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ABSTRACT 

This dissertation examines aspects of the process of peripheral vesicle formation 

in the fungal oomycete Phytophthora cinnarrwmi. Although peripheral vesicles 

had been extensively studied in sporangia and zoospores, little was known of their 

behavior in other life cycle stages and the fundamental question whether 

peripheral vesicles were associated solely with sporulation remained unanswered. 

This investigation was motivated by two things. A need to further understand the 

importance of peripheral vesicles to the biology of P. cinnarrwmi 6BR, and 

secondly, the thought that such a study might elucidate more information on the 

phenomena of secretory vesicle biogenesis and transport. 

In the first chapter I report the examination of various stages in the asexual life 

cycle of the fungus including chlamydospore development and sporangial 

development from vegetatively growing populations of germlings and hyphae. 

The three peripheral vesicles, large peripheral, ventral and dorsal vesicles were not 

present in vegetatively growing hyphae but appeared during chlamydospore and 

sporangial development. The vesicles were compared with sporulation specific 

proteins from other fungi. Peripheral vesicles were present in chlamydospores. 

These structures perpetuate the fungus under adverse conditions but can germinate 

rapidly to form hyphae, sporangia and zoospores with a minimum of synthesis 

required. Large peripheral and ventral vesicles appeared sooner in sporangial 

development than dorsal vesicles. Also, after the encystment of zoospores, 

populations of ventral and large peripheral but not dorsal vesicles remained in the 

cyst cytoplasm for some time. These pieces of evidence suggest that large 

peripheral and ventral vesicles may act as nutrient reserves in vegetatively 

growing hyphae. An alternative hypothesis is presented for the small population 
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of ventral vesicles left in the cyst cytoplasm. The situation may be similar to that 

in Saprolegnia ferax where a small population of adhesive vesicles remained in 

the cyst cytoplasm in the case of repeated zoospore emergence and encystment. As 

dorsal vesicles appeared later in sporangial development than large peripheral and 

ventral vesicles and they were secreted completely from zoospores, they may play 

solely a role in zoospore encystment. Unlike the situation in many other 

oomycetes, peripheral vesicles in P. cinnamomi are formed in pre-sporangial 

hyphae perhaps suggesting that the cellular machinery necessary for their 

synthesis is unavailable during sporangial development. This first chapter showed 

the advantages of immunofluorescence microscopy over immunodotblotting for 

more accurately monitoring intracellular antigenic components. 

The second chapter reported an investigation into the ultrastructural formation of 

the peripheral vesicles. Immunological evidence showed clearly that large 

peripheral and dorsal vesicles were derived from the Golgi apparatus. Although, 

immunolabelling suggested the ultrastructural origin of the ventral vesicles was 

the Golgi apparatus, morphological evidence provided the most convincing proof 

that these vesicles were Golgi-derived. In their mode of formation these 

peripheral vesicles were similar to secretory and storage proteins of other 

eucaryotes. Immunolabelling with antibodies to large peripheral and dorsal 

vesicles suggested the existence of an intermediate E.R.- Golgi apparatus 

compartment. As this was the first region within the secretory pathway in which 

the dorsal vesicle antigen appeared, it was probable this intermediate compartment 

played a role in the maturation of secretory proteins. Double labelling indicated 

that two vesicle antigens could be present in the same Golgi cisterna, but that a 

mechanism existed in trans Golgi regions which ensured the separation of the 

antigens into distinct vesicles . 
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In the third chapter I reported the effects of four drugs on P. cinnamomi hyphae. 

These drugs had previously been shown to perturb the secretory pathway in 

animal cells. Immunofluorescence microscopy showed that after incubation in the 

drugs, peripheral vesicle formation was affected. In hyphae treated with 

tunicamycin the formation of all three vesicles was almost completely inhibited. 

As this drug inhibits the addition of N-linked glycans to glycoproteins it is 

probable that the vesicle antigens contained such moeities. In electron 

micrographs no vesicles could be seen budding away from the Golgi apparatus and 

the E.R./nuclear envelope appeared swollen. Double labelling with the Lpv-1 

antibody and the DNA specific nuclear stain DAPI, suggested that the large 

peripheral vesicle antigen was found in this swollen region. This would suggest 

that the loss of N-linked glycans from the Lpv-1 antigen affects its transport 

competence and causes the antigen to accumulate in the E.R. Exposing hyphae to 

the drugs monensin and brefeldin A (BFA) for lh, proved the ideal period in 

which to examine the effects of these drugs on the secretory pathway. Both 

monensin and BF A caused the Golgi apparatus to break down and 

immunofluorescence microscopy suggested that vesicle antigens were restricted to 

the E.R. This was an unexpected effect for monensin as there are only a few 

previous accounts reporting such a cellular response. Cytochalasin D did not 

impede the formation of peripheral vesicles but appeared to block the transport 

mechanism which was responsible for the movement of peripheral vesicles away 

from the Golgi apparatus. 

The mechanism of vesicle transport away from the site of vesicle formation and 

into the developing sporangium was further investigated (Chapter 5). The actin 

skeleton, comprising actin plaques and microfilaments was prominent in 

sporangiophores of developing sporangia and suggested that peripheral vesicles 



...... 

5 

could be transported via this component of the cytoskeleton. Double staining with 

soy bean agglutinnen (SBA)-rhodamine, which is specific for dorsal vesicles, and 

antibodies to the tubulin cytoskeleton, showed that peripheral vesicles had no 

association with microtubules in sporulating hyphae. Microtubules were 

associated with the nuclei of vegetatively growing hyphae but were not associated 

with the smaller nuclei which were translocated into the developing sporangium. 

This might suggest that although microtubules maintain nuclear shape within 

vegetative hyphae, they break down at sporulation and play no role in organelle 

transport into the developing sporangium . 
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CHAPTER ONE 

1.1 A REVIEW OF PERIPHERAL VESICLES IN OOMYCETES. 

1.1.1 Introduction 

Under appropriate conditions, oomyceteous fungi can produce large numbers of 

motile, biflagellate zoospores. These propagules swim in water or moist soils and 

are attracted chemotactically to hosts. Once in the proximity of a potential host, 

zoospores undergo encystment, become firmly adhered to the host surface and 

produce a cyst coat and a cell wall. After a short period, encysted zoospores 

germinate and penetrate the host. 

Early ultrastructural studies attempted to ascertain the cellular changes involved in 

the transition from zoospore to nonmotile cyst (Grove 1970; Hemmes & Hohl 

1971; Hoch & Mitchell 1972b ). In these first studies, attention was drawn to 

populations of vesicles located in the peripheral cytoplasm of zoospores. It 

became clear that these organelles, present in different forms in the various 

oomycetes, were playing an important role in the infection of hosts. 

1.1.2 Peripheral vesicles in the Saprolegniales 

The presence of bar-like structures, or bars in Saprolegnia ferax sporangia and 

zoospores was first reported by Gay and Greenwood (1966). These structures, 

absent from vegetative hyphae, were bound by a single membrane and contained a 

central region of fine striations or spines. Positioned in zoospores so that they 

touched the plasma membrane, the authors were led to suggest that they may be 

secretory in function or may be involved in cell encystment. 
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Bars disappeared from Saprolegnia ferax zoospores at encystment (Heath & 

Greenwood 1970a) and as this was coincident with the formation of an outer cell 

wall and that the spines that were present inside bars appeared in the coat, it was 

suggested that bars were involved in cell wall and coat formation. After the 

disappearance of bars from encysting primary zoospores, vesicles containing a 

'boat hook-like' spherical structure, appeared in the peripheral cytoplasm of 

primary cysts. These vesicles were termed secondary bars, as opposed to primary 

bars of primary zoospores and were hypothesised to be secreted from secondary 

zoospores (Heath & Greenwood 1970a). 

Holloway and Heath (1977) confirmed Heath and Greenwood's idea that 

secondary bars were secreted from secondary zoospores, as 'boat hooks' appeared 

in the cell coat of secondary cysts. Holloway and Heath (1977) were the first 

authors to describe oomycete 'fibrous vesicles'. Containing loosely arranged 

coarse fibrils, these vesicles were shown to appear in primary cysts and to be 

present in secondary zoospores and cysts, though during secondary cyst 

germination they enlarged into large vacuoles. 

The term, 'encystment vesicles' was preferred by Beakes (1983) for the bars of 

Saprolegnia. Beakes distinguished between primary and secondary encystment 

vesicles, according to whether the vesicles were secreted from primary or 

secondary zoospores. Primary encystment vesicles were shown to originate in 

zoosporangial initials and during zoospore development these organelles became 

peripherally distributed and aligned perpendicularly to the plasma membrane. 

Most primary encystment vesicles were shown to be discharged upon encystment 

of primary zoospores, with the outer primary cyst wall being derived from the 

peripheral matrix of the vesicle. Differentiation of secondary encystment vesicles 

was shown to commence during the maturation of the primary cyst. These 
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vesicles were shown eventually to become situated in clusters in the peripheral 

cytoplasm of the secondary zoospore until encystment, when they were mostly 

secreted to form a cyst coat. Beakes (1983) indicated that the fibrous vesicles first 

appeared during the stage of secondary encystment vesicle formation. 

Occasionally, thin section profiles of fibrous vesicles could be observed 

apparently discharging from secondary zoospores and although it was suggested 

that this may have been part of the encystment process, it was also likely to have 

been fixation induced. Fibrous vesicles became peripherally situated in secondary 

zoospores but were not secreted at encystment, being eventually broken down in 

secondary germlings. In addition to peripheral populations of secondary 

encystment vesicles and fibrous vesicles in Saprolegnia, Beakes (1983) reported 

an extensive system of flattened cistemae underlying the plasma membrane of 

secondary zoospores. Hoch & Mitchell (1972a, b) had reported the existence of 

long and usually narrow vesicles underlying most of the plasma membrane of 

Aphanomyces euteiches zoospores, but had attributed no role to them. Beakes 

(1983) suggested that during encystment of Saprolegnia ferax and S. parasitica 

zoospores, peripheral cistemae fragmented into small vesicles with distinctly 

fibrillar contents, which, together with Golgi-derived wall vesicles, probably 

formed the cyst cell wall. It was suggested that peripheral cistemae in secondary 

zoospores may have an additional role in secondary zoospores in providing some 

sort of physical support for the plasma membrane. 

Hoch & Mitchell (1972b) first observed an unidentified body which contained 

helical fibres positioned near the kinetesomes at the narrow end of the nucleus in 

Aphanomyces euteiches zoospores. These structures, termed U-bodies, were still 

observed in encysted zoospores but were only occasionally seen in germinated 

spores, leading the authors to conclude that they played a role in zoospore 
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encystment. Because of their constant location next to the kinetesomes of primary 

and secondary zoospores of Saprolegnia, Holloway and Heath (1977) used the 

name 'K-bodies' for these structures. In their work on an unidentified 

Saprolegnia, two types of K-body were present. Kl-bodies were first 

recognizable in the differentiating sporangium as small, roughly spherical 

structures containing a granular matrix with a narrow osmiophilic cortex. During 

primary zoospore development, Kl-bodies became larger and had smoother 

membrane profiles. In mature zoospores the morphology of Kl-bodies was quite 

variable, some being similar to those described for immature zoospores and some 

being smaller and similar to primary bars. Kl-bodies were shown to be present in 

primary cysts and secondary zoospores, however, before the encystment of 

secondary zoospores Kl-bodies were replaced by K2-bodies. K2-bodies were 

shown to be in some ways similar in appearance to the larger Kl-bodies but were 

different in having a matrix component of loosely-packed coarse fibres, 

surrounded by an osmiophilic cortex and a large, central, highly osmiophilic core 

with closely packed tubules. K2-bodies remained in the encysted secondary 

zoospore but disappeared before the cyst germinated. The authors suggested that 

Kl-bodies gave rise to primary and secondary bars but conceded that roles for K­

bodies were still obscure. 

In a review of the array of microbody-like structures in the oomycetes, Powell et 

al. (1985) suggested possible functions of K-bodies. Because of a proposed 

phylogenetic link between oomycetes and algae it was considered plausible that K­

bodies were some sort of remnant plastid-like structure. Additionally, although K­

bodies had been shown to react positively for peroxidase enzymes, an alternative 

storage role was suggested for these organelles. 
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Subcellular localisation of carbohydrates in secondary zoospores of Saprolegnia 

ferax was carried out by Lehnen and Powell (1988). The tubule filled cavity and 

not the granular matrix of the K2-body was shown to contain carbohydrates and 

sulphydryl groups and as this cavity was consistently located next to the 

plasmamembrane of zoospores, this was a strong suggestion that K2-bodies had a 

role in activities at the cell surface. Lehnen and Powell (1989) elucidated an 

adhesive role of K2-bodies in encysting secondary zoospores of Saprolegnia ferax. 

K2-bodies were shown to be discharged 30-60s after the induction of encystment 

and the vesicle matrices corresponded to a layer of adhesive material found 

between the cyst coat and the substrate. 

1.1.3 Peripheral vesicles in the Leptomitales 

The Leptomitales are considered as intermediates between the Saprolegniales and 

the Peronosporales (Bessey 1950). Only two ultrastructural descriptions exist for 

members of this order and one, on Apodachlya (Powell et al. 1985), reported the 

presence of a K-body located near the kinetesomes in a mature primary cyst. 

Gotelli and Hanson (1987) reported K-bodies in Sapromyces androgynus 

zoospores. These authors recorded peripherally located flattened cisternae and a 

small number of coarse fibrillar vesicles, though there was no discussion on 

possible functions of these organelles. 

1.1.4 Peripheral vesicles in the Lagenidiales 

Peripheral vesicles of different forms have been recorded for the family 

Lagenidiales. In Lagenidium callinectes, fibrous vesicles could be seen lining the 

periphery of the zoospore (Bland & Amerson 1973, Gotelli 1974) and because of 
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their location, were presumed to have some function in wall synthesis during spore 

encystment. 

In their detailed account of the asexual life cycle of La.genisma coscinodisci, 

Schnepf et al. (1978a) described the complicated formation of encystment vesicles 

during zoosporogenesis of this species. Mature encystment vesicles eventually 

lined the periphery of zoospores and were completely secreted at encystment to 

form the primary cyst wall (Schnepf et al. 1978b). 

Zoospores of the marine oomycete, Haliphthoros milfordensis contain two 

morphologically distinct peripheral vesicles (Overton et al. 1983). One type, the 

large, fibrous vesicles located posteriorly (but not necessarily peripherally) within 

zoospores was shown to be secreted from encysting cells. Although there 

appeared to be a large proportion of this vesicle type left in cysts, the authors 

suggested that the released contents of these vesicles may be involved in wall 

formation or spore adhesion. Scattered around the zoospore periphery were 

numbers of electron dense vesicles, considered to be phospholipid vesicles. In 

micrographs these vesicles were substantially fewer in number after encystment 

but were claimed to be internalised and transformed into scallop-fringed vesicles. 

It was considered that these vesicles might serve as food reserves, or alternatively, 

it could be suggested, as they appeared late in zoospore development and were 

absent from vegetative hyphae, they may in fact contribute to cyst wall formation. 

Zoospores of Olpidiopsis saprolegniae have been shown to contain three types of 

peripheral vesicles (Bortnick et al. 1985). Peripheral cisternae and peripheral 

vesicles containing hollow, concentrically arranged fibres lined most of the plasma 

membrane except along the groove. In the anterior end of the zoospore, a single 
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K-body was positioned near the kinetesome, leading the authors to suggest a role 

for the K-body in the regulation of flagellar motion. 

1.1.5 Peripheral vesicles in the Peronosporales 

Ho et al. (1968) published the first ultrastructural account of a Peronsporalean 

type zoospore, that of Phytophthora megasperma. Numerous vesicles were the 

most conspicuous feature of the zoosporic cytoplasm with some actually appearing 

to project above the surf ace of the zoospore, though this was thought to be 

artifactual. Present along the periphery of the zoospore were some roughly 

spherical vesicles which were previously undescribed in fungi and were thought to 

be similar to microbodies of plant and animal cells. These organelles were bound 

by a well-defined single membrane and contained finely granular, evenly 

dispersed contents, though sometimes this contained one or more bars of 

extremely dense material. It was thought that these vesicles may contain sites of 

enzyme activity and it was considered significant that they were always positioned 

close to the zoospore surface. 

Reichle (1969) examined the ultrastructure of the zoospore of Phytophthora 

parasitica and recorded the presence of two types of peripheral vesicles­

granular/fibrous vesicles and vesicles traversed by rods and membranes. Directly 

underneath the plasmamembrane there were many flat vesicles which lay parallel 

to the zoospore surface. Hemmes and Hohl (1971) also recognised these flattened 

vesicles in Phytophthora parasitica and suggested that as they disappeared at 

encystment, they were probably responsible for the deposition of the initial wall 

layer of the cyst. These latter authors provided more information about the 

morphology of Peronosporalean microbody-like organelles. Structurally, these 
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organelles were described to be bullet-shaped and to be enclosed by a unit 

membrane and consist of a central core of fibres surrounded by one or two 

cisternae. They were shown to be present throughout encystment and germination 

and to be found at the cell periphery of secondary zoospores. 

Bimpong and Hickman (1975) described the changes in ultrastructure of 

Phytophthora palmivora zoospores at encystment. Microbodies were shown to be 

no longer restricted to the periphery of cells at encystment but became distributed 

throughout the cytoplasm of cysts and germlings. When encystment was 

mechanically induced, there was no appreciable loss of large granular vesicles, 

though complete loss of flattened vesicles occurred. If zoospores were allowed to 

encyst in undisturbed conditions, both granular and flattened vesicles disappeared 

from the zoospore periphery and presumably contributed to the formation of the 

cyst coat. A number of granular vesicles remained in the cyst under both sets of 

encystment conditions and these were shown to be broken down during 

germination. Cytochemical assays were performed on the peripheral vesicles by 

these authors. The contents of the granular vesicles were shown to be removed by 

pepsin and to be resistant to the effects of organic solvents. In contrast, the 

microbodies were shown not to contain reaction product when tested for the 

presence of catalase with the diaminobenzidine (DAB) technique (c.f. Philippi et 

al. 1975). It was suggested that microbodies may contain other enzymes such as 

those necessary for the glyoxylate cycle. 

Sing and Bartnicki-Garcia (1975b) hypothesised that peripheral (granular) vesicles 

may have dual roles in cell encystment. A function in cyst adhesion was 

suggested after electron micrographs revealed newly encysted zoospores adhering 

to artificial surfaces through the recently discharged contents of peripheral 

vesicles. An earlier study (Sing & Bartnicki-Garcia 1975a) had shown that the 
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peripheral vesicles of P. palmivora contained glycoprotein with receptor sites for 

concanavalin A. Sing and Bartnicki-Garcia (1975b) conjectured that the 

glycoprotein component of peripheral vesicles was involved in the binding of 

nascent wall microfibrils to the cell surface, as well as each other, during wall 

formation. 

In 1977, Pinto da Silva and Nogueira provided extremely convincing freeze­

fracture electron microscopy images of peripheral vesicles fusing with the 

plasmamembrane of encysting P. palmivora zoospores. Their observations put it 

seemed, beyond a doubt that peripheral vesicles and their equivalents in other 

oomycetes were involved with adhesion and wall formation during encystment. 

This idea remained unchallenged for virtually a decade. 

In 1987, Hardham presented the first ultrastructural description and serial section 

reconstruction of the zoospore of Phytophthora cinnamomi. Four vesicle types 

were shown to be present in the peripheral cytoplasm of the zoospore. Large 

peripheral vesicles, morphologically identical to the fibrous vesicles of the 

Saprolegniales (Heath & Greenwood 1970a), the fibrillar vesicles of the 

Leptomitales (Gotelli & Hanson 1987) and the granular or peripheral vesicles 

already described in most of the Peronosporales (Reichle 1969, Lunney & Bland 

1976, Grove & Bracker 1978) were described as elliptical in cross section and 

appeared finely granular or dispersed and flocculent internally with different 

fixations (Fig. le). Peripheral flattened cistemae were also identified and were 

discussed as having the morphology of the plasma membrane and not the 

endoplasmic reticulum (E.R.). Two types of small peripheral vesicle were 

recognised by the author. One type, largely restricted to the ventral or groove side 

of the zoospore, was filled with moderately electron dense, granular material and 

possessed a number of plate-like inclusions (Fig. la). These vesicles were 
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morphologically similar to the microbodies or U-bodies of P. palmivora (Philippi 

et al. 1975; Bimpong & Hickman 1975; Powell & Bracker 1986), the spherosomes 

of P. megasperma (Ho et al. 1968) and vesicles seen in electron micrographs of P. 

capsici sporangia (Williams & Webster 1970) The second type, confined to the 

dorsal surface of zoospores, contained electron-lucent regions and lacked plate­

like inclusions (Fig. lb). These bore a close resemblance to the parastrosomes of 

P. capsici (Williams and Webster 1970). 

Hardham and coworkers (1986) raised monoclonal antibodies (Mabs) to 

components of cysts and zoospores of P. cinnamomi in an attempt to recognise 

compounds involved in the infection process. Among this bank of monoclonal 

antibodies were specific antibodies which reacted with components of large 

peripheral vesicles (Fig. lf), peripheral cistemae and the two small peripheral 

vesicles (Figs ld,le) (Gubler & Hardham 1988, 1991). Antibody Lpv-1 

recognized three glycoproteins (Mr > 300k.Da) that contained mannosyl/glucosyl 

residues. Immunogold labelling of encysted zoospores with this probe revealed a 

surprising result. Contrary to the great body of evidence that showed that the 

contents of (large) peripheral vesicles were secreted to form the cyst wall in 

oomycetes, Gubler and Hardham (1988, 1990) showed that in P. cinnamomi the 

contents of the large peripheral vesicles were not secreted at any stage of 

infection. Gubler and Hardham (1988, 1990) showed that after encystment and 

wall formation , the large peripheral vesicles migrated to the interior of the cyst 

and were eventually degraded as nutrient stores during cyst germination. The 

Lpv-1 antibody was shown to react with large peripheral vesicles of other species 

and this result was confirmed for other Phytophthora species including P. 

parasitica. 
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Antibodies to components of both ventral (Vsv-1) and dorsal peripheral vesicles 

(Cpa-2) revealed the fate of these different vesicle types at encystment (Gubler & 

Hardham 1991). Immunolabelling of encysting zoospores showed that both types 

of small peripheral vesicle were secreted from cells between 1-2min following 

induction of encystment. Immunogold labelling of encysting cells and 

immunofluorescence microscopy of zoospores infecting Eucalyptus seiberi 

seedlings revealed that ventral peripheral vesicles secreted their glycoprotein 

contents onto the ventral surface of the cyst that faces the root indicating that these 

vesicles were probably involved in the adhesion of cysts to hosts. In contrast, 

dorsal peripheral vesicles secreted their contents to form a thin glycoprotein coat 

on the dorsal surface of the encysted cell, which faces away from the root surface. 

The exact role of this dorsal cyst coating was not determined. It is possible that 

this coating may play a protective role or may prevent osmotic swelling in the 

crucial transition stage during encystment when the cell switches from 

osmoregulation via the operation of a water expulsion vacuole (zoospore) to the 

maintenance of cell turgour with the formation of the cyst cell wall. The dorsal 

cell coat may also provide a suitable matrix for the assembly of the microfibrillar 

cell wall, a function previously attributed to the large peripheral vesicles (Sing & 

Bartnicki-Garcia 1975b, Bartnicki-Garcia & Hemmes 1976). 

Immunogold labelling with an antibody specific to the peripheral cisternae of 

P.cinnamomi (Cpw-1) revealed the fate of this organelle at encystment (Gubler & 

Hardham 1991). One to 2min after the induction of encystment, the peripheral 

cisternae move away from the zoospore plasmamembrane and break into small 

vesicles. Cpw-1, which weakly labels the peripheral cistemae, also labels these 

vesicles. After 2-5min these vesicles undergo exocytosis and by lOmin after 

encystment Cpw-1 positive material can be seen incorporated in the new cell 
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wall. Thus, immunogold labelling with an antibody specific to the peripheral 

cisternae of zoospores confirmed earlier suggestions (see Hemmes & Hohl 1971, 

Bimpong & Hickman 1975) that this organelle was involved in cell wall 

formation. The work of Gubler and Hardham has, to date, provided the best 

evidence for the roles of the different peripheral vesicle types in Phytophthora 

and, by analogy for many oomycetous species. 

The first account of the ultrastructural changes associated with encystment of 

Pythium zoospores showed that the cyst wall of Pythium aphanidermatum was 

formed from the discharged contents of preformed vesicles at the cell periphery 

(Grove 1970). In Pythium proliferum zoospores, Lunney and Bland (1976) 

recognised peripheral vesicles with fibrillar and granular contents, flattened 

peripheral vesicles and microbodies. Peripheral vesicles were shown frequently to 

discharge their contents extracellularly and together with the peripheral cisternae 

were suggested to be involved with initial wall deposition. The microbodies 

which were still present in encysted zoospores, were considered to contain specific 

enzymes. Grove and Bracker (1978) showed that at encystment, peripheral 

vesicles fused with the plasma membrane to form a loosely organised surface coat 

of flocculent appearance. Although, lmin after encystment most peripheral 

vesicles had disappeared, some remained in the cytoplasm of cysts until 

germination when they became autophagous with multivesicular bodies. These 

authors also showed the disappearance of peripheral cisternae coincided with the 

formation of the new cell wall about 2min after encystment. Microbodies similar 

to the parastrasomes of Williams and Webster (1970) and the U-bodies of Philippi 

et al. (1975) were shown to become scarce in cysts, though other forms of 

microbodies, often with distinct crystalline inclusions, remained in the cyst and 

could still be seen at germination. 
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Estrada-Garcia et al. (1990) used antibodies to recognize glycoprotein components 

of large peripheral vesicles in encysting cells of P. aphanidermatum. In contrast to 
-

the work of Gubler and Hardham (1988), these authors showed large peripheral 

vesicle specific antibodies labelling cyst coat components. Although these authors 

claimed that large peripheral vesicles secreted their contents onto the surface of 

encysting cells, large peripheral vesicles were still very common in micrographs 

of the cysts. 

