering, Australian National University,
between January 1991 and September 1994. Two periods, June 1992 - December 1992 and
October 1993 - January 1994, were spent at the Department of Materials and Interfaces.

Weizmann Institute of Science (Rehovot, Israel).

The content of this thesis represents work done in individual collaboration with, and

under the supervision of, Stjepan Marcelja, Samuel Safran and Barry Ninham.

The work presented here is my own, unless explicitly stated to the contrary. None of the

work reported here has been submitted to any other institution of learning for any degree.

—_——

/" (B/ Pieruschka)




Refereed Publications

. PIBRUS .. MARCELJA S., J. Phys. France II 2 (1992) 235.
2. PIERUS .. SAFRAN S. A., Europhys. Lett. 22 (1993) 625.
3. PIERUS .. MARCELJA S., Langmuir 10 (1994) 345.

. PIERUS .. MARCELJA S., TEUBNER M., J. Phys. France 11 4 (1994)
763.

5. PIERUS .. SAFRAN S. A., J. Phys. Cond. Matter 6 (1994) A357.

Publications Submitted or in Preparation

l. PIERUSCHKA P., SAFRAN S. A., Random Interface Model of Sponge and

Vesicle Phases, submitted to Furophys. Lett.

2. MARCELJA S., PIERUSCHKA P., SAFRAN S. A., Comment on ‘Fluctuating

Interfaces in Microemulsions and Sponge Phases’, submitted to Phys. Rev. E.

3. PieruscHKA P., Sponge - Lamellar Instability in Amphiphilic Systems, in

preparation.




Acknowledgements

[ am indebted to my supervisor Stjepan Marcelja for generously sharing his innovative
ideas and physical insights which inspired much of the work presented in this thesis. My
thanks also to my co-supervisor Sam Safran whose enthusiasm and patience in introducing
me to the statistical mechanics of colloidal systems were very helpful. Thanks also for his
efforts in organizing my stays in Israel. I am also grateful to my advisor Barry Ninham

for scientific and administrative support.

[ also acknowledge all the researcher who shared their expertise with me: D. Andelman,
[. S. Barnes, M. Cates, P. Chandra, S. H. Chen, S. Edwards, D. Gazeau, W. Helfrich,
J. S. Huang, S. T. Hyde, E. Kaler, M. A. Knackstedt, R. Menes, P. Nelson, J. Per-
cus, P. Pincus, G. Porte, S. Ramaswamy, A. P. Roberts, D. Roux, M. Schick, R. Strey,
M. Teubner, T. Zemb. In particular, my thanks to M. Teubner for discussing [37],
M. Teubner and one of the referees for critical comments on item 4 on the previous
page, T. Zemb, R. Strey and G. Porte for providing experimental data and T. Zemb for

his hospitality in Paris.

Thanks also to my fellow students Aharon, Becky, Erica, Kathryn, Nily, Roy, and Tony

for putting up with me.

Finally, my deepest thanks to my parents and Ling-Li for supporting me throughout.




Abstract

Two of the most successful models of fluctuating amphiphilic systems are the effective
interface and the Ginzburg - Landau models. The former have a clear energetic basis (the
bending Hamiltonian), offer an elegant approach to the structural patterns of fluctuating
membranes and nearly effortlessly explain phenomena related to scale-invariance prop-
erties. However, because the partition function of the bending Hamiltonian is unknown
consistent thermodynamic treatment has so far been limited to smectic lamellar systems
in the low temperature limit. Ginzburg - Landau models on the other hand are purely
phenomenological but have revealed some fundamental mechanisms which can explain
the bulk and film structure factors of sponge phases.

We develop a coherent structural and thermodynamic description of fluctuating mem-
branes which combines patterns of field theory with the simplicity of the bending Hamil-
tonian. The model relies on the Feynman - Hellman variational theorem which is used to
determine an optimal Gaussian ensemble of random interfaces at given concentrations and
bending moduli. Thus the structure factors and the free energy density are consistently
determined in terms of observable parameters.

The approach is most easily applied to the well-known smectic lamellar systems studied
by Helfrich. We show that variational theory can with relative ease unify many known low
temperature results and is also able to deal rigorously with the full non-linear bending
Hamiltonian and relevant physical constraints beyond the low temperature limit. The
results show that considerable deviations from low temperature theory can be expected
in systems with low bending stiffness and concentration.

Full non-linear treatment of the bending Hamiltonian and physical constraints is even
more powerful in the most extreme example of fluctuating membranes, the sponge phase.
A variational random interface model yields a successful and unified approach to bulk and
film structure factors and thermodynamics of sponge phases. The steric repulsion force
in sponges is calculated, the symmetric - asymmetric transition is considered and the
microemulsion phase diagram is drawn. All results are given in terms of concentrations
and bending moduli with no adjustable parameters. The relationship to bulk Ginzburg -
Landau models is clarified by determining their phenomenological parameters.

In experiment, dilute lamellar phases are often found adjacent to the sponge phase. The
relative stability of these two phases has experienced hardly any attempts of consistent
theoretical treatment. Consistent extension of the random interface approach to nematic
lamellar phases results in the expected first order transition and allows us to estimate the
relative stability of these two phases with respect to amphiphile concentration, bending
and saddle-splay moduli.

Finally, we treat the ‘exact’ bending Hamiltonian problem by a k-space Monte Carlo sim-
ulation which allows us to study truly continuous, self-avoiding, curvature-elastic systems
on large scales. The method is used to assess the accuracy of the random interface model
of sponges and to support our analytical results for the sponge - lamellar instability. We
also use the simulation to gain insight into the effect of the saddle-splay modulus on
topological and structural properties in amphiphilic phases.
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Chapter 1

Introduction

Surfactants in solution consist of simple constituents, for example, water and soap (surfac-
tant) and yet bear extraordinarily complex phase diagrams, special interfacial behaviour
and exotic structural properties [1]. In recent years it has become clear that despite
the rich variety of experimental phenomena many features of amphiphilic systems have
universal character independent of the details of solute and solvent. This intriguing
connection of simplicity and complexity continues to pose a challenge to scientists and
engineers. Despite much theoretical effort over the past years a model which can reflect
the underlying simplicity and at the same time capture at least some of the richness of
structure and phase behaviour — in a way comparable to experimental results — remains

an extraordinarily difficult problem.

In the introductory section we will give a brief review of the experimental and theoretical
state of the art of surfactant science. The remaining sections in this chapter will provide
some preliminary studies and fundamental concepts which form the basis and motivate

the work presented in the remaining chapters.

1.1 Experimental Facts and Theoretical Concepts

Surfactants are substances which consist of linear, amphiphilic (ap¢t ¢ptAdw = loving
both) molecules characterized by two subunits, a polar head group and a hydrocarbon

tail. When dissolved the surfactant molecules tend to orient themselves so that the head
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group is in contact with a high dielectric medium (e.g. water) and the tail resides in a
low dielectric medium (e.g. oil). Typical examples of surfactants in solution are ternary
mixtures of water. oil and surfactant or binary systems which are composed of water or
oil and surfactant. In ternary systems the amphiphile adjusts to the surrounding medium
by self-assembling into monomolecular films (monolayers) which separate the oil from the
water parts so that the polar heads point in the direction of water and the tails towards
the oil. In binary systems the tails (heads) can only be shielded from unfavorable contact
with water (oil) by facing each other. This leads to the arrangement of the molecules as a
bilayer where the tails lie on the inside and the head groups on the outside or vice versa
depending on whether the surrounding medium is water or oil. The tendency to build up
spontaneously interfaces is dominant for a very large range of system parameters. Only
at very high temperature or surfactant dilution can the entropy of a molecular dispersion
supersede the energetic tendency of the surfactant to self-assemble and lead to phase

separation between water and oil, or formation of a dilute dispersion in binary systems.

Unique interfacial and structural properties are associated with the formation of interfa-
cial films!. Self-assembly at oil - water interfaces, for example, causes a strong reduction
in the interfacial tension making surfactants ideal for use as detergents or in oil recov-
ery. Similarly, unique microstructures can be exploited technologically e.g. droplet or
bicontinuous film geometries can serve as microscopic containers for drug delivery or as
microscopically fine sieves for ultra-filters, respectively [2]. The development of these ap-
plications would of course be helped, if we could provide a better understanding of the

physical mechanisms which drive amphiphilic systems [3].

Interfacial shapes depend on a large number of parameters such as temperature, salin-

ity, alcohol content, surfactant concentration ete. Yet, in experiment the occurrence of

certain structures is often strongly correlated to the surfactant concentration and typi-
cally develops from ordered phases at high surfactant concentration to isotropic phases
at high dilution. Typical representatives of ordered phase are cubic or hexagonal phases.
These structures show genuine long range order and are essentially insensitive to thermal
fluctuations. At lower surfactant concentration thermal fluctuations start to dominate
and destroy long range order. Typical phases in this regime are smectic and nematic
lamellar phases which consist of stacked sheets of undulating layers or a recently identi-

fied strongly hyperbolic sponge-like phase. We show in fig. (1-1) a representative phase

1 : . 3
cf. [1, 2] for a more complete collection of examples.




1.1. Experimental Facts and Theoretical Concepts

diagram of a ternary mixture of water, oil and surfactant which shows a lamellar phase

at high surfactant concentration and a sponge-like phase at low surfactant concentration

CioEs

90 %90

FE@me 9 n-octane

Figure 1-1: Gibbs triangle of the ternary system H;0 - n — octane - CyoEs. The
symbol 1 denotes the one-phase microemulsion. 2 and 3 symbolize multiphase regions
where the microemulsion coexists with oil or/and water rich phases. At higher surfactant
concentration the lamellar phase L. prevails (from [{]). (inset) Schematic image of a
sponge-like microemulsion phase, denoted 1 in the phase diagram (from [5]).

Fluctuating membranes pose a particular challenge to statistical mechanics as crossover
structures between entropically dominated fluids and energetically driven, ordered sys-
tems. Their structure can therefore in general neither be described the way done in simple
fluids, by means of a correlation length & only, nor by merely measuring the structural
length scale ko (Bragg peak) as in crystalline phases?. We expect therefore that both kg
and ¢ should form the necessary (but not sufficient) core of a structural description of
fluctuating amphiphilic systems. Similarly, any approach to the phase transitions which
occur in these systems must include both the energy and entropy of a complex ensemble

of fluctuating amphiphilic films.

The various theories which have attempted to overcome the formidable problem of describ-
ing structure and thermodynamics of fluctuating systems can be essentially distinguished

as traditional and modern statistical physics approaches. In a traditional approach one

2These phases are thus mesomorphic in the most literal sense.
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would try to include as many of the fine details and interactions which govern a particular
system as possible in order to achieve a maximum of realistic modelling. Modern statisti-
cal mechanics on the other hand tries to extract universal properties from a set of physical
systems which might not depend on all the microscopic details of the systems. It is a
minimal method in which the simplest possible description is sought based on the small-
est possible set of — usually — phenomenological parameters. In other words it speculates
on the existence of a common physical mechanism underlying a wide variety of different
systems. The theoretical basis for such an assumption is given by renormalization group
theory in the area of critical phenomena [6]. In amphiphilic systems Hamiltonians with
invariance properties and a small number of parameters can be identified which predict
common patterns in a wide variety of surfactant systems — as we will see — often in agree-
ment with experiments. Such experimental findings include unified structural patterns of
mono- and bilayers, scale invariance properties, ‘universal’ patterns of structure factors

and phase behaviour etc.

We will review, very briefly and with no pretension of completeness, some major ap-
proaches to the physics of fluctuating amphiphilic systems; emphasis will be laid on the

models which are to some extent connected to the concepts used in this thesis.

Microscopic Models can be of lattice or continuous type [7]. Lattice descriptions are
often based on Ising Hamiltonians of spin - ]5 or spin - 1 type with more or less complex
interaction terms [8, 7] (¢f. also introduction to Chapter 3). These models, however, do
not take the molecular geometry of the constituents into account and are therefore not
overly realistic. Improvements in this direction were made by Larson [9] who incorporated
details of the surfactant tail length into the lattice description and Smit et al. [3] whose
model is similar to Larson’s but defined in a continuum (based on molecular dynamics

simulations).

One merit of this class of models is that they can describe surfactants which are appre-
ciably soluble (short chain surfactants) in the bulk so that properties of simple solutions
can be important. They can also address a number of fundamental issues, such as the
process of self-assembly and the dependence of phase behaviour on details of the molecu-
lar structure. Moreover, phase diagrams comparable to experiment are readily obtained,

and interfacial tensions can be calculated.

['he major disadvantage of microscopic models is that they cannot take long range inter-
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actions into account which are implied by the occurrence of self-assembled films which
can extend over many hundreds or thousands of Angstroms, e.g. [10]. Such ‘good’ com-
plex fluids, however, show (in contrast to simple fluids) just the special physical patterns
which we find most interesting. Moreover, the interaction terms in microscopic models
are inevitably very simplified and can hardly be related to experiment. This might be the
reason, why phase diagrams — if comparable to measured ones — usually resemble realistic

phase diagrams only quite roughly [1].

Ginzburg - Landau (GL) Theories go a step further towards examining universal
physical features by dropping the microscopic lattice and the clear-cut spin interactions in
favor of a continuous order parameter field which is defined on a semi-macroscopic scale.
Interaction terms are usually deduced from symmetry considerations. GL free energy thus
has no particular energetic reference. The advantage of the approach is its simplicity and
a readily available body of solution techniques. Among its most striking achievements
in the field of fluctuating amphiphilic systems are the contribution of Teubner & Strey
on the bulk structure of microemulsions [11], and the results of Roux et al. on the film
structure factor and the symmetric / asymmetric (S/A) transition in L3 sponge phases
[12]. The main shortcoming of GL theories is their lack of underlying energetics so that,
for example, interface properties (¢f. Membrane Models) are not taken into account. This
also leads to a tendency to employ a number of phenomenological parameters which
exceeds the number naturally expected in certain problems [13]. Phase diagrams as
functions of these parameters can usually not be compared to experimental data, and
structure factors are due to the semi-macroscopic nature of the field only defined at
long wave lengths. Nevertheless, GL theories can give useful information about general
tendencies in amphiphilic systems and their role in the understanding of fundamental
structural patterns in microemulsion and L3 sponge phases and the S/A transition has

been pioneering [11, 12].

Membrane Models should apply in the idealized case when the tendency to sponta-

neous self-assembly is so strong that nearly all the surfactant molecules form interfaces and

only little surfactant remains dissolved in the bulk. The interfacial free energy achieves a

minimum when the interface is saturated [14, 15]

_9f
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i.e. a surfactant concentration has been reached where the area per surfactant molecule,
Y, does not change any longer but remains at the optimum value 3. Upon further
addition of surfactant more interface is built up and the area per surfactant molecule

stays unchanged.

If we accept this premise the process of self-assembly is taken as a starting point, and all
physical phenomena should be derived from the statistical mechanics of the surfactant
film. Description of small-scale micellar solutions is then by definition beyond the scope
of these models® while large-scale interfacial structures should be well described. The
interfacial film can be mathematically modelled by a fictitious, two dimensional effective
interface embedded in three dimensional space. The position of the interface is usually
defined at the centre of the bilayers or at the surfactant head positions of monolayers.
All details of the local interactions between surfactant molecules — such as chain - chain
and headgroup interactions, bulk - chain interactions and head - tail couplings — have
been dropped by postulating an effective interface. They should re-appear in form of
phenomenological parameters which couple to the deformation modes of the interface.
Physically relevant modes can be represented by operators invariant under coordinate
transformations. They can be written as a series, where the first, simplest term is a
surface tension term o, followed by the lowest order invariants of the curvature tensor? of
the interface. These invariants are just the mean curvature H = 1/2(¢1+¢2) and Gaussian
curvature K = ¢ ¢, of the interface where ¢, ¢y are the local principal curvatures. Since
our discussion is based on the assumption of negligible interfacial tension, ¢ =~ 0, the

lowest order Hamiltonian which was first given by Canham and Helfrich [16] reads

H = / [25(1—1 —Ho) FEK| dS (1.2)
S

where S denotes the total interfacial area of the system and &, & (in units of kg7') couple
the mean and Gaussian curvature terms to the energy. Hy is the spontaneous curvature
of the interface which quantifies the tendency of the film to bend towards the water or
oil part of the bulk fluid. It is only important in ternary systems. Even in these systems
careful adjustment of the temperature or salinity can usually eliminate the spontaneous
curvature term. Throughout most of the thesis we will therefore operate with Hy = 0.
Although the interfacial term can be omitted from the Hamiltonian we have to make sure

that only surface configurations with constant head group area per surfactant molecule

We will encounter this basic weakness again later in the thesis.

"For a concise introduction cf. [2].
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Yo are allowed. Hence we have to impose a constraint on the interfacial area per molecule

or

‘— = const (18

where S is the total surface area of the interface and V is the sample volume. We can also
take excluded volume effects implicitly into account — which, as we will soon see, appear
to play an important role in fluctuating membrane systems — by further restricting the
ensemble to configurations which are self-avoiding®. The bending Hamiltonian together
with the constraints on surface area and self-avoidance will play a central role in our

discussion of fluctuating amphiphilic phases.

Of course, the above formulation neglects direct interactions such as electrostatic and
van der Waals which might well play an important role for the detailed behaviour of
amphiphilic phases. Inclusion of these interactions, however, leaves our basic objective
of creating a simple theory which can account for a rich variety of phenomena related
to self-assembled amphiphilic systems. We therefore prefer to refrain in the context of
this thesis from discussing direct interactions. This minimalistic approach finds indeed
also overwhelming experimental motivation. The above-mentioned ‘universal’ patterns of
surfactant behaviour indicate that many microscopic details can be lumped together into

a few effective parameters which govern the system:

Firstly, we note that the Helfrich Hamiltonian is less phenomenological than it might
appear. Surfactant concentration is a well defined experimental quantity and numerous
techniques have been devised to measure the bending constant s [18] or derive it from
microscopic models [19]. Even the demanding task of measuring the saddle-splay modulus
% has been tackled with some success [20]. Thus, the parameters which characterize the
Hamiltonian can be closely related to experiment so that the results of a theory based on
eqns. (1.2,1.3) stand a good chance to be comparable to experiment. Accordingly, some
of the most striking successes in explaining fluctuating amphiphilic structures are based

on effective interface theory.

A straightforward yet non-trivial consequence of the formulation eqns. (1.2,1.3) is that
the effective interface formalism does not distinguish between mono- and bilayers (this
distinction is a problem in microscopic or GL models). Hence we expect that the struc-

tural properties of ternary and binary amphiphilic systems should at suitable surfactant

°It is interesting that systems of self-avoiding random surfaces are also of concern for the random

surface formulation of gauge theory [17].
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concentrations be identical. This has been confirmed experimentally [21]. Membrane

theory thus represents a unified theory of both mono- and bilayer systems.

Another simple and at the same time very elegant consequence of the form of the Hamil-
tonian eqn. (1.2) is the notion of scaling in amphiphilic systems which was established by
Porte in 1989 [22]. Scaling is in general a functional relationship of the form of a power
law, 2 = y”. In thermodynamics the most important example of scaling relationships
are the power law divergences of many physical quantities around the critical point. In
amphiphilic systems scaling is a consequence of the invariance of the Hamiltonian under
dilation transformations [22]. This can be easily cast into the language of well-known
transformation theory [22]: The scale factor of the transformation is given by the dilation
factor A. When the transformation is applied to the Hamiltonian eqn. (1.2) we see that

(ch,ch) = A Y(eq,e2) and dS’ = A2dS and therefore

i

Hence the partition functions, Z'(H') = Z(H), and the total free energies, F'(H') =
F(H), are unchanged. However, the free energy density i.e. the free energy per volume,
the inverse structural length scale ko and the correlation length £ (which were introduced
above) have to obey f' = A73f, ki = A "Yko, & = A¢, respectively [23]. In experiment,
dilation is approximately the same as dilution i.e. changes in the surfactant concentration
A = ¢ /¢, so that — if we introduce a reference state — the free energy density is expected
to scale like

f~é

while the inverse structural and correlation lengths scale like

ko ~ ¢s, £~ ¢! (1.4)

Indeed many experiments on lamellar and sponge-like phases, e.g. [5, 24], indicate that
the peak and width of the scattering structure factor (which correspond just to the above
mentioned inverse structural length and inverse correlation length) obey eqn. (1.4). This
holds for smectic lamellar phases where the peak position is often clearly visible as a
sharp quasi-Bragg peak at kg which is observed to scale as we expect, kg ~ ¢,. Scattering
measurements also clearly confirm the conjecture eqn. (1.4) e.g. for semi-rigid AOT sponge
phases as shown in fig. (1-2). The free energy is not directly measurable, but there is

indirect indication that the scaling f ~ ¢2 holds. Considering the parameters in the
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Hamiltonian, eqn. (1.2), we can further specify [25]
f =00~ ", 0) (): (1.5)

where ¢ is the volume fraction of, say, water in ternary systems, or the amount of bulk
fluid on the, say, ‘inside’ the bilayer in binary systems. The free energy scaling — although
not identified as such at the time of its discovery — has in fact been established under the

notion of the Helfrich’s steric repulsion force in multilamellar systems long ago [26]
fiesis dve (1.6)

and belongs to one of the milestones in the study of complex fluids. It is a low temper-
ature result (x~! — 0) in which the layer spacing d~! is proportional to the surfactant

concentration (cf. Chapter 2).

log(k/9.)

Figure 1-2: Scaling in amphiphilic sponge phases: scattering structure factors of
AOT/brine Ly sponge phases at three different dilutions ¢ = 0.0432, 0.0653, 0.0869
symbolized by ©, A and O, respectively. All curves approvimately collapse when plotted

in reduced units I¢s over k/¢s (data courtesy of G. Porte).

Despite the elegant and concise formulation of the flexible interface model and although
it can reproduce nearly effortlessly some of the universal features of amphiphilic systems,

its main shortcoming is that — unlike microscopic or GL models — there is not even an ap-

proximate theory available to solve the partition function or to estimate the free energy.

[t comes as no surprise that eqn. (1.6) — a low temperature approximation neglecting

topological effects (£ = 0) — stands since 1978 without any major improvements and

with no comparable successes for other surfactant phases. Furthermore, it is obvious that

scaling relationships of the type discussed above cannot be the whole truth. Eqn. (1.5) is
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strictly monotonic, so that once x, & and ¢ are determined the macroscopic phase with
the smallest coefficient b(k, %, @) is predicted to be stable at all surfactant concentrations
[22, 25, 27] in contrast to experiment. Thus, although scaling considerations are of fun-
damental interest, they are insufficient to discuss phase transition induced by changes in

surfactant concentration. Corrections to scaling are needed.

Scaling (and the departure from it) in amphiphilic systems beyond Helfrich’s low temper-
ature discussion of smectic lamellar systems, its detailed structural and thermodynamic
implications in the framework of a unified, consistent theory roughly describe the chal-
lenge in the membrane description of surfactant solutions. This thesis will provide both
approximate analytic and numerical methods mainly for nematic, smectic, sponge and di-
lute vesicle phases. We will start our discussion by reviewing briefly previous theoretical

efforts.

1.2 Models of Fluctuating Interfaces

Having firmly established that the bending Hamiltonian approach is sensible and promis-
ing we had to concede that exact solutions of the model are out of reach, and that even

approximate solutions are unknown for most phases. The problem has two major roots

(a) it is not obvious how to represent fluctuating surfaces especially if they are of

very complex topology as the ones schematically drawn in fig. (1-1).

(b) even if one succeeds in finding a mathematical formulation of these interfaces
there is yet no way of calculating their free energy. In particular, calculation

of the entropy of random surfaces is a problem not yet surpassed.

Strategies to overcome these problems have been devised by several authors.

Coarse Grained Models One major attempt has been based on the spatial discretiza-
tion of random surfaces [28, 29, 30]. Best results were achieved by a coarse grained lattice
approach due to Andelman, Cates, Roux and Safran (henceforth called ACRS model)
[31], where real space is subdivided into cubes with lattice constant d = (5(1,(/>;1(b( 1—¢) (a
is the film thickness). Different film configurations could then be achieved by randomly

assigning water or oil occupation to the cubes and defining interfaces at the plaquettes
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(with rounded corners) which delineate water and oil domains. The bending energy could
be evaluated using the well-known curvature of spherical objects. The entropy was taken
as the random mixing entropy of the bulk domains. Another crucial ingredient was the
thermal softening of the bending constant s of a continuous flat interface due to undu-
lations around its average position (in detail discussed in Chapter 2). The main virtue
of this model was that it could present phase diagrams (including sponge and lamellar
phases) which could be compared to experimental phase diagrams. Golubovi¢ & Luben-
sky later refined this approach (adding Helfrich interaction and discussing the various

phases more consistently) without changing the lattice structure [32].

Perhaps the most important results of this work were the prediction of a symmetric -
asymmetric transition and the calculation of L3 sponge phase and microemulsion phase

diagrams [31, 32].

Huse & Leibler Model A model which does not refer to discretization but argues semi-

quantitatively on grounds of the renormalization of the bending constant and other well-
known arguments mostly taken from harmonic continuum elasticity of flat and spherical
membranes suggested a number of phases but no phase diagram which could be related
to experiment [33]. It is nevertheless interesting that most of the postulated phases were
later indeed identified in experiment. The suggested phase sequence for ascending values
of the interfacial tension o (note that this theory is grandcanonical in contrast to the
canonical formulation eqns. (1.2,1.3) and thus in principle not a solution to the problem

we are discussing) is
smectic lamellar - nematic lamellar - random isotropic - tense bicontinuous - dilute droplets

Most of these names are self-explaining, except possibly ‘random isotropic’ and ‘tense
bicontinuous’ which are now better known under the names ‘symmetric’ and ‘asymmetric
sponge’. While this work initiated fruitful new developments related to the postulation
of new phases, its formal basis was still far away from a quantitative continuum model of

topologically complex, fluctuating interfaces.

Cahn & Berk Model An important step towards a genuine continuum theory of
interfaces was done by Berk in 1986 [34] (based on work by Cahn [35]) who was the first

to realize that the morphology of excursion sets of random fields [36] resembles freeze-
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fracture microscopic images of microemulsion sponge phases and that these level sets
could give a consistent description of both film and bulk scattering structure factors. If
s(7) denotes a scalar random field in three dimensions with —oo < s(7) < oo one can

consistently identify both bulk partitions and interfaces by the prescription

>« water
()4 = a interface

<a oil

drawn schematically in fig. (1-3).

s>0

s<(

o

Figure 1-3: Sketch depicting the zero level cut (o = 0) delineating areas of the random
field which are smaller or greater than zero which are assigned to e.qg. water (w) and oil

(0).

The original representation of the random field used by Berk is

(1.8)

where the ¢ are uniformly distributed and the k; have a spectral distribution 1/(/?'). This
representation disguises the fact that eqn. (1.8) constitutes a random field of Gaussian
type. It was Teubner [37] who realized this by calculating moments of eqn. (1.8). In-
stead of working with the more common definition where the amplitudes have Gaussian
distribution (¢f. next subsection) eqn. (1.8) fixes the amplitudes and uses a non-Gaussian
distribution of the wave vectors, v(k). While this is very convenient for fitting algorithms
and numerical simulations (Chapter 5), it is not convenient for analytical purposes. Ini-
tial work on these structures concentrated therefore on finding a distribution of & which
appeared best for purposes of fitting scattering data. Various distributions were used
by Teubner (sixth order inverse polynomial, [37]) and Chen et al. (Schultz distribution,

e.g. [24]) which fitted bulk spectra very well.

While the Cahn - Berk model is useful for data fitting it somewhat lacks a physical basis.
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[t would be interesting to see whether one can (a) relate the spectral distribution to
physical parameters and thus go beyond its use as an adjustable fit parameter and (b)
perform consistent fits to both film and bulk structure factors as a more stringent test of

the structural properties of the model.

