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ABSTRACT 

Immunoblotting with anti-pan myosin antibody strongly and reliably identified 

a 165 kDa polypeptide from mung bean extracts made with either extraction buffer 

or TCA solution. It was considered as a putative myosin heavy chain. A 155 k.Da 

mung bean polypeptide was also identified by immunoblotting with this antibody 

although the detection was not so consistent as that of the 165 kDa polypeptide. The 

155 kDa polypeptide was unlikely to be a proteolytic fragment of the 165 kDa 

polypeptide since it was detected in extracts made with TCA which minimizes 

proteolysis (Wu & Wang 1984). A mung bean 110 kDa polypeptide was considered 

to be a proteolytic fragment of the 165 or 155 kDa polypeptide because it was more 

easily detected with anti-pan myosin in the absence than in the presence of 

proteolytic inhibitors and was never detected in extracts make directly with TCA. 

Only one single polypeptide of 165/160 kDa was identified in pea, wheat and 

Arabidopsis with anti-pan myosin. 

Four monoclonal antibodies were raised to the mung bean 165 kDa polypeptide, 

and together with four commercial anti-myosin antibodies, were used in 

imrnunoblotting to detect epitopes on proteins from mung bean, pea, wheat, 

Arabidopsis and Chara. At least six epitopes were recognized by the eight 

antibodies, all of which were on the heavy chain of rabbit skeletal muscle myosin. 

Five of these epitopes were on the 165/160 kDa polypeptide of the four higher 

plants. Four polypeptides (200, 175, 124 and 110 kDa) of Chara, however, each 

shared.$ 3 epitopes with the muscle myosin heavy chain. The impressive similarity 

of epitopes the mung bean 165 kDa polypeptide shared with the muscle myosin 

heavy chain strongly supports the case that it is a myosin heavy chain. 

The mung bean 155 kDa polypeptide shared only one epitope with the muscle 

myosin heavy chain, supporting the view that it is not a myosin heavy chain. The 

mung bean 165 kDa but not the 155 kDa polypeptide was specifically 

imrnunoprecipitated by anti-pan myosin, which again strengths the view that the 
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155 kDa polypeptide is not a proteolytic fragment of the 165 kDa polypeptide. The 

mung bean 165 kDa polypeptide was immunofluorescently colocalized with actin in 

the phragmoplast of mung bean root tip cells and in cytoplasmic filaments that 

probably contain actin. This strengthens the case that it is a myosin heavy chain 

which together with actin, may play role in cytokinesis. 

The mung bean 165 kDa polypeptide, but not the 155 and 110 kDa ones, bound 

to an ADP-agarose column, demonstrating that only the 165 kDa polypeptide can 

be an ADP/ ATP-utilizing enzyme. The binding and elution of the 165 kDa 

polypeptide in the presence of EDTA suggests that it is an K+-EDTA-ATPase 

rather than a kinase. This greatly strengthens the case that it is a myosin heavy 

chain. 

Fractionation of mung bean crude extracts with (NH4)2S04 showed that the 

165 kDa polypeptide fraction accounts for only a small fraction of the total K+

EDTA-ATPase activity of the crude extract. The other K+-EDTA-ATPase activity 

may be accounted for by non-myosin(s) and/or other myosin isoform(s) that can not 

be detected by anti-pan myosin. Since K+-EDTA-ATPase activity alone is not a 

specific and reliable indicator of the mung bean 165 kDa polypeptide, 

immunoblotting which is more specific and reliable was used to monitor the partial 

purification of this polypeptide. 

The mung bean 165 kDa polypeptide was partially purified, with its fraction 

having a total protein yield of 0.02-0.05% (or 0.041-1.0 mg/100 g tissue). Analysis 

of A TPase activity during the partial purification showed that the polypeptide at 

most accounts for only a very small fraction of the total A TPase activity of the 

crude extract. Both the yield and specific activity of the K+-EDTA-ATPase activity 

of the 165 kDa polypeptide fraction decreased particularly at the early steps of the 

purification. The K+-EDTA-ATPase specific activity of the partially purified 165 

kDa polypeptide fraction was 0.016 µmol/min/mg which was increased 7.3-fold by 

ADP-agarose affinity chromatography. The partially purified mung bean 165 kDa 

polypeptide fraction did not exhibit actin-activated Mg2+ _A TPase activity. 
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Preliminary attempts were made to rapidly purify the 165 kDa polypeptide by 

immunoaffinity chromatography to see if any A TPase activity could be preserved 

and to see whether it could be adsorbed to antibody-coated beads and catalyze their 

actin-dependent movement. Neither approach was successful. 

Therefore, the important enzymatic evidence that the 165 kDa polypeptide is a 

myosin heavy chain is still lacking although the immunological evidence strongly 

suggests that it is. 
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2 

Cellular motility can be divided into three basic forms: migration of cells across 

a surf ace, morphogenetic movements or changes in cell shape, and movement of 

organelles (LeBlanc & Leinwand 1991). The last form of motility can take place in 

the absence of the first two forms (Warrick & Spudich 1987). The macromolecules 

which drive these movements are referred to as molecular motors which are 

mechanochemical enzymes expressing A TPase activities. These include 

microtubule-based molecular motors such as kinesin and dynein (Vale 1987; Porter 

& Johnson 1989; Vallee & Shpetner 1990; Schroer & Sheetz 1991) and actin-based 

myosin. 

Myosin is defined as any protein which binds to F-actin (fibrous actin) and has 

its ATPase activity activated. Myosins express various levels of ca2+_, K+-EDTA

and Mg2+_A TPase activities, but only the Mg2+_A TPase activity is expressed 

under physiologically relevant · conditions and is activated by F-actin (Korn & 

Hammer 1988). 

Myosin was first noticed and named in nematode by Kuhne (1864), but its 

A TPase activity was not discovered until 75 years later (Engelhardt & Ljubimowa 

1939). Actin was discovered subsequently by Albert Szent-Gyorgyi and his 

colleagues (Szent-Gyorgyi 1942). Since then, extensive work has been done on the 

biochemistry, biophysics and molecular genetics of muscle myosins (Taylor 1979; 

Eisenberg & Greene 1980; Adelstein & Eisenberg 1980; Morales et al. 1982; 

Huxley & Faruqi 1983; Harrington & Rodgers 1984; Amos 1985; Eisenberg & Hill 

1985; Hibberd & Trentham 1986; Emerson & Berstein 1987; Wade & Kedes 1989; 

Fyrberg & Goldstein 1990). 

Myosin is a ubiquitous protein that probably, like actin, exist in all eukaryotic 

cells (LeBlanc & Leinwand 1991). They can be classified into two distinct 
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isoforms: I and II. Myosin II is the two-headed, filamentous myosin capable of self

aggregation to form large filaments familiar from muscles; myosin I is the newly 

found, single-headed, nonfilamentous myosin. They will be described separately 

below. 

1.2 STRUCTURAL PROPERTIES OF MYOSIN II 

1.2.1 Basic structure 

Myosin II refers to a family of myosins that share similarities with those 

myosins found in muscle. Most nonmuscle myosins closely resemble muscle 

myosin in general structure. Myosins II are large, highly asymmetric proteins 

composed of two heavy chains, two essential light chains and two regulatory light 

chains. Each heavy chain CMr 160-240 kDa) has an amino-terminus (N-terminus) 

domain (about 90 kDa) that folds into a globular head with which one of each pair 

of light chains (12-27 kDa) are non-covalently associated. The remainder of the 

heavy chain dimerizes to form a long, a-helical coiled-coil rod known as the tail 

(Schliwa 1985; Kiehart 1990). 

Proteolytic enzymes cleave myosin into a number of functional domains. 

Limited digestion with trypsin yields heavy meromyosin (HMM) comprising the 

heads and part of the tail, and light meromyosin (LMM) comprising the distal two 

thirds of the tail. Further limited proteolysis of HMM with papain or chymotrypsin 

yields two identical HMM subfragment-1 (S-1) comprising the two heads and one 

HMM subfragment-2 (S-2) (Lowey et al. 1969). The cleavage site between HMM 

and LMM has less ordered secondary and tertiary structure than the rest of the rod 

and forms a flexible "hinge" joining LMM in the myosin backbone to HMM which 

is free to interact with adjacent F-actin. Another flexible site seems to be located in 

the junction between S-1 and S-2. Both sites are considered to play important roles 

in the power stroke of myosin (Huxley 1963; Kendrick-Jones et al. 1971; Harvey & 

Cheung 1982; 1.5). Both HMM and S-1 are soluble and bind to F-actin in the 

absence of ATP in an arrowhead pattern, a property used to detect F-actin and 
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determine its polarity in muscle (Huxley 1963) and nonmuscle cells (Schliwa 

1985). LMM is rather insoluble and self-aggregates under physiological conditions, 

indicating that it contains the region responsible for myosin filament formation 

(Huxley 1963; Kendrick-Jones et al. 1971). 

The primary structure of a number of muscle and nonmuscle myosins has been 

determined by sequencing proteins or, more commonly, myosin genes. The first 

complete primary structure of a myosin heavy chain protein was deduced from the 

sequence of the unc-5 gene of the nematode Caenorhabditis elegans that encodes 

the myosin heavy chain B of body wall muscle (Karn et al. 1983 ). DNA sequencing 

has been the most practical way to deduce the primary structures of nonmuscle 

myosins which form only about 1 % of total cell protein (Warrick & Spudich 1987; 

Emerson & Berstein 1987; Korn & Hammer 1988). 

Comparison of the sequences of various myosins from widely divergent 

organisms show something of the evolution of the myosin structure. The nucleic 

acid sequences of myosin show limited conservation, but the predicted amino acid 

sequences indicate that nonmuscle myosins show more divergence from the muscle 

myosins than occurs within the muscle myosin family (Warrick & Spudich 1987). 

Conservation in the head exceeds that in the tail, but is not as great as the 

conservation found in other cytoskeletal proteins, particularly actin 

(Vandekerckhove & Weber 1978). Areas of sequence conservation may indicate 

regions that play important roles in myosin function. In the myosin head, these 

regions include the ATP binding site, the actin binding site, the site of ATP 

hydrolysis and a highly conserved fourth site of unknown function. 

1.2.2 Myosin head 

Mapping of the substructure of the globular head S-1 has been pursued mainly 

by proteolytic fragmentation, cross-linking and specific labelling of various reactive 

groups (Harrington & Rodgers 1984 ). In rabbit skeletal muscle myosin, S-1 can be 

further cleaved into subfragments of 25, 50 and 20 kDa, which occur in that order 

from the N-terminus to the carboxyl-terminus (C-tenninus). The tail (LMM-S-2) 
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can be cleaved into fragments of 55 and 70 kDa, in the same sequential order. 

Myosins from other species do not show exactly the same digestion pattern. 

However, this cleavage pattern is better conserved among muscle myosins than 

among nonmuscle myosins (Warrick & Spudich 1987). 

The S-1 fragment interacts with actin through a strong binding site in the 20 

kDa subfragment and a much weaker one in the 50 kDa subfragment (Yamamoto & 

Sekine 1979; Momet et al. 1981a, b; Greene 1984; Chen et al. 1985a, b, 1987; 

Katoh et al. 1985; Sutoh 1982b, 1983). Cross-linking two highly reactive thiols in 

the 20 kDa subfragment (Gallager & Elzinga 1980; Kam et al. 1982) inhibits 

ATPase activity and traps Mg2+-ATP (Wells & Yount 1979, 1980, 1982; Wells et 

al. 1980a, b). Both the ATP-binding site (Szilagyi et al. 1979; Sutoh et al. 1986) 

and a reactive lysine residue essential for myosin A TPase activity (Momet et al. 

1980; Hozumi & Muhlrad 1981; Miyanishi & Tonomura 1981) lie in the 25 kDa 

subfragment. 

The regulatory light chain has been localized by electron microscopy on S-1 

near the head-tail junction, that is the "neck" region (Flicker et al. 1981, 1983; 

Yamamoto et al. 1985). The essential light chain extends from the neck region to 

the actin-binding site (Sutoh 1982a; Flicker et al. 1981; Burke et al. 1983; 

Okamoto et al. 1986; Mitchell et al. 1986). The regulatory and essential light chain 

may be arranged in closed proximity, and some interplay might occur between 

these chains (Wallimann & Szent-Gyorgyi 1981a, b; Wallimann et al. 1982; 

Hardwicke et al. 1982; Harvey & Cheung 1982). 

A recently discovered putative calmodulin/light chain-binding domain, referred 

to as the IQ motif, is present as one or more tandem repeats in the neck region of 

the head-tail junction of all myosins (Cheney & Mooseker 1992). One tandem 

repeat is an extremely basic unit of about 23 amino acids. 

1.2.3 Myosin tail 

Numerous studies have demonstrated that the domains that drive filament 

assembly lie within the LMM portion of the myosin tail. S-2 is soluble under 
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physiological conditions and may be loosely bound to the thick filament surface 

(Harrington & Rodgers 1984). In every filament-forming myosin tail, there is a 

basic 28-residue repeat unit in which the smallest repeat contains seven amino acids 

(the heptad repeat). Small, generally hydrophobic amino acids are found in the first 

and fourth positions of this repeat. The heptad repeat forms two turns of an a-helix 

and the hydrophobic residues form the inner surfaces of the coiled-coil. The fifth 

and seventh residues of the heptad repeat are frequently occupied by acidic and 

basic residues respectively and form the outer surface of the coiled-coil. Proper 

positioning of the hydrophobic residues is thought to be important for the 

interaction of the two heavy chains in the formation of dimers, and the alignment of 

the charged resides in the promotion of thick filament assembly (McLachlan & 

Karn 1983; Karn et al. 1983; McLachlan 1984; Harrington & Rodgers 1984; 

Warrick & Spudich 1987; Korn & Hammer 1988). The vertebrate muscle myosin 

tail is a-helical to its C-terminus, but heavy chains of nematode myosin, 

Drosophila muscle myosin and Acanthamoeba myosin II end in nonhelical regions 

(Karn et al. 1983; Strehler et al. 1986; Rozek & Davidson 1986; Cote et al. 1984; 

Hammer et al. 1986, 1987). A nonhelical tailpiece is not predicted from the amino 

acid sequence of Dictyostelium myosin II (Korn & Hammer 1988). 

1.2.4 Myosin light chains 

Both myosin regulatory and essential light chains belong to a group of divalent 

cation-binding proteins including troponin C and calmodulin which are believed to 

have evolved by gene duplication and reduplication from a common ancestor. They 

share distinct similarities in amino acid sequence and possess common structural 

features including similar ca2+-binding sites (Collins et al. 1973; Collins 1974, 

1976b, 1991; Kretsinger 1980; Baba et al. 1984). Evolutionary changes in the 

amino acid sequences of many contemporary proteins have resulted in loss of 

Ca2+_binding ability, while maintaining many features of their three dimensional 

structures (Collins 1974, 1976a, b). The light chain composition of nonmuscle 

myosin is similar to that of smooth muscle myosin (Clarke & Spudich 1977). 
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The regulatory light chains can be phosphorylated (Weeds et al. 1977) and are 

believed to play a role in the regulation of contraction by ca2+ and 

phosphorylation, which is well established in smooth muscle and nonmuscle cells 

(Szent-Gyorgyi 1980; Kendrick-Jones & Scholey 1981; Kendrick-Jones et al. 1982; 

Kuznicki 1986; Kuznicki & Barylko 1988; Korn & Hammer 1988). The essential 

light chains are not phosphorylatable; they can be removed from myosin without 

loss of A TPase activity, and S-1 can hydrolyze ATP in the absence of light chains 

(Wagner & Giniger 1981; Sivaramakrishnan & Burk 1982). It therefore seems 

unlikely that this class of light chain is truly essential to the myosin A TPase 

activity. Their role in the contractile mechanism is somewhat more ambiguous than 

that of the regulatory light chains. 

Recent work has just started to shed light on the function of essential light 

chains in contractile mechanisms. The actin-activated Mg2+ _A TPase activity of 

molluscan myosin is regulated by direct binding of Ca2+ to myosin. The essential 

light chains of scallop myosin are required for the specific ca2+ binding to myosin, 

most likely to provide the specific ca2+_binding site (Kwon et al. 1990). 

Comparison of the gene sequence of Dictyostelium myosin essential light chain 

with those of other essential light chains from a variety of sources has identified a 

highly conserved domain which might play an important role in light chain function 

(Pollenz & Chisholm 1991 ). 

1.3 STRUCTURAL PROPERTIES OF MYOSIN I 

Myosin I is a more recently identified diverse collection of single-headed, 

nonfilamentous myosins. It was first found in Acanthamoeba (Pollard 1971; Pollard 

& Korn 1972, 1973a, b) and subsequently in Dictyostelium, bovine and chicken 

intestinal brush borders, Drosophila (Korn & Hammer 1988; Pollard et al. 1991; 

Cheney & Mooseker 1992), rat kidney brush border (Coluccio 1991), bovine 

adrenal medulla, adrenal cortex and brain (Barylko et al. 1992). The available 

evidence strongly suggests that myosin I is present in all eukaryotic species. 
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Myosin I comprises one heavy chain (Mr 100-140 kDa) (Pollard 1984; Cheney 

& Mooseker 1992) and one to four light chains. The light chains of intestinal brush 

border myosin I are up to four calmodulins (Howe et al. 1980; Coluccio & 

Bretscher 1987; Swanljung-Collins & Collins 1991). Myosin I consists of two 

major structural domains: a globular head and a short, slightly asymmetric tail. 

Myosin I heads contain nearly all of the sequences that are conserved in the 

heads of muscle and nonmuscle myosins II (1.2.1 & 1.2.2). A well conserved 

sequence of myosin head which distinguishes most known myosins I from myosins 

II lies C-terminus to the phosphorylation site of Acanthamoeba myosins I (Brzeska 

et al. 1989). In the heavy chain of Acanthamoeba myosins I, a single threonine 

(myosin IA) or serine (IB, IC) residue must be phosphorylated to permit actin

activation of the Mg2+_A TPase (Brzeska et al. 1989). The phosphorylation sites are 

located between the ATP- and actin-binding sites. Myosin I tails are highly variable 

and shows no significant sequence similarity to those of myosins II, but have some 

common features related to the function (Korn & Hammer 1988; Pollard et al. 

1991). All tails lack heptad repeats so that no myosin I polymerizes to form 

filaments like myosin II. 

The heads of all myosins (I and II) have a similar ATP-sensitive actin-binding 

site. Binding occurs when actin activates the Mg2+ _A TPase of myosin ( 1.5). 

Acanthamoeba myosins IA, IB and ID, and Dictyosteliwn myosins IB and ID have 

a second F-actin-binding site which is located in the C-terminus 30 kDa of the 

heavy chain tail (Lynch et al. 1986; Doberstein & Pollard 1992; Hammer 1991; 

Cheney & Mooseker 1992). It is ATP-independent, has no effect on ATP 

hydrolysis and is located in a glycine-proline-alanine-rich region that is unique to 

myosin I. This, like the filament forming tail of myosin II, provides a mechanism 

by which myosin can cross-link actin filaments and move one filament relative to 

the other through the cross-bridge cycle at the actin-binding site that is coupled to 

ATP hydrolysis (Korn & Hammer 1988; Pollard et al. 1991). The chicken and 

bovine intestinal brush border myosins I have three putative calmodulin-binding 
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sites just C-terminus to the head (Hoshimaru et al. 1989; Hayden et al. 1990). The 

myosins I of Acanthamoeba, which do not bind calmodulin, lack these sites. 

Morphological and biochemical studies of Acanthamoeba, Dictyostelium and 

vertebrate epithelial cell show that myosin I associates with the plasma membrane, 

but questions remain about the association of myosin I with the membranes of 

cytoplasmic organelles (Pollard et al. 1991). In vitro experiments suggest that 

myosins I bind to negatively charged surfaces provided by anionic phospholipids 

(Adams & Pollard 1989). However, the high affinity protein-lipid electrostatic 

interaction alone cannot account for the emerging evidence that myosin I isoforms 

are bound to specific membranes, such as the microvillar plasma membrane of the 

brush border. It is suggested that the specific localization is accomplished by a 

combination of nonspecific concentration of myosin I on the surface of membrane 

via lipid interactions and relatively weak associations with membrane proteins 

(Pollard et al. 1991). The membrane-binding site lies in the basic, N-terminus part 

of the tail of both Acanthamoeba and brush border myosins I. In Acanthamoeba, 

the binding site lies between the head and C-terminus ATP-insensitive actin

binding domains (Adams & Pollard 1989; Doberstein & Pollard 1989, 1992; 

Hayden et al. 1990). 

Novel myosin heavy chains have also been described. An Acanthamoeba gene 

potentially encodes a 177 kDa polypeptide, which is close in size to a myosin II 

heavy chain (Horowitz & Hammer 1990). Its tail shows essentially no similarity to 

either myosin I or II except for a C-terminus region (about 50 amino acids) 

homologous to that of myosin I. Sequence analysis predicts that it will not form a 

myosin II-like coiled-coil structure, implying it is single-headed and 

nonfilamentous. Therefore, this new protein has been tentatively classified as a high 

molecular weight form of myosin I. 

Two novel heavy chains of 174 kDa and 132 kDa are encoded by the 

Drosophila ninaC gene which expresses two overlapping mRNAs (Montell & 

Rubin 1988). Each polypeptide consists of a central myosin I-like head domain 
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linked to a C-terminus domain that, uniquely among all characterized myosins, is a 

kinase domain that may catalyze autophosphorylation (Pollard et al. 1991). The 

ninaC gene products could be members of a diverse family of molecules which 

include a myosin head as part of their domain structure (Mooseker 1989). 

Recently, novel myosin heavy chains have been identified that share 

characteristics of both myosins I and II (Cheney & Mooseker 1992). They are the 

215 kDa gene product of the dilute coat-colour locus of mouse (Mercer et al. 1991), 

the 180 kDa product of the yeast MY02 gene (Johnston et al. 1991), and the 190 

kDa calmodulin-binding protein (p190) from vertebrate brains (Larson et al. 1990; 

Espindola et al. 1992). Chicken brain p190 and mouse dilute protein share 91 % 

deduced amino acid identity (Espindola et al. 1992; Cheney & Mooseker 1992). 

p190 is biochemically and immunologically distinct from the heavy chains of brain 

myosin II and of brush border myosin I (Espindola et al. 1992). 

All three novel myosin heavy chains contain a neck region with six tandem 

repeats of a putative binding unit for myosin light chain or calmodulin (Cheney & 

Mooseker 1992). After the tandem repeats, there is a tail domain with the heptad 

repeat of an ex-helical coiled-coil, followed by a globular domain bearing no 

obvious sequence similarity with the tails of other myosins. The dilute gene product 

has numerous proline residues in its tail which would preclude ex-helix formation 

and assembly into thick filaments (Mercer et al. 1991). pl90 molecules are dimers 

with two rather large heads, a central rod-like segment and two C-terminal globular 

domains, but p190 does not appear to form filaments (Cheney & Mooseker 1992). 

It is hypothesized (Pollard et al. 1991) that all contemporary myosins evolved 

from a primitive myosin consisting of a small myosin I-like head and a short tail 

capable of binding membranes. This original myosin acquired extra domains by 

duplication of the sequence encoding its head and its fusion with a gene encoding a 

tropomyosin-like molecule. This eventually led to myosin II molecules with two 

heads and a long ex-helical coiled-coil tail. In some multicellular metazoan 
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organisms, however, a specialized form of myosin II evolved that is capable of 

forming sarcomeres. 

1.4 FILAMENT FORMATION BY MYOSIN 

The assembly of myosin into filaments is a property common to all myosins II. 

The thick filaments in venebrate striated muscle are bipolar structures in which 

myosin molecules are arranged with their tails in the backbone and their heads 

along the surface. Packing is anti-parallel near the center of the filament (the bare 

central zone) and parallel throughout the remainder of the structure (Huxley 1963 ). 

All myosins II self-associate in vitro at low ionic strength to form filamentous 

structures that resemble those isolated directly from cells. The process of assembly 

and the final structure of the filaments depend on the source of myosin. The 

dimensions of myosin filaments formed in vitro are variable and depend on a 

variety of conditions, such as ionic strength, pH, divalent cation composition and 

the presence or absence of copolymerizing proteins (Schliwa 1985; Sinard et al. 

1990). 

In both venebrate muscle (Suzuki et al. 1978; Onishi et al. 1978; Kendrick

Jones et al. 1983) and nonmuscle (Scholey et al. 1980; Craig et al. 1983; Broschat 

et al. 1983) myosins, phosphorylation of regulatory light chains controls both 

filament formation and actin-activated Mg2+_A TPase activity (1.7 .3). Heavy chain 

phosphorylation occurs in a number of nonmuscle myosins, including Physarum, 

Dictyostelium, Acanthamoeba, leukemic myeloblasts, macrophages, lymphocytes 

and brain cells (Kuznicki 1986; Kuznicki & Barylko 1988; Korn & Hammer 1988). 

Phosphorylation of Physarum myosin II is required for both thick filament 

formation and actin activation of Mg2+-ATPase activity (Ogihara et al. 1983; 

Takahashi et al. 1983; 1.7.4). For Acanthamoeba and Dictyostelium myosins II, 

heavy chain phosphorylation inhibits both filament assembly and actin activation of 

Mg2+ _A TPase activity (Kuczmarski & Spudich 1980; Peltz et al. 1981; Pagh & 

Gerisch 1986; Korn et al. 1988; Sinard & Pollard 1989; Ravid & Spudich 1989). 
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For Acanthamoeba myosin II, the sites of phosphorylation are located on three 

serine residues within the nonhelical tailpiece of each heavy chain (Collins & Korn 

1980, 1981; Collins et al. 1982a; McClure & Korn 1983; Cote et al. 1984). 

Proteolytic removal of serines from the tailpiece suggest that the two serines closest 

to the C-terminus are not required for either actin-activated Mg2+ _A TPase activity 

or filament formation (Sathyamoonhy et al. 1990; Ganguly et al. 1990). In the tail 

of Dictyostelium myosin II heavy chain, two domains required for assembly and 

phosphorylation, respectively, have been identified (O'Halloran et al. 1990). Three 

threonine residues in the C-terminus 34 kDa domain are phosphorylated (Pagh et 

al. 1984; Vaillancoun et al. 1988; Luck-Vielmetter et al. 1990). This 34 kDa 

domain is not necessary for in vivo contractile activity, but is critical for regulating 

the extent of myosin assembly in vivo and for proper control of cortical localization 

(Egelhoff et al. 1991). 

The basic model of myosin assembly has been established by studies on 

purified myosin from venebrate skeletal muscle, which show that assembly is 

initiated by anti-parallel packing of myosin rods and that the filament then 

elongates by parallel packing in each end of the bipolar filament (Huxley 1963 ). An 

imponant feature of myosin filament structure is that an intermediate level of 

organization occurs between dimer and full-sized filament: the subfilament (Davis 

1985). Some models for filament assembly suggest that, at least in striated muscles, 

myosin assembles via a subfilament intermediate (Wray 1979; Squire 1981). 

Acanthamoeba myosin II minifilaments are proposed to assemble from 

monomers through antiparallel dimers and tetramers by three successive 

dimerization steps, resulting in small bipolar assemblies containing from 8 to 16 

myosin molecules each (Sinard et al. 1989, 1990; Sinard & Pollard 1989). 

Functional regions required for individual steps in the assembly have been 

identified on the tail of myosin II (Sinard et al. 1990; Rimm et al. 1990). Myosins 

from skeletal muscle (Reisler et al. 1980), smooth muscle (Trybus & Lowey 1987), 

venebrate nonmuscle cells (Niederman & Pollard 1975), Dictyostelium 
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(Kuczmarski et al. 1988), and probably all other myosins as well can also form 

small bipolar mini.filaments. 

Whether nonmuscle myosins exist as filaments, oligomers or even monomers in 

cells, is not very clear. Generally, but not always, the filaments of the enzymatically 

more active state of nonmuscle myosin are larger and more stable in vitro than 

those of the enzymatically less active state (Kuznicki et al. 1983; Korn & Hammer 

1988). This suggests that nonmuscle myosins functions in vivo in the form of 

bipolar aggregates (Clarke & Spudich 1977). Such an idea has recently been 

supported by the localization of bipolar filaments of Dictyostelium myosin II in vivo 

by immunofluorescence (Yumura & Fukui 1985) and immunogold electron 

microscopy (Yumura & Kitanishi-Yumura 1990a). Myosin II in the cytoplasm of 

Acanthamoeba is organized into rodlike filaments that may be octameric 

minifilaments (Baines & Korn 1990) and larger filaments formed by the 

aggregation of minifilaments (Yonemura & Pollard 1992). The finding of bipolar 

filaments implies that myosin and actin in nonmuscle cells produce the motive 

force for some forms of cell movement when they are both organized as filaments, 

by a mechanism analogous to the sliding-filament model of actomyosin in muscle 

cells (Clarke & Baron 1987; Yumura & Kitanishi-Yumura 1990a). 

Nonmuscle myosin II is considered to be distributed between disassembled and 

assembled filament pools (Herman & Pollard 1981) in response to changes in 

divalent cation concentration (Condeelis et al. 1976), osmotic shock (Behnke et al. 

1971), chemotactic stimulation (Yumura & Fukui 1985; Fukui & Yumura 1986; 

Fukui et al. 1991; Yumura & Kitanishi-Yumura 1992) or mitosis (Fukui & Inoue 

1991). 

1.5 MODELS FOR THE MECHANISM OF FORCE PRODUCTION 

Models of the mechanism of force production have been deduced exclusively 

from studies on striated muscle. Although equivalent evidence is not available from 

other cells, the similarities in the properties of actin and myosin and their 
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arrangement in other cells, are consistent with the view that striated muscle 

exemplifies a common principle (Sheterline 1983). 

Contraction of striated muscle is caused by an active sliding of actin filaments 

relative to myosin filaments, with the length of each set of filaments remaining 

constant. Although the molecular mechanism of the sliding process in striated 

muscle remains controversial, the most widely held view is that the elements 

responsible for the generation of contractile force reside_ in the cross-bridges (the 

HMM region of myosin) which extend from the myosin filament and interact 

cyclically with the F-actin (A. F. Huxley 1957, 1974; H. E. Huxley 1969; 

Eisenberg & Hill 1978; Harrington & Rodgers 1984). 

In H. E. Huxley's model of the cross-bridge (Huxley 1969, 1971; Huxley & 

Kress 1985), the myosin head, together with S-2, swings out from the myosin 

filament to bind to the F-actin. Attachment of the myosin head to F-actin releases 

ADP and inorganic phosphate (Pi) from the hydrolysed ATP. Meanwhile, the 

myosin head changes its conformation so that the angle it makes with the actin 

filament alters. This results in relative displacement of the actin and myosin 

filaments. As soon as ADP and Pi are lost from the myosin head, a new MgA TP

myosin head complex is formed which lets the myosin head detach from the actin 

filament. The cyclic attachment and detachment of the myosin head to F-acrin 

move the latter relative to the myosin filament. It is proposed that the most likely 

seat of the force-developing mechanism is the globular part of HMM and its 

attachment to actin filaments. The force originates in a tendency for the myosin 

head to rotate relative to the actin filament, and is transmitted to the myosin 

filament by the S-2 portion of the myosin molecule action as an inextensible link. 

Flexible points at each end of S-2 permit S-1 to rotate, and allow for variations in 

the separation between filaments (Huxley 1969). 

The rotating cross-bridge model, however, is not universally accepted since the 

conformational change of the myosin head during the power stroke is not observed 

by some highly sensitive spectroscopic techniques (Alberts & Miake-Lye 1992), 
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such as fluorescence anisotropy (Yanagida 1985) and electron spin resonance 

(Thomas 1987). 

Harrington proposes that a conformational change within the S-2 region rather 

than head rotation generates force (Harrington 1971, 1975, 1979; Harrington & 

Rodgers 1984; Ueno & Harrington 1986a, b). It is proposed that the S-2 link is 

helical in the resting state where it is bound to the thick filament surface but 

shortens to a coil after the myosin head attaches to an actin filament in a cross

bridge cycle and the S-2 link swings away from the filament surface. The melting 

in the force-generating element causes a small angular rotation of the head about its 

point of attachment on the actin filament. At the end of the power stroke, the 

released cross-bridge returns to the stable resting state position where S-2 is bound 

to the thick filament surface. Rotation of the head acts like a spring to take up 

tension during force generation. The head returns to its initial orientation when 

tension on the cross-bridge decreases to zero. 

The ability of isolated heads attached to a solid support to move actin filaments 

(Sheetz & Spudich 1983; Toyoshima et al. 1987; Hynes et al. 1987) strongly argues 

that force is generated within the myosin head itself (Redowicz et al. 1990; Huxley 

1990). One way to reconcile the Huxley and Harrington theories is to consider that 

S-1 alone is sufficient to move actin under no-load conditions, but that the 

contribution of the rod may be needed to generate force in an actively working 

muscle (Harrington et al. 1990). 

Even though it is considered that in both muscle and nonmuscle cells, force is 

generated by the sliding of actin filaments past myosin, there are fundamental 

differences between the two systems in terms of the subcellular and supramolecular 

organization of the contractile proteins. Both skeletal and smooth muscle cells are 

extremely specialized for generation a force in one dimension only, shortening of 

the sarcomere in the former, and of the entire cell in the latter. Nonmuscle cells also 

generate linear forces, but in addition, the contractile proteins are sometimes 

arranged in a more complex three-dimensional lattice so that the force generated 
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within the lattice will result in complicated three-dimensional deformations. 

Furthermore, the contractile machinery of nonmuscle cells can be remodeled 

rapidly both in space and time, whereas the paracrystalline array of skeletal muscle 

remains virtually unchanged. Thus a fundamental difference between skeletal and 

nonmuscle systems lies in the degree of plasticity of the contractile apparatus 

(Schliwa 1985). 

1.6 FUNCTIONS OF MYOSIN IN CELL MOTILITY 

1.6.1 Myosin II 

Myosins II generate muscle contraction, and may play roles in nonmuscle cell 

motility, including ameboid movement (Fukui & Yumura 1986), chemotaxis (Fukui 

& Yumura 1986; Fukui et al. 1990), capping of surface receptors (Carboni & 

Condeelis 1985; Pasternak et al. 1989; Fukui et al. 1990), cytokinesis (Fujiwara & 

Pollard 1976; Mabuchi & Okuno 1977; De Lozanne & Spudich 1987; Schroeder 

1987; Egelhoff et al. 1990) and nuclear segregation (Watts et al. 1987). A 

nonmuscle myosin heavy chain-like polypeptide has been localized in situ in 

nuclear pore complexes in Drosophila (Berrios & Fisher 1986; Newmeyer & 

Forbes 1988; Berrios et al. 1991). It is proposed that annular subunits of the nuclear 

pore complex are formed by the heads of myosin molecules, the cylindrical wall of 

the pore lumen is formed by myosin tails. Myosin may play a role in hydrolysis of 

ATP required for transport through the pore. 

In Drosophila, a mitotic mutation, sqhl, disrupts cytokinesis, resulting in the 

accumulation of enormous numbers of chromosomes in the normally diploid cells 

of larvae. The sqh gene has been cloned and mapped on the X chromosome. 

Independently, the regulatory light chain of nonmuscle myosin (MRLC-C) has been 

biochemically purified, and the gene that encodes it cloned, sequenced and mapped 

to the same site on the X chromosome as the sqh gene (Karess et al. 1991). It has 

been found out that the sqh gene encodes the MRLC-C protein. These studies 

provide genetic proof that the myosin regulatory light chain is required for 
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cytokinesis, suggesting a role for the protein in regulating contractile ring function, 

and establishing a genetic system to evaluate its function. 

Dictyostelium discoideum and Saccharomyces cerevisiae can be used to study 

the function of myosins by genetic manipulations. Dictyostelium contains a single

copy gene (mhcA) encoding the heavy chain of a myosin II (De Lozanne et al. 

1985; Warrick et al. 1986). A myosin-defective mutant (hmm) has been created by 

using gene targeting to disrupt the mhcA gene (De Lozanne & Spudich 1987). The 

hmm cells which express a C-terminally truncated myosin unable to assemble into 

thick filaments show the same phenotype as when myosin II is depleted by 

expression of antisense RNA which is complementary to mhcA mRNA (Knecht & 

Loomis 1987). They survive and display many forms of cell movement including 

moving at reduced velocity, phagocytosis and chemotaxis (Wessels et al. 1988; 

Fukui et al. 1990). Studies of the cytoskeletal organization and physiological 

responses of this mutant demonstrate that myosin II is significantly involved in 

organizing the cortical cytoskeleton and participates in the cortical motile activities 

of Dictyostelium cells, including rounding up, constriction of cleavage furrows, 

capping surface receptors and establishing cell polarity. 

Dictyostelium myosin null mutants, mhcA- cells, have been generated by gene 

targeting (Manstein et al. 1989). These mutants provide genetic proof that the 

myosin II gene is required for growth in suspension, normal cell division and 

sporogenesis, rapid cellular translocation, cellular polarity, rapid particle movement 

and cAMP response (Manstein et al. 1989; Soll et al. 1990). Cloned mhcA gene has 

been reintroduced into the mhcA - null mutants by the use of a direct functional 

selection (Egelhoff et al. 1990). The rescued cells are normal for cytokinesis and 

are fully competent for sporogenesis. The complementation of both the cytokinesis 

defect and the developmental defect of the null cells rules out the possibility that 

secondary mutations play a role in these phenotypes. The demonstration that a 

direct functional selection can be used to introduce cloned genes into Dictyostelium 

offers a new versatile method for studying cloned genes and for confirming 
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phenotypes of mutant cell lines. The feasibility of introducing altered myosin genes 

into myosin null cells makes it possible to identify domains of the protein that are 

critical for the in vivo activities in which myosin is involved (Egelhoff et al. 1991). 

In yeast, a myosin heavy chain mutant has been created by disrupting the MYOI 

gene that encodes a myosin II protein (Watts et al. 1987). The mutant phenotype 

shows that an intact myosin heavy chain gene is essential for cytokinesis and 

nuclear migration, and is required to maintain the cell type specific budding pattern 

and the correct localization and deposition of chitin and cell wall components 

during cell growth and division (Rodriguez & Paterson 1990). 

1.6.2 Myosin I 

The association of myosin I with membranes, identified by biochemical studies, 

and cellular localization, suggests that myosin I may play a key role in motile 

events involving plasma membrane and membranous organelles, such as amoeboid 

locomotion, phagocytosis, chemotaxis and organelle movement (Pollard et al. 

1991 ). Several types of potential cellular movements have been suggested to exist 

which can be powered by myosin I due to its association with membrane lipids 

(Adams & Pollard 1989). Not all of them have been identified in cells so far. 

Acanthamoeba myosin II occurs in the cytoplasm and appears to be 

concentrated in the cellular cortex, but myosins I are preferentially distributed near 

the plasma membrane (Gadasi & Korn 1980; Hagen et al. 1986; Baines & Korn 

1989). Acanthamoeba myosin II has also been localized to a range of particles in 

the cytoplasm which are considered to be myosin filaments (Yonemura & Pollard 

1992). The smallest and most numerous cytoplasmic particles are distributed 

throughout the endoplasm. The largest particles, however, are concentrated in the 

cleavage furrow of dividing cells and in the tail of locomoting cells. 

Acanthamoeba myosin IB and/or IA are localized to spots that do not 

correspond clearly to any of the phase-dense particles in the cytoplasm (Yonemura 

& Pollard 1992). They may correspond to small vesicles of intermediate density 

and low sedimentation coefficient that bind substantial amounts of myosin I in 
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cellular homogenates and that may panicipate in endocytotic membrane traffic. 

Myosins IA and IB are also concentrated at the leading edge of many locomoting 

cells, and are localized to the membrane of a single cytoplasmic vacuole of variable 

size that is presumed to be the contractile vacuole. Funhermore, myosin IA is 

localized to novel intercellular contacts and myosin IB to the plasma membrane, 

especially the tips of filopodia. The functions of the intercellular contacts are 

unknown but it is suggested that myosin IA may accumulate some membranes or 

membrane molecules at the sites of these contacts. Acanthamoeba myosin IC has 

been localized to the plasma membrane and the contractile vacuole membrane 

(Baines & Korn 1990). 

Beads coated with myosins IA and IB move unidirectionally on actin cables of 

Nitella (Albanesi et al. 1985a). Organelles isolated from Acanthamoeba also move 

along Nitella actin cables, and the movement is inhibited by monoclonal antibodies 

to myosin I rather than those to myosin II (Adams & Pollard 1986). These results 

indicate that myosin I may be the motor for some vesicle movements. 

The second actin-binding site on the tail of Acanrhamoeba myosin I heavy 

chain gives myosin I the potential to crosslink actin filament and generate force. / n 

vitro studies have shown that myosin I can crosslink actin filaments and cause 

superprecipitation in the presence of ATP (Fujisaki et al. 1985; Albanesi et al. 

