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Abstract

Quantum communication holds the promise of achieving long-distance secure mes-

sage transmission by exploiting quantum entanglement between remote locations.

Quantum repeaters are indispensable to the realization of quantum networks for

long-distance quantum communication. Similar to its classical analogue, a good

quantum repeater should be able to compensate channel attenuation with a quan-

tum amplifier, and to combat channel distortion through a quantum equaliser. This

quantum repeater should also operate by an efficient and robust protocol.

The first part of this project researches the continuous mode operation of a noiseless

linear amplifier (NLA). We develop a dynamical model to describe the operation

of the nondeterministic NLA in the regime of continuous-mode inputs. Both the

quantum scissor based NLA and the photon addition-subtraction based NLA are

analysed. Simulation results are also presented to confirm theoretical analysis.

The second part proposes two quantum protocols. An atomic ensemble based quan-

tum protocol is developed to generate distributed W-states. These generated dis-

tributed W-states could be considered as an entanglement resource between more

than two distant nodes and would be useful in quantum communication and dis-

tributed quantum computation in the future. We also propose a protocol by which

quantum key distribution can be achieved deterministically between multiple nodes.

This deterministic quantum key distribution scheme may be used to guarantee se-

cure communication for wireless sensor networks and Internet of Things.

The last project analyses distortion of quantum channels and develops physically

realisable modules to combat it. The minimum phase channel and non-minimum

phase all pass channel are discussed separately.
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Chapter 1

Introduction and
Motivation

T
HIS chapter gives a brief introduction to three aspects of

quantum communication systems. The original research con-

tributions of this thesis are presented. Finally, the thesis struc-

ture is discussed and the contents of each chapter are summarized.
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1.1 Research area

1.1 Research area

Ever since the development of quantum mechanics theory, scientists have been trying

to harness the power of quantum mechanics to benefit mankind. Several approach-

es to applying quantum mechanics application have been proposed, of which the

most promising and intensively researched are quantum computing and quantum

communication.

With quantum computing, people may make direct use of quantum-mechanical phe-

nomena, such as superposition and entanglement, to perform operations on data.

Unlike the binary digits based classical computing, quantum computing deals with

quantum bits (qubits), which can be in superpositions of orthogonal states. With

large-scale quantum computers, people may theoretically be able to solve certain

problems much quicker than any classical computers [3–7].

Through optical fibres or free space [8,9], quantum communication benefits mankind

by transmission of secret classical messages and faithful transfer of unknown quan-

tum states. With quantum key distribution (QKD), cryptography could be im-

plemented with unconditional security for classical messages transmission [10–19].

With the help of classical communication and previously shared quantum entan-

glement, quantum information can be transmitted over long distances through a

process called quantum teleportation [20–22]. For example, people can teleport one

or more qubits between two distant entangled atoms [23–25] without sending any

particles.

For both quantum cryptography and quantum teleportation, the distribution of

quantum states over long distances is essential. Almost all the QKD protocols [26–

28] require reliable transmission of quantum states over long distances. In order to

perform quantum teleportation, quantum entanglement pairs between two distant

nodes need to be prepared. The transmission of quantum states is also needed

during the process of entanglement distribution.
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Chapter 1 Introduction and Motivation

Quantum channels such as optical fibers and free space transmission are affected by

loss and distortion. Therefore the direct distribution distance for quantum states is

less than 200km [29]. In order to extend the distance of quantum communication,

quantum repeaters are indispensable. Like its classical counterpart, a good quantum

repeater should be able to compensate channel attenuation with a quantum ampli-

fier, and to combat channel distortion through a quantum equaliser. This quantum

repeater should also operate by an efficient and robust protocol.

As shown in Figure 1.1, this PhD thesis includes three projects, contributing to the

three aspects of quantum repeaters design-quantum amplification, quantum com-

munication protocol and quantum channel distortion.

Figure 1.1. Like its classical counterpart, a good quantum repeater should be able to com-

pensate channel attenuation with a quantum amplifier, and to combat channel

distortion through a quantum equaliser. This quantum repeater should also op-

erate by an efficient and robust protocol.

1.1.1 Introduction to quantum amplification

Signal amplification is a well researched topic in classical communication. Different

equipment are designed to increase the amplitudes of optical signals [30–37], audio

signals [38–41] and Radio Frequency (RF) signals [42–45]. Due to the no-cloning
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1.1 Research area

theorem [46, 47], quantum states can not be amplified deterministically without

adding noise [48–52]. The classical amplification methodologies therefore cannot be

adopted in quantum regime directly. We can classify the proposed quantum am-

plification methodologies into deterministic linear amplification (DLA) [53–60] and

probabilistic noiseless linear amplification (NLA) [29, 61–75]. Hybrid amplification

combining DLA and NLA was also proposed and demonstrated [76].

With DLA, phase-insensitive amplification can be achieved deterministically for

quantum states at the price of additional noise. Different DLA schemes are pro-

posed based on solid state laser [56], parametric down-converters [57], and four

wave mixing processes [58]. Amplification could also be controlled with a feedback

loop to reduce the distortion and instabilities [77].

The NLA, on the other hand, is probabilistic and introduces no additional noise. It

was firstly proposed by Ralph and Lund in the paper [61] and has been considered in

a variety of contexts both theoretically [29] and experimentally [64–66]. There are

also other NLA proposals based on conditional photon subtraction and addition [68,

69,73,74].

The first project of this PhD program focuses on the NLA schemes. Different NLA

methodologies are reviewed in Section 2.2. Since the implementation of the am-

plification operation relies on the interference of the ancilla single photon with the

input field at beam splitters, then the question of mode matching and pulse shapes

is an important one that is not encompassed by the single mode treatment described

above. This is also relevant if one considers the situation where information is en-

coded into multiple frequencies or, equivalently, into the temporal profile of the

incoming field. In Chapter 3, we extend the analysis of the NLA to the continuous

mode regime to explicitly take into account arbitrary pulse shapes for the input field

and the ancilla photon and their effects on the amplification process. In particular

we show that the amplification gain will be determined by the detection time, and

that the shape of the ancilla photon is transferred to the amplified state.
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Chapter 1 Introduction and Motivation

1.1.2 Introduction to quantum communication protocols

Like all other kinds of communication, effective and robust communication protocols

should be established before implementation of quantum communication. We can

classify the quantum communication protocols into two fields: quantum networking

protocols and QKD protocols.

1.1.2.1 Introduction to quantum networking protocols

Due to the attenuation and distortion of transmission channel, it is difficult to

directly transmit a quantum state over long distances. An effective way to transmit

a quantum state is by firstly generating entanglement between two remote nodes

and then performing quantum teleportation with this entanglement pair [20–22].

Quantum networking protocols are proposed to realize entanglement between two

or more distant nodes. Duan et al. designed a quantum repeater structure in the

year 2001 [78]. With this kind of quantum repeater, entanglement can be achieved

between two distant nodes. Several approaches have been proposed to improve the

effectiveness and efficiency of the Duan–Lukin–Cirac–Zoller (DLCZ) protocol [79–

85]. Some methodologies are also proposed to distribute entanglement between more

than two distant nodes [86, 87]. These protocols are introduced and compared in

this project. We extend this well-known protocol to a multi-node setting where

W-states are generated between multiple nodes over long distances. The generation

of multipartite W-states is the foundation of quantum networks, paving the way for

quantum communication and distributed quantum computation.

1.1.2.2 Introduction to QKD protocols

In order to guarantee secure communication, the two communicating parties should

produce a random shared key. This shared key is used to encrypt and decrypt

messages and should be known to the two parties only. Because of the progress in

quantum physics, distribution of cryptography keys with quantum states becomes

possible.
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1.1 Research area

In contrast to classical public key cryptography, which relies on the computational

difficulty of certain mathematical functions and cannot provide any indication of

eavesdropping at any point in the communication process, the security of QKD

relies on the foundations of quantum mechanics. The advantage of QKD is the

capability of the two communicating parties to detect the presence of any third

party who also intends to gain knowledge of the key. This advantage comes from

a fundamental aspect of quantum mechanics: the process of measuring a quantum

system in general inevitably disturbs the system. The cryptography key is carried

and produced by quantum states in QKD. A third party eavesdropper must in some

way measure the quantum states and thus introduce detectable anomalies.

QKD is the most mature application field in quantum information. The Bennett–

Brassard 1984 (BB84) scheme is proposed to distribute cryptography key between

two distant nodes with the transmission of a quantum state sequence [26]. This BB84

scheme is theoretically proved to be absolutely reliable and experimentally demon-

strated [27]. Other protocols, such as Decoy state QKD [88,89], Mu–Seberry–Zheng

(MSZ) protocol [90] and Scarani–Aćın–Ribordy–Gisin (SARG) 04 protocol [28] are

also proposed and discussed. With optical fiber, experimentalists have achieved

QKD beyond 150km [91]. QKD is also implemented over a distance of 1km with

free space channel [92]. In June 2017, Chinese physicists led by Pan Jianwei mea-

sured entangled photons over a distance of 1203km between two ground stations,

laying the groundwork for future intercontinental quantum key distribution experi-

ments [93].

In order to secure classical communication in wireless sensor networks (WSN), pro-

tocols are needed to distribute cryptographic keys between more than two nodes.

This project investigates and compares current QKD protocols and develops a mul-

tiparty quantum key distribution scheme. This multiparty QKD scheme can be

used to guarantee absolute secure classical communication between multiple nodes

in WSNs and Internet of Things (IOT).
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1.1.3 Introduction of quantum channel equalisation

For many physical channels, such as telephone lines and optical fibers, not only

are they bandlimited, but they also introduce distortions in their passbands. For

example, if the transmission channel is frequency-selective, different frequency com-

ponents of the transmitted signal would arrive at the receive end at different time.

This causes the spreading of signal in time domain. If the pulse spreads beyond its

allotted time interval, it would interfere with neighboring pulses and result in a kind

of distortion called intersymbol interference (ISI).

One method to solve the ISI distortion is simply allocating a longer time frame to

each symbol. However, these longer time frames would decrease the symbol rate and

finally handicap the data rate. In order to tackle the ISI distortion while keeping

high data rate, a module will be needed in the receiver end to recover signal from ISI

distortion. This process is called equalisation and has been intensively researched

in classical communication.

In quantum communication, quantum states are employed to carry information. Al-

though scientists are still struggling to transmit a small number of quantum states

once to distant destinations, equalisation of quantum channel would be indispens-

able to achieve a high quantum data rate once it comes to the time of distributed

quantum computing and practical quantum communication. In addition, as the

pulse shapes themselves of quantum states might be used for quantum information

modulation, quantum channel equalization would be needed to recover the pulse

shapes of transmitted quantum states.

During this PhD candidature, an equalisation methodology is developed to com-

pensate the distortion from minimum phase quantum channel and non-minimum

phase quantum channels. The proposed equalization structure is composed of sim-

ple optical components and therefore it is physically realisable and can be easily

implemented.
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1.2 Original Contributions

1.2 Original Contributions

In order to solve the research problems mentioned in the Section 1.1, four separate

research projects for quantum amplification, quantum networking protocols, QKD

protocols and quantum channel equalisation are completed. Our research contribu-

tions in this thesis are summarized as follows:

• A dynamical model is developed to describe the operation of NLA in the regime

of continuous modes. The dynamics conditioned on the detection of photons

are analysed here, showing that the amplification gain depends on detection

times and on the temporal profile of the input state and the auxiliary single

photon state required by the NLA. It is also proved that the output amplified

state inherits the pulse shape of the ancilla photon.

• By extending the well-known DLCZ protocol, a new scheme is introduced to

generate distributed W-states over long distances based on atomic ensembles.

The generation of multipartite W-states is the foundation of quantum net-

works, paving the way for quantum communication and distributed quantum

computation.

• A methodology is developed to distribute cryptography keys between multi-

ple nodes. This multiparty QKD scheme can be used to guarantee secure

communication for wireless sensor networks and Internet of Things.

• A novel methodology is proposed to combat quantum channel distortion. This

structure could be easily implemented with simple quantum components and

may be applied with the newly developed waveguide chips.

1.3 Thesis Structure

The thesis is presented in seven chapters:
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Chapter 1 Introduction and Motivation

Chapter 1 provides a brief introduction to quantum communication. In this chapter,

quantum amplification, quantum communication protocols and quantum channel

equalisation are introduced separately. In addition, the original academic contribu-

tions are also defined.

Relevant literature is reviewed in Chapter 2. Section 2.2 introduces various NLA

techniques. Comparison among different quantum networking protocols are pre-

sented in Section 2.3. Popular QKD protocols are then analysed and discussed in

Section 2.4. Some popular channel equalisation techniques in classical communica-

tion are discussed in Section 2.5.

Chapter 3 introduces a dynamical model to describe the operation of the NLA in

the regime of continuous modes inputs. Both the quantum scissor based NLA and

the photon addition-subtraction based NLA are analysed. Simulation results are

also presented to confirm theoretical analysis.

Chapter 4 describes the structure of distributed W-states generation over long dis-

tances. The implementation setup is introduced and success probability is analysed.

It is also shown in this chapter that a small scale W-state could be used to generate a

larger scale W-state through the process of entanglement swapping. In this chapter,

it is proved that W-states could be used to implement quantum teleportation.

In Chapter 5, we firstly explain the importance and significance of multiparty QKD.

Some scenarios requiring multiparty QKD are described for this explanation. A

multiparty QKD scheme is presented in this chapter. Some technical challenges to

practically implement this multiparty QKD scheme are mentioned in the end of this

chapter.

Chapter 6 presents a physically realisable methodology to recover transmitted quan-

tum states from quantum channel distortion. The minimum phase channel and

non-minimum phase are discussed separately.
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1.3 Thesis Structure

Chapter 7 reviews and concludes the thesis. In addition, some recommendations

for future work are given. Finally, the original contributions to knowledge are re-

summarized.
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Chapter 2

Background

T
HIS chapter contains details of quantum communication tech-

niques. Firstly, we introduce some preliminary knowledge

about quantum mechanics and quantum information. After

that, a number of quantum amplification methodologies are reviewed.

Then the famous DLCZ protocol for quantum communication is dis-

cussed, followed by its extensions from different perspectives. Popular

QKD protocols are then analysed and discussed. Some popular channel

equalization techniques are finally presented.
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2.1 Quantum mechanics and quantum information

2.1 Quantum mechanics and quantum information

In contrast to classical physics that explains matter and energy on a scale familiar

to human experience, quantum mechanics explains the behaviour of matter and its

interactions with energy on the scale of atoms and subatomic particles. Because

quantum mechanics is usually used to describe behaviour quite different from that

seen at larger length scales, many aspects of quantum mechanics are counterintu-

itive and can seem paradoxical. For example, the uncertainty principle of quantum

mechanics means that the more closely one pins down one measurement (such as

the position of a particle), the less accurate another measurement pertaining to the

same particle (such as its momentum) must become.

Quantum mechanics benefits mankind in various ways. It has enormous success in

the development of the laser, the transistor, the electron microscope, and magnet-

ic resonance imaging. With its unique characteristics, it is realized that quantum

mechanics can also be used to promote our information techniques in two aspects:

quantum computing and quantum communication. Quantum computers are expect-

ed to be able to solve certain problems much faster than any classical computers [3–7]

while quantum communication would provide more efficient and more reliable solu-

tions for people to communicate.

A qubit is a unit of quantum informationthe quantum analogue of the classical binary

bit. A qubit is a two-state quantum-mechanical system, such as the existence of a

particle: here the two states are existence and nonexistence. In a classical system, a

bit would have to be in one state or the other. However, quantum mechanics allows

the qubit to be in a superposition of both states at the same time, a property that

is fundamental to quantum computing.

The two states in which a qubit may be measured are known as basis states (or

basis vectors) and are conventionally written as |0⟩ and |1⟩. A pure qubit state is a

linear superposition of the basis states and can be represented as:
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|φ⟩ = α|0⟩+ β|1⟩ (2.1)

where the complex numbers α and β are probability amplitudes and therefore they

must be constrained by the equation:

|α|2 + |β|2 = 1 (2.2)

An important distinguishing feature between a qubit and a classical bit is that

multiple qubits can exhibit quantum entanglement. Entanglement is a nonlocal

property that allows a set of qubits to express higher correlation than is possible in

classical systems. Take, for example, two entangled qubits in the Bell state:

|Ψ00⟩ =
1√
2
|00⟩+ 1√

2
|11⟩ (2.3)

Imagine that the two particles of |Ψ00⟩ are located far way from each other. When

one qubit is measured, the measurement results would be either |0⟩ or |1⟩, each with

a probability of 1/2. The other qubit would collapse to the measured result at the

same time.

2.2 Quantum amplification methodologies

This section begins with explaining that NLA can only be achieved non-deterministically.

After that, two main NLA schemes based on quantum scissor and photon addition-

subtraction are introduced separately.

2.2.1 Non-deterministic NLA

As discussed in Chapter 1, it was proved that a quantum state cannot be amplified

deterministically without introducing additional noise [48–52]. Let us take coherent

states for instance. Suppose we have a coherent state |α⟩. Assume this coherent
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2.2 Quantum amplification methodologies

state can be amplified deterministically and without adding noise, then there is an

unitary operator T̂ that could produce the transformation:

T̂ |α⟩ = |gα⟩ (2.4)

where g is a real number obeying |g| > 1. Now we can have:

T̂ âT̂ †|gα⟩ = T̂ âT̂ †T̂ |α⟩

= T̂ â|α⟩

= αT̂ |α⟩

= α|gα⟩ (2.5)

Since |gα⟩ is a coherent state obeying â|gα⟩ = gα|gα⟩, we can obtain T̂ âT̂ † = (1/g)â.

