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ABSTRACT 

The eyes of crabs are of interest for a number of reasons. Some 

crabs, including Leptograpsus, are active over a wide range of light 

intensities, from night to bright sunlight, a change of seven or eight 

log units in brightness. They are known to be highly sensitive to very 

slow movements. Since their eyes are of the apposition rather than the 

superposition type they have much higher visual acuity than most other 

decapods. 

The eyes of the rock crab, Leptograpsus variegatus, and the 

Queensland mud crab Scylla serrata, have been examined in a number of ways. 

In Scylla, the structural organisation of the first optic neuropile, the 

lamina, has been investigated using Golgi and reduced silver staining. It 

is very similar in structure to the lamina of decapods with superposition 

eyes, such as crayfish, and contains five types of monopolar neurons and 

at least three tYIJes of large tangential fibres. The seven retinula cells 

which make up the main part of the fused rhabdom terminate in two layers 

within the lamina. The eighth cell, which forms only the distal tip of 

the rhabdom, has an axon that passes through the lamina and ends in the 

second optic neuropile, the external medulla . By tracing Leptograpsus 

retinula cell axons through a series of 1 or 2 µm sections, it was found 

that all the retinula cell axons from one ommatidium go to the same 

lamina cartridge, and not to several, as has been recently proposed. 

An EM study of the structure of the retina of Leptograpsus 

showed that the distal portion of the rhabdom increases in diameter from 

c . 2 µmin the day to c. 5 µmat night. Five tYIJes of cells in the retina 

contain pigment that acts as a light screen . The position of these cells 

and the pigment in them was examined by light microscopy in a variety of 



illumination conditions during the day and at night . The spectral 

transmission of the different types of screening pigment was measured by 

microspectrophotometry. 

The spectral sensitivity of Leptograpsus retinula cells was 

found by intracellular recording from eyes in situ . The dark adapted 

spectral sensitivity peaks at c 485nm . Light adaptation causes various 

changes in spectral sensitivity which can largely be accounted for by 

movements of the screening pigments . The net effect is to produce a 

broader but fairly constant spectral sensitivity over a wide range of 

light levels. 

The polarisation sensitivity is high, about 10 :1. The angular 

sensitivity, which alters slightly in response to light and dark adaptation, 

ranges from about 2° in bright light, to .3-4° in the dark, in the forward

looking portion of the eye . 

It is concluded that Leptograpsus uses a variety of means to 

maintain a high acuity and constant spectral sensitivity over a wide range 

of light levels . 
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Chapter I 

GENERAL INTRODUCTION 

Even to the casual observer, crabs give the impression of being 

highly visual animals. The often brightly coloured crabs of mudflats have 

a large repertoire of display movements, the classic example being the 

threat and courtship signals of the various species of the fiddler crab 

Uca, reviewed by Crane (1975). Escape from predators is often visually 

mediated, as can be seen from the speed with which a slight movement will 

send a platoon of Mictyris many yards away on a flat beach scurrying off 

in the opposite direction, a foraging Leptograpsus disappearing down a 

crack in the rocks, or an Ozius caught investigating a shallow pool 

surreptiously gliding under a clump of weed. 

Field ·and laboratory studies under more controlled conditions 

bear this out. Uca , for instance, finds the way back to the area of its 

burrow from some distance by a variety of clues which can include remembered 

land-marks and the polarisation pattern of the sky (Herrnkind 1972) . 

Recording from the optic nerve of Podophthalmus , Wiersma et al. (1964) 

demonstrated a varied array of movement detectors in crabs, in fact 

substantially more than were found in some other decapods in the same series 

of investigations . By monitoring their optokinetic responses to a revolving 

drum, crabs have been shown to be capable of following movements down to 

0.001 to 0 .002°/sec (Sandeman et al . 1975), which is rather slower than 

the apparent speed of the sun in its passage across the sky . This provides 

an interesting contrast to the fast-flying insects, which seem to have 

developed the circuitry of their compound eyes to analyse very rapid changes 

in the visual field (Snyder et al. 1977) . The hoverfly Syritta for example 

can accurately track a target· moving with an angular velocity of 250°/sec. 

(Collett and Land, 1975) . 
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The ability to perceive very slow movements is one of the main 

r easons why the optic system of the crab is worth investigation. Another 

is t he capacity of the retinula cells to analyse polarised light . 

Crustaceans , because of the structure of their rhabdom, are potentially 

more sensitive to the polarisation plane of light than almost any other 

gr oup . Yet apart from orientation responses to sky polarisation patterns , 

which a r e hardly unique to Crustacea , we do not know for what purpose , and 

to what extent , crabs use the polarisation information available to them . 

The general structure of the decapod retina is well known , and 

is discussed in the next chapter. The rhabdom is formed by seven main cells 

with interdigitating orthogonally- oriented microvilli, and a distal eighth 

cell of varying importance . The properties of the eighth cell are 

effectively unknown . Apart from the obvious . differences in the plane of 

polarisation sensitivity caused by the orientation of their microvilli , it 

is not known how differences in the structure of the main retinula cells 

( size of the rhabdomere, position in relation to the surrounding pigment 

cells) are reflected in their properties. The effect of the pigment screen 

has been well studied in crayfish, which have superposition eyes, but not 

in decapods with apposition eyes, such as crabs . The problem of spectral 

sensitivity in decapods is still obscure in spite of recent work . The manner 

in which retinula cells project to the lamina has been the subject of 

speculation without conclusive evidence , and recently it has become obvious 

that in studying any visual system it. is necessary to determine whether 

there are any circadian changes in the rhabdom itself . I have tried to 

answer some of these questions. 

An initial Golgi study of the lamina, the first optic ganglion, 

was performed using the portunid mud crab Scylla serrata. It was later 

fo und that the common grapsid rock crab , Leptograpsus variegatus, is a 
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much more reliable animal for behavioural and electrophysiological work . 

Since it is also available locally and has less well developed weaponry, 

it was used in later work. The basic construction of the eyes of the two 

crabs is very similar (Fig. 1 .1). As discussed in Chapter V, no large 

differences in _the structure of the lamina were revealed by the limited 

amount of work done on Leptograpsus, and considering the great similarities 

between the lamina of Scylla and that of other decapods (Hafner, 1973, 

" Nassel, 1975, 1976), it is unlikely that the lamina of another brachyuran 

crab will be very disparate. The same applies to the gross structure 

and arrangement of the retinula cells themselves. It is· another matter 

when considering the secondary pigment cells, which are notoriously 

variable throughout the decapods, and display quite different behaviours 

in the two crabs. 

The pigment systems of crustacean eyes move under a combination 

of circadian and environmental influences, in a way which must be determined 

for each species. Obviously , if any work is to be done more centrally in 

the nervous system of Leptograpsus, it is necessary to have some idea of 

what factors are causing its eye pigments to move , and their probable state 

in any experimental situation . 

The projection pattern of axons from the retina to the lamina 

was traced because the "neural superposition" type of connection pattern 

that had been assumed (e . g . Waterman 1978) seemed most unlikely. It was not 

well supported by the little anatomical evidence available, and no reasonable 

theoretical explanation for it had been advanced . A knowledge of the 

projection pattern is a necessary prerequisite for an examination of the 

function of the retina, as well as of the lamina and higher order neuropiles. 



Fig . 1 .1 Horizontal sections through the optic lobes of Scylla (a) 

and Leptograpsus (b) . Co, cornea; CC, crystalline 

cones; R, retinula cells; BM , basement membrane ; 

HS, haemocoelic sinus; Rb , retinula axon bundles . 

1st X, first chiasma; 2nd X, second chiasma; 

I, lamina; II , external medulla ; III internal 

medulla ; IV, terminal medulla . 
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Although some measurements were made of polarisation sensitivity 

and angular sensitivity of retinula cells, the main focus of the 

electrophysiological study described in Chapter III was spectral sensitivity, 

since it was thought that it might be profitably studied in conjunction 

with anatomical and msp work on the screening pigments. 
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CHAPTER II 

Retinal Pigments and their Movements in Leptograpsus 

INTRODUCTION 

Retinal screening pigments in Crustacea present a bewildering 

variety of systems, ranging from simple three-pigment eyes to combinations 

of five or six pigments, some stationary, some moving according to a 

circadian rhythm, some because of a direct or hormonally-mediated effect 

of light . Although closely homologous pigment cell types can be recognised 

across many different species, one of the main lessons of work on pigment 

migration so far is that generalisation even between the species of one 

genus is often invalid . 

It is necessary to determine the details of the retinal pigment 

system and its movements for any species whose visual physiology is to be 

investigated closely. To be most effective, such a study needs to be 

combined with knowledge of how the various pigments absorb light . This 

can be rather difficult to obtain, since many pigment cells contain 

several different types of pigment granules, and it may also be hard to 

entirely separate classes of pigment cells in fresh preparations . Luckily 

in Leptograpsus the relationship between the pigment cell types is such 

that an unfixed eye may be teased apart to yield small clumps containing 

either one sort of pigment cell, or two easily separable types. 

Investigation of pigment movements has been a traditional pastime 

for crustacean anatomists since Parker (1897 ). Much of the early work 

involved species such as the carid prawn Paleamonetes, and the crayfish 

Procambarus or Astacus (Kleinholz , 1936; Welsh, 1935), The eyes of these 

animals contain three types of pigment. The dark distal pigment generally 

forms a collar around the proximai part of the crystalline cone and the 
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di stal retinula cells in the day or light-adapted eye, restricting the 

amount of non- axial light that can reach the r habdom . In the night or 

dark- adapted eye , t he pigment moves distally and becomes concentrated 

within a smaller area , allowing much of the non-axial light to pass on 

to the rhabdoms . Dark granules of proximal pigment within the retinula 

cells t hemselves can move below the basement membrane to expose the 

rhabdom , or form a sheath around the rhabdom to limit the entrance of 

light from the side and perhaps attenuate axial light . Reflecting pigment, 

sometimes called accessory pigment , lies between the ommatidia , sometimes 

moving back and forth across the basement membrane . When it lies between 

the ommatidia it should stop light "leaki ng" from one column of retinula 

cells to another; when it lies fairly proximally, and i s not screened by 

darker pigments , it acts as a tapetum , reflecting and scattering light 

back through the rhabdoms . 

Recent work, using electron microscopy , has often revealed a more 

complicated picture. Struwe , Hallberg and Elofsson (1977) made an EM and 

microspectrophotometric study of the pigment cells of Crangon, a carid 

shrimp (of a different superfamily from the Palaemon~idae) . They found 

five types of cell containing reflecting or absorbing pigment granules. 

Schonenberger , (1977), in a detailed EM study of the stomatopod Squilla 

mantis , also found five types of pigment, including a green reflecting 

layer . Ball ( in prep . ) finds five types of pigment in the sergestid 

shrimp Acetes . Hallberg (1977) finds a basal red pigment cell in several 

species of mysid shrimp , and this also appears in Oplophorus (Land , 1976) 

and in the leptostracan Nebalia (Green , 1972) . Basal red pigment is a 

major part of the pigment system of many crabs , including Leptograpsus , 

Scylla , Ozius , Ocypode , and Mictyris (pers. obs . ) . 
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In spite of a long history of research a coherent picture of the 

hormonal control of pigment movements in Crustacea is only just beginning 

to emerge (reviewed by Kleinholz , 1976) . Even now, much more is known 

about movements of two pigments , the distal pigment and the retinula cell 

or proximal pigment, than any others in the eye . The dark distal pigment 

(a t any rate in the crayfish Procambarus) moves in response to hormones: 

t he light-adapting or dark- adapting DRPH (Distal Retinal Pigment Hormones) . 

Its movements take much longer to complete than those of the proximal 

pigment , have a higher threshold, and do no occur in the isolated eye 

(reviewed by Arechiga, 1978) . Proximal pigment, as shown by Ludolph et al. 

(1973 ) in the crab Callinectes, can move i ndependently in the different 

retinula cells of one ommatidium . Olivo and Larsen (1978) showed that 

migration of proximal pigment initiated in an isolated eyestalk by a 

brief exposure to light is continued in the dark. 

This study was undertaken primarily to determine the position 

of the retinal screening pigments of Leptograpsus under the conditions 

used in the electrophysiological experiments, in order to gain some idea 

of their effects on the responses of the retinula cells . 

METHODS 

Leptograpsus variegatus, the common grapsid rock crab, was 

collected every three to five weeks near Bateman ' s Bay, on the New South 

Wales coast . The crabs were kept in a fibre-glass tank of sea- water 

containing rocks for shade and shelter . The sea- water was kept 

circulating through several inches of gravel bed by air pumped in beneath 

the gravel . The tank was lit by fluorescent lights on a 12 :12 light:dark 

cycle in winter , and a 14:10 cycle in summer, when all the experiments 

concerning pigment migration were carried out . The crabs were fed on 

crab meat) either on the remains of experimental animals, or on any of 
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their .fellows foolhardy enough to try to moult in a crowded tank. They 

were allowed .to acclimatise for two- three days at least before being used. 

El ectron microscopy 

For electron microscopy eyes were fixed in O.lM sodium cacodylate, 

0 .14M sucrose·, 2.5% gluteraldehyde and 2mM calcium chloride at pH 7.3 . 

The crabs used were of almost identical size , of carapace width between 

2 . 8 and 3cm. The eyes of two crabs were fixed in the light adapted 

condition at midday , and the eyes of two more were fixed when dark-

adapted at midnight , being dissected under a red light. They were fixed 

overnight at 4°c, washed in several changes of the cacodylate buffer (with 

· sucrose) , osmicated in 1% osmium in cacodylate buffer for two hours, washed 

in several changes of buffer·, dehydrated through an ethanol series, taken 

through propylene oxide and embedded in araldite . For examination at low 

magnifications, pale gold to silver sections were cut on glass knives, 

mounted on formvar - coated slot grids and stained in uranyl acetate (40 min) 

and Reynold ' s lead citrate (20 min) . They were examined with a Jeol J EM_ 

lOOC electron -microscope . Measurements were made from photographs. Means 

and standard deviations were calculated from 40-50 measurements of each type 

of pigment granule , and 8- 10 rhabdoms in each condition . 

Pigment Movements 

Crabs of 2 . 5 to 4 cm carapace width were used in these experiments. 

To produce the conditions under which electrophysiological recordings had 

been made , the animals were induced to autotomise their legs approximately 

1 hour before being placed in the appropriate light regime . Two crabs were 

fixed in each state investigated, by immersion in hot (70- 8o°C) fixative 

for one minute , then the eyes were rapidly cut into cold fixative ~nd the 

eyestalk cuticle cut as far as the cornea in 4-5 places . Dissection was 
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completed in 70% alcohol after the eyes had been left overnight in cold 

fixative. This was 2 . 27% gluteraldehyde in Millonig 's buffer with 0.01% 

calcium chloride and 15% glucose. "Day" crabs were fixed between 1 . 30 

and 3.30 pm in the following conditions: after 30 minutes at a window in 

bright sunlight but on a cool substrate; after 60 minutes in "dim light" 

2 (10-20 µW/cm ); after 30 and 60 minutes dark adaptation; and after 2, 5, 

15 and 30 minutes under "bright" (8-lOmW/cm
2

) light from a 30 watt tungsten 

microscope lamp. "Night" crabs were fixed between 10 and 12 pm when dark 

adapted for two hours, ' dim' light adapted for one hour, and 'bright' 

light adapted for 2 , 5, 15 and 30 minutes . The dim and bright light regimes 

were adopted in order to mimic conditions under which recordings from 

retinula cells had been made. 

After dehydration through an ethanol series (as fast as possible 

in order to minimise loss of alcohol-soluble pigments) the eyes were taken 

through propylene oxide to araldite . They were sectioned at 0.5 to 2µm 

to provide different viewing conditions and mounted unstained under Permount. 

Measurements were made as a proportion of cone length or retinula cell soma 

length, to allow for varying crab sizes. The minimum diameter of the "iris" 

-formed by the dark distal pigment around the cone tip was also measured. 

An eyepiece graticule was used for all measurements of LM material. 

Mi erospectrophotometry 

The spectral absorption of the red basal pigment, the retinula 

cell screening pigment , the dark distal pigment and the light distal pigment 

was measured using a Zeiss UMSP 1 . Fresh eyes were dissected in Carcinus 

saline (Fantin, 1972), and the retina teased apart to yield pieces 

containing only one, or two distinguishable , pigment cell types . 

Measurements were made on squashes. of these pieces in saline, with a 
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mea suring diameter of 5 µmin the object plane , from 700 to 350 nm . A 

section of the slide containing no tissue was used to provide baseline 

mea surements . The red basal pigment formed large oily droplets in the 

saline , and some of these easily covered the whole area being measured . 

Clusters of granules were measured for the dark distal and retinula cell 

screening pigments, and groups of small yellow- brown droplets for the 

light distal pigment . Quartz slides were used, but glass coverslips . 

Change in extinction was measured by comparing transmission through 

pigment and saline at ten or twenty nm intervals. Data for each run 

were normalised, taking the highest extinction value of each run as 

unity , then the normalised data were averaged and plotted . 

