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This research presents a series of novel Bayesian trans-dimensional methods for geo-

physical inversion. A first example illustrates how Bayesian prior information obtained

from theory and numerical experiments can be used to better inform a difficult multi-

modal inversion of dispersion information from empirical Greens functions obtained

from ambient noise cross-correlation. This approach is an extension of existing parti-

tion modeling schemes.

An entirely new class of trans-dimensional algorithm, called the trans-dimensional tree

method is introduced. This new method is shown to be more efficient at coupling

to a forward model, more efficient at convergence, and more adaptable to different

dimensions and geometries than existing approaches. The efficiency and flexibility

of the trans-dimensional tree method is demonstrated in two different examples: (1)

airborne electromagnetic tomography (AEM) in a 2D transect inversion, and (2) a

fully non-linear inversion of ambient noise tomography. In this latter example the

resolution at depth has been significantly improved by inverting a contiguous band

of frequencies jointly rather than as independent phase velocity maps, allowing new

insights into crustal architecture beneath Iceland.

In a first test case for even larger scale problems, an application of the trans-dimensional

tree approach to large global data set is presented. A global database of nearly 5 million

multi-model path average Rayleigh wave phase velocity observations has been used to

construct global phase velocity maps. Results are comparable to existing published

phase velocity maps, however, as the trans-dimensional approach adapts the resolution

appropriate to the data, rather than imposing damping or smoothing constraints to

stabilize the inversion, the recovered anomaly magnitudes are generally higher with

low uncertainties. While further investigation is needed, this early test case shows that

trans-dimensional sampling can be applied to global scale seismology problems and

that previous analyses may, in some locales, under estimate the heterogeneity of the

Earth.

Finally, in a further advancement of partition modelling with variable order polyno-

mials, a new method has been developed called trans-dimensional spectral elements.



xi

Previous applications involving variable order polynomials have used polynomials that

are both difficult to work with in a Bayesian framework and unstable at higher orders.

By using the orthogonal polynomials typically used in modern full-waveform solvers,

the useful properties of this type of polynomial and its application in trans-dimensional

inversion are demonstrated. Additionally, these polynomials can be directly used in

complex differential solvers and an example of this for 1D inversion of surface wave

dispersion curves is given.
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4 Introduction

1.1 Introduction

A large part of our understanding of the formation, composition and geodynamism

of the Earth, is based upon geophysical imaging at various scales, from near surface

techniques for mineral exploration, site hazard identification, and aquifer studies to

near antipodal long period seismic waves that sense the structure of the Earth’s core.

In many geophysical inverse problems, the physical nature of the relationship between

candidate models of the Earth and limited observations, result in under-determined

problems that causes ambiguities. An example is the unavoidable circularity in seismic

travel time tomography where understanding wave speed variations in the Earth de-

pends on time and location information of earthquakes measured with seismometers.

Accurate determination of earthquake hypo-centres and rupture times depends on a

wave speed model of the Earth to compute radial distances from multiple seismome-

ters using triangulation. This circular issue is often described as the source/structure

trade-off.

As methods and data improve for studying the deeper Earth, inferences of mantle sensi-

tive observations depend on models of the crust. Similarly, inferences from inner core

observations depend on the model of the mantle and crust. If models at various scales,

for example, crustal, lithospherical, or mantle, are constructed with robust uncertainty

estimates, then inferences of composition, geodynamism, or other physical processes

can be performed and tested in statistically meaningful ways.

The focus of this research is on new methods for the inversion of geophysical data

using ensemble approaches for uncertainty analysis and model comparison. Although

seismic tomography is the focus, many of the concepts presented can be equally applied

to more general geophysical imaging problems.
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1.2 Overview of geophysical imaging problems

In geophysical imaging problems, the goal is to determine spatially varying parameters

of a planetary object from proxy observations that can be related back to properties

of interest via mathematical modelling. A non-exhaustive list of examples of these

class of problems are inverting for the density variation within planetary bodies from

gravity potential field anomalies [Swenson and Wahr, 2002, Pavlis et al., 2012, Zuber

et al., 2013], determining conductivity or impedance from passive or actively induced

eddy currents [Tikhonov, 1950, Cagniard, 1953, Simpson and Bahr, 2005, Chave and

Jones, 2012], and lastly estimating variations in seismic wave speed through the use of

recorded seismograms [Aki, 1977, Aki and Richards, 2002, Rawlinson and Sambridge,

2003, Rawlinson et al., 2014]. All these problems fall under the general umbrella of

geophysical inverse problems.

In the general formulation of a geophysical inverse problem [Menke, 1989, Tarantola,

2005], there are some observations, d, where the bold face represents a vector of values,

that is d= [d1 . . . dn]
T . The goal is to find some model, m, that best explains the obser-

vations. Through the application of a forward model, G, predicted observations can be

generated from the model and these can be directly compared to the observations. The

solution of this problem generally minimises some norm of the difference between the

predictions of the model and the observations, that is, in the simplest case

a r g mi nm||G(m)−d||p . (1.1)

In general, methods for solving the inverse problem fall into one of two categories:

those that produce a single optimal model given some data fit criteria and model penal-

ties, for example Thurber [1983], and those that produce an ensemble of models, for

example Mosegaard and Tarantola [1995].

The focus of this work is on the later class, motivated by the following reasons: (1)

uncertainty analysis is important. Ensemble based methods provide greater statistical

information for both uncertainty and validation of the formulation of the problem.
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In optimisation based methods, uncertainty analysis is typically a linear Gaussian ap-

proximation using the Hessian of the model covariance matrix that can produce overly

optimistic estimates of uncertainty and fails to account for multi-modal and long-tailed

uncertainties. Ensembles on the other hand allow population based statistical analysis

for hypothesis testing, statistical significance and model comparisons. (2) The majority

of optimisation approaches require stabilisation in terms of either damping to a refer-

ence model, a model smoothness constraint, or combination thereof, and these have a

tendency to reduce the resolution of features in an inversion and attenuate the recov-

ered magnitude of model parameters of interest. (3) An ensemble provides far greater

information about the potential solution than a single optimised model. It has been

said that “all models are wrong, but some are useful” [Box and Draper, 1987], but in an

ensemble approach it may be more appropriate to say that “all these models are wrong,

but together they are useful”.

Common to both optimisation and ensemble based approaches is that in many geo-

physical problems, the observed measurements are spatially distributed in a sparse and

irregular manner or have non-uniform sensitivities over the spatial domain. This can

be due to the feasible location of measurement devices, for example, requiring a sensor

to be on land when much of the Earth is covered by ocean, or simply that the location

of events is unevenly distributed, for example, large magnitude earthquakes are most

commonly located along plate tectonic boundaries.

Similarly, in many geophysical problems where sub-surface properties are explored

with surface measurements, the ability to resolve features diminishes with depth and

can be further compromised where strong near surface features are present.

This causes significant difficulties in parameterisation of the inverse problem due to a

trade off between spatial resolvability and the conditioning of the problem. In a simple

example, consider a linearised 2D tomography problem in which there are a set of

known rays with observed travel times and that is to be inverted for the slowness field.

If the model is parameterised as a regular 2D Cartesian grid with constant values in

each grid cell, the inverse problem can be solved with linear least squares solution.
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(a) (b)

Figure 1.1: A simple example of how the choice of grid cell size can cause instabilities in the inversion.
In (a) is a coarse grid where every cell is covered by a ray. In (b) with a finer grid, some cells, indicated
with blue shading, have no ray coverage and are therefore unconstrained by the observations.

However, the number of grid cells or resolution of the grid needs to be chosen. If the

grid is chosen to be too coarse, then the full information from the observations where

coverage is dense is recovered only approximately. Conversely, if the grid is set too fine

then the problem becomes ill-conditioned. An example is shown in Figure 1.1 where

in (a) a coarse grid is well conditioned as there are rays through every cell, whereas in

(b) many grid cells have no ray coverage highlighted in light blue.

Resorting to coarse grids to stabilise the inversion produces models without the ex-

pected degree of smoothness of lateral variations. This has prompted some solutions

to overcome the problem of low resolution grids that do not present expected laterally

smooth variations. An example, in the original seismic tomography paper introducing

what is now known as teleseismic tomography, Aki [1977] used two solutions at the

same resolution but with a half grid diagonal offset between the two grids. This then

allows smooth contour plots, for example Figure 9(a) therein, using 4 point averaging.

This heterogeneity in resolvability has prompted others to use irregular parameteri-

sations that adapt to the data in some fashion. Sambridge and Faletič [2003] use a

criterion based on the maximum spatial gradients in the seismic velocity perturbation

to iteratively subdivide a tetrahedral grid during the inversion of a 3D mantle model.

Plattner et al. [2012] adaptively refine a multi-scale wavelet parameterisation through
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optimisation in an electrical resistivity tomography inversion. Similarly, Hung et al.

[2011] use an adaptive wavelet parameterisation to invert for P and S wave speed using

finite frequency kernels [Dahlen et al., 2000]. In linearised tomographic problems, the

“null space shuttle” [Deal and Nolet, 1996, de Wit et al., 2012] is an alternate approach

to spatially adapting the inversion to adequately resolvable features.

1.3 Geophysical inversion choices

In any geophysical inverse problem, there are a number of choices to be made in the

formulation of the problem. The first of these is the parameterisation in which to

represent the model. This choice of parameterisation is often relatively arbitrary. As-

sociated with any parameterisation choice is some further choice in terms of model

complexity. In grid based parameterisations, this complexity or resolution is repre-

sented in the number and size of the grid cells. In basis function parameterisations

such as Fourier series or spherical harmonics, there is a maximum degree to determine.

Parameterisation choices can have impacts on geophysical inversions [Trampert and

Sneider, 1996, Valentine and Trampert, 2012, 2016, Lever et al., 2016], with all shar-

ing the same inherent trade off between the resolving power of the inversion versus

constraint of the model parameters. As the complexity or resolution of the parameter-

isation is increased, that is, the degrees of freedom are increased, the ability to constrain

these model parameters decreases. This trade-off was recognised in a series of papers

[Backus and Gilbert, 1968, Backus, 1970a,b], but the application of Backus-Gilbert in-

version has found relatively little traction. Recent developments have seen advances

from the helio-seismology community showing promise for large scale seismology in-

versions [Zaroli, 2016].

Coupled with the parameterisation choice, is some form of prior information used

to constrain or stabilise the inversion. Geophysical inversions are almost universally

under-determined problems and without the inclusion of prior information could pro-

duce non-physical model parameters (e.g. negative seismic velocities). Two common
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approaches for prior constraint in geophysical inversions are damping to a reference

model, where again a reference model must be chosen, or imposing penalties on the

spatial gradients of the model to impose smoothness.

A last choice is in the forward modelling used. There is unlikely to be an exact for-

ward model for many inverse problems and decision involves selecting a reasonable ap-

proximation to the physical processes involved. There is often a spectrum of forward

models, for example in seismic travel time tomography there is spectrum of forward

models from fixed rays in a reference model through to full seismic waveform solvers.

Some optimisation techniques include regional adaptation and therefore effectively per-

form a model parameterisation choice. Regional adaptation schemes ask of the obser-

vations whether one parameterisation is “better” than another using some heuristic

model choice criterion. A key question in an inversion is how to determine which

of these choices are appropriate, or more likely representative of the truth, given the

observations.

1.4 Bayesian inversion

The focus in this thesis is on a Bayesian approach [Bayes, 1763] to geophysical inverse

problems and use Markov chain Monte Carlo (McMC) techniques [Gamerman and

Lopes, 2006, Brooks et al., 2011] to generate an ensemble of candidate models. The

Bayesian approach has a number of attractive features including a probabilistic ensem-

ble from which can be extracted point estimates, such as the Bayesian maximum a

posteriori (MAP), mean, mode and median models. Secondly, Bayesian credible in-

tervals can be numerically estimated from the ensemble giving a robust estimate of

uncertainties [Hyndman, 1996]. Third, in the Bayesian approach Bayes factors [Kass

and Raftery, 1995] or an appropriate criterion such as the Deviance Information Cri-

terion [Spiegelhalter et al., 2002] can be used to perform model comparisons between

inversions with differing parameterisations or physics models [Steininger et al., 2014]

and obtain objective measures on the model that is best supported by the observations.
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In a Bayesian formulation of an inverse problem, rather than inverting for an opti-

mal model, the posterior probability distribution is sought [Tarantola and Valette,

1982a,b], where the probability density represents knowledge of model parameters.

This posterior probability is computed using Bayes theorem [Bayes, 1763],

p(m|d) = p(m)p(d|m)
p(d)

, (1.2)

where m is the model and d is the observations. The probability distribution p(m)

represents a prior probability distribution on model parameters. In a geophysical in-

verse problem, this is where information for constraining model parameters of under

determined problems appears. The term p(d|m) is the likelihood which in a Bayesian

formulation encapsulates the misfit between the model predictions computed by a for-

ward model and the inherent noise processes. Lastly the term p(d) is the “evidence”,

sometimes called the marginal likelihood, and is a normalising constant for the poste-

rior probability distribution p(m|d).

The evidence can be obtained by directly integrated using

p(d) =

∫

M

p(m)p(d|m)dm, (1.3)

where the domain M is over the entire model parameter space. For simple problems

with analytic solutions and few parameters, the evidence and posterior can be com-

puted relatively easily. As the number of parameters increase and with increasing

complexity or non-linearity in the forward model, this quickly becomes a difficult

numerical computational problem.

In higher dimension and complex non-linear problems, sampling approximations are

used to compute the posterior with methods such as Markov chain Monte Carlo

(McMC) sampling [Liu, 2001, Brooks et al., 2011]. Often the posterior is then com-

puted without the evidence, as relative inference is sufficient. Such sampling approaches

have a long history in geophysical inverse problems [Wiggins, 1969, Mosegaard and
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Tarantola, 1995, Sambridge and Mosegaard, 2002].

As stated before, any geophysical inversion that is under determined requires some

form of additional information to stabilise the inversion. In a Bayesian approach, this

is generally achieved in the prior and is a source for criticism of Bayesian approaches.

A prior is another subjective choice in the formulation of the inversion, and often

difficult to define well [Scales and Snieder, 1997].

In McMC inversion, from an arbitrary initial model, for example, mi , a probabilisti-

cally perturbation is added to the model to create a proposed model m′i . This perturbed

model is accepted by assigning mi+1 =m′i , or rejected leaving mi+1 =mi according to a

criterion. The sequence of models forms a Markov chain which converges to the target

posterior density. In this thesis the Metropolis-Hastings acceptance criteria [Metropo-

lis et al., 1953, Hastings, 1970] is exclusively used where the new model is accepted

with probability

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m→m′)

Q(m′→m)

�

, (1.4)

where p(m) is the prior, p(d|m) is the likelihood and Q(m→m′) is the proposal prob-

ability. The Metropolis-Hastings criteria satisfies the mathematical condition known

as “detailed balance” [Gamerman and Lopes, 2006] which allows the Markov chain to

converge and correctly sample the target posterior distribution. Markov chains are run

until they are deemed to have converged using some convergence criteria [Gelman and

Rubin, 1992b, Brooks and Gelman, 1998]. Early portions of the Markov chain prior

to convergence are typically discarded as “burnin” samples.

Given a Markov chain of models, this forms the result of the inversion from which

representative models can be extracted, such as the mean or median of the ensemble.

The uncertainty, is also derived from this Markov chain in terms of variances, credible

intervals, and marginal histograms of model parameters or variables derived from se-

lected model parameters. The draw back with McMCmethods is that the length of the

Markov chain required for sufficient statistical inference could be of the order of mil-
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lions which can become a computational burden for large number of data or complex

forward modelling.

A common approach to obtaining more samples is to run multiple independent

Markov chains but this has potential to overestimate uncertainty if used incorrectly.

A common pitfall is to use multiple short chains run in parallel to save time, however

these chains are unlikely to be converged and although the ensemble means of these

model will likely be acceptable (as the mean converges quickly), the variances will be

large due to lack of convergence.

1.5 Bayesian Model Selection

The Bayesian approach to model selection is Bayes Factors [Kass and Raftery, 1995]

which require the calculation of the evidence. The difficulty of computing the evidence

is a function of both the model and the forward model complexity. As the dimension of

the model increases, so does the dimension of the integral required for computing the

evidence. As the forward model complexity increases, analytical solutions to integrals

may not be available or approximate numerical integration or sampling may take more

computational effort. For all but the simplest problems, a numerical approximation is

required and while methods are available [Skilling, 2006], evidence calculation remains

a difficult problem. Reliably computing evidence in higher dimensional problems is

an active area of research and newer methods show promise in geophysical inverse

problems [Brunetti et al., 2017]

Once evidence has been computed for competing model solutions of a given problem,

the Bayes factors are simply the evidence ratios of the two candidate models. Put

simply, the model with higher evidence has more support and there are criteria for the

level of support based on the magnitude of evidence ratios.
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1.6 Approximate Bayesian Model Selection

Due to the difficulties and computation cost in the reliable calculation of the evidence,

various approximations have been developed [Akaike, 1974, Spiegelhalter et al., 2002,

Ando, 2007, 2010]. At their core, these approximations assume a simple shape of the

posterior and result in a criterion score as a function of the maximum likelihood so-

lution and the model complexity. In this way, better fitting models are rewarded and

overly complex models are penalised in an attempt to prefer models that are simple

enough to explain the observations, but no simpler. The draw back of these approxi-

mating criteria are that they may not be valid for many non-linear geophysical inverse

problems due to their simplifying approximations.

1.7 Relative model selection via Reversible Jump

An extension to McMC samplers is the Birth/Death scheme of Geyer and Møller

[1994], generalised to the Reversible Jump by the seminal work of Green [1995]. Re-

versible jump McMC has become commonly known as trans-dimensional sampling in

the geophysics community, through works of Malinverno [2002] and Sambridge et al.

[2006].

In trans-dimensional samplers, a proposal distribution is allowed to change the pa-

rameterisation of the model and dimension, that is the size of the vector m of model

parameters. A key benefit of allowing the sampling to jump between dimensions is that

the data dictates the model complexity resulting in a parsimonious result [Malinverno,

2002]. A trans-dimensional result was shown to be equivalent to the product space of

fixed dimension solutions weighted by their evidences, that is, the trans-dimensional

result is effectively Bayesian relative model selection [Sambridge et al., 2006].

Hence the trans-dimensional approach can be used for Bayesian model selection with-

out the need to compute evidence directly. Unlike approximating criteria, there are no

assumptions on the shape of posterior distribution and non-linearity in the forward
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is no longer a problem. When compared to computing the evidence directly, a draw

back of trans-dimensional sampling is that, since only relative evidence is computed,

all competing models must be considered in a single inversion. If another competing

model is to be considered at a later date, then this must be incorporated into a new

trans-dimensional frame work and the entire inversion rerun. In contrast, the evidence

is a fixed quantity for a model parameterisation and can be compared without recalcu-

lation at a later date to any other competing model.

The generalisation of the Metropolis-Hastings acceptance criteria to support trans-

dimensional steps is

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m→m′)

Q(m′→m)
| J |
�

, (1.5)

where the additional term from (1.4), |J |, is determinant of the Jacobian that

maintains detailed balance through variable transformations resulting from trans-

dimensional steps. Expression (1.5) may also be used if the dimension is unchanged,

but the proposal involves a step from one class of parameterisation to another.

In trans-dimensional McMC inversion, in a similar fashion in which McMC converges

to the posterior distribution of interest, trans-dimensional McMC includes proposals

that jump between different models. The McMC chain then samples in each model

space and converges to give the relative support of the candidate models.

In the original work by Green [1995] with useful reviews by Denison et al. [2002] and

Sisson [2005], a common usage of trans-dimensional algorithms is partition modelling.

In partition modelling, a domain is partitioned into a set of k contiguous cells used

to represent some function. Figure 1.2 shows examples of this in 1D where in (a), a

step-wise function defined by a single value in each partition. This form of partition

modelling has been applied in geophysical inverse problems for representing 1D ve-

locity models in receiver function studies [Piana Agostinetti and Malinverno, 2010],

surface wave dispersion studies [Dettmer et al., 2012], and both [Bodin et al., 2012b].

In (b) the same partitions or cells can be used to construct a piece-wise linear curves by
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(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.2: Example parameterisations for partitionmodelling where in (a) a partition with constant
values in each partition is shown that the results in a step function. In (b) the natural partitioning
scheme is shown with linear segments between partition boundaries which can be used to represent
continuous functions.

specifying values at the partition boundaries and this has been in various paleo-climate

reconstructions [Hopcroft et al., 2007, Lambeck et al., 2014, Sambridge, 2016].

In partition modelling, a key aspect of the problem is deciding on the number of parti-

tions because this is a measure of resolution. In trans-dimensional partition modelling,

the method adds and removes partitions automatically to sample about a number of

partitions that is well constrained by the data for a parsimonious result.

Extension of partition modelling to two and higher dimensions have typically involved

the use of Voronoi cells [Okabe et al., 1992, Samet, 2006]. Examples in geophysical

inverse problems include 2D tomography [Bodin and Sambridge, 2009, Bodin et al.,

2009, 2012a, Galetti et al., 2015, Saygin et al., 2016], finite fault inversion [Dettmer

et al., 2014], core-mantle boundary tomography [Young et al., 2013] and 3D local

earthquake tomography [Piana Agostinetti et al., 2015]. While use of Voronoi cells in

trans-dimensional geophysical inversion is now well established, what should be recog-

nised is that the two classes of partition modelling in 1D shown in Figure 1.2 extend

to two and higher dimensions as Voronoi cells and Delaunay tessellations, examples of

each are shown in Figure 1.3.

The complexity of the models generated from trans-dimensional samplers is sensitive
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(a) (b)

Figure 1.3: Example parameterisations for partition modelling in 2D where in (a) a partition with
constant values in each partition or a Voronoi cell approach is shown that can be used for functions
with discontinuities. In (b) is shown triangle patches between vertices called a Delaunay triangula-
tion that can be used to represent C 0 continuous functions.

to the estimated noise on the data. If this noise level, encoded within the likelihood

function, is under estimated then a trans-dimensional inversion will return overly com-

plex models rather than a parsimonious appraisal. This is due to under estimated noise

levels requiring a trans-dimensional solution to fit noise. Conversely, if noise levels

are over estimated, then the resulting complexity will be too simple. For this reason,

in the case where the noise estimates on observations are poor, or approximations in

the formulation of problem introduce theory noise, it is advantageous to use a hier-

archical Bayesian inversion [Malinverno and Briggs, 2004] coupled with the standard

trans-dimensional sampling. Hierarchical noise estimation allows additional noise pa-

rameters to be inverted for as part of the sampling the model parameters of interest

[Bodin et al., 2012a].

In trans-dimensional inversion, the development of convergence criteria is not as ma-

ture as in the case of more traditional fixed dimension McMC sampling [Sisson and

Fan, 2007]. The philosophy taken in this thesis is a pragmatic choice where chains are

initialised with simple models, for example, in tomographic examples McMC chains are
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initialised with homogeneous models. From here the trans-dimensional inversion must

iteratively add and remove complexity until convergence is reached. This is deemed

preferable to randomly initialising models of varying complexity as the time taken for

complex models to converge to simpler can be prohibitive. While starting from sim-

ple models and increasing complexity is generally quicker to converge. An additional

observation is that some unknown failing in the inversion process will produce results

that err on the side of simplicity.

The convergence is judged on two main criteria, firstly and most importantly is the

hierarchical noise level which is a proxy for the likelihood as it represents a scale fac-

tor or factors of the estimated errors in the data. In the absence of hierarchical noise

levels, the likelihood itself would suffice. Secondly, a measure of complexity is moni-

tored, for example the number of partitions. The Gelman-Rubin convergence tests are

also considered on these parameters although these tend to converge quite quickly and

the qualitative convergence metrics mentioned here are conservative by comparison

[Hawkins et al., 2017].

1.8 Thesis Outline

This thesis presents a number of advances in trans-dimensional Bayesian methods for

geophysical inversion problems of varying physics and character.

In Chapter 2, an approach to extracting phase velocity information from seismic am-

bient noise observations is presented using a trans-dimensional partition modelling

approach. This method is able to extract Love and Rayleigh wave dispersion jointly

from three component data as continuous dispersion curves with uncertainties that

can be carried forward in subsequent phase velocity map inversions.

In Chapter 3, the development of a new type of trans-dimensional algorithm called

trans-dimensional trees is presented. This scheme is targeted towards higher dimen-

sional geophysical inversion problems where existing Voronoi cell methods have com-

putational deficiencies. This is an abstract trans-dimensional approach with many po-
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tential applications. This chapter demonstrates the flexibility of trans-dimensional trees

by coupling this with a wavelet parameterisation and compares the results to existing

Voronoi cell approaches in simple linearised tomographic problems.

In Chapter 4, the trans-dimensional tree approach is applied to the inversion of Air-

borne Electromagnetic data along a section of flight line for a 2D profile of resistivity.

This approach uses the trans-dimensional tree with a wavelet parameterisation coupled

with a 1D forward model to invert a spatially coherent model, that is, with no lat-

eral discontinuities due to the independent 1D inversions. Results show more detail is

resolved than an existing inversion using a damped and smoothed least squares optimi-

sation approach. This chapter also introduces hierarchical priors and the generation of

estimated covariant noise models to further improve and stabilise the inversion.

In Chapter 5, the results of the dispersion curves generated in Chapter 2 are inverted

for Love and Rayleigh phase velocity maps of Iceland. The Fast Marching Method is

used “tightly coupled” to the trans-dimensional tree approach with a wavelet param-

eterisation to invert in a fully non-linear fashion. The difference between non-linear

and linear (with fixed ray paths) inversions is demonstrated in synthetic examples. This

comparison highlights the generally poorer recovery of features and underestimation

of anomaly magnitudes of the linear inversions compared to the fully non-linear ap-

proach developed in this chapter. Taking this class of inversion further, all periods of

interest are inverted jointly in a 3D fully non-linear inversion to take advantage of the

correlation of spatial features between neighbouring frequencies.

In Chapter 6, the trans-dimensional tree is applied to a large problem in the spherical

domain, through the inversion of global surface wave data. In this problem, the total

number of observations is of the order of 5 million ray paths. This preliminary study

test the feasibility of inverting these observations in a reasonable length of time. A

key benefit of the trans-dimensional tree approach is that the inversion is stabilised

through relative Bayesian model choice rather than smoothing or damping constraints,

both of which cause the magnitude of fast and slow anomalies to be underestimated

and examples are provide of this in the African rift region.



§1.8 Thesis Outline 19

In Chapter 7, a simple general trans-dimensional partition modelling scheme for 1D

problems is introduced that is able to adapt to data best explained with discontinuous

features or smoothly varying features, and combinations thereof. The parameterisation

used in this approach is polynomials expressed as Gauss-Legendre-Lobatto polynomials

where the curve(s) are defined by nodal interpolation points. This ensures that the

prior is more intuitive compared to polynomial coefficient priors. It is shown that

allowing an inversion to consider more complex combinations of polynomials in a

partition modelling scheme produces better results in synthetic regression problems.

In Chapter 8, a common and difficult problem in seismology is that many problems

have non-unique solutions and a classic one is whether observations are best explained

by a 1D Earth model with a series of homogeneous layers, or smoothly varying struc-

ture. To attempt to address this, some synthetic surface wave dispersion problems are

considered. A novel spectral element method is derived for computing surface wave

dispersion predictions from arbitrary models expressed as a series of elements with ar-

bitrary order. A novelty in this approach is the inclusion of a Laguerre element for

representing a half-space that dramatically improves accuracy at longer periods. This

method is first validated against known analytic results and existing approaches. Finally

in a series of synthetic tests coupling the trans-dimensional approach of Chapter 7 with

the spectral element surface wave dispersion forward model, it is examined whether de-

cisive posterior information can be obtained in the inversion of simple structures with

slowly varying and homogeneous layers in Love wave, Rayleigh wave and joint inver-

sions.
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2.1 Introduction

This chapter provides a simpler introduction to some of the key concepts relating to

Bayesian inversion, Markov chain Monte Carlo (McMC) and trans-dimensional sam-

pling that will be used throughout this thesis. Here the problem is one dimensional

and involves inverting for dispersion curves from empirical Greens functions, a key

component in ambient noise tomography.