Recent work by Cope and Hardham (1992) has clarified the fate of the large 

peripheral vesicles in P. aphanidermatum. Cpa-2, the Mab specific for dorsal 

peripheral vesicles in P. cinnamomi zoospores is shown to react with the large 

peripheral vesicles of P. aphanidermatum and is not found on the cyst surface at 

encystment but is present in unsecreted large peripheral vesicles within the cyst. 

Antibodies to ventral vesicles of Phytophthora cinnamomi (Vsv-1) also react with 

a population of ventrally located vesicles in P. aphanidermatum and these do 

undergo exocytosis and may be adhesive in function . This last series of results 

tends to suggest that the biology of encystment within the Peronosporales may be 

very similar. In the future, following immunocytochemical studies of other 

oomyceteous zoospores, it is conceivable that peripheral vesicles may be found to 

be a lot less diverse in kind and function . 

1.2 OBJECTIVES OF THE PROJECT AND APPROACHES 

In this project, attempts have been made to gather more information about the 

large peripheral, ventral and dorsal vesicles of P. cinnamomi and through this gain 

further insight into the processes of secretory vesicle formation and transport As 
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these organelles have been documented in a variety of life cycle stages such as 

chlamydospores (Hemmes & Wong 1975) and oospores (Hemmes 1983), the first 

approach was to elucidate whether these three organelles were associated 

exclusively with sporulation or were present in much of the life cycle of the 

species. With this first objective completed, it was likely that I would have 

determined a stage in the life cycle in which large numbers of peripheral vesicles 

were synthesised. This would enable me to undertake an immuno-ultrastructural 

study of the process of vesicle formation - the first account of its kind in a fungal 

system. A fourth chapter would report on the the effects of a number of drugs on 

peripheral vesicle formation. The results from this work may reveal further 

information on the nature of the glycoproteins within the vesicles and the 

properties of the secretory pathway. It may also allow the assessment of the 

effectiveness of these drugs, in some cases for the first time on a fungal system, in 

perturbing the secretory pathway. The process of secretory vesicle transport has 

been documented to involve microtubules (Allen et al. 1985, Koonce & Schliwa 

1986) and actin microfilaments (Kohno & Shimmen 1988). Previous studies on a 

related oomycete, Saprolegnia ferax (Heath & Kaminskyj 1989, Heath & Harold 

1992) have suggested that the transport of secretory vesicles in hyphae is mediated 

by the actin cytoskeleton. In chapter five, studies on the actin and tubulin 

cytoskeletons from vegetative and sporulating hyphae are reported. The 

motivation behind such studies was to assess a possible involvement of the 

elements of the cytoskeleton in vesicle transport into the developing sporangium. 

In these investigations I have used the three monoclonal antibodies Vsv-1, Cpa-2 

and Lpv-1 which react with the contents of zoospore ventral, dorsal and large 

peripheral vesicles respectively. The major techniques used were 

immunofluorescence microscopy of cryosectioned material (Chapters 2,3,4,5), 
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immunodotblotting (Chapter 2), standard transmission electron microscopy 

(Chapters 3,4), immunoelectron microscopy (Chapter 2,3) and cytochemical 

staining of intact hyphae (Chapter 5). 



Figs 1.la- 1.lf. Peripheral vesicles in P. cinnamomi 

Fig. l.la. Ventral vesicle (material embedded in Spurr's resin). These vesicles 

contained moderately electron dense granular material and a number of plate-like 

inclusions. X 64,800. 

Fig. 1.lb. Dorsal vesicle (material embedded in Spurr's resin). Dorsal vesicles were 

heterogeneous in content and contained a region of moderately electron dense 

granular material (large arrow) and a more electron-lucent region of flocculent 

appearance (small arrow). X 57,700. 

Fig. 1.lc. Large peripheral vesicle (material embedded in Spurr's resin). These 

vesicles were eliptical in cross section and appeared finely granular or dispersed and 

flocculent internally with different fixations. X 51,000. 

Fig. 1.ld. Ventral vesicle labelled with monoclonal antibody Vsv-1. The antibody 

appeared to label the plate-like inclusions within the vesicle. X 55,600. 

Fig. 1.le. Dorsal vesicle labelled with monoclonal antibody Cpa-2. The antibody 

appeared to react with the flocculent material within the electron lucent region (small 

arrow) and not the electron dense region of the vesicle (large arrow). X 45,000. 

Fig. 1.lf. Large peripheral vesicle labelled with monoclonal antibody Lpv-1. X 

45,000. 





CHAPTER TWO: 
PHYTOPHTHORA 
SPECIFIC. 

2.1 INTRODUCTION 
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PERIPHERAL 
CINNAMOMI ARE 

VESICLES IN 
SPORULATION 

Phytophthora cinnamomi Rands, the dieback fungus, is an oomycete pathogen 

with a broad host range (Zentmyer 1980). Motile biflagellate zoospores are the 

major infective agent in P. cinnamomi and are produced by the cleavage of 

multinucleate sporangia (Hardham 1989). Invasion of hosts is mediated by the 

chemotaxis of the zoospores and the subsequent encystment of these cells on plant 

roots. Under conditions not suitable for growth and dissemination through the 

formation of sporangia, P. cinnamomi will form chlamydospores which can 

perpetuate the fungus for long periods of time in the absence of hosts (Mircetich & 

Zentmyer 1966). When favorable conditions return, chlamydospores germinate 

and grow to form mycelia, sporangia or new chlamydospores (Weste 1983). 

Immunologically distinct vesicles localised to the peripheral cytoplasm in P. 

cinnamomi zoospores play important roles in zoospore encystment and germ tube 

growth (Gubler & Hardham 1991; Hardham & Gubler 1990; Hardham et al. 

1991a). Ventral vesicles have been shown to contain glycoproteins which effect 

the adhesion of spores to hosts (Hardham & Gubler 1990), and large peripheral 

vesicles are stores of protein used in the growth of the germ tube (Gubler & 

Hardham 1990). The exact role of the cyst coat secreted by the dorsal vesicles 

remains to be determined. It has been suggested that the coat may be involved in 

cell protection or it may provide a suitable matrix for the assembly of the 

microfibrillar cyst wall (Gubler and Hardham 1991). Alternatively, it may 
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prevent the cyst from bursting in the critical transition stage during encystment 

when the cell switches from osmoregulation through the operation of a water 

expulsion vacuole to maintenance of cell turguor with the formation of a cell wall 

(Hardham et al. 1991a). 

Peripheral vesicles have been shown to be present in stages of the life cycle other 

than zoospores. Hemmes and Wong (1975) have shown large peripheral vesicles 

to be present in developing, mature and germinating chlamydospores. Hyde et al. 

(1991a) have shown the three vesicle types to be present in sporangia that have yet 

to undergo cleavage to produce zoospores. Hemmes (1983) records peripheral 

vesicles in Phytophthora hyphae and suggests that they flow into the sporangium 

during the sporangial expansion phase 

In the work reported in this chapter, a fundamental question about these cell 

components is addressed. Are these vesicles present in much of the life cycle of 

P. cinnamomi or are they associated exclusively with spore formation? To answer 

this I document the occurrence of the three peripheral vesicles in various stages of 

the asexual life cycle of P. cinnamomi. I examine the disappearance and 

subsequent reappearance of peripheral vesicles in newly formed cysts that are 

induced to germinate, and investigate the behavior of peripheral vesicles in the 

development of chlamydospores and sporangia. 

This work is important as studies of when peripheral vesicles are present in stages 

of the life cycle other than zoospores may further clarify the importance of these 

vesicles to the biology of the organism. 
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2.2 MATERIALS AND METHODS 

2.2.1 Culture 

Culturing and the production of zoospores from P. cinnamomi (6BR; DAR 52646) 

followed the methods described in Hardham et al. (1991b). Seven small squares 

(5mm by 5mm) of mycelia were cut from the edge of a colony of P. cinnamomi 

growing on 0.5cm deep layer of V8 nutrient agar containing 10% V8 juice 

(Campbell's Soups Pty Ltd, Lemnos, Australia), 0.002% P-sitosterol (Sigma 

Chemical Co., St. Louis, MO), 0.01 % CaC03 and 1.7% Bacto agar (Difeo, 

Detroit, MI) in a 9cm diameter petri dish. The squares were inoculated onto a 

sterile miracloth disc overlying V8 nutrient agar and incubated for 5 days at 25°C 

in the dark. Each disc was then transferred to 100ml of 5% V8 broth (5% V8 

juice, 0.01 % CaC02 0.002% P-sitosterol) and shaken overnight at 150 rpm at 
' 

22°C. The cultures were then washed three times in mineral salts solution (lOmM 

Ca (N03)2, 5mM KN03, 4mM MgS04 and 2ml 1- l of a solution containing 

lOmM FeS04 and lOmM Na2 EDTA) and incubated for 24h at 22°C in 100ml of 

this solution, during which time sporangia developed. Cleavage of sporangia was 

induced by rinsing miracloth cultures three times in cold double distilled water, 

and incubating them at 4°C for 13min in 10ml of distilled water. The discs were 

then transferred to 18°C on a light box, where cleavage occurred. Zoospores were 

released during the following 75min. Zoospores were induced to encyst by 20s 

agitation in a sterile 100ml Schott bottle (Duran, Mainz, West Germany). To 

produce germlings approximately 2-5 x 106 germinated cysts were inoculated into 

10ml of 10% V8 broth and incubated at 22°c in 15ml culture tubes (Disposable 

Products, Adelaide, Australia). 
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Chlamydospores were produced via the method of Englander and Turbitt (1979). 

A small piece of V8 agar (5mm by 5mm) with mycelium taken from the margin of 

a 5 day old colony, was placed onto the centre of a shallow (0.5cm deep) V8 

nutrient agar plate and incubated in the light at 22°c. Samples were taken daily to 

determine the timecourse of chlamydospore production. 

For sampling of mycelia in mineral salts solution, small (5mm x 5mm) pieces of 

agar with mycelium were taken from the growing edge of a colony on V8 agar. 

Mycelial plugs were incubated in 9cm petri dishes in the dark in 15ml of 5% V8 

broth at 25°C for 24h. The plugs were then washed three times in mineral salts 

solution and incubated in a final volume of 15ml of mineral salts in the light at 22° 

C for 8h. 

2.2.2 Immunofluorescent staining 

Cysts, germlings and hyphae were fixed in 4% paraformaldehyde in 50mM Pipes 

(piperazine-N', N'-bis [2-ethane-sulphonic acid]) buffer (pH 7.0) for lh at room 

temperature. After fixation, a number of enzyme digestion protocols were utilised 

in an attempt to degrade the hyphal wall. These included protocols that had 

previously been successful in removing the cell wall of P. megasperma hyphae, 

i.e. 30min incubation in 5mg/ml Novozym (Novo laboratories) in 50mM Pipes 

buffer (pH 6.8) at 28°C (Howlett 1989), pollen tubes, i.e. 40min incubation in 2% 

Trichoderma viride cellulase (Miles Mck. Kali Chemie) in phosphate buffer (pH 

6.5) at 37°C (Runeberg et al. 1986), or lOmin incubation in 10% cellulysin 

(Calbiochem, La Jolla, CA) in phosphate buffer (pH 6.5) at 37°C (Derksen et al. 

1985), root hairs, i.e. 5% Onozuka R-10 cellulase (Yakult, Honsha, Tokyo) in 

50mM Pipes buffer (pH 6.8) at 37°C (Traas et al. 1985), and seed hairs, i.e. 20min 

incubation in a mixture containing 1 % pectinase (Serva, Heidelberg, Germany), 
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1 % driselase (Fluka, Buchs, Switzerland) and 2% cellulase (Boehringer 

Mannheim, Castle Hill, Australia) in microtubule stabilising buffer (MSB, which 

contained 100mm Pipes, lmM MgC12 and 5mM EGTA, pH 6.8) at room 

temperature (Quader et al. 1987) and moss protonemata, i.e 20min incubation in a 

mixture of 2% driselase (Fluka), 50µg/ml leupeptin (Sigma, Castle Hill, Australia) 

and 5% mannitol (Sigma) in MSB (pH 6.8) at room temperature (Doonan et al. 

1985). After fixation the hyphal material was also processed for cryomicrotomy. 

The material was rinsed twice in Pipes buffer and frozen in Tissue Tek embedding 

compound (Miles Inc., Elkhart, IN) in plastic moulds by plunging in liquid 

nitrogen. Ten micrometer thick cryosections of germlings and twelve micrometer 

thick sections of hyphae were cut on a Reichert-Jung 2800 Frigocut E cryotome 

and dried at room temperature onto poly-L-lysine coated slides. Immunostaining 

of enzyme-digested material and cryosections was carried out in 10cm square petri 

dishes lined with distilled water moistened filter paper. The samples were 

incubated for 45min at 37°C in lµg m1- l purified V sv-1 antibody, 0.5 µg m1- l 

purified Cpa-2 antibody or 1: 10 Lpv-1 hybridoma supernatant in phosphate 

buffered saline (PBS; 20mM sodium phosphate, 150 mM NaCl) containing 1 % 

bovine serum albumin (BSA). After three washes in PBS, the enzyme-digested 

material and cryosections were incubated in sheep anti-mouse lg immunoglobulin­

fluorescein isothiocyanate (SAM-FITC [Silenus, Dandenong, Australia]) diluted 

1 :60 in 1 % BSA-PBS for 45min at 37°C. Samples were subsequently washed 

three times in PBS and once in distilled water. They were then dried and mounted 

in mowiol containing 0.1 % paraphenylenediamine (PPD). The samples were 

examined and photographed with a Zeiss Axioplan microscope equipped with 

epifluorescence optics with an Fl filter cube (excitation 450-490nm; dichroic 

mirror 510nm; barrier 515-565nm). 
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2.2.3 Immunodot blot analysis 

Germlings were frozen in liquid nitrogen, lyophilized, then ground in eppendorf 

tubes using a glass rod. The ground material was extracted for 20min with 6M 

guanidine hydrochloride, then diluted 50 times with Tris buffered saline (TBS, 10 

mM Tris-HCl, 150mM NaCl, pH 7.4). The samples were incubated on ice for 

lOmin before centrifuging at 13,000 rpm for lOmin. Solubilised material was 

transferred to nitrocellulose in an immunodot blot apparatus (Biorad, Nth Ryde, 

N.S.W., Australia.). The efficacy of the transfer was monitored by staining with 

0.2% Ponceau S in 3% trichloroacetic acid for 5min. After blocking nonspecific 

binding sites for lh in 5% milk powder in TBS and washing three times in TBS-

0.1 % Tween-20, the nitrocellulose was incubated for 45min in undiluted 

supematants of Vsv-1 or Lpv-1, or 3 µg m1-l purified Cpa-2 in 1% BSA-PBS. 

Bound antibody was visualised with peroxidase-conjugated SAM (Silenus) using 

4-chloro-1-napthol as substrate. 

2.2.4 Morphometric analysis and immunolabelling of flat embedded 
sporangia. 

Ultrathin sections of zoospores and cysts, fixed and embedded in Lowicryl K4M 

(Gubler & Hardham 1988) were immunolabelled with Vsv-1-AulO direct gold 

probe prepared by the methods of Gubler & Hardham (1988). Twenty 

micrographs, with a final print magnification of 16,000 were taken of both stages. 

Vesicles labelled with Vsv-1-AulO were traced on a digitiser pad (Houston 

Instruments, Austin, Texas) and were analysed with a Sigma Scan 3.1 program 

(Jandel Scientific, Sausalito, CA) to determine the percentage volume taken up by 

the vesicles at both stages. 

Sporulating hyphae were fixed and processed for immunocytochemical labelling 

as above. One main difference was that samples were embedded between two 
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microscope slides, which had previously been coated with mould parting 

compound (Electron Microscopy Sciences, Fort Washington, PA, USA). Samples 

were selected for ultrathin sectioning with the aid of a diamond tipped objective 

(Zeiss, West Germany) and were stuck to the surface of a blank resin block with 

Supa Glue (Selleys Pty Ltd. Padstow, NSW, Australia). Ultrathin sections of 

developing sporangia were immunolabelled initially with hybridoma supematants 

of Vsv-1, Cpa-2 and Lpv-1 , followed by one hour incubation in Sheep anti-mouse 

IgAulO (Gubler & Hardham 1988). 

2.3 RESULTS 

2.3.1 Background 

None of the enzyme digestion techniques were successful in consistently exposing 

antigenic material. The most effective method of gaining access to cytoplasm 

contents proved to be thick sectioning cryomicrotomy. This technique 

consistently allowed access to both surface and internal components and was the 

major technique reported in the chapter. 

2.3.2 Peripheral vesicles in germlings growing in 5 % VS broth 

Labelling of 5min old cysts with Vsv-1 showed that much of the ventral vesicle 

antigen was secreted and coated part of the surface of the cysts. However, some 

ventral vesicles remained in the cytoplasm of the cyst (Fig. 2.la). Morphometric 

analysis of immunogold labelled sections of indicated that 33% ±8% (mean of 20) 

of zoospore volume was taken up by labelled ventral vesicles whereas in 5min old 
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cysts this value was 3% ±1 %. This meant that 9% of ventral vesicles were still 

present in the cytoplasm after encystment (Fig. 2.2a-2.2d). At 2h and 4h after 

encystment, ventral vesicles were still observed in germ tubes (Figs 2.lb, 2.lc) but 

by 10h after encystment (Fig. 2. ld), all ventral vesicles had disappeared from the 

germlings. The secreted V sv-1 antigen remained associated with the cyst surface 

during this period (Figs 2.la-2.ld). 

Labelling of 5min old cysts with Cpa-2 showed that the contents of the dorsal 

vesicles were completely secreted during encystment to form a coat on the outside 

of the cyst (Fig. 2. le). This coat remained on the surface of the cyst during the 

next 10h of germling growth (Figs 2. lf-2. lh). No dorsal vesicles were seen in 

germlings throughout the 10h period. 

Labelling of 5min old cysts with Lpv-1 showed that the large peripheral vesicles 

were not secreted during encystment (Fig. 2. li). These remained in the cyst and 

were present in germ tubes at 2h (Fig. 2.lj), but by 4h these vesicles had 

completely disappeared (Fig. 2.lk). They were still absent at 10h (Fig. 2.11). At 

no stage was the Lpv-1 antigen observed on the surf ace of the germlings. 

Changes in the relative abundance of the three antigens in germlings growing in 

10% V8 broth were analysed using immunodot blotting of cell extracts (Fig. 2.3). 

The level of ventral vesicle antigen did not change during the first 2h after 

encystment, but decreased during subsequent growth. No changes in the level of 

dorsal vesicle antigen were detected over the 10h period. A decline in large 

peripheral vesicle antigen was observed between 2 and 4h. 
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2.3.3 Peripheral vesicles in germlings transferred to mineral salts solution 

The effect of removing the exogenous nutrient source was investigated by 

replacing the V8 broth with mineral salts solution (see 2.2.1) after the germlings 

had been growing in V8 broth for 6h. Zoospore peripheral vesicle antigens were 

then monitored by immunofluorescent labelling (Fig. 2.4) or immunodot blot 

analysis (Fig. 2.5). 

At the time of transfer to mineral salts solution (6h after encystment) the 

germlings did not contain any ventral, dorsal or large peripheral vesicles (Figs 

2.4a, 2.4e, 2.4i) although secreted ventral and dorsal vesicle material coated the 

cyst surface (Figs. 2.4a, 2.4e). Both ventral (Fig. 2.4b) and large peripheral (Fig. 

2.4j) vesicles were present 6h after transfer to mineral salts solution. The number 

of ventral (Figs 2.4c, 2.4d) and large peripheral (Figs 2.4k, 2.41) vesicles in the 

germ tubes increased over the following 24h. Dorsal vesicles were not present 

until 30h after transfer to mineral salts solution (Figs 2.4f-2.4h). The timing of 

the appearance of the dorsal vesicles at 30h coincided with the first appearance of 

sporangia in the germling culture (inset, Fig. 2.4h). 

Immunodot blotting of extracts from germlings incubated in mineral salts solution 

detected the appearance of V sv-1 antigen after 6h and its increase over the next 

12h (Fig. 2.5). No changes in the level of Cpa-2 antigen were evident. Lpv-1 

antigen was first detected 18h after transfer to mineral salts solution. 

2.3.4 Peripheral vesicles in mycelia, sporangia and chlamydospores. 

When mycelia that had been growing on agar plates for 5 days were transferred to 

5% V8 broth, all three vesicles were present at the time of transfer (Table 2.1, Fig. 

2.6) but all peripheral vesicles disappeared by 24h (Table 2.1, Fig. 2.7). 
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Subsequent incubation of the plugs in mineral salts solution led to the 

reappearance of ventral and large peripheral vesicles between 4 and 6h (Fig. 2.7, 

Table 2.1). Dorsal vesicles reappeared between 6 and 8h, which coincided with 

the first appearance of sporangia (Fig. 2.7). Therefore all three peripheral vesicles 

were present in the developing sporangia (Fig. 2.8). 

After growing for 5 days on V8 agar in the dark, hyphae at the edge of the colony 

contained all three of the vesicle types (Table 2.2, Fig. 2.6). If a small square of 

this mycelium was inoculated onto a new shallow V8 agar plate, cryosectioning 

after one day revealed that the hyphae did not contain any of these three vesicle 

types (Table 2.2). By 2 days, however, all three vesicles were again present. This 

was coincident with the fust appearance of chlamydospores (Fig. 2.9). 

2.4 DISCUSSION 

This study has revealed important new details about the occurrence of peripheral 

vesicles in P. cinnamomi 6BR. The vesicles were absent from vegetative stages of 

the asexual life cycle and appeared concommitantly with chlamydospore 

formation and during sporangial development. 

Sporulation specific proteins have been recorded for a number of fungi. In 

Neurospora crassa and in other related members of the ascomycetes, a major 

protein has been shown to have a specific association with perithecial development 

(Nasrallah & Srb 1977). This protein is not present in ascospores but its presence 

in perithecia has been suggested to be related to the nutrition of the developing 

spores (Nasrallah & Srb 1978). In Aspergillus nidulans a prominent protein has 

been shown to appear with conidiation (Champe et al. 1981). This protein 
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however appears to have no causative role in the conidiation process as mutant 

forms of the fungus develop conidia normally in its absence. Glycoproteins in 

large peripheral vesicles have been likened to the pycnidiospore specific protein 

species in Botryodiplodia theobromae (Gubler & Hardham 1990). This protein, 

like that in large peripheral vesicles, also may have some storage role as it 

degraded during spore germination (van Etten et al. 1979). Another sporulation 

specific protein, the conidiation specific ConlO protein of Neurospora crassa 

(Springer et al. 1992), behaves similarly to P. cinnamomi peripheral vesicles. It 

appears about 8h into conidiation, is shown to be present evenly distributed in the 

cytoplasm of macroconidia and is degraded between 2 and 4h after germination. 

Some of the work on sporulation specific proteins in the zoosporic chytrid, 

Blastocladiella, shows similarities with the work of this study. Lodi and 

Sonneborn (1974) have shown that a caseinolytic protease first appears and 

increases in concentration slowly during sporulation in B. emersonii. The enzyme 

is retained in zoospores but is absent from vegetatively growing cells. The gamma 

particles formed during sporulation in Blastocladiella (Barstow & Lovett 1975) 

resemble in behavior and function the peripheral vesicles of P. cinnamomi. These 

structures are probably involved in wall formation during zoospore encystment 

and dissappear during germination (Truesdell & Cantino 1970). 

The formation of chlamydospores is coincident with the presence of all three 

vesicle types. Large peripheral vesicles have been recorded in chlamydospores of 

P. cinnamomi by Hemmes and Wong (1975). Gubler and Hardham (1990) 

suggested that they may be broken down during germination of these spore types. 

Chlamydospores germinate under appropriate conditions to form sporangia and 

zoospores (Weste 1983). I suggest that the presence of peripheral vesicles during 

the initiation of chlamydospores may provide for the rapid production of 
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sporangia after chlamydospore germination with a minimum of synthesis required. 

The presence of chlamydospores in 5 day old mycelial colonies (data not shown) 

may also explain the presence of the three peripheral vesicles in cryosectioned and 

immunostained samples of such colonies. 

During sporangium formation in P. cinnamomi there is differential synthesis of 

peripheral vesicles. In other fungal species, the formation of different proteins at 

different stages during sporulation has been widely documented. Huang and 

Staples (1982) have reported the synthesis of different proteins at early and late 

stages in appressorium formation in Uromyces. During perithecial development 

in Sordaria brevicollis, the appearance of specific polypeptides is shown to 

comelate with different morphogenetic events (Broxholme et al. 1991). Gwynne 

and Brandhorst (1982) have indicated that during sporulation of Achyla 

ambisexualis some groups of proteins are initially synthesised in response to 

starvation while the timing of synthesis of other proteins is linked with 

sporangium formation. The synthesis of large peripheral and ventral vesicles but 

not dorsal vesicles by 6h after being incubated in a mineral salts solution of P. 

cinnamomi germlings and hyphae is suggestive that these former vesicles may be 

part of an initial starvation response. This idea is strengthened by the fact that 

large peripheral vesicles and a small population of ventral vesicles are not released 

at encystment. As well as the function of ventral vesicles in cyst adhesion, these 

two vesicle types may act as endogenous nutrient stores during the growth of the 

germ tube and during sporangium development. 