Then the commutator of T̂ âT̂ † can be calculated as:

[T̂ âT̂ †, T̂ â†T̂ †] =
1

g2
[â, â†]

=
1

g2
(2.6)

which contradicts the following equation:

[T̂ âT̂ †, T̂ â†T̂ †] = T̂ [â, â†]T̂ †

= 1 (2.7)

Consequently, the assumption does not hold and the coherent state cannot be am-

plified deterministically without adding noise. In order to perform the amplification,

one option is adding a noise operator to sustain the correct commutator described in

the Equation 2.7. The other option is sacrificing the unitary characteristic of trans-

formation and performing the amplification non-deterministically. There are two

schemes proposed to amplify coherent states noiselessly. One is based on “quantum

scissors” and the other is based on photon addition-subtraction.
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|0〉

|ψ〉

a

c

|1〉 b

aout

bout

cout

Dc

Db

Figure 2.1. Quantum scissor: this module truncates a general state |ψ⟩ =
∑∞

k ck|k⟩ into

|ψtrunc⟩ = N (c0|0⟩ + c1|1⟩), whenever a photon is detected in either one of the

detectors Db or Dc. Here N ( ) denotes the normalization of the state.

2.2.2 Quantum scissor based NLA

The quantum scissor based NLA scheme works using the “quantum scissor” proposed

by Pegg et al [94]. This “quantum scissor” is composed with two balanced beam

splitters as shown in Figure 2.1. Using an auxiliary single photon |1⟩ in one of the

input ports, this module truncates a general state |ψ⟩ =
∑∞

k ck|k⟩ into |ψtrunc⟩ =

N (c0|0⟩+ c1|1⟩), whenever a photon is detected in either one of the detectors Db or

Dc. Here N () denotes the normalization of the state.

As introduced in the paper [61], we have a coherent state |ψ⟩ = |α⟩ in the input

channel c and an auxiliary single photon |1⟩ in the input channel b. The input state

then can be written as |Ψ⟩in = |0⟩a|1⟩b|α⟩c. The second beam splitter of “quantum

scissor” is replaced by a beam splitter with transmission rate η. Then we can obtain

the transformation matrix SBS from the input channels to output channels:
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SBS =


√
η i

√
1− η 0

i
√
1−η√
2

√
η√
2

i√
2

−
√
1−η√
2

i
√
η√
2

1√
2

 . (2.8)

In the Heisenberg picture, the relationship between output channel operators and

input channel operators can be described by Equation 2.9 as follows:


aout

bout

cout

 = SBS ·


a

b

c

 , (2.9)

The output state of the system can also be described in the Schrödinger picture:

|Ψ⟩out = U |Ψ⟩in

= U |0⟩a|1⟩b|α⟩c

= Ub†U †UDc(α)U
†U |0⟩a,b,c

= Ub†U †UDc(α)U
†|0⟩a,b,c, (2.10)

where in the last line we wrote the input state in terms of the creation and dis-

placement operators and used the fact that the unitary operator U representing

the evolution does not change the initial vacuum state. Note now that Ub†U † and

UDc(α)U
† correspond to the output operators in the Heisenberg picture. Inverting

Equation (2.9), we can write:

|Ψ⟩out =
(
−i
√

1− ηa† +

√
η

√
2
b† −

i
√
η

√
2
c†
)
Db

(
−i α√

2

)
Dc

(
α√
2

)
|0⟩a,b,c. (2.11)

The probability of single photon detection in either cout or bout channel can be

calculated as:

P = e−|α|2(η + (1− η)|α|2). (2.12)
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If we have a detection event on the output channel corresponding to cout and no clicks

on the bout channel. The output state |Ψ⟩out would be projected with a projector

Π = |0⟩b|1⟩c⟨1|c⟨0|b = |0⟩bc†|0⟩c⟨0|cc⟨0|b. Using Equation 2.11, we can write the

unnormalized output state, |Ψ̃⟩condout , conditioned on this detection as

|Ψ̃⟩condout = Π · |Ψ⟩out

= |0⟩b|1⟩c⟨0|b⟨0|cc
(
−i
√

1− ηa† +

√
η

√
2
b† −

i
√
η

√
2
c†
)

×Db

(
−i α√

2

)
Dc

(
α√
2

)
|0⟩a,b,c

= e
−|α|2

2

(
−i
√

1− η

2
α a† −

i
√
η

√
2

)
|0⟩a|0⟩b|1⟩c

= −ie
−|α|2

2

√
η

2

(
1 +

√
1− η

η
a†α

)
|0⟩a|0⟩b|1⟩c. (2.13)

Therefore, the normalized output state on channel aout conditioned on this particular

event is

|Ψ⟩conda,out =
|0⟩+ gα|1⟩√
1 + |gα|2

(2.14)

where

g =

√
1− η

η

In the limit where |gα| ≪ 1, this state can be approximated as the coherent state

|gα⟩ with a fidelity F = e
−|gα|2

2 /
√
|gα|2 + 1. The amplitude of output signal will

depend on the gain g =
√

1−η
η
. Therefore, we can achieve different amplitudes for

output state by changing the transmission rate of second beam splitter in Figure 2.1.

If the amplitude |gα| does not fulfill |gα| ≪ 1, then we can employ an N beam

splitter to divide the input coherent state |α⟩ into N smaller coherent states |α′⟩,

where α′ = α√
N
. As shown in Figure( 2.2), the N smaller coherent states are

amplified by N quantum scissors separately into |gα′⟩. The N amplified coherent

states are then recombined by another N beam splitter into |gα⟩ in the output

channel 1, conditional on no photon detection in the rest N − 1 output channels.
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N

Beam

Splitter

N

Beam

Splitter

|0〉 |0〉

|0〉 |0〉

|0〉 |0〉

|0〉 |0〉

|Ψ〉in |Ψ〉outQuantum Scissor

Quantum Scissor

Quantum Scissor

Quantum Scissor

Quantum Scissor

Figure 2.2. If the amplitude |gα| does not fulfill |gα| ≪ 1, then we can employ an N beam

splitter to divide the input coherent state |α⟩ into N smaller coherent states |α′⟩,

where α′ = α√
N
. As shown in this figure, the N smaller coherent states are

amplified by N quantum scissors separately into |gα′⟩. The N amplified coherent

states are then recombined by another N beam splitter into |gα⟩ in the output

channel 1, conditional on no photon detection in the rest N − 1 output channels.

The total success probability can be calculated as:

P = e−(1−g2)|α|2 |η|
N
2 . (2.15)

which is state dependent and also decreases with increasing N. This indicates that a

better approximation to the amplified state can be achieved at the price of reduced

probability of success.

In order to send a photon further away, Gisin [29] proposed that the quantum scissor

module could be used to amplify weak photonic state N (|0⟩ + α|1⟩) into N (|0⟩ +

gα|1⟩). This NLA scheme was also demonstrated in a few experiments [64–67]. Haw

et al. [76] performed a hybrid amplification, where both NLA and DLA are used. In

all of these theoretical analyses and experimental demonstrations, the pulse shapes

of quantum states are not considered. In the theoretical analysis [29, 61], both

the input coherent state and auxiliary single photon are assumed to be in discrete

mode. In the experimental setup [64–66], the input coherent state and auxiliary

single photon are generated from the same source and thus they have the same
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pulse shape. As we know, the pulse shape of a coherent state may change due to

channel distortion in quantum communication. It may not be applicable to keep

the pulse shape of input coherent state the same as that of auxiliary single photon

in practical implementation. Therefore, an analysis of this quantum scissor based

NLA scheme in continuous mode operation is necessary.

Another issue we need to take into account is the resolution time of photon detectors.

Like pulse shapes of quantum states, the resolution time of photon detectors are

assumed to be discrete as well in the literature mentioned above. This assumption

may not be true in practical implementation. In Chapter 3, we will analyse the

effects of photon detection resolution time.

2.2.3 Photon addition-subtraction based NLA

Another NLA scheme is based on photon addition-subtraction [68, 69, 71, 73, 74].

Like the quantum scissor based NLA, this scheme also begins with approximating

a coherent state |α⟩ ≈ |0⟩ + α|1⟩ when α ≪ 1. As shown in Figure 2.3, this

coherent state is firstly multiplied with a creation operator â†. In experimental set

up [73], this creation operator is implemented by conditional stimulated parametric

down-conversion in a nonlinear crystal. Photon addition in the output signal mode is

heralded by the detection of a single photon in the idler down-conversion channel [95,

96] (detector D1 in the figure). If a single photon is detected in D1, the state then

can be written as:

â†|α⟩ ≈ â†(|0⟩+ α|1⟩)

= |1⟩+
√
2α|2⟩ (2.16)

After the photon addition, the single-photon subtraction is implemented by condi-

tionally attenuating a state through the detection of (D2 as shown in Figure 2.3) a

single photon reflected from a high-transmissivity beamsplitter. If a single photon

is detected in D2, the state is attenuated and the resulted state is as follows:
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â
† â

D1 D2

|α〉

Figure 2.3. As shown in this figure, this coherent state is firstly multiplied with a creation

operator â†. In experimental set up [73], this creation operator is implemented by

conditional stimulated parametric down-conversion in a nonlinear crystal. Photon

addition in the output signal mode is heralded by the detection of a single photon

in the idler down-conversion channel [95,96] (detector D1 in the figure). After the

photon addition, the single-photon subtraction is implemented by conditionally

attenuating a state through the detection of (D2) a single photon reflected from

a high-transmissivity beamsplitter.

ââ†|α⟩ ≈ â(|1⟩+
√
2α|2⟩)

= |0⟩+ 2α|1⟩

≈ |2α⟩ (2.17)

In this way, the weak coherent state |α⟩ is amplified into |2α⟩ with an amplification

ratio 2. Because the parametric down-converter and the beamsplitter are placed in

series along the path of a travelling coherent state, the application of ââ† operator

can be heralded by looking for coincident detections from D1 and D2.

As proved in the paper [97–99], the multiphoton terms of input coherent states

can be ensured to be negligible by the low parametric gain and beam splitter’s low

reflectivity in the photon addition and subtraction processes. This photon addition-

subtraction based NLA outperform quantum scissor based NLA with higher effec-

tiveness and higher fidelity of the final states to the ideal target coherent state |gα⟩.

In this photon addition-subtraction NLA scheme, the ââ† operator is applied condi-

tionally on single photon detection in both the D1 and D2. Therefore, the temporal

profile of ââ† operator is influenced by resolution time of the two photon detectors.
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In Chapter 3, the effects of photon detector resolution time are discussed and the

whole scheme is analysed in continuous mode operation.

2.3 Quantum networking protocols

Entanglement should be generated over long distances in order to perform quantum

teleportation between two distant nodes. A huge number of protocols have been

proposed and demonstrated to implement remote entanglement, of which the most

famous is the DLCZ protocol. In this section, we introduce the DLCZ protocol

briefly and review some extensions of DLCZ protocols from various perspectives.

2.3.1 DLCZ protocol

The widely known DLCZ protocol can be used to generate entanglement between

two distant atomic ensembles over long distances [78]. The atomic ensemble is

prepared in the ground state |g⟩. With a short, off-resonant laser pulse, we can

generate entanglement between the atomic ensemble and the emitted single photon,

as shown in the left subfigure of Figure 2.4. If we guide the emitted photons from

the two atomic ensembles into a beam splitter and observe a single photon click in

either D1 or D2, we achieve entanglement between the two distant atomic ensembles

A and B, as shown in the right subfigure of Figure 2.4. With this approach, we can

generate two entanglement pairs A− B and C −D. The stored atomic excitations

of B and C in Figure 2.5 can be converted into light and guided into another beam

splitter to be measured further. If a single photon is detected, entanglement between

A and D is achieved. Repeating this entanglement swapping process, we can achieve

entanglement over significantly longer distances.

2.3.2 Extensions of DLCZ protocol

Duan et al. improved the efficiency of entanglement generation by detecting cavity

decay through single-photon detectors [82]. Unlike the DLCZ protocol, in which the
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|g〉
|s〉

|e〉

(a) Three states of atomic ensem-

ble

A

B

BS D1

D2

(b) Bell state measurement

Figure 2.4. The atomic ensemble is prepared in the ground state |g⟩. With a short, off-

resonant laser pulse, we can generate entanglement between the atomic ensemble

and the emitted single photon, as shown in the left subfigure. If we guide the

emitted photons from the two atomic ensembles A and B into a beam splitter

and observe a single photon click in either D1 or D2, we achieve entanglement

between the two distant atomic ensembles.

B

C

A

D

BS D1

D2

Entangled

Entangled

Figure 2.5. The stored atomic excitations of B and C can be converted into light and guided

into another beam splitter to be measured. If a single photon is detected, entan-

glement between A and D is achieved. Repeating this entanglement swapping

process, we can achieve entanglement over significantly longer distances.
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emitted photons are collected directly, each of the two atoms is set in a standing-

wave high-Q optical cavity. With proper driving pulses, the atoms are transferred

with probability pc ≈ 1 from |g⟩ to |0⟩ or |1⟩, inducing cavity decay pulses with

polarization h or v. The decay pulses from the two cavities are interfering at a

polarization beam splitter (PBS). If we detect one photon in each of the PBS outputs,

we have achieved an entanglement between these atoms. This detecting method has

proved to be more efficient than the DLCZ protocol in experiments [100,101].

In the DLCZ protocol, entanglement is generated and swapped based on a Mach-

Zehnder type interference. Since in the Mach-Zehnder type interference, effective-

ness is sensitive to path length instabilities, Zhao et al. proposed a new quantum

repeater architecture based on a two-photon Hong-Ou-Mandel type interference [81].

This architecture is proven to be 7 orders of magnitude more robust than the original

DLCZ protocol.

Another challenge to implement the DLCZ protocol is the short atomic memory co-

herence times. As the entanglement generation and swapping are non-deterministic,

it takes time to achieve entanglement over long distances. Quantum states needs to

be stored in local memories during this period. Both quantum nodes are multiplex-

ing [83] and multimode memories [84] can be used to speed up the entanglement

swapping process and thereby lower the requirements for memory coherence times.

Like its classical counterpart, distributed quantum computing is required to utilize

quantum computing resources at different locations [102]. To achieve distributed

quantum computing, we must prepare entanglement between several distributed n-

odes. The distributed W-state entanglement can also be used to construct quantum

networks, with which quantum communication between more than two nodes is

possible [103]. However, no atomic-ensemble-based methodology that can generate

entanglement between more than two distant nodes has been proposed yet. This

project extends the DLCZ protocol to generate distributed W-states over long dis-

tances. These distributed W-states can be considered as entanglement among more
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than two nodes, and may be used to implement quantum networks and distributed

quantum computing in the future.

2.4 QKD protocols

In order to explain the following QKD protocols, it is convenient to introduce Alice

and Bob, two parties who want to communicate secretly, as well as Eve, the unau-

thorized eavesdropper. In QKD, quantum states are employed to produce shared

key between Alice and Bob. Both Alice and Bob have access to two channels: the

quantum channel for exchanging quantum states and the classical public channel to

detect eavesdropping. If Eve performs measurements on the transmitted quantum

states, Alice and Bob will discover the eavesdropping in public communication.

2.4.1 BB84 protocol

BB84 Protocol is developed by Charles H. Bennett and Gilles Brassard and is the

first QKD protocol [26]. Single photon states are used to produce shared cryptog-

raphy key. Alice and Bob are connected by a quantum channel, usually an optical

fiber. There is also a classical public channel, such as a phone cable or a wireless

connection. Usually the same link is used for both channels.

In order to produce and distribute the cryptography key, Alice can choose between

four non-orthogonal states. She has two bases with polarised photons:

The horizontal-vertical basis ⊕

• Horizontally polarised |H⟩

• Vertically polarised |V ⟩

and the diagonal basis ⊗

• Left polarised |L⟩
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• Right polarised |R⟩

The quantum states |H⟩ and |L⟩ are encoded as the classical bit 1 while |V ⟩ and

|R⟩ are 0. Alice prepares a sequence of single photon states by randomly choose

their bases and polarization. Suppose n single photon states are prepared. The rest

steps of BB84 scheme are as follows:

1. Alice sends the randomly chosen single photon states to Bob.

2. Randomly and independently, Bob chooses one of the two bases to measure the

received quantum states. If he chooses the same basis as Alice for a quantum

state, he will observe the same bit for this quantum state. Otherwise he will

get an uncorrelated bit.

3. After measuring all of the received quantum states, Bob records a string of n

bits. This bit string is called raw key.

4. Both Alice and Bob announce via public classical channel their chosen bases

for every quantum state.

5. After comparing their chosen bases, the recorded bits from different chosen

bases are discarded. m bits are left. This m bits are called sifted key. Because

all the bases are chosen independently and randomly from two bases, m is

expected to be about 0.5 ∗ n.

6. Bob chooses at random half of the remaining m bits to announce it pub-

licly. Alice compares the announced 0.5m bits with her own bit string. If

a significant inconsistency rate is found, the transmitted message might be

eavesdropped and the sifted key should be discarded. The error rate that is

estimated in this step can be used to bound the information Eve has about

the sifted key

7. If the test passes, Alice and Bob proceed to use information reconciliation and

privacy amplification techniques to create some number of shared secret keys.
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This privacy amplification could be achieved using a universal hash function.

The amount by which this new key is shortened is calculated to reduce the

probability of Eve having any knowledge of the new key to a very low value.

The following example is given to illustrate the process of BB84 protocol. Note that

the bases are chosen by Alice and Bob independently and randomly. 10 quantum

states are prepared by Alice. After receiving this quantum state sequence, Bob

measures these 10 quantum states with randomly chosen bases and obtains the raw

key. After that, both Alice and Bob announce their chosen bases and discard the

bits where different bases are chosen. The remaining 5 bits become the sifted key

and if their is no eavesdropping detected, this sifted key can be used as secret key

for encryption and decryption.