1985b; Lynch et al. 1986). This establishes the potential for myosin I to participate 

in a wide range of contractile processes generally thought to be powered by myosin 

II. Such movements would employ a sliding filament mechanism like bipolar 

filaments of myosin II. So far, however, no cellular movement is known to be 

powered in this way by myosin I (Pollard et al. 1991). 

That much motility continues in the Dictyostelium mhcA- null mutant provides 

definite proof that the mhcA gene is neither an essential gene nor is needed in many 

forms of cell motility (Manstein et al. 1989). Myosin I might function in some 

forms of cell motility in the absence of myosin II. 
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Dictyosteiium myosin I is localized at the leading edges of the lamellipodial 

projection of migrating amoebae, in regions which are devoid of myosin II, 

whereas myosin II is concentrated in the posterior of the cells (Fukui et al. 1989). It 

is suggested that forces generated by myosin I may cause extension at the leading 

edge of a motile cell, while myosin II may be involved in the contraction of the 

posterior of the advancing cell. In addition, myosin I may be important in 

phagocytosis, since it is also concentrated beneath the plasma membrane at sites of 

particle ingestion. Proof of the roles of myosin I requires disruption of its genes. 

In a mutant deficient in myosin IB heavy chain, chemotactic streaming and 

aggregation are delayed, and the rate of phagocytosis is reduced (Jung & Hammer 

1990; Wessels et al. 1991). Mutant cells form lateral pseudopodia and turn more 

often, and exhibit depressed average instantaneous cell velocity. They also exhibit a 

decrease in the average instantaneous velocity of intracellular particle movement 

and an increase in the degree of randomness in particle direction. It is suggested 

therefore that myosin IB plays a role in these processes. It has been deduced that at 

least five genes encode myosin I heavy chains in Dictyostelium (Jung & Hammer 

1990). If there is considerable overlap of function between these isoforms, multiple 

gene disruptions within a single cell may be necessary to generate a more striking 

myosin I-deficient phenotype. 

Intestinal brush border myosin I, the 110 kDa-calmodulin complex, tethers 

microvillar actin filaments to the plasma membrane in the brush border of intestinal 

epithelial cells (Mooseker 1985). Brush border myosin I can move plastic beads and 

membrane fragments unidirectionally along actin cables of Nitella (Mooseker & 

Coleman 1989; Mooseker et al. 1989), and fluorescent actin filaments when it is 

immobilized on nitrocellulose-coated coverslips (Collins et al. 1990). It may 

contribute to microvillar motility and vitamin D-regulated calcium transport across 

the brush border (Bikle et al. 1982, 1984, 1991; Bilde & Munson 1984, 1985). 

Myosin I is also localized on small vesicles in the terminal web of intestinal 

epithelial cells (Drenckhahn & Dermietzel 1988). It may transport these vesicles 
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along the microvillar rootlets to the site where they fuse with the plasma membrane 

and then anchor the newly expanded plasma membrane to the actin bundle (Fath et 

al. 1990). 

The products of the Drosophila ninaC gene, the 174 kDa and 132 kDa myosin 

heavy chains, are localized in the eye to the rhabdomeral microvilli and the 

cytoplasm adjacent to the rhabdomeres respectively (Matsumoto et al. 1987; 

Montell & Rubin 1988; Hicks & Williams 1992; Porter et al. 1992). The microvilli 

have only two axial actin filaments (Arikawa et al. 1990), and are connected to the 

surrounding plasma membrane by myosin I radial links. The ninaC mutation which 

affects myosin I disrupts Drosophila visual photo reception. One hypothetical 

function of myosin I is to translocate newly synthesized membranes and/or photo

transduction cascade components distally into rhabdomeres along the axial actin 

cables (Fyrberg & Goldstein 1990; Hicks & Williams 1992). It is suggested that the 

tail of the 17 4 kDa myosin causes association with the rhabdomeres and that the 

kinase domain phosphorylates a rhabdomeric protein important in 

phototransduction (Porter et al. 1992). The 174 kDa protein may function as a 

component of the microvillar cytoskeleton (perhaps analogous to the 110 kDa brush 

border myosin I), and the 132 kDa protein may play a role in the adjacent 

cytoplasm by effecting some aspect of photoreceptor membrane turnover (Hicks & 

Williams 1992). 

Mutation of the MY02 gene of yeast, which encodes a novel myosin heavy 

chain, causes marked disorganization of the actin cytoskeleton and delocalized 

distribution of actin cortical patches (Johnston et al. 1991). Secretory vesicles 

accumulate and the mutant is defective in localization of cell growth. The novel 

myosin may transport secretory vesicles along actin cables to the site of bud 

development. 

A 150 kDa calmodulin-binding polypeptide in Dictyostelium may be the 

Dictyostelium homologue of the dilute/p190/MY02 class of novel myosin heavy 

chains (Zhu & Clarke 1992). The association of this 150 kDa polypeptide with 
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contractile vacuole membranes indicates that it may play a role in movement of the 

vacuole to the plasma membrane. 

1.7 REGULATION OF ACTIN-MYOSIN INTERACTION 

Regulation of actin-myosin interaction can be viewed as either actin-linked or 

myosin-linked according to which protein is the focus of the regulatory processes. 

The actin-linked regulatory systems include the actin-associated proteins troponin

tropomyosin, caldesmon and calponin. Myosin-linked regulatory systems include 

the direct binding of ca2+ to myosin, the phosphorylation of myosin light chains 

and/or heavy chains. The dominant regulatory process in vertebrate striated 

(skeletal and cardiac) muscle is actin-linked, whereas myosin-linked systems 

provide the major regulatory mechanisms in molluscan muscle and vertebrate 

smooth muscle, as well as in nonmuscle cells. These several systems will be 

discussed separately later. Many cells contain dual and perhaps multiple regulatory 

systems (Adelstein & Eisenberg 1980; Kendrick-Jones & Scholey 1981; Leavis & 

Gergely 1984; Zot & Potter 1987; Korn & Hammer 1988; Trybus 1991; Sobue & 

Sellers 1991 ). Sections 1. 7 .1 to 1. 7 .4 refer to myosin II, and myosin I is discussed 

in 1.7.5. 

1.7.1 Vertebrate striated muscle: troponin-tropomyosin regulation 

In vertebrate striated muscle, the actin-activated Mg2+_A TPase activity is 

regulated by the binding of ca2+ to the regulatory complex (tropomyosin, troponin 

I, T and C) bound to actin filaments. At low ca2+ concentration (lQ-7 Mor lower), 

the regulatory complex inhibits the interaction between myosin and actin. When the 

concentration of ca2+ reaches about 10-S M or greater, the binding of ca2+ to 

troponin C fully relieves the inhibition and fully activates the myosin Mg2+ _ 

ATPase activity (Leavis & Gergely 1984; Zot & Potter 1987). 

1.7.2 Molluscan muscle: direct binding of ca2+ to myosin light chain 

In molluscan muscles, contraction is regulated by the direct binding of Ca2+ to 

myosin (Szent-Gyorgyi et al. 1973; Kendrick-Jones & Scholey 1981). The binding 
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of ca2+ activates the A TPase of myosin. Regulatory light chains are essential for 

the Ca2+ sensitivity of the A TPase, and for specific ca2+ binding to myosin 

(Szent-Gyorgyi et al. 1973; Chantler & Szent-Gyorgyi 1980), but the specific 

ca2+-binding site probably lies in the essential light chain (Collins et al. 1986; 

Kwon et al. 1990). 

1. 7 .3 Vertebrate smooth muscle and nonmuscle: phosphorylation of 

myosin; caldesmon and calponin regulation 

In vertebrate smooth muscle myosin, the actin-activated A TPase activity 1s 

regulated by the phosphorylation of myosin regulatory light chains. Light chain 

phosphorylation is regulated by two enzymes, a ca2+/calmodulin-dependent kinase 

and a ca2+-insensitive phosphatase. At high ea2+ concentrations, phosphorylation 

of myosin light chain increases the actin-activated Mg2+_A TPase activity 

(Kendrick-Jones & Scholey 1981; Trybus 1991). 

In vertebrate nonmuscle cells, actomyosin activity is regulated by the 

phosphorylation of myosin. Myosins can be classified into two groups with respect 

to the location of phosphorylation sites. In one group, both the light chains and 

heavy chains are phosphorylated, while in the other group, only light chains are 

phosphorylated (Kuznicki 1986; Kuznicki & Barylko 1988; Korn & Hammer 

1988). Like vertebrate smooth muscle, phosphorylation of regulatory light chains of 

vertebrate nonmuscle myosin by the ca2+/calmodulin-dependent light chain kinase 

increases the actin-activated Mg2+_A TPase activities. 

Caldesmon is a major actin- and calmodulin-binding protein found in smooth 

muscle and many nonmuscle cells (Sobue et al. 1988; Mabuchi & Wang 1991; 

Bryan & Lee 1991). It inhibits the actin-activated Mg2+_ATPase, and the inhibition 

can be reversed by calmodulin in a ca2+-ctependent manner (Sobue et al. 1985; 

Pritchard & Moody 1986; Okagaki et al. 1991; Sobue & Seller 1991). Calponin is 

an actin-, calmodulin- and tropomyosin-binding protein present in many vertebrate 

smooth muscles (Takahashi et al. 1986, 1987, 1988; Abe et al. 1990). It inhibits the 
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actin-activated myosin Mg2+ _A TPase activity, and the inhibition can be reversed 

by calmodulin only in the presence of ca2+. 

1.7.4 Lower eukaryotes: phosphorylation of myosin and direct ca2+ 

binding to myosin light chain 

In Acanthamoeba, phosphorylation of the myosin II heavy chain by heavy 

chain-specific kinase activates actin-activated Mg2+ _A TPase activity (Collins & 

Korn 1980; Collins et al. 1982b; Pollard 1982c; Kuznicki et al. 1983). The specific 

activity of each myosin II molecule within a filament is independent of its own state 

of phosphorylation but is regulated by a phosphorylation-dependent conformational 

change in the myosin filament as a whole (Atkinson et al. 1989; Ganguly et al. 

1990). 

In Dicryosteliwn, the A TPase activity of myosin II is regulated by both heavy 

chain and light chain phosphorylation. Heavy chain phosphorylation has no effect 

in the absence of light chain phosphorylation. Phosphorylation of the heavy chain 

by heavy chain kinase inhibits the actin-activated Mg2+_A TPase activity 

(Kuczmarski & Spudich 1980; Cote & McCrea 1987; Ravid & Spudich 1989). 

In Physarwn, enzymatic activity of myosin is regulated by both the direct 

binding of ca2+ to myosin light chain and phosphorylation of the heavy chain. 

Direct ca2+ binding to Ca2+ _binding light chains inhibits the actin-activated 

Mg2+ _A TPase activity (Kohama & Kendrick-Jones 1982, 1986; Kohama 1987, 

1988; Kohama et al. 1991b). Phosphorylation of the heavy chain by the heavy 

chain-specific kinase activates the actin-activated Mg2+_A TPase activity (Ogihara 

et al. 1983; Takahashi et al. 1983), and the Ca-inhibition is only observed with 

phosphorylated myosin (Kohama 1990). These studies have been carried out at a 

conventional actin concentration, which is comparable with that of myosin by 

weight. However, when the concentration of actin is increased by 10 times, the Ca

inhibition is observed with dephosphorylated myosin. Since actin is quite abundant 

in plasmodia of Physarum (Ogihara et al. 1983; Kohama 1987), it is suggested that 
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rnyosin phosphorylation plays virtually no role in regulating actin-rnyosin-ATP 

interaction in vivo (Kohama et al. 1991a). 

1.7.5 Myosin I: phosphorylation of myosin heavy chain and direct ca2+ 

binding to light chain 

Light chain phosphorylation has not been observed in rnyosin I (Korn & 

Hammer 1988; Pollard et al. 1991). Phosphorylation of the heavy chain by heavy 

chain kinase is required for actin-activated Mg2+_A TPase activities of both 

Acanthamoeba and Dictyosteliwn rnyosins I (Maruta & Korn 1977b; Maruta et al. 

1978; Hammer et al. 1983; Cote et al. 1985; Brzeska et al. 1990). The activity of 

Acanthamoeba heavy chain kinase is highly activated by autophosphorylation 

which is inhibited by ca2+-calmodulin (Maruta & Korn 1977b; Brzeska et al. 

1990, 1991; Kulesza-Lipka et al. 1991). Chicken brush border myosin I has up to 

four calmodulins as light chains. Physiological Ca2+ concentrations stimulate actin

activated Mg2+ _A TPase activity with three or four calmodulin light chains bound 

to rnyosin heavy chain, but inhibit with less than two bound (Swanljung-Collins & 

Collins 1991 ). The association of the myosin I with the membrane might also affect 

the ca2+ regulation of its ATPase activity. 

1.8 PLANT MYOSINS AND THEIR ROLES IN CELL MOTILITY 

Plant myosins are much less characterized than those of other eukaryotes due to 

difficulties of protein purification from plants and lack of successful cloning of 

their genes. Biochemical and/or immunological methods have mainly been used to 

identify and characterize plant myosins, and explore their possible roles in cell 

motility. 

1.8.1 Purification and biochemical characterization of plant myosins and 

putative myosins 

So far, plant myosin has been purified from the alga Nitella flexilis (Kato & 

Tonomura 1977), from parenchyma cells of the fruit of tomato (Lycopersicon 

esculentwn) (Vahey & Scordilis 1980; Vahey et al. 1982) and from conducting 
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tissues of the petiole of Heracleum sosnowskyi (Sokolov et al. 1985; Turkina et al. 

1987). Purified Niteila myosin exhibits ATPase activities characteristic of myosin 

(Kato & Tonomura 1977). At high ionic strength, its A TPase activity is activated 

maximally by EDTA, partially by Ca2+, and least by Mg2+. At low ionic strength, 

its Mg2+ _A TPase activity is activated by rabbit skeletal muscle F-actin. The Mr of 

Niteila myosin heavy chain is slightly higher than that of rabbit skeletal muscle 

myosin, estimated by SOS-PAGE. Ultracentrifuge studies of mixtures of Nitella 

myosin and muscle F-actin at low ionic strength indicate that Niteila myosin binds 

to muscle F-actin in the absence of ATP. At low ionic strength, Niteila myosin 

aggregates to form bipolar filaments with a central bare zone and globular 

projections at the ends. 

Vahey & Scorclilis (1980) briefly presented studies of isolating myosin from 

parenchymal cells of tomato fruit. A putative 220 kDa myosin heavy chain was 

estimated by SDS-PAGE of crude tomato actomyosin. At high ionic strength, the 

A TPase activity of the isolated myosin is said to be maximal in the presence of K+ -

EDT A, and lowest in the presence of Mg2+, but no original data are presented in 

the paper. At low ionic strength, the Mg2+_A TPase activity can be activated by 

either muscle skeletal F-actin or tomato F-actin. Ultracentrifuge studies are said to 

show that the myosin interacts with muscle F-actin to form an actomyosin complex 

that can be dissociated by ATP; however, no data are presented. Tomato myosins in 

crude extract aggregate to form bipolar filaments. 

Later, the same group reported thoroughly the purification of a 130 kDa tomato 

myosin that contains a 100 kDa heavy chain and light chains of 16 kDa and 14 kDa 

(Vahey et al. 1982). Its ATPase activity is activated maximally by K+-EDTA, 

partially by ca2+, and least by Mg2+ at high ionic strength. At low ionic strength, 

its Mg2+ _A TPase activity can be activated by muscle F-actin or tomato F-actin. 

The myosin binds to muscle F-actin in the absence of ATP. A Coomassie blue

stained gel of the purified myosin demonstrates weak bands of heavy and light 

chains and there seem to be several other faint bands on the gel. 
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Since the major difficulty in the purification of tomato myosin is considered to 

be the sensitivity of the enzyme to proteolytic degradation (Vahey & Scordilis 

1980), potent proteolytic inhibitors (EDT A, PMSF) were extensively used in 

purifying the 130 kDa protein. The relationship between the HMW myosin reported 

before and the 130 kDa protein was not discussed by the authors. Although no 

indication of proteolysis was recorded during purification, the possibility that the 

100 kDa polypeptide is a proteolytic fragment of a HMW rnyosin heavy chain 

cannot be excluded. Nevertheless, the 130 kDa A TPase from tomato exhibits all of 

the properties of a myosin enzyme. 

Purified rnyosin of Heracleum sosnowskyi has Mg2+_A TPase activity that can 

be activated by muscle F-actin at low ionic strength (Turkina et al. 1987). It binds 

to muscle F-actin as demonstrated by both ultracentrifuge and electron microscopic 

studies. The myosin forms bipolar filaments in vitro and these aggregate into thick 

bundles. 

Myosin has also been partially purified from leaves of a flowing plant Egeria 

densa (Ohsuka & Inoue 1979). The partially purified myosin fraction is still 

contaminated with several very prominent proteins as shown by SOS-PAGE. The 

Mr of its heavy chain is 180 kDa. Its A TPase activities differ from those of other 

plant myosins identified so far. At high ionic strength, its A TPase activity is 

activated most by ca2+, partially by Mg2+, and is lowest in K+-EDT A. A similar 

case is the myosin isolated from Amoeba proteus whose A TPase activity is 

activated by ca2+, inhibited by K+-EDTA and Mg2+, resulting in lowest K+

EDTA-ATPase activity at high ionic strength (Condeelis 1977). Furthermore, the 

Mg2+_A TPase activity of the partially purified Egeria myosin is not affected by 

skeletal muscle F-actin at low ionic strength. Nevertheless, ultracentrifuge and 

electron microscopic studies show that the myosin binds to muscle F-actin and 

forms bipolar filaments in vitro. 

A putative myosin has been reported to be partially purified from bulbs of 

onion (Allium cepa) by tracking myosin-like enzymatic activity during the 
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purification (Pesacreta et al. 1991; abstract only). Its ATPase activity at higher 

ionic strength is activated by K+-EDTA and is lowest in the presence of Mg2+. its 

Mg2+_A TPase activity can be activated by muscle F-actin. A 100 kDa polypeptide 

identified by immunoblotting with anti-pan myosin antibody is considered to be 

responsible for the K+-EDTA-ATPase activity. 

Tendrils of pea (Pisum sativum L.) that exhibit coiling movement have been 

used to prepare a fraction enriched for putative myosin by step elution of a crude 

extract on DEAE-cellulose (Ma & Yen 1989). The fraction's A TPase activity is 

activated most by K+-EDTA, partially by ca2+, and least by Mg2+ at high ionic 

strength. Its Mg2+ _A TPase activity is activated by skeletal muscle F-actin at low 

ionic strength. Native polyacrylamide gel electrophoresis shows that the putative 

pea myosin which can be identified on the gel by its A TPase reaction has a Mr of 

440 kDa. SOS-PAGE of the putative myosin extracted from the native gel shows a 

165 kDa heavy chain and light chains of 17 kDa and 15 kDa. 

A putative myosin has been partially isolated from pollen of snake gourd (Luffa 

cylindrica) (Ma & Yen 1988). Its A TPase activity at high ionic strength is activated 

maximally by K+-EDTA, partially by ca2+, and is lowest in the presence Mg2+. 

No data regarding actin-activated Mg2+_A TPase activity are presented. The heavy 

chain is suggested to be a 165 kDa polypeptide that is enriched in the A TPase 

fraction. Another putative myosin of pollen of Chinese cabbage (Brassica 

pekinensis) has been identified by its A TPase reaction after native polyacrylarnide 

gel electrophoresis of pollen crude extract, and SDS-P AGE of this protein extracted 

from the native gel shows a 220 kDa myosin heavy chain (Yen et al. 1986). 

Purification data, in regard to protein yields and A TPase activities, in most 

reports of plant myosins or putative myosins are incomplete except in the case of 

the 130 kDa tomato myosin purification. Usually, data for only the final fraction 

were presented while full results of each purification step are absent. Most purified 

or partially purified plant myosins or putative myosins exhibit actin-activated 

A TPase activities. Since no controls for A TPase activities associated with 
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exogenous actin fractions added are presented except in the case of the 130 kDa 

tomato myosin, any A TPase activities associated with exogenous actin are not 

discounted in calculating the actin-activated A TPase activities of the plant 

myosin/putative myosin fractions. 

The characterization of plant myosins has been hindered by the difficulties of 

purifying this plant enzyme. Only a few plant myosins have been purified so far. 

Characterization of these has shown subunit composition, A TPase activities, ability 

to form filaments and to bind F-actin. However, no immunochemical and 

immunocytochemical characterization have been studied on the purified or partially 

purified plant myosins or putative myosins except for the 100 kDa polypeptide 

which cross-reacts with anti-pan myosin antibody (Pesacreta et al. 1991). 

Molecular details of plant myosin, such as its primary structure are still not 

available. Only recently is there a preliminary report of isolating a complementary 

DNA encoding an unconventional myosin from Arabidopsis tluiliana, but sequence 

data is not presented (Kinkema & Schiefelbein 1992; abstract only). 

Most of the purified/partially purified plant myosins/putative myosins contain 

HMW heavy chains. Some are myosins II that form filaments in vitro and the 

others are either myosin II or novel myosins containing HMW heavy chains. The 

existence of myosin I in plant has not been confirmed. The 130 kDa myosin 

purified from tomato and the 100 kDa putative myosin heavy chain of onion 

suggest such proteins, but the possibility of their being proteolytic products of 

HMW myosins cannot be excluded. 

1.8.2 lmmunochemical identification of putative plant myosins 

Putative plant myosin heavy chains can be identified in plant extracts by 

immunoblotting without protein purification. Monoclonal anti-pan myosin antibody 

has identified a putative myosin heavy chain of 200 kDa in onion root tip cells 

(Parke et al. 1986), two putative heavy chains of 200 kDa and 110 kDa in Chara 

internodal cells (Grolig et al. 1988), and a 100 kDa polypeptide in the partially 

purified myosin-like protein fraction of onion (Pesacreta et al. 1991). A putative 
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myosin heavy chain of 175 kDa from Nicotiana pollen tubes reacts with both 

monoclonal anti-pan myosin and anti-fast myosin antibodies (Tang et al. 1989a). 

Two putative myosin heavy chains of 220-230 kDa and 85 kDa have been 

identified in Ernodesmis verticillata with an affinity-purified polyclonal antiserum 

against Dictyosteiium myosin heavy chain (La Claire 1991). 

The 110 kDa polypeptide of Chara and the 85 kDa one of Ernodesmis are 

unlikely to be the proteolytic fragments because of their consistent presence in TCA 

extracts which minimizes proteolysis (Wu & Wang 1984). However, funher study 

is needed to confirm whether the LMW putative myosin heavy chains are myosin I 

heavy chains. 

Each of the polypeptides reacting with the monoclonal anti-pan myosin 

antibody has been shown to share only one epitope present in authentic myosins so 

that it is sensible to describe them as putative myosin heavy chains. A stronger case 

is the putative myosin heavy chain of Nicotiana pollen tube which has two epitopes 

recognized by two monoclonal anti-myosin antibodies. 

1.8.3 Immunocytological characterization and po~ible functions of 

putative plant myosins 

Immunocytochemical studies, especially immunofluorescence, have been used 

to localize putative plant myosins, and therefore reveal possible roles myosin may 

play in plants. Plant myosin, by interacting with actin, is considered to play 

important roles in motility, such as cytoplasmic streaming, membrane and organelle 

movement and cytokinesis. 

The intemodal cells of characean algae are the most favourable model system to 

study the cytoplasmic streaming of plants due to their giant size and simple 

organization (Allen & Allen 1978; Kamiya 1981; Tazawa & Shimmen 1987; 

Williamson 1991). The cytoplasmic streaming is inhibited by ca2+. It is now 

widely accepted that the motive force driving the cytoplasmic streaming is 

produced by the interaction between subcortical actin bundles and motile 
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endoplasmic myosin, but the coupling between myosin and endoplasm and the 

mechanism of force generation remain to be elucidated. 

Three hydrodynamic models of viscous coupling between motile myosin and 

endoplasm have been proposed (Nothnagel & Webb 1982). Only one of the models, 

in which myosin is incorporated into a fibrous or membranous network or gel 

extending into the endoplasm, is considered to be able to generate the observed 

cytoplasmic streaming easily. Filaments required for cytoplasmic streaming of 

Chara have been found by electron microscopy to associate with the endoplasmic 

reticulum (Williamson 1979), and portions of a continuous network of endoplasmic 

reticulum which pervades the streaming cytoplasm contact the actin bundles, 

according to both electron and video microscopy (Kachar & Reese 1988). It is 

suggested that the endoplasmic reticulum contains myosin and that the continuous 

network of endoplasmic reticulum provides a means of exerting motive forces on 

cytoplasm deep inside the cell, distant from the subcortical actin cables where the 

motive force is generated. 

Two putative myosin heavy chains have been identified in Chara intemodal 

cells (1.8.2). The putative myosins are immunofluorescently located to subcortical 

actin bundles, small organelles and endoplasmic strands which may be osmotically 

damaged endoplasmic reticulum (Grolig et al. 1988; Williamson 1991, 1993). 

Organelles and the bulk of endoplasm have been observed to move differently in 

characean cells (Williamson 1975; Mustacich & Ware 1977; Kachar 1985; 

Kamitsubo 1986). Therefore two separate force-generating mechanisms have been 

proposed to operate in characean cells: individual organelles reacting directly with 

the actin bundles, and organelles trapped within and moved by tangled, myosin

containing endoplasmic strands (Grolig et al. 1988). 

Pollen tubes exhibit vigorous cytoplasmic streaming using mechanisms 

identical or at least closely comparable to those involved in intracellular movements 

in other plant cells (Heslop-Harrison & Heslop-Harrison 1989b). Actin filaments 

occur in bundles, mainly longitudinally oriented, throughout the vegetative cells. 
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The actin bundles associate with membranes of the endoplasmic reticulum, surf aces 

of organelles and vegetative nuclei (Staiger & Schliwa 1987; Lancelle & Hepler 

1989; Tang et al. 1989b; Heslop-Harrison & Heslop-Harrison 1988, 1989c). 

Putative myosin has been identified in pollen of Chinese cabbage (Yen et al. 

1986) and snake gourd (Ma & Yen 1988) and in Nicotiana pollen tubes (1.8 .2). The 

175 kDa putative myosin is immunofluorescently localized to the surface of 

organelles, vegetative nuclei and generative cells of angiosperm pollen grains and 

tubes (Tang et al. 1989a; Heslop-Harrison & Heslop-Harrison 1989a). Organelles 

from Lilium pollen tubes slide along actin bundles in characean cell models, and the 

movement is regulated by ca2+ (Kohno & Shimmen 1988a, b). All these results 

indicate that cytoplasmic streaming in pollen tubes is driven by interaction between 

the myosin-bearing membranes of different classes of organelles and actin 

filaments. It has been suggested that the motility system of pollen tube is analogous 

to that of characean algae and that the two force-generation mechanisms proposed 

by Grolig et al. (1988) may also be present in pollen tubes to power the movement 

of individual organelles, and large vegetative nuclei and generative cells separately 

(Heslop-Harrison & Heslop-Harrison 1989b). 

Two putative myosin heavy chains have been identified in Enwdesmis 

verticillata (1.8.2). In intact cells of Ernodesmis which lack cytoplasmic streaming, 

putative myosin has been localized immunofluorescently on chloroplast surfaces, in 

nuclei, in cytoplasmic strands between plastids, and in association with pyrenoids 

primarily in apical chloroplasts (La Claire 1991). During wound-induced 

cytoplasmic contraction, putative myosin is colocalized with actin near the plasma 

membrane in longitudinal bundles and in a reticulum in regions of cytoplasmic 

contraction. These results indicate that myosin and actin are associated with 

contractility during the wound-healing of Ernodesmis. 

Immunolocalization of putative myosins on the surfaces of amyloplasts of 

Alopecurus pratensis (Heslop-Harrison & Heslop-Harrison 1989a), chloroplasts of 

Ernodesmis (La Claire 1991) and vegetative nuclei of angiosperm pollen grains and 
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tubes (Tang et al. 1989a; Heslop-Harrison & Heslop-Harrison 1989a), suggests the 

involvement of myosin in the organelle movement of chloroplasts and nuclei 

(Williamson 1993). 

In Euglena gracilis, putative myosin has been immunofluorescently colocalized 

with actin in pellicle strips beneath the plasma membrane; however, no 

immunochemical identification of this protein has been presented (Lonergan 1985). 

The coincidence of the putative myosin and actin fluorescence patterns with the 

pellicle ridges suggests that an actomyosin contractile system could operate to alter 

pellicle strip positioning. 

A putative myosin heavy chain has been identified in onion root tip cells 

(l.8.2). The putative myosin is colocalized with actin by immunofluorescent 

staining to the cytokinetic phragmoplast (Parke et al. 1986). This suggests that 

myosin and actin may play an important role in plant cytokinesis, possibly 

transporting vesicles which contain cell plate precursors to the growing cell plate. 

1.8.4 Regulation of plant actin-myosin interaction 

Direct evidence of any regulation mechanism is not yet available in any plant. 

The regulatory systems of other nonmuscle actin-myosin interaction are mainly 

myosin-linked systems including the direct binding of ca2+ to myosin and the 

phosphorylation of myosin light and/or heavy chains (1.7). These regulatory 

systems may also exist in plants. Plant actomyosin may also be regulated by a 

variety of mechanism that differ from those of other nonmuscle systems. 

Physiological, biochemical and immunological studies have demonstrated the 

possible mode of ca2+_ or ca2+/calmodulin-mediated regulation of plant actin

myosin interaction (Williamson 1991). 

Ca2+ regulates numerous physiological processes in plant cells (Hepler & 

Wayne 1985; Allan & Hepler 1989). Cytoplasmic streaming in the characean algae, 

unlike the ca2+-activated motility in muscle and many nonmuscle cells ( 1. 7), is 

inhibited by high concentration of ca2+ (Tazawa & Shimmen 1987) as probably is 

cytoplasmic streaming in other plants (Hepler & Wayne 1985; Williamson 1993). 
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Cytoplasmic streaming in characean cells is inhibited by high concentrations of 

ca2+ ~ 10-6 M) and the Ca2+-sensitive site lies on myosin not actin (Tazawa & 

Shimmen 1987; Williamson 1991, 1993). In plasma membrane-permeabilized or 

gently perfused cells, Ca2+ inhibition of cytoplasmic streaming is reversible when 

ca2+ concentrations are lowered (Tominaga et al. 1983, 1987). However, such 

reversibility in response to ca2+ is lost in rapidly vacuole-perfused cells 

(Williamson 1975). Physiological studies of characean cell models show that 

inhibitors of protein phosphatases inhibit streaming even in the absence of ca2+ 

and that A TP-y-S strongly inhibits the recovery of streaming that has been inhibited 

by 10 µM Ca2+ (Tominaga et al. 1987). Added protein phosphatase, however, 

restores streaming even in the presence of ca2+. Inhibitors of calmodulin do not 

affect the ca2+-induced cessation of streaming but inhibit the recovery of the 

streaming when ca2+ concentration is lowered (Tominaga et al. 1983). Therefore, 

it is suggested that streaming is inhibited when a component is phosphorylated by a 

ca2+-activated, calmodulin-independent protein kinase and reactivated when the 

component is dephosphorylated by a ca2+/calmodulin-activated protein 

phosphatase (Tominaga et al. 1987). Since the ca2+-sensitive site lies on myosin 

not actin, myosin is considered the most probable candidate for the substrate of 

phosphorylation-dephosphorylation although it is possible that the streaming is 

controlled indirectly by phosphorylation of a regulatory protein. 

A Ca2+-dependent but calmodulin-independent protein kinase (CDPK), which 

can be activated by micromolar ca2+, has been purified from soybean and 

characterized (Hannon et al. 1987; Putnam-Evans et al. 1990). A monoclonal 

antibody against this protein localizes CDPK with F-actin bundles in interphase 

onion and soybean root tip cells and in Tradescantia pollen tubes, and to the 

phragmoplast/cell plate during cytokinesis of onion root tip cells (Putnam-Evans et 

al. 1989). In vitro studies show that soybean CDPK does not interact directly with 

actin; therefore it may be associated with an actin-binding protein. It was suggested 

that CDPK regulates the assembly of actin, or the interaction of actin with myosin. 
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A putative CDPK identified in Chara by irnmunoblotting with antibodies 

against soybean CDPK exhibits ca2+-dependent kinase activity after SOS-PAGE 

(McCurdy & Harmon 1992a). It localizes to subcortical actin bundles, and to the 

surf ace of small organelles and other membrane components of the streaming 

endoplasm. Endoplasmic CDPK is extracted from cells by perfusion with ATP or 

high ca2+. In both localization and selective extraction from Chara cells, the 

putative CDPK closely resembles putative Chara myosins (Grolig et al. 1988). 

CDPK may mediate the ca2+-induced inhibition of cytoplasmic streaming in 

characean cells. 

Since soybean CDPK efficiently phosphorylates myosin light chains of chicken 

gizzard (Putnam-Evans et al. 1990) and light chains of intact myosin molecules, 

one role for CDPK in plants may be the phosphorylation of a myosin light chain 

(McCurdy & Harmon 1992a). A 16-18 kDa polypeptide recognized by an antibody 

to gizzard myosin light chains has been identified in Chara as a putative myosin 

light chain (McCurdy & Harmon 1992b). Soybean CDPK phosphorylates this 

polypeptide in vivo at high ca2+ concentrations oo-4), which supports the view 

that phosphorylation by CDPK of a myosin light chain is involved in the ca2+_ 

induced inhibition of cytoplasmic streaming in Chara. 

A putative Chara calmodulin identified by immunoblotting in Chara cells is 

widely distributed in the endoplasm, where it seems to associate with organelles 

aligned along actin bundles, but not with the actin bundles themselves (Jablonsky et 

al. 1990). It is undetectable, however, in rapidly perfused cells where the inhibition 

of high ca2+ is irreversible. This is consistent with the model proposed by 

Tominaga et al. (1987) in which calmodulin is required to restore the activity of 

myosin, but not to inhibit it. 

Cytoplasmic streaming of pollen tubes is regulated by ca2+, like that of 

characean cells. It is inhibited by ca2+ higher than 10-5 M in lily pollen tubes 

(Kohno & Shimmen 1988b). Lily pollen tube organelles move along characean 

actin bundles; the movement is inhibited by ca2+ at 10-5 M levels and the 
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inhibition is reversible (Kohno & Shimmen 1988a, b). The organelle motility is lost 

after N-ethylmaleimide or heat treatment of organelles, suggesting that myosin

linked regulation underlies the Ca2+ inhibition (Kohno & Shimmen 1988a). 

However, the in situ actin filaments of pollen tubes are fragmented at high ca2+ 

concentrations and the fragmentation is irreversible (Kohno & Shimmen 1988b). 

Therefore, the Ca2+ inhibition of cytoplasmic streaming can be attributed to both 

inactivation of myosin and fragmentation of actin, and the irreversibility of the 

inhibition in situ is attributed to the irreversible fragmentation of actin filaments 

(Kohno & Shimmen 1988b). 

Calmodulin has been immunofluorescently colocalized to actin and putative 

myosin in several cases in plants, which may indicate its role in regulating 

actomyosin activity. In the alga Ernodesmis, calmodulin and putative myosin 

colocalize with actin to extensive, longitudinal bundles and a reticulum in the 

cortical cytoplasm of regions showing wound-induced cytoplasmic streaming 

(Goddard & La Claire 1991; La Claire 1989, 1991). Calmodulin antagonists inhibit 

cytoplasmic motility and actin bundles do not assemble or are poorly formed. 

Calmodulin may regulate the formation of functional actin bundles during wound

induced cytoplasmic contraction in Ernodesmis. It may also regulate actomyosin 

interaction during the contraction. Calmodulin, together with actin, putative myosin 

and tubulin, has also been localized to phragmoplasts of onion and pea root tip cells 

during cytokincsis (Gunning & Wick 1985; Wick et al. 1985; Wick 1988). It is 

suggested that calmodulin may be involved in microtubule dynamics and possible 

actomyosin activities such as vesicle fusion in the phragmoplast. 

1.8.5 Conclusions 

The evidence suggests that plant myosins are involved in diverse forms of cell 

motility, like myosins of other eukaryotes, but information regarding plant myosin 

is very limited. Only a few plant myosins have been purified and further studies 

related to their cellular distribution and function have not been reported. 

Investigations of the detailed molecular structure and enzymatic regulation of these 
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myosins, which required considerable amounts of highly purified proteins, have not 

been possible. On the other hand, putative plant myosins have been identified 

immunochemically and their cellular localization determined 

immunocytochemically, without purifying these enzymes. These studies widen the 

knowledge of plant myosin and of the possible roles it plays in plant. 

My research work on plant myosin-like proteins starts with the identification of 

a putative myosin heavy chain by immunoblotting with anti-pan myosin antibody. 

This antibody cross-reacts with many authentic myosins from animal cells and with 

putative myosin heavy chains of some plants (1.8.2). A 165 kDa polypeptide of 

mung beans was strongly and reliably detected by anti-pan myosin on 

immunoblots, and was considered as a putative myosin heavy chain. To further 

investigate the 165 kDa polypeptide and confirm its identity as a myosin, 

purification was extensively studied but proved to be very difficult. The partially 

purified fraction containing the 165 kDa polypeptide had low K+-EDTA-ATPase 

activity but did not exhibit actin-activated Mg2+_A TPase activity. 

The impurity, low protein yield and A TPase activity of the partially purified 

165 kDa polypeptide fraction made it impractical to further characterize this 

polypeptide using the partially purified fraction. Therefore, monoclonal antibodies 

were raised against the 165 kDa polypeptide. The value of anti-myosin antibodies 

has been shown before (1.8.2; 1.8.3), and they permit studies of putative plant 

myosins without the hindrance of tough protein purification. Epitopes of mung 

bean proteins and rabbit skeletal muscle myosin were detected by immunoblotting 

with antibodies to the 165 kDa polypeptide and with commercial anti-myosin 

antibodies. Eight antibodies recognized at least six epitopes, all of which were on 

muscle myosin heavy chain. The mung bean 165 kDa polypeptide shared five of 

these epitopes with the muscle myosin heavy chain. This impressive degree of 

epitope similarity strengthens the status of the 165 kDa polypeptide as a myosin 

heavy chain. 
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Furthermore, mung bean root tip cells and Chara intemodal cells were labelled 

immunofluorescently with antibodies to the 165 kDa polypeptide, with anti-myosin 

and with anti-actin. Colocalization of the 165 kDa polypeptide with actin in 

phragmoplasts and perhaps actin filaments of mung bean root tip cells strengthens 

the case for the 165 kDa polypeptide having some association with actin and is 

consistent with its being a myosin heavy chain. 



CHAPTER2 

MATERIALS AND GENERAL METHODS 
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CHAPTER2 

MATERIALS AND GENERAL METHODS 

2.1 PLANT MATERIALS 

The higher plants mung bean (Phaseolus mungo), pea (Pisum sarivum cv 

Greenfeast), wheat (Triricum aesrivum), Arabidopsis rhaliana var Columbia, and 

the alga Chara corallina were used. 

Seeds of mung bean, pea, and wheat were grown in the dark at room 

temperature, either in vermiculite moistened with tap water in plastic trays or in 

commercially available plastic "bean-sprouters" moistened with tap water. Plants 

(roots and shoots unless otherwise stated) were harvested after 4-5 days, washed 

with tap water, and finally rinsed several times with distilled water (d.H20). 

Arabidopsis was grown in the light on vertical agar plates at room temperature 

(Baskin et al. 1992). The seedlings were harvested after 7 days and rinsed with 

dHzO before protein extraction. Soil-cultured Chara was grown in the glass-house 

as previously described (Williamson & Hurley 1986). Apical cuttings of soil

cultured Chara were temporarily cultured in a plastic container filled with tap 

water, and cells were rinsed with fresh tap water before use. 

2.2 CHEMICALS, IMMUNOCHEMICALS AND BUFFERS 

All chemicals were at least analytical-grade purity. Basic laboratory chemicals 

were supplied by Ajax Chemicals, Clyde Industries Ltd., Auburn, Australia. Unless 

otherwise stated, all the other chemicals and immunochemicals were supplied by 

Sigma Chemical Co., St. Louis, MO., USA. 

All buffers used for protein purification or in other experiments carried out at 0-

4" C were adjusted to the desired pH when cooled to 0-4°C. Buffers which 

contained the reducing agent dithiothreitol (OTT, Cleland's reagent) were freshly 



41 

made up and used within 24 h because DTT is easily oxidized by oxygen and so 

loses its ability to protect active sulfuydryls of enzymes. 