In accordance with our basic considerations one can try to base the model on the two

length scales dn = 27k=! and € which de > the averag SRR : .~

ength scales dy = 27 and £ which denote the average domain size of the microemulsion
0 S

and the correlation length quantifying the short range order present in microemulsions,

respectively. A natural representation of a Gaussian process is then given by superposing

localized wave packets [38] each characterized by ko and &

N
s(7 €, ko) ~ > u(|F - T, G (F—7)|,  with k; = ko - € (1.9)

i=1
where u(r) is an envelope function with characteristic decay length £. The directions of /?,
and the positions 7; of the local wave packets are uniformly distributed. For an envelope
e.g. of Yukawa type |
w(F) = r~ ! e /€ — /™| cos koF (1.10)
where 7, is a molecular cut-off (layer thickness) necessary to avoid the singularity the
two-point correlation function is then

9(r) = (s(0) s(r))o =~ [/ + O(a™) %

with a = £/7,, > 1 so that after isotropic Fourier transform we find

1
+ O0(a™1)

v(k) ~ [672 4 (k= ko] [€72 + (k + ko]

Note that in leading order v(k) ~ [/\'" —thk* 1 (']_1 which is well-known from a purely
phenomenological GL theory due to Teubner & Strey [11] and which was successfully ap-
plied to fit bulk scattering from microemulsions (but not film scattering which cannot be
described in a unified way in GL theories, [11]). Having deduced (not a priori fixed) v(k)
from the natural representation eqn. (1.9) of random interfaces we can proceed now in
predicting the film and bulk scattering. A quick way of doing this is by straightforwardly
modelling the contrasted experimental scattering samples. In film samples the scattering
length density of the surfactant film is contrasted against a background of solvent by
deuteration. Bulk samples are prepared by contrasting the oil and water parts. Contrast-
ing creates to a good approximation regions of homogeneous scattering length densities

which are mathematically well described as Heaviside step functions. The contrast profile
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when going from the water side via the interface to the oil side — is then described
by a succession of steps [39]. If (i, f,, ... denote the level sets around the interface
at which discontinuous, stepwise changes in the scattering length density occur the ac-
cording correlation function I'?#2-(7) can be described by a bivariate Gaussian integral
over a product of linear combinations of the appropriate Heaviside step functions. For
the case of two phase contrasts the step function @p, 3, is sufficient, where @3 ,3, = 1 for
3y < x < 35 and zero otherwise so that

2

7 +u')—2:!(rjx:{
20-¢%(") O, 8,(z) Op,3,(y) dr dy

D452 () /'“‘ /'er 1 =
2 (i) e
J—o J-—co 2m+\/1 — g?(r)

After normalization, essentially v7172(r) ~ I'P172(7) — ¢2, and the usual Fourier transform

[40]

I(/\‘):~1’/T<I/Z>/ v(r) r? jo(kr) dr (QL1810)
Jo
where v(7) = v%(r) (i.e. f1 — a, B3 — o) for bulk scattering and v(r) = y*~9%*¢(r) for

film scattering (where € corresponds to twice the film thickness) a consistent description

of both film and bulk scattering from symmetric random bicontinuous phases is achieved.
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Figure 1-4: (left) SANS bulk intensity for a 7 () and a 10 (O) weight% SDS mi-
croemulsion systems. The experimental data are taken from [39]. Lines are fits to the
data. Fit parameters: for 7% SDS: € = 133 A, ko = 1.87 - 10724-'. for 10% SDS:
£ =87 A, ko = 2.822-10"2A1. For both systems the cut-off values were r,, = 10 A
and r. = 55 A (cf. Chapter 3 for the definition of r.) while (n*) had the experimental
value of 3.32-10*' em™*. The surfactant volume fractions were ¢ (7% SDS)= 5.5% and
Gs(10% SDS)=T7.5%. (right) SANS film intensity for the same systems with the same fit
parameters (with the exception of (n?) = 2.79- 102! em™1).

Auvray et al. have published suitable pairs of bulk and film scattering data [39], fig. (1-
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4). Values for (n*) (essentially the scattering length densities) and other experimental
parameters needed for fitting were taken from [39]. The volume fraction of the surfactant
was estimated by the weight densities and molecular weights for SDS heads and tails
[39]°. Fig. (1-4) gives the results and fit parameters for the cases of SDS weight fractions
of 7% and 10% respectively (the relative experimental error for weight fractions is about
5% [39]). Taking into account that the model is only varying the two natural scales £ and
ko, and that no adjustment of € and ko was performed when fitting the film scattering, the
agreement with the experimental data is very good (in the case of 10% SDS film scattering
the hump pattern of the scattering curve is not reproduced; however, this hump is most

likely an artefact due to a slight contrast mismatch of the bulk partitions [39]).

We can conclude this section by noting that a consistent structural description of film and
bulk in sponge-like microemulsions based on Gaussian random interfaces characterized by
two natural parameters kg and & has been tested and compares well with experimental
data. This encourages a more rigorous treatment of the random interface approach.
In particular, although our treatment is more fundamental than previously used fitting
procedures, the theory is still only a geometric one without reference to thermodynamics.
In the next section we will therefore bridge the gap between structure and thermodynamics

by means of a variational approximation.

1.3 Free Energy of Gaussian Random Interfaces

A consistent discussion of the structure and thermodynamics of Gaussian random inter-
faces has to go beyond the mere use of Gaussian interfaces for structural modelling and
scattering data fitting. The free energy density of an ensemble of fluctuating, random
Gaussian interfaces has to be calculated so that not only thermodynamic phenomena
(e.g. phase transitions) can be studied but also consistent determination of the interfacial
structure becomes possible by minimization of the free energy density and not by fits to

scattering data.

We start with a representation of Gaussian random fields as an expansion in a function

SRefer for details about the fitting procedure to [42]. For the development of our model ideas these

details are not relevant.
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space

'S(f')zznmd)m(f") (1.12)

m
with 1, = [[ 5 (P)s(P)] [ % (7)dm (7). Here we will mostly use standard Fourier
representation [41]

s(r) = )_ s(k) e*" (1.13)
k
where the amplitudes s(k) are assumed uncorrelated and distributed according to a Gaus-

sian distribution [41]

3 )P
p[s(k)] = ;ﬁoxp [—l ( ll } (1.14)
27v(k) 2v(k)

—

with zero mean and fluctuation v(k) ~ <| u( /\')|2> where the subscript o denotes henceforth
0
a Gaussian ensemble average. The amplitudes obey the usual symmetry relations [6]

R[s(k)] = R[s(—k)] and S[s(F)] = —3[s(—k)] which make sure that s() is real.

Assume now that there is a well-defined prescription for defining an interface by means
of the Gaussian field. This can, for example, be two dimensional Monge gauge (Chapter
2) or a three dimensional implicit representation (Section 1.2, Chapters 3 and 4). In any
way, by defining an interface ensemble the Hamiltonian eqn. (1.2) is well-defined. Then
we can apply the Feynman - Hellman theorem [43] to establish an upper bound F to the
free energy F of the bending Hamiltonian H by using a model ensemble characterized by

a model Hamiltonian Hy. This can be derived from

Z

/Ps e M n /D.s e Mo (1 = (H —Ho)]

Il

a—/”“”WH—mn:%u—m—HmJ

where we have in the last step absorbed the normalization factor ZU_I into the definition

of the average. Now,
F=-logZ = -—logZy—log[l —(H - Ho),]

Fo+ (H — Ho)y

R

which is just the Feynman - Hellman theorem. A more detailed derivation including
higher order terms can be found e.g. in [43, 2]. In our discussion the model Hamiltonian

is always Gaussian, eqn. (1.14), so that

1 = s =
Ho = 5 Zu(k)—l s(k)s(—k)
E
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q s(k
IT= | ds(k)expl|———=—

and (Ho), is a constant [2] which will not be further considered. Now remembering that
real and imaginary parts of s(k) are independent degrees of freedom so that [s(k)[* =

"h‘[s(/?)] Ss (/?)] the Gaussian double integral can be performed and

1 4y
Fo= —log 2y = s Zlogv(k)
k

so that finally (in units of kgT')

F = —%Zl()gv(/:)‘—{— (H)o (1.:15)

which is valid in both two and three dimensions. We have also derived eqn. (1.15) in-
dependently (apart from an irrelevant additive constant) in a purely information theo-
retical context in [42] without reference to thermodynamics (details of the derivation are
in [42, 44]). There we found that the Gaussian term is of entropic origin and we will

therefore sometimes refer to this term as an entropy term.
Evaluation of the remaining term (H), is less simple. It is carried out for the twodi-
mensional case in Chapter 2 and is given in three dimensions by (for the case of bulk

symmetry)

(H)o = <./S’/5[ sl — H()) +h1\]>u
SO TG i
./‘,(n [z,.< i > +h<a( S 1\>]

2V 1511> '1'<b( i > (1.16)
: <”W S RN 52

where we chose Hy = 0 because interfaces described by s(7) = 0 have (cf. following Chap-
ters) zero curvature. We have also used the fact that s(7) is translationally invariant and
the Dirac delta function makes sure that evaluation of the curvature energy is restricted
to the interface. The ensemble averages < (s )(’{{;' 1]>) and <b(.¢)(‘;—"’:1\'>0 contain in general

zeroth. first and second derivatives — associated with the curvatures H and K — of the
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random variable (7). The ensemble average (H), was first calculated in the seminal pa-
per [37] by Teubner who used the fact that the joint distribution of the Gaussian random
process s(7) and its derivatives is a multivariate Gaussian distribution [37, 41, 45]

p= M S exp [—l.r,r‘.ﬂ] (1.17)

(2m)"| A| 2

where 7 contains the whole set of n random variables comprising s and its first and second
derivatives. and where the matrix elements of the correlation matrix A contain all possible
auto- and cross correlations between the random variables. Although practical evaluation
of eqn. (1.17) and (H), can be quite complicated (Chapters 2 - 4) it is also clear that
because our calculation is Gaussian and only depends on v(k) the final result for (H), can

again only be a function of v(k). Similarly, the constraint eqn. (1.3) (in three dimensions)

S NCA) a
<T>U = <(s(.g)W>0 (1.18)

which usually only involves a reduced correlation matrix containing elements up to the first

can be calculated as

derivatives. The last constraint which has to be implemented to complete the theoretical
formulation is self-avoidance. This will be discussed more appropriately in the respective
Chapters. Eqns. (1.16,1.18) thus establish the basis for a systematic approximation to

the thermodynamics of eqns. (1.2,1.3).

The next step is to find the best possible approximation within this scheme. We have
pointed out that all constituents of eqn. (1.15) only depend on v(k). Hence finding the
optimal solution can be done by functionally minimizing the free energy density f = F/V

—

with respect to the only available parameter, the structure factor v(k)

—— =10 (1.19)
By functionally minimizing with respect to v(k) we pick the best possible Gaussian theory
whose free energy density flv(k)] comes closest to the free energy density F |V of the
real ensemble of fluctuating interfaces. At the same time, by determining variationally
v(k) we have also consistently determined the structure of the interface ensemble. lf(E)

determines the film and/or bulk structure factor depending on the detailed formulation

of the theory.




Chapter 2

Variational Theory of Smectic

Lamellar Phases

In the preceding chapter we established a variational method which will allow us to for-
mulate approximate solutions to the structure and thermodynamics of systems governed
by the bending Hamiltonian. Smectic lamellar phases are probably the most studied
among fluctuating amphiphilic phases and are therefore an ideal starting point of our

investigation before proceeding to more complex systems.

2.1 Introduction

Lamellar film geometries are commonly observed in both binary and ternary amphiphilic
systems, where the bulk material is separated by regularly stacked sheets of surfactant
film with a characteristic average layer spacing d. The inverse spacing kg = 27 /d can often
be measured in scattering experiments by the position of a quasi-Bragg peak [46, 47]. A
peak of this type indicates systems with long range order in the orientation of the films

i.e. all the films are essentially parallel — but only quasi long range positional order
[46]. Strict long range positional order is destroyed by the thermal fluctuations of the
surfactant films around their average layer positions [48] so that quasi-Bragg singularities
take the place of genuine Bragg peaks [47, 48, 49]. This behaviour is experimentally
well established in lamellar phases which are not too dilute [50]. For these systems it is

assumed that the topology of the multilamellar system is simple, with a negligible number

19
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of saddle-like defects connecting adjacent layers. Then the Hamiltonian simplifies to
H = 2~/ dS H? (2.1)
S

so that the physical parameters which specify the equilibrium state of a (symmetric) lamel-
lar system are essentially reduced to the amphiphile concentration ¢s and the bending

stiffness x of the elastic surfactant film.

Models of smectic lamellar phases have so far been treated in harmonic approximation
of the bending Hamiltonian! which allows for application of the equipartition theorem to
determine the mode distributions of thermally undulating layers. Helfrich suggested two

techniques in his original work [26]:

(a) The Landau - Peierls - de Gennes form of the bending energy associated with small
local displacements u(7) = u(z,y, z) from perfectly equidistant lamellae reads [26]
leant ol
g~ 3B + ok 5 [u2, +u2,) (2.2)
where B denotes the smectic elasticity modulus and « is the bending constant as intro-
duced in eqn. (2.1) (note that eqn. (2.2) is not scale-invariant). After Fourier expansion
one can apply the equipartition theorem for quadratic forms so that the structure factor,

v(k) = V-1 <|11(E)|2>(). reads [26)]
v(k) = [m;j 2 HA{;‘]_] (2.3)

From standard Gaussian theory (¢f. Chapter 1) we know that the free energy density

difference between confined (B # 0) and unconfined (B = 0) systems reads

/(B =0, k; k)
Ni= lng (2.4)
Z v(B,K; L)
So far neither the interlayer spacing nor the steric hindrance from neighboring layers have
entered. Helfrich choses to introduce the spacing by imposing a cut-off kg in z - direction
4

~/\', l\‘() l‘ K
Af(B,k,d) ~ Ikrdkaloo——-— = N == 2.5
FBysd)~ [ [ dkydh % e/ N2+ kY B (2:5)

and mimics the steric hindrance by adjusting self-consistently the smectic elasticity B,
Bi— (l‘—fé. The result for the free energy per area is well-known [26]
2

3
Af(k,d) = %h—ld* (2.6)

"The only exception known to us is the work by Golubovié & Lubensky [51] which gives the first order

correction to harmonic solutions.
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(b) As the statistics of all layers is identical one can approximately consider a single
membrane (or unit cell) between hard walls where the undulations are now expressed in

Monge gauge u(7) = u(z,y), so that
] : .
gnighg+u@] (2.7)

[t is usually argued that steric hindrance should be implemented by confining the mem-
brane between hard walls. In reality, it seems more likely that two neighboring layers can
indeed fuse at a high but not infinite energy cost. In any way, it has been so far impossible
to surmount the mathematical difficulty of representing either saddle-like perforations or

hard walls. In practice, one uses instead the harmonic potential
<112(f')> = pd? (2.8)
0

where p is a constant of order unity. The equipartition theorem has to be applied to the
energy modified by the hard wall constraint. Helh](h uses a phenomenological argument?

to show that the ratio of free to constrained structure factors should be

I A4
1/.f""(/‘) L. k X (2())

I 4 4
V“unslwurzrr/(/‘) K i3 k

where v(k) = A~1 <|u(/\')|2> . Gaussian theory yields for the difference in free energy per
0

area between free and confined membrane, cf. eqn. (2.4)

se(E
Af_Z]% et el )y

Veonstrainec [(1‘ )

Both methods (a) and (b) lead after evaluation of the integrals eqns. (2.5,2.10) eventually
to the approximate repulsive entropic force (per volume) due to volume occupied by
neighboring layers [26]

Afirid> (2.11)

Helfrich’s seminal theory has experienced some discussion and a number of attempts for
improvement. On the purely formal side neither the introduction of the cut-off at kg

nor of the evaluation of B appear completely clear. The main problem here is that the

2The details of Helfrich’s argument are given in [26]. Because this approach is not entirely satisfactory
we will not present it here. Helfrich himself states that “It would be attractive to derive the general form
of the function v(k) by minimizing a free energy.” This is exactly what the variational theory will achieve,
for the most general case of the full non-linear Hamiltonian and the proper implementation of the constant

surface area constraint.
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Hamiltonian eqn. (1.2) is to a very good approximation scale-invariant while eqn. (2.2)
breaks scale-invariance. Furthermore, in method (b) the phenomenological argument

leading to eqn. (2.9) has been reformulated in the more recent literature [52].

Helfrich’s theory in its original formulation operated in an ensemble characterized by
fluctuating film area and fixed area of the associated projected surface, named open -
framed ensemble in the classification of David & Leibler [53] whose experimental equiv-
alent, black membranes [14], have to our knowledge never been investigated in confined
situations. Therefore Helfrich’s work has been reinterpreted [51] as a closed - unframed
ensemble where the crumpling of the system is negligible under all circumstances. This is
self-consistent only in the (low temperature) limit of large kK — oo. Only in this limit, the
layer spacing d which is the proper, physical parameter associated with open - framed en-
sembles and surfactant concentration ¢, which naturally characterizes closed - unframed
systems are essentially identical quantities, d ~ ¢;'. This equivalence reveals immedi-
ately that the steric force law for the free energy density is nothing else but the scaling
relation f ~ ¢2 which can be directly derived from the scale invariance of the bending
Hamiltonian and standard scaling arguments, as discussed in Chapter 1. The low temper-
ature limit, however, should be exactly the one in which undulations are least important
[54]. Naturally, a number of authors have therefore over the past years raised the issue
of a more general treatment of closed - unframed ensembles beyond the low temperature
limit [10, 55, 56]. This matter has gained particular urgency since the interpretation of
the pioneering scattering experiments by Safinya et al. on smectic lamellar phases [47]
was based on Helfrich’s low temperature approximation while at the same time the ex-
perimental value of ¥ ~ 1 was quoted which should be well beyond the region of validity

of Helfrich’s calculation.

2.2 Variational Theory

The formulation of a generalized theory has to follow rigorously the rules set out in
Chapter 1. This means that the surfactant concentration or film area is strictly fixed
in accordance with eqn. (1.3) and as the bending modulus £ should not be restricted to
the low temperature limit layer crumpling becomes an important factor in the theory.
By fixing ¢, and & only (but not crumpling or spacing), phase space outside the pure

scaling regime becomes accessible and we can study in detail how e.g. equilibrium layer
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crumpling €' and average spacing d depend on ¢, and x. We also do not a priori assume
that the undulations always scale — as indicated by Helfrich’s scaling law f ~ ¢? — but
have to determine the optimal state for every pair ¢, x variationally. To clarify the basic
problem we have drawn in fig. (2-1) two possible configurations of a smectic lamellar
phase at given k and ¢s. Our task will be to formulate a theory which can determine

which state is lower in free energy.

/\/\/\/
e

Figure 2-1: Sketch of two possible configurations of a smectic lamellar systems at given
surfactant concentration. Due to surfactant conservation layer density and layer crum-

pling are coupled. (a) shows a configuration characterized by large interlayer spacing and
strong crumpling, while (b) depicts a state with smooth undulations and small interlayer
distance. Spacing and crumpling are measurable quantities in smectic phases.

Other physical quantities will arise naturally from the minimization of the free energy
density. In particular, we will consistently evaluate the scattering structure factor, the
renormalization of the bending modulus (which finds a very simple formulation in the
variational theory), and the steric repulsion force for an ensemble characterized by the

full, non-linear bending Hamiltonian.

The thermodynamics of lamellar surfactant phases can be conveniently studied using
a model ensemble of essentially parallel, but thermally undulating interfaces. The mean
positions of the undulating interfaces with surface area S are given by a set of flat, parallel
surfaces with projected or base area A. The surface position of an individual undulating
layer can be described by the displacement variable u(7) normal to the projected surface

(¢f. eqn. (1.13) in Chapter 1)

W= Z 11(/::) et

=

A.

(2.12)

Although commonly used, the Monge representation of states, eqn. (2.12), is only an

approximation as it is single-valued and does not describe surfaces with overhanging parts

or topological defects, such as saddle structures which could connect neighbouring layers.

However, even in the most swollen experimental samples [50, 10], the ratio of real to
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projected surface area or crumpling ratio is C' = S/A ~ 1.2. Usually the crumpling ratio
is close to unity [57], and hence the single-valuedness should be a minor deficiency of the
states eqn. (2.12). On theoretical grounds it has been suggested that topological changes
can be neglected as long as the interlayer spacing is much smaller than the persistence
length d € & = r,exp(47k/3) [53] i.e. for membranes with not too small bending
modulus . We restrict our study therefore to membranes with £ > 1. Below this value

a more complete state representation has to be used.

The closed. unframed lamellar ensemble is essentially determined by the bending Hamil-
tonian and non-local interactions caused by the steric and surface area constraints. The
local steric constraint due to adjacent layers is approximated by the usual global constraint
[26]
L — =2 91
d= /=" (u(r)*)s (2013

where p is a numerical factor®. We follow [26] and will set u = 1/24 (in our definition we
operate with walls at +d/2) later for numerical calculations. Due to the incompressibility
of the surfactant film [2], closed surfactant systems with surfactant volume fraction ¢;
have an approximately constant surface to volume ratio

S S

Ps ~ — = Zd~! = const. (2.14)

Vv A

i.e. in the closed - unframed ensemble the total surface area is kept constant (whereas the
individual layer area and crumpling parameter may vary). The projected area to volume

ratio A/V is not a conserved quantity.

Using Gaussian model states, the free energy F (in units of kgT") associated with the bend-
ing Hamiltonian H can be approximated as shown in Chapter 1, ¥ < F' = — ) rlog 1/(/::)+
(H),, where the subscript 0 refers to Gaussian states characterized by the Hamiltonian
Ho~ 37 v(k)™! u(/?)u(—:). The entropic term has been derived from the partition func-
tion of the Gaussian ensemble (¢f. Chapter 1) and the average of the bending energy
(H), can be calculated using the joint probability distribution p(ugs,wy, Uzs, Ury, Uyy) Of
the first and second derivatives of the height field u(7) which is given by a multivariate
Gaussian distribution (¢f. Appendix). With the moments of the structure factor defined

by

ke
</\"H> = / l‘.”+| I/(l\')(ll\7 (er))
JO

'Note that with approximation eqn. (2.13) self-avoidance in not strictly obeyed.
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where the cut-off k. is of the order of an inverse molecular size, k. = fi =« | vand "the

convenient notation (k°) = (1) ~ (u?), we can write (cf. Appendix)

15
{FO <2H / dAE! /l')> = 2kA <
JA (11 0

where

2 8 Vi

with @ = 27/ (k*). G((k?)) is bounded and monotonically decreasing

Glz)= = (1; - + VT (3 — 4 + 4.1'2) £2 (L= m‘fﬁ))

0<G((K)) <1, G'((k*)) <0 for (k) >0

For small (k?) it can be expanded into

S <A»2>2 —o({k*))

To quantify the surface area constraint we evaluate the crumpling ratio

C= <’/5> 3 <<1 +(fu)'))l/2> % i (ﬁ—'ZI‘(g.O__I.))
0

dA g 2.z

which can be expanded for (k%) < 1

Gl & % or l()'lm—? (k)" + oK)

2.2.1 Renormalization of the Bending Constant

In the harmonic approximation the differential operators 3 and H are considered in the

limit u? + u‘f/ — 0 de. (k*) — 0. Then, % ~ 1and H = % [uf._,. + “5;/] so that the

ensemble averages read

<IH>U ~ %‘_’ </\"l> 5 ('(</~‘2>) ~ 1 (2.22)
Comparison with the general expression eqn. (2.16) shows that the function (:'((/\'2>)
contains the non-linear coupling between modes i.e. yields the general effective, thermally
softened bending constant [58]

Kegy = G((k?)) % (2.23)




Chapter 2. Variational Theory of Smectic Lamellar Phases

Therefore our variational method is equivalent to a Hartree approximation which replaces
the non-linear Hamiltonian by a Gaussian with effective parameters which are determined
self-consistently. We can compare this with the well established approxzimate renormaliza-
tion of the bending constant in free membranes. There the approximate structure factor

is known to be
v(k) = (kk*)™! (2.24)
Applying eqns. (2.17,2.19) to this case we retrieve the well-known first order renormal-

ization correction of the bending constant
(2.25)

in agreement with the results of [59, 60] (k..in is a lower frequency cut-off). For closed
systems the exact form of the renormalization is — as we will see below — different. It is in
general not possible to use the renormalization derived for a free membrane in a system

characterized by other physical constraints.

2.2.2 Structure Factor and Free Energy

With the averages eqn. (2.16) and eqn. (2.20) the free energy density can be written as a

functional of the structure factor v(k) (using relation eqn. (2.13) for d)

o T G| /1.4\ /1.2 k
flv(k)] = = = — ( <L>(,1(<L,>)— [ Flogu(k) dh (2.26)

This expression has to be functionally minimized with respect to v(k) under one con-
straint, ¢5 ~ S/V = const which can be coupled to eqn. (2.26) by a Lagrange multiplier.
The result will be a minimal v(k) from which the equilibrium layer spacing and crum-

pling and the steric force law can be calculated as functions of ¢, and k. We note that

the free energy per area usually contains self-energy terms proportional to k* i.e. the

number of degrees of freedom associated with the base surface. These terms represent
an insignificant additive constant in the discussion of the free energy per area, but have
to be omitted when going to the free energy per volume; we will continue this discussion

later when this point becomes relevant for the calculation.

The minimization can be conveniently carried out by variationally minimizing

flv(k)] = m (u <A-“> (/(<A’2>) = /Ok klog v(k)dk + M\ (.’(<A:2>) i 1)((1))’2>
27

(2.27)
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under two constraints

l " { ,-l
d=1D(1)) = (1) = const, S, S = const (2.28)
27 / )

The additional constraint on d will be removed later by df/0D = 0. We prefer the
notation D((1)) to stress that the layer density is in this context not preset as in zero

order theories, but a functional.

Differentiation turns the logv(k) term into 1/v(k) while the moments (k*), <A‘2>. (1)
yield factors of k*, k? and const, respectively?. Thus the general form of the consistent
structure factor reads

a

vik)= ——— (2.29
: — k3 k? + k* :

a=r"1 (:'(<A'2>)_1 = h(flf

and

'((k*)) X2 D((1))D'({1)) 8t
—— ] . = - - 23],
) ) k GU(E?)) (2:35)

where a > 0, k* > 0 while k2 can assume any sign. For given surfactant concentration ¢,
and bare bending stiffness x the coefficient a is readily given by eqn. (2.30) because ¢
determines C'((k%)) which in turn determines G(({k?)). The coefficients k3, k* cannot be
directly calculated from eqn. (2.31) but have to be evaluated from the non-linear equation
system

2
a el /‘U G 2
arctan ——— + arctan ——— 22E5 iibod =" 82 md

\/ akt - yARe = /‘(t V 4k* — kg
2 k! 1
28 i el e Y — o O«
T ky d® — log .A K2R 1 = C (¢sd) (2.33)

af

2.34
ad )

where eqns. (2.32,2.33) correspond to eqns. (2.28) and C'~! denotes an inverse function.

The function f(ko, k,d; k,ds) can be obtained by inserting the relations

"2
e P % = %mgh.

1See, for example, [2] where the structure factor for the roughening transition is derived in a very

similar way, or also [61].
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Yy = l(A-t‘ — 2k (1) — Zk2log by + 2k (2.35)
D i 2
ke l 4 74 1 ) 1 2 2 9 QAR
/ klogv(k)dk = Z(A'U —4k%) (1) — TA'U log hy + EI\'C log hy + k2 (2.36)
JO E

with the abbreviations
hi = kY(k}—K2k24EY),  hy=af(ki— K2R+ EY)
and eqn. (2.30) into eqn. (2.26)

flko,k,d;,5) = ﬁ[h <A-“>(,'(<A-2>)—/A-logf(l.-)dk]

= 47 [p(20)7 k4 d? — (87) U2 (1 +logu(k))]  (2.37)

Thus we have reduced the problem to the solution of three relatively simple equations.
In particular, solution of eqn. (2.32) and eqn. (2.33) is straightforward and reduces
f(ko, k.d: K, os) to f(d; K, @) so that we are left with the single equation 0 f(d; &, ¢s)/0d =
0. At this point we have to consider the self-energy. It is a harmless energy offset in prob-
lems where the total projected area is constant. In the present calculation, however, the
layer density is allowed to vary and the offset would cause a spurious d~! term in the free
energy. In order to subtract the self-energy we fix the quantities a, ko, k, and d at their
physical values, consider the limit k. — oo and discard all diverging terms in the spirit of
a field theoretical renormalization [6]. After subtracting the divergences the free energy

density reads
f(ko, k,d; K, ps) = d? [/1(2(1)_1 ktd? + (87)~1k? log(1 — kak;? + /:"'/.':‘1) (2.38)

The equation system eqns. (2.32,2.33,2.34) with f given by eqn. (2.38) defines the solution

of the problem to all orders in x~1.

