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Abstract 

This work aimed to determine the cause of the reduced growth of 

plants whose roots are exposed to non-lethal NaCl. Because shoot 

growth is generally more sensitive than root growth, particularly in 

the short and medium term, the study focussed on leaf growth. Three 

hypotheses were tested; namely, that reduced growth is due to 

inadequate turgor of the expanding cells of the shoot, to 

insufficient cytokinins arising from the root, or to an NaCl-specific 

disturbance in the mineral transport from the roots. 

To test whether the reduced growth is due to inadequate turgor 

in the expanding cells of the leaves, NaCl-treated plants were grown 

for 7-10 days with their roots in pressure chambers, and sufficient 

pnuematic pressure was applied to counter the osmotic effects of the 

salt on the shoot. Wheat, barley and Egyptian clover were grown in 

100 mol m- 3 NaCl and white clover in 50 mol m- 3 NaCl (which reduced 

the relative growth rates of all species by about 20%, i.e., after a 

week of the salt treatments the leaf areas were only 70% those of 

controls). This experiment was repeated with an NaCl-free solution of 

concentrated macronutrients, wheat and barley being exposed to 0.80 

and 0.56 MPa osmotic pressure respectively. The applied pressure had 

no sustained effect (relative to unpressurised salt-treated controls) 

on the growth rates and transpiration rates of any species. The 

osmotic pressures of the cell sap, in either fully expanded or 

currently expanding leaf tissue of wheat grown in NaCl were also 

unchanged. These results indicate that the applied pressure increased 

turgor in the shoot proportionately, although this was not directly 

measured. It was concluded that shoot turgor alone was not regulating 

growth of these salt-treated plants (i.e., treated with NaCl or 
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concentrated ma c ronutrients), and that a message from the roots ma y 

be regulating th e growth o f the shoot . 

This mess a g e wa s though t likel y to be a c ytokinin, be c ause thes e 

plant growth subs tanc es arise i n the roots, and their c oncentration 

is known to fall in salt-treated plants. This hypothesis was test e d 

by feeding kinetin (10-3 mol m-3) directly into the transpiration 

stream of wheat leave s, by manipulating xylem hydrostatic pressure so 

that solution was suc ked into the xylem. There was a 10-20% increas e 

in transpiration rates and relative leaf expansion rates of the 

plants grown without NaCl, suggesting that kinetin was }eaching 

receptors. However, transpiration rates and relative leaf expansion 

rates of NaCl-treated plants, with or without applied pressure, were 

unchanged. This suggested that something other than, or in addition 

to, a cytokinin was regulating the growth of the shoot of 

NaCl-treated plants . 

A third group of experiments aimed to distinguish between 

osmotic and ion-specific effects of NaCl on plant growth and ion I 

uptake by comparing plants grown in isosmotic solutions with and 

without NaCl. Preliminary experiments showed that polyethylene glyc ol 

(MW 4000) and mannitol were unsuitable for even very short-term 

growth studies because they caused immediate reductions in leaf 

elongation rate when plants were transferred from NaCl to isosrnoti c 

solutions of these compounds. However, concentrated solutions of 

rnacronutrients (modified Hoagland's nutrients) did not change the 

elongation rate. 

Barl e y, wh e at, Egypt ian c lover and white clover were grown i n 

NaCl and isosmoti c concent r ated ma c ronutrient solutions. After 1 4 

days, plants grown in c oncentrated ma c ronutrients were smaller than 
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controls (plants grown in normal strength nutrient solution) but had 

similar root:shoot ratios. NaCl-treated plants were less than half 

the size of plants in conc entrated ma c ronutrients, and had higher 

root:shoot ratios. NaCl-induc ed increa ses in phosphate uptake did not 

cause this additional reduction in shoot growth. For barley, net 

transport of N, K, Mg and Ca from the roots (per g root DW) was lower 

in NaCl-treated plants than in controls, but uptake by the shoot (per 

g shoot DW) of these minerals was similar. By contrast, both 

transport and uptake of these minerals in concentrated 

macronutrient-grown plants resembled control plants. NaCl-treated 

barley and wheat plants had higher osmotic pressures in both 

expanding and fully expanded tissue than did controls and 

macronutrient-grown plants, but lower rates of uptake of solutes 

generating this osmotic pressure. This raised the possibility that 

growth in NaCl may be at least partly limited by a reduced rate of 

transport of an essential nutrient to the shoot. 

Because plants grown in concentrated macronutrients had not 

responded to applied pressure (despite uptake rates of essential 

nutrients that were similar to controls) and ion-specific toxic 

effects were unlikely, it seemed that root water status was 

dominating the response of the shoot, i.e., the reduced water status 

of the root caused it to produce a message, which travelled to the 

shoot via the xylem and reduced leaf growth. NaCl-treated plants were 

also limited by this factor. 

Therefore, I concluded that the growth of NaCl-treated wheat, 

barley, Egyptian clover and white clover was not, except in the 

immediate short term, limited by shoot turgor, but by a factor (other 

than, or addition to, cytokinin) associated with low root water 
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status . Additional limitations were caused by nutritional imbalances, 

such as excess NaCl and possibly also a reduced rate of transport of 

an essential nutrient, but not excessive phosphate uptake. 
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CHAPTER 1 

INTRODUCTION 

At the 1982 Boden Conference on Salinity, in Thredbo, shortly 

before these studies began, there was much debate concerning the 

relative importance of the external as opposed to the internal 

effects of NaCl, i.e., the importance of a lower soil water potential 

compared to effects of NaCl on biochemical processes such as 

photosynthesis. Last year, 1985, the general opinion at the Plant 

Drought and Salinity Conference, in Canberra, was that growth may be 

limited by another effect altogether: at a time when hormone 

regulation in plants is generally under critical review ( e.g. 

Trewavas 1981, 1982; Weyers 1984, Canny 1985) it was becoming evident 

that a factor dependent on root water relations influences the growth 

of the shoot. It is natural, in spanning these years, that this 

research reflects these ideas. 

1. 1. Aims: 
I 

This work aimed to determine the cause of the reduced growth in 

plants treated with non-lethal concentrations of NaCl, and focussed 

on the responses of the shoot. Three hypotheses were tested; namelv, ., 

that the reduced growth was due to inadequate turgor in the expanding 

cells of the shoot, to insufficient cytokinins arising from the root, 

or to an NaCl-specific disturbance of the mineral transport from the 

shoot. 

The first hypothesis~ that turgor in the expanding cells of the 

leaves limited shoot growth, was suggested because leaf growth was 

known to respond instantaneously to shifts in external water 
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potential (Section 2.1.2.), and to recover to control rates 

immediately when NaCl was removed from around the roots, despite high 

concentrations of NaCl persisting in the shoot (Munns et al. 1982). 

This led to a fundamental question: if the osmotic effects of the 

NaCl around the roots were cancelled, would the growth rates of these 

plants improve? It was decided to attack the question directly using 

a technique developed by John Passioura with which the shoot water 

potential of growing plants could be raised by applying pneumatic 

pressure to the roots (Passioura 1980; Passioura and Munns 1984). The 

use of whole plants was an important aspect of this method, in order 

to preserve the adaptive physiology of complex, differentiated 

tissues. The results are in Chapter 4. 

The results of the above experiments strongly suggested that a 

message from the roots regulated shoot growth. This raised the 

question was: did a hormone limit the growth of NaCl-treated plants? 

Notwithstanding problems of interpretation, the literature (see 

review by Reid and Wample 1985, and Section 5.1.) suggests that there 

are fairly consistent patterns of hormonal response to low soil water 

potential (ie., dry soil, non-ionic osmoticum or salinity) and low 

levels of cytokinins seemed the most probable cause (Section 1.2.2.). 

This possibility was examined by supplying kinetin, usi-ng a variation 

of the technique used in the previous experiment. Pressure was 

applied to the roots of the plants until the shoots guttated, a cut 

leaf tip was inserted in a solution containing kinetin (a cytokinin), 

which was sucked in when the pressure was lowered. The results are in 

Chapter 5. 

As the above results were negative, a different approach was 

taken. Plants grown in NaCl suffer nutrient imbalance, which may 

result directly from accumulation of toxic levels of NaCl, or 

indirectly if competition of either Na+ with K+ or Cl with N0
3 
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results in deficiency of these ma c ronu t rien ts. An alt e red regulat i on 

of uptake of some other nutrient, such as phosphate, may also 

contribute to decreased growth rates o f NaCl-treated plants ( Sec tion 

1 . 2 . 3 . ) . Thi s possibilit y was exam i ned by c ompari ng the g rowth of 

plants in isosmotic solutions of NaCl and concentrated 

macronutrients, which were shown in preliminary, short-term 

experiments to be more suitable non-specific osmotica (i.e., 

decreasing water uptake without affecting nutrient uptake) than 

polyethylene glycol (PEG) or mannitol. An evaluation of concentrated 

macronutrients suggested that this treatment provided an almost ideal 

non-specific osmoticum, which enabled NaCl-specific effects on 

nutrient uptake to be described in detail.The results are in Chapter 

6. 

1.2. Literature review: 

1.2.1. _G_r_o_w __ t_h-L., ___ w __ a_t_e __ r __ r __ e_l_a_t __ i_o_n __ s ___ a __ n_d ___ i_o_n __ i_c ____ r_e __ l_a_t __ i_o_n_s ___ o_f ____ N_a __ C_l_-__ t_r_e_a __ t_e_d_ 

plants: 

The earliest response of a non-halophyte (i.e., a plant not 

native to saline soils) to a lowered soil water potential (¥) is that 

its leaves grow more slowly (see below). Reduced growth rates 

sustained over even a moderate period (days) lead to smaller shoots, 

so that the removal of NaCl around the roots causes relative leaf 

expansion rates (RLER) to recover, but leaf areas remain low (e.g., 

Rawson and Munns 1984). Root growth is almost always less affected 

than shoot growth, so that the root:shoot ratio increases ( reviewed 

in Munns and Termaat 1986, Bernstein and Hayward 1958). Root growth 

may be stimulated by the high carbohydrate status of the shoot 

(discussed in Chapter 7). 
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Shoot responses to changes in external f are described in 

detail by Acevedo et al., 1971, who man i pulated the growth of maize 

seedlings with Carbowax (PEG) 6000 solutions, and soils of different 

water content. The short-term, instantaneous changes in growth are 

completely reversible, and provide strong evidence that the driving 

force for growth is water uptake, which generates turgor. This is 

shown directly by Green et al. (1971), who measured turgor in the 

unicellular algae Nitella with an intracellular manometer, and 

indirectly by Matsuda and Riazi (1981) who used barley and solutions 

of PEG and mannitol. In the latter study, solute accumulation 

occurred in the expanding (basal) tissue, where TT' increased to give 

turgors similar to controls (insofar as f of expanding tissue can be 

estimated with the Shardakov procedure). Whether the rates of solute 

accumulation limit growth is unknown. 

Plants grown in NaCl eventually accumulate high levels of this 

salt in the shoot, despite adaptive mechanisms such as NaCl exclusion 

by the roots. For example, an NaCl concentration as low as 10 mol m -3 

in the xylem stream will lead to leaf NaCl concentrations of 500 mol 

m- 3 after a leaf has transpired 50 x its weight; retranslocation in 

the phloem is low (R. Munns, personal communication). Undoubtedly 

high levels of NaCl eventually cause the death of .older leaves 

(Greenway 1962; Munns and Passioura 1984b), but it is unclear to what 

extent non-lethal concentrations of NaCl reduce growth rates of 

currently expanding leaves. After a medium-term exposure to NaCl, for 

example, the growth rates of the youngest leaf of barley can recover 

to control rates immediately NaCl is removed from around the roots, 

while high NaCl concentrations persist in the shoot (Munns et al. 

1982). The RLER of NaCl-treated sunflower, similarly, can recover to 

control rates immediately NaCl is removed from around the roots. 

These two examples suggested that, in short- (minutes, hours) 
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and medium-term (days , weeks ) trea tment s, wat e r relations rather than 

ion toxi ci t y limit the growt h of NaC l- trea t e d plants. 

1.2.2. Hormonal responses in NaCl-treated plants: 

Of all hormonal response s of plants subject to low soil ¥, 

whether caused by drought, non-ioni c osmotica, or salinity, ABA and 

cytokinins have been studied in the greatest detail. ABA can be 

synthesised in many tissues, including roots and stems, but the most 

dramati c changes in concentration are found in the leaves (reviewed 

in Bradford and Hsiao 1982). ABA levels are frequently negativel y 

associated with leaf turgor, although this relationship can change if 

the plant has a history of drought (Henson 1983; reviews by Bradford 

and Hsiao 1982, Aspinall 1980). There are at least two salinitv 
~ 

studies which suggest that leaf turgor is related to ABA levels; 

Mizrahi et al. (1971), using tobac c o grown in 100 mol m-3 NaCl at two 

different humidities, found the highest ABA concentration in the NaCl 

treatment at the lowest relative humidity, and Walker and Dumbrof f 

(1981), using tomato grown in concentrated macronutrient solutions 

with an TT of 0.60 MPa, found ABA levels peaked after 2 d, returning 

to control levels after 8 d. High ABA levels may have a causal 

(rather than merely associative) relationship with many of the 

features of plants grown i n low soil ¥ (e.g., lower stomatal 

conductance, higher root: shoot ratios) because these features c an b e 

indu c ed in plants by raising ABA levels artificially (Bradford and 

Hs i ao 1982). Since root s ar e generally regarded as the s i t e for 

cy tok i n i n synthesis (Von Staden 1979; Carmi and Von Staden 1983 ), t h e 

levels in the shoot may indicate the rate of production by the roo t s. 

Low levels in the shoot may persist for the duration of the osmotic 

treatment (0.6 MPa concentrated macronutrients, Walker and Dumbro ff 
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1981), which suggests that the response, unlike that to ABA, is 

independent of transient changes in the water status of the root or 

the shoot. All factors favouring growth (high water supply, nitrogen 

and mineral nutrients) increase cytokinin levels in a plant, and all 

factors which inhibit growth decrease cytokinins (reviewed in Michael 

and Beringer 1980). Reduced levels of cytokinins in root exudates 

have been reported in NaCl-treated plants (Itai et al. 1968). In 

NaCl-treated plants, applied cytokinins increased the capacity of 

leaf discs to incorporate labelled leucine into protein (Ben-Zioni et 

al. 1967) and, in one instance, improved the growth of beans (O'Leary 

and Prisco 1970). Several experiments have demonstrated the 

antagonistic effects of ABA and cytokinins (e.g., on stomatal 

behaviour in epidermal strips, Blackman and Davies 1983, 1984; on 

transpiration rates of excised leaves, Livne and Vaadia 1965, Mizrahi 

et al. 1970 and on trends in water status of whole tobacco plants, 

Mizrahi and Richmond 1972). 

Less is known about the effects of salinity on the other groups 

of plant growth substances~ Like cytokinins, gibberellins arise in 

the roots, although young leaves are also regarded as a source (Carr 

et al. 1964, Torrey 1976). Gibberellins have never been assayed in 

salt-treated plants, although levels have been shown to -decline as 

water status of detached lettuce leaves decreases and rise again as 

the leaves regain turgor ( Ahroni et al 1977). Nevertheless, several 

studies applied gibberellins (GA) to NaCl-treated plants (Nieman and 

Bernstein 1959, Prisco and O Leary 1973; Boucard and Ungar 1976, Zhao 

Ke-fu, Li Ming-liang and Lui Jia-yeo, personal communication). These 

have produced variable results. For example, GA did not increase the 

yeild or leaf area of red kidney beans at high NaCl, even though it 

doubled the yeild of plants at low NaCl and increased stem length at 

all NaCl concentrations (Neiman and Berstein 1959). On the other 
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hand, GA 3 increased the growth of Suaeda ussuriesis at NaCl 

concentrations above and below the optimal NaCl level for growth 

(Zhao Ke-fu et al. personal communication). This suggests GA
3 is 

overcoming a water deficit rather than a specific salt effect, 

perhaps by increasing rr' of the cells (cf. Kazama and Katsumi 1983). 

Auxins have not been assayed in NaCl-treated plants, but their level 

declines in the shoot during drought (Wright 1978). However, applied 

to NaCl-treated plants, auxins have produced variable results. IAA 

(an auxin) improved the growth of tomato at moderate salinity levels 

but not at high levels (Salama et al. 1981), while on cowpea, IAA 

increased the water content but reduced the leaf dry matter at all 

salinity levels (Abdel-Rahman and Abdel-Hadi 1984). Finally, ethylene 

and its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), which 

is synthesised by the root and transported in the xylem (Bradford 

1983), may have a role in the regulation of growth of salt-treated 

plants, but this has never been studied. 

Trewavas (1985) has proposed that No
3

- might be a growth 

regulator, affecting metabolism and development. He argued that this 

could operate via an effect on the ca2+ concentration of the 

cytoplasm; energy is directed towards N0
3

- reduction when N0
3

- enters 

a _cell, so a change in No
3

- uptake would change the energy available 

for ca 2+ expulsion. This is relevant to long term exposure of plants 

to NaCl, because, where Cl- is present around the roots in high 

concentrations, No
3

- uptake may be inhibited (see Section 1.2.3.). 

Some of problems in interpreting the literature are discussed in 

Reid and Wample (1985) (e.g., not only do PEG solutions cause water 

deficit responses, but, even when aerated, o 2-deficiency responses) 

and Section 5.1., and there are many exceptions to the very general 

statements about plant hormones above, particulary concerning ABA. 