Numbering of Retinula Cells 

Two systems of numbering decapod retinula cells are in use 

(see Table 1) . In system A, used by Parker (1897) , Rutherford and 

Horridge (1965), Kunze (1967) and ~assel (1976), an ommatidium from the 

dorsal half of the eye is numbered in an anti- clockwise direction. In 

System B, used by Eguchi and his co- workers in an extensive series of 

papers (Eguchi 196.5 onwards), an ommatidium in the ventral half of the 

eye is numbered in an anti-clockwise direction. Cell 8 is the same in 

both systems , and cell 7 in system A corresponds to cell 1 in system B. 

The relationship between the two systems and the orientation of the 

microvilli in Grapsus according to Eguchi and Waterman (1973) is given 

in Table 1 . System A is used here ( see Fig . 2) . 

Table l . Numbering of crab retinula cells 

System A 1 2 3 4 5 6 7 8 

System B 2 3 4 5 6 7 1 8 

Orientation of 
microvilli V V H H V V H H and V 

(H = Horizontal ) 

(.v = Vertical) 



RESULTS 

The cornea of Leptograpsus consists of any array of c.40 µm 

hexagonal facets, with no external demarcation between them. One of the 

axes of the array runs horizontally when the eye is in the normal position. 

The corneal cuticle is flexible and thin (c . 40 µm), and has no apparent 

focusing effect when viewed through a hanging drop . Below the cornea of 

each facet lie two cone producing cells and a crystalline cone 90-120 µm 

long (Fig. 2 .1) . The cone tapers to a blunt point above the short rhabdom 

of retinula cell eight . Four "cone cell roots" continue to the basement 

membrane as fine threads between retinula cells 1 and 2, 3 and 4, 5, and 6, 

and 7 and 1. The soma of R8 is divided into· four lobes (Fig. 2.2) one of 

which sends a process proximally which enlarges to contain the nucleus and 

then continues as an axon besides the soma of R7, eventually joining the 

group of retinula cell axons that forms below the basement membrane . The 

soma of R8 contains no pigment granules , and the cytoplasm is pale and full 

of vacuoles during the day . The most distal parts of Rl- 7 surround the 

lobes of R8 (Fig . 2 . 3) . Rl-7 form a fused rhabdom of the standard decapod 

type. Along its 250-350 µm length, two sets of orthogonally oriented 

microvilli alternate R7, and 4 contribute horizontally oriented microvilli, 

Rl , 2, 5 and 6 have microvilli running vertically when the crab holds its 

eye in the normal position . The rhabdomere of each cell stretches halfway 

across the rhabdom; the rhabdomere of R7 covers half the area of the 

rhabom, the other cells all contribute one quarter each . 

During the day, in the light-adapted state, there is little 

variation in rhabdom diameter from the distal (1 .67: 0 .12 µm, Fig . 2.4) 

to the proximal (Fig2.5) end of the rhabdom. The rhabdom is surrounded by 

a "palisade" of swollen ER cisternae of 4 to 5 µm outer -diameter . Between 



Fig . 2 .1 Semi-schematic diagram of a Leptograpsus ommatidium 

and associated cells, when light-adapted dur'ng the 

day and dark-adapted at night . 
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Fig . 2.2 

Fig . 2 . 3 

Fig 

Cross-section of a light-adapted Leptograpsus eye at 

the level of the eighth cell. Scale 5 µm . 

Distal tip of the rhabdom at night, showing the four 

lobes of RB lying between the pigment containing Rl-7 . 

Inset, day rhabdom at a level c . 10 µm proximal, and · 

the same magnification . (4 , 900 X) 

DD, dark distal pigment cell; R, rhabdom; P, palisade; 

8 , Retinula cell 8 ; Rd , rind of cytoplasm. 



at 

our 

Rl-7, 

and 

lisade; 



Fi 
Fig . 2.4 Distal part of the retina during the day, showing Rl- 7 

and the regular arrangement of the dark distal pigment 

cells. (4900 X) N, retinula cell nucleus ; DD, dark 

distal pigment cells; Rl reflecting pigment cell; 

R7, retinula cell 7 
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Fig . 2 . 5 Proximal part of rhabdom in the day, showing clear spaces 

inside retinula cells, filled with microtubules and surrounded 

by mitochondria. (6,800 X) 

8, axon of R8; BM, basement membrane material; cc, cone cell 

roots; Rf, reflecting pigment . 
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the r habdom and the palisade is a thin rind of cytoplasm, approximately 

0 . 3 µm t hick , from which the microvilli sprout. Within the retinula cells 

are l a r ge clear areas , contai ning microtubules (Fi g . 2 . 6) . Above the 

basement membrane these areas cover most of the cross - section of the cell, 

and tend to become smaller as they continue distally as far as the nuclear 

region . 

At night , the diameter of the distal part of the rhabdom increases 

dramatically to 5 . 22 ! 0.52 µm (Fig . 2.7), an increase in cross- sectional 

area by a factor of about 10 . The rhabdom tapers towards the basement 

+ 
membrane , where the diameter is 1 . 93 - 0 . 51 µm, a cross- sectional increase 

of c . 1.8 . The "palisade" is 9 . 44 ! 0 . 72 µmin outer diameter distally, 

but decreases towards the basement membrane , where it is hardly visible . 

The rind of cytoplasm around the rhabdom is not evident at night. The 

clear areas or microtubule fields are found just above the basement 

membrane and in the axons below it, and a proportion of them contain 

apparently non- membrane- bound yellow droplets of varying sizes , the 

largest filling up almost the whole cross - section of the cell (Fig. 2 . 8 , 

2 .12c) . 

Between the crystalline cones lie thin sheets containing the 

yellow- brown light distal pigment in small, oily droplets 0 . 2 .:_ 0 .1 µm 

in diameter (Fig . 2 .9a) . The nuclei of these cells lie towards the cornea . 

Each omma has two dark distal pigment cells containing dense 

purplish granules 0 . 3 + 0 . 07 µmin diameter. The nucleus is in the distal 

part of the cell . In most conditions the dark distal pigment cells surround 

the cone tip , and the pigmented part of each tapers down to about halfway 

along t he length of the retinula cells , with a fine non- pigmented extension 

continuing as far as the basement membrane . An extension of each cell , 

sometimes containing pigment granules , reaches between retinula cells to 

the rhabdom, one on either side of R7. 



F Fig . 2 .6 Halfway down retinula cell column, day eye . (6 , 900 X) . 

R, rind ; P , palisade ; M, microtubule-filled space; 

N, nucleus of reflecting pigment cell; DD, extensions 

of dark distal pigment cells; cc, cone cell root. 
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Fig. 2 .7 

F 

Fig . 2 . 8 

Distal part of night rhabdom. (5,300X) N, retinula 

cell nuclei; R, rhabdom . 

Just distal to the basement membrane in a night eye, 

showing large yellow droplets within retinula cells . 

(6850X) R, rhabdom; M, microtubule-filled space; 

Y, yellow droplet . 
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Fig. 2.9a 

F 

9b 

Pigment granules at the level of the crystalline cone 

(8000X). LD, light distal pigment; DD, dark distal 

pigment. 

Pigment below the basement membrane, (8000X). 

RB, red basal pigment; RA, retinula cell axons; 

RSP, retinula cell screening pigment; Rf, reflecting 

pigment; M, mitochondria 
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Within the retinula cells themselves are brown screening pigment 

granules, of 0 . 3 ±. 0 .1 µm diameter. These are very mobile , and may be 

concentrated around the rhabdom or scattered throughout the cell. The 

ret inula cell axons below the basement membrane have pigment granules 

around their circumference , and in some conditions may be quite densely 

filled with pigment . 

The reflecting pigment is contained within large cells which are 

usually closely apposed to the retinula cell column over most of its length 

from the basement membrane to the level of the distal tip of the rhabdom. 

Processes of the cells extend below the basement membrane in some states 

(Fig . 2 .10) . A thin strand of tissue containing reflecting pigment granules 

extends to the cornea. The nucleus lies about halfway down the retinula 

cell column . The pigment granules , 0 .3 ±. 0 .05 µmin diameter, are a 

brilliant white in reflected light, but pale brown in transmitted light. 

The contents of the granules are usually lost in EM sections. 

Beneath the basement membrane the retinula cell axons run through 

a layer of basal red pigment cells which contain large (from 0.3 to 0 . 7 µm 

diam .) oily red droplets , densely packed (Figs . 2.9b, 2 .11). They form a 

thi ck barrier on the proximal side of the basement membrane, and sometimes 

send processes through it. 

Mainly below this layer, but sometimes extending within it, are a 

small . number of irregularly arranged cells containing dense black pigment. 

These cells consist largely of widely separated processes wound around the 

retinula cell bundles from the sub-basement membrane area to the lamina, 

where they splay out over the distal lamina surface rather in the manner 

of exposed tree roots. 

The seventh and last coloured structure of the r etina occurs only 

in patches on some eyes . It appears from the outside as specks of iridescent 

green . When dissecting an eye in saline, small platelets are sometimes 



Fig . 2 .10 Oblique section through the basement membrane in a 

night eye. (4 ,900X) . RA, retinula cell axons , A', 

axon passing through basement membrane in a non

standard position . Y, yellow droplets; Rf , 

reflecting pigment; BM , basement membrane material . 





Fig. 2 .11 Longtitudinal section through the basement membrane (3,500X) 

L, sub-basement membrane lacunae; RSP, retinula cell 

screening pigment; RB, red basal pigment; R, rhabdom. 
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· observed , green on one side only , that have become dislodged f'rom somewhere 

ar ound the crystalline cone. Nothing corresponding to them has been 

observed in sectioned material in Leptograpsus . Schonenberger (1977) 

sees similar structures in the eye of Sguilla, and suggests, as seems 

likely also for Leptograpsus, that they are only related to the superficial 

colour scheme of the animal . 

pigment movement 

The state of the five main pigments and the width of the 11 iris 11 

formed by the dark distal pigment and/or the retinula cell screening 

pigment is summarised in Table 1 . 

Allowing for individual variation and the range of crab sizes used, 

all that can be said of the iris is that it is approximately twice as large 

during the night as during the day, and that dark or light adaptation does 

not cause a marked change within 30 or 60 mins . 

The dark distal pigment is largely responsible for the size of 

the iris, (Fi g . 2.12d) but the bulk of the cell changes very little except 

under very strong illumination , when pigment granules move into the fine 

strand that extends to the basement membrane . However since this survey 

has been done using light microscopy almost exclusively , it would not be 

evident if any change had occurred in those parts of the cells that run in 

to the rhabdom on either side of R7. 

The light distal pigment covers all the cone that is not surrounded 

by the more proximal darker screening pigments, except at night. When dark 

adapted at night, the pigment retracts from the distal third or so of the 

cone . Long exposure to moderate light levels at night causes the pigment 

to extend distally, and in bright light extension takes 30 minutes . 



STATE 

Night 
DA 

Night 
DimLA 

Nig.1-it 
2 min 
BrightLA 

Night 
5 min . 
BrightLA 

Hight 
15 min . 
BrightLA 

Night 
30 min 

IRIS 
DIAM. 

I 13 ~ I 
I . 

10- 13 
µm 

8- 9 . 5 
µm 

8 µm 

10- 13 
µm 

5- 7 
µm 

BrightLA 

15 . 
Table I 

Pigment Movements 

LIGHT DISTAL PIGMENT DARK DISTAL PIGMENT 

From l/3(distally) to Proximal 20% of cone 
9/10 (proximally) of and distal 30% of 
cone . RC . 

Along cone . Along distal half of 
RCs . 

From 1/8 (distally) Along distal 75% of 
to 9/10 (proximally) RCs . 
of cone . 

As above . Along distal half of 
RCs . : 

Proximal 95% of Along distal 60% of 
cone . RC . 

All along cone . As above , but up to 
BM where r ed pigment 
movement extensive . 

RETINULA CELL I 

SCREENING PIGMENT 

Below BM . 

Sparse in the distal 
30% of RC : and 
below BM . 

Light but centred 
around rhabdom , in 
prox . and dist . 10-
20% of RC . Below BM . 

Centred in distal 
20% , sparser and 
scattered in proximal 
30% of RC . Below BM . 

Centred in distal 25% 
and proximal 10%, 
scattered throughout . 
Below BM . 

Light centred in 
distal 25% scattered 
centr ally .• Thick and 
centred in prox . 10% . 
Below BM . 

REFLECTING PIGMENT BASAL RED PIGMENT 

Surrounds proximal Up to 50 µm below BM . 
half of RCs, extends 
C • 50 µm below BM . 

Surrounds proximal Close below BM , some 

half of RCs , fine small patches above , fo r 

strands along distal c .15% RC length . 
half. 

As above, distal Close below BM . 
strands slightly 
thicker . 

As above , thick Very slightly above BM 

strands . patches . 

More uniform, but Slightly above BM, up to 
still denser proxim- 10% of RC length . 

ally . 

Uniformly surrounds Above BM in large patches 

RCs . up to 50% of RC length . 



STA'E 

Day 
Din:LA 

- ---
Day 
30 min . 
"JA - ----
Day 
60 :nin .DA 

"Jay 
2 min . 
BrightDA 

Day 
5 min . 
brightLA 

Day 
15 min . 
brightLA 

--
Day 
30 min . 
BrightLA 

Day 
30 min 
Bright 
sun 

IRIS 
DIAM . 

_ h-5 
)Jm 

----
4- 5 
µm 

--
5- 7 
)Jm 

2 .5-
4 )Jm 

--
2 .5-
4 µm 

5- 7 
)Jm 

h-5 
µm 

4- 5 
µm 

LIGHT DISTAL PIGMENT 

II 

11 

I 

11 

11 

I 
II 

II 

II 

" 
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Table I (cont . ) 

Pigment Movements 

DARK DISTAL PIGMENT 

I 

40% RC length, but 
variable . 

70% RC length . 

RETINULA CELL 
SCREENING PIGMENT 

Dense between looes of 
R8 . Throughout RC apart 
from narrow central 
band . Below BM . 

----
Distal and Prox . 30% 
not Centred . Below 
BM . 

REFLECTING PIGMENT 

II 

11 

·-· -- -------- -
11 

II 
II 

60% of RC length . Scattered throughout, ~s above, also pro-
dense in prox . 30%, cesses extending dist-
and distal tip . Below ally between dark 

BM. pigment cells . 
-- - . 

II and. to BM in 
11 

II 

' places . 

60% RC lenr;t'1 . Distal 30% dense , prox Surrounds RCs along 

30% more sparse . length, but thicker 

Below BM . distally . 
---

11 Throughout RC , denser II 

close to rhabdom in 
proximal and distal 30, 

Varies from half- As above, but denser . Surrounds retinula 
cells along length, 

BASAL RED PIGMENT 

\Proximal to BM, but 
close against it . 

11 

II 

II 

11 

11 

Up to 30% of RC length . 

·.,ay along RC , to 
BM . 

~ut fragmented appear-

BM 

RC 

B':l.sement membrane 

Retinula cell 

ance proximally . 

-

I 

I 
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In dark adapted animals at night, the screening pigment granules 

of the retinula cells are almost entirely below the basement membrane. 

This is the only state in which the four non-pigmented lobes of R8 are 

not clearly visible under the light microscope , outlined by the pigment

containing distal tips of Rl-7. Under dim light at night, scattered 

pigment is present in the distal third of the retinula cells. After two 

minutes of bright light adaptation, this pigment concentrates around the 

rhabdom and shifts slightly distally. Some granules move up into the 

proximal part of the soma from below the basement membrane. Eyes fixed 

after 5, 15 and 30 minutes of bright light adaptation show more granules 

moving up through the basement membrane to accumulate in the distal and 

proximal thirds of the cell. Scattered granules appear in the central 

region from 15 minutes on, but since they do not accumulate there they 

are presumably moving towards the distal part of the cell, which becomes 

progressively darker. During the day in dim light, pigment extends 

through most of the cell apart from the central region, but is more 

concentrated distally. Dark adaptation causes the pigment to become less 

dense , keeping the same general distribution but with less concentration 

about the rhabdom. Under strong light, the granules first concentrate 

distally and proximally, within two minutes. During the 30 minutes of 

bright light adaptation used, more granules continued to move up into the 

soma from below the basement membrane. The pattern is similar to that 

produced by light adaptation at night but there are always more granules 

present . After half an hour in bright sunlight, the distribution is 

similar but even denser, with very few granules remaining below the 

basement membrane. 
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At night , the proximal half of each retinula cell column is 

enveloped by reflecting pigment cells under all conditions examined . 

However a progressive change takes place in the distal half. In the 

dark-adapted eye the only reflecting pigment in the distal half of the 

eye is in the fine threads that run to the cornea, leaving a clear area 

between retinula cells. In dim light these threads are thickened . After 

15 minutes of strong illumination the clear area is. no longer evident , 

and after 30 minutes the reflecting pigment is equally distributed 

between the proximal and distal halves of the retina . This is also the 

case during the day, under dim light or up to as much as 60 minutes of 

dark adaptation. After two minutes of strong light adaptation, the 

reflecting pigment begins to push up between the dark distal pigment 

cells . After 15 minutes, there is more reflecting pigment between the 

retinula cells in the distal half of the retina than the proximal . At 

thirty minutes, the extreme distal projections of reflecting pigment 

have been displaced by dark distal pigment . After thirty minutes in 

bright sunlight (Fig. 2.12a) , the reflecting pigment cells extend over 

both proximal and distal halves of the retina . However, they do not 

completely envelope the retinula cell columns, but present a rather 

tattered , fragmented appearance . The reflecting pigment cells also send 

processes below the basement membrane , but when light adapted in the day, 

these are masked by the basal red pigment. 