Ambient noise tomography is a relatively new technique for surface wave tomography

that uses the ambient seismic wave field, excited by ocean swells, storms and wind, to

image relatively near surface structure (up to approximately 100km). The reason for

the relatively shallow limit is that ambient noise excitation frequencies are generally

limited to between 1 and 30 second period, with a dominant spectrum around 7 to 16

seconds [Bensen et al., 2007, Figure 7(a)]. This limit of useful frequencies translates to

a similar limit on resolvable depths.

Early work by Aki [1957] on micro-tremors established much of the more recent theo-

retical work showing the plausibility of recovering the elastic Green’s function between

two recording stations through the cross-correlation of the ambient seismic noise or

coda [Lobkis and Weaver, 2001, Derode et al., 2003, Snieder, 2004, Wapenaar, 2004,

Larose et al., 2005] (see also Larose et al. [2006] for a review article). The Greens

function between stations A and B represents the signal observed at station B of an

impulse at A and vice-versa. These virtual seismic events between station pairs enables

seismic tomography techniques to be applied in the absence of Earthquakes. Early ap-

plications of this approach using observed seismic coda were reported by Campillo and

Paul [2003], Paul et al. [2005], and similarly for ambient noise Shapiro and Campillo

[2004], Sabra et al. [2005].

There are three preliminary stages for ambient noise tomography, as outlined by

Bensen et al. [2007], one of the first papers to make key recommendations for these

steps. These steps are, (i) pre-processing the continuously recorded seismograms, (ii)

cross correlation of seismograms from two stations to obtain inter-station empirical
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Greens functions (EGFs), and (iii) extracting path integrated surface wave dispersion

information for two stations using these EGFs.

A key recommendation is that continuously recorded seismograms be pre-processed

prior to cross correlation. The purpose of this pre-processing is three fold, firstly to

remove instrument response from the seismograms that may amplify/suppress mea-

surement of ambient noise, secondly time domain normalisation to remove the effects

of local or global seismicity from corrupting latter cross correlation and lastly spec-

tral normalisation or whitening to raise the signal to noise ratio of all frequencies of

interest.

For focus of this chapter is the estimation of dispersion based upon the Green’s func-

tions recovered from cross-correlations of noise, a crucial component of ambient noise

tomography. An overview of the pre-processing steps required is also given as they

have important consequences for subsequent processing.

2.2 Pre-processing of Ambient Noise

An early effort by Bensen et al. [2007] sought to establish a standard for the processing

of ambient noise data and performing cross correlations. The summary of the steps, in

phase one of Bensen et al. [2007] are

1. remove instrument response,

2. remove mean,

3. remove trend,

4. band pass filter,

5. apply time domain normalisation or 1 bit normalisation, and

6. apply spectral whitening.
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The first 4 pre-processing steps are fairly standard processing of seismic signals. In fact

they can together be considered a single band pass filter as the trend and mean can be

considered low frequency components of the signal.

Much of the rationale for the subsequent processing is the removal for spurious signals

(from local and global seismicity) and an attempt to amplify signal for the subsequent

stacking process. In a Bayesian formulation, it can be argued that this is unnecessary

and to some degree counter-productive as the time domain normalisation step distorts

phase information in the signal and spectral whitening amplifies spurious signal that

can impact uncertainties.

To demonstrate the distortion of phase information, a simple experiment is to generate

a random signal with a known phase angle as a linear function of frequency, and then

apply the recommended processing to discern the effects on the phase. The raw signal

and raw phase are show in Figure 2.1 (a) and (b) respectively. The remaining plots

show the effect of various pre-processing steps on the signal and phase information.

Low pass filtering, shown in (c) and (d), preserves the phase information up to the

cut-off frequency (1Hz) of the filter. It should be noted that the low pass filtering is

implemented with a linear filter applied twice, once forward and once backward. This

combined filter results in linear phase and as can be seen.

In the work of Bensen et al. [2007], three processing techniques are recommended and

these are shown in (e) and (f) for one bit normalisation, (g) and (h) for time domain

weighted mean normalisation, and (i) and (j) for spectral whitening. As can be seen in

these cases, the phase angle information is changed, and in some cases, for example in

the one bit normalisation, quite dramatically.

The purpose of the time domain normalisation processes, that is, the one bit normali-

sation or the time domain weighted mean, is to mask out the effect of seismicity when

cross-correlating the signals. The effect that seismicity has on ambient noise cross-

correlations is to create a peak at zero time in the empirical Greens functions. This can

be problematic for close proximity stations, but for reasonably spaced arrays it is less

of an issue.
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Figure 2.1: The pre-processing can affect the phase information contained in a noise signal. The left
column shows the signal and the right column shows the relative difference between the phase angle
and the original signal with the exception that in the first row (b) shows the original phase angle. In
(c), the de-trended, demeaned and rescaled signal still faithfully preserves phase up to the frequency
limit (1 Hz) of the filter in (d). One bit normalisation of the signal in (e) produces large differences
in the phase (f). Similarly, time domain averaging, (g) and (h), affects the phase angle. Spectral
whitening (i) and (j) though preserves the phase angle over the frequency band of interest.
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In a Bayesian approach, where noise is an integral part of the inversion, minimal pro-

cessing is preferred for realistic uncertainty estimates. Particular to this problem is the

potential for additional processing, for example, one bit normalisation, to distort phase

information for subsequent cross-correlation. Using a combination of the processing

recommendations of Ekström [2014] and Seats et al. [2012], the steps performed in

this study are

1. organise seismograms into day lengths with 20Hz sampling,

2. remove instrument response and band pass filter between 10mHz and 1Hz using

linear phase filters,

3. down sample seismograms to 2Hz and normalise so they are zero mean and have

a standard deviation of one,

4. cross-correlate inter-station seismograms using overlapping windows [Seats et al.,

2012] of sufficient length assuming a minimum velocity of 1km/s and the maxi-

mum distance between between two stations in the array to set the time duration

of the window, and

5. stack individual windows create the inter-station ambient noise correlation func-

tion.

The benefit of this minimalist processing is that it preserves phase information through

the careful use of phase preserving filtering and a simple normalisation of seismograms

across days. Both of these processing steps have minimal impact on the phase within

the signal.

The processing steps outlined above were applied to three component data from sta-

tions in Iceland using data from the HOTSPOT [Allen et al., 1999] deployment and

one IUGG station (BORG). These set of stations is the same as those used in the study

by Gudmundsson et al. [2007]. An example of the cross correlations obtained from

this sequence of steps is shown in Figure 2.2 where in (a) the time domain empiri-

cal Greens function is shown and in (b) the real and imaginary parts of the spectrum
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are shown. There is clearly asymmetry in the time domain signal, an indication that

the noise sources are not spatially isotropic. Another indication of this is that in the

frequency domain, the imaginary component of the spectrum is not zero [Aki, 1957,

Cox, 1973].

Unlike Bensen et al. [2007], spectral whitening is not performed because doing so biases

the uncertainty as a function of frequency. In a Bayesian approach, observational noise

is a key component of the inversion and to arbitrarily normalise frequencies that may

be poorly excited by the ambient noise field is seen as undesirable. Rather, it is prefer-

able for the uncertainty in the ambient noise observations to propagate throughout

the inversion, both of surface wave dispersion and of subsequent use of the dispersion

information in following tomographic inversions.

2.3 Obtaining dispersion information

In Bensen et al. [2007], some time is spent discussing the extraction of phase velocity,

where they suggest that there was no known suitable method. For this reason, the au-

thors suggest extraction of the group velocity using frequency-time analysis techniques

[Dziewonski and Hales, 1972, Herrmann, 2013]. This in turn became the method

of choice for many ambient noise studies because there are established codes and it is

relatively straight forward albeit labour intensive.

The approach taken here estimates phase velocity dispersion and this is motivated by

the fact that phase velocity is more useful than group velocity. Firstly, the group veloc-

ity can be uniquely determined from phase velocity dispersion, since phase velocity is

given by

cn(ω) =
kn(ω)

ω
, (2.1)

and group velocity by
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Figure 2.2: An example empirical Greens function is shown resulting from the minimalistic pre-
processing approach before cross-correlating signals. In (a) is the empirical Green’s functions in the
time domain highlighting the causal and acausal parts of the signal. In (b) is the complex spectrum
with the real part shown as a dark line to highlight the spectral zero crossings, and the imaginary
part shown as a feint line. It is clear from both the time domain and frequency domain that the noise
is not spatial isotropic.
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Un(ω) =
∂ ω

∂ kn(ω)
, (2.2)

where cn is the phase velocity of mode n as a function of frequency ω, kn is the wave

number, and Un is the group velocity. From these relationships, an expression can be

obtained for the group velocity in terms of phase velocity

Un(ω) =
cn(ω)

1− ω
cn (ω)

∂ cn

∂ ω

, (2.3)

hence given a differentiable phase velocity curve, the group velocity can be computed.

The reverse is not true because expression of cn as a function of Un becomes

cn(ω) =
∫ ω

ω0

Un(x)d x + cn(ω0), (2.4)

and the cn(ω0) is not known. Hence any extraction of phase velocity automatically

means group velocity is also available assuming differentiability, but the reverse is not

true.

Secondly, surface wave ray paths are sensitive to phase velocity, not group velocity

[Tanimoto, 1986]. In a non-linear inversion in which ray paths are recomputed, they

should be recomputed based upon the phase velocity and not the group velocity. Many

previous studies [Saygin et al., 2016, Galetti et al., 2016] have computed ray paths from

group velocities which introduces a further approximation. For slowly varying, or

nearly linear, dispersion of phase velocity, using the group velocity is a reasonable ap-

proximation because the the group velocity dispersion will be a scaled version of the

phase velocity curve to first order. Hence the relative change in group velocity and

phase velocity coincide and the ray paths generated by each would be similar. Unfortu-

nately, phase velocity dispersion for simple models and exemplar measured dispersion

shows that there is a degree of gradient change in the phase velocity in frequency ranges

of interest, hence this approximation may cause significant inaccuracies. In Figure 2.3,

a reasonable but simple dispersion is shown illustrating the difference between phase
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Figure 2.3: An example dispersion curve showing difference between phase (solid black line) and
group velocity (red dotted line). Updating rays using group velocity can bias the results because
relative change in phase velocity and group velocity can change in the frequency range of interest for
ambient noise tomography (grey shaded region).

and group velocity.

Others have similarly expressed the benefits of phase velocity over group, for example,

Boschi et al. [2013] provide three motivations for phase velocity over group:

1. Group velocity is less precisely defined than phase velocity,

2. For the fundamental mode, phase velocity information is able to image deeper

into the Earth than group velocity,

3. Group velocity measurements are more likely to be contaminated by interfering

phases than phase velocity measurements.

Motivated by the benefits of phase velocity over group velocity dispersion information,
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more recently, different methods have been proposed for the extraction of phase veloc-

ity dispersion from empirical Green’s functions. Firstly an image based time-domain

technique [Yao et al., 2005, 2006], and a frequency domain technique [Ekström et al.,

2009, Ekström, 2014] based on an analysis of the statistics of micro-tremor correlations

between stations [Aki, 1957]. Both these techniques have been successfully applied to

the recovery of phase velocity maps of regions from ambient noise correlations.

To extract phase velocity, a frequency domain method is used, originally proposed by

Aki for micro-tremor data [Aki, 1957] and reintroduced for ambient noise by Ekström

[Ekström et al., 2009, Ekström, 2014]. Alternatives, such as image based methods

exist for extracting phase velocity [Yao et al., 2005], however the frequency domain

method does not use the far field approximation and therefore can extract longer period

dispersion information from closer stations.

In the original Ekström [Ekström et al., 2009] approach, the zero crossings of the

real component of the spectrum of the cross-correlograms were used to construct trial

phase velocity curves directly. This uses the result from Aki [1957] that the real com-

ponent of correlated noise between stations is of the form of a Bessel function of the

first kind with order 0. Restating this result here

ρ̄(ω0, r ) = J0

�

ω0

c(ω0)
r

�

, (2.5)

where ρ̄ is the cross correlation spectrum, ω0 the angular frequency of the funda-

mental mode, c(ω0) is the frequency dependent phase velocity, and r is inter-station

distance. From the observed zero crossings in the empirical Greens function, i.e. a set

of zero crossings z1 . . . zn at angular frequencies ω1 . . .ωn, trial phase velocity curves

are constructed using

cm(ωn) =
ωn r

zn+2m

, (2.6)

with m the integer trial value that is 0, ±1, ±2, etc. From these trial curves, the
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dispersion curve mostly closely matching a reference dispersion curve for the region is

chosen as the observed phase velocity curve. The problem with this approach is that

noise inherent in the observations can cause spurious zero crossings as highlighted by

Menke and Jin [2015] and this can result in phase velocity dispersion curves that drop

precipitously to unfeasible values. These problems were recognised and a subsequent

improvement to the method [Ekström, 2014] adds the extra step of fitting a piece wise

spline to the real component of the spectrum in an effort to eliminate the spurious zero

crossings. A further extension of this general approach was the inclusion of completely

fitting the real part of the spectrum by Menke and Jin [2015], which improved the

rejection of spurious zero crossings and added the ability to using residuals from the

inversion of individual cross-correlated station pairs as quality factors.

Here the aim is to build on these advances by developing a Bayesian approach for ex-

traction of phase velocity information. A key factor in Bayesian approaches is the in-

clusion of prior information in both the formulation of the problem, the assumptions

therein as probability distributions.

2.4 A Bayesian Trans-dimensional Partition modelling

approach

In a Bayesian approach, the solution is obtained in a probabilistic sense be inverting

for a set of models plausibly could have generated the observations. The plausibility

is decided in a probabilistic sense as a combination of a prior probability distribution

and a likelihood. This is related to the posterior inference using Bayes theorem [Bayes,

1763]

p(m|d)∝ p(m)p(d|m), (2.7)

where m is the model, d is the observations or data, p(m|d) the posterior, p(m) the

prior and p(d|m) the likelihood.
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The parameterisation to be used in this inversion is an advance on the standard parti-

tion modelling approach introduced in Figure 1.2(b). In a general partition modelling

approach, the model consists of k, a number of partitions, a k length vector c of the

partition widths and at each partition boundary a phase velocity. The partitions divide

up a range of frequencies and from this model. From the partition model, a continuous

function of phase velocity versus frequency can be constructed represent the dispersion

curve.

Through the action of a forward model, a set of predictions can be computed from

the dispersion curve to compute the likelihood. These are the key components of a

Bayesian inversion and the following sections describe each, and the reasoning behind

choices therein in further detail.

2.4.1 Prior information

In a Bayesian approach, prior information expressed as a valid probability distribution

is required to inform the subsequent inversion. This is at times difficult and one of

the common criticisms of Bayesian methods, namely, the dependence of the inversion

on a prior. This prior information can be obtained from a variety of sources, in order

of strength: previous inversions of model parameters of interest, laboratory or ex-

perimental measurement, theoretical knowledge or numerical experiments, and lastly

assumptions.

Previous inversions of model parameters of interest, even obtained through non-

Bayesian means should have uncertainty estimates which can be used as priors for

subsequent Bayesian inversion. The benefit here is that it becomes easy to quantify

what has been learnt from the inversion of new observations compared to the previous

study that provided prior information.

Laboratory measurements of rock samples, including those at temperature and pres-

sure, can be used as guidance for parameters such as density, transmission velocities

and attenuation. Theoretical underpinnings can be used both in parameterisation of
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the problem and in expressing priors. Prior knowledge such as velocity and density

must be positive are simple examples. Similarly, numerical simulation can be used to

determine a range of plausible values for a model parameters of interest, given prior

knowledge of the variables that influence those parameters.

Lastly, when no prior knowledge is available, the prior can be expressed as an assump-

tion in the inversion. While less than ideal, in a Bayesian approach, such assumptions

are quantified explicitly in the inversion and can be later challenged and validated with

posterior inference. In later chapters, methods of hierarchical sampling to enable more

rigour in parameters with ill-defined or problematic priors will be presented.

In the previous sections, an outline of the process to obtain empirical Greens functions

between station pairs was given. These Greens functions, either for Love or Rayleigh

waves, represent the signal that would be observed at one station given an appropriate

impulse excitation at the other. In almost all ambient noise studies dealing with surface

waves, only the fundamental mode is of high enough energy to be detected.

To use these empirical Greens functions to invert for local structure using ray theory,

the following assumptions are made. Firstly, that lateral variations are gradual so that

no interface or caustic effects such as mode conversions or scattering occur. Secondly,

that the medium is elastic and therefore attenuation free. Lastly, it is assumed that the

phase velocity dispersion is normal and a smooth function of frequency.

Normal dispersion

The assumption that dispersion is normal and a continuous smooth function of fre-

quency allows the use of a linearisation approximation so that the group velocity, U ,

can be related to the angular frequency ω and wave number kn for a given mode n by

Un(ω) =
dω

d kn(ω)
=

�

d kn(ω)

dω

�−1

. (2.8)

For the dispersion to be normal, the group velocity must be less than or equal to the

phase velocity for all frequencies. The phase velocity is given by
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cn(ω) =
ω

kn(ω)
. (2.9)

Using these two equations, the conditions for normal dispersion are

cn(ω)≥ Un(ω) (2.10)

ω

kn(ω)
≥
�

∂ kn(ω)

∂ ω

�−1

(2.11)

kn(ω)−ω
∂ kn(ω)

∂ ω
≤ 0 (2.12)

kn(ω)
2

�

∂ cn

∂ ω

�

≤ 0, (2.13)

and since kn(ω)
2 is strictly a positive function for ω> 0, giving

∂ cn(ω)

∂ ω
≤ 0. (2.14)

From these relations, the phase velocity dispersion as a function of frequency must

be a C 1 continuous, monotonically non-increasing function of frequency, in order for

normal dispersion assumption to be maintained.

2.4.2 Partition modelling for dispersion

Spatial priors in 1D

The naive approach to specifying a prior for control points or interpolation points in

1D would be to assume the points are independently generated from a uniform prior

across the range. For example, for k points generated between some bounds xmin and

xmax, a uniform prior would be

p(x|xmin, xmax, k) = k! (xmax− xmin)
−k , (2.15)
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where x is the k length vector of x positions [Denison et al., 2002]. The k! facto-

rial term at the front is required since the order of generating the x positions is not

important.

Another alternative prior, often labelled the “grid trick” [Denison et al., 2002] is to

assume there is a fine grid of N fixed points from which to choose from. In this case

the prior becomes

p(x|N , k) =

��

N

k

��−1

. (2.16)

It so happens that in the acceptance criteria, the use of this prior coupled with com-

patible proposals results in the complete cancellation of the binomial combinatorial

terms and unspecified value of N , resulting in simple acceptance criteria, hence the

popularity of this approach.

A common problem with both the uniform and grid trick priors is that they have no

preference for the distribution of spatial points. This can result in two points very

close to one another which in regression problems means that the function values at

this points are unconstrained, or in forward model problems, may cause instabilities

in the forward model. In trans-dimensional sampling, these closely spaced points are

generally removed but the fact that they can occur detracts from sampling efficiency.

Given prior knowledge of the problem, that is, if prior knowledge suggests the curve is

slowly varying, then closely spaced points are unlikely to represent this curve and the

prior should reflect this.

In Green [1995], Section 4.1, given k points, the prior is specified in a similar manner to

the grid trick where the probability of selecting k points from 2k+1 points uniformly

distributed in the domain of interest using even-numbered order statistics which has the

property of probabilistically selecting models with evenly spaced points. This however

remains a discrete approximation to setting of a prior for continuous variables and has

no way of controlling the degree of “evenness”.

A common draw back of these methods is their inability to account for varying the
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range of the domain. A solution was given by Steininger et al. [2013] where a 1D

Earth model was parameterised as a set of layers between the surface and a variable

basement. To express this in terms of a probabilistic prior, they used a symmetric

Dirichlet distribution. The Dirichlet distribution in 1D partitions the unit interval

into k variably spaced partitions. If each of the partition cell widths are xi and each

cell has a weight αi , then the Dirichlet distribution is

p(x|α1 . . .αk , k) =
Γ (
∑k

i=1αi )
∏k

i=1 Γ (αi )

k
∏

i=1

x
αi−1

i
, (2.17)

with Γ being the gamma function. A symmetric Dirichlet distribution has all α weights

equal in which case the distribution simplifies to

p(x|α, k) =
Γ (kα)

Γ (α)k

k
∏

i=1

xα−1
i . (2.18)

Through simple variable transformation, this prior can be expressed in terms of the

partition locations rather than cell sizes and also apply this prior to different scaled

regions. For partition locations y between ymi n and ymax the prior becomes

p(y|ymin, ymax,α, k) = k! (ymax− ymin)
−k

k
∏

i=1

�

yi − yi−1

ymax− ymin

�α−1

, (2.19)

and for α set to one, the uniform distribution outlined earlier is recovered, that is

p(y|k) = k! (ymax− ymin)
−k . (2.20)

Parameterisation

The aim is to represent dispersion of surface waves using a partition modelling ap-

proach introduced in the previous chapter. Then using trans-dimensional McMC sam-

pling to estimate the range of dispersion that predict the observations, in this case the

spectrum of an inter-station EGF.
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It was shown that, given assumptions, the dispersion curve is continuous and mono-

tonically decreasing with frequency. At first glance it would appear that an obvious

choice for representing such a function would be the piece wise linear segment ap-

proach shown in Figure 1.2(b). The draw back to this parameterisation is that it

doesn’t enforce monotonicity and the piece wise linear curve is only C 0 continuous

and therefore would give a discontinuous group velocity dispersion curve.

A simple way to enforce monotonicity is to use partition modelling on both frequency

and velocity axes which forms a non-uniform grid. By using the vertices of the inter-

section of the partition boundaries in order, a set of points in frequency and velocity is

obtained that have velocity monotonically decreasing as a function of frequency. This

is shown in Figure 2.4(a) where a piece-wise linear curve between vertices is plotted.

In order the generate a C 1 continuous function, a spline based interpolation between

these points could be used. However, even with monotonically decreasing points, a

cubic spline can still produce oscillations that would violate monotonicity. In Figure

2.4(b) a Hermite interpolant constructed by setting the gradient to zero at the end

points and computing the gradients at intermediate points using finite differences is

shown. At around 0.8 Hz there is a minimum which violates the monotonic require-

ment.

To remedy this, a variant of Hermite interpolation called monotone piece wise cu-

bic interpolation [Fritsch and Carlson, 1980, Fritsch and Butland, 1984] can be used.

This method uses a criterion for specifying the gradients at intermediate points that

guarantees monotonicity of the interpolating curves. The results of this interpolation

strategy are shown in Figure 2.4(b) and even with sharp deviations, the monotonicity

of the points defined by the vertices is preserved by this interpolant.

In the parameterisation proposed here, the frequency range is fixed as part of the inver-

sion, but the velocity domain is left to be variable within some upper and lower limits,

effectively setting a uniform prior on the phase velocities. This can be accommodated

by first constructing an “outer” prior on the initial and final velocities of the dispersion

curve with respect to predefined minimum and maximum values as
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Figure 2.4: Various parameterisation options are shown for a dispersion curve. In (a) a piece wise
linear interpolant is used but it is only C 0 continuous. In (b) a Hermite cubic interpolant is used
but in some cases this can result in non-monotonic functions. In (c) a monotone cubic interpolant is
used giving C 1 continuity while guaranteeing monotonicity.
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p(v0, vk |vmi n, vmax) = 2 (vmax − vmi n)
−2 , (2.21)

where vmi n and vmax are the prior bounds on the phase velocity, v0 and vk are the phase

velocities of the lowest and highest frequencies respective. This expression represents

a Dirichlet prior with three partitions along the velocity axis. The region defined by

fmin, fmax, v0 and vk can be partitioned further into an irregularly spaced grid of k rows

by k columns whose vertices define the dispersion curve. The prior expression for this

is the combination of two Dirichlet distributions given by

p(f,c|k , v0, vk , fmi n, fmax) = k! ( fmax− fmin)
−k

k
∏

i=1

�

fi − fi−1

fmax− fmin

�α f −1

k! (vk − v0)
−k

k
∏

i=1

�

vi − vi−1

vk − v0

�αc−1

. (2.22)

A schematic demonstrating this construction is shown in Figure 2.4(c) where, for ex-

ample, vmi n equals 1 and vmax equals 5. The outer Dirichlet prior would give the v0 of

4.5 and vk of 1.9.

This resulting prior, a recursive Dirichlet prior, has the properties that it represents the

distribution of interpolation points that monotonically decreases between a specified

vmi n and vmax across a domain fmi n and fmax . Coupled with the piece wise monotone

cubic interpolant gives a prior for C 1 continuous curves between configurable bounds

in frequency and phase velocity.

2.4.3 Likelihood and Forward model

In the inversion, the likelihood represents the probability that a model could give rise

to the observations and this generally manifests itself as a difference between predicted

observations from the model and the observations. The common approach to this is

to express this as
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G(m) = d+ ε (2.23)

where G is the forward model that transforms the vector of model parameters m into

predicted observations, and ε is the randomly distributed error between predicted and

observed data. This random error variable encompasses all sources of error including

measurement error, errors in various fixed parameters of the inversion, and theory or

approximation errors in the forward model. Although other distributions are possible,

the assumption is that ε is normally distributed which allows a likelihood of the form

p(d|m) = 1
p

2π|Cd |
exp
§

−1

2
(G(m)−d)T C−1

d
(G(m)−d)
ª

, (2.24)

where Cd is the data error covariance matrix. A simplifying assumption is made here

that the data noise is independent resulting in a diagonal error covariance matrix. The

noise is unlikely to be truly independent as the observations are the real part of the

spectrum of an inter-station EGF, however the assumption is that this is a reasonable

approximation. With this simplifying assumption, the likelihood reduces to

p(d|m) = 1
Æ

2πσ2N
d

exp

¨

−1

2

∑

i

(Gi (m)− di )
2

σ2
d

«

, (2.25)

where σd is the independent standard deviation of the noise on each observation.

In the case where the noise level is not precisely known or estimated, hierarchical sam-

pling of noise scaling term can be used [Malinverno and Briggs, 2004]. To implement

this, a scaling parameter λ is introduced and the independent noise level becomes

σd = λσe , (2.26)

where σe is the noise estimate and λ is a scaling parameter that is inverted for during

the inversion. This helps ensure results are not biased by inaccuracy in estimating the

noise level. To obtain a noise estimate, the standard deviation of the real part of the
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Figure 2.5: Comparison of a Bessel function in (a) of the predicted real part of the spectrum and in (b)
an example of the real part of the spectrum obtained from cross-correlation of ambient noise between
two stations.

spectrum in a quiescent region is used. This gives an estimate of observational signal

noise. Other sources of errors contribute to to the misfit between predictions and the

observations such as theoretical modelling approximation errors.

In the forward model of this problem, given a model consisting of a piece wise cubic

curve for phase velocity as a function of frequency, the predicted Bessel function can

be computed using

ρ̄(ω0, r ) = J0

�

ω0

c(ω0)
r

�

, (2.27)

and then over the frequency range of interest compute (2.25) as the difference between

the predicted and observed real spectrum. In Figure 2.5, an example Bessel function

and an example real spectrum are shown.

In the figure it is evident that the amplitude of the observed real spectrum varies con-

siderably across the frequency domain so fitting the Bessel function is difficult. This is

one of the reasons that Ekström et al. [2009] suggested using the zero crossings of the

observed part of the real spectrum since this removes issues of fitting Bessel function

to a varying amplitude spectrum. As Menke and Jin [2015] showed, the zero crossings

method is ill-determined with noise producing spurious zero crossings. Better results
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can be obtained by considering the entire part of the signal. The spectrum could be

whitened, but as stated earlier, such normalisation has implications for uncertainty

analysis so is undesirable. A simple approach taken in this study is to assume the ob-

servation is a scaled version of the predicted Bessel function and compute an optimal

scaling given the predicted Bessel function and the observed spectrum.