Given the general lack of knowledge surrounding this subject, 



Ii 

'i 
1i 

I 
11 

' 

I 
11 

': 

I 

l 

~. 

LI 

lJ 

-8-

cytokinins appear the most likely contenders for the regulation of 

plant growth during medium-term exposure to salinity. 

1.2.3. Major nutrient (N, P, K) interactions with NaCl: 

Attention to nutrient imbalance as a problem of NaCl-treated plants 

is not new, and three recent reviews considering possible 

interactions of N, P and K with NaCl: Campagnol (1979), Feigin (1985) 

and Kafkafi (1984). This section reviews this aspect of salinity, 

and, in particular, addresses the question: is it feasible to counter 

the effects of NaCl using fertilisers? 

Nitrate: 

Exposure to NaCl can lower the uptake of No
3
-. This is probably 

a direct effect of Cl- on No
3

- uptake through feedback inhibition 

by high internal concentrations of tissue c1- (Glass and Siddiqui 

1985; Dean-Drummond and Glass 1982). There is frequently an inverse 

relationship between levels of leaf tissue NO -
3 

in 

NaCl-treated plants (e.g. wheat, Torres and Bingham 1973; tomato, 

Kafkafi et al. 1982 ), where a Cl- ion may replace up to 2.4 NO -
3 

ions (Kafkafi et al. 1982). Nitrate within the shoot is always more 

sensitive to external NaCl than total nitrogen, but reductions in 

total nitrogen concentration (e.g., wheat, Torres and Bingham 1973) 

and chlorophyll concentration (e.g., wheat, Mashady et al.1982) can 

also occur in NaCl-treated plants. That this might be the consequence 

of Cl uptake reducing levels of tissue N0
3 

, rather than reduced 

protein synthesis for some other reason, is suggested by reports in 

which water stress (wheat, Mashady et al. 1982) and Na
2
so

4 
salinity 

(Phaseolus vulgaris, Bhivare and Nimbalkar 1984) did not lower total 

nitrogen or chlorophyll concentrations as much as the NaCl salinity 
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treatments to which they were compared. 

However, plant growth reductions associated with salinit y may 

result in normal concentrations of total nitrogen in the shoot . (e.g. 

Acacia saligna, Shaybany and Kashirad 1978) or even above normal 

concentrations (e.g. Cynodon dactylon, Langdale and Thomas 1971; C. 

plectostachyus, Langdale et al. 1973). Fertilised legumes usually 

have normal or above normal nitrogen concentrations, e.g. nitrogen 

levels in Vicia faba increased ( Yousef and Sprent 1983) and in 

Hedicago sativa did not change (Shone and Gale 1983), but innoculated 

legumes may have lower than normal shoot nitrogen concentrations 

(Yousef and Sprent 1983; Shone and Gale 1983) with concomitant 

increases in c1- (Yousef and Sprent 1983). The decrease could be due 

to effects of NaCl on Rhizobium nitrogen fixation, or the infection 

process, but the absence of high levels of No
3

- in the soil solution 

to compete with c1- uptake may also contribute to c1- toxicity in 

these plants in addition to No
3

- deficiency. 

This leads to an important question; is it feasible to apply 

No
3

- fertiliser to NaCl-affected plants to counter these effects? The 

answer depends on (i) the inherent qualities of the species 

concerned, such as its relative growth rate and the extent that this 

is reduced by NaCl, and (ii) how effectively N0
3

- competes with Cl • 

For example, the relative growth rates of strandline halophytes 

Atriplex hastata, A. littoralis or Salsola kali grown without NaCl 

did not respond to an increase in No
3

- from 3.5 to 14 mol m-3 , nor 

was the growth rate at optimal NaCl concentrations (60, 150 and 60 

1 -3 mo m NaCl respectively , for the three species above) affected by 

an increase in No
3

- from 3.5 to 14.0 mol 

The low inherent RGR of these species may 

-3 m (Rozema et al. 1983). 

have caused the lack of 

response to No
3
-, presumably even at 3.5 mol m-3 No

3
-, sufficent 

No 3- accumulated. However, rapidly growing Mexican wheat varieties 
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responded dramatically to No
3
-; the yield of one variety at 42 mol 

m-3 NaCl almost reaching control levels after external N0
3 

was 

-3 increased from 9 to 15 mol m (Torres and Bingham, 1973). This study 

also illustrates competition between the -3 two anions; 82 mol m NaCl 

reduced total Nin the shoot to below deficiency concentrations (0.2% 

g g- 1 DW) in plants fertilized with 15 mol m- 3 N0
3
-. In addition to 

Mexican wheat, there are several other species where nitrogen 

fertilization improved the growth of NaCl-treated plants 

proportionately more than controls: cowpeas and African millet 

(Ravikovitch and Porath 1967), millet (Ravikovitch and Yoles 

stargrass (Langdale et al. 1973) and bermudagrass (Langdale and 

Thomas 1971). In all these studies, nitrogen became ineffective at 

high salinity levels, suggesting that the depression in growth 

by NaCl was greater than the growth depression caused by reduced 

uptake. 

Phosphate: 

caused 

NO -
3 

Phosphate and salinity interactions form a far less consistent 

pattern, even when varieties of the same species are under 

consideration. Phosphorus toxicity is induced by NaCl in some species 

(e.g., corn, Nieman and Clark 1976, Bernstein et al. 1974; _sesame, 

Cerda et al. 1977; tomato and wheat, Cerda and Bingham 1978) and 

certain varieties within species, such as soybean (Grattan and Maas 

1984). The sensitivity of NaCl-treated soybean varieties to phosphate 

has been linked to genotypic properties of the root (Grattan and Maas 

1985). But in Glycine wightii, such varietal differences in phosphate 

accumulation (particularly in the root) are associated with vigour, 

and selection of K+ over Na+ (Gates et al. 1970). Furthermore, there 

are several studies, all involving soil-grown plants, which report 

that increased phosphate fertilization improved the growth of 
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NaCl-treated plants to a greater extent than cont r ols ( e.g., on 

millet and clover, Ravickovitch and Yoles 1971; on carrots, c lover, 

cowpea, African millet, foxtail millet, pigeonpeas and vetch 

Ravikovitch and Porath 1967; on wheat, Ferguson and Hedlin 1963; on 

bean, Lunin and Gallatin 1965). Precipitation of phosphate from the 

soil solution may explain the differences Ravikovitch and Porath 

(1967) found in the response of plants grown in clay versus sandy 

soils. Four studies which report no improvement to NaCl-treated 

plants by phosphate fertilization are, Nassery et al. (1978) with 

sesame and pepper, grown in solution culture, Patel et al. (1976) 

with alfalfa grown in sand culture, and Khalil et al. (1967) with 

corn grown in soil, and Ravikovitch and Porath (1967) with tomatoes 

and corn, grown in soil. 

Thus phosphate toxicity seems to be a feature associated only 

with hydroponic culture, or, on occasion, sand culture of certain 

species or varieties. It may, therefore, be an artifact of the 

method, having no place in agriculture, but confounding the results 

of many salinity studies. 

Potassium: 

K/Na interactions have attracted attention in several reviews 

(eg, Munns et al. 1983, Flowers and Lauchli 1983) as these minerals 

can fulfil similar roles. For example, Na may fulfil the role of up 

to 90-95i. of K present in tomato without any growth reduction 

occurring (reviewed in Flowers and Lauchli 1983). At low K, moderate 

levels of Na may stimulate the growth of even non-halophytes, 

presumably acting as a vacuolar osmoticum (Evans and Sorgar 1966, 

Munns et al. 1983, Flowers and Lauchli 1983). However, Na cannot 

replace K entirely; 11 1· t . 11 is genera y not as effective as an enzyme 

activator" (Flowers and Lauchli, 1983; Evans and Sorgar 1966), nor 
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can it replace Kin protein and chlorophyll synthesis, nor does Na 

have a role in stomatal guard cell turgor regulation (Flowers and 

Lauchli 1983). 

Can K fertilization benefit NaCl-trea ted plants ? Ra v ikovitch 

and Porath (1967) applied K2so4 to a variety of species grown in two 

types of soil. In cases where the growth of control plants was not 

increased, or was even reduced at the higher level of fertilization 

(which suggests excess K was present), the growth of tomatoes, 

cowpeas, carrots, pigeon peas and foxtail millet in NaCl was 

unchanged. Therefore, provided soil K levels are adequate, there 

seems little benefit in this procedure. 

1.5. Conclusion: 

This review has identified several ways in which the growth of 

NaCl-treated plants may be limited. On the one hand, the literature 

suggests that NaCl in the external solution will stop growth 

immediately through effects on turgor, but, on the other hand, even 

at turgor pressures similar to controls, the growth rates of leaves 

of NaCl-treated plants were slower. This could be caused by a 

continued need for solutes to generate osmotic pressure in the 

expanding cells, to changed hormonal messages, or to a deficiency or 

excess of a major nutrient. The review forms a background for the 

experiments in Chapters 4 - 6. 
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Chapter 2 

STANDARD MATERIALS AND METHODS 

2.1. Plant Material: 

Wheat: Triticum aestivum cv. Kite. This is a bread wheat 
variety of short height (Fitzsimmons et al. 1983). Seeds of uniform 
size were selected for each experiment and surface-sterilised for 
5-10 minutes in 50% sodium hypochlorite, then rinsed several times in 

t bf b · · t d 1 mol m- 3 tap wa er, e ore e1ng germ1na e on a screen over caso
4 

or in red sand moistened with 1 mol m-
3 

Caso
4

. Seed was supplied by 
Dr B. J. Read, Agricultural Institute, Wagga. 

Barley: Hordeum vulgare cv. Beecher, and cv. Clipper. Cv. 
Beecher is a tall, six row feed variety with early maturing 
characteristics and cv. Clipper, is a two row, malting variety of 
medium height grown widely throughout Australia (Fitzsimmons and 
Wrigley 1984). As the latter variety seemed to give more uniform 
plants in early experiments I tended to prefer it in later work. 
Preparation of the seed was similar to wheat. Seed was supplied by Dr 
B. J. Read, Agricultural Institute, Wagga. 

Egyptian clover: Trifolium alexandrinum. This is an 
annual species of at least moderate salt tolerance (Winter and 
Lauchli 1982). Preparation of the seed involved preliminary 
surface-sterilising as for the cereals, then overnight soaking in tap 
water. Germination was on moist filter paper in a petri dish. Seed 
was supplied by Dr A. Gibson, Division of Plant Industry, CSIRO. 

White clover: 
pasture species 
communication). 
clover. Seed 

which is 
Preparation 

was supplied 
Industry, CSIRO. 

2.2. Growth conditions: 

2.2:1. Environments: 

Trifolium repens. This is a 
very salt-sensitive (D. West, 
of the seed was similar to 

by Dr A. Gibson, Division 

perennial 
personal 
Egyptian 

of Plant 

Glasshouse 1 : (Headhouse). This 9 X 10 m glasshouse is 
located in Division of Plant Industry, CSIRO, Canberra, ACT. 
Temperature maintainence is with evaporative units, ceiling fans and 
fan heaters. Natural daylengths and full sunlight completed the 
growing conditions. 

Glasshouse 2a: This 6 x 8 m glasshouse is attached to the 
crop adaptation building, Division of Plant Industry, CSIRO, 
Canberra, ACT. The glasshouse faces due N, one side due E. The 
temperature is regulated with evaporative coolers, hot water heaters 
and automatically controlled ventilators. A whitewash limits light 
levels to 800 umol m- 2s- 1 photosynthetic photon irradiance in summer. 
Glasshouse 2b: (Attached to glasshouse 2a and crop adaptation 
building). This glasshouse is of similar dimensions to glasshouse 2a 
and light and temperature regulation is similar. The east wall is 
attached to glasshouse 2a. 
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Controlled temperature room: This room housed a light 
bank which provided a 13hr photoperiod with a photosynthetic photon 

-2 -1 irradience of 250-400 umo l m s (depending on the age of the 
lights; lighting was uni fo r m across the ligh t bank). Temperatures 
under the lights were 25°c dur ing the day and 21°c at night. 

Growth cabinet : This was a Conviron unit located in the 
crop adaptation building. Lighti ng was a mixture of incandescent and 
fluorescent lights to 800 umol m- 2 s-l photosynthetic photon 
irradiance, temperature was controlled with a microprocessor+ 0.1°c 
and humidity was control led with a wet wick and fan. 

2.2.2. Pressure chamber: 

Establishing seedlings: When the seminal roots of the 
monocots were 10-20 mm long the seedings were transplanted to special 
pots designed to fit within a pressure chamber (Fig 2.1.). The pots 
contained red sand which had been washed to remove the clay and silt, 
and then watered (see below) with 1/4 strength nutrient solution 
(receipe given in section 2.2.3.). If clover was used, Sg of river 
loam was placed immediately below the 1 mm hole through which the tap 
root was introduced. All seedlings were covered to prevent water loss 
and allowed to establish in low light. When the emerging leaf of the 
monocots was about 50 mm long, or the stem supporting the 
dicotyledons of the clover had elongated to the same height (achieved 
by providing light only directly above the emerging seedling) a 
droplet of semi-set non-toxic silicone sealant (Sylgard 184) was used 
to seal the gap between the root and the top of the pot, and the 
shoot was threaded through the retaining metal plug illustrated. At 
the same time, plants were transferred to conditions providing 
light. The following day,or when the Sylgard droplet had 
completely, a 3 - 4 mm layer of liquid Sylgard was applied to 
over the level of the retaining plug. For uniformity, tillers of 
monocots were pinched back. 

more 
set 

just 
the 

Watering plants : The pots held a volume of 220 ml and the 
base was covered with nylon gauze to allow drainage. Solution was 
supplied to the plants through a small hole at the top of the pots by 
syphoning in 65ml and the pots were drained and blotted on a towel 
until they held 50ml, gi ving a volumetric water content of 0.23. 
Initially the plants were watered with 1/4 strength nutrient 
solution, then 1/2 strength the following day, and full strength the 
day after. Salt was added at about da~ 10 for the monocots, in daily 
increments of 0.12 MPa TT (25 mol m- NaCl) after this. Thereafter 
watering occurred daily . As the clover grew much more slowly, the 
increase in nutrient and NaCl concentrations was more gradual and 
subsequent watering less frequent. 

Pressurising plants: Up to six pots could be pressurised 
simultaneously, the top of the pot forming part of the chamber (Fig 
2.1.) . Gas mix comprising of O.lMPa air and added nitrogen was used 
after it was found pure a ir eventually killed the plants (see chapter 
3). The chamber was bled continuously at a rate which would remove 
respired CO 2 (25 cm3 min-1 for an estimated 6g of FW root tissue). 

2.2.3. Solution culture: 

seedlings 
them with 

Growth conditions: After germination at 2s 0 c in the dark, 
were gradually adapted to glasshouse conditions by covering 

shade cloth for 2-3 days. The solutions were held j 



Incoming 
-----=::!=~ 

gas 

Figure 2.1 

Rubber seal 

Retaining plug 

watering 

Pressure chamber 

Pot filled with sand 

Gauze at base of 

pot for drainage 

Section through pressure chamber to show plant sealed to top of 
pot placed inside pressure chamber. Six such chambers were 

connected in series. A mixture of air and N
2 

containing 

atmospheric pressures of o 2 (21 kPa) was bled continuously 
through the system to remove respired co

2
• 
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plastic bags lining 8.8 1 black plastic pots which were encased 
within white plastic pots, and covered with a layer of 25 mm white 
styrofoam. Air supplied by a compressor was bubbled vigorously 
through the solutions using a variety of fish tank aerators, scinted 
glass aerators and 1 mm glass tubing lengths. Seedlings were held 
with a strip of plastic-covered sponge in 30 mm circular holes 
punched in the styrofoam tops. As each plant was harvested by lifting 
it out, the hole was sealed with a styrofoam plug to minimise 
evaporation from the solutions. Solutions were checked regularly with 
pH paper (Merck 3.8- 5.4) and generally changed the day following a 
harvest. Daily additions of deionised water replaced losses from 
transpiration and evaporation. 

Plants were harvested by lifting them from the solution. 
Roots were washed in deionised water or isosmotic mannitol (If grown 
in solutions with osmotic pressures of 0.56MPa or more) for 30 s 
which aimed to remove apoplastic ions. Shoots were rinsed briefly in 
deionised water to remove any effects of salt spray. 

Application of 
exceeding 25 mol m-3 d-1, 

solution. 

NaCl: NaCl was 
using a 2.0 x 

applied 
103 mol 

in 
-3 m 

steps 
NaCl 

never 
stock 

Application of concentrated macronutrient: Nutrient 
toxicity was avoided by applying small amounts of concentrated 
macronutrient stock solutiODS four times daily, resulting in an 
increase in osmotic pressure which never exceeded 0.12 MPa d-1. If 
this rate was exceeded very young seedlings sometimes died suddenly. 

Final composition of all nutrient solutions used: See 
table 2.1. 

2.3. Measurements: 

2.3.1. Leaf area and growth: 
Leaf area: 
Wheat: Leaf area was estimated daily, at a given time of 

day, as L x W x 0.78 for wheat where Lis the length of the blade 
plus half the length of the sheath and Wis the maximum width of the 
blade. Barley: The estimation was similar to wheat, the relationship 
being L x W x 0.75. Clover: The leaf areas of both clover species 
were estimated by comparing each leaf with a template (Williams et 
al. 1964). 