When dark adapted at night, the basal red pigment is retracted 

to some extent (about 20-30 µm) from the basement membrane . Under dim 

light at night, and dim or bright artificial light during the day, the 

pigment is below the basement membrane but closely apposed to it (Fig . 

2,12b ). Under bright sunlight, or bright artificial light at night , the 

fed basal pigment cells send processes through the basement membrane, on 

the outside of the retinula cell column/reflecting pigment cell complex . 



Fig . 2 .12a 

12b 

Oblique section through the retina of a crab exposed 

to bright sunlight for 30 minutes . Osmicated, 

otherwise unstained . The red basal pigment can be 

seen lower left, dark distal pigment top right . 

Retinula cell screening pigment is reddish-brown, 

and the reflecting pigment light brown. (450X) . 

Longtitudinal section of day eye , dim light adapted, 

showing red basal pigment below the basement membrane . 

Osmicated , lightly stained with toluidine blue. (530X) 
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Fig. 2 .12c 7 

12d 

Oblique section of the n:1ght eye of Leptograpsus, 

showing the increase in size of the rhabdom from 

near the basement membrane (lower left) to the 

distal retina (top right), and large yellow 

droplets within the retinula cells. (llOOX) 

Unstained longtitudinal section from crystalline 

cone (top) to basement membrane (bottom) showing 

position of the light distal pigment between the 

cones, the aperture formed by the dark distal 

pigment (arrow) and the distal concentration of 

retinula cell screening pigment . (420X) 
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These processes were seen to extend up to one third of the way along the 

retinula cells. Two of -the eyes adapted to dim light at night showed 

small patches of red pigment extending up to 15% of the length of the 

retinula cells. Since_ the red pigment in unosmicated eyes was largely 

di ssolved by the dehydrating alcohols, the amount of red pigment above 

the basement membrane is probably under-estimated, although the basement 

membrane did seem to offer some protection against the alcohol. 

Microspectrophotometry · 

The retinula celi screening pigment (Fig. 13a) and the light 

di stal pigment (Fig . 13b) show a high absorbance in the ultra-violet, 

increasing fairly smoothly towards longer wavelengths. The light distal 

pigment has a slightly lower extinction at wavelengths longer than about 

500 nm. The dark distal pigment also has its highest extinction in the 

UV ' but there is a rise in absorbance between 500 and 580 nm, peaking at 

540 nm (F_ig. 13c). Extinction at the red end of the spectrum is markedly 

higher than for the retinula cell screening pigment or the light distal 

pigment. The absorbance of the red basal pigment -is low in both the 

ultra-violet and the red, peaking in the green at about 500 nm (Fig . 13d). 

The extinction curve of the reflecting pigment (not illustrated) shows a 

similar shape to the retinula cell screening pigment but its reflectivity 

characteristics were not measured. 

DISCUSSION 

Most of the screening pigments of the Leptograpsus eye appear 

comparable to ·those described and sometimes chemically identified in 

other Crustacea. The· exception is the light di-stal pigment, which does 

not seem to occur commonly in Crustacea. The yellow pigment granules 

described in the chromophores of Crangon, which have inclusions, (Elofsson 

and Kauri, 1971) are not ultrastructurally similar. 
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Fig . 2.13 Normalised differences in extinction between 

retinal screening pigments of Leptograpsus and a 

sal."ne baseline. 

A Light Distal Pigment (N=9) 

B Retinula Cell Screening Pigment (N=9) 
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The granules of the dark distal pigment cells and the retinula 

cells are similar in size and structure to those containing ommochromes 

in other Crustacea (Elofsson and Hallberg , 1973) . The absorption 

spectrum of the dark distal pigment is very similar to that of onunin 

(Butenandt et al . 1958, quoted from Goldsmith, 1964) , which is probably 

the main constituent of the granules. The retinula cell pigment granules, 

with a higher transmission at longer wavelengths, probably contain a 

significant amount of the red and yellow xanthommatins . 

The red basal pigment droplets are structurally similar to those 

found in the eye of Nebalia (Green, 1972 - discussed by Elofsson and 

Hallberg , 1973) and in several mysids (Hallberg, 1977) . These are 

considered to be formed of carotenoids, as are the red pigment- containing 

chromatophores of the body, and in fact Briggs (1961) found astaxanthin 

in extracts of Leptograpsus eyes . 

The white reflecting pigment of a number of brachyuran crabs 

has been examined by Zyznar and Nicol (1971) . They found it to consist 

largely of pteridines, which are fluorescent in long wavelength ultra

violet , and a smaller amount of purines , which quench short wavelength UV . 

In all six crabs, isoxanthopterin was the most abundant pteridine . 

The retinula cell screening pigment, the reflecting pigment, the 

red basal pigment, and to some extent the dark distal pigment, are responsive 

to changes in the light level during both day and night . This might be 

expected , since Leptograpsus ' typical feeding and activity pattern is much 

more dependent on the tide than on the ambient light level . During the day, 

the animals are found in a variety of light conditions, from deep inside 

dark crevices to flat rocks fully exposed to the midday sun . However, since 

there is also a difference in the behaviour of the screening pigment complex 

(apart from the retinula cell screening pigment) during the night and the 

day, the position of the pigment is not only determined by the ambient light 

level , but is under some degree of control by a ~ircadian rhythm. 
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The change in diameter of the rhabdom between night and day is 

of the same order of magnitude to that found . in some spiders (Blest, 1978) 

and recently in Grapsus (N'assel and Waterman, in prep.) . In Grapsus 

the diameter increases substantially all down the rhabdorn, and it is not 

at all unlikely that the changes seen at 12 pm in Leptograpsus were not 

complete . 

The yellow oily droplets, found only in night eyes, were 

presumably moving through the clear, micro-tubule-filled "tunnels" 

within the r etinula cells, and could well be carrying material for 

incorporation into growing rhabdoms. 
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CHAPTER III 

RECEPTOR RESPONSES AND SPECTRAL SENSITIVITY 

INTRODUCTION 

The general form of the receptor response has been described for 

several crabs (Shaw 1966, 1969), among them Leptograpsus (Erber and 

Sandeman 1976). The response is typical of arthropod photoreceptors 

(reviewed by Fuertes and O'Bryan 1971), being a depolarisation which 

consists, at all but response levels below about 5mV, of a transient 

peak followed by a plateau . The polarisation sensitivity of cells Rl-7 

i s known to be high in decapods (Shaw 1966, 1969). However angular 

sensitivities have been little studied. Walcott (1974) found very wide 

angular sensitivities (24°) in the dark-adapted superposition eye of 

Cherax, a crayfish. Leggett (1978), using Scylla with eyes in situ, studied 

changes in acceptance angle during dark adaptation, and found rather wide 

acceptance angles during the day (c . 4°) which became very broad (10-11°) 

when dark-adapted at night. 

Crustacean spectral sensitivity, and in particular colour vision, 

is a somewhat confused area, with puzzling discrepancies in the evidence 

from various sources. Only one photopigment has been found by spectroscopic 

examination of eye extracts or isolated rhabdoms, but some electrophysiological 

and behavioural evidence implies there is more than one colour-type of 

retinula cell. This evidence is now reviewed. 

~Vidence from analysis of extracted pigments . 

Measurement of the~ max (peak absorption) of photopigments that 

have been extracted from the rhabdom with digitonin often yields values up 

to 20nm shorter than are found by the examination of pigment in intact 

rhabdoms , or by recording the responses of r etinula cells. A similar 

but smaller shift occurs in vertebrate material (reviewed by Bowmaker, 1973), 
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The cause is unknown . The size and inconsistency of the effect in 

crustaceans means that evidence from this source is of little use unless 

it is supported by observations using other methods. 

In the majority of species studied, only one visual pigment has 

been f ound . The exceptions are the crayfish Procambarus and Orconectes, 

in which Wald (1967) found two pigments , one absorbing maximally in the 

yellow region and the other in the green . However neither of them can be 

identified with pigments found by other methods . Extracts of eye pigment 

from brachyuran crabs have yielded green absorbing photopigments; 513nm 

with a metarhodopsin of A max 495nm, in Leptograpsus and Hemigrapsus 

(Briggs 1961), 476nm in Callinectes (Fernande~ 1965) and 480nm in Uca 

(Bruno and Goldsmith 1974) . 

No trace of a photopigment maximally sensitive in the blue or 

violet range has been found in pigment extracts. 

Evidence from microspectrophotometry 

Microspectrophotometry allows measurement of visual pigment "in 

situ" in the rhabdom, using a measuring beam diameter of as little as l . 5µm . 

Crab rhabdoms that have been measured with msp have all yielded a visual 

pigment with a A max. of around 500nm; 493nm in Libinia (Hays and 

Goldsmith 1969) , 504nm in Callinectes (Goldsmith and Bruno 1973) and 502-

506run in Carcinus (Bruno, Mote and Goldsmith 1973). 

Only one visual pigment has been found in the rhabdoms of other 

crustaceans examined in this way, including crayfish, where Goldsmith (1978b) 

found a photopigment with A max at 530nm. 

Evidence from ERGs 

Spectral sensitivity of a number of species has been tested 

Using the ERG response . Since the shape of the ERG depends on the number 

and ·structure of the responding elements, the surrounding tissue , and the 

Position and recording characteristics of the electrodes , as well as the 
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form of the response of a single photosensitive cell, any conclusions drawn 

from ERG data are necessarily rather tentative . The ERG of a large 

proportion of tested species, including euphausiids (Boden et al . 1961) 

and the hermit crab Eupagarus (Stieve 1960), offers evidence for only one 

visual pigment . Many crustacea have an ERG peaking around 500nm, very 

similar to the curve that would be produced by a single unshielded pigment , 

and substantially unchanged by adaptation to red or blue light, as in the 

l obster Homarus (Kennedy and Bruno 1961, Kampa et al .1963; Wald 1968, 

A max 525nm), the crabs Callinectes (Goldsmith and Fernandez 1968, A max 

505nm) , Uca and Sesarma (Scott and Mote 1974, A max 508nm) an anomuran, 

Pleuroncodes (Fernandez 1973, A max 523nm) and the isopod Glyptonotis 

(.Laughlin , pers .comm. 495-500nm) . In some species the shape of the spectral 

sensitivity curve is unchanged by light adaptation , but has a secondary 

peak at shorter wavelengths, as in Sguilla mantis (Schiff 1963), and 

Porcellio (Goldsmith and Fernandez 1968). 

In other animals, the shape of the spectral sensitivity curve of 

a light- adapted eye is different from that of a dark-adapted eye. The 

interpretation of these changes is unclear without additional evidence , 

since . they could be caused by either changes in the distribution of 

screening pigments, or by selective adaptation of one of several types of 

visual pigment . The effect ~ay be independent of the adapting wavelength, 

as in Libinia (Wald 1968), where the light-adapted sensitivity is almost 

flat between 390 and 500nm, while the dark- adapted curve is symmetrical , 

with a peak at 490nm. 

In other cases , the effect depends on whether blue or red light 

is used to adapt the eye . In the crayfish Procambarus and Orconectes, 

Wald (1968 ) and Goldsmith and Fernandez (1968), found that adaptation to 
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red light suppressed the peak at 570nm and revealed a smaller peak at 

425-450nm. Similarly, the shrimp Palaemonetes paludosus has a dark-

adapted spectral sensitivity peaking at 550nm with a shoulder at 380nm which 

is selectively enhanced by red light adaptation (Goldsmith & Fernandez 1968) . 

The difference in dark-adapted spectral sensitivity peak of 

crayfish ERG 570nm) and the A max of the visual pigment measured by msp 

(530nm ) has been explained as the effect of the red-brown screening pigments 

by Kong and Goldsmith (1978), who examined a white-eyed mutant which lacked 

them . Goldsmith (1978) extended the argument to cover other decapods with 

superposition eyes and similar screening pigment . The most drastic shifts 

so far seen as a result of selective adaptation, occur in the crab Carcinus 

(Wald 1968 ). The dark-adapted curve was rather broad, peaking at 500-520nm. 

Adaptation to red light caused a shift to 425nm . While adaptation to blue 

light caused a shift in the other direction, to 565nm. However, both light

adapted curves were very broad, maintaining a high sensitivity over most 

of their range. This work was repeated by Bruno, Mote and Goldsmith (1973), 

who found the dark-adapted curve was narrower, with a maximum of 493nm 

making a reasonable fit with the absorbance of the rhodopsin as measured 

by msp, but the results of their selective adaptation studies were 

equivocal. 

Intracellular recordings from retinula cells 

Most published determinations of spectral sensitivity in crustaceans 

using intracellular recording have been made using excised eyes, as have 

some of the ERGs, and are therefore not necessarily totally reliable. 

Studies on dark adapted crab eyes have shown peak spectral sensitivities 

very close to those found with ERGs (Carcinus, Bruno, Mote and Goldsmith 

1973; Callinectes, Scott and Mote 1974). Leggett (1978) using the mud 

crab Scylla, with eyes in situ, showed that there are sometimes considerable 

shifts in the spectral sensitivity of light-adapted cells, from a dark

adapted peak of 495nm. An intact Antarctic isopod, GlyPtonotis, showed 
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a dark- adapted peak close to 500nm, (Laughlin , pers . comm . ). 

The crayfish Procambarus has been relatively closely studied . 

Nosaki, in 1969 , reported two classes of retinula cell , one maximally 

sens it i ve t o violet light, the other, more common type maximally sensitive 

to yellow- orange light . · This study was repeated on the same equipment by 

Waterman and Fernandez (1970) . The "V" cells were grouped around 440nm, 

the "Y- 0" type averaged 594nm, ranging from 538 to 634nm peak sensitivity. 

Micro- anatomical evidence from selective adaptation of retinula cells 

Eguchi , Waterman and Akiyama (1973) exposed the eye of Procambarus 

to long (6 h) periods of yellow or violet light, and counted the number of 

"lysosome related bodies", supposedly associated with light adaptation in 

Libinia (Eguchi and Waterman 1967) , in cross-sections of the main retinula 

cells Rl- 7. Although some bodies were found in all cells under both light 

regimes, there were ·more in Rl and R7 in yellow light, and in R4 and R5 in 

violet light (Parker ' s numbering system) . The remaining cells showed no 

clear effect. The distribution of retinula cell screening pigment , which 

has been shown to move independently in t he ~ells of one ommatidium (Ludolph 

~ . (1973) was not mentioned . Msp measurements comparing the difference 

spectra of points within rhabdoms of crayfish (Goldsmith 1978b) demonstrated 

that pigment composition within the rhabdom of Rl- 7 is spatially uniform . 

It is therefore unlikely that the results of Eguchi et al . were caused by 

a division of r etinula cells into those with violet-sensitive or yellow

sensitive pigment . 

Evidence from interneuron recordings 

Perhaps the clearest physiological indication of colour vision 

comes from interneuron recordings . In 1970 two sets of experiments were 

r eported on the spectral sensitivity of sustaining fibres recorded from 

the optic tract of Procambarus, Trevino and Larimer found dark-adapted 
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spectral sensitivity curves with maxima between 570-575nm,narrower than 

the r eceptor spectral sensitivity. Red light adaptation exposed an input 

with a maximum at 445nm . Near the threshold, the set of spikes produced 

by a single flash could be resolved into two bursts. The shorter latency 

burst (30-40 msec) was more sensitive in the range 575-650nm, while the 

sensitivity of the longer latency (120-130msec) burst peaked at 445nm. 

Woodcock and Goldsmith, in a similar experiment , found that 90% of the 

units they recorded had peak sensitivity in the yellow-green, between 

560-580nm, but about 10% had the peak in the blue, near 460nm . The shape 

of the curves suggested that each sustaining unit was receiving at least 

some input from both the yellow-green and the blue systems . During dark 

adaptation, the shifting of the peak response to shorter wavelengths 

paralleled the retraction of the screening pigment, and could be reversed 

by injecting the animal with eyestalk extract, which caused the screening 

pigment to extend to the light-adapted state . 

Evidence from behaviour for colour vision 

Colour discrimination is notoriously hard to demonstrate 

(e.g. Menzel, 1979 in press), and the behavioural evidence from decapods 

is sparse. While crabs in particular are often brilliantly coloured and 

apparently make use of this in visual display it is hard to rule out other 

factors in the behaviour that might be significant. The prime example of 

this is the display behaviour of Uca where close study has shown that the 

various species not only have different coloured chelae, but also wave 

them in different patterns and make different sounds with them (Crane, 1975). 

Many laboratory studies involving the response to stripes, either in a 

choice situation (e . g . Eupagarus, Stieve 1960) or using optomotor responses 

(e .g . Potamon, Ba~erlein 1969) are complicated by the very high ability of 
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the animals to distinguish between shades of grey. Experiments involving 

coloured lights are less open to question. Many plankt onic crustacea are, 

under certain circumstances, phototactically repelled by short wavelengths 

and attracted to longer wavelength light (Daphnia, von Frisch and 

Kupelwieser 1913; Bosmina, Ceriodaphnia, several copepods, stomatopod 

l arvae, Baylor and Smith 1957) , Hyatt (1975) succeeded in demonstrating 

a di scrimination in phototactic behaviour among some combinations of blue, 

red, white, and UV light over a considerable range of intensities in Uca . 