2.2.3 Helfrich Limit and Crumpling Corrections

We start by solving analytically to first and second order in x~!. Since ko/k. and k/k,
are very small quantities we may expand the logarithmic term in eqn. (2.38) which then
becomes independent of k. and equal to —(87)~! k3. Solving the simplified equation
system yields the well-known first order results for the structure factor [26] (¢f. Appendix

for the derivation of these and the forthcoming results),

k2=~0, k?>~(8u)lr1¢2 (2.39)

S
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the crumpling factor
C = ¢ydi= 1 et — ok >

with [51],

|
= gy log[(?s’/l)_% H_%C)S]

the renormalization factor

Grl- ng_] +g2h'_2
with [51],
g1 =

and the free energy density [51]

f(k,ds) =~ (128p)~1 k~1¢3 (2.44)

S

which is exactly half the result given in Helfrich’s original paper. Helfrich’s formalism is
equivalent to a purely Gaussian theory i.e. in Feynman - Hellman formalism (cf. Chapter
1) [26, 62]

F<E=7F (2.45)

While this captures the entropic contribution to the free energy, it neglects the bending
energy term (H),. However, we see that the bending energy term eqn. (2.35) accounts
to essentially half of the entropic term eqn. (2.36). The physical meaning is evident:
apart from the entropic repulsion there is also a considerable energetic attraction because
the undulations have to become smoother and thus less costly in bending energy when
the layers approach each other. The strength of this attraction reduces the entropic
repulsion. This also suggests that the force constant derived in Helfrich’s method (a) is

overestimated.
In second order, a k* term with positive coefficient

. S e
A-jzmﬂg P (2.46)

emerges in the structure factor which should be observable in systems with low bending
stiffness (k = 1 [57, 47]) as a pronounced rounding or slight bump in the scattering

structure factor at low k.

The second order corrections to the swelling law and renormalization are

3
52

l 2170 —<1lspen ilf
. mlog [(8r)™2 k™ 2¢,]

Co = =
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and

TSR 2[(8)~2 k™2 ] (2.48)
—— log“[(8u)~2 K™ 2 ¢ :

512 © 1672 © WO i

Both contain non-logarithmic terms which are directly related to film area conservation.

g2 ==

The free energy density up to second order in ! reads

f(&, ¢s) =k > — bg £ 242 F bk 28" (2.49)

with by = (128u)7", by = 3(10247p)~t, by = (5127(';12)_1. The most important point is
here that the free energy density does not contain logarithmic renormalization terms which
could originate from the non-linear part of the bending energy G and the crumpling factor
(' because these two contributions cancel each other in second order. This indicates that
Helfrich’s results remain largely unaffected even by second order terms. It might explain
why Helfrich’s high £ model can in fact be used for the interpretation of data taken in
semi-rigid or even soft systems such as the ones studied by Safinya et al. at kK ~ 1. The
second term on the rhs of eqn. (2.49) is identical to a term found by Golubovié¢ & Lubensky
[51] in their perturbation analysis and can be rationalized as a non-local interaction term
due to the surface area constraint. The last term in eqn. (2.49) is proportional to ¢°;
Wennerstrom & Olsson [27] have recently discussed such terms — although derived in a
different theory from higher order elasticity terms — in the context of the lamellar to

sponge transition. This term becomes significant at high surfactant concentration.

2.2.4 Numerical Results: Free Energy, Structure Factor, Swelling, Renor-

malization

The above approximations turn out to be unreliable at low bending rigidity. We have

therefore solved the equation system eqns. (2.32,2.33,2.34) numerically.
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Figure 2-2: The coefficients k2 and k2 in the scattering structure factor eqn. (2.29) as
functions of the ben(hfjlg constant k and the surfactant concentration ¢,. (left) k2 -10* vs
k=% (solid line) and k* - 103 vs k=1 (dotted line) for ¢ = 0.1. (right) k2 - 2.5 103 vs ¢?

(solid line) and k* - 102 vs ¢ (dotted line) for k = 1 (upper curves) and k = 5 (lower
curves).

In a series of figs. (2-2 - 2-4) we show numerical results which have maximal relative errors
of 107 for k2 and k2 (fig. (2-2)), the crumpling C, the renormalization G and the free
energy density f for realistic values of x and ¢,. The swelling factor ¢sd in fig. (2-3)
shows the typical logarithmic dependence on ¢, — which has been verified in experiment
[67] — for stiff film, x = 5, but a systematic upward deviation for high dilution in the
case of soft membranes, x &~ 1. This deviation should be measurable and characteristic
for soft lamellar phases. When comparing numerical and first order results we note
significant differences in the case x = 1; this casts some doubt on the first order fitting
procedure used in [57] to estimate the value of the bending modulus in lamellar phases
and we believe that the values for the bending meduli (of the soft systems) reported
there could be underestimated by factors of up to ~ 2 — 3. Indeed, this correction
factor seems to reconcile the results of the measurements of & given in [57] with the
results of alternative measurement techniques [63]. In fig. (2-3) we show the concentration
dependence of the renormalization correction to the bending modulus. As expected,
higher anharmonic terms lead in the case of soft membranes to strong deviations from

the first order approximation.

0.0
-3.5 -3.0 =25 -2.0 =1.5 =1.0 —-0.5

log ¢,

Figure 2-3: (left) The crumpling ratio C' = ¢4d of ensembles of undulating membranes
Jor k =1 (upper curves) and k = 5 (lower curves) as a function of the surfactant concen-
tration. Solid lines denote accurate numerical solutions, and broken lines the respective
first order approximations, eqn. (2.41). The solid lines show a small deviation from the
logarithmic law. (right) The renormalization of the bending constant G as a function
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of surfactant concentration: numerical solutions (solid) and first order approrimations
(broken, eqn. (2.43)), for the k = 1 (lower curves) and k = 5 (upper curves).

Finally, in fig. (2-4) the free energy density as a function of the bending modulus and
the surfactant concentration is shown. At given ¢, the steric repulsion is always lower
than predicted by first order approximation. For a realistic regime, ¢s = 0.1, 1 < x < 10,
(fig. (2-4)) we find that the approximation is valid down to some x ~ 5. For softer
systems the complex interplay of anharmonic corrections to the Hamiltonian and the
swelling corrections due to surface area conservation lead to deviations from the 1/x -
force law. However, as argued above, due to cancellation of renormalization and swelling
terms up to second order in x~! the scaling f ~ ¢2 is practically unchanged even for

small kK = 1 (fig. (2-4)).
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Figure 2-4: (left) The free energy density f as a function of the bending constant, at
¢s = 0.1 (solid line); it deviates at low k visibly from Helfrich’s law eqn. (2.44) (broken
line). (right) The free energy density f as a function of the surfactant concentration
for k =1 (upper curves) and k = 5 (lower curves), where solid lines denote numerical

solutions, and broken lines the corresponding Helfrich approzimation.
2.3 Conclusions

Finally, we want to discuss the shortcomings and merits of the presented approach. Monge
gauge cannot, as mentioned above, represent states with complex shape and topology
fluctuations [64]. Therefore the Gaussian curvature [ K dS does not enter the calculation.
Inclusion of this term leads to & dependent contributions to the structure factor and free
energy density,

f ~b(k,R) (f)f (2.50)
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and is likely to be crucial for the still poorly understood lamellar to sponge transition
(cf. Chapter 4) [4]. This requires a sophisticated, non-perturbative generalization of the
state representation which includes topological defects. Moreover, asymmetric lamellar
phases — which contain, say, more water than oil so that two characteristic layers spacings
are invoked — which certainly exist in ternary systems [4] and possibly also in binary
phases cannot be discussed in the context of the presented theory. We will come back to

the problem of topologically complex lamellar phases in the following chapters.

Nevertheless, the approach presented here is — within the validity of its assumptions —
able to provide a simple and consistent description of multilamellar phases in terms of
structure factor, swelling law, renormalization of the bending constant and the steric force
law as functions of the surfactant concentration and the bending modulus. Its range of
validity goes well beyond that of low temperature theories [51, 26]. The results are in
agreement with known observations, and reveal new features which are related to the
more accurate inclusion of layer crumpling, the constant area constraint and the usually
neglected coupling terms in the bending Hamiltonian. These should be observable in the
film structure factor and swelling law of soft and dilute smectic lamellar phases (50, 10].
Our results also show that Helfrich’s first order steric force law is in fact also a good second
order approximation, indicating that simple predictions of the Helfrich theory might be

applicable even in semi-rigid regimes.

In the context of the development of this thesis we can state that application of the
variational formalism has successfully reproduced a range of known results in one coherent

formalism. We have at the same time gained with relative ease important generalization

which appear to be in accordance with experimental observation. This gives us confidence

to pursue more complicated surfactant phases in the next chapters.
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2.A Appendix

Statistical Averages With the definition of the moments, eqn. (2.15), the covariance
matrix A;; contains the correlations of the first and second derivatives of the height field

w( 1)

Uy |5

Uy

Uy — (k° 0
300y 94 (il
Uz 167 167 (k*)

Uyy 7w AN 127 (k)

where each matrix element is the correlation bracket (...), which contains the derivative
in the ordinate and abscissa. A practical calculation of the statistical average of vari-
ous differential operators O is then based on a statistical integration over the Gaussian
multivariate distribution eqn. (1.17) which reads here explicitly (45]
1 haticd 00 ] -
e ———— / 2 o / o cdugduydugydug,duy, O exp [—.—;T’,f\_].?’[]
Vv (21)*A| /- J-
where A is the correlation matrix defined above and 7 = (u,, Uy Ugys Uz Uyy ). WVE Wil
perform these integrations here explicitly and note that the same principle will be used

for more complicated cases in the following two chapters.
With u? + ui =%

Hi= é div 7, T — [] + I,z} (@ ll!/)’ll, dS/dA = [l + *1'2]

so that

I'S' 92 ']*l 2829 IND 9 92 2 G110k )
<r{/‘\ II’> <ﬁ [(l + u;.)‘u_;y + (1 + Uy ) Uz + 2(1 + uz)(1 + (I;)lt_,-l-llll!/ + 41!;,!1;11;.!/]>
y 0 _}, ve|2 0

eleF<“><(l +?)73 4 31,1 (i l‘z)_%>

0

where we have used that e.g. (uruy)y = 0 and that all the correlation matrix elements

of the second derivatives are proportional to (k*). The only non-trivial part is, with the
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abbreviations o2 = (k?) /(47) and = = 1/(202)

P SN E 1 Ry e 3 AID
<(l+1’“) ‘+gzv'(l+z'“) *> ,,/ e 242 i ‘+—1"1(l+1'“) J:Il/ll.,»l/Uy
0 —00

2m0~ 8

which is eqn. (2.17) in the text.

The integral for the crumpling, eqn. (2.21), is straightforward

= = DREN
<(l+‘ I/ = —/ (140" )l/_/ = .z-o"'/ It dt = Gl (3 z))
l) 0 Ji Z\/-

The technique outlined here will be re-applied in different contexts in Chapters 3 and 4.

Crumpling Corrections To zeroth order in crumpling we find
O gyd " = dim gt = <A‘2> ~0

it follows immediately that kg &~ 0. Thus d and kg are already fixed, and eqn. (2.32) deter-
mines k2 which has a simple solution [26, 51], eqn. (2.39). The lowest order approximation

to the free energy eqn. (2.44) follows without problem.
To calculate the next order we introduce

= (/*"1)2- qo = (/\'()(/)2-
Then, eqns. (2.32,2.33) simplify to

a qo

———— | aTctan —F—
\/4G% — q2 \/4G% — (/(‘f

4 a <
—(¢psd — 1) — — (log ¢ — log q..)
v 2T

+

T
2

and the free energy density can be written”

. |
S (e
f=d (5 - y0)

“The following four equations are due to M. Teubner.
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Now we take the derivatives of equs. (2.A1) with respect to d

q q q
<ﬂ B \’77/11) g = <1 + 27r;1£> %
q a a
; 4¢ Sy
Ul = i il

Ju 2T q

and of the free energy density eqn. (2.A2)

3 1
L= ~£(]2 +d (ﬁ(](]/ - —qé) =1 (2.A4)
§ 2a a 8

Solving the linear equation system eqns. (2.A3) with respect to ¢, ¢(, inserting ¢’ and g,

into eqn. (2.A4) and keeping the lowest order terms yields
do = Su
0i=5
2
which leads to eqn. (2.46) when we use the first order approximation for . Having gained
k* to first and k2 to second order, we see that the equation for the second moment is

consistently up to second order

y ‘
2\ _ o293 G k = 3T e =
(= S e log

Y0

[¢

where we have to keep in mind that ¢! ~ k(1 — %(A"z)) has to be included self-

consistently. Note also that possible terms ~ £~ 2 in the expression for k2 are not necessary
to derive (k*) to second order. The consistent expressions for C' and G up to second or-
der can be gained from the expansions eqns. (2.19,2.21). Once k2, kZ and the crumpling,
which is directly related to d, are determined the free energy density eqn. (2.49) can be

calculated by series expansion.




Chapter 3

Random Interface Model of Sponge

Phases

We have seen that application of the variational theory to the simple case of smectic
lamellar phases allowed us to go beyond the harmonic approximation nearly exclusively
used throughout the literature on fluctuating membranes. While this is important for
lamellar phases, it should be even more so in the most distinct example of a fluctuating

membrane phase, the bicontinuous sponge phase.

3.1 Introduction

A microscopic description of a ternary (binary) surfactant system with all the surfactant
molecules located at the water/oil (inside/outside) interfaces begins with a Hamiltonian,
I (1)) where 1 is a local composition variable with, for example, ©» = —1 corresponding
to water (inside) and @ = 1 corresponding to oil (outside). The Hamiltonian can, in
principle, take into account all the microscopic interactions, including the long range
interactions which give rise to the curvature energy of the surfactant film. If we restrict

ourselves to two-body interactions it can be written as an infinite range Ising Hamiltonian'

1 L5 .
Hi =5 ) Vi (3.1)
2 4
i#£)

"Unlike the models based on nearest or next nearest neighbor interactions mentioned in Chapter 1.

37
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If we apply the Gaussian transformation of quadratic Hamiltonians [65] (sometimes also

called Hubbard - Stratonovich transformation)

1 : 1 oo 1 . M,
exp EZ/:L'I‘UL'J :W/_XHJMG‘XP —5255(\’ l)i‘;~“4/+Z~‘wL'i (3.2)

=1 1]
where the s; are now unconstrained field variables with —oo < s; < oo — to the partition

function associated with H; then we get the well-known result [65, 6]

n

+oo T 1 400
e / H ds; exp [Z In [2 cosh s;] + 5.@,“'}‘,5‘,} = /_ ; H ds; exp X (3.3)

1=1 ? 1=1
Eqn. (3.3) is well-defined in the limit of vanishing lattice constant and n — oo so that

the exponent in the partition function can be replaced by
' 1 e
X = /(lFlog [2 cosh s(7)] — 5 / /(IF(IF'S(F)\ (7 — 7)s(7) (3.4)

where the first term is local and the second term contains interactions. Eqns. (3.3,3.4) rep-
resent the most general way of deriving a field theory from a spin model. They cannot be
solved exactly. In standard continuum models of GL type one usually drops contributions
higher than quartic in the local term and replaces the interaction term by phenomenolog-
ical gradient terms. The most important effective free energy (which is, however, not a
Hamiltonian) used for describing microemulsion sponge phases is due to Teubner & Strey
(TS)

Frs(s) = /(17*[(12.«2 + ¢1(V8)? + e3(As)? (3.5)

In the presented description of microemulsions, however, we relate the two-body interac-

tion term (after Fourier transform)

Y AWV (E-T)s(F) o S V(E) s(k) s(—F) (3.6)

7 E

N —

1
2

(where we will later use the definition \/"(/:) ~ 1/_'(1-.:)) directly to the bending Hamiltonian

by the variational theorem. The local term is replaced by a mean-spherical constraint

<.«2(F)>U =1 (3.7)

which relaxes the local condition for the occupation variable s2(7) = 1 of the spin model
to a global condition and was first suggested by Berlin & Kac in their discussion of
ferromagnets [66]. Teubner effectively also used eqn. (3.7) but called it a normalization
condition in [37]. The purpose of this constraint is to contain the overcounting of the

entropy caused by the infinite range of the field variable s.
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The random interface theory of sponge phases thus forms a link between the bending
Hamiltonian and the effective free energies considered in other continuum models of
sponge phases. Moreover, due to the geometrical coupling of the film to the bulk density,
by s(7) = 0, the random interface theory can — unlike bulk GL theories — also provide a

description of the film properties of binary L3 sponge phases.

GL theories for these phases contain, unlike eqn. (3.5), an explicit amphiphile degree of

freedom. Roux, Coulon, Cates and co-workers proposed [12]

- My i, e s Tl e gl b o
Freo = /(IF[%/)Z - 5!}2 ek P’ + %H—plz + SVl + %z;(?r,\“p) (3.8)

(henceforth called RCC model) where p denotes the local deviation of the amphiphile
concentration from its mean value and 7 is the local difference between inside and out-
side (water and oil) concentrations. One of the strengths of this formulation is the small
parameter space comprising a and A which corresponds to the natural number of param-
eters, x and & [12], so that it operates at the same level of complexity as the random
interface approach. However, we see immediately that bulk and film degrees of freedom
in eqn. (3.8) have a soft algebraic coupling in contrast to the random interface model

where these degrees of freedom are geometrically coupled.

Both forms eqns. (3.5,3.8) were modified by Gompper & Schick by adding, combining or
modifying a number of interaction terms [67] which makes the GL theories more suitable

for fitting experimental data [13].

[t is also worth mentioning that a claim to mediate between full-fledged field theories and
the effective interface model has been made before by Gompper & Zschocke [68] who used
a fit to the bending energy of spheres and cylinders by a GL free energy of essentially the
form eqn. (3.5) to relate the elastic moduli to GL theory. We should note that this fit
was achieved using assumptions such as a large number of phenomenological parameters,
special functional forms of the GI parameters and — perhaps most seriously — the flat
interface approximation [15]. In any way, the only practical application of this method
known to us by Lerczak et al. [69], resulted for example in values of £ > 0 which are in

the context of the Hamiltonian eqn. (1.2) not stable.

’Lerczak et al. pointed out that this result might not be correct due to the flat interface approximation.
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3.2 Structure and Thermodynamics

The constituting equations of the theory eqns. (1.2,1.3,3.7) are now motivated and we

can proceed with the approximation scheme outlined in Section 1.3.

The free energy density and physical constraints can be written for isotropic systems for

zero spontaneous curvature (cf. Appendix for details)

flv(k) = 2x <(5(.< — a)|Vs| H2>0 + R <b(5 —a)|Vs| A'>

0

A"’ L
(2] / dk k*log v(k) (3.9)
0

(3.10)

(1) (3.11)

where the film thickness is set to unity, ». = 1, and with Teubner’s results [37] for the

mean-square and saddle-splay curvatures (¢f. [37] and also Appendix)
<b(s — ) jesl ]\'>, = l‘ F_% (0'2 - ]) <k2>5
0 3v3m
‘ Ll
<b(.~ — a)|Vs| 1{2>0 = <é(.s) |Vs A’>O + 5\/2§7T <L,4> <,\,z> 2
where a is the asymmetry parameter which is related to the, say, water volume fraction
¢ by [37]

b = (ZW)_%'/“’XV(I.,« ("; =971 [1 —Prf'(ﬁ)] (3.12)

For example, water / oil (inside / outside) symmetry, ¢ = 1/2, corresponds to a = 0
while there is bulk asymmetry for & # 0. From eqn. (3.A4) we also see that a is directly
related to the mean curvature of the interfaces, (6(s — a) |€'sl H), ~ a. The moments
are defined as

ke
(k) = (2x%) [ dk k7420 k) e

Jo
where (1) is the notation for (k°). The cut-off length is k. = n 2rr-! where 7 is a
constant O(1)>. Finally, in the Appendix we discuss the constraint of self-avoidance

which is practically fulfilled by our definition of random surfaces with the exception of

‘Following de Gennes [46] we chose a cut-off related to the breakdown of linear elasticity theory. A
choice of 7 2~ 6 inverse film thicknesses, corresponding to some 50 — 100 A, avoids cumbersome factors of
2m and appears reasonable [70] and convenient. In any way, the detailed choice of k. does not influence

qualitative results.
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‘kissing” of two neighboring membranes (just before they fuse into a saddle-like structure)

at one surface point.

It is worthwhile mentioning that eqn. (3.12) is actually more specialized than necessary.
It assumes one interface separating the oil and water or inside and outside partitions.
Equally well, one could allow two interfaces which, say, separate an oil layer confined by
two monolayers from water on the other side of the two monolayers. Two interfaces would
describe oil-swollen L3 phases whose study has only just started [1, 71, 72]. Although
for much of the remainder — except for the film scattering — of this chapter we will only
discuss the conventional problems associated with one interface, we should keep in mind
that a further minimization of eqn. (3.12) could determine the stability for example of

oil-swollen L3 phases vs asymmetric microemulsions.

We also should be aware that unlike the two dimensional theory in Chapter 2 where the
field was the interface position, the field is now indirectly linked to the interface. We use
the entropy derived from the mode distribution of thé underlying three dimensional field to
approximate the interfacial entropy. The equivalence of interfacial and field entropy is an
active field of research in signal-processing. Curtis & Oppenheim [73] found that for band-
limited, Fourier expandable, multidimensional signals (i.e. just the fields under discussion
here) the level surfaces contain the same information (or entropy [74]) as the unleveled
field. The equivalence has been illustrated by examples of recovering two dimensional

images from one dimensional level crossings [73].

3.2.1 Structural Properties

Bulk Structure Factor

The functional minimization 0 f[r]/0v can be performed by coupling the constraints
eqns. (3.10,3.11) to the free energy density by Lagrange multipliers (technically exactly
analogous to what was done in Chapter 2 to arrive at eqn. (2.29)) and the minimization

yields the general result

. —1
u(k) = a [A-“ _ bk 4 e (3.14)

where a > 0, ¢ > 0 and b can assume any sign. This is just the bulk structure factor which
was introduced in an ad hoc manner by Teubner & Strey who used it to fit numerous

experimental bulk scattering data [11]. The random interface theory on the other hand
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predicts this structure factor on the basis of the bending Hamiltonian and the coefficients

a, b, ¢ can be determined in terms of the parameters x, ¢, and a*. In eqn. (3.9) the

prefactor of the fourth moment (k) depends only on fixed quantities x, a and (k2) ((k?)

is fixed due to eqns. (3.10,3.11)). Thus the value of a is readily determined (again fully
analogous to the respective calculation in Chapter 2) as

2 5
a = agd.k " e ({3:1.5)

with ag = 15/16 72. The remaining coefficients have to be determined from the constraints

eqns. (3.10,3.11) which read explicitly (for k. =~ 1)

> k2 28]
/U (11\' m = 27 a

; k =1 /2
/ dk # — 2k <A >
Jo k¥ —bk?2 4 ¢
The procedure to gain a, b, ¢ was independently crosschecked by freely choosing, say,
a then determining b, ¢ from the constraints and finally explicitly numerically minimiz-
ing the free energy density. The result was that the minimal a coincided exactly with

eqn. (3.15) which is gained analytically from variational minimization as it should.
After introducing the abbreviations
sy D 2 s
= a(272)7! = gge® pr7L, 0 = gk — 1

where ¢y = 15/32, 69 = 8/572, and the new variable

= \/4e/b? — 1

integration yields for eqns. (3.16,3.17)

VAV 2 AN = 2 8 =
(1 —cc ); ;xr(‘l;nn#(%_ml)) — (1 +ee ); arctanh(ﬁ) = V2Vbc'e!

2 \/z 3 \/E !
e e i ez aretanh SRR
(1 —ic’)? arct m( e (1 4«")? arctan ) 2\/2\/5(5

This equation system cannot be solved exactly’. However, for small b, ¢/ it can be

expanded into
T Vb

T € -
7? 2372 g (3.20)

(Vb ~

4 y : : : g
In binary systems a or equivalently ¢ are not fixed. We will come back to this below.

*Note that the seeming trivial solution ¢’ = 0 is in fact not defined.
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with the result
2

{

b2 ¢eb, . (2(32%——1

e (821

For further discussion it is helpful to use the real space Fourier transform of eqn. (3.14)
which reads [11]

_r/¢ Sin kor

g(r)y=e (3.22)
/\'U]‘

where we note that the approximation k., — oo which was used to gain eqn. (3.22) is
only ‘good when the structure factor has a sharp peak at 0 < k < k.. Eqn. (3.22)
contains the two characteristic scales which we discussed in the introductory chapter.

With, D = b/2 + /c [11]

so that for k™1 <« 1

1=yl 7|85 i
kg aeadn | 14 eteg=10) 3.24
0~ € ( + 32( 1 ( )

While the above approximations which encompass x~! < 1 will turn out very helpful
sometimes even beyond their strict limit of validity we should also keep in mind that
large # will lead eventually to a phase transition towards ordered systems (Chapter 4) so

that the asymptotic limit x=! — 0 should not be overrated.

Film Structure Factor

Before proceeding with the physical consequences of various values of x and ¢, on sponge
structure, we want to introduce methods to calculate the film scattering signal from the
interfaces. There are various ways of calculating the film structure factor, all of them of
approximate character only.

In principle one would like to compute the scattering from an ensemble of layers with
uniform physical thickness® with given scattering length profile and density. The profile
is usually taken to be of a simple square shape [39]. Hence - recalling the arguments used

in Section 1.2 — we can write the relevant film-film correlation function as

l‘( ]') = <(“)11_(,-.‘)”+(,:‘ (()) (T)/f_(;).¢+(,.~)(7')>0 (-;23—))

“Experiments show that the fluctuation of the bi - or monolayer thickness is negligible, usually of the

order of few Angstroms.
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Gaussian random fields do not support a

where © denotes the Heaviside step function.

parallel family of surfaces (i.e. two neighboring level cuts are never strictly parallel) and

therefore 5_(7), f4(7) which are the two level cuts which describe the two interfaces at

positions £7./2 around the mean layer position a have to vary in space in order to assure

constant physical film thickness 7.. The functionality of 3_(7), 34 (7) is, however, not

known. At best one can write them as a Taylor series which reads up to first order (for

|Vs(7)| (3.26)

+(M) ~

o
2

There are two ways of proceeding from here.

(a)
their mean values 3_(7) — (B_(7)) = B-, B+(7) — (B+(7)) = B4 so that the film thick-

The method briefly mentioned in the first chapter is based on replacing the 34 (7), by

ness is not strictly uniform. This approximation was derived practically simultaneously

and independently by Berk [75], us [42] and Lee et al. [76]. Due to the decoupling of field

and gradient degrees of freedom the variation of the film thickness is a truly independent

random process and was assumed implicitly [75, 76] or explicitly [42] not to be important

in the interesting range of wave vectors far away from molecular scales k < k. (we will

come back to this point below). Then

PE-PH(m) = <(—),,_,,+(o)(—),,_,,+(7-)>0

+0oo _zf4+y“—29(r)zy
dxdy € 21-¢%(r)) Oz g.(z) O, 3.27
/_ / / T B_ps(T) Op_p, (y) (3.27)

W=

27T-g(1 \/1—-’2

The derivation of eqn. (3.27) is relatively simple; explanations are given in [42] and in

| 1 1 l 82 By L (62204 42
I"""*(()) — —/ dt ——— |e™ 1+t + " T+t — 2¢ =2 (B2—20-F1 451 )
)

greater detail in [75]. A numerically useful transformation ¢ = sin ¢ avoids the artificial

singularity of the integrand

2 /52

y m/2 BL
I‘d—‘u(") = ]“’—"’+((])_L/ do {(_l%in ¢ + (;_1+-s-ikn ? — % 2(0 2 p[/’ —26-f+ ‘”“/'+/’2]}
2T Jaresin(g(r))

2T Jarcsin !