_R_e_l_a~t_i_v~e~l_e_a~f~e~l_o_n~g_a~t_i_o_n~_r_a~t_e~ __ (_R_L_E~R~)_:_RLER was estimated 

as (Ln A2 - Ln AJ) I (t2 - t1) where A is the area on two different 
days (i.e., tl and t2). 
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Table 2. 1 Composition of nutrient solutions 

- + 2+ 2+ + so2-Treatment N0
3 

NH 4 Ntot Ca Mg K H
2
Po4 -3 4 

(MPa) (mol m ) 

Control 0 .08 14.5 2.0 16 . 5 4 . 0 2.0 6.5 2.0 2.0 

Concentrated 

macronutrients 0.20 35.8 4.9 40.7 9.9 4.9 16.0 4.9 4.9 

0.32 57. 1 7.9 65.0 15.8 7.9 25 . 6 7.9 7.9 

0.56 99.7 13.8 113. 5 27.5 13.8 44.7 13.8 13.8 

0.80 142.3 19.6 161 . 9 39.3 19.6 63.8 19.6 19.6 

Modified 

concentrated 

macron u tri en ts 0.32 63.0 13.8 76.8 15.8 7.9 25.6 7.9 2.0 

0.56 111 . 5 25.6 137. 1 27.5 13.8 44.7 13.8 2 . 0 

0.80 159.9 37.2 197. 1 39.3 19.6 63 . 8 19.6 2 . 0 
Minimal phosphate 

control 0.08 16.5 2.0 18.5 4.0 2.0 6.5 2.0 trace 

Micronutrients present in all solutions ( mmol m - 3 ): 36Fe3\ 4. 6 Bo!-, O. 5 Mn 2\ 0 . 2 
2+ 6-

Zn , 0.1 Mo 7o24 pH was 4.8-5.1 checked daily with pH paper (Merck 3.8-5.4) . 

NaCl was added to the 11 Control 11 and "Minimal phosphate control" solutions in the 

NaCl treatments . 

i 
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Leaf elongation ; 
Ruler: Elongating leaves were measured by ruler from the 

cap of the pot in pressure experiments and from the styrofoam cover 
in experiments using solut ion culture. ~hotograph: Elongating leaves 
were photographed and at regular intervals with the camera maintained 
at a fixed position, using graph paper a background. This had the 
advantage in not disturb i ng the plants during the recording 
procedure, but the disadvantage that parallex errors were introduced 
when leaves grew in a spiralling fashion. Measurements by ruler 
before and after the experiment were used to correct these errors 
partially. A microfiche was used to interpret the developed film. 
LVDT: Elongating leaves were attached to a linear variable 
displacement transducer (LVDT, Model DCDT-500, Hewlett Packard) and 
the output recorded automati c ally at fixed intervals, using a Hewlett 
Packard 85 computer. 

Fresh weight: Both roots and shoots were blotted quickly 
on a towel before being weighed in the glasshouse. If there was any 
delay they were placed between two pieces of moist paper hand towel 
and covered with plastic ; this had been shown to minimise 
desi <:cation. 

Dry weight: The plant material was placed in labelled 
envelopes and dried at 70-80°c for at least 48 hours before being 
weighed on a balance. 

2.3.2. Transpiration: 

Transpiration was estimated as 
weight of the pot divided by the average leaf 
Water loss was avoided from the base of the pots 

2.3.3. Components of water potential. 

the daily change in 
area over that time. 
by covering them. 

Leaf water potential: The selected leaf was placed in a 
plastic sheath, cut with a razer blade within seconds and placed 
quickly within a pressure chamber. Pressure was increased slowly 

using dry N2 and the balancing pressure noted when the meniscus just 
reached the cut surface (Scholander et al 1965; Turner 1981.) The 
measurements were done by Mr M. J. Long. 

Osmotic pressure: 1. Elongating tissue was dissected from 
plants as discribed in Termaat et al, 1985 and measured in a Wescor 
C-52 sample chamber attached to a Wecor HR-33T microvoltometer. 2. 
Mature (expanded) leaf tissue was frozen in dry ice, thawed, and the 
expressed cell sap measured either with a Wescor HR-33T 
microvoltometer or with a Wescor 5100 Vapour Pressure Osmometer. 3. 
Nutrient solutions. These were measured according to directions on 
the Hewlett-Packard 302 Vapour Pressure Osmometer. 

Turgor:This was estimated, for mature tissue, as the sum 
of water potential and osmotic pressure. 

2.3.4. Chemical analysis : 

Dried plant material: 
Na, K, Ca, Mg : Oven dried tissue was ground is a coffee 

grinder, digested for at least 4 hours in a 1:7:20 mix of sulphuric: 
perchloric: nitric acid and assayed by Mrs F. J. Taylor using atomic 
absorption spectroscopy. P and N: Oven dried, ground material was 
digested using a modified Kjeldahl procedure and assayed 
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colorimetrically in a Techn icon autoanalyser. Ammonia was determined 
utalising the blue colour forme d by the reaction with hypochlorite 
and phenol (Williams and Twine 1967); phosphate using a molybdenum 
blue method (Twine and Will iams 1971). The analysis was done by Mrs 
K. Saw. Cl: Oven dried, ground material was pulverised in a Ball and 
Puck grinder, stamped onto a boric acid block and assayed by X-ray 
spectros copy (Norrish and Hutton 1977). The analysis was done by Mr 
A. Pinkerton. 

Visual assessment of phosphate in nutrient solution: 
Phosphate 
standards, 
0.6 X 10-3 

0.3 X 10-3 

concentration was 
using a 

-3 mol m 

molybdenum 
assessed by visual comparison · with 
blue method (John 1970). As little as 

-3 mol m 
could be detected; 
of this value. 

2.3.S. Measurement of root respiration: 

estimates may have been within 

This was done using an 0.8V Clark oxygen electrode in a 
root chamber. Whole roots were excised and placed in the 

saturated with air or o
2 

and equilibrated to o.2s 0 c. 
dithionite was used to check the zero o

2 
level (baseline). 

110ml 
solution 

Sodium 

2.4. Formulae 

Uptake to the Shoot:This was estimated as 

J. = (M - Ms 1) I (Ws 2 - W 1) x RGR J,S s,2 , , s, S • • • • ( 1 ) 

where J . is the uptake of 
J,S ion j to the shoots, Ms 1 and , 

Ms 2 the ion content of the , shoot at time 1 and 2 respectively, 

- w . 
s,1) the difference in shoot dry weight during that time, and 

the relative growth rate of the shoot on a dry weight (DW) basis 

g-l d- 1 ), estimated as (LnW 2 - LnWs 1)/ (t - t
1
). (Adapted 

1972.) 
s, , 2 

Pitman 

Transport from the root: Similarly, 

J . 
J,r 

RGR (g 
from 

where (Wr 2 - Wr 1 ) represents the change in dry weight of the roots 
and R~Rr the rel~tive growth rate of the root on a DW basis over this 
period. (Adapted from Pitman 1972.) 

Estimation of total solute uptake: This was estimated as 

J 
t,s " = m x RGR 

s 
* •.••• ( 3) 

where J is the total solute uptake to the shoot,@ is osmolality t,s 

* and RGR is the relative growth rate of the shoot on a water basis 
s-1 -1 

(g H2o g H
2
o d ). (Adapted from Greenway and Munns 1983.) 

2.5. Abbreviations, definitions and units: 

TI osmotic pressure (MPa) 
¥ water potential (MPa) 
P turgor pressure, i.e. the difference in pressure across the cell 

wall (MP a) 



MW molecular weight (D) 
DW dry weight (g) 
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FW fresh weight (g) 
RGR Relative growth rate (g g- 1 d-1) 
RLER Relative leaf expansion rate (cm 2 cm- 2 d- 1 ) 

ABA abcisic acid 
ACC 1-aminocyclopropane-1-carboxylic acid 
BA benzyl adenine 
GA gibberellic acid 

PEG polyethylene glycol, average MW indicated by number following. 

expanding, growing or elongating region: basal 10 mmol of elongating 
leaf in monocot 

halophyte: plant native to saline soils. 

hormone, plant growth substance: a chemical which, synthesised by the 
plant, affects metabolism at sites distant from its origin. 
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Chapter 3 

DETERMINING THE CORRECT AIR:N
2 

MIXTURE FOR MEDIUM-TERM 

PRESSURE EXPERIMENTS 

3.1.Introduction: 

In preliminary experiments, when air alone was used to apply 

pressure to NaCl-treated plants, the leaves yellowed prematurely. 

When 0.96 MPa was applied, the plants died after 4 days, but when 

0.48 MPa was applied, reduced growth and transpiration rates were 

apparent only after about 5 days, when experiments were always 

terminated. The first experiment was designed to test whether the 

toxic effect of compressed air could be avoided by mixing N
2 

with 

compressed air so that all the gases (other than N
2

) were kept at 

atmospheric partial pressures. 

The enhanced senescence could have been due to high partial 

pressures of a gas such as o2 or co
2

, but high o2 was considered 

more likely than high co
2

, because co
2 

concentrations in the soil 

are typically 1-2 % (Russell 1961). The second experiment tested 

whether respiration of roots was affected by high 0 
2· 

3.2.Experimental design: 

Experiment 1 : Comparison of growth and transpiration in plants 

pressurised with air or gas mix: 

Thirteen barley, cv. Beecher, plants were grown in pressure pots 

in the controlled temperature room (section 2.2.1.). Nine plants were 

given 100 mol -3 m NaCl, starting with 25 mol -3 m day 9 after 
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germination (Section 2.2.3.); the remainder given nutrient solution 

only. On day 12 after germination 3 NaCl-treated plants (at 100 mol 

m-3) were left unpres surised, 3 were pressurised with 0.48 MPa air 

and 3 pressurised with a 1:5 mixture of air:N
2

. Plants were 

distributed randomly in the system of pressure chambers or beside it, 

and pots were rotated daily. Leaf areas (section 2.3.1.) and 

transpiration rates (section 2.3.2.) were estimated daily. 

Experiment 2: Root respiration under high o
2 

tensions: 

Barley, cv. Beecher, plants were grown in solution culture in 

two plastic containers in the controlled temperature room. One group 

was given 100 mol -3 m NaCl starting with 25 mol -3 m day 6 after 

germination. The solutions were changed at weekly intervals and 

distilled water was added daily to replace losses. On day 18 after 

germination, when the NaCl-treated plants were about half the size of 

the control plants and the lower leaves were senescing, the plants 

were taken to the Departme nt of Environmental Biology, Research 

School of Biological Sciences, A.N.U., where root respiration was 

measured (section 2.3.5. ) in the solutions in which the roots had 

grown, saturated with air (21 kPa o2 ) or pure oxygen (100 kPa o2 ). 

3.3. Results: 

Decreases in leaf elongation and transpiration rates preceded 

the death of NaCl-treated plants pressurised with air (Fig 3.1., 

3.2.). Leaf areas were si gnificantly reduced after 5 days of 

treatment, and within 11 days these plants were dead (Fig 3.1.). 

Decreases in transpiration rate occurred concomitantly (Fig 3.2.). 

NaCl-treated plants pressurised with air:N 2 mixture had the same 

relative leaf expansion rate as NaCl-treated controls (Table 3.1.). 



Figure 3.1. 

Effect of 0.48 MPa applied pressure (indicated I ) on leaf 

expansion of NaCl-treated Beecher barley (Experiment 1). Plants 
-3 

in 100 mol m NaCl had 1:5 Air:N
2 

mixture ( • ), or Air ( '1) 
applied to roots on d 9. Error bars indicate average S.E. of the 
mean for each group (3 plants per treatment). Incremental 
increases in NaCl indicated as bar graph, x axis. Measurement s 

started d 8 after germination. 
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Figure 3.2. 

Effect of NaCl, with or without 0.48 MPa applied pressure 
(indicated t) on transpiration in light as percentage of control 
of Beecher barley (Experiment 1). Average transpiration rate of 
Nutrient solution control ( ()) was 3.3 mmol m- 2 s- 1 . Plants in 
100 mol m-3 NaCl ( 6 ) were left unpressurised as controls ( 6 ) , 
or had 1:5 Air:N

2 
mixture ( t) or Air (A) applied to roots d 

9. Error bars indicate average S.E. of the mean for each group 
(3-4 plants per treatment). Dark periods indicated by bars, x 

axis. Measurements started d 13 after germination. 

(3) 

(3) 

(3) 

( J J 



Table 3. 1 . Effect of NaCl with or without applied pressure on mean R LE R 

2 -2 -1 
( cm cm d ) of Beecher barley ( Experiment 1) 

Treatment: 

Mean RLER 

S.E . 

Nutrient 

Solution control 

0. 101 

0.010 

-3 
100 mol m NaCl 

Control 

0.084 

0.009 

Air 

0.046 

0.010 

Mix 

0.078 

0.008 

Mean R LE R was calculated as the average of daily measurements of R LE R 

of nutrient solution controls, -3 
100 mol m NaCl controls (Control), 100 mol 

-3 
m NaCl pressurised with 0 . 48 MPa air (Air), or 0.48 MPa Air: N

2 
mixture (Mix) . S.E . was calculated for 3-4 plants/treatment . 

Measurements started dl after pressure was first applied, i.e . d17 after 

germination . 
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The apparent slightly higher transpiration rate of of the latter 

compared to NaCl-treat ed c ontrols was due to the difficulty in 

minimising evaporation fro m the bottom of the pots in the pressure 

chamber (Experiment 1) . 

Table 3.2. shows t hat there was a 50% increase in the rate of 

respiration under high o2 tensions in both NaCl-treated and control 

plants (Experiment 2). 

3.4. Discussion: 

NaCl-treated plants pressurised with 0.48 MPa air were exposed 

to absolute partial pressures of 122 kPa (i.e., (0.48 MPa 

applied pressure+ 0.1 MPa atmospheric pressure) x 21 kPa 0
2
;0.1 MPa 

air). Early work by Erickson (1947) suggested that plants were grown 

in nutrient solutions aerated with 90-100 kPa oxygen also failed to 

thrive. The complication of microorganisms in the nutrient solutions, 

reported by Erickson (1947), seemed less likely here as the roots of 

dying plants that had been pressurised with air looked normal 

whenever they were examined. 

If the enhanced rate of respiration of the root in high o
2

, as 

observed in the second experiment, had been sustained over many d~ys, 

it may, by imposing an inc reased demand for carbohydrate from the 

shoot, itself have contributed to the premature senescence of the 

leaves. However, at the 5-6 leaf stage, NaCl-treated plants have a 

root:shoot ratio of 0.3 (data not shown for pressure pot 

experiments). Therefore, a 50% increase in respiration of the root 

represents an increased demand of about 15% (i.e., 50 x 0.3) on the 

shoot. As this must be a small percentage of net photosynthate, it 

would be surprising if the increased respiratory demand killed the 

shoot directly. Theologis and Laties (1982), working with plant 

I 
I 

I 

i 
I 



Table 3.2 . Effect of air or o
2 

on root respiration (µ mol o
2 

h -l g -l OW) 

of Beecher barley grown in control 

NaCl ( Experiment 2) . 

-3 
mol m NaCl : 0 

21 

100 

2.23 .:!: 0.23 

3. 93 .:!: 0. 38 

nutrients or 100 mol 
-3 

m 

100 

2. 45 .:!: 0 . 12 

3 . 71 .:!: 0 . 28 

Root respiration was measured ina. solution
1 

saturated with air or o
2

, using 

an o
2 

electrode . Values are the mean and S . E . of 3-4 plants/treatment. 

Measurements were made d18 after germination . 
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storage organs, suggest the enhanced respiration does not result 

directly from high 0 2 , but from the effect o2 has on i ncreasing the 

effectiveness of the hormone ethylene (which was applied in their 

experiments). In some root tissues (carrot, sweet potato) the 

respiratory increase was 4-5 fold, persisting for the duration of the 

treatment (3 days). While the routine bleeding of the pressure 

chambers (to remove respired CO
2

) would have prevented a buildup of 

the ethylene produced by the roots, the in situ effects of any 

ethylene produced may well have been magnified by the high partial 

pressures of o
2

. This may have been a second, indirect factor 

contributing to the death of the plants pressurised with air (e.g., 

by inhibiting stomatal development, Reid and Wample, 1985). 

Neither of these explanations was tested as the practical 

problem associated with pressurizing NaCl-treated plants was 

considered solved. 

3.5. Conclusion: 

Compressed air reduced transpiration and growth rates in the 

shoots of plants whose roots were pressured with 0.48 MPa, after 11 

days the plants were dead. This could be avoided by mixing air wi~h 

N2 so that all gases (other than N2 ) remained at atmospheric levels 

during pressurization. 

Aeration with pure o
2 

caused a 50% increase in the root 

respiration rates of plants grown in solution culture. To sustain 

such rates, 15% more carbohydrate must be supplied from the shoot. 