With this background in mind, the following experiments were 

undertaken in order to determine the spectral sensitivity of the retinula 

cells of Leptograpsus over a wide range of background intensities. In view 

of the variety of shielding-pigment states demonstrated in Chapter II, 

and since none of the pigments, taken in isolation, approaches a neutral 

density some changes in spectral sensitivity with light adaptation are to 

be expected . Leggett (1978), working with Scylla , found a variety of 

spectral classes which he interpreted as being due to a combination of 

adaptation effects and differ ences in the properties of the screening pigments 

from between omrnatidia. These differences (for which no other evidence was 

given) supposedly make colour vision possible with only one photopigment . 

The theoretical screening effects of the pigments present in Leptograpsus 

on spectral sensitivity were calculated in order to see if those pigments 

known to be common to all cells (at least Rl-7) could produce the range of 

spectral sensitivitie s that were measured. 

The polarisation sensitivity and angular sensitivity of some 

cells was measured to demonstrate the reliability of results with intact 

eyes. 
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METHODS 

Preparation and recording 

Crabs were made to autotomise their legs , and the back of the carapace 

fixed with quick- setting cyano- acrylate glue to a Perspex holder mounted on 

a magnetic s t and . The eyes were positioned as they would be in an alert 

animal , secured with Plast i cene , and immobilised by filling the eye- cup with 

"Vertex" dental cement . 

The crab was positioned in the recording set- up at the centre of a 

Cardan arm perimeter device , and the eyes wiped with damp tissue to remove 

any salt deposit left by drying sea- water . A chip of razor blade was used to 

cut a triangular hole with sides about 5 facets or 200 µm long in the dorsal 

cornea , and the electrode was quickly introduced vertically with the aid of 

a Leitz joystick micromanipulator . Haemolymph drying around the electrode 

provided some stability, but even so movements of the eye produced by the 

heart - beat were large enough to prevent stable recording in about 50% of 

the preparations . 

The recording electrodes of resistance 150- 200 Mn , were pulled 

from fibre - filled glass and filled with 3M potassium acetate . The 

indifferent electrode was a silver wire pushed into the rear leg stump . 

The signal was recorded through a Grass Pl6 amplifier and displayed on an 

oscilloscope and a chart recorder . All measurements , apart from some 

resting potentials , were made from the chart recorder . Crabs generally 

remained in good condition , if they were kept moist , for about a day .. 

Recordings were made from June 1978 to January 1979 . 

Stimulation 

The li ght source was a 150 watt Xenon arc lamp . The stimulating 

beam passed through a heat filter , a collimating lens, neutral density 

filte r s , interference filters, a focusing lens and a shutter (Unibl itz) . 
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The beam was focused onto a 4mm diam quartz light guide attached to the 

Cardan arm . The quartz neutral density filters (Balzers) allowed attenuation 

over 5 . 6 log units in 0 . 2 log unit steps. The twenty interference filters 

(Schott and Corion) ranged from 317 to 621 nm peak transmission. The light 

guide subtended 1 . 3° at the crab eye. The set-up was calibrated about once 

a month using a Hewlett Packard type 8330A radiant flux meter. Apart from 

the first few weeks after the installation of a new bulb, the measured 

transmis sion through the filters varied little. The quantal transmission 

through the filters from 373 to 621 nm inclusive was adjusted to within 

13% of 1.8 x 1013 Q/cm2/sec . , but transmission through the UV filters 317, 

34 5, and 358nm was 20-40% less, and was not adjusted. The correction 

factors applied to the measured responses, then, were not more than 0.06 

log units for filters above 373nm, but up to 0 . 39 log units for the three 

shortest-wavelength filters. 

During all the experiments described here, a 20 msec flash was 

given at 10 second intervals, and where possible the N.D. filters were 

adjusted to keep the response below about 25mV . Brighter or more frequent 

flashes caused appreciable adaptation, so that the responses to consecutive 

stimuli were not independent . 

When a cell with a stable resting potential of 50mV or over was 

found , the light guide was centred on the optical axis, using flashes 

delivered once every second . The experimental run was started after the 

response to a flash of the same intensity, delivered once every 10 seconds, 

had stopped increasing . Since cells could not be stimulated to produce their 

maximum response (50-80mV) until they had been completely dark-adapted for 

about 30 minutes, and did not fully recover for a further half hour, the 
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maximum response was generally not determined. V/log I curves were 

measured by· starting near threshold and increasing the intensity in steps 

of 0 .2 log units until the response of the cell had reached about 30mV. 

White light intensity series were interspersed between experimental runs 

i n all experiments . Monochromatic intensity series were sometimes taken, 

and found to have the same slope as white light series, but they were not 

. generally used as the light intensity available was often insufficient to 

pr oduce large responses. Polarisation sensitivity or angular sensitivity 

was determined for some cells, but most were used only for spectral 

sensitivity measurements . All cells used were in the central, anteriorly 

directed part of the retina . 

Polarisat ion sensitivity 

Sensitivity to the plane of polarisation of white light was 

measured by rotating a piece of polarising film (Polaroid type HN38) in 

front of the light guide through 180° in 10° steps. The maximum and 

mi nimum responses during the polarisation run were compared with the V/log I 

curve to find the PS. Polarisa tion runs were considered valid if all 

responses fell within the linear part of the V/log I curve (where measurement 

error and intrinsic variation in response have least effect), and if the 

size of the responses at O and 180° rotation of the polaroid were equal, 

implying that the sensitivity of the cell had not changed during the run. 

All PS measurements were made on dark-adapted cells. 

Angular sensitivity 

White light was used for angular sensitivity measurements . To 

provide a point source, the li ght guide was covered with a metal mask with 

an aperture that subtended 20 ' at the eye . After the point had been 

centred and an intensity series made, the point was moved in a vertical arc 
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through the point of maximum sensitivity int or ~0 steps. Several runs 

were made, with the source moved alternately up or down. The position of 

some cells was determined by shining a microscope lamp onto the eye along 

the optical axis of the cell, and noting the position of the dark 

pseudopupil that could be seen facing the light. The mapping system used 

was that of Sandeman (1978), i . e. the position of a point on the eye is 

given in relation to a vertical axis through the dorsal "peninsula" of 

cuticle and a horizontal axis which is the "equator" of the eye in the 

normal position. 

Spectral sensitivity 

Spectral sensitivity was calculated from the spectral efficiencies 

obtained by stimulating with monochomatic flashes of the same quantal 

content (corrected for the small differences in actual quantal transmission 

of the filters) . It was measured in three "steady states", a) dark 

adapted for at l east 30 minutes, b) in the dim light (10-20 uW/cm2 ) of the 

normal room illumination (a 150 watt pearled tungsten bulb), and c) in the 

bright light (.8-lOmW/cm2 ) of a 30 watt tungsten microscope lamp focused on 

the eye from not more than twenty degrees from the axis of the cell being 

tested. In cells adapted to these conditions (DA, dimLA, bright LA) a white 

light intensity series was made before and after two spectral runs (ascending 

and descending), as shown in Fig . 3.1. In transitional states of 

adaptation, particularly during the first few minutes of bright light 

adaptation, single spectral runs were alternated with intensity series . 

Spectral sensitivities were calculated day by day as data was 

obtained, with a Nova II computer using a programme introduced by Laughlin 

(1974 ), but the results presented here were obtained from curves calculated 

and plotted by hand. 



Fig . 3.1 Responses of dark adapted cell (70mV R.P . ), consecutive 

except for short joining segments . The stimulus at 317nm 

and the two adjacent stimuli are not isoquantal with the 

remainder. The middle portion of each response has been 

retouched slightly . The test flash given at the end of 

the descending spectral s,eries is white light, -4-.6 log 

units, and shows that the sensitivity of the cell is 

unchanged . 

Xeroxed, 3/4 actual size .. 
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The effects of the screening pigments were modelled using the 

data on absorption from Chapter II, and rhodopsin and metarhodopsin 

absorptions from Dartnall's (1953) nomogram . Calculations were made on a 

Hewlett- Packard 97 desk calculator. 

/ 
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RESULTS 

In good preparations, cells could be held for 30-45 minutes 

routinely and occasionally for up to three hours . The average resting 

potential, measured for 42 cells, was 69 . 8mV, with a standard deviation 

of ll . 8mV . 

Polarisation sensitivity 

Of 14 cells tested, nine were preferentially sensitive to 

vertically polarised light and five to horizontally polarised light . The 

average PS of twelve cells for which quantitative data were obtained was 

. 9, 0, . However the most common PS (five cells) was between 10 and 11, the 

dist~ibution being skewed by two cells with very steep V/log I curves, 

t hat produced PSs of 2 . 8 and 2 .6, although the response .modulation was 

large . Discarding these cells left the remaining ten with an average PS 

of 10, ranging from 6 . 3 to 14 . 8. 

Angular sensitivity 

The angular sensitivities of 17 cells, measured as tp, the width 

of the angular sensitivity function at the 50% level, were tested under 

various conditions of light and dark adaptation . The average differenc e in 

~p between consecutive runs on the same cell in a stable adaptation state 

was 0.2°. 

The average angular sensi ti vi ty of eight .cells measured under 

0 0 0 
dim light during the day was 2 , 5 , ranging from 1 . 5 to 3 . 2 . The position 

of six of these was measured, and although the number of cells involved is 

too small to reach any definite conclusion, those cells with narrower angular 
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sens i tivit ies were found nearer the most anteriorly directed part of the 

ret ina. ~p of four of these cells were measured during adaptation to 

bright light . Over times ranging from four to twenty-five minutes, the 

0 0 0 angular sensitivities of three decreased, from 2 .1 to 1 . 3 , from 3.2 

t o 1 .9° , and from 2.4° to 1 . 8° , while the fourth was unchanged, at around 

3° after four minutes . 

The average angular sensitivity of six cells dark adapted at 

night was 2 . 7° , ranging from 1.8° to 3 , 7°. Two cells, initially adapted 

t o dim light , were monitored as they were dark adapting . On~ tested during 

the night , showed an increase in ~p from 2.4° after 7 minutes DA , to 3 . 5° 

after 25 minutes DA. The other, tested during the day, changed from 1 . 6° 

0 0 
to 2 .3 to 3 . 7 over about fifteen minutes DA . 

Spectral sensitivity 

Thirty- three cells were measured while dark adapted , 21 while 

adapted to "dim" light , and 16 during adaptation to "bright" light . Most 

cells were tested in more than one adaptation state. 

Dark adapted 

The spectral sensitivity of dark adapted cells was almost the 

same at night (n=8 ) as in the day ~n=7 ), in spite of an increase of about 

l. 5 log units in relative sensitivity (measured as the difference in 

int ensity of the standard stimulus needed to produce a constant response) 

at 500nm (Fig . 3 . 2 ). The average .Amax of these fifteen cells was 484nm 

(S.D. 22nm), and the range of Amax was from about 450 to 520nm. (The 

r emaining 18 dark-adapted cells were measured around dusk . Their spectral 

sensitivities seem identical, but they are not further analysed here ). 
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Dim light adapted 

Cells adapted to dim light had broader spectral sensitivites 

than dark-adapted cells. They were sometimes double-peaked, and had 

· maxima anywhere between 422nm and 531nm. The peak response was, on 

average, shifted to longer wavelengths than in a dark-adapted cell, to 

520nm in the day and 500nm at night . The variation in response of one 

cell over 12 runs, or about one hour, is shown in Fig. 3.3. The averaged 

spectral sensitivities of 10 cells recorded during the day and 4 cells 

measured at night are shown in Fig. 3.4. The shapes of the two log 

spectral sensitivity curves are not very different, although the day curve 

is rather flatter. The relative sensitivities are very similar, the d~y 

and night groups being less sensitive than cells dark-adapted at night by 

2.4 and 2.6 log units respectively. A histogram of the peak responses of 

19 cells (Fig. 3 . 5) shows no evidence of a division into more than one 

colour type, although the scatter is so large that on this evidence alone 

such a division cannot be ruled out. 

Bright Light Adapted 

The general pattern of changes in spectral sensitivity during 

adaptation to bright light is consistent, but the precise timing and extent 

of the shifts . varies somewhat from cell to cell . During the first 2-5 

minutes , the peak sensitivity shifts dramatically to shorter wavelengths, 

around 360-400hm. The spectral sensitivity curve usually has two maxima 

at.this stage, the smaller at 500-537nm. The relative size of the two peaks 

changes steadily, the shorter-wavelength peak becoming less pronounced over 



Fig . 3 , 3 

Fig . 3.4 . 

Variation in log spectral sensitivity of one cell adapted 

to dim light, over 12 runs, normalised to 520nm . Bars 

show S .D. 

Mean and S.E . M. of cells adapted to dim light , during the 

day (n=lO) and at night (n=4) . 
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30-40 minutes, until the shape of the spectral sensitivity curve approaches 

t hat of a cell adapted to dim light. The pattern is not as well defined 

in the averaged results (Fig. 3. 6) as in individual cells (Fi g . 3.7), 

because of the variation in peak sensitivities and their relative sizes 

and rates of change from cell to cell. 

With the onset of a bright adapting light, sensitivity to 

white light drops by up to 4 log units. It recovers rapidly for the first 

few minutes and more slowly over the next half hour or so, to not far 

below the dim light-adapted level. It was frequently impossible to 

measure spectral sensitivity until 2-5 minutes after the beginning of the 

adapting stimulus, because the source did not deliver monochromatic light 

of sufficient intens ity. Changes in sensitivity of a single cell are 

shown on a log scale in Fig . 3.8 . The increase in sensitivity during 

bright light adaptation is difficult to interpret because the adapting 

light was not axial . This means that the effect of the various pigments 

moving into new positions is different for the adapting light and the 

st imulating light . Very little is known about crab metarhodopsins, and 

no attempt is made here to analyse the effect of inter-rhabdomic processes 

in general on s ensitivity . 
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Fig . 3 ,7 Effects of bright light adaptation on single cells. 

A. dimLA (3 runs), to 2 min. (1 run), 10 min . (2 runs) 

and 30 min. (2 runs) of bright light adaptation . 

B. 5 , 21 and 40 min . of bright light adaptation 

(2 runs each) 

C. Two consecutive runs at 10 min. bright light 

adaptation . 

D. 10 min (2 runs) and 30 min. (1 run) of bright light 

adaptation . 
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Fig . 3.8 Changes in log spectral sensitivity of a single r etinula 

cell . Starting with the cell adapted to dim light, 

spectral sensitivity is also shown after 2 min . (1 run) , 

9 min. (1 run) and 22 min. (2 runs) adaptation to bright 

light . Dark adaptation was then begun , and the spectral 

sensitivity tested after 11 min . (1 run) , 17 min . (1 run) 

and 23 min . (2 runs) . The U- V subpeak in the 23 min. DA 

curve is atypical . 
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Effects of Screening Pigments-Theory 

The amount of light absorbed by a material is given by the 

exponential relation 

from (1) 

= o...t 

where I. = intensity of incident light 
1. 

It= intensity of transmitted light 

i = path length of the light 

(1) 

a= an absorption (extinction) co-efficient that 

depends on the absorptive power of the material 

and the wavelength of the light 

The absorbance, or optical density, D, is given by 

(2) 

( 3) 

and the absorbance at a given wavelength A is 

(4) 

The theoretical absorbance of a thin layer of rhodopsin can be 

found from a nomogram (Dartnall 1953) that uses absorbance values measured 

for a photopigment of one Amax to generated absorbances for a photopivnent 

of any Amax. 

The absorption, A, is the fraction of light absorbed; 

A = I. - It 1. 

I. 
(5) 

l 

= 1 It 
I. 

1. 

and from ( 2 ) = 1 - 10-D (6) 
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and ( 7) 

The normalised function A(A)/A(.AIDax) is the spectral sensitivity . 

The theoretical effects of screening pigments on visual pigment 

absorption have been discussed by Goldstein and Williams (1966) , and the 

treatment applied to some crustacean superposition eyes by Goldsmith (1978a). 

The effect of the screening pigment can most easily be assessed if it is 

treated as being in one of two extreme positions, either overlying the 

visual pigment, or homogeneously distributed throughout it. One of these 

may be close to the real situation in some cases - all the light distal 

pigment lies above the rhabdom , for instance, and in some circumstances 

metarhodopsin may well be uniformly dispersed along the rhabdom . More 

usually , the situation is somewhere between the two - the retinula cell 

screening pigment, for instance, may be concentrated just distal to the 

rhabdom , but it also lies beside the rhabdom along the length of the 

retinula cell, and in the second position it probably acts as a dispersed 

screen . However pigment which lies beside the rhabdom will act as an 

overlying screen for light entering the rhabdom obliquely . 