If the predicted Bessel function values are B for the observed spectrum in d, an optimal

scaling term γ is required such that

|γB−d|2 (2.28)

is minimised. This is straight forward and can be computed using

γ =

�

�

�

�

�

∑

i Bi di
∑

i B2
i

�

�

�

�

�

, (2.29)

where i indexes over each frequency of comparison. The absolute signs are required

to prevent negative scaling terms which would cause the Bessel function to flip about

the frequency axis resulting in a phase shift (effectively a half cycle skip). Using a max-

imal likelihood estimator is a common tactic for nuisance parameters, and a similar

approach was taken by Dettmer et al. [2015] in a receiver function inversion. An al-

ternative here would be to sample the γ scaling parameter during the inversion, but

this parameter is of little consequence in subsequent inference. A more advanced in-

version may also jointly solve for the amplitude or envelope of the Bessel function as

this may provide extra information that could be used to understand the ambient noise

spectrum and perhaps frequency dependent attenuation. At this stage this is not of in-

terest so the simple optimal scaling term suffices, however this may be an area of future

research.
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2.4.4 Proposals

In a Bayesian McMC inversion, a Markov chain is constructed by starting from some

arbitrary model m. This model is then perturbed by sampling some proposal probabil-

ity density and evaluating the likelihood of this new proposed model. The Metropolis-

Hastings-Green acceptance criteria [Green, 1995], that is a new model m′ is accepted

with probability

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m′→m)

Q(m→m′)
|J |
�

, (2.30)

where prime indicates proposed models, p(m) is the prior, p(d|m) is the likelihood

and Q(m→m′) is the proposal distribution that perturbs the model from the current,

m, to the proposed m′ and visa-versa. If the proposed model is accepted, it becomes

the current model for the next iteration, otherwise the current model is retained.

Part of the formulation of the problem is determining a set of proposals for the inver-

sion. In this study, standard proposals for partition modelling are used which consist

of

Value the velocity of a randomly chosen partition boundary is perturbed

Move the frequency of a randomly chosen partition boundary is perturbed

Birth a randomly chosen partition is split in both frequency and velocity creating a

new interpolation node.

Death two randomly chosen neighbouring partitions are merged into one removing

an interpolation node.

Hierarchical Noise randomly perturb the hierarchical noise scaling factor, λ, in the

likelihood.

At each iteration, a proposal is randomly chosen from one of the above to act on

the current model. The individual proposals are described in depth in the following

sections.
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Figure 2.6: This figure gives a schematic of the value proposal. A velocity value of a randomly chosen
partition boundary is perturbed to create a new point shown with the arrow and red cross in (a).
The new proposed model resulting is shown in (b).

2.4.5 Value

In a value proposal the steps, shown in schematic form in Figure 2.6, are

1. Randomly select a partition boundary including edge boundaries.

2. Perturb the velocity of the model at the boundary by sampling from a symmetric

probability distribution (e.g. Gaussian).

The symmetric distribution requirement means that the proposal distribution cancels,

for example, if using a Gaussian distribution, the proposal is

Q(θ→ θ′) = 1

Np

N (v ′i − vi ,σv) (2.31)

for some standard deviation σv , and the reverse

Q(θ′→ θ) = 1

Np

N (vi − v ′i ,σv) (2.32)

which are exactly the same as the Gaussian distribution is symmetric.

It should be noted that a sufficiently large perturbation could cause the monotonicity
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Figure 2.7: This figure gives a schematic of the move proposal. A partition boundary is randomly
chosen and perturbed in frequency (horizontally) to create a new point shown with the arrow and
red cross in (a). The new proposed model resulting is shown in (b).

or ordering of the velocities. Such proposals are rejected as this would cause negative

partition widths in the Dirichlet prior which results in a zero prior ratio.

2.4.6 Move

The move proposal, shown schematically in Figure 2.7, is very similar to the value

proposal except the move proposal

1. Randomly selects a partition boundary except the edge boundaries, and

2. Perturbs the frequency of partition boundary by sampling from a symmetric

probability distribution.

Similar to value proposals, large changes that would re-order points cause the Dirichlet

prior to be zero and subsequent rejection of the proposal and hence monotonicity is

preserved.

2.4.7 Birth

In a birth proposal, a new interpolation node is created by splitting an existing cell

vertically and horizontally. This is shown in Figure 2.8 where in (a) a cell is split
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Figure 2.8: This figure gives a schematic of the birth proposal. A cell is chosen at random and in
randomly split in frequency (horizontally) and velocity (vertically) to create a new point on the
curve shown with a red cross in (a). The new proposed model resulting is shown in (b).

vertically and horizontally as indicated with dotted lines to create a new interpolation

node marked with a red cross. The individual steps are

1. Select a random cell

2. Generate random uniform, ξ , between 0 and 1 for a horizontal splitting location

3. Generate random uniform, η, between 0 and 1 for a vertical splitting location

4. Split cell according the ξ and η

The proposal needs to be balanced with the reverse proposal, discussed in more detail

in the next section. The forward proposal density can be written

Q(m→m′) =
1

k
p(ξ )p(η), (2.33)

where k is the number of active cells, ξ is the horizontal splitting random variable and

η is the vertical. If these last two random variables are sampled from uniform variates

between 0 and 1 then the proposal density reduces to

Q(m→m′) =
1

k
. (2.34)
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This leaves the Jacobian to compute which can be computed by examining the bijection

between variables during the birth process

d fi , d vi ,ξ ,η↔ d f ′i , d v ′i , d f ′i+1, d v ′i+1 (2.35)

where d f represents the cell width or change in frequency, d v represents the cell height

or negative change in velocity. The proposal is local so that other model parameters

remain unchanged during a birth. This means that only four parameters of the two

new cell need to be considered for the Jacobian determinant as the full Jacobian would

consist of a diagonal of ones and the sub matrix of modified values.

The relation ships between these variables are

d f ′i = ξ d fi (2.36)

d v ′i = ηd vi (2.37)

d f ′i+1 = (1− ξ )d fi (2.38)

d v ′i+1 = (1− η)d vi (2.39)

, (2.40)

from which a Jacobian can be constructed

J =

























∂ d f ′i
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. (2.41)

With some simple row and column reordering, an analytical expression for the deter-

minant of the Jacobian is
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|J |= 1

d fi d vi

. (2.42)

For the reverse proposal, an internal cell is select from all except the last one and the

selected cell is merged with the cell to the right. After a birth, there are k + 1 cells but

since the selection is from all but the last cell, the choice is from one of k cells, hence

the reverse proposal is simply

Q(m′→m) =
1

k ′− 1
=

1

k
, (2.43)

and the proposal ratio cancels leaving the acceptance criteria for birth as

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

1

d fi d vi

�

. (2.44)

2.4.8 Death

The death proposal is the reverse of birth from the previous section, that is

1. Select two neighbouring cells or equivalently select cell from 0 to Nc e l l s − 1

2. Merge two cells into one.

From similar arguments to the birth proposal, the proposal ratio cancels in the accep-

tance criteria leaving

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m) d f ′i d v ′i

�

, (2.45)

where the terms d f ′i and d v ′i represent the cell widths and heights respectively of the

merged cell created by the proposal and result from the Jacobian in a similar fashion to

that shown in the previous section.
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Figure 2.9: This figure gives a schematic of the birth proposal. Two neighbouring cells are chosen at
random and merged to remove a point on the curve shown circled in red in (a). The new proposed
model resulting is shown in (b).

2.4.9 Hierarchical

For the hierarchical proposal, the error scaling factor λ in (2.26) is perturbed. This

proposal is similar to move and value proposals in that the perturbation is sampled

from a symmetric proposal distribution. The difference here is that that normalisation

term of the likelihood (2.25) must be considered in the acceptance criteria as the σd

term, that depends on λ affects this.

Validation

Trans-dimensional samplers are inherently difficult to formulate and validation is re-

quired to verify the acceptance criteria correctly maintains detailed balance. Detailed

balance is critical for trans-dimensional samplers and if the correct balance isn’t main-

tained then the results can be severely biased toward either too simple or too complex

models.

A simple test is to run a Markov chain with the likelihood function set to a constant

value. This means that the Markov chain receives no additional information and that

the posterior should be proportional to the prior within sampling accuracy, that is, the

prior on k, the number of partitions, should be recovered in the posterior.
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In Figure 2.10 the posteriors retrieved from Markov chains with constant likelihoods

are shown. In these tests, a uniform prior for k is set with a maximum of 20, 35, or

50 cells. For the α parameter for the horizontal Dirichlet prior, three separate values

are simulated: 1 which is essentially a uniform prior on the location of the points, as

well as α values of 2 and 3. For these tests, 10 million iterations are used three times

with different random seeds. In the figure, the histograms of the individual runs are

shown in light grey with the mean of the three runs shown as the solid black outline

histogram. In all cases, the retrieved posterior matches the prior and is uniform to

sampling accuracy with little variation between runs with different seeds.

Regression Problem

As another test, a simple regression problem is used to test the trans-dimensional inver-

sion code. In this test a true model is constructed from a simple cubic function

v( f ) = 4 f 3− 6 f 2+ 5. (2.46)

To construct regression observations, 50 randomly generated x coordinates in the range

0 . . . 1 are created and the y value of the function at those points evaluated. To the y

coordinates, independent Gaussian noise is added with three different standard devi-

ations, 0.1, 0.2 and 0.3 km/s. The results of the inversion are shown in Figure 2.11

with the left hand column showing the true curve and data points and the right hand

column showing the results with the probability density of the curve shown in blue

shading (darker blue indicates higher probability) and the mean of the ensemble shown

with a dotted yellow line.

This simple test shows good recovery of the underlying true curve with good estima-

tion of the errors, that is, increased data noise leads to increased uncertainty in the

results as shown by the thicker blue bands in the results.
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Figure 2.10: Given a uniform prior on k , the number of points defining the dispersion curve, when
the likelihood is fixed to a constant a uniform posterior is expected. In these plots the posterior is
shown for varying parameters. In (a), (b), (c) with the α parameter set to 1 for 20, 35, and 50
maximum points respectively. Similarly in (d), (e), and (f) the posteriors for α set to 2, and in (g), (h),
and (i) for α set to 3. In each test 3 different seed values are used and the plots show the individual
histograms faintly with the average of the 3 different runs shown in dark outline. A red dashed
horizontal line shows the expected uniform value. In all plots an approximate uniform posterior is
retrieved.
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Figure 2.11: The results of inverting for a dispersion curve using a simple regression forward model.
In (a), (c), and (e) the true curve is shown with a red dotted line and the data with added noise
with points with error bars. In (b), (d) and (f) the posterior ensemble histogram is shown with more
intense blues representing more likely regions and the mean of the ensemble shown with a yellow
dotted curve.
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2.5 Love and Rayleigh Dispersion

Having demonstrated that the inversion methodology is self-consistent and unbiased,

this method can now be applied to real EGFs obtained from continuously recording

seismometers stationed in Iceland. Detailed examination of two station pairs are dis-

cussed, the first (HOT15 - HOT20) has a relatively long (approximately 200km) great

circle path that traverses older crust. The second (HOT23 - HOT26) is a short path

that crosses an area of active volcanism. These two paths are designed to be indicative

of range of possible behaviours within this data set to evaluate the performance of the

new method.

For the inversions, 12 independent chains are simulated with a prior range for the

phase velocity of 4.5 to 1.5 km/s for Love wave dispersion and 4.0 to 1.0 km/s for

Rayleigh wave dispersion. The frequency range for the fit of the Bessel function is

between 0 and 0.5 Hz. The McMC chains are simulated for 2,000,000 steps with the

first 500,000 iterations removed as burnin. Additionally, parallel tempering [Earl and

Deem, 2005, Sambridge, 2014] is used with 4 independent temperatures with a loga-

rithmically spaced temperatures between 1 and 5 with samples taken from only those

chains with unit temperature. The reason for this is that the problem is very multi-

modal and chains could become stuck in local minima. Parallel tempering allows us to

properly explore the full range of solutions.

For the first path the results of the inversion are shown in Figure 2.12 where in (a)

is the result for the Rayleigh wave dispersion and (b) is for the Love wave dispersion.

These results are quite good with low uncertainty, particularly the Love wave disper-

sion curve. In the Rayleigh wave dispersion curve at around 0.25 Hz, there is some

multi-modality and at around 0.4 Hz the curve ensemble becomes incredibly bifur-

cated.

The reason for both these becomes apparent when looking at the observed spectrum

and the ensemble of the predicted Bessel functions as shown in Figure 2.13. In this

figure, there is a spectral hole in the real part of the spectrum of the Rayleigh wave
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Figure 2.12: The results from inverting the dispersion between stations HOT15 and HOT20 for
Rayleigh (a) and Love (b) waves. The blue shading represents the probability of the dispersion curve
at a given point with darker blue representing more likely. The red curve is the median dispersion
curve of the ensemble.

EGF at around 0.25 Hz and this is the cause for the multi-modality starting around

this point. The spectral coverage for the Love wave is relatively consistent throughout

the range of interest, so the dispersion curve is unimodal.

For the second example path the results are shown in Figure 2.14 where both Rayleigh

and Love waves are multi-modal across a broad range of frequencies. For the Love

wave results in (b), the phase velocities are too low and the likely “true” dispersion

curve (based on prior knowledge of phase velocities around these frequencies) appears
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Figure 2.13: The histogram of the Bessel functions in shaded blue (darker blue is more probable
regions of the Bessel function) and over plotted the real part of the spectrum of the cross-correlation
function between stations HOT15 and HOT20 for Rayleigh (a) and Love (b) waves.
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Figure 2.14: The results from inverting the dispersion between stations HOT23 and HOT26 for
Rayleigh (a) and Love (b) waves. The blue shading represents the probability of the dispersion curve
at a given point with darker blue representing more likely. The red curve is the median dispersion
curve of the ensemble. These results demonstrating greater multi-modality that in effect represents
cycle skipping of the Bessel function.

in very faint blue starting from just less than 4 km/s at 0 Hz.

Examining the spectrum and Bessel function fits of these two dispersion inversions in

Figure 2.15, there is only a very limited amount of coherent signal in the real part of the

spectrum. For the Love wave spectrum, there is very little low frequency information

which is the cause of the inversion choosing low phase velocities.

These two examples presented here were chosen to highlight the range of behaviour for

this inversion method, from well constrained to weakly constrained as in Figure 2.14.

If the median from all the results are plotted as shown in Figure 2.16, the dispersion is

well grouped as expected since each station pair represents path average dispersion so

all station pairs should be correlated with each other. The second example Love wave

inversion is a clear outlier and is the single curve at the bottom of Figure 2.16(b)
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Figure 2.15: The histogram of the Bessel functions in shaded blue (darker blue is more probable
regions of the Bessel function) and over plotted the real part of the spectrum of the cross-correlation
function between stations HOT23 and HOT26 for Rayleigh (a) and Love (b) waves.
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Figure 2.16: The median of the ensemble of all available station pairs for Rayleigh (a) and Love (b)
wave EGFs. The inversion is stable and produces a good clustering of dispersion curves with few
outliers.
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2.6 Joint inversion of Love and Rayleigh wave disper-

sion

While the results from the independent inversion of Love and Rayleigh wave disper-

sion are encouraging there remains room for improvement. A clear trait of the real

part of the spectrum for Love and Rayleigh dispersion is that they appear to have dif-

ferent excitation frequencies. In Figure 2.13(a) for example, at around 0.25 Hz there is

a “hole” in the real part of the Rayleigh wave spectrum whereas in (b) the Love wave

spectrum still has relatively strong signal throughout 0.2 to 0.3 Hz. In the worst per-

forming station pair shown in Figure 2.15, the Rayleigh wave signal in (a) has signal

from approximately 0 to 0.2 Hz whereas the Love wave signal in (b) has signal from

0.15Hz to 0.3Hz. This suggests the possibility of using joint inversion of both Love

and Rayleigh dispersion to smooth over these frequency holes.

Random sampling from crustal models

A generally acknowledged rule of thumb is that at a given frequency, the Rayleigh wave

phase velocity is slower than that of a Love wave. Numerical approximations of the

probability distribution of this relationship can be obtained by sampling realistic shear

wave velocity models and computing dispersion curves for Love and Rayleigh waves

using a forward model.

To compute Rayleigh waves, density and P-wave velocity are required. The assump-

tions used here are that the Earth models are isotropic and that empirical relationship

of Brocher [2005] is sufficient where

vp = 0.9409+ 2.0947vs − 0.8206v2
s + 0.2683v3

s − 0.0251v4
s (2.47)

ρ= 1.6612 ∗ vp − 0.4721 ∗ v2
p + 0.0671 ∗ v3

p − 0.0043 ∗ v4
p + 0.000106 ∗ v5

p , (2.48)
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Figure 2.17: This figure shows the prior on shear wave velocity as a function of depth. The prior is
Gaussian distributed with a mean show with the solid line. The shaded regions show one and two
standard deviation ranges.

leaving only a prior on vs to define.

For a prior on vs , previous studies such as that of Green et al. [2017] can be used as a

guide. Unfortunately the study of Green et al. [2017] only published estimates of shear

wave velocity down to 10km, so broad Gaussian priors are added at depth to merge the

prior smoothly into to a global reference model [Kennett et al., 1995]. The prior is

shown in Figure 2.17.

The procedure for generating random models is as follows:

1. Generate a random number of layers to create between 2 and 10.

2. Generate the interfaces uniformly between 0 and 100km depth.

3. Generate a random shear wave velocity for each layer by sampling from the prior
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Figure 2.18: The distribution of the dispersion curves obtained for Love and Rayleigh waves by
sampling from a broad shear wave velocity model.

at the midpoint of the layer.

4. Compute vp and ρ

A dispersion curve resulting from this model for both Love and Rayleigh waves using

the Thomson-Haskell method [Thomson, 1950, Haskell, 1953]. Occasionally thin

layers can cause numerical instabilities in computing the dispersion curve, particularly

with Rayleigh wave dispersion, so these curves are discarded from the sample. The

final result is a numerical estimate of the probability distribution of dispersion curves

given the prior on the shear wave velocity profile. The distribution of dispersion for

Love and Rayleigh waves is shown in Figure 2.18.

In the Figures, it is evident that the dispersion curves are monotonic (also verified by

a separate check during sampling) and that it appears that the Rayleigh wave phase ve-
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Figure 2.19: The distribution of the ratio of Rayleigh wave phase velocity to Love wave for the range
of frequencies of interest in ambient noise tomography.

locity dispersion looks much like a scaled version of the Love wave dispersion. This

relationship between Love and Rayleigh wave velocities can be directly shown by com-

puting the ratio of the two and plotting the distribution of this over the frequency

range of interest as in Figure 2.19.

From the figure, it can be seen that Rayleigh wave phase velocities appear to be always

less than that of Love waves. In examining the distribution across all frequencies as in

Figure 2.20, the ratio is strongly confined to approximately 0.9, that is, the Rayleigh

phase velocity is always approximately 90% of the Love phase velocity across all fre-

quencies of interest.

These simple numerical simulations can provide valuable insights into a Bayesian for-

mulation of a geophysical inversion problem and this information can be incorporated

into a joint inversion of Love and Rayleigh wave ambient noise observations. From
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Figure 2.20: The distribution of the ratio of Rayleigh wave phase velocity to Love wave for all
frequencies as a single distribution. The black line represents the measured distribution and the green
dotted line represents the maximal likelihood estimator of the equivalent Gaussian distribution.
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these numerical studies, a prior on the ratio of Rayleigh wave velocity to Love wave

velocity can be approximated by a Gaussian with a mean of 0.915 and a standard devi-

ation of 0.021.

2.6.1 A joint inversion approach

The approach taken here is to parameterise the Love dispersion curve as in the single

inversion of the previous section, then assign a ratio variable for each control point.

From this parameterisation, a Rayleigh dispersion curve can be computed from the

Love dispersion curve and associated ratios. For a prior on ratio variable, the infor-

mation gained from the numerical experiments presented in the previous section is

used.

By incorporating this relationship between Love and Rayleigh dispersion curves, it

is hoped that the inversion is stabilised further to be able to both resolve the multi-

modalities and better deal with spectral holes in the ambient noise data. It was pre-

viously demonstrated that Love and Rayleigh observations have different frequencies

excited, for example in Figure 2.15 the Rayleigh wave observations (red curve) have

reasonable signal at the lower frequencies whereas the Love wave observations have

only middle frequencies excited. Using the prior information of the relative ratio of

the Love and Rayleigh dispersion curves, the aim is to be able to improve the inversion

by providing extra constraint, that is, the Rayleigh wave observations provide weak

constraint for the Love wave dispersion where Love wave observations are lacking and

vice-versa.

2.6.2 Results

All station pair data are inverted using Love and Rayleigh EGFs jointly. The process

for the inversion is the same as that of for the independent inversions, that is 12 inde-

pendent chains are run using parallel tempering with 4 temperatures logarithmically

between 1 and 5, for 2,000,000 iterations with 500,000 removed as burnin. The results
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Figure 2.21: The results of the joint inversion of Rayleigh and Love dispersion for station pairs
HOT15 and HOT20. The posterior probability is indicated with shaded blue (darker blue equates to
more likely) and the mean of the ensemble is indicated with a red line.

for the HOT15—HOT20 observations are shown in Figure 2.21 with the fit shown

in Figure 2.22. The previously identified problem at around 0.25Hz for the Rayleigh

wave inversion has been remedied. The addition of the prior has meant that the multi-

modality has been reduced. In Figure 2.22 the difficulty at around 0.25 Hz is clearly

visible.

For the second example path, HOT23—HOT26, the posterior dispersion distribution

is shown in Figure 2.23 and the corresponding data and Bessel function fit in Figure

2.24. In comparison to the independent results presented previous, the results have

improved in that the multi-modality has been suppressed. The Love wave result has

in parts the mode of the distribution lower than that for Rayleigh waves which is

unlikely from the numerical experiments. Prior information is in general weak com-

pared to observations and even though there is a tight Gaussian prior on the ratio of
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Figure 2.22: The original spectrum for station pair HOT15 and HOT20 is plotted in red with the
posterior distribution of the Bessel function shown in shaded blue (darker blue equates to more likely).
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Figure 2.23: The results of the joint inversion of Rayleigh and Love dispersion for station pairs
HOT23 and HOT26. The posterior probability is indicated with shaded blue (darker blue equates to
more likely) and the mean of the ensemble is indicated with a red line.

Rayleigh to Love phase velocity, the data over powers it in this case. The results for the

Rayleigh wave dispersion have similarly improved with reduced multi-modality over

the frequency range of interest.

Once again, this second example is a difficult station pair with little signal. All ensem-

ble median dispersion curves in Figure 2.25 and compared to the independent inver-

sions, the clustering of the results shows less variance.

2.6.3 Comparison with manual group velocity

Fortuitously, for the set of seismic stations in this study, Love and Rayleigh wave dis-

persion curves have also been extracted for group velocity observations manually with

the FTAN approach. It is interesting to compare for the manual process, where the
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Figure 2.24: The original spectrum for station pair HOT23 and HOT26 is plotted in red with the
posterior distribution of the Bessel function shown in shaded blue (darker blue equates to more likely).
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Figure 2.25: The median of all dispersion curves inverted using the joint dispersion approach. The
results are better concentrated than those of the independent inversion in the previous section.
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FTAN approach is used that has two limitations that reduce usable observations: first,

the use of Gaussian taper filters blurs across frequencies rendering weak signals inco-

herent, particularly at longer periods for ambient noise. Secondly, it uses a far field

approximation as FTAN was originally intended for earthquake driven surface wave

studies. At longer periods the far field approximation means it is unreliable for sta-

tion separations on the order of 100 km. These two factors combined mean that when

using FTAN method, ray paths observations from stations pairs at longer periods are

routinely eliminated.

To give an example of this reduction, in Table 2.1, the count of available station pairs

from a manual extraction of group velocity observations for Rayleigh waves where

there are 435 available station pairs are listed. The best recovered period is 17s where

less that 70 percent of available ray paths are recovered. This number of recovered rays

drops precipitously to less than half at longer periods.

In contrast, the method developed in this chapter recovers phase velocity across a fre-

quency range as a continuous curve, with continuous uncertainty estimates. For every

frequency, there are 435 observations. In the worst case, where there is poor con-

straint, consideration could be given to removing some observations using a criteria on

the level of uncertainty. There is however no reason these “poorly constrained” dis-

persion observations couldn’t still be used in a subsequent inversion for phase velocity

maps.

It is possible to estimate group velocity from the phase velocity curves, although since

the phase velocity is a piece-wise cubic curve, the group velocity is a function of a

piece-wise quadratic curve. In Figure 2.26, an FTAN image obtained from group ve-

locity processing for the HOT15—HOT20 station pair is shown with darker blue rep-

resenting higher energy. Contiguous regions of darker blue are where a practitioner

determining a group velocity dispersion curve would manually place points by eye.

Plotted in red is the median group velocity estimated from the method present here

with 95 percent credible intervals shown with black dotted lines. There is very good

agreement with the FTAN image where a practitioner would ideally place there disper-
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Period Count Percent
(seconds) (of possible 435)

1 241 55
2 202 46
3 225 52
4 275 63
5 267 61
6 265 61
7 265 61
8 247 57
9 228 52
10 209 48
11 222 51
12 237 54
13 259 60
14 266 61
15 279 64
16 282 65
17 296 68
18 292 67
19 272 63
20 258 59
22 229 53
24 206 47
26 186 43
28 167 38
30 154 35

Table 2.1: The count of ray paths available for subsequent group velocity map inversion frommanual
picking of group velocity using the FTAN approach and the percentage of available rays. A large
amount of potential information is lost in this process, particularly at higher periods.
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sion curve. At the higher frequencies, where the FTAN image becomes incoherent, the

uncertainty in the group velocity estimated from the phase velocity inversion method

becomes large indicating frequencies above approximately 0.4 Hz cannot be reliably

determined here. At the lower frequencies, recovery of well constrained dispersion

information is possible with the new method given the low uncertainties evident. In

contrast, the FTAN image loses the signal at these lower frequencies because the signal

is effectively Gaussian blurred in the frequency domain and with lower energy in the

lower frequencies, the image becomes washed out.

In summary the method is consistent with more traditional manual estimation of

group velocities, but the recovery is automatic, naturally includes uncertainty esti-

mates, and is better able to resolve dispersion information at lower frequencies that is

vital for resolving features at greater depths into the Earth.

2.6.4 Computational Time

The complexity involved in this inversion process comes at some cost. Each of the

observations, 2 million iterations are simulated on a cluster computer. The forward

model is relatively inexpensive with the largest cost the repeated calculation of the

Bessel function. For each station pair, the computational time was between 45 minutes

to an hour, which for 435 station pairs corresponds to a total time of 435 hours (taking

the upper limit). This 435 hours, with sufficient computational resources available, can

be run in parallel and equates to approximately a weekends worth of processing.

This seems a lot, but it is worth considering that previously such extraction of disper-

sion information was done manually and resulted in a limited set of group velocity

observations at certain periods. In contrast, the method presented here automatically

extracts phase velocity dispersion curves for both Love and Rayleigh waves as con-

tinuous functions of frequency that are reliable over a broader frequency range and

naturally come with uncertainty estimates.
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Figure 2.26: Plotted in blue shading is the signal energy computed using the FTAN approach. In
red is plotted the median of the ensemble group velocity computed from the inverted phase velocity
curves and there is good agreement in regions of higher group velocity energy (darker blue). At higher
frequencies, the phase velocity is poorly constrained matching approximately the region where group
velocity energy dissipates. At low frequency there is well constrained group velocity estimates where
the FTAN method fails to detect a coherent signal.
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2.7 Summary

This chapter has presented an approach to robustly extract surface wave dispersion

information jointly for Love and Rayleigh ambient noise data. The Bayesian approach

allows minimal pre-processing of the data and robust prior information to effect a

stable and precise estimate of dispersion with uncertainty estimates that can be used

for subsequent tomographic inversion.