ATP was from equine muscle, in the form of disodium salt crystalline. It could 

be added directly into solutions when making up buffers or, more often, was made 

up as concentrated stock solution in dH20 and adjusted to pH 7 .0 with KOH. The 

ATP solution was immediately distributed into small aliquots and stored at -20°C. 

2.3 PREPARATION OF CHROMATOGRAPHY MEDIA 

The chromatography media are listed below. 

1. Gel filtration: 

Sephadex G-25, Medium (Pharmacia Fine Chemicals AB, Uppsala, 

Sweden). 

Sephacryl S-400, Superfine (Pharmacia). 

2. Ion exchange chromatography: 

Cation exchange chromatography: 

diethylaminoethyl (DEAE)-cellulose: DE52 (Whatman Biosystems Ltd., 

Kent, England, UK). 

DEAE-Sephacel (Pharmacia). 

DEAE-Sepharose CL-4B (Pharmacia). 

DEAE-Sephadex A-50 (Pharmacia). 

Anion exchange chromatography: 

carboxymethyl (CM)-cellulose: CM52 (Whatman). 

phosphocellulose*. 

3. Hydrophobic interaction chromatography: 

phenyl Sepharose CL-4B (Pharmacia). 

4. Hydroxylapatite (Bio-Rad Laboratories, Richmond, CA., USA). 

5. Affinity chromatography: 

Novobiocin-Sepharose 6B* [prepared by the method of Staudenbauer & Orr 



(1981)]. 

ADP-agarose (ADP attached through ribose hydroxyls via six-carbon 

spacers to 4% beaded agarose; Sigma). 
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F-actin Sepharose 4B* [prepared by the method of Winstanley et a/.(1977)]. 

* Kindly prepared by Dr. Peter. P. Jablonsky of this Group. 

All chromatography media were supplied as liquid suspensions and ready for 

use except Sephadex G-25, hydroxylapatite, DE52 and CM52 which were 

pretreated according to the manufacturers' instructions. All the prepared 

chromatography media were stored at 0-4°C with 0.02% (w/v) NaN3. 

2.4 COLUMN CHROMATOGRAPHY 

Columns [1.6 x (8, 13 cm), 2.6 x (13, 53 cm), 4.9 x 60 cm; Bio-Rad] were 

packed and run by gravity-induced flow. A slightly higher flow rate than that to be 

used in the experiment was used for packing. Columns were equilibrated with more 

than 3 column volumes of starting buffers. Small samples were applied by Pasteur 

pipettes, large sample volume by gravity-induced flow. For gel filtration, sample 

volume represented 1-5% of the column bed volume. Eluate was collected with a 

LKB UltraRac fraction collector (LKB-Produkter AB, Bromma, Sweden). All 

procedures were carried out at 0-4 ·c. Protein content of the eluate was monitored 

by A2go determinations (Shimadzu UV-265 spectrophotometer, Shimadzu 

Corporation, Kyoto, Japan), or sometimes by protein assay reagent (Spector 1978). 

Linear concentration (ionic strength) gradients used in gradient elution were 

formed in a Gradient Mixer GM-1 (Pharmacia). 
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2.5 EXTRACTION OF PROTEINS FROM HIGHER PLANTS 

2.5.1 Extraction with buffer 

The extraction buffer was 0.34 M sucrose, 10 mM imidazole, pH 7 .0, 2 rnM 

phenylmethylsulfonyl fluoride (PMSF), 1 mM N-tosyl-L-phenylalanine 

chloromethyl ketone (TPCK), 1 mM ethylenediaminetetraacetic acid (EDT A) , 40 

mM sodium metabisulfite, 1 mM OTT. TPCK was prepared as 50 mM stock in 

95% ethanol, and stored at -20°C. PMSF was freshly dissolved in a small volume 

of dimethyl sulphoxide (DMSO) and added directly into plant tissues before 

homogenization rather than mixed with the extraction buff er prior to 

homogenization since PMSF hydrolyses quite rapidly (Scopes 1987). For extraction 

of protein from less than 15 grams (g) of plant tissue, both PMSF and OTT could 

be prepared as 200 mM stocks, and stored at -20"C before use. All procedures of 

protein extraction and fractionation were carried out at 0-4°C. 

(i) Small-scale extraction 

1-3 g of plant tissue were ground in prechilled mortar and pestle with extraction 

buffer (1 ml/g of tissue). The extract was spun at 13,000 rpm for 15 minutes (min) 

in a microcentrifuge (Biofuge A; Foss Electric Pty. Ltd., Australia) to remove cell 

debris. After spinning at 10,000 rpm for 5 min to clarify, the supernatant was ready 

for electrophoresis sample preparation (2.8) or other experiments. 

(ii) Medium to large scale extraction 

20 g to 1 kg of plant tissues were homogenized in a waring blender with an 

equal volume of extraction buffer. Cell debris was removed by centrifuging at 

14,500 rpm for 20 min in rotor JA-20, or 12,500 rpm for 24 min in JA-14, or 9,500 

rpm for 26 min in JA-10 (Beckman Instruments Inc., Palo Alto. CA., USA). The 

supernatant was twice filtered through six layers of cheese cloth to remove floating 

lipid. 

2.5.2 Extraction with trichloroacetic acid (TCA) 

Protein proteolysis can be minimized by extraction of protein directly with 

TCA (Wu & Wang 1984). 1-3 g of plant tissue were ground in a prechilled mortar 
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and pestle directly with ice-cold 20% (w/v) TCA (1 m.Vg of tissue). After 

immediate filtering through one layer of cheese cloth to remove cell debris, the 

extract was kept on ice for 20-30 min and protein precipitate collected by 

centrifugation at 7,000 rpm for 3 min in a Microfuge 11 (Beckman). The protein 

precipitate was washed three times with acetone and collected at 7,000 rpm for 2 

min. The protein precipitate was air-dried or dried in a desiccator using a vacuum 

pump. The dried precipitate was ready for electrophoresis sample preparation (2.8) 

or could be stored at -20°C. 

2.6 (NH4)2S04 FRACTIONATION 

Solid (NH4)2S04 (Merck, Darmstadt, Germany) was slowly added into a 

protein solution, with constant gentle stirring. The solution was kept stirring for 15 

min after all salt had dissolved to allow complete equilibration between dissolved 

and aggregated proteins. Protein precipitates were collected by centrifugation at 

10,500 rpm for 10 min in JA-20, or at 9,000 rpm for 12 min in JA-14 rotor. The 

supernatant was used for further <NH4)2S04 fractionation if needed. The 

(NH4)zS04 pellet was dissolved in a suitable buffer for desalting, or stored at -

2o·c. 

2.7 DESALTING AND CONCENTRATING PROTEIN SAMPLES 

(NH4)zS04 pellets were resuspended in buffer used for the equilibration of 

various chromatographic media, then desalted by chromatography on a Sephadex 

G-25 column. Desalting efficiency was monitored by adding a drop of saturated 

BaClz to 100 µ1 of fraction samples. The peak protein fractions were pooled. 

Alternatively, samples were desalted by dialysis against a large volume of buffer 

with constant stirring. Dialyzed samples were clarified by centrifugation at 10,500 

rpm for 10 min in JA-20, and the supernatant used for chromatography. Unless 

otherwise stated, (NH4)zS04 fractions and the other protein samples were desalted 

by Sephadex G-25 chromatography. Small samples ~ 1 ml) used in A TPase assays 
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(2.14) were desalted on disposable columns (PD-1 O; Pharmacia) pre packed with 9 .1 

ml of Sephadex G-25 medium. 

Protein samples were concentrated by dialysing against Aquacide II 

(Calbiochem, La Jolla, CA., USA). Samples could also be concentrated and/or 

desalted by ultrafiltration through membrane YM 10 CMr cut-off 10 kDa; Amicon 

Danvers, MA., USA) in an Amicon ultrafilter. 

2.8 PREPARATION OF PLANT PROTEIN SAMPLES FOR SODIUM 

DODECYL SULFATE-POL YACRYLAMIDE GEL ELECTROPHORESIS 

(SOS-PAGE) 

Generally, three volumes of the protein supernatant were mixed with one 

volume of 4x stock of SDS-PAGE sample buffer, boiled for 3 min in a water bath, 

and clarified at 7,000 rpm for 2 min in the Microfuge 11 to remove any insoluble 

residues. The lx SDS-PAGE sample buffer was 0.0625 M Tris-HCl, pH 6.8, 2% 

(w/v) SDS, 10% (v/v) glycerol, 5% (v/v) B-mercaptoethanol, 0.002% (w/v) 

bromophenol blue (Laemmli 1970). 

High concentrations of ions such as NI4+, S042-, K+, Na+ precipitate SDS. 

Such samples were desalted by chromatography or by dialysis against buffer (K+< 

0.1 M, Na+< 0.5 M). Dried protein pellets were resuspended with several volumes 

of SOS-PAGE sample buffer, boiled for 3 min and clarified at 7,000 rpm for 2 min. 

2.9 SDS-PAGE 

SDS-PAGE was by the method of Laemmli (1970). High molecular weight 

(HMW) proteins (210-66 kDa) were resolved by 7% SDS-PAGE, low molecular 

weight (LMW) proteins (66-14 kDa) by 12-14% SDS-PAGE. Small slab gels 

(Mini-Protean II; Bio-Rad) were loaded with .s 40 µl of sample in each of 10 wells, 

or with .s 400 µl in a large "streak" well. SDS-6H and SDS-7B (prestained) kits 

(Sigma) were used as HMW standards and SDS-7 as LMW standards. Gels were 

normally run at 180 V constant voltage for 35-50 min until the dye front was 5-10 
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mm from the bottom. Gels were stained with silver (Wray et al. 1981) or with 0.1 % 

(w/v) Coomassie brilliant blue R in 40% (v/v) methanol, 10% (v/v) acetic acid for 

0.5 h or overnight, and de stained in 40% methanol, 10% acetic acid. 

2.10 IMMUNOBLOTTING 

Proteins in acrylamide gels were electrophoretically transferred (Towbin et al. 

1979) to nitrocellulose membrane (Hybond-C, 0.45 µm; Amersham International 

plc., UK) using a Mini-Protean II transfer unit (Bio-Rad) at 40 V constant voltage 

for 12 h, or occasionally at 70-75 V for 1-2 h. lTh1W proteins were routinely 

transferred overnight. 

Immunoblotting was essentially as described before (Grolig et al. 1988). All 

primary antibodies (2.11) were diluted with 1 % (w/v) bovine serum albumin (BSA) 

in TBS-Tween [Tris buffered saline plus 0.05 (v/v) Tween-20] and incubated with 

the blot for 1 h. The second and third antibodies varied with the blot developing 

systems which were either alkaline phosphatase (Grolig et al. 1988) or peroxidase. 

With peroxidase detection, the second antibody was sheep anti-mouse lg, 

biotinylated whole antibody (1:300 dilution for 1 h; Amersham) which was 

detected with streptavidin-biotinylated peroxidase complex (1: 400 dilution for 0.5 

h; Amersham). The peroxidase substrate 4-chloro-1-naphthol was prepared as 3 

mg/ml stock in methanol that was stored at 4°C in dark for up to one month. The 

developing solution was made up freshly by diluting one volume of the 

chloronaphthol stock with 5 volumes of TBS buffer and adding H202 to 0.03% 

(v/v). In controls, the first antibody was replaced with 1 % (w/v) BSA in TBS

Tween buffer. Unless otherwise stated, all blots were developed with the alkaline 

phosphatase system. 

Mr of polypeptides were determined on immunoblots or blots stained with 

Ponceau using a SDS-6H standard curve of relative migration value (Rf) vs. Mr. 



47 

2.11 MONOCLONAL ANTIBODIES USED IN IMMUNOBLOTTING 

AND IMMUNOFLUORESCENT STAINING 

Antibody lg class Product form Host code 

concentrated cell culture 

anti-pan myosina IgM supernatant mouse RPN. 1169 

concentrated cell culture 

anti-fast myosinb IgM supernatant mouse RPN. 1167 

anti-skeletal myosin (fast}* IgG1 ascites fluid mouse M-4276 

anti-myosin (skeletal and delipidized, 

smooth)* whole antiserum rabbit M-7648 

anti-myosin (light chain)* IgM ascites fluid mouse M-4401 

anti-actin c4c IgG1 ascites fluid mouse 

a. Amersham; it is the 114 antibody of Parke et al. (1986). 

b. Amersham. 

c. Gift from Dr. J. Lessard, Children's Hospital Research Foundation, Cincinnati, OH., USA (Otey 

et al. 1986). 

• Sigma. 

2.12 PHOTOGRAPHY OF GELS AND BLOTS 

All photographs were taken on Kodak Technical Pan Film (Eastman Kodak 

Co., Rochester, NY., USA) at 100 ASA, using a Pentax SP-500 camera (Asahi Opt 

Co., Japan). A green filter was used when photographing Ponceau-stained blots. 

2.13 ASSAY OF PROTEIN CONCENTRATION 

Protein was determined by the method of Spector (1978) using BSA, fraction 

V, as standard. 
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2.14 ATPase ASSAY 

A TPase activities were measured by determination of Pi released according to 

the method of Ames (1966). The x/y (abscissa/ordinate) ratio of the standard curve 

(Fig. 2.1) was 38.5 so that Pi (nmol) released in an A TPase reaction was 38.5 x 

1.4 
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o 0.8 
C\J 
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0 10 20 30 

Pi (nmol) 

40 50 

Fig. 2.1. Standard curve of Pi ~y. The x/y (abscissa/ordinate) ratio of the standard 

curve was 38.5. 

2.14.1 K+-EDTA- /Ca2+. fMg2+.ATPase reactions 

Protein samples were desalted on a Sephadex G-25 column equilibrated with 

0.34 M sucrose, 10 mM imidazole, pH 7 .0, 1 mM DTT. A TPase reactions followed 

the method of Pollard & Korn (Pollard 1982b). Reaction buffer (210 µl) in 400 µl 

reaction mixture was 0.5 M KCl, 10 mM imidazole, pH 7.0, and 1 mM EDTA or 5 

mM Ca2Cl or 5 mM MgClz. About 40 µg of protein in 170 µl were used in each 

reaction. When testing elution fractions of chromatography, 60 µl of eluate were 
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used in each reaction (Fig. 4.6-4.9). The reaction mixtures were preincubated at 

36"C for 5 min, and A TPase reactions were initiated by adding 1 mM ATP from a 

20 mM stock. The reaction (at 36°C for usually 15 min) was stopped by adding 100 

µl of 55% (w/v) TCA solution and the mixture was clarified by spinning at 10,000 

rpm for 3 min in the Microfuge. The supernatant was used for Pi assay. The 

specific activity of the A TPase was expressed as µmol Pi liberated per min per mg 

protein (µmol/min/mg). Three controls were set up: 

1. Blank control: 170 µl of protein sample and 20 µl of ATP were replaced with 

d.H20. This was used to calibrate the spectrophotometer. 

2. Extract control: 170 µl of protein sample were replaced with d.H20. The Ag20 

values (usually 0.1-0.25) measured Pi liberated from ATP solution non

enzymically, and were subtracted from those of protein samples. 

3. ATP control: 20 µl of ATP were replaced with d.H20. The Ag20 values 

measured Pi already present in protein samples and were very low with 

desalted protein samples. 

A TPase activity was expressed as the difference in the rate of Pi production for 

reaction mixtures with and without ATP. 

2.14.2 Actin-activated Mg2+.ATPase reaction 

Actin-activated Mg2+_A TPase reaction was according to the method of Pollard 

(1982b ). Rabbit skeletal muscle actin was purified up to the stage of ion exchange 

chromatography according to the method of Pardee & Spudich (1982). Reaction 

conditions were the same as for K+-EDTA- /Ca2+_ /Mg2+-ATPase reactions 

except that the reaction buffer was 20 mM KCl, 2 mM MgCI2, 0.1 mM CaCl2, 10 

mM imidazole, pH 7.0, and 0.5 mg/ml rabbit muscle actin. Five controls were set 

up: 

1. Blank control: protein sample, ATP and F-actin were replaced with d.H20. 

2. and 3. Extract control (- actin A TPase reaction) and ATP control (- actin 

ATPase reaction) were the same as those of 2.14. 1. 
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4. Extract control ( + actin reaction): protein sample was replaced with d.H20. The 

Ag20 values measured Pi liberated from ATP nonenzymically and from any 

A TPase activity associated with the F-actin preparation. 

5. ATP control ( + actin reaction): ATP and F-actin were replaced with d.H20. 

2.15 PREPARATION OF RABBIT SKELETAL MUSCLE MYOSIN 

Rabbit skeletal muscle myosin was prepared up to the stage of ion exchange 

chromatography according to the method of Margossian & Lowey (1982). Purified 

myosin was stored in buffer (0.3 M KCl, 0.25 M K-phosphate, pH 6.5) containing 

50% glycerol at -20°C. 
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CHAPTER3 

IDENTIFICATION AND PRELIMINARY INVESTIGATIONS OF THE 

CHROMATOGRAPHIC BEHAVIOUR OF A 165 kDa PUTATIVE MYOSIN 

HEAVY CHAIN FROM MUNG BEAN 

3.1 INTRODUCTION 

Myosin has been isolated from a large number of nonmuscle cells of 

vertebrates, invertebrates and lower eukaryotes (Taylor & Condeelis 1979; Korn 

1978, 1982; Korn & Hammer 1988; Pollard 1982a; Pollard et al. 1991), and from a 

few plants cells (1.8.1). Although myosin represents 55% of total cell protein in 

rabbit skeletal muscle, it constitutes less than 2% of total protein in nonmuscle cells 

(Taylor & Condeelis 1979; Schliwa 1985). Compared with myosin, actin is much 

more abundant in nonmuscle cells than in muscle cells. The ratio of actin/myosin 

varies from 6 in rabbit skeletal muscle to 110 in human platelets and 157 in 

Dictyostelium (Schliwa 1985). 

Based on the assumption that the properties of nonmuscle myosins will be very 

similar to those of skeletal muscle myosin, a traditional procedure for extracting 

myosin from muscle and nonmuscle cells is to extract cells in 0.6 M KCl, 

precipitate actomyosin at low ionic strength, separate myosin from actin by 

(NH4)zS04 precipitation, and subject the material solubilized in 0.5 M KCl to gel 

filtration on an agarose column (Korn 1978). In practice, the properties of 

nonmuscle myosin from different sources are quite variable, so that, no single 

procedure purifies all nonmuscle myosins but a suitable combination of different 

procedures is considered likely to be able to purify any type of myosin (Pollard 

1982a, b). 

Generally, three types of extracting solutions can be used to solubilize myosin 

on lysis of cells: high ionic strength, pyrophosphate and sucrose buffers. Both the 

high ionic strength and pyrophosphate buffers solubilize myosin by dissociating 

myosin filaments into monomers. Whether all myosin in sucrose buffers is 
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monomeric is unknown, but, a number of nonmuscle myosins are soluble in 

sucrose. There are no absolute reasons making one buffer type better than the 

others. Sucrose buffers have two advantages: they minimize rupture of lysosomes 

and hence problems of proteolysis and their low ionic strength allows extracted 

proteins to be fractionated by ion exchange chromatography (Pollard 1982a). After 

protein extraction, actomyosin precipitation, (NH4)2S04 fractionation, gel 

filtration, ion exchange chromatography, hydroxylapatite chromatography and 

affinity chromatography have all been used in different combinations to purify 

different nonmuscle myosins. 

In this chapter, putative myosin heavy chains have been identified by 

immunoblotting in mung bean as well as wheat and pea. The behaviour of the mung 

bean putative myosin heavy chain was investigated on a diverse range of 

chromatography media in order to devise a scheme for its purification and the 

distribution of K+-EDTA-ATPase studied in (NI4)2S04 fractions of mung bean 

crude extracts. 
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3.2 MATERIALS AND METHODS 

All procedures of protein fractionation and purification were carried out at 0-

40C. Unless otherwise stated, mung bean crude extract was prepared from seedlings 

(roots and shoots) as described in 2.5.1. 

3.2.1 Extraction of putative myosin from different tissues of higher plants 

Proteins of mung bean, pea and wheat were extracted from plant roots and/or 

shoots with either extraction buffer or TCA solution using mini-scale quantities 

(2.5) and immunoblotted with anti-pan myosin antibody. Mr of polypeptide bands 

of different plants were measured on both the same and different blots, and the 

mean Mr of each polypeptide from at least three experiments was taken. 

3.2.2 Comparison of different extraction buffers 

Several types of buffers were tested to extract putative myosin from mung bean: 

1. High ionic strength: 0.6 M NaCl, 10 mM imidazole, pH 7.0, 1 mM EDTA, 2 

mM PMSF, 1 mM TPCK, 40 mM sodium metabisulfite, 1 mM OTT. 

2. Pyrophosphate: 50 mM sodium pyrophosphate, 10 mM imidazole, pH 7 .0, 1 

mM EDTA, 2 mM PMSF, 1 mM TPCK, 40 mM sodium metabisulfite, 1 

mMDTT. 

3. Sucrose: 0.34 M sucrose, 10 mM imidazole, pH 7.0, 1 mM EDTA, 2 rnM 

PMSF, 1 mM TPCK, 40 mM sodium metabisulfite, 1 mM DTT. 

3.2.3 K+ -EDT A-ATPase investigation and (NH4)zS04 fractionation of 

mung bean crude extract 

Mung bean crude extract was fractionated with (NH4)2S04 of 0-30%, 30-50%, 

50-70%, 70-90% saturation, and in a subsequent experiment with 0-30%, 30-40%, 

40-50%. The desalted crude extract and (NH4)2S04 fractions were assayed for K+

EDTA-ATPase (2.14.1) and immunoblotted. 
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3.2.4 Effects of proteases on a putative myosin heavy chain from mung 

bean 

Both mung bean crude extract and the desalted 0-45% (NH4)2S04 fraction of 

the crude extract were used to test the effects of proteases on putative myosin heavy 

chain. 

(i) Crude extract 

Mung bean proteins were extracted separately with the extraction buffer, and 

with buffer containing 0.34 M sucrose, 10 mM imidazole, pH 7 .0, 1 mM DTI (i.e. 

the extraction buffer without 1 mM EDT A, 2 mM PMSF, 1 mM TPCK, 40 mM 

sodium metabisulfite). Aliquots of both crude extracts were kept at 0-4 ·c for 0, 9, 

19, 24, 32, 42, 55, 65 and 72 h. All protein samples were examined by 

immunoblotting. 

(ii) 0-45% (NH4)2S04 fraction 

The 0-45% fraction of mung bean crude extract was desalted in 0.34 M sucrose, 

10 mM imidazole, pH 7.0, 1 mM OTT. The desalted fractions with or without 

protease inhibitors were kept at 0-4·c for 0, 18, 30, 77 and 138 h, and examined by 

immunoblotting. 

3.2.5 Testing different forms of chromatography for the purification of 

mung bean putative myosin heavy chain 

A 0-45% (N}4)zS04 fraction of mung bean crude extract was used in all pilot 

experiments with different chromatography media unless otherwise stated. The 

(NI4)zS04 pellet was desalted in the desired starting buffer for the subsequent 

column chromatography or batch test. Immunoblotting was used to monitor the 

chromatography of putative myosin heavy chain. Pilot experiments were as follows. 

(i) Ion exchange chromatography 

(a) DEAE-cellulose 

Four groups of experiments are described below: 
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1. 88 ml (640 mg of protein) of the desalted 0-45% (NH4)2S04 fraction were 

applied to a column (2.6 x 6.3 cm) of DE52 equilibrated with starting buffer 

containing 0.34 M sucrose, 20 mM Tris-HCl, pH 8.0, 1 mM DTT. The column was 

eluted with 0.2 M, 0.6 M and 1 M NaCl steps in the starting buffer. 

2. Three types of buffer systems were tested on DE52 columns with one-step 

elution. About 4 ml (7.3-20 mg of protein) of the desalted 0-45% fraction were 

applied to a column (1.6 x 1.6 cm) of DE52. Three starting buffers were: 

10 mM NaCl, 20 mM Tris-HCl, pH 8.0, 1 mM DTT. 

50 mM sodium pyrophosphate, 20 mM Tris-HCl, pH 8.0, 1 mM DTT. 

0.34 M sucrose, 10 mM imidazole, pH 7.0, 1 mM DTT. 

Elution was with 1 M NaCl in the starting buffers. 

3. 400 g of mung bean were extracted with the extraction buffer. The crude 

extract was applied to a column (4.9 x 10.9 cm) of DE52 equilibrated with starting 

buffer (0.34 M sucrose, 10 mM imidazole, pH 7.0, 1 mM DTT), and the column 

was eluted with 0.1 M, 0.4 Mand 0.6 M NaCl steps in the starting buffer (NaCl was 

replaced by KCl in some experiments). 

4. Experiments were the same as described in 1 and 3 except that extraction 

buffer contained 10 mM NaF and that buffers subsequently used were 0.34 M 

sucrose, 10 mM imidazole, pH 7.0, 1 mM DTT, 10 mM NaF. 

(b) DEAE-Sephacel 

3-5 ml of the desalted 0-45% (N84)2S04 fraction were applied to a column 

(1.6 x 1.6 cm) of DEAE-Sephacel equilibrated with starting buffer containing 0.34 

M sucrose, 20 mM Tris-HCl, pH 8.0, 1 mM DTT. The column was eluted with 1 M 

and 2 M NaCl steps in the starting buffer. A batch method was used to test the 

following buffers of different pH values: 

0.34 M sucrose, 10 mM imidazole, pH 7 .0 n .5, 1 mM DTT. 

0.34 M sucrose, 20 mM Tris-HCl, pH 8.0 /8.5, 1 mM DTT. 

Elution was with 1 M NaCl in the starting buffers. 
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For the batch method, 1.5 ml (gel volume) of DEAE-Sephacel were added into 

each of four 15 ml Pyrex glass centrifuge tubes. Gel was equilibrated with ten, 6 ml 

aliquots of the appropriate concentrated starting buffer (0.5 M imidazole /fris-HCl 

instead of 10 mM imidazole /20 mM Tris-HCl in the starting buffers), and then with 

ten, 6 ml aliquots of the starting buffer. Each time, gel was collected by 

centrifuging at 2,500 rpm for 1 min in a Clements 2000 centrifuge. 2-3 ml (5 mg of 

protein) of the desalted 0-45% fraction were added to each tube and mixed for 10-

15 min. Unbound proteins were removed by centrifugation, and the gel was washed 

with 1.5 ml of the starting buffer. 1.5 ml of the elution buffer were mixed with the 

gel for 10-15 min. Supematants of the gel after incubating with protein sample, 

with washing buffer and with elution buffer were examined by immunoblotting. 

(c) DEAE-Sepharose CL-48 and DEAE-Sephadex A-50 

For DEAE-Sepharose CL-4B, batch tests were carried out as described in (b). 

For DEAE-Sephadex A-50, the same batch test was used except that only the pH 

8.0 buffer was tested. 

(d) CM-cellulose 

4.4 ml (7 .2 mg of protein) of the desalted 0-45% (NH4)2S04 fraction were 

applied to a column (1.6 x 1.4 cm) of CM-cellulose. The starting buffer was 0.34 M 

sucrose, 20 mM Mes, pH 6.5, 1 mM DTT. Elution buffers were 1 Mand 2 M NaCl 

in the starting buffer. 

Starting buffers of 6 different pH values were batch-tested as described in (b): 

0.34 M sucrose, 20 mM sodium acetate, pH 5.0 /5.5, 1 mM OTT. 

0.34 M sucrose, 20 mM Mes, pH 6.0 /6.5, 1 mM DTT. 

0.34 M sucrose, 10 mM imidazole, pH 7.0 n.5, 1 mM DTT. 

Elution buffers were 1 M NaCl in the starting buffers. 

(ii) Hydrophobic chromatography 

Six different buffer systems were tested on columns [1.6 x (1.5-1.8) cm] of 

Phenyl-Sepharose CL-4B. The buffers classified into two groups according to 

starting buffers: 



1. Starting buffers: 

1 M /3 M /4 M NaCl /lM (NH4)2S04, 20 mM Tris-HCl, pH 8.0. 

Each column was eluted with steps of 20 mM Tris-HCl, pH 8.0 and 10 mM 

glycine-NaOH, pH 9.8. 

2. Starting buffer: 

4 M NaCl, 10 mM NaH2P04-Na2HP04, pH 6.8. 

The column was eluted with steps of 10 mM NaH2P04-Na2HP04, pH 6.8 

and 10 mM glycine-NaOH, pH 9.8. 
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All 0-45% (NH4)2S04 pellets were desalted with the starting buffers without 

NaCl or (NH4)2S04, and solid NaCl or (Nl4)2S04 was added to the desalted 

fraction to make the final concentration described in the starting buffer. 4.5-8 ml 

( 11-19 mg of protein) of the desalted samples were applied to the columns. 

(iii) Hydroxylapatite 

5-9 ml (10-20 mg of protein) of the desalted 0-45% (Nf4)2S04 fraction were 

applied to a column [1.6 x (1.2-1.6) cm] of hydroxylapatite equilibrated with 0.34 

M sucrose, 1 mM DTT buffered at pH 8.0 (10 mM /20 mM Tris-HCl) or pH 7.0 (10 

mM imidazole). The column was eluted with KH2P04 steps in the range of 0.01 M 

to 0.5 M in the starting buffer. 

(iv) Affinity chromatography 

Mung bean crude extract was applied to a DE52 column as described in 3.2.5 (i) 

(a) 3, and the column was eluted with 0.4 M NaCl in the starting buffer. The 0-45% 

(NH4)2S04 fraction of the 0.4 M NaCl eluate from DE52 was dialysed against the 

starting buffer of the appropriate affinity column in order to keep the sample in a 

small volume. For both novobiocin-Sepharose 6B and ADP-agarose column, gels 

were regenerated by washing with 3 column volumes of 2 M KCl, 6 M urea 

solution, then with > 10 column volumes of dHzO, and finally with >4 column 

volumes of starting buffer. 
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(a) Novobiocin-Sepharose 6B 

3 ml of the desalted 0-45% fraction were applied to a column (1.6 x 2 cm) of 

novobiocin-Sepharose 6B (2.3). Two starting buffers were tested: 

50 mM KCl, 10 mM imidazole, pH 7.0, 1 mM EDTA, 1 mM OTT. 

0.34 M sucrose, 10 mM imidazole, pH 7.0, 1 mM EDTA, 1 mM DTT. 

Each column was eluted with 1 M KCl and 5 M urea steps in the starting 

buffer. 

(b) ADP-agarose 

2.5 ml of the desalted 0-45% fraction were applied to a column (1.6 x 2.1 cm) 

of AOP-agarose at a flow rate of < 10 ml/h. After sample application, the 

chromatography was stopped for 2 h before washing and elution to facilitate the 

equilibrium between ligands of the gel and proteins of the sample. Two buffer 

systems were tested: 

1. Starting buffer: 0.6 M ammonium acetate, 2 mM sodium pyrophosphate, pH 

6.5, 5 mM EOTA, 0.25 mM OTT. 

Elution buffer: 0.6 M NI4Cl, 2 mM sodium pyrophosphate, pH 6.5, 5 mM 

EOTA, 0.25 mM OTT. 

2. Starting buffer: 0.34 M sucrose, 10 mM imidazole, pH 7.0, 1 mM DTT, (± 2 

mMEDTA). 

Elution buffers: 1 M KCl and 5 M urea steps in the starting buffer; or 50 mM 

ATP in the starting buffer. 

(c) F-actin Sepharose 4B 

Mung bean crude extract was applied to a DE52 column as described in 3.2.5 (i) 

(a) 3, and the column was eluted with 0.4 M KCl in the starting buffer. 81 ml (77 

mg of protein) of the 0.4 M KCl eluate were applied at a flow rate of 30 m1/h to a 

column (1.6 x 6.3 cm) of glutaraldehyde cross-linked F-actin Sepharose (2.3) 

equilibrated with 0.5 M KCl, 20 mM Tris-HCl, pH 7.6, 1 mM Mg2S04, 1 mM 

DTT. The chromatography was stopped for 2 h before washing and elution with 

steps of: 
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0.5 M KCl, 20 mM Tris-HCl, pH 7.6, 3 mM ATP, 3 mM Mg2S04, 1 mM DTI. 

0.5 M KCl, 20 mM Tris-HCl, pH 7.6, 2 mM sodium pyrophosphate, 1 mM 

MgS04, 1 mM DTT. 

1.0 M KCl, 20 mM Tris-HCl, pH 7.6, 1 mM MgS04, 1 mM OTT. 

The column was regenerated with the third elution buffer. 

(v) Gel filtration 

(a) Calibration 

Two known Mr proteins, rabbit muscle myosin (470 kDa) and thyroglobulin 

(669 kDa; Pharmacia) were used to calibrate the gel filtration column, and 

hemocyanin was used to determine the void volume. Rabbit muscle myosin (2.15) 

was further purified by chromatography on DE52 (Margossian & Lowey 1982). 5 

mg of thyroglobulin and 6 mg of hemocyanin were dissolved in 4.4 ml (6.8 mg of 

protein) of rabbit muscle myosin solution, and the mixture was clarified at 10,000 

rpm for 10 min. The supernatant was applied to a column (2.6 x 46 cm) of 

Sephacryl S-400 equilibrated with 0.04 M sodium pyrophosphate, pH 7.5, 0.001 

mM DTT, at a flow rate of 60 ml/h. 

(b) Chromatography of the 165 kDa polypeptide fraction of mung bean 

Mung bean (580 g) was extracted with the extraction buffer (2.5.2 (ii)], the 

crude extract (812 ml, 1835 mg of protein) fractionated with 0-45% (NH)2S04, the 

0-45% fraction desalted (176 ml, 725 mg of protein) and applied to a DE52 column 

(2.6 x 17.5 cm) equilibrated with starting buffer (0.34 M sucrose, 10 mM 

imidazole, pH 7.0, 1 mM OTT). The flow-through fraction (131 ml, 148 mg of 

protein) was fractionated with 0-45% (Nf4)zS04, desalted (53 ml, 90.6 mg of 

protein), applied at a flow rate of 13 m1/h to a ADP-agarose column (2.6 x 3.3 cm) 

equilibrated with the starting buffer, and the column left overnight. Proteins were 

eluted with 100 ml of a 0-0.8 M KCl gradient in the starting buffer, and the peak 

fractions (24 ml) pooled and concentrated to 5 ml by Aquacide II. 5 ml (1.1 mg of 

protein) of the partially purified 165 kDa polypeptide fraction were applied to the 
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previously calibrated Sephacryl S-400 column and eluted as before. Eluate fractions 

were monitored by 7% SOS-PAGE and gels were stained with silver. 
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3.3 RESULTS 

3.3.1 Immunochemical identification of putative myosin heavy chains in 

higher plants 

Monoclonal anti-pan myosin antibody against the myosin heavy chain of mouse 

3T3 cells cross-reacts immunochemically and immunocytochemically with putative 

myosin heavy chains from Al/ium (200 kDa; Parke et al. 1986), Nicotiana (175 

kDa; Tang et al. 1989a) and Chara (200 and 110 kDa; Grolig et al. 1988). It was 

used to identify putative myosin heavy chains in crude extracts of mung bean, 

wheat and pea by immunoblotting. Polypeptides of 165 kDa and 155 kDa were 

detected in mung bean (Fig. 3.1, lanes 2, 4 and 5), of 165 kDa in wheat (Fig. 3.1, 

lane 6), and of 160 kDa in pea (Fig. 3.1, lane 7). Protein extracts from either shoots 

or roots showed the same bands as those from seedlings (data not shown), 

irrespective of whether the extracts were made with extraction buffer or TCA. 

For mung bean, three bands other than the 165 kDa and 155 kDa ones were also 

detected on blots using the streptavidin-biotinylated peroxidase complex (Fig. 3.1 , 

lane 2). They were not myosin heavy chain bands because they also stained in the 

control incubated without anti-pan myosin (Fig. 3.1, lane 1). The heavy chain of 

rabbit skeletal muscle myosin was clearly detected by anti-pan myosin antibody 

(Fig. 3.1, lane 8). Generally, both the 165 kDa and 155 kDa polypeptides of mung 

bean could be detected by either alkaline phosphatase or peroxidase, and quite 

often, the 165 kDa band was stronger than the 155 kDa one on blots. Sometimes, 

only the 165 kDa band was detected. This varied with different experiments. 

The 155 kDa polypeptide of mung bean did not seem to be a proteolytic product 

of the 165 kDa one. Even when proteins were extracted from mung bean directly 

with TCA, which minimizes proteolysis (Wu & Wang 1984), the 155 kDa and 165 

kDa bands still coexisted (Fig. 3.1, lane 4). Since the 165 kDa polypeptide was the 

one most constantly detected by immunoblotting, together with other evidence 

which will be described later, it was considered to be a putative myosin heavy chain 

of mung bean and subsequent experiments were focused on this polypeptide. 
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3.3.2 Extraction of putative mung bean myosin with different buffers 

The high ionic strength, pyrophosphate and sucrose buffers used to extract 

various nonmuscle myosins were tested for their ability to extract putative myosins 

from mung bean. When aliquots of crude extracts containing the same quantities of 

protein were resolved by SOS-PAGE and immunoblotted, the 165 kDa band in 

extracts made with sucrose buffer seemed to be the strongest when 20 µg of protein 

were loaded (Fig. 3.2, lane 3; compare lanes 1 and 5). Because the low ionic 

strength of the sucrose buffer facilitates ion exchange chromatography, it was 

chosen to extract myosin from mung bean as it was for work on Nitella (Kato & 

Tonomura 1977), Egeria densa (Ohsuka & Inoue 1979) and Pisum (Ma & Yen 

1989). 

3.3.3 K+-EDTA-ATPase investigation and (NH4)2S04 fractionation of 

mung bean crude extract 

Mung bean crude extracts catalysed ATP-dependent production of Pi in the 

presence of K+-EDT A. The rate of reaction was constant for 25 min then decreased 

(Fig. 3.3), and K+-EDTA-ATPase activity was proportional to protein 

concentration up to 140 µg /ml of reaction mixture (Fig. 3.4). The mean rate of K+

EDTA-ATPase activity at pH 7.0 was 0.116 ± 0.023 µmol/min/mg (10 

determinations). 
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Fig. 3.3. Time course of Pi production catalysed by mung bean crude 

extract. Extract-dependent Pi production (C) was calculated from the expression A-B when A 

was with ATP and B without. Reactions A and B contained 96.25 µg protein/ml of reaction 

mixture. 
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Fig. 3.4 The effect of protein concentration on K+-EDTA-ATPase activity 

associated with mung bean crude extract. Reaction mixtures were as described for 

K+-EDT A-A TPase assays with the concentration of protein in the reaction mixture as specified. 
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During fractionation of mung bean crude extract, K+-EDTA-ATPase activity 

was usually higher than Ca2+_ATPase, and Mg2+_ATPase activity was the lowest 

(4.3.2). Therefore, K+-EDTA-ATPase activity was mainly assayed during the 

fractionation. When the crude extract was fractionated with (NH4)2S04 (Table 

3. lA), 48.7% of the total K+-EDTA-ATPase activity was associated with the 50-

70% fraction with only 2% of the K+-EDTA-ATPase activity associated with the 

0-30% fraction . 84% the total K+-EDTA-ATPase activity was recovered 

following (NH4)2S04 fractionation. However, when these fractions were 

examined by immunoblotting, the 165 kDa polypeptide (in this experiment, the 

155 kDa band could not be detected) was detected strongly in the 0-30% fraction 

(Fig. 3.5, lane 2), weakly in the 30-50% fraction (Fig. 3.5, lane 3) and not at all in 

the 50-70% and 70-90% fractions (Fig. 3.5, lanes 4 and 5). In a separate study to 

determine the distribution of the 165 kDa protein more accurately (Table 3.lB), 

the 165 kDa polypeptide was weakly detected in a 30-40% fraction and only very 

faintly detected in the 40-50% CNH4)2S04 fraction (data not shown). Total K+

EDTA-A TPase activities were similar to those obtained previously. Accordingly, 

0-45% (Nf4)2S04 was used to fractionate the 165 kDa polypeptide in subsequent 

studies (Fig. 3.5, lanes 6 and 7; the 155 kDa band was detected in this 

experiment). 
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Table 3.1 (NH4)2S04 fractionation of mung bean crude extract K+-EDTA

ATPase activity. 

A. 

K+-EDTA-ATPase activity 

(NH4)2S04 Total protein Specific Total % of total crude 

fraction mg µmoVmin/mg µmoVmin/mg extract activity 

Crude 122.6 0.057 7.0 100 

0-30% 12.4 0.011 0.14 2.0 

30-50% 35.5 0.05 1.78 25.4 

50-70% 13.1 0.26 3.41 48.7 

70-90% 4.2 0.135 0.57 8.1 

B. 