Additionally, high o2 may magnify hormonal effects such as ethylene. 
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Chapter 4 

EFFECT OF APPLIED PRESSURE ON SHOOT GROWTH AND TRANSPIRATION 

4.1. Introduction: 

Many experiments suggest that adverse water relations is a major 

factor limiting growth in salt-treated plants (eg see Chapter 1). For 

instance, the rapid recovery of leaf elongation rates to control 

levels following the sudden removal of NaCl from around the roots 

(e.g., Munns et al. 1982; Rawson and Munns 1984) suggests that it is 

turgor rather than the presence of NaCl in the tissues which is 

limiting growth. Direct measurement of turgor would not in itself 

cast light on this problem; NaCl-treated and plants grown in a dry 

soil may have leaf turgor pressures at least as high as controls 

(e.g., Matsuda and Riazi 1981, Ehlig et al. 1968, Shalhevet et al., 

1978). A high turgor could be simply the result of a reduced growth 

rate, causing accumulation of solutes without a change in uptake 

rates. To maintain growth rates as well as generate turgor when the 

soil f is lowered, additional solutes are needed. It is possible that 

+ increased uptake of Na and Cl 

in certain species; halophytes. 

could supply these solutes, at least 

But in crop plants, two lines of 

evidence suggest this is unlikely. Firstly, Na+ and Cl- make up only 

about 351. of rf in the expanding tissue (e.g., barley, Delane et al. 

1982). Secondly, calculations of uptake rates of Na+ and Cl- indicate 

rates do not increase with increasing external NaCl above 

approximately 25 mol m -3 NaCl (Delane et al. 1982, Munns 1985). Thus 

other inorganic (e.g., K+) or organic osmotica are needed, and 

organic osmotica cannot be supplied without the cost of reduced 

growth. By supplying turgor artificiallly, the pressure system would 

I 
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eliminate that cost by elimina ting the need for the shoot to generate 

its own turgor. Although the turgor of the roots would not be raised 

(Passioura and Munns 1984) , if turgor was regulated by a metabolic 

system, the raising of turgor of the shoot should have freed organic 

substrates for the root. The medium-term (days) experiments aimed to 

test the hypothesis that, if the osmotic effects of NaCl on the 

were countered, the growth rate of these plants would improve? 

shoot 

Short-term (minutes, hours) responses to changes in shoot water 

status are discussed in Section 1.2.1. The short-term experiments in 

this chapter aimed to describe the immediate effects of applying and 

removing various amounts of pressure using the pressure system, 

therefore enabling any short-term responses to be avoided in 

calculations. 

3.2. Experimental design: 

Medium-term growth experiments: Each experiment consisted of 

three treatments: control plants grown in nutrient solution, and two 

groups of salt-treated plants where the roots of one group were 

pressurised with sufficient pneumatic pressure to counter the osmotic 

effects of the salt. The osmotic pressure of the salt treatment 

varied according to the sensitivity of the species used and the type 

of salt (i.e., NaCl or concentrated macronutrients) in which the 

plants were grown, but the pressurised plants were always supplied 

with a mix of air:N2 which maintained the partial pressure of oxygen 

at 21kPa (see Chapter 4). Barley (cv. Beecher and cv. Clipper), wheat 

(cv. Kite), and Trifolium alexandrinum were all grown in 100 mol 
-3 m 

NaCl in the nutrient medium (see section 2.2.3.). T. repens was grown 

in 50 mol -3 
m NaCl. The technique was repeated with barley (cv. 

Clipper) and wheat using concentrated macronutrients with osmotic 

I 

I 
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pressures of 0.56 and 0.80 MPa repectively. The number of replicates 

varied, but up to six plants c ould be pressurised simultaneously in a 

system of six connected pressure chambers (see Fig 2.1.). Pressure 

was always applied within a few davs of the final salt concentration 

being reached, and was released for about an hour each day during 

which the pots were weighed and watered. The treatments continued for 

7-10 days. 

There was no fourth treatment comprising pressurised, control 

plants without NaCl as this would result in a large positive water 

potential in the soil medium which could have induced guttation from 

the shoot together with substantial infiltration by water of the 

intercellular spaces of the leaves. The ability to induce guttation 

artificially with the pressure system was to be exploited in later 

experiments (see Chapter 5). These experiments were conducted in 

various growth environments detailed in Table 4.1 of the results and 

section 2.2.1. 

Osmotic pressures of expanded tissue and the expanding regions 

(i.e •• basal 10 mm of expanding leaf) were measured (Section 2.3.3.) 

on wheat, after being grown for a week with applied pressure. 

Sho~t-term growth experiments: Barley plants of uniform size, 

grown in 0, 50 or 100 mol m-3 NaCl in nutrient solution were 

pressurised with 0.10, 0.25 or 0.50 MPa air each day, from 11.30 to 

15.30 h Eastern Standard Time (EST). Air, rather than a gas mixture, 

was used as this was a short-term experiment. In the short-term, 

there was no difference in plant response to compressed air or N
2
:air 

mixtures (J. Passioura and R. Munns. personal communication). The 

highest pressure applied depended on the water potential in which the 

plants were growing. The elongation of leaf 2 was recorded 

photographically (Section 2.3.1.); a ruler was used to calibrate, if 
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necessary, the values obtained. The experiments were conducted in the 

controlled tempera tur e room (sec tion 2.2.1.). 

I 

3.3. Results : 
I 

Medium-term experiments : Each salt treatment gave a fall in RLER 

of about 15-20% in each species, which reduced the final total leaf 

area to about 70 % of controls by the end of the treatment period. The 

applied pressure made no difference to the growth of any species, 

whether it was wheat grown in a controlled temperature room (Fig 

4.la), a growth cabinet (Fig 4.lc) or white clover grown in the 

fluctuating heat and light environment of a glasshouse (Fig 4.lb). 

Table 4.1 summarises the results for all 4 species and the 2 kinds of 

salt treatment (i.e., NaCl and concentrated macronutrient treatments 

). RLER was calculated from two sucessive measurements, and values 
I 

were then averaged for each plant over the treatment period. All 

species were measured daily except white clover, which was measured 

on alternate davs. 
~ 

Leaf elongation rates, averaged for each leaf which emerged 

during the period monocots were treated, showed similar reductions in 

growth associated with NaCl treatments (Table 4.2.). Tbis 

measurement, however, is more sensitive than RLER as an index of 

short-term growth response; elongation rates varied over the diurnal 

period and differed in different treatments (Fig 4.2.) Control plants 

grew more qui c kly b y day than by night, concentrated 

macronutrient-treated plant s grew more qui c kly or at the same rate 

during the night (Fig 4.2.). NaCl-treated plants were not measured. 

Average daily transpiration, likewise, was unaltered by applied 

pressure. Transpiration rates obtained in the c ontrolled temperature 

room were depressed more by the salt treatment than leaf expansion; 



Figure 4.1. 

Effec t o f NaCl or concentrated macronutrients, with or 
appl i ed pressure, on lea f expansion on wheat or clover 
term e xpe r iments). 

without 
(Med i um 

(a) Effe c t of NaCl, wi th or without 0.48 MPa applied pressure 
(indicated t ) on leaf expansion of wheat grown in the controlled 
tempera t ure r oom. Nut r ien t solution c ontrols ( () ), 100 rno l rn- 3 

NaCl-treated control ( 6 ) and 100 mol m- 3 NaCl with pressure 
applied to roots d 4 ( .6. ). Incremental increases in NaCl 
indicated as bar graph, x axis. Measurements started d 10 after 
germination. 

(b) Effect of NaCl, with or without 0.24 MPa applied pressure 
(indicated t ) on leaf expansion of white clover grown in 

0 -3 glasshouse 2a. Nutrient solution controls ( ), 50 mol m 
NaCl-treated control ( 6 ) and 50 mol m- 3 NaCl with pressure 
applied to roots d 12 ( .6. ). Incremental increases in NaCl 
indicated as bar graph, x axis. "*" indicates when NaCl-treated 
plants were significantly (P = 0.05) smaller than controls. 
Measurements started d 21 after germination. 

(c) Effect of concentrated macronutrients with or without 
0.72 MPa applied pressure (indicated I ) on leaf expansion of 
wheat grown in Conviron cabinet. Nutrient solution controls, 0.08 
MPa Tt (() ), concentrated macronutrient-treated control, 0.80 
MPa TT ( 6) and concentrated macronutrients, 0.80 MPa rr with 
pressure applied to roots d 14 ( .6. ). Incremental increases in 
external T1 indicated as bar graph, x axis. Measurements started 
d 12 after germination. 

Error bars indicate average S.E. of the mean for each group of 
plants. Nos. of plants in each treatment shown in brackets. 
Pressure applied was a mixture of 
contained no more than 21 kPa o

2
. 

c ompressed air and N
2 which 
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Table 4.1 Effect of NaCl or concentrated mac2°nufrlents with or without app~ed pressure ( to 
2 - - -1 

effects of the salt) on mean RLER (cm cm d ) and transpiration (m mol m d ). 
(Medium term experimen~. 

Mean RLER ± S. E. (No. plants) per treatment 

Species mol m 
-3 

MPan Time Nutrient Salt Salt and 
[NaCl) ( d) Solution Control Pressure 

1 (a) 100 0 . 56 b 0.019 ± 0.005(5) 0.086 ± 0.005(5) 0.082 ± 0.007(5) Wheat 1(b ) 
Barley (Beecher\ Cb 100 0.56 6 0.101 ± 0.010(4) 0.084 ± 0.009(3) 0.078 ± 0.008(3) 
Barley (Clipper) ) 100 0.56 7 0.090 ± 0.011(3) 0.076 ± 0.004(5) 0.076 ± 0.005(3) 

Egyptian clover ( 2 ) 
( 2 experiments 100 0.56 6 0. 125 ± 0.022(7) 0. 109 ± 0.019(8) 0.101 ± 0.013(7) 
combined) 

White clove/ 2 ) 50 0 .32 9 0.163 ± 0 .010(5) 0 . 1 41 ± 0. 0 07( 5) 0. 142 ± 0.013(6) 

Concentrated 
macronutrients 

Whea/ 3 ) 
( x nutrient control) 

1Ux 0 . 80 6 0.091 ± 0 . 007(6) 0.074 :!: 0.005(5) 0.077 ± 0.009(4) 

Barley ((lipper)l(c ) 7x 0 . 56 8 0.057 ± 0.001(2) 0.049 ± 0.002(4) 0.044 ± 0.002(3) 

Growth conditions 

1. Controlled temperature room . 
-2 -1 

- (a) 400 µmol m s transpiration calculated for period in light 

( b ) 250 

( C) 350 

2 . Glasshouse 2a, transpiration calculated over 24 hr . 

3 . Conviron cabinet, 800 µ mol m -
2 

s -l, transpiration calculated for period in fluorescent light . 

Comments 

counter the osmotic 

Mean transpiration rates ± S. E . 

Nutrient Salt Salt and 
Solution Control Pressure 

6.69 ± 0.21 4.51 ± 0.12 4 . 45 ± 0 . 12 
3.32 ± 0.23 2. 82 ± 0. 20 2.91 ± 0 . 11t 
5.88 ± 0.36 2.95 ± 0.27 2.98 ± 0.22 

1. 55 ± 0. 06 0. 98 ± 0. 10 0.94 !: 0.10 

1. 68 :!: 0 . 10 1.42 ± 0.07 1 . 55 ± 0. 11 

4. 05 ± 0. 48 2.44 ± 0.27 2.14 !: 0.34 

n.d . n.d . n.d . 

Mean RLER was calculated as the average of daily measurements of RLER of nutrient solution controls, salt-treated (NaCl or concentrated 
rnacronutrient) controls ( without pressure) and salt-treated plants with applied pressure to roots to counter the osmotic effects of the salt. 
S. E. was calculated for the numbers of plants (bracketed) in each treatment. Measurements started d I after pressure was first applied to avoid 
short~term responses. Mean transpiration rates were calculated in a similar way. Pressure applied was a mixture of compressed a ir and N

2 
which 

contained no more than 21 KP3.. o
2

. 
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Table 4.2 . 
-3 Effect of 100 mol m NaCl with or without applied presure on 

-1 
mean elongation rate (mm d ) of the emerging leaf (medium-term 

experiments) . 

100 mol 
-3 

NaCl m 

Time Nutrient Control + 0. 48 MPa 

seecies (d) solution control 

Wheat 6 42 :! 1(5) 34 ± 2(5) 32 ± 5(5) 

Barley (cv. Beecher) 6 38 :! 1(3) 23 :! 2(2) 25 :! 1(3) 

(cv. Clipper) 7 35 :! 2(3) 29 :! 2(5) 28 :! 1(3) 

Mean elongation rate was calculated as the average of the max imum 

rates leaves 4-6 attained 2-5 days after emergence, S. E. was calculated for 

all the plants/treatment . Nos . of plants/treatment shown in brackets . 

Measurements started 

short-term responses . 

d1 after presure was first applied to avo id 

Pressure applied was a mixture of compressed a ir 

and · N
2 

which contained no more than 21 KPa o 2 . 
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Figure 4.2. 

Effect of concentrated macronutrients, with or without 0.72 MPa 
applied pressure, on leaf elongation rates of wheat (medium-term 

experiment). · Elongation rates (mm h-l) of nutrient solution 

controls, 0.08 MPa TI (continuous line), concentrated 
macronutrient-treated control, 0.80 MPa TT (discontinuous dashed 

line), and concentrated macronutrients, 0.80 MPa TT, with 

pressure applied to roots d 24 after germination (discontinuous 
line). Dark periods include 2 h incandescent lighting after 

flourescent lights were switched off, indicated as bar graph, x 

axis. The temperature was 18°c during the dark period, 21°c 
during the light. Bars indicate S.E. of the mean of each 
measurement for each group of plants. Nos. of plants in each 
treatment shown in brackets. Measurements began d 27 after 
germination, i.e., d 2 after pressure was applied. 
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e.g., 32 % and 44 % for wheat and barley respectively (Table 4.1 .). 

Whenever measu r ed, dark transpiration was found to be similar , and 

low. Glasshouse-grown pl a nts (T. a l exandrinum and T. repens) 

transp ired l ess per unit leaf area than those in c ontrolled 

conditions, and variation between plants masked differences between 

treatments, although the same trends occurred. 

The osmotic pressures (Ti) of the expressed sap from fully 

expanded leaves of wheat were measured at the end of the experimental 

period. T1 of the NaCl-treated plants were higher than the controls', 

and unaffected by the applied pressure (Fig 4.3.). The expanding 

tissue that was dissected from the base of the shoot also showed no 

significant change in TI as a result of applied pressure. 

Short term experiments: Fig 4.4. descibes the instantaneous 

effects of applying varying amounts of pressure to plants exposed to 

different concentrations of NaCl. The elongation rate of the growing 

leaf returned to initial rates within 15-30 minutes after an increase 

or decrease of 0. 1 MPa pressure regardless of the NaCl 

concentration in which the plants were growing. When 0.25 MPa was 

applied the adaptation took longer, but similar lengths, of time for 

plants grown in 50 or 100 mol m- 3 NaCl. When 0.50 MPa was applied 

(plants in 100 mol -3 m only), enhanced rates of elongation were 

sustained for up to 4 hours afterwards, long after the initial 

(presumably, largely elastic) response decayed. 

3.4. Discussion: 

Medium-term experiments: The above results indicate that applied 

pressure did not have a lasting effect on the growth rate of leaves 

of barley, wheat, Egyptian clover and white clover, even though the 
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Effect of NaCl, with and without 0.48 HPa applied pressure, o n 
osmotic pressures of expressed sap from expanding and full y 
expanded tissue in wheat, after 7 days of treatment (med i um-term 
experiment). Nutrient solution controls ( [J ), 100 mol m- 3 

NaCl-treated control ( tZa ), and 100 mol- 3 NaCl with pressure 
applied to the roots d 16 after germination ( [j ). Bars indicat e 
S.E. of the mean for eac h treatment. Nos. of plants in each gro u p 
shown in brackets. Measurements were made d 23 after germinat i on. 



Figure 4.4. 

Effect of NaCl and applied pressure (indicated t ) and removed 
pressure (indicated i ) on elongation rate of leaf 2, barley, cv. 
Beecher (Short-term experiments). Elongation rate (mm h-1) of 
nutrient solution control or NaCl-treated control; shaded band 
( J~~\~_), width indicates S.E. of mean readings (1 plant). 
El o ngation r a tes of nutrient solution or NaCl-treated plants wi th 
0.1, 0.25 or 0.50 MPa pressure (Air) applied to roots; ( C) ), 
error bars indicate S.E. of the mean of each measurement (2 
plants). Solid line shows the average rate for all the readings 
of pressure-treated plants between the points it links, while 
dashed lines are drawn, fitted by eye. Measurements were made d 
10-15 after germination; i.e., d l-2 after 50 mol m-3 NaCl 
treatment began, and d 1-3 after 100 mol m- 3 NaCl treatment 
began. 
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turgor of the leaves would presumably have been increased. There is 

much evidence to suggest that the applied pressure of 0.24 or 0.48 

MPa increased the turgor of the ce lls by an equal amount. There was 

no effect on transpiration of any of the species, including barley. 

Munns and Passioura (1984a) have shown that exposing the roots of 

barley to NaCl had no effect on the overall hydraulic conductance of 

the plants, so the applied pressure of 0.48 MPa would presumably have 

caused an increase of 0.48 MPa in the water potential of 

transpiring barley leaves, and perhaps also the expanding cells. When 

the¥ of fully expanded wheat leaves was measured in a constant 

environment with an in situ psychrometer, it rose in parallel with 

the applied pressure, any discrepancy being less than 30 kPa (T. 