The functions given by Goldsmith (1978a), for a rhodopsin of 

absorbance D(A) , and a pigment screen of absorbance D' (A) are, for an 

overlyiing pigment screen, 

A(A) = 10-D '(A)[ l - 10-D(A)l 

and for a homogeneously distributed pigment , 

A(A ) = I D(A) l [1-10-[D(A)+D'(A)f] 
l:o( A)+D I ( A)J 
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Using these equations, the effect of various screening pigments 

in Leptograpsus were calculated, either as if they were an overlying screen, 

or as if they were homoge_neously distributed, for a variety of optical 

densities of screening pigment, rhodopsin, and metarhodopsin. 

Screening pigments 

In Chapter II, the screening pigments were measured individually, 

by microspectrophotometry . The method used yields the relative 

absorbance spectra, i.e. D'(A)/D'(Amax), but not the absolute value of D 

D' (Amax), the absorbance at peak wavelength , since the thickness of the 

pigment being measured is not known. In the calculations, D'(Amax) is 

therefore varied, within reasonable physiological limits, to find the best 

fit with the measured spectral sensitivities of the retinula cells. 

Rhodopsin 

The peak sensitivity of rhodopsin was taken as 485nm, from 

the measured values in dark-adapted cells . To find the optical density 

of the rhabdom at this wavelength, it is necessary to know the coefficient 

of absorption, a (see Eqn . 3) . This is not available for Leptograpsus, 

but Bruno et al . (1973) have measured the coefficient of absorption in 

isolated rhabdoms of the crab Carcinus as O. 6% per µra at thE· :;:e,ak wavelength . 

This is considerably lower than the absorption coefficient measured in 

the spider crab Libinia by Hays and Goldsmith (1973) as 1.3%/ µm . The 

Carcinus coefficient is used here because Carcinus is closer to Leptograpsus 

Phylogenetically, ecologically and morphologically than is Libinia . Taking 

the average length of the rhabdom as 350 µm, the axial optical density of 
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t he rhabdom can be found by substituting in Eqn. 4: 

D 
l ( 0 . 006 X 350 

oglO e ) 

= 0.91 

and the absorption , from Eqn . 6, is 

= o.88, 

i . e . 88% of axial light at peak wavelength is absorbed . 

Me tarhodopsin 

Briggs (1961) found a metarhodopsin of Xmax 495nm in Leptograpsus 

eye extract. Msp measurements on another crab, Libinia (Hays and .Goldsmith 

1969 ), revealed a metarhodopsin with maximum absorbance at slightly longer 

wavelengths than the Xmax of the rhodopsin, which was 493nm . It therefore 

seemed reasonable to use Briggs' value of 49 5nm as the peak absorbance of 

the metarhodopsin . The molar extinction co-efficient was assumed to be 

the same as for . rhodopsin . 

Self-Screening by Rhodopsin 

If no separate screening pigment is involved, absorption by 

rhodopsin is given by Eqn . 7. Fig. 3 . 9 shows the absorption of an 

unscreened 485nm visual pigment taken ·from Dartnall ' s (1953) nomogram, the 

normalised absorption of a 485nm pigment of peak optical density 0 . 91, 

corrected for self-screening, and the pooled spectral sensitivity 

measurements from day and night dark-adapted cells . The experimental data 

are closely approached by the theoretical curve corrected for self-screening . 

It can be concluded that the dark-adapted spectral sensitivity is the result 

of the rhodopsin alone, and that screening pigments do not appreciably alter 

spectral sensitivity in this state . 
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Screening by Metarhodopsin 

The distribution of metarhodopsin within the rhabdom under 

conditions of constant illumination depends on the rate of photoregeneration 

of rhodopsin from metarhodopsin along the rhabdom, and the rate of 

metabolic regeneration. Both processes are known to occur in decapods , 

in Homarus for example (Bruno et al . 1977 ) , but the rate constants and the 

relative importance of the two processes vary widely among arthropods, and 

there is no data available for grapsid crabs . In insects, the distribution 

of metarhodopsin along the rhabdom is usually strongly dependent on the 

wavel ength of the stimulating light , (Hamdorf et al . 1973) but in crabs, 

where the peak absorbance of the rhodopsin and the metarhodopsin are very 

close, this factor is of much l ess importance . The effect of metarhodopsin 

on absorbance was therefore calculated in the two extreme conditions, 

without supposing that there was any firm justification for either. The 

actual situation presumably lies somewhere between the two . In both cases 

the total optical density of rhodopsin and metarhodopsin was held constant 

at 0 .91 , while the relative proportions were varied . 

A homogeneous mixture of metarhodopsin and rhodopsin produces 

spectral sensitivity curves with peaks shifted to slightly shorter wavelengths 

(c. 470nm) than the pure rhodopsin absorbance . There was little change in 

the shape of the normalised spectral sensitivity curve for metarhodopsin 

optical densities ranging from 0 .4 to 0 . 9099, i.e. well beyond the 

Physiological limits . If metarhodopsin is treated as an overlying pigment 

(Fi g . 3 . 10 ) the spectral sensitivity curve becomes broader, because of 

telatively increased absorption at short wavelengths, and the peak is shifted 

to c . 440nm, developing a shoulder at about 520nm . 
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If the accompanying reduction in absolute absorption is taken 

into account, the spectral sensitivity curves generated by rhodopsin

metarhodopsin mixtures do not resemble any obtained by recording from cells. 

Screening by Retinula Cell Screening Pigment 

Since that part of the retinula cell screening pigment which 

lies alongside the rhabdom is competing for light · with rhodopsin all along 

the l ight path, it was treated as a homogeneously distributed pigment. 

That part which lies in the extreme distal part of the retinula cells, 

around R8 , can more properly be considered as an overlying screen. 

As a homogeneously distributed filter, with O.D. up to 3 . 0 , the 

effect of this pigment is to make the spectral sensitivity slightly narrower 

than that of the pure rhodopsin, without appreciably altering the position 

of the peak absorption. As an overlying screen (Fig . 3 .11) the pigment 

causes the spectral sensitivity to become narrower, and the peak shifts 

to longer wavelengths. An increase in pigment O.D. from 0 . 01 to 3 . 0 

produces a shift in Amax from 485 to 520nm, with a decrease in absorbance 

of about 2 log units at 500nm . 

Screening by the Dark Distal Pigment 

As an overlying pigment, the dark distal pigment at optical 

densities up to 3 . 0 produces a slight narrowing of the spectral sensitivity 

curve , with negligible shift in the position of peak absorption . The 

effect of the pigment as a homogeneously distributed filter was not tested . 

Sc reening by the Red Basal Pigment 

Since the red basal pigment lies at the proximal end of the 

rhabdom, and is fairly far removed from the rhabdom even when it extends 

distally between ommatidia (Fig . 2 . 12a ), it is rather difficult to determine 

its position in the light path , and hence the appropriate way to analyse its 
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effects . This is most unfortunate, since it is the only screening pigment 

in t he eye with a high transmittance in the UV, and seems to be the only 

factor which could be causing the transient UV- violet peak that appears 

in the spectral sensitivity of cells adapting to bright light . The effect 

of the red pigment was calculated as an overlying , screen and as a 

homogeneously distributed filter, with a rhodopsin of optical density 0.4, 

since some bleaching might be expected under these conditions . Treated 

as a homogeneously distributed pigment, with an optical density of 1 .0, 

the red basal pigment produces a slight upwards kink in the spectral 

sensitivity curve at about 380nm. As an overlying pigment, it produces 

a sharp peak at 380nm, increasing in prominence with increasing opt ical 

density of the pigment . Comparison of Fig . 3 .12 with the figures showing 

changes in the spectral sensitivity of individual cells during bright 

light adaptation shows the similarity of the effects . 

Screening effects of the light distal pigment and the reflecting pigment. 

The shapes of the absorption curves of · these pigments are very 

similar to that of the retinula cell screening pigment, differing only 

slightly in slope (see Chapter II} . Their effect has not been calculated 

separately, since the light distal pigment is not in a position to have 

much effect on axial light, and the reflecting pigment probably transmits 

a negUgible amount of light. 

§.£.reening effects of combination of pigments 

It is unlikely that the screening pigments in an eye such as 

the crab ' s normally act in isolation, and given the variety of effects 

Produced by single pigments , it should be possible to combine them to 

Produce almost any spectral sensitivity curve . Conversely , most spectral 



Fig . 3.9 Broken line; absorbance of a 485nm rhodopsin, from the 

nomogram . 

Solid line; Rhodopsin of optical density 0.91, showing 

the effect of self-screening. 

Squares; averaged spectral sensitivity of 15 day and 

night dark-adapted cells. 

Fig . 3.10 Calculated effects of varying optical densities of a 

metarhodopsin of Amax 495nm overlying a rhodopsin of 

Fig. 3 .11 

Amax 485nm . Total optical density of metarhodopsin and 

rhodopsin is 0 ,91, values shown are metarhodopsin optical 

densities . N· ' 485nm nomogram . 

Calculated effects of varying optical densities of 

retinula cell screening pigment overlying rhodopsin of 

optical density 0 . 91. 

Fig . 3 .12 Calculated effects of varying optical densities of red 

basal pigment overlying rhodopsin of optical density o.4. 

Fig . 3 .13 Calculated effects of a combination of varying optical 

densities of retinula cell screening pigment and 

metarhodopsin of optical density 0 . 5 overlying rhodopsin 

of o.4. 
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sens i ti vi ty curv_es could probably be produced i n several ways , so juggling 

combi nat ions of pigments might seem to be a rather pointless exercise . 

Nevertheless one combination which should reflect a real 

situation is the effect of increasing optical densities of retinula cell 

screeni_ng pigment on a mixture of rhodopsin and metarhodopsin (Fig . 3 .13) . 

With a metarhodopsin optical density of 0 . 5, the curve produced is much 

broader than that c:>f either pigment acting in isolation . It has broad 

maxi ma at around 440 and 520nm , which change in relative height as the 

opt i cal density of the retinula cell screening pigment is increased from 

0. 5 to 2 . 0 . These curves are very similar to the spectral sensitivi ty 

curves recorded from cells adapted to dim light . This is the only 

combination of pigments which has been modelled so far, and it is not 

necessarily the one naturally operati ve , but i t does offer one possible 

explanation for spectral sensitivities measured in dim light, which are 

broader than the dark-adapted spectral sensitivities and show a range of 

peak sensitivites . 

DISCUSSION 

Polarisation sensitivity 

The most commonly found PS values , between 10 and 11 , are 

similar to those found by Shaw (1969) in Carcinus and Ovalipes . Theoretical 

analysis of f'used rhabdoms by Shaw (1969 ) and Snyder (1973) has demonstrated 

that a high PS is only to be expected, since selective absorption in 

different rhabdomeres is sufficient to counter-act the effect of self

screening , however long the rhabdom . The PS in such a rhabdom should be 
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e~ual t o the dichroism of the photopigment in the membrane (Snyder, (1973) . 

Part of the variation in measured values could come from distortions in 

the alignment of the rhabdom produced by the process of recording, although 

this can only decrease the PS. 

Angular sensitivity 

The angular sensitivities of light- adapted crab eyes in the 

central region of the eye are very similar to those found in many fast 

diurnal insects, e.g . Musca 2.5° (Scholes 1969), Calliphora Rl- 6, 1 . 5° 

(Hardie 1979), dragonfly 1 . 3- 1 . 5° , (Laughlin 1975 ) , bee , 2 .7° (Laughlin 

and Horridge 1971) . There was little if any difference between dark- adapted 

angular sensitivities during the day and at night . Light and dark 

adaptation during the day produced narrowed (to less than 2°) or widened 

(to 3- 4°) angular sensitivities respectively . One cell monitored during 

dark adaptation at night showed an increasing acceptance angle . It seems 

fairly safe to conclude that the angular sensitivity changes in response 

to light levels during both ni ght and day, but, at least in the central 

area of the retina, the changes take place over a fairly narrow range . No 

stable cells had an ·acceptance angle greater than 4° under any conditions . 

This may imply that Leptograpsus can maintain acuity of vision to a greater 

extent at night than say , Scylla , in which Leggett (1979 ) found a change in 

dark- adapted acceptance angles from 4° in the day to 10° at night . Both 

crabs have much smaller dark adapted acceptance angles than the crayfish 

0 
.Qli.erax (~alcott 1974) , in which the acceptance angle changes from 3 when 

light-adapted to 24° when dark-adapted . 



The wider angular sensitivities measured in dark adapted eyes 

could be caused both by an increase in the acceptance angle of the rhabdom 

t ip, and by a decrease in the optical isolation of the retinula cell 

columns, allowing scattered light to enter the rhabdom. Three pigments 

are in a position to affect the first factor; the light distal, dark 

di stal, and retinula cell screening pigments . In Chapter II it was found 

that there is little variation in the position of the light distal pigment 

under any conditions. The dark distal pigment forms an aperture above the 

rhabdom tip that is larger at night than in the day, but there was no 

evidence that the size of this aperture varied in response to light intensity. 

The retinula cell screening pigment, on the other hand, moves rapidly both 

radially and longitudinally in response to light, particularly that part 

of it which is concentrated in the distal part of the cell. In the light 

adapte.d state, much of this pigment lies distal to the tip of the rhabdom. 

There is evidence of its role in the regulation of angular sensitivity in 

other crustacea (de Bruin and Crisp 1957, Walcott 1974) as well as in 

insects (Kolb and Autrum 1972) . The amount of light scatter.ed within the 

retina, and the amount of leakage from the retinula cell columns, seems 

fr om the anatomy of the eye to be primarily controlled by the reflecting 

pi gment . In the light-adapted eye, this pigment forms a close sleeve around 

the retinula cell columns, while in a dark-adapted eye at night, the pigment 

i s largely retracted from the distal part of the retina . 

The increase in absolute sensitivity (as measured by the amount 

of l _ight from a 1. 4 ° source needed to produce a constant response) of 

about 1 . 5 log units between night and day dark adapted eyes is produced 



48 . 

with very little change in a angular sensitivity . For this reason, although 

the retraction of the reflecting pigment and the -reduced amount of distal 

ret inula cell screening pigment must be considered as causal factors, their 

effect is' unlikely to be a large one . The other possible causes are the 

increase in size of the distal rhabdom, and the increase in diameter of 

the aperture formed by the dark distal pigment, as well as the reduction 

of screening pigment in the bulk of the retinula cell . If the tip of the 

rhabdom is exposed to a spatially uniform light flux, the amount of light 

entering the rhabdom will be directly proportional to its cross-sectional 

area . An increase in rhabdom diameter from 1 . 7 to 5 . 2 µm would increase 

sens itivity by a factor of 9 . 4, or about one log unit. The actual 

distribution of light at the cone tip is unknown, so this ~igure should be 

treated as a maximum that is unlikely to be achieved. There still remains 

at least 0 . 5 log units of sensitivity increase to be accounted for by other 

means . 

Spectral sensitivity 

The dark-adapted spectral sensitivity of Leptograpsus can be 

ade~uately explained as the product of an unshielded rhodopsin of Amax 

485nm. This peak sensitivity is to slightly shorter wavelengths than the 

493-508nm range that has been found in the six other crab species in which 

spectral sensitivity has been tested electrophysiologically . 

The measured spectral sensitivities under various adaptation 

conditions are interpreted here as being due to the interaction of rhodopsin, 

metarhodopsin , and various screening pigments . However, other factors which 

might under some circumstanc·es affect the measured spectral sensitivity 

must be considered . 



Perhaps the most obvious of these additional factors is 

absorption in the cornea. The spectral transmission of some crustacean 

corneas has been examined .by Goldsmith and Fernandez (1968). All corneas 

showed an absorption band at around 280nm, probably due to tryptophan and 

tyrosine residues in the cuticle protein. The absorption per micron was 

si milar for all the corneas they examined, the presence or absence of a 

distinct shoulder at around 350nm depending on the thickness of the cuticle. 

Leptograpsus, with a cornea c. 40 µm thick in a large crab, whose 43 µm 

cornea has a very low absorption before 350nm, where it is about 30%, 

ri sing slowly towards 300nm and then more steeply. There is therefore 

likely to be at least some increase in absorption by· the cornea below 

about 350nm in Leptograpsus, which will depr ess UV sensitivity under all 

adaptation conditions. 

The effect of absorption by the reflecting pi gment has not been 

considered . This pigment looks brown in transmitted light, and its 

absorption increases steadily towards shorter wavelengths. Kong and 

Goldsmith (.1978) suggest that in the white-eyed crayfish the equivalent 

pigment can absorb light when it is within a few µm of the rhabdom, shifting 

the peak sensitivity about 30 µm towards longer wavelengths. In 

Leptograpsus the reflecting pigment is always well removed from the rhabdom. 

Wave guide effects (Snyder and Miller 1972, Snyder and Pask 1973) 

have not been considered, since even the day rhabdom is large enough to 

render them relatively unimportant. 

Since frequent checks were made to ensure that the stimulus was 

on-axis, there should not have been any error due to non-axial stimulation, 

as described by Eguchi (1971) and Snyder and Pask (1972). 
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The rhabdom of R8 lies over that of Rl- 7 , and it must be 

exerc i sing some filtering effect . However since it is something less than 

5 µm long in Leptograpsus~ this should not be at all significant . 