K+-EDTA-ATPase activity 

(NH4)2S04 Total protein Specific Total 

fraction mg µmoVmin/mg µmoVmin/mg 

Crude 110.0 0.107 11.8 

0-30% 7.6 0.024 0.18 

30-40% 28.0 0.018 0.5 

40-50% 21.8 0.069 1.5 
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3.3.4 Effects of proteases on mung bean 165 kDa polypeptide 

Several experiments were carried out to test how stable the 165 kDa 

polypeptide was during extraction and fractionation. The 165 kDa band was clearly 

detected in mung bean crude extracts while the 155 kDa band was weakly detected 

in this experiment (Fig. 3.6). The 165 kDa band of the crude extract made with 

extraction buffer (Fig. 3.6A) was detected longer than that of the crude extract 

made with a similar buffer lacking protease inhibitors (Fig. 3.6B). A 110 kDa band 

that reacted with the anti-pan myosin antibody, was detected after 32 h in the crude 

extract with protease inhibitors (Fig. 3.6A, lane 5) and after 9 h in the crude extract 

without inhibitors (Fig. 3.6B, lane 2), and became stronger as the 165 kDa band 

became weaker and finally disappeared. Sometimes, the 110 kDa band was present 

in crude extracts freshly made with extraction buffer, especially during large-scale 

extraction, but its detection was not constant. When proteins were directly extracted 

with TCA, the 110 kDa band was never detected by immunoblotting (Fig. 3.1, lane 

4). It is therefore suggested that the 110 kDa polypeptide is a proteolytic product of 

the 165 or 155 kDa polypeptides. 

The 165 kDa polypeptide was more stable in a 0-45% (Nl4)2S04 fraction than 

in the crude extract: the strength of the 165 kDa band was constant for up to 77 h 

(Fig. 3.7, lanes 1-4), but the band was only faintly detected after 138 h (Fig. 3.7, 

lane 5). Protease inhibitors had little effect on this time course (data not shown). It 

was therefore concluded that it was important to include PMSF, EDTA and TPCK 

in the extraction buffer and to apply the crude extract to the next step of purification 

immediately since the 165 kDa polypeptide was more liable to proteolysis in crude 

extracts than in partially purified fractions. 
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3.3.5 Tests of chromatographic properties of mung bean 165 kDa 

polypeptide 

Various chromatography media were examined to build up a picture of the 

chromatographic properties of the 165 kDa polypeptide in order to devise a 

procedure for its purification. 

(i) Ion exchange chromatography 

DEAE-cellulose has been used to purify myosin from Physarum (Adelman & 

Taylor 1969), Acanthamoeba (Pollard & Korn 1973a, b; Maruta & Korn 1977a; 

Pollard et al. 1978; Maruta et al. 1979; Lynch et al. 1989), Dictyostelium (Cote et 

al. 1985), Drosophila (Kiehart & Feghali 1986) and Ehrlich ascites tumour cells 

(Kuznicki & Filipek 1988), and to fractionate putative myosin from pea (Ma & Yen 

1989). DEAE-Sephadex has been used to purify myosin from Physarum (Adelman 

& Taylor 1969) and from Egeria densa (Ohsuka & Inoue 1979). Cation-exchange 

chromatography has been used in the purification of onion putative myosin 

(Pesacreta et al. 1991). So, several ion exchanges were tested first to isolate the 165 

kDa polypeptide from mung bean. 

When the desalted 0-45% (NH4)2S04 fraction of mung bean crude extract was 

applied to a DE52 column equilibrated with 0.34 M sucrose, 20 mM Tris-HCI, pH 

8.0, 1 mM DTT, large quantities of protein bound to the column although the bulk 

flowed through. Most bound proteins were eluted by 0.2 M and 0.6 M NaCl, and 

little further was eluted further by 1 M NaCl. The 165 and 155 kDa polypeptides 

mainly existed in the flow-through fractions and were at most very weakly detected 

in the 0.2 M NaCl or 0.6 M NaCl fractions (data not shown). When testing NaCl, 

sodium pyrophosphate and sucrose buffers, the 165 kDa polypeptide of the 0-45% 

fraction did not bind to DE52 even though large amounts of protein bound and were 

eluted with 1 M NaCl (data not shown). Similarly, the 165 kDa polypeptide of the 

0-45% (NH4)2S04 fraction did not bind to other anion exchange media (DEAE

Sephacel, DEAE-Sepharose CL-4B and DEAE-Sephadex A-50) in column and/or 

batch format using several buffers. 
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After testing these various anion exchangers, the cation exchanger CM-cellulose 

was tested. Less protein bound to CM52 than to DE52, and was eluted by 1 M 

NaCl. The 165 kDa polypeptide of the 0-45% (NH4)2S04 fraction again flowed 

through the column. If the desalted 0-45% fraction was applied to a CM52 column 

first, the flow-through fraction adjusted to pH 7.0 and applied to a column of DE52 

equilibrated with 0.34 M sucrose, 20 mM Tris-HCl, pH 8.0, 1 mM OTT, the 165 

kDa polypeptide flowed through both columns (data not shown). When buffers of 

pH ranging from 5 to 7.5 were used in batch tests of CM52, the 165 kDa 

polypeptide was always found in unbound fractions. 

From the results discussed above, the 165 kDa polypeptide in the 0-45% 

fraction of crude extracts was not able to bind to a diverse range of ion exchangers. 

Mung bean crude extract was therefore applied directly to DE52. Most proteins 

bound to the column. From immunoblotting, all of the 165 kDa polypeptide, 

together with the 155 kDa polypeptide, bound to the column, and could be eluted 

by 0.4 M NaCl (Fig. 3.8, lane 3). When the 0.4 M NaCl eluate was fractionated 

with (NH4)2S04 (0-45% saturation), desalted and reapplied to a DE52 column, all 

the 165 kDa polypeptide (together with the 155 kDa one) again bound and could be 

subsequently eluted with 0.4 M NaCl (data not shown, see 4.3.1). 

The chromatographic behaviour of the 165 kDa polypeptide (together with the 

155 kDa one) on DE52 was the same when the extraction buffer contained NaF 

(data not shown) or not. 

(ii) Hydrophobic chromatography 

Hydrophobic chromatography relies on the hydrophobic interaction between 

aliphatic chains on the chromatography medium and hydrophobic regions on the 

surface of the proteins (Scopes 1987). Hydrophobic interactions strengthen with 

increasing salt concentration. Proteins that are strongly adsorbed to hydrophobic 

media even at low salt concentration are generally those with a low water solubility, 

including those (like the mung bean 165 kDa polypeptide) that precipitate in the 

low range of (NH4)2S04 saturation (20-40%). 



71 

Fragments and subunits (HMM, native S-1, denatured S-1 and light chains) of 

rabbit skeletal muscle myosin bind to a column of phenyl Sepharose CL-4B and 

elute with different conditions (Borejdo et al. 1984). It is suggested that phenyl 

Sepharose CL-4B may be useful to obtain purified S-1 with a high A TPase activity. 

So far, hydrophobic chromatography has not been used in the purification of 

nonmuscle myosins. Since mung bean 165 kDa polypeptide was precipitated by 

(NH4)2S04 of 0-45% saturation, the 0-45% fraction was tested on phenyl 

Sepharose CL-4B. 

When the 0-45% fraction was applied to a column of phenyl Sepharose CL-4B 

equilibrated with the starting buffer 3 M NaCl, 10 mM Tris-HCl, pH 8.0, a small 

amount of protein bound to the column and was mainly eluted by 20 mM Tris-HCl, 

pH 8.0 (Fig. 3.9). Most 165 kDa polypeptide flowed through the column (data not 

shown). All of the 165 kDa polypeptide flowed through the column when using 

other buff er systems. 
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Fig. 3.9 Phenyl-Sepharose CL-4B chromatography of the 0-45% 

(NH4)2S04 fraction of mung bean crude extract. 4.5 ml (11 mg of protein) of the 

sample were applied to a column (1.6 x 1.5 cm) of phenyl-Sepharose CL-4B equilibrated with the 

starting buffer (3 M NaCl, 20 mM Tris-HCl, pH 8.0). The column was eluted with steps of 20 mM 

Tris-HCl, pH 8.0 (fractions 21-39) and 10 mM glycine-NaOH, pH 9.8 (fractions 40-49). Fraction 

volume was 1.3 ml. 

(iii) Hydroxylapatite 

Hydroxylapatite is an insoluble, crystalline form of calcium phosphate. Unlike 

ion exchangers or affinity adsorbents, such inorganic materials do not have a readily 

explainable mode of action (Scopes 1987). Adsorbed at low K-phosphate 

concentrations, all protein can be eluted by increasing phosphate concentrations, 

with basic proteins tending to require stronger buffers than acidic ones. KCl, NaCl, 

CaCl2 and MgCl2 do not elute acidic proteins, whereas basic proteins are eluted by 
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KCl and NaCl, and even more readily by CaCl2 and MgCl2 (Bernardi et al. 1972; 

Gorbunoff 1985). 

Since most myosins tested bind to hydroxylapatite even in high concentrations 

of KCl or NaCl, it is considered one of the most useful chromatography media for 

myosin (Pollard 1982a). Among nonmuscle myosins, hydroxylapatite has been used 

in purifying Acanthamoeba myosin I (Pollard & Korn 1973a, b; Maruta et al. 

1979), Drosophila myosin II (Kiehart & Feghali 1986) and Dictyostelium myosin I 

(Fukui et al. 1989), but no plant myosin has been purified using hydroxylapatite. As 

a possible means of purification, hydroxylapatite was tested in the purification of 

mung bean 165 kDa polypeptide. 

Results of different experiments were variable. More or less proteins bound to 

columns of hydroxylapatite equilibrated with different buffers, with the bulk of the 

proteins flowing through. Bound proteins were mainly eluted by 0.1 M or 0.2 M 

KH2P04 (Fig. 3.10). From immunoblotting, most of the 165 kDa polypeptide 

flowed through columns whatever the starting buffer. Sometimes, a little 165 kDa 

polypeptide could be detected in fractions eluted with 0.06 M, 0.1 M or 0.2 M 

KH2P04 (data not shown). 
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Fig. 3.10 Hydroxylapatite chromatography of the 0-45% (NH4)2S04 

fraction of mung bean crude extract. 9 ml (18 mg of protein) of the sample were applied 

to a column ( 1.6 x 1.6 cm) of hydroxylapatite equilibrated with the starting buffer (0.34 M sucrose, 

20 mM Tris-HCl, pH 8.0, 1 mM OTT). The column was eluted with steps of 0.1 M (fractions 21-

32), 0.2 M (fractions 33-47), and 0.5 M (fractions 48-51) KH2P04 in the starting buffer. Fraction 

volume was 1.3 ml. 

(iv) Affinity chromatography 

Compared with other forms of chromatography, affinity chromatography is a 

more recently introduced method for the purification of myosin. Affinity 

chromatography can separate myosin isoforms by different elution conditions, and 

separate active from inactive myosin (Pollard 1982a). Its specificity and rapidity 

make affinity chromatography an effective method to purify myosin, and affinity 
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chromatography is increasingly used to purify nonmuscle myosins when other 

chromatography fails. However, no plant myosin has been purified using affinity 

chromatography. Three affinity columns were tested to isolate the 165 kDa 

polypeptide from mung bean as described below. 

(a) Novobiocin Sepharose 6B 

Novobiocin is a coumarin and carbohydrate-containing antibiotic produced by 

Streptomyces (Ryan 1976). It inhibits DNA synthesis in E. coli by competitively 

inhibiting gyrB of DNA gyrase, and is thus mainly used in studies of DNA 

replication (Staudenbauer 1975; Fairweather et al. 1980). Kinetic data suggest that 

novobiocin competitively inhibits the binding of ATP to gyrase which is also an 

ATPase (Sugino et al. 1978). Novobiocin Sepharose 6B has been used to purify two 

subunits of DNA gyrase, gyrB and gyrA (Staudenbauer & Orr 1981). Since 

novobiocin is a competitor for ATP, its affinity column might purify other A TPases 

and a myosin has been partially purified from the yeast Saccharomyces cerevisiae 

using a novobiocin-Sepharose column (Watts et al. 1985). Using mung bean, when 

the desalted 0-45% (Nl4)2S04 fraction of the 0.4 M NaCl eluate from DE52 was 

applied to the column of novobiocin Sepharose 6B, the bulk of the 165 kDa 

polypeptide flowed through although some of the 165 kDa polypeptide was bound 

when proteins were eluted from the column with 1 M KCl (data not shown). 

(b) ADP-agarose 

During force production, myosin interacts reversibly with both actin and 

adenine nucleotides, which makes ADP/ATP affinity columns a useful method to 

separate myosin from other cellular proteins (Trayer & Trayer 1975). Since ATP 

immobilized to gel can be hydrolyzed by myosin during chromatography and thus 

change the property of the column, ADP columns are mainly used (Pollard 1982a). 

ADP columns have been used to separate isoforms of muscle myosin and its 

proteolytic fragments (HMM, S-1). For nonmuscle myosins, an ADP column has 

been used to purify myosin II from pig platelet (Trayer & Trayer 1975), myosin I 
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(Maruta et al. 1979; Lynch et al. 1989) and myosin II (Maruta & Korn 1977a) from 

Acanthamoeba, and myosin I from Dicryostelium (Cote et al. 1985). 

Using mung bean when the 0-45% (Nf4)2S04 fraction of the 0.4 M NaCl 

eluate from DE52 was applied to the column of ADP-agarose, all the 165 kDa 

polypeptide bound to the column irrespective of whether the column was 

equilibrated in sucrose-imidazole (containing EDT A or not) or ammonium acetate 

buffer (Fig. 3.11 A, lane 3). In contrast, all of the detectable 155 kDa and 110 kDa 

polypeptides were present in the flow-through fraction (Fig. 3.11 A, lane 2). Bound 

165 kDa polypeptide could be eluted by 1 M KCl or 50 mM ATP using sucrose

imidazole buffer, or by 0.6 M NH4Cl using ammonium acetate buffer. The proteins 

from these fractions, resolved on SOS-PAGE, were similar (data not shown). 

Centrifuging the resuspended and dialyzed 0-45% pellet against the ammonium 

acetate buffer rather than the sucrose-imidazole buffer resulted in a small pellet. 

The 165 kDa polypeptide was detected by immunoblotting in the pellet (data not 

shown) perhaps because of its low solubility in the 0.6 M ammonium buffer of pH 

6.5. Therefore, sucrose buffer was routinely used in ADP-agarose chromatography. 

ADP-agarose columns were discarded following three cycles of regeneration since 

their binding capacity decreased substantially by regeneration in 2 M KCl and 6 M 

urea (data not shown). 

(c) F-actin Sepharose 48 

Actin affinity chromatography has been used to purify muscle myosin and its 

proteolytic fragments, HMM and S-1 (Pollard 1982a). Nonmuscle myosin has not 

been reported to be purified by such affinity chromatography. Basically, there are 

two methods to couple actin to agarose gel. In one method, G-actin (globular actin) 

(Bottomley & Trayer 1975), F-actin or F-actin plus tropomyosin, both stabilized by 

glutaraldehyde crosslinking (Winstanley et al. 1977), or F-actin stabilized by 

phalloidin (Winstanley et al. 1979) can be directly coupled to CNBr-activated 

agarose gel. Alternatively, G-actin incubated with the gel in the presence of 

phalloidin polymerizes into stabilized F-actin that is trapped within the agarose 
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beads (Grandmont-Leblanc & Gruda 1977). The latter type of affinity column binds 

muscle myosin in high salt (0.5 M KCl) but it has low capacity. 

A glutaraldehyde-crosslinked F-actin column was examined to isolate mung 

bean 165 kDa polypeptide. When the 0.4 M KCl eluate from DE52 was applied to 

the F-actin column, very few proteins bound to the column and the 165 kDa 

polypeptide flowed through (data not shown). The efficiency of the column was 

later examined by applying 5 mg (2 ml) of purified rabbit skeletal muscle myosin 

(2.15) to the column. Substantial amount of muscle myosin bound to the column, 

and could largely be eluted by ATP buffer (data not shown). 

( v) Gel filtration 

Gel filtration has been successfully and widely used in the purification of 

nonmuscle myosins since few other cellular components have the large Stokes 

radius of myosin II (Pollard 1982a). Bio-Gel A-15 m (200-400) has been used to 

purify myosin from Acanthamoeba (Maruta & Korn 1977a; Pollard et al. 1978; 

Maruta et al. 1979; Collin & Korn 1980), Dictyostelium (Clark & Spudich 1974), 

human platelet (Pollard et al. 1974), and Drosophila (Kiehart & Feghali 1986). 

Another widely used form of agarose beads is Sepharose 4B. It has been used to 

purify myosin from Ehrlich ascites tumour cells (Kuznicki & Filipek 1988), and the 

higher plants Egeria densa (Ohsuka & Inoue 1979) and Heracleum sosnowskyi 

(Turkina et al 1987). Sepharose CL-4B has been used to purify myosin from tomato 

(Vahey et al. 1982). 

Elution profiles of the partially purified 165 kDa polypeptide fraction and the 

standard Mr proteins from Sephacryl S-400 are shown in Fig. 3.12. The void 

volume was 91.1 ml determined by hemocyanin. Elution volumes of rabbit skeletal 

muscle myosin, thyroglobulin and the partially purified mung bean 165 kDa 

polypeptide were: 104.6 ml, 144.6 ml and 92.1 ml, respectively. The 165 kDa 

polypeptide was eluted in a protein peak with some other plant proteins at the very 

beginning of the elution profile (Fig. 3.12, lanes 4 and 5), just after the void 

volume. 
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3.4 DISCUSSION 

3.4.1 Immunoblotting 

lmmunocytochemical and biochemical studies show that anti-pan myosin 

antibody recognizes an epitope present on the heavy chain of muscle myosin from 

skeletal, smooth, cardiac muscle, and various non-muscle myosins [Parke et al. 

1986; Anonymous (Anon.) 1987]. Putative myosin heavy chains have been 

identified immunochemically and immunocytochemically with anti-pan rnyosin 

antibody in onion (Parke et al. 1986), Chara (Grolig et al. 1988) and Nicotiana 

pollen tubes (Tang et al. 1989a). A 100 k.Da polypeptide has also been identified by 

immunoblotting with anti-pan myosin in a partially purified fraction of onion 

exhibiting A TPase activities consistent with a myosin (Pesacreta et al. 1991). 

In mung bean extracts made with either extraction buffer or TCA, two 

polypeptides (165 and 155 k.Da) were immunochemically detected with anti-pan 

myosin. There was no tissue-specific distribution of the two polypeptides between 

roots and shoots. The 165 k.Da polypeptide was constantly detected. However, the 

detection of the 155 k.Da polypeptide in different mung bean extracts was variable 

which might, in part, be due to the efficiency of electrophoretic transfer of this 

polypeptide. In wheat and pea, only one polypeptide of 165/160 k.Da was constantly 

detected with anti-pan myosin. Therefore, the 165/160 k.Da polypeptides of mung 

bean, wheat and pea were considered as putative myosin heavy chains. 

An additional mung bean polypeptide of 110 kDa was detected in the absence 

of proteolytic inhibitors but not when extracts were extracted with TCA, conditions 

which inhibit proteolytic degradation of plant proteins (Wu & Wang 1984). These 

properties suggested that the 110 kDa polypeptide was a proteolytic fragment of 

either the 165 kDa or 155 kDa polypeptide. 

3.4.2 A TPase activity 

The most fundamental criterion for identifying a putative myosin is its ability to 

interact physically and enzymatically with actin (Clark & Spudich 1974). That is, 
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myosin is able to physically interact with, and has its ATPase activity modified by, 

F-actin. In most cases, myosins in vitro under conditions of high ionic strength (K+) 

express high levels of K+-EDTA and ca2+_ATPase activities but very low levels of 

Mg2+ _A TPase activity. Only the Mg2+ _A TPase activity is expressed under 

physiological conditions and is activated by F-actin. The high ionic strength 

prevents any actin in crude protein fractions from activating the Mg2+_A TPase 

activity. In contrast to myosin, most other A TPases are more active in Mg2+ than 

ca2+ and are inactive in EDTA (Pollard 1982b). Therefore, assay of K+-EDTA

A TPase activity (or ca2+_A TPase activity in some cases) has usually been used to 

monitor myosin-like activities in isolating myosins or putative myosins from 

nonmuscle cells including plants (Kato & Tonomura 1977; Ohsuka & Inoue 1979; 

Vahey et al. 1982; Ma & Yen 1988, 1989; Pesacreta et al. 1991). Most plant 

myosin ATPases are also more active in K+-EDTA than ca2+ at high ionic strength 

(1.8.1). 

When mung bean crude extracts were fractionated with (NI4)2S04, the bulk of 

the K+-EDTA-ATPase activity did not fractionate with the 165 kDa polypeptide 

determined by immunoblotting, suggesting that the 165 kDa polypeptide contained 

at most a very small fraction of the total K+-EDTA-ATPase activity of the crude 

extract. There are several possible explanations. First, myosin isoforms are common 

in muscle and nonmuscle cells (Emerson & Bernstein 1987; Wade & Kedes 1989; 

Cheney & Mooseker 1992) and may also exist in plant cells. Accordingly, two or 

more isoforms of myosin may be present in mung bean but without being identified 

by immunoblotting with the anti-pan myosin. Unidentified myosin isoform(s) may 

account for some or all of the K+-EDTA-ATPase activity in fractions not 

containing the 165 kDa polypeptide. 

Alternatively, the bulk of the K+-EDTA-ATPase activity unassociated with the 

165 kDa polypeptide may also be contributed partially or wholly by non-myosin 

ATPase(s) in mung bean extract. Similar results have been obtained by Vahey et al. 

(1982) in which three K+-EDTA-ATPase peaks were eluted from Sepharose CL-
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4B. Two of the peaks with lower specific activity are not tomato myosin because 

they do not have actin-activated Mg2+_A TPase activity and do not bind to rabbit F

actin in the absence of Mg2+ATP. Similarly, when fractionating pea tendril crude 

extract on DEAE-cellulose monitored by Ca2+_ATPase activity, several ATPase 

peaks appear (Ma & Yen 1989). Only a very small ATPase peak fraction is 

considered containing putative myosin; however, Ma & Yen (1989) do not state 

how exactly the putative myosin fraction is determined. So, K+-EDTA- or Ca2+_ 

A TPase activities other than those of myosin do exist in some plants. Accordingly, 

plant proteins catalysing K+-EDTA- /Ca2+_ATPase activity cannot be designated 

myosins without further evidence. Actin-activated A TPase activity and even F-actin 

binding assays are required in addition to the K+-EDTA- or ca2+_ATPase activity 

to identify plant myosin. 

Likewise during purification of Acanthamoeba myosin II, a peak of ca2+_ 

A TPase activity is eluted together with vesicular material in the void volume ahead 

of the ca2+_ATPase peak of myosin II on Bio-Gel A-15 m (Maruta & Korn 

1977a). Since the Mg2+_ATPase activity of this void fraction is not activated by F

actin and the enzyme does not bind to a F-actin-DNase-agarose affinity column, this 

fraction is not related to myosin and may be a membrane-associate A TPase. So, 

multiple fractions of K+-EDTA- or ca2+-ATPase activity are possibly present 

when purifying some nonmuscle myosins, and again other assays are needed to 

identify the myosin fraction when encountering such problems. 

Therefore in mung bean crude extract, the K+-EDTA-ATPase activity in 

(Nl4)2S04 fractions other than that of 165 kDa polypeptide may be contributed by 

other myosin isoform(s) or by other non-myosin ATPase(s), or by some 

combination of these enzymes. K+-EDTA-ATPase activity alone is therefore not a 

specific and reliable indicator of the 165 kDa putative myosin heavy chain in mung 

bean extracts and cannot be used to detect the 165 kDa polypeptide during its 

purification. Accordingly, immunoblots, which provide greater reliability and 
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specificity, were used to monitor the 165 kDa polypeptide during the development 

of a protocol for its partial isolation from mung bean extract. 

3.4.3 ADP-agarose chromatography 

ADP and ATP affinity chromatography has been used to isolate some ATP

utilizing enzymes such as kinases and ATPases including myosin (Trayer 1974; 

Trayer et al. 1974; Trayer & Trayer 1975; Scouten 1981). Three types of ADP

agarose are mainly used for isolating myosins and their subfragments: ADP is 

linked to agarose via a spacer by N6 or C8 of the adenine, or by the ribose (Pollard 

1982b), the third one being used in the present study of mung bean 165 kDa 

polypeptide. Myosin binds to ADP columns in the presence of Mg2+, ca2+, or 

EDT A, representing three conditions under which its A TPase activity can be 

expressed in vitro (Trayer 1974; Trayer & Trayer 1975). Bound myosin can be 

eluted by salt (KCl, NH4Cl), ATP, ADP or pyrophosphate. 

When purifying rabbit muscle myosin from a crude extract by ADP affinity 

chromatography, EDTA (5 mM) is included in the buffer since most other 

ATP/ADP-utilizing enzymes require a divalent cation to express activity (Trayer & 

Trayer 1975). Using the same buffer, pig platelet myosin is purified from a crude 

extract on an ADP column (Trayer & Trayer 1975). Similar results are obtained by 

replacing EDTA with Mg2+ (5 mM). When purifying kinases on ADP columns, no 

EDTA is added in buffers (Trayer et al. 1974; Trayer & Trayer 1974). ADP 

columns are also used to purify Acanthamoeba myosins I (Maruta et al. 1979; 

Lynch et al. 1989) and II (Maruta & Korn 1977a) with EDTA (1 or 2 mM) in 

elution buffers. Nevertheless, Dicryostelium myosin I has been purified on an ADP 

column using buffers that do not contain either EDT A or Mg2+ (Cote et al. 1985). 

Another type of ADP-agarose in which ADP is linked to agarose from its 

phosphate via a spacer is used for the affinity chromatography of nicotinamide 

nucleotide-dependent dehydrogenases such as lactate dehydrogenase (Trayer et al. 

1974; Trayer 1974). The dehydrogenase is eluted by low concentrations of a 



82 

specific displacing ion, NAO+, but not by KCl. Lactate dehydrogenase also binds to 

N6-ADP-Sepharose and can be eluted by AMP but not by ATP (Trayer & Trayer 

1974). However, AMP-agarose is mainly used in isolating these dehydrogenases 

(Scouten 1981 ). A TP-analogue-agarose affinity chromatography has been used in 

purifying Na+, K+-A TPase from bovine brain tissue (Anderton et al. 1974). 

Chromatography of mung bean protein fraction on ADP-agarose columns 

separated the 165 kDa polypeptide from the 155 kDa and 110 kDa polypeptides 

recognized by anti-pan myosin. The 165 kDa polypeptide bound to the column 

while the other two polypeptides were obtained in the unbound fraction, 

demonstrating that only the 165 kDa polypeptide could be an ADP/ATP-utilizing 

enzyme. The binding and elution of the 165 kDa polypeptide in the presence of 

EDTA was consistent with a K+-EDTA-ATPase activity rather than a kinase, most 

of which require Mg2+ and/or Ca2+ for activity (Trayer 1974; Trayer et al. 1974; 

Polya & Davies 1983; Polya et al. 1983; Davies & Polya 1983). 

The 155 kDa polypeptide contained the sequence of amino acids which is 

recognized by anti-pan myosin antibody. The 110 kDa polypeptide that was thought 

to be a proteolytic fragment of the 165 or 155 kDa polypeptide did not bind to the 

ADP-agarose column indicating that it did not contain the required parts of the S-1 

of the myosin heavy chain. The epitope of anti-pan myosin lies on the tail of muscle 

myosin heavy chain (Tang et al. 1989a). The 110 kDa polypeptide could be the tail 

part of the 165 kDa polypeptide since this would not bind ADP. However, the 110 

kDa polypeptide could be a proteolytic fragment of the 155 kDa polypeptide that 

itself does not bind ADP-agarose. 

3.4.4 Other types of chromatography 

Gel filtration can differentiate myosin II and I due to their substantially 

different Mr. The Mr of muscle and nonmuscle myosin II is about 400-550 kDa 

(Taylor & Condeelis 1979; Fukui et al. 1989) while that of the single-headed, 

globular myosin I has remarkably lower Mr than myosin II. Three isoforms of 
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Acanthamoeba myosin I have the native Mr of about 180 kDa, or 162 kDa (IC) 

(Maruta et al. 1979; Lynch et al. 1989). 

In gel filtration, muscle myosin eluted ahead of thyroglobulin even though its 

Mr (470 kDa) is less than that of thyroglobulin (669 kDa). This is because myosin 

II is a two-headed, highly asymmetric protein with a long coiled-coil tail ( 1.2), 

giving it a higher Stokes radius than a globular protein of the same Mr. The 165 

kDa polypeptide eluted ahead of the rabbit muscle myosin, consistent with it too 

being oligomeric and/or highly asymmetric. Such properties are characteristic of 

myosins II and probably some unconventional myosins such as brain p 190 that 

form dimers (Cheney & Mooseker 1992; 1.3). They are not characteristic of 

myosins I (1.3). Such properties are not, however, diagnostic for myosin. 

Several differences were observed between the chromatographic behaviour of 

the putative myosin heavy chain from mung bean and the behaviour of myosin 

heavy chains of muscle/nonmuscle myosins (Pollard 1982b ). These include: 

1. The failure of the 165 kDa polypeptide to bind the anion exchanger DE52 

following desalting of the CNI4)iS04 fraction although the 165 kDa polypeptide in 

crude extracts bound DE52. When the DE52-bound 165 kDa polypeptide was 

eluted and subsequently fractionated with CNI4)iS04, it again bound DE52. This 

suggested that an extract-dependent modification of the putative myosin occurred in 

the 0-45% (Nl4)2S04 fraction by a factor which was separated from the 165 kDa 

polypeptide when DE52 was added directly to crude extracts and the polypeptide 

eluted with salt. The modification could change the net charge on the molecule of 

the 165 kDa polypeptide. One possible explanation for such change may be due to 

different degrees of phosphorylation of the polypeptide. Since phosphorylation of 

myosin heavy or light chain widely regulates the actin-activated Mg2+_A TPase 

activities of nonmuscle myosins (1.7) and is also implicated in regulating the 

A TPase activities of plant myosins (1.8.4), NaF, a phosphatase inhibitor which has 

been used in several cases of nonmuscle myosin extraction and purification (Kato & 

Tonomura 1977; Turkina et al. 1987), was tested in fractionating the mung bean 
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165 kDa polypeptide. No matter whether the extraction buffer contained NaF or 

not, the 165 kDa polypeptide in a crude extract bound to DE52. When it was 

subsequently eluted and fractionated with (NH4)2S04, it bound again to DE52. 

However, the 165 kDa polypeptide in the 0-45% CNH4)2S04 fraction of a crude 

extract did not bind to DE52 (data not shown). Therefore, NaF had no effect on the 

binding of the 165 kDa polypeptide to DE52, and the nature of the modification 

remains unknown. 

2. The majority of the 165 kDa polypeptide did not bind novobiocin-Sepharose 

6B. Since novobiocin-Sepharose has only been used in purifying myosin from yeast 

(Watts et al. 1985), it may not be a versatile affinity medium to isolate myosin. 

3. The 165 kDa polypeptide did not bind to glutaraldehyde cross-linked F-actin 

coupled to Sepharose although rabbit muscle myosin was bound and eluted from 

the column with 3 mM ATP. F-actin columns prepared by Winstanley et al. (1977, 

1979) were originally used to purify muscle myosin fragments (but not myosins II) 

and the columns were equilibrated with low salt, 5 mM triethanolarnine-HCl buffer 

(pH 7 .5) in which myosin fragments (but not intact myosins II) are still soluble. 

Therefore, the 0.5 M KCl in the starting buffer which allowed some muscle myosin 

to bind in my experiment might be too high for the much smaller quantities of 

mung bean putative myosin to bind to the column in detectable amounts. It is also 

possible that any actin-binding site of the 165 kDa polypeptide was altered during 

extraction or was blocked by another protein(s). 

3.4.5 Conclusions 

The mung bean 165 kDa polypeptide was identified as a putative myosin heavy 

chain by irnmunoblotting. The distribution of the 165 kDa polypeptide and K+

EDTA-ATPase activity between (NH4)2S04 fractions indicated that the 

polypeptide at most accounted for a small fraction of total K+-EDTA-ATPase 

activity of the crude extract. The retention of the 165 kDa polypeptide on ADP

agarose in the presence of EDT A indicated that it was probably an A TPase. After 
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testing a range of chromatography media many of which have been successfully 

used to purify nonmuscle myosins from different species, only DE52 and ADP

agarose columns could reliably bind mung bean 165 kDa polypeptide. Only 

chromatography on ADP-agarose completely resolved the 165 kDa polypeptide 

from the 155 k.Da and 110 k.Da ones, the latter two being obtained in the unbound 

fraction. Therefore, DE52 and ADP-agarose were used in subsequent studies 

reported in Chapter 4 to isolate this polypeptide from mung bean. Gel filtration of 

the 165 kDa polypeptide excludes the possibility that it is a myosin I and is 

consistent with it being the heavy chain of an highly asymmetric myosin (II or 

unconventional). 



CHAPTER3 

FIGURES 



Fig. 3.1 Identification of putative myosin heavy chains of higher plants by 

immunoblotting with anti-pan myosin antibody. Putative myosin was 

extracted from seedlings of mung bean, wheat and pea with the extraction 

buffer (1-3, 5-8), or from those of mung bean with TCA solution (4). 

Proteins of crude extracts were resolved by 7% SOS-PAGE, and 

immunoblotted. Blots (1) and (2) were developed with peroxidase and 

the rest with alkaline phosphatase. (1) and (3), controls of mung bean 

extracts in which anti-pan myosin was replaced by 1 % BSA (w/v) in 

TBS-Tween buffer; (2), (4) and (5), mung bean, two polypeptide bands 

were detected: 165 kDa and 155 kDa; (6), wheat, 165 kDa band; (7), pea, 

160 kDa band; (8), rabbit skeletal muscle myosin, 205 kDa heavy chain 

band. 

Fig. 3.2 Extraction of putative myosin from mung bean with different 

buffers. (1) and (2), high ionic strength buffer; (3) and (4), sucrose 

buffer; (5) and (6), pyrophosphate buffer. Protein contents of crude 

extract loaded on the gel were: (1), (3), and (5), 20 µg; (2), (4), and (6), 

60 µg. Proteins were immunobloned with anti-pan myosin antibody. 

Fig. 3.5 (NH4)iS04 fractionation of mung bean crude extract. Mung bean 

crude extract was fractionated with (NH4)2S04 of 0-30%, 30-50%, 50-

70% and 70-90% saturation: (1)-(5), or of 0-45% saturation: (6) and (7). 

Desalted (NH4)2S04 fractions and the crude extract were resolved by 

SOS-PAGE and immunoblotted. (1)-(5), 30 µg of proteins were loaded, 

showing a 165 kDa band; (6) and (7), showing both 165 and 155 kDa 

bands. (1) and (6), crude extract; (2), 0-30% (NH4)2S04 fraction; (3), 

30-50%; (4), 50-70%; (5), 70-90%; (7), 0-45%. 
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Fig. 3.6 Effects of proteases on putative myosin heavy chain in mung bean 

crude extract. Mung bean putative myosin was extracted with the 

extraction buffer (A), or with buffer containing sucrose, 10 mM 

imidazole, pH 7.0, 1 mM OTT (B). Both crude extracts were kept at 0-

40C for Oh (Al, Bl), 9 h (A2, B2), 19 h (A3, B3), 24 h (A4, B4), 32 h 

(A5, B5), 42 h (A6, B6), 55 h (A7, B7), 65 h (A8, B8), and 72 h (A9, 

B9). All proteins were resolved by SOS-PAGE, and immunoblotted. 

Fig. 3.7 Effects of proteases on putative myosin heavy chain in desalted 0-

45% (NH4)2S04 fraction. The 0-45% (NH4)2S04 fraction of mung 

bean crude extract was desalted in 0.34 M sucrose, 10 mM imidazole, pH 

7 .0, 1 mM DTT. The desalted fraction was kept at 0-4 ·c for a series of 

time length: 0 h (1), 18 h (2), 30 h (3), 77 h (4), and 138 h (5). Protein 

samples were resolved by SDS-PAGE and immunoblotted. 

Fig. 3.8 Chromatography of mung bean crude extract on DES2. Mung bean 

crude extract was applied to a DE52 column, and proteins were eluted 

stepwise with 0.1, 0.4 and 0.6 NaCl. Eluates were examined by 

immunoblotting. (1), crude extract; (2), 0.1 M NaCl fraction; (3), 0.4 M 

fraction; (4), 0.6 M NaCl fraction. 
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Fig. 3.11 ADP-agarose chromatography of mung bean myosin fraction. 3 ml 

of the desalted 0-45% (NH4)2S04 fraction of the 0.4 M NaCl eluate 

from DE52 were applied to a column (1.6 x 2.1 cm) of ADP-agarose 

equilibrated with the starting buffer (0.6 M ammonium acetate, 2 mM 

sodium pyrophosphate, pH 6.5, 5 mM EDT A, 0.25 mM DTT). The 

column was eluted with 0.6 M NH4Cl, 2 mM sodium pyrophosphate, pH 

6.5, 5 mM EDTA, 0.25 mM DTT (fractions 20-28). Immunoblots of 

selected fractions are shown at the top (A). (1), 0-45% (NH4)2S04 

fraction applied; (2), flow-through fraction; (3), bound fraction of the 

column. 



• 3 ml 

eluate 

garose 

2 mM 

. The 

te, pH 

ts of 

0 
co 
N 

< 

A 

-165 
-155 

-110 

Mrx10-3 

1 2 3 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

Fraction number 



Fig. 3.12 Gel filtration of partially purified mung bean 165 kDa polypeptide 

on Sephacryl S-400. The column (2.6 x 46 cm) of Sephacryl S-400 was 

equilibrated with 0.04 M sodium pyrophosphate, pH 7.5, 0.001 rnM 

DTT. It was calibrated with rabbit skeletal muscle myosin (470 kDa) and 

thyroglobulin (669 kDa), and the void volume determined by 

hemocyanin. 5 ml (1.1 mg of protein) of the partially purified mung bean 

165 kDa polypeptide fraction were applied to the calibrated column. The 

void volume was 91.1 ml. The elution volumes (ml) of muscle myosin, 

thyroglobulin and mung bean 165 kDa polypeptide were: 104.6, 144.6 

and 92.1, respectively. Selected eluate fractions resolved by SOS-PAGE 

and stained with silver are shown at the top (A) and (B). (1), the partially 

purified 165 kDa polypeptide fraction applied to the Sephacryl S-400 

column. Corresponding elution volumes (ml) of the other fractions were: 

A (2), 26.1; A (3), 88.7; A (4), 92.1; A (5), 95.5; A (6), 119.7; A (7), 

123.1; A (8), 130; B (2), 133.4; B (3), 136.9; B (4), 138.6; B (5), 171.3; 

B (6), 208.7; B (7), 212.1; and B (8), 215.5. Note the prominent 165 kDa 

band in lanes (4) and (5). 
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CHAPTER4 

PARTIAL PURIFICATION OF THE 165 kDa PUTATIVE MYOSIN HEAVY 

CHAIN FROM MUNG BEAN AND ANALYSIS OF ATPase ACTIVITIES 

DURING PURIFICATION 

4.1 INTRODUCTION 

There are substantial differences in A TPase activities of various nonmuscle 

myosins according to published results (Korn 1978; Taylor & Condeelis 1979). In 

muscle and nonmuscle cells, myosins I express maximal A TPase activities with 

K+-EDTA, while activities of myosins II are usually maximal in K+-EDTA when 

compared to ca2+ but the activities of some myosins II are the reverse (Clark & 

Spudich 1974; Korn 1982; Cote et al. 1985; Kohama et al. 1983, 1986). Most 

Mg2+_A TPase activities are activated by F-actin, but some are not. It seems likely 

that the ability to interact enzymatically with actin is common to all myosins, but 

may not be preserved in purification procedures developed by monitoring some 

other more stable property of the molecule (Clark & Spudich 1974). 

K+-EDTA- or Ca2+_A TPase activity is usually used to monitor the purification 

of plant myosins or putative myosin. For plant myosins (l.8.1) purified from 

Nitella (Kato & Tonomura 1977) and tomato (Vahey & Scordilis 1980; Vahey et 

al. 1982), and putative myosins partially purified from onion (Pesacreta et al. 1991) 

and preliminarily fractionated from pea (Ma & Yen 1989), A TPase activities are 

activated maximally by EDTA, partially by ca2+, and are lowest in the presence of 

Mg2+, under high ionic strength conditions. The Mg2+_A TPase activities are 

activated by rabbit skeletal muscle F-actin at low ionic strength. Mg2+_A TPase of 

myosin from Herac/eum sosnowskyi (Turkina et al. 1987) is activated by F-actin at 

low ionic strength. 