There is an alternative explanation for the presence of the small population of 

ventral vesicles that remains in the cyst cytoplasm and which is still present in 

germ tubes up to 4h after encystment. A small reserve of ventral adhesive vesicles 

remaining after encystment may be important under conditions where zoospores 
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undergo repeated emergence. This would provide for the attachment of a 

subsequently released zoospore to its host. A small reserve of K2-bodies which is 

similarly located in Saprolegnia zoospores and is also involved in cell adhesion 

(Lehnen & Powell 1989) remains in the zoospores after encystment (Lehnen pers. 

comm.). Although P. cinnamomi has not been documented to undergo repeated 

emergence, these findings imply possible phylogenetic links between the 

Saprolegniales and the Peronosporales and suggest that ventral vesicles are relics 

of repeated emergence. 

There is strong evidence that dorsal vesicles play solely a role in zoospore 

encystment. These vesicles develop in synchrony with sporangia and they are 

completely secreted from the zoospores at encystment. Dorsal peripheral vesicles 

and sporangia form sooner in mycelia than they do in germlings, perhaps because 

of the degree of competence acquired by the mycelial colony. A certain period of 

vegetative growth may be necessary before P. cinnamomi germlings can form 

sporangia. Champe et al. (1981) have shown that a certain period of vegetative 

growth is necessary to achieve conidiation competence in Aspergillus nidulans. 

The inability of the immunodot blots to detect any changes in Cpa-2 antigen levels 

in the experiments which were involved with growing germlings in a nutrient 

deficient medium is an indication of the masking effects of the secreted cell coat 

which is still highly immunoreactive even 36h after encystment (not shown). This 

technique also failed to detect initial large peripheral vesicle synthesis in 

germlings growing in mineral salts, but it is suggested that the extraction 

procedure may not have been as efficient as with older germlings. 

Before this study, little was known about the exact stage of origin of the peripheral 

vesicles in Phytophthora. Hemmes (1983) suggested that they may form at an 

unknown site in the mycelium, or in the cortical cytoplasm of germinating 
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chlamydospores and oospores. In a study on the formation of zoospores within 

sporangia of P. cinnamomi, Hyde et al. (1991a) concluded that since large 

peripheral vesicles, dorsal vesicles and ventral vesicles were present in the 

sporangium before the induction of zoospore cleavage, they must move in from 

the hyphae or be produced prior to, or during, sporangial maturation. I have 

shown that formation of peripheral vesicles in P. cinnamomi occurs in pre­

sporangial hyphae and their presence in sporangia and chlamydospores is 

presumably mediated by cytoplasmic inflow. This observation contrasts with 

what is known about peripheral vesicle formation in other oomycetes. Grove and 

Bracker (1978) suggested that peripheral vesicles in Pythium aphanidermatum 

formed in immature sporangia while Lunney and Bland (1976) first observed 

peripheral vesicles during the early stages of cleavage of Pythium proliferum 

sporangia. Holloway and Heath (1977) and Beakes (1983) have suggested that 

fibrillar vesicles, which are similar in morphology to large peripheral vesicles are 

first synthesised in primary cysts of Saprolegnia. Schnepf et al (1978a) reported 

that encystment vesicles in Lagenisma coscinodisci fust developed in sporangia, 

whereas microbody-like structures developed in the maturing cyst (Schnepf et al. 

1978b). Pueschel and van der Meer (1985) reported that in the marine parasitic 

oomycete Petersenia palmariae, small electron dense vesicles that disappeared at 

encystment appeared during sporangial cleavage. In Saprolegnia ferax, Lehnen 

and Powell (1989) have shown that the adhesive K2-bodies are probably derived 

from smooth surfaced fenestrated cisternae within primary cysts. Kl-bodies have 

been recognised in differentiating sporangia (Holloway & Heath 1977). 

In the life cycle stage in which they originate, peripheral vesicles in P. cinnamomi 

are analogous to the primary bars in Brevilegnia minutandra, which are shown to 

appear in pre-sporangium hyphae (Armbruster 1982), and the primary encystment 
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vesicles of Saprolegnia ferax which are fully differentiated in pre-septum 

zoosporangium initials (Beakes 1983). Why should peripheral vesicles form in 

pre-sporangial hyphae of P. cinnamomi? One approach could be that if conditions 

that favor vegetative growth return before sporangia have appeared, hyphae can 

recycle the contents of the large and ventral peripheral vesicles during such 

vegetative growth. A further explanation is that the cellular machinery necessary 

for vesicle synthesis may be taken up with other major functions during sporangial 

development. For example the Golgi apparatus, from which the peripheral 

vesicles may be derived (see chapter 3), appears to play a major role in wall 

synthesis during sporangial development (Christen & Hohl 1972) and is the source 

of materials for membrane formation during sporangial cleavage (Hyde et al. 

1991b), 

This work has elucidated previously unrecognised stages in the vegetative life 

cycle of P. cinnamomi at which peripheral vesicles occur. The vesicles are present 

under conditions of spore formation and are similar in behavior to a number of 

other sporulation specific proteins found in fungi. Large peripheral and ventral 

vesicles are produced earlier in sporulation than dorsal vesicles. In addition, large 

peripheral vesicles and a small population of ventral vesicles remain after 

encystment whereas dorsal vesicles are completely secreted from zoospores. 

These observations suggest that, in addition to the adhesive function of ventral 

vesicles, they and large peripheral vesicles may act as endogenous nutrient 

reserves during the asexual life cycle of P. cinnamomi, wheras dorsal vesicles 

serve a function, as yet still obscure, in zoospores only. 
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Figs 2.la-2.11. Peripheral vesicles in cysts and germlings growing in 5% VS 

broth. bar =17µm 

Fig. 2.la. 5min old cyst labelled with Vsv-1, showing that although much of the 

ventral vesicle antigen was secreted and coated part of the surface of the cyst, some 

ventral vesicles remained in the cyst cytoplasm. 

Figs 2.lb-2.lc. At 2h (2.lb) and 4h (2.lc) after encystment, ventral vesicles could 

be observed in germ tubes. 

Fig 2.ld. By 10h after encystment, ventral vesicles had disappeared from germlings. 

V sv-1 antigen still remained associated with the cyst surface. 

Figs 2.le-2.lh. Labelling of 5min old cyst with Cpa-2 showed that the contents of 

the dorsal vesicles were completely secreted during encystment to form a coat on the 

outside of the cyst (2. le). This coat remained on the surface of the cyst during the 

next 1 Oh of germ ling growth. 

Figs 2.li-2.lj. Labelling of 5min old cysts with Lpv-1 showed that the large 

peripheral vesicles were not secreted during encystment (2. li). These vesicles 

remained in the cyst and were present in germ tubes at 2h (2.lj). 

Figs 2.lk-2.11. By 4h large peripheral vesicles had disappeared from germlings 

(2. lk) and they were still absent at 10h (2.11). At no stage in the 10h period was the 

Lpv-1 antigen observed on the surface of the germlings. 





-

Figs 2.2a-2.2d. A zoospore and cyst of P. cinnamomi indicating that not all 

ventral vesicles are secreted at encystment 

Fig 2.2a. Low magnification T.E.M. of P. cinnamomi zoospore. X 6250. 

Fig 2.2b. Low magnification T.E.M. of P. cinnamomi 5min old cyst. X 6150. 

Fig 2.2c. Higher magnification T.E.M. of same zoospore in 2.2a. Arrows indicate 

Vsv-1-AulO labelled ventral vesicles. X 33,850. 

Fig 2.2d. Higher magnification T.E.M. of same cyst in 2.2b. Arrow indicates Vsv-

1-AulO labelled ventral vesicle. X 32,780. 





Fig 2.3. Immunodot blot of cell extracts used to detect changes in the relative 

abundance of the three antigens in germlings growing in 5% V8 broth for 10h. The 

level of ventral vesicle antigen did not change during the first 2h after encystment, 

but decreased between 2 and 10h. No changes in the level of dorsal vesicle antigen 

were detected over the 10h period. A decline in large peripheral vesicle antigen was 

observed between 2 and 4h. 
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Figs 2.4a-2.41. Peripheral vesicles in germlings transferred to mineral salts 

solution. bar=22.5µm 

Figs 2.4a-2.4d. Ventral vesicles were absent at the time of transfer to mineral salts 

(6h old germlings, 2.4a) but after 6h in the mineral salts solution, they had 

reappeared (2.4b) and they increased in number over the next 12 (2.4c) and 24h 

(2.4d). 

Figs 2.4e-2.4h. Dorsal vesicles were not present at the time of transfer (2.4e) or after 

6h (2.4f) or 18h (2.4g) in the mineral salts solution. After 30h in the mineral salts 

solution dorsal vesicles were present (2.4h) and at this time sporangia had begun to 

appear (inset 2.4h.). 

Figs 2.4i-2.41. Large peripheral vesicles, like ventral vesicles, were absent at the 

time of transfer to mineral salts (6h old germlings, 2.4i) but after 6h in the mineral 

salts solution, they had reappeared (2.4j) and they increased in number over the next 

12 (2.4k) and 24h (2.41). 





Fig. 2.5. Immunodot blotting of cell extracts used to determine changes in the 

relative abundance of the three antigens transferred to mineral salts, after 6h in V8 

broth. After 6h incubation in the mineral salts solution the V sv-1 antigen was 

detected and then levels of the antigen increased over the next 24h. No changes were 

evident in the level of Cpa-2 antigen over the 30h period. Lpv-1 antigen was first 

detected 18h after transfer to mineral salts solution. 



0 6 18 30 

• • Vsv-1 
• • 

Cpa-2 

Lpv-1 

Fig5 



Table 2.1. The disappearance and reappearance of peripheral vesicles in mycelial 

colonies grown in 5% V8 broth for 24h and then incubated in mineral salts solution 

for 8h. After 5 days growth on V8 agar, all three peripheral vesicles were present in 

cryosectioned hyphae. Following 24h incubation in 5% V8 broth all three peripheral 

vesicles had disappeared from the hyphae. Subsequent incubation of the plugs in 

mineral salts solution led to the reappearance of ventral and large peripheral vesicles 

between 4 and 6h. Dorsal vesicles reappeared between 6 and 8h which coincided 

with the first appearance of sporangia. 

+ vesicles present. 

- vesicles absent. 

(s) sporangia present. 



vesicle V8 agar Oh 2h 4h 6h 8h (s) 

ventral + - - - + + 

dorsal + - - - - + 

large + - - - + + 

Table 2.1. 



Figs 2.6a- 2.6c. Peripheral vesicles in cryosectioned hyphae taken from the edge 

of a 5 day colony growing on VS agar. 

Fig. 2.6a. Ventral vesicles. bar=9.7µm. 

Fig. 2.6b. Dorsal vesicles. bar=10.8µm 

Fig. 2.6c. Large peripheral vesicles. bar=8.8µm 





I. 

II 

Figs 2.7a-2.7h. Peripheral vesicles were absent from hyphae growing 

vegetatively in 5 % VS broth. The three peripheral vesicles were present in large 

numbers after subsequent incubation of mycelial colonies in mineral salts 

solution. 

Fig. 2.7a. Light micrograph of hyphal culture after 24h incubation in V8 broth, 

showing many growing hyphal tips. bar=49.6µm. 

Fig. 2.7b. Light micrograph of hyphal culture after 8h incubation in mineral salts 

solution. Sporangia began to appear at this time. 

Fig. 2.7c-2.7d. Ventral vesicles were absent from vegetatively growing colonies 

(2.7c), but were present in large numbers after 8h incubation in mineral salts solution 

(2.7d). bar=29.7µm 

Fig. 2.7e-2.7f. Dorsal vesicles were absent from vegetatively growing colonies 

(2.7e), but were present in large numbers after 8h incubation in mineral salts solution 

(2.7f) . 

Fig. 2.7g-2.7h. Large peripheral vesicles were absent from vegetatively growing 

colonies (2.7g), but were present in large numbers after 8h incubation in mineral salts 

solution (2.7h) . 

-- --

I 





Figs 2.8a-2.8d. The presence of all three peripheral vesicles in developing 

sporangia 

Fig. 2.8a. Light micrograph of a young, developing sporangium, flat embedded in 

Lowicryl K4M. bar=20 µm. 

Fig. 2.8b. Ventral vesicles (arrows) in same sporangium as in 2.8a. X 27,500. 

Fig. 2.8c. Dorsal vesicles (arrows) in same sporangium as in 2.8a. X 36,250. 

Fig. 2.8d. Large peripheral vesicles (arrows) in same sporangium as in 2.8a. X 

42,600. 





Table 2.2. The presence and absence of peripheral vesicles during chlamydospore 

development. After growing for 5 days on V8 agar in the dark, hyphae at the edge of 

the colony contained all three of the vesicle types. If a small square of this mycelium 

wass inoculated onto a new V8 agar plate, cryosectioning after one day revealed that 

the hyphae did not contain any of these three vesicle types. By two days all three 

vesicles were again present and this was coincident with the first appearance of 

chlam ydospores. 

+ vesicles present. 

- vesicles absent. 

(c) chlamydospores present. 



vesicle Oday 1 day 2 day (c) 

ventral + - + 

dorsal + - + 

large + - + 

Table 2.2. 



Figs 2.9a-2.9d. The presence of all three peripheral vesicles in chlamydospores. 

Fig. 2.9a. Light micrograph of chlamydospores from 2 day old mycelial colony. 

bar= 14µm 

Fig. 2.9b. Cryosectioned chlamydospores incubated with Vsv-1 , indicating large 

numbers of ventral vesicles. bar= 18µm. 

Fig. 2.9c. Cryosectioned chlamydospore incubated with Cpa-2, indicating large 

numbers of dorsal vesicles. 

Fig. 2.9d. Cryosectioned chlamydospores incubated with Lpv-1, indicating large 

numbers of large peripheral vesicles. 
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CHAPTER THREE: THE ULTRASTRUCTURE OF 
PERIPHERAL VESICLE FORMATION. 

3.1 INTRODUCTION 

This chapter reports on the ultrastructural fonnation of large peripheral, ventral 

and dorsal vesicles. There are few descriptions of the fonnation of peripheral 

vesicles in oomycetes and those that do exist are based on morphological 

observations provided by transmission electron microscopy. Oomycete peripheral 

vesicles are thought to be derived from either the Golgi apparatus or the 

endoplasmic reticulum (E.R.) or indeed a combination of both occurs in the 

formation of the attack apparatus in Haptoglossa (Robb & Lee 1986). Schnepf et 

al. (1978a) discussed the complicated ontogeny of encystment vesicles from 

Golgi-derived precursor vesicles in La.genisma, but presented very little evidence 

to substantiate their description. Beakes (1983) recorded that fibrous vesicles first 

appeared around the apex of the nucleus in primary and secondary cysts of 

Saprolegnia, and suggested that they were probably derived from active 

dictyosomes which lay in close proximity. Lehnen and Powell (1991) showed that 

the precursors for K2-bodies in the primary cysts of Saprolegnia ferax formed 

from smooth-surfaced fenestrated cistemae, probably a simplified form of Golgi 

apparatus. 

A number of authors propose an E.R. derivation for Oomycete peripheral vesicles. 

In Lagenisma, Schnepf et al. (1978b) recorded that microbody-type organelles 

form during cyst maturation in regions of dense E.R. Beakes (1983) suggested, as 

cisternae of E.R. had moderately electron dense contents and spinelike bodies 

characteristic of primary encystment vesicles in Saprolegnia, these vesicles 
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formed from E.R.. This author also claimed an E.R. origin for secondary 

encystment vesicles, as these vesicles were often observed continuous with 

cistemae of E.R.. Although not discussed by the authors, in the parasitic marine 

Oomycete, Petersenia palmariae, small dark vesicles, which ultimately disappear 

from the periphery of zoospores at encystment, can be first recognised around 

perinuclear cistemae of E.R. (Pueschel & van der Meer 1985). 

There are some references available for peripheral vesicle formation in other 

zoosporic fungi. In Chytridiomycetes, Taylor and Fuller (1981) showed that both 

the paracrystalline body and vesicles that contained zoospore cell coat material in 

Chytridium confervae were probably Golgi-derived. In Chytriomyces aureus and 

C. hyalinus, the outer cell coat of zoospores is also thought to be derived from 

vesicles of dictyosomal origin (Dorward & Powell 1983). In Blastocladiella, 

gamma particles which are possibly involved in cell wall synthesis in encysting 

zoospores ( Mills & Cantino 1981) were shown to be synthesised from rough E.R. 

(Barstow et al. 1985). 

The unicellular chrysophycean algae are considered closely related to oomycetes 

(Gunderson et al. 1987). Members of this algal group have peripherally located 

organelles known as discobolocysts which are secretory in nature. In Ochromonas 

tuberculatus the discobolocysts have been shown to be derived from precursor 

Golgi-derived vesicles (Hibberd 1970). In other non-chrysophycean unicellular 

algae the Golgi apparatus has been shown to play an important role in the 

formation of secretory structures. The peripheral spheres of Olisthodiscus luteus 

are probably Golgi apparatus derived (Leadbeater 1969) while the cell wall scales 

in members of the Prasinophyceae have been shown to form in the Golgi 

apparatus (Brown et al. 1970, Domozych et al. 1981, McFadden et al. 1986) 

before being secreted to ornament the cyst surface . 
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The peripheral vesicles of Phytophthora cinnanwmi contain glycoprotein (Gubler 

& Hardham 1988,1991), and they can be compared to secretory glycoproteins in 

other cells. In plants, secretory glycoproteins are considered rare and are confined 

to a few specialised systems such as digestive glands and aleurone tissues (Jones & 

Robinson 1989). Cell wall glycoproteins have, however, been localised to the 

Golgi apparatus and derived vesicles in Chlamydonwnas (Grief & Shaw 1987) and 

other cell wall glycoproteins, such as extensin (Moore et al. 1991) and ~-1,3-

glucanase (Mauch & Stahelin 1989), have been localised to the Golgi apparatus. 

Gubler et al. (1986) have shown that ex-amylase can be localised to the E.R. and 

Golgi apparatus in barley aleurone. 

There are numerous accounts of the origin of secretory glycoproteins in animal 

cells. In canine pancreatic B cells, for example, both the regulated hormone 

insulin and the constitutive protein hemagglutinin, have been shown to bud away 

from Golgi cisternae in secretory vesicles (Orci et al. 1987). In human hepatoma 

cells, vesicular stomatitus virus glycoprotein and transferrin are shown to be 

present in the Golgi apparatus together and are released to the cell surface in 

secretory vesicles (Strous et al. 1983). In bovine pituitary cells, growth hormone, 

prolactin and secretogranin secretory granules are shown to be Golgi-derived 

(Hashimoto et al. 1987). 

In the strictest sense, the contents of the large peripheral vesicles are not secretory 

proteins as they are not exocytosed from zoospores (see Farquhar 1985, Jones and 

Robinson 1989). The fact that large peripheral vesicles are probably a source of 

nitrogen used during germination ( Gubler & Hardham 1990) makes them 

equivalent to the storage or vacuolar proteins of higher plants which are 

accumulated in preparation for vegetative growth ( Wetzel et al. 1989, Sonnewald 

et al. 1989, Staswick 1990). Most higher plant vacuolar proteins are transported 
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through the Golgi apparatus before reaching their site of storage (see Chrispeels 

1991 for review). Recently, however, a number of studies have suggested that 

some vacuolar proteins may form solely at the E.R. and may bypass the Golgi 

apparatus. Simon et al. (1990) have shown that the wheat storage proteins, a­

gliadins are probably not transported through the Golgi apparatus, while the 

prolamin storage proteins in oats are probably transported directly from the E.R. 

to the vacuole and bypass the Golgi apparatus (Lending et al. 1989). 

In the work reported in this chapter, I have used standard electron microscopy and 

immunoelectron microscopy to identify the point of formation of the three 

peripheral vesicles. The different peripheral vesicle antigens were first detected at 

separate positions in the secretory pathway providing further evidence about the 

nature of the vesicle antigens. Immunogold labelling also revealed new 

information about the characteristics of a possible intermediate compartment 

between the E.R. and the Golgi apparatus. Double labelling with antibodies to 

large peripheral and dorsal vesicles suggested that the vesicle contents are sorted 

at the level of the Golgi apparatus. 

3.2 MATERIALS AND METHODS 

3.2.1 Preparation of hyphal samples 

For the experiments reported in this chapter, P. cinnamomi 6BR hyphae were 

grown on miracloth on V8 agar (Chapter 2) for 5 days in the dark at 25°C. After 

this period the miracloth with adherant mycelia was transferred to 5% V8 broth 

(Chapter 2) and shaken (at 150rpm) for 24h in the light at 22°C. The miracloth 

samples were rinsed three times in mineral salts solution (Chapter 2) and then 
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shaken (150rpm) in a final volume of 100ml mineral salts solution in the light at 

22°C. After 3h in the mineral salts solution there was a substantial increase in the 

number of large peripheral and ventral vesicles in the hyphae, and by 4h dorsal 

vesicles began to form (see Table 3.1). Hyphae were scraped from miracloth at 4h 

and fixed for lh in 1 % glutaraldehyde buffered in lOOmM Pipes (pH 7.0) at room 

temperature. 

3.2.2 Processing of tissue for electron microscopy 

Tissue processing for immunocytochemistry: After a rinse in lOOmM Pipes buffer 

the hyphae were dehydrated in an ethanol series of half hour steps (10%, 25% at 

4°C, then 50%, 70%, 100% at -15°C) and infiltrated in an alcohol/Lowicryl K4M 

(Chemische Werke Lowi GMBH & Co., Waldkraiburg, Germany) series of 2h 

steps ( 2:1, 1:1, 1:2, ethanol:Lowicryl K4M and then pure Lowicryl K4M). After 

two changes over two days in pure Lowicryl K4M, the samples were embedded in 

an oxygen free polymerising unit with an overhead UV light at overnight -15°C, 

then with a further 24h at 20°c to ensure complete hardness of the blocks. 

Tissue processing for conventional embedding: After rinsing in lOOmM Pipes 

buffer and a final rinse in distilled water the samples were postfixed in a 2% 

solution of osmium tetroxide in distilled water for lh at room temperature. 

Following three rinses in distilled water dehydration was carried out at room 

temperature in a graded acetone series of 30min steps (10%, 25%, 50%, 70%, and 

100% ). The material was then infiltrated in a graded series of acetone: Spurr's 

resin of 2h steps ( 2:1, 1:1, 1:2, acetone:Spurr's resin) and then embedded in resin 

at 60°C. 
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3.2.3 Preparation of direct gold probes 

Direct gold probes were prepared by the method of Gubler and Hardham (1988). 

The 10nm gold particles were prepared by reducing a solution of chloroauric acid 

with a mixture of tannic acid and trisodium citrate (Slot & Geuze 1985), while the 

18nm gold particles were prepared by reaction of chloroauric acid with trisodium 

citrate only (Frens 1973). Affinity purified antibodies Cpa-2 and Lpv-1 were 

complexed with 10 (Cpa-2-AulO) and 18nm (Lpv-l-Au18) gold particles 

respectively. The antibody-gold probes were purified by 10-30% glycerol density 

gradient centrifugation (Slot & Geuze 1985). 

3.2.4 lmmunogold labelling 

For single labelling, sections were blocked for lOmin in PBS/ 1 %BSN 

0.1 %Gelatin/ 5% normal goat serum and then incubated with undiluted solutions 

of Cpa-2-AulO and Lpv-l-Au18 for lh. After washing in drops of PBS-

0.2%Tween-20, the sections were post-stained in 2% aqueous uranyl acetate and 

lead citrate for 5min and lmin respectively. 

Labelling with Vsv-1-AulO (Chapter 2), or a two-tiered labelling system with the 

first antibody Vsv-1 and the second antibody S.A.M-IgAulO, gave only weak 

labelling of ventral vesicles. The amount of labelling with the Vsv-1 antibody was 

increased with a three-tiered labelling system (McCurdy & Pratt 1986). After 

blocking for lOmin, the grids were incubated for lh in 3µg/ml V sv-1 antibody 

diluted in PBS/1 % BSNO.l % gelatin/I% normal goat serum, then, after rinsing in 

drops of PBS-Tween-20, incubated for lh in rabbit-anti-mouse immunoglobulin 

(Silenus, Dandenong, Australia) diluted 1:50 in PBS/1 % BSNO.l % gelatin/I% 

normal goat serum with the addition of 2% w/v Tween-20. After rinsing in PBS-
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Tween, the grids were incubated for lh in goat anti-rabbit Au5 (Amersham, UK), 

diluted 1:20 in the above buffer. Following rinses in PBS-Tween-20, the grids 

were post-stained as above. 

For double labelling, grids were blocked for lOmin, then incubated for lh with 

Cpa-2-AulO. After washing in drops of PBS-Tween-20, the grids were incubated 

lh in Lpv-l-Au18, washed in PBS-Tween and briefly in distilled water, then post­

stained as above. 