(3.28)

After normalization

8-+ r) — [’ff—/’+ 0 ]‘/i_/'i+ A 5?
(r) (o) _ (r) - 42 T}
(f)s( l i (/‘)s) Ql)s( 1 " (/)S)

Teubner’s specialized result for a one-step level cut [37] is immediately recovered by

taking 84 — oo (limp, oo ¥-P+ = 4P-). Berk’s 2/m arcsin [g(7)] term [34] is the limit of
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eqn. (3.28) for B4 — oo, S_ = 0. Lee et al. later used a slight variation of this approach
and gave an approximate result

1
2 =

D(r) ~ [1= (1= ¢2)%%(r)]
which was successfully used for fitting film scattering data in [76].

Because this approximation works with a finite film thickness we actually find the qual-
itatively correct sequence of scaling laws for the film scattering structure factor [77, 78]:
in an intermediate range of wave vectors which are larger than the structural wave vector
but smaller than the wave vector associated with the film thickness we will find that
vi(k) ~ k=2 characteristic for the scattering from thin films. At wave vectors larger than
the order of magnitude of the inverse film thickness, however, we expect the scattering to

follow the standard Porod law, vs(k) ~ k=%,

As mentioned above the shortcoming of this approximation is that the film is not of
perfectly uniform thickness. In experiment the effective fluctuations of the film in binary
systems are of the order of a few Angstroms only so that the detailed scattering in the
high k region might not be well described. At the same time eqn. (3.27) could be a very
good approximation for the film scattering from oil-swollen [71] or water-swollen [12] L3
phases where the two surfactant monolayers enclose a thin film of oil or water. For oil-
swollen systems it has been found experimentally that the film thickness has substantial
fluctuations [71] due to fluctuations of the thickness of the confined oil film. We note that
modelling with two level cuts gives us also simple access to complicated defects — which
have attracted some recent attention [79, 80] — such as occasional seams between two or
more oil-swollen films [79, 80] which are now allowed and energetically not too expensive.
Clearly, a systematic study of oil-swollen systems which are intermediate between pure
L3 phases and microemulsions is of great interest [1] and eqn. (3.27) should therefore be

pursued in any case.

Given that a physical correlation function g(7) becomes small for large r a good approxi-
mation to the film correlation function for large » can be gained by expanding eqn. (3.27)

(before integration) into a series for small g(r). Then
[(r) = Tlg(r)] = ¢% + 1 g(r) + I g*(r)

where

B+ B+ >
L/(2m) / / dady (‘_'IE(""J“-"Z).zgz/
e IAEE
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By B4 ol :
I, = 1/(‘177)/ / dxdy (_17(1"2*"2)(.1"2 =1)(7*=1)
- Jp_

where for small a (here f_ = a —¢, 1 = a + ¢)
I ~ a? (3.31)

After normalization we see that the leading term goes like ¢(7) so that the film spectrum
has a term proportional to the bulk structure factor. However, it vanishes for symmetric
sponge phases (a = 0) defined by _ = —3_, B, = G_. For the symmetric phase the

leading term is

L(r) ~ g*(r) (3.32)
so that after Fourier transform
vi(k) ~ / dr rzj(,(/\'r)[‘(r) (3%33)
the film scattering reads
vi(k) ~ Ag+ %A(,’ [‘2 arctan % — arctan M — arctan MJ S DP0(3034))
vi(k) ~ Ag— %‘(; [2 arctan % — arctan 2(£+—l\[)) — arctan Z(f++ﬁu)} RDI<10/(335)

where the constant Ag takes into account the small overall error arising in the integration
eqn. (3.33) due to the inaccuracy of eqn. (3.32) at small 7. Mainly due to the phase space
factor, 7%, in the integration this error is never serious. It amounts to an overall, systematic
deviation which can be approximated by the difference of eqn. (3.33) when evaluated
with the exact or approximate I'(r) at zero wave vector. Api= 1/}"'”‘"(0) - 1/}')'”'("7'(0). We
have explicitly assessed this for the example ky = 1, €' = 0.01 and found that from

k = 0.0001kg to k = 0.01kg the respective errors Ak=0.01 Ak=0.0001 differ by a mere 6%.

Eqn. (3.34) has two major parts, ~ k=1 arctan(&k)/2 and ~ k=!arctané(k — 2ko)/2 +
k=1 arctan &(k+2ko)/2 which determine the behaviour of v¢(k)around k = 0 and k = 2k,.
The first term is monotonic indicating strong low k scattering and the shape of the second
term can range from monotonic to step-like depending on whether the values of ko€ are

small or large.

We will use eqns. (3.34,3.35) to discuss several physical regimes of kg, £ (or k, ¢,) in detail

in the next section.

(b) Alternatively to method (a), one can use eqn. (3.26) and perform the limit of an

infinitely thin layer, r. — 0. The film - film correlation function in this approximation is
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the joint probability [81]

I'(r) ~ r7% Prob ||s(0)| < %|€s( )|, |s(r)] < ?I\:s(r)l (3.36)

The limes 7. — 0 accurately describes scattering from an interfacial system which has no
thickness fluctuations. It is probably preferable to method (a) when discussing systems
where the scattering comes only from the surfactant mono- or bilayers but certainly

inadequate for oil- or water-swollen systems. The limes leads to’

I'(r) <h(.9(())—(1)\/€s2(0) o(s(r)— a) s2(r ‘ (3.38)

In expression eqn. (3.38) the correlation matrix A(r) of the Gaussian multivariate con-
tains now gradient terms (cf. Appendix) and evaluation of eqn. (3.38) becomes far more
difficult than by method (a). The formula for the correlation function reads after ap-
plying the delta functions and with the shorthand sy = (ds/dz(0),ds/dy(0),ds/dz(0)),
5, = (ds/dx(r),ds/dy(r),ds/dz(T))

L(r) = [27]~*|A(r)|~ /V\' /\ d5od3, /%[5 exp [-%Xr‘(r)ﬂ] (3.39)

where \ = (e, @, 8:0, S2r, 870, Swrs Sy0, Syr ). This means that evaluation of eqn. (3.39)
encompasses some eight integrations, if we include the exact evaluation of the various
correlation functions (with finite k., ¢f. Appendix) and the final Fourier transform. In the
best case, for symmetry a = 0, the multiple integral can be reduced to a very complicated
four-fold integral. This makes the exact evaluation of eqn. (3.39) untractable. However,
we can do an expansion analogous to the one which lead to eqn. (3.30). After some

calculation (in the Appendix) we find approximately

dg(r) 0%g(r) ~-199(r)
or ' or?’ ar

|~ o, + 0,02 g(r)+ 40 Gy(r) (3.40)

Ig(r),

where

=L 2 - I
Gy = alg®(r) - ;ar,.gf(v-) + agém (3.41)

"To avoid confusion, we should note here that most recently Gompper & Hennes [82] and Gompper &
Goos [83] tried to adopt the geometrical film coupling into their one parameter bulk GL model so that

they are able to calculate film scattering. Unfortunately, these anthors used the incorrect expression
L(r) ~ (8(s(r)) 6(s(0))), (3.37)

where the integration measure is missing. The results for the film structure factor in [82, 83] are therefore

not correct. Comments [84] and errata to the papers [82, 83] should clarify this situation.
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where in leading order in r~!

—18in kgr

A.[) r

g(r) =~ ¢

gi(r) = et E [L’O cos kor — €1 sin kor
oT

& BOTEYY &0
ga(r) e e [Aé sin kor + 2kof ™! cos kor — €72 sin kor
o

The main effect of asymmetry, a # 0, is the emergence of a linear term in g(7) (there are
in fact also a number of terms in «? which add to Go(r) but as they do not change the

functional form we disregard them here) just as in method (a).

As the exact evaluation of I'(r) is not available we should restrict our attention to the
small & regime. Then we see that the terms arising from ¢2(r), gi(r), g3(r) are of the
form (D > 0)

—ore=1 _o o . , :
e ATE T p 2{51112/\'07'. cos? kor, sin kor cos kor}

After Fourier transform, eqn. (3.33), the leading contributions for small £ &~ 0 are the
same for the two squared terms ~ sin? kor, ~ cos? kor
1 &k
vi(k) ~ Ag + arctan — (3.42
7(k) 0 21“1\,3 2 )
and show a (possible) step-pattern at 2kq just as discussed in method (a). The mixed

term ~ sin kor cos kgr leads after Fourier transform to
~ k" {log [1 +471€3(k + 2ko)?] ~ log [1 + 471€2(k - 2ko)?| } (3.43)

which can be neglected for k¥ — 0 but can have a peaked shape at k ~ 2k for sufficiently
large values of koé. For D < 0 the situation is slightly more complicated. Then both

squared and mixed terms
I D S : .
~ e 27 p=2L5inh? kor, cosh? kor, sinh kor cosh kor
) )7 0 )

contribute at low k. None of these contributions shows any pattern at 2ky. Moreover,
we will see in the stability discussion below that in practice only the contribution which

leads after Fourier transform to eqn. (3.35) is relevant.

While it is not easy to decide how important fluctuations of the film thickness are in reality
we can state that we have established major properties consistently by both methods (a)
and (b) so that the following three patterns should be independent of the details of possible

thickness fluctuations or the possible appearance of seams etc.
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. a characteristic arctangent form of the film scattering at low k for symmetric

sponges

2. an additional term (of possible peak shape at ko, if ko is large enough) for

asymmetric sponges

3. a possible irregularity at 2ky depending on the value of ko

In the following we will assign and discuss these and the corresponding bulk structure
patterns in the context of physical scenarios characterized by the basic parameters x, ¢,

.

Stability Analysis

Having established bulk and film structure factors we can now proceed with the discussion
of several structural regimes as functions of the compositions and bending modulus. In
all of these regimes we assume that ¢ ~ ¢,/k < 1. This assumption is valid for ‘good’
microemulsions with large domain sizes. In the following we will make extensive use of

eqn. (3.15), eqn. (3.18), eqn. (3.21) and eqn. (3.24) to distinguish several typical regimes.

(1) When 6 > 1, but €6 < 1, corresponding to ¢sx > 1 but ¢, k~! < 1 we find that

b~ ¢?, ¢ ~ ¢ so that the bulk scattering peak position ko and the correlation length &
scale like

ko~ ¢s, €~k (3.44)
This defines the scaling regime because it just fulfills the scaling relations eqn. (1.4)

which we expected on fundamental grounds in the discussion of the scale invariance of

the bending Hamiltonian. In this regime we have assumed x > 1, so that
ko > f_l (3.45)

This means that there is short range order over several domains. In this regime the

structure factor can be most conveniently written

agPsk— i

A RN T2 3 e s
(k2 —k§)% + T—I(Uéo@s‘h 2
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For k=1 — 0 this converges towards the monodisperse limit where the Lorentzian eqn. (3.46)
becomes a delta function. Its exact form is most easily derived from the correlation func-

tion
27?2

v(k) — m[

6(k — ko) — 8(k + ko)] (3.47)

Eqn. (3.47) fulfills the two constraints eqns. (3.10,3.11), (1) = 1, (k*) = k2; moreover,
(k') = k. There are angular fluctuations but no fluctuations in magnitude. The structure
is completely determined by one mode, kg, which is in turn determined by the surfactant
concentration, similar to the ACRS model. Indeed, the equations for the structural wave
vector kg in the ACRS and the random interface model have strong resemblance in this

limit

and kg ~

kACRS ., __ 9 Ps (3.48)
$(1-9) 6(1—¢)+ (L -1)

where we have used ¢ = 1/2 + 1/v/27a + O(a?) to expand exp(—a?/2) in eqn. (3.10).
It is perfectly thinkable that a theory based on such a structural premise can indeed
provide a reasonable approximation to the free energy density even though the structural

description is too crude. We will come back to this point later.

In the scaling regime proper (characterized by eqn. (3.46)) we see that the ratio of the
bulk scattering intensity at zero wave vector and at the peak position, v(0)/v(ko), is
independent of the surfactant concentration as indicated by experiments where it is mea-
sured as, for example, v(0)/v(ko) =~ 1/3 — 1/2 in the microemulsions studied in [11]. We
estimate that this ratio is given for bending moduli of x &~ 0.5 which is of the expected

order of magnitude®.

Swelling is another observable quantity. The relation between the structural length scale

and the surfactant concentration in binary sponge phases (with ¢, = r. 5/V)

2PN )
v

(=)' = 1157, 47 = Bro¢;? (3.49)

]
dy = 3 - 2T lc(jl =T

/3

where the factor of 1/2 accounts for the fact that the bilayer periodicity is twice the bulk
periodicity. Experimentally, values of, for example, 3 =~ 1.2 for C'\,F5 - water systems
[85] or 3 ~ 1.4 for quasiternary CPCI - alcohol - brine mixtures [86] have been measured.

Considering that the theoretical value of 1.15 has to rise once we go to interfaces which

undulate more strongly, this result is satisfactory.

and in fact outside the validity of the scaling regime. However, we will see below that extrapolations

using the simple scaling relations are good even if applied beyond the strict limit of validity.
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Finally, the dominant terms in the film structure factor, in the limit & — 0. and for a = 0
in the scaling approximation reads with method (a) simply

£k

arctan —
2

l/f(l‘) ~ .A() I

1
2/.'/\75

For £ of the order of kg the interesting terms (according to method (a)) are

1 k =2k k+ 2k
arctan u + arctan M

i 2
4kk§ 2 2
which cause a shoulder-like pattern a k & 2kq often seen in film scattering signals from

microemulsions [87].

Method (b) yields in the asymptotic limit £~ — 0 a cancellation, G5(r) — 0, because
k% — 30,. This means that the amplitude of the arctan term eqn. (3.50) is rather small
and indicates that the low wave vector scattering from uniformly thick films could be
distinguishable from the signal coming from non-uniform films. This seems to be in
agreement with recent experiments [71]. A possible explanation is that the occasional
seams in the system of non-uniform film thickness contribute strongly at low wave vector.
In practice, however, all fits carried out by Chen et al. and us on grounds of method (a)
were done for rather soft systems where kof~! ~ 2. For these systems the asymptotic
cancellation is not relevant (cf. regime (ii)).

We do not want to make predictions for higher & because we do not have accurate nu-
merical evaluations of eqn. (3.39) available. It is clear from approximation eqn. (3.40),
however, that for large ko€ an irregularity at 2ko can be expected which is ‘at least’ of

shoulder shape as in method (a) (while peak shapes are also possible due to eqn. (3.43)).

For a # 0 methods (a) and (b) give equivalent predictions for the correction linear in g(r)
when a # 0. At low k a correction of the form [—bk? + (-]_l (b > 0) is expected which
would ‘broaden’ the arctangent shape in a way which is not accounted for by standard
RCC theory which predicts an asymmetric contribution of Ornstein - Zernike form (b < 0,
cf. regime (ii)), [12]. Because the bulk structure factor, eqn. (3.46), is peaked we expect
a peak in the film structure factor at & = ko whose amplitude can be used as a direct

measure of the order parameter, a,
l/f(/\) ~ (12

similar to antiferromagnetic systems where the order parameter can be related to the
height of the peak in the structure factor. Intuitively, the emergence of the peak is

related to the periodicity of the asymmetric bulk components such as worms or vesicles.
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In order to test this prediction, detailed small-angle scattering experiments of asymmetric
sponges which are not too far in the vesicular region have to be performed. Ternary
microemulsions might be less suited because the spontaneous curvature term can never
be adjusted exactly to zero. To date most experiments in binary sponges seem to have
operated in the small k regime. It would be interesting to gain detailed experimental data

in the intermediate k range of slightly asymmetric sponges.

(ii)

scaling approximations of (i) become successively worse. We enter a new regime where

When the bending stiffness x or the surfactant concentration ¢, are lowered, the

0 < é < 1, corresponding to k ¢, of order 65!, and both b and ¢ become sensitive to the
value of the bending modulus through their dependence on é. The inverse correlation

length and the structural wave vector are now related by
£71 2 ko (3.52)

There is no longer any one length scale dominating the structure in real space. As ¢ is
decreased, b decreases and eventually both b and § change sign. Our numerical results
and a more precise analysis indicate that b becomes negative while ¢ remains finite and
positive. The locus at which b = 0 or £! = ko (sometimes called Lifshitz line [13]) can
be determined in the ¢ — ¢ plane by the equation system

I L5} L1 1 | ot

51“(1 L2 =/9c 4) —Eln(l +c¢72 +2¢ 4)

1 1 1
+ arctan (l + \/‘E('_‘T) — arctan (l - \/5(:_?) = 2v2cie!

1 i _1 1 A 1
Eln (l ¢ 7 —+/9 4) - an (l +c7 2 + \/E(;_4> (3.53)

+ arctan (l - \/Q('W]") — arctan (l - \fZ('_;“ 2\/5(";'1’

When b turns negative, the structure factor loses its peak at finite kg and decreases

monotonically from its value at k = 0 with a width in & space related to ¢ i.e.
; —1
(k) ~ [—b k2 4 (»] (3.54)

b < 0, similar to the critical Ornstein - Zernike (OZ) scattering from a system close to

phase separation [87].

The behaviour of the film scattering in the vicinity of the Lifshitz line follows qualitatively
the pattern set by the bulk structure factor. The results of method (a) follow again

eqn. (3.34). Similarly, with method (b) at ko & £€=' we find that ¢?(r) — 2k2g%(r)
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and g3(r) — 4k3g%(r). In this regime we have no approximate analytical formulae for

k% available. But e.g. from the example fig. (3-2) (¢s = 0.05) we see that close to the
Lifshitz line k5 ~ 0.01 (k%) so that G'3(r) can be approximated

Go(r) = 40} g*(7) (3.55)

which is equivalent to the result of method (a). Hence in this regime, for a = 0, k <€ kg

1 &k

vi(k) ~ Ag + ——— arctan — 3.56

f( ) 0 21‘,{_2 2 ( )

where £ has to be related to ¢; or x by eqns. (3.23,3.53). For asymmetry an additional

term of OZ form, ~ [—bk? + (']71. (b < 0) appears. The asymmetry order parameter

can therefore not be deduced from the film scattering in this regime. As in regime (i)

the arctangent form of eqn. (3.56) is well-established. Similarly, the more complicated

functional form comprising eqn. (3.56) and the OZ term has been used by RCC to fit

experimental data. We will come back to this in more detail later.

For higher k£ values both methods (a) and (b) indicate that any irregularities around 2kg

become negligible. We confirm this also numerically for method (a) (¢f. fig. (3-1), D).

(i) Finally, at some critical value of 6 ~ —e¢, the coefficient ¢ vanishes. The bulk
structure factor then diverges as £k — 0, indicating an instability similar to that observed

in phase separating systems at their critical point.
After redefining conveniently, b — —b

1 1 1 At
b2 arctan(b™2) = ¢}, b2 arctan(b™2) = —¢

which yields after division and multiplication for small b
=3
"

b~ —éb, o o Ve (3.58)

= = . . 9 ~ . < vx - e h . IS
and after some calculation we find that a good approximation® for the instability line is

5 [8 ey )
¢s BT ;)H+ 128"' Le (3.59)

The situation concerning the film structure factor is similar to the one in (ii); both length

scales, |ko|,&~! < o, so that also in method (b) only the contribution in g*(r) has to be

¢ . . —4 -2 ey 2 ) i
9We checked for several values of o, and found relative errors of 107" and 10™°, for k = 2.5 and x = 0.5,
respectively. We may draw the conclusion that even low order perturbations to the scaling relations can

give valid information beyond the scaling regime.
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considered (a0 = 0)

1 Ek k k bl
= [2 arctan oG B N e e AR N e (3.60)

Al 2(6~1 — ko) 2(671 + ko)

At the instability ¢ — 0, i.e. kg — £~! (where kg has been redefined, ko — ko) we observe
a divergence at zero wave vector, as expected. For a # 0 the monotonic bulk structure
factor has to be added but cannot be observed as a peak specifying the asymmetry order
parameter just as in (ii). In fig. (3-1) we show some examples of bulk and film structure

factors in the various regimes

Film Bulk
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Figure 3-1: A selection of film and bulk structure factors, vi(k) vs k andv(k) vs k (inten-
sities in arbitrary units) where the film structure factors were evaluated using eqn. (3.28).
The relevant parameters are given in the following table. For better visibility we have used
multiplicative scale factors for film and bulk intensities of A, B, C, D, E (film: 1,4,11,2,1
; bulk: 1,20,70,1,40). The dotted lines show the result when we used the approzimations
eqns. (3.34,3.35). The cut-off wavelength for the evaluation of the spectral moments was
uniformly k. = 10kg.

regime ko
i) 1.0
i) 1.0
i) 1.0
i)

111

(
(
(
(
(

To summarize, and to stress the richness of structural behaviour which can arise from the

relative variations of just two length scales we can also draw a scheme

bk > 857

£ < ko

ACRS scaling Lifshitz disordered phase separation

fluctuations

order

where order in this context refers, of course, to short range order.

While it is instructive to study the general patterns of film and bulk structure factors
in terms of ko and €, we have also seen that the mapping (ko,§) < (¢s, x) allows us
to address the more fundamental problem of predicting certain structural regimes for
given physical parameters ¢g, x. In fig. (3-2) we show therefore for specific examples
of concentrations and moduli numerically exact solutions of the functional minimization
problem. The structural wave vector kg is plotted as a function of either bending stiffness

of surfactant concentration. Over much of the domain the scaling relations are obeyed
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and only for very soft and/or very dilute systems scaling breaks down

ol R d : S8 0 ! ;
" -
OD O. oo _2-‘.................
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-2t —4 J
—4t —6F 4
-6 -8 -
—8 . . =10 . .
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log o, log

Figure 3-2: (left) Numerical evaluation of the structural wave vector kg vs ¢4 (solid
line) at a bending modulus k = 2.5. For decreasing surfactant concentration ko leaves the
scaling regime (i) where ko = 7 /2\/3¢, (dotted line) and approaches the unstable regime
(111) where the scaling behaviour has totally broken down. The values ¢, = 0.2, 0.1, 0.05.
~ 0.025 are labeled a, b, c, d, respectively. Real space structures corresponding to these
values are drawn in fig. (3-4). (right) Numerical evaluation of the structural wave vector
ko vs k (solid line) at a surfactant concentration ¢, = 0.05. Similar to the left-hand graph
we see that for a wide range of parameters scaling is obeyed to a good approzimation while
it breaks down at low bending stiffness.

[t is easy to construct graphic images which represent possible configurations of a system
determined by v(k) (cf. Appendix). Sample a is given in a three dimensional representa-
tion in fig. (3-3) which reveals the fascinating complexity of the sponge phase in Gaussian

approximation
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Figure 3-3: Real space configuration corresponding to the ensemble denoted a in fig. (3-
2). The side length of the sample cube is 3 (in reduced molecular units r,, - ¢s). ‘Inside’
and ‘outside’ of the interface are distinguished by brighter or darker gray shades.

In fig. (3-4) we have taken the example systems of fig. (3-2) and plotted cross-sections
through the corresponding real-space images in scaled units. As expected in the scaling
region samples a and b show near perfect self-similarity while sample c is already more
crumpled and has hence larger average domain sizes. Sample d is close to the instability

¢ = 0 and is reminiscent of a mixture close to phase separation.

Figure 3-4: Cross sections through real space structures corresponding to the points a,
b, ¢, din fig. (3-2). The side lengths of all images is equal (10 in reduced molecular units

Pm - ¢s) to underline self-similarity and its breakdown.

In the next figure, fig. (3-5), we show as a comparison freeze fracture microscopic images

from a real system.
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Figure 3-5: Freeze Fracture ElectronMicroscopic (FFEM) images of the ternary mi-
croemulsion system Hy,0 - n — octane - C12E5 (7 wt %) for a nearly symmetric and an
asymmetric system. The octane patches have an irregular leopard-like pattern while water
regions appear smooth. The numbers 40 and 80 give the water / oil asymmetry; here
a = 100 x [n — octane]/([H20] + [n — octane]). The length of the bar is 2000 A (from
Jahn & Strey [88]). Images of the symmetric type led Berk [34] to apply Cahn’s scheme
[35] to mimic the morphology of microemulsions.

Finally, in fig. (3-6) we show the regions of stability for x = 0.5 and k = 2.5.

Figure 3-6: Stability diagram for sponge systems in the soft (k = 0.5) and semi-rigid
(k = 2.5) regimes. The solid lines denote the instability ¢ = 0 below which no sponge
phase can exist. At the loci of the broken lines we have the Lifshitz line, b = 0. The upper

dotted line marks the line of closest packing above which microemulsions cannot Julfill the
geometrical constraints.
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Apart form the previously discussed low ¢, instability there is also a stability boundary
for high ¢, which is caused by a closest packing constraint which is only dependent on
the cut-off k.. The exact position of this line is given by the condition ¢ = —b — 1 (a
divergence at k = k.) and can be approximated by
28 Pt T
Qs (i (3.61)
™V 3

For a = 0, we find e.g. an upper boundary od ¢, ~ 0.37, for any value of k. The value
of k at which the region of stability of the microemulsion collapses entirely can then be

given as K* =~ 0.15.

Bulk Structure Factor at Asymmetry

We want to briefly discuss the bulk structure factor for large asymmetry a. From fig. (3-
6) we see that the region in which the structure factor is well-defined shrinks into a very
narrow strip around the Lifshitz line, b = 0. Its lower bound is given by the instability
¢ = 0, eqn. (3.57), while its upper bound is demarked by the closest packing constraint

eqn. (3.61).

In general, we find that for @ # 0 the bending energy increases (cf. eqn. (3.A6)) while
the entropic term decreases, as we expect. For |a| > 0 we find that ¢ > 1. Along b =0
this means that we can approximate the bulk structure factor by a constant

1/|”|>>U(/~') ~afe = 672 (3.62)

which is fulfilled for ¢, &~ 2/(v/57) exp(—a?/2). Eqn. (3.62) is the maximum entropy limit

(‘white noise’). Its real space correlation function

g(r) ~ =173 [ker cos ke + sin k7] (3.63)

decays only algebraically, and one has to go to |a| > 0 to reasonably decorrelate bulk re-

gions. Remarkably, at modest @ > 1 which is above the percolation threshold (cf. eqn. (3.12))

a statistical attraction between the isolated bulk regions persists. In fig. (3-7) we show a
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cross section through a sample real space structure

Figure 3-7: Cross section through a real space structure with k = 2.5, Qa=10.200="0.14
(a = 1.08). The side length is 1.5 in reduced molecular units T, = Dse

The image looks similar to the FFEM image of the asymmetric microemulsion in fig. (3-

3)).

Discussion

Sponge phase structure has received an appreciable amount of experimental attention. In
microemulsions most measurements restrict themselves to the bulk structure factor while
in L3 sponges only the film scattering signal can be measured. A few authors have also

reported pairs of film and bulk scattering from microemulsions.

Perhaps the most important experimental work in the context of our results are due to

Strey, RCC, Porte and their respective co-workers.

In experiment, a change in the bending stiffness x can be achieved by changing the chain
length of the amphiphile [19]. To our knowledge the only systematic investigation of
a variation of chain length on microemulsion structure has been reported by Schubert
& Strey [87]. There bulk and film spectra of the sequence of amphiphiles CgE5, Cg sy,
C'4Ey have been measured very close to the three phase region (just inside the single-
phase microemulsion region) with the result that the bulk (film) spectra gradually lost
their peaks (shoulders) at kg (2ko) (cf. fig. (4) in [87]) in qualitative agreement with our
model predictions (cf. fig. (3-1)). In the same work Schubert & Strey also investigated
in detail the effect of adding formamide to the mixture with results comparable to those

of changing the chain length. However, as changing the formamide content is likely to

strongly affect the spontaneous curvature. we have to refrain from a direct comparison
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with our model predictions.