In this study the use of focusing parameters in the Dirichlet priors has not been ad-

dressed so this could be further explored either with α in the Dirichlet priors with

fixed values greater than one or the use of a hierarchical prior on this parameters.

The focus of this study has been on phase velocity alone however the model param-

eterisation permits easy calculation of the group velocity which could be either used

as additional constraint in the inversion by incorporating traditional Frequency-Time

Analysis (FTAN) [Dziewonski and Hales, 1972] in the likelihood. Alternatively the

group velocities can be estimated from the posterior phase velocity curves as in Figure

2.26. While the group velocity estimate obtained from the phase velocity curves is in

good agreement with results obtained with other methods, there is room for improve-

ment of the group velocity results. These could be improved by raising the order of the

polynomial further while preserving monotonicity [Dougherty et al., 1989] to enable

smoother group velocity estimates.

A simple independent Gaussian noise model with a base level of noise estimated from

a quiescent part of the real spectrum. An obvious extension would be to use estimates

of covariance errors in the spectrum which could be done per station pair or across the

entire array.

Lastly the optimal value of the Bessel function scaling to fit the observed real spectrum

could be inverted for as part of the inversion. However, a more interesting approach

would be to attempt to recover the amplitude envelope of the spectrum similar to the

recovery of the source time function in Dettmer et al. [2015]. This could provide

additional information, such as frequency dependent attenuation, that could be used in
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subsequent tomographic inversion.
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3.1 Introduction

In the previous chapter a trans-dimensional inversion was developed for a one dimen-

sional geophysical problem. Extending trans-dimensional inversion to higher dimen-

sions has typically involved the use of Voronoi cells [Okabe et al., 1992, Samet, 2006]

and at first glance this would appear well suited to trans-dimensional geophysical inver-

sions as these cells have a long history in large scale geophysical inversion problems,

for example Sambridge and Gudmundsson [1998].

Using Voronoi cells, by specifying the location of the nuclei as well as the value (or

values) of Earth properties within each cell, a mobile Voronoi model can be used to

represent Earth properties spatially in 2D [Bodin et al., 2012a]. In the first 3D applica-

tion, Piana Agostinetti et al. [2015] have recently extended the Voronoi cell approach

to local earthquake tomography. These Voronoi cell parameterisations are grid free and

locally adapt to regions of increased heterogeneity tempered by the resolving power of

the data. Although the application of the trans-dimensional Voronoi cell method is

now well established for seismic imaging, there are a number of short comings that

hinder its application as the number of data and complexity of the Earth model in-

creases.

In ray based seismic tomography, numerical integration along ray paths requires the

evaluation of the model at hundreds to thousands of spatial points per observation.

For each point along the ray the Voronoi cell parameterisation of the Earth properties

is needed, for example, seismic wave speed, and this involves determining in which cell

the point resides. A naive algorithm would simply find the nearest Voronoi nuclei

by computing the distance to every nuclei of the model and this results in an O (n)
operation, where n is the number of Voronoi cells. In 2D problems, a Delaunay trian-

gulation can be used to speed up the cell look up operation to an O (log n) operation

[Sambridge and Gudmundsson, 1998]. Even with fast algorithms for incrementally

maintaining the Delaunay triangulation [Lawson, 1977], the accounting cost of main-

taining the triangulation can be prohibitive as the number of cells increases.
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A second feature of the Voronoi cell approach is that they do not lend themselves

well to representing a continuous field. In a Voronoi cell parameterisation, the Earth

properties within each cell are often represented with constant values, although in

principle, any order polynomial is possible. This means that each Earth model consists

of an irregular polygonal mesh with discontinuities, both in the function and in its

derivatives, at the interfaces between cells. Typically, any single Earth model in the

ensemble is rather crude and implausible and it is only by averaging over many such

crude representations that it is possible to generate a continuous field. This means

that the Voronoi cell approach must utilise multiple independent Markov chains or

very large numbers of samples in a single chain in order to produce a continuous field

through spatial averaging.

Use of Voronoi cells in 3D imaging has two additional complications. The first is that

there is no analogue of fast 2D incremental Delaunay calculation algorithms [Sam-

bridge et al., 1995] and so Voronoi cells must be determined from “scratch” each time

the mesh is updated, further adding to the computational burden. The second is that

the shape of Voronoi cells in 3D is particularly sensitive to the choice of spatial scaling

between lateral and radial directions. For example, Voronoi cells built around nuclei at

depth can easily protrude to the surface.

In this chapter a new class of parameterisation for trans-dimensional imaging problems

is introduced which overcomes the limitations of Voronoi cells while providing a gen-

eral efficient framework for dealing with 1D, 2D and 3D problems in Cartesian or

spherical geometries. The new framework allows a great deal of flexibility in terms of

the choice of basis functions, including multi-scale parameterisations such as wavelets

and sub-division surfaces. Due to these new efficiencies and flexibility, with the new

algorithm, trans-dimensional inversion of larger scale 3D tomographic problems are

more tractable.
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3.2 Trans-dimensional trees

Before introducing the trans-dimensional framework for sampling over trees, it is in-

structive to show how the concept of trees can be used to represent a tomographic

Earth model. There are many examples of using hierarchical or multi-resolution anal-

yses of images in 2D, for example the Laplacian pyramid [Burt and Adelson, 1983] and

the wavelet transform [Mallat, 1989]. Broadly speaking, within each of these schemes

an image is sub-sampled to obtain a coarser but more compact representation. “Correc-

tor” terms are computed representing the difference between the sub-sampled and true

image so that with a combination of the sub-sampled predictor image and corrector

terms, the original image can be accurately reconstructed. This process can be repeated

recursively on each sub-sampled image until the result is a single pixel, representing

the mean of the image, and a hierarchical set of corrector terms for each resolution

scale. It is a property of continuous tone images that individual pixels are often highly

correlated with their neighbours, and as a result, many of the corrector terms are near

zero, that is the lower resolution image is a good predictor. For this reason, such

multi-resolution image analysis techniques have been used for image compression, for

example, the JPEG 2000 image compression standard [Unser and Blu, 2003].

This hierarchy of a single mean value of an image through successive levels of pertur-

bative terms can naturally be represented by a tree structure. Figured 3.1(a) shows

how a quaternary tree in which each node has 4 child branches, spans from the single

pixel representation of an average value of a field, through successive levels of local

perturbation terms. In this example, each node of the tree contains a single parameter

value. At the root of the tree, the highest level in Figure 3.1(a), this value represents

the mean of the image and all other descendant nodes represent a local deviation from

that mean. In this way, each tree level creates an image with a corresponding spatial

resolution and each child node adds detail by perturbing the previous level at a finer

spatial resolution. From this multi-resolution tree representation, arbitrary 2D images

can be constructed and can be used to represent, for example, the seismic wave speed

or slowness of a region of the Earth. This same principle, of spanning the subdivision
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(a) (b)

Figure 3.1: The Laplacian Pyramid subdivision showing how a quaternary tree can span from the
coarsest resolution to the finest error terms. At the top level there is a single pixel representation of a
2D domain, the root node of the tree, which is subdivided into four sub-pixels at the next level and
so on. In (a) is the complete tree structure to the 3rd level. In (b) is an incomplete quaternary tree
that can still be used to parameterise a 2D Earth model demonstrating how the tree can locally adapt
to regions of localised heterogeneity. In both (a) and (b), the two models have the same number of
parameters but represent very different structure.

of grid with a tree, applies equally to 1D, 2D, 3D Cartesian geometries and equally to

non-Cartesian geometries such as spherical geometry [Samet, 2006].

It is important to point out here that the tree needn’t completely span the underlying

2D grid as shown in the Figure 3.1(a). An incomplete tree is shown in Figure 3.1(b).

The 2D image from this tree is constructed in the same way as the full tree with the

parameter values of zero at the missing nodes of the tree. This has the potential to

compress the model space, or the number of model parameters, by locally adapting to

structure or data coverage.

The use of adaptive mesh refinement has been used previously in geophysical inversion,

for example Sambridge and Faletič [2003], where a criterion based on the maximum

spatial gradients in seismic velocity perturbation was used to iteratively subdivide a

tetrahedral grid during the inversion. A similar approach was presented by Plattner

et al. [2012] for electrical resistivity tomography where a multi-scale wavelet parame-

terisation was adaptively refined through optimisation.

Rather than a fixed criterion, the trans-dimensional trees sample over such subdivision
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refinement choices to obtain posterior information on where the data requires finer

scale features. By itself, recasting geophysical inverse problems within a tree structure

offers little advantage, but as will be demonstrated, it is highly suited to coupling with

a trans-dimensional algorithm within a fully Bayesian framework.

3.3 A General Bayesian Trans-dimensional Framework

for Trees

In a Bayesian approach to inference, the solution we obtain is a numerical estimate of

the a posteriori probability distribution or posterior (see Gelman et al. [2004] for a gen-

eral overview and Mosegaard and Tarantola [1995], Sambridge and Mosegaard [2002]

for an overview of Bayesian inference in a geophysical context). This is the probability

density of the model space given the observed data, or written mathematically, p(m|d),
where m is the vector of model parameters and d the vector of observations. In all but

the simplest of problems, this probability density function is approximated numeri-

cally using Markov chain Monte Carlo (McMC) techniques and Bayes theorem [Bayes,

1763], i.e.

p(m|d) = p(m)p(d|m)
p(d)

. (3.1)

This states that the posterior probability density, p(m|d), is equal to the prior proba-

bility distribution, p(m), times the likelihood p(d|m), which is abbreviated to p(d|m),
normalised by the evidence, p(d). An McMC sampling approach can be applied to

the numerator of the right hand side of (3.1) to obtain an estimate of the posterior

probability distribution up to the normalising constant of the evidence, which is often

difficult to compute explicitly [Sambridge et al., 2006].

An McMC sampler requires the specification of the prior probability distribution,

which represents a priori information that may be available for the distribution, or

plausible range, of the model parameters, and the likelihood which is a probabilistic
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measure of the fit of the model to the data. An McMC sampler operates by starting

from some model at step i of mi , then creating a new proposed model m′i using a

proposal in the form of a reversible probability density function Q(mi → m′i ). The

new model is accepted, that is mi+1 = m′i or rejected, mi+1 = mi , based on an accep-

tance probability, commonly the Metropolis-Hastings acceptance criterion [Metropo-

lis et al., 1953, Hastings, 1970]

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m′→m)

Q(m→m′)

�

. (3.2)

This can be read as the prior ratio times the likelihood ratio times the proposal ra-

tio. The Metropolis-Hastings criteria satisfies the mathematical condition known as

“detailed balance” [Gamerman and Lopes, 2006] which allows the Markov chain to

converge and correctly sample the target posterior distribution.

It is common practice to remove some initial number of steps from the final ensemble

which are believed to be pre-converged or “burn-in” samples. In most cases, the fact that

only the posterior probability distribution up to a normalising constant is obtained is

not a problem as relative inferences are generally sufficient.

An extension to McMC samplers is the Birth/Death scheme of Geyer and Møller

[1994], generalised to the trans-dimensional framework developed by Green [1995].

In trans-dimensional samplers, a proposal distribution is allowed to change the param-

eterisation of the model and dimension, that is the size of the vector m of model param-

eters. A key benefit of allowing the sampling to jump between dimensions is that the

data dictates the model complexity giving in a parsimonious result [Malinverno, 2002,

Sambridge et al., 2006]. Additionally, the posterior probability distribution is available

on the number of model parameters required by the data given the noise rather than

fixing this a priori.

The generalisation of the Metropolis-Hastings acceptance criteria to support trans-

dimensional steps is
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α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m′→m)

Q(m→m′)
| J |
�

, (3.3)

where the additional term from (3.2), |J |, is determinant of the Jacobian that

maintains detailed balance through variable transformations resulting from trans-

dimensional steps. Expression (3.3) may also be used if the dimension is unchanged,

but the proposal involves a step from one class of parameterisation to another.

The complexity of the models generated from trans-dimensional samplers is dependent

on the level of noise applied, that is in general, the lower the noise, the higher the

complexity. For this reason, in the case where the noise on the data is unknown or

estimated, it is advantageous to use a hierarchical Bayesian step that allows to some

extent noise parameters to be inverted for as part of the sampling of model parameters

[Malinverno and Briggs, 2004].

A birth/death trans-dimensional sampler will consist of three classes of proposal, a

birth proposal where the model vector m will increase in size, a death proposal where

some model parameters are removed, and a value proposal where the model vector

remains the same size, but one or more values will be changed (i.e. the normal class of

proposal in fixed dimension McMC samplers).

The aim here is to apply the trans-dimensional framework to the McMC sampling of

tree structures that can be used to represent geophysical models of the Earths internal

structure. In this framework, a birth proposal will consist of adding one or more new

nodes to the tree, a death proposal will consist of removing one or more nodes from

the tree, and a value proposal will perturb one or more values located within the ex-

isting tree. In the literature, there has been no general treatment of trans-dimensional

sampling over tree structures previously presented. Other similar work is that of Deni-

son et al. [1998] which is limited to binary classification trees. This chapter applies the

trans-dimensional formalism of Green [1995] to general trees with known structure.

A “general” tree as one in which the maximum number of child nodes, of any node,

is fixed. With this restriction a prior can be computed. Rarely in practice would this
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restriction limit the application of this new framework. In general, the structure of

the tree will be restricted by the geometry of the physical application. For example, in

the 2D image example earlier, each pixel is subdivided into 4 sub-pixels and this is the

upper limit on the number of child nodes. For a 3D volume, each voxel will subdivide

into 8 sub-voxels which gives an upper limit on the number of child nodes of 8.

In the following subsections the components of the acceptance criteria will be described

and the full general expressions for each type of model perturbation will be derived.

3.3.1 The Model

In the earlier 2D example, the tree structure “template” consists of the complete span-

ning quaternary tree and two possible tree models conforming to this template are

shown in Figure 3.1. A simpler example of such a tree model in a binary tree tem-

plate appears in Figure 3.2 where the template is shown in outline and an example tree

model, consisting of active nodes and value(s) at each node, is shown in solid shading.

Each active node in the tree model has one or more associated values, so given a number

of nodes, k, the model space vector would be

m= 〈Tk ,v1, . . . ,vk〉 , (3.4)

where Tk represents the arrangement of the k nodes within the template tree structure

and v is the vector of parameters at each node (which may be a single parameter). If

there is a unique index for each tree node, Tk can be represented as a set of indices, that

is Tk = 〈t1, . . . , tk〉.

3.3.2 The Prior

Given the parameterisation in (3.4), the prior on the model can be written in general

terms as a product of conditional probability distribution functions (PDFs),
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Figure 3.2: The first four levels of a binary tree template shown as outline with an individual tree
model highlighted with solid lines.
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p(m) =

�

k
∏

i=1

p(vi | Tk , k)

�

p(Tk |k)p(k). (3.5)

Stated simply, the prior is a combination of the probability on the number of nodes

in the tree, the probability of the arrangement of the tree within its template and the

parameter values at each of the nodes. This prior specification reasonably assumes that

each term is independent which results in a separable prior probability distribution

function.

Prior on the number of nodes

The prior for the number of nodes is a choice that will be dependent on how the model

is mapped from the tree structure. Here the prior is left as a general expression, p(k),

but highlight two common choices. Firstly a uniform prior

p(k) =
1

kmax − kmi n + 1
, (3.6)

where kmax and kmi n (usually 1) are chosen as the upper and lower bounds on the

number of nodes. An alternative is to use a Jeffreys’ prior Jeffreys [1939], Jaynes

[2003], that is

p(k)∝









1

k
k > 0

0 otherwise
. (3.7)

This prior is improper because the limit of the integral of p(k) is unbounded as k goes

to infinity. Nevertheless, a useful feature is that there is no imposed restriction on the

number of nodes unlike in the uniform prior case (see page 238 of Jeffreys [1939]). In

experiments to be described here, the posterior PDF of k with either prior is similar,

which shows that it is primarily the data which constrains the dimension of the model.
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Prior on homogeneous unrestricted trees

The prior on the arrangement of the nodes within the tree template, p(Tk |k), is the
most complicated component of this algorithm and is derived here for the general tree

parameterisation. The prior used is a uniform prior on the structure of the tree, this

means that given a number of nodes, k, any arrangement of the nodes into a valid tree

within its template has equal probability to any other. This is the least informative

prior on a tree structure and also the most tractable to compute for the acceptance

criteria. The consequences of this prior are that a model that has an even distribution

of detail across the region is equally as likely as a model that has localised fine detail.

This is illustrated in Figure 3.1 where both models shown have the same number of

active tree nodes. In this prior, both of these models are equally likely.

This reduces computing the prior on the structure of the tree into a problem of com-

puting the number of valid tree arrangements possible given a tree structure template

and the number of active nodes to form a uniform prior

p(Tk | k) =
1

Nk

, (3.8)

where Nk is the number of valid trees with k nodes. To evaluate Nk , unrestricted

homogeneous trees are first considered, which are defined as those where each node has

the same upper limit on the number of child nodes. Binary and quaternary trees fall

into this class. Unrestricted means that there are no other constraints on the structure

of the tree such as a maximum height and therefore that the tree can grow infinitely

large. For this class of trees, there are analytical expressions for computing the number

of arrangements, Nk . For binary trees it is known that the number of arrangements

follows the sequence of Catalan numbers [Catalan, 1844, Hilton and Pedersen, 1991,

Knuth, 2004]

Nk =
1

k + 1

�

2k

k

�

, (3.9)
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where
�

2k
k

�

is the standard binomial coefficient. This result has been generalised by Aval

[2008] to trees with a maximum number of n children

Nk =
1

(n− 1)k + 1

�

nk

k

�

. (3.10)

When n = 2 this reduces to (3.9). This expression allows closed form expressions for

the prior for homogeneous unrestricted trees. However this only represents a small

sub-class of possible trees and this needs to be extended further.

Restricted and heterogeneous trees and their priors

The first restriction on a tree template is an upper limit on height. As seen in the

earlier 2D example, the height of the tree corresponds to the level of subdivision of

the region. As such, a restriction on the height of the tree imposes a strict upper

limit on the minimum resolution scale of the model. In addition, it also constrains

the computational complexity of the problem as arbitrarily large trees are no longer

possible.

A second variant to be considered is a heterogeneous tree which contains nodes with

varying upper limits on the number of child nodes. In later examples, where wavelet

parameterisations are used in 2D problems, heterogeneous trees are used where the

root of the tree has 3 possible child nodes, and all subsequent nodes have 4 possible

branches. Analytic expressions for the number of arrangements of a tree given the

number of nodes are only known for trees where each node has the same maximum

number of possible child nodes. For both the restricted height and heterogeneous trees,

the number of arrangements given k needs to be calculated.

The Catalan sequence for binary trees can be derived from a recurrence relationship

using generating functions (see Equation 2.5.10 of Wilf [1990]). The general solution

to both these problems is to compute the number of arrangements from a recurrence

relationship. Starting from the recurrence relationship for binary trees,
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Nk =









1 k ≤ 0

∑k−1
i=0 NiNk−i−1 otherwise

, (3.11)

where k is the number of tree nodes, which is a simple integer partitioning problem

[Stanley, 1997]. The modification of (3.11) from a binary tree to a ternary tree requires

the addition of a third partitioning of the k nodes among the three child branches. To

include restrictions on the height of the tree, the relevant terminating conditions need

to be added, for example, rewriting the equation

Nk ,h =

















0 h = 0

1 k ≤ 0

∑k−1
i=0 Ni ,h−1Nk−i−1,h−1 otherwise

. (3.12)

Further details of the recurrence relationships and the algorithm developed in this

study for computing them in an efficient fashion is outlined in the following section.

From here on,Nk ,h is assumed to be known from a recurrence relationship like (3.12)

and that the prior on the structure of the tree can be calculated as the inverse of the

number of arrangements of trees given a number of nodes

p(Tk | k , h) =
1

Nk ,h

, (3.13)

where h is a maximum height restriction.

Counting arrangements of general trees

In the previous section, the tree structure prior requires the calculation of the number

of tree arrangements possible given a restriction the k, the number of active tree nodes,

and the height of the tree. Recall that the recurrence relationship for computing the

number of arrangements in a binary tree, from (3.11), is
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T1 T2 Tj-1 Tj

Figure 3.3: An abstract tree node with j sub-trees.

Nk =









1 k ≤ 0

∑k−1
i=0 NiNk−i−1 otherwise

. (3.14)

This can be extended to a ternary tree, or a tree in which every node has 3 possible

children, as follows:

Nk =









1 k ≤ 0

∑k−1
i=0 Ni

�
∑k−1−i

j=0 N jNk−i− j−1

�

otherwise
. (3.15)

In generalising this further, it should be recognised that this is essentially a restricted

integer partitioning problem [Stanley, 1997], or stated simply as how many ways can

an integer number of nodes be distributed among some arbitrary number of sub-trees.

In Figure 3.3, a general tree node is shown with j possible sub-trees labelled T1 . . .T j .

It should be noted that each of these sub-trees may have a different structure, that is, a

different limit on the number of child nodes at the next level, to each other and to the

parent tree. From this generalisation, any tree structure can be constructed.
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T1 T2 . . . Tj

Figure 3.4: Rearrangement of the sub-trees into a binary tree structure by amalgamation j − 1 right
most sub-trees.

By grouping the sub-trees appropriately, any number of sub-trees can be reformulated

into an expression of the same form as the binary tree case by treating sub-tree T1 as

itself and sub-trees T2 . . .Tk as an amalgamated collection of sub-trees. This is shown

graphically in Figure 3.4.

Alternatively, when j , the number of sub-trees, is even, the sub-trees can be split evenly

into 2 amalgamated collection of sub-trees as shown in Figure 3.5.

In either of these cases where multiple sub-trees are amalgamated into 2 super-sub-trees,

if these sub-trees are labelledA andB , the recurrence relationship can be rewritten

Nk =









1 k ≤ 0

∑k−1
i=0AiBk−i otherwise

. (3.16)

Note that there is a small difference between this equation and Equation 3.14 in that

the number of nodes partitioned to the right branch is k− i rather than k− i −1, that

isBk−i instead ofNk−i−1. Since the tree is effectively split in two and the left and right
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T1 . . . Tj/2 Tj/2 + 1 . . .Tj

Figure 3.5: Rearrangement of an even number sub-trees into a binary tree structure by an even
amalgamation of the the sub-trees.

sides computed, this prevents the root of the tree being counted twice.

For trees or sub-trees with some restriction, for example a restriction on the height,

this can be enforced by adding an extra restriction in the recurrence relationship such

that

Nk =

















0 k > kmax

1 k ≤ 0 or k = kmax

∑k−1
i=0AiBk−i otherwise

, (3.17)

where kmax represents the maximum number of nodes of the current sub-tree. This

can be computed recursively using

kmax = 1+ kmax(A )+ kmax(B ). (3.18)

In all presented thus far, the kmax is specified as a height restriction on the tree so
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that for some sub-trees, that is those with a fixed number of child nodes, an analytical

expression can be used to compute the maximum number of nodes. For other trees

and sub-trees, these are generally constructed piece wise from generic trees and it is

therefore easy and efficient to compute the maximum number of nodes recursively.

A general algorithm for computing the number of arrangements of trees can now be

constructed. The first point is that the algorithm incrementally computes the number

of arrangements for a given k rather than for all values of k. Secondly, the results

of previously computed k in the each sub-tree and the full tree are memoized. The

memoize operation is a method of re-using previously computed results, so when some

computation is memoized, the first time it is actually computed and every other time

it is simply a look-up operation in a stored list of results. For recurrence relationship

computations, this is vital to speed up the computation as the same partial results are

frequently required. The novel algorithm for this is shown in Algorithm 1.

To give an appreciation of the need to use such an algorithm for computing the number

of arrangements, the time for computing the number of arrangements for k equal 1 to

100 for the trees used in the 2D wavelet parameterisation in Section 3.7 was measured.

For a naive algorithm, this takes approximately 148 minutes to compute and with the

recursive memoization algorithm presented here, the same range of numbers can be

computed in approximately 6ms, that is, over a million times faster.

Prior on each parameter value

The prior on the Earth model parameters at each node of the tree will depend the par-

ticular basis functions used. Again this prior is often a choice and some alternatives are

covered here. The simplest prior is a uniform prior which constrains the parameter

values to be within an upper and lower bound. It has been shown that the distribution

of wavelet coefficients for a set of representative continuous images follows a gener-

alised Gaussian distribution [Antonini et al., 1990, 1992] suggesting that a generalised

Gaussian distribution may be a suitable prior for wavelet based parameterisations. For

Bayesian approaches to wavelet based Compressive Sensing, “spike and slab” priors
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Algorithm 1 Algorithm for computing the number of tree arrangements
D =∅
function MemoizeArrangements(Tree T , Integer k )

if k = 0 or k = kmax (T ) then
return 1

end if
if k < 0 or k > kmax (T ) then

return 0
end if
if (T , k ) /∈ D then

j ← NumSubTrees(T )
if j = 1 then
A ← Subtrees(T , 1, 1)
D(T , k)←MemoizeArrangements(A , k)

else if j mod 2 = 1 then
A ← Subtrees(T , 1, 1)
B ← Subtrees(T , 2, j )
D(T , k)← ComputeSubtrees(A ,B , k )

else
A ← Subtrees(T , 1, j/2)
B ← Subtrees(T , j/2+ 1, j )
D(T , k)← ComputeSubtrees(A ,B , k )

end if
end if
return D(T , k)

end function
function ComputeSubtrees(TreeA , TreeB , Integer k)

s u m← 0
for i = 0 . . . k do

a←MemoizeArragements(A , i )
b ←MemoizeArragements(B , k − i − 1)
s u m← s u m+ a× b

end for
return sum

end function
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have been used [Ishwaran and Rao, 2005, He and Carin, 2009]. Any of these choices

are possible and the prior on the Earth model parameters at each active tree node is left

unspecified and simply write p(vi |Tk , k). In the case of vi being of dimension m, this

becomes

p(vi |Tk , k) =
m
∏

j=1

p(vi , j |Tk , k), (3.19)

where p(vi , j |Tk , k) is the prior on the j th component of the i th tree node.

Prior Ratios

For each class of proposal, that is birth, death and change value, the prior ratios can be

derived. For a simple change in the j -th component of the parameter value in the i -th

tree node, the structure of the tree does not alter and the prior ratio is

p(m′)

p(m)
=

p(v ′i , j |Tk , k)

p(vi , j |Tk , k)
. (3.20)

For uniform priors, p(v ′i , j |Tk , k) = p(vi , j |Tk , k) the prior ratio is unity.

For a birth proposal, the structure of the tree changes due to the addition of a new

node and the prior of the values cancels except for those of the new node, hence the

prior ratio is

p(m′)

p(m)
=

p(k + 1)p(Tk+1)p(vi |Tk , k)

p(k)p(Tk)
, (3.21)

where p(vi |Tk , k) is the prior on the values of the new node. If the prior on k, the

number of nodes, is uniform then p(k+1)

p(k)
will cancel. Analytical expressions for the the

prior ratio on the structure of the tree are generally not available except for some simple

unrestricted trees of which some examples are presented in the following sections.

For the death proposal the prior ratio is
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p(m′)

p(m)
=

p(k − 1)p(Tk−1)

p(k)p(Tk)p(vi |Tk , k)
. (3.22)

3.3.3 The Likelihood

It is assumed that the model vector can be mapped into the same data space as the

vector of observations, d, so that a standard misfit can be computed as

Φ(m) = (G(m)−d)T C−1
e (G(m)−d) , (3.23)

where G is the operator that represents the predictions of data observations from a

model, m and Ce is the data error covariance matrix which assumes errors follow a

Gaussian distribution. The standard normal error distribution can then be used for

computing the likelihood

p(d |m) = 1
p

(2π)n |Ce |
exp
§

−Φ(m)
2

ª

, (3.24)

where n is the number of observations. The operator G can take many forms, in Figure

3.1 two examples of how a quaternary tree can be mapped into a 2D image which could

be compared to measured data. In later sections, examples will show how trees with

the node values representing wavelet coefficients can also be mapped into 2D and 3D

images.