Transmitted states |H⟩ |H⟩ |L⟩ |R⟩ |V ⟩ |V ⟩ |H⟩ |V ⟩ |R⟩ |L⟩

Alice’s bit value 1 1 1 0 0 0 1 0 0 1

Bob’s basis ⊗ ⊕ ⊕ ⊗ ⊕ ⊕ ⊗ ⊕ ⊕ ⊗

Bob’s measure results |R⟩ |H⟩ |H⟩ |R⟩ |V ⟩ |V ⟩ |L⟩ |V ⟩ |H⟩ |L⟩

Raw key 0 1 1 0 0 0 1 0 1 1

Same basis? N Y N Y N Y N Y N Y

Sifted key � 1 � 0 � 0 � 0 � 1

2.4.2 Photon number splitting attacks

As is introduced in Section 2.4.1, BB84 scheme provides an unconditional secure so-

lution to implement QKD. Several long-distance QKD implementations have been

developed with optical signals as information carriers and fibers as quantum channel-

s. If single photon states are employed as information carriers, the security of QKD

with BB84 scheme can be guaranteed. However, in most practical implementations,

weak laser pulses are used to carry quantum information. Each pulse is a priori in a

coherent state |√µeiθ⟩ of weak intensity, typically µ ≈ 0.1 photons. This pulse can
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be also written as a superposition of Fock states,
∑

n pn|n⟩⟨n|. The number n is dis-

tributed according to the Poissonian statistics of mean µ, pn = pn(µ) = e−µµn/n!.

If weak laser pulses are used to implement BB84 QKD protocol, some method-

ologies can be applied by Eve to obtain full information of transmitted quantum

states [104,105]. This is called a photon number splitting (PNS) attack.

If Eve is endowed with unlimited technological power within the laws of physics, the

following PNS attack is in principle possible [104,105]:

1. Eve counts the photon number of transmitted quantum states, using a photon

number quantum nondemolition (QND) measurement.

2. If only one photon is observed, Eve blocks the state. If more than one photons

are measured, she stores one photon in a quantum memory and transmit the

remaining photons to Bob through a transparent quantum channel.

3. Eve waits until Alice and Bob publicly reveal the used bases and correspond-

ingly measures the photon stored in her quantum memory. Because she knows

the bases of every stored qubit, she can deterministically obtain the full infor-

mation of quantum states.

In this eavesdropping process, Eve stored one photon for every transmitted quantum

state. From Bob’s perspective, the quantum states are attenuated substantially. If

the transmission distance is short (typically less than 50km) and the natural channel

attenuation due to photon absorption of fiber material is lower than eavesdropping

induced attenuation, this eavesdropping can be detected. If Eve does not want her

eavesdropping to be detected, she need to store less photons and in this way she

cannot obtain the full information of quantum states.

2.4.3 SARG 04 protocol

In order to tackle the problem of PNS attacks, the SARG 04 protocol was developed

in the year 2004 [28]. Unlike the coding scheme in BB84 protocol, the basic idea of
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SARG 04 protocol is that Alice encodes each bit into a pair of nonorthogonal states

belonging to two or more suitable sets. This protocol is confirmed to be more robust

than BB84 scheme against PNS attacks.

Applying PNS attack as introduced in Section 2.4.2, Eve needs to discriminate

between two eigenstates of a known Hermitian operator after the sifting step. This

is the extreme weakness of the BB84 protocol against PNS attack: when Eve can

keep one photon, she obtains all the information. If we can can encode the classical

bits in nonorthogonal states which cannot be discriminated deterministically by Eve,

the robustness of QKD can be increased.

The SARG 04 protocol begins with Alice’s preparation of two bit strings, a and b,

each n bits long. She then encodes these two strings into a string of n qubits as

follows:

|Ψ⟩ =
n⊗

i=1

|Ψaibi⟩ (2.18)

where ai and bi are the ith bits of a and b, respectively. Together, aibi give us an

index into the following four qubit states:

|Ψ00⟩ = |0⟩

|Ψ10⟩ = |1⟩

|Ψ01⟩ = |+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩

|Ψ11⟩ = |−⟩ = 1√
2
|0⟩ − 1√

2
|1⟩ (2.19)

From the above four qubits, we can see that choice of basis is encoded in (either

in the computational basis or the Hadamard basis) in the bit bi. Without knowing

bit bi, it is impossible to distinguish all of these nonorthogonal quantum states with

certainty. The rest steps of SARG 04 protocol are as follows:
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1. Alice sends a sequence of n qubits |Ψ⟩ over a public quantum channel to Bob.

After Bob receives the qubit sequence, all three parties, namely Alice, Bob

and Eve, have their own states. However, since only Alice knows b, it makes

it virtually impossible for either Bob or Eve to distinguish the states of the

qubits.

2. Bob proceeds to generate a string of random bits b′ of the same length as b.

3. According to the bit value of b′, Bob decide the basis (0 for computational basis

and 1 for Hadamard basis) and measure the received n qubits independently.

4. Bob announces via public classical channel that he receives the sequence of n

qubits.

5. For each sent qubit, Alice chooses one computational basis state and one

Hadamard basis state such that the state of the transmitted qubit is one of

these two states. Alice then announces those two states publicly. Alice will

note whether the state is the computational basis state or the Hadamard basis

state.

6. Bob now knows that the state of his qubit is one of the two states indicated by

Alice. To determine the secret bit, Bob must distinguish between the two can-

didate states. For each qubit, Bob can check to see whether his measurement

is consistent with either possible state. If it is consistent with either state,

Bob announces that the bit is invalid, since he cannot distinguish which state

was transmitted based on the measurement. If on the other hand, one of the

two candidate states is inconsistent with the observed measurement (different

states at the same basis), Bob announces that this qubit is valid. Now Alice

and Bob form a key.

7. Alice randomly chooses half bits of the raw key and discloses her choices over

the public channel. Both Alice and Bob announce these bits publicly and run

a check to see if more than a certain number of them agree. If this check

passes, Alice and Bob proceed to use information reconciliation and privacy
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amplification techniques to create some number of shared secret keys. The

amount by which this new key is shortened is calculated based on how much

information Eve could have gained about the old key.

For example if Alice transmits |ψ00⟩ and announces the two states |Ψ00⟩ and |Ψ01⟩.

If Bob chooses the computational basis, his only possible measurement is |Ψ00⟩.

This outcome is exactly the same as one of the announced states. In this case,

this qubit will become invalid because it would also be a possible outcome if the

transmitted state had been |Ψ01⟩. If Bob measures in the Hadamard basis, either

|Ψ01⟩ or |Ψ11⟩ could be measured, each with probability 1/2. If the outcome is

|Ψ01⟩ then again this state is consistent with one of the announced state and he can

not decide the transmitted state. On the other hand, an outcome of |Ψ11⟩ cannot

possibly be observed from a qubit in |Ψ01⟩. Thus in the case that Bob measures

in the Hadamard basis and observes state |Ψ11⟩ (and only in that case), Bob can

deduce which state was sent and therefore what the secret bit is. The probability

of validity for a transmitted qubit is 1/4 and one valid qubit can generate 2 secret

shared bits (ai and bi). So a qubit is expected to generate 1/2 bit on average, which

is the same as in BB84 protocol.

If Eve applies the same PNS attack on this SARG 04 protocol, she stores one photon

for every transmitted qubit. However, as Alice and Bob never announces their basis,

it is impossible for Eve to deduce secret bits from the stored qubits.

The following example is given to illustrate the process of SARG 04 protocol. Note

that the bases are chosen by Alice and Bob independently and randomly. 12 quan-

tum states are prepared by Alice. After receiving this quantum state sequence, Bob

measures these 12 quantum states with randomly chosen bases. After that, Alice

chooses one computational basis state and one Hadamard basis state such that the

state of the transmitted qubit is one of these two states. Three qubits are determined

to be valid and 6 shared bits are produced.
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Alice’s bit string a 0 0 1 1 0 1 0 0 1 0 1 1

Alice’s bit string b 0 1 1 1 0 1 0 1 0 0 1 0

Transmitted states |Ψ00⟩ |Ψ01⟩ |Ψ11⟩ |Ψ11⟩ |Ψ00⟩ |Ψ11⟩ |Ψ00⟩ |Ψ01⟩ |Ψ10⟩ |Ψ00⟩ |Ψ11⟩ |Ψ10⟩

Another announced states |Ψ11⟩ |Ψ10⟩ |Ψ00⟩ |Ψ00⟩ |Ψ01⟩ |Ψ00⟩ |Ψ11⟩ |Ψ00⟩ |Ψ11⟩ |Ψ11⟩ |Ψ01⟩ |Ψ11⟩

Bob’s bit string b′ 1 1 0 0 0 1 1 0 0 0 1 1

Bob’s measure results |Ψ01⟩ |Ψ01⟩ |Ψ00⟩ |Ψ10⟩ |Ψ00⟩ |Ψ11⟩ |Ψ11⟩ |Ψ00⟩ |Ψ10⟩ |Ψ00⟩ |Ψ11⟩ |Ψ01⟩

Valid qubit? Y N N Y N N N N N N N Y

key 00 � � 11 � � � � � � � 10

2.5 Channel equalisation techniques

In telecommunication, equalisation is the reversal of distortion incurred by a signal

transmitted through a channel. Equalizers are used to render the frequency re-

sponse of a communication channel flat from end-to-end. When a channel has been

equalised the frequency domain attributes of the signal at the input are faithfully

reproduced at the output. Telephones, DSL lines and television cables use equalizers

to prepare data signals for transmission.

Equalizers are critical to the successful operation of electronic systems such as analog

broadcast television. In this application the actual waveform of the transmitted

signal must be preserved, not just its frequency content. Equalizing filters must

cancel out any group delay and phase delay between different frequency components.

In classical communication, suppose a sequence of signals S is transmitted. S is a

vector, of which the kth element Sk is the kth transmitted signal. If the channel

response is a vector H and the additive noise is N, the receiving signal sequence S̃

would be:

S̃ = S⊗H+N (2.20)

An equaliser with impulse response E would be needed to produce another signal

sequence Î = E⊗Ĩ that approximates the transmitted sequence I as much as possible.

In this section, some equalisation techniques for LTI (linear time invariant) systems
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are introduced. In classical communication, the channels are reasonably assumed to

be LTI systems.

2.5.1 MMSE equaliser

One option to decide the equalisation sequence E is minimum mean square error

(MMSE) equaliser. It is based on the mean square error (MSE) criterion.

Since we do not know the values of transmitted sequence S beforehand, each symbol

Sk should be modelled as a random variable. The equalisation sequence E should

be chosen to minimize the MSE between the original information symbols Sk and

the output of the equaliser Ŝk:

MSE = E[e2k] = E[(Sk − Ŝk)
2] (2.21)

where E[∗] means the expectation operator. Assume the errors are generated by

a stationary process. If the length of E is finite (2L + 1), the equaliser is a finite

impulse response (FIR) filter and the MSE could be written as:

MSE = E[(Sk −
L∑

j=−L

S̃k−jEj)
2]

= E[(Sk − S̃T
kE)

2] (2.22)

where

S̃k = [S̃k−L, · · · · · · , S̃k+L]
T (2.23)

E = [E−L, · · · · · · , EL]
T (2.24)

Since we want to minimize MSE by choosing suitable values for E. By differentiating

with respect to each element of E and setting the result to zero, we obtain:
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E[S̃k(Ik − S̃T
kE)] = 0 (2.25)

Rearranging, we obtain:

E[S̃kS̃
T
k ]E = E[SkS̃k] (2.26)

Since the value of E[S̃kS̃
T
k ] and E[SkS̃k] could be obtained by sending a training

sequence. The MMSE equaliser sequence E could be found by solving Equation 2.26.

2.5.2 Decision feedback equaliser

We can write the kth signal of receiving sequence as follows:

S̃k = SkH0 +
∑
j ̸=k

SjHk−j + Ñk (2.27)

where Hj is the jth element of the channel impulse response H and Ñk is the

imposing noise. From Equation 2.27, we can see that if all the other symbols of

the receiving sequence is known, we can eliminate ISI (Inter symbol interference) as

follows:

Ŝk = S̃k −
∑
j ̸=k

SjHk−j (2.28)

In practical implementation, we do not know all the symbols that are affecting the

reception of the current symbol. However, we can use previously decided symbols

provided that we have made correct decisions on them. This approach is known as

decision feedback equaliser (DFE). A DFE is composed of a forward part F and a
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feedback partB. Suppose F andB are vectors with length L1+1 and L2 respectively.

Then we can obtain:

Ŝk = S̃T
FF+ ST

BB (2.29)

where

S̃F = [S̃k+L1 , S̃k+L1−1, · · · · · · , S̃k]
T (2.30)

SB = [Sk−1, Sk−2, · · · · · · , Sk−L2]
T (2.31)

F = [F−L1 , F−L1+1, · · · · · · , F0]
T (2.32)

B = [B1, B2, · · · · · · , BL2 ]
T (2.33)

The MSE of this DFE is:

E[(Sk − Ŝk)
2] = E[(Sk − S̃T

FE− ST
BB)2] (2.34)

Since we need to minimize MSE, we need to differentiate with respect to E and B

and make:

E[S̃FSk − S̃T
FF− ST

BB)] = 0 (2.35)

E[SBSk − S̃T
FF− ST

BB)] = 0 (2.36)

By solving the above equation, we can obtain the DFE F and B as follows:

F = (E[S̃F S̃
T
F ]− E[S̃FS

T
B]E[SBS̃

T
F ])

−1E[SkS̃F ] (2.37)

B = −E[SBS̃
T
F ]F (2.38)
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2.6 Conclusion

Relevant literature in the field of quantum communication is reviewed. At first, a

number of NLA schemes are introduced. After that, the DLCZ protocol is presented,

followed by introduction of its extensions from various perspectives. Some popular

QKD protocols are then discussed. Finally, we introduce the equalisation techniques

in classical communication.
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Chapter 3

Quantum Amplification

T
HIS chapter presents a dynamical model to describe the op-

eration of the NLA in the regime of continuous modes in-

puts. Both the quantum scissor based NLA and the photon

addition-subtraction based NLA are analysed. Simulation results are

also presented to confirm theoretically analysis.

Page 37



3.1 Introduction

3.1 Introduction

One of the most thriving areas of quantum information is optical quantum com-

munication, with a number of protocols taking advantage of quantum physics to

achieve goals that wouldn’t be possible classically [10,18,20]. Despite the numerous

experiments demonstrating these protocols [19,21–23], the build up of realistic quan-

tum networks that span large distances is still a major challenge due to attenuation

and noise introduced by decoherence in the channels. In classical communication,

the solution is to introduce repeater stations that amplify the signal making the

transmission of information between distant nodes possible. In the quantum case,

however, deterministic amplification inevitably introduces extra noise [48].

A possible way to achieve a noiseless amplification of an arbitrary quantum state is

to let go of the deterministic aspect of the process and to consider a probabilistic

protocol. This is the solution proposed by Ralph and Lund with the nondetermin-

istic (but heralded) noiseless linear amplifier (NLA) introduced in Ref. [61]. The

application of this scheme has been considered in a variety of contexts both theoret-

ically [29] and experimentally [64–67] and is known as quantum scissor based NLA.

Another NLA scheme is based on photon addition and subtraction [68,69,71,73,74].

In previous literature for both the two NLA schemes, the quantum states and opera-

tors are treated in discrete mode, which may not be true in practical implementation.

A continuous-mode operation of NLA is therefore necessary. We also need to dis-

cuss the effects of photon detector resolution time, as the success of amplification in

both the two NLA schemes is heralded by specific photon detection as introduced

in Section 2.2.

This chapter is structured as follows: In Section 3.2, we describe the continuous-

mode quantum scissor based NLA model and analyse the detailed dynamical be-

havior of a single, and also a couple of concatenated NLAs. In particular, we show

that the shape of the ancilla single photon pulse gets mapped onto the amplified

coherent state. We also simulate a range of different pulse shapes to investigate the

effects of the temporal modes on the NLA operation. In Section 3.3, we apply the

Page 38



Chapter 3 Quantum Amplification

|0〉

|α〉

a

c

|1〉 b

aout

bout

cout

Dc

Db

Figure 3.1. A single NLA module: a coherent state |α⟩ is amplified to |gα⟩ when one photon

is detected in either one of the detectors. This amplification transformation is

approximate, and only valid when gα is small. For larger coherent states, multiple

amplifier modules need to be concatenated together.

same continuous mode analysis for the photon addition-subtraction based NLA. The

research results are concluded and some open questions are discussed in Section 3.4.

3.2 Continuous-mode quantum scissor based NLA

The NLA protocol works using the “quantum scissor” [94] module shown in Fig-

ure 3.1. Using an auxiliary single photon |1⟩ in one of the input ports, this module

truncates a general state |ψ⟩ =
∑∞

k ck|k⟩ into |ψtrunc⟩ = N (c0|0⟩+ c1|1⟩), whenever

a photon is detected in either one of the detectors Db or Dc. Here N () denotes the

normalization of the state. If the input state |ψ⟩ is a coherent state |α⟩ and the top

beam splitter has transmission η, then the output state after a detection event is

N (|0⟩+ gα|1⟩), where g =
√

1−η
η
. If gα is small enough, the state N (|0⟩+ gα|1⟩) is

approximately |gα⟩ and thereby we have the coherent state |α⟩ amplified into |gα⟩

with an amplification ratio g. For larger coherent states, the truncated state is not a

good approximation for the amplified state and the solution is to split the input into

small coherent states that can then be amplified and recombined, as shown in [61].
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Since the implementation of the amplification operation relies on the interference of

the ancilla single photon with the input field at beam splitters, then the question

of mode matching and pulse shapes is an important one that is not encompassed

by the single mode treatment described above. This is also relevant if one considers

the situation where information is encoded into multiple frequencies or, equivalently,

into the temporal profile of the incoming field. In this section, we extend the analysis

of the quantum scissor NLA to the continuous mode regime to explicitly take into

account arbitrary pulse shapes for the input field and the ancilla photon and their

effects on the amplification process. In particular we show that the amplification

gain will be determined by the detection time, and that the shape of the ancilla

photon is transferred to the amplified state.