For double labelling with Cpa-2-AulO and HDEL (a marker for the E.R.), after 

blocking, grids were incubated in undiluted supernatant of HDEL antibody 

(obtained from Hugh Pelham, Medical Research Council Laboratories of 

Molecular Biology, Cambridge, U.K.) followed by goat anti-mouse lgAu5 

(Janssen, Olen, Belgium) diluted 1:20 in PBS/ 1 %BSAf 0.1 % gelatin/ 2% w/v 

Tween-20 plus 1 % normal goat serum. After washing, the grids were blocked for 

lh in 100 µg/ml non-immune mouse serum (St Louis, MO, USA) then incubated 

in undiluted Cpa-2-AulO. 

3.3 RESULTS 

All micrographs are representative examples of the labelling observed. 

3.3.1 The ultrastructural formation of large peripheral vesicles 

Antibodies to large peripheral vesicles labelled the cis (Figs 3.la, 3.lb, 3.lc), 

medial (Figs 3.la, 3.lb, 3.lc) and trans ( Fig. 3.lc) cistemae of the Golgi 

apparatus. Characteristic electron dense, large peripheral vesicles, in both labelled 

(Figs 3.la, 3.lb, 3.lc) and unlabelled (Fig. 3.ld) sections, were seen at the trans 
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part of the Golgi apparatus suggesting they had recently formed there. As well as 

the peripheral vesicles, vacuoles were also positive for Lpv-l-Au18 (Fig. 3.4f). 

Labelling with Lpv-1 occurred in the lumen of the E.R. (Figs 3.1 b, 3. lc, 3.4a, 

3.4b) as well as in a region between the E.R. and the Golgi apparatus (Figs 3.la, 

3.lb, 3.lc, 3.4b, 3.4e). 

3.3.2 The ultrastructural formation of dorsal vesicles 

Antibodies to dorsal vesicles labelled the Golgi apparatus and recently derived 

vesicles (Figs 3.2a, 3.2b, 3.2c), although the labelling was mostly restricted to the 

cis (Figs 3.2a, 3.2c) and trans side of the Golgi apparatus (Fig. 3.2b). Labelling 

with Cpa-2-AulO was first seen associated with pre-Golgi regions (Figs 3.2a, 3.2c, 

3.4b, 3.4c) but double labelling with an antibody to resident E.R. proteins, HDEL, 

which labelled the lumen of the E.R. (Fig. 3.2d), indicated that the Cpa-2 antigen 

was first detected in regions outside the E.R. and not the lumen of this organelle 

(Fig. 3.2d). 

3.3.3 The ultrastructural formation of ventral vesicles 

Antibodies to ventral vesicles failed to label the Golgi apparatus, but labelled 

vesicles were often observed near juxtanuclear Golgi apparatus and E.R. (Figs 

3.3a, 3.3b). Material embedded in Spurr's resin revealed a probable Golgi origin 

for ventral vesicles, as vesicles with plate-like inclusions characteristic of mature 

vesicles (Fig. 3.3d), could be observed forming at the trans side of the Golgi 

apparatus (Fig. 3.3c). 
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3.3.4 Double labelling results 

Double labelling with antibodies to dorsal and large peripheral vesicles revealed 

that these two antigens were present in the same cisternae of the Golgi apparatus ( 

Figs 3.2a, 3.4f, 3.5). Vesicles in the process of budding (Figs 3.4b, 3.4f), or 

recently derived from the Golgi apparatus (Figs 3.2a, 3.4a, 3.4e) contained only 

one antigen type even though these antigens appeared intermixed within nearby 

Golgi cisternae (Fig. 3.4f). No cross reactivity occurred in mature vesicles within 

the hyphal cytoplasm (Figs 3.4c, 3.5). In many cases the Golgi apparatus was not 

easily visualised but this organelle could be recognised due to its usual proximity 

to E.R. and nuclei (Fig. 3.4d). 

3.4 DISCUSSION 

The results strongly suggest that the three peripheral vesicles are derived from the 

the Golgi apparatus. In their ultrastructural origin, these vesicles are thus similar 

to the encystment vesicles in Lagenisma (Schnepf et al. 1978a) and the fibrous 

vesicles of Saprolegnia ferax (Beakes 1983). This result further reinforces the 

closeness of the link between oomycetes and chrysophycean algae, as members of 

this algal group also contain Golgi-derived peripheral secretory organelles 

(Hibberd 1970). Large peripheral vesicles do not bypass the Golgi apparatus in 

their formation and thus, in their mode of synthesis, are like many of the storage 

proteins of higher plants (Chrispeels 1983, Craig and Goodchild 1984). 

Secretory glycoproteins undergo N-linked glycosylation in the lumen of the rough 

E.R. but are further processed in the Golgi apparatus by 0-glycosylation, 

sulphation, and phosphorylation (Farquhar 1985). The fact that large peripheral 

vesicle antigen can be found in both the E.R. and the Golgi apparatus suggests that 

the epitope for this antibody is either a protein or an N-linked carbohydrate. 
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Earlier work (Hardham unpublished) has, however, shown that binding of Lpv-1 

to the large peripheral vesicle antigen is unaffected by treatment with periodate 

but is susceptible to pronase digestion. This suggests that the epitope to which 

Lpv-1 binds is a protein moiety. 

The fact that vacuoles were positive for Lpv-1-Au18, suggests that these have 

been derived from the coalescence of mature large peripheral vesicles. The 

breakdown of large peripheral vesicles to large vacuoles has been shown to occur 

in the germinated cysts of a number of oomycetes including Saprolegnia ferax 

(Holloway & Heath 1977), Pythium aphanidermatum (Grove & Bracker 1978), 

Phytophthora palmivora (Bimpong & Hickman 1975), and Phytophthora 

cinnamomi (Gubler & Hardham 1990) and it is possible that this same 

phenomenon occurs in mature hyphae. 

The presence of plate-like inclusions in vesicles at the trans side of the Golgi 

apparatus suggests that ventral vesicles are Golgi-derived. The lack of labelling of 

the Golgi apparatus with Vsv-1 antibodies, when vesicles close by are labelled, 

suggests that the antigen is either in too low a concentration for detection or it is 

not present. The Vsv-1 antibody appears to react with the plate-like inclusions 

characteristic of this vesicle type (Gubler & Hardham 1991) and so it is possible 

that these structures are not present in Golgi cisternae but are formed in vesicles 

that have budded away from the Golgi apparatus. If this is the case, the 

morphogenesis of these vesicles is similar to the formation of K2-bodies in 

Saprolegnia, where the precursors to these adhesive containing vesicles appear to 

form plate-like fragments after synthesis from a simplified Golgi apparatus 

(Lehnen & Powell 1991). 
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The dorsal vesicle antigen is first detected inside a structure that does not appear 

morphologically to be Golgi apparatus. Double labelling with an antibody that 

recognises E.R. resident luminal proteins with an HDEL sequence indicates that 

the dorsal vesicle antigen is not present in the lumen of the E.R and thus reveals 

that these structures are not E.R. The existence of a post-E.R.-pre-Golgi 

compartment has become one of the most exciting subject areas in cell biology 

over the last few years. In hamster BHK-21 cells, this compartment was described 

as a series of vacuolar elements positioned between the E.R and the cis-Golgi 

(Saraste & Kuismanen 1984). The compartment has been defined in monkey 

Vero cells through immunofluorescence microscopy and immunogold labelling 

by a 53-kDa transmembrane protein and has been shown to be an intermediate in 

the E.R. to Golgi apparatus protein transport pathway (Schweizer et al. 1990). It 

is possible that the intermediate E.R.-Golgi apparatus cistemae, which contain the 

dorsal vesicle antigen represent such a compartment in P. cinnarrwmi. The results 

from this study suggest that this compartment may play some role in the 

maturation of the dorsal vesicle antigen as the antigen is first detected in this 

region by the Cpa-2 antibody. The first of the two lysosomal sorting enzymes, N­

acetylglucosaminyl-1-phosphotransferase, is believed to be localised in a post­

E.R. compartment (Kornfeld & Mellman 1989) so it is possible that enzymes 

responsible for modifying the dorsal vesicle antigen are localised there also. 

The intermixing of vesicle glycoproteins within Golgi cistemae, but the presence 

of only one type of antigen in forming and post-Golgi vesicles suggests that a 

sorting event has occurred. Protein sorting has been shown to occur in the trans 

Golgi network, the exit site from the Golgi apparatus (Griffiths & Simons 1986) 

and has been extensively studied in a number of systems. Orci et al. (1987) 

showed that the regulated hormone, insulin, and the constitutive protein, 
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hemagglutinin, are sorted at the trans-most Golgi cistemae in pancreatic B cells. 

Hemagglutinin was absent from regions engaged in the budding process and 

immature insulin containing vesicles, suggesting that sorting of the two proteins 

preceded the formation of the secretory granules. Tooze et al. ( 1987) indicated a 

similar situation occurs in murine pituitary tumour cells. The regulated secretory 

protein adrenocorticotropic hormone, and constitutive coronavirons are present in 

the same regions of the trans Golgi network but these rarely occur in the same 

secretory vesicle, suggesting they are sorted at this level. Sorting within the 

regulated secretory pathway has also been demonstrated in the bag cells of Aplysia 

californica (Fisher et al. 1988). These authors demonstrated distinct hormones 

arising from a common precursor being packaged into separate secretory granules 

at the trans Golgi network. 

In contrast, however, to the above workers, von Zastrow and Castle (1987) 

advocated a sorting system that does not involve the Golgi apparatus. In exocrine 

cells, constitutive secretory proteins are sorted from regulated proteins inside 

secretory granules which have separated from the Golgi apparatus. Recent work 

with the Aplysia bag cell system (Sossin et al. 1990) also indicated there may be 

sorting sites for secretory proteins other than the Golgi apparatus in cells. These 

authors show that although sorting begins in the trans Golgi network, it can 

continue within immature granules via the activation of enzymes by acidification 

of the granules. 

After consideration of the above two approaches to secretory protein sorting, a site 

of sorting in P. cinnamomi can be suggested. In contrast to the work of von 

Zastrow and Castle (1987) and Sossin et al. (1990), sorting of glycoproteins Lpv-1 

and Cpa-2 appears to occur only at the level of the Golgi apparatus. Lack of gold 

labelling crossreactivity in budding and newly formed vesicles indicated that the 



51 

different glycoproteins are sorted in the Golgi apparatus before the vesicle has 

budded away. In this study, the poor preservation of the Golgi apparatus in 

Lowicryl K4M material made it difficult to tell whether or not this sorting is 

occurring specifically in the trans Golgi network. 

It would be interesting to try to elucidate the mechanism behind the sorting of 

these two glycoproteins. Aggregation-mediated sorting of secretory proteins has 

been a popular concept in the last 7 years (Kelly 1985, Gerdes et al. 1989, Buttner 

& Tooze 1989). In the calcium rich conditions that are thought to be present in 

the trans Golgi, secretory proteins may form aggregates (Gerdes et al. 1989) and 

may then be enveloped by membranes to form secretory vesicles (Burgess & Kelly 

1987, Pfeffer & Rothman 1987). The separation of secretory proteins at this level 

may reflect differences in the aggregative properties of these proteins (Buttner & 

Tooze 1989). 

A second proposal for the sorting of secretory proteins in the trans Golgi is a 

receptor-mediated sorting event. Chung et al. (1989) have presented evidence that 

a set of proteins, known as hormone binding proteins, may recognize and 

concentrate peptide hormones such as prolactin, insulin and growth hormone in 

the trans Golgi of canine pancreatic cells. Receptor mediated sorting has been 

advocated for the sorting of lysosomal enzymes from secretory proteins (reviewed 

by von Figura & Basilik 1986). A mannose-6-phosphate marker attached to the 

enzyme has specific receptors which facilitate the separation of lysosomal 

enzymes from the milieu of trans Golgi traffic (Griffiths et al. 1988). 

This work has revealed the ultrastructural origin of the three peripheral vesicles in 

P. cinnamomi 6BR. In common with many other secretory systems, dorsal and 

ventral vesicles are shown to be derived from the Golgi apparatus. Also, like the 
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storage proteins of higher plants, large peripheral vesicles are shown to be 

similarly Golgi-derived. The Lpv-1 antigen is shown to be present in both the 

E.R. and the Golgi apparatus, evidence consistent with the idea that the Lpv-1 

epitope is proteinaceous. Although V sv-1 antibodies did not label the Golgi 

apparatus, it is considered that these vesicles are Golgi-derived, as the plate-like 

inclusions which are characteristic of this vesicle type, and to which the antibody 

binds, seem to first appear in vesicles that are closely associated with the Golgi 

apparatus. The presence of the dorsal vesicle and large peripheral vesicle antigens 

in a region between the E.R. and the Golgi apparatus is evidence for the existence 

of an intermediate compartment. This compartment may contain enzymes which 

are important in the processing of the dorsal vesicle glycoprotein, though its 

precise properties demand further investigation. Double labelling reveals that 

vesicle antigens can be present in the same Golgi cistemae, and also that a Golgi 

sorting mechanism exists which ensures that vesicles leave the Golgi apparatus 

containing only one type of antigen. Although the mechanism of sorting of 

peripheral vesicle antigens in the P. cinnamomi Golgi apparatus remains 

undetermined, the separation of glycoproteins at the trans Golgi regions enables 

the formation of distinct peripheral vesicles which have specific functions in the 

infection of hosts. 



Table 3.1. Changes in peripheral vesicle populations in hyphal colonies grown on 

miracloth and transferred to mineral salts solution for 4h. Ventral and large 

peripheral vesicles were present in small numbers at the time of transfer from V8 

broth to mineral salts solution to 2h, but between 2 and 3h there was a substantial 

increase in their numbers. Dorsal vesicles were not present in hyphae after 24h in V8 

broth and first appeared between 3 and 4h in mineral salts solution. Between 3 and 

4h, sporangia had begun to appear. 



vesicle Oh lh 2h 3h 4h (s) 

ventral + + + ++ ++ 

dorsal - - - - ++ 

large + + + ++ ++ 

Table 3.1. 



Figs 3.la-3.ld. The ultrastructural formation of large peripheral vesicles. 

Fig. 3.la. The Lpv-1 antibody labelled the cis (small arrow) and medial cisternae 

(large arrow) of the Golgi apparatus (g). Labelling also occured in an intermediate 

compartment (i) close to the cis side of the Golgi apparatus. A labelled large 

peripheral vesicle (L) could be seen at the trans side of the Golgi apparatus 

suggesting that it had recently formed there. 

X 60,000. 

Fig. 3.lb. Lpv-1 label in the lumen of the E.R. (er), inside the intermediate 

compartment (i) and associated with the cis (small arrow)and medial (large arrow) 

parts of the Golgi apparatus (g). Arrowheads indicate recently formed large 

peripheral vesicles. X 40,000. 

Fig. 3.lc. Lpv-1 labelling associated with the E.R. (er), the intermediate 

compartment (i), and the cis (small arrow), medial (large arrow) and trans (white 

arrow) parts of the Golgi apparatus (g). A labelled large peripheral vesicle appeared 

close to the trans part of the Golgi apparatus (L). 

X 58,700. 

Fig. 3.ld. A large peripheral vesicle (L) close to the trans side of the Golgi 

apparatus. Material embedded in Spurr's resin. X 40,000. 





Figs 3.2a-3.2d. The ultrastructural formation of dorsal vesicles. 

Fig. 3.2a. Double labelling with Cpa-2 and Lpv-1. The Cpa-2 antibody labelled cis 

Golgi regions (small arrow, 10nm gold particles) as well as an intermediate region (i, 

large arrows,) between the E.R. and the Golgi apparatus (g). The Lpv-1 antigen 

(18nm gold particle near small arrow) appeared to be present in the same Golgi 

cistema as the Cpa-2 antigen. Lpv-1 antigen was also associated with the 

intermediate E.R./Golgi region (18nm gold particle). A dorsal vesicle (d), labelled 

with the Cpa-2 antibody could be seen close to the trans part of the Golgi apparatus 

suggesting that it had recently formed there. X 61,000. 

Fig. 3.2b. Cpa-2 labelling in trans Golgi regions (g, small arrows) and in recently 

derived vesicles (large arrows). X 60,000. 

Fig. 3.2c. Cpa-2 labelling could be observed associated with the cis Golgi cisternae 

(small arrow) as well as an intermediate Golgi-E.R. region (i). A number of labelled 

dorsal vesicles could be observed in the surrounding cytoplasm (d). er=E.R., g=Golgi 

apparatus. X 42,000. 

Fig. 3.2d. Double labelling with the Cpa-2 antibody (large arrows) and the HOEL 

antibody (small arrows) indicated the dorsal vesicle antigen was first detected in 

regions outside the E.R. and not the lumen of the organelle. X 60,000. 





Figs 3.3a-3.3d. The ultrastructural formation of ventral vesicles. 

Figs 3.3a-3.3b. The Vsv-1 antibody failed to label juxtanuclear regions of E.R.(er) 

and Golgi apparatus (g), but labelled vesicles (v) often appeared close to these 

regions. n=nucleus. X 62,500. 

Fig. 3.3c. A vesicle with the characteristic plate-like inclusions of mature ventral 

vesicles was seen at the trans part of the Golgi apparatus (arrow). Material 

embedded in Spurr's resin. X 48,000. 

Fig. 3.3d. A mature ventral vesicle with characteristic plate-like inclusions (arrow). 

Material embedded in Spurr's resin. X 60,000. 





Figs 3.4a-3.4f. Double labelling with antibodies to large peripheral and dorsal 

vesicles. 10nm gold-Cpa-2. 18nm gold-Lpv-1. 

Fig. 3.4a. The Lpv-1 antibody labelled the E.R. (er) and both the Lpv-1 antigen and 

the Cpa-2 antigen appeared intermixed within the Golgi apparatus (g). A recently 

formed vesicle contained only the Cpa-2 antigen (arrow). X 33,000. 

Fig. 3.4b. Lpv-1 labelling occured singly in the E.R. (er) but occured with Cpa-2 

labelling in an intermediate E.R.-Golgi apparatus region (i). A vesicle forming from 

the trans part of the Golgi apparatus contained only the dorsal vesicle antigen 

(arrow). X 51 ,000. 

Fig. 3.4c. No crossreactivity with the two antibodies occurred in mature vesicles 

within the hyphal cytoplasm. (L) large peripheral vesicle; (d) dorsal vesicle. X 

53,000. 

Fig. 3.4d. Micrograph of hyphae demonstrating the usual proximity of the Golgi 

apparatus to E.R.(er arrow) and nuclei (n). Material embedded in Spurr's resin X 

45,800. 

Fig. 3.4e. Double labelling of the intermediate E.R.-Golgi region (i) with Lpv-1 and 

the Cpa-2 antibodies. A vesicle which appeared recently to have formed at the trans 

part of the Golgi apparatus, contained only the dorsal vesicle antigen (d). X 52,000. 

Fig. 3.4f. The large peripheral and dorsal vesicle antigens appeared intermixed 

within the same cisterna of the Golgi apparatus (large arrows). A vesicle in the 

process of forming from the trans part of the Golgi apparatus contains only the dorsal 

vesicle antigen (small arrow). Vacuoles were also positive for the Lpv-1 antigen 

(vc). X 45,200. 





Fig. 3.5. Double labelling with antibodies to large peripheral (L) and dorsal vesicles 

(d). There was no crossreactivity between mature vesicles in the cytoplasm. The 

large peripheral and dorsal vesicle antigens appeared to be present in the same Golgi 

cistemae (g, see inset, arrow). X 36,900, inset X 54,400. 
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CHAPTER FOUR: THE EFFECTS OF SECRETION 
INHIBITORS ON PERIPHERAL VESICLE FORMATION. 

4.1 INTRODUCTION 

Trends in Cell Biology, 1991 referred to brefeldin-A (BFA) as the vesicle 

researcher's wonder drug. Indeed, the rapid progress made with this drug in 

elucidating cellular pathways of protein traffic has been remarkable. BF A was 

initially isolated and characterised as an antiviral antibiotic (Tamura et al. 1968) 

but its potential use in cell biology was not made known until the mid 1985 when 

it was shown that BFA caused an intracellular accumulation of normally secreted 

G-protein in vesicular stomatitus virus-infected hamster kidney cells (Takatsuki & 

Tamura 1985). The block caused by BFA was suggested to be at the level of the 

E.R., as during incubation with the drug the E.R. became dilated and accumulated 

amorphous material (Misumi et al. 1986). Treatment with BFA also resulted in 

the breakdown of the Golgi apparatus (Fujiwara et al. 1988), while newly 

synthesised membrane proteins, retained in the E.R. in the presence of BFA, 

showed evidence of having been processed with Golgi specific enzymes 

(Lippincott-Schwartz et al. 1989). Further research showed that within minutes of 

adding BFA to cells, Golgi membranes were transported to the E.R. via long 

tubular processes and in the longer term, BFA did not affect the exit of proteins 

from the E.R. but enhanced the retrograde passage of membrane back to the E.R. 

from an intermediate E.R.-Golgi compartment (Lippincott-Schwartz et al. 1990). 

BFA has been shown to cause the dissociation of a 1 lOkDa protein termed ~-COP, 

from Golgi membranes prior to their redistribution into the E.R. (Donaldson et al. 

1990) and, as this protein is crucial to the formation of Golgi cisternal vesicles, 
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there is a dysregulation of membrane traffic within the secretory pathway 

(Klausner et al. 1992). While BFA has been used almost exclusively on animal 

systems, a recent study documented the results of the first experiments with BF A 

on plant cells (Satiat-Jeunemaitre & Hawes 1992). Using BFA at 200µg/ml , 20 

times higher than had been previously used in studies on animal systems, the 

authors showed that the drug reversibly caused the breakdown of the Golgi 

apparatus. In this chapter I report the effectiveness of the drug in perturbing the 

secretory system for the first time in a fungal system and, using morphological and 

immunological evidence, determine the mode of action of the drug in such a 

system. 

The cytochalasins are some of the most potent inhibitors of the actin cytoskeleton 

known (Yahara et al. 1982). Cytochalasins are thought to inhibit actin filament 

elongation by binding to high affinity sites located at the polymerisation end of 

filaments (Flanagan & Lin 1980). In this chapter I report the effects of one of the 

members of this group, cytochalasin D (CD) on peripheral vesicle formation. 

Although CD has been shown to disrupt the actin microfilament based vesicle 

transport system in animal cells (Forscher & Smith 1988), fungi (Allen et al. 

1980), algae (Kropf et al. 1989), bryophytes (Doonan et al. 1988), pteridophytes 

(Murata et al. 1987) and higher plants (Picton & Steer 1981), there is also 

evidence that CD may affect the rate of release of secretory vesicles from the 

Golgi apparatus (Shannon et al. 1984). The mechanism behind such an effect is 

not clear, but it has been suggested that CD may either inhibit the movement of 

vesicles between the E.R. and the Golgi apparatus or the formation of vesicles 

from cistemal margins. 

The ionophore monensin has been used to block secretion in both plant and animal 

cells (see Mollenhauer et al. 1990 for review). By exchanging H+ for Na+ and 
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K+, monensin induces swelling of trans Golgi compartments (Tartakoff 1983) and 

interferes with functions, such as the processing of secretory products (Orci et al. 

1984). Though reports of experiments involving fungal cells and monensin are 

rare, the drug has been shown to inhibit growth, lipid and sterol biosynthesis in 

Hypomyces, Neurospora, Achlya and Taphrina (Weete et al. 1989) and to have a 

pronounced effect on cytoplasmic cleavage during gametogenesis and 

zoosporogenesis in Allomyces (Sewall et al. 1986). In this chapter I report that 

monensin affects peripheral vesicle formation, but, unexpectedly the site of the 

block in the secretory pathway caused by the drug appears not be the trans Golgi 

apparatus. 

Tunicamycin has been widely used by researchers to study the behavior and 

function of glycoproteins in plant and animal cells. The drug blocks the 

glycosylation of asparagine-linked glycoproteins by inhibiting the first step in the 

lipid-linked saccharide pathway - the formation of N-acetylglucosaminyl 

pyrophosphorylpolyisoprenol (Struck & Lennarz 1977). Some glycoproteins have 

been shown to require N-linked glycans for transport competence in the secretory 

pathway (Olden et al. 1982). Such secretory proteins without these moieties are 

either retained in the E.R. (Faye & Chrispeels 1987, Rose & Doms 1988) or are 

more susceptible to proteolysis and are broken down (Faye & Chrispeels 1989). 

In this chapter I will report firstly whether tunicamycin affects peripheral vesicle 

formation and secondly, since the Lpv-1 antibody labels the E.R., I report what 

happens to the large peripheral vesicle antigen when it lacks an N-linked 

carbohydrate moiety. 

In this chapter, I report the effects of BFA, CD, monensin and tunicamycin on 

peripheral vesicle formation. This work has enabled an assessment of the mode of 

action of the drugs and, has been in some cases, the first test with them on a fungal 
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system. Also, as these drugs affect different parts of the secretory pathway, it has 

been possible to reveal more information about biochemical aspects of the 

peripheral vesicles. The formation of peripheral vesicles during sporulation in P. 

cinnamomi is a good system to work with, as these organelles are not present in 

vegetatively growing cells but can be reproducibly induced to appear during the 

induction of sporangia. This work is greatly aided by the Lpv-1 antibody which 

has been shown to be an effective marker for most of the secretory pathway (see 

Chapter 3). 