Gollan, personal communication). Similar results were obtained by 

Nulsen et al. (1977), using corn. Because TT of fully-expanded leaves 

in NaCl-treated wheat plants was not affected by the applied 

pressure, this suggests that the turgor had been increased by the 

same amount as the applied pressure, i.e., 0.48 MPa. Consistant with 

this is the observation from glasshouse experiments that, on very 

dull days, guttation occurred in the pressurised salt-treated wheat 

and the control plants without salt, but not in the unpressurised 

NaCl-treated plants. In the cereals, expanding tissue is encased in 

older leaves which makes in situ psychrometry very difficult, and 

excising the tissue for the psychrometric measurement of its water 

potential is almost certain to result in substantial changes in water 

potential before the measurements can be made (Cosgrove et al. 1984). 

Therefore, there were no measurements off on the expanding tissue, 

but because it of the expanding region was unchanged by the applied 

pressure, it seemed feasable to conclude that the turgor had been 

raised in this region of the plant as well. 

The diurnal pattern of response observed in pressurised wheat 
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grown in 0.80 MPa concentrated macronutrien ts i s consistent with the 

pattern observed in RLER of NaCl-treated sun f lower (Rawson and Munns 

1984). At night RLER of c ontrol sunflower plants was reduced to 60 % 

of daytime rates, but NaC l -treated sunflower (50 and 

grew at constant rates throughout the diurnal period. At night, RLER 

of 50 mol m -3 NaCl-treated sunflower was 10% higher than control 

rates, and 100 mol m- 3 NaCl-treated sunflower grew at rates similar 

to controls. This suggested "salt influences the rate of utalisation 

of assimilates independantly of their production" (Rawson and Munns 

1984). Applied pressure did not change this relationship. 

Neither turgor nor the roots' ionic status were changed by 

applied pressure (Passioura and Munns 1984). The experiments which 

showed rapid recovery of growth when NaCl was removed from the root 

environment (Munns et al. 1982, Rawson and Munns 1984) changed both 

the ionic content and water relations of the root. This suggested 

that a message, most likely a hormone associated with the root water 

status (discussed in Sections 1.2.2. and 7.2.), was regulating the 

growth of the shoot. 

Short-term experiments The instantaneous pattern of response by 

the growing barley leaf to applied pressure is consistant with the 

desciption Green et al. (1971) gave of Nitella. Green et al. (1971) 

descibed the instantaneous r esponse to turgor as: 

r = (P - Y) m 

where r is growth rate, Pis turgor, Y is threshold turgor, and mis 

yeilding tendency. Their data indicated that after P was artificially 

increased, a wall-hardening process caused an increase in Y so that r 

returned to the initial rate, an explanation that would fit our data. 

This suggests that turgor pressure does not control the rate of cell 

growth, and that exposure to NaCl affects some other process that 
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controls the rate of cell growth. When the artificial increase in 

turgor exceeded 0.10 MPa, it took longer to recover the initial 

elongation rate when the pressure was increased (Fig 4.4.), a pattern 

consistant with that found by Acevedo et al. (1971). But the converse 

was not true: the recovery times from a decrease in turgor of 0.50 

was no more than for a decrease of 0.25 MPa (Fig 4.4.) This indicates 

that wall loosening is more dependent on turgor than wall hardening; 

evidently different processes are involved. 

3.5. Conclusion: 

NaCl-treated wheat, barley, Egyptian clover and white clover 

were grown for medium lengths of time (6-10 days) with their roots in 

pressure chambers, and sufficient pneumatic pressure was applied to 

counter the osmotic effects of the salt on the shoot. The experiment 

was repeated with barley and wheat grown in an NaCl-free saline 

solution of concentrated macronutrients. The applied pressure had no 

sustained effects on RLER or transpiration rates in any of the 

species, nor were diurnal patterns in leaf elongation rates of wheat 

grown in 0.80 MPa concentrated macronutrients altered. Because the 

osmotic pressures of the cell sap, in either fully expanded or 

currently expanding leaf tissue of wheat grown in NaCl, were 

unchanged, this suggested the applied pressure correspondingly 

increased turgor in the shoot although this was not directly 

measured. Therefore, turgor does not limit the shoot growth of 

salt-treated plants. 

Short-term (hours) responses of barley to increased turgor 

(applied pressure) resembled published descriptions, with a transient 

burst of growth followed by increased elongation rates, which decayed 

gradually. 

..... 

... 
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Chapter 5 

DOES KINETI ~ IMPROVE THE GROWTH OF NaCl-TREATED 

WHEAT AT HI GH WATER STATUS? 

5.1. Introduction: 

Previous work impl i e d a message from the root was regulating 

shoot growth in NaCl-treated plants (Chapter 4). Cytokinins, which 

are made in the roots and t ransported upwards (Van Staden and Davey 

1979), may have a role in integrating root and shoot growth in 

water-stressed plants (reviewed by Aspinall 1980; Bradford and Hsiao 

1982). There are indications that the production of cytokinins is 

affected by salinity and t hat low levels persist in the shoot 

(presumably reflecting t rans port upwards from the root) for the 

duration of long-term salini ty treatments (e.g.,Itai et al. 1968, 

Walker and Dumbroff 1981). Furthermore, in one instance, applied 

benzyl adenine (BA), a synthetic cytokinin, was shown to benefit 

NaCl-treated bean plant s more than controls (beans, O'Leary and 

Prisco 1970). Other growth regulators, such as ABA, GA and ethylene 

are less likely to be t he message from the root. Both ABA and GA 

arise predominently in t he s hoot, and their production anywhere in 

the plant seems to be dependent on cell water status (Chapter 1 ) • 

Pressurised plants, by havi ng a high shoot water status, c oul d 

therefore be expe c ted to have low ABA and high GA conc entrat i ons i n 

the shoot, i.e., hormonal pat terns likely to be assoc iated with h igh 

soil~- Increases i n l e vels o f ACC (the pre c ursor of ethylene) are 

associated with anaerobio s i s and c are was taken to maintain o
2 

levels 
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at 21 kPa while removing respired CO
2 

from the pressure system 

(Chapter 3). More general information about the involvement of plant 

growth substances in the responses of NaCl-treated plants is provided 

in Chapter 1 . 

Two experimental approaches dominate research into the role of 

plant growth substances in the control of growth: (i) the actual 

measurement of hormone levels in plants treated with low external f 

compared to controls, and (ii) the application of hormones to plants 

treated with low external¥ in an attempt to improve their condition. 

There are many problems with the first method. Failure to distinguish 

between "bound" (or sequestered) and "active" forms of a hormone 

(King 1976) and the length of time needed to collect some types of 

samples (e.g., root exudates, Itai and Vaadia 1971) may mean the 

assay does not reflect the biological activity of the hormone at the 

time of treatment. Many of the bioassays commonly used (e.g., soybean 

callous cultures to estimate cytokinin levels, Miller 1968) may be 

sensitive to inhibitors and promoters in the extract in ways 

different from the plant from which the extract was derived. 

Furthermore, the length to time needed for such assays to give a 

quantitative estimate of hormonal levels (callous cultures need 

several weeks) may mean labile forms of the hormone can never be 

measured by these means. Finally, the effects of transpiration on the 

concentrations of hormone present are seldom considered (King 1976). 

Problems with the second experimental approach include uncertainty 

about the amount of hormone entering the tissue: does this justify 

the application of concentrations several orders of magnitude greater 

than physiological concentrations? For example, ABA is typically 

applied at 10-l mol m-3 ( e.g., Mizrahi et a 1 • 197 4) when act ua 1 

concentrations are 1-2 X 10-4 mol m- 3 in fresh, unstressed tissue 

(Mulkey et al., 1983; Cowan et al., 1982). It is also extremely 
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puzzling that, almost invariably, control plants respond more 

dramatically to an applied hormone than treated plants. This occurred 

when GA was applied to Brassica campestris treated with mannitol 

(Banyal and Rai 1984), and to beans and halophytes treated with NaCl 

(Neiman and Bernstein 1959; Boucard and Ungar 1976). It also occurred 

when kinetin was applied to halophytes treated with NaCl (Boucard and 

Ungar 1976), and when kinetin, ABA or combinations of the two was 

applied to tobacco plants treated with NaCl or mannitol (Mizrahi et 

al. 1970)). Problems also occur with aerosol sprays; for instance, 

they may have direct effects at sites other than target cells in the 

growing region (see below). This criticism is equally relevant to 

applications via the nutrient solution surrounding the roots, i.e. , 

there may be direct effects on root elongation (Stenlid 1982). In 

both methods there is lack of control over the amounts entering 

plants and it is likely that the NaCl treatments, the very plants 

likely to be deficient in endogenous cytokinins, would absorb less. 

For example, when applied to leaves, increased amounts of wax on the 

leaves of NaCl-treated plants may inhibit entry of applied compounds 

more in those plants, and when applied to roots, lower transpiration 

rates would lower entry via the apoplastic pathway ( passive uptake 

across membranes is unlikely for a substance with MW 215}. A 

particular problem occurs with the application of cytokinins directly 

to the leaves; by opening stomata, cytokinin aerosols may cause 

excessive transpiration (c.f. Prisco and O'Leary 1973) and consequent 

loss of shoot turgor (Kirkham et al 1974). These results give rise to 

statements such as fl the addition of cytokinins to 

cytokinin-deficient, stressed plants does not alleviate the symptoms 

associated with water stress, but rather intensifies them" (Mizrahi 

and Richmond 1972). 

The following experiments are the first of their kind in that 
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(i) a known amount o f kinet in e ntered the transpiration strea m o f the 

plants and (ii) the water sta tus of the shoots of the NaCl-treated 

plants was raised. The aim of the first experime nt was to determ i n e 

the most effec tive kinetin concentration to apply to NaCl-treated 

wheat. Ideally, dose-response c urve s i n c lude threshold 

concentrations, an optimal range, and a range where effects of the 

compound become increasingly toxic. It was hypothesised that the most 

effective concentration to apply to NaCl-treated plants would be less 

effective, or even toxic, to control plants. The second experiment 

aimed to test the selected concentration in replicate treatments, to 

confirm the responses observed in Experiment 1. 

5.2. Experimental design: 

Kinetin (Sigma) was fed daily to wheat seedlings by applying 

pressure until the shoot f was greater or equal to zero, cutting the 

midrib of leaf 2 , inserting the cut tip into the solution, and 

lowering the pressure: this caused the solution to be sucked in. The 

kinetin was applied at a concentration c alculated to supply all the 

needs of the plant (see below), in a volume that was adjusted for the 

size of each plant and was 1% of the volume transpired during the 

previous 24 hours by plants of the same size supplied with distilled 

water instead of kinetin (controls). The controls (~ed distilled 

water) were used to calculate transpiration rates rather than 

kinetin-treated plants, to avoid possible cumulative increases to 

toxic levels in the suppl y of kinetin (assuming k i netin aff ec ted 

transpiration). Initially k i netin was supplied at l Oi. of the total 

volume transpired by a plant in 24 h (e.g., 250µ1 was given to a 

plant that had transpired 2.5 ml during the previous 24 h), but thes e 

quantities tended to in f iltrate the leaf tip whi c h then died bac k. 
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This was an effect of the volume of solution supplied rather than of 

kinetin: large control plan t s (i.e., given large amounts of distilled 

water) were the worst a f fec ted. When amounts of solution were 

supplied at 1% of the t otal v olume transpired in the previous 24h 

(e.g., 25 µl would be giv e n to the plant above) the leaf tip was not 

affected, and remained green and looked healthy after all the 

solution had been absorbed. The solution, which was held in a narrow 

vial strapped to the plant , was typically absorbed within an hour or 

two. Preliminary experiments using water soluable food dyes 

(McCormick & Co, USA; dye Nos. red CI 56 16185 and blue CI 56 42090) 

had shown that the dye reached the base of the leaf to which it was 

applied within seconds of the applied pressure being lowered, and was 

distributed uniformly throughout the shoot within two hours. 

Experiment 1: Transpiration and leaf elongation rates in wheat 

plants supplied with a range (O - 10-l mol m- 3 ) kinetin: is there a 

response to dosage?: The concentration series was chosen with the 

following assumptions: ( i ) that xylem exudate concentrations are 

11 10-4 l -3 -3 -3 ( ) typica y mo m to 6 x 10 mol m c.f. King 1976 ; (ii) the 

xylem volume is about 1~ of the FW of the plant. Therefore, if all 

cytokinin required by the plant were to be supplied in a volume 1% of 

that transpired, the concentration should be about To 

test this assumption, a concentration series was diluted from an 

aqueous stock solution of 2.0 g 1-l kinetin pH 6.5 (dissolved with 

NaOH; neutralised with HCl). In the first experiment, 12 wheat plants 

were grown in 100 mol m- 3 NaCl and pairs of plants were supplied with 

o, or 10-l mol m 
-3 kinetin; one of each pair 

was pressurised. Two weeks later the same kinetin concentrations were 

supplied to 6 plants grown in nutrient solutions (without NaCl). 

These experiments took place in glasshouse 2a (Section 2.2.1). After 
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kinetin was applied, the plants were monitered 1-3 d before the 

following application. NaCl-treated plants had a 3 applications in 

total, control plants 2. 

Experiment 2: Transpiration and leaf elongation in wheat plants 

3 -3 supplied with 10- mol m kinetin: a replicated experiment: Using _ _._ ____________________ _____ .:;._ _ _ ____ .=._ _____ _ 

the same stock solution, kinetin was diluted to 10-3 mol -3 m in 

distilled water. Twenty-six wheat plants were grown in pressure pots 

and 16 were grown in 100 mol m-3 NaCl. When plants were 17 days old 

they were transferred from glasshouse 2 to the growth cabinet 

(section 2.2.1.). The following day 6 plants were pressurised to 0.48 

MPa. The following day, and daily thereafter, kinetin was applied to 

half the plants in each of the treatments (i.e., plants without NaCl, 

NaCl-treated plants and pressurised NaCl-treated plants). Water was 

applied to the remaining plants (controls) using the same technique. 

Up to 3 hours was required to apply the solutions to all plants, and 

water them, and during this time the pressure could not be applied. 

Leaf areas (section 2.3.1.) and transpiration (section 2.3.5.) were 

estimated daily. 

5.3. Results: 

Experiment 1: Transpiration and leaf elongation rates in wheat 

plants supplied with a range (0 - 10-l mol m-3) kinetin. Is there a 

response to dosage?: Fig 5.1. presents the transpiration data and 

leaf elongation rates obtained after the second dose of kinetin was 

applied to plants treated with NaCl or nutrient solution. Responses 

as shown in Fig 5.1. were typical the day following an application of 

kinetin, subsequent days gave even more variable elongation and 

transpiration responses. The results are for single plants (no 



Figure 5.1. 

Effect of concentration series of kinetin on leaf elongation and 
transpiration rates of nutrient solution controls and 
NaCl-treated wheat, with and without applied pressure. 

(a) Effect of concentration series (0 to 10-l mol m- 3 ) 
kinetin, applied at 1% of the volume transpired during the 
previous 24 h, on leaf elongation rates (mm h- 1 ) of wheat 
(Experiment 1). Nutrient solution controls ( [J ), 100 mol m- 3 

NaCl-treated control ( ~ ), 100 mol m- 3 NaCl with 0.48 MPa 
pressure applied to roots d 10 after germination ( \\:j ). Each bar 
shows elongation rate of leaf 4 of one plant, d 1 after the 
second application of kinetin. Measurements of NaCl-treated 
plants were made d 18 after germination; measurements of controls 
d 18 after germination, 2 weeks later. 

(b) Effect of concentration series (0 10-1 to mol 
transpired during 

(mmol m- 2 s- 1 ) 

kinetin, applied at 1% of the volume 
previous 24 h, on transpiration rates 
NaCl-treated wheat (Experiment 1). The plants 
Fig 5.1. (a), as was the time of measurement. 

were the same as in 

(c) Effect of concentration series (0 to mol 
kinetin, applied at 1% of the volume transpired during 
previous 24 h, on transpiration rates (mmol m- 2 s-1) of 
grown in nutrient solution (Experiment 1). The plants were 
same as in Fig 5.1.(a), as was the time of measurement. 
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replicat e s), and sugge s t that transp i r a t ion in NaCl-t r eated wh e at 

plants was enhanced bet ween 10-4 and 10 - 2 mol m- 3 ki n e t i n but that 

plants grown in n u r ien t soluti on (without NaC l) we r e more sens i t i v e 

to kine t i n; t h e peak sensitivity be i n g near 10- 5 and 10- 4 mo l m - 3 

kinetin and the r ea ft e r showi ng some de c l i ne in response. Leaf 

elongation rates wer e mor e vari able (as not all emerging leaves were 

at the same stage of de ve l opment) but tended to reflect the results 

of the transpirat i on data , ra tes being highest between 10-3 and 

mol m- 3 kinetin. Thi s suggested that 10-3 mol m-3 was as good as any 

kinetin concentration . 

Experiment 2 : Tr anspirat i on and leaf elongation in wheat plants 

supplied with 10-3 mol m- 3 kinetin: a ~ pli_c ated experiment.: Figure 

5.2. describes the transpirat i on rates of the six treatments in this 

experiment. Kinet i n d i d no t affect the transpiration rate of either 

group the NaCl-treated plants but apparently enhanced the 

transpiration rate and improved RLER (Fig 5.3.) of the plants grown 

without NaCl. Condit i ons in t he cool, bright growth cabinet enabled 

NaCl-treated plants to have RLERs as high as plants grown in nutrient 

solution (Caption, Fig 5.3. ) , although at the time of transfer from 

glasshouse 2, thes e plants were smaller than the plants grown in 

nutrient solution . 