3.2.1 Amplification with one NLA module

To analyse the continuous-mode operation of the NLA, we will consider the ancilla

single photon and input coherent states of the form |1ξ1⟩ and |αξ2⟩, respectively,

where ξ1 and ξ2 are the corresponding wavepacket shapes fulfilling the normaliza-

tion condition
∫
|ξ1(t)|2dt =

∫
|ξ2(t)|2dt = 1. Note that we grouped all the time

dependence of the coherent state in the ξ2(t) factor. We can then write

⟨n⟩ = |α|2, (3.1)

where ⟨n⟩ is the mean number of photons in the coherent pulse [106].

This situation is depicted in Figure 3.2, where the total input state for all three

channels a, b, and c is given by |Ψ⟩in = |0⟩a|1ξ1⟩b|αξ2⟩c. This state can also be

written as the action of the creation operator for mode b and the displacement

operator for mode c on the vacuum, i.e. |Ψ⟩in = b†ξ1Dc(αξ2)|0⟩a|0⟩b|0⟩c, where

b†ξ1 =

∫
ξ1(t)b

†(t)dt, (3.2)

with an equivalent definition for the other modes. b(t) is the annihilation operator

at the time point t.
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|0〉

|αξ2〉

a

c

|1ξ1〉 b

aout

bout

cout

Cavity

Dc

Db

Figure 3.2. Compared with Figure 3.1, this dynamical amplification system have incoming

signals written in the form |1ξ1⟩ and |αξ2⟩ because we take pulse shapes of signals

into consideration. The cavity is used as probe to monitor the output signal in

the simulation.

The transformation from the input channels to the output channels is given by the

unitary matrix SBS representing the action of the beam splitters on the system as

follows:


aout

bout

cout

 = SBS ·


a

b

c

 , (3.3)

with

SBS =


√
η i

√
1− η 0

i
√
1−η√
2

√
η√
2

i√
2

−
√
1−η√
2

i
√
η√
2

1√
2

 . (3.4)

Here the top and bottom beam splitters of Figure 3.2 have transmissivities η and

1/
√
2, respectively.
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We can, alternatively, look at the output state of the system in the Schrödinger

picture:

|Ψ⟩out = U |Ψ⟩in

= U |0⟩a|1ξ1⟩b|αξ2⟩c

= Ub†ξ1U
†UD(α)c,ξ2

U †U |0⟩a,b,c

= Ub†ξ1U
†UDc(αξ2)U

†|0⟩a,b,c, (3.5)

where in the last line we wrote the input state in terms of the creation and dis-

placement operators and used the fact that the unitary operator U representing

the evolution does not change the initial vacuum state. Note now that Ub†ξ1U
† and

UDc(αξ2)U
† correspond to the output operators in the Heisenberg picture. Inverting

Equation (3.3), we can write:

|Ψ⟩out =
(
−i
√

1− ηa†ξ1 +

√
η

√
2
b†ξ1 −

i
√
η

√
2
c†ξ1

)
Db

(
−iαξ2√

2

)
Dc

(
αξ2√
2

)
|0⟩a,b,c. (3.6)

3.2.1.1 Conditional Amplification: perfect detection case

We can now see the effect that the detection of a photon in any of one of the detectors

has on the output state. In this sub-section, we discuss the situation where the time

resolution of the photo-detectors is much shorter than the temporal width of the

photon pulses, as in the case of experiments with solid-state quantum memories.

Let’s consider the case where, at a given time td, we have a detection event on the

output channel corresponding to cout and no clicks on the bout channel. This happens

with probability

P = e−|α|2(
η

2
|ξ1(td)|2 +

1− η

2
|α|2|ξ2(td)|2) (3.7)

and will project the state with the projector Π = |0⟩b|1td⟩c⟨1td|c⟨0|b =

|0⟩bc†(td)|0⟩c⟨0|cc(td)⟨0|b. Using Eq.(3.6), we can write the unnormalized output

state, |Ψ̃⟩condout , conditioned on this detection as
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|Ψ̃⟩condout = Π · |Ψ⟩out

= |0⟩b|1td⟩c⟨0|b⟨0|cc(td)
(
−i
√

1− ηa†ξ1 +

√
η

√
2
b†ξ1 −

i
√
η

√
2
c†ξ1

)
×Db

(
−iαξ2√

2

)
Dc

(
αξ2√
2

)
|0⟩a,b,c

= e
−|α|2

2

(
−i
√

1− η

2
ξ2(td)α a

†
ξ1
−
i
√
η

√
2
ξ1(td)

)
|0⟩a|0⟩b|1td⟩c

= −ie
−|α|2

2

√
η

2
ξ1(td)

(
1 +

ξ2(td)

ξ1(td)

√
1− η

η
a†ξ1α

)
|0⟩a|0⟩b|1td⟩c. (3.8)

Therefore, the normalized output state on channel aout conditioned on this particular

event is

|Ψ⟩conda,out =
|0⟩+ g0g1α|1ξ1⟩√

1 + |g0g1α|2
(3.9)

where

g0 =

√
1− η

η

and

g1 =
ξ2(td)

ξ1(td)
.

If we detect single photon on the output channel corresponding to bout and no clicks

on the cout channel. Then the normalized output state on channel aout |Ψ⟩conda,outis
|0⟩−g0g1α|1ξ1 ⟩√

1+|g0g1α|2
. A phase shifter can be utilized to transform this state to be the same

as Equation 3.9.

In the limit where |g0g1α| ≪ 1, this state can be approximated as the coherent state

|g0g1αξ1⟩ with a fidelity F = e
−|g0g1α|2

2 /
√

|g0g1α|2 + 1. The amplitude of output

signal will depend on two gains, g0 and g1. The first is exactly the same as in the

single mode calculations [61], while the second represents how well the temporal

shape of the ancilla photon and the input coherent state match.

The behaviour of the gain g1 for two unmatched pulses given by |ξ2(t)|2 =

e−t2/(2σ2)/(σ
√
2π) and |ξ1(t)|2 = e−(t−t1)2/(2σ2)/(σ

√
2π) is shown in the bottom panel
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Figure 3.3. Top panel: input coherent state (solid, black) and ancilla single photon (green,

dashed) pulse shapes. They were chosen to be Gaussian with the same standard

deviation (σ) but shifted in time. Bottom panel: gain g1, fidelity and probability

of detection for the pulses shown on the top panel. The probability was multiplied

by a factor of 10 to become more visible. The dotted vertical line in both plots

show the point in time where the amplitude of the pulses coincide.

of Figure 3.3, together with the fidelity and the detection probability. Note that

the detection time will determine whether the factor g1 will represent gain (ξ2(td) >

ξ1(td)) or attenuation (ξ2(td) < ξ1(td)) in the system. This asymmetry in the gain

factor is just a consequence of the asymmetric NLA scheme where the output channel

is only being fed by the ancilla photon, with no connection to the incoming coherent

state.

The vertical dotted line in Figure 3.3 indicates the point in time where the amplitude

of the pulses are the same and the total gain is simply g0. To the left of this line,

the gain increases at the expense of the fidelity: as ξ2(td) increases with respect to

ξ1(td), the chance that the click on the detector came from the coherent field and

that the single photon was reflected to the output channel increases. In the limit

where ξ2(td) ≫ ξ1(td), it doesn’t even make sense to talk about amplification as the
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conditioned output state approaches the single photon state (|Ψ⟩conda,out ≈ |1ξ1⟩) and

does not correspond to a scaled version of the input coherent state. To the right of

the vertical line, the gain turns into attenuation and the amplification performance

decreases as compared to the single mode case. Note that in the limit where ξ2(td) ≪

ξ1(td) the output state approaches the vacuum. In this case, the high fidelity is due

to the large vacuum component of the small input coherent state.

3.2.1.2 Simulation and Analysis

To illustrate the effect of detection events in the amplifier, we performed simu-

lations using a stochastic master equation (SME) describing the situation shown

in Figure 3.2. The channel aout is probed by a cavity for the seek of simulation.

The channels bout and cout are monitored by photodetectors. In order to obtain

the SME equation and simulate this dynamical system with the software Quantum

Toolbox in Python(Qutip) [107], we need to model this whole dynamical system

with G = (S, L,H) [108] triplet.

In this project, a passive cavity is used to monitor the output signal of channel a.

From the book [109,110], we can describe the cavity with the following equations:

da = (−κ
2
)a · dt−

√
κdu (3.10)

where a is annihilation operator associated with the cavity mode. u stands for

the incoming mode and κ is the coupling coefficient of the cavity. From the above

equation, we can obtain the transfer function [111,112] from the cavity mode to the

incoming mode:

a(s)

u(s)
=

−
√
κ

s+ κ
2

(3.11)

If the coupling coefficient κ is large enough (we set κ = 100 in the simulation), we

can approximate the transfer function into a fixed ratio − 2√
κ
and in this way we

monitor the output signals with cavity modes.
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In order to put this cavity into simulation, we need to represent this cavity in

a G = (S, L,H) form. Since κ is the coupling coefficient, we can use Gcavity =

(I,
√
κacavity, 0) to represent the cavity as introduced in the paper [108] and acavity

is the annihilation operator for cavity states. As there are three outputs in parallel,

we can obtain the total output triple Goutput = (S, L,H):

Goutput = (I,


√
κacavity

0

0

 , 0) (3.12)

From the Figure 3.2, we can see there are three input signals in this dynamical

system: |0⟩, |1ξ1⟩ and |αξ2⟩. With the methodology introduced in the paper [113],

we can represent the three incoming states in G = (S, L,H) form as follows:

Ginput = (I,


0

λ(t)σ−

αξ2(t)

 , 0) (3.13)

Where σ− is lower operator of a fictitious two-level system [113] and

λ(t) =
1√
w(t)

ξ1(t)

w(t) =

∫ ∞

t

|ξ(s)|2ds

From the previous sections, we have calculatedG triples for input signals, beam split-

ters and output signals respectively. Since the input part,beam splitters and output

part are cascaded, we can calculate the total triple Gtotal = (Stotal, Ltotal, Htotal) =

Goutput ▹ Gbeamsplitter ▹ Ginput based on the equation introduced in the paper [108]:

G2 ▹ G1 = (S2S1, L2 + S2L1, H1 +H2 + Im(L†
2S2L1)) (3.14)

As we have three outputs in parallel, we can write down the total triple Gtotal in the

form:
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Gtotal = (Stotal,


L1

L2

L3

 , Htotal) (3.15)

Where the parameters L1,L2 and L3 are coupling operators for the three channels

of total dynamical system and they are:

L1 = i
√
1− ηλ(t)σ− +

√
κacavity

L2 =

√
η

√
2
λ(t)σ− +

i√
2
αξ2(t)

L3 =
i
√
η

√
2
λ(t)σ− +

1√
2
αξ2(t)

In this dynamical system, we use photon detectors to measure the system. From the

survey paper [114], we can obtain the stochastic master equation in photon-counting

case as follows:

dρ(t) = L∗
Gρ(t)dt+ JLρ(t)dN(t) (3.16)

where

L∗
GX = −i[H, ρ] +D∗

Lρ

JLρ(t) =
LρL†

tr{ρL†L}
− ρ

and dN(t) = dY −tr{ρL†L} is a compensated Poisson process of intensity tr{ρL†L}.

Since we have two outputs L2 and L3 connected to photon detectors, we can write

down the quantum filter for this dynamical system as:

dρ(t) = −i[H, ρ] +D∗
L1
ρ+D∗

L2
ρ+D∗

L3
ρ

+JL2ρ(t)dN2(t) + JL3ρ(t)dN3(t) (3.17)
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Figure 3.4. Stochastic simulation of a NLA showing the average number of photons in the

cavity (top panel) and the X and Y quadratures of the cavity field (middle and

bottom panels, respectively) for α = 0.001 and the same shape for both the input

coherent state and the ancilla single photon. Before a detection, the single photon

populates the cavity but the detection projects the field into an approximated

amplified version of the input coherent state. Solid blue line correspond to no

amplification while dashed green is for g0 = 2.

Figure 3.4 shows the results for two identical input Gaussian pulses ξ1(t) = ξ2(t)

and a gain g0 = 2 (green-dashed curve). A curve with no gain (g0 = 1) is shown for

comparison with a detection event at the same time (solid-blue curve). The panels

show, from top to bottom, the average number of photons in the cavity, and the X

and Y quadratures of the cavity field.

Figure 3.5 shows Wigner function [110] for cavity state. The left figure shows Wign-

er function of cavity state immediately before a photon is detected while the right

figure is the Wigner function of cavity states immediately after photon detection.

The cavity is initially in the vacuum state and the field starts to build up before a

detection event happens. This happens because, conditioned on the lack of detec-

tions, the single photon could only have been transmitted through the beam splitter
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Figure 3.5. Wigner function for cavity state. The left figure shows Wigner function of cavity

state immediately before a photon is detected while the right figure is the Wigner

function of cavity states immediately after photon detection.

and fed into the cavity. When a photon is detected, then the field inside the cavity

changes to the approximated amplified version of the coherent input, as seen in the

sudden jump in the X quadrature of the field.

3.2.1.3 Conditional Amplification: detectors with finite time resolution

While in the previous section we discussed the situation where detections were in-

stantaneous and one could resolve the photon temporal shape, in some experimental

situations the photon pulses are in the femtoseconds range and therefore shorter than

the time resolution of photodetectors. In this case, a detection does not single out

a specific time for the event and we need to redefine the effect of measurement on

the system. In this case we define a measurement superoperator Γ(td) as

Γ(td)ρ =
∫ td+

τ
2

td− τ
2
Q(td|s)|1s⟩⟨1s|ρ|1s⟩⟨1s| ds, (3.18)

where [td − τ
2
, td +

τ
2
] corresponds to the time resolution window of photodetectors,

which is much longer than photon pulse width. Q(td|s) is the probability of photon

|1s⟩ measured at time td. ρ is the state before measurement and in this case, we have

ρ = |Ψ⟩out⟨Ψ|out according to equation (3.6). So we can obtain the unnormalized

conditional state:
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ρcondout =

∫ td+
τ
2

td− τ
2

Q(td|s)P (s) (|0⟩+ g(s)α|1ξ1⟩) (⟨0|+ g(s)α⟨1ξ1 |) ds

≈
∫ td+

τ
2

td− τ
2

Q(td|s)P (s)|g(s)αξ1⟩⟨g(s)αξ1 | ds, (3.19)

where P (s) = e−|α|2(η
2
|ξ1(s)|2+ 1−η

2
|α|2|ξ2(s)|2) according to equation (3.7) and g(s)

is the gain ratio

g(s) = g0 · g1s

=
√

1−η
η

∗ ξ2(s)
ξ1(s)

(3.20)

The result from Eq. (3.19) shows that the effect of finite detector resolution is to

generate an output state which is a mix of amplified pure states with gains equivalent

to those derived in the perfect time-resolution case. Note that, as in the perfect

detection case, the output state is only approximately an amplified version of the

input state.

3.2.2 Amplification with two NLA modules

As mentioned before, the output state of the NLA module is only a good approx-

imation for an amplified coherent state when |g0g1α| ≪ 1. If the amplitude α of

input state is large, one option is to split this state into two smaller coherent states

with amplitudes |α′
ξ2
⟩ = |αξ2√

2
⟩, as shown in Figure 3.6. After that, these two smaller

coherent states are put into two NLA modules separately. We assume that success-

ful detections at NLA modules 1 and 2 occur at times t1 and t2, respectively. From

Eq.(3.9), we can obtain the output states of the two NLA modules:

|Ψ̃NLA1⟩ = |0⟩+ g0g11
α√
2
|1ξ1⟩,

|Ψ̃NLA2⟩ = |0⟩+ g0g12
α√
2
|1ξ1⟩, (3.21)
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|αξ2〉

|0〉

Amplifier

Amplifier Cavity

Figure 3.6. If the amplitude α of input state is large, one option is to split this state into

two smaller coherent states with amplitudes |α′
ξ2
⟩ = |αξ2√

2
⟩. After that, these two

smaller coherent states are put into two NLA modules separately.

where g0 =
√

1−η
η

is the single mode amplification gain, and g11 = ξ2(t1)
ξ1(t1)

and g12 =

ξ2(t2)
ξ1(t2)

are the amplification ratios induced by differences in the pulse shapes. Note

that we assumed that the two ancilla photons have the same shape ξ1(t) and we

are considering the situation of perfect detector resolution. If we put these two

amplified states into another balanced beamsplitter and observe no photon click in

one output, then the recombined state from the other output will be

|Ψ̃⟩out = |0⟩+ g0
g11 + g12

2
α|1⟩ξ1 +

g20g11g12α
2

2
√
2

|2⟩ξ1 , (3.22)

which, again, when properly normalized and in the limit of small gain and small

input amplitude, can be approximated by a coherent state

|Ψ̃⟩out ≈ |g0
g11 + g12

2
α⟩ξ1 . (3.23)

As in the case of a single NLA module, we see that the amplification ratio g0
g11+g12

2

is affected by the photon detection times. If the two photons are detected at the

same time t1 = t2 = td, we obtain g11 = g12 = g1 and the amplification ratio would

be the same as that of that of a single module situation but with a higher fidelity

e
−|g0g1α|2

2

√
|g0g1α|4

4
+ |g0g1α|2 + 1.
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Figure 3.7 shows a stochastic simulation for the two modules case for g0 = 2 (green-

dashed) and the no gain case (solid-blue) for comparison. The two input pulses are

Gaussian with the same width but shifted in time. In this case, the exact gains will

depend on the detection times, as we have shown in our analytical calculations.