4.2 MATERIALS AND METHODS 

4.2.1 Inhibitors 

In experiments in which fungal hyphae were exposed to drugs for 6h, BFA 

(Boehringer Mannheim, Castle Hill, NSW), was made up as a stock solution of 

lmg/ml in 95% ethanol, and was added to the culture medium to a final 

concentration of 5µg/ml. In experiments in which fungal hyphae were exposed to 

drugs for lh, BFA (Sigma, St Louis, MO, USA) was made up as a stock solution 

of lOmg/ml in 95% ethanol with a final concentration in the culture medium of 

50µg/ml. CD (Sigma) was made up as a stock solution of 5mM in dimethyl 

sulphoxide (DMSO) with a final concentration in the culture medium of 25µM. In 

the 6h drug exposure experiments, monensin (Sigma) was made up as a stock 

solution of lmM in 95% ethanol with a final concentration in the culture medium 

of 5µM. In the lh drug exposure experiments, monensin was made up as a stock 

solution of lOmM in 95% ethanol, and used at a final concentration of IOµM. 

--
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Tunicamycin (Sigma) was made up as a stock solution of lmg/ml in 0.05% NaOH 

with a final concentration in the culture medium of Sµg/ml. 

4.2.2 Culturing and experimental procedure 

Hyphal plugs were taken from the edge of a 5 day old P. cinnamomi 6BR culture 

growing on V8 agar (Chapter 2) and placed in 4ml of 5% V8 broth (Chapter 2) in 

a 4cm diameter petri dish. After 24h growth in the dark at 25°C, the cultures were 

rinsed three times in mineral salts solution (Chapter 2) then left to gently shake at 

50rpm in the light at 22°C in a final volume of 4ml mineral salts. After 4h in the 

mineral salts solution, BFA, CD, monensin, and tunicamycin were added and the 

cultures were gently shaken (50rpm) in the light at 22°C for either 6h or lh .. The 

appropriate amounts of solvents were added to the controls in the 6h drug 

exposure experiments. In the case of BFA and monensin, ethanol to a final 

concentration of 0.475%, in the case of CD, DMSO to a final concentration of 

0.25% and with tunicamycin, 0.25mM NaOH. The cultures were incubated in 

these solutions for 6h, then fixed for 30min in 4% paraformaldehyde in 50mM 

Pipes buffer (pH 7.0). Before fixation, small tufts of mycelium were taken from 

the plates and incubated for 5 days in 5% V8 broth in the dark at 25°C, to ensure 

that the hyphae were alive. For the experiments involving lh incubation times, 

the controls were 0.475% ethanol for BFA, and 0.095% ethanol for monensin. In 

these experiments, cultures incubated in the drugs for lh were rinsed three times 

in mineral salts and then allowed to resume growth in the absence of the drugs in a 

final volume of 4ml of mineral salts solution for 90min. The samples were 

cryosectioned and immunostained as below. All experiments were carried out 

three times to ensure the reproducibility of the responses. 
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4.2.3 Processing for immunofluorescence and electron microscopy 

After rinsing in 50mM Pipes buffer (ph 7.0), the samples were processed for 

cryosectioning as in Chapter 2, and then immunostained with 1.5 µg/ml V sv-1, 

2µg/ml Cpa-2, and 2µg/ml Lpv-1 diluted in PBS/1 % BSA. After incubation in 

Sheep anti-mouse FITC, diluted 1 in 60 in PBS/1 % BSA, the sections were 

incubated in 0.1 µg/ml DAPI (4'-6'-diaminophenylindole) to assist in locating 

perinuclear E.R. and Golgi apparatus. The sections were then mounted in mowiol 

plus 0.1 % PPD and examined with a Zeiss epifluorescence microscope. The same 

filters were used for fluoroscein conjugated antibodies as in Chapter 2, while to 

visualise DAPI staining an Fl filter cube with a 365nm excitation filter, a 395nm 

dichroic mirror and a 420nm barrier filter was used. 

For electron microscopy both 6h and lh samples were fixed at room temperature 

for lh in 1 % glutaraldehyde in lOOmM Pipes buffer (pH 7 .0), washed in buffer 

then postfixed in 2% osmium tetroxide in distilled water. After dehydration in an 

ethanol series of 30min steps (10%, 30%, 50%, 70%, 100%) the samples were 

infiltrated in an increasing series of LR White resin (London Resin Co., 

Hampshire, U.K.): acetone solutions of 2h steps (1:2, 1:1, 2:1 LR White: acetone), 

followed by 2 by 24h changes in pure LR White resin. The samples were 

embedded in LR White resin at 60°C. 

4.3 RESULTS 

All micrographs presented in the results section were representative of the 

responses observed. 
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4.3.1 6h drug incubation experiments-immunofluoresence results 

Although it is not possible to ascertain from fluorescence microscopy whether 

either vesicle formation or antigenic epitopes were affected by the drugs, in 

experiments where hyphae were exposed to the the drugs for 6h, all four inhibitors 

reduced the number of fluorescent peripheral vesicles in hyphae (Figs 4.1-4.4). In 

BFA and monensin-treated hyphae, a small number of fluorescent large peripheral 

and ventral vesicles were present (Figs 4. la, 4. le, 4.2a, 4.2e ). Fluorescent dorsal 

vesicles, however, were completely absent (Figs 4.lc, 4.2c). Larger numbers of 

fluorescent large peripheral and ventral vesicles were present in CD treated 

hyphae (Figs 4.3a, 4.3e) and in this case a small number of fluorescent dorsal 

vesicles was present (Fig. 4.3c). Tunicamycin almost completely inhibited the 

appearance of fluorescent peripheral vesicles (Figs 4.4a, 4.4c, 4.4e), though there 

was a very small number of fluorescent ventral vesicles present (Fig. 4.4a) and a 

number of regions which were positive with the Lpv-1 antibody but did not have 

the characteristic staining of large peripheral vesicles (Figs 4.4e, 4.5a). Double 

labelling with DAPI assisted in identifying these regions. In tunicamycin-treated 

hyphae, the Lpv-1 antigen was restricted to a narrow juxtanuclear zone (Figs 4.5a, 

4.5b) while in controls the pattern of staining suggested that the antigen was 

confined to a much larger, wider structure though this was also near the nucleus 

(Figs 4.5c, 4.5d). 

Figure 4.6 indicates that hyphae, previously incubated in BFA, monensin and 

tunicamycin were alive as they grew into colonies by 5 days. Hyphae previously 

incubated in CD were not used in these experiments, as after 6h incubation these 

hyphae had produced large numbers of peripheral vesicles-evidence that the drug 

had not caused hyphal death. 
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4.3.2 6h drug incubation experiments-results from electron microscopy 

Results from electron microscopy revealed that although BFA caused distortion of 

the Golgi apparatus, a few vesicles had still been produced (Fig. 4.7a), though 

fewer than in controls (Fig. 4.7b). In CD-treated hyphae, large clusters of 

vesicles, that had the morphology of large peripheral vesicles could be observed 

adjacent to the Golgi apparatus (Fig. 4.7c). In controls these clusters were not 

present (Fig. 4.7d). Monensin appeared to cause swelling of the Golgi cisternae 

and to slow vesicle release as clusters of vesicles were closely associated with the 

trans Golgi and fewer vesicles were in the surrounding cytoplasm (Fig. 4.8a) 

compared to the controls (Fig. 4.8b). The Golgi apparatus in tunicamycin-treated 

hyphae was quiescent with no vesicles being produced and the nuclear 

envelope/E.R. appeared more swollen (Fig. 4.8c) compared to the control (Fig. 

4.8d). 

4.3.3 lh drug incubation experiments-immunofluorescence results 

In the second set of experiments, the effects of BF A and monensin on peripheral 

vesicle formation were investigated using shorter incubation time (lh) and higher 

concentrations of the two drugs. The motivation for this was twofold. Firstly, in 

the experiments where hyphae were exposed to the drugs for 6h, each of the 

inhibitors had been used at the lowest possible concentration that had affected 

peripheral vesicle formation. In the case of BFA and monensin these had not 

completely inhibited vesicle formation. The second reason was that there is some 

evidence that both BFA and monensin lose their potency during long incubation 

times (Fujiwara et al. 1988, Mollenhauer et al. 1983). Only large peripheral and 

ventral vesicle formation was studied as these former vesicles appear together 

synchronously between 4 and 6h, while dorsal vesicles appear between 6 and 8h 

(Chapter 2) and this was temporally impossible. In these experiments, BFA at 

--
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50µg/ml and monensin at lOµM completely inhibited the appearance of 

fluorescent ventral (Figs 4.9c, 4.9d) and large peripheral vesicles (Figs 4.10c, 

4.10d). In untreated controls there were large numbers of the two vesicle types 

(Figs 4.9a, 4.9b, 4.10a, 4.10b). The effects of both drugs were reversible and after 

washing and 90min incubation in fresh mineral salts medium the vesicles 

reappeared (Figs 4.9e, 4.9f, 4. lOe, 4.lOt) . In BFA and monensin-treated hyphae 

the pattern of staining with Lpv-1 and V sv-1 was very similar and was fine and 

fibrillar (Figs 4.9c, 4.9d, 4.10c, 4.10d). Double labelling with DAPI and Lpv-1 

indicated that the Lpv-1 antigen was restricted to a narrow perinuclear region in 

both BFA and monensin-treated hyphae (Figs 4. llc, 4.lld, 4.12c, 4.12d). In the 

controls and reincubated hyphae, Lpv-1 staining was not restricted to this narrow 

perinuclear zone but the pattern of staining suggested that the antigen was found in 

larger, wider regions, though these were still associated with the nucleus (Figs 

4.lla, 4.llb, 4.lle, 4.llf, 4.12 a, 4.12b, 4.12e, 4.12t). 

4.3.4 lh drug incubation experiments-results from electron microscopy 

Further details of the effects of these two drugs on vesicle formation during lh 

experiments were obtained from ultrastructural studies. Controls and reincubation 

samples from both drug treatments showed fairly normal Golgi apparatus with 

vesicles similar to ventral vesicles budding away from trans regions (Figs 4.13a, 

4.13b, 4.14a, 4.14b). In BFA-treated hyphae the Golgi apparatus, when present, 

had cisternae that were very close together (Figs 4.13c, 4.13d) and sometimes, as 

the vesicles were not associated with the edges of Golgi cisternae, these were 

possibly breaking down into small vesicles (Fig. 4.13c ). In some hyphae, the 

Golgi apparatus was completely absent and vacuolate areas, adjacent to the 

nucleus (where the Golgi apparatus was normally positioned), were present 

instead. In monensin-treated hyphae large vacuoles appeared to be forming from 
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the trans part of the Golgi apparatus (Fig. 4.14c) and it appeared that the Golgi 

apparatus completely broke down around these large vacuoles (Fig. 4.14d). The 

nuclear envelope/E.R. appeared quite swollen in monensin treated hyphae (Fig. 

4.14e). 

4.4 DISCUSSION 

When hyphae were incubated in BF A for 6h, peripheral vesicle formation 

appeared to be slowed. The distorted appearance of the Golgi apparatus in hyphae 

may suggest the Golgi apparatus was in the process of breaking down, perhaps 

because of membrane imbalance caused by the reduction of transport between the 

E.R. and the Golgi apparatus (Klausner et al. 1992, Chrispeels & Staehelin 1992). 

A 6h incubation period in monensin may have affected the release of peripheral 

vesicles away from the trans Golgi apparatus by impairing the final stages of 

maturation of the peripheral vesicles (Mollenhauer et al. 1990). An alternative 

hypothesis is that the hyphae incubated in either BF A or monensin may be in a 

state of recovery and it is possible that a 6h incubation time is not the ideal time 

period in which to assess the effects of these two inhibitors. Fujiwara et al. (1988) 

showed that when rat hepatocytes were incubated in 2.5µg/ml BFA, after lh the 

Golgi apparatus broke down and secretory protein became restricted to the E.R. 

After 4h in the presence of the drug, however, the Golgi apparatus reconstituted 

from its previously dispersed form and once again contained secretory protein. 

This effect was attributed to the metabolization of BF A to an inert form after long 

incubation times. The literature on long incubation times (greater than 5h) with 

monensin is quite confusing. After 24h in lOµM monensin the Golgi apparatus in 

Euglena gracilis has been shown to return to normal (Mollenhauer et al. 1983). 
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Eighteen hours in lOµM monensin has, however, been shown to cause severe 

endomembrane disruption in maize rootcap cells (Mollenhauer et al. 1982), and in 

human fibroblasts, 7h incubation with 0.5 µM monensin causes the Golgi 

apparatus to swell into large refractile vacuoles and the E.R. to distend (Ledger et 

al. 1980). 

The results with CD indicate that the fonnation of peripheral vesicles does not 

require actin microfilaments. Microtubules may possibly play some role in the 

movement of materials between the E.R. and the Golgi apparatus and the budding 

of peripheral vesicles from Golgi cistemal margins. Microtubules have been 

shown, however, not to be involved in E.R. to Golgi apparatus transport (Rogalski 

et al. 1984, Salas et al. 1986, Lippincott-Schwartz et al. 1990) and thus it appears 

some other yet to be described transport mechanism is in operation at this site. 

Some evidence exists to support the involvement of microtubules in the budding 

of Golgi vesicles. Microtubules, have been shown to interact with Golgi 

membranes in vitro (Karecla & Kreis 1992), and may also be involved in 

maintaining the organisation of the trans Golgi network, the exit site of casein 

vesicles from the Golgi apparatus (Rennison et al. 1992). Kreis (1990) discussed 

the possibility that microtubule receptors may be associated with budding 

secretory vesicles, a situation that may occur in the secondary cysts of Saprolegnia 

ferax, where precursor K2-bodies budding away from smooth fenestrated cistemae 

appear, from electron micrographs, to be transported away to the cyst periphery by 

microtubules (Lehnen & Powell 1991). The large clusters of vesicles adjacent to 

the Golgi apparatus in P. cinnamomi suggest, however, that the actin cytoskeleton 

is necessary for the transport of peripheral vesicles away from the Golgi apparatus. 

The role that the actin cytoskeleton plays in the movement of peripheral vesicles 

into the developing sporangium will be reported in Chapter 5. 
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Tunicamycin almost completely blocks peripheral vesicle formation and suggests 

that, like many plasma membrane and secretory proteins (Rose & Doms 1988), all 

three peripheral vesicles contain N-linked glycoproteins. The swelling of the E.R. 

caused by tunicamycin and the presence of the Lpv-1 antigen in nucleus­

associated structures which resemble the E.R. suggest that the loss of N-linked 

glycans may prevent the entrance of the Lpv-1 antigen into the secretory system. 

N-linked glycans are important to secretory proteins as they ensure correct folding 

(Gibson et al. 1979). Misfolded proteins have been shown to form aggregates in 

the E.R. and may not be able to enter transport vesicles (Machamer & Rose 1988, 

Doms et al. 1988) or they may become more susceptible to proteolysis and be 

broken down within the secretory pathway (Faye & Chrispeels 1989). The results 

suggest that as the large peripheral vesicle antigen is still present within the E.R., 

the loss of N-linked glycans has not exposed it to protein degrading enzymes and 

that misfolding may have prevented its entrance into the secretory pathway. 

Higher concentrations and shorter incubation times with BFA and monensin reveal 

details about the mode of action of these drugs. While much higher 

concentrations of BFA than those used on animal cells are necessary to inhibit 

peripheral vesicle formation, these concentrations were four times lower than the 

concentration that was shown to be effective on plant cells (Satiat-Jeunemaitre & 

Hawes 1992). BFA at 50 µg/ml appeared to cause the Golgi apparatus to break 

down, and suggests that antigens become restricted to fibrillar, perinuclear 

structures, most probably the E.R. Monensin caused vacuolation of trans-regions 

of the Golgi apparatus, and in some hyphae caused the entire Golgi apparatus to 

break down into these vacuoles. Monensin causes various morphological changes 

in the Golgi apparatus, such as swelling of trans cisternae (Mollenhauer et al. 

1988, Moore et al. 1991) and curling structures or cup-shapes (Robinson 1981 , 
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Mollenhauer et al. 1982) but there are a few accounts reporting the complete break 

down of the Golgi apparatus into large vacuoles ( Ledger et al. 1980, Griffiths et 

al. 1983, Morre et al. 1983, Ellinger & Pavelka 1984). During treatment with 

monensin, large peripheral and ventral vesicle antigens are restricted to fibrillar, 

perinuclear structures, most likely the E.R., and not to the few intact Golgi 

apparatuses which are still present in hyphae. Although the principal site of arrest 

of transport in cells treated with monensin appears to be the Golgi apparatus 

(Tartak:off 1983), it is suggested that the drug may cause a block in transport of 

vesicle antigens from the E.R. to the Golgi apparatus. Ledger et al. ( 1980) 

suggested a similar effect of the drug in human skin fibroblasts. In these cells, 

normal Golgi apparatuses were not seen, while aberrant forms with large vacuoles 

attached were quite common. Using immunocytochemical staining, these authors 

revealed antigens to be present in monensin-induced vacuoles and in dilated E.R. , 

suggesting that either the synthesized proteins exceeded the storage capacity of the 

Golgi-vacuoles or that monensin blocked exit from the E.R. The results from this 

study support the latter of these two possibilities, and therefore suggest that 

monensin should not necessarily be accepted as solely an inhibitor of vesicle 

formation at the trans Golgi. Indeed, a recent review on the cellular effects of 

monensin (Mollenhauer et al. 1990) documented a diversity of phenomena, 

including the blockage of proteins from coated pits to receptosomes, recycling of 

lipoprotein receptors and the inhibition of pinocytosis. It is interesting too, that a 

recent paper by Morre et al. (1992) has reported that the much documented 

phenomenon of monensin-induced Golgi swelling requires fixation, suggesting 

that the swelling of Golgi cisternae may not be the cause of the interruption of 

membrane flux and processing caused by the drug. 
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The second series of experiments with BF A and monensin reveals further 

information about the ventral vesicle antigen. The results reported in Chapter 3 

suggested that the epitope to which the V sv-1 antibody bound was not present 

until the vesicles had budded away from the Golgi apparatus. Treatment with both 

monensin and BFA indicates the ventral vesicle antigen may become restricted to 

the E.R., which should not be possible if the antigen was normally only present in 

budded vesicles. The lack of labelling of the Golgi apparatus with the Vsv-1 

antibody may be because the antigen is in too low a concentration for detection. 

Peripheral vesicle formation is thus affected by all four inhibitors used. This 

study has indicated the usefulness of this system as a model in the study of 

secretory glycoprotein transport and in studies of the action of these drugs on the 

secretory system. A further study involving immunoelectron microscopy is, 

however, necessary to characterize fully the actions of these drugs on the P. 

cinnamomi secretory pathway. This experiments documented in this chapter have 

demonstrated the permeability of the P. cinnamomi 6BR cell wall to the four 

inhibitors used. This is an important point, as many studies utilising plant tissues 

(e.g. Moore et al. 1991) have been complicated by an inability of inhibitors to pass 

through the cell wall. These results are thus greatly encouraging with respect to 

the use of more specific chemicals in the control of this pathogen. 



Figs 4.la-4.lb. P. cinnamomi hyphae incubated in Sµg/ml BFA for 6h. 

bar=24µm 

Figs 4.la-4.lb. Cryosectioned hyphae immunostained with Vsv-1 followed by 

SAM-FITC. A small number of fluorescent ventral vesicles was present in BFA­

treated hyphae (4.la) whereas large numbers were present in controls (4.lb). 

Figs 4.lc-4.ld. Cryosectioned hyphae immunostained with Cpa-2 followed by 

SAM-FITC. Fluorescent dorsal vesicles were absent in BFA-treated hyphae (4.lc) 

whereas moderate numbers were present in the controls (4.ld). 

Figs 4.le-4.lf. Cryosectioned hyphae immunostained with Lpv-1 followed by SAM­

FITC. A small number of fluorescent large peripheral vesicles were present in BFA­

treated hyphae (4.le) whereas many were present in controls (4.lf). 





Figs 4.2a-4.2b. P. cinnamomi hyphae incubated in SµM monensin for 6h. 

bar=24µm 

Figs 4.2a-4.2b. Cryosectioned hyphae immunostained with Vsv-1 followed by 

SAM-FITC. A small number of fluorescent ventral vesicles were present in 

monensin-treated hyphae (4.2a) whereas large numbers were present in controls 

(4.2b). 

Figs 4.2c-4.2d. Cryosectioned hyphae immunostained with Cpa-2 followed by 

SAM-FITC. Fluorescent dorsal vesicles were absent in monensin-treated hyphae 

(4.2c) whereas moderate numbers were present in the controls (4.2d). 

Figs 4.le-4.lf. Cryosectioned hyphae immunostained with Lpv-1 followed by SAM­

FITC. A small number of fluorescent large peripheral vesicles were present in 

monensin-treated hyphae (4.2e) whereas large numbers were present in controls 

(4.2f) . 





Figs 4.3a-4.3b. P. cinnamomi hyphae incubated in 25µM cytochalasin D for 6h. 

bar=24µm 

Figs 4.3a-4.3b. Cryosectioned hyphae immunostained with Vsv-1 followed by 

SAM-FITC. Moderate numbers of fluorescent ventral vesicles were present in CD­

treated hyphae (4.3a). In controls, more fluorescent ventral vesicles were present 

(4.3b). 

Figs 4.3c-4.3d. Cryosectioned hyphae immunostained with Cpa-2 followed by 

SAM-FITC. A small number of fluorescent dorsal vesicles were present in CD­

treated hyphae (4.3c). In controls there were more fluorescent dorsal vesicles present 

(4.3d). 

Figs 4.3e-4.3f. Cryosectioned hyphae immunostained with Lpv-1 followed by SAM­

FITC. Moderate numbers of fluorescent large peripheral vesicles were present in 

CD-treated hyphae (4.3e). In controls more fluorescent large peripheral vesicles 

were present ( 4.3f). 





Figs 4.4a-4.4b. P. cinnamomi hyphae incubated in Sµg/ml tunicamycin for 6h. 

bar=24µm 

Figs 4.4a-4.4b. Cryosectioned hyphae immunostained with Vsv-1 followed by 

SAM-FITC. A very small number of fluorescent ventral vesicles were present in 

tunicamycin-treated hyphae (4.4a). Large numbers of fluorescent ventral vesicles 

were present in controls (4.4b). 

Figs 4.4c-4.4d. Cryosectioned hyphae immunostained with Cpa-2 followed by 

SAM-FITC. Fluorescent dorsal vesicles were absent from tunicamycin-treated 

hyphae (4.4c). Moderate numbers of fluorescent dorsal vesicles were present in 

controls (4.4d). 

Figs 4.4e-4.4f. Cryosectioned hyphae immunostained with Lpv-1 followed by SAM­

FITC. Fluoresent large peripheral vesicles were absent from tunicamycin-treated 

hyphae (4.4e). A number of regions were positive for the Lpv-1 antigen, but these 

did not have the characteristic staining pattern of large peripheral vesicles (4.4e, see 

4.5a). Large numbers of fluorescent large peripheral vesicles were present in 

controls (4.4f). 





Fig 4.Sa-4.Sd. Higher magnification of tunicamycin-treated hyphae double 

stained with Lpv-1 followed by SAM-FITC (Figs 4.Sa, 4.Sc) and DAPI (Figs 

4.Sb, 4.Sd). bar=l.9µm. 

Figs 4.Sa-4.Sb. In tunicamycin-treated hyphae the Lpv-1 antigen was restricted to a 

narrow juxtanuclear region. 

Figs 4.Sc-4.Sd. In controls, the pattern of staining suggested that the Lpv-1 antigen 

was confined to a much larger, wider structure though this was also near the nucleus. 





Figure 4.6. Hyphae previously incubated in BFA (a), monensin (b), and tunicamycin 

(c) for 6h, grew into colonies after reincubation in mineral salts solution in which the 

drugs were absent. 





Figs 4.7a-4.7d. Electron microscopy of hyphae incubated in Sµg/ml BFA (4.7a-

4.7b) and 25µM CD (4.7c-4.7d) for 6h. 

Figs 4.7a-4.7b. Although the Golgi apparatus in BFA-treated hyphae appeared 

distorted, a few vesicles had still been produced (arrow, 4.7a), though in fewer 

numbers than the controls (4.7b). n=nucleus. 4.7a X 60,000, 4.7b X 62,500. 

Figs 4.7c-4.7d. In CD-treated hyphae (4.7c), large clusters of vesicles (vs) with a 

similar morphology to large peripheral vesicles, could be observed adjacent to the 

Golgi apparatus (g). In controls these clusters were not present (4.7d). 4.7c X 

65,000, 4.7d X 60,000. 





Figs 4.8a-4.8d. Electron microscopy of hyphae incubated in SµM monensin 

(4.8a-4.8b) and Sµg/ml tunicamycin (4.8c-4.8d) for 6h. 

Figs 4.8a-4.8b. Monensin appeared to cause swelling of trans Golgi cistemae (small 

arrow, 4.8a) and to impede vesicle release as clusters of vesicles were closely 

associated with the trans Golgi apparatus (large arrow, 4.8a) and fewer vesicles were 

in the surrounding cytoplasm (4.8a) compared to controls (4.8b). 4.8a X 60,000, 

4.8b X 60,000. 

Figs 4.8c-4.8d. In tunicamycin-treated hyphae the Golgi apparatus was quiescent 

with no vesicles being produced and the nuclear envelope/E.R. appeared more 

swollen (4.8c, arrow er) than the controls (4.8d, arrow er). 4.8c X 55,000, 4.8d X 

52,000. 