The partially purified Egeria myosin, however, exhibits higher ca2+ _A TPase 

activity than Mg2+-ATPase activity, and its K+-EDTA-ATPase activity is the 

lowest (Ohsuka & Inoue 1979). There is no inhibition of myosin A TPase activity 
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by Mg2+ at high ionic strength. At low ionic strength, Egeria myosin binds to 

skeletal muscle F-actin but its Mg2+ _A TPase activity is not affected by F-actin, 

which demonstrates that the actin-activated A TPase activity of some plant myosin 

may not be detected during purification. 

After examining the chromatographic behaviour of the mung bean 165 kDa 

putative myosin heavy chain in Chapter 3, a scheme for partially purifying the 165 

kDa polypeptide myosin heavy chain was developed and monitored by 

immunoblotting with anti-pan myosin in this chapter. A TPase activities were also 

examined during the partial purification, and the 165 kDa polypeptide was shown at 

most to account for a very small fraction of the total K+-EDTA-ATPase activity of 

mung bean extract. The partially purified 165 kDa polypeptide fraction had K+

EDTA-ATPase activity but did not exhibit F-actin-activated Mg2+_ATPase 

activity. 
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4.2 MATERIALS AND METHODS 

4.2.1 Partial purification of the mung bean 165 kDa polypeptide 

monitored by immunoblotting 

Mung bean seedlings (900 g) were extracted with extraction buffer [2.5.1 (ii)]. 

The crude extract was mixed (batch processing) with DE52 (370-400 ml) 

equilibrated with starting buffer (0.34 M sucrose, 10 mM imidazole, pH 7.0, 1 mM 

DTT) and left for about 25 min with gentle stirring with a glass stirring bar. The 

slurry was filtered on a Buchner funnel and washed with 8 liters of the starting 

buffer containing 0.1 M NaCl until the A280 of the filtrate declined to 0.12. The 

cellulose cake was resuspended in a small volume of 0.1 M NaCl buffer, and 

poured into a glass column ( 4. 9 x 36 cm). 

The DE52 column was eluted with 0.4 M NaCl in the starting buffer. The peak 

protein fractions (A280: 0.2-0.476) were pooled and fractionated with 0-45% 

(NH4)2S04. Following centrifugation, the 0-45% pellet was desalted on a column 

(4.9 x 32.8 cm) of Sephadex G-25 equilibrated with the starting buffer (0.34 M 

sucrose, 10 mM imidazole, pH 7 .0, 1 mM OTT), and protein fractions were pooled 

and where necessary concentrated to s 200 ml by dialyzing against Aquacide II 

powder for 1.5 h. Desalted protein was applied to a second DE52 column (2.6 x 19 

cm) equilibrated with the starting buffer (0.34 M sucrose, 10 mM imidazole, pH 

7.0, 1 mM DTT). The column was eluted with 500 ml of a 0-0.4 M NaCl gradient 

in the starting buffer, at a flow rate of 55 ml/h. The 165 kDa polypeptide monitored 

by immunoblotting, was eluted by 0.138-0.158 M NaCl. These fractions (26 ml) 

were pooled and concentrated to 16 ml by dialyzing against Aquacide II for 2 h. 

The concentrated fraction was desalted by dialyzing overnight against 2.5 liter of 

the starting buffer. The dialyzed material was applied at a flow rate of 10 ml/h to a 

column (1.6 x 2.5 cm) of ADP-agarose equilibrated with the starting buffer (0.34 M 

sucrose, 10 mM imidazole, pH 7.0, 1 mM DTT). Chromatography was stopped for 

2 h before washing. Protein was eluted with 100 ml of a 0-0.8 M KCl gradient, and 

then 1 M KCl in the starting buffer, at a flow rate of 50 ml/h. The 165 kDa 
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polypeptide was eluted in a peak by 0.29-0.43 M KCl, and the peak fractions were 

pooled. The pooled fractions (16.9 ml) were concentrated to 3.2 ml by ctialyzing 

against Aquacide II, and then desalted by ctialyzing against 3 liter of the starting 

buffer. A typical procedure for the partial purification of the 165 kDa polypeptide is 

summarized in Fig. 4.1. 



900 g of mung bean 

I extraction 

Crude extract 

I DE52, batch processing 
____ __._ ___ I 

Unbound fraction DE52 cellulose 

Flow-through 

washed with 0.1 M NaCl, loaded into a column 

0.4 M NaCl elution 

Protein fraction 

I 0-45% (NH4)2S04 fractionation 

0-45% pellet 

desalted, applied to DE52 column 

0-0.4 M NaCl elution 

0.138-0.158 M NaCl fraction 

desalted, concentrated 

applied to ADP-agarose column 

0-0.8 M KCl elution 

0.29-0.43 M KCl fraction 

concentrated, desalted 

Partially purified 165 kDa polypeptide fraction 
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Fig. 4.1 Flow diagram for the partial purification of the mung bean 165 kDa 

polypeptide 
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4.2.2 Analysis of A TPase activities during purification 

A TPase activity was monitored throughout the purification of the mung bean 

165 kDa polypeptide. K+-EDTA-, Ca2+_, and Mg2+_A TPase activities were 

assayed (2.14.1) in pooled fractions. Additionally, actin-activated Mg2+_ATPase 

activity was assayed (2.14.2) in the final 165 kDa fraction from the ADP-agarose 

column. During column chromatography on DE52 and ADP-agarose, only K+

EDT A- and Ca2+ _A TPase activities were monitored. All pooled fractions, 

including the crude extract and unbound fraction from the DE52 batch processing, 

were desalted on Sephadex G-25 PD-10 columns with the staning buffer (0.34 M 

sucrose, 10 mM imidazole, pH 7.0, 1 mM DTT) before ATPase assay. 

The whole experiment was divided into three parts. One part was the partial 

purification of the 165 kDa polypeptide. The other two parts were fractionation of 

the 45-85% (N84)2S04 fraction of the 0.4 M NaCl eluate from DE52 batch 

processing, and of the unbound fraction from DE52 batch processing. The 

experiment, excluding the purification of the 165 kDa polypeptide, is summarized 

in Fig. 4.2. 

(i) Partial purification of the mung bean 165 kDa polypeptide 

The 165 kDa polypeptide was partially purified from mung bean (850 g) as in 

4.2.1 except that washing and elution of proteins from DE52 columns were slightly 

different. After mixing the crude extract with DE52, unbound proteins were filtered 

through and the cellulose cake was washed with 1 liter of the starting buffer (0.34 

M sucrose, 10 mM imidazole, pH 7 .0, lmM DTT). After loading the cellulose into 

a column, protein was eluted with 1 liter steps of 0.05 M and 0.4 M NaCl in the 

starting buffer. Peak fractions of A TPase activities of the 0.4 M NaCl eluate were 

pooled. The pooled fraction (156 ml) was fractionated with (NH4)2S04 of 0-45% 

and 45-85% saturation. The desalted 0-45% fraction (163 ml) was applied to a 

column (2.6 x 18 cm) of DE52 and protein eluted with a 0-0.3 M NaCl gradient in 

the starting buffer, at a flow rate of 58 ml/h. Peak fractions of A TPase activities, 

eluted by 0.095-0.139 M NaCl, were pooled. The pooled fraction (71 ml) was then 
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precipitated with 0-45% (NH4)2S04, desalted (26.3 ml) and applied to an ADP

agarose column (1.6 x 2.5 cm). Protein was eluted with a 0-0.8 M KCl gradient in 

the starting buffer. The 165 kDa polypeptide was eluted in a peak between 0.076 M 

and 0.13 M KCl, and the peak fractions were pooled. 

(ii) Fractionation of the 45-85% (NH4)iS04 fraction of the 0.4 M NaCl 

eluate 

The desalted 45-85% (NH4)2S04 fraction (29.5 ml) was applied to a column 

(2.6 x 7.8 cm) of DE52 equilibrated with the starting buffer (0.34 M sucrose, 10 

mM imidazole, pH 7.0, lmM OTT). The column was eluted with 250 ml of 0-0.4 

M NaCl gradient, then 0.6 M and 1 M NaCl in the starting buffer. Peak fractions of 

ATPase activities eluted by 0.098-0.167M NaCl were pooled (46.8 ml). 

(iii) Fractionation of the unbound fraction of the DE52 batch processing 

The unbound fraction (1300 ml) of the DE52 batch processing was fractionated 

with 0-85% (NH4)2S04. The 0-85% pellet was desalted on a column (4.9 x 56 cm) 

of Sephadex G-25 equilibrated with the starting buffer (0.34 M sucrose, 10 mM 

imidazole, pH 7 .0, lmM OTT). The desalted fraction (345 ml) was applied to a 

column (2.6 x 7.9 cm) of phosphocellulose equilibrated with the starting buffer. 

Flow-through and bound fractions of the column were fractionated separately as 

described below. 

(a) Flow-through fraction 

The flow-through fraction (345 ml) was applied to a column (2.6 x 6.4 cm) of 

hydroxylapatite equilibrated with the starting buffer. The flow-through fractions 

were collected. 

(b) Bound fraction 

The phosphocellulose column was eluted with 250 ml of a 0-0.5 M NaCl 

gradient and then 1 M NaCl in the starting buffer, at a flow rate of 90 ml/h. Peak 

fractions of A TPase activities were eluted by 0.095-0.19 M NaCl. The peak 

fractions (51 ml) were pooled and concentrated to 6.4 ml with the salt concentration 

diluted by half through ultrafiltration. The sample (6.4 ml) was applied to a column 
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(1.6 x 2.5 cm) of ADP-agarose equilibrated with the starting buffer (0.34 M 

sucrose, 10 mM imidazole, pH 7.0, lmM DTI). The column was eluted with 100 

ml of 0-0.8 M KCl gradient in the starting buffer. Proteins were eluted in a peak by 

0.17-0.25 M KCl. 
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Fig. 4.2 Flow diagram for fractionation of two fractions unused in the partial purification of the mung bean 165 kDa polypeptide 
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4.3 RESULTS 

4.3.1 Partial purification of the mung bean 165 kDa polypeptide 

monitored by immunoblotting 

In batch processing of the crude extract with DE52, most of the 165 k.Da 

polypeptide bound to the cellulose within about 25 min (Fig. 4.5A, 3). In the 

unbound fraction, the 155 k.Da polypeptide was often more strongly detected on 

immunoblots than the 165 k.Da band which was hardly seen in this experiment (Fig. 

4.5A, 2). All of the 165 kDa polypeptide (with the 155 kDa polypeptide) bound to 

DE52 over 1 h batch processing or if the crude extract was applied to a DE52 

column (data not shown). To facilitate the rapid fractionation of the crude extract 

(3.3.4), batch processing of 20-30 min was employed in large-scale purification. 

All proteins in the desalted 0-45% (NH4)2S04 fraction of the 0.4 M NaCl 

eluate from the first DE52 column bound to the second DE52 column (Fig. 4.3). 

The 165 kDa polypeptide was eluted mainly by 0.138-0.158 M NaCl (fractions 

452.1 ml to 478.1 ml were pooled for further purification) as shown by 

immunoblotting (Fig. 4.3, A, lanes 2-5), while the 155 kDa polypeptide was eluted 

by 0.152-0.18 M NaCl (fractions 470.1 ml to 505 ml) (Fig. 4.3A, lanes 4-8). 

Monitored by Ponceau stain of the blot, the 165 kDa polypeptide was not well 

resolved from other proteins on the second DE52 column (Fig. 4.5B, lane 5) in 

which all the column-bound proteins were eluted in 2 peaks (Fig. 4.3). 

The bulk of the proteins and all the 155 kDa polypeptide flowed through the 

ADP-agarose column (Fig. 4.4A, lanes 3 and 4; Fig. 4.5A, lanes 6 and 7) while the 

165 kDa protein bound (Fig. 4.4A, lanes 5-8; Fig. 4.5A, lane 8). The 165 kDa 

polypeptide was eluted in a small protein peak by 0.29-0.43 M KCl (fractions 116.4 

ml to 132 ml), and the peak fractions were pooled. No protein was further eluted by 

1 M KCl (Fig. 4.4). The 165 kDa polypeptide was enriched by ADP-agarose 

affinity chromatography compared with the composition of other fractions on 

immunoblot (Fig. 4.5 A and B, lane 8), but this fraction was still contaminated with 

other proteins including a 100 kDa polypeptide which did not react with anti-pan 
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myosin and did not always appeared as prominent as in this experiment. However, a 

0-0.8 M KCI gradient could not separate the 165 kDa polypeptide from these 

proteins, and all proteins eluted in one peak (Fig. 4.4). Step elution by 50 mM ATP 

in the sucrose starting buffer was tried. ATP eluted the 165 kDa polypeptide, but 

did not resolve the 165 kDa polypeptide from other proteins (data not shown). 

The total protein in the final ADP-agarose fraction containing the 165 kDa 

polypeptide fraction represented 0.05% of the total protein in the initial extract (or 

1.0 mg protein/100 g tissue) (Table 4.1, 7). Most proteins were removed by the 

DE52 batch processing and 0.4 M NaCl elution which had a yield of 24.9% (Table 

4.1, 2). In the fractions retained from the second DE52 column and from the ADP

agarose, 6.9% and 5.7% of the proteins applied were recovered (Table 4.1, 5 and 

7), the lowest protein recoveries along the whole purification procedure. 



Table 4.1 Partial purification of the mung bean 165 kDa polypeptide 

Protein 

Fraction Vol (ml) Total (mg) Yield (%)a 

1. Crude extract 1330 1862 

2. 1st DE52, 0.4 M NaCl 1030 463.5 24.9 

3. 0-45% (NH4)2S04, desalted 268 318.9 17.1 

4. 0-45% (NH4)2S04, desalted, concentrated 168 295.7 15.9 

5. 2nd DE52, 0.138-0.158 M NaCl 26 20.5 1.1 

6. 2nd DE52, 0.138-0.158 M NaCl, desalted, concentrated 16 16.2 0.9 

7. ADP-agarose, 0.29-0.43 M KCl 3.2 0.92 0.05 

a. Protein yield was the percentage of total protein amount of the crude extract in a protein fraction. 

b. Recovery from previous step was the percentage of protein in the previous fraction that was recovered in the current fraction . 

recovery from previous 

step (%)b 

24.9 

68.8 

92.7 

6.9 

79 

5.7 

98 
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4.3.2 Analysis of A TPase activities during purification of the 165 kDa 

polypeptide 

The procedure for the partial purification of the 165 kDa polypeptide described 

in 4.3.1 was developed by immunoblotting. However, one of the most fundamental 

criteria for identifying a myosin is its actin-activated Mg2+ _A TPase activity at low 

ionic strength. As myosin in vitro usually expresses high level of K+-EDTA- or 

ca2+ _A TPase activity at high ionic strength, such A TPase assays are normally used 

to monitor the purification of myosin. In order to see whether the partially purified 

165 kDa polypeptide monitored by immunoblotting retained the A TPase activities 

characteristic of myosin, A TPase activities were monitored together with 

immunoblotting during its purification. 

After the DE52 batch processing of mung bean crude extract, most of the 165 

kDa polypeptide bound to the cellulose, but some remained in the unbound fraction 

(data not shown). The cellulose cake was transferred to a column after being 

washed with 1 liter of the starting buffer to remove unbound proteins, and the 

DE52 column was eluted with 50 mM NaCl. Proteins were eluted in a low and 

broad peak by 50 mM NaCl. There were several low specific A TPase activities in 

the eluate fractions (Fig. 4.6), and no 165 kDa polypeptide could be detected by 

immunoblotting (data not shown). A high protein peak was eluted by 0.4 M NaCl, 

and pea.ks of both K+-EDTA- and ca2+_A TPase activities were eluted just in front 

of the first protein peak (Fig. 4.7). The peak of K+-EDTA-ATPase activity was 

slightly higher than that of ca2+_A TPase activity. Instead of pooling all the 

protein-rich fractions as described in 4.2.1, only fractions containing the peak of 

A TPase activities (from fractions 46 to 66) were pooled. By immunoblotting, the 

165 kDa polypeptide was mainly eluted in fractions from 46 to 61 (data not shown). 

The pooled fraction was fractionated with 0-45% (NH4)2S04, desalted, and 

applied to the second DE52 column. 
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The 0-0.3 M NaCl elution profile (Fig. 4.8) of proteins from the second DE52 

column was similar to that described in 4.3.1 (Fig. 4.3) except that there was no 

high A280 peak following the first protein peak. One peak of A TPase activity, with 

higher K+-EDTA-ATPase activity than Ca2+_ATPase activity was eluted by 0.095-

0.130 M NaCl (fractions 397.7 ml to 457.2 ml) (Fig. 4.8). By immunoblotting, the 

165 kDa polypeptide was mainly eluted by 0.126-0.139 M NaCl (fractions 450.2 ml 

to 471 ml) (Fig. 4.8A, lanes 4-6), and the 155 kDa polypeptide by 0.147-0.155 M 

NaCl (fractions 484.6 ml to 498.3 ml) (Fig. 4.8A, lanes 8-9). The 110 kDa 

polypeptide which was considered to be a proteolytic fragment of the 165 kDa or 

155 kDa polypeptides (3.4.1; 3.4.3) was eluted with the 155 kDa polypeptide, and 

was strongly detected in this particular experiment (Fig. 4.8A, lanes 7-9). 

During the chromatography on the second DE52 column, the peak of A TPase 

activities did not coincide exactly with that of the 165 kDa polypeptide. The 165 

kDa polypeptide was mainly eluted in the tail of the A TPase activity peak. 

Therefore, fractions from 397.7 ml through 471 ml (0.095-0.139 M NaCl) covering 

both the A TPase activity peak and the 165 kDa protein fractions were pooled. The 

pooled fraction was precipitated by 0-45% (Nl4)2S04 to decrease the volume and 

the desalted 0-45% fraction applied to the ADP-agarose column. 

The elution profile (Fig. 4.9) of proteins from the ADP-agarose column was 

similar to that described in 4.3.1 (Fig. 4.4). The 165 kDa polypeptide bound to the 

column and was eluted in a small protein peak from fractions 221.2 ml to 227. 9 ml 

by 0.076-0.13 M KCl (Fig. 4.9, A; C, lanes 4-9). The peak fractions were pooled as 

the partially purified 165 kDa polypeptide fraction. The 165 kDa polypeptide could 

be clearly detected by immunoblotting from fractions 222.5 ml to 225.2 ml (Fig. 

4.9B, 5-7). K+-EDTA- and ca2+-ATPase activities were very low and scattered the 

flow-through and bound fractions (Fig. 4.9; compare activities with Fig. 4.8). From 

the Ponceau-stained blot, the 165 kDa polypeptide was enriched in the ADP

agarose bound fraction, but was still contaminated with many other proteins 

including the 100 kDa polypeptide (Fig. 4.9C, 5-8). The total protein yield of the 
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ADP-agarose purified 165 kDa polypeptide fraction in this experiment was 0.02% 

(or 0.041 mg/100 g tissues) (Table 4.2, 6). 

From Table 4.2, it can be seen that the specific activities of K+-EDTA-, ca2+_ 

and Mg2+_A TPases were decreasing along the purification. Usually, the specific 

activity of K+-EDTA-ATPase was the highest, as shown in Table 4.2. Therefore, 

K+-EDTA-ATPase activity was mainly discussed in this experiment. 

The specific activity of K+-EDTA-ATPase of the crude extract, 0.175 

µmoVmin/mg, was the highest among all fractions. It decreased greatly, about 10-

fold, after the DE52 batch processing and 0.4 M NaCl elution (0.016 

µmoVmin/mg), and the yield of the K+-EDTA-ATPase activity at this step was 

only 2.5% (Table 4.2, 2). At later purification steps, the specific activity of K+

EDTA-A TPase declined further (Table 4.2, 3-5) but increased at the final ADP

agarose step (Table 4.2, 6). The specific activity of K+-EDTA-A TPase of the ADP

agarose purified 165 kDa polypeptide fraction was 0.016 µmoVmin/mg which was 

higher than those of three previous steps, and was about 7 times that of the 

(Nf4)2S04 fraction applied to ADP-agarose (Table 4.2, 6). However, only 0.58% 

of the protein applied to the ADP column was recovered in the bound fraction 

(Table 4.2, 6) and part of the K+-EDTA-ATPase activity flowed through the 

column (Fig. 4.9). Therefore, only 6% of the K+-EDTA-ATPase activity applied 

was recovered in the ADP-agarose fraction (Table 4.2, 6). The high specific activity 

of Mg2+_ATPase of the ADP-agarose bound fraction in this experiment (0.064 

µmoVmin/mg) was unusual since there was no Mg2+_A TPase activity in the 

preceding two fractions and usually Mg2+-ATPase activity was lower than K+

EDTA-A TPase activity. However, no actin activation of the Mg2+_A TPase activity 

at low ionic strength could be detected in the final ADP-agarose fraction (Table 4.2, 

6). 

The yield of K+-EDTA-ATPase activity in the partially purified 165 kDa 

polypeptide fraction was very low, only 0.0014% of the initial activity (Table 4.2, 

6). Both the total and specific activities of K+-EDTA-ATPase decreased 
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dramatically after the DE52 batch processing and 0.4 M NaCl elution (Table 4.2, 

2) . 



Table 4.2 ATPase activities during the partial purification the mung bean 165 kDa polypeptide. 

Protein A TPase activill'._ 

K+-EDTA-ATP Ca2+_ATP. 

Fraction Vol Total Yield Yield Total Specific Total Specific 

(ml) (mg) (%) (%) J'IIIOVmiD J'IIIOVmin/mg J'IIIOVmin J'IIIOVmin/mg 

1. Crude extract 1338 2369.6 100 100 414.7 0.175 225.1 0.095 

2. 1st DE52, 0.4 M NaCl 156 668 28.2 2.5 10.7 0.016 9.4 0.014 

3. 0-45% (NH4hS04, 

desalted 163 414 17.5 0.6 2.4 0.0059 2.0 0.0049 

4. 2nd DE52, 0.095-139M 

NaCl 72 186.7 7.9 0.2 1.0 0.0052 0.9 0.0047 

5. 0-45% (NH4)iS04, 

desalted 26.3 59.9 2.5 0.02 0.1 0.0022 0.2 0.0029 

6. ADP-agarose, 0.076-

0.13 M NaCl 8.1 0.35 0.02 0.0014 0.006 0.016 0 0 

Protein yield was the percentage of tolal protein amount of the crude extract in a protein fraction. 

Activity yield was the percentage of ATPase activity of the crude extract in a protein fraction. 

Mg2+_ATP 

Total Specific 

J'IIIOVmiD J'IIIOVminlmg 

170.6 0.072 

7.3 0.011 

1.9 0.0047 

0 0 

0 0 

0.02 0.064 

A . . led Mg2+_ATP 

- actin +actin 

J'IIIOVminlmg µmoVminlmg activation 

. . . 

. . . 

. . . 

. . . 

. . . 

0.030 0.026 0 

I05 



Table 4.3 A TPase activities of unused fractions from the partial purification of the mung bean 165 kDa polypeptide. 

Protein A TPase activi_!y 
Fraction K+-EDTA-A TPase ea2+_ATPase Mg2+_ATPase 

Vol Total Yield Yield Total Specific Total Specific Total Specific 
A. (ml) (mg) (%) (%) µmoVmin µmoVmin/mg µmoVmin µmoVmin/mg µmoVmin µmoVmin/mg 

1. Crude extract 1338 2369.6 100 100 414.7 0.175 225.1 0.095 170.6 0.072 

2. 45-85% (NH4hS04, desalted 29.5 81 3.4 0.5 2.2 0.027 1.6 0.02 2.0 0.024 

3. 2nd DE52, 0.098-0.167 M NaCl 46.8 52.2 2.2 0.4 1.8 0.034 1.6 0.031 1.4 0.027 

B. 

2. 1st DE52, unbound fraction 1300 934.7 39.4 62.9 260.8 0.279 145.8 0.)56 108.4 0.116 

3. 0-85% (NH4hS04 , desalted 345 659 29.3 55.1 228.7 0.347 187.8 0.285 160.1 0.243 

4. Phosphocellulose, flow-through 345 532 22.5 40.8 169.2 0.318 127.1 0.239 119.2 0.224 

5. Hydroxylapatitc, flow-through 337 466.1 19.7 42 174.3 0.374 111.9 0.24 105.3 0.226 

6. Phosphocellulose, 0.095-0.19 M NaCl 51 12.1 0.5 0.6 2.6 0.218 1.5 0.127 1.2 0.096 

Definitions of yields of protein and A TPase activity were the same as described in Table 4.1 . 

A. Fractionation of the supernatant of 0.4 M NaCl fraction after 0-45% (~)iS04 precipitation. 

B. Fractionation of the unbound fraction of DE52 batch processing. 
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4.3.3 ATPase activities in other fractions and attempted purification of a 

K+-EDTA-ATPase 

During the purification of the mung bean 165 kDa polypeptide using 

monitoring by immunoblotting, most of the A TPase activities were lost, especially 

after the DE52 batch processing and 0.4 M NaCl elution (4.3.2). To trace the lost 

A TPase activity, other fractions unused in the purification were fractionated and 

monitored for A TPase to see whether any protein with the appropriate A TPase 

activity for a myosin could be identified. 

When the 0.4 M NaCl fraction from the first DE52 column was fractionated 

with 0-45% and 0-85% (NH4)2S04, slightly more K+-EDTA-ATPase activity was 

recovered in the 0-45% fraction (yield: 0.6%; Table 4.2, 3) than the 45-85% 

fraction (yield: 0.5%; Table 4.3A, 2). However, the 45-85% fraction had a K+

EDTA-ATPase specific activity of 0.027 µmoVmin/mg (Table 4.3A, 2) which was 

about 4.6 times that of the 0-45% fraction containing most of the 165 kDa 

polypeptide (Table 4.2, 3). Proteins of the desalted 45-85% fraction all bound to the 

second DE52 column. Peaks of both K+-EDTA-ATPase activity (peak top: 74.1 

nmoVmin/ml) and ca2+_A TPase activity (peak top: 78.8 nmoVmin/ml) which were 

slightly in front of the protein peak (A280 of peak top: 1.71) were eluted by 0.098-

0.167 M NaCl. No protein was further eluted by 0.6 Mand 1 M NaCl (data not 

shown). The pooled peak fractions of ATPase activities had a K+-EDTA-ATPase 

activity of 0.034 µmoVmin/mg (Table 4.3A, 3). However, no proteins reacting with 

anti-pan myosin antibody could be detected by immunoblotting in either the 45-

85% <NH4)2S04 fraction or the pooled DE52 fraction. The fact that A TPase 

activities in the 45-85% fraction were higher than those in the 0-45% fraction has 

been discussed before (3.3.3; 3.4.2) 

During the purification of the mung bean 165 kDa polypeptide, a small amount 

of the 165 kDa polypeptide did not bind to DE52 after the batch processing, and 

62.9% of the initial K+-EDTA-ATPase activity in the crude extract was recovered 

in the unbound fraction (Table 4.3B, 2). The specific activities of the K+-EDTA-, 
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ca2+_, and Mg2+_A TPases of the unbound fraction were higher than those of the 

crude extract. Most A TPase activities in the unbound fraction were recovered in its 

0-85% (NI4)2S04 fraction (Table 4.3B, 3). The majority of proteins, together 

with most A TPase activities of the desalted 0-85% fraction flowed through a 

phosphocellulose column. 40.8% of the K+-EDTA-ATPase activity was recovered 

in the flow-through fraction (Table 4.3B, 4). Only small amounts of proteins bound 

to the column and were eluted in a small peak (A2go of peak top: 0.57) by 0.095-

0.19 M NaCl, and no proteins were eluted further by 1 M NaCl (data not shown). 

The eluate fractions also contained a peak of K+-EDTA-ATPase activity (peak top: 

112.6 nmol/min/ml) and Ca2+_A TPase activity (peak top: 85.6 nmol/min/ml). But 

only 0.6% of the K+-EDTA-ATPase activity was recovered in the bound fraction 

from the phosphocellulose (Table 4.3B, 6). By immunoblotting, the 165 kDa 

polypeptide that remained in the unbound fraction of DE52 batch processing could 

be detected only weakly in the flow-through fraction of phosphocellulose (data not 

shown). 

The flow-through fraction from the phosphocellulose column was applied to a 

column of hydroxylapatite, and most proteins with high A TPase activities flowed 

through (Table 4.3B, 5). The 165 k.Da band was weakly detected in the flow

through fraction. Since the fraction bound to phosphocellulose still had high K+ -

EDTA-ATPase activity (0.218 µmol/min/mg) (Table 4.3B, 6), it was applied to an 

ADP-agarose column. 

Slightly more than half of the proteins bound to the ADP-agarose column and 

were eluted in a peak (A280 of peak top: 0.728), together with a small peak of K+

EDTA-ATPase activity (peak top: 3.0 nmol/min/mg), by 0.17-0.25 M KCL No 

Ca2+_A TPase activity was present in the bound fraction. A peak of K+-EDTA

A TPase activity (peak top: 136.2 nmol/min/ml) and Ca2+ _A TPase activity (peak 

top: 100.7 nmol/min/ml) was present in the flow-through fractions. No 165 kDa 

polypeptide was detected by immunoblotting in either the flow-through or bound 

fractions. No HMW proteins could be detected on either a Ponceau-stained blot or a 
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Coomassie blue-stained gel. The flow-through fractions contained proteins of< 97 

kDa, and the bound fractions of< 80 kDa (data not shown). No particular protein 

seemed to be enriched in the bound fractions. 
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4.4 DISCUSSION 

4.4.1 Partial purification of the 165 kDa polypeptide 

The 165 kDa polypeptide was partially purified from mung bean, and was 

completely separated from the 155 and 110 kDa polypeptides by ADP-agarose 

affinity chromatography. The 165 kDa polypeptide was still contaminated with 

other proteins (Fig. 4.58, 8; Fig. 4.9C, 4-9) so that its purification was far from 

complete. Mung bean protein sample was chromatographed on ADP-agarose in the 

absence of EDTA. As discussed in 3.4.3, EDTA inhibits most muscle ATP/ADP

binding enzymes which require a divalent cation to express activity and is used in 

purifying some nonmuscle myosins on ADP column. The binding of the 165 kDa 

polypeptide to ADP-agarose was unaffected by the presence or absence of EDT A, 

consistent with it having EDTA and other ATPase activity [3.3.5 (iv) (b)]. 

However, numerous other proteins were retained on the column in both 

experiments. 

The total protein yield of this partially purified 165 kDa polypeptide fraction 

was low, 0.02-0.05% (Table 4.2, 6; Table 4.1, 7) or 0.041-1.0 mg/100 g tissues. 

Since the partial purified fraction was far from homogenous, the protein yield of the 

165 kDa polypeptide itself would be still lower. The protein yields of some 

nonmuscle myosins purified so far are: 0.2% from tomato (Vahey et al. 1982), 

0.28% from human platelet (Pollard et al. 1974), 5-10% from Drosophila (Kiehart 

& Feghali 1986), 0.5% for Acanthamoeba myosin II (Pollard et al. 1978), 0.005% 

for Dictyostelium myosin I (Cote et al. 1985), and 0.02% /0.028% /0.076% for 

Acanthamoeba myosins IA JIB /IC (Maruta et al. 1979) respectively. Therefore, 

purified plant myosin and some myosins I of lower eukaryotic cells generally have 

low protein yields, probably due to their low abundance in cells, whereas some 

nonmuscle cells give much high protein yields of purified myosins. 

If protein yield is in terms of mg/100 g tissues, purified Nitella myosin has a 

yield of 0.1 mg/100 g tissues (Kato & Tonomura 1977), while the partially purified 
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myosin fraction of Egeria densa has a total protein yield of only 0.014-0.071 

mg/100 g tissues (Ohsuka & Inoue 1979). 

4.4.2 A TPase activities during the partial purification of the 165 kDa 

polypeptide 

During the partial purification of the mung bean 165 k.Da polypeptide, fractions 

containing most of the 165 k.Da polypeptide had only a very small fraction of the 

total K+-EDTA-ATPase activity of the crude extract. Only 2.5% of the initial K+

EDTA-ATPase activity remained in the 165 k.Da polypeptide fraction eluted by 0.4 

M NaCl from DE52 after batch processing (Table 4.2, 2) while 62.9% of the K+

EDTA-ATPase activity went to the unbound fraction that was depleted in the 165 

k.Da polypeptide (Table 4.3B, 2). This was the step of the purification scheme 

where both the yield and specific activity of the K+-EDTA-ATPase decreased most 

drastically from those of the crude extract. When the 0.4 M NaCl eluate was 

fractionated with <NH4)2S04, the 0-45% fraction containing the 165 k.Da 

polypeptide had a K+-EDTA-ATPase activity yield of 0.6%, slightly higher than 

that of the 45-85% fraction, but its specific K+-EDTA-ATPase activity was much 

lower than that of the 45-85% fraction (Table 4.2, 3; Table 4.3A, 2). This accorded 

with the results of <NH4)2S04 fractionation of crude extracts discussed before 

(3.3.3; 3.4.2). Therefore, the 165 k.Da polypeptide fraction retained only a small 

part of the total K+-EDTA-ATPase activity and had a low specific ATPase activity. 

When the 0-45% <NH4)2S04 fraction was resolved on another DE52 column 

using gradient elution, neither the 165 nor 155 k.Da polypeptide coincides with the 

peak ATPase activity. The 165 k.Da polypeptide was eluted in the tail of the peak of 

K+-EDTA-ATPase activity and the 155 k.Da polypeptide even later (Fig. 4.8). The 

165 kDa polypeptide at most accounts for only a small part of the K+-EDTA

A TPase activity in the 0-45% <N84)2S04 fraction and therefore was at most a 

minor K+-EDTA-ATPase in mung bean crude extract. Nevertheless, it remains 
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possible that the A TPase peak came from a small fraction of the active 165 kDa 

polypeptide eluting rather earlier and at the detection limit for immunoblotting. 

The specific activity of the K+-EDTA-ATPase in the 165 kDa polypeptide 

fractions decreased during purification to 0.0022 µmol/min/mg (Table 4.2, 5) prior 

to ADP-agarose affinity chromatography which increased it 7.3-fold to 0.016 

µmol/min/mg (Table 4.2, 6). The binding of the 165 kDa polypeptide to ADP

agarose in the presence of EDTA [3.3.5 (iv) (b)] and the increase of the K+-EDTA

A TPase specific activity of the ADP-agarose purified 165 kDa polypeptide fraction 

were consistent with the 165 kDa polypeptide having K+-EDTA-ATPase activity. 

Since the 165 kDa polypeptide at most accounted for a minor part of the K+

EDTA-ATPase activity of mung bean extract, any increase in its specific ATPase 

activity during earlier purification steps could be masked by the removal of other 

ATPase(s) exhibiting high K+-EDTA-ATPase activity. Therefore, an increase in 

the specific K+-EDTA-ATPase activity of the 165 kDa polypeptide need not be 

expected at all steps of purification. 

However, the failure to observe a continuous increase in the K+-EDTA-ATPase 

specific activity during the purification of the 165 kDa polypeptide and the 

impurity of the ADP-agarose purified fraction make it uncertain that the 165 kDa 

polypeptide actually had K+-EDTA-ATPase activity although its retention on 

ADP-agarose in EDTA suggests that it did. Most or all (if the 165 kDa polypeptide 

showed no ATPase activity) K+-EDTA-ATPase activity of mung bean extract was 

in any event accounted for by non-myosin A TPase(s) and/or by myosin isoform(s) 

which was/were not identified by anti-pan myosin antibody (3.4.2). 

In other plants, where myosin purification was usually monitored by A TPase 

assays, the specific activity of K+-EDTA- or ca2+-ATPase increases in purified or 

partially purified fractions. However, full record of the A TPase activities at each 

purification step is only available in the case of the 130 kDa tomato myosin, which 

shows that the K+-EDTA-ATPase specific activity increases during purification. 

The K+-EDTA-ATPase specific activity (µmoVmin/mg) is 0.15 (Kato & Tonomura 
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1977) and 0.126 (Vahey et al. 1982) in the purified myosins of Nitella and tomato, 

respectively; and is 0.0736 in the partially enriched putative pea myosin fraction 

(Ma & Yen 1989). These are higher than the 0.016 µmol/min/mg of the partially 

purified 165 kDa polypeptide fraction of mung bean. 

Furthermore, Mg2+ _A TPase activities of these purified or partially purified 

myosins or putative myosins are activated by actin filament at low ionic strength as 

is the Mg2+_A TPase activity of the purified myosin from Heracleum (Turkina et al. 

1987). In addition to A TPase activities characteristic of myosin, other criteria have 

been used to identify these purified proteins as myosins: purified Nitella myosin 

forms bipolar filaments in vitro (Kato & Tonomura 1977); the 130 kDa tomato 

myosin binds to muscle F-actin (Vahey et al. 1982) and the Heracleum myosin 

forms bipolar filament and binds to muscle F-actin (furkina et al. 1987). 

The partially purified mung bean 165 kDa polypeptide fraction did not exhibit 

any actin activation of its Mg2+_A TPase activity (Table 4.2, 6), and thus this 

important piece of enzymatic evidence that the 165 kDa polypeptide is a myosin 

heavy chain is still lacking. Nevertheless, there are substantial differences in 

A TPase activities of various nonmuscle myosins and not all myosins exhibit actin

activated Mg2+-ATPase activity (4.1). The ATPase activity of the partially purified 

Egeria myosin at high ionic strength is maximal in ca2+ (0.006 µmol/min/mg), 

lower in Mg2+ and lowest in K+-EDTA (Ohsuka & Inoue 1979). Its Mg2+-ATPase 

activity is not affected by muscle F-actin at low ionic strength. However, because it 

forms bipolar filament in vitro, it is considered a myosin. The differences in the 

actin-activated Mg2+_A TPase activities may reflect differences in assay conditions, 

presence of contaminants, or basic enzymatic properties of the myosin (Taylor & 

Condeelis 1979). It is not known whether the partially purified 165 kDa 

polypeptide shared the same property of exhibiting no actin-activated Mg2+_ 

A TPase as the partially purified Egeria myosin but several potential explanations 

can be foreseen. 
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It is known that purification of an enzyme from plant is difficult because of the 

low protein content, highly active proteases and inactivation by oxidative enzymes 

and phenolics (Anderson 1968; Loomis 1974; Wu & Wang 1984; Cremer & Van de 

Walle 1985). Proteases destroyed the mung bean 165 kDa polypeptide in the 

absence of protease inhibitors, which could be inhibited to some degree by protease 

inhibitors included in the extraction buffer (3.3.4). Since the 165 kDa polypeptide 

in the 0-45% (NH4)2S04 fraction of the crude extract was stable for up to 77 h in 

the absence of protease inhibitors (3.3.4), protease inhibitors were not included in 

buffers at the later steps after tissue extraction. Enzyme protective compounds 

including sodium metabisulfite, EDT A and DTT were added in the extraction 

buff er, and DTT was included in all buffers. The purification was a long process, 

however, and part of the 165 kDa putative myosin heavy chain may be degraded by 

proteolysis and/or inactivated by other detrimental compounds of mung bean. 

Therefore, it is possible that the low yield of K+-EDTA-ATPase activity and the 

absence of actin-activated Mg2+_A TPase activity was due to the degradation and/or 

denaturation of this protein during purification, and including protease inhibitors at 

later steps of the purification may preserve the activity of putative myosin to some 

degree. 

For nonmuscle myosins, the actin-activated Mg2+_A TPase activity is regulated 

by different systems (1.7), and thus many myosins require activating enzymes to 

express their actin-activated A TPase activities, such as the heavy chain kinase of 

Acanthamoeba myosin I (Pollard & Korn 1973a; Maruta & Korn 1977b) or light

chain kinases of other nonmuscle and smooth muscle myosins (Adelstein & Conti 

1975; Dabrowska et al. 1977; Kuznicki 1986; Kuznicki & Barylko 1988; Trybus 

1991). When the activating enzyme is separated from myosin during purification, 

the myosin loses its actin-activated ATPase activity. 

Enzyme-regulated actin-myosin interaction has been implicated in some plants, 

such as the ca2+-activated protein kinase/phosphatase model in Chara (1.8.4). 

Such enzymes may also be present in other plants and essential for myosins to 
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express their actin-activated Mg2+ _A TPase activities. There was 1 mM EDT A in 

the extraction buffer but it might not keep Ca2+ sufficiently low to inactivate 

possible mung bean CDPK. The absence of the actin-activated Mg2+ _A TPase 

activity in the partially purified 165 kDa polypeptide fraction may be caused by the 

separation of some activating enzyme or other cofactor from the 165 kDa 

polypeptide during the purification. Adding back fractions to the 165 kDa 

polypeptide fraction could be tested to find any activating enzymes. However, to 

date no such activating enzymes or other cofactors have been reported to be 

essential for expressing the actin-activated Mg2+_A TPase activities of the purified 

or partially purified plant myosin or putative myosin. 