3.3.4 The Proposals

For the proposal distribution, Q(m → m′), there are three different classes of pro-

posal: birth, death and change parameter value. Unlike trans-dimensional Voronoi cell

approaches, because of the multi-scale parameterisation there is no proposal to move

nodes as the tree nodes are spatially fixed. Throughout these explanations the prime

superscript to represents proposed quantities, for example m′ is a proposed model gen-
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erated from the current model, m, via proposal distribution Q(m→m′).

To aid the explanation of the operation of these proposal classes, three sets of nodes

within a general tree structure are introduced here. The first set is simply the set nodes

in the current tree, or active nodes, Sv . Note that Sv is always non-empty because it

will always have at least the root of the tree as an element. The second set, Sd , is the set

of all nodes in the tree that have no active child nodes. It is from this set that nodes to

remove from the tree are chosen during the death proposal of the algorithm. The third

set, Sb , is the set of empty nodes in the tree structure template that are direct children

of the nodes in set Sd . This set represents possible locations for adding new tree nodes

during the birth proposal of the algorithm. It should be noted that the set Sd is a subset

of Sv , whereas the set Sb is disjoint of the other 2 sets.

An example showing each set for a binary tree can be seen in Figure 3.6 with the nodes

of each set shaded with a different colour.

Value Proposals

The first and simplest proposal is the change value proposal. This perturbation updates

the value of an active node of the tree. If the general case of selecting the j th parameter

at the i th node in the tree is considered, then the forward proposal probability density

becomes

Q(m→m′) =Q(∆vi , j | i , j )Q( j | i )Q(i | Sv). (3.25)

The last term of the above equation represents the probability of choosing the i th node

given Sv . Generally, the choice of which node to perturb for a value proposal will be a

uniform one and so

Q(i | Sv) =
1

|Sv |
, (3.26)

where |Sv | is the number of elements in Sv .
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S
v

S
d

S
b

Figure 3.6: The first five levels of a binary tree template are shown in outline with a representative
individual tree model drawn with solid lines. The nodes shaded in blue correspond to nodes in the
current tree model and are members of the set Sv , or the set of nodes that can be perturbed during
a change value proposal. The nodes shaded in green are members of the set Sd and represent nodes
that can be removed by the next death proposal. Conversely, the nodes shaded in red are members
of the set Sb which contains in-active nodes that could be added to the tree model by the next birth
proposal. Although only a binary tree is shown here, these sets can apply equally to any tree structure.
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The second term represents the probability of selecting the j th component of the vec-

tor of value(s) at the i th tree node. For cases where there is only one value at each node

this term disappears. The first term is the actual perturbation of the Earth model pa-

rameter value itself. A common approach to perturbing values in McMC samplers is to

draw from a symmetric distribution centred about the current value with a pre-defined

width tuned to achieve a desired acceptance rate. A common choice is the Normal

distribution and in this case the proposal probability will be

Q(∆vi , j | i , j ) =
1p

2πσi , j

exp

¨

−
∆v2

i , j

2σ2
i , j

«

, (3.27)

where σi , j is the standard deviation of the normal distribution for the perturbation of

the parameter. Using a proposal of this form, rather than sampling from the prior, can

cause proposed values to be outside prior bounds, in which case the prior ratio is zero

and the proposal is rejected.

The standard deviation may be the same for all tree nodes or set separately to achieve

good acceptance rates. It is also straight forward to use adaptive schemes such as the

Single Component Adaptive Monte Carlo (SCAM) approach of Haario et al. [2005]

and the adaptive approach of Atchade and Rosenthal [2005].

Regardless of how the standard deviation or width is set, in all cases the new value

is generated from a symmetrically distributed random variable. This results in the

reverse proposal probability density equal to that of the forward, so the proposal ratio

for changing values is unity

Q(m′→m)

Q(m→m′)
= 1. (3.28)

Birth Proposals

The birth proposal probability density may be written
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Q(m→m′) =Q(vi | i )Q(i | Sb ). (3.29)

Similarly to the change value proposal, the last term represents the probability of

choosing where to place the new node. Unlike in the case of the change value proposal,

in some cases there is merit in preferentially choosing to birth nodes closer to the root

of the tree. Experiments have been performed using weighted proposal densities of the

form

Q(i | Sb ) =









D(i )α
∑

j∈Sb
D( j )α |Sb |> 0

0 otherwise
, (3.30)

where D(i ) is the depth or height of node i and α is the weighting factor. Negative

values of α preferentially select lower height nodes and, conversely, positive values

preferentially select higher height nodes, whereas a 0 value results in a uniform choice

of the birth node. In experiments with a weighted proposal the results were poorer

than simply using a uniform proposal to select the position of the new node, so the

preference here is a simpler uniform proposal

Q(i | Sb ) =









1

|Sb |
|Sb |> 0

0 otherwise
. (3.31)

The case for the condition when |Sb |= 0 can only occur when there is some restriction

on the tree structure template on the total number of nodes in the tree. An example of

this would be a tree with a maximum height.

The first term of the proposal probability density in (3.29) reflects how the new pa-

rameters are chosen for the new tree node. The simplest method of performing this is

to sample the new values from the prior

Q(vi | i ) = p(vi |Tk , k). (3.32)



100 Trans-dimensional Trees

Although this is an “unfocused” proposal, birthing from the prior has been shown to

result in good mixing by Dosso et al. [2014]. It also simplifies the calculation of the

acceptance terms as the prior probability density in the proposal cancels with the prior

ratio in the full acceptance expression.

The probability density for the reverse step can be written

Q(m′→m) =Q(i | S ′d ). (3.33)

This states that the reverse proposal is simply the probability of selecting the newly

added node i from the set S ′
d
. S ′

d
is the set of nodes that may be deleted after the

proposed birth.

With uniform selection from the two sets involved and sampling from the prior for the

new values, the general expression for the proposal ratio is

Q(m′→m)

Q(m→m′)
=

|Sb |
|S ′

d
|p(vi |Tk , k)

. (3.34)

Death Proposals

The proposal probability distribution is essentially the reverse of the birth proposal,

so again, for a uniform selection of the node to remove, and sampling from the prior

on the reverse step, the proposal ratio for a death step is

Q(m′→m)

Q(m→m′)
=
|Sd |p(vi |Tk , k)

|S ′
b
| , (3.35)

where the set S ′
b
represents the set of available points to add nodes to the tree after the

selected node is removed.
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Jacobian

The last component of the acceptance criteria is the Jacobian which must be deter-

mined for each type of proposal.

For the change value proposal, the dimension of the model, m, is constant. Since only

one value is perturbed at a time using a simple function of a random variable, the

Jacobian will always be equal to one in this case.

For a birth proposal, the model space vector can be written as

m= 〈(t1,v1), . . . , (tk ,vk)〉 , (3.36)

where unique indices t1 . . . tk are used to define the currently active nodes of the tree

and hence the model vector becomes a set of tuples consisting of the node index and

the vector of values associated with that node. The transform for a birth step, which

must be bijective, can then be written

〈(t1,v1), . . . , (tk ,vk), (u,w)〉
⇐⇒




(t ′1,v1)
′, . . . , (t ′

k
,v′

k
), (tk+1,vk+1))
�

, (3.37)

where u is a random variable used to choose the unique index of the location of the

new node in the tree and w is the vector of random variables used to generate the

values for the new node. To build the Jacobian, the matrix of partial derivatives of the

functions used to map values from one model space to the other is constructed. For

existing nodes in a birth step no change is required and

ti ,vi = t ′i ,v
′
i ∀i ∈ 1 . . . k. (3.38)

Therefore the partial derivatives for these will be one. The proposals as described in

previous sections for the choice of the location of the new node will always mean that
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tk+1 = u and likewise this will result in a partial derivative of 1.

For death proposals, the Jacobian is the inverse of that of the birth proposal as the

birth and death proposals are symmetric to each other.

Non-unit Jacobians

In the case the prior is sampled for the values of the new node, vk+1 = w and this will

result in an identity matrix for the Jacobian and therefore unity for the determinant.

This is the scenario that is generally generally advocated but here a potential extension

is highlighted that results in some modification to the Jacobian.

The application of the tree structure suggests a multi-resolution hierarchy and as such

there is expected to be some relationship between either the parent node and the newly

added child node or a newly added child node and its siblings. For example, the values

at the child will be less than that of the parent so proposals for the child node values

may be drawn from distributions scaled by those of the parent. Alternatively, the mean

of all the child nodes to form a distribution centred on zero, and so if there are existing

child nodes then the distribution from which values for the a new child are drawn from

is tempered by the existing sibling nodes. In either case the mapping takes the form

vk+1 = f (w,v j ), (3.39)

where f is some function of both the random variables and one or more of the existing

values of other tree nodes (e.g. the parent or other sibling nodes). This will result in

off-diagonal values in the Jacobian matrix. Some choices of the function, f , may also

result in non-unity values along the diagonal of the Jacobian and care must be taken to

correctly compute the Jacobian scaling term.
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The General Acceptance Criteria

Having derived the components of the acceptance criteria, the general acceptance cri-

teria can now be written in full for a trans-dimensional sampler on tree structures by

combining the expressions. For a value proposal, the acceptance criterion is

α(m→m′) = mi n

¨

1,
p(v ′i , j |Tk , k)

p(vi , j |Tk , k)

p(d|m′)
p(d|m)

«

. (3.40)

When using a uniform prior, p(v ′i , j |Tk , k) = p(vi , j |Tk , k), and the above expression

reduces to the likelihood ratio.

For a birth step, with the values of the new node sampled from the prior, the acceptance

criterion is

α(m→m′) = mi n

¨

1,
p(k + 1)p(Tk+1)

p(k)p(Tk)

p(d|m′)
p(d|m)

|Sb |
|S ′

d
|

«

. (3.41)

And likewise for a death step, the general acceptance criterion is

α(m→m′) = mi n

¨

1,
p(k − 1)p(Tk−1)

p(k)p(Tk)

p(d|m′)
p(d|m)

|Sd |
|S ′

b
|

«

. (3.42)

When using a uniform prior on the number of nodes, p(k) = p(k + 1) = p(k − 1) and

these terms cancel from the birth and death acceptance criteria.

These are conceptually simple criteria for sampling over general tree structures, how-

ever, a practical difficulty is in efficiently computing the tree structure prior ratios
p(Tk+1)

p(Tk )
and p(Tk−1)

p(Tk )
for which a fast algorithm was detailed in Section 3.3.2.

3.4 Validation

It is generally acknowledged that the construction of acceptance criteria for trans-

dimensional samplers is non-trivial. A small error in these criteria can easily result
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in a sampler that superficially appears to be working but will nonetheless give biased

the results.

A key test of the correctness of a set of acceptance criteria for a trans-dimensional

sampler is that the criteria do not bias the posterior on k, which in this case represents

the number of nodes. The simplest way to demonstrate this is to allow the algorithm to

run for a large number of steps with the likelihood kept at a constant value (hence the

likelihood ratio is unity). Then the posterior on the number of nodes should match to

sampling accuracy the known prior.

In a first test the general algorithm, the acceptance criteria for simple homogeneous

trees is used, that is binary, ternary, quaternary trees etc. For these trees the result of

Aval [2008] can be used to write down analytical expressions for the number of arrange-

ments of the trees for a given number of nodes. This results in the following closed

form solutions for the acceptance criteria of birth and death proposals respectively

α(m′,m)birth =min







1,

�
∏n

j=2(k(n− 1)+ j )
�

(k + 1)
∏n

j=1(nk + j )

p(d|m′)
p(d|m)

|Sb |
|S ′

d
|







, (3.43)

α(m′,m)death =min

(

1,
n
∏n−1

j=1 (nk − j )
∏n−1

j=1 ((n− 1)k − j + 2)

p(d|m′)
p(d|m)

|Sd |
|S ′

b
|

)

. (3.44)

Where n represents the number of child nodes for each tree node, that is n = 2 corre-

sponds to a binary tree, n = 3 corresponds to a ternary tree etc. Simulations 1 million

Markov iterations with a uniform prior on the number of nodes between 1 and a vari-

able kmax and for three different values of n were performed. The results of this test are

shown in Figure 3.7 with expected histogram shown with a red solid line. In all cases

the McMC results approximately match with the uniform prior.

The tests were repeated for a case where the prior PDF on k is not uniform, specifically

a truncated Poisson prior on the number of nodes of the form
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Figure 3.7: The sampled prior of k , the number of active tree nodes, is plotted as a grey histogram for a
variety of uniform prior widths with three different classes of trees (binary, ternary and quaternary).
In each plot, the solid red line represents the input prior showing there is good agreement between the
prior and sampled histogram. This gives confidence that the algorithm maintains detailed balance
and therefore will correctly sample the true PPD.
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Figure 3.8: The sampled prior obtained when using a truncated Poisson prior is shown with a grey
histogram. In each of these tests, the the maximum k is fixed at 30 and the λ parameter of the Poisson
prior is varied with different classes of trees (binary, ternary and quaternary). The prior is shown
with a solid red line and agrees well with the sampled histogram.

p(k) =
λk

(eλ− 1)k!
, (3.45)

where λ represents an approximate expected number of nodes in the tree. The pos-

terior on the number of tree nodes obtained for varying λ and n is shown in Figure

3.8 with the prior over plotted with a solid line. Again the sampled posterior closely

matches the analytical prior to within sampling error.

Lastly, this experiment was repeated with a truncated Jeffreys’ prior,
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Figure 3.9: The sampled prior obtained when using a truncated Jeffreys’ prior is shown with a grey
histogram. The maximum k is fixed at 100 and the posterior for three classes of tree, binary, ternary
and quaternary are shown. The analytical prior is shown with a solid red line and good agreement
is obtained with the sampled histogram.

p(k) =









c
k

1≤ k ≤ kmax

0 otherwise
(3.46)

For some normalising constant c and an upper limit on k of kmax . The posteriors

obtained for different n-ary trees with a kmax of 100 are shown in Figure 3.9 along

with the true distribution plotted with a solid line. In all cases, the posterior appears

to be correctly sampling the prior on the number of tree nodes. This is encouraging

and lends support to the proposition that the trans-dimensional formulation presented

here is correctly balanced.
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3.5 A simple synthetic regression test

To give a simple example of the application of this general framework, the performance

is demonstrated in a synthetic 1D regression problem. This uses a binary tree template

and a box car basis function of varying width and location at each node of the tree.

This is the 1D equivalent of the parameterisation shown in Figure 3.1. Given a boxcar

B(x)i , j =









1 2−i j ≤ x < 2−i ( j + 1)

0 otherwise
, (3.47)

where i represents its width and j its offset, a binary tree template can be constructed

containing coefficients, Si , j , at each node. The 1D regression function to be estimated

is then constructed from

g (x) =
imax∑

i=0

2i−1
∑

j=0

Si , j B(x)i , j . (3.48)

The i coordinate maps to the height in the tree and j runs horizontally starting at 0

for each row. This is shown graphically in Figure 3.10.

To verify that information can be recovered from noisy data, the binary tree template

with boxcar basis functions is used to invert data samples from a synthetic step function

with added Gaussian noise. The true model is shown in Figure 3.11(a) together with

the data samples which are irregularly sampled to create areas of sparse coverage.

A single Markov chain was simulated with 1 million steps with the first 500,000 samples

discarded as burnin. The probabilities of the birth, death and change value proposals

are set to p(birth) = p(death) = 0.25 and p(change value) = 0.5. The choice of these

probabilities is arbitrary except that they sum to one. In principle these could be tuned

for better performance in larger more complex problems, but for this simple problem

this is unnecessary. The prior on the coefficients at each node was set to uniform

between ± 1, and the change value proposals were normally distributed with standard

deviation of 0.1. The initial model was set to have one node (the root of the tree) with
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S0,0S0,0

S1,0S1,0 S1,1S1,1

S2,0S2,0 S2,1S2,1 S2,2S2,2 S2,3S2,3

S3,0S3,0 S3,1S3,1 S3,2S3,2 S3,3S3,3 S3,4S3,4 S3,5S3,5 S3,6S3,6 S3,7S3,7

Figure 3.10: In a binary tree template, a boxcar basis function is associated with each tree node.
The boxcar basis functions are shown graphically embedded in a binary tree structure. Along each
row or at each height of the tree, the basis functions are orthogonal to each other. Conversely, from
any parent node, the two child node basis functions are bisecting sub-dividers of the parents basis
function. By storing scaling terms at each node of the tree, Si , j , a 1D function can be constructed
from the tree expressed as the sum of scaled versions of the basis functions using (3.48).
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Figure 3.11: The results from the 1D regression experiment using unrestricted binary trees with
boxcar basis functions. The synthetic data is shown in (a) which consists of sparsely located data
points shown with crosses and the underlying true model is shown with a solid line. The recovered
model is shown in (b) with a solid line compared to the true model represented with a dotted line. The
shaded region represents ± 3 times the point estimate of the standard deviation from the ensemble
models. In (c) is the posterior probability density (PPD) of k , the number of nodes of the tree which
has a modal value at 6. In (d) is the PPD of k zoomed in at the higher values of k highlighted with
the red box in (c) showing that the posterior has sampled across the entire range of the prior.
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its initial value sampled from the prior.

The mean result is shown with a solid line in Figure 3.11(b) compared to the true

model (dotted line). The recovery is accurate and additionally the data is not over fit,

even in regions of poor data coverage. The variance obtained from the posterior is also

low which is expected in this case as the parameterisation can perfectly represent the

true model.

Figure 3.11(c) shows the posterior histogram on the number of tree nodes used to

represent the data. The modal number of tree nodes is 6 which matches the true

model. It is interesting to note that over the course of the sampling, the entire prior

range of the number of tree nodes has been sampled, as evidenced by the small number

of counts at 50 nodes, shown enlarged in Figure 3.11(d), even though the Markov chain

is initiated at k = 1 node.

These simple tests lend confidence that the algorithm and acceptance criteria of the gen-

eral framework derived here are correctly balanced and able to statistically converge.

3.6 Linearised Tomography example

It is useful here to compare the operation of the trans-dimensional tree approach com-

pared to existing techniques in some very simple linearised tomographic problems.

This simple set of problems highlight the data adaptability of the trans-dimensional

tree approach.

3.6.1 Problem description

In a 2D linearised tomographic problem, commonly used in regional surface wave

studies, the observations consist of travel times between two spatial points. In the ray

theory approximation the travel time is a path integral along a ray path of the under-

lying spatially varying velocity. This ray path is dependent on the velocity field and

this aspect is ignored in linearised tomography where an approximation is to assume
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Figure 3.12: The true velocity model for the first test in (a) and the fixed paths through the model for
the linearised inversion in (b).

the ray paths are fixed, either to great circle paths or paths computed in some reference

model. This reduces the inversion to a linear problem of finding the velocity field that

best predicts the travel time observations given the fixed rays.

For these tests, simple true velocity models are used with randomly generated rays. In

the first test, shown in Figure 3.12 a simple anomaly is positioned in the south-east

with uniformly distributed rays in an 8 by 8 grid. In the second test, shown in Figure

3.13 the anomaly in the south-east now has multi-resolution features and there is a

higher density of rays in this area to recreate a common issue in seismology where ray

coverage is uneven.

The domain of these tests is a 20 by 20 degree patch of the Earth centred at 0 longitude

and latitude. To generate synthetic observations for these comparison tests, the ray

path integrals are evaluated along each ray to obtain a true travel time and independent

Gaussian noise is added to each.

A common approach to solving this problem is least squares optimisation for the slow-

ness field or the inverse of the velocity which is a linear problem.
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Figure 3.13: The true velocity model for the second test in (a) and the fixed paths through the model
for the linearised inversion in (b).

3.6.2 Least squares optimisation

In a least squares optimisation approach to the linearised tomography problem, due to

uneven coverage there is generally a requirement of using a penalising norm. These

norms either penalise deviation from a reference model, called damping, or penalising

large spatial gradients of the model, called smoothing. The choice of the relative weight

of the misfit between predictions and the penalising norm is a choice that needs to be

made as part of the inversion process. Mathematically, the optimisation problem can

be written as the minimisation of

|Gm−d|2+λ |m−m0|2 (3.49)

for damping regularisation and

|Gm−d|2+λ |∇m|2 (3.50)

for smoothing.

In the comparison of the least squares optimisation to trans-dimensional tree sampling,

the approach used here for choosing the regularisation parameter λ is the discrepancy

principle [Menke, 1989, Vogel, 2002]. The rationale for this is that in a synthetic
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Figure 3.14: In (a) is the true model of the first synthetic test, (b) the least squares optimisation
result with damping to a reference model regularisation, (c) the least squares optimisation result with
smoothing regularisation, and in (d) the equivalent trans-dimensional tree inversion is shown.

example, where the noise level is precisely known, this gives the residual norm that is

approximately equivalent to that of the trans-dimensional tree method. It is not exact

as the trans-dimensional tree method will sample about the model space and produce

an ensemble of residual norms, but the modal value of the residual norms from the

trans-dimensional result should match the optimised residual norm.

In Figure 3.14, a comparison of the results in (b) of a damped least squares inversion,

and (c) of a smoothed least squares inversion to the trans-dimensional tree inversion (d)

is shown for the first synthetic test case. All the results recover the general character of

the true model however the optimisation with damping method has produced spurious

artefacts in the inversion compared to the trans-dimensional tree approach. In (c) there

is a similar result for the least squares solution with smoothing regularisation. In this
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Figure 3.15: In (a) is the true model of the first synthetic test, (b) the least squares optimisation
result with damping to a reference model regularisation, (c) the least squares optimisation result with
smoothing regularisation, and in (d) the equivalent trans-dimensional tree inversion is shown.

case, the artefacts away from the anomaly are reduced, but the anomaly itself has been

smoothed which is to be expected.

In comparing the more complicated synthetic model with multi-resolution features in

Figure 3.15 with damping regularisation, in (b) the damping regularisation has per-

formed poorly at recovering some of the finer features. Similarly in (c) the fine features

have been lost to the smoothing operator. The trans-dimensional tree approach how-

ever has recovered the true model reasonably well by comparison. The primary reasons

for this is its adaptability to the resolving power of the data which is broadly related

to the ray path density. For the least squares optimisation approach, the controlling

parameter for the damping or smoothing is a global parameter across the domain so no

such adaptability is available. This means that any least squares inversion formulated
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in such a way will invert the structure modulated by the lowest resolvable resolution

of the data. Attempts have been made to use data adaptive techniques to use the ray

path density to guide the inversion however rays may not necessarily give independent

information. The trans-dimensional tree approach uses Bayesian model selection to

achieve this and more conservatively adapts to the information in ray paths, be they

independent or not.

It’s this adaptability and robustness of the trans-dimensional tree algorithm that en-

courages further examination of its application to geophysical inversion problems with

sparse or uneven sensitivities.

3.6.3 Direct sampling

A potential criticism of trans-dimensional sampling is one of why bother when it is

easier to use a Bayesian sampling approach for a fixed dimension pixel based inversion.

In this short comparison, the the same synthetic problems are used to compare a non

trans-dimensional Bayesian McMC inversion to the trans-dimensional tree approach.

In Figure 3.16, the ensemble means of the full sampling of the wavelet coefficients

and the trans-dimensional tree algorithm are shown. Similarly to the damping result,

while the recovery of the anomaly is visually reasonable, there is much unconstrained

structure elsewhere. This poor constraint has impacts in the uncertainty estimates and

the standard deviation of the ensembles is shown in Figure 3.17. The result of directly

sampling increases the uncertainty of the result. This occurs because there are more

degrees of freedom in the full McMC sampler which results in higher uncertainty.

This trend continues in the second multi-resolution test with the ensemble means

shown in Figure 3.18 and the standard deviations shown in Figure 3.19. The recov-

ery in this case contains far more spurious structure and the uncertainty has increased

further. In a Bayesian inversion, full resolution sampling as performed here can be

married with a prior with a spatial correlation length to effectively add a smoothing

constraint analogous to the smoothing regularisation in the previous section. This
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Figure 3.16: In (a) the full Bayesian McMC ensemble mean is shown in (a). In (b) the equivalent
trans-dimensional tree inversion is shown.
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Figure 3.17: In (a) the full Bayesian McMC ensemble standard deviation is shown. In (b) the equiva-
lent trans-dimensional tree inversion ensemble standard deviation is shown.
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Figure 3.18: In (a) the full Bayesian McMC ensemble mean is shown. In (b) the equivalent trans-
dimensional tree inversion is shown.
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Figure 3.19: In (a) the full Bayesian McMC ensemble standard deviation is shown. In (b) the equiva-
lent trans-dimensional tree inversion ensemble standard deviation is shown.

would improve the inversion to a degree but it would have the similar problems as the

smoothing regularisation, that is the choice of the smoothing parameter globally affects

the result and cannot adapt to locally resolvable structure.

3.7 Linearised tomography with wavelets

This section expands on the simple 2D linearised tomography by using a variety of

wavelet bases and with larger problems more representative of real world applications.

The particular target application here is ambient noise tomography which is a tech-

nique of obtaining near surface structure information from correlation of noise mea-

surements between spatially distributed receiver stations, introduced to the seismologi-

cal field by Shapiro and Campillo [2004] (see also review articles by Larose et al. [2006]

and Snieder and Larose [2013]). For comparison purposes, the trans-dimensional tree

with wavelet parameterisation method is compared to existing trans-dimensional meth-

ods using Voronoi cells.

Trans-dimensional travel-time tomography using a Voronoi cell parameterisation was

introduced by Bodin and Sambridge [2009] and has been successfully used for inversion

of ambient noise measurements for group velocity structure in several regional studies,

for example, Young et al. [2011], Pilia et al. [2014], Saygin et al. [2016]. In the following
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sections, the solution of this problem using the new trans-dimensional tree algorithm

with wavelets as basis functions is demonstrated.

3.7.1 A Tree-structured Wavelet Parameterisation

Wavelet analysis may be used to decompose bounded signals in both time and fre-

quency at multiple scales. This is in contrast to Fourier analysis which decomposes

signals by frequency only (for an introduction to wavelets see Daubechies [1992] and

Mallat [1999]. The Fast Discrete Wavelet transform, following the multi-resolution

wavelet transform of Mallat [1989], has been used in a variety of image based prob-

lems, notably image compression. Wavelet bases have been previously used in several

studies for resolving seismic tomography at various scales, for example Chiao and Kuo

[2001], Simons et al. [2011b], Chevrot et al. [2012], Charlety et al. [2013], Fang and

Zhang [2014].

The Discrete Wavelet Transform in Cartesian domains has a natural multi-scale hier-

archy that can be traversed with a tree structure. In image compression, this has been

utilised by Shapiro [1993] and Said and Pearlman [1996]. In Compressive Sensing the

same tree structure has been used for 1D signal recovery by La and Do [2005] and 2D

image reconstruction by He et al. [2010].

In Figure 3.20(a) the progressive decomposition of a small 4 by 4 pixel image (bottom)

by a wavelet transform is shown. As can be seen, at each step the image is reduced by

half in each dimension. The wavelet based tree structure of this wavelet decomposition

is illustrated in Figure 3.20(b). The progressively shaded regions indicate each level of

wavelet decomposition with the darkest top left corner representing the scaling coeffi-

cient of the wavelet decomposition at the coarsest level which also corresponds to the

root of the tree.

The tree has 3 children from the root node, and 4 children from every other node

with the exception of the last nodes representing the finest level of detail which have

no children. This is the case for a region in which the width and height are equal.
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(a)

(b) (c)

Figure 3.20: In (a) is a simple 4 by 4 image in the lowest panel and two successive wavelet transforms
of this image in the panels above. The first forward wavelet transform results in 2 by 2 lower reso-
lution approximation of the input image and a set of wavelet coefficients (shown in darker shade).
The next step performs the forward wavelet transform on the 2 by 2 image to obtain a 1 pixel ap-
proximation and 3 wavelet coefficients. With this 1 pixel approximation and the 3 plus 12 wavelet
coefficients, the original 4 by 4 pixel image can be recovered using the inverse wavelet transform. In
(b) is the tree structure that spans the 1 pixel approximation and wavelet coefficients of a 4 by 4 square
image. Each level of decomposition is shaded a progressively lighter shade of gray and note how each
branching of the tree coincides with the next wavelet decomposition level. In (c) it is demonstrated
how a variant of the tree structure can equally apply to rectangular regions by beginning from 2 top
level coefficients.
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For rectangular regions, a tree can be constructed by treating the initial scaling coef-

ficients of a wavelet decomposition of a rectangular region as a 2D subdivision grid.