Figs 4.9a-4.9f. Hyphae incubated in SOµg/ml BF A for lh and reincubated for 90 

min in fresh mineral salts solution. Figs 4.9a, 4.9c and 4.9e-immunostained with 

Vsv-1 followed by SAM-FITC. Figs 4.9b, 4.9d, 4.9f-immunostained with Lpv-1 

followed by SAM-FITC. bar=6.45µm. 

Figs 4.9a, 4.9c and 4.9e. Whereas controls had large numbers of fluorescent ventral 

vesicles (4.9a), ventral vesicles were absent from BFA-treated hyphae and the 

cytoplasm contained fine, fibrillar fluorescent material (4.9c). In hyphae that were 

reincubated in fresh mineral salts solution, fluorescent ventral vesicles were once 

again present (4.9e). 

Figs 4.9b, 4.9d and 4.9f. Whereas controls had large numbers of fluorescent large 

peripheral vesicles (4.9b), these vesicles were absent from BFA-treated hyphae and 

instead the cytoplasm contained fine, fibrillar fluorescent material (4.9d). In hyphae 

that were reincubated in fresh mineral salts solution, fluorescent large peripheral 

vesicles were once again present (4.9f). 





Figs 4.lOa-4.lOf. Hyphae incubated in lOµM monensin for lh and reincubated 

for 90 min in fresh mineral salts solution. Figs 4.10a, 4.10c and 4.lOe­

immunostained with Vsv-1 followed by SAM-FITC. Figs 4.10b, 4.10d, 4.lOf­

immunostained with Lpv-1 followed by SAM-FITC. bar=6.45µm. 

Figs 4.10a, 4.10c and 4.lOe. Whereas controls had large numbers of fluorescent 

ventral vesicles ( 4.10a), ventral vesicles were absent from monensin-treated hyphae 

and the cytoplasm contained fine, fibrillar fluorescent material ( 4.1 Oc) similar to that 

seen in BFA-treated hyphae. In hyphae that were reincubated in fresh mineral salts 

solution, fluorescent ventral vesicles were once again present (4.lOe). 

Figs 4.10b, 4.10d and 4.lOf. Whereas controls had large numbers of fluorescent 

large peripheral vesicles ( 4.10b ), these vesicles were absent from monensin-treated 

hyphae and instead the cytoplasm contained fine, fibrillar fluorescent material 

(4.10d) similar to that seen in BFA-treated hyphae. In hyphae that were reincubated 

in fresh mineral salts solution, fluorescent large peripheral vesicles were once again 

present (4.lOt). 
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Figs 4.lla-4.llf. Higher magnification of lb BFA-treated and reincubated 

hyphae, double stained with Lpv-1 (4.lla, 4.llc, 4.lle) and DAPI (4.llb, 4.lld, 

4.llf). bar=2.9µm. 

Double staining with Lpv-1 and DAPI indicated that the Lpv-1 antigen was restricted 

to a narrow perinuclear zone in BFA-treated hyphae (Figs 4. llc, 4. lld). In the 

controls (Figs 4.lla, 4.llb) and reincubated hyphae (Figs 4.lle, 4.llf), the pattern 

of staining suggested that the Lpv-1 antigen was found in larger, wider regions 

though these were still associated with the nucleus. 
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Figs 4.12a-4.12f. Higher magnification of lh monensin-treated and reincubated 

hyphae, double stained with Lpv-1 (4.12a, 4.12c, 4.12e) and DAPI (4.12b, 4.12d, 

4.120. bar=2.9µm. Double staining with Lpv-1 and DAPI indicated that the Lpv-1 

antigen was restricted to a narrow perinuclear zone in monensin-treated hyphae (Figs 

4.12c, 4.12d). In the controls (Figs 4.12a, 4.12b) and reincubated hyphae (Figs 

4.12e, 4.12f), the pattern of staining suggested that the Lpv-1 antigen was found in 

larger, wider regions, though these were still associated with the nucleus. 
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Figs 4.13a-4.13e. Electron microscopy of hyphae incubated in 50 µg/ml BFA for 

lh. 

Fig. 4.13a. Golgi apparatus from control hyphae, showing vesicles budding away 

from trans regions (arrow). X 55,000. 

Fig. 4.13b. Golgi apparatus from reincubated hyphae, showing vesicles budding 

away from trans regions (arrow). X 41,000. 

Fig. 4.13c-4.13d. The Golgi apparatus from BFA-treated hyphae had cistemae 

which were very close together (4.13c, 4.13d) and sometimes these cistemae 

appeared to be breaking down into small vesicles (4.13c arrows). 4.13c-X 43,000. 

4.13d-X 41,000. 

Fig. 4.13e. In some BFA-treated hyphae, the Golgi apparatus was absent and 

vacuolate areas, adjacent to the nucleus where the Golgi apparatus was normally 

positioned, were present instead (g). X 41,000. 





Figs 4.14a-4.14e. Electron microscopy of hyphae incubated in 10 µM monensin 

for lh. 

Fig. 4.14a. Golgi apparatus from control hyphae, showing vesicles budding away 

from trans regions (arrow). X 42,000. 

Fig. 4.14b. Golgi apparatus from reincubated hyphae, showing vesicles budding 

away from trans regions (arrow). X 48,000. 

Fig. 4.14c. Large vacuoles appeared to be forming from the trans part of the Golgi 

apparatus in monensin-treated hyphae (arrows). X 42,000. 

Fig. 4.14d. The Golgi apparatus (g) appeared to be breaking down around the trans 

Golgi vacuoles in monensin-treated hyphae. X 37,500. 

Fig. 4.14e. The nuclear envelope/E.R. (er) appeared quite swollen in monensin­

treated hyphae. g=Golgi apparatus. X 41,000. 
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CHAPTER FIVE: THE INVOLVEMENT OF THE 
CYTOSKELETON IN THE TRANSPORT OF PERIPHERAL 
VESICLES INTO THE DEVELOPING SPORANGIUM. 

5.1 INTRODUCTION 

The cytoskeleton in fungi consists of mostly actin and tubulin (McKerracher & 

Heath 1987) and is involved in organelle motility. In this chapter an investigation 

into the arrangement of microtubules and actin microfilaments in vegetative and 

sporulating hyphae is reported. From these results the possible mechanism by 

which peripheral vesicles move from their site of formation and into the 

developing sporangium is examined. 

There is good evidence that microtubules mediate secretory vesicle transport in a 

number of systems. For example, drugs that depolymerise microtubules inhibit 

wall vesicle transport in Funaria protonemata (Howard & Aist 1980) and apical 

membrane protein and casein vesicle transport in epithelial cells (Achier et al. 

1989, Eilers et al. 1989, Rennison et al. 1992). 

The strongest evidence for the role of microtubules in vesicle movement, 

however, comes from direct observation mostly provided by studies involving a 

few specialised cell types. Video-enhanced light microscopy has enabled the 

direct visualisation of organelles and vesicles being transported along 

microtubules in frog corneal keratocytes (Hayden et al. 1983) and suggested that 

in the transport of neurotransmitter vesicles from the cell body to the synapse in 

giant squid axons, microtubules act as guiding rails (Allen et al. 1985, Schnapp et 

al. 1985). Video microscopy and electron microscopy of the isolated feeding 

network of the freshwater amoeba Reticulomyxa, reveals that the movement of 
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organelles such as vesicles is along microtubules within the network (Koonce & 

Schliwa 1986). 

One system that has been used extensively to investigate the involvement of 

microtubules in secretory vesicle transport is At-T20 pituitary tumor cells (Tooze 

& Burke 1987, Kreis et al. 1989, Rivas & Moore 1989). In such cells, 

microtubules have been shown to transport regulated ACTH containing secretory 

vesicles away from their site of formation and to maintain them in clusters at the 

outer processes of these cells (Tooze & Burke 1987). These authors indicated that 

during metaphase and anaphase, when microtubules were depolymerised, the 

secretory vesicles were no longer held in position and became uniformly 

distributed throughout the cytoplasm. Further work with this system has shown, 

however, that in the secretion of constitutive cell proteins, microtubules may not 

be necessary, as secretion of this latter vesicle type is unaltered by microtubule 

inhibitors (Rivas & Moore 1989). 

The evidence for the involvement of the actin cytoskeleton in secretory vesicle 

transport is equally extensive. Most support comes from work involving 

cytochalasins, some of the most potent inhibitors of the actin cytoskeleton. Picton 

and Steer (1981) showed that cytochalasin D inhibited secretory vesicle transport 

in pollen tubes while Harold and Harold (1986) suggested that the cytochalasin­

induced branching in Achlya bisexualis was caused by the diversion of wall 

vesicles to sites other than the apex. 

Further evidence is provided by the observations of Heath and Kaminskyj ( 1989) 

who showed a correlation between wall vesicles in the growing tip of Saprolegnia 

hyphae and the presence of actin microfilaments and Kobori et al. (1992) who 

recently localised actin to growing buds and hyphal tips in different forms of 
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yeast. These strongly suggest that actin microfilaments play an important role in 

transport of fungal cell wall vesicles. The most convincing evidence for the 

involvement of the actin cytoskeleton in wall vesicle transport comes, though, 

from work using the giant internodal cells of Characean algae (Kohno and 

Shimmen 1988). These authors showed through video microscopy that wall 

vesicles isolated from pollen tubes could be transported along actin bundles in 

algal cells. Myosin associated with the vesicles or the bundles themselves 

appeared to provide the motive force for vesicle movement (Grolig et al. 1988). 

Although there have been few studies of cytoskeleton-mediated organelle 

movements in Phytophthora, there has been a considerable amount of work 

carried out on the cytoskeleton of the related oomycete, Saprolegnia ferax. 

Microtubules have been shown to be too short to act as tracks for wall vesicle 

movement in vegetative hyphae of Saprolegnia (Heath & Kaminskyj 1989), but 

because of the correlation between microtubules and recently formed K2-bodies in 

primary cysts, are likely to be involved in the transport of these organelles to the 

cell periphery (Lehnen & Powell 1989). The peripheral location and longitudinal 

arrangement of actin microfilaments in vegetative hyphae tends to suggest that, in 

addition to maintaining the longitudinal shape of nuclei (Heath & Harold 1992), 

actin microfilaments are involved in the transport of vesicles containing wall 

precursors to the growing apex (Heath & Kaminskyj 1989). Actin microfilaments 

are not involved in the transport of saltatory vesicles of unknown function in 

growing hyphae (Heath 1988) and, as actin microfilaments break down in hyphal 

tips during sporulation (Heath & Harold 1992), it is probable they are not involved 

in the transport of encystment vesicles which form in hyphae at this stage (Beakes 

1983). 
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Although Chapter 4 reported that the movement of peripheral vesicles away from 

the Golgi apparatus was sensitive to CD, the above evidence suggest, that either or 

both microtubules and actin microfilaments could transport peripheral vesicles 

into the developing sporangium. In this chapter, evidence is reported for the 

cytoskeletal mechanism behind such transport. 

5.2 MATERIALS AND METHODS 

5.2.1 Culture 

For vegetative hyphae, small plugs of P. cinnamomi 6BR hyphae taken from the 

edge of a colony growing on V8 nutrient agar (Chapter 2) were placed in 5ml of 

5% V8 broth (Chapter 2) and kept at 25°C, in the dark for 24h. Colonies 

previously grown in V8 broth, were rinsed three times in mineral salts solution 

(Chapter 2) and then shaken gently at 50rpm for 8h in the light at 22°C, to obtain 

sporulating hyphae. 

5.2.2 Actin staining in hyphae 

Hyphal tufts of both vegetative (i.e. after 24h growth in V8 broth) and sporulating 

stages were fixed for I5min in 4% paraformaldehyde in 50 mM Pipes buffer (pH 

7 .0). After a lOmin rinse in 50mM Pipes, the tufts were incubated in Rhodamine 

Phalloidin (Molecular Probes, Inc, Eugene, USA) diluted 2:3 in methanol, in the 

dark for 15min. Tufts were double stained for 15min with DAPI diluted in 

PBS/1 % BSA to a concentration of O.lµg/ml, after a brief rinse in PBS. Samples 

were mounted in mowiol with 0.1 % PPD. Actin was visualised with 
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epifluorescence optics with an Fl filter cube (excitation 546nm; dichroic mirror 

395nm, barrier 420nm) on a Zeiss axioplan microscope. 

5.2.3 Immunostaining microtubules in hyphae 

Hyphal tufts were fixed for 20min in 4% paraformaldehyde in 50 mM Pipes 

buffer (pH 7.0). After freezing in Tissuetek and cryosectioning (see Chapter 2), 

twelve and fourteen micrometer thick cryosections of hyphae of both stages were 

immunostained to reveal microtubules. After drying down for 5min onto poly-1-

lysine coated slides, the sections were extracted with 1 % Triton X-100 (Pierce 

Co., Rockford, Illinois, USA), rinsed 5min in PBS then incubated for 40min in 

anti-~ tubulin (Amersham Australia, Sydney, Australia) diluted 1:500 with 

PBS/1 % BSA. The sections were rinsed in PBS for 5min then incubated in 1 :60 

dilution of SAM-FITC. After rinsing in PBS the sections were double stained 

with 50 µg/ml soybean agglutinin (SBA)-rhodamine (E. Y. Laboratories Inc. , San 

Mateo, CA) in PBS, for lh in the dark. SBA-rhodamine was used to identify the 

association between microtubules and peripheral vesicles in sporulating hyphae as 

past research has shown that the dorsal vesicle antigens are the only cell 

components labelled by SBA (Gubler & Hardham 1988). Tubulin immunostained 

hyphae were also double stained with 0.1 µg/ml DAPI for 15min. Following a 

rinse in PBS and a quick 5s rinse in distilled water, the sections were mounted in 

mowiol with 0.1 % PPD and examined in a Zeiss Axioplan microscope equipped 

with epifluorescence optics. 
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5.3 RESULTS 

5.3.1 Actin in hyphae 

Some differences in the arrangement of actin in vegetative and sporulating hyphae 

were evident. Actin plaques were absent from apical regions of vegetative hyphae 

(Fig. 5. la) but in sporulating hyphae the plaques extended into the tip (Fig. 5. lc). 

Actin microfilaments were present in both stages and usually had plaques 

interspersed among them (Figs 5. la, 5. lc ). In both vegetative and sporulating 

hyphae actin microfilaments extended into the tip of the hypha (Figs 5. la, 5. lc). 

To assist further in investigating the role that actin microfilaments play in 

maintaining nuclear shape, double labelling was carried out with DAPI. Nuclear 

shape changed during the transition of vegetative hyphae to sporulating hyphae 

(compare Figs 5.lb & 5.ld). Nuclei from sporangiophores were significantly 

shorter (P< 0.025) and smaller (P< 0.01) than nuclei found in vegetatively 

growing tips (Table 5.1). Nuclei in developing sporangia were always short and 

small (Fig. 5.ld). 

5.3.2 Microtubules in hyphae 

In cryosectioned vegetatively growing cultures, extensive microtubules were 

present in most hyphae (Fig. 5.3a). In cryosectioned sporulating cultures, there 

was a mixture of hyphae with microtubules and hyphae in which microtubules 

were absent (Fig. 5.3c). Double labelling with anti-tubulin and SBA-rhodamine 

helped ascertain whether microtubules had a direct association with peripheral 

vesicles in sporulating hyphae. In cryosectioned sporulating hyphae which 

contained dorsal vesicles, microtubules were always absent (Figs 5.2a, 5.2b). 

Conversely, the cryosectioned sporulating hyphae where dorsal vesicles were 
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absent always contained microtubules (similar to those seen in most vegetative 

hyphae, see Fig. 5.3a), (Figs 5.2c, 5.2d). 

Double labelling with anti-tubulin and DAPI gave an insight into the association 

between microtubules and nuclear shape. In all cryosectioned vegetative hyphae, 

long, parallel microtubules traversed the cytoplasm and were positioned around 

the nuclei, which were large and long (Figs 5.3a, 5.3b). In sporulating hyphae, 

many hyphae did not have microtubules and in these, the nuclei were small and 

round (Fig. 5.3d), typical of those seen in sporangiophores. In such hyphae, 

although microtubules were not present, very fine, tubulin-positive staining was 

observed (Fig. 5.3c). 

5.4 DISCUSSION 

This work has shown that there is no direct association between dorsal vesicles 

and microtubules in sporulating hyphae and thus it seems unlikely that peripheral 

vesicle transport is microtubule mediated. Since microtubules do not appear to be 

responsible for the translocation of peripheral vesicles into the developing 

sporangium, it is possible that vesicle movement is mediated by the actin 

cytoskeleton. Although this study provides no direct evidence that actin 

microfilaments are involved in the transport of peripheral vesicles, it shows that 

actin microfilaments are available for transport into the developing sporangium. 

It is suggested that peripheral vesicles are transported away from the Golgi 

apparatus and into the developing sporangium via actin microfilaments. This is 

presumably similar to the system of organelle transport operating in vegetative 

hyphae of Saprolegnia (Heath & Kaminskyj 1989) and the actin-myosin based 
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system in Characean algae (Kohno & Shimmen 1988, Grolig et al. 1988). The 

system of peripheral vesicle transport in P. cinnamomi 6BR appears to be different 

to that in Saprolegnia. Although Kl-bodies in Saprolegnia are probably 

synthesised in the developing sporangium (Holloway & Heath 1977) and therefore 

do not require extensive transport, encystment vesicles which originate in 

zoosporangial initials (Beakes 1983) must be moved from their site of synthesis 

and into the developing sporangium by some mechanism. The absence of actin 

microfilaments from sporangial tips in Saprolegnia (Heath & Harold 1992) 

suggests that another cellular transport mechanism, possibly microtubules, which 

may be longer than in vegetative hyphae (Heath & Kaminskyj 1989), is at work. 

This seems possible, as Armbruster (1982) has identified long microtubules in pre­

sporangial hyphae of members of the Saprolegniaceae. 

Although the most striking change in the actin cytoskeleton between vegetative 

and sporulating hyphae is in the positioning of actin plaques in the hyphal apex 

(developing sporangium), it is unlikely that these structures play a role in 

intracellular transport of organelles. Heath and Harold (1992) suggest that plaques 

are involved in the positioning of organelles by facilitating adhesion to the plasma 

membrane and cell wall so it is possible actin plaques in P. cinnamomi 6BR are 

involved in the adhesion of the peripheral vesicles to specific regions of the 

sporangium wall. Evidence contradicting this exists, however, in research 

conducted by Hyde (1992). This worker found that peripheral vesicle location in 

sporangia was cytochalasin-insensitive and that microtubules maintained the 

position of peripheral vesicles at the plasma membrane. The recent study of Heath 

& Harold (1992) has shown that actin plaques persist in the presence of 

cytochalasins. It is possible then, that peripheral vesicles are maintained at the 

zoospore plasmamembrane by a combination of both microtubules and actin 
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plaques. This is not unexpected, as in many systems microtubules and actin are 

known to interact to maintain the properties of the cytoskeleton (McKerracher & 

Heath 1986, Doonan et al. 1988, Heath & Kaminskyj 1989). 

The apparent absence of microtubules from sporulating hyphae suggests that 

microtubules are not involved in peripheral vesicle transport. While there is good 

evidence that microtubules are involved in secretory vesicle transport in some 

systems, there are accounts of systems where there is a lack of involvement of 

microtubules in this process. The transport of cell wall vesicles for example, 

appears not to be mediated by microtubules. Hyphal growth has been shown to 

continue in the absence of microtubules (Herr & Heath 1982, Hoch et al. 1987) 

and microtubules do not extend into the apical zones of tip-growing cells (Pierson 

et al. 1986, Heath & Kaminskyj 1989) making them unavailable for wall vesicle 

transport. Transport of invertase vesicles in yeast has been shown not to require 

microtubules (Huffaker et al. 1988) and microtubule disruption does not affect 

intracellular transport of secretory vesicles in cultured fibroblasts (Virtannen & 

Vartio 1986). 

The results from this study also suggest that nuclear movement in sporulating 

hyphae is independent of microtubules. This has proved to be the case in other tip 

growing cells such as Basidiobolus hyphae (McKerracher and Heath 1985), and 

pollen tubes (Heslop-Harrison et al. 1988). In pollen tubes, the actin cytoskeleton 

appears to be involved in nuclear migration (Heslop-Harrison & Heslop-Harrison 

1989) - this lends further weight to the hypothesis that nuclear movement is 

motivated by the actin cytoskeleton in sporulating hyphae of P. cinnamomi. 

In a recent study on Achlya and Saprolegnia actin microfilaments were shown to 

be lost with the changing of nuclear shape at sporulation (Heath & Harold 1992). 



------ --------------....a11111!!!1!!!!!!!!1 _ ___ !!!!!!!!!!!!111 ___ 11111111111111111111111111 .. 

76 

In P. cinnamomi 6BR, a role for actin microfilaments in maintaining nucleus 

shape can be discounted as microfilaments are retained in sporulating hyphae. 

Since actin microfilaments do not appear to be involved in maintaining nuclear 

shape, it is possible that microtubules perform this role in vegetative hyphae. 

These results show microtubules enclosing and in parallel to elongated nuclei in 

vegetative hyphae. Microtubules are likely to be responsible for the pyriform 

shape of nuclei found in zoospores (Heath & Greenwood 1971) so it is possible 

they perform a similar morphogenic role in vegetative hyphae. 

The decrease in nuclear size in sporulating hyphae may be due to nuclear division. 

The development of infection structures in Uromyces has been shown normally to 

accompany nuclear division (Staples et al. 1975). Further to this, Staples and 

Hoch (1982) have suggested the induction of nuclear division in germ tubes of 

Uromyces was caused by the depolymerisation of cytoplasmic microtubules and 

microfilaments. Salo et al. (1989) showed that during nuclear division in 

filamentous fungi, cytoplasmic microtubules disassembled to provide a pool of 

tubulin subunits used in the formation of the nuclear spindle. No such spindles 

were seen in sporulating hyphae in this study but it is possible that microtubules 

do break down in response to, or in preparation for nuclear division. Why should 

nuclei be rounder and smaller in sporulating hyphae? It is likely that nuclei have 

to be smaller and more uniform in size as they will ultimately become part of an 

evenly partitioned sporangium where each zoospore contains approximately the 

same number of cellular organelles (such as peripheral vesicles and mitochondria) 

and a single pyriform nucleus (Hyde 1992, Hyde & Hardham 1992). A further 

question arises out of this, and that is why do the nuclei not undergo mitosis 

within the developing sporangium? Although Heath and Greenwood (1970b) 

have claimed that nuclei in sporangia of Saprolegnia ferax undergo mitosis after 
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septum formation, mitosis has not been observed in septate sporangia of 

Brevilegnia minutandra (Armbruster 1982) and during sporangiogenesis in 

Isoachlya (Bhargava 1950). It is possible that the change in nuclear shape, like 

peripheral vesicle formation (see Chapter 2), occurs early in sporulation because 

the necessary cellular machinery in sporangial development (in the case of nuclei -

sporangial microtubules) are taken up with other functions such as organelle 

positioning (Hyde 1992). 

The actin cytoskeleton probably plays a major role in the transport of peripheral 

vesicles from their point of synthesis at the Golgi apparatus into the developing 

sporangium. Results from this study suggest that peripheral vesicles and other 

cellular organelles such as nuclei may be transported along actin microfilaments, 

possibly in a manner similar to tip growth in Saprolegnia and to cytoplasmic 

streaming in green algae. Microtubules are not associated with peripheral vesicles 

in sporulating hyphae and are, therefore, not involved in the movement of 

peripheral vesicles into developing sporangia. It is suggested that microtubules 

may maintain the longitudinal shape of nuclei as this is lost at the same time 

microtubules are lost from sporulating hyphae. 



Figs 5.la-5.ld. Rhodamine phalloidin (5.la, 5.lc) and DAPI staining (5.lb, 

5.ld) of vegetative and sporulating hyphae. 

Fig. 5.la. Actin plaques were absent from apical regions of vegetatively-growing 

hyphae while actin microfilaments extended into these regions. Arrows indicate actin 

microfilaments. bar= 5.36µm. 

Fig. 5.lb. Nuclei from same hypha as above. In vegetatively-growing hyphae nuclei 

tended to be long and narrow (arrows). 

Fig. 5.lc. Actin plaques and microfilaments extended into the tips of sporulating 

hyphae. Arrows indicate actin microfilaments. bar=4.51µm. 

Fig. 5.ld. Nuclei in same sporulating hypha as above. The nucleus in the sporangial 

stalk is characteristically short and small (arrow)-similar to those in the developing 

sporangium. 
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Figs 5.2a-5.2. Double labelling of cryosectioned sporulating hyphae with SBA­

rhodamine and anti-tubulin. bar=3.15µm. 

Fig. 5.2a. Cryosectioned sporulating hypha showing SBA-rhodamine stained dorsal 

vesicles. 

Fig. 5.2b. Same hypha as above immunostained with anti-tubulin. Note the lack of 

micro tubules. 

Fig. 5.2c. Cryosectioned sporulating hypha stained with SBA-rhodamine. Note the 

absence of dorsal vesicles. 

Fig. 5.2d. Same hypha as above immunostained with anti-tubulin showing extensive 

micro tubules. 





Figs 5.3a-5.3d. The association between microtubules and nuclear shape in 

vegetative and sporulating hyphae. bar=4.9µm. Hyphae double stained with 

anti-tubulin (5.3a, 5.3c) and DAPI (5.3b, 5.3d). 

Fig. 5.3a. Microtubules in a cryosectioned vegetative hypha. 