Figure 3.7. Amplification with two NLA modules: panels are the same as in Figure 3.4 but

this time the input fields are mismatched. The gain g1 will now depend on the

exact detection times.

3.3 Continuous-mode photon addition-subtraction based

NLA

In Section 2.2.3, a photon addition-subtraction based NLA scheme is introduced.

The idea is to approximate a small coherent state |α⟩ as |0⟩+ α|1⟩ firstly and then

apply a creation operator and an annihilation operator to this state so that the

output state is |Ψout⟩ = |0⟩ + 2α|1⟩ ≈ |2α⟩. As shown in Figure 3.8, we can also

analyse this photon addition-subtraction based NLA scheme dynamically. Instead

of discrete modes in Figure 2.3, we have an input state |αξ1⟩ with pulse shape ξ1. ξ2

represents the temporal profile of the added photon while ξ3 is the temporal profile of
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â
†
ξ2

âξ3

D1 D2

|αξ1〉

Figure 3.8. As shown in this figure, we can also analyse this photon addition-subtraction

based NLA scheme dynamically. Instead of discrete modes in Figure 2.3, we have

an input state |αξ1⟩ with pulse shape ξ1. The continuous mode creation operator

â†ξ2 and the annihilation operator âξ3 are applied to the input state.

photon absorbed by photon detectors. After the continuous mode creation operator

â†ξ2 and the annihilation operator âξ3 are applied, the output state can be written

as:

|Ψout⟩ = âξ3 â
†
ξ2
|αξ1⟩

≈ âξ3 â
†
ξ2
(|0⟩+ α|1ξ1⟩)

= âξ3 â
†
ξ2
(1 + αâ†ξ1)|0⟩

= ([âξ3 , â
†
ξ2
] + â†ξ2 âξ3)(1 + αâ†ξ1)|0⟩

= ([âξ3 , â
†
ξ2
] + α[âξ3 , â

†
ξ2
]â†ξ1 + αâ†ξ2 âξ3 â

†
ξ1
)|0⟩

= ([âξ3 , â
†
ξ2
] + α[âξ3 , â

†
ξ2
]â†ξ1 + αâ†ξ2([âξ3 , â

†
ξ1
] + â†ξ1 âξ3))|0⟩

= [âξ3 , â
†
ξ2
]|0⟩+ α([âξ3 , â

†
ξ2
]â†ξ1 + [âξ3 , â

†
ξ1
]â†ξ2)|0⟩ (3.24)

where the commutation of an annihilation operator and a creation operator with

different pulse shapes [âξm , â
†
ξn
] can be calculated as:
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[âξm , â
†
ξn
] = [

∫
ξm(t)âtdt,

∫
ξn(t)â

†
tdt]

=

∫
ξm(t1)dt1 ·

∫
ξn(t2)dt2 · [ât1, â†t2]

=

∫
ξm(t1)dt1 ·

∫
ξn(t2)dt2 · δ(t1− t2)

=

∫
ξm(t1)ξn(t1)dt1

=

∫
ξm(t) · ξn(t)dt (3.25)

If we set |φ1⟩ = ([âξ3 , â
†
ξ2
]â†ξ1 + [âξ3 , â

†
ξ1
]â†ξ2)|0⟩, then the ⟨φ1||φ1⟩ can be obtained as

follows:

⟨φ1||φ1⟩ = ⟨0|([âξ3 , â
†
ξ2
]âξ1 + [âξ3 , â

†
ξ1
]âξ2)([âξ3 , â

†
ξ2
]â†ξ1 + [âξ3 , â

†
ξ1
]â†ξ2)|0⟩

= ⟨0|[âξ3 , â
†
ξ2
]2âξ1 â

†
ξ1
|0⟩+ ⟨0|[âξ3 , â

†
ξ1
]2âξ2 â

†
ξ2
|0⟩

+ [âξ3 , â
†
ξ2
][âξ3 , â

†
ξ1
]⟨0|(âξ1 â

†
ξ2
+ âξ2 â

†
ξ1
)|0⟩

= [âξ3 , â
†
ξ2
]2 + [âξ3 , â

†
ξ1
]2 + 2 ∗ [âξ3 , â

†
ξ2
][âξ3 , â

†
ξ1
][âξ2 , â

†
ξ1
] (3.26)

Then the unnomalized output state in Equation 3.24 can be rewritten as follows:

|Ψout⟩ = [âξ3 , â
†
ξ2
]|0⟩+ α

√
⟨φ1|φ1⟩(

[âξ3 , â
†
ξ2
]√

⟨φ1|φ1⟩
â†ξ1 +

[âξ3 , â
†
ξ1
]√

⟨φ1|φ1⟩
â†ξ2)|0⟩

= [âξ3 , â
†
ξ2
]|0⟩+ α

√
⟨φ1|φ1⟩|1ξ4⟩

= [âξ3 , â
†
ξ2
](|0⟩+ α

√
⟨φ1|φ1⟩

[âξ3 , â
†
ξ2
]
|1ξ4⟩

≈ [âξ3 , â
†
ξ2
]|
√

⟨φ1|φ1⟩
[âξ3 , â

†
ξ2
]
αξ4⟩ (3.27)

where the single photon |1ξ4⟩ is |φ1⟩√
⟨φ1|φ1⟩

=
([âξ3 ,â

†
ξ2

]â†ξ1
+[âξ3 ,â

†
ξ1

]â†ξ2
)|0⟩√

⟨φ1||φ1⟩
. So the input

coherent state |α⟩ is amplified with an amplification gain G as follows:
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G =

√
⟨φ1|φ1⟩

[âξ3 , â
†
ξ2
]

=

√
[âξ3 , â

†
ξ2
]2 + [âξ3 , â

†
ξ1
]2 + 2 ∗ [âξ3 , â

†
ξ2
][âξ3 , â

†
ξ1
][âξ2 , â

†
ξ1
]

[âξ3 , â
†
ξ2
]

(3.28)

At the same time, the pulse shape of input state |αξ1⟩ is changed into ξ4 as de-

scribed in Equation 3.27. If the special case comes when ξ1(t) = ξ2(t) = ξ3(t), then

the amplification gain is G = 2, which is the same as the discrete analysis in the

paper [73].

3.3.1 Conditional Amplification: perfect detection case

As introduced in the paper [73], the continuous mode creation operator â†ξ2 and the

annihilation operator âξ3 are induced by single photon click D1 and D2 respectively.

In this sub-section, we discuss the situation where the time resolution of the photo-

detectors is much shorter than the temporal width of the photon pulses, as in the case

of experiments with solid-state quantum memories. Let’s consider the case where

at the time t2 and t3, two single photons are detected at D1 and D2 respectively.

Then the output state can be obtained as:

|Ψout⟩ ≈ ât3â
†
t2|αξ1⟩

= [ât3, â
†
t2](|0⟩+ α

√
⟨φ1|φ1⟩

[ât3, â
†
t2]

|1ξ4⟩)

≈ [ât3, â
†
t2]|
√
⟨φ1|φ1⟩

[ât3, â
†
t2]

αξ4⟩ (3.29)

If t2 ̸= t3, the two single photon clicks happen at different time window, then

we have [ât3, â
†
t2] = 0. Then the output state is not a coherent state but a single

photon |1t2⟩. If this happen, it means the annihilation operator âξ3 destroy the single

photon term of input coherent state |αξ1⟩, leaving the single photon state |1t2⟩ which

is created by â†ξ2 .

Page 55



3.3 Continuous-mode photon addition-subtraction based NLA

If t2 = t3 = td, the amplification gain is G = δ(0)+ξ1(td)
δ(0)

≈ 1 and the input is hardly

amplified. The pulse shape also remains the same as that of input state because

now we have ξ4 = ξ1. From another perspective, we can see that the more the input

state |αξ1⟩ gather at the time t, the more amplification gain we have.

3.3.2 Conditional Amplification: detectors with finite time res-

olution

While in the previous section we discussed the situation where detections were in-

stantaneous and one could resolve the photon temporal shape, in some experimental

situations the photon pulses are in the femtoseconds range and therefore shorter than

the time resolution of photodetectors. In this case, a detection does not single out

a specific time for the event and we need to redefine the effect of measurement on

the system. Suppose the two photon detectors are the same and the detection time

t2 = t3 = td, we define a measurement superoperator Γ1(td) as

Γ1(td)ρ =
∫ td+

τ
2

td− τ
2

∫ td+
τ
2

td− τ
2
Q(td|s2)Q(td|s1)âs2â†s1ρâs1â

†
s2 ds1ds2, (3.30)

where [td − τ
2
, td +

τ
2
] corresponds to the time resolution window of photodetectors,

which is much longer than photon pulse width. Q(td|s) is the probability of photon

|1s⟩ measured at time td. ρ is the state before measurement and in this case, we

have ρ = |αξ1⟩⟨αξ1 |. So we can obtain the unnormalized conditional state:

ρcondout =

∫ td+
τ
2

td− τ
2

∫ td+
τ
2

td− τ
2

Q(td|s2)Q(td|s1)[âs2, â†s1]2(|0⟩+ α

√
⟨φ1||φ1⟩s1,s2
[âs2, â

†
s1]

|1ξ4⟩)

× (⟨0|+ α

√
⟨φ1||φ1⟩s1,s2
[âs2, â

†
s1]

⟨1ξ4|) ds1ds2,

≈
∫ td+

τ
2

td− τ
2

Q(td|s)2|αξ1⟩⟨αξ1 | ds, (3.31)

Unlike the quantum scissor based NLA, the effect of finite detector resolution here

is to generate an output state which is approximately a pure state. Interestingly,
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this generated output state is approximately the same as the perfection detection

case.

3.4 Conclusions and Discussion

In this chapter, we firstly investigate the continuous mode performance of a quantum

scissor based NLA scheme for coherent states, showing the effect of pulse shapes in

the NLA gain. The pulse shape of the output signal is the same as the one from the

auxiliary single photon, while its amplitude is influenced by both the input coherent

state and the NLA parameters. Interestingly, gains higher than in the single mode

case can be obtained for mismatched pulses, however, it comes at the expense of

lower fidelities. The mismatch could also introduce an attenuation, depending on

the detection times. This shows that in practical situations, one would have to have

a good knowledge of the input pulse for the amplification to be successful.

We also discuss the continuous mode operation of photon addition-subtraction based

NLA scheme. If we take the example of [73] and apply the continuous mode analysis

we get the output state |Ψout⟩ = âξ3 â
†
ξ2
(1 + αâ†ξ1)|0⟩, where ξ1 is the shape of the

input state to be amplified and ξ2 and ξ3 the shapes of the field corresponding to

the processes of addition and subtraction of photons. For ξ1(t) = ξ2(t) = ξ3(t) one

recovers the single mode gain but mismatched shapes would have similar effects as

quantum scissor based NLA scheme.

In order to compensate attenuation during communication channels, quantum am-

plifiers are needed to be incorporated in the building of quantum repeaters. Since

the quantum states operate in continuous mode in practise, our analysis of NLA

might be used in the design of quantum repeaters in the future.
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Chapter 4

Generation of Distributed
W-States over Long

Distances

T
HIS chapter describes the structure of distributed W-states

generation over long distances.
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4.1 Introduction

Ultra-secure quantum communication between distant locations requires distribut-

ed entangled states between nodes. Various methodologies have been proposed to

tackle this technological challenge, of which the so-called DLCZ protocol is the most

promising and widely adopted scheme. This project aims to extend this well-known

protocol to a multi-node setting where the entangled W-state is generated between

nodes over long distances. The generation of multipartite W-states is the foundation

of quantum networks, paving the way for quantum communication and distributed

quantum computation.

The rest of this chapter is structured as follows: In Section 4.2, we introduce a

methodology which can be used to generate distributed W-states. These generated

distributed W-states can be used to generate other distributed W-states on larger

scales as discussed in Section 4.3. After that, it is proved that W-states could be

used to perform teleportation in Section 4.4. In Section 4.5 we conclude and discuss

some open questions for future research.

4.2 Generation of distributed W-states

4.2.1 Atomic ensembles and photons

As introduced in [78], we can use an atomic ensemble to generate a quantum state

|ϕ⟩ = (1 +
√
pS†a†)|0⟩ where √

p represents the low probability of atomic ensemble

excitation, S† denotes excitation operator for the atomic ensemble, and a† is the

single-photon creation operator. If we have N + 1 distant nodes, we can generate

N+1 photons and the states can be written as |ϕi⟩ = (1+
√
pS†

i a
†
i )|0⟩ (0 ≤ i ≤ N).

We call the first node which has the state |ϕ0⟩ = (1 +
√
pS†

0a
†
0)|0⟩ the main node,

and the remaining N nodes, whose states are |ϕi⟩ = (1+
√
pS†

i a
†
i )|0⟩ (1 ≤ i ≤ N),

normal nodes.
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Bell State Measurement Node 1

Bell State Measurement Node 2

Bell State Measurement Node 3

Bell State Measurement Node 4

Bell State Measurement Node N

Node 0

N

Beam

Splitter

Figure 4.1. The main node state is first divided into N branches by multiple beam splitters

or an N-channel beam splitter. Together with the N normal node states, the N

main node state branches are guided to N Bell state measurement apparatuses.

If we observe a single photon click in every Bell state measurement apparatus, we

have achieved entanglement between these N + 1 distant nodes.

4.2.2 Implementation

As shown in Figure 4.1, this main node state |ϕ0⟩ = (1+
√
pS†

0a
†
0)|0⟩ is first divided

by multiple beam splitters or an N-channel beam splitter. The N output branches

can be written as:

|Ψmain⟩ = (1 +
√
p

1√
N
S†
0

N∑
i=1

a†0,bi)|0⟩, (4.1)

where a†0,bi are the creation operators for the different branches.

We then put the N normal nodes into different channels as shown on the right hand

side of Figure 4.1. The resulting normal node states can be written as:

|Ψnormal⟩ = |ϕ1⟩|ϕ2⟩|ϕ3⟩ · · · · · · |ϕN⟩

=
N∏
i=1

(1 +
√
pS†

i a
†
i,bi

)|0⟩, (4.2)
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where a†i,bi are the creation operators of different nodes in different channels. S†
i are

the excitation operators of atomic ensembles in different nodes.

4.2.3 Bell State Measurement

The N branches of the main node state |Ψmain⟩ and the N normal node states

|Ψnormal⟩ are guided into N Bell state measurement apparatuses as shown in Fig-

ure 4.1. We then do the same Bell state measurement as for the DLCZ method [78].

If we detect a single photon in either of the two-photon detectors in every Bell state

measurement apparatus from 1 to N , the post-selected state on the atomic ensemble

degrees of freedom can be written as:

|Ψconditional⟩ =
1√
2
(S0 +

1√
N

N∑
i=1

(Si))
N∏
j=0

(S†
j )|0⟩ (4.3)

In this way we achieve entanglement between N + 1 distant nodes. With this ap-

proach, we can generate two entanglement pairs states: |Ψconditional,A⟩ and |Ψconditional,B⟩.

As shown in Figure 4.2, we can convert the stored atomic excitations of the two main

nodes (Node 0A and Node 0B) into light and guide it into a beam splitter. If a sin-

gle click is observed, we obtain entanglement between 2N nodes (N main nodes in

group A and N in group B) as follows:

|Ψfinal⟩ = (
1√
2N

N∑
i=1

(Si,A) +
1√
2N

N∑
i=1

(Si,B))
N∏
i=1

(S†
i,A)

N∏
i=1

(S†
i,B)|0⟩ (4.4)

The resulting state |Ψfinal⟩ is a W-state between 2N distant nodes. In this manner,

we generate entanglement between 2N distributed nodes. If P denotes the prob-

ability of successfully generating an entanglement between 2 nodes in the DLCZ

protocol, the probability to generate entanglement between 2N nodes is 2(P
2
)2N .

If N = 2, we generate an entanglement between 4 nodes and the resulting state can

be written as:
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Node 0A

Node 0B

N normal nodesA

N normal nodesB

BS D1

D2

Entangled

Entangled

Figure 4.2. We can convert the stored atomic excitations of the two main nodes (Node 0A

and Node 0B) into light and guide it into a beam splitter. If a single click is

observed, we obtain entanglement between 2N nodes (N main nodes in group A

and N in group B).

|Ψfinal⟩ =
1

2
(S†

0S
†
1S

†
2 + S†

1S
†
2S

†
3 + S†

0S
†
2S

†
3 + S†

0S
†
1S

†
3)|0⟩

=
1

2
(|0111⟩+ |1011⟩+ |1101⟩+ |1110⟩) (4.5)

If N = 1, we generate entanglement between two nodes, similar to the DLCZ

method. We can consider the DLCZ method as a special case (N = 1).

4.3 Entanglement Swapping

With the DLCZ implementation [78], we can generate entanglement between nodes

A and D from two entanglement pairs A− B and C −D through a method called

‘entanglement swapping’. In this way, we can form an entanglement pair over a

longer distance using two entanglement pairs over shorter distances. By continuing

to perform entanglement swapping, we can achieve entanglement between two nodes

over significantly longer distances.