Schubert & Strey originally interpreted the change in chain length as a change in ‘am-
phiphilicity’, a term used by Gompper & Schick (we will discuss the Gompper & Schick
theory in more detail below) to assign physical meaning to one of their phenomenological
GL parameters. It measures the ‘tendency to create interfaces in an amphiphilic system’
[1]. C4F; is in this context interpreted as a substance unfavorable to build up interfaces
and closer to a state of molecular dispersion. At the same time, however, Schubert & Strey
pointed out that it was clear from their and other experiments that even CyE; had well-
defined internal interfaces while the scattering indicated the absence of well-developed
microemulsion structure. Schubert & Strey therefore conclude that the distinction be-
tween the two extremes, a well-defined microemulsion and a molecular dispersion is too
simple. We have seen from the structure factors and real-space visualizations that this
intermediate state between the two extremes can be sensibly interpreted as a state in

which water and oil are separated by strongly non-scaling, crumpled interfaces which can

be even torn up into smaller closed structures and at the same time still have clearly the

character of a complex fluid with well-defined interfaces. In disagreement with [89] we do
not find it necessary to depart from the Helfrich Hamiltonian in order to describe short
chain amphiphilic systems but suggest that the interpretation of these complex fluids on
grounds of the random interface model can reconcile the experimental findings of Schubert

& Strey with a consistent theoretical picture.

The low wave vector region of film scattering from L3 phases has been in detail examined
in the pioneering work of RCC [12]. They find experimentally and on grounds of their
GL theory, eqn. (3.8), that the generic form of the film structure factor at low & (not too
close to criticality) is [77]

1 " B arctan kg, /2
IR k262 A kze ke /2

1 i B 1
IS kEEAS kA Tk 2 £

(3.64)

[/;j/!?l m ( A.)

(3.65)

l/;ﬁy”l m (A‘ )

which has provided excellent fits to measured light scattering data [12, 77]. First of
all, we note that the derivation of eqns. (3.64,3.65) was gained in the RCC model from
the energy-energy correlation function in Gaussian approximation i.e. essentially from
the square of the bulk correlation function, g*(r), which is also a significant term in our
derivation. Not surprisingly, many general patterns of our results resemble the predictions

of eqns. (3.64,3.65). If we stay for the moment with real ko the generic form of our film
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scattering signal can be written approximately for low k
a? 4 1
k% — bk?2 + ¢ 21\'1.75

/5
vi(k) ~ const + arctan % (3.66)

We saw that in all regimes the arctangent function dominated the low k scattering for
symmetric sponges (a = 0) in our theory. For asymmetric sponges we find a low k
contribution from the Lorentzian bulk structure factor which broadens the arctangent
contribution and — for appreciably high x — we also expect a peak at kg whose height
is a measure of the asymmetry order parameter a (which is proportional to the mean
curvature). It would be interesting whether experimental systems can be found which
show this pattern. In regime (ii) for rather short correlation length this peak should not
appear and instead we would find essentially an OZ correction for asymmetric sponges just
as in eqn. (3.65). What differs between eqns. (3.64,3.65) and our calculation. however.
is that because we refer to bulk degrees of freedom and couple the film geometrically
the system is characterized by one correlation length ¢ only, unlike the €y, & used in
eqns. (3.64,3.65). Another difference to the works of RCC is that we can relate the
parameters in the film structure factor to fundamental physical variables, x and ¢s. As
we saw from the comparison to the measurements of Schubert & Strey our predictions

work qualitatively satisfactory.

In principle we can also go beyond the low k region in the film structure factor. We saw
that this is tractable with method (a) but very complicated with method (b). We know
from experiment [87, 90] that film spectra from microemulsions tend to mostly show a
hump-like pattern at 2ky while film spectra from binary sponge phases more often show
a pronounced peak [91, 92]. The hump-like pattern can be reproduced by method (a).
Whether or not a peak can be produced by method (b) will have to await extensive
numerical implementation of eqn. (3.39). In any case, we will see in Chapter 5 that the
random interface approximation is — not surprisingly — inappropriate for k! — 0. Mode
- mode correlations become then stronger and the region around 2k develops into a peak

even in semi-rigid systems — as measured in many L3 sponge phases.

Thus a large set of observed patterns in film and bulk scattering signals are derived by
our theory in a unified way, with a minimum of assumptions and practically no adjustable
parameters on the basis of the bending Hamiltonian. All results can be related to the
basic parameters x and ¢,. We can proceed from here by examining the intrinsic reasons

for the typical sequence of structures upon variation of k¥ and ¢,. Whereas it is clear

that lowering of the bending stiffness should ultimately lead to more disorder, it is less
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obvious why this should happen upon lowering the surfactant concentration. If we write

the crucial parameter § (eqn. (3.18)) explicitly
4 = 00KkDs — ko (3.67)

we see that the solution of the problem is evident. Porte et al. already pointed out that
scale-invariance of H is not strictly accurate but that there is — apart from the surfactant
concentration — a second important length scale, the microscopic length scale, r.. The
physical phenomenon which is induced by this additional length scale can be interpreted
as follows: for any given finite x there exists a small ¢, (and vice versa) for which the
microscopic correction terms in eqn. (3.67) completely dominate the scaling term. These
corrections are intimately related to the molecular length scale which is apart from the
surfactant concentration the only other relevant length scale; the entropy gain from form-
ing small objects on molecular scales (single molecules, micelles, small droplets or small
sponges) overwhelms the energetic gain associated with the formation of microscopically
smooth membranes, causes the breakdown of scaling and ultimately the instability. The
effect becomes more severe, the smaller the surfactant concentration. This is in fact anti-
intuitive. For example, Wennerstrom & Olsson argued [27] that corrections to the scaling
of this type cannot be physical because the microscopic length scale should become rel-
evant when the structural scale becomes comparable to the molecular scale i.e. at high
surfactant concentration rather than at low surfactant concentration. However, it should
be pointed out that it is well-known in the theory of critical phenomena that the micro-
scopic length scale may well be important even close to criticality when intuitively only
the diverging correlation length should play a role. The microscopic length scale causes
in the case of critical phenomena the occurrence of anomalous dimensions [6] and in our

case of surfactants in solutions it causes an instability towards phase separation.

We want to conclude this discussion with two brief remarks. Firstly, one should note that
if we would operate in the context of the standard Monge gauge with its fixed topology
(e.g. no expulsion of vesicles or overhanging membranes are possible) this effect has to
be far weaker. Secondly, we have addressed so far only limits of stability without having

discussed thermodynamic instabilities which might pre-empt these. Therefore the critical

. [ X . e il y : -
scaling which can be derived from eqn. (3.67), ¢s ~ k7", is only to be seen as a lower

limit. Thermodynamic instabilities might well occur before that with a critical
b5 ol Swithy "z i< (3.68)

so that the instability given by eqn. (3.67) can in fact be a precursor of a phase transition.
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Having analysed in detail microemulsion structure, its relation to bending constant and
surfactant concentration and the limits of stability of the bicontinuous phases we can now

proceed with the consistent discussion of the thermodynamics.

3.2.2 Phase Transitions

Experimentally two types of transitions are observed in the isotropic region of the phase
diagram. In ternary systems a multiphase sequence is seen at low surfactant concentration,
cf. fig. (1-1), where the middle-phase sponge is in equilibrium with oil and/or water rich
(z.e. highly asymmetric, |a| > 0 dilute vesicle/micellar) phases. Binary sponge systems
when diluted can undergo a phase transition from a symmetric sponge (a = 0) to an
asymmetric phase (a # 0), called symmetric - asymmetric (S/A) transition, which can be
first order (e.g. C'12Es5 - water [85]) or continuous (e.g. SDS - pentanol - brine [12, 93]).
The relation of the free energies of symmetric and asymmetric systems is therefore crucial,

if we want to approach critical phenomena in isotropic amphiphilic systems.

We can determine the minimal free energy density consistently by inserting the minimal
structure factor which we gained by 0 f[v]/0v into eqn. (3.9). Then asymmetric systems
with @ # 0 can be studied either numerically, or — more conveniently — by means of a
Landau expansion of the minimal free energy in the asymmetry order parameter a. The
order parameter a is of direct physical importance since it is proportional to the mean
curvature of the interface <b(s —a) |€s| ]1> ~ a, eqn. (3.A4). The free energy density f

can then be written
f = ao(K, R, ¢5) + az(k, R, ds) & + aq(k, R, ¢s) a* + ag(k, R, ds) a® + O(a®) (3.69)

[n the previous section we had seen that the simple solutions eqns. (3.15,3.21) which are
only valid for k£ > 1 are very useful even outside their strict range of validity e.g. to
approximately determine the limit of stability of the bicontinuous phase. Similarly, we
can use eqns. (3.15,3.21) to approximate the free energy density f. To make this problem
tractable we have to restrict ourselves to terms down to order k~!. We can expand the
free energy density f with respect to 7 where § = k2 [b()d)sh’_l — Tz] (eqn. (3.18)) and

7 = k. The expansion of the free energy density in 7 is convergent
f=fo+rifa+ 1 fs+ O(7%) (3.70)

After this expansion we have to consistently collect terms in 7 and k. After tedious but
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straightforward calculation and another expansion in ¢, we find

1 1 152 1 s v s
T 9.2 192 og( = P e Gl (3.71)
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We have compared the above approximation for f with the exact calculation of f based
on the coefficients eqns. (3.15,3.21) and confirmed very good convergence. For example,

C

we found for k£ = 10 the relative error to decrease from 5.5% to 7.5-107°% when going
from ¢ = 0.3 to ¢, = 0.01. Similarly, the relative error for constant ¢, = 0.1 developed

from 15.5% to 1072% when increasing & from 1 to 10°.
o

The above expressions can then be inserted into eqn. (3.70) and expanded in « to yield

the Landau coefficients ag, aq, a4 ete.

Corrections to Scaling and Steric Repulsion

The leading terms comprising the symmetric term ag can be written

ap = fs 5 fr T3 f/z

o2 log ¢s + const
T

4m? 450 L

A E 43
163&1*_12H o

f/z

In leading order in the elastic moduli we recover the pure scaling form f of the free energy
density. In this limit the free energy density is a monotonic function of ¢ and a change
in surfactant concentration cannot yield phase transitions as the surfactant concentration

is varied — as discussed above — in contrast to experimental observation.

The remaining terms can be split into the non-scaling corrections f. and the scaling correc-

tions f; (both up to leading terms in the moduli). We note that the leading corrections f,
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(where const comprises terms which are not dependent on ¢,) are actually singular'® for
¢s — 0, but have small coefficients of order unity compared with the scaling term whose
coefficient is order s (assumed large). The term log¢; comes from logé~! (€ ~ H(/)S_].
eqn. (3.44)) which measures the entropy associated with polydispersity given by the width
of the correlation peak. This stands in contrast to the types of corrections which have
been discussed so far in the literature and which vanish for ¢, — 0. A logarithmic cor-
rection based on the renormalization of the bending constant in planar geometry (low

temperature Monge approximation, [15])
f~ A¢S + B~ 142 log ¢, (3.78)

has been suggested by a number of authors [5, 12, 31]. Wennerstréom & Olsson, on the

other hand, suggested higher order corrections of the type [27]

[~ [A+ B¢ (3.79)

which originate from higher order bending terms. Experimental verification has been
attempted and seems to support a logarithmic correction in some systems [12] but not
in others [91, 94]; the experimental difficulties are the smallness of the effect and the
restricted swelling of samples due to instability either towards ordered phases at high
surfactant concentration or towards vesicular systems at low surfactant concentration.
We argue here that because the random interface model operates in a well-defined range
of k vectors down to a few molecular scales renormalization  la eqn. (3.78) should in any
case have minor significance. Even if we would include these terms explicitly we see that
both eqns. (3.78,3.79) are minor because logarithmic or higher order terms are weaker
than the algebraic, low order ones found here. More generally, with regard to eqn. (3.78),
we also put forward that there is some doubt whether the planar result eqn. (3.78) can
be applied to the case of non-planar interfaces. This has most recently been shown by
Morse & Milner who proved that for the case of spherical interfaces the renormalization
has to be strongly modified [95]. It has also been argued e.g. by Wennerstrom & Olsson
that the notion of renormalization is not straightforward in the case of sponge phases due

to the absence of a well-defined reference surface [27].

Finally, there are scaling corrections which are themselves proportional to ¢2. They are
to leading order given by

45
) 13 (3.80)

frn = mh

10 . . . :
Singular corrections are known in other systems, for example, the confluent singularity of the suscep-

tibility in magnetic systems [6].
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We see immediately that f;, has just the functionality analogous to the leading terms in
eqn. (2.49) for smectic lamellar phases. This term can therefore be interpreted as a steric
repulsion term of Helfrich type. It has been applied and discussed (but not derived) in
the context of a coarse-grained lattice model by Golubovi¢ & Lubensky [32]. Eqn. (3.80)
for sponge phases motivates its use in [32] and is to our knowledge the first systematic

attempt to derive this term in sponge phases.

S/A Transition

In standard Landau theory (ie for a4y > 0 which we assume for the moment ) the locus of

the phase transition is determined by the quadratic coefficient. We find up to O(1) in

1 2 g 4,
—¢2 + —7lke3 (3.81)

Sl o i 10

(where we have now omitted steric repulsion terms because we assume them small). For

small ¢ and large x we can solve and see that the critical surfactant concentration oF —

determined by ay(k,¢}) = 0 — reads
: 1
by D) 3
O~
? 1874

Because derivation of eqn. (3.82) is rather tedious it is in this case worthwhile to verify

our approximations by comparison with exact,

-1.5 numerical results. We show this in the log -
log plot of ¢ vs k in the inset. As expected
the ~ k=3 law holds for large k while correc-
tions cause a steeper decay at small bending
constant. If we compare with the structural in-

stability, eqns. (3.67,3.68), we see as expected

-3.0 that the thermodynamic instability pre-empts

=110 4 in general the structural instability (but ¢f. the
following paragraphs for a more detailed discussion).
The transition at ¢* is only topological without changing the symmetry of the system

(similar to the classical liquid - gas transition). In fig. (3-8) we show three dimensional

images of systems in the asymmetric region of a specific example with & = 2.5. We see
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a sequence of structures from a worm-like structure to systems which are beyond the

percolation threshold (a =~ 1) and thus of more or less vesicular nature.

Figure 3-8: Real-space structures according to the structure factors variationally mini-
mized for k = 2.5,k = 0,0, =5, ¢; = 0.9¢%, 0.4¢%, 0.4¢% and a ~ 0.54, 1.3, 1.7 (from left
to right) showing the evolution from a weakly asymmetric worm-like (left) to a strongly

asymmetric vesicular phase (right). The sidelengths of the sample cubes are all equal to
50 film thicknesses.

The swelling behaviour around the transition should also show observable change. Fig. (3-

9) shows a

lOg q)s-2.0

Figure 3-9: The structural wave vector ko over the surfactant concentration for k
T'he locus of the S/A transition is seen as a cusp.

log - log plot of the structural wave vector ko vs the surfactant concentration for x = 2.5.

At the transition the scaling changes visibly into a much weaker dependence. This seems
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to be in agreement with experiments [78]. We find a similar cusp irregularity when plotting
the correlation length £ vs ¢ (not shown here). Thus our calculation indicates that near
the phase transition the bulk correlation function remains analytic and in particular
v(k = 0) is finite. At the same time the second derivative of the free energy density with

*

s Vanishes, which must lead to a divergence of the structure factor at

respect to a at ¢
k = 0 due to the relationship between zero angle scattering and osmotic compressibility

(5, 91]
af
TR="1= O— 3.83
Ji 5% (3.83)
This apparent contradiction can be explained by carefully considering the order of approx-
imation to which v(k) and f[v(k)] have been calculated. Consider, for example, Landau
theory where in the free energy (e.g. the uniform trunc of eqn. (3.8)) no gradient terms

are necessary to predict phase transitions. Thus at this level a uniform order parameter

distribution or flat correlation function is sufficient to make statements about phase tran-

sitions. Only the Ornstein - Zernike extension which introduces self-consistently gradient

terms can also provide suitable structure factors [23]. We can argue similarly for the ran-
dom interface model. In the limit of very large bending stiffness, x=! — 0, the structure
factor is essentially given to zeroth order by a delta function: vy ~ é§(k — kg), although
there still are random fluctuations in the direction of the wave vector. The first order
free energy density, fi[vg], is given by eqn. (3.75) and does not show any phase transition.
The structure factor consistent with fi is given by eqn. (3.46) to first order in x~! and

we see that then

92

(())(}[21 = vtk 0= glc =15/ (3m )k "or (3.84)
are fully consistent. The next order of approximation, using the structure factor vy, yields
a free energy, fi[v1] equs. (3.69,3.82) which does exhibit an S/A transition. However, the
structure factor v, consistent with fy[r] requires a very complex, higher-order calcula-
tion within the Feynman - Hellman variational theory [43]. Although f; clearly exhibits
a phase transition at ¢¥ indicating v5(k = 0) — oo, the structure factor v, is too approxi-
mate and only the next order of approximation, 15, is expected to show the divergence at
the right place. Eqn. (3.46) is therefore not accurate too close to the critical point. This,
however, should not affect the qualitative properties of the results for the scattering away

from the critical region.
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Nature of the S/A Transition

The quartic coefficient up to O(1) in the moduli reads

3 52+ T (2264 57] 63 (3.85)
4 = —— —— 2% oK | D.0¢
e 280 s

If we would only take leading terms in the moduli into account, and remember the local
stability constraint —2x < & < 0, all coefficients ag,,, n > 2 including a4 would always be
positive. This would indicate that the S/A transition is in any case continuous. On the
other hand, we see from eqn. (3.71) (and explicitly in eqn. (3.85)), that corrections could
in fact change the sign of the higher Landau coefficients, if x is low enough thus allowing
for the possibility of first order S/A transitions and tricritical points [96, 12, 79]. The

general form of the Landau free energy eqn. (3.69) is in fact the same as in the classical

example of a tricritical system, the Blume - Emery - Griffiths model [97] of He?/Het

mixtures'!. There and also in [12] generic phase diagrams have been studied in detail.

First Order Coexistence

A more general possibility of a first order transition would be first order coexistence
commonly observed in ternary microemulsions. A continuous S/A transition would create
an equilibrium of two microemulsion sponge phases, one with more water than oil content
and an analogous one with reversed oil / water ratio [31]. There is to our knowledge
no experimental evidence for this. Similarly, there are also binary systems which show
coexisting symmetric and asymmetric phases, e.g. [85]. This is physically realized when
the critical surfactant concentration ¢* lies in the two-phase region predicted by first

order coexistence.

Technically, first order coexistence can be most conveniently studied by the double tangent
or (in the case of ternary microemulsions) double plane construction. This technique
is discussed in detail in [2, 12, 31]. We can briefly explain the principle for the case
of two phase co-existence in sponges (which is equivalent to three phase coexistence in

microemulsions). After performing the minimization

f(0s, 5, k) = ming f(a;dy; k; K)

"For a detailed discussion cf. [96].




3.2. Structure and Thermodynamics 71

equilibrium for two phases with concentrations Ps1, Ps2 at constant total volume requires
the equality of the chemical potentials y and the osmotic pressures II of the two phases
(2, 12]

of of : of % of

o —= “‘ — Lo [((_’)])—(’)I‘ = f(O..z =D — 10!
()(ps bs=ds1 ()(;)S bs=hs1 Hs 2 2 ()Os b= 3 52) 2 00 lps=¢s»

and results in

f(#s1) = f(hs2) = s (951 — 952) (3.86)

which can be geometrically interpreted as the equation of a common tangent (with slope
is) along f. In the case of binary sponges the two concentrations ¢, ¢s2 mark two phase
coexistence (graphically usually connected by a tie line) and in ternary systems the points
(1 = 1/2,04), (¢2,0s2), (1 — ¢2, ps2) establish the three phase triangle (e.g. the region
denoted 3 in the phase diagram fig. (1-1)). The determination of possible two phase
regions in ternary systems requires the analogous procedure, but now a more general

common tangent plane is constructed
f(1,051) = f(P2, Ps2) = 1 (d1 — h2) + s (ds1 — bs2) (3.87)

where g is the chemical potential related to ¢. In practice one can carry out construction
eqn. (3.86) numerically with the exact free energy density calculated from eqn. (3.9) with
the minimal structure factors. We plot in fig. (3-10) the numerically determined free

energy density f for K = 2.5, k = 0.

0.0 0.1 0.2 0.3

s

Figure 3-10: Typical free energy density f(¢s) for k = 2.5, & = 0 used for the double
tangent construction. The low ¢, cut-off occurs at ¢ ~ ¢g (eqn. (3.89)).

There is a local minimum in the free energy which can be identified with the middle
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phase microemulsion (or symmetric binary sponge). The situation of the ‘deep minima’
at high asymmetry is similar but less severe than that in the coarse-grained lattice model
where the random mixing entropy diverged for ¢ — 0 [31]. In our case the minimum
is also a boundary minimum but converges towards a finite value of the free energy
density. This is due to a flaw common to all lowest order curvature theories when one
moves into the vesicular region [31]. Linear elasticity is not fully adequate to estimate
the energetic cost in the dilute phase. This happens formally in the random interface
model due to the exponential term in a which converges to zero for strong asymmetry.
It becomes extreme when we go to micellar dimensions which are clearly ill-described by
eqn. (1.2). It essentially means that in this case we only minimize with respect to the
entropy under the physical constraints. Then the ansatz for the structure factor reads
v(k) = [-bk* + (-]—1. For small b a simple calculation shows that the two constraints
can be solved approximately by ¢ = b (k?) + (672)~" and b =~ [-7(3 — 5 (k?))]/[6(157° —
4272 (k%) + 357> <A'2>2)]. When a — i.e. the density and size of the vesicles — is adjustable,

as it is in the three phase curve, we find just the maximum entropy solution as we should

b=10% = [(iwz]_l . (T4 = 3E [log [3/—;05” g ; f== [127"2]_] log [672] (3.88)

This is physically sensible in the context of our theory, and differs from coarse grained
models where the random mixing entropy diverged towards —oc for large asymmetry [31].
In ACRS the choice of a molecular cut-off i.e. a maximal value of a was therefore crucial
because the depth of the asymmetric minimum was very sensitive to it, ¢f. [31]. Here
the situation is less complicated because the maximum entropy state is well-defined and
the detailed definition of the asymmetry cut-off is less important. A sensible choice of
the asymmetric cut-off can, for example, be estimated by assuming monodispersity of the
isolated vesicles so that

ar 3 . 2 e :
n —r° = ¢, T ATT Te =45 ¢ = P (3.89)

3
where n is the vesicle density and r the vesicle radius. Setting a minimal radius to, say,

r & 3-r. we find the minimal ¢ = ¢;,.

While we can be relatively confident that the entropic part of the free energy density is not
unreasonable this is clearly not the case for the energetic part. The assumption of linear
elasticity breaks down below a certain vesicle radius [70]. This should be remedied e.g. by
introducing higher order curvature invariants, for example, of the kind eqns. (3.A7,3.A8).
This would introduce new phenomenological curvature moduli about which there is prac-

tically nothing known. However, higher order elasticity would also simply allow for a




3.2. Structure and Thermodynamics 73

wider range of Gaussian moduli beyond the constraint —2x < £ < 0. Within the context
of a pure elasticity Hamiltonian the possibility of a positive value of £ > 0 would be the
simplest explanation why in some systems a continuous S/A transition is observed while
in others the transition is first order: for a sufficiently positive £ > 0 the deep minimum
e.g. in fig. (3-10) vanishes while the continuous S/A transition (as given by eqn. (3.81))

is not affected by & and remains then the only possible source of criticality.

It is therefore safe to say that our calculations indicate that a first order transition is
‘more common’ than a continuous one, if we define common as a system with negative
saddle-splay modulus. This finds some support by the fact that ternary microemulsions
show first order transitions and that continuous transitions in L sponges are certainly
also not the only possibility. The fact that — to our knowledge — continuous transitions
in L3 phases have only been observed in relatively complicated systems, SDS - pentanol

- brine [12] and OBS - pentanol - brine [79], might support this argument.

For the standard case of negative & we can carry out the double tangent construction
e.g. for the case fig. (3-10). We consistently found in all cases we studied that at constant

K the relative position of the three phase point is still well described by the scaling law for

1
Sl

the critical S/A transition ¢5 ~ k™2 so that this relation holds in our model independent
of the nature of the transition. In fig. (3-11) we show an example for a microemulsion
phase diagram for x = 5. It shows the characteristic 2 - 3 - 2 multiphase sequence as in

fig. (1-1)

0.12

w
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0.0 : . 0.6 0.8

0

Figure 3-11: ¢ - ¢, phase diagram with k = 5, K = —=5. The lower and upper crosses
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denote the three phase point for k = 0 and k = —10, respectively. The cut-off scale used
here was three times the usual cut-off.

Often measured three phase points are quite low in ¢; and we used the little freedom
we have in terms of parameter adjustment to raise r. to 37. in order to lower the three
phase point. In principle, however, the butterfly shape is very typical no matter which
parameters we use. Changes in k or & (or even r.) only stretch or squeeze the basic

butterfly shape.

3.2.3 Relation to Coarse Grained and Ginzburg - Landau Theories

Firstly, we can compare with the ACRS coarse-grained model. There a heuristic bending
energy B and the random mixing entropy were used, cf. [31]. For small deviations from

bulk symmetry, ¢ = 1/2, we can use again « ~ ¢ — 1/2 and expand

BACHSI (,)'3, [(’1 + (‘202] : iy GALRS ¢3 [r;; - r,m“z] (3.90)

where the ¢,, ¢4 are positive numerical constants. If we set £ = 0 in the random interface
model, keep the leading terms in & in the bending energy and the leading terms in
the entropy and expand both in terms of a, we get for B and —S the same functional
forms with respect to the asymmetry parameter a (but with different ¢, ) so that the
qualitative similarities of the two models in their thermodynamic predictions do not come
as a surprise. However, —S does not scale like ¢? but like the cubic microscopic scale.
Most recently Sturgeon & Reiss [98] have argued that indeed for an estimate of the
configurational entropy of microemulsions the entropy should not scale with the structural
length scale but with a microscopic one. A very detailed discussion specifically dedicated
to this matter can be found in [98]. This difference in scaling is in any way not surprising
because in the ACRS model the breaking of the scale invariance only enters through the
renormalization of £ while in the random interface model stronger algebraic terms are

present, as discussed above.

The first scaling term in the random field entropy is in fact

451% , 2 -
— Sp = 207 =13 3.91
WA S (3.9)

which is a steric repulsion term which grows for increasing asymmetry order parameter.
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We are now also in a position to determine the phenomenological Ginzburg - Landau
parameters in the theory of Teubner & Strey and in the extended version due to Gompper

& Schick.

In the TS model the parameters ay, ci, ¢y in eqn. (3.5) can be simply estimated by

comparison of the coefficients in the structure factors [37]. Then

A cla, s, k) b(a, ¢s, k) 1 3.9
9 = — g = —. C)g = ——— B S
2 ala, Os, K) l ala, ¢, K) 7 ala, g, k) ( )

where the a(a, ¢, k), b(a, s, k), c(a,ds, k) have of course been determined in detail

above.

Gompper & Schick generalized the functional of TS to include a number of experimental

observations!?

9

Fas(s) = /(/F[f(-s) + 9(s)(Vs)? + ¢(As)? (3.93)

where we have kept the original notation of [13] for the GL parameters. Unlike eqn. (3.5)
the local and gradient terms are now not purely quadratic or constant. In order to model
transitions between the microemulsion and the oil- or waterrich phases, GS assumed
special functional forms where f(s) and g(s) are of convenient piece-wise parabolic and
piece-wise constant form, respectively (cf. e.g. [13] for details). We can derive the analo-
gous functions by expanding around the uniform component (£ — 0). The coefficients of
gradient and Laplacian terms remain the same as in TS theory while the constant term,
the uniform bulk free energy density, is given by the Landau expansion eqn. (3.69). It is

therefore possible to fix the parameters of bulk GL theories.