Fig. 5.3b. Large and long nuclei in same hypha as above. 

Fig. 5.3c. Cryosectioned sporulating hyphae in which microtubules were absent. 

Very ftne tubulin positive staining could be observed in such hyphae (arrow). 

Fig. 5.3d. Small and round nuclei from above hypha. 





Table 5.1. Comparison of mean nuclear diameter and mean nuclear volume between 

hyphal tips in the vegetative and sporulating state. 

* mean nuclear diameter significantly different ([P< 0.025] paired sample t-test. 

Sokal & Rohlf (1981)). 

** mean nuclear volume significantly different ([P< 0.01] paired sample t-test. Sokal 

& Rohlf (1981)). 



Vegetative Sporulating 

Nuclear diameter (µm) 5.22 ±1.3 3.44 ±1.02* 

Nuclear volume (µm3) 353.75 ±235.41 109.7 ±108.19** 

Table 5.1. 
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CHAPTER SIX 

GENERAL CONCLUSION 

Phytophthora cinnamomi is a serious problem to vegetation in many areas of 

Australia (Weste & Marks 1987). Much has been done in an attempt to control 

the spread of the pathogen over the last 20 years. In understanding more about the 

cell biology of the infection of hosts by the species, great strides have been made 

with the advent of monoclonal antibody technology. For example, since the fust 

ultrastructural descriptions of oomycetes, vesicles located to the periphery of 

zoospores had been assigned roles (mostly erroneous) in infection based purely on 

morphological observation. It was not till the work of Gubler and Hardham 

(1988, 1990) that we gained a more complete insight into the crucial roles that 

these immunologically distinct peripheral vesicles play in the infection of hosts. 

Peripheral vesicles in P. cinnamomi are sporulation specific, in that they are 

synthesised only during sporangium and chlamydospore formation. Their role in 

the infection of hosts is reflected by the timing of their appearance. In addition to 

the adhesive role that ventral vesicles play in the attachment to hosts, both ventral 

and large peripheral vesicles can presumably be broken down in periods of 

vegetative growth. These two vesicle types form earlier in sporulation than dorsal 

vesicles, whereas dorsal vesicles appear to form only when the mycelium is 

committed to sporangium formation. The reason for this could be that dorsal 

vesicles play solely a role in zoospore encystment. 
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The process of peripheral vesicle fonnation occurs in pre-sporangial hyphae and 

not in the developing sporangium, perhaps because if conditions that favor 

vegetative growth return, before sporangia have formed, hyphae can recycle large 

peripheral and ventral vesicles during such growth. Alternatively, peripheral 

vesicle fonnation may not occur in the developing sporangium because the Golgi 

apparatus in developing sporangia may be taken up with other major functions, for 

example the massive production of vesicles needed to produce the sporangial wall. 

Peripheral vesicles are present in chlamydospores because these structures can 

germinate directly to fonn sporangia. In this way, chlamydospores can be 

considered analogous to a sporulating hypha - containing all of the requisite 

components for sporangial fonnation. 

Ventral and dorsal vesicles, like many vesicles containing secretory glycoproteins 

in both animal and plant systems, both probably fonn from the Golgi apparatus. 

Likewise, in their mode of fonnation from the Golgi apparatus, large peripheral 

vesicles are analogous to higher plant storage proteins, which are mostly derived 

from the Golgi apparatus. The specificity of the labelling of the peripheral 

vesicle antibodies has made this system an ideal one in which the phenomenon of 

secretory and storage protein fonnation could be investigated. 

Secretory proteins in plant and animal cells undergo processing in the E.R. and the 

Golgi apparatus (Farquhar 1985, Moore et al. 1991) but are then sorted into 

distinct vesicles at the trans Golgi apparatus (Griffiths and Simons 1986, Staehelin 

et al. 1991). Work reported in this thesis indicates that the Golgi apparatus in P. 

cinnamomi 6BR is capable of processing at least two distinct proteins at a time and 

that it can, synchronously, sort a storage protein from a secretory protein. 

Evidence suggests that this sorting event occurs in trans Golgi regions, though 
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further work, utilizing such techniques as rapid freezing and freeze substitution, 

which have been shown to be superior to chemical fixation as a method for 

preserving the trans Golgi network in P. cinnamomi (Hyde et al. 1991b), may be 

necessary to confirm this. 

The process of peripheral vesicle formation in P. cinnamomi has been shown to be 

susceptible to secretion inhibitors. Such work has been valuable in studying the 

behavior of secretory glycoproteins and further elucidating parts of the secretory 

pathway affected by the drugs. The permeability of the hyphal wall to these 

inhibitors is greatly encouraging of the use of chemical agents in the control of the 

fungus. 

Peripheral vesicle transport into the developing sporangium is not dependent on 

microtubules and may be mediated by the actin cytoskeleton. The sensitivity of 

vesicle transport to cytochalasin D and the presence of extensive actin cables in 

sporangiophores, suggest that the actin cytoskeleton of sporulating hyphae would 

be an excellent system in which the process of actin-mediated organelle transport 

could be further studied. 

The investigations reported in this thesis have gained further information about 

these important cellular organelles. The formation of distinct vesicles at 

sporulation and their transport from the point of synthesis into the developing 

sporangium are vital to the infective capabilities of the fungus. Further studies of 

peripheral vesicles in P. cinnamomi, are demanded, especially those that examine 

the molecular nature of these organelles. This may provide us with the vital 

knowledge in combating this destructive pathogen. 



81 

REFERENCES 

Achier, C., D. Filmer, C. Merte, and D. Drenckbabn. (1989) . Role of microtubules in polarized 
delivery of apical membrane proteins to the brush border of the intestinal epithelium. J. Cell Biol. 
109:179-189. 

Allen, E. D., R. Aiuto, and A. S. Sussman. (1980) . Effects of cytochalasins on Neurospora 
crassa. Growth and ultrastructure. Protoplasma. 102:63-75 . 

Allen, R. D., D. G. Weiss, J. H. Hayden, D. T. Brown, H. Fujiwake, and M. Simpson. (1985). 
Gliding movement of and bidirectional transport along native microtubules from squid axoplasm 
evidence for an active role of microtubules in cytoplasmic transport. J. Cell. Biol. 100: 1736-
1752. 

Armbruster, B. L. (1982). Sporangiogenesis in three genera of the Saprolegniaceae. II Primary 
spore initial to secondary spore inital stage. Mycologia 74:975-999. 

Barstow, W. E., and J. S. Lovett. (1975). Formation of gamma particles during zoosporogenesis 
in Blastocladiella emersonii. Mycologia. 67:518-529. 

Barstow, W. E., W. L. Lingle, and J. S. Lovett. (1985) . Observations on tubular endoplasmic 
reticulum in the aquatic fungi Blastocladiella emersonii, Blastocladiella britannica, and 
Catenaria anguillulae. J. Ultrast. Res. 93:168-178. 

Bartnicki-Garcia, S., and D.E. Hemmes. (1976) . Some aspects of the form and function of 
Oomycete spores. In: The Fungal Spore. D.J. Weber, and W.M. Hess, editors. John Wiley & 
Sons, New York. 593-639. 

Beakes, G. W. (1983) . A comparative account of cyst coat ontogeny in saprophytic and fish­
lesion (pathogenic) isolates of the Saprolegnia diclina-parasitica complex. Can. J. Bot. 61 :603-
625 . 

Bessey, E. A. (1950) . Morphology and taxonomy of fungi. (Hafner, New York). cited in Powell 
et al. (1985). 

Bhargava, K. S. (1950) . Formation and liberation of zoospores of lsoachlya anispora var. indica. 
Bot. Gaz. (Crawfordsville). 112:24-31. cited in Armbruster (1982). 

Bimpong, C. E., and C. J. Hickman. (1975). Ultrastructural and cytochemical studies of 
zoospores, cysts, and germinating cysts of Phytophthorapalmivora. Can. J. Bot. 53:1310-1327. 

Bland, C. E. and H. V. Amerson . (1973) . Electron microscopy of zoosporogenesis in the marine 
phycomycete Lagenidium callinectes Couch. Arch. Mikrobiol. 94:47-64. 

Bortnick, R. N., M . J. Powell, and T. N. Bangert. (1985). Zoospore fine structure in the 
mycoparasite Olpidiopsis saprolegniae var. saprolegniae (oomycetes, Lagenidiales). Mycologia. 
77:861-879. 



82 

Brown, R. M. Jr., W. W. Franke, H. Kleinig, H. Falk, and P. Sitte. (1970). Scale formation in 
Chrysophycean algae. I. Cellulosic and noncellulosic wall components made by the Golgi 
apparatus. J. Cell Biol. 45:246-271. 

Broxholme, S. J., N. D. Read, and D. J. Bond. (1991) . Developmental regulation of proteins 
during fruit-body morphogenesis in Sordaria brevicollis. Mycol. Res. 95:958-969. 

Burgess, T. L., and R. B. Kelly. (1987) . Constitutive and regulated secretion of proteins. Annu. 
Rev. Cell Biol. 3:243-293. 

Champe, S.P., M.B. Kurtz, L.N. Yager, NJ. Butnick, and D.E. Axelrod. (1981) . Spore formation 
in Aspergillus nidulans competence and other developmental processes. In: The Fungal Spore 
morphogenetic controls. G. Turian, and H.R. Hohl, editors. Academic Press, London . 255-276. 

Chrispeels, M. J. (1983) . The Golgi apparatus mediates the transport of phytohemagglutinen to 
the protein bodies of bean cotyledons. Planta. 158:140-151. 

Chrispeels, M. J. (1991). Sorting of proteins in the secretory system. Annu. Rev. Plant Physiol. 
Plant Mot. Biol. 42:21-53 . 

Chrispeels, M. J., and L. A. Staehelin. (1992). Budding, fission, transport, targeting, fusion­
frontiers in secretion research. Plant Cell. 4:1008-1015. 

Christen, J., and H. R. Hohl. (1972) . Growth and ultrstructural differentiation of sporangia of P. 
palmivora. Can. J. Microbial. 18:1959-1964. 

Chung, K-N., P. Walter, G. W. Aponte, and H.-P. H. Moore. (1989) . Molecular sorting in the 
secretory pathway. Science. 243:192-197. 

Cope, M., and A. R. Hardham. (1992) . lmmunochemical and morphological comparison of 
peripheral vesicles in zoospores of Phytophthora cinnamomi and Pythium aphanidermatum. 
Abstracts of the joint meeting of the American Phytopathological society and the Mycological 
Society of America. Portland, Oregon. MlOO. 

Craig, S., and D. J. Goodchild. (1984). Periodate-acid treatment of sections permits on-grid 
immunogold localization of pea seed vicilin in ER and Golgi. Protoplasma. 122:35-44. 

Derksen, J., E. S. Pierson, and J. A. Traas. (1985). Microtubules in vegetative and generative 
cells of pollen tubes . Eur. J. Cell. Biol. 38: 142-148. 

Domozych, D. S., K. D. Stewart., K. R. Mattox. (1981). Development of the cell wall in 
Tetraselmis role of the Golgi apparatus and extracellular wall assembly. J. Cell Sci. 52:351-371. 

Doms, R. W., A. Ruusala, C. Machamer, J. Helenius, A. Helenius, and J. K. Rose. (1988). 
Differential effects of mutations in three domains on folding, quaternary structure, and 
intracellular transport of VSV G protein. J. Cell Biol. 107:89-99. 

Donaldson, J. G., J. Lippincott-Schwartz, G. S. Bloom, T. E. Kreis, and R. D. Klausner. (1990). 
Dissociation of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event 
in brefeldin A action. J. Cell Biol. 111 :2295-2306. 

Doonan, J. H., D. J. Cove, and C. W. Lloyd. (1985). lmmunofluorescence microscopy of 
microtubules in intact cell lineages of the moss, Physcomitrella patens. J. Cell Sci. 75: 131-147. 



83 

Doonan, J. H., D. J. Cove, and C. W. Lloyd. (1988). Microtubules and microfilaments in tip 
growth Evidence that microtubules impose polarity on protonemal growth in Physcomitrella 
patens. J. Cell Sci. 89:533-540. 

Dorward, D. W., and M. J. Powell. (1983). Cytochemical detection of polysaccharides and the 
ultrastructure of the cell coat of zoospores of Chytriomyces aureus and Chytriomyces hyalinus. 
Mycologia. 75:209-220. 

Eilers, U., J. Klumperman, and H-P. Hauri. (1989). Nocodazole, a microtubule-active drug, 
interferes with apical protein delivery in cultured intestinal epithelial cells. (Caco-2). J. Cell Biol. 
108: 13-22. 

Ellinger, A., and M. Pavelka. (1984). Effects of monensin on the Golgi apparatus of absorptive 
cells in small intestine of rat. Morphological and cytochemical study. Cell Tissue Res. 235: 187-
194. 

Englander, L., and W. Turbin. (1979). Increased chlamydospore production by Phytophthora 
cinnamomi using sterols and near-ultraviolet light. Phytopathology. 69:813-817. 

Estrada-Garcia, M. T., J. A. Callow, and J. R. Green. (1990). Monoclonal antibodies to the 
adhesive cell coat secreted by Pythium aphanidermatum zoospores recognise 200 x 103 Mr 
glycoproteins stored within large peripheral vesicles. J. Cell Sci. 95:199-206. 

Farquhar, M. G. (1985) . Progress in unraveling pathways of Golgi traffic. Ann. Rev. Cell Biol. 
1:447-488. 

Faye, L., and M. J. Cbrispeels. (1987). Transport and processing of the glycosylated precursor of 
concanavalin A injackbean. Planta. 170:217-224. 

Faye, L., and M. J. Cbrispeels. (1989) . Apparent inhibition of ~-fructosidase secretion by 
tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. 
Plant Physiol. 89:845-851 . 

Fisher, J. M., W. Sossin, R. Newcomb, and R. H. Scheller. (1988). Multiple neuropeptides 
derived from a common precursor are differentially packaged and transported. Cell. 54:813-822. 

Flanagan, M. D., and S. Lin. (1980). Cytochalasins block actin filament elongation by binding to 
high affinity sites associated with F-actin. J. Biol. Chem. 255:835-838. 

Forscher, P., and S. J. Smith. (1988). Actions of cytochalasins on the organization of actin 
filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107: 1505-1516. 

Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse 
gold suspensions. Nature, phys. Sci. 241 :20-22. 

Fujiwara, T., K. Oda, S. Yokota, A. Takatsuki, and Y. Ikehara. (1988) . Brefeldin A causes 
disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic 
reticulum. J. Cell Chem. 263 :18545-18552. 

Gay, J.L., and A.D. Greenwood. (1966). Structural aspects of zoospore production in Saprolegnia 
ferax with particular reference to the cell and vacuolar membranes. In: The Fungal Spore. M.F. 
Madelin, editor. Butterworths, London. 95-108. 



84 

Gerdes, H-H., P. Rosa, E. Phillips, P. A. Baeuerle, R. Frank, P. Argos, and W. B. Huttner. 
(1989) . The primary structure of human secretogranin II, a widespread tyrosine-sulphated 
secretory granule protein that exhibits low pH - and calcium-induced aggregation. J. Biol. Chem. 
264: 12009-12015. 

Gibson, R., S. Schlesinger, and S. Kornfeld. (1979) . The nonglycosylated glycoprotein of 
vesicular stomatitus virus is temperature sensitive and undergoes intracellular aggregation at 
elevated temperatures. J. Biol. Chem. 254:3600-3607. 

Gotelli, D. (1974). The morphology of Lagenidium callinectes. II . Sporogenesis. Mycologia. 
66:846-858. 

Gotelli, D., and L. C. Hanson. (1987) . An ultrastructural investigation of the zoospore of 
Sapromyces androgynus, (oomycetes, Leptomitales) . Mycologia. 79:745-752. 

Grief, C., and P. J. Shaw. (1987). Assembly of cell-wall glycoproteins of Chlamydomonas 
reinhardii oligosaccharides are added in medial and trans Golgi compartments. Planta. 171 :302-
312. 

Griffiths, G., P. Quinn, and G. Warren. (1983). Dissection of the Golgi complex. I. Monensin 
inhibits the transport of viral proteins from medial to trans Golgi cisternae in baby hamster 
kidney cells infected with Semliki Forest Virus. J. Cell Biol. 96:835-850. 

Griffiths, G., and K. Simons. (1986). The trans Golgi network sorting at the exit site of the Golgi 
complex. Science . 234:430-443 . 

Griffiths, G., B. Hoflack, K. Simons, I. Mellman, and S. Kornfeld. (1988). The mannose 6-
phosphate receptor and the biogenesis of lysosomes. Cell. 52:329-341. 

Grolig, F., R. E. Williamson, J. Parke, C. Miller, and B. H. Anderton . (1988). Myosin and Ca2+. 

sensitive streaming in the alga Chara detection of two polypeptides reacting with a monoclonal 
anti-myosin and their localization in the streaming endoplasm. Eur. J. Cell Biol. 47:22-31. 

Grove, S.N. (1970). Fine structure of zoospore encystment and germination in Pythium 
aphanidermatum. Amer. J. Bot. 57045-746. 

Grove, S. N., and C. E. Bracker. (1978). Protoplasmic changes during zoospore encystment and 
cyst germination in Pythium aphanidermatum. Expt. Mycol. 2:51-98. 

Gubler, F., J. V. Jacobsen, and A. E. Ashford. (1986) . Involvement of the Golgi apparatus in the 
secretion of a- amylase from gibberelin-treated barley aleurone cells. Planta. 168:447-452. 

Gubler, F., and A. R. Hardham. (1988) . Secretion of adhesive material during encystment of 
Phytophthora cinnamomi zoospores, characterized by irnmunogold labelling with monoclonal 
antibodies to components of peripheral vesicles. J. Cell Sci. 90:225-235 . 

Gubler, F., and A. R. Hardham. (1990). Protein storage in large peripheral vesicles in 
Phytophthora zoospores and its breakdown after cyst germination . Expt. Mycol. 14:393-404. 

Gubler, F., and A.R. Hardham. (1991). The fate of peripheral vesicles in zoospores of 
Phytophthora cinnamomi during infection of plants. In: Electron Microscopy of Plant Pathogens. 
K. Mendgen and D.-E. Lesemann, editors. Springer-Verlag, Berlin. 197-210. 



85 

Gunderson, J. H., H. Elwood, A. Ingold, K. Kindle, and M. L. Sogin . (1987). Phylogenetic 
relationships between chlorophytes, cbrysophytes, and oomycetes. Proc. Nat. Acad. Sci. USA. 
84:5823-5827. 

Gwynne, D. I., and B. P. Brandborst. (1982) . Changes in gene expression during sporangium 
formation in Achlya ambisexualis. Dev. Biol. 91 :263-277. 

Hardham, A. R., E. Suzaki, and J. L. Perkin. (1986). Monoclonal antibodies to isolate-, species-, 
and genus-specific components on the surface of zoospores and cysts of the fungus Phytophthora 
cinnamomi. Can J. Bot. 64:311-321. 

Hardham, A. R. (1987). Ultrastructure and serial section reconstruction of zoospores of the 
fungus Phytophthora cinnamomi. Expt. Myca/. 11 :297-306. 

Hardham, A. R. (1989). Lectin and antibody labelling of surface components of spores of 
Phytophthora cinnamomi. Aust. J. Plant Physiol. 16: 19-32. 

Hardham, A. R., and F. Gubler. (1990). Polarity of attachment of zoospores of a root pathogen 
and pre-alignment of the emerging germ tube. Cell Biol. Int. Rep. 14:947-956. 

Hardham, A.R., F. Gubler, and J. Duniec. (1991a). Ultrastructural and immunological studies of 
zoospores of Phytophthora. In: Phytophthora. J.A. Lucas, R.C. Shattock, D.S. Shaw, and L.R. 
Cooke, editors. Cambridge University Press, Cambridge. 50-69. 

Hardham, A. R., F. Gubler, J. Duniec, and J. Elliott. (1991b). A review of methods for the 
production and use of monoclonal antibodies to study zoosporic plant pathogens. J. Microsc. 
162:305-318. 

Harold, R. L., and F. M. Harold. (1986) . Ionophores and cytochalasins modulate branching in 
Achlya bisexualis. J. Gen. Microbiol. 132:213-219. 

Hashimoto, S., G. Fumagalli, A. Zanini, and J. Meldolesi. (1987). Sorting of three secretory 
proteins to distinct secretory granules in acidotrophilic cells of cow anterior pituitary. J. Cell 
Biol. 105: 1579-1586. 

Hayden, J. H., R. D. Allen, and R. D. Goldman. (1983). Cytoplasmic transport in keratocytes 
direct visualization of particle trans location along microtubules. Cell Motility. 3: 1-19. 

Heath, I. B., and A. D. Greenwood. (1970a). Wall formation in the Saprolegniales. II. Formation 
of cysts by the zoospores of Saprolegnia and Dictyuchus. Arch. Mikrobiol. 75:67-79. 

Heath, I. B., and A. D. Greenwood. (1970b). Centriole replication and nuclear division in 
Saprolegnia. J. Gen. Microbiol. 62:139-148. 

Heath, I. B., and A. D. Greenwood. (1971). Ultrastructural observations on the kinetosomes and 
Golgi bodies during the asexual life cycle of Saprolegnia. Z. Z-ellforsch. 11 :2371-2389. 

Heath, I. B. (1988). Evidence against a direct role for cortical actin arrays in saltatory organelle 
motility in hyphae of the fungus Saprolegnia ferax. J. Cell Sci. 91 :41-47. 



86 

Heath, I. B., and S. G. W. Kaminskyj . (1989) . The organization of tip-growth-related organelles 
and microtubules revealed by quantitative analysis of freeze-substituted oomycete hyphae. J. Cell 
Sci. 93:41-52. 

Heath, I. B., and R. Harold. (1992) . Actin has multiple roles in the formation and architecture of 
zoospores of the oomycetes, Saprolegniaferax and Achlya bisexualis. J. Cell Sci. 102:611-627. 

Hemmes, D. E., and H. R. Hohl. (1971). Ultrastructural aspects of encystation and cyst­
germination in Phytophthoraparasitica. J. Cell Sci. 9:175-191. 

Hemmes, D. E., and L. D. S. Wong. (1975). Ultrastructure of chlamydospores of Phytophthora 
cinnamomi during development and germination. Can. J. Bot. 53:2945-2957. 

Hemmes, D.E. (1983) . Cytology of Phytophthora. In: Phytophthora. Its Biology, Taxonomy, 
Ecology, and Pathology. D.C. Erwin, S. Bartnicki-Garcia, and P.H. Tsao, editors. American 
Phytopathological Society, St Paul, Minnesota. 9-40. 

Herr, F. B., and M. C. Heath. (1982) . The effects of antimicrotubule agents on organelle 
positioning in the cowpea rust fungus, Uromyces phaseoli var. vignae. Expt. Mycol. 6:15-24. 

Heslop-Harrison, J.,Y. Heslop-Harrison, M. Cresti, A. Tiezzi, and A. Moscatelli . (1988). 
Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J. Cell Sci. 
91 :49-60. 

Heslop-Harrison, J., and Y. Heslop-Harrison. (1989). Conformation and movement of the 
vegetative nucleus of the angiosperm pollen tube: association with the actin cytoskeleton. J. Cell 
Sci. 93:299-308. 

Hibberd, DJ. (1970) . Observations on the cytology and ultrastructure of Ochromonas 
tuberculatus sp. Nov. (Chrysophyceae), with special reference to the discobolocysts . Brit. Phycol. 
J. 5: 119-143. 

Ho, H. H., K. Zachariah, and C. J. Hickman. (1968). The ultrastructure of zoospores of 
Phytophthora megasperma var. sojae. Can. J. Bot. 46:37-41. 

Hoch, H. C., and J. E. Mitchell . (1972a) . The ultrastructure of Aphanomyces euteiches during 
asexual spore formation . Phytopathology. 62: 149-160. 

Hoch, H. C., and J. E. Mitchell. (1972b). The ultrastructure of zoospores of Aphanomyces 
euteiches and of their encystment and subsequent germination. Protoplasma. 75: 113-138. 

Hoch, H. C., B. E. Tucker, and R. C. Staples. (1987). An intact microtubule cytoskeleton is 
necessary for mediation of the signal for cell differentiation in Uromyces . Eur. J. Cell Biol. 
45:209-218. 

Holloway, S. A., and I. B. Heath. (1977). An ultrastructural analysis of the changes in organelle 
arrangement and structure between the various spore types of Saprolegnia. Can. J. Bot. 55: 1328-
1339. 

Howard, R. J., and Aist, J. R. (1980). Cytoplasmic microtubules and fungal morphogenesis 
ultrastructural effects of methyl benzimdazole-2-ylcarbamate determined by freeze-substitution 
of hyphal tip cells. J. Cell Biol. 87:55-64. 

--



87 

Howlett, B. (1989) . An electrophoretic karyotype for Phytophthora megasperma. Expt. Mycol . 
13:199-202. 

Huang, B., and R. C. Staples. (1982) . Synthesis of proteins during differentiation of the bean rust 
fungus. Expt. Mycol. 6:7-14. 

Huffaker, T. C., J. H. Thomas, and D. Botstein. (1988) . Diverse effects of ~-tubulin mutations on 
microtubule formation and function . J. Cell Biol. 106:1997-2010. 

Huttner, W . B., and S. A. Tooze. (1989). Biosynthetic protein transport in the secretory pathway. 
Curr. Opin. in Cell Biol. 1:648-654. 