From the last section, we can obtain a W-state |Ψw1⟩ = 1√
N

N∑
i=0

(Si)
N∏
i=0

(S†
i )|0⟩ as

shown on the left side of Figure 4.3. We prepare another entanglement pair |Ψpair⟩ =
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Nodes 0

Nodes 1

Nodes 2 Nodes 3

Nodes 4

Nodes 5

Nodes 6

Nodes 7Nodes 8

Nodes 9

Node L Node R

Figure 4.3. The entanglement swapping method can also be used for W-states. On the

left side of this figure, we have entanglement between N nodes (here N = 10).

We have entanglement between two nodes Node L and Node R as shown on

the right side. Using the same entanglement swapping method as for the DLCZ

protocol [78], we substitute Node 5 with Node R and thereby generate a new

W-state.

1√
2
(S†

L + S†
R)|0⟩ as shown on the right hand side. Using the same entanglement

swapping as for the DLCZ protocol [78], we can obtain a state |Ψswap⟩ as follows:

|Ψswap⟩ =
1√
N
(

4∑
i=0

(Si) + SR +
N∑
i=6

(Si))
N∏
i=0

(S†
i )|0⟩ (4.6)

From Equation 4.6, we can see that we substituted Node 5 with Node R and thereby

generated a new W-state. With this method, we can substitute every node of the

previous W-state and form a newW-state with a bigger circle as shown in Figure 4.4.

Continuing to perform this entanglement swapping, we can finally obtain a W-state

on a larger scale.

4.4 Teleportation via W-states

Suppose we have a 3-qubit W-state which is shared between three distant nodes-

Alice, Bob and Charlie:
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Nodes 0A

Nodes 1A

Nodes 2A Nodes 3A

Nodes 4A

Nodes 5A

Nodes 6A

Nodes 7ANodes 8A

Nodes 9A

Nodes 0B

Nodes 1B

Nodes 2B Nodes 3B

Nodes 4B

Nodes 5B

Nodes 6B

Nodes 7BNodes 8B

Nodes 9B

Figure 4.4. We can substitute every node of the previous W-state and form a new W-state

on a larger scale.

|W ⟩ = 1√
3
(|1⟩A|0⟩B|0⟩C + |0⟩A|1⟩B|0⟩C + |0⟩A|0⟩B|1⟩C) (4.7)

Now Alice has another qubit |φ⟩Q = α|0⟩Q + β|1⟩Q and she wants to teleport this

qubit to Charlie. The whole system |Φwhole⟩ now is the tensor product of |φ⟩Q and

|W ⟩ as follows:
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|Φwhole⟩ = |φ⟩Q ⊗ |W ⟩

=
1√
3
(α|0⟩Q + β|1⟩Q)⊗ (|1⟩A|0⟩B|0⟩C + |0⟩A|1⟩B|0⟩C + |0⟩A|0⟩B|1⟩C)

=
1√
6
α((|Ψ10⟩QA + |Ψ11⟩QA)|0⟩B|0⟩C + (|Ψ00⟩QA + |Ψ01⟩QA)(|1⟩B|0⟩C + |0⟩B|1⟩C))

+
1√
6
β((|Ψ00⟩QA − |Ψ01⟩QA)|0⟩B|0⟩C + (|Ψ10⟩QA − |Ψ11⟩QA)(|1⟩B|0⟩C + |0⟩B|1⟩C))

=
1√
6
(|Ψ00⟩QA(α|10⟩BC + α|01⟩BC + β|00⟩BC)

+ |Ψ01⟩QA(α|10⟩BC + α|01⟩BC − β|00⟩BC)

+ |Ψ10⟩QA(α|00⟩BC + β|10⟩BC + β|01⟩BC)

+ |Ψ11⟩QA(α|00⟩BC − β|10⟩BC − β|11⟩BC)) (4.8)

where |Ψ00⟩, |Ψ01⟩, |Ψ10⟩ and |Ψ11⟩ are four Bell states as follows:

|Ψ00⟩ =
1√
2
(|00⟩+ |11⟩)

|Ψ01⟩ =
1√
2
(|00⟩ − |11⟩)

|Ψ10⟩ =
1√
2
(|01⟩+ |10⟩)

|Ψ11⟩ =
1√
2
(|01⟩ − |10⟩) (4.9)

After Alice performs Bell state measurement on the quantum pair |φ⟩Q|ϕ⟩A, we

obtain one of the four Bell states and the corresponding post selection state could

be obtained from Equation 4.8. Then Bob measures his qubit. If Bob observes the

state |1⟩B, then the quantum information can not be teleported to Charlie. If Bob

observes the state |0⟩B, then Charlie can deduce the teleported state by manipulating

his own qubit. The required manipulation operator is determined by the Bell state

measurement result of Alice:

If |Ψ00⟩ is measured: The operator σ̂x is needed to deduce the teleported state.
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If |Ψ01⟩ is measured: The operator σ̂xσ̂z is needed to deduce the teleported state.

If |Ψ10⟩ is measured: The operator I is needed to deduce the teleported state.

If |Ψ11⟩ is measured: The operator σ̂z is needed to deduce the teleported state.

4.5 Summary

We have shown a method to generate an entanglement between multiple distant

nodes by creating a W-state shared between them. Since W-states can be used to

teleport quantum states, we may perform quantum teleportation with the distribut-

ed W-states generated using our methodology.

As the research field of quantum computing progresses, more complicated quantum

algorithms are being proposed. In the future, when a single quantum computer is

not capable of implementing such complicated algorithms, we may develop quan-

tum algorithms to utilize quantum-computing resources in different locations with

distributed W-states.

Like the DLCZ protocol, this methodology is based on a Mach-Zehnder type inter-

ference. As discussed in [81], the Hong-Ou-Mandel type interference is much less

sensitive to path length instabilities. We may develop a method based on a Hong-

Ou-Mandel type interference to generate distributed W-states over long distances.

As shown in Figure 4.1, the multiple nodes are classified as 1 main node and N

normal nodes. In the future, we may implement the main node state in a satellite

and the N normal nodes in N cities covered by the trajectory of the satellite. We

can thus achieve an entanglement between multiple nodes in different cities.
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Chapter 5

Multiparty QKD for
Wireless Sensor Networks

I
N this chapter, we explain the importance and significance of

multiparty QKD. Some scenarios requiring multiparty QKD are

described for this explanation. A multiparty QKD scheme is

presented in this chapter. Some technical challenges to practically im-

plement this multiparty QKD scheme are mentioned at the end of this

chapter.
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Sensor Network

B

BASE

Figure 5.1. From this figure, we can see that there are a large number of nodes which are

spatially distributed autonomous sensors to monitor physical or environmental

conditions, such as temperature, sound, pressure. The multiple sensor nodes

can cooperatively pass their data through the network to a main location. The

main location (sometimes called base) can also control sensor nodes through the

network.

5.1 Introduction

Wireless sensor networks were initially motivated by military applications such as

battlefield surveillance and control of unmanned aircraft vehicles (UAV). Nowadays

WSNs are widely used in many industrial and consumer applications such as indus-

trial process monitoring and control, bushfire monitoring, and so on. As we can

see in Figure 5.1, there are a large number of nodes that are spatially distributed

autonomous sensors to monitor physical or environmental conditions, such as tem-

perature, sound, pressure. Multiple sensor nodes can cooperatively pass their data

through the network to main location. The main location (sometimes called base)

can also control sensor nodes through the network.
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5.2 Significance

Although WSN has been a rather mature research field, the security in WSNs is

much less intensively studied than networks formation and routing algorithms. Since

sensor nodes are often deployed in the malicious environment, methodologies should

be applied to guarantee secure communication between multiple sensor nodes and

the base. Let us assume that there are n sensor nodes in the WSN as shown

in Figure 5.1. If an incident happens and m specific sensor nodes are needed to

undertake a task, a task-specific cryptography key is needed to be produced and

distributed between the base and the engaged m nodes. Consider the following two

scenarios as examples:

• A fleet of n ships is dispatched from the base to patrol a big sea area. These

n ships form a wireless sensor network and can communicate with each other.

In the case that some intruders are observed in this sea area. The base may

estimate that m ships in the vicinity of intruding incident are required to

intercept the intruders while the rest of ships keep patrolling. In order to

guarantee secure communication between these closest m ships, a shared job-

specific (only for this intercepting job) cryptography key should be produced

and distributed between the m ships and the base.

• The government of Nation Alpha sends n spies to n cities of Nation Beta.

Before the dispatching, a cryptography key is produced and shared by the n

spies and the headquarter. After a duration of time, some spies betray their

duties due to counterespionage. It is confirmed that there are still m reliable

active spies. To guarantee secure communication between these m reliable

spies and the headquarter, a new cryptography key should be produced and

distributed among the m+ 1 nodes.

As it is proved that QKD can provide a reliable solution to produce secret shared

cryptography key between two distant nodes, it should be applicable to extend the

two node QKD schemes to a multipartite setup, by which cryptography keys can
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Engaged Normal

Sensor Network

Private key

Broadcast
B

BASE

 

Intruder

Figure 5.2. It is assumed that there are n sensor nodes in this WSN. If a incident happens

and m specific sensor nodes are needed to undertake a task, a task-specific cryp-

tography key is needed to be produced and distributed between the base and the

engaged m nodes.

be produced and distributed between multiple distant nodes. For example, we can

directly extend the BB84 protocol as follows:

1. Alice sends the randomly chosen single photon states to m receivers (Bob1,

Bob2 · · · · · · Bobm). Note that every Bob expects to receive the same qubit

sequence of t qubits.

2. Randomly and independently, Every Bob chooses one of the two bases to

measure the received quantum states. If he chooses the same basis as Alice

for a quantum state, he will observe the same bit for this quantum state.

Otherwise, he will only get uncorrelated bit.

3. After measuring all of the receiving quantum states, Bobi records a bit string

bi of t bits. This bit string is called raw key.

4. Alice and all the Bobs announce via public classical channel their chosen bases

for every quantum state.
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5. After comparing their chosen bases, the recorded bits from different chosen

bases are discarded. These t1 bits are left. This t1 bits are called sifted key.

Because all the bases are chosen independently and randomly from two bases,

t1 is expected to be about t/2m.

If the cryptography key is needed to be distributed among a large number of sensor

nodes (m is big), the success probability becomes extremely small (1/2m). It means

that in order to produce and distribute one bit of secret key, 2m quantum states are

expected to be sent to all the m Bobs according to this multiparty BB84 protocol.

In most of WSN applications, this time-consuming scheme is not accepted.

We can also directly extend the SARG 04 protocol by preparing m + 1-bit strings,

a, b1, b2, · · · · · · , bm, each of t bits. This multiparty SARG 04 protocol is also

confronted with the same efficiency problem as multiparty BB84 protocol. In this

chapter, we propose a deterministic multiparty QKD scheme by which cryptography

key can be produced and distributed between multiple sensor nodes deterministically

and efficiently.

5.3 Preparation of Bell states

The Bell states are four specific maximally entangled quantum states of two qubits

and we can write these four Bell states as follows:

|Ψ00⟩ =
1√
2
(|00⟩+ |11⟩)

|Ψ01⟩ =
1√
2
(|00⟩ − |11⟩)

|Ψ10⟩ =
1√
2
(|01⟩+ |10⟩)

|Ψ11⟩ =
1√
2
(|01⟩ − |10⟩) (5.1)

As shown in Figure 5.3, This multiparty QKD scheme begins with the preparation

of m Bell states as follows:
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m⊗
k=1

1√
2
(|0base k0sensor k⟩+ |1base k1sensor k⟩) (5.2)

where base k denotes the kth prepared qubit in the base while sensor k is the qubit

prepared in the quantum memory of kth sensor node. With these m Bell states,

we have m entanglement pairs between base and m sensor nodes respectively. Note

that the m entanglement pairs can be prepared in advance, before the deployment of

sensor nodes. Before the deployment of a sensor node, it is in the same location of the

base and the two qubits of entanglement pair can be distributed locally. Taking the

scenario of patrolling ships for example, the entanglement pairs can be distributed

between a ship and the base locally during replenishment. If the wireless sensor

network is composed with UAVs, entanglement pairs can be distributed between

the base and a UAV during its recharging time. In this protocol, we assume that

good quantum memories are available to keep stored qubits unchanged during work.

5.4 Preparation of GHZ states

A Greenberger–Horne–Zeilinger(GHZ) state is a certain type of entangled quantum

state which involves at least three quantum subsystems or particles. If all the sub-

systems are two-dimensional, then it becomes a qubit GHZ state with the following

format:

|GHZ⟩ = |0⟩⊗M + |1⟩⊗M

√
2

(5.3)

where M is the number of particles in this GHZ state. We can call this GHZ state

as an M qubit GHZ state. As shown in Figure 5.3, a m+ 1 qubit GHZ state needs

to be prepared in the base or headquarters as follows:

1√
2

m⊗
t=0

|0GHZ t⟩+
1√
2

m⊗
t=0

|1GHZ t⟩ (5.4)
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GHZ 0 GHZ 1 GHZ 2 GHZ 3 GHZ m − 1 GHZ m

base 1 base 2 base 3 base m − 1 base m

sensor 1 sensor 2 sensor 3 sensor m− 1 sensor m

Figure 5.3. A multiparty QKD scheme for wireless sensor networks is presented in this figure.

This scheme begins with the preparation of m distributed entanglement pairs.

This can be prepared in advance before the deployment of sensor nodes. After

that, a m + 1 qubit GHZ state is generated in the base as shown on the top of

this figure. m Bell state measurements then are performed on the m quantum

pairs in the base (m dashed line box in the figure). After the announcement of

measurement results, one classical bit can be produced and shared by these m+1

nodes. Repeating these steps and a secret random bit string can be shared by

these m+ 1 nodes. This bit string can be utilized for encryption and decryption

to guarantee secure classical communication.

where GHZ, t denotes the tth qubit of the prepared GHZ state. After preparation

of m Bell states and a m+1 qubits GHZ state, the whole system can be written as:

|Ψwhole⟩ =
m⊗
k=1

1√
2
(|0base k0sensor k⟩+ |1base k1sensor k⟩)

⊗ (
1√
2

m⊗
t=0

|0GHZ t⟩+
1√
2

m⊗
t=0

|1GHZ t⟩) (5.5)

5.5 Bell state measurement

m qubits of the GHZ states are assigned to the m base qubits, forming m new

quantum pairs (corresponding tom dashed line boxes in Figure 5.3). If we implement

a bell state measurement apparatus in the base and measure the mth quantum pair

(qubit GHZ m and base m), the measurement results would be one of the four
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Bell states (|Ψm
00⟩, |Ψm

01⟩,|Ψm
10⟩ and |Ψm

11⟩). The four corresponding post-selection

quantum states could be obtained from:

|Ψwhole⟩ =
m⊗
k=1

1√
2
(|0base k0sensor k⟩+ |1base k1sensor k⟩)

⊗ (
1√
2

m⊗
t=0

|0GHZ t⟩+
1√
2

m⊗
t=0

|1GHZ t⟩)

=
1

2

m−1⊗
k=1

(
1√
2
|0base k0sensor k⟩+

1√
2
|1base k1sensor k⟩)

⊗ (|0base m⟩|0GHZ m⟩|0sensor m⟩
m−1⊗
t=0

|0GHZ t⟩

+ |0base m⟩|1GHZ m⟩|0sensor m⟩
m−1⊗
t=0

|1GHZ t⟩

+ |1base m⟩|0GHZ m⟩|1sensor m⟩
m−1⊗
t=0

|0GHZ t⟩

+ |1base m⟩|1GHZ m⟩|1sensor m⟩
m−1⊗
t=0

|1GHZ t⟩)

=
1

2

m−1⊗
k=1

(
1√
2
|0base k0sensor k⟩+

1√
2
|1base k1sensor k⟩)

⊗ (|Ψm
00⟩(

1√
2
|0sensor m⟩

m−1⊗
t=0

|0GHZ t⟩+
1√
2
|1sensor m⟩

m−1⊗
t=0

|1GHZ t⟩)

+ |Ψm
01⟩(

1√
2
|0sensor m⟩

m−1⊗
t=0

|0GHZ t⟩ −
1√
2
|1sensor m⟩

m−1⊗
t=0

|1GHZ t⟩)

+ |Ψm
10⟩(

1√
2
|0sensor m⟩

m−1⊗
t=0

|1GHZ t⟩+
1√
2
|1sensor m⟩

m−1⊗
t=0

|0GHZ t⟩)

+ |Ψm
11⟩(

1√
2
|0sensor m⟩

m−1⊗
t=0

|1GHZ t⟩ −
1√
2
|1sensor m⟩

m−1⊗
t=0

|0GHZ t⟩)) (5.6)

If we continue to perform Bell state measurements on all the m quantum pairs(m

qubits in GHZ state and m qubit of the base, k states). After the measurements, m

new Bell states are observed as follows:
m⊗
k=1

|Ψk
ik,jk

⟩ (5.7)
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where ik and jk are measured results for the kth qubit pair. From the measured

results, we can obtain the post-selection state with the remaining m + 1 qubits as

follows:

|Ψpostselection⟩ =
1√
2
|0⟩GHZ 0

m⊗
i=0

|ik⟩sensor k +
1√
2

k∏
j=1

(−1)jk |1⟩GHZ 0

m⊗
i=1

|īk⟩sensor k

(5.8)

where ∗̄ denotes the flip operation. From Equation 5.8, we can see that a new GHZ

state is created after the m Bell state measurements. If these remaining m+1 qubits

are measured by the base and the m sensor nodes separately, their measurement

results would be correlated. For example, if we have two sensor nodes (m = 2) and

the measured results are |Ψ1
01⟩ and |Ψ2

11⟩. Then we have the measured results as

follows:

i1 = 0

j1 = 1

i2 = 1

j2 = 1 (5.9)

From the two Bell state measurement results, we can obtain the resulting entangle-

ment as follows:

1√
2
(|0⟩GHZ,0|i1⟩sensor 1|i2⟩sensor 2 + (−1)j1(−1)j2 |1⟩GHZ 0|ī1⟩sensor 1|ī2⟩sensor 2)

=
1√
2
(|0⟩GHZ 0|0⟩sensor 1|1⟩sensor 2 + (−1)1(−1)1|1⟩GHZ 0|0̄⟩sensor 1|1̄⟩sensor 2)

=
1√
2
(|0⟩GHZ 0|0⟩sensor 1|1⟩sensor 2 + |1⟩GHZ 0|1⟩sensor 1|0⟩sensor 2) (5.10)

From Equation 5.8 and Equation 5.10, we can see that the qubit GHZ 0 would be

measured as either 0 or 1, each with a probability of 1/2. For the qubit in the mth

sensor node, the measurement result would be the same as GHZ 0 qubit if im is 0

and would be different if im is 1.
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5.6 Multiparty QKD protocol

As introduced in previous sections, there are n sensor nodes in the WSN. Every

sensor node is equipped with a quantum memory where each stored qubit is entan-

gled with a qubit in the base in the format of |Ψ00⟩ Bell states. These distributed

entanglement pairs are prepared in advance before the deployment of sensor nodes.