At this stage, however, we cannot fix the parameters in RCC GL theory. Our results
can only be related with the parts of eqn. (3.8) associated with the asymmetry degree of
freedom. However, the surfactant degree of freedom is not comparable in the two models
because the random interface model (a) keeps the surfactant concentration constant and

(b) does not contain gradient terms with respect to the surfactant concentration.

"?We note that the causality is reversed in comparison to the random interface model: experimental

patterns are input, not results.
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3.3 Discussion and Outlook

The shortcomings and merits of the random interface model should be briefly summarized

and discussed in the context of alternative models.

Random interface theory represents a useful connection between standard field theoretical
models and the membrane description of amphiphilic phases. It combines the advantages
of both approaches. On the one hand it allows a genuine continuum description of fluctu-
ating surfactant solutions while it stays close enough to the membrane description to refer
to the natural parameters s, i, ¢s, ¢ without need to introduce the abstract parameters
of GL theory. Perhaps the most attractive feature of random interface theory is its ability
to unify predictions on structure and thermodynamics of fluctuating membranes and to

stay at the same time fundamental enough to allow for comparison to experiment.

The model can successfully and consistently predict two of the most established charac-
teristics of the sponge structure factors: the Teubner - Strey form of the bulk structure
factor and low wave vector scattering with an unusual arctangent form of the film struc-
ture factor. The evolution of the bulk and film structure factors upon change of k and ¢;

characterized by the loss of a scaling structural length scale — agrees with experiment,
provides an insightful basis for their interpretation and sheds some light on the subtle
mechanism driving the entropic instability underlying the sponge - dilute transitions: the

important role of the microscopic length scale.

Consistently, evaluation of the free energy density resulted in the typical symmetric -
asymmetric transitions in Lz sponge phases and microemulsions which are in general first
order or under appropriate conditions sometimes continuous in agreement with experi-
ments. The asymmetry order parameter (essentially the mean curvature) in L3 sponge
phases was predicted to be measurable using the film structure factor of asymmetric

phases.

However, there are also a number of imperfections in the theory. Firstly, second order
Feynman - Hellman theory is needed to bring the structure factor better in line with the
criticality implied by the free energy density. Maybe more urgently, it would be very

interesting to see how the ‘softening’ of the geometric coupling of bulk and amphiphile

degrees of freedom would affect our predictions. In this case the uniform order parameter

a would be replaced by a spatially varying «(7) which would be again assumed to have
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a Gaussian mode distribution. Then we could explicitly diagonalize and proceed by
minimizing not only the bulk structure factor but also the structure factor associated with
the amphiphile. It is not unlikely that structure factors which correspond to uniform a
are in general not the minimal solution. Non-uniform a would slightly soften the film -
bulk coupling, enlarge topological phase space and stress the role of &. Secondly, the type
of occurring transitions cannot be reliably predicted mainly because of the failure of any
linear bending energy model to accurately estimate the energy of small vesicles or even

micelles.

We also want to briefly discuss a few aspects of the above work in the context of established

or alternative literature.

Maybe most notable throughout this chapter (and the remainder of the thesis) is the
absence of any reference to the well-established de Gennes - Taupin persistence length
&y [29] which is used extensively throughout the literature on flexible membrane models.
While this notion has sparked pioneering insights into the mechanisms which underly
fluctuating membrane systems we should note that it is — similar to the related issue of
the renormalization of the bending constant — derived in the approximation of quasi-flat
membranes [15]. It is therefore very useful in the context of phases which are essentially
twodimensional (smectic lamellar) but might be less applicable to topologically complex
systems. For example, in the AOT system studied by Porte et al. [5] the persistence
length is several orders of magnitude larger than the structural length, casting doubt on
the utility of the concept for such structures. Instead of a persistence length &, we used
a correlation length & which contains information about both the correlations along the
surface and correlations to neighboring surfaces. This seems a natural and physically
sensible extension of the persistence length concept for topologically complex structures

in three dimensions.

The models most similar to the random interface description are GL models. The re-
lationship to the bulk (one - parameter) GL models due to Teubner & Strey (extended

by Gompper & Schick) is clear: these GL models are, roughly speaking, low wave vec-

tor expansions of the random interface formulation. Our approximate random interface

description provides a physical basis for the assumptions which are necessary to create
these GL models. This is for example demonstrated by our ability to fix the GL param-
eters in terms of the natural parameters which originate from the bending Hamiltonian.

The relationship to the two - parameter RCC GL model is more tentative with respect
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to the amphiphile degree of freedom. The best modelling of the amphiphile degree of
freedom remains certainly a point of discussion (cf. above); geometric coupling might be

too strong.

In conclusion we can state that the results of this chapter — despite weaknesses — can be
taken as satisfactory evidence that the random interface description of sponge phases is a
solid approximation to the challenging and still outstanding problem of the exact solution

of the bending Hamiltonian.

It encourages the further investigation and application of the model. Some possible di-

rections are

systematic study of the evolution from a binary L3 sponge to a microemulsion:
Gompper & Schick pointed out in [1] that an investigation of the intermedi-
ate structures with two kinds of internal interfaces has received hardly any
attention. While the random interface model can readily treat the curvature
energy (by simply adding the curvature energy of two interfaces with half the
bending modulus of a bilayer) and the scattering properties of such systems
given by eqn. (3.27), a refined approach to the entropic contribution remains
an obstacle to a full thermodynamic treatment. Recent experimental interest

in these systems [72] adds urgency to the topic.

systems with non-zero spontaneous curvature, e.g. vesicle phases which are of

technological importance.

inclusion of direct interactions e.g. of electrostatic type: similar to the unsat-
isfactory situation in the field of steric interaction where only Helfrich could
offer a low temperature theory for simple smectic lamellar phases, most works

on direct interactions of electrostatic and vdW type are also restricted to the

relatively easy case of smectics. Most recently, Menes & Safran [99] have

treated interacting microemulsions for the case of high bulk asymmetry. A

consistent treatment near symmetry is still missing.

In the next chapter we will discuss some aspects of another important topic: the relative

stability of the sponge and lamellar phases.
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3.A Appendix

Statistical Averages We follow the straightforward statistical method explained in
Chapter 2. However, a few non-standard variations to the procedure have to be explained.

The correlation matrix is now

Sz

3|— (k*) /3

0

(E15

0

The difference to the calculation of averages in the appendix of the second chapter is that
now the integration is performed over the volume V rather than the base area A, and
that the implicit forms of the differential operators are needed. In detail [100]

s

v

H

with @ = Vs/|Vs|.

Now, as shown in the introduction chapter, the volume averages can be identified with

the ensemble averages over some differential operator O and therefore

<(‘)(s —a) |€’s[ ()>U = / ’ / dsds;ds;; P(s,s;,$i;)0(s— (1‘)'63[ O (3.A2)

where we have used the Dirac delta function to restrict the integrations to the inter-

face. Six of the ten integrations are easy because their section of the covariance matrix
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is diagonal. The problem is then reduced to a four-fold Gaussian integral with simple ar-
guments. The considerable computational work can be surmounted by symbolic software
packages. We will use the same method with varying covariance matrices in this and the

next chapter. All these cases follow the same principle. In the present chapter we find

Py o % i‘;ﬁg—ﬁ (3.A3)
() (8(s — a)lFslB), = 3,/% () (3.A4)
(‘:—'.)“<a<s—a)|v<|1y>0 . %<Az> (a2 - 1) (3.A5)
Syt (s(s - )IFslH2), = ()7 (8(s - )95l K) + £ (1) (1) (3.46)
(%)_]<b(s—(1)|€s|H3>U . ”_2 iZég + :;?O(a'z—3)<k2>2](3.1\7)

(oA prens bl i g e T 161 Lo e o1 R 1
() <a(.~_(.)[v.511{1\>0_ / 1% 300 + gl —.})<A>] (3.A8)

It was Teubner who originally derived eqns. (3.A3,3.A4,3.A5,3.A6) in a very similar way
which is outlined in detail in [37] but will not be used here. All our results agree with
Teubner’s original results [37]. Furthermore, as a crosscheck, Eqn. (3.A3) - eqn. (3.A8)

will be independently, numerically verified at the start of the Appendix to Chapter 5

Self - Avoidance The self-avoidance of random surfaces in not completely self-evident.
There is the possibility of zero crossing which are not of first order i.e. coincide with
extrema, saddle-points ete. We have drawn a collection of possible local structures in the
inset below, where ‘4’ and ‘=’ symbolize s(7) > 0 and s(7) < 0, respectively, and the

lines are the zero crossings.
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* + We consider first local extrema, cases a - ¢. There

dS/dV = \/s% 4 s2 + s26(s) so that for vanishing

il T o P gradient dS/dV = 0. Hence there is no surface
area assigned to such cases, and we can immedi-

+ + ately exclude the possibility of configurations a -

b c c. While zero gradients are still possible on lines
and points, they do not enter relevant calculations.

Seams of the type d can also be excluded because

5
? + o
the regions labeled by the question marks do not
. |BL ) i o allow unambiguous assignment of positive or neg-
ative field values. The saddle-point cases e and
f are more interesting. For general random fields
9 + +
!

i e ; they cannot be excluded. However, in our case of
a Fourier expandable, bandlimited (k < k., k. finite) Gaussian random process we know
that the field is infinitely often continuously differentiable at any point in space. Therefore
discontinuities of the normal derivatives along any intersection of a plane and the nodal
surface should not exist. This is not the case at the intersection points in e and therefore
configurations of type e are not allowed. However, continuity conditions are fulfilled in

f. It represents the case of two membranes which ‘kiss’ at one point. This is the only

allowed type of intersection in our model.

The problem of the order of zero crossings has been to some extent addressed in the
literature on random fields [101, 36] in the context of general random processes. It is
stated there that zero crossings which are simultaneously saddle-points or extrema can
in practice be neglected. However, we are not aware of a rigorous proof for the complete

absence of these phenomena in general random fields.

Representation and Visualization of Gaussian Fields As we have seen, statistical

averages involving the random process s(7) and/or its derivatives are given by a correlation

matrix whose matrix elements always have similar form, for example, for (s(7) s(7)),

(_17?7—%1/?’1’"
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Due to the absence of mode correlations this can be simplified in the standard way

S (s(R)s(R)), eFHEE — 5 ((Bys(—FY), FOT) = v 3 u(Bje )
k E

kE E
Teubner [37], on the other hand, has shown that the last expression is just the result for

the calculation of (s(7) s(7")), with the alternative representation

; N
s(7) = \/% Zcos (/:1'74- Ol) (3.A9)
S

where now the k vectors are by definition random variables distributed according to

the spectral density v(k). Because (zero mean) Gaussian processes are completely de-

termined by their two-point correlation function the representations eqn. (1.13) and
eqn. (3.A9) are equivalent. The same holds for the derivatives of s(7). We have also
verified this independently, numerically by calculating surface integrals on samples gen-
erated by eqns. (1.13,3.A9) (¢f. Chapter 5). While eqn. (1.13) is probably physically
somewhat more insightful and preferable for analytic purposes, eqn. (3.A9) can be used
in visualization and simulation because it requires a lower number of waves N to achieve
‘good statistics’ (N = 100 is sufficient for most visualization purposes). A simple subdi-
vision of the area enclosed by k2v(k) into equal parts results in a faithful representation
of the statistical weights. In eqn. (1.13), however, one has to chose a sufficient number of
vectors k and then distribute sufficiently many s(k) according to the Gaussian eqn. (1.14).
This requires usually a value of N which is orders of magnitudes higher than that needed

for eqn. (3.A9).

Film Scattering For approximation (b) the correlation matrix reads

5(0)| s(r) | 52(0) |s:(r)[sy(0)|sy(r)|sz(0)fsz(r)

(1) | g(r 00 0

0 0 0

0 0

0 0
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with o, = (k*) /3 and (1) = 1. Note that evaluation of T'(r) with finite k. is in general
necessary because, unlike in method (a), the matrix elements involving gradient terms

lead in the limit of 7 — 0 to higher order moments e.g. (k*) which diverge for infinite k

This was not a problem in method (a) where the error associated with infinite k. is small.

We can proceed making use of the isotropy of the system: in evaluating the matrix
elements we chose 7 — 77 along the z - direction; as the system is isotropic, I'(7) is not

affected by this choice.

The individual matrix elements can be derived in the usual way. For example,

) E zl\'"">

0

< o(R)s(
Kk
M AN ik (P—7)
- Z s(F)s(=R))_ ¢
k

- [27‘_]_3/& /\ /\ dk v(k)

where we could chose ¥ = 0 due to translational invariance. With 7 = (0,0,7) we can

[27]7° / / | / dk v(k) e*=r
/ / dkdt k2(k)etr

[ZW:’]—I /\ i A‘zl/(/‘.)slll kr
Jo

_pg-1 8D kor
A'UI'

continue

o

s
And also
< >() = < )-“;/(7))0
i AN T )
Z< ’l‘ —k )>() 1/1: €
E
SR |
[2”]_2/ / dkdt ikt A-'z,,(;‘.)(lk-m
JO J=1
/ / dkdt k* v(k)e ikrt
or 0

m!/(")

o | o —il .8 — [
e~ (kor) ! [I.‘U coskor — " sinkor — £ " sin kgr
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Similarly,
U‘Z

_()T(/( r)

e o (/"Ur)_l [—21'_2 sin kor — 25_' r~1sin kor + 2/\‘01'“] cos kor
—€ 2 sin kor + 2ko€ ! cos kor + kg sin kor]
Finally [102],

g3(r)

o //,/A(m 2)u(k)ekrt
0

)2 s
2_1(;,-2 (r)+27'[2x / / dkdt K v(k)et*r

el e 1 -1 . <

e "™ (kor) l[r 2 sin kor + € Yr~Lsin kor — kor Lcos kor
.0

'—g(r)

Jar

which has, unlike the other matrix elements, no first order contribution in r—!.

Because we only use the above expressions to make statements for the limit & — 0
i.e. 1 — 00 we have indeed used the form of g(r) derived from the approximate Fourier
transform with infinite k.. With these matrix elements we can expand the integrand in
equ. (3.39) in powers of g, g1, g2, g3. Each integral contains then a diagonal matrix and

the integration can be performed. We can define

. i s o — e i
F(O) = [2r]7% A(o0) ./~ / dsyds, O \/s?,\/; exp [—5/\‘/1 Z(X)/\I]

xC — 00

The integral of the zeroth order term is simply the normalization (5/V)? (¢ = ¢1 = g2 =

93 = 0). The integral associated with the linear terms is taken over the operator

O =02 nzrrz(/ — 0,8, 01 + @0, 5,001 + s~,.':“gz]

T

All odd integrals i.e. integrals over odd contributions such as Sary S0, SzrS,0 Vanish, so
that essentially

0 ~ ag
The integral (75 is a more complicated. Again, after elimination of all odd components
we are left with (for a = 0)

O ~ g3 + 20,97 + 029> + 0725252 g2 — 2o st gst—232. g2

T
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Using spherical coordinates these integrals can be reduced to simple one-dimensional

Gaussian integrals. After further simplification we arrive at the equation for G5, eqn. (3.41).
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Chapter 4

Sponge - Lamellar Instability

Having discussed the isotropic sponge and microemulsion phases and their entropic insta-
bility towards dilute phases, we will now turn our attention to the energy driven instability

of the sponge towards ordered phases.

Experimentally, it is a well-established fact that the appearance of both binary and ternary
sponge phases is intimately related to nearby lamellar phases (cf. fig. (1-1) and [85, 22])
where the observed transition from sponge to lamellae can be triggered by increasing sur-
factant concentration, chain length or decreasing alcohol content which —in the language
of the bending energy model — can be again interpreted as variations in the fundamental
parameters ¢, k and /. It is therefore a natural requirement for any model of amphiphilic

phases to attempt a consistent formulation of the sponge - lamellar transition.

4.1 Introduction

The theoretical literature on the sponge - lamellar transition is sparse. It evolves mainly
around the work of Brazovskii [103], Porte et al. [22] and coarse grained lattice models
[31, 89].

While microscopic and standard GL theories yield phase diagrams which do not compare
well to experimental data or which defy comparison with experiment in principle, the
coarse-grained lattice model [31] yielded a phase diagram for microemulsions and L3

phases which qualitatively resembled measured ones. However, the free energy density

87




88 Chapter 4. Sponge - Lamellar Instability

of the lamellar phase considered there was heuristically taken as Helfrich’s free energy of
steric repulsion which is not consistent with the description of the free energy density of
the coarse-grained sponge phase!. The more self-consistent extension of the coarse grained

lattice model by Golubovi¢ & Lubensky remedied this inconsistency, but on the expense

of an extended parameter space for which comparison to observation is not possible [32].

Porte et al.’s work [22] is semi-quantitative and although it leads to very useful insights
into the role of the saddle-splay curvature which compare well to experiment (cf. below

and the following chapter) it would not suffice for our present problem.

Finally, some recent attention has been given to the Brazovskii model, which was applied
by Cates [104] and by Morse & Milner to surfactant phases [105]. However, we have to

note again that neither of these approaches can lead to a quantitative treatment.

In general the body of theoretical work on the stability of the sponge towards lamellar
phases is currently not considered satisfactory; an up to date account of experimental
facts and the (mostly open) theoretical problems they pose has been given by Strey [4]
who lists the relative stability of the sponge and lamellar phase, the typical shape of
the lamellar region (as in fig. (1-1)), and the vanishing of the one phase microemulsion
region upon change in surfactant chain length as outstanding problems. Furthermore,
both experimentalists and theorists have pointed out numerous times that no current
approach can do justice to the fact that topological changes are a crucial factor for the
S/L transition so that the Gaussian curvature term should by no means be dropped in an
approach to the S/L transition [106, 107, 27, 22, 108]. This is for example demonstrated
by the experiments of Porte et al. who varied systematically the saddle-splay modulus
with the result that sponge phases are only stable for a special, narrow range of saddle-
splay moduli (¢f. also next chapter). Another startling point is the stability of L3 phases
towards L, up to relatively high surfactant concentration ¢, ~ 30% [85] which has also

been related to the stabilizing effect of saddle-splay curvature [106, 79].

In this chapter we will discuss the stability of the sponge phase towards the lamellar phase
consistently within the frame of the random interface model. Detailed attention will be

given to the role of Gaussian elasticity and surfactant concentration.

) E 3 > 3 ! :
In our discussion this would be equivalent to using the results of Chapters 2 and 3 to study the relative

stability of sponges and lamellae.
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4.2 Nematic Lamellar Phase

Figure 4-1: (left) FFEM image from a dilute lamellar phase with many saddle defects.
(right) Schematic picture of such a state (from [107]).

In Chapter 1 we briefly mentioned the model by Huse & Leibler who postulated two differ-
ent lamellar phases of nematic and smectic type. A very simple model of smectic phases
was discussed in Chapter 2. Smectic lamellar phases show long range orientational and
quasi long range positional order, while nematic phases are characterized by long range
orientational order but only short range positional order. The ground state of nematic
phases is highly degenerate and can be imagined as an ensemble of freely moving flat
layers so that an infinite number of zero temperature configurations is possible (param-
agnet with molecular lattice constant in one dimension). For all these configurations the
bending energy is zero. The smectic phase in contrast has a unique periodic ground state.
The bending Hamiltonian eqn. (1.2) alone does not justify such a unique ground state.

If we operate purely on the basis of eqns. (1.2,1.3) we would expect on entropic grounds

only the nematic lamellar phase to exist. In reality, small perturbations possibly caused

by direct interactions appear to be sufficient to override the entropy gain, lift the nematic

ground state degeneracy and cause smectic order, at least in rather concentrated samples

[47).
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For dilute systems — where we would naturally assume that direct interactions should
be negligible — the situation is more ambiguous and there are some indications which
suggest the existence of nematic lamellar phases. All experimental indicators of smectic
order, a true quasi-Bragg divergence and focal conics texture cannot be confirmed for
very swollen lamellar samples [10, 50, 109]. A detailed experimental investigation by
Strey et al. [107] and Boltenhagen et al. [110] which focussed specifically on the transition
region from L3 to dilute L, phases in binary systems suggests the existence of disordered
lamellar systems with many topological defects and short-range positional order on FFEM
images, cf. fig. (4-1). At the same time the scattering from these systems is diffuse and

not reminiscent of a quasi-Bragg shape [50].

On the theoretical side there have been contradictory statements by Huse & Leibler who
suggest the existence of nematic lamellar phases on the basis of the bending Hamiltonian,
while Morse & Milner’s Brazovskii (GL) model predicts that the nematic phase is always
unstable with respect to the smectic phase. However, both models are rather crude and
eventually only systematic and very careful experimental measurements will yield the
final answer to the question of the existence of the nematic lamellar phase. In any way,
investigation of its relative stability towards the sponge phase — which can be performed
consistently within the random interface model — should shed some light on this hardly
understood transition. It will certainly provide a reliable upper limit for the stability of the
sponge phase. Although the sponge - nematic transition can possibly be pre-empted by
a sponge - smectic transition the sponge phase can under no circumstances exist beyond

the limits predicted by the sponge - nematic instability.

If we want to extend the random interface formalism towards anisotropic phases with

cylindrical symmetry we have to break the rotational invariance of the isotropic distribu-

s(k)[?

tion p[s(k)] ~ exp [— 20(F) ] where s(k) is the Fourier transform of the random field s(7).

In a nematic lamellar phase the symmetry breaking can be expressed by

[l o
M= <.‘;,-.<J = q(s,',(v.q)2> (4.1)
- 0

analogous to the (uniaxial?) nematic order parameter introduced by Maier & Saupe [112,
46, 96, 105]. If we — without loss of generality — do the usual simplification to align the
z - axis of the coordinate system with the direction of lamellar ordering [96, 105], m;; is

diagonal and a more convenient, scalar quantity can be used as the order parameter. For

Biaxial nematics could exists [111] but are rather exotic and not considered here.
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example, in Maier - Saupe’s original treatment Q = (s? 5 (s2+ si> was used, cf. also
[105]

Gy = Gpir? / dk k* v(k) [l — 3 cos® (}] ~ / di k2 s(k)s(—k) qu-(f)-o)

For our purposes it is most convenient to use the dimensionless quantity m

= l — % o, = é<sf + si>u O — <Ng>u (4.2)

where the s; are again first derivatives of s. m stands in 1 : 1 correspondence to the
above definition. Values of the order parameter m a~ 1 describe an ensemble of nearly
flat layers, for m = 0 we regain the sponge phase and for m < 0 a fluctuating columnar

phase is described (which we find to be always unstable).

4.2.1 Statistical Averages

The mode distribution assigned to cylindrical symmetry reads

P

S " o 2
p[s(k,, k.)] ~ exp [—M} (4.3)

With this symmetry we can define the correlation matrix and perform the Gaussian

integrals to find the surface averages (cf. Appendix):

Mean Square Curvature
<(‘>(s—(1) (€.<)211'~’> = Hi(0),02) (ki) +Ha(0p, 02) (k2K2)+ Ha(0p,02) (k2) + Ha(0,, 0.)
0
(4.4)

with

: LSRR 3 e 1 2 3 2) ~}arctanh( ;)}
o == — — = — =M m 2arctan m?2
//|((T/,. > , 2 \)171—}- 2 .lm 2 VI (C 1

Hy(o,, 0, e S =2 [3 —m + <—3 + 2m + 1712> m_%al'(‘tanh(mle )}

=1
2

Hs(o,,0, et S 2 [—l - %m + (1 —m )‘2 m™ 2 arctanh( m% )]

2

Hy(o,,0.) ——¢ ;((\2 — l)m"2 [?)m“” — Tm® + 3m? (1 —m) 111'-1_’;11‘('1;11111(17:17 )]

P

where we have used the definition

</~';)’A-?:> = (47%)~! / /(//‘7,)(//‘.: /"/’:H/"gl v(k,, k)
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for the moments of the structure factor. For m — 0 eqn. (4.4) converges towards its

isotropic form (S/V )isotropic [1/6(a® — 1) (k*) + 1/5 (k*) / (k*)] (cf. Chapter 3 and [37])

as it should, with
— (K1), (k2KE) — %<A4>

Saddle-Splay Curvature
) 1 2 y
2 (a*—1)—0c2(1—m) (4.6)

<6(.<—n) (€.<)21\'> =e (
0 s

where the isotropic limit can be taken without problem. On the other hand, in the absence

of in-plane fluctuations, o, — 0, we see that (0(s — @) (6.9)2]\')0 — 0 corresponding to

flat interfaces without connections.

(4.7)

Surface to Volume Ratio
/]2 ~
Sl [1 + (1 - m)m_%arctanh(m%)}

S|V = <b(,s —a) (ﬁq)2> — e -
0 {

which goes to — (S/V )isotropic for m — 0 (cf. Chapter 3 and also [37]).

4.2.2 Structure Factor
The free energy density is here of the same functional form as eqn. (3.9) but with expres-

eqn. (4.7) for the surface averages
2k [11, (k3) + Hy (k2k2) + Hy (k1) + Hq} +R <(s(.< ~a) (\?.«)21\>

1
~ 5.2 / / dk,dk, k,logv(k,,k.) (4.8)

sions eqn. (4.4) -
0

.f[l/(/"/l'l'.f)] —=

Completely analogous to Chapters 2 and 3 we can functionally minimize df[v]/dv = 0 to

gain the optimal structure factor which reads
e ; ; —1
v(ky k,) = |ak? + bk2k? + ck} — dk? — ek? + g] (4.9)
g have to be determined by minimization. In the case of a, b, ¢

The coefficients a, ...,
this can be done immediately due to the simple form of eqn. (4.8)

a=4kH;, b=4kH,, c =4k H;
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while the remaining coefficients can be determined by the two constraints (1) = 1, ¢, =

const and the definition of the order parameter m = 1—0,/0,

(47%)~" /‘/mdkﬂdk:Av,u(kﬂ.k:) (4.11)

(4m?)~1 / / dk,dk. A; v(k,, k) 2(1 — 111)7‘)(;“2(,)5 [1 + (1 - m)m'-%ar(‘tanh( m2 )}_2

2

(47%)~1 / /r/l;,,(//f: A'/,A'f V(1 stk = 7r2r”'of [1 + (1 —m)m~

1
>

1 M
arctanh(m?2 )]

The equation system eqn. (4.11) can be solved numerically or approximately for small

values m in the spirit of a Landau expansion.

To solve eqn. (4.11) perturbatively in m we expand all relevant quantities up to fourth
order
> 1 . 2 - 3 - 4 ‘
TR Tyt rym+ xom” + xzam” + r4m (4.12)
with @ = a,b,¢,d,e,g,0,,0.,v and where the index ¢ refers to the sponge state, m = 0.