Hyde, G. J., F. Gubler, and A. R. Hardbam. (1991a). Ultrastructure of zoosporogenesis in 
Phytophthora cinnamomi. Mycol. Res. 95:577-591. 

Hyde, G . J., S . Lancelle, P. K. Hepler, and A. R. Hardbam. (1991b) . Freeze substitution reveals a 
new model for sporangial cleavage in Phytophthora, a result with implications for cytokinesis in 
other eukaryotes. J. Cell Sci. 100:735-748. 

Hyde, G. J. (1992). The structural basis of zoospore formation in Phytophthora cinnamomi. PhD 
thesis, Australian National University, Canberra, Australia. 

Hyde, G. J., and A. R. Hardham. (1992) . Confocal microscopy of microtubule arrays in 
cryosectioned sporangia of Phytophthora cinnamomi. Expt. Mycol. 16:207-218. 

Jones, R. L., and D. G. Robinson. (1989) . Protein secretion in plants . New. Phytol. 111:567-597. 

Karecla, P. I., and T. E. Kreis . (1992) . Interaction of membranes of the Golgi complex with 
microtubules in vitro. Eur. J. Cell Biol. 57: 139-146. 

Kelly, R. B. (1985). Pathways of protein secretion in eucaryotes. Science. 230:25-32. 

Klausner, R. D., J. G. Donaldson, and J. C. Lippincott-Schwartz. (1992) . Brefeldin A: Insights 
into the control of membrane traffic and organelle structure. J. Cell Biol. 116: 1071-1080. 

Kobori, H., M. Sato, and M. Osumi. (1992) . Relationship of actin organization to growth in the 
two forms of the dimorphic yeast Candida tropicalis. Protoplasma. 167: 193-204. 

Kohno, T., and T. Shimmen. (1988). Accelerated sliding of pollen tube organelles along 
characeae actin bundles regulated by Ca+. J. Cell. Biol. 106: 1539-1543. 

Koonce, M. P., and M. Schliwa. (1986). Reactivation of organelle movements along the 
cytoskeletal framework of a giant freshwater amoeba. J Cell. Biol. 103:605-612. 

Kornfeld, S. and I. Mellman. (1989) . The biogenesis of lysosomes. Ann. Rev. Cell Biol. 5:483-

525. 

Kreis, T . E., R. Matteoni, M. Hollinshead, and J. Tooze. (1989) . Secretory granules and 
endosomes show saltatory movement biased to the anterograde and retrograde directions, 
respectively, along microtubules in AtT20 cells. Eur. J. Cell Biol. 49:128-139. 

Kreis, T. E . (1990). Role of microtubules in the organisation of the Golgi apparatus. Cell Motil. 
Cytoskel. 15:67-70. 



88 

Kropf, D. L., S. K. Berge, and R. S. Quatrano. (1989). Actin localisation during Fucus 
embryogenesis. Plant Cell. 1: 191-200. 

Leadbeater, B. S. C. (1969). A fine structural study of Olisthodiscus luteus Carter. Br. J. Phycol. 
4:3-17. 

Ledger, P. W., N. Uchida, and M. L. Tanzer. (1980). Immunocytochemical localization of 
procollagen and fibronectin in human fibroplasts effects of the monovalent ionophore, monensin. 
J. Cell Biol. 87:663-671. 

Lehnen, L. P. Jr., and M. J. Powell. (1988) . Cytochemical localization of carbohydrates in 
zoospores of Saprolegniaferax. Mycologia . 80:423-432. 

Lehnen, L. P. Jr. and M. J. Powell. (1989). The role of kinetosome-associated organelles in the 
attachment of encysting secondary zoospores of Saprolegnia ferax to substrates. Protoplasma. 
149:163-174. 

Lehnen, L. P. Jr. and M. J. Powell. (1991). Formation of K-2 bodies in primary cysts of 
Saprolegniaferax. Mycologia. 83:163-179. 

Lending, C.R., R. S. Chesnut, K. L. Shaw, and B.A. Larkins. (1989). Immunolocalization of 
avenin and globulin storage proteins in developing endosperm of Avena sativa L. Planta. 
178:315-324. 

Lippincott-Schwartz, J., C. Yuan, J. S. Bonifacino, and R. D. Klausner. (1989) . Rapid 
redistribution of Golgi proteins into the ER in cells treated with brefeldin A evidence for 
membrane cycling from Golgi to ER. Cell. 56:801-813. 

Lippincott-Schwartz, J., J. G. Donaldson, A. Schweizer, E. G. Berger, H. P. Hauri, L. C. Yuan, 
and R. D. Klausner. (1990). Microtubule-dependent retrograde transport of proteins into the ER 
in the presence of brefeldin A suggests an ER recycling pathway. Cell. 60:821-836. 

Lodi, W. R., and D. R. Sonneborn. (1974). Protein degradation and protease activity during the 
life cycle of Blastocladiella emersonii. J. Bacteriol. 117:1035-1042. 

Lunney, C. Z., and C. E. Bland. (1976) . An ultrastructural study of zoosporogenesis in Pythium 
proliferum de Bary. Protoplasma. 88:85-100. 

Machamer, C. E., and J. K. Rose. (1988) . Vesicular stomatitus virus G proteins with altered 
glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant 
intermolecular disulfide bonding. J. Biol. Chem. 263:5955-5960. 

Mauch, F., and L. A. Staehelin. (1989) . Functional implications of the subcellular localisation of 
ethylene-induced chitinase and ~-1,3 glucanase in bean leaves. Plant Cell. 1:447-457. 

Mccurdy, D. W., and L. H. Pratt. (1986) . Immunogold electron microscopy of phytochrome in 
Avena identification of intracellular sites responsible for phytochrome sequestering and enhanced 
pelletability. J. Cell Biol. 103:2541-2550. 

McFadden, G. I., H. R. Preisig, and M. Melkonian. (1986) . Golgi apparatus activity and 
membrane flow during scale biogenesis in the green flagellate Scherjfelia dubia 
(Prasinophyceae). II. Cell wall secretion and assembly. Protoplasma. 131 :174-184. 



89 

McKerracher, L. J., and I. B. Heath. (1985). Microtubules around migrating nuclei in 
conventionally fixed and freeze-substituted cells. Protoplasma 125:162-172. 

McKerracher, L. J., and I. B. Heath. (1986). Polarized cytoplasmic movement and inhibition of 
saltations induced by calcium-mediated effects of microbeams in fungal hyphae. Cell Motil. 
Cytoskel. 6:136-145. 

McKerracher, L. J., and I. B. Heath. (1987) . Cytoplasmic migration and intracellular organelle 
movements during tip growth of fungal hyphae. Expt. Mycol. 11 :79-100. 

Mills, G. L., and E. C. Cantino. (1981) . Chitosome-like vesicles from gamma-particles of 
Blastocladiella emersonii synthesize chitin . Arch. Mikrobiol. 130:72-77. 

Mircetich, S. M., and G. A. Zentmyer. (1966). Production of oospores and chlamydospores of 
Phytophthora cinnamomi in roots and soil. Phytopathology. 56:1076-1078. 

Misumi, Y., Y. Misumi, K. Miki, A. Takatsuki, G. Tamura, and Y. Ikehara. (1986). Novel 
blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat 
hepatocytes. J. Biol. Chem. 261 : 11398-11403. 

Mollenhauer, H. M., D. J. Morre, and J. 0 . Norman. (1982). Ultrastructural observations of maize 
root tips following exposure to monensin . Protoplasma. 112: 117-126. 

Mollenhauer, H. M., D. J. Morre, and R. Droleskey. (1983) . Monensin affects the trans half of 
Euglena dictyosomes. Protoplasma. 114: 119-124. 

Mollenhauer, H. M., D. J. Morre, and C. E. Bracker. (1988) . Swelling of Golgi apparatus 
cistemae in monensin-treated tissues is modulated by fixation conditions. Protoplasma. 145:66-
69. 

Mollenhauer, H. M., D. J. Morre, and L. D. Rowe. (1990). Alteration of intracellular traffic by 
monensin; mechanism, specificity and relationship to toxicity. Biochim. et Biophysica Acta. 
1031:225-246. 

Moore, P.J., K. M. M. Swords, M. A. Lynch, and L. A. Staehelin. (1991) . Spatial reorganisation 
of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus 
of plants. J. Cell Biol. 112:589-602. 

Morre, D. J., W. F. Boss, H. Grimes, and H. H. Mollenhauer. (1983). Kinetics of Golgi apparatus 
membrane flux following monensin treatment of embryogenic carrot cells. Eur. J. Cell Biol. 
30:25-32. 

Morre, D. J., H. H. Mollenhauer, H. Spring, M. Trendelenberg, M. Montag, B. A. Mollenhauer, 
and D. M. Morre. (1992). Swelling of Golgi apparatus of bovine mammary epithelial cells in 
response to monensin treatment requires fixation. Eur. J. Cell Biol. 57:321-324. 

Murata, T., A. Kadota, T. Hogetsu, and M. Wada. (1987) . Circular arrangement of cortical 
microtubules around the subapical part of a tip-growing fem protonema. Protoplasma. 141: 135-
138. 



90 

Nasrallah, J. B., and A. M. Srb. (1977). Occurrence of a major protein associated with fruiting 
body development in Neurospora and related Ascomycetes. Proc. Nat. Acad. Sci. USA. 74:3831-
3834. 

Nasrallah, J. B., and A. M. Srb. (1978). Immunofluorescent localization of a phase-specific 
protein in Neurospora tetrasperma perithecia. Exp. Mycol. 2:211-215 . 

Olden, K., J. B. Parent, and S. L. White. (1982) . Carbohydrate moieties of glycoproteins a re­
evaluation of their function. Biochim. et Biophys. Acta. 650:209-232. 

Orci, L., P. Halban, M. Amberdt, M. Ravazzolla, J. D. Vassalli, and A. Perrelet. (1984). A 
clathrin-coated, Golgi related compartment of the insulin secreting cell accumulated proinsulin in 
the presence of monensin. Cell. 39:39-47. 

Orci, L., M. Ravazzolla, M. Amberdt, A. Perrelet, S. K. Powell, D. L. Quinn, and H-P. H. Moore. 
(1987). The trans-most cistemae of the Golgi complex a compartment for sorting of secretory 
and plasma membrane proteins. Cell. 51 : 1039-1051 . 

Overton, S. V., T. P. Tharp, and C. E. Bland. (1983). Fine structure of swimming, encysting and 
germinating spores of Haliphthoros milfordensis. Can. J. Bot. 61 : 1165-1177. 

Pfeffer, S. R., and J. E. Rothman. (1987). Biosynthetic protein transport and sorting by the 
endoplasmic reticulum and Golgi. Ann. Rev. Biochem. 56:829-852. 

Philippi, M.L., R. W. Parish, and H. R. Hohl. (1975). Histochemical and biochemical evidence 
for the presence of microbodies in Phytophthora palmivora. Arch Mikrobiol. 103: 127-132. 

Picton, J. M., and M. W. Steer. (1981). Determination of secretory vesicle production rates by 
dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J. Cell Sci. 49:261-272. 

Pierson, E. S., J. Derksen, and J. A. Traas. (1986) . Organization of microfilaments and 
microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur. J. Cell Biol. 
41 :14-18. 

Pinto da Silva, P., and L. M. Nogueira. (1977) . Membrane fusion during secretion . A hypothesis 
based on electron microscope observation of Phytophthora palmivora zoospores during 
encystment. J. Cell Biol. 73:161-181. 

Powell, M. J., L. P. Lehnen, Jr., and R. N. Bortnick. (1985) . Microbody-like organelles as 
taxonomic markers among oomycetes. Biosystems. 18:331-334. 

Powell, M. J., and C. E. Bracker. (1986). Distribution of the diaminobenzidene reaction products 
in zoospores of Phytophthora palmivora. Mycologia . 78:892-900. 

Pueschel, C. M., and J. P. van der Meer. (1985). Ultrastructure of the fungus Petersenia 
palmariae (oomycetes) parastic on the alga Pa/maria mollis (Rbodophyceae) . Can. J. Bot. 
63:409-418. 

Quader, H., W. Herth, U. Ryser and E. Schnepf. (1987) . Cytoskeletal elements in cotton seed hair 
development in vitro their possible regulatory role in cell wall organisation. Protoplasma. 
137:56-62. 

Reichle, R. E. (1969). Fine structure of Phytophthora parasitica zoospores. Mycologia. 61 :30-51. 



91 

Rennison, M . E., S. E. Handel, C. J. Wilde, and R. D. Burgoyne. (1992). Investigation of the role 
of microtubules in protein secretion from lactating mouse mammary epithelial cells. J. Cell Sci. 
102:239-247. 

Rivas, R. J., and H-P. H. Moore. (1989) . Spatial segregation of the regulated and constitutive 
secretory pathways. J. Cell Biol. 109:51-60. 

Robb, J., and B. Lee. (1986). Developmental sequence of the attack apparatus of Haptoglossa 
mirabilis. Protoplasma. 135: 102-111. 

Robinson, D. G. (1981). The ionic sensitivity of secretion-associated organelles in root cap cells 
of maize. Eur. J. Cell Biol. 23:267-272. 

Rogalski, A. A., J. E. Bergmann, and S. J. Singer. (1984). Effect of microtubule assembly status 
on the intracellular processing and surface expression of an integral protein of the plasma 
membrane. J. Cell Biol. 99:1101-1109. 

Rose, D. K., and R. W. Doms. (1988). Regulation of protein export from the endoplasmic. Annu. 
Rev. Cell Biol. 4:257-288. 

Runeberg, P., M. Raudaskoski, and I. Virtanen. (1986) . Cytoskeletal elements in the hyphae of 
the Homobasidiomycete Schizophyllum commune visualized with indirect immunofluorescence 
and NBP-phallacidin. Eur. J. Cell Biol. 41 :25-32. 

Salas, P. J. I., D. E. Misek, D. E. Vega-Salas, D. Gundersen, M. Cereijido, and E. Rodriguez­
Boulan . (1986) . Microtubules and actin filaments are not critically involved in the biogenesis of 
epithelial cell surface polarity. J. Cell Biol. 102:1853-1867. 

Salo, V., S. S. Niini, I. Virtanen, and M. Raudaskoski. (1989) . Comparative 
immunocytochemistry of the cytoskeleton in filamentous fungi with dikaryotic and multinucleate 
hyphae. J. Cell Sci. 94: 11-24. 

Saraste, J. E ., and E . Kuismanen. (1984). Pre- and post-Golgi vacuoles operate in the transport of 
Semliki forest virus membrane glycoproteins to the cell surface. Cell. 38:535-549. 

Satiat-Jeunemaitre B., and C. Hawes. (1992). Reversible dissociation of the plant Golgi apparatus 
by brefeldin A. Biol. Cell. 74:325-328. 

Schnapp, B. J ., R . D . Vale, N. P. Sheetz, and T. S. Reese. (1985). Single microtubules from squid 
axon support bidirectional movement of organelles. Cell. 40:455-462. 

Schnepf, E ., G. Deichgraber, and G. Drebes. (1978a). Development and ultrastructure of the 
marine, parasitic Oomycete, Lagenisma coscinodisci Drebes (Lagenidiales): Formation of the 
primary zoospores and their release. Protoplasma. 94:263-280. 

Schnepf, E ., G. Deichgraber, and G. Drebes. (1978b). Development and ultrastructure of the 
marine parasitic oomycete, Lagenisma coscinodisci (Lagenidiales): encystment of primary 
zoospores. Can. J. Bot. 56:1309-1314. 

Schweizer, A., J. A. M. Fransen, K. Matter, T . E. Kreis, L. Ginsel, and H-P. Hauri. (1990). 
Identification of an intermediate compartment involved in protein transport from endoplasmic 
reticulum to Golgi apparatus. Eur. J. Cell Biology. 53: 185-196. 



92 

Sewall, T., L. Olson, L. Lange, and J. Pommerville. (1986). The effect of monensin on 
gametogenesis and zoosporogenesis in the aquatic fungus, Allomyces macrogynus. Protoplasma. 
133: 129-139. 

Shannon, T. M., J. M. Picton, and M. W. Steer. (1984) . The inhibition of dictyosome vesicle 
formation in higher plant cells by cytochalasin D. Eur. J. Cell Biol. 33 :144-147. 

Simon, R., Y. Altschuler, R. Rubin, and G, Galili. (1990) . Two closely related wheat storage 
proteins follow a markedly different subcellular route in Xenopus laevis oocytes. Proc. Nat. 
Acad. Sci. USA . 88:834-838. 

Sing, V. 0., and S. Bartnicki-Garcia. (1975a). Adhesion of Phytophthora palmivora zoospores 
electron microscopy of cell attachment and cyst wall fibril formation . J. Cell Sci. 18: 123-132. 

Sing, V. 0 ., and S. Bartnicki-Garcia. (1975b). Adhesion of Phytophthora palmivora zoospores 
detection and ultrastructural visualization of concanavalin A receptor sites appearing during 
encystment. J. Cell Sci. 19: 11-20. 

Slot, J. W. and H. J. Geuze. (1985). A new method of preparing gold probes for multiple-labeling 
cytochemistry. Eur. J. Cell Biol. 38:87-93. 

Sokal, R. R., and F. J. Rohlf. (1981). Biometry: The principles and practice of statistics in 
biological research. 2nd Edition. W.H. Freeman and Co. New York. 

Sonnewald, U., D. Studer, M. Rocha-Sosa, and L. Willmitzer. (1989) . Immunocytochemical 
localization of patatin, the major glycoprotein in potato (Solanum tuberosum L.) . Planta. 
178: 176-183. 

Sossin, W. S., J. M. Fisher, and R. H. Scheller. (1990). Sorting within the regulated secretory 
pathway occurs in the trans-Golgi network. J. Cell Biol. 110: 1-12. 

Springer, M. L., K. M. Hager, C. Garrett-Engele, and C. Yanofsky. (1992) . Timing of synthesis 
and cellular localization of two conidiation-specific proteins of Neurospora crassa. Dev. Biol. 
152:255-262. 

Staehelin, L.A., T.H. Giddings, S. Levy, M.A. Lynch, P.J. Moore, and K.M.M. Swords. (1991). 
Organisation of the secretory pathway of cell wall glycoproteins and complex polysaccharides in 
plant cells. In: Endocytosis, Exocytosis and Vesicle Traffic in Plants. C.R. Hawes, J.O.D. 
Coleman, and D.E. Evans, editors. Cambridge University Press, Cambridge. 183-198. 

Staples, R. C., A. A. App, and P. Ricci. (1975) . DNA synthesis and nuclear division during 
formation of infection structures by bean rust uredospore germlings. Arch. Microbial. 104: 123-
127. 

Staples, R. C., and H. C. Hoch. (1982). A possible role for microtubules and microfilaments in 
the induction of nuclear division in bean rust uredospore germlings. Expt. Mycol. 6:293-302. 

Staswick, P. E. (1990). Novel regulation of vegetative storage protein genes. Plant Cell. 2: 1-6. 

Strous, G. J. A. M., R. Willemsen, P. van Kerkbof, J. W. Slot, H. J. Geuze, and H. F. Lodish. 
(1983). Vesicular stomatitus virus glycoprotein, albumin, and transferrin are transported to the 
cell surface via the same Golgi vesicles. J. Cell Biol. 97:1815-1822. 



93 

Struck, D. K., and W. J. Lennarz. (1977). Evidence for the participation of saccharide-lipids in 
the synthesis of the oligosaccharide chain of ovalbumin. J. Biol. Chem. 252: 1007-1013. 

Takatsuki, A., and G. Tamura. (1985). Brefeldin A, a specific inhibitor of intracellular 
translocation of vesicular stomatitus virus G protein: intracellular accumulation of high mannose 
type G protein and inhibition of its cell surface expression. Agric. Biol. Chem. 49:899-902. cited 
in Misumi et al. (1986). 

Tamura, G., K. Ando, S. Suzuki, A. Takatsuki, and K. Arima (1968). Antiviral activity of 
brefeldin A and Verrucarin A. J. Antibiotics. 21 :160-161. cited in Klausner et al. (1992). 

Tartakoff, A. M . (1983). Perturbation of vesicular traffic with the carboxylic ionophore 
monensin. Cell. 32:1026-1028. 

Taylor, J. W., and M. S. Fuller. (1981). The Golgi apparatus, zoosporogenesis, and development 
of the zoospore discharge apparatus of Chytridium confervae. Expt. Mycol. 5:35-59. 

Tooze, J., and B. Burke. (1987). Accumulation of adrenocorticotropin secretory granules in the 
midbody of teleophase AtT20 cells evidence that secretory granules move anterogradely along 
microtubules. J. Cell Biol. 104:1047-1057. 

Tooze, J., S.A. Tooze, and S. D. Fuller. (1987). Sorting of progeny coronavirus from condensed 
secretory proteins at the exit from the trans-Golgi network of AtT20 cells . J. Cell Biol. 105: 1215-
1226. 

Traas, J. A., P. Braat, A. M. C. Emons, H. Meekes, and J. Derksen. (1985). Microtubules in root 
hairs . J. Cell Sci. 76:303-320. 

Truesdell, L. C., and E. C. Cantino. (1970) . Decay of gamma particles on germinating zoospores 
of Blastocladiella emmesonii. Arch. Mikrobiol. 70:378-392. 

van Etten, J. L., S. N. Freer, and McCune. (1979). Presence of a major (storage?) protein in 
dormant spores of the fungus Botryodiplodia theobromae. J. Bact. 138:650-652. 

Virtanen, I., and T. Vartio. (1986). Microtubule disruption does not prevent intracellular transport 
and secretory processes of cultured fibroplasts. Eur. J. Cell Biol. 42:281-287. 

von Figura, K., and A. Hasilik. (1986). Lysosomal enzymes and their receptors . Annu. Rev. 
Biochem. 55 : 167-193. 

von Zastrow, M., and J. D. Castle. (1987) . Protein sorting among two distinct export pathways 
occurs from the content of maturing exocrine storage granules. J. Cell Biol. 105:2675-2684. 

Weete, J. D., A. El Mougith, and J.-M. Touze-Soulet. (1989). Inhibition of growth, lipid, and 
sterol biosynthesis by monensin in fungi. Expt. Mycol. 13:85-94 

Weste, G. (1983) . Population dynamics and survival of Phytophthora. In: Phytophthora. Its 
Biology, Taxonomy, Ecology, and Pathology . D.C. Erwin, S. Bartnicki-Garcia, and P. Tsao, 
editors. American Phytopathological Society, St Paul Minnesota. 237-257. 

Weste, G., and G. C. Marks. (1987). The biology of Phytophthora cinnamomi in Australasian 
forests. Annu. Rev. Phytopath. 25 :207-229. 



94 

Wetzel, S., C. Demmers, and J. S. Greenwood. (1989). Seasonally fluctuating bark proteins are a 
potential form of nitrogen in three temperate hardwoods. Planta. 178:275-281 . 

Williams, W. T., and R. K. Webster. (1970). Electron microscopy of the sporangium of 
Phytophthora capsici. Can. J. Bot. 48:221-227. 

Yahara, I., F. Harada, S. Sekita, K. Yoshihira, and S. Natori . (1982). Correlation between effects 
of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. 
J. Cell Biol. 92:69-78. 

Zentmyer, G. A. (1980) . Phytophthora cinnamomi and the Diseases it Causes. The American 
Phytopathological Society, St Paul, Minnesota. 1 pp. 


	_00001
	_00002
	_00003
	_00004
	_00005
	_00006
	_00007
	_00008
	_00009
	_00010
	_00011
	_00012
	_00013
	_00014
	_00015
	_00016
	_00017
	_00018
	_00019
	_00020
	_00021
	_00022
	_00023
	_00024
	_00025
	_00026
	_00027
	_00028
	_00029
	_00030
	_00031
	_00032
	_00033
	_00034
	_00035
	_00036
	_00037
	_00038
	_00039
	_00040
	_00041
	_00042
	_00043
	_00044
	_00045
	_00046
	_00047
	_00048
	_00049
	_00050
	_00051
	_00052
	_00053
	_00054
	_00055
	_00056
	_00057
	_00058
	_00059
	_00060
	_00061
	_00062
	_00063
	_00064
	_00065
	_00066
	_00067
	_00068
	_00069
	_00070
	_00071
	_00072
	_00073
	_00074
	_00075
	_00076
	_00077
	_00078
	_00079
	_00080
	_00081
	_00082
	_00083
	_00084
	_00085
	_00086
	_00087
	_00088
	_00089
	_00090
	_00091
	_00092
	_00093
	_00094
	_00095
	_00096
	_00097
	_00098
	_00099
	_00100
	_00101
	_00102
	_00103
	_00104
	_00105
	_00106
	_00107
	_00108
	_00109
	_00110
	_00111
	_00112
	_00113
	_00114
	_00115
	_00116
	_00117
	_00118
	_00119
	_00120
	_00121
	_00122
	_00123
	_00124
	_00125
	_00126
	_00127
	_00128
	_00129
	_00130
	_00131
	_00132
	_00133
	_00134
	_00135
	_00136
	_00137
	_00138
	_00139
	_00140
	_00141
	_00142
	_00143
	_00144
	_00145
	_00146
	_00147
	_00148
	_00149
	_00150
	_00151
	_00152
	_00153
	_00154
	_00155
	_00156
	_00157
	_00158
	_00159
	_00160
	_00161
	_00162
	_00163
	_00164
	_00165
	_00166
	_00167
	_00168
	_00169
	_00170
	_00171