4.4.3 Attempted purification of a K+-EDTA-ATPase from fractions 

unused in the partial purification of the 165 kDa polypeptide 

As discussed in 4.4.2, most K+-EDTA-ATPase activity of the mung bean crude 

extract with high specific activity was in the unbound fraction from the DE52 batch 

processing, and may be contributed by non-myosin A TPase(s) and/or myosin 

isoform(s) which was/were not identified by anti-pan myosin antibody. When 

fractionating the unbound fraction, most K+-EDTA-ATPase activity flowed 

through the phosphocellulose column and through the subsequent hydroxylapatite 

column, as did the bulk of the protein (Table 4.3B, 4 and 5). All these unbound and 

flow-through fractions maintained a high K+-EDTA-ATPase specific activity, 

which made it impossible to isolate any particular A TPase fraction. When the 

0.095-0.19 M NaCl fraction from the phosphocellulose was applied to the ADP

agarose column, most K+-EDTA-ATPase activity flowed through. Since the salt 

concentration of the 0.095-0.019 M NaCl phosphocellulose fraction was desalted 

half by ultrafiltration rather than the usual dialysis, the salt concentration in the 

sample may be a bit high for some proteins to bind to the ADP column. 

When purifying Acanthamoeba myosin I, three isoforms of myosin I can be 

eluted as three discrete peaks from a phosphocellulose column by a linear 0-0.6 M 
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KCl gradient (Lynch et al. 1989). Cation exchange chromatography has also been 

used in the purification of putative myosin from onion (Pesacreta et al. 1991). 

However, no particular mung bean protein seemed to be resolved and enriched by 

phosphocellulose. 

LMW proteins were obtained from both the flow-through ( < 97 kDa) and 

bound ( < 80 k.Da) fractions of ADP-agarose. Myosin I heavy chains are usually 

100-140 k.Da (1.3). Several putative plant LMW myosins have been identified but 

not confirmed yet (1.8.1; 1.8.2). A 130 k.Da myosin with a heavy chain of 100 kDa 

has been purified from tomato (Vahey et al. 1982), but the possibility of its being a 

proteolytic product of a HMW myosin has not been excluded. Another two LMW 

putative myosin heavy chains identified only by immunoblotting of plant TCA 

extracts are the 110 k.Da polypeptide of Chara (Grolig et al. 1988) and the 85 kDa 

one of Ernodesmis (La Claire 1991). The ADP-bound proteins of< 80 k.Da were 

well below the Mr range of authentic myosin I and below that of the smallest 

putative myosin I identified so far. It was therefore considered doubtful whether the 

bound proteins contained any possible myosin isoform. 

When fractionating the 45-85% (N~)zS04 fraction of the 0.4 M NaCl eluate 

from DE52 on another DE52 column, all K+-EDTA-ATPase activity bound and the 

proteins eluted in one peak. As a result, isolating any protein with the appropriate 

ATPase activity of myosin by monitoring the K+-EDTA-ATPase activity from the 

unused protein fractions of partially purifying the 165 k.Da polypeptide was not 

successful. The widely spread K+-EDTA-ATPase activity and poor resolution of 

proteins on chromatography during the fractionation make it impossible to isolate 

one particular protein exhibiting high K+-EDTA-ATPase activity. Although other 

K+-EDTA-ATPases in unused fractions of purifying the 165 k.Da polypeptide 

suggested the presence of myosin isoform(s), no other polypeptides reacting with 

anti-pan myosin were found. The potential polypeptide(s) could have been below 

the detection limit in unpurified fractions or was/were not recognized by anti-pan 
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myosin. Examination of actin-activation of all these other A TPases may tell 

whether any were myosins. 

In previous studies of protein purification of plant myosins and putative 

myosins (l.8.1), K+-EDTA- or Ca2+_ATPase were used to monitor the purification 

except in the case of onion putative myosin where an anti-myosin was also used 

(Pesacreta et al. 1991). Multiple peaks of K+-EDTA- or ca2+_ATPase activity 

exist in tomato (Vahey et al. 1982) and pea (Ma & Yen 1989). Tomato myosin 

fractions were identified by additional assays of actin-activated Mg2+_A TPase 

activity and actin binding (Vahey et al. 1982), while Ma & Yen (1989) do not show 

exactly how they conclude that a small fraction of very low ca2+ _A TPase activity 

contains putative myosin. The purified or partially purified myosins or putative 

myosin fractions show highest K+-EDTA-ATPase activity at high ionic strength 

and most also exhibit actin-activated A TPase activity at low ionic strength except 

the partially purified Egeria myosin (Ohsuka & Inoue 1979). When working on 

mung bean putative myosin, the lack of detectable actin-activated A TPase activity 

and the high K+-EDTA-ATPase activities, probably unrelated to myosins, made 

definite biochemical identification impossible. 

4.4.4 Conclusions 

The 165 kDa polypeptide was partially purified from mung bean. The partially 

purified fraction had low K+-EDTA-ATPase activity that increased with ADP

agarose chromatography and no detectable actin-activated Mg2+_A TPase activity. 

The 165 kDa polypeptide at most accounted for only a very small fraction of the 

total K+-EDTA-ATPase activity of mung bean extract. Its retention on ADP

agarose in the presence of EDTA was consistent with a K+-EDTA-ATPase activity 

but until further purification is achieved this cannot be taken as proven. The K+

EDTA-ATPase activity unassociated with the 165 kDa polypeptide may be 

contributed by non-myosin A TPase(s) and/or myosin isoform(s) which was/were 
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not identified by anti-pan myosin antibody. The lack of enzymatic evidence leave 

the identity of the 165 kDa polypeptide as a myosin heavy chain unconfirmed yet. 

The quantity and purity of the fractions containing the 165 kDa polypeptide 

greatly limited its further biochemical characterization. Nevertheless, they provided 

a chance to raise monoclonal antibodies against this polypeptide. No antibody 

against a plant myosin has been reported so far and any antibodies against the mung 

bean 165 kDa polypeptide will show how extensive are its homologies with 

authentic myosins. The antibodies to the 165 kDa polypeptide were shown to cross

react with muscle myosin, and together with several commercial anti-myosin 

antibodies, were used to identify by immunoblotting putative myosin heavy chains 

in mung bean and several other plants. Cellular distributions of putative myosins 

were also characterized by immunofluorescence in mung bean root tip cells and 

Chara intemodal cells. The raising of antibodies and immunochemical and 

immunocytochemical characterization of putative plant myosins will be discussed 

in Chapter 5. 
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FIGURES 



Fig. 4.3 DEAE-cellulose chromatography of the 165 kDa polypeptide fraction. 

168 ml of the desalted 0-45% (NH4)2S04 fraction of the 0.4 M NaCl 

eluate (from the first DE52) were applied to a column (2.6 x 19 cm) of 

DE52 equilibrated with the starting buffer (0.34 M sucrose, 10 mM 

imidazole, pH 7 .0, 1 mM DTT). The column was eluted with a gradient 

of 0-0.4 M NaCl in the starting buffer. The 165 kDa polypeptide was 

eluted between fractions 452.1 ml and 478.1 ml by 0.138-0.158 M NaCl, 

and these fractions were pooled for further purification on an ADP

agarose column. Immunoblots of selected fractions are shown at the top 

(A). (1), crude extract. Corresponding elution volumes (ml) of the other 

fractions were: (2), 454.1 ml; (3), 462 ml; (4), 470.1 ml; (5), 478.1 ml; 

(6), 482.8; (7), 491.7; (8), 505 ml; and (9), 598.8 ml. 
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Fig. 4.4 ADP-agarose chromatography of the 165 kDa polypeptide fraction 

from the DES2 column. 16 ml of the 0.138-0.158 M NaCl fraction from 

DE52 were applied to a column (1.6 x 2.5 cm) of ADP-agarose 

equilibrated with the starting buffer (0.34 M sucrose, 10 mM imidazole, 

pH 7.0, 1 mM DTT). The column was eluted with a gradient of 0-0.8 M 

KCl, and then 1 M KCl in the starting buffer. The 165 kDa polypeptide 

was eluted in a small protein peak, and fractions from 116.4 ml to 132 ml 

(0.29-0.43 M NaCl) were pooled. Selected fractions resolved by SOS

PAGE and the blots stained with Ponceau were shown at the top (A). (1), 

crude extract; (2), 0.138-0.158 M NaCl fraction applied to the ADP

agarose column; (9), SDS-6H. Corresponding elution volumes (ml) of 

the other fractions were: (3), 19.6; (4), 22; (5), 119; (6), 120.2; (7), 

121.6; and (8), 122.9. 
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Fig. 4.5 Immunoblot of the 165 kDa polypeptide in fractions obtained during 

the partial purification of this polypeptide. A, immunoblot; B, the 

same blot stained with Ponceau. (1), crude extract; (2), unbound fraction 

of DE52 batch processing; (3), 0.4 M NaCl eluate from the first DE52; 

(4), 0-45% (NH4)2S04 fraction of the 0.4 M NaCl eluate, desalted and 

concentrated; (5), 0.138-0.158 M NaCl fraction of the second DE52, 

concentrated and desalted; (6), flow-through (fraction 22 ml) of ADP

agarose; (7), pooled flow-through fraction of ADP-agarose; (8), 0.29-

0.43 M KCl fraction of ADP-agarose, concentrated and desalted; and (9), 

SDS-6H. 
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Fig. 4.8 DEAE-cellulose chromatography of the 165 kDa polypeptide 

fraction. 163 ml of the desalted 0-45% (NH4)2S04 fraction of the 0.4 M 

NaCl eluate (from the first DE52) were applied to a column (2.6 x 18 

cm) of DE52 equilibrated with the starting buffer (0.34 M sucrose, 10 

mM imidazole, pH 7 .0, 1 mM DTT). The column was eluted with a 

gradient of 0-0.3 M NaCl in the starting buffer (from fraction 243.6 ml). 

One peak of A TPase activities from fractions 397. 7 ml to 457 .2 ml was 

eluted by 0.095-0.13 M NaCL By immunoblotting, the 165 kDa 

polypeptide was mainly eluted from fractions 450.2 ml to 471 ml by 

0.126-0.139 M NaCl. Fractions from 397.7 ml (0.095 M NaCl) to 471 ml 

(0.139 M NaCl) were pooled for further purification on ADP-agarose 

column. Immunoblots of selected fractions are shown at the top (A). (1), 

crude extract; (2), 0-45% (NH4)2S04 fractions of the 0.4 M NaCl eluate 

applied to the second DE52 column. Corresponding elution volumes (ml) 

of the other fractions were: (3), 443.2; (4), 450.2; (5), 457.2; (6), 471; 

(7), 477.8; (8), 484.6; and (9), 498.3. 
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Fig. 4.9 ADP-agarose chromatography of the 165 kDa polypeptide fractions 

from a DES2 column. 26.3 ml of the 0-45% (NH4)2S04 fraction of the 

0.095-0.139 M NaCl fraction from the second DE52 column were 

applied to a column (1.6 x 2.5 cm) of ADP-agarose equilibrated with the 

starting buffer (0.34 M sucrose, 10 mM imidazole, pH 7.0, 1 mM OTT). 

The column was eluted with a gradient of 0-0.8 M KCl in the starting 

buffer (from fraction 213.1 ml). The 165 kDa polypeptide was eluted in 

a small protein peak, and fractions from 221.2 ml to 227.9 ml (0.076-

0.13 M KCl) were pooled. Part of the whole elution profile, from 

fractions 211.7 ml to 261.7 ml, is shown separately in (A). Immunoblots 

(B) and Ponceau-stained blots (C) of selected fractions are shown below 

(A). (1), crude extract; (2), 0-45% (NH4)2S04 fraction applied to the 

ADP-agarose column; (10), SDS-6H. Corresponding elution volumes 

(ml) of the other fractions were: (3), 27; (4), 221.2; (5), 222.5; (6), 

223.9; (7), 225.2; (8), 226.6; and (9), 227.9. 



A
2

ao 
V

"') 
"1 

V
"') 

C'J 
-

d 
0 

~ 
-

K
Q

(M
) 

V
)
 

d 
d 

~ 
-6 

~ 
~ 

ions 
~ 

J/\l f!'O
 
~
 

the 
J/\l 9LO

'O
 ~
 

~ ~ 
0 co 

~
 

C
\I 

--
<

 
a t 
.._, 

9 
~ 

-
:::::, 

- 0 
~
 

>
 

C
 

-
0 
·~

 
~ 

:::::, 

~
 

GS 
~ 

-
' 

+
 

§ 
C

\I~
 

u f ~
 

~
 

~ ~ r' 0 
U;l 

+
 ~
 

0 

f 
V

"') 
~
 

V
)
 

('"
l 

V
)
 

N
 

"1 
-

V
"') 

0 
~
 

c-i 
C'J 

-
d 

(1w/urr1111owu) as-ed.LV
 



A 
3.5 

3 

......... 

i 2.5 
s::: ·s 

2 .:::::. 
c:, 

s 
5 1.5 

(1' 

~ 
0... 

~ 
0.5 

0 

Pooled 
I 

0.4 

0.35 

0.3 
)> 

0.25 ~ 
0 

0.2 :;,;: 

Q 
0.15 ?;:: 

0.1 

0.05 

0 

-

211 .7 216.7 221 .7 226 .7 231.7 236 .7 241.7 246 .7 251 -7 256.7 261 .7 

Elution volume (ml) 

• K+ -EDTA- --o--- Ca2+ - -- KCl(M) 
A TPase A TPase 

B 

165 -165 
155 

110 -

1 2 3 4 5 6 7 8 9 

C 
-205 

165 -165 
155 

-116 
- 100 

' -97.4 

-66 

1 2 3 4 5 6 7 8 9 10 



CHAPTERS 

MONOCLONAL ANTIBODY PRODUCTION, 
IMMUNOCHEMICAL AND 
IMMUNOCYTOCHEMICAL 

CHARACTERIZATION OF PLANT PUTATIVE 
MYOSINS 



120 

CHAPTERS 

MONOCLONAL ANTIBODY PRODUCTION, IMMUNOCHEMICAL AND 

IMMUNOCYTOCHEMICAL CHARACTERIZATION OF PLANT 

PUTATIVE MYOSINS 

5.1 INTRODUCTION 

Monoclonal antibody production allows experimenters to use impure antigens 

to produce specific antibodies that recognize particular sites on antigens known as 

epitopes (Harlow & Lane 1988). Epitopes on protein antigens are local surface 

structures that can be formed by contiguous or noncontiguous amino acid 

sequences. A monoclonal antibody recognizes only one specific epitope and thus 

can be used to detect that epitope. Because monoclonal antibodies recognize 

relatively small regions of antigens, occasionally they can find similar epitopes on 

other molecules, which forms the molecular basis for cross-reaction. Therefore, 

monoclonal antibodies can be used to detect similar epitopes on related molecules, 

like those of proteins such as myosins which contain highly conserved regions. 

Different proteins sharing a functional relationship may have similar epitopes. 

Nine monoclonal antibodies against Acanthamoeba myosins I (IA and IB) also 

cross-react with a 34 kDa nuclear actin-binding protein of Acanthamoeba (Kiehart 

et al. 1984; Hagen et al. 1986; Rimm & Pollard 1989). Since the 30 kDa C

tenninus region of Acanthamoeba myosin I heavy chain contains the unique ATP

independent actin-binding site (1.3), it is suggested that these antibodies may 

recognize some features of the actin-binding site alone and result in the cross 

reactivity between myosin I and the nuclear actin-binding protein. However, the 

presence of similar epitopes does not necessarily imply a functional relationship. A 

monoclonal antibody against a-tubulin also cross-reacts with performic acid

oxidized actin and E. coli rec A protein that is the catalytic subunit of the cyclic 

AMP-dependent muscle protein kinase (Wehland et al. 1984). 
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Myosin antibodies have been one of the most useful tools in studying the 

structure and function of nonmuscle myosin. Myosin antibodies microinjected into 

cells cause changes in cellular activity that have been used to explore myosin's 

function in cell motility (Mabuchi & Okuno 1977; Kiehart et al. 1982; Sato & 

Grasser 1990). Antibodies directed against specific fragments of myosin have 

helped in dissecting the functional domains of myosin molecule and the mechanism 

of myosin-actin interaction (Dan-Goor et al. 1990; Dan-Goor & Muhlrad 1990, 

1991). Immunoblotting identifies the presence _ and polypeptide composition of 

putative myosins from unpurified protein fraction. Immunofluorescence is widely 

used to determine the intracellular distribution of putative nonmuscle myosin and 

actin. 

Immunofluorescent localization of plant actin has been well characterized 

recently (Clayton & Lloyd 1985; Parthasarathy et al. 1985; Seagull et al. 1987; 

Traas et al. 1987; Kakimoto & Shibaoka 1987a, b; Schmit & Lambert 1987; 

Palevitz 1987a, b, 1988; McCurdy et al. 1988; Tang et al. 1989a; McCurdy & 

Gunning 1990; Lloyd 1988; Heslop-Harrison & Heslop-Harrison 1989b, c, 1991). 

Immunofluorescent localization of plant putative myosin, however, is much less 

characterized than those of plant actin and other nonmuscle myosins. It is believed 

that plant myosin and actin interact in a similar way to that involved in the sliding 

filament mechanism of muscle actomyosin. The colocalization of myosin and actin 

implies that actomyosin may be involved in many cellular functions, as seen in the 

many forms of cell motility shown by nonmuscle cells (1.6). 

Putative myosin has been immunofluorescently localized in Euglena (Lonergan 

1985), Ernodesmis (La Clair 1991), Chara internodal cells (Grolig et al. 1988), 

onion root tip cells (Parke et al. 1986) and Nicotiana pollen tubes (Tang et al. 

1989a; Heslop-Harrison & Heslop-Harrison 1989a). Putative myosin and actin are 

colocalized to pellicle strips of Euglena (Lonergan 1985), Chara subcortical actin 

bundles (Grolig et al. 1988), longitudinal bundles and a reticulum during wound

induced cytoplasmic contractions of Ernodesmis (La Clair 1991 ), and 
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phragmoplasts of mung bean root tip cells (Parke et al. 1986). The 

immunofluorescent localization of putative myosin, especially the colocalization of 

putative myosin and actin, helps to elucidate functions of plant myosin and 

mechanisms of cytoplasmic streaming in plants (1.8.3). 

The 165 kDa polypeptide was identified as a putative myosin heavy chain of 

mung bean myosin in previous chapters. Since anti-pan myosin recognized both the 

165 and 155 kDa polypeptides of mung bean, further monoclonal antibodies against 

the 165 kDa polypeptide were raised in this chapter. Antibodies to the mung bean 

165 kDa polypeptide and several commercial anti-myosin antibodies were used in 

immunoblotting to detect epitopes on proteins of mung bean, pea, wheat, 

Arabidopsis and Chara, and to see how many epitopes various plant proteins share 

with the heavy chain of rabbit skeletal muscle myosin. The antibodies to the 165 

kDa polypeptide, anti-myosin and anti-actin antibodies were also examined in 

immunofluorescent labelling of Chara and mung bean root tip cells in order to 

localize putative myosin and actin structures and thus reveal the roles in which 

plant myosin and actin may be involved. 
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5.2 MATERIALS AND METHODS 

5.2.1 Production of monoclonal antibodies (MB165) against the mung 

bean 165 kDa polypeptide 

Animal handling and hybridoma culturing was performed by Ms. Janet Elliott 

of the Plant Cell Biology Group. 

(i) Antigen 

Partially purified mung bean 165 kDa polypeptide (the desalted and 

concentrated 0.29-0.43 M KCl ADP-agarose fraction in 4.3.1), and mung bean 

crude extract were resolved by 7% SDS-PAGE, transferred to nitrocellulose, and 

stained with Ponceau. The clear 165 kDa band of the partially purified fraction 

(Fig. 4.58, lane 8) or the crude extract (Fig. 4.58, lane 1) was cut out cautiously to 

avoid contamination, and destained completely with several washes of dH20. The 

air-dried nitrocellulose could also be stored at -20°C for a few weeks before use. 

Ten nitrocellulose strips of the 165 kDa band were ground into small pieces in a 

mortar and pestle (with or without liquid nitrogen), suspended with phosphate

buffered saline (PBS: 2.68 mM KCl, 1.47 mM KH2P04, 8.1 mM Na2HP04, pH 

7.4, 0.137 M NaCl; 700-800 µl for bands from partially purified fraction, 500 µl for 

crude extract) and used as antigen. 

(ii) Antibody production 

All immunization and boosts were done intraperitoneally. 400 µl of antigen 

(from 43.2 µg of the partially purified fraction) were injected into each of two 8-

week female BALB/c mice. Each mouse was boosted at week 2 (350 µl of the same 

antigen from 45.9 µg of the partially purified 165 kDa polypeptide fraction) and at 

weeks 13, 16, 19 and 21 (500 µl of the 165 kDa polypeptide antigen from 530 µg 

of mung bean crude extract each time). 20-30 µl of blood were collected from the 

orbital sinus and immunoblotted to test for antibody production. 

Three days after the final boost, splenocytes from the mouse with positive 

immune response were fused with Sp20 mouse myeloma cells by polyethylene 

glycol (PEG) 1500. Hybridoma lines were screened by immunoblotting 11 days 
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after the fusion. From 22 positive lines, 4 were selected, cloned by limiting dilution 

and injected into 2,6,10,14-tetramethylpentadecane primed BALB/c mice to 

produce ascites fluids. Ascites fluids were stored with 0.05% NaN3 at 0-4°C, or at -

80°C for later use. Four ascites fluids, containing antibodies to the rnung bean 165 

kDa polypeptide antibody (MB165) were named: MB165/1, MB165/2, MB165/3 

and Mb165/4 (clone numbers: E3.20 2D10/44, E3.20 305/64, E3.20 403/23 and 

E3.20 3E9/29, respectively). All were IgM (J. Elliott, personal communication). 

5.2.2 lmmunoassays used in monoclonal antibody production 

Immunoblotting was used to test sera after immunization and for routine 

screening during hybridoma production. Enzyme-linked immunosorbant assay 

(ELISA) was used to confirm positive clones screened by immunoblotting. 

(i) Immunoblotting 

Blots of mung bean crude extract [2.5.1 (i)] were used. These could be air-dried 

blots after Ponceau staining and stored at -20°C before use. A Miniblot apparatus 

(Bio-Rad) allowed 24 samples to be processed using, at various times, both alkaline 

phosphatase and peroxidase detection. Pre- and post-immunization sera were tested 

at dilutions of 1: 50 and 1: 100 while culture supematants were used neat. Anti-pan 

myosin was used as a positive control, hybridoma culture medium as a negative 

control. 

(ii) ELISA 

ELISA was carried out in a 96-well polyvinylchloride (PVC) microtiter plate at 

room temperature using 50 µl aliquots of each solution. Additions were: mung bean 

crude extract, diluted 1: 1 with PBS to give 45-60 µg of protein/50 µl (1 h); 

hybridoma culture supernatant (1 h); sheep anti-mouse lg, biotinylated whole 

antibody (1: 1000 dilution; Amersham) (1 h); streptavidin-biotinylated peroxidase 

complex ( 1: 500 dilution; Amersham) (0.5 h). Antibodies were diluted with PBS

Tween (0.05% v/v). Plates were washed 3 times with PBS-Tween between each 

step. The plate was incubated with 0.2 M 2,2'-azino-bis(3-ethylbenzthiazoline-6-
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sulphonic acid), 2.6 mM citric acid, 2.4 mM sodium citrate, pH 4.5 for 20 min, 

color development stopped with 30 mM NaF solution and A405 values determined 

in a plate reader (Titertek Multiskan Plus MK II; Flow Laboratories Australasia 

Pty. Ltd., North Ryde, NSW., Australia). The mean A405 of controls (tissue culture 

supernatant with PBS-Tween) was subtracted from each reading. 

5.2.3 Preparation of protein samples for immunoblotting 

(i) lmmunoblotting with anti-myosin and MB165 

(a) Higher plants 

For mung bean, pea and wheat, proteins were extracted as described in 2.5.1 (i). 

Arabidopsis seedlings were extracted similarly [2.5.1 (i)] but concentrated by 

mixing 900 µl of crude extract with an equal volume of ice-cold 20% (w/v) TCA. 

The protein precipitates were collected after 1 h on ice, washed as described in 

2.5.2 and the dried pellet resuspended with 300 µl of lx SOS-PAGE sample buffer. 

(b) Chara 

Protein extracts of Chara were prepared as described before (Grolig et al. 

1988). 

(c) Rabbit skeletal muscle myosin 

Purified rabbit skeletal muscle myosin (2.15) was diluted 1: 1 with dH20, and 

mixed 1: 1 with 2x SOS-PAGE sample buffer. 

(ii) lmmunoblotting with anti-actin 

(a) Chicken gizzard actin 

Acetone powder of chicken gizzard was prepared according to Ebashi (1985). 

Actin was extracted from a small amount of acetone powder with 1 mM NaHC03, 

clarified at 7,000 rpm for 2.5 min, and the supernatant mixed 1: 1 with 2x SOS

PAGE sample buffer. 

(b) Chara 

Chara internodal cells were perfused with ATP-containing perfusion solution 

(ACPS; Grolig et al. 1988) for 13 min to remove the tonoplast and the bulk of 
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streaming endoplasm. Alternatively, Chara actin was selectively removed by 

perfusing cells with ACPS for 3 min and then with low salt solution (Williamson et 

al. 1985). After perfusion, the contents of 7 cells of each perfusion type were 

squeezed into 90 µl of 20% (w/v) TCA solution (5.2.3 (i) (b)], and the pellet 

resuspended with 90 µl of 2x SOS-PAGE sample buffer. 

All samples were prepared as described in 2.8 for SOS-PAGE. 

5.2.4 

(i) 

lmmunoblotting 

With anti-myosin and MB165 

In 7% SOS-PAGE, usually 30-35 µl of mung bean, 20 µl of Arabidopsis, 18-20 

µl of pea, wheat or Chara sample, or 4 µl of rabbit skeletal muscle myosin were 

loaded into a single sample well. Antibodies (2.11) in the following table were 

tested. 



Antibody Mung bean Pea Wheat Arabidopsis Chara Muscle 

anti-skeletal myosin (fast) neat neat neat neat neat 1: 800 

anti-myosin (smooth and 

skeletal neat neat neat neat neat 1: 800 

anti-fast myosin neat neat neat neat neat 1: 800 

anti-pan myosin 1: 100 1: 100 1: 100 1: 100 1: (1-40) 1:300 

MB165/l 1: 100 1: 100 1: 100 1: 100 1: 80 1: 200 

MB165/2 1: 100 1: 100 1: 100 1: 100 1: 80 1:200 

MB165/3 1: 200 1: 200 1:200 1: 200 1: 100 1: 200 

MB165/4 1: 150 1: 150 1: 150 1: 150 1: 100 1: 200 

127 
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(ii) With anti-actin , 

4 µl of chicken gizzard actin and 30 µl of Chara proteins were resolved by 12% 

SOS-PAGE and immunoblotted with C4 anti-actin (1: 400). 

5.2.5 Immunofluorescent staining 

Antibodies used are listed below. 

Antibody Chara Mung bean 

anti-pan myosin neat 1: 50 

anti-fast myosin 1: 2 

MB165/1 1:200 1: 400 

MB165/2 1: 50 1: 100 

MB165/3 1:200 1:400 

MB165/4 1:50 1: 100 

C4 anti-actin 1:400 1:400 

(i) Chara 

A Chara internodal cell was perfused with ATP-free perfusion solution (AFPS; 

Grolig et al. 1988) for 1-2 min to remove the tonoplast and the bulk of streaming 

endoplasm. All later steps were performed by perfusion (personal communication 

from Dr. Geoffrey 0. Wasteneys). The cell was fixed with 1 % (v/v) glutaraldehyde 

in AFPS for 20 min. The cell was washed for 5 min with AFPS, then for 2 x 5 min 

with PBS containing 0.02% (w/v) NaN3 (PBS/NaN3; PBS was 0.131 M NaCl, 5.11 

mM Na2HP04, 1.56 mM KH2P04, pH 7.4). The cell was treated for 2 x 5 min with 

1 mg/ml sodium borohydride freshly made up with PBS/NaN3, then washed with 

PBS/NaN3 to remove any bubbles caused by sodium borohydride. Sodium 

borohydride treatment was used to reduce glutaraldehyde-induced fluorescence, but 

was eliminated when using anti-pan myosin, MB165/2 and MB165/4. Then, the cell 
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was blocked three times with 0.8% BSA (w/v) in PBS/NaN3 (BSA1PBS/NaN3). 

Antibodies were diluted with BSA/PBS/NaN3. All primary antibcxlies were detected 

with ATC-conjugated sheep anti-mouse lg (affinity purified; Silenus Laboratories, 

Dandenong, Australia) at 1: 40 dilution. Each antibody was incubated for 30 min, 

followed by 3 x 5 min washes with BSA/PBS/NaN3. The cell was finally washed for 

2 x 3 min with PBS/NaN3. The cell was bisected, and the cell piece was mounted on 

a coverslip with its cytoplasmic side facing down. In controls, the primary antibodies 

were replaced with BSA/PBS/NaN3. 

(ii) Mung bean 

(a) Single labelling 

Mung bean (2.1) root tips about 1.5 mm long were fixed for 1 h with fresh 4% 

(w/v) paraformaldehyde in phosphate-EGTA buffer (PE: 50 mM KH2P04-

K2HP04, pH 6.8, 5 mM EGTA) and then washed for 3 x 10 min with PE. The root 

tips were digested for 25 min with 1 % (w/v) cellulysin (Calbiochem Corp., La Jolla, 

CA., USA) in 0.4 M mannitol, and washed 3 x 5 min with PE. All steps used 

constant gentle shaking. 

Coverslips cleaned in acetone and 70% ethanol were coated with 1 mg/ml poly

L-lysine in PBS. The root tips were squashed gently between pretreated coverslips, 

large lumps removed and the coverslips air-dried. Cells were extracted for 10 min 

with 1% (v/v) Triton X-100 in PE, washed for 3 x 5 min with PE, extracted for 10 

min with methanol at -20"C and rinsed briefly with PE. 

Antibodies (see Table) diluted with 1 % (w/v) BSA in PBS were detected as for 

Chara. Each antibody incubation was carried out for 1 h in a wet chamber with cell 

sides of the coverslips facing down onto the antibody solutions on Parafilm, 

followed by 3 x 5 min washes with PE. Nuclei were stained for 30 seconds with 4, 

6-diamidino-2-phenylindole (DAPI, 0.1 mg/ml in PBS) and rinsed twice with PE 

for 2 min each. In the control, the primary antibody was replaced with BSA/PBS. 
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(b) Double labelling 

Anti-pan myosin antibody (lgM) and MB165/1 (IgM) were used in double 

labelling with C4 (lgG1). IgM antibody was visualized by FITC-conjugated sheep 

anti-mouse IgM (Serotec, Oxford, UK) and IgG1 by rhodamine-conjugated anti

mouse IgG1 (given by Dr. David Mccurdy of this Group), both used at 1: 50 

dilution. Anti-pan myosin antibody or MB 165/1 labelling was carried out first 

followed by C4 labelling. Each antibody was incubated for 1 h. Other steps were 

the same as those used in the single labelling. 

In controls, incubation with anti-pan myosin, MB 165/1 or C4 was replaced with 

BSNPBS. Controls also included single labelling with one IgM or IgG1 primary 

antibody followed by the inappropriate class- or sub-class-specific second antibody 

to detect any cross reactivity. 

(iii) Microscopy 

Coverslips were mounted in anti-fade mounting medium Moviol 4-88 (Hoechst, 

Frankfun, FRG), containing 10% (w/v) of 1,4-diazabicyclo [2,2,2]octane (DABCO). 

Specimens were kept in the dark for at least 1 h before examination. Cells were 

viewed with a lOOx oil-immersion objective (NA: 1.3) on an Axioplan Universal 

incident-light fluorescence microscope (Zeiss, FRG). A red-suppressing filter was 

used to exclude autofluorescence from Chara chloroplasts. Photographs were taken 

on Kodak T-Max 400 film at 400 ASA (exposure adjustment: -2, auto exposure 

time) or 1600 ASA (exposure adjustment: -1, auto exposure time). 
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5.3 RESULTS 

5.3.1 Production of monoclonal antibodies against the 165 kDa 

polypeptide 

Antibodies were successfully elicited with PBS-solubilized antigen whereas 

nitrocellulose dissolved with DMSO (Harlow & Lane 1988) was fatal and 

subcutaneous implants of nitrocellulose (Harlow & Lane 1988) failed to generate 

useful hybridomas. Both alkaline phosphatase and the less sensitive peroxidase 

detection proved useful in immunoblot screening with peroxidase detecting only the 

stronger of the positive hybridoma cells detectable with phosphatase (data not 

shown). Positive clones were confirmed by ELISA (data not shown) and four 

monoclonal anti-165 kDa polypeptide antibodies (MB165/1, 165/2, 165/3 and 

165/4) obtained in the form of ascites fluids were used in all subsequent work. 

5.3.2 Identification of putative myosin heavy chains of plants by 

immunoblotting 

The overall results of immunoblotting are summarized in Table 5.1. Of the two 

mung bean polypeptides (165 and 155 kDa) recognized by anti-pan myosin 

antibody (Fig. 5.1, lane 5), only the 165 kDa polypeptide was detected by all four 

MB165 (Fig. 5.1, lanes 6-9), anti-myosin (smooth and skeletal) (Fig. 5.1, lane 3) 

and anti-fast myosin (Fig. 5.1, lane 4). Anti-skeletal myosin did not cross-react with 

any bands of mung bean (Fig. 5.1, lane 2), pea (Fig. 5.2, lane 2), wheat (Fig 5.3, 

lane 2), Arabidopsis (Fig. 5.4, lane 2) or Chara (Fig. 5.5, lane 2). All antibodies 

except anti-skeletal myosin also detected polypeptides of 160 kDa in pea (Fig. 5.2), 

165 kDa in wheat (Fig. 5.3) and 165 kDa in Arabidopsis (Fig. 5.4). All antibodies 

strongly reacted with the 205 kDa heavy chain of rabbit skeletal myosin (Fig. 5.6). 

In Chara, four polypeptides (200, 175, 124 and 110 kDa) were identified by 

immunoblotting, varying with different antibodies (Table 5.1). Neither anti-skeletal 

myosin nor anti-myosin (smooth and skeletal) detected any polypeptide (Fig. 5.5, 

lanes 2 and 3). Both anti-fast and anti-pan myosin antibodies detected a 124 kDa 
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polypeptide (Fig. 5.5, lanes 4, 5 and 7). Additionally, anti-pan myosin antibody 

recognized a 200 k.Da polypeptide (Fig. 5.5, lanes 6 and 7) and the 175 kDa (Fig. 

5.5, lane 8) one. Of four MB165, MB165/3 and MB165/4 identified the 175 kDa 

polypeptide constantly (Fig. 5.5, lanes 11-13). MB 165/3 also identified the 110 kDa 

polypeptide sometimes (Fig. 5.5, lane 12). MB165/1 and MB165/2 usually had 

smear of high background (Fig. 5.5, lanes 9 and 10), and sometimes seems to detect 

a faint and fuzzy band of 175 kDa, but this was not convincing due to the high 

background (data not shown). When Chara proteins were precipitated by acetone, 

the same pattern of polypeptides could be detected as was detected following TCA 

precipitation (data not shown). 

In immunoblotting, Chara proteins were much more difficult to detect than 

those of higher plants. The 200, 175 and 124 k.Da polypeptides of Chara were not 

all recognized by anti-pan myosin at the same time (Fig. 5.5, lanes 5-8), and the 

175 k.Da polypeptide was the most difficult to detect. Such inconsistency of 

polypeptide detection may be due to the different content of each protein in 

different sample preparations. 



Table 5.1 Identification of putative myosin heavy chains by immunoblotting (+:positive;-: negative;±,: dubious). 

anti-skeletal anti-myosin (smooth anti-fast anti-pan MB MB MB MB 

Tissue Mr x 10-3 myosin and skeletal) myosin myosin 165/1 165/2 165/3 165/4 

Mung bean 165 - + + + + + + + 

155 - - - + - - - -

Pea 160 - + + + + + + + 

Wheat 165 - + + + + + + + 

Arabidopsis 165 - + + + + + + + 

200 - - - + - - - -

Chara 175 - - - + ± ± + + 

124 - - + + - - - -

110 - - - - - - + -

Rabbit muscle 

myosin 205 + + + + + + + + 

133 
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5.3.3 Immunofluorescent labelling of Chara internodal cells with anti-

actin, anti-myosin and MB165 

In immunofluorescence, the labelling patterns with the four MB 165 were nearly 

identical to those with anti-pan myosin and anti-fast myosin (Fig. 5.7-5.11 ), and 

similar to the results for perfused Chara cells presented by Grolig et al. (1988). 

MB165/2 and MB165/4 gave much weaker immunofluorescent staining than 

MB165/l and MB165/3. The same structures of Chara cell were labelled with 

MB 165/2 and MB 165/4 as with MB 165/1 and MB 165/3, but they were less distinct. 

In the control without incubation with the first antibody, nothing was labelled 

except autofluorescent vesicles lying around chloroplasts between the focal plane of 

subcortical actin bundles and the cell wall (Fig. 5.7, e). These vesicles caused some 

out-of-focus fluorescence visible in photographs. 

On one side of the neutral line (nl), antibodies labelled subcortical actin bundles 

(asterisks), small organelles associated with the actin bundles and endoplasmic 

strands, tangled (arrows heads) or not (arrows) (anti-pan myosin, Fig. 5.7, a and b; 

anti-fast myosin, Fig. 5.8, a-c; MB 165/1, Fig. 5.9, a-c; MB 165/3, Fig. 5.10, a and 

b; MB165/2, Fig. 5.11, a and b; MB165/4, Fig. 5.11, c and d). Patches of compact 

fluorescence were considered by Grolig et al. (1988) to be tangled endoplasmic 

strands. Endoplasmic strands, single or branched, often connected two adjacent 

actin bundles and usually showed a beaded pattern of fluorescence (arrows, Fig. 

5.7-5.11). Sometimes, nuclei (n) were also labelled (Fig. 5.9, c). 

On the other side of the neutral line, antibodies labelled the actin bundles and 

small organelles associated with them but very few small patches of tangled 

endoplasmic strands (anti-pan myosin, Fig. 5.7, c; anti-fast myosin, Fig. 5.8, d; 

MB165/1, Fig. 5.9, d; MB165/3, Fig. 5.10, c). Usually, fluorescent staining of this 

side of neutral line was weaker than the opposite side with its many tangled 

endoplasmic strands, as clearly seen at the neutral line (Fig. 5.8, c). The staining of 

actin by C4, however, was confined to the actin bundles (Fig. 5.7, d) and was of 

equal intensity on both sides of the neutral line (data not shown). On immunoblots, 
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C4 recognized the single band of both chicken gizzard actin (42 kDa) and Chara 

actin (43 kDa, Williamson et al. 1985) from cells perfused with ACPS, while no 

polypeptide was detected after actin was removed from Chara with low salt (data 

not shown). 

Sodium borohydride was used to reduce the glutaraldehyde-induced 

autofluorescence. However, no labelling or sometimes very faint fluorescent actin 

bundles could be observed with anti-pan myosin after sodium borohydride 

treatment (data not shown). Moreover, some structures remained weakly labelled 

and many areas unlabelled with MB165/2 and MB165/4 after such treatment (data 

not shown). Therefore, sodium borohydride treatment may block the labelling of 

cellular structures with some, perhaps weak, antibodies. 

5.3.4 lmmunofluorescent labelling of mung bean root tip cells with anti-

actin, anti-pan myosin and MB165 

Since all four MB165 antibodies recognized only the 165 kDa polypeptide of 

mung bean, they were used to localize immunofluorescently this putative myosin 

heavy chain in mung bean root tip cells. Anti-pan myosin has been used in 

immunofluorescent localization of a 200 kDa putative myosin heavy chain of onion 

root tip cells (Parke et al. 1986), and therefore was used as a positive control here. 

Actin was also labeled for comparison with putative myosin. In controls without the 

incubation with primary antibodies, no cellular structure was labelled (Fig. 5.12, n). 

(i) C4 anti-actin 

(a) Interphase 

Mung bean root tip cells in interphase contained extensive arrays of actin 

filaments that were more prominent in elongated cells than in isodiametric ones 

(Fig. 5.12, a-m). In elongated cells, thick longitudinal actin bundles were present in 

the endoplasm and were usually close to nuclei (Fig. 5.12, c-e). Fine actin 

filaments, longitudinal or in random arrays, were present in the cell cortex (Fig. 