4.4. Discussion : 

The results o f the f i rst experiment, although subject to plant 

variability (inev itabl e for the pressure treatments), suggested 

m- 3 kinetin was a suitable c oncentration to use. The results of the 

second experiment, where replicates of treated plants were grown 

under controlled c o n ditions, suggested that plants grown in nutrient 



--
Figure 5.2. 

Effect of 10-3 m-3 
I X of the volume 

kinetin or distil l ed water, applied daily at 
transpired during the previous 24 h (treatment 

transpiration rate ( mmol m-2 s- 1 ) of wheat started ) on 
(Experiment 2). 

(a) Effect of kinetin ( · ) or water ( 0 ) on transpiration 
rate of wheat grown in nutrient solution. Bars indicate the S.E. 
of the mean of each measurement, 5 plants per treatment. 

( b) Effect of kinet in ( A ) or water ( ~ ) on transpiration 
f 1 -3 rate o wheat grown in 100 mo m NaCl. Bars indicate the S.E. 

of the mean of each measurement, 5 plants per treatment. 

(c) Effect of kinetin ( ) or water ( D ) on 
transpiration rate of wheat in 100 mol -3 

NaCl, with 0.48 grown m 
MPa pressure applied to roots d 18 after germination. Bars 
indicate S.E. of the mean of each measurement, 3 plants per 
treament. 

Plants were grown in the Conviron cabinet. The temperature was 

I0°c during the dark period, 13°c during the light. Measurements 
began d 17 after germination. 
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Effect of 10-
3 

m- 3 kinetin, applied daily at 1% of the volume 
transpired during the previous 24 h, on mean RLER (as % of 
controls treated with distilled water) of wheat (Experiment 2). 
Plants grown in nutrient solution ( D ) , 100 mol m3 NaCl ( ~ ) 

3 ~ or 100 mol m NaCl with 0.48 MPa applied pressure ( ~ ) treated 
with distilled water, had mean RLERs of 0.48, 0.49, and 0.43 cm 

-2 -1 
cm d respectively. Error bars 
mean of kinetin treatments, bars to 
of the mean of distilled water 

on blocks indicate S.E. of 
the right of blocks the 
treatments. Mean RLER 

the 
S.E. 

was 
calculated as the average of daily 
Measurements include d J after kinetin 
started d 19 germination. 

measurements of RLER. 
was first applied, and 
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solution (without NaCl) ~ere more sensitive than NaCl-treated plants. 

The response of the plants grown in nutrient solution (without 

NaCl) is strong evidence t hat the applied kinetin is rea c hing 

receptors. NaCl-treated plants, however, did not respond. Reduced 

sensitivity to applied ho rmone s of plants grown in low ,1 is well 

known (Section 5 • 1 • ) , and the general interpretation is that the 

effect of NaCl is dominen t (eg, Nieman and Bernstein 1959 on GA). A 

more likely possibility is that there has been a change in receptor 

frequency or sensitivity (Trewavas, 1982). To account for the 

responses of plants treated with osmotica (e.g., Banyal and Rai 1984) 

receptor frequency is associated with reduced growth rather than 

NaCl. 

Because both pressured and unpressurised NaCl-treated plants 

behaved simi,larly) this suggests some message other than, or in 

addition to, kinetin, aris ing from the roots, is regulating shoot 

growth. One suggestion is that there is a disturbance in nutrient 

balance reaching the shoot , a possibility which will be considered in 

the next chapter. 

4.5. Conclusion: 

Kinetin was introduced directly into the 

transpiration stream of wheat plants by manipulating the xylem 

hydrostatic pressure so t he solution was sucked into the xylem. There 

was a 10-20i. increase in the transpiration and RLER of plants grown 

without NaCl, whi c h s ugge sted kinetin reached receptors, but 

NaCl-treated plants did not respond. Applied pressure did not affect 

the response of NaCl-treat ed plants, which suggested that something 

other than, or in addition to, kinetin, was regulating the growth of 

the shoot of NaCl-treated plants. 



-39-

Chapter 6 

USE OF CONCENTRATED MACRONUTRIENT SOLUTIONS 

TO SEPARATE OSMOTIC FROM NaCl-SPECIFI C EFFECTS ON PLANT GROWTH. 

6.1. Introduction: 

Growth reductions caused by NaCl c ould be due to both osmotic 

and ion-specific effects. It is likely that the initial growth 

response of the leaves is regulated by a message from the roots 

(Chapter 4), but it is unknown whether this response is dominated by 

the osmotic effect (ie, by water deficit) or by the specific ion 

effects (ie, NaCl toxicity or nutrient imbalance) on the root. 

If nutrient imbalance contributes to the reduced growth of 

NaCl-treated plants, there are two experimental approaches which may 

help its study: (i) to fertilise NaCl-treated plants with the 

macronutrient that is presumed to be deficient or otherwise 

manipulate the growth conditions (discussed in Section 1.2.3.) or 

(ii) to grow plants in a medium which exerts only osmotic effects 

(i.e., reducing water uptake but not nutrient uptake), and to compare 

the pe~formance in each case with appropriate controls. A variety of 

non-ionic osmotica have previously been used to compare specific 

effects of NaCl with effects on plant water relations, including 

mannitol, which eventually passes through cell membranes, and 

raffinose and inulin, which are liable to bacterial degradation. High 

MW polyethelene glycol (PEG) is frequently used in longer term 

studies but it can interfere with ion transport ( Yeo and Flowers 

1984a, b) and limit o2 diffusion to roots (Mexal et al. 1975 ). Ev en 

a drying soil, as well as being very difficult to maintain at a 

uniform, constant, water potential, may exert specifi c effects; for 
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example transmission of nutrients through the soil will b e reduced at 

low soil water potent ials ( Nye 1979). Therefore, concentrated 

macronutrient solution wer e explored as a non-specifi c osmot icum . The 

only long term study along the se lines is that of Haywa rd and Long 

(1941) on tomato, which showed that concentrated macronutrients gave 

better growth than NaCl or did, but the authors did not 

distinguish between root and shoot growth and mention that a 

precipitate formed in some of their solutions, which may have 

confounded their results . 

The aim of this study was to assess the value of concentrated 

macronutrient solution as a non-specific osmoticum, and to separate 

osmotic from spe c ifi c NaCl effects on growth. Growth was compared in 

four species; wheat, barley, Egyptian clover (all moderately 

salt-tolerant) and white clover ( salt-sensitive) in NaCl solutions 

and concentrated macronutrient solutions of matching osmotic 

pressures. Ion uptake and total solute uptake was measured in barley, 

and the implications of NaCl-enhanced phosphate uptake (which is 

known to occur in some species, eg, corn; Nieman and Clark 1976) were 

tested on all four species . 

6.2. Experimental design : 

Plants were grown in solution culture as described in Section 

2.3.3. Because of the possibility that phosphate concentrations above 

2.0 mol m-3 could prove toxic, a preliminary experiment compared the 

growth of barley, cv. Clipper, in two different macronutrient 

solutions (See Table 2.1. for composition.). In one solution 

("concentrated macronutrients") the phosphate concentration increased 

in proportion to the other major ionic species present, i.e. from 2.0 

to 19.6 mol m- 3 as rt rose from 0.08 to 0.80 MPa; in the other 
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( "modified c on c ent r ated macronutrient s " in Tabl e 2.1. ) , phosph a t e 

remained at 2. 0 mol m - 3 while NO -
3 

and NH+ 
4 

c ont ri buted t h e 

additional TT over the 0 . 32 to 0.8 0 MP a ran ge . For the first 4 

harve st s ( t ake n ove r 20 d a ys) growt h of t he pl a nts was nearly 

identi c al for the two types of c oncentrated ma c ronutrient ( Tabl e 

6.1.); the 0.80 MPa treatment at the time of the final har vest was 

very variable. This suggested P toxicity was unlikely when a mixture 

of other nutrients balanced the increase in phosphate. The unmodified 

type (ie, phosphate concentrated with the other macronutrients) was 

used in further studies. 

Experiment 1: Leaf elongation after transfer from NaCl to isosmotic 

solutions: 

Wheat seedlings grown in solution culture (Section 2.3.3.) in 

glasshouse 1 (Section 2.2.1.) or in glasshouse 2a (Section 2.2.1.) in 

100 mol m-3 NaCl for 2 - 4 days were tranferred to isosmoti c 

solutions of PEG 4000 (unpurified BDH and Sigma) or mannitol (BDH) or 

concentrated macronutrients. All solutions contained control 

nutrients. Leaf elongation of the youngest emerging leaf ( 2 or 3) 

prior to and immediately after the transfer was measured either with 

a ruler over 2 h using the top of the pot as a baseline ( 12-1 4 

replicates ) or with a linear variable displacement transducer (LVDT) 

in 10 minute readings over 1 h (2 repli c ates). 

Experiment 2: Growth in NaCl and concentrated macronutrients: 

Barley (Hordeum vulgare cv. Cl~pper), wheat (Triticum aestivum , 

cv. Kite ) and Egyptian c l over (Trifolium alexandrinum) were grown in 

Glasshouse 2b (Section 2.2.1.) at 26°/13°c (12 h thermoper i od) i n 

nutrient solutions with 0 ~ 50 or 100 mol m- 3 NaCl and isosmoti c (j,_. e . 

the equivalent rt of 0. 3 2 and 0.56 MPa) solutions of concentrat e d 
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Table 6. 1 . Effect of concentrated macronutrients ( C. M.) or mod ified 
concentrated macronutrients ( M. C. M . ) on shoot weight ( g) of 
barley ( Preliminary experiment). Means are of 9 plants unless 
otherwise stated, S. E. are about 10-15% of each value. Harvests 
started dl after 0.80 MPan treatment began. 

Harvest (d): 
Treatment (ff) 

Control (0.08) 

C.M . (0.32) 
M.C . M. (0 . 32 ) 

C.M . (0 . 56) 

1 

0.20 

0.09 
0. 12 

8 

0.75 

0.45 
0.54 

15 

1.43 

0.80 
0.88 

20 

2.09 

1. 92 
1. 74 

25 

3.44 

2 . 29 
1. 74 

M.C . M. (0.56) 

0. 11 
1 

0. 10
2 

0.20
2 

0.50 

0 . 68 

0.61 

1 . 13 

1 . 30 

1. 32
2 

1. 50 

C.M . (0.80) 
M.C.M . (0.80) 

1 
3 plants 

2 
8 plants 

3 s plants 

0 . 12 
0. 10 

0.34 
0.39 

0.63 
0.39 

1 . 22 
0.89 

1. 07 
3 

0.51 
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macronutr ient s; wh i te clover ( T. repe ns ) with 0, 25 or 50 mol m -3 

NaCl and isosmotic solut ions of concentrated macronutrients ( r.f of 

0.20 and 0 .32 MPa) in glas shous e 2b (Sec tion 2.2.1.). Three replicate 

pot s o f each of t hese 5 t reatments were randomised in 2 blocks. Three 

harvests were taken at 7-day intervals for cereals and 10 day 

intervals for the clover spec ies, starting one day after the 0.56 MPa 

treatment began ( i.e., day 2), taking 4 plants from each pot. Fresh 

weights and dry weights wer e measured. 

Experiment 3: Nutrient uptake of barley grown in NaCl and 

concentrated macronutrients : 

Barley, cv. Clipper. was grown at 2ao;220 C (12 h thermoperiod) 

in aerated nutrient solutions with 0, 50, 100 or 150 mol m-3 NaCl, 

isosmotic solutions of concentrated macronutrients (i.e . ., equivalent 

osmotic pressures of 0.32, 0.56 and 0.80 MPa) in glasshouse 1 

(Section 2.2.1.). Three replicates of each of these 7 treatments were 

randomised in 3 blocks. Fi ve harvests were taken at intervals 2, 9, 

16, 21 and 26 davs after 
.; 

the 0.80 MPa treatment began, taking 3 

plants from each pot. Dry weights were determined and the mineral 

content analysed on plants in control, 50 mol m- 3 NaCl and 0.32 MPa 

concentrated nutrient treatments. 

Experiment 4: Growth of NaCl-treated plants in minimal phosphate 

versus 2.0 mol m- 3 p~osphate: 

This utilised the same controls as Experiment 2 and was 

conducted concurrently. 

solution of an NaCl series including a "minimal phosphate" control, 

was added daily in minimal quantities based on the size of 

the plant. The amount given was, 1· n 10-3g 1 per g pant DW, 2. 7 for 

barley, 4.0 for wheat, 2.2 for Egyptian clover and 4.4 for whit e 
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c lover. These r ates of applica tion wer e predetermined b y giving an 

excess o f phosphate for one day to c ont rol plants of each species, 

then measuring the plan t size a nd the amount of phosphate remaining 

in the nut rient solution . Pl ant size was e stimated bv 
J 

first 

determining the leaf area (Section 2.3.1.). 

Experiment 5: Water relations: 

Barley and wheat were grown in nutrient solution with O or 100 

mol m-3 NaCl and isosmoti c solutions of concentrated macronutrients 

in growth conditions simila r to experiment 2. Ten days after the 

final concentrations were reached, water potential and osmotic 

pressure were measured on leaf 3 of the plants, and osmotic pressure 

was determined on the elongati ng tissue, Le., the basal 10mm of the 

growing leaves (leaf 6 in all treatments). 

Chemical analysis of plant mate rial: 

See Section 2.3.4. 

Assessment of phosphate in nut rient solution: 

See Section 2.3.4. 

Water potential, osmoti c press ure measurements: 

Water potential of lea f 3 (the oldest leaf showing no signs of 

senescence) was measured with a pressure chamber (Section 2.3.3.). 

There were 8-12 repli cates per treatment. Osmotic pressure of 

elongating tissue was wa s mea sured (Section 2.3.3.), 4-6 replicates 

per treatment, 2 plants per replicate. Osmotic pressure of leaf 3 was 

measured (Section 2.3.3.) , 4-6 replicates per treatment, 2 plants per 

replicate. Nutrient solut ions were also measured (Section 2.3.3.) . 

All instruments were calibrated with the same NaCl standards. 
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Calculations: 

See Se c tion 2.4. 

6.3. Results : 

Leaf elongation after transfer from NaCl to isosmotic solutions: 

Wheat was grown in 100 mol m-3 NaCl for 2 to 4 days and then the 

NaCl was replaced by isosmotic solutions of mannitol, polyethylene 

glycol (PEG) 4000 or concentrated macronutrients and the elongation 

rate of the emerging leaf was measured over the next l 2 hr 

(Experiment 1). Not only did PEG 4000 cause an immediate decrease in 

leaf growth rate, but within two hours the roots went brown. The 

following day the root tips had thickened as if elongation of the 

root tips had been inhibited. The PEG was unpurified, but of high 

commercial grade. Mannito l had a similar effect on leaf elongation 

rate, which decreased to two thirds of the original rate. This was 

reversed by replacing the original NaCl solution. There was a gradual 

recovery over 40 minutes e Isosmotic concentrated macronutrients had 

no effect on elongation rate (Table 6.2.). 

Growth in NaCl and concentrated macronutrients: 

Barley, wheat, Egypt i an clover and white clover were grown in 

NaCl and isosmoti c concentrated macronutrients for 3-4 weeks 

(Experiment 2). In all 4 species, shoot growth in c oncen trated 

macronutrients was double that in NaCl (Fig 6.1., 6.2.). For example, 

barley grown in 100 mol m-3 NaC l for 15 days had a shoot weight only 

20 i. that of c ontrols, but plants in isosmotic concentrated 
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Table 6.2 

grown 1n 

Effec t of 1sos rnot ic solutions on leaf elongation rates in wheat. Plants were 

100 mol m - 3 NaC l o r 2-4 days then transferred to various solutions of the 

same osmotic press ure . Twc b rands of PEG were used. Elongation rates were measured 

over 30-60 min wi t h an LVD T o r Z h \vith a ruler. 

I sosmotic :., ethod of Former rate Subsequent rate % of Former 

Solution , easu remen t (mm h-1) (mm h-1) Rate 

NaCl LV DT 1.51 ! 0.03 1 . 49!0.12 99 

PEG 4000 ( 1 ) ruler 1.16 ! 0.18 0. 72 ! 0. 16 62 

PEG 4000 ( 2 ) rule r 0. 68 ! 0. 11 0.43!0.11 63 

Mannitol LVDT 0 . 98 ! 0. 05 0. 58 ! 0. 04 59 

Concentrated mac ronut rient LVDT 1. 46 ! 0. 08 1. 56 ! 0. 05 107 



Figure 6.1. 
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Effect of NaCl or concentrated macronutrients on shoot DW of 
plants grown in solution cu lture (Experiment 2). 

(a) Barley, cv. Clipper. Measurements began d 16 after 
germination. 

(b) Wheat. Measurewents began d 17 after germination. 

Nutrient solution controls ( ~ ). 50 mol m- 3 NaCl-treated plants, 
0.32 MPa I7 ( 6 ), or concentrated macronutrient-treated plants, 

0.32 MPa TI (A), 100 mol m- 3 NaCl-treated plants, 0.56 MPa 
IT([]) or concentrated macronutrients, 0.56 MPa rt (. ). Error 
bars indicate S.E. of the mean of each group of plants, 11-12 
plants per harvest. Inset shows root:shoot ratio for the same 

plants. Incremental increases in external rt of treatments shown 
as bar graph, x axis- Harvests began d I after the highest 
external rr was reached.. · 
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Figure 6.2. 
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Effect of NaCl or concen trated macronutrients on shoot DW of 
plants grown in solution cu lture (Experiment 2). 