An example is seen in Figure 3.20(c). In the following examples square images are

used for simplicity, however, the only limitation when working with wavelets and this

framework is that each image dimension must be a power of two.

At the root of the tree, the parameter value represents the scaling coefficient from a

wavelet decomposition of the tomographic image. The parameter values of the re-

maining tree nodes represent the hierarchy of wavelet coefficients. In contrast to the

earlier 2D image example, where values at the tree nodes are directly summed into

an output image, an image is reconstructed from these coefficients using the inverse

wavelet transform [Mallat, 1999].

3.7.2 The Synthetic Model and Test Procedure

To demonstrate the performance of the new trans-dimensional tree algorithm, it is

compared to the Voronoi parameterisation in some synthetic checker board tests with

1,000 fixed ray paths. The ray paths remain fixed during the sampling to allow a direct

comparison between the various parameterisations, however, there is no impediment

in the new method that prevents either ray path updates at every step for a fully non-

linear inversion [Galetti et al., 2015] or periodic updates for an iterative non-linear

scheme [Bodin and Sambridge, 2009].

The true model and the ray coverage are shown in Figure 3.21. The region of the

test is set to a square bounded at ± 10 degrees longitude and latitude. The model is

a smooth (cosine) checker board, results for a discontinuous (boxcar) checker board

are also shown in Section 3.8. The observed travel times are computed by integrating

along each path and Gaussian noise is added with a standard deviation of 5 seconds

which corresponds to approximately a 2.5 percent error on the mean travel time.

For the wavelet parameterisation, the experiment is repeated with three different

wavelet bases. These are the Haar wavelet [Haar, 1910], the Daubechies 6-tap wavelet
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(a) Cosine Checker board Model
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Figure 3.21: The synthetic models used in the test is a smooth (cosine) checker board with seismic
velocities between 2.5 and 3.5 km/s. 1,000 random ray paths are generated through the region and
travel times integrated to obtain the synthetic observations to which we add Gaussian noise.
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[Daubechies, 1988] and the Cohen-Daubechies-Feauveau 9/7 wavelet [Cohen et al.,

1992, see table 6.2] as used in the JPEG-2000 image compression standard [Usevitch,

2001]. The choice of these wavelet bases is designed to give a representative selection

of available wavelets with varying degrees of smoothness.

The tests are run under comparable conditions, that is 64 independent Markov chains

are used in each case with 10 million steps. At an interval of 1 million steps, each chain

is restarted by randomly choosing a new starting model from current population with

probability proportional to the mean likelihood of each chain. This approach, detailed

by Dettmer et al. [2011], accelerates convergence to sampling the high-probability re-

gion of the posterior PDF and prevents individual chains from becoming stuck in local

modes.

For the Voronoi case, all chains are started with a single cell corresponding to a tree

with a single root node. For birth/death proposals, “birth from the prior” is used

for both the Voronoi and Wavelet parameterisation. For change value proposals, fixed

Gaussian perturbations are used of the cell values/wavelet coefficients where the pro-

posal width is reasonably tuned to obtain acceptance rates of approximately 20 to 40

percent.

The prior on the number of parameters, p(k), is set to be uniform between 1 and 5,000

parameters (3.6). In the Voronoi parameterisation, a uniform prior on the wave speed

is set between 2.0 and 4.0 km/s which encompasses the true range of 2.5 and 3.5 km/s.

For the Wavelet parameterisation, the prior specification is complicated by the fact

that the range of values of the coefficients can vary by several orders of magnitude,

that is from the coarsest to finest resolution. This means that it is sensible to set a

different uniform prior for each level of wavelet decomposition with the prior bounds

determined by examining likely velocity variations. This approach suffices for these

simulation tests, but a more advanced scheme such as that of Lochbühler et al. [2015],

would also be possible.
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3.7.3 Ensemble mean and Credible Intervals

The mean of the ensembles across all chains are shown in Figure 3.22. Subjectively,

the CDF 9/7 and Daubechies 6 wavelets have recovered the smooth model better. The

Haar wavelet has performed poorly while the Voronoi parameterisation reasonably

recovered the broad pattern of the model but introduced polygonal artefacts.

In addition to the mean of the ensemble, point wise 95 percent credible intervals can

be extracted. In Figure 3.22, also plotted is the 95 percent credible interval along tran-

sects indicated by the dashed line through the ensemble means. The credible inter-

val is shown as a shaded grey range and the true model is shown with a dashed line.

The two transects are chosen in this example so that the longitudinal transect samples

along peaks and troughs while the latitudinal transect samples along a constant veloc-

ity. From Figure 3.22(a) and (b) shows that the CDF 9/7 and Daubechies 6 wavelets

have low uncertainties, a characteristic of model parameterisations suited to the under-

lying data. In contrast, the magnitude of the uncertainties for the Haar wavelet and the

Voronoi cell are significantly higher. These results highlight the point that the choice

of parameterisation is important both to the recovery and, more importantly, to the

uncertainties recovered.

3.7.4 Number of Model Parameters

The number of parameters (coefficients in the trans-dimensional tree based wavelet

parameterisation and cells in the Voronoi parameterisation) gives a simple measure of

model complexity. Direct comparison between the two parameterisations is not very

meaningful because in the Voronoi parameterisation each cell has three parameters,

the cell value and its (x, y ) coordinates, whereas for the trans-dimensional tree wavelet

parameterisation, the most reasonable approach is to assume the model is written as in

(3.36) where each parameter has a coefficient value and a unique tree node identifier

as variables. This would mean that the number of Voronoi cells should be multiplied

by 3 and the number of wavelet coefficients by 2 to obtain a fair comparison. In the
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(b) Daubechies 6
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Figure 3.22: The mean of the ensembles obtained for the four different parameterisations. In each
plot the uncertainties are shown along longitudinal and latitudinal transects indicated by the dashed
lines. These show the 95 percent credible interval as a grey shaded region with the true model over
plotted with black and white dashes.
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Figure 3.23, the histograms of the raw number of cells/wavelet coefficients are shown.

For the wavelet parameterisations, the number of coefficients is higher than that of

the Voronoi cell parameterisation, particularly for the Haar wavelet parameterisation.

This may suggest that the wavelet parameterisations is over-parameterised, however, as

will be shown in Section 3.7.7 this is not necessarily the case.

3.7.5 Computational Time

The compute time for the last 1 million steps for each independent chain was recorded

and averaged to obtain an estimate of the relative computational cost of each of the

parameterisations. The computed times are shown in Table 3.1.

Since the Voronoi parameterisation is grid free, comparing the cost of integrating travel

times along ray paths will depend on the sampling rate along the ray paths. To ensure

equivalency, as much as possible, of the two methods in terms of forward model accu-

racy, the ray paths were sampled at approximately the upper limit of grid resolution

used by the wavelet parameterisation. As a 128 by 128 grid was used in a 20 by 20

degree region, this sampling spacing was approximately 0.16 degrees.

In the tree based wavelet parameterisation, the forward model cost is dominated by the

inverse wavelet transform [Mallat, 1999]. As a general rule, a smoother wavelet will

require more computational effort in the transform. For the Daubechies 6 wavelet,

the standard Discrete Wavelet Transform (DWT) whereas both the Haar and CDF

9/7 used the Fast Lifted Wavelet transform [Sweldens, 1996, Daubechies and Sweldens,

1998]. This explains the relatively poor performance of the Daubechies 6 parameter-

isation. It is possible to use a lifted transform version of the Daubechies 6 wavelet in

which case the expected time for this transform would lie between that of the Haar

and the CDF 9/7 transform. However the number of active coefficients does factor

into the computational time as evidenced by the fact that the Haar computational

time is greater than that of the CDF 9/7 transform (this is reversed in other examples

presented in Section 3.8, where more coefficients are needed by the CDF 9/7 parame-
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Figure 3.23: The estimated posterior probability distribution on the number of nodes/cells for the
different parameterisations from the cosine checker board test.
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Parameterisation Time (s) Relative Time

Haar 2452.8 1.4
CDF 9/7 1760.7 1.0
Daubechies 6 4735.7 2.7
Voronoi 30684.8 17.4

Table 3.1: Mean computational time per 1 million steps for cosine checker board model.

terisation).

Taking the median of the tree based wavelet parameterisation compute times, for these

examples the Voronoi parameterisation is roughly an order of magnitude slower. These

synthetic tests have relatively few coefficients. As the complexity of the models in-

crease, the Voronoi parameterisation scales in computational effort as O (log n), with

n the number of cells, in the best case. In contrast, the dominant cost in the forward

model of the trans-dimensional tree wavelet parameterisation, the inverse wavelet trans-

form, is independent of the number of coefficients, suggesting that the wavelet method

will scale better to more complex and larger scale tomographic problems.

3.7.6 Convergence

Monitoring convergence is notoriously difficult in McMC. In the trans-dimensional

case, measures such as the Gelman-Rubin statistic [Gelman and Rubin, 1992a] are not

applicable. In this work it is assumed that the independent Markov chains have con-

verged when the negative log likelihood has reached an equilibrium value consistent

with the data and errors. This is sufficient for the simulated problems here but robust

convergence metrics for trans-dimensional sampling is an area of further research.

The evolution of the negative log likelihood of each Markov chain is plotted in Figure

3.24 for the first million steps. The trans-dimensional tree wavelet parameterisation has

lower variability in the log likelihood across the chains and in some cases convergence

has been achieved after a relatively small number of steps.

One reason for this is that, in general, the acceptance rates for a birth or death proposal
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is typically higher in the trans-dimensional tree wavelet parameterisation than for the

Voronoi parameterisation. The acceptance rates were approximately 10 percent for the

tree based wavelet method and around 5 percent for the Voronoi method. Hence a

birth proposal is approximately twice as likely to be accepted in the tree based wavelet

parameterisation than the Voronoi parameterisation.

It is a common criticism of trans-dimensional samplers that the acceptance rates for the

birth/death proposal are generally quite low and therefore the convergence is hindered

due to lack of mixing between model spaces [Denison et al., 2002]. It is this higher

acceptance rate for birth/death proposal that results in the faster convergence of the

trans-dimensional tree wavelet parameterisation.

This higher acceptance rate is a result of the tree structure coupled with a multi-scale

basis. To explain why this is the case, with a Voronoi parameterisation, the order of the

births of its cells doesn’t matter. In contrast, with a trans-dimensional tree model where

the ordering of the birth does matter as a parent node must be birthed before its child

nodes. In a multi-scale parameterisation such as wavelets, this means that coefficients

that represent broad scale features will be birthed first, and often well constrained,

before finer scale features. It also means that from any particular model, any birth will

be at a scale length that is appropriate to refining the model rather than wasted on large

scale feature changes.

In the case of the two smooth wavelet bases, the rapid convergence and small spread of

the negative log likelihood values suggests that these tree based wavelet parameterisa-

tions have efficiently explored the parameter space. This implies that large numbers of

independent chains, as is needed in the Voronoi based approach, may be less important

with the wavelet parameterisation, given an appropriate choice of basis. In Figure 3.25

a comparison of the mean and MAP models of all chains combined is shown compared

to a that of an arbitrary single chain. The single chain that was chosen was the chain

with the largest minimum likelihood, notionally the worst performing chain. As can

be seen in the figure, even the “worst” chain is barely distinguishable from the overall

mean.
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(b) Daubechies 6
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(c) Haar
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(d) Voronoi
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Figure 3.24: For each of the parameterisations compared, the history of the negative log-likelihood
is plotted for each of the 64 chains for the first 1 million steps during the recovery tests of the cosine
checker board model.
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Figure 3.25: For the CDF 9/7 parameterisation recovering the cosine checker board model, even the
“worst” performing Markov chain of the 64 parallel chains obtains results comparable to the overall
ensemble solution. In (a) and (c) are shown the mean of the ensemble of the 64 chains and the mean of
the single “worst” performing chain respectively. In (b) and (d) are shown the over all best Bayesian
maximum a posteriori (MAP) and the MAPmodel of the “worst” performing chain to show that they
contain many similar features.
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One of the primary reasons for employing multiple chains in the Voronoi parameter-

isation is to improve robustness of the chain by averaging. In the Voronoi cell case

this is the only way to obtain a more plausible result for ambient noise tomography.

The results of these experiments have shown that with a trans-dimensional tree based

method, and an appropriate choice of wavelet basis function, multi-chain averaging

may be unnecessary. Hence with the new approach it suffices to employ a smaller

number of Markov chains, although with more complex and non-linear problems, par-

allel interacting chain approaches such as Parallel Tempering [Earl and Deem, 2005,

Dettmer and Dosso, 2012, Dosso et al., 2012, Sambridge, 2014] may be necessary to

adequately overcome local modes and multi-modalities.

3.7.7 Model Comparisons

With the new trans-dimensional tree approach, there is flexibility in the choice of basis

function. With this flexibility comes the problem of determining the best basis to use

for a given problem. To compare the results of different parameterisations, in synthetic

tests an error norm from the “true” model such as the mean squared error (MSE) can be

used. One issue with this approach is it does not take into account model complexity

and therefore may prefer over fitted models. A second issue is that in real inversions,

the “true” model will not be available with which to compare.

Therefore a flexible model comparison criterion is required. A direct comparison be-

tween the trans-dimensional tree wavelet approach and the Voronoi method using the

Bayesian Information Criteria (BIC) [Schwarz, 1978] is difficult due to the already al-

luded to issue of fairly estimating the number of parameters in the tree based wavelet

parameterisation. Proposed here is the use of the Deviance Information Criteria (DIC)

[Spiegelhalter et al., 2002] that has previously been applied in trans-dimensional model

comparison by Steininger et al. [2014]. A variation of the DIC proposed in Gelman

et al. [2004, Chapter 12] is used in this study, where the DIC is computed as
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DIC= D(m)+ var(D(m)), (3.51)

where the over bar represents the mean, and D(m), the deviance, is given by

D(m) =−2 log p(d|m)+ 2 log f (d). (3.52)

f (d) is a normalising function of the data which cancels out in model comparison ap-

plications and can be ignored when computing the DIC. This formulation is preferred

because in trans-dimensional sampling, point estimates can be over parameterised and

from experience, using the variance results in a more stable calculation.

The first term in (3.51) rewards a low mean negative log likelihood which penalises too

simplistic an ensemble of models. The second term penalises model complexity since

more unknowns tend to result in ensembles with larger likelihood variance [Spiegel-

halter et al., 2002, Gelman et al., 2004]. A model is said to be a better fit to the data

if it has a lower DIC value. The results of the DIC are shown in Table 3.2. The DIC

has been computed across all Markov chains (i), with just a single best chain (ii), and

across all chains early in the simulation (iii) (for steps 750,000 to 1,000,000).

The DIC results confirm earlier subjective visual comparisons of the mean of the en-

semble (Figure 3.22) to the true input models (Figure 3.21) where the CDF 9/7 and

Daubechies wavelet parameterisations had recovered the true model more accurately.

Note that the mean deviance of the Voronoi parameterisation is less than that of the

CDF 9/7 parameterisation implying a better fit to the data. This is an example where

using the misfit alone for model comparisons is insufficient. Previously it was shown in

Figure 3.23 that the number of parameters in the wavelet parameterisation was higher,

suggesting over-fitting. However the DIC shows low variance of the deviance in the

wavelet case suggesting a smaller number of effective parameters.

The results of computing the DIC across all chains and a single chain are similar. The

DIC was also computed during the last quarter of the first 1 million steps representing
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Parameterisation D(θ) var(D(θ)) DIC

(i) All chains
CDF 9/7 9280.2 82.7 9321.6
Daubechies 6 9294.7 256.4 9422.9
Haar 9232.2 481.4 9472.9
Voronoi 9207.9 540.5 9478.2

(ii) Best chain
CDF 9/7 9274.4 149.8 9349.3
Daubechies 6 9282.9 194.2 9380.0
Haar 9212.1 528.4 9476.3
Voronoi 9191.2 566.1 9474.2

(iii) Steps 750,000 to 1,000,000
CDF 9/7 9283.0 252.7 9409.3
Daubechies 6 9336.2 571.3 9621.8
Haar 9509.7 10817.3 14918.4
Voronoi 10193.4 467600.2 243993.5

Table 3.2: The DIC of the various parameterisations from the cosine checker board recovery test.

the tail end of the burn-in period. In these results there is a great deal more variance,

particularly for the Voronoi parameterisation, and these results clearly show the more

rapid convergence of the trans-dimensional tree approach in this problem.

With the new trans-dimensional tree wavelet method there is now the ability to choose

from a variety of bases. Although prior knowledge of the expected heterogeneity of

the tomography can be used to guide the choice of basis, this choice will necessarily be

based on incomplete knowledge. A potential solution is to run a sweep of inversions

with different basis functions and then compute the DIC (or similar criteria) of the

obtained ensembles.

An alternative, which is beyond the scope of this work, is to select the wavelet bases in

a hierarchical fashion itself using a trans-dimensional sampler. In this way the choice

of basis could be driven by the data.
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Figure 3.26: The boxcar synthetic models used in the test with seismic velocities between 2.5 and 3.5
km/s. We generate 1,000 random ray paths through the region from which we integrate travel-times
to obtain the synthetic observations to which we add Gaussian noise of approximately 5 percent
relative to mean travel times.

3.8 Boxcar Checker board Results

In Section 3.7.2, the results of a simulated smooth checker board 2D tomography test

were presented. Here the same set of tests are repeated with a discontinuous boxcar

checker board with the true model shown in Figure 3.26.

3.8.1 Ensemble mean solutions

The ensemble mean solutions for the boxcar checker board input model are shown in

Figure 3.30. The Haar wavelet basis has recovered the input model almost exactly and

the Voronoi parameterisation has also performed well. Both of the smooth wavelet

parameterisations have recovered the underlying model to a lesser degree and have
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Parameterisation Time (s) Relative Time

Haar 1742.1 1.0
CDF 9/7 2211.4 1.3
Daubechies 6 5222.6 3.0
Voronoi 19140.1 11.0

Table 3.3: Mean computational time per 1 million steps for the boxcar checker board model.

ringing artefacts. This is due to a property of wavelets where the number of coefficients

required to represent discontinuities increases as a basis becomes smoother.

3.8.2 Number of Model Parameters

The histogram on the number of parameters for the boxcar checker board tests are

shown in Figure 3.31. For the CDF 9/7 and Daubechies wavelet inversion of the box-

car checker board, the number of coefficients required to get a poorer representation

of the model is substantially larger than the other two methods. This is to be expected

as the representation of hard edges with smooth wavelets requires many coefficients.

Also this then becomes a more challenging search problem to find these larger num-

ber of important coefficients and to sample them sufficiently, resulting in a lengthier

convergence time.

3.8.3 Computational Time

The computational time for the boxcar checker board tests are shown in Table 3.3. The

ordering is the same as for cosine checker board simulation with the Haar and CDF

9/7 parameterisations reversed due to the small but not insignificant computational

burden resulting from a large number of coefficients.
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Figure 3.27: Daubechies 6
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Figure 3.28: Haar
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Figure 3.29: Voronoi
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Figure 3.30: The mean of the ensembles obtained for the four different parameterisations used for the
boxcar checker board input model.
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Figure 3.31: The estimated posterior probability distribution on the number of nodes/cells for the
different parameterisations from the boxcar checker board test.
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3.8.4 Convergence

The evolution of the negative log likelihood of each Markov chain for the boxcar

checker board test is plotted in Figure 3.32. The spread in likelihoods of the Voronoi

parameterisation is noticeably larger than that of the trans-dimensional tree approach,

even for wavelet bases that are not a good match for this input model.

3.8.5 Model Comparisons

The DICs for the various parameterisations for the boxcar checker board tests are

shown in Table 3.4. The DIC clearly favours the Haar wavelet representation in this

case. It is also interesting to note that the DIC for the Haar parameterisation is almost

exactly the same across all chains after 10 million steps as it is during the steps 750,000

to 1,000,000, implying convergence has been reached very quickly. Again the Voronoi

parameterisation has the lowest deviance and therefore best overall fit, but is penalised

by the variance of the deviance. The other two smooth wavelet parameterisation per-

form more poorly as expected.

3.8.6 Conclusions

In Sections 3.7.2 and 3.8 the wavelet parameterisation was observed to obtain better

results, depending on the choice of wavelet basis, across a series of metrics. For the

target application envisaged for this approach, namely ambient noise tomography, the

smooth wavelets such as CDF 9/7 seem a logical choice and should provide better per-

formance, both in terms of computational cost and recovery of the underlying model.

It is worth bearing in mind though, that physical discontinuities may be better recov-

ered using a Voronoi cell approach, but it is unclear whether these can truly be detected

in ambient noise studies.
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(c) Haar
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(d) Voronoi
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Figure 3.32: For each of the parameterisations compared the history of the negative log-likelihood is
plotted for each of the 64 chains for the first 1 million steps during the recovery tests of the boxcar
checker board model.
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Parameterisation D(θ) var(D(θ)) DIC

(i) All chains
CDF 9/7 9273.9 1262.4 9905.1
Daubechies 6 9292.0 1583.5 10083.8
Haar 9269.9 64.2 9302.0
Voronoi 9269.2 284.5 9411.4

(ii) Best chain
CDF 9/7 9273.5 1050.2 9798.6
Daubechies 6 9253.0 1367.1 9936.6
Haar 9268.5 76.5 9306.7
Voronoi 9257.0 219.8 9366.9

(iii) Steps 750,000 to 1,000,000
CDF 9/7 11727.4 3090233.3 1556844.0
Daubechies 6 10106.9 145477.7 82845.7
Haar 9272.3 332.8 9438.7
Voronoi 12056.0 5641905.0 2833008.5

Table 3.4: The DIC of the various parameterisations from the boxcar checker board recovery test.

3.9 3D Teleseismic Tomography

For a more substantive test of the new trans-dimensional tree framework, it is applied

to the teleseismic inversion of body waves to recover 3D lithospheric structure. The

inversion result and ray paths published in Rawlinson et al. [2011] are used of a large

scale regional area centred around Victoria, Australia.

To construct simulated data for the inversion, a Gaussian filter is applied on the model

obtained by Rawlinson et al. [2011] to remove streak artefacts and use this as the “true”

model. The model is then embedded as a deviation from the AK135 Earth reference

model [Kennett et al., 1995] in the region of interest, shown in Figure 3.33, and 19897

of 19922 of the original paths are re-integrated to obtain true travel-times (some paths

were removed as they were outside the region of interest). Gaussian noise is then

added with a standard deviation of 0.5 seconds which corresponds to an approximately

1 percent error on the average travel time through the region. As in the earlier 2D



142 Trans-dimensional Trees

40°S

30°S

40°S

30°S

130°E 140°E 150°E 160°E

Figure 3.33: The teleseismic paths clipped to the 3D region (red rectangle) used in the inversion are
sourced from the published study of Rawlinson et al. [2011]. There are 19897 body wave ray paths
in the region of interest located in South Eastern Australia.

experiments, the problem is effectively linearised by using fixed ray paths.

The parameterisation used for the inversion of this region mostly follows that of the

ambient noise tomography example shown earlier. A grid is set that is 128 longitude

cells by 128 latitude cells by 32 radial cells to represent the region, this equates to nearly

cubical voxels of approximately 10 km size. In this problem the 3D rectangular region

requires a tree starting with a 4 by 4 subdivision grid laterally, that is 16 children from

the root of the tree, and then progresses to the standard 3D wavelet tree consisting of

7 children from these subdivision nodes and 8 children thereafter (recall that in the 2D

case this was 3 children from the root node and 4 thereafter).

To start from a single node of a tree as in the 2D case would likely take a long time to

burn in. To accelerate this process, a simple stochastic optimisation scheme is used to



§3.9 3D Teleseismic Tomography 143

generate an initial starting model. The outline of this simple method is as follows: the

initial model is set to homogeneous with only the mean component or root of the tree

active and the BIC [Schwarz, 1978] is computed. From this model, a large number of

candidate models are generated using birth proposals to perturb the current model by

adding randomly generated tree nodes. For each of the candidate models, their BICs

are computed and the proposed model with the smallest BIC is selected as the next

current model. The process is iterated until none of the BICs of the candidate models

is less than that of the current model, that is, no improvement was made. The BIC in

this case is used to prevent over optimisation of the initial model as the desire here is

for simple but good starting models.

In the tree based parameterisation, it is also possible to restrict the height that the tree is

allowed to sample. Given the grid is approximately 10 km on edge, we can equate each

depth of the tree of 7 levels with an approximate length scale: that is level 0 represents

the overall mean of the model velocity variations, level 1 represents scale lengths of

320 km, level 2 scale lengths of 160 km and so on down to level 7 which corresponds

approximately to a 10 km scale length. As an additional restriction, an initial height

restriction at level 5 is set (levels 6 and 7 unavailable) so the optimisation scheme only

generated models with scale length features down to approximately 40 km. The height

restriction is an optional feature of the trans-dimensional tree method that may be used

to improve convergence in higher dimension and problems of greater complexity.

60 independent models are generated using the optimisation scheme and from these

starting models, 60 independent Markov chains are simulated for 2 million steps. For

the first 1 million steps, the height restriction remained in place but was removed for

the last million. In Figure 3.34 the spread of the negative log likelihood and number

of coefficients generated from the optimisation, the histograms of these during the first

million steps with the height restriction, and the last million steps once this restriction

is removed are shown. In the negative log likelihood plots, shown with a red dashed

line is the theoretical χ 2 limit given the number of data and the level of independent

Gaussian noise.
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Figure 3.34: The histogram of likelihood and k , the number of wavelet coefficients, of all Markov
chains for the first 106 iterations with the height restriction in place are shown in (a) and (b) respec-
tively. Over plotted with crosses are the spread of likelihoods and k generated via the optimisation
scheme for the initial models. The histograms for the last 106 iterations are shown in (c) and (d).
In the likelihood plots, the vertical red dashed line represents the theoretical χ 2 limit of the data.
These plots illustrate the convergence of the likelihood and the number of coefficients through the
three phases we used during the inversion.
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The benefit of the height restriction is that it allows broader scale features to converge

before sampling of fine scale features commences. Figure 3.34 shows how the negative

log likelihood decreases from the initial models, which are clearly too simple. In the

first million steps the algorithm resolves only medium scale features due to the height

restriction. In the last million steps, the chains converge to the target posterior and

the likelihood distribution is tightly focused on the theoretical χ 2 limit of the data.

Similarly for the posterior on k, the number of coefficients, starts from a relatively

small number in the optimisation phase and converges to a higher number in the final

1 million steps.

The modal number of wavelet coefficients is approximately 150 whereas the entire

3D image consists of 524,288 coefficients. The reason for this is a combination of

two factors: firstly the model is smooth and the CDF 9/7 wavelet basis is used and

is good at compressing smooth images, that is the CDF 9/7 wavelet basis is able to

represent smooth images with few non-zero coefficients or sparsely. Secondly, the

trans-dimensional tree method samples about a range of coefficients that adequately

describes the information in the observations, resulting in a parsimonious number of

coefficients.

The time taken for this simulation is approximately 15 hours in total with 1 hour re-

quired for the optimisation phase and 7 hours for each of the 1 million steps (Intel

Xeon CPU E5-2620 at 2.10 GHz). This equates to approximately 25 ms per iteration.

A comparable inversion with the Voronoi parameterisation has not been performed.