5.12, b, f and h). 
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The actin filaments in small, isodiametric cells (Fig. 5.12, e and f, i-k) were less 

prominent than those in elongated cells. A fine, random network of actin filaments 

was present in the cortex of some cells (Fig. 5.12, i) but more often, short or rod

like actin filaments in random arrays existed in both endoplasm and cell cortex 

(Fig. 5.12, e, f, j and k). Sometimes, slightly elongated cells also showed short actin 

filaments (Fig. 5.12, 1). Perinuclear actin filaments were present in a few 

isodiametric or slightly elongated cells, with fine filaments extending from them 

into the cytoplasm (Fig. 5.12, a and m). 

(b) Preprophase/prophase 

Preprophase/prophase cells were recognized by their condensed chromatin. The 

extensive arrays of long actin filaments seen in interphase disappeared and only 

short actin filaments were present in both endoplasm and cortex and were especially 

prominent in elongated cells (Fig. 5.13, a-f). The cortex usually had more actin 

filaments than the endoplasm except in elongated cells. In some cells, only diffuse 

cytoplasmic staining was observed, with a few short actin filaments sometimes 

(Fig. 5.13, g and h). No transverse cortical actin filaments coinciding with the 

preprophase band of microtubules (Palevitz 1987a; Kakimoto & Shibaoka 1987a; 

McCurdy et al. 1988; McCurdy & Gunning 1990) were observed. 

(c) Metaphase 

In metaphase, random short actin filaments and punctate staining were present 

in endoplasm and cell cortex, but mostly excluded from the spindle (Fig. 5.14, a-h). 

The staining of short filaments was particularly distinct in elongated cells (Fig. 

5.14, g and h). The cortex usually displayed more filaments than the endoplasm 

except in elongated cells. In some cells, only diffuse or punctate staining with a few 

rod-like actin filaments were observed (Fig. 5.14, i andj). 

(d) Anaphase 

Anaphase cells were recognized by the separation of daughter chromosomes 

and the absence of a cell plate. Both endoplasm and cell cortex exhibited random 

arrays of short actin filaments and punctate staining, mostly excluded from the 
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spindle (Fig. 5.15, a-j). Usually, more actin filaments were present in the cortex 

than the endoplasm. Additionally, long actin filaments (Fig. 5.15, b and i) and a 

mesh of actin filaments (Fig. 5.15, f and g) could be observed in the cortex 

sometimes. In some cells, the cytoplasm only displayed diffuse and punctate 

staining (Fig. 5.15, m and n). Occasionally, a prominent accumulation of actin was 

present in the midplane at late anaphase (Fig. 5.15, k and 1), as in onion root tip 

cells (Palevitz 1987b). Within the actin staining, some short rod-like structures 

could be recognized. 

(e) Cytokinesis 

Actin was localized in the phragmoplast of mung bean root tip cells (Fig. 5.16, 

a-f), usually with amorphous (Fig. 5.16, a and b) but sometimes with punctate and 

occasionally short rod-like staining in it (Fig. 5.16, c-f). In some cells, only diffuse 

actin staining was found in the phragmoplast (Fig. 5.16, g-n). The cytoplasm 

usually had diffuse or punctate staining (Fig. 5.16, m and n), but a few short and 

occasionally some long actin filaments were present in endoplasm and cortex of 

some cells (Fig. 5.16, g-1). 

(ii) Anti-pan myosin and MB165 

Immunofluorescent labelling of mung bean root tip cells with anti-pan myosin 

or MB165 gave the same result whether the cells were extracted with prechilled 

methanol or not. However, the cytoplasm of cells extracted with methanol was not 

preserved as well as the cytoplasm in unextracted cells. Since actin could only be 

stained well in cells treated with methanol, cells labelled with anti-pan myosin or 

MB 165 were also extracted with methanol in order to compare the localization of 

putative myosin and actin under the same conditions. 

The labelling of mung bean root tip cells with anti-pan myosin (Fig. 5.17) was 

very similar to that with MB 165/1 (Fig. 5.18 and 5.19) and MB 165/3 (Fig. 5.20). In 

interphase, cells displayed diffuse or punctate cytoplasmic staining (anti-pan 

myosin, Fig. 5.17, a; MB165/l, Fig. 5.18, a; MB165/3, Fig. 5.20, a). One or 

occasionally two brightly stained filaments occurred in the endoplasm of some cells 
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(anti-pan myosin, Fig. 5.17, b-h; MB165/1, Fig. 5.18, b-e; MB165/3, Fig. 5.20, b

d). Short filaments were in random directions but often close to the periphery of 

nucleus. Long filaments running longitudinally in close proximity to nuclei were 

also observed in the endoplasm of a few elongated cells (anti-pan myosin, Fig. 

5.17, e-h). These long filaments were very similar to the actin filaments in the 

endoplasm described before (5.3.4 (i) (a)]. Occasionally, a long filament was 

present in the cell cortex (anti-pan myosin, Fig. 5.17, i and j; MB 165/1, Fig. 5.18, f 

and g). 

During mitosis, one or two filaments were present in some cells. In prophase 

(anti-pan myosin, Fig. 5.17, k and l; MB165/1, Fig. 5.18, hand i; MB165/3, Fig. 

5.20, e and f), metaphase (MB165/1, Fig. 5.18, j and k; MB165/3, Fig. 5.20, g and 

h) and anaphase (anti-pan myosin, Fig. 5.17, q and r; MB165/1, Fig. 5.19, a and b; 

MB 165/3, Fig. 5.20, i and j), cells exhibited weak, diffuse or punctate cytoplasmic 

staining. Sometimes, one or occasionally two filaments were present in the 

endoplasm of a metaphase (anti-pan myosin, Fig. 5.17, m and n; MB 165/1, Fig. 

5.18, 1 and m) or anaphase cell (anti-pan myosin, Fig. 5.17, o and p; MB165/1, Fig. 

5.19, c and d). Filaments were not observed in prophase cells, but a larger number 

of cells would need to be examined before it is clear that they are completely 

absent. 

During cytokinesis, the phragmoplast showed amorphous labelling (anti-pan 

myosin, Fig. 5.17, s and t; MB165/l, Fig. 5.19, e-h; MB165/3, Fig. 5.20, k-n). 

Occasionally, a filament was labelled elsewhere in the cytoplasm (MB165/1, Fig. 

5.19, e and f; MB165/3, Fig. 5.20, m and n). In some cases, the phragmoplast was 

not labelled more intensely than the cytoplasm which showed diffuse or punctate 

staining (anti-pan myosin, Fig. 5.17, u and v; MB165/l, Fig. 5.19, i-o). One or two 

short filaments could be detect in the endoplasm (MB165/l, Fig. 5.19, m) and/or 

cortex of some cells in cytokinesis (MBI65/1, Fig. 5.19, j, k and n). 

MB 165/2 and MB 165/4 gave generally similar but much weaker staining than 

MB 165/1 and MB 165/3, and no distinct filaments were detected. Interphase cells 
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exhibited diffuse or punctate staining of the cytoplasm (Fig. 5.21, a and b) while in 

prophase (Fig. 5.21, c and d), metaphase (Fig. 5.21, e and f) and anaphase (Fig. 

5.21, g and h) cells, cytoplasm was weakly stained. During cytokinesis, the cell 

plate (Fig. 5.21, i-1) rather than the phragmoplast (Fig. 5.21, m and n) was often 

labelled. 

(iii) Double labelling 

Double labelling with anti-actin and anti-pan myosin or MB 165/1 was 

attempted to determine whether the filaments labelled with anti-pan myosin and 

MB 165 also contained actin. Double labelling, however, was not successful: actin 

filaments were detected but neither anti-pan myosin nor MB165/1 labelled 

filaments although both showed diffuse or punctate cytoplasmic staining (data not 

shown). When anti-pan myosin and MB165/1 were tested in single labelling using 

the FITC-conjugated anti-mouse IgM employed in the double labelling experiment, 

filaments were detected but very much less frequently than in the experiments using 

FITC-conjugated anti-mouse lg (5.3.4 (ii)]. The reasons for this effect are not 

understood. 



140 

5.4 DISCUSSION 

5.4.1 Epitopes detected by anti-myosin and MB165 antibodies and the 

identification of plant putative myosin heavy chains by immunoblotting 

Myosin heavy chains are large molecules (1.2.1) and thus have many potential 

epitopes. If a plant polypeptide shares several epitopes with the heavy chain of 

rabbit skeletal muscle myosin, it is more likely to be a genuine myosin heavy chain 

than if it shares only one. When using immunoblotting to decide how many 

different epitopes were recognized by anti-myosin and the MB165 antibodies, two 

antibodies were considered to recognize different epitopes if a polypeptide reacted 

with only one of them. Of eight monoclonal antibodies tested, both MB165/1 and 

MB165/2 recognized the same polypeptides from each of six tissues, and could 

therefore be recognizing the same epitope (Table 5.1). It cannot be concluded from 

this reasoning that they do recognize the same epitope since blotting further species 

could reveal a polypeptide recognized by only one of them. The other six antibodies 

recognized six different epitopes. Since the detection of the Chara 175 kDa 

polypeptide with MB165/1 and MB165/2 was equivocal, it was not conclusive 

whether the two antibodies recognized the same epitope as anti-myosin (smooth 

and skeletal) or MB 165/4. Therefore, the eight antibodies detected at least six 

different epitopes all of which existed in the rabbit myosin heavy chain. 

The four MB165 cross-reacted with rabbit skeletal muscle myosin heavy chain 

as did the four anti-myosin antibodies. Although the MB 165 antibodies were raised 

against a mung bean protein, they worked at higher dilution with rabbit muscle 

myosin heavy chain than with plant proteins [5.2.4 (i)]. This is probably because 

each protein to which the antibodies bound in plant crude extract was present in far 

lower amounts than purified rabbit muscle myosin in SOS-PAGE. All antibodies 

except anti-skeletal myosin detected the 160 kDa polypeptide of pea, and the 165 

kDa one of mung bean, wheat and Arabidopsis. Anti-skeletal myosin is specific for 

the myosin heavy chain of either human or animal skeletal muscle extract in 
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immunoblotting, and does not stain human or animal cardiac or smooth muscle 

myosin or nonmuscle myosins of tissue culture cells (Anon. 1988). 

All the recognized six epitopes were on the heavy chain of rabbit muscle 

myosin; and five were also on the polypeptides of 165 kDa from mung bean, wheat 

and Arabidopsis, and on the 160 kDa polypeptide from pea. The impressive degree 

of similarity of epitopes between the four polypeptides of higher plants and rabbit 

muscle myosin heavy chain greatly strengthens the case that these plant 

polypeptides are myosin heavy chains. No plant putative myosin heavy chain has 

been identified which shares so many similar epitopes with rabbit muscle myosin 

heavy chain (1.8.2). The mung bean 155 polypeptide detected by anti-pan myosin 

antibody does not contain the epitopes recognized by any of the other seven 

antibodies. This further supported the view that it is not a putative myosin heavy 

chain (see 3.4.1; 3.4.3). 

In Chara, none of the four polypeptides detected by immunoblotting shared so 

many epitopes with muscle myosin heavy chain as did the 165/160 kDa 

polypeptides of higher plants (Table 5.1). The number of epitopes of Chara 

polypeptides that were shared with muscle myosin heavy chain and the 165/160 

kDa polypeptides of four higher plants were: ~ three on 175 kDa, two on the 124 

kDa and one on the 200 and 110 kDa polypeptides. The 124 and 110 kDa 

polypeptide were unlikely to be the proteolytic fragments of the 200 or 175 kDa 

polypeptide because Chara proteins were precipitated immediately with TCA (Wu 

& Wang 1984) after being squeezed out of cells. Therefore, these four polypeptides 

were considered to be putative myosin heavy chains of Chara. It is possible that 

multiple isoforms of myosin heavy chains exist in Chara. In another alga 

Ernodesmis, putative myosin heavy chains of 220-230 and 85 kDa are also 

identified by immunoblotting protein extracts made with either buffer or TCA 

extraction (La Claire 1991). 

A 110 kDa polypeptide identified with anti-pan myosin by Grolig. et al. (1988) 

was not detected with the same antibody in my experiments which detected a 124 
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kDa polypeptide. Only two Mr standards of 205 and 94 kDa were used next to the 

110 kDa polypeptide in SOS-PAGE by Grolig et al. (1988) while three standards of 

205, 116 and 97.4 kDa were used in my experiment. These will provide more 

accurate Mr determination than the two used by Grolig et al. The 110 and 124 kDa 

recognized with anti-pan myosin by Grolig et al. may be the same polypeptide 

whose Mr was determined differently in two experiments. 

The epitopes of anti-pan myosin and anti-fast myosin have been shown by 

immunoblotting to lie on LMM and S-1 of rabbit skeletal muscle myosin heavy 

chain, respectively (Tang et al. 1989a). Anti-pan myosin identified both 165/160 

and 124/110 polypeptides (Table 5.1; Grolig et al. 1988), indicating that these 

HMW and LMW putative myosin heavy chains probably shared an epitope on their 

tail regions. The conservation of amino acids in the head of myosin is significantly 

greater than that in its tail (1.2; 1.3). However, for myosin II, even quite distantly 

related organisms have a >25% amino acid homology in the tail (Warrick & 

Spudich 1987). Compared with myosin II, myosins I have variable and very 

dissimilar tails, and several known primary sequences of myosin I tails show no 

significantly similarity to those of muscle myosin (Korn & Hammer 1988; Pollard 

et al. 1991). 

Nevertheless, nine monoclonal antibodies to heavy chains of Acanthamoeba 

myosins I (IA and IB) bind to the heavy chain of myosin IA, eight of them bind to 

that of myosin IB and also cross-react with that of Acanthamoeba myosin II 

(Kiehart et al. 1984; Hagen et al. 1986). Epitopes of these eight antibodies are 

localized to the tail region distal to the head-tail junction of myosin II heavy chain 

and to the corresponding 30 kDa C-terminus tail region of myosin I heavy chain. 

These indicate the possible homology in these tails of Acanthamoeba myosin I and 

II, and that myosin I is more closely related to myosin II than was originally 

apparent from amino acid sequence data. It is suggested that there are at least 

common epitopes in the tail region of myosin I and II, but close similarity is 

improbable because of the distinct structural differences between myosin I and II 
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(Hagen et al. 1986). Common epitopes might arise from folding of the polypeptide 

chain to bring together small clusters of amino acids from different parts of the 

sequence. These shared amino acids occurring in small, scattered groups would not 

be picked by simple coalignment of large sequences. 

In deducing which of the epitopes of anti-myosin and MB 165 antibodies exist 

on plant proteins, it would be preferable to confinn the failure of certain antibodies 

to react with specific polypeptides using assays other than immunoblotting such as 

imrnunoprecipitation and ELISA. However, a single antibody may not work well in 

different immunoassays (Harlow & Lane 1988) and since the antibodies were 

selected because they worked on blots, epitope detection by immunoblotting is less 

of a problem than it might be. Therefore, the assignment of different epitopes by 

immunoblotting is preliminary but it provides much more reliable information 

about plant myosin than relying on reaction with one or at most two antibodies as 

previous work has done. 

5.4.2 lmmunofluorescent labelling of Chara internodal cells 

The same structures of perfused Chara intemodal cells were labelled with anti

pan myosin, anti-fast myosin and with the four MB165 antibodies. The labelling 

was similar to that with anti-pan myosin reported before (Grolig et al. 1988) except 

that nuclei considered as autofluorescent by Grolig et al. were antibody-labelled 

and that beaded endoplasmic strands and nuclei recorded only in intact cells by 

them were observed in perfused cells. Perfusion of 1-2 min rather than 5 min 

(Grolig et al. 1988) before fixation could prevent some endoplasmic strands and big 

organelles like nuclei from being washed away. The beading of endoplasmic 

strands may result from their association with small organelles (Grolig et al. 1988) 

or they may be osmotically damaged endoplasmic reticulum (Williamson 1991, 

1993). The different staining with anti-myosin or MB 165 antibodies on two sides of 

the neutral line having oppositely directed streaming in vivo may reflect a situation 

where endoplasm is more readily removed from cells if it is streaming in the same 
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direction as the initial flow of perfusion solution (Grolig et al. 1988; McCurdy & 

Hannon 1992a) 

Anti-fast myosin and MB 165/4 reacted only with the 124 and 175 kDa 

polypeptides respectively. These proteins therefore lie on the actin bundles and 

small organelles attached to them, and the endoplasmic strands (tangled or not). 

Since the same structures were also labelled with anti-pan myosin localizing three 

polypeptides (200, 175 and 124 kDa) and MB165/3 localizing two polypeptides 

(175 and 110 kDa), the 200 and 110 kDa may be colocalized to some or all of these 

labelled structures. MB 165/1, MB 165/2 and MB 165/4 each displayed different 

relative strengths in immunoblotting and immunofluorescence. The strength of the 

reaction in immunoblotting was: MB165/3 > MB165/4 > MB165/1 = MB165/2 

(5.3.2), while that in immunofluorescence was: MB165/1 = MB165/3 > MB165/2 = 

MB165/4. 

A 175 kDa polypeptide of Nicotiana pollen tubes is identified by 

immunoblotting with both anti-pan myosin and anti-fast myosin antibodies and is 

immunolocalized to small vesicles and/or organelles in the pollen tubes (Tang et al. 

1989a). It is also localized to the generative cell and vegetative nuclear envelopes 

by anti-fast myosin but not by anti-pan myosin. The different staining patterns of 

the nuclei seen with two antibodies recognizing the same polypeptide may be 

caused by the organization and/or anchorage state of the putative myosin molecules 

on the nuclear surface differing from those on the vesicles and/or organelles. For 

example, the rod portion of the putative myosin heavy chain may be deeply 

embedded in the nuclear envelopes so that the epitope is inaccessible to anti-pan 

myosin, while the polypeptide may be associated with the membranes of vesicles 

and organelles by a different mechanism in which epitopes of both anti-pan and 

anti-fast myosin are exposed (Tang et al. 1989a). In the present study, MB165/4 

and MB 165/3 worked well in immunoblotting, but MB 165/4 was much weaker 

than MB 165/3 in immunofluorescence. It is possible that in cellular structures, the 

epitope recognized by MB165/4 on the 175 kDa polypeptide was less accessible 
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than that recognized by MB165/3 on the 110 kDa polypeptide, due to the different 

molecular organization of two polypeptides. 

MB165/1 and MB165/2 did not clearly detect any Chara polypeptide on 

immunoblots, but sometimes seemed to recognize the 175 kDa polypeptide albeit 

with a high background. However, MB165/1 was strong in immunofluorescence 

and MB 165/2 was weak but still labelled the same structures as the other MB 165. If 

the epitopes of MB165/1 and MB165/2 on Chara polypeptides were formed by 

noncontiguous amino acid sequences, they could be destroyed by polypeptide 

denaturation after SOS-PAGE making them unrecognizable or only partially 

recognizable to MB165/1 and MB165/2 although they were accessible to antibodies 

in cellular structures. 

The subcortical actin bundles were the only place that was labelled by both C4 

anti-actin and anti-myosin/MB 165. It is well established that the motive force 

driving the cytoplasmic streaming is produced at the interface between the actin 

bundles and the endoplasm (1.8.3). The colocalization of polypeptides recognized 

by anti-myosin or MB 165 with actin increases the chances that the polypeptides are 

putative myosins involved in force generation for cytoplasmic streaming. 

In perfused Chara cells, the presence of small organelles attached to actin 

bundles and tangled endoplasmic strands is ATP-sensitive (Grolig et al. 1988). 

Perfusion of ACPS containing a higher concentration of Ca2+ inhibits cytoplasmic 

streaming, tangled endoplasmic strands disappear and only actin bundles and 

attached small organelles labell with anti-pan myosin. Therefore, the small 

organelles and endoplasmic strands are believed to be myosin-associated structures 

responsible for cytoplasmic streaming, and dual mechanisms of force generation 

have been put forward: individual organelles reacting directly with and moving 

along the actin bundles; organelles trapped within and moved by tangled, myosin

containing endoplasmic strands. 
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5.4.3 Immunofluorescent labelling of mung bean root tip cells with anti-

actin antibody 

In mung bean root tip cells, actin staining was observed in interphase and at all 

stages of mitosis. Several similarities are evident when comparing the actin staining 

patterns of mung bean root tip cells during the cell cycle with those seen in root tip 

cells of other species fixed with 4% formaldehyde: extensive arrays of actin 

filaments are present in interphase cells; actin staining appears at late anaphase in 

the midplane region when initial, elongated microtubule elements of the 

phragmoplast are evident between daughter chromosomes; and actin is localized to 

phragmoplast but not mitotic spindle (onion: Clayton & Lloyd 1985; Palevitz 

1987b; wheat: McCurdy et al. 1988; McCurdy & Gunning 1990). Other staining 

properties vary with different work. 

In preprophase, the transverse cortical actin filaments colocalized with 

microtubules in the preprophase band of onion root cells (Palevitz 1987a, 1988) 

were not detected in mung bean cells. Transverse actin filament occupying the 

central region of cell cortex at early preprophase or the entire cortical surface at late 

preprophase have also been observed in wheat root tip cells (McCurdy et al. 1988; 

McCurdy & Gunning 1990), but not in mung bean cells. 

In wheat root tip cells, only short fragments of actin filaments are present in the 

cell cortex at prophase (some prophase cells have transverse cortical actin 

filaments), metaphase and anaphase (McCurdy & Gunning 1990). The short 

filaments detected in mung bean cells from prophase through cytokinesis were 

longer than the short fragments of actin filaments observed in wheat. Furthermore, 

long and distinct or meshwork-lik:e actin filaments were present in the cortex of 

some cells in anaphase. Long actin filaments were also present in the endoplasm 

and cortex of some mung bean cells in cytokinesis, which may be an early sign of 

interphase filaments. Therefore, even though the extensive arrays of actin filaments 

in interphase disappear at the onset of mitosis, short or sometimes long actin 

filaments were present throughout mitosis in mung bean root tip cells. The 



147 

detection of transverse preprophase actin filaments or actin filaments in mitosis 

may be a question of proper preservation of actin filament during fixation. 

In plant root tip cells fixed with 4% formaldehyde, the commonly observed 

cortical actin filaments and thick subcortical actin bundles at interphase, and the 

intensive actin staining in phragmoplasts may represent the most stable actin 

structures in cell division. In many cases, the network of actin filaments in plant 

cells is partially sensitive to fixation by conventional aldehydes, and therefore 

methods of mild treatment have been explored (Lloyd 1988). These methods 

include fixation with paraformaldehyde at low concentration (0.5-2%) for short 

time (15 min or less) (Parthasarathy et al. 1985; Seagull et al. 1987; Schmit & 

Lambert 1987), formaldehyde fixation after lysine or tropomyosin treatment which 

stabilizes actin filaments (Kakimoto & Shibaoka 1987a, b), mild extraction with 

detergent and/or DMSO to avoid aldehyde fixation (Traas et al. 1987; Lloyd & 

Traas 1988; Heslop-Harrison & Heslop-Harrison 1991), and electroporation which 

bypasses both aldehyde fixation and detergent extraction (Traas et al. 1987; Lloyd 

& Traas 1988). 

The sensitivity of plant actin filaments to conventional aldehyde fixation, 

however, has been conclusively demonstrated only in higher plant cells with large 

vacuoles (McCurdy & Gunning 1990). Hydrolytic enzymes, phenolic compounds, 

and especially, calcium ions stored in vacuoles may rapidly disrupt filaments if the 

vacuoles are ruptured during specimen processing. Therefore, it is argued that the 

ability to preserve fine networks of transverse cortical actin filaments in 

preprophase of wheat root tip cells indicates that aldehyde fixation may not be a 

limitation to obtaining a complete picture of distribution of actin filament during 

mitosis of densely cytoplasmic meristematic cells (McCurdy et al. 1988; McCurdy 

& Gunning 1990). 

Besides the preprophase band and phragmoplast that are commonly labelled 

with actin, several studies using the new methods of mild treatment reveal more and 

complicated actin structures during cell cycle than those using conventional 
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aldehyde fixation. Several classes of interconnected arrays of actin filaments are 

present at interphase and the network of actin filaments persist throughout mitosis 

although it is organized differently during division (Schmit & Lambert 1987; 

Seagull et al. 1987; Traas et al. 1987; Lloyd & Traas 1988). Actin filaments 

associated with the mitotic spindle are observed in a few cases (Seagull et al. 1987; 

Lloyd & Traas 1988), but probably do not provide the motive force for 

chromosome transport because treatment with cytochalasin B or D which disrupt 

actin filaments does not affect the transport (Lloyd 1988). 

Phragmosomal actin filaments radiating from nucleus to cortex at preprophase 

are present in dividing carrot suspension culture cells (Traas et al. 1987; Lloyd & 

Traas 1988), and are suggested to guide the outgrowing phragmoplast to the 

opposing cortex previously occupied by the preprophase band of microtubules. 

Therefore, actin filament may be involved in the spatial control of cell division 

(Lloyd & Traas 1988). Actin in the phragmoplast suggests that an actin-based 

contractile system may be involved in the transport of vesicles containing cell plate 

precursors to the mid.line and/or in vesicle fusion and organization of the cell plate 

(Clayton & Lloyd 1988; Schmit & Lambert 1987; Palevitz 1987b). However, the 

vesicle movements in the phragmoplast are never directly observed and it remains 

uncertain whether actin- or microtubule-based motors or both support such 

movements (Williamson 1993) 

The short or sometimes long actin filaments observed in mitotic mung bean root 

tip cells support the idea that actin filaments are present throughout cell division. 

The short filaments were very similar to those present during interphase in 

isodiametric cells. However, long cortical actin filaments in random arrays were 

observed in some isodiametric cells and meshwork-like actin filaments were also 

occasionally present in the cortex of anaphase cells. The short actin filaments may 

be produced from long filaments that were sensitive to aldehyde fixation, or both 

short and long filaments may be present in vivo with the long ones being more 

sensitive to the aldehyde fixation. The actin filaments present at mitosis in mung 
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bean cells may be involved in some functions observed in other higher plants 

discussed before, such as maintaining the integrity of the cell cortex and exerting 

spatial control over cell division; however, clarifying these functions in mung bean 

requires further extensive studies of actin filaments. 

5.4.4 Immunofluorescent labelling of mung bean root tip cells with anti-

pan myosin and MB16S antibodies 

The staining patterns of mung bean root tip cells labelled with anti-pan myosin 

were very similar to those with MB 165/1 or MB 165/3, and share some similarities 

with those of onion root tip cells labelled with anti-pan myosin (Parke et al. 1986). 

Interphase cells of onion root tips display diffuse cytoplasmic staining within which 

spherical dots are labelled to various degrees and these dots disappear at the onset 

of mitosis (Parke et al. 1986). The small dots look like the punctate cytoplasmic 

staining of mung bean root tip cells, but the big ones were not detected in mung 

bean cells. The structural nature of these various dots is not known but they may 

represent different organelles in the cytoplasm. Neither the preprophase band nor 

the mitotic spindle of either mung bean or onion (Parke et al. 1986) root tip cells 

were labelled with anti-pan myosin or with MB165 antibodies. 

Actin and putative myosin heavy chain have been colocalized to the 

phragmoplast of onion root tip cells, and it is suggested that plant myosin and actin 

may be involved in cytokinesis (Parke et al. 1986). As mentioned in 5.4.3, 

actomyosin in the phragmoplast may transport vesicles containing cell plate 

precursors to the growing cell plate. The phragmoplast of mung bean root tip cells 

was labelled with anti-actin, anti-pan myosin, MB165/l and MB165/3. The 

colocalization of the mung bean 165 kDa polypeptide with actin in the 

phragmoplast further supports the view that it was a myosin heavy chain. The mung 

bean 155 kDa polypeptide recognized by anti-pan myosin may also be localized in 

the phragmoplast if the epitope was accessible to the antibody since no extra sites 

were stained only by anti-pan myosin. MB165/2 and MB165/4 were much weaker 
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than MB 165/1 and MB 165/3, and surprisingly, they labelled the cell plate rather 

than the phragmoplast. The explanation for such labelling is not evident at the 

moment. 

The one or two filaments labelled with anti-pan myosin, MB 165/1 and 

MB 165/3 in interphase and sometimes in metaphase and anaphase cells of mung 

bean root tips have not been reponed in onion root tip cells (Parke er al. 1986) even 

though similar fixation (4% vs 3.7% paraformaldehyde) was used. It is unknown 

whether the filaments labelled with anti-pan myosin, MB165/l and MB165/3 also 

contained actin since double labelling was not successful. Since the filaments in 

interphase cells did not form a network like the actin filaments, it was difficult to 

judge whether putative myosin and actin were colocalized. Nevenheless, the long 

filaments (one of which labelled with anti-pan myosin nearly extended the whole 

length of the cell, see Fig. 5.17, e and f), lying in close proximity to the nuclei of 

interphase cells, looked very much like the longitudinal subcortical actin filaments 

of interphase mung bean cells. 

It is unknown why the number of the putative myosin-reactive filaments is 

much less than that of the actin filaments if the putative myosin is colocalizing with 

the actin filaments. It may be a genuine result that not all actin filaments are 

associated with the putative myosin, but there is no obvious biological reason why 

only some actin filaments should have associated myosin. It may also be an anefact 

of preparation which, for some reason, does not preserve the putative myosin on 

many actin filaments. 

Putative myosin has been colocalized with the subcortical actin bundles of 

Chara and both may be involved in force generation of the cytoplasmic streaming 

(Grolig et al. 1988; 5.4.2). In Ernodesmis, putative myosin has been localized in the 

longitudinal actin bundles formed after wounding, and it is believed that actin and 

myosin are directly associated with the wound-induced cytoplasmic contraction in 

such alga cells (La Claire 1991). Therefore, the filaments labelled with anti-pan 

myosin and MB165 in mung bean root tip interphase cells may represent the 
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putative myosin localized on actin filaments, where both may be involved in the 

cytoplasmic streaming. 

5.4.5 Conclusions 

Six epitopes were recognized by four anti-myosin antibodies and four MB 165 

antibodies. All epitopes were present on the heavy chain of rabbit skeletal muscle 

myosin. Each of the 165 or 160 kDa polypeptide of mung bean, pea, wheat and 

Arabidopsis shared five epitopes with rabbit muscle myosin heavy chain. This 

makes the case that these polypeptides are myosin heavy chains much stronger than 

when they were identified with only one antibody. In contrast, the 155 kDa mung 

bean polypeptide only had the epitope recognized by anti-pan myosin, supporting 

that it was not a myosin heavy chain. Four putative myosin heavy chains of Chara 

(200, 175, 124 and 110 kDa) shared 1-3 epitopes with muscle myosin heavy chain 

and with the 165/160 kDa polypeptides of higher plants; not as many as those 

higher plant proteins shared with muscle myosin heavy chain. 

Immunofluorescently, the mung bean 165 kDa polypeptide was colocalized 

with actin in phragmoplasts of mung bean root tip cells by anti-pan myosin, 

MB165/1 and MB165/3. This strengthens the case that the polypeptide is a myosin 

heavy chain and that, together with actin, it may play a role in cytokinesis. In 

Chara, the 175 and 125 kDa polypeptide that can be localized individually by 

MB165/4 and anti-fast myosin localize to the actin bundles, suggesting that they 

may be involved in force generation for cytoplasmic streaming. Neither the 200 nor 

the 110 kDa polypeptide is recognized individually so that one, both, or neither of 

them may be localized to the actin bundles. 
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Fig. 5.1-Fig. 5.4 Identification of putative myosin heavy chains of plants by 

immunoblotting. Fig. 5.1, mung bean; Fig. 5.2, pea; Fig. 5.3, wheat; 

Fig. 5.4, Arabidopsis. (1) was the control without incubation of the first 

antibody. Each sample was immunoblotted with 8 antibodies: (2), anti

skeletal myosin; (3), anti-myosin (smooth and skeletal); (4), anti-fast 

myosin; (5), anti-pan myosin; (6), MB 165/1; (7), MB 165/2; (8), 

MB165/3; and (9), MB165/4. 
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Fig. 5.5 Identification of putative myosin heavy chains of Chara by 

immunoblotting. (1) was the control without incubation of the first 

antibody. Eight antibodies were tested: (2), anti-skeletal myosin; (3), 

anti-myosin (smooth and skeletal); (4), anti-fast myosin; (5)-(8), anti-pan 

myosin; (9), MB165/1; (10), MB165/2; (11) and (12), MB165/3; and 

(13), MB165/4. 

Fig. 5.6 Identification of the rabbit skeletal muscle myosin heavy chain by 

immunoblotting. (1) was the control without incubation of the first 

antibody. Eight antibodies were tested: (2), anti-skeletal myosin; (3), 

anti-myosin (smooth and skeletal); (4), anti-fast myosin; (5), anti-pan 

myosin; (6), MB165/1; (7), MB165/2; (8), MB165/3; and (9), MB165/4. 



5 

-200 -205 
-175 

-124 
-110 -116 

-97.4 

- 66 

-45 

d 
1 2 3 4 5 6 7 8 9 10 11 12 13 

6 
y 

. I 
-205 

1 2 3 4 5 6 7 8 9 



Fig. 5.7. Immunofluorescent labelling of Chara internodal cells with anti-pan 

myosin (a-c) and C4 anti-actin. (a) and (b), On one side of the neutral 

line, anti-pan myosin labelled actin bundles (asterisks) and small 

organelles attached to them, tangled endoplasmic strands (arrow heads) 

and endoplasmic strands (arrows) connecting two adjacent actin bundles. 

(c), On the other side of the neutral line, anti-pan myosin labelled actin 

bundles and small organelles attached to them. (d), Actin was solely 

localized to actin bundles. Fuzzy fluorescent dots were contributed by 

autofluorescent vesicles on the chloroplast layer beneath the actin 

bundles. (e), Control in which incubation with the first antibody was 

eliminated. Some cells had bright autofluorescent vesicle around 

chloroplasts. (magnification: x 816) 
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Fig. 5.8 Immunofluorescent labelling of Chara cells with anti-fast myosin. (a), 

(b) and left hand part of (c), On one side of the neutral line (nl), The 

antibody labelled actin bundles (asterisks), small organelles attached to 

them, tangled endoplasmic stands (arrow heads) and endoplasmic strands 

(arrows) connecting two adjacent actin bundles. Right hand side of (c) 

and whole of (d), On the other side of the neutral line, the antibody 

labelled actin bundles and small organelles on them, with very few small 

tangled endoplasmic strands sometimes. The fluorescent staining was 

weaker than the opposite side of the neutral line, as clearly seen in (c). 

(magnification: x 816) 
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Fig. 5.9 Immunofluorescent labelling of Chara cells with MB165/1. (a)-(c), 

Actin bundles with attached small organelles (asterisks), tangled 

endoplasmic strands (arrow heads), and endoplasmic strands, branched or 

not (arrows). Sometimes, nuclei (n) could be observed as in (c). (d), On 

the other side of the neutral line, actin bundles and small organelles 

associated with them were immunofluorescently labelled. (magnification: 

X 816) 



)-(c), 

gled 

, On 



Fig. 5.10 Immunofluorescent labelling of Chara cells with MB165/3. (a) and 

(b), Actin bundles with attached small organelles (asterisk), tangled 

endoplasmic strands (arrow heads), and endoplasmic strands, branched or 

not, connecting adjacent actin bundles (arrows). (c), On the other side of 

neutral line, actin bundles and attached small organelles were more 

weakly labelled than those of the opposite side in (a) and (b). Very few 

tangled endoplasmic strands were detected. (magnification: x 816) 
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Fig. 5.11 Immunofluorescent labelling of Chara cells with MB165/2 (a and b) 

and MB165/4 (c and d). Actin bundles and small organelles associated 

with them (asterisks), tangled endoplasmic strands (arrow heads), 

endoplasmic strands connecting two adjacent actin bundles (arrows) were 

immunofluorescently labelled. The fluorescence was indistinct due to the 

weakness of the staining achieved with MB165/2 and MB165/4. 

(magnification: x 816) 
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Fig. 5.12 Mung bean root tip cells in interphase labelled with C4 anti-actin 

(a-m). (a), Internal view (bracket), showing perinuclear actin filaments. 

(b), Surface view of the same cell, showing a network of cortical actin 

filaments, longitudinal or in more random arrays. (c) and (d), Internal 

view of elongated cells, showing thick subcortical longitudinal actin 

filaments close to nuclei. (e), Internal view, showing longitudinal actin 

filaments in an elongated cell and short, random actin filaments in an 

isodiametric cell. (f), Surface view of the same cells, showing fine 

cortical actin filaments, random in the isodiametric cell and more 

longitudinal in the elongated cell. (g) Internal view of an elongated cell. 

(h), Surface view of the same cell, showing fine longitudinal actin 

filaments in cortex. (i), Surface view of an isodiametric cell (bracket), 

showing random fine actin filaments in cortex. (j), Internal view of three 

isodiametric cells, showing random short, rod-like actin filaments in 

endoplasm. (k), Surface view of the same cells, showing random short 

cortical actin filaments. (1), Internal view of an elongated cell, showing 

random short cortical actin filament with one long subcortical actin 

filament. (m), Internal view, showing perinuclear actin filaments with 

fine filaments radiating into the cytoplasm. (n), Control in which 

incubation with the first antibody was replaced with BSA/PBS; nothing 

was stained. (magnification: x 954) 
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Fig. 5.13 Mung bean root tip cells in prophase stained with C4. (a), Internal 

view, showing random short actin filaments in endoplasm. (b), Surface 

view of the same cell, showing random short actin filament in cortex. (c), 

'DAPI of the same cell, showing condensed chromatin. (d), Internal view, 

weak, diffuse and punctate staining only. (e), Surface view of the same 

cell, showing random short actin filaments in cortex. (t), DAPI of the 

same cell. (g), Internal view, showing diffuse staining with a few short 

actin filaments. (h), DAPI of the same cell. (magnification: x 954) 

Fig. 5.14 Mung bean root tip cells in metaphase stained with C4. (a), Internal 

view, showing random short actin filaments in endoplasm but excluded 

from the mitotic spindle. (b), Surface view of the same cell, showing 

random short actin filaments in cortex. (c), DAPI of the same cell, 

showing chromosomes aligned at metaphase plate halfway between the 

poles. (d), Internal view, showing diffuse and punctate staining. (e), 

Surface view of the same cell, showing short actin filament in cortex. (f), 

DAPI of the same cell. (g), Internal view, showing random short actin 

filaments. (h), DAPI of the same cell. (i), Internal view, showing diffuse, 

punctate staining with a few short rod-like actin filaments. (j), DAPI of 

the same cell. (magnification: x 954) 





Fig. 5.15 Mong bean root tip cells in anaphase labelled with C4. (a), Internal 

view (bracket), showing punctate staining with a few short actin 

filaments in endoplasm. (b ), Cortical view of the same cell, showing 

several long actin filaments in cortex. (c), Adjusted cortical view of the 

same cell, showing random short actin filaments in cortex. (d), DAPI of 

the same cell. (e), Internal view (bracket), showing random short actin 

filament and punctate staining in endoplasm. (f), Cortical view of the 

same cell, showing random meshwork-like actin filaments in cortex. (g), 

DAPI of the same cell. (h), Internal view, showing punctate staining and 

some short actin filaments. (i), Cortical view of the same cell, showing 

one long actin filament in cortex. (j), DAPI of the same cell. (k), late 

anaphase, showing intense fibrous staining in midplane region between 

two daughter sets of chromosomes. (1), DAPI of the same cell. (m), 

Diffuse and punctate staining throughout the cytoplasm. (n), DAPI of the 

same cell. (magnification: x 954) 
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Fig. 5.16 Mung bean root tip cells in cytokinesis labelled with C4. (a), 

Amorphous staining of a phragmoplast. (b), DAPI of the same cell. (c), 

Stained phragmoplast containing very short rod-like elements. (d), DAPI 

of the same cell. (e), A cell (bracket) showed stained phragmoplast with 

punctate staining in it. (f), DAPI of the same cell. (g)-(n), Phragmoplasts 

were not labelled with C4 and display weak diffuse staining. (g), Internal 

view, showing short rod-like and punctate staining of the endoplasm. (h), 

Surf ace view of the same cell, showing punctate staining and short actin 

filaments in cortex. (i), DAPI of the same cell. (j), Internal view, 

showing punctate staining of cytoplasm, with one long actin filament in 

endoplasm (arrow). (k), Surface view of the same cell, showing one long 

actin filament in cortex (arrow), probably a continuation of the filament 

observed in (j). (1), DAPI of the same cell. (m), General, punctate 

staining of cytoplasm. (n), DAPI of the same cell. (magnification: x 954) 





Fig. 5.17 Mung bean root tip cells labelled with anti-pan myosin. (a)-U), 

Interphase. (a), Diffuse and punctate staining of cytoplasm. (b)-(d), One 

filament in endoplasm. (e), One longitudinal subcortical filament. (f), 

Adjusted view of the same cell, showing part of the same filament in 

close proximity to nucleus. (g), Two subcortical filaments (arrows). (h), 

Adjusted view of the same cell, showing the other part of the same 

subcortical filaments on two sides of the nucleus (arrows). (i), Internal 

view, showing one filament (arrow). (j), Cortical view of the same cell, 

showing the other part of the same filament in cortex (arrow). (k), 

Prophase, showing weak, diffuse staining of cytoplasm. (1), DAPI of the 

same cell. (m), Metaphase, showing one filament in endoplasm. (n), 

DAPI of the same cell. (o)-(r), Anaphase. (o), One filament in 

endoplasm. (p), DAPI of the same cell. (q), weak, diffuse staining of the 

cytoplasm. (r), DAPI of the same cell. (s)-(v), Cytokinesis. (s), Intense, 

amorphous staining of a phragmoplast on two sides of the cell plate 

(arrow). (t), DAPI of the same cell, at different focal plane from that of 

(s). (u), No special staining in a phragmoplast, diffuse staining of the 

cytoplasm. (v), DAPI of the same cell. (magnification: x 954) 





Fig. 5.18 Mung bean root tip cells in interphase, prophase and metaphase 

labelled with MB165/1. (a)-(g), Interphase. (a), Diffuse or punctate 

staining of the cytoplasm. (b)-(e), One or occasionally two filaments in 

the endoplasm. (f) , Internal view, showing a short length of filament. (g), 

Surface view of the same cell, showing the continuation of the same 

filament in cortex. (h), Prophase, showing weak, diffuse staining of 

cytoplasm. (i), DAPI of the same cell. (j)-(m), Metaphase. (j) , Weak 

diffuse staining of cytoplasm. (k), DAPI of the same cell. (1), Two 

filaments in endoplasm (arrows). (m), DAPI of the same cell. 