(a) Egyptian 

m- 3 NaCl-treated 

c love r. Nut rient solution c ontr o ls ( S ), 50 mol 

plants, 0.32 MPa rI ( 6 ), or concentrated 
macronutrient-treated plants, 0.32 MPa IT ( A ), 100 mol m-3 

NaCl, 0.56 MPa fl ( 0 ), 
plants, 0.56 MPa rI(. ). 
shown as bar graph , x 
germination. 

or concentrated macronutr ient-treated 
Incremental increases in external T7 
axis. Harvests began d 20 after 

(b) White clover. Nutrient solution controls (. ), 25 mol 

m- 3 NaCl-treated plants, 0. 20 MPa rr ( 6 ) , or con cent rated 
macronutrient-treated plants, 0.20 MPa IT (A), 50 mol m-3 
NaCl-treated plants, 0.32 MPa TT ( D ), or concen trated 
macronutrient-treated plants, 0.32 MPa rr (If). Incremental 
increases in external TT shown as bar graph, x axis. Harvests 
began d 20 after germination. 

Error bars indicate the S.E. of the mean of each group of 
11-12 plants per harvest. Insets show root:shoot ratio 
same plants. Harvests began d 1 after the highest external 
reached. 
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macronutrients (0.56 MPa IT) were half the size of con trol s (Fig 

6.la.). Root growth was als o i nh ibited by both NaCl and concentrated 

macronutrients. In NaCl-treated wheat and barley, root growth was 

inhibited much less than shoot growth 1 leading to root:shoot ratios 

double those of controls (Fig 6.1., insets). On the other hand, in 

plants grown in concentrated macronutrients, the reduction in root 

growth was in proportion to the reduction in shoot growth, leading to 

root:shoot ratios similar to those of controls. In a separate 

experiment incorporating plants at 150mol m -3 NaCl and concentrated 

macronutrients at 0. 80 MP a rt (Experiment 3), plants grown in 

concentrated macronutrients of 0.80 MPa rf showed some increase in 

the root:shoot ratio in the last two harvests but this was similar to 

the increase in root:shoot ratio of -3 the 50 mol m NaCl treatment at 

harvest 4, and less at harvest 5 (Fig 6.3.). Neither Egyptian clover 

nor white clover exhibited the increase in root:shoot ratio expressed 

by cereals in NaCl (Fig 6.2., insets). 

Nutrient uptake of barley grown in NaCl or concentrated 

macronutrients: 

To compare the effect of NaCl and concentrated macronutrients on 

the uptake of mineral nutrients, barley was grown in 50 mol m- 3 NaCl 

and isosmotic concentrated macronutrients (0.32 MPa TI) for 26 days 

(Experiment 3) and the concentrations of major minerals were measured 

in the shoots of these and control plants. The growth response to 

these treatments (Fig 6.3.) followed the same pattern to that 

reported in Figure 6. la. In all three treatments the mineral 

concentration of the shoot remained constant over the period of the 

experiment during which 5 harvests were taken. Figure 6.4. shows the 

concentration of the mineral 3 -1 nutrients (g x 10- g DW) at each of 
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Effect of NaCl or concentrated macronutrients on shoot DW of 
barley grown in solution culture (Experiment 3). 

(a) Nutrient solution controls ( 0 ), 50 mol m- 3 NaCl-treated 
plants, 0.32 HPa TT ( 6 ). 100 mol m- 3 NaCl-treated plants, 0.56 
HPa TT ( D ), or 150 mol m- 3 NaCl-treated plants ( + ). 
(b) Nutrient solution controls ( 0 ); same plants as in Figure 
6.3(a), concentrated macronutrients, 0.32 HPa rT ( 6 ), 0.56 HPa 

T1 ( D ) or O . 8 0 HP a T1 ( + ) . 
Error bars indicate the S.E. of the mean of each group (usually 9 
plants per harvest). Inset shows root:shoot ratios for the same 

plants. Harvests began d 1 after highest external T1 was reached, 

i.e., d 15 after germination. 
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Figure 6.4. 

E f f e c t o f cont r o 1 nut r i en t so 1 u t i on ( D ) , 5 0 mo 1 m - 3 

( [Z3 ). or concentrat:~d macronutrients, 0.32 MPa rf ( ~). 
harvest number, on shoot mineral nutrient c oncentration (g x 

-1 . 

NaCl 
and 

10- 3 

g DW) of barley. cv. Clipper (Experiment 3). 
indicate S.E. of th<." mean for each treatment (3 

Error bars 
repli c ate 

treatments, unless oth<."rwise indicated). Harvests occurred d l I 

B , l 3 , l 8 , 2 3 a f t e r th<." h i g h e s t e x t e r n a 1 T1 w a s r e a c he d , i . e . , d 
15 after germin;it1 o n . 
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the 5 harvests. In NaCl-treated plants, apart from an increase in Na 

and Cl and a decrease in K concentration, the most striking feature 

of the mineral concentration data was a doubling of P concentration 

relative to that of control s, fro m 1 to 2% of shoot dry weight ( DW) . 

The concentrations of the other minerals analysed, Mg, N and Ca, were 

not alt ered significantly by the NaCl treatment (Fig 6.4.). The 

mineral concentrations of the plants grown in concentrated 

macronutrients varied from c ontrol plants by an increase in Mg of 50% 

and in Ca of 25 %; K, N and P concentrations were similar. 

Figure 6.5. shows the rates of mineral transport from the root 

to the shoot (root DW basis) and the rates of uptake by the shoot 

(shoot DW basis) using the growth data of plants in Fig 6.3. and 

formulae 1 and 2 from section 2.4. Transport rates of N, K, Ca and Mg 

from the roots of NaCl-grown plants were about half those of 

controls, while P transport was similar to controls. By contrast, 

mineral transport from the root for the concentrated macronutrient 

treatment varied significantly from controls only for Mg (Fig 6.Sa). 

Because root:shoot ratios of the NaCl-grown plants were 

different from those of controls, the values for rates of uptake by 

the shoot show a different pattern from values for transport from the 

roots (Fig 6.Sb.). In both the NaCl and the concentrated 

macronutrient treatments, net uptake rates by the shoot of N and K 

were similar to the controls. In NaCl-treated plants, P uptake by the 

shoot was doubled. The concentrated macronutrient-treated plants 

varied signifi cantly from controls in that Mg uptake rates to the 

shoot were doubled. Total net ion uptake rates bv the shoot were 0.9, 

1.2 and 1 . 1 x 10- 3 mol g-l d-l shoot for the control, 50 mol m- 3 ~aCl 

and isosmotic concentrated macronutrient treatment respectively. 

• 
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Figure 6.5. 

Effect of control nutrient solution ( D ), 50 mol m- 3 NaCl ( lZa ) 
or concentrated macronutrients, 0.32 MPa TI ( [] ) on mineral 
transport and uptake in barley, cv. Clipper (Experiment 3). 

(a) Mineral transport 
Na and Cl (mol x 10-3 g-1 
g-l root DW d- 1). 

from roots to shoot of total N, P, K, 
root DW d-l) and Ca and Mg (mol x 10-6 

(b) Mineral uptake by the shoot of total N, P, ~
6 

Na and Mg 
(mol x 10-3 g-l shoot rA/ d-l) and Ca and Mg (mol x 10 g-l shoot 
DW d-l). 

Error bars indicate the S.E. of the 
calculated for the 3 periods between 
growth was exponential. Harvests started 

mean for uptake rates 
harvests 1 and 4, when 

d 1 after the highest 
external rt was reached, i.e., d 15 after germination. 
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Growth of NaCl-treated plants in minimal phosphate versus 2.0 mol m- 3 

phosphate: 

As there are several reports that exposure to NaCl causes total 

P concentrations in leaves to reach high, perhaps toxic levels, and 

in Experiment 3,P uptake by NaCl-treated barley shoots doubled (see 

above), this experiment aimed to evaluate whether the poor growth of 

plants in NaCl could be due to increased uptake of phosphate 

(Experiment 4). Plants of the 4 species (barley, wheat, Egyptian 

clover and white clover) were grown in high (2.0 mol m-3) or minimal 

phosphate (replenished daily, the amount determined by the size of 

the plants). Minimal phosphate was defined as the amount of phosphate 

needed to sustain control plants at a relative growth rate (RGR) 

similar to the plants in 2.0 mol m-3 phosphate. Bv these means it was 

hoped "toxic" levels of phosphate would not accumulate in the shoot. 

The RGR of wheat, barley and Egyptian clover in 50 and 100 mol m -3 

NaCl was compared to the RGR of the appropriate control without NaCl. 

For white clover, 25 and 50 mol m- 3 NaCl was used. Figure 6.6. shows 

the results for both NaCl concentrations applied to each species for 

the periods between harvest 1 and 2, 2 and 3. For all 4 species, the 

percentage reduction in RGR due to NaCl was very similar in high as 

in minimal phosphate, compared to appropriate controls. Thus, there 

was no evidence that high concentrations of phosphate caused the 

growth reduction of NaCl-grown barley, wheat, Egyptian clover or 

white clover. 

Water relations: 

The osmotic pressures and water potentials of an elongating leaf 

and a fully expanded leaf were measured in barley and wheat grown for 
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Figure 6.6. 

-3 1771 D Effect of 2.0. mol m ( lLd ) or minimal ( ) phosphate (H
2
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4
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on RGR (g g d ) of NaCl-treated plants as a percentage of RGR 
of appropriate controls (Experiment 4). Wheat, barley and 

-3 Egyptian c lover were grown in 50 mol m NaCl, 0.32 MPa rr, and 
100 mol m-

3 
NaCl, 0.56 MPa TT. White clover was grown in 25 mol 

-3 -3 
m NaCl, 0.20 MPa TT, and 50 mol m NaCl. Error bars indicate 
the S.E. of the mean of RGR for 3 replicate treatments, between 
harvest s 1 and 2, 2 and 3. Harvest 1 occurr e d d 1 after the 
highest external TT was reached, i.e., d 17, 16, 20 and 20, 
respectively, after germination of wheat, barley, Egyptian clover 
and white clover. 

Effect of 2.0 mol m- 3 (2.0 P) or minimal (Min P) 
phosphate on RGR of nutrient solution controls. 
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10 days in 100 mol m-3 NaCl, isosmot ic c on c entrated ma c r o n u tr ients, 

and in controls (Experime n t 5). Tr o f t he ex pand i ng l eaf t is sue o f 

wheat plants grown in Na C l was the same as in plants grown i n 

concentrated nutrient solutions, but for barley it was 0.2 MPa 

higher. rr of the fully expanded leaf was higher for the NaCl 

treatment than for the concentrated macronutrient treatment which was 

in turn higher than for the controls. However, the turgor (P) of the 

leaf was similar for all three treatments (Fig 6.7.), suggesting that 

the water status of the shoot was not adversely affected by eithor 

the NaCl or concentrated macronutrient treatments. 

Total solute uptake:_ 

The values of TT were converted to total solute concentration 

and combined with growth data from Experiment 2 (where plants were 

grown in similar conditions the previous year) to give an estimate of 

rates of total solute uptake. This calculation was used as an index 

of total inorganic ion uptake because it was believed that the 

proportion of inorganic to organic solutes in the leaf sap does not 

change on exposure to NaCl. Delane et al.(1982) found that amino 

acids and sugars accounted for about 5-10% of the osmotic pressure in 

the fully expanded tissue of barley. Polonenko et al.(1983), who 

compared organic solute concentrations in barley grown i n isosmoti c 

solutions of NaCl and c oncentrated macronutrients, found l i ttle 

difference in levels of sugars and amino acids between the two 

treatments at Tr below 1. 0 MPa. The calculation of the t o tal s o lute 

uptake (formula 3, Se c tion 2.4.) has the advantage over the summation 

of the inorganic ion uptake data in that it avoids a cc umulating 

errors . It was assumed that solute concentrations were c onstant with 

time because ion concentrations had been constant (see above) and 
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Figure 6.7. 

Effect of control nutrient solution ( D ), 100 rnol rn- 3 NaCl ( ~ ) 

Or CO n Cent r a t e d ma C r On U t r i en t S , 0 . 5 6 MP a rT ( ~ ) , On f/ , fl and p 

of fully expanded tissue, leaf 3, and expanding tissue, l e af 6 
(Experiment 5 ). 

(a) wheat 

( b) bar 1 ey 

Error bars i ndi c ate the standard error o f the mean 
measurements, 

measurement for 
plant per measurement of ~. 2 plants 

TT and estimation of P. Numbers on each 

o f 
per 

bar 
indicate the numbe r s of replicates. Measurements were made d 11 
after 0.56 MP a treatment began, i.e. d 21 after germination. 
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that lea f 3 was representative of the whole shoot (6 leaves in 

total). 

Thes e ca l cu lati o ns indicate that uptake rates b v th e shoot of 

the NaCl-grown plants were lower than those in isosmoti c concentrated 

ma cronutrients or c ontrols for (Fig 6.8.). In other words, it was the 

low growth rates of NaCl-treated plants which led to concentrations 

of solutes whicn were similar to those of plants grown in isosmotic 

concentrated nutrients. Moreover, it could be predicted that uptake 

rates by the expanding tissue of the NaCl-grown plants were also 

lower than those in plants grown in isosmotic concentrated 

macronutrients or controls (see Fig 6.8b, and caption for 

assumptions.) 

The calculations of total solute uptake by the whole shoot may 

be compared with those of individual ion uptake in the previous 

experiment (Experiment 3) by assuming that TT in the shoot of plants 

at 50 mol m-3 NaCl or isosmotic c oncentrated nutrients would be 

intermediate between that of controls and plants at 100 mol m -3 NaCl 

or isosmotic concentrated macronutrients. This predicted that uptake 

rates to the shoot of total solutes for plants at 50 mol m- 3 NaCl and 

isosmotic concentrated macronutrients would be 1.2 and 1.3 x 

respectively. This is very close to the total uptake 

rate of all the ions measured in experiment 3. 

Discussion: 

The four species tested grew only half as well in NaCl as in 

concentrated macronutrients, suggesting that NaCl has specific 

effects in addition to osmotic effe c ts. The mineral uptake data 

suggest the effects of concentrated nutrients are essentially 

osmoti c . The rates of transport from the roots to the shoot of most 



Figure 6.8. 

Effect of con trol nutrient solution ( D ) , 100 

( ~J ), or concentrated macronutrients, 0.56 HPa rI 
solute uptake in barley and wheat (Experiment 5). 

mol 
( ~) l::'•i:I 

i::.0 

m -3 

on 
NaCl 

total 

(a) Total solute uptake (osmol x 10-3 m- 3 tissue H
2

o d-l) for 
fully expanded tissue, assuming I7 of leaf 3 is repres entative of 
the whole shoot (6 leaves total), and ion concentrations remain 

* -1 -1 constant with time (see text). RGRs gH
2
o g H

2
o d , was 

c alculated from FW - OW data of Experiment 2 and was, for 
nutrient solution control, NaCl and concentrated macronutrient 
treatments respectively, 0.258, 0.130 and 0.219 for barle y and 
0.285, 0.123 and 0.203 for wheat. 

(b) Total solute uptake as a percentage of nutrient soltion 
control, for the expanding region of barley and wheat, assuming 

RGR of the expanding region is proportional to RGR of the whole 

shoot, and T1 of the expanding region remains constant with time. 

Dellane et al. (1982) found organic solutes contributed 201. of 

the rT in the expanding tissue, but this proportion was similar 
in plants grown in 0.5, 120 or 180 mol m- 3 NaCl. 

Error bars indicate the mean S.E. of RGR and Tl estimations. 
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minera l nutr ient s were similar to c ont rols; only ~g 2+ transport to 

the shoot wa s higher ( F ig 6 . 5 . ), and , as th e root:s h oot ratios were 

the same as c ontro ls, the up take r at es b y th e shoots were also 

similar to controls . I f i t is assumed that th e effec t s of 

c oncentrated macronutrient s o n growth are essentiall y os mo t ic ( i . e. 

are due to reduced water uptake rather than to any specific i o n 

e f fe c ts), then the addit ional e ffe c ts of NaCl are due t o specific ion 

effec ts. 