Other studies that have performed 3D trans-dimensional tomographic inversion such

as the work of Piana Agostinetti et al. [2015] have reported running times of approxi-

mately one month, however their inversion included hypo centre re-locations and ray-

path updates which adds significant computational complexity so a direct comparison

is not meaningful. It is to be expected that, as with the 2D case, there would be approx-

imately an order of magnitude decrease in computational time for a single chain in the

trans-dimensional tree approach when compared to the Voronoi parameterisation for

the same scale of problem.
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In Figure 3.35 the ensemble mean results of the volume with lateral slices at varying

depth are shown. Similar to the 2D results earlier, for each depth the uncertainty along

lateral transects indicated by the dashed line is shown. In the uncertainty plots, the

shaded grey region shows the 95% credible range, the solid line the true input model,

and the dotted line the ensemble mean along the transect. In general, the inversion has

achieved a good recovery of the true input model, but there are some cases where the

true model does not entirely reside in uncertainty bounds.

Similarly, in Figure 3.36, two slices of the ensemble mean volume longitudinally and

latitudinally are shown to demonstrate the recovery as a function of depth. Again the

recovery is quite good and the algorithm has not introduced any noticeable streaking

artefacts due to the highly anisotropic ray distribution. Of minor concern is that a

feature of both of the plots is a subtle underestimation of the velocity perturbation at

the deepest part of the model. This is most likely a result of the poor resolvability of

features at depth inherent in teleseismic data sets.

These results show that the tree based wavelet parameterisation can be used for large

scale 3D geophysical tomography problems. Further work on the parallelisation or

domain decomposition of the wavelet transform, coupled with parallel evaluation of

the likelihood (i.e. the integration along the ray paths to obtain the model predicted

travel times), would likely improve performance further.

3.10 Summary

In this chapter, a new trans-dimensional framework for solving general image based

geophysical inverse problems has been presented that is both efficient and flexible.

This new approach is efficient because of three main factors: the first is that models are

transformed back to regular grids which enables efficient forward model processing.

Secondly, the approach can take advantage of existing fast algorithms such as the Fast

Lifted Wavelet Transform for building the Earth models from the trans-dimensional

tree representation. Lastly, the tree based approach is inherently multi-scale and there-
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Figure 3.35: At three different depth slices we show the true model in the left and the ensemble mean
model is shown on the right. Regions of no ray coverage masked out. In each of the ensemble mean
plots we also show uncertainties along transects indicated with the dash lines. In the uncertainty
plots, the grey region represents the 95% credible interval, the ensemble mean along the transect
is shown with a dotted line, and the true model with a solid line. Generally, the true model falls
close to the ensemble mean and is within the uncertainty bounds indicating good recovery in this
simulation.
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Figure 3.36: The ensemble mean model is shown with a slices along lines of constant longitude in
(a) and latitude in (b). In each plot uncertainties are shown along transects indicated with the dash
lines. In the uncertainty plots, the grey region represents the 95% credible interval, the ensemble
mean along the transect is shown with a dotted line, and the true model with a solid line.
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fore constructs models in a top down, coarse to fine scale, fashion, which is particularly

well suited to many geophysical imaging problems.

The trans-dimensional framework is flexible because it allows a wide variety of basis

functions to be used for representing Earth models, while performing all sampling

operations on a common tree structure. We have shown examples of simple boxcar

basis functions and wavelet bases, however, more advanced bases can be used such

as higher order orthogonal polynomials, curvelets [Candes and Donoho, 1999], and

wavelets on the sphere [Schröder and Sweldens, 1995, Leistedt et al., 2013a] or other

orthogonal bases.

From the results presented in this chapter, the trans-dimensional tree approach appears

to show promise in the probabilistic inversion of large scale geophysical inverse prob-

lems including robust uncertainty estimates.
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4.1 Introduction

In the previous chapter, the trans-dimensional tree algorithm was introduced and its

abilities to provide robust results and uncertainties in geophysical inverse problems

demonstrated in synthetic experiments. In this chapter, the trans-dimensional tree

algorithm is used to invert for 2D conductivity profiles for airborne electromagnetic

observations in a real world application.

Airborne electromagnetic methods (AEM) [Palacky, 1993] represent a class of non-

invasive methods that allow the inference of the distribution of the electromagnetic

properties of the Earth’s subsurface. AEM uses a transmitting loop and receiver coils

towed or carried by an aircraft along flight lines. Either short pulses (time domain

AEM) or a combination of different frequency sinusoids (frequency domain AEM) are

transmitted from an altitude of between 30 to 150m. These primary electromagnetic

fields, generally in a frequency range of 25 Hz to 130 kHz, induce eddy currents in the

conductive materials of the Earth according to Maxwell’s equations [Maxwell, 1881].

Receiver coils, located near or collocated with the transmitter, are then able to detect

secondary electromagnetic fields emitted from conductive regions in the subsurface

resulting from the induced eddy currents.

While other electromagnetic properties can be inferred, the most commonly resolved

material property is that of conductivity. This has implications for mineral exploration

as many ore bodies of economic metals typically have higher conductivity relative to

their host rocks. In AEM data, these ore bodies show up as “bumps” in the amplitudes

of induced secondary fields, thus motivating the development of AEM techniques as a

rapid mineral exploration technique in the 1950s.

More recently, AEM techniques have been adapted to more general geological mapping,

hydro-geological and various other subsurface detection applications [Ackman, 2003].

Example applications include ground water mapping [Sattel and Kgotlhang, 2004], salt

water intrusion [Fitterman and Deszcz-Pan, 1998], and dry land salinity [Street et al.,

1998, Lawrie et al., 2000].
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Existing approaches for inferring the subsurface distribution of conductivity generally

parameterise the subsurface as a set of 1D conductivity profiles (e.g. stitched 1D inver-

sion), a 2D conductivity-depth section mesh (e.g., laterally constrained 1D inversion

schemes and 2.5D inversions) or a 3D mesh (e.g., spatially constrained 1D and 3D

schemes). The conductivity at each layer or cell is then solved for by minimising the

misfit between observed responses and predictions generated by a forward model. To

stabilise the inversion, one or more penalising model norms that impose restrictions

on deviation from a reference model (damping) or spatial gradients (smoothing), are

required [Tikhonov, 1943, Constable et al., 1987, Farquharson and Oldenburg, 1993,

Brodie and Sambridge, 2006] resulting in a minimisation of misfit and model norms

with different relative weightings. The relative weighting of the misfit between predic-

tions and observations and the penalising norms need to be controlled with tuning pa-

rameters which introduce a degree of subjectivity. While various criteria and automatic

methods of setting the hyper parameters are available [Hansen, 1992, Farquharson and

Oldenburg, 2004] they are not without their problems [Hanke, 1996, Vogel, 1996].

One drawback of this regularised deterministic approach for inferring conductivity is

that only a single estimate of the conductivity structure is recovered. This gives lit-

tle appreciation of the potential non-uniqueness of the optimised solution or spread

of plausible conductivity models that could give rise to the same observed responses

resulting from the non-linear physical model and noise on the observations. While

uncertainty can be estimated from model covariance matrices obtained from optimi-

sation strategies, these give linearised estimates of uncertainty that can provide biased

uncertainty estimates and are unable to properly quantify non-uniqueness of solutions

[Menke, 1989, Tarantola, 2005].

In recent times, computing power has advanced sufficiently that ensemble techniques

are becoming feasible for geophysical inversion problems. These commonly use

Markov chain Monte Carlo (McMC) techniques [Brooks et al., 2011] to sample an

a posteriori probability distribution based on Bayes’ theorem [Bayes, 1763]. In this ap-

proach, an ensemble of plausible solutions to the inverse problem are obtained based
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on a likelihood function and an a priori probability distribution for the unknowns.

From the posterior ensemble, likely candidate models can be extracted analogous to

the optimal models obtained from traditional inversion techniques [Sambridge and

Mosegaard, 2002]. In addition, the spread or variation of the ensemble can be statis-

tically interrogated to obtain rigorous uncertainty estimates that can identify model

parameterisation trade offs and non-uniqueness.

In general, the inversion results and corresponding uncertainty estimates can be ad-

versely affected by poor choices in the formulation of the inverse problem, for ex-

ample, in the choice of the number and thickness of layers. As a general rule, if the

problem is under parameterised or too simple then the misfits between observations

and predictions will be large and somewhat paradoxically, the uncertainties will be un-

derestimated. This is commonly observed when the grid resolution is set too coarsely

in tomographic problems. Conversely, if the problem is over parameterised, the model

fit will improve yet the uncertainties will be overestimated due to increased degrees of

freedom or trade-offs present between model parameters. This trade off between res-

olution and uncertainty is well known in geophysical inversion [Backus and Gilbert,

1968]. More generally in Bayesian statistics, this trade off is one of the motivations for

the field of Bayesian model selection [Ando, 2010].

To rigorously estimate uncertainty in a geophysical inverse problem, the impact of

model selection should be considered. Traditional approaches for when the number

of candidate models is relatively small include Bayes Factors [Kass and Raftery, 1995]

and their various approximate criteria [Akaike, 1974, Spiegelhalter et al., 2002, Ando,

2007].

An advance in McMC sampling techniques that allows dimensional changes, i.e.

changes to model parameterisation, is Reversible Jump McMC [Geyer and Møller,

1994, Green, 1995], often called trans-dimensional sampling in the geophysics commu-

nity. Since the introduction of the trans-dimensional approach to geophysics [Ma-

linverno, 2002], it has been used in a wide variety of inverse problems, including

Paleo-temperature reconstructions [Hopcroft et al., 2007] Ambient Noise Tomogra-
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phy [Bodin and Sambridge, 2009], Receiver Functions [Piana Agostinetti and Malin-

verno, 2010, Bodin et al., 2012b], Surface wave dispersion [Dettmer et al., 2012], Paleo-

plate motion reconstruction [Iaffaldano et al., 2014], Body wave tomography [Young

et al., 2013, Piana Agostinetti et al., 2015], Earth’s mantle viscosity [Rudolph et al.,

2015], the relative rotation of the Earth’s inner core [Tkalčić et al., 2013], Tsunami sea

surface deformation [Dettmer et al., 2016], 1D AEM inversion [Minsley, 2011, Brodie

and Sambridge, 2012, Minsley and Ley-Cooper, 2015], and lastly 2D AEM inversion

[Ray and Key, 2012, Ray et al., 2014]. In trans-dimensional inversion, the model pa-

rameterisation is allowed to vary as part of the inversion process. Specifically, the

complexity of the spatial features of the model are controlled by the information in

the data implicitly through relative Bayesian evidence [Sambridge et al., 2006]. This

prevents the ensemble from being dominated by too simple or overly complex model

parameterisations and leads to a natural “parsimony” in model complexity, which in

turn offers more comprehensive estimates of uncertainty as shown by Dettmer et al.

[2016].

In this chapter, the application of trans-dimensional sampling to 2D image based in-

version of time domain AEM data to demonstrate its benefits for both inversion, and

estimates of uncertainty.

4.2 Method

4.2.1 Overview

The problem domain for the trans-dimensional inversion is a 2D region along a flight

line recorded with time domain AEM observations. A standard approach is used for

the inversion of the 2D region of the subsurface with one axis in the depth direction,

and the other along the flight line or laterally. The region of interest is parameterised

as a 2D image with one column of pixels per AEM sounding in the lateral direction

and logarithmically spaced pixels in depth. The bottom most row of pixels represents
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Depth

Halfspace

Figure 4.1: A schematic figure illustrating the parameterisation of the inverse problem beneath the
flight line in an AEM survey. The conductivity of the subsurface is parameterised as a set of fixed
conductivity grid cells with regular spacing in the horizontal direction and logarithmically spaced
cells in the depth direction. The deepest row of conductivity cells represent the conductivity of the
bottom half space.

the underlying half-space layer of the problem domain. An illustrative schematic of the

parameterisation used in the inverse problem is shown in Figure 4.1.

Here the aim is to demonstrate the applicability of trans-dimensional sampling to

time domain airborne electromagnetic inversion. In a sampling approach, the forward

model that computes the predicted response from a candidate model needs to be eval-

uated on the order of 1 million times. From a practical point of view, this prohibits

the use of 2D or 3D forward modelling with current computing resources. For this

reason, this treatment is restricted to using the 1D forward model approach detailed

in Brodie and Sambridge [2006] and Brodie [2010], available as open source software

[Brodie, 2016].
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Since a 1D forward modelling approximation is used to invert the 2D structure, for

each AEM sounding an independent 1D forward model is run on the conductivity

structure represented by the grid cells directly below the AEM sounding. This assumes

that lateral heterogeneities along the flight line are smooth and do not introduce sig-

nificant modelling errors that would require 2D or 3D forward modelling [Yang and

Oldenburg, 2012].

4.2.2 The Bayesian Trans-dimensional Approach

The approach in this chapter uses Bayesian inference to assess probability density func-

tions (PDFs) on model parameters representing conductivities of the subsurface. From

these empirical PDFs, inferences on models of likely structure can be obtained using

expected values, medians or modes. An additional benefit of this approach though is

in being able to estimate uncertainties and non-uniqueness by examining the spread of

the ensemble at each point of the model. The Bayesian approach [Brooks et al., 2011,

Gelman et al., 2004] uses Bayes theorem,

p(m|d) = p(m)p(d|m)
p(d)

, (4.1)

where m is the vector of M model parameters, d is the N observed data, p(m) is

independent prior information on the model parameters (e.g. physical constraints

on the range of plausible conductivities), p(d|m) is the likelihood function and p(d)

is a normalising term commonly referred to as the evidence. Since the time domain

AEM problem involves a non-linear forward model, accurately estimating the evidence

normalisation term is not feasible analytically, although numerical approximations are

available [Skilling, 2006]. Fortunately, relative inferences without computing this term

are sufficient for both model inference and uncertainty estimates.

In time domain AEM, the observations at each point consist of a response curve(s)

representing the observed response of the secondary field from conducting bodies be-

neath the surface, an example of which is shown later. Under the assumption that a
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Gaussian noise model accurately approximates the noise resulting from measurement

and theory error, the likelihood function can be written as

p(di|m) =
1
p

(2π) j |Cr |
exp
§

−1

2
(G(m)i −di)

T C−1
r (G(m)i −di)

ª

, (4.2)

where di is the i th AEM sounding along the flight path, j is the number of time

windows in the sounding, G(m)i is the predicted response as a function of the model

parameters m, and Cr is the covariance matrix representing the potentially correlated

noise on the data.

Markov chain Monte Carlo (McMC) techniques are used to generate samples that con-

verge to the target distribution, in this case, the posterior probability density (PPD),

given by p(m|d) in (4.1). This is an iterative approach that perturbs the current model

by sampling a proposal density function Q(m→m′) to generate a new candidate model

m′. The new model is accepted, that is becomes the current model in the chain, or re-

jected meaning the previous model is retained, according to the Metropolis-Hastings

[Metropolis et al., 1953, Hastings, 1970] probability rule

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m′→m)

Q(m→m′)

�

. (4.3)

The acceptance probability terms ensure correct convergence to sampling the poste-

rior by maintaining “detailed balance” of the Markov chain(s) [Brooks et al., 2011].

The more general Metropolis-Hastings-Green [Green, 1995] acceptance criteria that

includes model dimension changes is

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m′→m)

Q(m→m′)
|J |
�

, (4.4)

where now m′may contain a different number of unknowns than m, and the additional

term |J | is the determinant of the Jacobian that represents the variable transformations

that may occur when model dimension or parameterisation changes.



§4.2 Method 159

Following Hawkins and Sambridge [2015] and Chapter 3, the trans-dimensional tree

approach is used with a wavelet parameterisation to represent the image based model.

In this approach, the model m consists of a hierarchy of wavelet coefficients, from

coarse scale to fine, that are trans-dimensionally sampled to reconstruct the subsur-

face distribution of conductivity. The benefits of this approach compared to simply

sampling over all pixels is that the parameterisation can adapt to different scale length

features. This in turn results in better constraint on the parameters of the inversion and

more robust estimates of the uncertainty. Earlier trans-dimensional approaches exist

that parameterise 2D regions of interest in terms of Voronoi cells, however the trans-

dimensional tree approach with wavelet basis has been demonstrated to be more effi-

cient for geophysical imaging problems, both in terms of computational time and con-

vergence rates. The choice of wavelet basis also leverages the innate ability of wavelets

to decorrelate and compress images meaning complex subsurface features can be repre-

sented with fewer parameters.

The operation of the trans-dimensional tree is briefly recapitulated here with full details

in Hawkins and Sambridge [2015] and Chapter 3. In Figure 4.2, an example abstract

tree of wavelet coefficients is shown on the left. In this schematic of the tree, active

coefficients are shown as solid dots. Inactive nodes equate to having the corresponding

wavelet coefficient set to zero. From top to bottom, each level corresponds to pro-

gressively finer structure. Through the application of the inverse wavelet transform

using a chosen wavelet basis, this hierarchy of wavelet coefficients can be mapped into

a conductivity image shown on the right. For the simulation studies presented, the

bi-orthogonal wavelet basis commonly referred to as CDF 9/7 [Cohen et al., 1992] is

used which provides good compression of information, as evidenced by its use in the

JPEG 2000 image compression standard [Unser and Blu, 2003]. The image constructed

from the model of wavelet coefficients is then used by the forward model to generate

synthetic response curve predictions. These predictions are then compared with the

observations in the likelihood function (4.2).

The trans-dimensional tree algorithm adds and removes nodes from the abstract tree.
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Figure 4.2: A cartoon illustration of the Trans-dimensional Tree method with wavelet parameterisa-
tion of the sub-surface conductivity. On the left the sub-surface conductivity is represented abstractly
as a hierarchy of wavelet coefficients with different scale lengths. On the right is shown a correspond-
ing sub-surface conductivity image illustrating how the trans-dimensional tree approach can adapt
local to varying scale lengths of heterogeneity.
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At each step of the Markov chain, the randomly selected perturbations of the current

model are: add a new wavelet coefficient to the tree, remove a wavelet coefficient from

the tree, or change the value of an existing wavelet coefficient. The probability of

adding a new wavelet coefficient is set to the same as that of removing a wavelet co-

efficient to maintain detailed balance. In the general case, the starting model and the

chain of models during convergence are often poor fits to data and are discarded as part

of the “burnin” process. The remaining “chain” of candidate models then forms the

ensemble from inferences can be made.

Common problems in sampling algorithms are poor convergence due to poor tuning

of proposal distributions, sampling local minima due to non-linear effects and the re-

lated problem of the difficulty of sampling multi-modal posterior distributions. To

overcome these issues, Parallel Tempering [Earl and Deem, 2005, Dosso et al., 2012,

Sambridge, 2014] is used to more effectively explore the posterior space during inver-

sion. In this approach, multiple Markov chains are run at different temperatures which

reduce the influence of the likelihood in the modified acceptance criteria

α(m→m′) =min



1,
p(m′)

p(m)

�

p(d|m′)
p(d|m)

� 1
T Q(m′→m)

Q(m→m′)
|J |


 , (4.5)

where T is the temperature. A set of logarithmically spaced temperatures with multi-

ple chains at each temperature are run with statistical information collected from the

set of Markov chains at a temperature of one. At higher temperatures, the influence

of the likelihood ratio is reduced and this allows the high temperature chains to more

actively explore the prior space. Periodically, model exchanges are attempted between

chains at different temperatures which allows sharing of information about posterior

regions of interest between chains. This results in better sampling of non-linear prob-

lems and more robust and effective sampling of the entire prior space to give greater

confidence in the final results, that is a local minimum or a single modality in a multi-

modal posterior does not bias the results. Similar probabilistic Bayesian approaches

have previously been reported [Rosas-Carbajal et al., 2014, Hauser et al., 2015], how-
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ever in trans-dimensional sampling the observations are used to adapt the resolution

as required instead of a priori fixed a global correlation length. Additionally, paral-

lel independent Markov chains with parallel tempering are used in this study to more

thoroughly explore the range of possible solutions.

4.3 Application to Broken Hill Managed Aquifer

Recharge (BHMAR) Project

4.3.1 Case study overview

This case study uses helicopter borne time domain AEM data acquired as part of the

Broken Hill Managed Aquifer Recharge (BHMAR) project, a Geoscience Australia

groundwater study. The project’s aims were to investigate groundwater sources to help

future proof the township of Broken Hill’s water supply during times of drought and

better manage water resources [Lawrie, 2016].

The AEM data were acquired in 2009 using a SkyTEM system [Sorensen and Auken,

2004] in which the transmitter loop and receiver coils were carried on a frame towed

below a helicopter. Interleaved low moment (LM) and high moment (HM) data were

acquired at 222 Hz and 25 Hz base frequency respectively. Off time data were recorded

at delay window times shown in Tables 4.1 and 4.1. Mean response curves over a

representative flight path for both moments are shown in Figure 4.3.

In time domain AEM, each response curve is measured in a series of time windows.

As can be seen from Figure 4.3, and as evidenced by the necessity of a log scale for

clarity, the response magnitude decays with time suggesting a non-stationary noise

model is required. For the studies herein, an empirically derived non-stationary noise

model is used where the noise is assumed to be independent Gaussian distributed and

the variance is a function of the amplitude of the observed response and a constant

background noise level
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Figure 4.3: The mean of the response curves from a representative section of the BHMAR survey for
the Low Moment and High Moment are shown with a solid black line in (a) and (b) respectively. The
vertical scale is in log of the magnitude for clarity. The grey shaded regions represent the range of
possible response curves over the studied flight line.

σ2
i = (r |di |)2+ a2

i , (4.6)

where σi is the standard deviation of the noise on the i th time window, r is the relative

level of noise as a scalar multiple of the observed magnitude |di |, and ai is the standard

deviation of the additive background noise considered constant for each window. The

time windows and level of additive noise is shown for both the low and high moment

signals in Tables 4.1 and 4.2. For the relative noise, a reference level of 3.6% was used

and hierarchical sampling [Bodin et al., 2012a] is used to estimate a scaling term of this

reference, i.e. r = 0.036λ where λ is the hierarchical scaling term.

4.3.2 Simulation studies

To test the inversion of time domain AEM data with the trans-dimensional tree ap-

proach using a wavelet parameterisation, an initial synthetic experiment is conducted

using a known true model. A random flight path was generated that included ran-

dom walk behaviour to simulate changes in altitude and orientation of the transmit-

ter/receiver assembly. Using this flight path, synthetic response curves were generated

using the 1D forward model. Random noise was then added to the observations ac-
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Window Start Window End Constant Noise
(µs) (µs) (×10−12)

11.39 15.00 57.76100
15.39 19.00 7.71540
19.39 24.00 5.78490
24.39 31.00 3.91640
31.39 39.00 3.15020
39.39 49.00 2.51050
49.39 62.00 2.29120
62.39 78.00 1.92100
78.39 99.00 1.73300
99.39 125.00 1.52900
125.39 157.00 1.22580
157.39 199.00 0.96876
199.39 250.00 0.90323
250.39 315.00 0.82181
315.39 397.00 0.74835
397.39 500.00 0.62648
500.39 630.00 0.62901
630.39 793.00 0.57157
793.39 999.00 0.51475

Table 4.1: The parameters for the time windows and additive noise used in the noise model for the
SkyTEM system in this study for the low moment signal.

Window Start Window End Constant Noise
(µs) (µs) (×10−12)

78.39 99.00 0.255450
99.39 125.00 0.208150
125.39 157.00 0.191440
157.39 199.00 0.159200
199.39 250.00 0.145980
250.39 315.00 0.134020
315.39 397.00 0.127120
397.39 500.00 0.108440
500.39 630.00 0.102140
630.39 793.00 0.097184
793.39 999.00 0.090881
999.39 1258.00 0.084579
1258.39 1584.00 0.077776
1584.39 1994.00 0.069864
1994.39 2511.00 0.066747
2511.39 3161.00 0.059365
3161.39 3980.00 0.053300
3980.39 5011.00 0.048430
5011.39 6309.00 0.042199
6309.39 7942.00 0.037096
7942.39 9742.00 0.035710

Table 4.2: The parameters for the time windows and additive noise used in the noise model for the
SkyTEM system in this study for the high moment signal.
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cording to the noise model described in the previous section to create synthetic obser-

vations.

The inversion was started with a constant conductivity value of 0.25 S/m in all cells of

the model, including the half space. The models could be initialised by sampling from

the prior, for example, random models, or through some pre-conditioned or optimised

model, for example, the results obtained using traditional regularisation techniques

could be used as a starting point. However since the trans-dimensional tree is able to

represent the conductivity model across multiple scales, the performance of the method

is highlighted by initiating from a simple (homogeneous) structure.

The domain was parameterised as a region 200 metres deep to the half space layer with

16 pixels in depth (i.e. 15 layers plus the half-space layer) and 16 pixels laterally. For

the priors, a uniform prior on the number of wavelet coefficients is set between 1 and

256. The prior on all wavelet coefficients was set to be uniform between -0.5 and 0.5.

Setting the prior on a wavelet coefficient is non-intuitive. A method of understanding

the range of values an image can take given such a prior on the corresponding wavelet

coefficients is to sample from the prior and examine the statistics of the resulting con-

ductivity images. The result of this is shown in Figure 4.4 where this experiment is

repeated with increasingly larger prior widths. As can be seen from the figure, a uni-

form range of between -0.5 and 0.5 gives a reasonable distribution of conductivities.

Simple coefficient priors have been specified here but more advanced techniques us-

ing past inversions or training images would likely improve performance [Lochbühler

et al., 2015].

The prior on the wavelet coefficients can have subtle effects on the final outcome,

so a second inversion was run with double width priors to test the prior sensitivity,

similar to Dettmer et al. [2016], with negligible observed differences. The prior on the

hierarchical noise scaling parameter was set to a Jeffreys prior which expresses the lack

of knowledge of the relative error scale [Jeffreys, 1939, Jaynes, 2003].

Four parallel chains with four temperatures logarithmically spaced with temperatures

between 1 and 10 were used. Convergence was monitored by comparing the likeli-
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Figure 4.4: The histogram of a central point of the images generated from sampling from uniform
wavelet coefficients with varying widths. The solid line corresponds to a uniform prior on the wavelet
coefficients of -0.5 . . . 0.5 as used in this study, the dashed line -1.0 . . . 1.0 and the dotted line -2.0 . . .
2.0. The distributions of the conductivities given a prior on the wavelet coefficients is well behaved
and follows a generalised Gaussian distribution centred on zero.
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hood, the hierarchical noise scaling parameter, and the number of wavelet coefficients

required by the parallel chains to ensure they are sampling about the same region.

Qualitative indications of convergence are shown in Figure 4.5 where in (a) the un-

normalised negative log likelihood (NLL), analogous to the misfit in optimisation

regimes, is plotted against Markov chain step, while in (b) the hierarchical error scaling

parameter and (c) the number of model parameters or wavelet coefficients is plotted

against chain step.

In Figure 4.5(a) the negative log likelihood of each independent chain is correctly sam-

pling about the same value. In this synthetic experiment there are 640 observations

(16 lateral columns with 40 time windows for each column). When the noise model

is a good match for the true noise, the un-normalised NLL will sample about a value

around half the number of observations, that is 320 in this case. This value, defined as

the χ 2 limit, is shown as a red dashed line in the Figure. Similarly, in (b) each of the

independent chains the hierarchical error scaling parameter has converged to a value of

approximately one indicating that noise model is correctly recovered. Finally, in (c) the

number of wavelet coefficients has converged to approximately 20 and is much fewer

than the maximum of 256 wavelet coefficients from a 16 x 16 grid. This illustrates the

power of trans-dimensional sampling in that it automatically parsimoniously samples

the number of model parameters to those required by the data which can improve both

sampling efficiency as well as the inversion result itself.

In Figure 4.6 the true synthetic model is shown in (a) while the mean, median and

mode of the ensemble are shown in (b), (c) and (d) respectively. It can be seen in the

figure that these model estimates have generally recovered the structure quite well with

the exception of the parts of the model below 100m where the models overestimate the

conductivity. In (e) and (f) the top most 50m of the true and ensemble median model

are displayed to highlight the good recovery of the true model nearer the surface.