The changes in spectral sensitivity that occur in Leptograpsus 

under the various conditions of light and dark adaptation during the day 

and night seem to be explicable , at least in broad outline , by the effects 

of pigment movements, absorption by metarhodopsin, and self- screening , on 

a rhodopsin of peak absorbance 485nm. These factors can combine to maintain 

a constant spectral sensitivity over a wide range of ambient light 

i ntensities , although it may take about 30 minutes to stabilise after a 

sudden , large increase in illumination . The light- adapted spectral 

sensitivity curve is broader than the dark-adapted curve, and the peak 

sensitivity is shifted, on average, to longer wavelengths, although there 

is a wide variation between cells . The shift in Amax is similar to , but 

less pronounced than , the effect produced by the "red- brown screening pigments" 

in light-adapted crayfish (Kong and Goldsmith 1978, Goldsmith 1978a). In 

Leptograpsus, it has been demonstrated that the shift is produced by the 

retinula cell screening pigment. 

Broadening of the spectral s ensitivity curve, and the maxima at 

shorter wavelengths, could be achi eved by contributions from several other 

pi gments . The effect of metarhodopsin acting as an overlying filter, as 

i t would do to some extent if it was unequally distributed along the rhabdom, 

was modelled , but no other pigment has yet been examined in combination 

with the retinular cell screening pigment . The dark distal pigment, with 

its secondary peak in transmission at around 480nm , could also be a factor, 
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as could the red basal pigment under fairly high illumination conditions. 

More analysis is necessary, both of the effect of combinations of pigments, 

and of the metarhodopsin and its regeneration mechanisms and distribution 

within the rhabdom. 

From the data available on cells adapted to dim light, one 

cannot say whether the observed variation in spectral sensitivity is always 

pre sent,' or if most of the cells are in the same state at any one time . It 

is also quite possible that there is less variation in a completely 

undamaged eye. Although no evidence of two distinct colour types was found 

in the dim light adapted eye, it must be remembered that the dark distal 

pigment cells are not symmetrically arranged in the ommatidium, and may 

introduce a bias in cell R7, to which they are closest. 

The only pigment found to have increased transmission in the UV 

range is the red basal pigment. Calculation of its effects on absorption 

by the rhodopsin indicates a small increase in sensitivity at 380nm when 

the pigment is treated as if it were homogeneously mixed with the photopigment, 

and a very pronounced peak in the same place if it is treated as an 

overlyi_ng screen. It is likely, therefore, to be the cause of the sharp, 

transient peak around 380nm that accompanies adaptation to bright light . 

The retinula cell screening pigment could then cause the progressive 

attenuation of the 380nm peak. 

The evidence for the involvement of the red basal pigment, 

although quite strong, is purely circumstantial. It has the right absorbance 

characteristics, it moves into a more prominent position in the retina under 

the appropriate conditions, and no other possible cause presents itself. 
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However , the position of the red basal pigment , if it really is as 

described in Chapter II, is still rather far removed from the rhabdom, 

and it is hard to see, assuming conventional ideas about light p~ths 

within the eye, how the effect produced is so large. Freeze- substitution 

or freeze - etch techniques should now be used to determine the position of 

pigments in these various states with more certainty . 

In spite of this, it is reasonable to conclude that the optical 

properties of the pigments, and the response of pigment-containing cells 

t o light , can in principle provide sufficient explanat ion for the observed 

variation in spectral sensitivity of Leptograpsus retinula cells Rl- 7 . 

It can also be concluded that this variation cannot reasonably be supposed 

to provide the input nec essary for colour vision . 



SUMMARY 

53 

CHAPTER IV 

THE RETINA- LAMINA PROJECTION IN THE CRAB 

LEPTOGRAPSUS VARIEGATUS 

... where silver- haired~ bald-headed gentlemen ... 

move among spectroscopic experiments ... and, apparatus 

for slicing into fractional millimetres the left eye 

of the female mosquito . 

- "Kim" 

The projection of retinula cell axons to the lamina was 

investigated by tracing them through a series of semi-thin sections . Forty

four such axons were traced from a single group of ommatidia as far as the 

distal layers of the lamina. The eight receptor axons of one ommatidium 

project to a single lamina cartridge . Therefore, because the crab has a 

fused rhabdom, angular information is conserved in vision, and the outside 

~orld is projected literally onto the lamina, just as it is in the standard 

non-dipteran pattern of insects. The belief of previous workers that other 

decapod eyes show neural superposition was an inference based primarily on 

the patterns of penetration of the basement membrane by receptor axons , and 

on degeneration experiments . This evidence is reviewed, shown to be 

inadequate and discussed in the light of the projection now demonstrated 

for Leptograpsus . 

Q!TRODUCTION 

In insects with fused rhabdoms all 7-9 receptor axons within one 

ommatidium have a common optical axis , and their axons enter a single lamina 

cartridge . In Diptera , which have open rhabdoms, each ommatidium contains 
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retinula cells with diverging optical axes, and the receptor axons from 

cells sharing a given optical axis converge from their different ommatidia 

to enter the same lamina cartridge (Kirschfeld 1967). Benacus and Notonecta 

(Hemiptera), also with open _rhabdoms, are the only non-dipterans in which 

the receptor axons are known to disperse as they enter the lamina, although 

t he retina-lamina projection has not been determined in detail (Meinertzhagen, 

1976) . Our ignorance of decapod retina-lamina projections contrasts with 

the extensive work in this area in insects (e. g . Trujillo- Cen6z and Melamed, 

1966; Braitenburg , 1967; Horridge and Meinertzhagen, 1970; Ribi, 1975; 

Sommer and Wehner, 1975; Meinertzhagen 1976) . 

Since research on decapod vision has reached the stage where the 

synaptology of the lamina is being examined (Harnori and Horridge, 1966b; 

Hafner , 1974; Nassel and Waterman, 1977), similar information is greatly 

needed . The elucidation of the decapod projection pattern has lagged behind 

mainly because of morphological peculiarities which hamper axon tracing . 

The axons are long (0.5 to 1mm) and in the lamina are less than two microns 

in diameter . Aft er penetrating the basement membrane, retinula cell axons 

from up to thirty ommatidia form large bundles of fibres which cross a wide 

haemocoelic sinus (upwards of 0 . 5mm in Leptograpsus), before diverging to 

to enter the lamina cartridges in groups of eight . Proximal to the basement 

membrane and again in the distal part of the lamina, the receptor axons 

bend and twist irregularly. 

Three previous interpretations of the retina-lamina projection in 

decapods have suggested that receptor axons from one ommatidium enter several 

lamina cartridges. Hamori and Horridge (1966a, c) argued from degeneration 

experiments and from crossing of receptor axons visible in the distal lamina 

of Homarus . The reports of Meyer-Rochow (1975, Panulirus) and Nassel (1976, 
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Pacifastacus) were based on the penetration pattern of axons through the 

basement membrane and their arrangement immediately below it, together with 

the work of Hamori and Horridge. In contrast to the situation in the fly, 

no satisfactory explanation .has been proposed for the supposed neural 

superposition in the decapod Crustacea . 

In this study, retinula cell axons of the common shore crab, 

Leptograpsus variegatus, have been traced through a series of semi-thin 

seri~l sections as far as the distal layers of the first optic ganglion, 

the lamina. 

METHODS 

Optic lobes were dissected out and fixed with the cornea still 

attached , to keep the large fibre bundles as straight as possible. The 

tissue was fixed in 2 . 5% gluteraldehyde in 50% sea-water for 2- 3 hours , 

post-fixed in 2% osmium tetroxide in 50% sea-water for 3 hours, dehydrated 

in an alcohol series, and embedded in soft Araldite . The method of Ribi 

(1976) was used, first sectioning in the horizontal or vertical plane at 

200µm , removing radial segments extending from the retina as far as the 

lamina in which complete fibre bundles could be seen, then re-embedding in 

hard Araldite. Tangential sections were then cut with glass knives at l - 2µm 

thickness and stained with toluidine blue . Series which appeared on first 

inspection to contain a minimum of axons undergoing sudden lateral movements, 

or buckling of the whole fibre bundle, were photographed using a Zeiss 

photoscope with Kodak Panatomic X film . Tracing was done on the photographs 

by numbering the axons with coloured inks. The loss of one section in a 

series was often enough to prevent further tracing, and fifteen series were 

Illa.de before one was found in which a sufficiently large number of axons could 

be followed into the lamina. 
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RESULTS 

Leptograpsus is a large , common shore crab which reaches up to 

about 200 gms in weight , and whose eyes are 2- 4mm in diameter . Each 

ommatidium contains seven large retinula cells which contribute to a fused, 

banded rhabdom some 250µm long and a smaller eighth cell which forms the 

distal tip of the rhabdom (Fig . 4 . lA) . With one exception , this arrangement 

i s common to all decapods so far examined (Parker, 1897 ; Eguchi , 1965 ; 

Kunze , 1967 ; Nassel , 1976); in Panulirus, however , the proximal part of 

the adult rhabdom is anomalous (Eguchi and Waterman, 1966; Meyer- Rochow , 

1975 ). Receptor axons from the seven large retinula cells (Rl- 7) end within 

the lamina , while the axon of R8 ends in the external medulla (Stowe et al. 

1977 ). The retinula cells have a constant arrangement within the ommatidia , 

which is mirror-symmetrical about the equatorial line . The cells may be 

identified by reference to the positi'ons of the processes of the crystalline 

cone cells (Fig . 4 . lB) . In light microscope sections these processes are 

not usually visible , but the retinula cells can still be readily identified, 

i f the position above or below the equatorial line is known , from the 

location of R7 along the axis of the horizontal rows of ommatidia (Fig . 4 . 2) . 

Retinula cells pass through the basement membrane in the pattern described 

fo r Astacus (Parker 1897) Ocypode (Kunze 1967), and Pacifastacus (Nassel 

1976 ): axons from one ommatidium go through four holes in the basement 

membrane , sharing each hole with axons from a nei ghbouring ommatidium (Figs . 

4.lC , 4. 2 ). The pattern in Panulirus is slightly di~ferent in that R7 

Penetrates the basement membrane separately . 

Directly below the basement membrane , axons may come together for 

a short distance in fascicles of eight , formed by the convergence of axons 

from horizontally adjacent holes (Figs . 4.lD , 4 . 2) . This is unlike the 

situation in Pacifastacus (Nassel , 1976) where vertically adjacent groups 

come t ogether (Fig . 4 . 2 ). The fascicl es are formed from three ommatidia in 



Fig . 4.la Schematic diagram of the path of retinula cell axons in 

Leptograpsus . Co cornea; CC crystalline cone; Rl- 7, 

RB Retinula cells; Rh rhabdom; BM basement membrane; 

LF large fibre bundle; CBL cell body layers of the 

lamina ; PL plexiform (cartridge) layer of the lamina . 

lb Cross - sections of an ommatidium at two levels to show 

le 

ld 

le 

the orientation of the microvilli contributed by Rl-7 . 

CP, crystalline cone cell processes. 

Cross-section at the level of the basement membrane 

showing the pattern of receptor axons . 

Fascicles of eight axons formed below the basement 

membrane. 

Section through a large fibre bundle showing axons 

from one ommatidium grouped together (small dots) and 

from another, scattered (large dots). ' 

lf Section of the lamina distal to the plexiform layer , 

showing a group of eight axons (arrow~ which has 

diverged from the larger group above and right . This 

group contains axons from the five black cells shown in 

Fig. 2 . On the left (n) is the nucleus of a lamina 

monopolar cell . Scale in C-F, lOµm. 
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each case, but in Leptograpsus the distribution is generally Rl from one 

omrnatidiu.m: R2/R3 from another, and R4/R5/R6/R7/R8 from a third, while in 

Pascifastacus it is (R2/R3), (R4/R5), (R6/R7/R8/Rl). In Leptograpsus the 

fascicles of eight are often _not distinct, and within 6-8µm form loosely 

associated horizontal rows separated by lacunae. Axons from up to 30 ommatidia 

then form large bundles which cross the haemocoelic sinus to the lamina. 

Near the edges of the "catchment areas" of the bundles below the basement 

membrane, axons often twist abruptly to rejoin others of their own ommatidiu.m, 

although this may mean that they are separated from some of the axons they 

had been associated with in the fascicles of eight. Within the large fibre 

bundles, axons from one omrnatidiu.m show some tendency to remain together, 

but may also drift, say, half-way across the bundle before regrouping (Fig. 

4.lE). The R8 axon at this stage has approximately the same diameter as 

the axons of Rl-7 (mainly 3-4µm, but ranging from 2 to 6µm) . Each axon 

varies to some extent in diameter and intensity of staining over its course, 

perhaps because of erratic penetration of the fixative. The axon of R7 is 

often slightly larger, but this is by no means consistent. After entering 

the lamina, the fibre bundles divide four or five times successively until 

groups of eight axons are formed. In this region axons are 0.5 to l.5µm 

in diameter. 

From one group of fifty ommatidia, of 400 axons, forty-four axons 

were traced into the lamina almost to the cartridge layer, five as far as a 

group of eight axons, the remaining thirty-nine to four small groups of 

axons a few microns more distal . The great majority of axons were lost 

either in the region proximal to the basement membrane as they enter the 

large fibre bundles or in the lamina as the fibre bundles dispersed. The 

forty-four axons came from nine ne_ighbouring ommatidia, and the observed 

' 
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destinations of these fibres should be reliable, since a) differences in 

di ameter and in intensity of staining aided identification of axons from 

one photograph to another , b) a mistake in identifying one axon was soon 

obvi ous because the relationships with its neighbours appeared disturbed, 

c ) the first iOOµm of this series was traced twice, using two series of 

photographs with 30 ommatidia or 240 axons in common, and only two axons 

were differently labelled, d) in case of doubt, an axon was abandoned . 

Fig . 4 shows the final groupings of the receptor axons superimposed 

on their position in the ommatidia above the basement membrane, together 

wi th the distribution immediately below the basement membrane. Also 

indicated are the groupings which should appear according to the scheme 

proposed for the crayfish (Nassel, 1976). It will be seen that the 

observed distribution is incompatible with both these schemes . On the 

other hand, in no case does an axon appear in a different group from 

others of its parent ommatidium . 

Because of the difficulty of tracing receptor axons in the decapod 

visual system this result lacks the completeness and clarity of some of 

the demonstrations of the insect projection. Nevertheless, the evidence 

is sufficient to show that in the crab, receptor axons from one ommatidium 

project to a single lamina cartridge . 

Irregularities 

Along the equatorial line separating the upper and lower halves 

of the retina, a few rows of ommatidia are smaller , and frequently only five 

or six of the usual seven large retinula cells are present . In these 

circumstances the individual retinula cells could not be identified , although 

they penetrated the basement membrane through the usual four holes . Their 

subsequent path is not known , since the only series in which they appeared 

~as abandoned before the lamina was reached . Kunze (1968) also describes 

irregularities occurring in the same region of transition in Ocypode . 

- -- ' 



Position of retinula cell axons in a slightly oblique 

section including the bases of the ommatidia, towards 

the top, and axons diverging as they go through the 

basement membrane at the bottom. The axons which were 

traced into the lamina are shown . Solid black, 

horizontal and vertical stripes, hatching and stippling 

denote the groups to which these axons were traced in 

the lamina. , Rhabdom; X, projection of the rhabdom 

position . Thick lines show fascicles formed below the 

basement membrane in the crab. Thin lin.es surround the 

fascicles which would be found according to the pattern 

in the crayfish. 
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Apart from this region, only one irregularity was found in tracing 

many hundreds of ommatidia across the basement membrane. In this case, the 

axon of R7 passed through the same hole as Rl, ·instead of remaining with R6. 

RB , which normally passes through with R6 and R7, was not identified. R7 

remained close to Rl, and when all the axons of that ommatidium drew closer 

together as the large fibre bundles were formed, the pattern could not be 

distinguished from that of the surrounding axons. 

In the series which was traced well into the lamina, the large 

f ibre bundle split into two as it crossed the haemocoelic sinus. The fibres 

being traced w~re concentrated in one half of the large bundle and remained 

i n one bundle after the split, with the exception of one R7 which was some 

distance from the others of its ommatidium at the time and remained in 

t he other bundle. This bundle entered the lamina very near to the one 

being traced. As the two bundles diverged they interdigitated in one area, 

and some of the smaller bundles from each were seen to fuse . They were not 

followed far enough into the lamina to tell if axons from different bundles 

entered the same cartridge. However this can sometimes be seen in reduced 

silver sections of both Leptograpsus and Scylla (Stowe et al. 1977). A large 

bundle splitting, and axons merging from different bundles (rather than 

simply interdigitating) are both infrequent events, and their appearance 

in the same series suggests that the crossings in the lamina were correcting 

errors made when the large bundle split. 

DISCUSSION 

Threshold measurements of the optokinetic response of Leptograpsus 

to a moving sinusoidal grating have shown that a spatial wavelength of 3 to 4 

degrees can be resolved (Dvorak and Sandeman, unpublished results) . This 

is approximately twice the interommatidial angle (Sandeman 1978, implying 
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that the optokinetic system must have access to information from individual 

ommatidia. The organisation of the crab lamina (Stowe et . al. 1977), suggests 

that neural superposition of the type which has been proposed for other 

decapods would not preciude the abstraction of input from single ommatidia, 

either from the eighth retinula cell or by a lamina monopolar cell summing 

only those inputs to a cartridge which come from one ommatidium . But acuity 

measurements are at least compatible with the direct ·pattern of projection 

demonstrated here . 