Some of the series are readily given:

———m— —m° —

—m° —
2 10 1890 14175

[1 1 1, 121 4 608 ”ﬁ}

i -+ l1// + imz + im"% -+ b 1714}
6 60 189 2025
< m + 22 m? + 200 m?> 0012 m'l]
L 315 575 7325 4729725
i = im — —16—1712 = D m> — el m’l]
3465 4729725

15, 315 1575
I ,1

r4 16 :
e me— T My —

m
2¢, |15 315 225 7425 4729725

To calculate the remaining coefficients and the structure factor we can write
—2
Up = Wi — Ny N
with the recursion sequence

wq = ()
=)
wy = NN
—4 300
w3z = Ny |[—ny + 2nening

[

-5 [ 4 -« 2 Do S0
wy = Ngo [nl — 3ngning + ngny + 2ngnyns

where
T = (1,-/."/', + (),;A'}‘;/\"f - r,'/\"f - (/,L';‘); — (‘Il\‘f + g
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The particularly simple form of the coefficients of the structure factor can be fully ex-
ploited by performing the integrations on the lhs of eqn. (4.11) in spherical coordi-
nates with according integration limits in cylindrical coordinates [y Eyste f_kk . -dkzdk
Eqn. (4.18) also shows that the 3 x 3 equation systems which determine the successive sets
of coefficients dy, €1, g1, ..., dy,e€4,9s, are inhomogeneous linear equation systems. The

calculation of the coefficients is therefore reduced to the evaluation of (solvable) radial

integrals and linear equation systems

'2 I
—3 Va4

8 r
— 35 V26

2 vr
= ﬁ‘ 26

where

ke
(27r?)~! / dk ng™ k"
JO
W <
_2(7/;1 95 ”t 1. /\1'2
— 02 + ”'1 = /\z'.'i

@r g / /(/1\',)(/1.':/;,, w;

Vae
l_z: [8a; + 2b; + 3¢;]
5

v
—2—§ [48a; + 8b; + 6¢;]
%)

Vg

T [8a; + 6b; + 15¢;]

Finally, the expansion coefficients d;, €;, ¢; are

d; 47V ! [411,1,»'21\/'2,i + Lia(5Viy — WVaaVae) + Lia(6V22Vae — 10\:2'%,)]

~27 VWt [~2Ln VaaVas + Lia(5VEy — 3VaaVae) + Lis(12VaaVas — 10V
g "—] [[/,]""Z(; — /1'2"'24 = I,,‘;;"-ZA;]

for i = 1,...4 and with V = -V} + Vi,Va6. Together with eqn. (4.15) - eqn. (4.17)
for the a;,b;,c; we have thus determined the coefficients of the structure factor up to
fourth order in m where the expansion coefficients are given as one-dimensional, radial
integrals. These integrals are exactly solvable. To check the perturbation results we can

compare with exact, independently calculated, numerical solutions (to all orders in m) of
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the equation system eqn. (4.11). The inset shows a comparison of the relevant structure
factor coefficients d and e in the approximate and exact calculations (the expansions for

a, b, ¢ are trivial and g which is related to the mean-spherical constraint shows only

very small change) for kK = 5, ¢5 = 0.1. The thick lines show results of the exact calcu-

lations and the thinner lines successive ap-

proximation to first, ..., fourth order. The
dotted line is the isotropic result (zeroth or-
der.) The agreement is satisfactory but dete-
riorates for increasing m. ‘Exact’ numerical
solution (to all orders in m) of eqn. (4.11) vs

the simpler perturbation theory is a choice in

~ which neither option can fully satisfy. The
0.20 0.47 0.73 1.00

m
tational task. Even with the simplification of taking constant integration limits — 7.e. in-

former turns out to be a demanding compu-

tegrating over a cylindrical volume — when one of the integrations can be carried out
analytically the remaining numerical integration suffers at large order parameter from an
emerging very sharp peak in the structure factor which can flip into a divergence for small
changes in the parameters. Only a sophisticated algorithm (Powell hybrid method) could
be used to solve eqn. (4.11) and yet showed increasingly bad convergence properties for m
approaching saturation, m — 1; in fact we never succeeded in surpassing some m = 0.95.
At the same time, the cylindrical integration limits slightly break the rotational symme-
try in the sponge case (especially for the entropic part, cf. fig. (4-5)), m = 0, which in
practice shifts the central minimum of the free energy density (fig. (4-5)) from m = 0 to
small values of m. The perturbation expansion on the other hand retains the spherical
integration region and is computationally far less complicated. However, it is well known
that Landau expansion of the free energy density is strictly speaking invalid for cases
of strongly first order transitions so that results gained from the perturbation analysis
might then not be reliable. Nevertheless, for most of the remainder of this chapter it
was a necessity to use perturbative results; these were checked for some selected cases by

exact calculations with satisfactory success.

Before we proceed with phase transitions it is instructive to consider briefly examples of

nematic lamellar structure. In fig. (4-2) we show angle averaged structure factors for the

case k = 5, ¢ps = 0.1, a = 0 for order parameter values m = 0 and m = 0.9.
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0 0.25 0.5

k

Figure 4-2: Angle averaged structure factors v(k) for the isotropic case (m = 0, left

curve) and a nematic state (m = 0.9, right curve) evaluated numerically for £ = 5,

s = 0.1, a = 0. The ezxpected difference in swelling behaviour is clearly visible from the

peak positions.

Corresponding real-space representations for different values of the order parameter are
given in fig. (4-3). The image for m = 0.9 resembles the FFEM image of fig. (4-1)
(particularly when looking at more detailed zooms of fig. (4-1)). Although uniaxial order
is clearly discernible, there are still many topological defects, cf. fig. (4-4). These become
progressively fewer for higher values of the order parameter m — 1 when the structure
factor approaches the form expected for lamellar order (o, — 0)
v(k,, k) =c |k = i(,- = bk~ 2 = l(c —bk3)? + ak? —dk2 4+ ¢
z z % P de P P p

For small k, — 0 we find that for €2/(4¢) — g ~ 0 a delta function shape at k% ~ e/(2c)
emerges while at at the same time due to be/(2¢) — d ~ 0 the fluctuation in &, - direction

converges towards a delta function centered at k, = 0.

e

Figure 4-3: Two dimensional cuts through real-space structures gained from structure
factors for k = 5, ¢; = 0.1, @ = 0 for various values of m. The image for m = 0 was
generated using cylindrical coordinates (unlike the spherical coordinates used for fig. (3-
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4) in Chapter 3) to check the plotting algorithm. It is also worthwhile mentioning that
the morphologies of structures with high m are similar to those observed in anisotropic
carbonate rocks [113].

Figure 4-4: Three dimensional representation corresponding to the sample m = 0.9 in
fig. (4-3). The sides of the interfaces in contact with either the in- or outside (water or

oil) have different grey shades. Several defects can be seen.

4.3 Stability of the Sponge Phase

Having calculated the coefficients of the structure factor, we can insert into the free energy

density eqn. (4.8) to find the Landau expansion up to fourth order
f = fo+ fa(k, kK, a, bs)m? + fi(k, kK, a, b )m> + fa(K R, a, b )m? (4.20)

The linear term vanishes as usual®. For the other terms we find

. ey l
fa(K, R, a, &) —%d)‘jr“ (a® = 1)& + 2k [h12 + hoo + 3] — 552
m 3 a2/ 2 ’ =1 | O I e
()‘-r)@#( —1)[26 — 17R] + 2k [h13 + ha3 + h3s] — 553 (4.21)

ﬂ.'z

fa(k, R, a, ¢s)

b TN I
m(j’)j(“ (()2 == ])[lo‘l/\ — l—)()()ff] + 2K [h]; + }121 + /1:{1] == 5.\'}

fa(k, R, a, ¢s)

3We have checked this explicitly to assure that our calculation is correct.
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where the h;; and s; are

—"4-1[88y + 1081 + 10503]
" 317400 + 8881 + 1108 + 115533
¢! (175030 + 2020201 + 240248 + 3003035 + 31531504]
[-270 — 511 + 10572]
e~ ¢-1 [=1070 — 2291 — 5572 + 115573]

—a® 3=1 130770 — 273071 — 600672 — 1501573 + 31531574

e~ ¢! [~11260 — 2316, — 66065 + 346503]

—a® =1 [_58938) — 101926; — 2102165 — 6006063 + 31531564]

5

™
1
2
I
3
1
4

dk,dk,k,ng > [n'f - 27:0113]

= 3 e a2
dk.dk,k,ng [—711 + 3ngning — 371(,713]

e 2 522 2 3
dk,dk,k,ng ‘. [n? — 4ngning + 2ngn; + 4dngning — 411,,114]

e S o R

with

(27%)~1 dkydk; ky k, vi

(2m%)! dk,dk, k, A;’A“’ Vi

(271,2)—1 dk,dk, k, l\] Vi

All double integrals have exact (but very lengthy) solutions. Higher order terms are in

principle also available, but become excessively complex.

From eqn. (4.21) we see that negative values of & destabilize the sponge as expected.
Quantitatively we find that at constant ¢, and inside / outside symmetry, @ = 0, the
stability of the sponge depends sensitively on the value of . The transition turned out

to be strongly first order in all cases; we give an example for k = 8 in fig. (4-5)
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-0.5

K=8 =150
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m

m

Figure 4-5: (left) Elastic energy and entropy for k = 8, Kk = 0, ¢s = 0.1, a = 0 vs the
nematic order parameter. Note that due to the cylindrical integration region the maximum
in the entropic part is slightly shifted towards m =~ 0.2 instead of m = 0 as it should be
for a spherical integration region. (right) The characteristic free energy behaviour of a
strongly first order transition for various values of k. For clarity we omitted the artefact
for m < 0.2. The approzimate value of k where the S/L transition occurs is highlighted

as a dotted curve.

where we see the expected de- and increase of energetic and entropic contributions and

the typical secondary minimum in the free energy density when plotted over the order

parameter.

Surprisingly, strongly negative values of k destroy the sponge even for soft membranes
k ~ 1 while in a narrow region of only slightly negative & sponges appear to exist up to
quite large values of kK &~ 10. In fig. (4-6) we show a « - £ phase diagram for ¢, = 0.1,

a=0.
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Figure 4-6: x - k phase diagram at ¢, = 0.1, a = 0. S and L denote sponge and lamellar

phase.

As in any of the investigated cases the transition was strongly first order it was necessary
to check the results gained from Landau theory by a few points which were determined
numerically because Landau theory becomes unreliable for increasing m. Agreement is
satisfactory and lies for values of kK = 2 and x = 5 within a few percent of the Landau
values. However, for high x agreement becomes worse because the transition becomes
stronger. The maximum of sponge existence x = 13 in the plot should actually be

k =~ 10.

In the next chapter — where a Monte Carlo simulation is presented which can probe a
phase space much larger than considered by the approximate random interface theory

we will see that our results for the x - £ diagram are with slight modifications valid: a
more ordered sponge (‘molten cubic phase’) can take the place of the ideally random one
discussed here thus broadening the region of sponge stability in the x - £ diagram. This
will be discussed in more detail and in the context of Porte’s theoretical conjectures [22]

in the next chapter.

To gain phase diagrams in representations containing ¢, or ¢ is more complicated. Upon
increase in ¢ we observe again a strongly first order transition (accompanied by phase
coexistence). To determine the concentrations of the coexisting phases accurate knowledge
of the free energy density is needed which is definitely beyond the scope of the Landau

! and requires extensive numerical effort in order to work with a spherical

expansion’
integration region and to surmount the current limit of m =~ 0.95 in the numerical scheme.
We will not tackle this technically involved task here but will be content with providing
the respective stability lines (where the free energy densities of the respective phases are
minimal) which suffice in giving an idea of the shape of the phase diagram. However, it
is quite easy to complete the stability diagrams by adding the respective tie lines to gain
‘schematic’ phase diagrams commonly presented in cases where exact evaluation becomes
too complicated [32]. In fig. (4-7) we show a ¢, - & stability diagram at o = 0 for a value

of 'k =0.

2 . ' 2
Landau expansion can only tell approximately for which parameters the sponge becomes unstable;

the values of the free energy density of the stable, nematic state is not reliable.
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0,

Figure 4-T7: ¢; - k stability diagram for Kk = 0 where A, S and L denote asymmetric
(droplet) sponge, symmetric sponge and lamellar phases, respectively. The instability
towards the A phase is based on eqn. (3.82) in Chapter 3. The computational effort to
go beyond k = 20 was not surmountable due to the strong instability of the (near) delta
function shaped structure factor towards a singularity.

Alternatively, we could have plotted in fig. (4-7) ¢s vs the ‘temperature’ k=! = T as
e.g. in [31]. Then we would see that the phase sequence A - S - L resembles qualitatively
experimental ¢, - T phase diagrams, e.g. the one for C'12F5 in [85]. However, a change
in temperature affects also the saddle-splay curvature so that in a genuine ¢, - 7" phase
diagram the detailed shape of L3 region could be quite different from that predicted by a

ds='x = plot.

[t is more safe to relate changes in x to changes in the surfactant chain length as in-
vestigated by Schubert & Strey and by Strey in [87, 4]. Fig. (4-7) is plotted for k = 0
where the sponge region is maximal. Qualitatively, we see that upon increase in x the
L4 region shrinks visibly in extent. This agrees with the result of Strey who found (in
microemulsions) that the difference in surfactant concentration between the middle phase
and the S/L transition decreased for longer chain lengt h®. Although we could not deal
with bending moduli £ > 20 because of strong numerical instability it is clear that for
some x > 20 the L3 phase will have entirely vanished. In the same way — as we know

from our above results — the Lz phase can be eradicated by decreasing x. At high x the

°In [4] the respective concentration ranges for Co &5 and Ci2 £y were 12 and 2%.
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asymmetric and lamellar regions collide and we expect a direct A/L transition (as men-
tioned en passant in [106]). In microemulsions this situation would mean that we would
expect a very dilute lamellar phase to be in equilibrium with oil- and waterrich phases.
This has been in fact observed e.g. by Strey upon further increase of the chain length to

(’vl 11:7, [ ]

Finally, when re-plotting the phase diagram fig. (3-11) from Chapter 3 we found that the
lamellar region is in the high ¢, regime, as expected, but that the instability line from
microemulsion to lamellar phase curves — unlike in experiment, fig. (1-1) — upwards rather
than downwards similar to the situation in the ACRS model [31]. As the random interface
description cannot add physical insight into this problem we do not discuss it any further.
One might speculate that in reality direct interactions are important in the asymmetric
region, a question most recently considered by Menes & Safran [99] and that the pure

bending Hamiltonian is not sufficient to provide the details of the phase behaviour.

4.4 Smectic Lamellar Phase

The most straightforward way of modelling a smectic lamellar phase in the random inter-
face formalism is by introducing an order parameter similar to a sublattice magnetization

in antiferromagnets, u, which off-sets the Gaussian field in, say, z - direction

p[s(k,, k.)] ~ exp (4.22)

[s(k,, k) — pb(k? — k2)]*
k.

2v(k,, k)

so that the overall magnetization is still zero. For u = 0 we recover the nematic lamellar
phase. For non-zero u the average of the kg mode makes sure that the nematic ground
state degeneracy is lifted and basic long-range order is imposed which is for 1/k > 0
softened into quasi long-range order by the presence of fluctuations. However, there is a
basic difficulty in eqn. (4.22) in that it models the Bragg mode as a single sinusoidal mode
so that translational symmetry is broken. Although we have to postpone the solution of
this problem to future work, we have heuristically determined the free energy density for
small g # 0 and found that indeed the nematic phase is stable with respect to the smectic,
indicating — as mentioned above — that a description beyond mere curvature elasticity is

necessary to appropriately approach the nematic - smectic transition.
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4.5 Conclusion

We can conclude this chapter stating that we have approached the challenging task of a
consistent treatment of the sponge - lamellar instability. To our knowledge only the work
of Golubovi¢ & Lubensky [32] has attempted a similarly fundamental treatment. How-
ever, while the results of their work cannot be given in terms of observable parameters,
our predictions can be presented as functions of basic parameters with simple experimen-
tal interpretation. Most of our work here was on (bulk) symmetric structures. We have
investigated the influence of surfactant concentration, bending modulus and saddle-splay
modulus on the S/L transition and our results are in qualitative agreement with experi-
ment. On the other hand we can currently not make a contribution to the explanation of

the unusual shape of the lamellar phase region in ternary phase diagrams, fig. (1-1) and

[4]. Some success in this direction was most recently achieved by Menes & Safran [99]

using a theory which includes direct interactions.
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4.A Appendix

We set up the correlation matrix

3 (k7K2)

0 % <A/’il.')>

where the z - direction of the coordinate system is aligned with the direction of nematic
ordering. Due to symmetry all derivatives which yield odd powers of k; vanish. In the

isotropic case the matrix simplifies and we recover the matrix used in the Appendix of
Chapter 3.

Because of the decoupling of first and zeroth/second derivatives the averages over the
respective parts of the differential operators eqn. (3.A1) can be done separately. For
example, for the average over the mean square curvature we find that the differential

operator reads after some calculation

(Vs)2H? = —1—[«2 (2452) 4 sy (24 2) 4+ 2, (52 4 52)

44/(Vs)?
2 Q‘Z g'Z

1452 s2g2 1+ 452 szsf + Al.s;'/:., Sk

CYSIT <Y 25T

¢ 2.2 2.2 2.2
+2 (.ﬂ:f,s'y + 828, + .‘;ys:> (8zz8yy + Szz822 + SyySzz)

‘ 4 4 1
+2 (s.r SyySzz + SySzxSzz + .s:.s_,.fx!/y>}

so that the ensemble average has the form

<b(.<4()) (\:.<)2112> ]

— (6(s — a) ~"'.r.r'“z/y>n

0
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The averages over the zeroth/second derivates are not difficult because the respective
arguments of the multivariate Gaussian are only quadratic. The averages over the first

. o o o - p)
derivatives are more complicated. A set of the successive transformations, p = s + sya,

s2 =y, y = pz, is required. For example,

0o 00 ¢4 s2
/ / dpds, ——=—— € 2
Jo Jo (,@4_[,)3

foe] [o’e 3 5
/ / dpdy yz(y+p)~2
JO 0

/’ / (//)(1.1'.1'§(l+.r)_%(_{n_l::
Jo Jo

N | — N =

T

/ dx 41'@%(1 -4 .z')_% —
0

20, E;,_,

N | —

20,.(0, — 40,)0, 20,0z arctan
3 2 I

3o, — 0 (0, —

;2 3“ o . g

%z ) and (—=:=) and all gradient terms appearing in the
(Vs)?2 o (Vs)2 o

calculation of (é(s — a) (\:s)" l\'>“. (6(s — ) (Vs)? ”>u or (6(s— a) (6‘“)2% can be

the other two terms (

done analogously. To gain the formulas eqn. (4.4) - eqn. (4.7) we finally apply the defini-

tion of the order parameter m = 1 —0,/0..
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Chapter 5

Monte Carlo Simulation of Curvature -

Elastic Interfaces

In the preceding chapters we have made a‘rt(‘mpt's to model fluctuating membranes by
Gaussian random surfaces. Our approximations have so far only allowed us to consider
a restricted set of structures, sponge-like and lamellar phases. Although the results for
these systems were satisfactory we certainly would like to deal with a more general set of

structures covering a wider range of topologies.

In the current absence of generalizations of the mean-spherical model to other surfactant
phases we want to discuss in this chapter a numerical scheme which provides — within the

limits of a numerical simulation — an ‘exact’ approach to Helfrich’s Hamiltonian.

5.1 Introduction

Simulations of amphiphilic systems have so far been mostly discussed either on a micro-
scopic level to study the process of self-assembly itself, or to investigate a few stacked
membrane sheets in the context of steric interaction and the unbinding transition in

smectic lamellar phases’.

Microscopic simulations are often performed on the basis of standard Ising systems

I'We do not discuss here simulations of tethered membranes [114] and crumpling effects [115] which are

hardly applicable to fluid membranes.
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(cf. Chapter 1) where the sample size is necessarily very small. These simulations usually
suffer from the absence of long range terms in Ising theories of amphiphilic systems. Their
results are most useful for checking predictions of analytic approximations of microscopic

lattice models or solving those in case no approximate solutions are available [116].

A truly continuous microscopic description was achieved by Smit et al. who simulated
freely moving molecules which interact via a Lennard - Jones potential [3]. Their re-
sults are pioneering in predicting details of the process of self-assembly as a function
of molecular geometry. These simulations have also been successfully used in industrial

applications.

Simulations of a few unbinding membranes were mostly performed by the group around
Lipowsky [117]. There the amphiphilic sheets were discretized and updated in real space
using the harmonic low-temperature bending Hamiltonian in Monge gauge. The results
comprise confirmation of analytical results for the unbinding transition. Other simulations
in the context of smectic lamellar phases address the strength of the steric repulsion [56]
(cf. Chapter 2); again the low temperature approximation was applied and the system

sizes were very limited and topologically fixed.

Our aim is to provide a simulation of fluctuating membranes which operates with truly
continuous, self-avoiding, lattice-independent interfaces of variable topology under the
full, non-linear bending Hamiltonian. We proceed very similar to our analytic approx-
imation not by coarse graining and manipulating the membranes in real space but by

—

defining them in a continuous way in k space.

5.2 Methods

5.2.1 Simulation of Continuous, Self-Avoiding Surfaces

The interfaces used by our Monte Carlo (MC) simulation are given again in implicit
representation based on a decomposition into modes in an appropriate base function

space, eqn. (1.12)

3(F) = Y Tmdm(T) = 0 (5.1)

m
as in the introductory chapter. An elementary MC step is effected by a small change

in the amplitudes (or the spectral components) of the base functions, NMm — N, and
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not by changing configurations in real space. After each change the new state s/(7) of
the interface is therefore again given in analytical form and perfectly continuous and
self-avoiding. This property makes the representation eqn. (5.1) ideal for evaluating the

surface integrals associated with the bending energy model.

The loci of the interfaces can be determined by dividing the cubic sample volume V into
subcubes small enough to allow for linear approximation within each subcube. Starting
from the centre of each subcube the field gradient can be followed in several iterations
until the surface is reached to a given accuracy. The length |74, of the (j+ 1)th iterative

displacement is determined by Taylor expansion
8(T541) = 8(75) + |Vs(7)|r=r;|Tj41| = 0 (5.2)

Projection onto the local coordinate system (of the subcube) gives then the shift from the

subcube centre in each direction

£ = . 8(7;)
i1 = —Vs( :

VIVs(m))?

To make sure that the interface finally found after a few iterations is still within the
subcube where the iterations started from we can calculate the projection of the final
position vector of the surface onto the surface normal. If this is larger than the maximum
given by the size of the cube, we have to discard this surface position in order to avoid
overcounting. Measurement of two or more interfaces which might occur simultaneously in
a subcube is not possible with this method, but can be neglected for all practical purposes.
Alternatively to using a cubic lattice for measurements one can also compute the area
by distributing small subcubes randomly within V' and measuring the surface contained
in those. But for convenience we prefer simple subdivision. In principle, however, the
method is completely lattice independent i.e. a lattice is not needed to define the surface.
All information is given by eqn. (5.1). Interference with the lattice is minimal. In order
to exploit this fully we will later also chose to create random surface configurations in
spherical coordinates rather than by (lattice based) Fourier transform. The approximate
surface area AS(7;) on each surface site 7; is evaluated by very accurate (cf. Appendix)

polygon tiling following an algorithm due to Gilat & Raubenheimer [118].

For a numerical estimate of the general curvature energy

E— / dS [BuH + B2 H? + Bk + 3 HE + 72 + . ]
IRy
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we use the discretized

N
Ex Y [BHF) + B H) + s K(7) + nHE(F) + 1(F)H + .. | AS(7)  (5.5)

i=1

where the surface points 7; and surface areas AS(7;) have been determined above. We
stress again that the values of the differential curvature operators given in eqn. (5.5)
(¢f. eqn. (3.A1)) can be calculated analytically at all the 7; from the readily known first
and second derivatives of eqn. (5.1) at any time during the MC run. In the Appendix we
give an estimate of the numerical accuracy of the surface integrals. Our results for the
example of Gaussian random surfaces (GRS) are in excellent agreement with the exact
expressions, eqn. (3.A3) - eqn. (3.A8), and resolve the discrepancy between the results for

these quantities given by [34] and by [37] in favour of [37].
Next we have to take care of the surface area constraint eqn. (1.3). It is enforced in a
natural way with the help of a stretching / compression energy [16]

AC 12
AE; ~ %HS S [—A—S] (5.6)

'sznitin[

where S. S;,:1;a are the current and initial areas, and AS their difference. AF; enters
the Boltzmann factor after each MC step. A large value of the stretch modulus x; keeps
the fluctuation of the surface area negligibly small (< 0.01% in our computations), i.e. K
is used here as a simple implementation of the surface area constraint only. Simulation
of stretchable surfaces with realistic x, is possible, but would break the scale-invariance
of the system which we want to avoid. Without constraint the interfacial system is seen
to gradually drift into trivial states with different surface area. This behaviour is a useful
check and should be characteristic for systems based on an interfacial Hamiltonian when

the interfacial area is uncontrolled.

We should also implement a volume conservation constraint

1 Al &
A]‘,‘\' ~ EHV V [—:l (5.7)

‘/initial
where V refers to, say, V,;. For binary Ls phases this constraint is not needed. It
is particularly important when simulating oil-water systems with non-zero spontaneous

curvature.

After having set up and performed the usual set of checks for MC simulations (cf. Ap-

pendix) we can proceed with the Metropolis MC scheme [119, 23].
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5.2.2 Analysis of Bulk and Film Structure Factors

For analysis of the results the structure factors can be gained numerically either by directly
computing the correlation function from [24]

number of black pizels at distance r from a given black pixel at 7

(s(0)s(r)) ~

total number of pizels at distance r from a given black pizel at Ty

and then taking the spherical Fourier transform.

Alternatively, if one is not interested in the correlation function in real space (which
cannot be directly measured) one can apply the standard procedure used in data analysis

drawn schematically

clipping FFT convolution

s(7) B sy (7) 5 s(k) T I(k) = s(k)s™(K)

sphFriwl/—llzrm'u_qzng} [(A) (5.8)
where clipping denotes transform into an appropriate spin system with s(7) = 1 or 0
(‘black’ or ‘white’, ¢f. eqn. (1.7)). Then one takes the Fast Fourier Transform [120] of the
clipped field s(7)p, sampled at N? points,

N -1
9 » . — 3 3 S < —i(rpki+ e km+ s kin:
5[)11'(]‘/~/‘171-/‘n) =S Z -5[,Hv(l[’./,,1’.7,,’)f (ryrkitr "n! ).

" ym',n'=0

kii=lkes ke =k ki —lnky.

where dg = N -T is the side length of the sample cube. As only a finite number of points is
involved, sy (ki, km, kn) corresponds to the Fourier transform of a sum over delta functions

located at the subcube centres. This can be improved by applying a standard convolution

which corresponds to a homogeneous value sy, (7, 7, 70) Over a whole subcube. In k -

space this corresponds to a multiplication of Sbalkly ey Koy ) WAL [121751 22

sin(m{N~1) sin(mmN 1) sin(rnN-1)

mIN-1 TmN 1 TnN 1

This operation makes sure that we take the genuine Fourier transform of homogeneous
‘black’ (0) and ‘white’ (1) subregions in the real space sample. These regions are grained
at the boundaries. This should not be a problem when evaluating bulk scattering where
black and white regions are assigned the weights 0 or 1 depending to whether s(7) > 0
or s(7) < 0. Calculation of the film structure factor is more delicate. Uniformity of the
film thickness cannot be properly implemented. We can again chose to either work with
films which have non-uniform thickness corresponding to 0 or 1 for |s(7)| < 7. (we call

it again method (a)) or with films which have a linear correction to the fluctuations of
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the film thickness so that |s(7)| < I'(»|€S(I-")l (method (b)). Note, however, that the linear

correction in method (b) does still not assure an ideally uniform film.

We should test the method for film scattering to get an idea of its sensitivity. We chose

a rather complicated surface, the approximate Schwarz P-surface represented by [123]2
s(7) = cos kyz 4 cos kyy + cos k.z (5.9)

which is topologically as complex as the surfaces we are going to deal with. The result is

given in fig. (5-1)

)
= X
X
X
Mwm
0 10 20 30

Figure 5-1: (left) Angle-averaged film scattering signal from a Schwarz P-surface,
eqn. (5.9). The sample size was 7 structural wavelengths dy = Trky' and the FFT grid
was 128%. The Bragq peaks follow the expected sequence /2, V4, V6, /8, V10, V12,
V14 times the structural wave vector (here 7). The peak at position 7V/8 & 20 is barely
visible on this scale, but a factor of 4 higher than the neighboring noise. The small peak
at position 2 is an artefact. (right) Eight unit cells of the nodal surface eqn. (5.9).

with Bragg reflections as expected for the I'm3m space group assigned to the P-surface
[125]. However, very small (k < ko) and very large (k > ko) frequencies should not be
taken too seriously because of finite sample size and graining. Uniform and non-uniform
films showed little difference in this case because the surfaces eqn. (5.9) are not random

and to a good approximation parallel.