If an incident is detected and the base estimates m sensor nodes in the vicinity of

the incident are required to deal with this incident. In order to guarantee secure

communication between these m + 1 involving nodes (base and m engaged sensor

nodes), a secret key should be produced and distributed to these m+ 1 nodes. The

multiparty QKD protocol is proposed as follows:

1. m base qubits are identified in the base. Every one of these m qubits is

entangled with a qubit stored in one of the m engaged sensor nodes. For

example, the base qubit |base k⟩ is identified to be entangled with |sensor k⟩

in the kth engaged sensor node.

2. A (m+ 1)-qubit GHZ state is generated in the base.

3. m qubits of the GHZ states are assigned to the m base qubits, forming m new

quantum pairs (corresponding to m dashed line boxes in Figure 5.3).

4. The base performs Bell states measurement to these m quantum pairs and

obtains m results |Ψikjk⟩.

5. The Bell state measurement results are broadcasted out by the base.

6. The remaining qubit |GHZ 0⟩ and m sensor node qubits are all measured

separately. Based on the measurement results, one classical bit is obtained in

each sensor node (0 and 1 for |0⟩ and |1⟩ respectively).

7. For the sensor node where ik = 1, its classical bit needs to be flipped.
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In this way, one bit is produced randomly and distributed between these m + 1

nodes. By repeating these seven steps again and again a bit string is produced and

distributed. This shared bit string can be used for encryption and decryption.

5.7 Discussion

In the multiparty BB84 protocol, every qubit is measured with a basis randomly

chosen from (|0, 1⟩ and |+,−⟩). Measurement results are discarded unless Alice and

all Bobs coincidentally choose the same basis. While in our scheme, no measurement

result is discarded and the successful rate of measurement is theoretically 100%.

In practical, however, this successful rate may be reduced due to channel noises,

memory noises and measurement imperfections. The process of key generation and

distribution is deterministic (not probabilistic) and so we call this scheme to be a

deterministic protocol. Please note that this definition of ‘deterministic’ is different

from that in some papers [115,116] where the term ‘deterministic’ is predetermined

before the task.

Since there is no qubit transmission during the QKD process, our scheme is safe

against eavesdropping and impersonation in the same way as introduced in the

paper [116]. The only communicating message in this multiparty QKD scheme is

the broadcasting of measurement results from Alice to all Bobs. The eavesdropper

cannot infer any information from these measurement results. If an impersonator

blocks the Alice’s message and sends fake measurement results to Bobs, different

bit strings would be generated by different Bobs. So the impersonation could be

detected by using some testing bits.

Like other QKD schemes, our protocol cannot prevent from physical attack (phys-

ically capturing a sensor node and accessing key). However, the sensor node can

send an alarming message when being captured. After that, another key could be

produced and shared by Alice and all Bobs except the captured one.
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In this protocol, it is assumed that quantum memories are capable of storing qubits

during the whole task. As scientists have achieved quantum storage duration in a few

hours [117], this multiparty QKD protocol could be used for WSNs with short task

time such as UAV networks and aircraft networks. Other WSNs might also embrace

this QKD protocol with advanced quantum storage techniques in the future.

5.8 Conclusion

In this chapter, a multiparty QKD protocol for WSNs is proposed to guarantee

secure communication between more than two distributed nodes. Like other QKD

protocols, the security of this proposed multiparty QKD scheme relies on the foun-

dations of quantum mechanics and thereby is unconditional reliable against eaves-

dropping. In addition, the secret key is produced and distributed deterministically,

making this proposed QKD scheme much more efficient than multiparty BB84 pro-

tocol and multiparty SARG 04 protocol.

Although this QKD protocol is unconditionally reliable against eavesdropping, it can

not be used to prevent another version of attack in WSNs-internal attacks. Internal

attacks mean physically capturing an engaged node and accessing information from

the hardware. For example, if one engaged sensor node is physically captured, the

eavesdropper might obtain the shared key from the hardware. Consequently, the

multiparty QKD should be implemented together with other security solutions to

guarantee secure communication against all kinds of attacks.

This multiparty QKD scheme requires high order GHZ state which is fragile under

the noises. In order to compensate the noises, some classical channel coding methods

might be employed to add redundancy into the cryptography key.

In order to practically implement this multiparty QKD protocol, good quantum

memory should be developed in advance. As discussed in Section 5.3, the quantum

memory should be able to keep the stored quantum states with high fidelity during

working. In Section 5.6, it is proved that one stored qubit can be used to deduce a
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secret classical bit. The memory capacity of the quantum memory is also crucial as

the shared bit string length is decided by the capacity of the quantum memory.
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Chapter 6

Quantum Channel
Equalisation

T
HIS chapter presents a physically realisable methodology to

equalise quantum channel. The minimum phase channel and

non-minimum phase all pass channel are discussed separately.
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6.1 Introduction

Quantum optical states will be distorted when they are sent across components in

experimental set up, or through channels in practical implementations. Suppose we

have a single photon state |1ξ1⟩ as follows:

|1ξ1⟩ =
∫
ξ1(t)â

†(t)dt|0⟩

=

∫
ξ1(ω)â

†(ω)dω|0⟩ (6.1)

where the pulse shape ξ1 fulfills the following equation:

∫
|ξ1(t)|2dt =

∫
|ξ1(ω)|2dω

= 1 (6.2)

As shown in Figure 6.1, the pulse shape ξ1 of transmitted quantum state |1ξ1⟩ would

be changed to ξ2 through the linear channel H as follows [118–120]:

ξ2(t) = ξ1(t) ∗ h(t) (6.3)

where h(t) is the channel response and the symbol ∗ means convolution operator

here. It is worthy noting that the communication channels in this chapter are as-

sumed to be linear because in practise, a significant proportion of channel distortion

could be reasonably modelled as linear systems. Equation 6.3 can also be used to

describe the effect of a quantum channel on the pulse shape of a coherent state.

The pulse shapes of optical quantum states play an important role in quantum com-

munication and computation. Firstly, the pulse shapes may be used for quantum

information modulation in quantum information systems [121,122]. Secondly, some

specific pulse shapes are required for quantum storage and retrieval [123, 124]. In
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addition, the amplification gain of some quantum amplifiers depends on the optical

pulse shapes [125]. So we need to design an equalization system E in the receiver

end to recover this pulse shape into ξ̃1, an approximation of ξ1.

H E|1ξ1〉
|1ξ2〉 |1

ξ̃1
〉

Figure 6.1. The pulse shape ξ1 of transmitted quantum state |1ξ1⟩ would be changed to

ξ2 through the channel H. The pulse shapes of single photon states play an

important role in quantum communication and computation. So we need to

design an equalisation system E in the receiver end to recover this pulse shape

into ξ̃1

A linear time-invariant channel is a minimum phase channel if the channel and its

inverse are causal and stable. A causal and stable channel is a non-minimum phase

channel if its inverse are causal and not stable. A non-minimum phase channel can

be decomposed [126] into an attenuation channel Ha, a minimum phase channel

Hmp and a non-minimum all pass filter (no energy is absorbed or reflected) Hap as

shown in Equation 6.4 as follows:

H = Ha ∗Hmp ∗Hap (6.4)

For example, suppose we have a quantum optical channel H(s) = c s−a
s+b

. This non-

minimum phase channel can be decomposed as:

H(s) = c
s− a

s+ b
(a > 0, b > 0)

= c ∗ s+ a

s+ b
∗ s− a

s+ a
(6.5)

To compensate the attenuation during channel, we have only one solution: sending

more photons. An inverse of transmission channel’s transfer function (input output

relationship in frequency domain) 1/Hmp can be used to compensate the minimum
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phase channel distortion Hmp. The main challenge of quantum channel equalization

is the equalization of non-minimum all pass filter. For non-minimum phase chan-

nel, as there are non-negative zeros of its channel transfer function (s domain), a

simple inverse would result in an unstable causal system. One option to solve this

problem is using a quantum memory to store the signal and compensate the dis-

tortion in reversed time. The other approach is approximating the unstable inverse

system with a stable causal system. As the design of quantum memory is still a big

challenge [127], the approximating methodology is much more practical.

In the paper [128], a methodology to approximate unstable system with a stable

system in continuous time is presented. Although the approximation is proven

mathematically, it is hard to be implemented in quantum area. The approximation

in classic digital system is discussed in the paper [129] and this method may provide

some inspiration for the future quantum digital systems. B. D. Radlovic and R.

A. Kennedy [130] introduced an adaptive methodology to equalise the distortion in

acoustic communication.

Although the unique characteristics of quantum states bring us enormous benefits

to improve our efficiency and reliability of communication and computation, these

characteristics will also bring us huge challenge. For example, quantum sates can

not be copied according to the non-cloning theory. From the paper [48], it is known

that the quantum states can not be amplified deterministically without adding noise.

Meanwhile, the measurement of quantum states is much more difficult than that of

classical states according to the Heisenberg uncertainty principle. For these reasons,

we can not directly apply classical equalization methodologies in quantum regime.

This chapter illustrates a novel methodology which can be used to equalise quantum

optical channels. This structure is composed only by photon detectors and simple

quantum linear components like cavities and beam splitters. Therefore, it can be

easily implemented and may be applied with the gradient echo memory(GEM) [131–

133] or newly developed integrated photonic chips [134,135].
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The rest of this chapter is structured as follows: In Section 6.2, we analyse the

effects of beam splitters and cavities on single photon states and coherent states.

After that, we describe the structure that can be used to compensate minimum

phase channel in Section 6.3. In Section 6.4, we prove that a cascading of optical

cavities can be utilized to equalise non-minimum phase all pass channel. Finally we

conclude and discuss some open questions for future research in Section. 6.5.

6.2 Effects of beam splitters and cavities on quantum

optical states

Since we aim to design a physically realisable system to equalise quantum channel

distortion, we need to analyse the functions of basic quantum components like cav-

ities and beam splitters. In this section, we discuss the effects of beamsplitters and

cavities on quantum optical states separately.

6.2.1 Effects of beam splitters on quantum optical states

A beam splitter is an optical device that splits a beam of light in two. The beam

splitters play an essential role in quantum information. From the paper [108, 118],

we can see the transfer function of a beam splitter is (2× 2) matrix as follows:

Hbeamsplitter(s) =

 √
η ±

√
1− η

∓
√
1− η

√
η

 (6.6)

where η is transmissivity of the beam splitter. If a single photon |Ψin⟩ = |1ξ1⟩ is

split by a beam splitter with transfer function as Equation 6.6, we can obtain the

output state as follows:
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|Ψout⟩ = U |Ψin⟩

=

∫
ξ1(ω)Ub̂

†
in(ω)U

†dω|0⟩

= [
√
η

∫
ξ1(ω)b̂

†
out1(ω)dω ±

√
1− η

∫
ξ1(ω)b̂

†
out2(ω)dω]|0⟩

=
√
η|1ξ1⟩out1 ±

√
1− η|1ξ1⟩out2 (6.7)

Tracing out output 2, the state that comes out at output 1 is a mixed state as

follows:

ρout1 = η|1ξ1⟩⟨1ξ1 |+ (1− η)|0⟩⟨0| (6.8)

If a coherent state |αξ1⟩ is spilt by this beam splitter, the output state would be:

|Ψout⟩ = U |Ψin⟩

=

∫
ξ1(ω)UExp[αb̂

†
in(ω)− α∗b̂in(ω)]U

†dω|0⟩

=

∫
ξ1(ω)Exp[

√
ηαb̂†out1(ω)−

√
ηα∗b̂out1(ω)]

× Exp[±
√

1− ηαb̂†out1(ω)∓
√

1− ηα∗b̂out1(ω)]dω|0⟩

= |√ηαξ1⟩out1| ±
√

1− ηαξ1⟩out2 (6.9)

where Exp[ ] means the exponential operator. Unlike the single photon case where

the two output states are entangled with each other, the two output states for

coherent state cases are two pure coherent states with smaller amplitudes.

6.2.2 Effects of cavities on quantum optical states

A one-sided optical cavity can be modelled as a pair of mirrors [108]. One mirror

is partially transmitting while the other one is completely reflective. The external
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optical field interacts with light inside the cavity through the partially transmitting

mirror and a Faraday isolator is used to separate the external optical field into input

and output components. The transfer function of a cavity can be written as:

Hcavity(s) =
s− γ

2
± jω0

s+ γ
2
± jω0

(6.10)

where γ is coupling strength of the cavity and ω0 is the detuning frequency. From

this transfer function, we can see that an optical cavity can be modelled as an all

pass filter for quantum optical states.

If a single photon |Ψin⟩ = |1ξ1⟩ is sent across an optical cavity, the output state can

be written as:

|Ψout⟩ = U |Ψin⟩

= U

∫
ξ1(ω)b̂

†
in(ω)dω|0⟩

= U

∫
ξ1(ω)b̂

†
in(ω)dωU

†|0⟩

=

∫
ξ1(ω)Ub̂

†
in(ω)U

†dω|0⟩ (6.11)

From Equation 6.10, we can see the relation between the input state operator b†in

and the output state operator b†out in Heisenberg picture as follows:

bout(ω) = U †b̂in(ω)U

= Hcavity(jω)b̂in(ω)

= b̂in(ω)e
−2j∗arctan( 2(ω±ω0)

γ
) (6.12)

Then we can obtain the output state in Schrodinger picture as:

Page 89



6.3 Equalisation of minimum phase channels

|Ψout⟩ =
∫
ξ1(ω)Ub̂

†
in(ω)U

†dω|0⟩

=

∫
ξ1(ω)e

−2j∗arctan( 2(ω±ω0)
γ

)b̂†out(ω)dω|0⟩

=

∫
ξ2(ω)b̂

†
out(ω)dω|0⟩

= |1ξ2⟩ (6.13)

where the pulse shape of output single photon state is ξ2(ω) = ξ1(ω)e
−2j∗arctan( 2(ω±ω0)

γ
).

With the same method, we can obtain the output state in Schrodinger picture if a

coherent state |αξ1⟩ sent across the cavity:

|Ψout⟩ =
∫
ξ1(ω)Ub̂

†
in(ω)U

†dω|0⟩

=

∫
ξ1(ω)UExp[αb̂

†
in(ω)− α∗b̂in(ω)]U

†dω|0⟩

=

∫
ξ1(ω)Exp[e

−2j∗arctan( 2(ω±ω0)
γ

)αb̂†out(ω)− e2j∗arctan(
2(ω±ω0)

γ
)α∗b̂out(ω)]dω

= |e−2j∗arctan( 2(ω±ω0)
γ

)αξ1⟩ (6.14)

From Equation 6.14, we can see that the effect of an optical cavity on coherent

states are different from that on single photon states. For a single photon state, an

optical cavity only change the phase of frequency distribution as ξ1 is changed into

ξ2 in Equation 6.13. For a coherent state, the frequency distribution stays the same

while the phase of the eigenvalue α changes.

6.3 Equalisation of minimum phase channels

In this section, we introduce a structure which can be used to equalise a minimum

phase channel. Suppose we have a minimum phase channel whose transfer function

can be written as follows:
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Hmp(s) =
s+ a

s+ b
(a > 0, b > 0) (6.15)

After this minimum phase channel, the input quantum state |1ξ1⟩ would result in

an output state |1ξ2⟩ where the pulse shape ξ2 can be obtained from the following

equation:

ξ2(s) = N [
s+ a

s+ b
ξ1(s)] (6.16)

Where N [ ] denotes the normalization of the state. An inverse of this Hmp(s)

can be used to compensate this minimum phase channel. So we need to design an

equalization system Emp(s) whose transfer function is as follows:

Emp(s) =
s+ b

s+ a
(6.17)

In order to achieve an equalization system Emp(s) with transfer function as Equa-

tion 6.17, let us begin with assuming there is a linear component with transfer

function as Equation 6.17, then we have:

b̂out(ω) = U †b̂in(ω)U

= Emp(jω)b̂in (6.18)

Then we can rewrite the operator for b̂in(ω) in Heisenberg picture as:

b̂in(ω) = UU †b̂in(ω)UU
†

= Emp
†(jω)Emp(jω)b̂in(ω)

= |Emp(jω)|2b̂in(ω) (6.19)

From the above equation, we can see the magnitude of frequency response |Emp(jω)|2 =

1 for every frequency component ω. Then the channel must be an all pass channel.
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If the channel is not all pass, we cannot achieve the equalisation with single-input

single-output linear quantum components. So we can only design a multiple-input

multiple-output system to equalise the minimum phase channel as shown in Fig-

ure 6.2.