(magnification: x 954) 





Fig. 5.19 Mung bean root tip cells in anaphase and cytokinesis labelled with 

MB165/1. (a)-(d), Anaphase. (a), Weak cytoplasmic staining particularly 

in the region of the future phragmoplast. (b), DAPI of the same cell. (c), 

One filament in endoplasm (arrow). (d), DAPI of the same cell. (e)-(o), 

Cytok:inesis. (e), Intense staining of a phragmoplast, with one filament in 

endoplasm (arrow). (f), DAPI of the same cell. (g), Phragmoplast 

staining on two sides of the cell plate. (h), DAPI of the same cell. (i), 

Internal view, showing weak, diffuse staining of a phragmoplast with 

diffuse and punctate cytoplasmic staining. (j), Surface view of the same 

cell, showing one short filament in cortex (arrow). (k), Adjusted view of 

the same cell, showing another short filament in the cortex (arrow). (1) , 

DAPI of the same cell. (m), Internal view, showing one short filament in 

punctate stained cytoplasm (arrow), with no specific staining in the 

phragmoplast. (n), Surface view of the same cell, showing the other part 

of the same filament in cortex (arrow). (o), DAPI of the same cell. 

(magnification: x 954) 





Fig. 5.20 Mung bean root tip cells labelled with MB165/3. (a)-(d), Interphase. 

(a), General punctate staining of cytoplasm. (b)-(d), Filaments in 

endoplasm. (e), Prophase, weak diffuse staining of cytoplasm. (f), DAPI 

of the same cell. (g), Metaphase, showing weak diffuse and punctate 

staining of cytoplasm. (h), DAPI of the same cell. (i), Anaphase, showing 

weak general cytoplasmic staining. (j), DAPI of the same cell. (k)-(n), 

Cytokinesis. (k), Amorphous phragmoplast staining on two sides of the 

cell plate (arrow). (1), DAPI of the same cell. (m), One filament in the 

endoplasm (arrow). The phragmoplast was more strongly stained than the 

cytoplasm. (n), DAPI of the same cell. (magnification: x 954) 





Fig. 5.21 Mung bean root tip cells labelling with MB165/2 and MB165/4. (a), 

(i) and (i) were labelled with MB 165/2, and the rest with MB 165/4. (a) 

and (b), Interphase, showing diffuse or punctate cytoplasmic staining. (c), 

Prophase, showing weak cytoplasmic staining. (d), DAPI of the same 

cell. (e), Metaphase (bracket), showing weak cytoplasmic staining. (t), 

DAPI of the same cell. (g), Anaphase, showing weak cytoplasmic 

staining. (h), DAPI of the same cell. (i)-(n), Cytokinesis. (i) and (k), 

Intense staining in cell plate between two daughter cells, resulting in a 

bright line (arrows). (j) and (1), DAPI of (i) and (k), respectively. (m), 

Phragmoplast was slightly more strongly stained than cytoplasm. (n), 

DAPI of the cell. (magnification: x 954) 
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CHAPTER6 

IMMUNOAFFINITY CHROMATOGRAPHY AND CHARACTERIZATION 

OF THE MUNG BEAN 165 kDa POLYPEPTIDE FRACTION 

6.1 INTRODUCTION 

Immunoblotting with anti-myosin and MB165 antibodies demonstrates that the 

mung bean 165 kDa polypeptide shares at least five epitopes with the heavy chain 

of rabbit skeletal muscle myosin while the 155 kDa polypeptide only shares one. 

This strongly supports the view that the 165 kDa polypeptide is a myosin heavy 

chain. The immunofluorescent colocalization of the 165 kDa polypeptide with actin 

in the phragmoplast of mung bean root tip cells is also consistent with this view. 

The binding of the 165 kDa but not the 155 kDa polypeptide to ADP-agarose 

showed that only the 165 kDa can be an ATPase. Together, these observations 

greatly strengthen the view that the 165 kDa polypeptide is a myosin heavy chain 

and that the 155 kDa one is not. 

The small quantity, impurity and the lack of detectable actin-activated Mg2+_ 

A TPase activity of the partially purified 165 kDa polypeptide fraction made the 

further purification and biochemical characterization of this polypeptide 

impractical. For this reason, a number of preliminary studies were made to see 

whether the MB 165 antibodies could achieve a rapid immunoaffinity purification of 

the 165 kDa mung bean protein or could selectively precipitate it with a solid phase 

so its association with other polypeptides in native conditions could be assessed and 

its ability to support movement of antibody-coated beads investigated. 

Immunoaffinity chromatography has rarely been used in purifying nonmuscle 

myosins. Acanthamoeba myosin I or II can be purified with a column coupled with 

antibodies specific for Acanthamoeba myosin I or II (Pollard 1982b), but no plant 

myosins or putative myosins (1.8.1) have been purified using antibody affinity 

columns. Because recognition of native antigens involved, immunoaffinity 
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chromatography like immunoprecipitation can be used to identify any light chains 

that might associate with the putative myosin heavy chain from mung bean. 

In vitro motility assays directly demonstrate force generation by actomyosin. 

Myosin-coated polystyrene beads (Sheetz & Spudich 1983; Shimmen & Yano 

1984) or organelles (Adams & Pollard 1986) can move unidirectionally over actin 

cables of characean cells like the in vivo cytoplasmic streaming. Alternatively, 

fluorescently labelled actin filaments can move along myosin-coated surface (Kron 

& Spudich 1986; Toyoshima et al. 1987; Kron et al. 1992). The assays can be made 

quantitative to study myosin and the regulation of myosin-actin interaction 

(Shimmen & Yano 1985, 1986; Vale et al. 1984; Okagaki et al. 1989; Kohama & 

Shimmen 1985; Kohama et al. 1991a). The velocity of movement is principally 

determined by the type of myosin rather than of actin. 

In plants, endoplasmic organelles isolated from Chara (Shimmen & Tazawa 

1982) and pollen tube organelles (Kohno & Shimmen 1988a, b; Kohno et al. 1990) 

move along actin bundles in characean cells and muscle actin filaments move on a 

surface coated with a crude extract of pollen tubes (Kohno et al. 1991). However, 

none of the purified and partially purified plant myosins (1.8.1) have been studied 

using such assays. If beads coated with mung bean 165 kDa polypeptide fractions 

move unidirectionally along Chara actin bundles, it would confirm that the 

polypeptide is an authentic myosin heavy chain. This Chapter records the results of 

preliminary experiments using these three immunological techniques. 
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6.2 MATERIALS AND METHODS 

6.2.1 Purification of antibodies from ascites fluids 

3.7 ml of MB165/l, 10.3 ml of MB165/2, 9.2 ml of MB165/3 and 2.5 ml of 

MB 165/4, were pooled and clarified by centrifuging at 10,500 rpm for 10 min in 

JA-20. 12 ml of the pooled ascites supernatant were applied to a column (2.6 x 7.6 

cm) of CM Affi-Gel blue (Bio-Rad) equilibrated with 250 ml of starting buffer 

(0.01 mM.K2HP04, pH 7.25, 0.15 M NaCl), washed with 160 ml of the buffer, and 

flow-through fractions pooled. The column was regenerated with 150 ml of 2 M 

NaCl in the starting buffer, equilibrated with 500 ml of the starting buffer and used 

to process the other 12 ml of pooled supernatant. The column was eluted and 

regenerated with 350 ml of 2 M NaCl in the starting buffer. Eluate fractions were 

monitored by ELISA [5.2.2 (ii)] and 13.5% SOS-PAGE. 

The 0-50% (Nl4)2S04 pellet from the combined flow-through fraction was 

desalted in the starting buffer and repurified on the CM Affi-Gel Blue column as 

before. 23 ml of the pooled flow-through fraction were applied to a DEAE

Sephacel column (1.7 x 9.8 cm) equilibrated with 0.01 M K2HP04, pH 7.25, 0.15 

M NaCL The column was eluted with 160 ml of a 0-0.5 M NaCl gradient, and then 

with 0.8 M NaCl in the starting buffer. Antibodies were eluted in one protein peak 

by 0.074-0.12 M NaCl, and the peak was pooled. 

6.2.2 Immunoaftinity chromatography of mung bean 165 kDa polypeptide 

fraction 

(i) Preparing the antibody column 

16 ml of the purified MB 165 ( 6.2.1) were concentrated against Aquacide II 

overnight, and dialyzed against 3 liters of coupling buffer (0.1 M NaHC03, pH 8.5, 

0.5 M NaCl) for 6 h. 1 ml (6.5 mg of protein) of MB165 was made up to 5 ml with 

coupling buffer. 

1 g of freeze-dried cyanogen bromide (CNBr)-activated Sepharose 4B 

(Pharmacia) was washed and reswollen on a sintered glass funnel with 500 ml of 1 
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mM HCl and with 100 ml of coupling buffer. The equilibrated gel was mixed with 

5 ml of MB 165 and incubated for 4.5 h with rotation and several gentle shakes by 

hand. The buffer was removed by filtering and active groups blocked by with 100 

ml of 0.1 M Tris-HCl, pH 8.0, 0.5 M NaCl. Protein concentrations of MB165 

solution (5 ml) added to the gel and the supernatant after 4.5 h incubation were 

measured to monitor the efficiency of protein coupling. The gel was resuspended in 

20 ml of the Tris buffer, and incubated with rotation for 6 h with several gentle 

shakes. Filtered gel was washed 3 times with alternating 125 ml of acetate buffer 

(0.1 M sodium acetate, pH 4.0, 0.5 M NaCl) and 133 ml of the Tris buffer before a 

final wash with 125 ml of the acetate buffer and then with 190 ml of imidazole 

buffer (0.34 M sucrose. 10 mM imidazole, pH 7.0). The MB165-Sepharose gel was 

resuspended with an equal volume of the imidazole buffer. 

(ii) Immunoaftinity chromatography 

The crude extract from 100 g of mung bean was fractionated with DE52 batch 

processing (4.2.1) and 67.5 ml (83.6 mg of protein) of the 0.4 M NaCl eluate were 

fractionated with 0-45% (NH4)2S04. 17 ml of the desalted 0-45% fraction were 

applied to a column (1.6 x 0.8 cm) of MB165-Sepharose equilibrated with 0.34 M 

sucrose, 10 mM imidazole, pH 7 .0 (DTT was avoided as it can break the disulfide 

linkages between the heavy and light chains of antibody). The pooled flow-through 

fraction was reapplied to the column. The second pooled flow-through fraction was 

applied to the column at a flow rate of 40 ml/h, using a peristaltic pump 

(V arioperpex; LKB ). Chromatography was stopped overnight and the column 

eluted sequentially with 1 M NaCl; 3 M MgCl2; 10 mM Tris-HCl, pH 8.0; and 0.1 

M glycine, pH 2.5. Eluate fractions were monitored by immunoblotting with anti

pan myosin antibody. 
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6.2.3 Immunoprecipitation of mung bean proteins 

(i) Coupling antibodies to anti-mouse lgM-agarose 

500-600 µ1 of goat anti-mouse IgM (µ-chain specific)-agarose were loaded into 

a small column, and washed with 10 ml of TBS. 250 µl of anti-pan myosin or anti

fast myosin antibody were applied to the column cyclically for 1.5 h at room 

temperature and left overnight at 0-4°C. The column was washed with 15 ml of 

TBS, and the antibody-agarose resuspended in an equal volume of TBS. 

(ii) Immunoprecipitation 

Mung bean crude extract was prepared as described in 2.5.1 (i) except that OTT 

was omitted. 1 ml of crude extract was mixed with 200 µl of antibody-agarose in a 

1.5 ml eppendorf tube, rotated for 1 h at room temperature, and the gel was pelleted 

at 10,000 rpm for 3 min. The gel was washed with 3 x 1 ml of 0.1 M Tris-HCI, pH 

7.5, 0.6 M NaCl, with 4 x 1 ml of 0.1 M Tris-HCI, pH 7.5, and collected by 

centrifugation. The gel was resuspended with an equal volume 2x SOS-PAGE 

sample buffer, then with 2 gel volumes of lx SOS-PAGE sample buffer. The 

resuspended gel was boiled for 3 min in a water bath, cooled, and clarified at 7,000 

rpm for 2 min. The supernatant was used in immunoblotting. Three controls were: 

1. 1 ml of crude extract was replaced with extraction buffer. 

2. 1 ml of crude extract was mixed with anti-mouse IgM-agarose. 

3. 1 ml of extraction buffer was mixed with anti-mouse IgM-agarose. 

6.2.4 In vitro motility assay of mung bean 165 kDa polypeptide fraction 

(i) Coating Covaspheres with antibodies 

The whole procedure was carried out at 0-4 ·c. 30 µl of green fluorescent 

Covaspheres MX suspension (0.75 µm diameter; Duke Scientific Corporation, Palo 

Alto, CA., USA) were mixed with 30 µl of anti-pan myosin antibody and 30 µl of 

dH20. The mixture was incubated with rotation for 75 min. Covaspheres were 

pelleted at 10,000 rpm for 10 min, resuspended in 300 µl of 1 % (w/v) BSA in TBS, 

and incubated for 10 min with rotation to block unreacted sites. Pelleted 
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Covaspheres were washed twice with 300 µl of imidazole buffer (0.34 M sucrose, 

10 mM imidazole, pH 7 .0) and resuspended in 30 µl of same buffer. 

For MB 165 labelling, 30 µl of Covaspheres were mixed with 60 µl of 

MB165/1, MB165/2, MB165/3, or MB165/4 for 75 min. In the blocking step, the 

Covaspheres were resuspended with 60 µl of each MB165 in 240 µl TBS in order 

to increase the concentration of antibody on the bead surface. The other steps were 

the same as those for anti-pan myosin antibody labelling. 

(ii) Reacting antibody-Covaspheres with mung bean proteins 

The whole procedure was carried out at 0-4 ·c. 200 µl of mung bean crude 

extract [2.5.1 (i)] were incubated for 1 h with 10 µl of antibody-labelled 

Covaspheres diluted 10-fold with buffer. Pelleted Covaspheres were washed with 2 

x 300 µl of ACPS and resuspended with 10 µl ACPS. In controls, mung bean crude 

extract was replaced with extraction buffer. 

To check whether the 165 kDa polypeptide bound to antibody-labelled 

Covaspheres, 10 µl of Covaspheres suspension labelled with either anti-pan myosin 

antibody or with each of the four MB165 were mixed with 1 ml of mung bean 

crude extract, and incubated for 1 h with rotation. Pelleted Covaspheres were 

washed for 10 min with rotation in 1 ml of TBS. The Covaspheres were collected, 

resuspended with 15 µl of lx SOS-PAGE sample buffer, and boiled for 3 min. 

Pelleted Covaspheres were resuspended with 25 µl of lx SOS-PAGE sample 

buffer, boiled for 3 min, the two supematants combined and resolved by 7% SDS

PAGE. 

(iii) Coating Covaspheres directly with protein samples 

Proteins of five fractions (Table 4.1, 1-3, 5 and 6) containing the 165 kDa 

polypeptide during the partial purification of this polypeptide were coupled as 

described in (ii) to Covaspheres prewashed twice with the imidazole buff er (i) 

except that Covaspheres unlabelled with antibodies and diluted 1: 100 were used for 

protein coating. 
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In positive controls, rabbit skeletal muscle myosin (2.15) (50-100 µg) was 

coupled directly to Covaspheres prewashed with buffer (0.3 M KCl, 0.15 M K

phosphate, pH 6.5) as described in (ii) except that Covaspheres unlabelled with 

antibodies and diluted 1: 100 were used for protein coating. 

(iv) In vitro motility assay 

A Chara intemodal cell was perfused with ACPS as described by Williamson 

(1975) for 5 min to remove the endoplasm of the cell. About 5 µl of the 

Covaspheres suspension were introduced by perfusion. Movement of beads was 

observed with a 40 x objective using an Axioven 35 M inverted microscope 

equipped for incident-light fluorescence (Zeiss, Oberkochen, FGR). 
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6.3 RESULTS 

6.3.1 Purification of antibodies from ascites fluids 

Common problems encountered during immunoaffinity purification using 

monoclonal antibodies are low-affinity reactions or cross-reactions due to the single 

epitope. Pooled monoclonal antibodies may overcome these problem (Harlow & 

Lane 1988). Therefore, four MB165 were pooled to make a single antibody affinity 

column. CM Affi-Gel Blue is an affinity chromatography medium made by 

coupling Cibacron Blue F3GA to CM Bio-Gel A crosslinked agarose beads (Anon. 

1984). It is conveniently used in purifying antibodies by selectively adsorbing both 

albumin and protease from serum, and thus was tried in purifying MB 165. 

The first elution profile of ascites fluid (12 ml) from the CM Affi-Gel Blue 

column is shown in Fig. 6.1. From ELISA tests, most antibodies flowed through the 

column, some bound to the column and could be eluted by 2 M NaCl (data not 

shown). The heavy chains of IgM antibodies migrate with a Mr of approximately 

70-80 kDa in SOS-PAGE (Harlow & Lane 1988) as shown in Fig. 6.lA. Besides 

antibodies, some other proteins, especially the 66 kDa protein, also flowed through 

the column (Fig. 6.lA, lanes 1-4). In the 2 M NaCl fraction, the 66 kDa protein was 

the major protein (Fig. 6. lA, lanes 5-7). The elution profile of the other 12 ml of 

ascites from the CM Affi-Gel Blue column was similar to Fig. 6.1. 

Since flow-through fractions were still contaminated with the 66 kDa protein, 

the combined flow-through fractions (Fig. 6. lA, lane 8) were fractionated with 0-

50% (NH4)zS04 (Fig. 6. lA, lane 9) and reapplied to the regenerated CM Affi-Gel 

Blue column. The third profile of antibodies from the CM Affi-Gel Blue column 

was similar to Fig. 6.1. Some IgM bound to the column (data not shown), and many 

IgM antibodies were lost after several steps of fractionation (Fig. 6. lA, lane 10). 

All proteins bound to the DEAE-Sephacel column (Fig. 6.2), but antibodies eluted 

with other proteins and no good resolution was achieved (data not shown). Peak 

fractions of 0.074-0.12 M NaCl (fractions 75.9 ml to 91.9 ml) were pooled, 

concentrated, and used to prepare the antibody column. 
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Fig. 6.2 DEAE-Sephacel chromatography of antibody fraction. 17.7 ml of the 

0-50% (NH4)2S04 fraction of the flow-through from the CM Affi-Gel Blue column were applied 

to a column (1.7 x 9.8 cm) of DEAE-Sephacel equilibrated with starting buffer (0.01 M K2HP04, 

pH 7.25, 0.15 M NaCl). The column was eluted with a gradient of0-0.5 M NaCl (fractions 53.9 ml 

to 210.5 ml), and then 0.8 M NaCl (from fraction 212.5 ml) in the starting buffer. Antibodies were 

eluted in a peak by 0.074-0.12 M NaCl, and peak fractions were pooled. 
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6.3.2 Immunoaffinity purification of mung bean 165 kDa polypeptide 

All protein (6.5 mg) of the MB 165 solution supplied (5 ml) coupled to 

Sepharose as monitored by measurements of protein concentration before and after 

the coupling (data not shown). However, the 165 kDa polypeptide was detected by 

immunoblotting only in flow-through fractions (Fig. 6.3) when the mung bean 

extract was applied (data not shown). 
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MB165-Sepharose chromatography of mung bean 165 kDa 

polypeptide. 17 ml of 0-45% (NH4)2S04 fraction of the 0.4 M NaCl eluate from DE52 were 

applied to a column (1.6 x 0.8 cm) of MB165-Sepharose equilibrated starting buffer (0.34 M 

sucrose, 10 mM imidazole, pH 7.0). The column was eluted with steps of 1 M NaCl (fractions 95.6 

ml to 149.6 ml), 3M MgCl2 (fractions 151.9 ml to 177.8 ml), 10 mM Tris-HCI, pH 8.0 (fractions 

179 .5 ml to 242.3 ml), and 0.1 M glycine, pH 2.5 (fractions 244.3 ml to 254.7 ml). 



164 

6.3.3 Immunoprecipitation of the 165 kDa polypeptide 

The 165 kDa polypeptide but not the 155 kDa one was immunoprecipitated 

from mung bean crude extract by anti-pan myosin (Fig. 6.4A, lane 2) and anti-fast 

myosin (Fig. 6.4A, lane 6). Precipitation did not occur in controls where antibody

coupled anti-mouse IgM-agarose was incubated with the extraction buffer instead 

of mung bean crude extract (Fig. 6.4A, lanes 3 and 7) nor if the anti-mouse IgM

agarose was incubated directly with mung bean crude extract (Fig. 6.4A, lane 4). 

Immunoblots using either anti-pan myosin antibody or anti-fast myosin antibody 

showed the same result (data not shown). 

Since the anti-myosin antibodies will be precipitating the 165 kDa polypeptide 

in its native state, any light chains associated with it should also be 

immunoprecipitated. Using Coomassie blue and silver staining, however, no 

polypeptide of the Mr appropriate for myosin light chains was consistently 

immunoprecipitated. A commercial anti-myosin (light chain) antibody (2.11) 

detected several polypeptides, between 66 kDa and 14.2 kDa, in immunoblots of 

mung bean crude extract after 14% SOS-PAGE, at even 1: 3000 dilution (data not 

shown). Because all authentic myosin light chains are 12-27 kDa (1.2.1) while the 

strongest bands on blots were 45-66 kDa, the antibody was considered unsuitable 

for detecting light chains of mung bean myosin. 

6.3.4 In vitro motility assays of mung bean 165 kDa polypeptide 

Beads coated directly with rabbit skeletal muscle myosin moved 

unidirectionally along Chara actin bundles and in opposite directions on both sides 

of the neutral line (personal communication from Dr. Richard E. Williamson). 

However, no movement of beads coated directly with mung bean 165 kDa 

polypeptide fractions was observed. To attempt to increase selectively the 

concentration of the 165 kDa polypeptide on the bead surface, anti-pan myosin 

antibody and four MB165 were coupled to Covaspheres. However, no bead 

movement was observed. 
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To confirm that the 165 kDa polypeptide was coupled to the antibody labelled 

beads, proteins eluted from beads were monitored by 7% SDS-PAGE. From the 

Ponceau-stained blot, the 165 kDa polypeptide together with some other proteins 

were captured by beads labelled with either anti-pan myosin or MB 165 (Fig. 6.5). 
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6.4 DISCUSSION 

6.4.1 Immunoaffinity chromatography 

The purification of IgM from ascites was inefficient. The CM Affi-Gel Blue 

mainly absorbed the 66 kDa protein while the flow-through antibody fractions were 

still contaminated with many other proteins. IgM was easily lost after several cycles 

of the affinity chromatography. A bigger column to avoid recycling the ascites fluid 

through the column twice may prevent some loss of IgM antibodies. CM Affi-Gel 

Blue gel efficiently removes protease and albumin from serum, and over 80% of 

serum IgG will pass through a CM Affi-Gel Blue column without adsorption or 

retardation (Anon. 1984). However, the gel may not be optimal for purifying IgM 

from ascites. 

Mung bean 165 kDa polypeptide did not bind to the immunoaffinity column. 

This may result from the low concentration of MB165 on the column since IgM 

antibodies were not well purified from ascites. Alternatively, if the affinity of 

MB165 for the 165 kDa polypeptide is low, the antibody affinity column may 

likewise not work well. Improved antibody purification and funher attempts to 

optimize conditions may improve the efficiency of the antibody affinity column. 

6.4.2 Immunoprecipitation 

The 165 kDa polypeptide of mung bean, but not the 155 kDa polypeptide was 

specifically immunoprecipitated by both anti-pan myosin and anti-fast myosin 

antibodies. Although anti-pan myosin recognizes both the 165 and 155 kDa 

polypeptides on immunoblots (3.3.1), its recognition of only the 165 kDa 

polypeptide under the native conditions of immunoprecipitation shows that the 

epitope it recognizes in the two polypeptides cannot be identical. This funher 

strengthens the argument that the 155 kDa polypeptide is not a proteolytic fragment 

of the 165 kDa polypeptide. 
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6.4.3 In vitro motility assays 

The 165 kDa polypeptide, with other plant proteins, bound to Covaspheres 

labelled with anti-pan myosin or MB165. This confirms the ability of MB165 to 

recognize the native 165 kDa polypeptide and suggests that further efforts with 

immunoaffinity columns might provide successful large scale purification. 

However, no unidirectional bead movements along the actin cables of Chara, could 

be discerned. Two reasons why an authentic myosin might not catalyze movement 

can be foreseen: the concentration of the 165 kDa polypeptide on the Covaspheres 

might not be high enough or the antibodies may not capture the myosin in an 

orientation that permits reaction with actin. The force generated by actin and 

myosin may then not be strong enough to move the bead along the actin cables. 

In the case of in vitro motility assay of rabbit skeletal muscle myosin, the 

velocity of bead movement is independent of myosin concentration on the bead 

surface for concentrations above a critical value which is about 20 µg myosin/2.5 x 

109 beads of 1 µm in diameter (Sheetz et al. 1984 ). Therefore, it may be better to 

use a more purified 165 kDa polypeptide fraction in motility assays. However, if 

the actin-activated Mg2+_A TPase activity was lost during purification, the 165 kDa 

polypeptide would not be able to drive the bead movement. 

The velocity (µm/s) of bead movement is 2-6 with rabbit skeletal muscle 

myosin, 0.1-0.6 with gizzard smooth muscle, 0.5-1.5 with Dicryostelium myosin 

(Sheetz et al. 1984) and 1-1.8 with Physarum myosin (Kohama & Shimmen 1985). 

The organelles of pollen tube move along actin cables at 26 µm/s (Kohno & 

Shimmen 1988a). For the organelles from Acanthamoeba, the organelle movement 

driven by Acanthamoeba myosin I were too slow (0.23 µm/s) to be discerned by 

eye but became obvious when speeded up by time-lapse video microscopy (Adams 

& Pollard 1986). In the case of mung bean, the beads might move too slowly to be 

distinguished by eye, and observation could be helped by using time-lapse video 

microscopy. 
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6.4.4 Conclusions 

Immunoaffinity purification of the 165 kDa polypeptide from mung bean was 

not successful and neither was the in vitro motility assay. This leaves it undecided 

whether the 165 kDa polypeptide is an authentic myosin. The 165 but not the 155 

kDa polypeptide was specifically immunoprecipitated with anti-pan myosin 

antibody, which further supports the view that the 155 kDa polypeptide is unlikely 

to be a proteolytic fragment of the 165 kDa polypeptide. Because the MB165 

antibodies do recognize native 165 kDa polypeptide, more thorough studies of this 

type using the MB 165 antibodies are desirable in the hope of recovering the 165 

kDa polypeptide in an enzymically active form. 
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Fig. 6.1 CM Affi-Gel Blue chromatography of ascites fluid. 12 ml of the 

pooled ascites fluid of the four MB 165 antibodies were applied to a 

column (2.6 x 7 .6 cm) of CM Affi-Gel Blue equilibrated with starting 

buffer (0.01 M K2HP04, pH 7.25, 0.15 M NaCl). Flow-through fractions 

up to fraction 138.9 ml were pooled. The column was eluted and 

regenerated (from fraction 159.5 ml) with 2 M NaCl in the starting 

buffer. Selected eluate fractions resolved by 13.5% SDS-PAGE and 

stained with Coomassie R are shown at the top (A). Corresponding 

elution volumes (ml) of the fractions were: (1), 19.9; (2), 58.4; (3), 72.4; 

(4), 114.4; (5), 159.5; (6), 181.2; and (7), 192. (8), combined flow

through fractions of two chromatography runs of the CM Affi-Gel Blue 

column; (9), 0-50% CNH4)2S04 fraction of the combined flow-through 

fraction; (10), pooled flow-through fraction of the 0-50% (NH4)2S04 

fraction on the CM Affi-Gel Blue column. The Mr of IgM heavy chain is 

approximately 70-80 kDa. 
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Fig. 6.4 Immunoprecipitation of mung bean 165 kDa polypeptide. Mung bean 

165 kDa polypeptide was immunoprecipitated with anti-mouse IgM

agarose coupled with anti-pan myosin antibody (2) or anti-fast myosin 

antibody (6). Blot A was immunoblotted with anti-pan myosin antibody, 

and blot B was a control without incubation of the blot with the primary 

antibody. (1), mung bean crude extract; (2) and (6), immunoprecipitated 

mung bean 165 kDa polypeptide. Controls were: (3), anti-pan myosin 

coupled anti-mouse IgM-agarose was incubated with extraction buffer 

instead of mung bean extract; (4), anti-mouse IgM-agarose was incubated 

with mung bean crude extract; (5), anti-mouse IgM-agarose was 

incubated with the extraction buffer. (7), anti-fast myosin coupled anti

mouse IgM-agarose was incubated with extraction buffer instead of mung 

bean extract. 

Fig. 6.5 Coating of anti-myosin antibody labelled Covaspheres with mung 

bean 165 kDa polypeptide. Ponceau-stained blots of: (1), mung bean 

crude extract. Covaspheres were labelled with five antibodies 

respectively and incubated with mung bean crude extracts: (2), MB165/1; 

(3), MB165/2; (4), MB165/3; (5), MB165/4; and (6), anti-pan myosin 

antibody. 
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In mung bean, polypeptides of 165 and 155 kDa are detected by immunoblotting 

with anti-pan myosin antibody in protein extracts made with either extraction buffer 

or with TCA solution that minimizes proteolysis (Wu & Wang 1984). This 

indicates that the 155 kDa polypeptide is not a proteolytic fragment of the 165 kDa 

one. The 165 kDa polypeptide is the one most constantly detected and was 

therefore considered as a putative heavy chain of mung bean myosin. An additional 

110 kDa polypeptide is much more easily detected in the absence than in the 

presence of proteolytic inhibitors but is never detected in extracts directly made 

with TCA. Therefore, it is considered to be a proteolytic fragment of either the 165 

or 155 kDa polypeptide. In other higher plants (pea, wheat and Arabidopsis), only 

one single polypeptide of 165/160 kDa is detected by anti-pan myosin. 

Epitopes of proteins from mung bean, pea, wheat, Arabidopsis and Chara are 

detected by immunoblotting with four monoclonal antibodies raised to the rnung 

bean 165 kDa polypeptide (MB165) and four commercial monoclonal anti-myosin 

antibodies [anti-skeletal myosin (fast), anti-myosin (smooth and skeletal), anti-fast 

myosin and anti-pan myosin]. At least six different epitopes are recognized by these 

eight antibodies, all of which are on the heavy chain of rabbit muscle myosin. The 

165/160 kDa polypeptides of all four higher plants share five of these six epitopes 

with the heavy chain of rabbit muscle myosin. However, none of the four 

immunoreactive Chara polypeptides (200, 175, 124 and 110 kDa) share so many 

epitopes ~ 3) with the heavy chain of rabbit muscle myosin. 

The high degree of similarity of epitopes between the mung bean 165 kDa 

polypeptide and the heavy chain of rabbit muscle myosin greatly strengthens the 

case that it is a myosin heavy chain. No putative plant myosin heavy chain has been 

shown previously to share so many epitopes with the heavy chain of muscle myosin 

(1.8.2). The mung bean 155 kDa polypeptide, however, has only one epitope 
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recognized by anti-pan myosin, supponing the earlier conclusion that it is not a 

myosin heavy chain. 

The mung bean 165 kDa, but not the 155 kDa, polypeptide is specifically 

immunoprecipitated by either anti-pan myosin or anti-fast myosin. Since antibodies 

recognize native antigens in immunoprecipitation, the results show that the epitopes 

anti-pan myosin recognizes are not identical on the 165 and 155 kDa polypeptides. 

This again strengthens the argument that the 155 kDa polypeptide is not a 

proteolytic fragment of the 165 kDa one. 

The 165 kDa polypeptide is immunofluorescently colocalized with actin in the 

phragmoplast of mung bean root tip cells and perhaps in cytoplasmic filaments by 

MB165/1, MB165/3 or anti-pan myosin antibody. The 200 kDa putative onion 

myosin heavy chain has also been colocalized with actin in the phragmoplast of 

onion root tip cells by anti-pan myosin (Parke et al. 1986). This colocalization 

strengthens the case that the 165 kDa polypeptide is a myosin heavy chain which 

together with actin, may play a role in cytokinesis. 

ADP affinity chromatography has been used to isolate some ATP/ADP-utilizing 

enzymes such as kinases and ATPases including myosin (Trayer 1974; Trayer et al. 

1974; Trayer & Trayer 1975; Scouten 1981; Pollard 1982b). When purifying rabbit 

muscle myosin and most nonmuscle myosins using ADP-agarose columns, EDT A 

(1-5 mM) is included in the buffer since this provides conditions in which the K+

EDTA-ATPase activity of myosin is expressed in vitro while most other 

ADP/ATP-utilizing enzymes require a divalent cation to express activity (Trayer & 

Trayer 1975; Maruta & Korn 1977a; Marµta et al. 1979; Lynch et al. 1989). Most 

kinases require Mg2+ and/or Ca2+ for activity (Trayer 1974; Trayer et al. 1974; 

Polya & Davies 1983; Polya et al. 1983; Davies & Polya 1983). 

The mung bean 165 kDa polypeptide, but not the 155 and 110 kDa ones, binds 

to an ADP-agarose column, showing that only the 165 kDa can be an ADP/ATP

utilizing enzyme. The binding and elution of the 165 kDa polypeptide to the ADP 

column in the presence of EDTA suggests that it is an K+-EDTA-ATPase rather 
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than a kinase. This strongly supports the view that the 165 kDa polypeptide is a 

myosin heavy chain. 

Fractionation of mung bean crude extracts with (NH4)2S04 demonstrates that 

the 165 kDa polypeptide fraction accounts for only a small fraction of the total K+

EDTA-ATPase activity of the crude extract. The other K+-EDTA-ATPase activity 

may be contributed by non-myosin A TPase(s) and/or other myosin isoform(s) that 

can not be detected by anti-pan myosin. Nevertheless, if myosin isoforms exist they 

are also not discernible by immunoblotting with the other three anti-myosin and 

four MB165 antibodies which also detect only the 165 kDa polypeptide. Because 

K+-EDTA-ATPase activity alone is not a specific and reliable indicator of the 165 

kDa polypeptide, immunoblotting - which provides greater specificity and 

reliability - was used to monitor the partial purification of the 165 kDa polypeptide 

from mung bean. 

Multiple peaks of K+-EDTA- and Ca2+_ATPase activities have been reported 

in purifying the 130 kDa tomato myosin (Vahey et al. 1982) and in fractionating 

the putative pea myosin (Ma & Yen 1989) respectively, and other assays in addition 

to K+-EDTA- /Ca2+_ATPase activity including actin-activated Mg2+_ATPase 

activity and even F-actin binding assays are required to identify plant myosin. 

When preparation of this thesis was nearly complete, Kohno et al. (1992) reported 

partial purification of a myosin from lily pollen tubes which has a heavy chain of 

120 kDa. A crude extracts of pollen tubes has high A TPase activity that is 

considered to be due to other proteins. Therefore, it was concluded that A TPase 

activity cannot be used as marker of myosin of lily pollen tubes during purification, 

which is consistent with my findings in mung bean. Kohno et al. used in vitro 

motility assays to monitor their purification. 

Analysis of A TPase activity during the partial purification of the mung bean 

165 kDa polypeptide shows, as already discussed, that the polypeptide at most 

accounts for only a very small fraction of the total A TPase activity of the crude 

extract. Both the yield and specific activity of the K+-EDTA-ATPase of the 165 
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kDa polypeptide fraction decreased particularly after DE52 batch processing and 

after elution by 0.4 M NaCl from the DE52 column (Table 4.2). The K+-EDTA

ATPase specific activity of the partially purified 165 kDa polypeptide fraction was 

low (0.016 µmol/min/mg) although it was increased 7.3-fold by ADP-agarose 

affinity chromatography. The failure to observe a continuous increase in the K+

EDTA-ATPase specific activity during the purification of the 165 kDa polypeptide 

and the impurity of the partially purified fraction from ADP-agarose leave it 

uncertain whether the 165 kDa polypeptide actually has K+-EDTA-ATPase 

activity. Chromatography, however, on ADP-agarose suggests that it does. 

The partially purified 165 kDa fraction from ADP-agarose does not exhibit 

detectable actin-activated Mg2+_A TPase activity. Preliminary studies of in vitro 

motility assays, attempting to detect the actin-activated Mg2+_A TPase activity of 

the 165 kDa polypeptide fraction, were unsuccessful. Therefore, the important 

enzymatic evidence that the 165 kDa polypeptide is a myosin heavy chain is still 

lacking although there is strong immunological evidence that it is. Even though the 

actin-activated Mg2+ _A TPase activity is one of the most fundamental criteria for 

identifying a putative myosin, it may not be detected in all purified nonmuscle 

myosins (Korn 1978; Taylor & Condeelis 1979). One such example of plant 

myosin is the partially purified Egeria myosin fraction that does not exhibit actin

activated Mg2+_ATPase activity (Ohsuka & Inoue 1979). 

Enzymes are difficult to purify from plants due to the low protein content, 

highly active proteases and the frequent inactivation caused by oxidative enzymes 

and phenolics that mix after the rupture of vacuoles (Anderson 1968; Loomis 197 4; 

Wu & Wang 1984; Cremer Van de Walle 1985). During the partial purification of 

myosin from lily pollen tubes, the velocity at which actin filaments move in the in 

vitro motility assays increases with purification from the crude extract to DE52 

fractionation. However, the velocity decreases with further purification, which is 

possibly due to denaturation of myosin (Kohno et al. 1992). These are thus several 

similarities with the study described in this thesis. One clear advantage of the 
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immunological strategy adopted in my study is in the detection of proteolysis. No 

studies are presented by Kohno et al. (1992) to confirm that the LMW lily myosin 

is not a proteolytic product of a HMW myosin. 

There is considerable scope for funher work with the mung bean 165 k.Da 

polypeptide. The absence of actin-activated Mg2+_A TPase activity from and the 

low yield of K+-EDTA-ATPase activity in the partially purified mung bean 165 

kDa polypeptide fraction may be due to degradation and/or denaturation of this 

protein. Therefore, more effective means of protecting myosin from degradation 

and denaturation should be developed. The separation of any possible activating 

enzyme or cofactor necessary for expressing the actin-activated Mg2+ _A TPase 

activity of myosin during purification may also lead to the loss of such A TPase 

activity. Such phenomenon has never been reported in plant myosin purification but 

could be tested by adding back earlier discarded fractions and testing A TPase 

activity. 

Preliminary attempts to purify the mung bean 165 kDa polypeptide using an 

MB165-immunoaffinity column were unsuccessful. Since the MB165 coupled 

Covaspheres recognize the native 165 kDa polypeptide, further efforts with 

immunoaffinity columns using MB165 antibodies might rapidly purify the 165 k.Da 

polypeptide in an enzymically active form and so remove the final doubts about its 

status as a myosin heavy chain. 
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