Given that the retina-lamina projection in the crab is from one 

ommatidium to one lamina cartridge, and that the pattern of axons below the 

basement membrane is very similar to that of other decapods, two questions 

are raised. Firstly, can this result be extended to the eyes of other 

decapods and secondly, what is the reason for the regular and widespread 

arrangement of the retinula cells as they traverse the basement membrane? 

Regarding the projection in other decapods (Hamori and Horr{dge 

1966a , c) . first suggested that neural superposition was present in the 

lobster Homarus . They observed crossing of receptor axons in the outer 

layers of the lamina and also performed degeneration experiments. Crossing 

of receptor axons in the cell body layers of the lamina is sometimes seen in 

crabs . As we have seen, it is mostly caused by the interdigitation of the 

fields of the large fibre bundles, the occasional convergence of fibres 

from two bundles into one group probably being due to the rectification of 

errors made more distally . Crossing of fibres in itself, without knowledge 

of the source of the axons involved, provides little relevant evidence. 

Degeneration experiments , on the other hand, could provide cogent evidence 

for neural superposition . In the experiments of Hamori and Horridge (1966c) 

a large area of the retina was sliced off above the basement membrane . 

Degenerating retinula cell terminals were found in the lamina . Around the 
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edges of the affected area lamina cartridges were seen which contained both 

normal and degenerating retinula cell terminals. For neural superposition 

to be deduced from this evidence alone, partially destroyed ommatidia would 

have to be completely absent. This point is critical to the argument and 

was not demonstrated; from the nature of the experiment it is unlikely to 

be true. 

Neural superposition has been suggested in the crayfish Pacifastacus 

(Nassel 1976) on the basis of the distribution of the retinula cell axons 

just below the basement membrane, together with the lack of any subsequent 

crossing of axons. However, the re-arrangement of axons from the 

superposition to the one-to-one pattern would not involve any crossing of 

axons, any more than does the initial formation of the sub-basement membrane 

pattern . In crabs, fascicles of eight axons are also formed below . the 

bas ement membrane, but the axons return to single ommatidium groups before 

entering the lamina cartridges. Over most of the distance between the 

basement membrane and the lamina, neither type of grouping can be easily 

recognised. While the crab results have no direct bearing on the type of 

retinula-lamina wiring present in the crayfish, they do demonstrate that 

the pattern at the level of the lamina cartridges cannot be inferred from 

that at the basement membrane. Although crabs have apposition eyes while 

crayfish , like most ·other decapods, have superposition eyes, an optical 

superposition eye is not correlated with neural superposition in insects. 

In insects neural superposition is found in those species with an open rhabdom 

where retinula cells with the same optical axis, though they are from 

different ommatidia, converge on to the same lamina cartridge. The advantage 

of distributing axons sharing a fused rhabdom, that is with the same optical 

axis , over several lamina cartridges is not at all clear. The distribution 

suggested by Nassel does not group the lamina inputs according to shared 

properties, since cells one to eight would still be present in each cartridge . 



If crabs had a very different type of retina-lamina projection 

from other decapods, it might be expected that large differences would also 

be seen in the structure of the lamina. In fact, the types of lamina neurons 

present in those species so far examined (crayfish Procarnbarus Hafner, 1973; 

prawn Pandalus Nassel , 1975; crayfish Pacifastacus , lobster Nephrops Nassel 

1977; crab Scylla, Stowe et al. 1977) are extraordinarily similar . 

This forces us to consider other possible explanations for the 

divergence of r eceptor axons at the basement membrane . In some Crustacea, 

such as the isopod Ligia (Edwards 1969) , and the stornatopod Sguilla mantis 

(Schiff and Gervasio, 1969; Schonenberger, 1977), receptor axons from one 

ommatidium come together and penetrate the basement membrane through the 

same hold . In Sguilla woodmasonii however, axons from one ommatidium can be 

seen to diverge and go through several holes in the basement membrane, although 

they do not share them with axons from neighbouring ommatidia (pers . comm . 

G. Kelly, Fig. 4.3A). This suggests that the reason for the divergence at 

the basement membrane is unrelated to the subsequent course of the axons . 

The most detailed account available of the basement membrane in 

decapods is given by Krebs (1972) for the crayfish Astacus. It is shown to 

be a complex system of "foot cells", fibril-synthesizing cells, the fibrous 

layer itself, and haemocyanin-filled lacunae lined by thin wall-cells. Two 

foot cells are found proximal to the rhabdom of each ommatidium . They bear 

worm-shaped processes interdigitating with the bases of the retinula cells 

and form numerous gap-like junctions with them . Krebs suggests that the foot 

cells are glial , and that their close relationship with the retinula cells 

and the haemocyanin-infiltrated fabrillar layer may imply a respiratory and 

nutritive function . Since the foot cells are directly beneath the rhabdom 

they may force the retinula cells to diverge . The appearance of fascicles 

of eight axons from three ommatidia may then be due to the haemocyanin-filled 



Fig . 4.3a Retinula cell axons passing through the basement membrane 

i n Sguilla woodmasoni.i ( Photo courtesy G. Kelly) R, 

Retinula cells; BM Basement membrane. Scale lOµm . 

3b Retinula cell axons passing through the basement membrane 

in Ocypode ceratophthalma . R, Retinula cells ; L, 

haemocyanin- filled lacunae. Scale lOµm. 
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lacunae preventing axons from one ommatidium regrouping immediately. The 

disruption caused by these lacunae is very obvious in Ocypode ceratophthalma 

where they are particularly large (Fig . 4.3B). 

The basement membrane penetration pattern in decapods appears 

constant, apart from the minor variation shown by Panulirus. Axons from Rl, 

R2/R3 , R4/R5 ~nd R6/R7/R8 go through separate holes . This pattern coincides 

with the distribution of the crystalline cone cell processes, which are 

among the earliest components of the retina to differentiate (Eloffson, 

1969) . They reach from the crystalline cone to the basement membrane and 

their function is unknown, although it has been suggested that they provide 

structural support for the retinula cells (Boschek 1971). The maintenance 

of e-vector sensitivity across the retina (Shaw, 1966; Leggett, 1976) 

requires precise alignment of the rhabdomeres, and this may prove to be 

achieved by the cone cell processes acting as a guide for the developing 

retinula ·cells. If this is so, it is perhaps not surprising that, as the 

retinula cells diverge at the basement membrane, they retain the grouping 

into which they have already been divided by the crystalline cone cell 

processes . 
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CHAPTER V 

THE ORGANISATION OF THE LAMINA GANGLIONARIS 
OF THE CRABS SCYLLA SERRATA AND LEPTOGRAPSUS VARIEGATUS 

SUMMARY 

The gross structure and neuronal elements of the first optic 

ganglion of two crabs, Scylla serrata and Leptograpsus variegatus , are 

described on the basis of Golgi (selective silver) and reduced silver 

preparations. Of the eight retinula cells of each ommatidium, seven end 

within the lamina, while the eighth cell sends a long fibre to the external 

medulla . Five types of monopolar neurons are described, three types of 

large tangential fibres·, and one fibre which may be centrifugal. 

The marked stratification of the lamina is produced by several 

features . The main synaptic region, the plexiform layer, is divided by a 

band of tangential fibres; the short retinula fibres end at two levels in 

the plexiform layer; and two types of monopolar cells have arborisations 

confined to the distal or proximal parts of the plexiform layer . [The 

lamina structure of Scylla is remarkably similar to that of other decapods 

that have been examined . l 

INTRODUCTION 

Studies on the visual system of the crab are rapidly reaching the 

stage where the el ectrophysiological and behavioural results are inadequately 

supported by anatomical knowledge . Electrophysiological work has been done 

on the retina, by Goldsmith and Fernandez (1968), Scott and Mote (1974), 

Shaw (1966 , 1969), etc . The output in the optic nerve of decapods has been 

relatively extensively studied, mainly in crayfish (e . g . Wiersma and 

Yamaguchi , 1966; Arechiga and Wiersma, 1969; Wiersma and York, 1972), 
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sometimes in conjunction with the observation of behaviour (Glantz, 1974). 

Bet ween these extr.emes, in the four optic ganglia where much processing of 

visual and other information takes place, very few electrophysiological 

studies have been done (in crabs, Sandeman, Erber and Kien, 1975; Erber 

and Sandeman, 1976; Leggett, 1976) . 

The general morphology of the optic lobes of several decapods 

has been described by Viallanes ( 1891 ) , Parker ( 1897), and others. Hanstr·om 

(1924 ) made Golgi studies of many Crustacea. Retinal structure was studied 

by the early workers and more recently by, for instance, Eguchi and Waterman 

(1966) , Krebs ( 1972), Kunze ( 19.68) and Rutherford and Horridge ( 1965) . 

In the last few years there have been light and electron microscope 

studies of the first optic ganglion, the lamina, of several decapods, 

includi_ng Homarus (Hamori and Horridge, 1966 ), Orconectes (Shivers 1967) and 

Procambarus (Hafner 1973, 1974). Hafner, and also ~assel (Pandalus 1975, 

Pacifastacus, Nephrops 1976) used Golgi techniques . 

Among decapods the crab offers one of the best preparations in 

which to study visually evoked behaviour, and much is known about its eye 

movements, which makes it an obvious choice for an anatomical study . This 

paper describes the neuron types and organisation of the lamina of two 

species of crab, Scylla serrata and Leptograpsus variegatus, both of which 

are currently being used for experimental studies . 

Materials and Methods 

Specimens of the Queensland mud crab Scylla serrata were supplied 

by the Kamerunga Biological Laboratories, Cairns. Leptograpsus variegatus 

were collected near Bateman's Bay, on the South-East coast of New South Wales. 

The optic lobes of over 100 Scylla and 40 Leptograpsus were stained by a 

variety of selective silver techniques . The methods of Colonnier (1964), 

Kenyon-Kopsch ( from Hanstrom 1924 ) and Butler (197l) were used with success, 

as was Strausfeld and Blest ' s (1970 ) modification, using pre-fixation in 
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Kar novsky 's at various pHs between 6 . 8 and 7 . 4 . The Golgi-Cox method of 

Ram6n-Moliner (1970) was used on Scylla with little success , although this 

method did s tain the rhabdomeres of individual retinula cells. In all cases 

the tissue was dehydrated in alcohol, and embedded in Araldite. Sections 

were cut at 50- 150]..lm in the horizontal, vertical, and tangential planes, 

relative to the centre - line of the eye stalk (Fig. 5.). 

The reduced silver methods tried for paraffin sections, were 

Rowell 's (1963) procedure, a modification of the Holmes- Blest method, and 

Blest 's 1976 urea bath technique with a cobalt mordant . Fixation was in 

aged alcoholic Bouin 's or Blest and Davie 's (1977) FBP fix . A few series 

were also stained with Pyronine-Malachite Green (Baker and Williams 1965) 

and Halmi ' s aldehyde-fu~hsin (from Drury and Wallington, 1967) . 

Golgi-stained neurons were drawn with the aid of Leitz and Zeiss 

drawing- tubes, and photographs taken on a Zeiss photoscope with Kodak 

Panatomic X film. 

RESULTS 

General Morphology 

The surfaces of compound eyes of Scylla and Leptograpsus consist 

of an array of hexagonal facets with inner circle diameter about 40µm over 

most of the eye. One of the axes of the array runs horizontally . Below 

the cornea of each facet lies a crystalline cone 90- 120µm long, which in 

Scylla continues as a crystalline thread 20-30µm long, and in Leptograpsus 

tapers to a blunt point . Beneath the crystalline cone lies cell 8 with its 

short rhabdomere. The main part of the rhabdom is made up of the layered 

rhabdomeres of retinula cells 1-7 , The rhabdom ends just above the 

basement membrane , and the retinula cell axons continue through gaps in the 

basement membrane to form bundles of 50-200 fibres . These bundles cross a 
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haemocoelic sinus up to 500µm wide, diverge in the outer layers of the 

lamina and enter the lamina cartridges in groups of eight fibres. 

The lamina is shaped like a shallow canoe, about 200µm deep, with 

the radius . of curvature less in the horizontal than in the vertical plane 

(Fig. 5.1). . The structure of the lamina of Leptograpsus is very similar to 

that of Scylla, which is described below and pictured in figure 5.2 (A and B). 

A fibrous glial sheath surrounds the lamina. It is 10-15µm thick 

on the distal surface and thinner and less distinct on the proximal surface. 

Below the distal sheath are two layers of cell bodies: the distal cell 

body layer which is 20-30µm deep and the proximal cell body layer which is 

10-20µm deep. The proximal cell body layer is more regularly arranged, a 

pair of cell bodies lying above each cartridge. The cartridges of the 

plexiform layer are 12-15µm apart, 45µm deep, and more distinct in 

Leptograpsus than in Scylla. A thin layer of tangential fibres, the distal 

tangential layer, divides the plexiform layer into proximal and distal 

portions. Below the plexiform layer lies a 40-50µm thick layer of cell 

bodies (probably mainly glial), blood sinuses, glial cell processes, and 

tangential fibr es, some of which may be up to lOµm thick. Proximal to this 

is a band of fine tangential fibres and the proximal glial sheath. Axons 

from a few nei ghbouring cartridges emerge through the proximal glial sheath 

in small fascicles which run to the external medulla, crossing in the 

horizontal plane to form the first optic chiasma. 

The two species of crabs reacted very differently to reduced silver 

techniques . With Fraser Rowell's method the best results were obtained by 

incubating at 40-50°c, pH 7 . 2 for Scylla, and 55-60°C, pH 8.6, for 

Leptograpsus . Leptograpsus gave better results with a 48 hour Holmes-Blest 

method. However the most successful preparatio.ns were of a third species, 

the xanthid crab Ozius truncatus. (Figs . 5,3E, F) . 



Fig . 5 ,1 

HORIZ 

Diagram of the left eye of the Crab Scylla serrata showing 

the position of the lamina ganglionaris (arrow) within the 

eyestalk, and the planes in which sections were made, 

Horiz, horizontal plane; Tang, tangential plane; Vert, 

vertical plane. 
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Fig . 5 . 2 An ommatidiurn of Leptograpsus and the arrangement of 

retinula cells and their axons from three ommatidia at 

various levels near the basement membrane . The enclosed 

cluster of cells at the third level (just below the 

basement membrane) represents the "fascicle of sight" 

discussed in the text . 
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Fig. 5,3 A and B Horizontal sections of the lamina of Scylla 

(A) Halmi's aldehyde-fuchsin stain. Scale 25µm. 

(B) Rowell ' s reduced silver stain. Scale as in A. 

C and D 

E 

DGS, distal glial sheath; DCL, distal cell body layer; 

PCL, proximal cell body layer; DPL, distal 

plexiform layer; DTL, distal tangential layer; 

PPL , proximal plexiform layer; PTL, proximal 

tangential layer; FFL, fine fibre layer; PGS, 

proximal glial sheath . 

Retinula fibres crossing (arrows) in the lamina 

of Scylla (C) and Leptograpsus (D) . Rowell's 

reduced silver stain . Scale 15µm in C. 20µm in D. 

The lamina of Ozius truncatus, Holmes- Blest method 

llOOx. 

F Ozius external medulla , Holmes-Blest method 670x. 
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Halm.i ' s stain shows numerous small cell bodies beneath the lamina, 

interspersed among the fibres of the chiasma. 

The Pattern of Retinula Cell Axons at the Basement Membrane. 

The penetration ·pattern of axons through the basement membrane in 

Scylla and Leptograpsus resembles that reported for several decapods (Astacus, 

Parker , 1897, Krebs 1972; Palinurus, Viallanes, 1892; Ocypode , Kunze, 1967; 

Pacifastacus, ~assel, 1976), although this does not seem to be the general 

pattern for all Crustacea (cf. Ligia, Edwards 1969; Sguilla, Schiff and 

Gervasio, 1969) . Axons from one ommatidium go through four holes in the 

basement membrane, each hole enclosing axons from two ornmatidia. Mirror

image patterns are found in the dorsal and ventral portions of the retina , 

as described by Kunze (1968) in Ocypode, with cell 1 always towards the 

mid- line . Just below the basement membrane eight axons from three omrnatidia 

appear briefly in fascicles . Below this, blood sinuses separate the axons 

into double horizontal rows, which coalesce as the fibres draw together to 

form large bundles of up to 200 axons, within which no arrangement is 

discernible. 

In both Scylla and Leptograpsus, reduced silver staining sometimes 

shows retinula cell fibres crossing as the bundles diverge to enter the 

lamina cartridges (Fi g . 5,3C and D) . During tracing of Leptograpsus retinula 

cell fibres with the aid of 2µm toluidine blue sections, fascicles of eight 

fibres below the basement membrane were twice seen to diverge, so that their 

fibres joined different large bundles. Axons from one ommatidium were always 

seen to run in the same large bundles . 