This equalisation structure is composed with two beam splitters and one cavity.

From Equation 6.10, we can see the transfer function of a cavity is all pass function.

If we configure the coupling strength of a cavity to be γ = 2 × a and the detuning

frequency to be ω0 = 0, the transfer function Hc(s) of this cavity is as follows:

Hc(s) =
s− a

s+ a
(6.20)

Suppose the transmissivity of two beam splitters in Figure 6.2 are
√
α and

√
β

respectively. From Equation 6.6 and Equation 6.10, the whole system can be repre-

sented as:

b̂out,1
b̂out,2

 = Emp1(s)×

b̂in,1
b̂in,2

 (6.21)

where the whole transfer matrix Emp1(s) is:

Emp1(s) =

 √
α

√
1− α

−
√
1− α

√
α

×

1 0

0 Hc(s)

×

 √
β ±

√
1− β

∓
√
1− β

√
β


=

 √
αβ ∓Hc(s)

√
1− α

√
1− β ±

√
α
√
1− β +Hc(s)

√
1− α

√
β

−
√
1− α

√
β ∓Hc(s)

√
α
√
1− β ∓

√
1− α

√
1− β +Hc(s)

√
αβ


=

M N

Q P

 (6.22)

Then we can have:

b̂out,1 =M × b̂in,1 +N × b̂in,2

b̂out,2 = Q× b̂in,1 + P × b̂in,2 (6.23)
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|1ξ2〉
b̂in,2

|0〉 b̂in,1

s−a
s+a

b̂out,1

b̂out,2

Figure 6.2. This figure shows a structure which can be used to equalise minimum phase

channel. This structure is composed with two beam splitters and one optical

cavity. The transfer function Hc(s) of this cavity is s−a
s+a . The transmissivity of

the two beam splitters are
√
α and

√
β respectively.

where the coefficient M ,N ,Q and P are:

M =
(
√
αβ ∓

√
1− α

√
1− β)s+ (

√
αβ ±

√
1− α

√
1− β)a

s+ a

N =
(±

√
α
√
1− β +

√
1− α

√
β)s+ (±

√
α
√
1− β −

√
1− α

√
β)a

s+ a

Q =
(−

√
1− α

√
β ∓

√
α
√
1− β)s+ (−

√
1− α

√
β ±

√
α
√
1− β)a

s+ a

P =
(∓

√
1− α

√
1− β +

√
αβ)s+ (∓

√
1− α

√
1− β −

√
αβ)a

s+ a
(6.24)

If the transmitted signal is a single photon state |1ξ1⟩ and the receiving signal is

|1ξ2⟩. With the same methodology as shown in Section. 6.2, the output sate of this

equalisation structure can be calculated as:
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|Ψout⟩ = U |Ψin⟩

=

∫
ξ2(ω)Ub̂

†
in,2(ω)U

†dω|0⟩

= (
√
α
√
β ∓

√
1− α

√
1− β)

×
∫
ξ2(ω)

jω +
√
α
√
β±

√
1−α

√
1−β√

α
√
β∓

√
1−α

√
1−β

a

jω + a
b̂†out,1dω

+ (
√
1− α

√
β ±

√
α
√
1− β)

×
∫
ξ2(ω)

jω +
√
1−α

√
β∓

√
α
√
1−β√

1−α
√
β±

√
α
√
1−β

a

jω + a
b̂†out,2dω

(6.25)

where b̂out,1 and b̂out,2 are operators for the two output channels respectively. The

state comes out from output 1 is a mix state. If we put a photon detector in the

output 2 and have no photon measured, all the energy of input signal photon goes

to output 1 and the pulse shape of conditional output state |1ξ̃1⟩ would be:

ξ̃1(s) = N [
s+

√
α
√
β±

√
1−α

√
1−β√

α
√
β∓

√
1−α

√
1−β

a

s+ a
ξ2(s)] (6.26)

If we can configure the transmissivity of the two beam splitters
√
α and

√
β to make

the coefficient b =
√
α
√
β±

√
1−α

√
1−β√

α
√
β∓

√
1−α

√
1−β

a, the equalisation of minimum phase channel for

single photon state is achieved.

If a coherent state |αξ1⟩ is transmitted, we can also use the same structure to equalise

minimum phase channel distortion by configuring the parameters of beam splitters

and optical cavities. Unlike the single photon state case where a photon detector

can be used to recover the signal back to |1ξ1⟩ probabilistically, the two output of

this structure would be two pure coherent states |c1αξ1⟩ and |c2αξ1⟩. c1 and c2 are

two attenuation coefficients determined by the configuring parameters.
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6.4 Equalization of non-minimum phase all pass chan-

nel

Suppose we have an all pass filter, with a transfer function as follows:

Hap(s) =
s− a

s+ a
(a > 0) (6.27)

A simple inverse ofHap(s) would lead to unstable systems as discussed in Section 6.1.

In order to equalise this non-minimum phase all pass channel, we choose to design a

stable structure with transfer function Ẽap(s). Ẽap(s) is an approximation of Eap(s),

the unstable inverse of Hap(s):

Ẽap(s) ≈ Eap(s) =
s+ a

s− a
(6.28)

6.4.1 Approximation of non-causal but stable inverse

We can introduce another component to cancel the unstable pole of Eap(s) as Equa-

tion 6.29:

Ẽap(s) =

√
(e−τs − e−τa)

(eτs − e−τa)

(s+ a)

(s− a)
(6.29)

Note that Ẽap(s) is stable since the positive pole of Eap(s) has been cancelled by

the new term. If we increase the parameter τ to make τa is big enough, the term

e−τa can be neglected and Ẽap(s) can be approximated as:

Ẽap(s) ≈
√
e−τs

eτs
(s+ a)

(s− a)

=
√
e−2τs

(s+ a)

(s− a)

= e−τsEap(s) (6.30)
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C1 C2 C3 CN|1ξ2〉 |1
ξ̃1
〉

Figure 6.3. This figure shows that a series of cavities can be used to equalise non-minimum

phase all pass channel. If we set the coupling strength of every cavity to be γ = 2a

and detuning frequency of the number n cavity ((n ∈ (−∞,∞))&&(n ̸= 0))

to be 2nπ
τ , we can implement an equalisation system with transfer function in

Equation 6.32.

From the above equation, we can see that the stable system Ẽap(s) can be used to

approximate an unstable system Eap(s) with a time delay of τ . This Ẽap(s) can also

be written as:

Ẽap(s) =

√
e−τa(e−(s−a)τ − 1)

e−τa(e(s+a)τ − 1)

(s+ a)

(s− a)

=

√
(e−(s−a)τ − 1)

(e(s+a)τ − 1)

(s+ a)

(s− a)
(6.31)

If we factorize the first term of Equation 6.31, we can obtain:

Ẽap(s) =

(s− a)
∞∏
n=1

(s− a± 2nπj
τ

)

(s+ a)
∞∏
n=1

(s+ a± 2nπj
τ

)

(s+ a)

(s− a)

=
(s− a)

(s+ a)

∞∏
n=1

(
s− a± 2nπj

τ

s+ a± 2nπj
τ

)
(s+ a)

(s− a)

=
∞∏
n=1

(
s− a± 2nπj

τ

s+ a± 2nπj
τ

) (6.32)

From the transfer function of cavities in Equation 6.10, we can achieve the Ẽap(s)

with a series of cavities as shown in Figure 6.3.

Note that there are N cavities as shown in Figure 6.3 as we cannot provide infinite

cavities practically. In practical implementation, we need to cascade as many cavities

as possible to achieve a good approximation.
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6.4.2 Phase change analysis

The transfer function of the cavity series can also be written as:

Ẽap(s) =
∞∏

n=−∞

(
s− a+ 2nπj

τ

s+ a+ 2nπj
τ

)
(s+ a)

(s− a)
(6.33)

Since Equation 6.33 is composed with all pass filters and the magnitude keep un-

changed all the time. we can analyze the phase change only with the following

equation:

Ẽap(jω) =
∞∏

n=−∞

(
jω − a+ 2nπj

τ

jω + a+ 2nπj
τ

)
(jω + a)

(jω − a)
(6.34)

Then the phase change of the whole system can be calculated as:

∠(Ẽap(jω)) =
∞∑

n=−∞

(∠(jω − a+
2nπj

τ
)− ∠(jω + a+

2nπj

τ
))

+ ∠(jω + a)− ∠(jω − a)

= −2×
∞∑

n=−∞

(arctan(
ω

a
+

2πn

τa
)

+ 2× arctan(
ω

a
) (6.35)

As introduced in the Section 6.4.1, we increase the parameter τ to make τa big

enough. Then we can transform the summation Equation 6.35 into integration as

follows:

∠(Ẽap(jω)) ≈ −τa
π

×
∫ ∞

−∞
arctan(

ω

a
+ ε)dε

+ 2× arctan(
ω

a
)

= −τω + 2arctan(
ω

a
) (6.36)

which is exactly the phase change of e−τsEap(s).
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Figure 6.4. This figure shows a simulation of non-minimum phase channel equalization. The

top subplot depicts the original sequence of single photon states. The middle

subplot describe the distorted signal after a all pass non-minimum phase channel.

The bottom one is for the equalised signal with the proposed equalization structure

of this paper. From this figure, we can see the transmitted signal is recovered

well with a time delay of 10s.

6.4.3 Simulation results

Figure 6.4 shows a simulation of non-minimum phase channel equalization. The top

subplot depicts the original sequence of single photon states. The middle subplot

describes the distorted signal after an all pass non-minimum phase channel. The

bottom one is for the equalised signal with the proposed equalization structure of

this paper. From this figure, we can see the transmitted signal is recovered well with

a time delay of 10s.

It is shown in Figure 6.3 that the coupling strength of every cavity should be set into

γ = 2a and the detuning frequency of the number n cavity ((n ∈ [−N,N ])&&(n ̸=

0)) should be set into 2nπ
τ
.
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6.5 Conclusion

In this chapter, an equalisation methodology is proposed to compensate quantum

optical communication channel. Equalisation for both single photon states and for

coherent states are analysed. Since quantum optical communication channel can

be decomposed into a minimum phase channel and a non-minimum phase all pass

channel, we design equalisation structure for these two kinds of channels separately.

Since this equalization system is based on simple quantum components like cavities

and beam splitters, it is rather realisable and could be implemented easily with GEM

and programmable waveguide chip. The channel analysed in this paper may not only

refer to practical optical communication channel, but also be applicable for quantum

signal processing locally including quantum storage, manipulation and transforming.

One promising application of this equalisation methodology is combatting channel

distortion in quantum repeaters in the future.

As we discussed in Section 6.1, the other option to equalise a quantum non-minimum

phase channel is using a quantum memory to store the distorted state and processing

it in the reversed time. As the technology of quantum memory progresses, this option

may become possible in the years to come. This non-causal quantum equalization

system needs to be investigated in the future.

With the proposed equaliser, the transfer function of the quantum channel is as-

sumed to be known to us. However, this assumption may not be true in the prac-

tical communication. Therefore, systems are needed to be designed in the future to

obtain the transfer function of the communication channel. In addition, we assume

that the channel responses keep unchanged during the whole communication pro-

cess. Further quantum adaptive equalisation methodology may be proposed in the

future to equalise the quantum channel adaptively. We might also adapt some blind

and adaptive equalization algorithm in classical communication into quantum area.

In this project, we do not consider the effects of noise. The proposed quantum

channel equaliser is similar to zero-forcing equalisers in classical communication. As
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noise ia always present in quantum communication, we may extend this proposed

quantum equaliser by maximizing the signal noise ratio in the future.
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Chapter 7

Conclusions and Future
Work

T
HIS chapter concludes the thesis by reviewing the work done,

re-summarizing the original contributions, and recommending

future work that could be undertaken by others.
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7.1 Review of and conclusions from the work in this

thesis

Quantum repeaters are indispensable for quantum communication. In order to im-

plement quantum communication, three aspects of quantum repeaters need to be

addressed: quantum state amplification, quantum channel equalisation and quan-

tum communication protocols. This thesis presents four research projects in the field

of quantum communication. The first project is an analysis of continuous mode op-

eration of non-deterministic NLA. During this project, a dynamical NLA is designed

and analysed. The second and third projects contribute to the two fields of quantum

protocol-quantum networking and QKD. The second project is engaged to develop a

protocol for generating W-states over long distances. A multiparty QKD scheme is

proposed during the third project. Quantum equalisers are designed to compensate

for channel distortion in the fourth project.

Most of quantum amplification schemes are proposed based on discrete mode anal-

ysis. However, continuous mode quantum states are much more common in real

application. During the first project, we investigate the continuous mode operation

of two popular kinds of NLA-quantum scissor based NLA and photon addition-

subtraction based NLA. For the quantum scissor based NLA, we find that the pulse

shape of the output signal is the same as the one from the auxiliary single photon,

while its amplitude is influenced by both the input coherent state and the NLA

parameters. For photon addition-subtraction based NLA, it is proved that the am-

plification gain is as expected only when the pulse shape of input state equals that

of the creation operator and annihilation operator. Simulations are performed to

confirm the theoretical results.

In the second project, a protocol is proposed to generate entanglement between

multiple distant nodes by creating a W-state shared between them. Since W-states

can be used to teleport quantum states, we may perform quantum teleportation

with the distributed W-states generated using our methodology. As the research
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field of quantum computing progresses, more complicated quantum algorithms are

being proposed. In the future, when a single quantum computer is not capable of

implementing such complicated algorithms, we may develop quantum algorithms

to utilize quantum computing resources at different locations with distributed W-

states.

In the third project, a multiparty QKD scheme for WSNs is proposed to guarantee

secure communication between more than two distributed nodes. Like other QKD

protocols,the security of this proposed multiparty QKD scheme relies on the foun-

dations of quantum mechanics and is thereby unconditional secure against eaves-

dropping. In addition,the secret key is produced and distributed deterministically,

making this proposed QKD scheme much more efficient than multiparty BB84 pro-

tocol and multiparty SARG 04 protocol.

The last project is engaged for quantum channel equalisation. A quantum channel

can be decomposed into minimum phase channel and a non-minimum phase all pass

channel. The equalisation of these two kinds of channels are discussed separately.

Both single photon states and coherent states are considered in this project.

7.2 Recommendations on future Work

Compared to classical communication, quantum communication is a much newer

research field. Therefore, there are a huge number of research gaps in this field.

Due to the limitation of time and equipment, some research problems have not been

solved in this PhD candidature. All these research problems could be taken as the

research gap of other research projects in the future.

7.2.1 Investigation of modulation schemes with photonic pulse

shapes

Pulse shape manipulation plays an very important role in completion of both the

NLA project and the equalisation project. With the dynamic NLA structure, we
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find that the output coherent state inherits the pulse shape of driving single photon

state. In the channel equalisation project, the proposed equalisation structures can

be used to manipulate pulse shapes of single photon states and coherent states.

With these pulse shape manipulation methodologies, it might be possible in the

future that quantum information is modulated into the photonic pulse shapes.

7.2.2 Quantum cryptography for wireless sensor networks

In the project of multiparty QKD, we develop a scheme of producing and distributing

cryptography keys over long distances. This multiparty QKD scheme can guarantee

secure communication between multiple sensor nodes against eavesdropping. How-

ever, it can not be used to prevent internal attacks. If an engaged sensor node is

physically captured, the secret information might be accessed by attackers through

hardware. The QKD scheme might be synthesised with other cryptography tech-

niques in order to guarantee security against all kinds of attacks.

7.2.3 Quantum equalisation implementation with waveguide chip-

s and GEMs

In the channel equalisation project, the proposed equalisation structures are com-

posed of simple optical components like beam splitters and optical cavities. There-

fore, these structures are physically realisable and can be implemented easily. It

might be possible in the future to apply the proposed equalisation methodologies

with waveguide chips and GEMs.
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7.2.4 Further investigation of quantum channel equalisation tech-

niques

As discussed in Chapter 6, another option to equalise a non-minimum phase all pass

channel is using quantum memory to store the distorted states and performing the

equalisation in the reversed time. This may be further investigated in the future.

With the proposed equaliser, the transfer function of the quantum channel is as-

sumed to be known to us. However, this assumption may not be true in the prac-

tical communication. Therefore, systems are needed to be designed in the future

to obtain the transfer function of the communication channel. In addition, we as-

sume that the channel responses stay unchanged during the whole communication

process. Further quantum adaptive equalisation methodologies may be proposed in

the future to equalise the quantum channel adaptively. We might also adapt some

blind and adaptive equalization algorithms from classical communication into the

quantum area.

7.3 Conclusion

This chapter summarizes the research carried out in the duration of the PhD can-

didature. The research done in this thesis contributes to knowledge of quantum

amplification, quantum communication protocols and quantum channel equalisa-

tion. The thesis provides a general method for (a) the continuous mode operation of

non-deterministic NLA, (b) generation of distributed W-states over long distances,

(c) multiparty QKD for wireless sensor networks and (d) equalisation of quantum

communication channels. The contributions in this thesis could be used by other

researchers in their own studies and applications. The work in this thesis and the

recommendations on future work in Section 7.2 will create more research possibilities

in the field of quantum communication.
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V. Sandoghdar, “Small slot waveguide rings for on-chip quantum optical circuits,”

Opt. Express, vol. 25, no. 5, pp. 5397–5414, Mar 2017. [Online]. Available:

http://www.opticsexpress.org/abstract.cfm?URI=oe-25-5-5397

Page 119