The specific effects of NaCl on the shoot could b e excessive 

transport to the shoot of Na+ or Cl-, excessive transpor t t o the 

shoot of other ions such as phosphate, or an inadequate trans port of 

other ions such as ca2+ , The fir st 

possibility is that of e xc essive uptake of Na+ or Cl- : th is could 

have specific effects on metabolism if NaCl was not c ompar t me nt e d i n 

the vacuole (Flowers et al. 1977) , or could have osmot ic effec ts i n 

a sense if NaCl accumulated i n the apoplast of old leav es ( s ee Munns 

and Passioura 1984b). It is clear that death of lea v es is du e to 

excessive NaCl concentrat ions (Greenway 1962). Howe v er , i t is not 

proven that growth of young leaves is directly aff ec t ed b y NaCl 

a ccumulation in the old leaves (see Munns and Termaat 1986 ) . The 

second possibility is tha t of excessive phosphate uptake wh ich was 

shown to be unlikely (Fig 6.6.) in any of the four s p ecies t es t e d, 

although this has been shown for other species, eg corn (Nieman a nd 

Clark 1976), sesame (Cerda et al. 1977) and even c erta in varie t ies 

within species e.g. soybean ( Gratten and Maas 1984). A review of the 

lit e rature of in Chapt er 1 suggests that this excess phosphate 

a cc umulation in NaCl-trea t e d plants is a feature uniqu e t o hydroponic 

c ulture and the relat e d t echniques, gravel and sand culture. The 

th i rd possibility, whi c h does not pre c lude exc essive + t\a or Cl is 

that there is a reduced trans port of essential solute s t o the shoot . 
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Even though c alculations of transport rates do not show whether or 

not transport from the root is limiting growth of the shoot, several 

interesting relationships are revealed by this method. Increased 

phosphate accumulation in the shoot of NaCl-grown plants apparently 

results from root transport rates that are unchanged compared to 

controls while transport of other macronutrients decreases (Fig 

6.Sa.). The decrease in K transport is exactly countered by the 

increase in Na transport; similar evidence can be found for direct 

competition of N by Cl (Fig 6.Sa.). Both examples of ion competition 

are known (eg, Dean Drummond and Glass 1982; Jeschke 1984); it is 

suggested that interference with transport from the roots of an 

essential nutrient may result in feedback control by the shoot of 

others. 

If transport of one or more minerals from the root to the shoot 

is limiting growth, the increase in root:shoot ratio mav be a 
J 

consequence of the decreased shoot growth. In time, the change in 

root:shoot ratio (and clover is not exempt from this, c.f. Winter and 

Lauchli 1982) may reflect the poor growth of plants in NaCl, when, 

just as in droughted plants (Passioura 1983),the relatively large 

root system imposes extra demands on the shoot for assimilates. A 

possible explanation of why the increase in root:shoot ratio is 

associated with NaCl-treated plants is suggested by Trewavas(1985) 

who has proposed that carbohydrate (C) and organic nitrogen (N) both 

regulate the growth of plant organs; high C/N increasing growth rates 

of the roots and stimulating floral initiation and leaf senesence in 

the shoot. To apply this model to NaCl-stressed plants, the uptake of 

N to the roots would be reduced directly through competition by Cl- ( 

see Dean-Drummond and Glass 1982). This would increase the C/N ratio 

in the root, which, being first to come into contact with this N, 

would compete more effectively than the shoot for this mineral. Shoot 
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C/N would be increased as a c onsequence. Earlier dates of maturation 

are well known in NaCl -t reated plants (eg, Ayers et al . 1952) and 

enhanced rates of leaf senescence are also documented (Prisco and 

O'Leary 1972). This mode l c ould be tested if th e amouts of C and N 

reaching the growing region of the shoot were known. 

Alternatively, the lower rate of transport of minerals f rom the 

root to the shoot could be due to feedback control b y th e shoot whose 

growth rate has decreased for another reason; if so the fee dba c k does 

not operate on phosphate transport. Figure 6.9 shows that for the 

period between harvest 1 and 2) there was alread v a linear 

relationship between relative growth rates and root : shoot ratio for 

barley and wheat (data from Experiment 2), and a week later this 

relationship was much stronger. According to this relat ionship, the 

absence of a statistically significant increase in the root:shoot 

ratio of the plants grown in concentrated macronutrient is simply 

because shoot and size growth was not much lower than controls. 

Because there was no change in root:shoot ratio in the clover species 

in these experiments, a similar relationship could not be obtained 

for clover. 

Is reduced root transport the cause of growth reduction or the 

result of it? The data reported in this chapter, being for a steadv ., 

state situation, cannot enab l e one to distinguish between the two 

possiblities. 

Conclusion: 

Solutions of concentrated macronutrients appeared to have no 

toxic or specifi c ion effects on plant growth, although plants grown 

in these solutions were smaller. Uptake rates of total solutes to 

both the elongating and mature tissue resembled con trol plants, and 

..... 
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ratio between harvest 1 and 2, 2 and 3 (Experiment 2). 
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the balance of mineral nutrients e nt ering the shoot resembled control 

plants. It is sugg~sted that sol utions of concentrated ma c ronutrients 

can provide a useful osmoti c um against wh i c h to t es t i on-spe c ifi c 

effec t s of NaCl. 

After 14 days, NaC l-treated wheat, barley, Egyptian clover and 

white c lover were half the size of plants grown in concentrated 

macronutrients. A NaCl-induced increase in phosphate uptake did not 

cause this additional reduction in shoot growth . For barley, net 

transport of N, K~ Mg and Ca from the roots (per g root DW) was lower 

in NaCl-treated plants than controls, but uptake by the shoot (per g 

shoot DW) of these minerals was similar. NaCl-treated barlev and 
J 

wheat plants had higher osmotic pressures in both expanding and fully 

expanded tissue than did controls and macronutrient-grown plants, but 

lower rates of uptake of solutes generating th is pressure. This 

raises the possibility that growth in NaCl may be partl y limited by a 

reduced rate of transport of an essential nutrient to the shoot. 
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Chapter 7 

CONCLUDING DISCUSSION 

7.1. Introduction: 

Three hypotheses formed the basis of this study: that the growth 

of shoots of NaCl-treated plants, 

solutes needed to generate turgor 

was limited by the supply of 

in the growing cells, by changed 

hormonal messages from the roots, or by a deficiency or excess of a 

major nutrient. This discussion aims to evalute the data of the 

thesis as a whole. 

7.2. The hypotheses: 

Hvpothesis 1 Is reduced growth in NaCl due to inadequate turgor of __.__.__ ______________ __,_"-------------------j_------""'------

the expanding cells of the shoot? If the growth at h i gh NaCl, in the 

medium-term, was limited by an insufficient supply of ions and other 

solutes to the growing region to generate turgor (as was suggested bv . 
Delane et al. 1982), raising ~he turgor by applying pressure would 

have increased growth by reducing the need for thes e solutes (Chapter 

4) • Growth was not improved, therefore turgor, and processes 

generating turgor, were not limiting shoot growth. Turgor, 

it presumably is necessary for growth, is not regulating shoot 

but is overridden by some other factor. 

although 

growth 

It is not likely that the factor limiting the growth of the 

shoot is an inadequate supply of assimilate, even though 

photosynthesis may be affected. The total con cen tration of soluble 

and insoluble carbohydrates increases in both the expanded and fully 
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expanded leaves of NaCl-treated barley (Mu nns et a l . 1982 ) a nd i n the 

whole shoot of plants gro wn i n c oncent r at ed macronu t rien t s ( Polonenko 

et al. 1983)) whi c h suggests a ssimilate i s i n a mp l e sup pl y . Ne i the r 

is it likely tha t the cells in the growing region a re s u f fering from 

a metabolic upset) such a s the poisoning of an important enzyme by 

high local concentrations of Na+ -or Cl and that this would have 

prevented them responding to the increased turgor. Firstly) there was 

no improvement of growth of plants grown i n concentrated 

macronutrients when pressu r e was applied (Chapter 4); these plants 

did not contain Na+ or Cl- ( Chapter 6). Secondly, the growth rate of 

NaCl-treated plants responds so rapidly to the removal of NaCl from 

around the roots (Munns et al. 1982; Rawson and Munns 1984) that the 

specific effects of Na+ and c1- on the metabolism of the leaves seem 

to be ruled out: the recov ery of growth occurs mu c h faster than the 

cellular concentrations of Na+ and c1- are substantiallv lowered. 

Growth in the short- to med i um-term is also unlikelv to be limited by 

a specific mineral nutri e nt (such as or because (as 

mentioned above) there was no improvement of growth of plants grown 

in concentrated macronutrients when pressure was applied, and in 

these plants the transport of these essential nutrients from the 

roots would not have decreased (Chapter 6). 

Unlike the experiments which showed rapid re c overy of growth 

when NaCl was removed from the root environment (Munns et al. 1982; 

Rawson and Munns 1984), neither turgor nor the root's ionic status 

were changed by the appl i ed pressure (Passioura a nd Munns 1984a). 

Therefore, a likely poss i bility is that the status of the root 

regulates the growth of the shoot via a message moving from the root 

to the shoot. The message , limiting growth in both NaCl-treated and 

concentrated macronutrient- t reated plants, is more likely to be a 

growth regulator than a nut r ient because rates of transport from the 

__. 



r 
ti') 

'I . 

,, 

1 
.1 

:j 

I 11 

1 
i 

·' 

II 
' 

1, 

'I 

1 

~ 
I 

1, 

- 56-

root of major nutrient s we re s im i l a r t o contro l s i n the con cent r at ed 

ma c ronut r i e nt t r eatme nt (Chapte r 6). 

Hypothesis 2: Is the reduced growth in NaCl due to insu ff i c i e nt 

cytokinins arising from the root? Cytokin i n s s e emed the most like l y 

hormone as they are known to arise predominently in the roots, and 

their production seemed to be affected by low external~-

Kinetin ( a synthetic cytokinin known to affe c t wheat, reviewed 

in Michael and Beringer 1980) did not affect NaCl-treated wheat, even 

though a wide range of concentrations were tried. Kinetin (10-3 m-3), 

affected only wheat grown without NaCl, which suggested receptor 

frequency or sensitivity (c.f., Trevawas 1982) declined in 

NaCl-treated plants. The possibility that kinetin could improve the 

growth rates of pressur i sed, conc ent ra t e d macronutrient-treated 

plants was not tested, but it is likelv their ., response to kinetin 

would be similar to NaCl-treated pl a nts, because plants grown 

osmotica other than NaCl (mannitol) were also less sensitive to 

applied hormones (GA applied to Brassi c a c ampestris, Banyal and Rai 

1984; kinetin, ABA or combinations of the two applied to tobacco, 

Mizrahi et al. 1970) than c ontrols grown in high~-

Because the growth of pressurised, NaCl-treated wheat was not 

affected by applied kinetin, a message othe r than, or in addition to, 

a cytokinin is limiting the growth of these plants. This messag e 

would regulate shoot growth of any osmoti c ally-treated plant. 

Hypothesis 3: Is reduced growth i n Na Cl d u e t o NaCl-specific 

disturbance s in the mine r al transport fro m the roots ? Trans f er fro m 

NaCl to isosmoti c concent r ated ma c ronutrients c aused no c hang e in 

growth rate in the shot-term ( 0 .5 - 2. 0 h),whi c h suggested tha t wat er 

uptake from two solutions was the same . Howe v er, in the med i um - t o 
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long-term (7 d - 3 weeks ) NaCl-treated plants grew more slowly than 

those i n isosmoti c c on c entrat ed nutrients (Chapter 6). The additional 

growth reduction of plants grown in isosmoti c solutions must be due 

to NaCl-specific effects. 

What could the NaCl-specific effects on the shoot be? 

The most likely additional c onstraints are excessive transport 

to the shoot of Na+ or Cl-, excessive transport to the shoot of other 

ions such as phosphate, or inadequate transport or mineral nutrients 

such as K+ or No
3

-(Chapter 1). Because it is toxic to metabolic 

reactions, intracellular NaCl is presumed to be largely compartmented 

in the vacuole (e.g., reviewed by Flowers et al. 1977, Flowers and 

Lauchli 1983). Death rates of older leaves in barley are certainly 

enhanced by NaCl accumulat ion (Green-wav 
.; 

1962, Munns and Passioura 

1984), but as the importance of older leaves rapidly diminishes as a 

source of carbon for developing leaves, which supply about half their 

carbohydrate requirements (Anderson and Dale 1983), the stage at 

which leaf death has a criti c al effect on growing leaves is unclear. 

Excessive phosphate uptake to the shoot was shown to be unlikely in 

the experiments in this study (Chapter 6). NaCl-induced phosphate 

toxicity may be an artifact of hydroponic techniques, and is 

unreported for soil-grown aCl-treated plants (Chapter 1). Inadequate 

transport of K+ is less likely than NO -
3 

to be 

additional growth reduction in NaCl-treated plants; 

the cause of the 

in tomato up to 

90 7. of leaf K+ can be displaced by Na+ without any reduction in 

growth rate occurring (reviewed in Flowers and Lauchli 1983). But 

nitrogen levels are often reduced in NaCl-treated plants, 

particularly at low salinities, also frequently respond to 

fertilization (Chapter 1). 

It may be possible to test which ion, + Na or Cl is the 

whi c h, 

NO -
3 

more 
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t oxic to NaCl-treat e d p lants b y growing p lan ts i n isosmotic solutions 

o f c o ncentrated ma c ron ut rient s , NaCl , and mi xt ures of mineral 

nutr ient s where Na+ and Cl- re place the c at ions and a n ions. Ch a ng i ng 

treatments from one isosmotic solution to another and s i multaneuosl y 

monitering xylem ion concentrations as well as growth rates c ould 

determine whether reduced transport of either of these minerals is 

responsible for the addit i onal growth reduction (c o mp a red to plants 

in isosmotic concentrated macronutrients) shown by NaCl-treated 

plants. All the ions in the xylem of all treatments would need to be 

measuredt as a change in c ation composition may alter the uptake 

rates of some anions. For example, replacing NaCl with KCl in the 

nutrient solution enhanced C l uptake ( bean, Salim and Pitman 1983; 

Sorghum bicolor, Weimburg et al. 1984). 

What could the NaCl-specific effects on the roots be? 

Root:shoot ratios increase in NaCl-treated plants and plants 

grown in a dry soil (reviewed in Munns and Termaat 1986, Bernstein 

and Hayward 1958, Passioura 1983), and both these c onditions also 

increase shoot carbohydrate concentrations (e.g., in NaCl, Delane et 

al. 1982; in dry soil, Ackerson 1981). A likely explanation is that 

shoot growth is affected more than photosynthesis, thereby increasing 

the amount of assimilate available for root growth. On c e established, 

the relatively large root will impose extra demands on the shoot for 

assimilates (c.f. Passioura 1983). 

Figure 6.9. suggests that the size of the root c orrelated wi th 

the RGR of the shoot, rega rdless o f th e c omposition of the sa l i n e 

solution in which the plants were grown. If absolute shoot size o nl y 

is c onsidered, the root:shoot ratio will always be higher f or the 

NaCl-treated plants (Fig 7.1. using data from Experiment 2 , Chapt e r 

6). Is this simply because, for an y particular shoot size, the shoot s 
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Figure 7.1. 

Effect of shoot 
solution ( . ) . weight (g 

50 mol m 

DW) 
-3 

of plants 

NaC 1 , 0. 3 2 

in con trol nutrient 

MPa r1 ( D ) or 
-3 concentrated macronutrients, 0.32 MPa TT (A) , 100 mol m NaCl, 

0.56 MPa T1 ( LJ ) or concentrated macronutrients, 0.56 MPa TI 
(II) on root:shoot ratio for the 2 periods between harvests 1 

and 3 (Chapter 6, experiment 2). Error bars indicate S.E. of the 
means of RGR and root:shoot ratios, of 3 replicate treatments. 
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of NaCl-treated plants ~er e g rowing more slowly, c onsuming less of 

the c arbohydrat e that wa s f ixed tha n plants grown in concentrated 

ma c ronutrient plants, and were ther ef or e supplying the roots with 

relatively more c arbohydrate ? Polonenko et al . (1983) found f or an 

external TT up to 1.0 MPa, c ar bohydrate c on centrations in the shoots 

of plants in NaCl and isosmotic concentrated nutrients were s i milar; 

however, NaCl-treated plant s would be growing more slowly. Figure 

7. 2. uses data from Experiment 3, Chapter 6, to observe the 

relationship between shoot si ze and root:shoot ratio. This was the 

only experiment in which an NaCl treatment (50 mol m- 3 NaCl) had 

plants of a similar size and growing at similar rates to plants in 

concentrated macronutrients (0.80 MPa TT). Figure 7.2. shows these 

two treatments had similar sized roots. Therefore, shoot size and 

growth rate, rather than shoot mineral composition, appears to 

determine root size. 

7.3. Concluding summary: 

This concluding discus si on has identified two wavs in which 
.; 

the 

growth of NaCl-treated p l a nts may be limited. Growth of NaCl-treated 

wheat, barlev, . .; 
Egyptian c lover and white clover was not limited bv 

turgor, but by other fac t or(s ), assoc iated with the water status of 

the root. If macronutr i ents exert purely osmoti c effects, (i.e., 

affect water uptake only), the other factor is likely to be a 

hormonal (rather than nut rit ional) message; and this message would 

also regulate the shoot growth of NaCl-treated plants. Over ti me, 

NaCl-specifi c ion effec t s in the shoot c aus e additional growth 

reductions in NaCl-treated plants, affecting shoot growth more than 

root growth. 
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Effe c t of shoot weight (g DW) of plants in control nutrient 

• -3 ,r-..-' A solution ( ), 50 mol m NaCl, 0.32 MPa .1.1 ( LJ) o r 
concentrated ma c ronutrient s , 0 .32 MPa IT ( ~ ), 100 mol m- 3 NaCl, 

0.56 HPa Tr ( LJ ) or concentra ted ma c ronutrients, 0.56 MPa Tl 
( B ), 150 mol m-J NaCl , 0 .80 MPa TT ( ()) or c oncentrat e d 
macronutrients, 0.80 MPa Tr ( +) on root:shoot ration for the 4 
period between harvests I and 5 (Chapter 6, Experiment 3). Error 

bars indicate S.E . of the means of RGR and root:shoot ratios, of 

3 replicate treatments. 
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