We will use throughout this chapter FFT grid sizes of 1282 and a total sample side length
of 7-2rky". The seventh entry k = 7 in the structure factor corresponds therefore to the

structural wavelength k.

Many other periodic minimal surfaces incl. D, F, Y etc. can be approximately described by a Fourier

expansion [124].
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5.2.3 Topology, Curvature

Comparison of topological properties can be based on the Gauss-Bonnet theorem
/ KdS =4n(n. — np) = 27 XE
Js

where n., nj are the numbers of components and handles and xg is the Euler character-
istic. Resemblance of various structures to the thoroughly studied cubic phases can be
measured using the scaled Euler characteristic introduced in various forms and definitions
in [126, 108, 127]. As part of the free energy (coupled by &), the Euler characteristic of a
surfactant system is also invariant under a change of scale. Therefore, under dilations an

invariant scaled Euler characteristic is

This relates to the definition for the average Gaussian curvature by

Yo = —_—1— <b(,<) |Vs| Ix> (

n

%)’3 (5.10)

where we have left away the subscript o because the averages are not necessarily Gaussian.

Similarly, we can use a scaled mean square curvature

bl Lt St s
bo = o= (8() Vs H?) (37)

to follow the evolution of the mean square curvature.

5.3 Application to Disordered Surfactant Interfaces

Our aim is twofold. Firstly we want to back up the analytical calculations in the random
interface scheme where all interface configurations were assumed perfectly Gaussian with-
out mode - mode coupling. In the numerical scheme there are no such restrictions and
during an MC process modes can correlate freely. It is therefore interesting to ask whether
we can determine by simulation how well the state space which we used in Chapters 3

and 4 corresponds to reality and where its limits of applicability are.

Secondly, the algorithm allows us nearly unique access to a wide range of topologies. No
theory can handle Gaussian curvature (even random interface theory in its current form

leaves space for improvement in this respect) in more than a crude way and very little
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is known quantitatively about this problem. On the other hand there is a great deal of
qualitative discussion surrounding this topic [27, 22, 106] and many authors point to the
urgency of more quantitative approaches [4]. Our second aim will therefore be to gain
insight into the effects of various saddle-splay moduli on a surface configuration where we
restrict ourselves here (mainly for runtime reasons, c¢f. Appendix) to the zero spontaneous

curvature Hamiltonian used throughout this thesis, H = [, dS [2cH?* + RK].

We do not in the context of this chapter discuss structural transitions associated with
a variation of surfactant concentration. As we have pointed out in previous chapters
these are intimately related to invariance breaking due to the microscopic length scale.
Simulations in this context are possible, but exceed run-time constraints because the
phase space to be covered becomes exceedingly large. If the mode expansion is essentially
limited to the physical range of k-values, up to some cut-off value k., the number of
degrees of freedom in the finite system of volume V under investigation can be roughly

estimated by the volume of the corresponding phase space

N ~ 4nkj Ak -V

For the chosen sample size, V = (7dg)?, and an upper limit in k-space which is a multiple
of kg of O(1), the number of degrees of freedom is of the order of ~ 10 — 107 and the
simulation becomes untractable. Moreover, detailed attention would have to be spent
(a) on correctly measuring the curvatures of possibly small structures (small ripples etc.)
which demands a very fine grid resolution and (b) on a rigorous enforcement of the cut-off
wave length. Both tasks are computationally out of reach. Hence we do not investigate
here systems which are close to an instability driven by microscopic entropy such as
the S/A transition or multiphase coexistence. We rather operate well within the scale
invariant region where configurational or topological entropy plays an important role.
Examples of such systems would be the bilayer phases investigated by Porte et al. which
show a S/L transition upon change of the saddle-splay modulus (Chapter 4) or sponges
with varying degrees of ordering studied by Chen et al. [76]. Scale-invariant description of
these systems should be a reasonable approximation. If we describe surfactant interfaces
by the standard Fourier expansion of the implicit surface representation s(7), eqn. (1.13),
a good approximation of an initial, disordered isotropic configuration is Berk’s original
distribution (k) ~ 6(k—kq) (i.e. large &, regime (i) in Chapter 3) [34] with 4-10* degrees

of freedom (3 -10* wave vector components and 10* phases)?.

*We should note that the ‘ghost waves’ of eqn. (1.8) carry very little information of physical relevance.
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With a side length 7dy, and — by neglecting short-length scale fluctuations — an effective
width in k-space of no more than kg the number of degrees of freedom of the system should
be ~ 10° so that the states are reasonably described by our basis set. The simulation
box size is somewhat above the minimal size required to contain finite size effects (cf. Ap-
pendix). The grid resolution was 64° i.e. good enough to follow topological changes, but

as we said above — not sufficient to measure structural details related to fluctuations on
a small scale. A real space figure of an initial configuration is given (approximately) in
fig.(3-3). Numerically determined structure factors and a probability profile are given in
fig. (5-2). Note that the bulk structure factor defined by the procedure eqn. (5.8) is not
exactly a delta function because the black - white clipping causes smoothing [34, 128].
The film structure factor is shown for the cases of non-uniform and (approximately) uni-
form film thicknesses. For the non-uniform case we can compare with the analytical result

(eqn. (3.28) in Chapter 3) and agreement is excellent.

A Aap,
film (a)

4 5

log k

Figure 5-2: (left) Bulk and film structure factors from Gaussian random surfaces. Av-
erages over 5 different random configurations were taken. We see, as expected from the
analytical calculation, a peak at ko in the bulk structure factor and a shoulder at 2k in
the film structure factor according to method (a), eqn. (3.28). If we use method (b) for
the film structure factor we see — as indicated by our analytical calculation in Chapter
3 — that a peak rather than a simple shoulder appears at 2kqo in the film structure. All
structure factors converge asymptotically towards Porod’s k=4 law as they should. (right)
pla) = l/\/(_Zﬂ)["'+A"(1l (‘xp[—%lz] with Aa =~ 0.14. The full line is from a histogram

Jo

averaged over 5 configurations. The dotted line compares with the analytical expression.

This random configuration was taken as the initial state of most runs (although some test

runs were started with cubic and lamellar configurations, ¢f. Appendix). Its characteristic

For example, pairs of waves can interfere destructively and therefore contribute nothing to a configuration.

Therefore we do not need to pay attention to the distribution of wave vectors and phases.
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curvature values are
GRS ¢ / GRS
Yo = X5 2 = 0.2, o = Y5 = 0.045.
The final equilibrium structure depends on both elastic moduli, x and k. It is convenient
to discuss the results separately in terms of their dependence on the absolute value of &,

and on the temperature independent, dimensionless topological ratio which we denote

M (5.12)

As outlined above, it is natural to assume that Gaussian states are stable for low values of
the bending rigidity. A typical experimental value for the stiffness of disordered systems is
 of the order of 1. We therefore performed a sequence of runs for different values of 7 and
# = 1. On the other hand we are also interested in the question of topological transitions.
In order to get more information about these phenomena we undertook simulations of a

few selected samples at x considerably larger than 1.

A common feature shared by all equilibration runs is that the bulk structure factor broad-
ens, as expected for finite bending stiffnesses. Moreover, at given 7 runs show similar
qualitative tendencies of their relaxation behaviour, widely independent of k. Typical
topological regimes are — depending on 7 — (i) unstable, (ii) minimal - surface like, (iii)
lamellar, (iv) worm / vesicle - like. Surprisingly, the boundary values between these re-
gions appear largely unaffected by rising values of «, for 1 < k < 5. However, there
are significant quantitative differences concerning the degree to which a perfectly random

sponge drifts into the various topological regions which do depend on x. In detail we find

(1) Unstable: 7 <0and 7> 2

No stable runs were found in this region. This is easily understood from the well-known

local stability criterion for the bending energy —2x <
k < 0 and is a very good check of the numerical
e algorithm. We show in the inset a typical evolution

of the internal energy which demonstrates instability:

solid lines depict unstable runs, in comparison to a

MC step  s5x10?

typical stable run (dotted line).

However, the stability limits may change when higher order curvature terms are included.

Because we do not consider higher order terms which would lead to physically reasonable
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states of small vesicles or saddles (but would break the scale-invariance), we did not follow

the evolution in the unstable regime.

(i) Minimal Surface - Like: 0 <7 <0.3

The final state has a lower mean square curvature 1y < 15 and lower mean saddle-splay

GRS

curvature xo < xg'~ than the initial state, for the investigated range of 0.25 < x < 10.

For a system, x = 1, we found that equilibration was swift and the final state differed
clearly from the initial Gaussian. All indicators, such as curvatures, probability distribu-
tion and structure factors show characteristic deviations from randomness. In fig. (5-3)

we show the film and bulk structure factors from an equilibrated sample?.

(b)

Figure 5-3: Film and bulk structure factors from a sample equilibrated with x = 1, 7 = 0.

1 / GRS J GRS ~ 7
Final curvatures were 1/'()/1/'6 RS ~ 0.64 and xo/X§ LT LT

The bulk structure factor has undergone little change. We notice a slight shift towards
lower frequencies. For the film structure factor, however, both methods (a) and (b) show

now clearly that relative to the initial state a peak pattern at 2k has either evolved or

become more pronounced. This indicates an increase in correlation which — due to the

changes in the curvatures — can only be of local minimal surface-like nature. We may

therefore conclude that we even expect rather soft sponges (with saddle-splay modulus

“This equilibration was used as the drosophilain this simulation. Runs were started from GRS, cubic
and lamellar structures and were equilibrated over long run times, cf. Appendix. The results can be

viewed with a high degree of confidence.
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close to zero) to depart from randomness into a weak locally minimal surface-like orga-
nization, consistent with the picture of the sponge as a molten cubic phase proposed by
[129, 22, 5]. In the Appendix we will also show that the same equilibrium structure can
be reached after very short equilibration time when we start the simulation with a cubic
phase and literally melt it. For increasing x the trend to higher connectivity rises. The
film scattering peak at 2ko becomes successively more sharp for 7 = 0 and higher values

of Kk > 1 (cf. fig. (5-5)).

This tendency even prevails for non-zero 7 e.g. for K = 5.0, 7 = 0.2. Although there is
now an energetic penalty for saddles we find equilibrium values of U"U/tf'o"")”' ~ 0.35 and
Yo/ x5 ~ 1.09. The spectra are similar to the ones for x = 1, 7 = 0, but with a sharper

peak in the film scattering structure factor.

Finally, we tried to probe into the region of high x, 7 = 0 and found that the equilibration
time became untractable due to critical slowing down. After 2-10° MC steps a system
with k = 10, 7 = 0 has reached a state where clusters of P-surface like shape are clearly

discernible, fig. (5-4). The probability profile and structure factors are shown in fig. (5-5).

Figure 5-4: Three dimensional image of the interfacial structure, k = 10.0,7 = 0.0

after 2 - 10° MC' updates. It has ratios of final and initial curvatures of 1o /5™ ~ 0.14

and xo/x§™ ~ 1.29, with an absolute xo ~ 0.27 just below that of a periodic minimal

D-surface.
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initial

©=0.0

1=0.0,x=50.0

=i 0

Figure 5-5: (left) Film and bulk structure factors from the strongly locally minimal
surface-like sample above, fig. (5-4). The film structure factors calculated from methods
(a) and (b) are not very different in the interesting region so that we only show method
(b) here. (right) Corresponding probability profile. This profile can be compared to that of
a genuine P-surface (given in the Appendiz) and turns out to have quite similar shape.

The onset of ordering is clearly visible. The film spectrum shows now a sharp correlation
peak at 2kg. Both film and bulk spectra show several higher order peaks indicative of
a strong tendency to build up a more ordered structure. At the same time there is no
indication that the overall isotropy has been broken. It is worthwhile mentioning that the
existence of non-periodic, isotropic yet truly minimal surfaces is an unresolved problem
[130]. Structures of the kind fig. (5-5) could be candidates. For periodic minimal surfaces
we know that

0.28 < xo < 0.37, Yo =0 (53133)

so that the above case of Kk = 10.0, 7 = 0.0 with yo = 0.27 and a drop of the mean square
curvature to 10% of its initial GRS value are converging towards a state structurally

similar to periodic minimal surfaces.

(i1) Lamellar: 0.3 <7< 1.0

In this region all samples drifted towards a more or less lamellar structure compared

to ideal randomness. For soft membranes, x = 1, this tendency was very weak and we
found that equilibrated structures in the entire regime were practically indistinguishable

from the initial Gaussian configuration in terms of all probed quantities: internal energy,
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curvatures, one point distribution and structure factors (cf. fig. (5-6)). We may therefore

identify this regime as the one most faithfully modelled by Gaussian random surfaces.

Locally lamellar order is faint and does not show on real-space visualizations of the equi-
librated simulation cubes. The film structure factors stay practically unchanged whether

evaluated with method (a) or (b).

%, 1nitial

log k

Figure 5-6: (left) Equilibrated film structure factors, gained from method (a), compared
to the initial shape. (right) Corresponding probability profiles.

For rising x, however, the picture changes dramatically. For k = 5.0, 7 = 0.4 the system
gets caught in successive metastable states and the equilibration does not appear complete
even after 6-10° MC steps indicative of the approach to a phase transition. The state
of the system changes strongly in comparison to the initial random configuration. In
fig. (5-8) we show the real-space image of the simulation cube. In fig. (5-7) the structure

factors and probability profile corresponding to fig. (5-8) are presented.

. initial
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Figure 5-7: (left) Film and bulk structure factors from the locally lamellar, metastable
sample of fig. (5-8). The film structure factor was calculated by method (b) but does not
differ much from method (a). (right) Corresponding probability profile.

Figure 5-8: Three dimensional image of the interfacial structure, k = 5.0,7 = 0.4 after
6 - 10 MC updates. It has ratios of final and initial curvatures of Xo/XS®° ~ 0.37 and

o/ 5T~ 0.4. The undulations of the stacked layers in the lamellar regions are very

smooth, as expected from a system driven by curvature elasticity.

While in fig. (5-8) large regions show lamellar order, some regions still retain disordered
character typical for metastability. Overall, the system appears to be still isotropic [131].
In any way, there can be little doubt that at x = 5 the S/L transition is imminent. The
most notable feature in the ‘lamellar’ bulk structure factor is the shift of the peak to a
higher wave vector, as expected for lamellar ordering where the swelling law, eqn. (3.49),
is B ~ 1 in contrast to the swelling of a sponge, # > 1. We also see higher order
peaks at odd multiples of ko which are characteristic of a lamellar square wave and which
stress the tendency of the system to converge towards an ordered state. Similarly, the
film structure factor also reveals a strong correlation peak at ~ 2ko which has clearly
moved towards higher k as well as higher reflections at even multiples of 2ko. Finally the

probability profile shows a characteristic double peaked shape (a < 0 is symmetric) in

agreement with what is termed order parameter distribution in the lamellar region of a

Ginzburg-Landau MC due to Gompper & Kraus [127].
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(iv) Worm / Vesicle - Like: 1.0<7<2.0

In this regime the final state of the system has less connectivity yo and higher mean

square curvature g than the initial state. Our results support the idea of an equilibrium

structure which is on average parabolic i.e. connected random ‘worm-like’ shapes [132] or

random clusters of deformed closed objects (lamellar phase with spherulite texture [110]).

Neither structure factors nor probability distribution of the system x = 1.0, 7 = 2.0 after
6-10° MC steps show much change where we note, however, that despite the substantial
runtime critical slowing down appears to prevent the system from complete equilibration.
In any way, we observed after 6 - 10° steps that both the probability distribution, and
the structure factors stayed essentially the same and do not allow for any particular
conclusion. The real-space picture fig. (5-9) and curvatures, however, indicate a strong

loss of connectivity without any discernible kind of local ordering.

.0 after

15 and

Figure 5-9: Three dimensional image of the interfacial structure, k = 1.0,7 = 2
6 - 10° MC updates. It has ratios of final and initial curvatures of xo/x5™° =~ 0

SG1S 1o =~ 1.4. Note the parabolic endcap in the centre of the righthand face.

From the extremely low Euler characteristic, xo ~ 0.03, we can conclude that the genuine
end state will not or hardly be on average hyperbolic. Whether the final state will be

worm-like or vesicular, however, cannot be decided here. In any way, it is remarkable that
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even in the absence of spontaneous curvature the formation of parabolic structures can
be approached by variation of the Gaussian modulus only. Although the technological
importance of bilayer vesicles would make runs for higher values of x desirable, the runtime

effort is currently not surmountable.

In figs. (5-10,5-11) we summarize the results in the four regimes.

unstable

Figure 5-10: Deviation of the scaled Euler characteristic from the Gaussian values,
Avo = (xo — x5 /XSRS for samples equilibrated under various values of T and s
(samples labelled x are after a large number of MC steps still drifting downwards). The
horizontal line marked ‘DS’ gives the value of Axo for the minimal D-surface.

0.5
>
<

0.0

unstable

2.0 2.5

T

Figure 5-11: Same as fig. (5-10) for Avyy. Samples labelled by x are again still drifting,
downwards in the case k = 5 and upwards for k = 1. From comparison with fig. (5-10)
we see that for k = 5 similar values of the mean square curvature can be associated with

vastly different topologies.
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Discussion Previous work concerned with similar aspects of the stability of sponge
phases is mainly that of Porte et al. and Anderson et al. These authors investigate and
discuss the well-known experimental fact that sponges at not too low concentration (z.e. in
the scaling regime) appear to exist in a narrow range of the parameters ¢ba/Ps Where ¢, is
the concentration of alcohol in pseudoternary surfactant - alcohol - brine mixtures. This
ratio is related by Porte et al. — using a model by Petrov et al. [133] - to the value of the
saddle-splay curvature k. The ¢,/¢s - ¢, phase diagram reveals then that the L phase
is stable in a narrow region parallel to the ¢, - axis. Porte et al. conclude that the sponge
phase is stable in a specific, narrow range of parameters & and that ¢, does not play a
strong role at least for appreciably concentrated phases. This range of the saddle-splay
modulus is expected to be positive, & > 0. Porte et al. also discuss the possibility that
for # = 0 the ground state degeneracy (for K — oo lamellae and all possible periodic
minimal surfaces are allowed ground states) can lead to stable molten minimal surfaces

rather than undulating smectics even at large x > 1.

In contrast Wennerstrom & Olsson — who do not specifically discuss the ¢, /¢, - ¢ phase
diagram and its implications — argue on general grounds that configurational (‘topologi-
cal’) entropy from the formation of saddle-like connections could possibly offset the energy

loss due to negative & and that sponges can therefore be in principle stable at £ < 0.

Our findings support, in part, both views. The main contribution of our simulation
to this discussion is that we can actually make quantitative statements on the issue at
stake, the role of topological entropy. Firstly, we saw that the crossover from minimal-
surface like to lamellar excitations (or phases) occurs at a small value of 7 ~ 0.3. We
confirmed this value of 7 by performing additional runs in the region up to a value of
= 10. While it appears clear that the mere crossover from cubic to lamellar excitations
changes to a phase transition somewhere in the vicinity of K = 5 the characteristic value
of 7 ~ 0.3 appears to persist without strong changes up to some £ ~ 10 so that we can
conclude that sponge-like structures are only stable within a narrow region in parameter
space in agreement with Porte’s conjecture and experimental findings. At the same time
we found that it is not necessary to go to K = 0 or positive values, £ > 0, (although
this does not mean that we exclude the possibility of positive k) to overcome energetic
constraints in agreement with Wennerstrom & Olsson’s suggestion. On the other hand,
we cannot confirm Wennerstrom & Olsson’s claim that the Hamiltonian eqn. (1.2) leads

to a thermodynamic instability and requires to be stabilized by higher order curvature
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terms. There is no such indication in our data. Furthermore we cannot confirm that &
plays a much more important role than x in stabilizing the sponge phase. While & seems
to assure stability of the sponge phase over a surprisingly large (though narrow in &)
range of K we also saw that the absolute value of k is important. At small x the range
of sponge stability extends far beyond the minimum assured by topological entropy. For
k = 1 a sponge best described as a molten lamellar phase is stable for 0 < 7 < 1.0. At
the same time it is clear that for very large K — oo the lamellar state will be dominant
for-all £ < 0. However, in the region of highest practical interest, 1 < x < 10, the role of

k is indeed prominent in stabilizing sponge phases.

We are also in a position to compare our results with the local curvature considerations
by Porte et al., for details ¢f. [22]. Their prediction is that in systems with appreciable
entropy a sequence vesicular / random bicontinuous / lamellar / sponge should be seen
forl<7<2/7=1/r<1/7<0. This sequence is available for K = 1 in our
simulation where we find that indeed in 1 < 7 < 2 sponges are not stable and at best
loosely connected worm or vesicular structures in full agreement with the local curvature
argument. In the other regions (for k = 1), however, we find that sponges are always

stable although they are not necessarily Gaussian.

5.4 Summary and Outlook

We have introduced a new Monte Carlo technique which is particularly suited to simulate
the configurational evolution of complicated, self-avoiding interfacial geometries. It is
based on a genuinely continuous surface representation, which allows accurate evaluation
of surface curvature terms used to describe the Hamiltonian of surfactant film systems.
Thus configurational equilibration of the film structure is directly feasible under the phys-
ically crucial constraint of film area conservation. The only input parameters, the bending

and the saddle-spay moduli, have a clear physical meaning.

The scale on which the simulation operates goes orders of magnitude beyond microscopic
simulations. All simulation cell sizes are by definition much larger than the film thickness,
dy > r., setting the scale of our simulation sample between hundreds and thousands of

Angstroms. The only simulation comparable in these scales is the one of Gompper &

Kraus [127]. However, we have to note that the simulation presented here and in [127]

are practically not comparable. In [127] an effective GL free energy is assumed with five
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adjustable parameters which are preset in a way so that only sponges and lamellae are
possible. The only area where the two simulations seem to overlap is the probability
distribution in lamellar phases. Comparison with respect to most other aspects is not
possible because the mapping of the parameter spaces is unclear and can be only done
when Gompper & Kraus use concepts of effective interface theory such as the connectivity
of interfaces. There the GL sponges have yo ~ 0.17 compared to a typical xo = 0.25 for

sponges in our simulation.
The insights gained from our simulation encourage its more general application. New
areas of investigation should include

1. spontaneous curvature, Hg # 0,

2. higher order bending terms,

3. stacks of layers beyond the harmonic approximation of the Hamiltonian,

{. single vesicles, where the base functions in eqn. (1.12) should be chosen e.g. as

spherical Bessel functions.

All of these require only marginal changes to the existing algorithm.
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5.A Appendix

The Appendix contains some of the necessary precautions and checks done in MC simula-
tions [134]: checking of the algorithms, equilibration, sensitivity to initial conditions, error
estimates. Particularly for a practically unknown simulation technique as introduced in

this chapter this discussion is relevant.

Surface Integrals To gain an estimate of the accuracy of the algorithm we compare

5.9), and the aperiodic

with known results for the periodic Schwarz P-surface, eqn. (
Gaussian random surface for a spectrum v(k) ~ 6(k — ko). For a fine grid size of 32 per
unit cell we found errors of only &~ 0.16%, ~ 0.26%, for surface area and average Gaussian

curvature of the P-surface.
In the case of random interfaces we have to average over several independent configurations
and the sample size has to be large enough to assure good statistics. We list results for

various asymmetries a in the following table. We used 6 unit cells side length for a cubic

sample, a grid density of 128 and averaged over 50 independent configurations

nuin. X, nuin. 22,45 nuIn. .8 nuim.

a=10 @—= (051! 5 £ =105

SIV 0.367 0.368 |0.365 0.366 |0.360 0.323  0.324
(S/V)~! <(5(.s')|\:.s'“/> 0 103 |0.0362 0.0380 |0.0724 0.181 0.183
—(S/V) ! <a(.s-) 7s| k) 0167 0.168 |0.165 0.167 |0.16 0.125  0.121
0.0333 0.0345 | 0.0350 0.0363 |0.0400 0.0750 0.0773

0 10=* 0.0106 0.00905 | 0.0218 0.0642 0.0641

(values for (S/V)~! <b(,s-) |Y:s| 1[”>() are too small to allow for sensible comparison). All

numerical results (denoted ‘num.’) compare well with the exact ones (denoted ‘ex.’)

gained from eqn. (3.A3) - eqn. (3.AT7).

Finite Size Effects Finite size effects were checked by re-running samples of twice the
side length (14dp) and a grid density of 128, for the case x = 1, 7 = 0 without visible

effect on the results. Finite-size effects were observed for side lengths smaller than ~ 4dp.
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Equilibration, Initial Conditions We checked equilibration for several cases and

under various circumstances. Firstly, we did very long runs (starting from a GRS) for
two cases. k = 1. 7 = 0, and k = 5, 7 = 0.2. Equilibration of the internal energy is shown

in fig. (5-12)

1.0

1x108 2x108
MC step MC step

3)

Figure 5-12: Equilibration of the internal energy for k = 1, 7 = 0, (left) and k = 5,
7 = 0.2, (right) for initial random surface states.

For the swiftly equilibrating system « = 1, 7 = 0, 10 MC steps are enough to achieve
an averaging time roughly a factor of 10 larger than the relaxation time. For x = 5,
7 = 0.2, 1.75- 10° suffice only to achieve an averaging time about three times larger than
the relaxation time. Equilibration of the topology and mean square curvature follows
the same pattern. We also checked the equilibration of probability profiles, with similar

results.

Next, we check the sensitivity to the initial state. To make sure that results from very
different initial states are compared we performed two very long runs for x = 1, 7 = 0
which started from a P-surface and the locally lamellar surface fig. (5-8). Fig. (5-13)

shows the result for the scaled topologies
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Figure 5-13: Fquilibration of the scaled Euler characteristic for k = 1, 7 = 0 starting
Jrom initially Gaussian random, cubic and strongly lamellar interfaces labelled (GRS),
(PS), (LAM), respectively. Internal energies and mean square energies follow similar

patterns.

where we note the very quick equilibration when the initial state is a cubic phase. On the
other hand, equilibration starting from a strongly lamellar geometry is slow. In fig. (5-13)
all runs were performed over 10° steps; only the first 5- 10 are shown in order to make
the equilibration from the random and the cubic phase visible. We verify the similarity

of the final states also in their film scattering curves and probability profiles

o
log k

Figure 5-14: (left) Film scattering (computed by method (a)) for k = 1, 7 = 0 after
10 MC steps where initial states where random (o), cubic (A) and lamellar (O). (right)
Field distributions for the same cases where PS denotes P-surface.

The film spectra which started from random and cubic phases are practically indistin-
guishable, while the one which started from a locally lamellar structure appears a little
off; we attribute this to the very long equilibration time so that the final state is expected
to have a larger error.

"

We also cross-checked the final state of the run x = 5, 7 = 0.2 by using an initial state

biased towards a lamellar structure with initial yo & 0.13, ¥ =~ 0.016. Although the long

equilibration time goes beyond our possibilities (the lamellar state is very far away from

the final state) we can confirm that within the 5-10° steps we monitored the structure
drifts systematically towards higher connectivity. We can therefore practically exclude

the possibility that a lamellar state would be stable for these parameters.
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Statistical Error The error estimate can be calculated by usual statistical analysis

[135, 23]. The sampling points were taken well after the relaxation time and at distances

of 102 MC steps to avoid correlation. This results in an error estimate of between 5% and

10% depending on the length of the run.

A better way of estimating the error would be by running several simulations for the same
parameters [135] (we did this to some extent above to assure that metastability is not
affecting the results) and comparing the final results. To do this we had to avoid the most

studied parameter region which is too costly in run time and we only tested systems for

parameters bound to equilibrate faster. For k = 0.25, 7 = 0, 10> MC steps are sufficient

to reach equilibrium. The final energies of 10 runs which started from different GRS

configurations did not differ by more than 10%.

Implementation / Run-Time Evaluation of surface integrals is a perfect example

of a naturally parallel problem. Indeed, even nowadays serial supercomputers would be

inadequate to run the code. We had a massively parallel Connection Machine V with 32

processors available. 10° steps took about 20 hours of CPU, making a large number of

runs even on this state of the art machine impossible.

The source code was written in the parallel version of Fortran 90, and will be made

available on request.
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