Retinula cells in the lamina 

In reduced silver preparations of both animals, eight retinula 

cell axons can be seen entering each cartridge . Golgi staining shows these 

to be of three types, two of which end in the lamina . These are the shallow 

short visual fibres in the distal plexiform layer, and the deep short visual 

I 
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Fi g . 5. 4 Retinula fibres and lamina cell types from Leptograpsus(*) 

and Scylla . 

lvf , long visual fibres; svf, short visual fibres ; 

Ml- 5 , monopolar neurons; Tl-4, tangential neurons; 

Cl, centrifugal neuron; DGS, distal glial sheath ; 

DCL, distal cell body layer; PCL, proximal cell body 

layer; DPL, distal plexiform layer; DTL, distal 

tangential layer; PPL, proximal plexiform layer ; 

PTL, proximal tangential layer; FFL, fine fibre layer ; 

PGS , proximal glial sheath. 
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Fig . 5.5 
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Fig . 5.5 Retinula cell fibres in the lamina of Leptograp s us a nd 

Scylla . Golgi preparations . Scale 20µm shown in (A) . 

A Shallow short visual fibres (arrow~ of Scylla . 

B Deep short visual fibres (arrow) of Scylla . 

C Long visual fibres of Scylla . Arrow indicates the 

processes in the proximal plexiform layer . 

D Deep (a) and shallow (b) short visual fibres of 

Leptograpsus . 

E, F Long visual fibres of Leptograpsus . 

ts 
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fibres in the proximal plexiform layer . The third type, the long visual 

fibres , passed through the lamina to end in the external medulla (Figs . 5.4 

and 5 , 5) . The short visual fibres are the extensions of retinula cells 1- 7, 

while the long visual fibre is from cell 8 . In Scylla Golgi material, short 

visual fibres appear to taper to a blunt point from a diameter of 2- 3µm 

(Fi~5,5A and B). The long visual fibres of Scylla are 2- 3µm thick in the 

lamina and have lateral processes of up to 5µm, mostly in the proximal 

plexiform layer (Fig. 5 . 5c) . In Leptograpsus the short visual fibres are 

about 2µm in diameter, na rrow to lµm in the plexiform layer and end in 

sac - like terminals up to 5µm in diameter (Fi g: 5 , 5D). The long visual fibre 

of Leptograpsus is thin (l . 5µm) and bears small processes, l - 2µm long , in 

the plexiform layer (Figs 5 . 7E and F) . It has a slightly enlarged, club- like 

ending in the external medulla . 

Lamina Monopolar Cells 

Five types of monopolar cells could be distinguished in Scylla 

(Figs . 5 . 4 and 5 . 6), of which four correspond fairly closely with those 

described in Pandalus, Pacifastacus, and Nephrops (~assel , 1975, 1976). 

Monopolar neuron Ml has a cell body, 8- lOµm in diameter, in the 

proximal cell body layer . A thin neck (ca 1 . 5µm) extends for about 8µm from 

the soma . This expands to 3µm in diameter as it enters the plexiform layer , 

where it gives off short branching processes up to 5µm long . 

Monopolar neuron M2 has a cell body in the distal cell body layer . 

The central fibre is very often swollen to 3-5µm in the plexiform layer . 

Branched , varicose dendrites extend radially up to 10-15µm throughout the 

whole depth of the plexiform layer . 

M3 and M4 monopolar neurons both have somata in ·the distal cell 

body layer and diffuse ramifications extending up to 15µm, the former in 

the distal , the latter in the proximal, plexiform layer. 
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Fig . 5 .6 

A,B,C 

D 

Monopolar and centrifugal cells in the lamina of Scylla . 

Golgi preparations. 

Ml monopo-lar neurons. Scale , shown in A, 20µm . 

M2 monopolar Neuron . Scale 20µm . 

E , F M3 monopolar neurons, branching in the distal plexiform 

layer . Scale as in D. 

G,H M5 monopolar neurons . Scale as in D. 

I Cl centrifugal neuron . Arrows show lateral extent of 

arborisation . Scale lOµm . 

J M4 monopolar neurons , branching in the proximal plexiform 

layer . Scale 20µm . 
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M5 monopolar neuron does not resemble any described by ~assel 

(1975 , 1976 ) , or Hafner (1973), It has the appearance of a shepherd's 

crook . A thin fibre runs to the cell body from the top of the loop, which 

bears dendrites 5-lOµm long. The ascending and descending limbs of the 

"crook" are about 7µm apart . 

The axons of all the monopolar cells join the first chiasma and 

enter the external medulla. 

Centrifugal neurons 

In Scylla, a neuron is sometimes seen with an axon entering the 

lamina from the first chiasma, and mapped by a flat, disc-shaped arborisation . 

This extends for 20-30µm in the extreme distal portion of the plexiform layer 

(Fig , 5,5 I) . It has been classified as centrifugal (Cl) only on anatomical 

grounds on the basis of its similarity to "centrifugal" neurons described in 

the lamina of insects, (reviewed by Strausfeld 1970). 

Tangential neurons 

There are two main layers of tangential neurons in the lamina 

(Figs. 5 . 4 and 5,7) . The distal one lies in the middle of the plexiform 

layer, dividing it into proximal and distal parts . The proximal tangential 

layer forms a broad diffuse band between the plexiform layer and the glial 

sheath , with the largest fibres mainly on the proximal edge of the band . 

The large fibres (5-lOµm diameter) run vertically or horizontally (Fig. 5 , 7A). 

Three types of large tangential fibres have been identified in Scylla . 

Tl neurons (Fig. 5.7D) have 5-7µm thick primary branches in both 

the proximal and distal tangential layers. The secondary branches tend to 

form acute angles with the direction of the primary fibres . 

T2 neurons (Fig . 5.7, E and F), also with primary branches 5-7µm 

thick , run in the distal tangential layer. The secondary branches are given 

off initially at right angles, then twist, usually in a distal direction , to 

run parallel to the cartridges . 
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Fig . 5.7 Tangential neurons in the lamina of Scylla . Golgi 

preparations . 

A Tangential section through the lamina , showing two 

horizontal and two vertical tangential fibres (arrows). 

Scale lOOµm . 

B Part of a T3 neuron (arrow) showing secondary branches 

initially running at right angles to the main branch . 

Tangential section . Scale 50µm. 

C Part of a large T3 neuron . Vertical section . Scale 

50µm. 

D Part of a Tl neuron, entering the lamina from below and 

sending branches (arrowheads) into both distal and 

proximal tangential layers . Vertical section. Scale 

50µm . 

E T2 neuron branching in the distal tangential layer (arrows) . 

Vertical section . Scale 50µm . 

F Bifurcation of a T2 neuron in the distal tangential layer . 

Scale 20µm . 
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T3 neurons (Fig . 5 . 7C) are in some respects similar to T2 neurons, 

but the primary branches are thicker ( 7-lOµm.) and run in the proximal 

tangential layer , mainly vertically . The primary branch of one of these 

neurons may be long enough to cover most of the vertical extent of the 

lamina. 

There are several types of fine tangential neurons in the lamina 

some have cell bodies in or below the ganglion . The only one of this class 

which stained regularly and completely enough for positive identification 

was called T4. This has an axon which enters the lamina from the first 

chiasma, then branches to form a diffuse ramification distal to the large 

T3 neurons of the proximal layer. Its dendrites extend into the lower half 

of the plexiform layer, over an area with a diameter of about 160µm. 

The axons of the tangential fibres Tl, T2 and T3 may be seen, in 

reduced silver sections, to cross the first chiasma together with the 

monopolar neurons and enter the external medulla . The cell bodies of the 

large tangential neurons were not found . 

DISCUSSION 

The architecture of the crab lamina·, as shown by Scylla and 

Leptograpsus , is very similar to those of the prawn Pandalus (~assel, 1975), 

the crayfish Procambarus (Hafner, 1973) and Pacifastacus, and the lobster 

Nephrops (~assel 1977), both in its gross organisation and in the types of 

retinula , monopolar, and tangential cells present . The pronounced 

stratification of the lamina makes it comparable to the A- type lamina 

(Strausfeld 1976) among insects . Short retinula fibres end at two levels 

in the lamina, showing a functionally unproved but anatomically striking 

correl ation with the branching patterns of M3 and M4 monopolars . Perhaps 

the m.ost likely reason for this di vision is the s.eparation of incoming 

information according to polarisation plane. In Pandalus, ~assel (1976) 

demonstrated that four photoreceptors terminate in the distal plexiform 
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layer, while three end in the proximal plexiform layer. The identity of 

the photoreceptors was not determined, but the numbers in each layer do 

correspond to the -numbers of photoreceptors in an ommatidium with vertical 

and horizontal polarisation sensitivity . It was further recported by Nassel 

and Waterman (1977) that M3 is postsynaptic to the receptors in the distal 

plexiform layer, and M4 to the receptors in the proximal plexiform layer. 

M2 is postsynaptic to all seven photoreceptors, and may provide a polarisation

independent channel for Rl-7, There are of course other possibilities , such 

as a division according to spectral class, although it is doubtful, as 

discussed in Chapter III, if Rl- 7 of decapods have different spectral 

sensitivities . In bees, polarisation sensitivity is now generally considered 

to be due mainly to the long visual fibres of retinula cell 9 (Menzel and 

Snyder, 1974; Ribi, 1975), but the long visual fibre of decapods does not 

necessarily fulfil this function . Polarisation sensitivity of cells 1- 7 

is high in the crab, in many cases up to 9:1 (Shaw, 1966) . Shaw (1969) 

reported a small percentage of retinula cells which showed four low peaks 

per 360° of polaroid rotation. This corresponds with what might be expected 

from the anatomy of retinula cell 8, which in the crab has orthogonal 

microvilli (Eguchi and Waterman , 1973), and forms the long visual fibre . It 

is therefore likely that cell 8 is transmitting relatively polarisation

independent information in the crab. In Pacifastacus however, Nassel (1976) 

reports that the microvilli of the eighth cell are oriented only in the 

horizontal direction. 

Monopolar . neurons Ml-4 of Scylla may well be homologous with Ml-4 

of Pandalus (Nas sei 1975) Pacifastacus and Nephrops (Nassel, 1977), Ml of 

Scylla usually bears more processes than Ml of Pandalus, although this is 

variable . Occasionally neurons similar to Ml except for a finer, more diffuse 

branching pattern have been observed, but it is not certain whether these 

constitute a distinct type . M2 of Scylla is very similar to M2 of Pandalus , 

both probably being the central fibre of a cartridge . Both have a distal 
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cell body, thick axis fibre, and dendrites extending in both halves of the 

plexiform layer, although the width of the arborisation of M2 of Scylla is 

slightly greater than that of Pandalus. M3 and M4 in both 9pecies have distal 

cell bodies and dendrites confined to the distal and proximal parts of the 

plexiform layer respectively . Neuron B-5 of Procambarus (Hafner, 1973) 

strongly resembles M3, although no equivalent to M4 has been discovered in 

this species . M5 has not been described before in Crustacea, although it may 

well be functionally analogous to the wide-field monopolar neurons with a 

unilateral branching pattern found by Hafner (1973) in Procambarus. 

Neuron Cl of Scylla, which may be centrifugal, bears some resemblance 

to a cell (no. 10) described by Hanstrom (1924) in Palinurus , although it is 

less diffuse. It is similar but not equivalent to the neuron Cl in Pacifastacus 

(N'assel, 1977), and to neuron C2 in the fly (Strausfeld, 1970), lacking the 

proximal dendrites. 

Only one monopolar cell, Ml, is unmistakably confined to a single 

cartridge . M2 may extend into immediately adjacent cartridges, as do dendrites 

of neurons M3 and M4. M5 has a restricted, unilateral branching pattern. 

The crab lamina possesses the structural basis for treating 

information from the retina in a variety of ways before delivering it to the 

external medulla. The diversity of spatial integration alone which may take 

place in the lamina is evident if ~ne considers that the external medulla may 

receive information from areas ranging from a single ommatidium (via the 

long visual fi.bres) to a large proportion of the visual field ( via the large 

tangential fibres). 



CONCLUSION 

Leptograpsus is active both at night and in the day, sometimes 

in very bright sunlight. Its eye is well adapted to function over a wide 

range of illumination conditions, using many strategies for keeping a 

high acuity and a roughly constant spectral sensitivity. 

Two other crabs that are normally active at rather low light 

levels, Libinia, whi ch lives in deep water, and OcyPode, (Nassel and 

Waterman 1979, in prep), have rhabdoms that are enlarged proximally, as 

if they were tending towards a crayfish-like superposition type of eye, 

although their optics have not been closely examined. In Ocypode, the 

proximal enlargement evidently only appears at night . Leptograpsus, in 

contrast, widens the distal end of the rhabdom at night. This means that 

it is maximising the amount of light captured at each facet, rather than 

increasing the overall aperture of the eye. 

The screening pigment systems, apart from the dark and light 

distal pigments, are largely regulated in response to the level of ambient 

illumination . To see in more detail how pigment movements are affecting 

visual responses, in particular spectral sensitivity, it will be necessary 

to examine the theoretical effects of more combinations of pigments, and 

also to gain a more exact knowledge of the pigment positions under various 

circumstances. 

Retinula cells Rl-7 in Leptograpsus apparently contain only one 

type of photopigment, and despite the observed variation in spectral 

sensitivity of cells adapted to dim light, it is difficult to see how they 
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could provide the necessary input for colour vision. In crayfish, it has 

been suggested that Rl~7 in each ommatidium consist of two different 

spectral classes (Nosaki , 1969, Waterman and Fernandez 1970, Eguchi et al. 

1973). There is evidence against this in the crayfish, and it is not 

consistent with the study of Leptograpsus spectral sensitivity reported 

here. It is possible, although unlikely, that scattered ommatidia or 

single retinula cells have a different spectral sensitivity, as has been 

suggested for Scylla (Leggett 1979) . But if crabs and other decapods do 

have colour vision, and it works on the same principle throughout the 

group, then there are a number of pieces of evidence which point to R8 

being a short wavelength receptor: 

a) There seems to be a gross structural difference between the 

long and short wavelength systems, since 

(i) The short wavelength component of the ERG is always 

small , and is masked by the long wavelength sensitive 

component except under special conditions of selective 

adaptation . 

(ii) There is a difference in the form of the long and short 

wavelength sensitive ERG (Wald 1968) 

(iii) The yellow/green and blue sensitive inputs to sustaining 

units have different latencies in the crayfish (Trevino 

and Larimer 1970) 
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b) The blue-violet receptor is either smaller or much scarcer 

than the longer wavelength receptor since 

(i) A blue-sensitive photopigment has never been found in 

macruran decapod eye extracts, but a small quantity 

could easily be masked by photoproducts absorbing at 

short wavelengths. 

(ii) A short wavelength absorbing pigment has never been 

found by msp of the rhabdom of Rl-7, although some 

hundreds of rhabdoms have now been examined (discussed 

by Goldsmith 1978b). R8 has never been examined by msp. 

(iii) Intracellular recordings of blue-violet receptors have 

only been reported in crayfish, and only by one group 

(Nosaki 1969, Waterman and Fernandez 1970) . They have 

not been found by other workers in the field, although 

it must be admitted that reliable intracellularly 

determined spectral sensitivities of Crustacea are not 

common. Waterman and Fernandez reported that blue-violet 

receptors were held for shorter times than the yellow 

orange receptors. It is possible that they were 

recording from R8 , but more probable, since peak 

sensitivites were apparently rather labile, that the 

cells were unstable and their absolute sensitivity was 

fluctuating . 
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c) The little that is known of R8 is consistent with it being a 

short wavelength receptor; 

(i) It is generally much smaller than Rl-7. There are 

exceptions, such as in the crab Grapsus, where R8 

contributes 20% of the rhabdom (Eguchi and Waterman 

1973), but these have not been investigated. 

(ii) 

(iii) 

The distal position of R8 means that it is not affected 

by much of the UV-absorbing shielding pigment. 

Not only the form of the rhabdom of R8, but also the 

connections made by its axon, are different from Rl-7. 

The axon of R8 continues through the lamina (where it 

is not certain whether it synapses) and terminates in 

the external medulla. It may be relevant that the UV 

receptors in insects are often the long visual fibres 

(reviewed by Wehner 1976). 

(iv) In the lobster Homarus it has not been possible to isolate 

a blue-sensitive ERG component. R8 in this species, 

although present, has been described as rudimentary 

(Rutherford and Horridge 1965). 

Obviously, the problem cannot really be solved without recording 

from identified R8 cells. 

Since many of the features of the retina are concerned with the 

maintenance of a high acuity, is this also a priority in the organisation 

of the optic lobe? 
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The direct projection of retinula cell axons from one ommatidium 

to one lamina cartridge means that there is no inevitable loss of resolution 

at this level. Indeed , if the M2, M3, and M4 monopolar neurons of the 

lamina have the same connection pattern as their homologues in the crayfish 

(Nassel and Waterman 1977) it is likely that the external medulla receives 

information from each ommatidium that is pooled according to the direction 

ef polarisation sensitivity, and also pooled input from all Rl-7, with no 

loss of spatial resolution. 

The columnar organisation of the neuropil is maintained beyond 

the lamina into the external and internal medullas, and is not lost until 

the terminal medulla is reached . Since the anatomy shows many small- field 

units connecting the external and internal medullas , and the internal and 

terminal medullas (pers. obs.) it seems likely that the precise spatial 

localisation of visual input is retained through at least three stages of 

processing. 
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