The erroneous features at depth are to be expected, since resolving power of AEM

systems decays with distance. The key point of this approach is that this decay in

resolvability can be resolved in the posterior uncertainties. To illustrate that this is
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Figure 4.5: The history of 3 parameters that can be used as qualitative indications of convergence.
These plots are monitored until each of the chains appears stationary about a similar level. Posterior
samples are collected once this qualitative criteria is met. In (a) is the negative log likelihood, in
(b) the hierarchical error scaling parameter, and in (c) the number of model parameters or wavelet
coefficients required. In each of the plots, the history of the independent chains in different colours
on the left and on the right is the posterior histograms with the black histogram representing the
histogram of all chains combined. In (a), the red dashed line shows the χ 2 theoretical limit based on
half the number of observations (640).
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Figure 4.6: Conductivity shown as log S/m. (a) shows the simulated true model while (b) is the mean
of the ensemble obtained from the trans-dimensional inversion. Similarly, (c) is the median and (d)
is the modal model. The deep low conductivities in the true model are poorly constrained and not
recovered by the inversion. Panels (e) and (f) show the top most 50m of the domain where the true
model (e) and the median of the ensemble (f) are very similar. In the inversion, no explicit spatial
smoothing is imposed. The lateral scales of variation recovered in the inversion results are due to the
adaptive trans-dimensional parameterisation.
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reflected in uncertainty results from the inversion, in Figure 4.7 shows both the magni-

tude of half the 95% highest posterior density (HPD) width [Hyndman, 1996] and two

times the standard deviation for each conductivity cell in the region. The highest pos-

terior density (HPD) width represents the minimum width (highest density) in log of

conductivity that contains 95% of the ensemble models. At any point in the model, as

an approximation the uncertainties are ± 1

2
HPD about the mean, median or mode. For

comparison, twice the standard deviation at each point is shown which also approxi-

mately corresponds to the range of 95% of the models in the ensemble. In general, the

HPD interval is comparable to the standard deviation in magnitude, however this is

not always the case. The standard deviation assumes the posterior is Gaussian in shape

and this assumption is often violated, particularly in non-linear problems. Regardless,

the trend in both measures of uncertainty show consistent increase of uncertainty with

depth.

With this simulation study, it has been demonstrated that laterally varying conductiv-

ity models can be resolved with the combination of the empirical noise model, and

the trans-dimensional tree sampling approach using a wavelet basis. The amplitude of

the data noise is also estimated via inclusion of a hierarchical scaling term in the noise

model.

4.3.3 Real data

In this study, part of a flight-line of time domain AEM data recorded as part of the

BHMAR project is inverted. A small section of a flight line of approximately 3km was

selected, which consisted of 32 LM and HM soundings. The inversion was initialised

with all Markov chains so to a model with homogeneous conductivity of 0.25 S/m.

The same empirical noise model as described earlier is used with hierarchical sampling

to estimate an additional amplitude term.

The inversion was run on a cluster with 8 parallel tempered chains of the 8 temper-

atures each giving a total of 64 independent chains. The 8 temperatures were spaced



§4.3 Application to Broken Hill Managed Aquifer Recharge (BHMAR) Project 171

(a)

0 500 1000 1500 2000 2500 3000
Along Flight Line (m)

−250

−200

−150

−100

−50

0

D
e
p

th
 (

m
)

(b)

0 500 1000 1500 2000 2500 3000
Along Flight Line (m)

−250

−200

−150

−100

−50

0

D
e
p

th
 (

m
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Conductivity Error (log S/m)

Figure 4.7: In this figure simple estimates of uncertainty, in (a) is half the magnitude of the 95%
highest posterior density width in each grid cell. In (b) is twice the standard deviation at each point
in the ensemble which is an approximation of the credible interval that assumes the posterior at each
point is Gaussian. From these two estimates of uncertainty, features become increasingly uncertain
with depth.
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logarithmically between a temperature of 1 and 10. The inversion was performed in-

crementally in lots of 200,000 iterations until the chains appeared converged. After

convergence, the posterior ensemble was collected by running for a further 1 million

iterations. The inversion process took approximately 27 hours (using 512 cores on a

cluster with Intel Xeon CPUs).

Figure 4.8 shows the convergence of the negative log likelihood in (a), the hierarchical

error scaling parameter in (b), and the number of wavelet coefficients in (c). These

plots show well converged chains both sampling around the same region of the pos-

terior. The hierarchical data noise scaling parameter has converged to a scaling of ap-

proximately 0.6 suggesting a relative error closer to 2.2% is perhaps more appropriate

for this data. The modal number of coefficients required to represent the solution is

approximately 120 from a uniform prior of between 1 and 1000 coefficients (of a pos-

sible 1024 for this 32 sounding by 32 layer system). While not the intended purpose

of trans-dimensional sampling, this can also be seen as reducing computational effort

as instead of sampling 1024 individual pixels, the problem is reduced to sample over a

far smaller number of coefficients. More importantly, it has been observed elsewhere

that trans-dimensional sampling results in a better constrained inversion with better

estimates of uncertainties than fully sampling the entire domain [Dettmer et al., 2016].

In Figure 4.8(a) the negative log likelihood has converged to below the χ 2 limit. There

can be many reasons why this can occur but the most likely is that there is correla-

tion in the noise in the observations that is currently not taken into account by the

empirical noise model. An approach to verify and/or remedy this is to compute the

covariance of the residuals obtained from the inversion as in Dettmer et al. [2016] and

re-invert the data using this empirically derived covariance matrix in (4.2). Understand-

ing the covariant attributes of the noise inherent in this system would be a potential

area of future research.

In Figure 4.9(a) is shown the median of the ensemble as a representative estimate of the

likely distribution of conductivity that generated the measured observations. The me-

dian compares well with previously obtained results using the a conventional laterally
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Figure 4.8: The qualitative indications of convergence of the simulation result for the section of
data from the BHMAR project. In (a) are individual chains negative log likelihood as a function of
iteration as different colours and to the right, histograms of the likelihood with a combined histogram
shown in black. Similarly in (b) is the history and posterior histograms of the individual hierarchical
error scaling parameter, and in (c), the number of wavelet coefficients required by the inversion.
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constrained deterministic least squares approach with damping and smoothing regular-

isation shown in Figure 4.9(b) [Lawrie, 2016]. The broad features of the inversions

are comparable, however there are two striking differences. The trans-dimensional

approach appears to have recovered a deep high conductivity region beginning at ap-

proximately 75m deep at the left of the region, and a low conductivity anomaly at

approximately 40m deep to the right of the region.

In Figure 4.10 the comparison is shown again of the median of the ensemble to the

earlier result, zoomed in on the top 50m to examine detail near the surface. Here

the trans-dimensional approach achieves similar structure but with greater detail and

higher magnitude conductivity anomalies than the traditional least squares approach

with damping and smoothing regularisation. The overall amplitude of variations is

higher in the trans-dimensional solution suggesting that the least squares solution may

have been over damped or smoothed. Additionally, with the trans-dimensional tree

approach, the trade off between noise level and complexity is explored through the use

of the hierarchical noise scaling parameter.

4.3.4 Ensemble appraisal

A useful feature of a trans-dimensional ensemble based approach is that it is a method

that can robustly estimate uncertainties in highly non-linear inverse problems. This

uncertainty may become critical in decision making processes relying on AEM studies,

for example, determining optimum location of sites for hydro-geological investigations.

Common estimates of uncertainty, such as computing the Hessian in a least squares

optimisation approach, give linearised estimates which assume a Gaussian distribution

for the posterior. This can lead to poor estimates of uncertainty, both under and over

estimates. In a Bayesian sampling approach, point wise standard deviations and HPD

intervals can be computed which give similar single value representations of model

errors. Once again though, these assume a Gaussian distributed posterior and a single

modality posterior respectively, and similarly result in poor estimates of uncertainties
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Figure 4.9: The median of the ensemble from the inversion of data from the Broken Hill Managed
Aquifer Recharge (BHMAR) project using the Trans-dimensional tree approach is shown in (a). For
comparison, the inversion result obtained from traditional least squares inversion with damping
and smoothing regularisation is shown for the same area in (b).
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Figure 4.10: As in Figure 4.9 however here only the top 50m is shown of the median of the ensemble
in (a) to better examine the detail near the surface. (b) shows the least squares result for the same
region.
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if these assumptions are violated.

A more effective method of examining the potential uncertainties is to look at 1D

marginal posterior probabilities. To give an example, 1D marginal posterior densities

along depth profiles at points of interest are shown in Figure 4.11 where (d) shows the

model domain overview and location of transects along depth, and individual marginal

probabilities for the respective profiles are shown in (a), (b) and (c). In these three

plots, relative probability of the conductivity is shown in shaded colour (darker mean-

ing higher probability). Also shown is the median with a red dotted line, and the

highest posterior density (HPD) minimum and maximum (assuming a unimodal dis-

tribution) with green dashed lines.

A common feature of these marginal plots is their high degree of multi-modality. Even

though the likelihoods, hierarchical error scaling and number of model parameters

have converged, the posterior shows strong variations indicative of multiple conduc-

tivity profiles supported by the observations. This is characteristic of a forward model

that is diffusive in nature and can not be quantified in optimisation approaches with

simplistic linearised estimates of uncertainty.

Transect A was chosen to investigate the high conductivity anomaly that was recovered

by the trans-dimensional approach but not seen in the traditional least squares solution.

One can clearly see in Figure4.11(a) that, though the spread of possible conductivities

is large from this depth, the support for conductivity around 1 S/m or greater from

approximately 75m deep is reasonably strong down to 140m, but deeper than this

inference becomes questionable. In contrast, transects B and C show strongest support

for conductivities less than 1 S/m in the deeper parts of the model. This strongly

suggests that the high conductivity anomaly is not an artefact and in fact constrained

by the observations, albeit weakly given the spread of the values. The least squares

approach fails to see this anomaly possibly due to over damping to a reference model.

In Figure 4.12, the marginal probabilities are shown again for the top 50m of the do-

main in order to highlight the near surface structure. In transect B, in the top 5m

there is a feature that shows strong layering in the median model. In examining the
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Figure 4.11: The marginal probabilities along vertical profiles with depth at three locations in the
modelled domain. The location of the profiles is shown in the median model image in (d). The
marginal probability densities for profiles A, B, C are shown in (a), (b), (c) respectively. The blue
shading represents the relative probability of the conductivity at a given depth (darker equates to
more likely). The median is shown over plotted with a red dotted line, and green dashed lines are
used to show the width of the highest posterior density (HPD) region.
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marginals for this transect, in comparison to the other transects, there is a larger uncer-

tainty and multi-modality along this transect in the top 5m. This may be caused by a

conductive surface feature causing interference of the observations, or another source

of observational noise.

Finally, referring to Figure 4.12, in transect C there is a low conductivity anomaly at

approximately 40m. In examining the 1D marginal in (c), at this point there is a strong

bi-modality between two low conductivity values and the median has been perturbed

toward the lowest of these. The modal value at this depth is the higher of the two

bi-modal peaks suggesting that this low conductivity anomaly is less likely.

It is clear from the marginal profiles shown at three locations, and in particular this last

marginal profile, that presenting the results of a conductivity subsurface in terms of a

single model estimate, either from an optimised solution or the mean or median of an

ensemble solution, lacks a great deal of the information on the non-uniqueness of the

solution. It is only through careful and rigorous interrogation of the marginal distribu-

tion of conductivities that constraint of the inversion at all points of the model domain

can be evaluated. Ensemble based approaches require considerably more attention by

the practitioner, but likewise provide a greater degree of richness in interpretation of

the model constraint.

4.4 Hierarchical Laplacian Prior

One of the draw backs of the trans-dimensional tree with a wavelet parameterisation is

the difficulty in the setting of the prior. Using numerical studies such as those presented

in Figure 4.4 are useful to gauge the range of potential variation in the model, but do

little to examine the sensitivity of inversion to the prior.

An approach to remedying this is to use a hierarchical prior, sometimes called a hyper

prior [Malinverno and Briggs, 2004]. Much like the hierarchical error estimate where a

scaling of the noise level is inverted for as part of the inversion process, in a hierarchical

prior the scaling “width” of the prior can be inverted for during the inversions. A
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Figure 4.12: As in Figure 4.11, the marginal posterior probabilities for the three indicated transects,
this time zoomed in on the top 50m of the domain.
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hierarchical prior proposal will randomly perturb this width scaling parameter and

while the likelihood will not change, the prior ratio will and this proposal can be

accepted or rejected with the standard Metropolis-Hastings acceptance criteria. For

uniform priors, this can be problematic as they do not have infinite support and as

such a proposal that narrows the width of the uniform prior may cause one or more

model parameters to be out of the uniform prior range and therefore invalid.

A way to overcome this is to use a wavelet coefficient prior with infinite support.

In early work on image compression using wavelet transforms [Antonini et al., 1990,

1992], numerical studies of the wavelet coefficients of large numbers of images showed

that the distribution of the coefficients was best fit by a generalised Gaussian distribu-

tion with a shape parameter of approximately 1.7. For reference a Laplace distribution

is a generalised Gaussian with a shape parameter of 1, a Gaussian distribution has a

shape parameter of 2 and a uniform distribution has a shape parameter of∞.

In seismic tomography, in recent years many studies have used a wavelet based param-

eterisation with a l1 norm regularisation [Chiao and Kuo, 2001, Simons et al., 2011b,

Chevrot et al., 2012, Charlety et al., 2013, Fang and Zhang, 2014]. The l1 norm is in

a Bayesian sense analogous to a Laplacian prior. A Laplacian prior also more closely

resembles approaches using “Spike and Slab” priors for Bayesian compressive sensing

approaches [Ishwaran and Rao, 2005, He and Carin, 2009, Vera et al., 2009, He et al.,

2010]. For these reasons, a Laplacian prior for infinite support seems to be an appro-

priate choice.

Rather than setting a fixed width for the Laplacian prior for the inversion, this width

is inverted for as part of the inversion, in much the same way as the hierarchical error

scaling term. To achieve this, a prior needs to be set on the width of the Laplacian

prior. The common approach to this is to use the conjugate distribution to that of

the Laplacian, the inverse Gamma distribution [Park and Casella, 2008]. Assigning the

inverse Gamma distribution as the prior on the Laplacian width parameter removes

the need to configure a fixed width parameter, however this difficulty has been passed

up the chain to the parameters of the inverse Gamma distribution. The probability
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density function of the inverse Gamma distribution is

p(x) =
βα

Γ (α)
x−α−1 exp

�

−β
x

�

, (4.7)

where α is a shape parameter andβ is the rate parameter. The choice used in this study

is to set α to one. This results in a relatively flat prior on the width of the Laplacian

distribution. For the rate parameter, this is configured by setting the desired mode of

the inverse Gamma distribution using the relationship

M o =
β

α+ 1
, (4.8)

with M o the mode of the distribution. The reasoning behind this is that there is

some guidance as to a good starting point for the width of the Laplacian distribution

from the ensemble of plausible models from the previous inversion. In Figure 4.13,

the distribution of wavelet coefficients from the ensemble of models is shown and the

Laplacian distribution with a width parameter of 0.5 is plotted with a red dashed line.

The two distributions are quite close, further justifying the choice of a Laplacian prior.

To formulate a proposal to perturb the prior width, recall that the prior on the model

is constructed as

p(m) = p(c|T , k)p(T |k)p(k), (4.9)

where k is the number of wavelet coefficients, T is the tree structure prior, and c

is the vector of wavelet coefficients. It is this last probability that is affected by a

hierarchical prior perturbation, whilst the rest is unchanged. The hierarchical prior

can be incorporated by adding dependencies writing

p(c|T , k) = p(c|T , k , b )p(b |α,β), (4.10)

where b is the width of the Laplacian distribution, and α and β are the parameters for
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Figure 4.13: From the ensemble of wavelet coefficients obtained from the inversion, a probability
distribution can be constructed, shown with the black curve. Over plotted with a red dotted line is
a Laplacian distribution with the width parameter of 0.5.
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the inverse Gamma distribution. A single prior is used for all wavelet coefficients and

so the first part of the expression above is

p(c|T , k , b ) =
k
∏

i=1

1

2b
exp

� |ci |
b

�

, (4.11)

For a proposal to change the hierarchical prior that uses a symmetrical proposal dis-

tribution, the likelihood and proposal ratios cancel, reducing the acceptance criteria to

the component of the prior ratio dependent on b in (4.10) or

α=min

�

1,
p(c|T , k , b ′)p(b ′|α,β)

p(c|T , k , b )p(b |α,β)

�

, (4.12)

where b ′ is the proposed Laplacian distribution width. This additional proposal was

incorporated into the inversion method of the previous section and re-run. The quali-

tative criteria used to judge convergence are once again shown in Figure 4.14, this time

with the addition of the hierarchical prior convergence. As can be seen in the figure,

the convergence appears similar to the previous inversion in Figure 4.8.

The median of the ensemble is shown in Figure 4.15 and Figure 4.16 for the near surface

features (top 50m). From both figures, it can be concluded that the resulting structure

is very similar suggesting that the initial choice of a uniform prior was reasonable and

the addition of the hierarchical prior is unnecessary. The issue that the hierarchical

prior resolves however is the difficulty of choosing the prior width of a uniform prior.

If a uniform prior is configured too narrow, wavelet coefficients can be truncated result-

ing in artefacts in the inversion. Similarly, if the uniform prior is too wide, acceptance

rates in the birth/death proposals can be adversely affected resulting in poor mixing. In

contrast, with the Laplacian prior there is infinite support and the width of the hierar-

chical Laplacian prior adapts to the observations, increasing the birth/death acceptance

rates resulting in better mixing.

These results demonstrate that a hierarchical prior can be used to invert for an un-

known prior width for wavelet coefficients. Statistics gained from a first inversion
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Figure 4.14: This figure gives qualitative indications of convergence of the simulation result for the
section of data from the BHMAR project. In (a) are the individual chains negative log likelihood
as a function of iteration as different colours and to the right, histograms of the likelihood with
a combined histogram shown in black. Similarly in (b) is the history and posterior histograms of
the individual hierarchical error scaling parameter, and in (c), the number of wavelet coefficients
required by the inversion.
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Figure 4.15: The median of the ensemble from the inversion of data from the Broken Hill Managed
Aquifer Recharge (BHMAR) project using the Trans-dimensional tree approach with a hierarchical
Laplacian prior is shown in (a). For comparison, the inversion result obtained in the previous section
is shown for the same area in (b).
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Figure 4.16: As in Figure 4.15 however here only the top 50m of the median of the ensemble is shown.
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were useful to guide the setting the parameters of the hierarchical prior, that is, the

parameters of the inverse Gamma distribution. From the posterior distribution of the

Laplacian distribution width, this proved to be a good estimate. Through the addition

of the hierarchical prior, the sensitivity of the final result specification of the wavelet

coefficient prior has effectively been removed to give a more thorough investigation of

the plausible model/prior space.

The benefit of the hierarchical Laplacian prior is the decreased sensitivity to poor spec-

ification of the prior in that a likely value for the modal Laplacian width parameter is

set, but the inversion adapts this width to suit the data. A uniform prior on the wavelet

coefficients, if poorly specified, can result in truncation of wavelet coefficients or poor

birth and death acceptance rates which hinder convergence. For trans-dimensional tree

inversions with wavelet parameterisations, the hierarchical Laplacian prior is preferable

to fixed uniform coefficient priors.

4.5 Covariant Noise Model

In the previous section, much like the first inversion, the likelihood converges below

the theoretical χ 2 limit. A potential cause of this is dependence or correlation between

observations. The basic underlying physics of this problem, that is, different frequen-

cies having different sensitivities to depth, suggest that this would be the case, yet in

the previous two inversion an empirically derived noise model has been used, but with

independent errors.

In previous studies where multiple passes over a single flight line have been performed,

correlated errors can be estimated [Green and Lane, 2003]. In the case here, and in

most cases, there will be a single pass over each flight line.

A general benefit of a sampling approach is the posterior statistical inference that can

be performed on the ensemble, both in terms of model parameters, but also for residual

analysis. To examine the effect of correlated noise on the result, the covariance matrices

for the residuals of both the high and low moment signals can be computed.
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Figure 4.17: These figures shows the log10 of the magnitude of the covariance for the high (a) and low
(b) moment signals obtained from the previous run using the ensemble residuals.

The covariance matrices are shown in Figure 4.17 and due to their spanning of several

orders of magnitude and including negative values, the log10 of the magnitudes are

plotted. Their properties along the diagonal show good agreement with the empirical

noise model used previously but there is strong off diagonal structure.

A final inversion was run using the hierarchical Laplacian prior and the covariant noise

model estimated from the previous run. A hierarchical scaling term was included as

previously used, that is, the covariance matrix used in the likelihood function is

Ce = λC
′
e (4.13)

where λ is the scaling term, C′e is the covariance matrix obtained from the residuals and

Ce is the covariance matrix used in the likelihood function. The convergence metrics

used before are once again shown for this inversion that incorporates covariance in

Figure 4.18.

As can be seen, the hierarchical scaling parameter has converged to a much lower value

than in the two previous inversions, indicating that the estimated covariance is too

large in magnitude. Now however, the likelihood has converged to the correct χ 2 limit

indicating that the noise model in the inversion is closer to the truth. The process of

estimating covariance from the residuals can be iterated to try and improve the noise
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Figure 4.18: This figure gives qualitative indications of convergence of the simulation result for the
section of data from the BHMAR project. In (a) are the individual chains negative log likelihood
as a function of iteration as different colours and to the right, histograms of the likelihood with
a combined histogram shown in black. Similarly in (b) is the history and posterior histograms of
the individual hierarchical error scaling parameter, and in (c), the number of wavelet coefficients
required by the inversion.
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model further, however the robustness of the median of the ensemble compared to

the previous inversion as shown in Figure 4.19 and Figure 4.20 suggest that there only

small incremental improvements could be made.

As a final comparison, comparison transects of the three inversion at the three separate

locations are shown in Figures 4.21, 4.22 and 4.23. The three inversions are in broad

agreement with each other, but a noticeable difference, particularly in Figures 4.21 and

4.23 is that the inversion using covariance, plot (c) in the figures, has a narrower dis-

tribution of conductivities at the deeper depths. In plot 4.22 this result is not so clear.

This suggests that the addition of a covariant noise model has improved the sensitivities

to depth. Note however the high conductivity anomaly that was present in both in-

versions using the empirical noise model, Figure 4.21 (a) and (b), has disappeared with

the inclusion of a covariant noise model.

4.6 Summary

The application of a novel trans-dimensional sampling technique using a wavelet pa-

rameterisation to the inversion of time domain AEM data has been demonstrated.

The new approach, while more computationally costly, provides quantitative insights

on the robustness of residual features in the model as well as insight into the poten-

tial non-uniqueness of the inversion and more rigorous estimates of uncertainties. It

achieves this through full solution of the physical model at each step, albeit with a 1D

layered Earth approximation. This means it is not necessary to linearise the problem

for the estimation of the conductivity field and the uncertainties.

In the trans-dimensional approach, there is no need for damping and smooth regular-

isation required by traditional least squares optimisation approaches. The damping

penalising norms constrain conductivities toward an a priori reference model and this

can result in underestimates of conductivity magnitudes for weakly informative data

and consequently result in failure to resolve features and underestimates of uncertain-

ties.
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Figure 4.19: The median of the ensemble from the inversion of data from the Broken Hill Managed
Aquifer Recharge (BHMAR) project using the Trans-dimensional tree approach with hierarchical
prior and covariant noise model is shown in (a). For comparison, the inversion result obtained in
the previous section is shown in in (b).
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Figure 4.20: As in Figure 4.19 however this time only the top 50m of the median of the ensemble is
shown.
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Figure 4.21: The marginal probabilities of three different inversion at transect A. (a) is the original
inversion, (b) with hierarchical prior and (c) with hierarchical prior and covariant noise model. The
blue shading represents the relative probability of the conductivity at a given depth (darker equates
to more likely). The median is shown over plotted with a red dotted line, and green dashed lines are
used to show the width of the highest posterior density (HPD) region.
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Figure 4.22: The marginal probabilities of three different inversion at transect B. (a) is the original
inversion, (b) with hierarchical prior and (c) with hierarchical prior and covariant noise model. The
blue shading represents the relative probability of the conductivity at a given depth (darker equates
to more likely). The median is shown over plotted with a red dotted line, and green dashed lines are
used to show the width of the highest posterior density (HPD) region.
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Figure 4.23: The marginal probabilities of three different inversion at transect C. (a) is the original
inversion, (b) with hierarchical prior and (c) with hierarchical prior and covariant noise model. The
blue shading represents the relative probability of the conductivity at a given depth (darker equates
to more likely). The median is shown over plotted with a red dotted line, and green dashed lines are
used to show the width of the highest posterior density (HPD) region.
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The trans-dimensional approach is able to explore a larger range of conductivities and

therefore show a larger range of conductivity profiles that plausibly fit the observa-

tions given the forward modelling and noise estimation. Similarly, smoothing pe-

nalising norms by their nature reduce resolvability of conductivity contrasts. In the

trans-dimensional approach, the inversion adapts to the resolvable features required to

support the observations rather than a priori imposing, via a smoothing weight, an

upper limit on the resolution of the model.

Additionally, through hierarchical Bayesian sampling, the sensitivity of the inversion

to a noise model can be explored through hierarchical scaling terms, and likewise, the

prior through hierarchically sampling the prior width. This in a sense integrates out

the sensitivity to these parameters in the inversion giving greater confidence that the

results aren’t driven by poor or biased choices.

As stated in the discussion, the inversion took approximately 27 hours to complete on

a large computer cluster. This represents a serious impost in terms of computational

time over and above traditional least squares optimisation techniques. The reason for

this is a least squares optimisation approach may require hundreds of forward model

evaluations, whereas in a complex model, a sampling approach may require millions of

forward model evaluations and this large number of forward model evaluations is by

far the dominant computational effort of the inversion. As access to super-computing

facilities becomes widespread it is envisaged that this negative will be outweighed by

the benefits of the approach in terms of the more detailed information obtained from

the inversion that can be used to rigorously test hypotheses about the structure of the

subsurface.

It is worth noting that the trans-dimensional approach does not preclude the use of

traditional least squares optimisation, but is complementary to it. Regions previously

inverted using traditional techniques where the results prove interesting or paradoxi-

cal could be re-examined with the trans-dimensional approach to gain deeper insights

into the range of possible subsurface conductivities. Similarly, inversions obtained

through traditional least squares approaches could be used as starting models for sub-
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sequent trans-dimensional inversion to save computational time. Alternatively, the

trans-dimensional approach can be used to study the noise processes and to estimate

empirical data noise covariances as shown in the third inversion and these noise mod-

els can then be used in large scale deterministic inversions.

By its very nature, time domain AEM is an imaging problem with non-unique so-

lutions. Tackling this through ensemble based methods, such as trans-dimensional

sampling is viable, useful, and will become increasingly practical in the future.



Chapter 5

Ambient noise tomography

199
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5.1 Introduction

Chapter 2 showed how to obtain inter-station path average phase velocity dispersion

information for both Love and Rayleigh waves, the observations required for ambient

noise tomography. The focus of this chapter is on the tomographic inversion of these

observations to construct a local 3D model of the structure of the Earth.

There are many approaches to this particular tomographic inversion problem ranging

from linearised optimisation approaches [Tarantola and Valette, 1982b], to iteratively

non-linear trans-dimensional inversion [Bodin et al., 2012a] to fully non-linear trans-

dimensional inversion [Galetti et al., 2016].

The commonality between approaches is a two step approach where regionalised group

or phase velocity maps at selected periods are inverted from group or phase velocity

information, and in a second step, 1D radial or depth profiles of shear wave velocity are

inverted at selected points, to generate desired 2D transects through regions of interest

or full 3D models. A recent alternative to this is to directly invert a shear wave model

[Fang et al., 2015]. However, this approach linearises the problem about a reference

shear wave model.

The two step process will be followed here, with novel use of the trans-dimensional tree

method coupled with a fully non-linear forward model for studying the deep crustal

structure of Iceland.

5.2 Iceland

Iceland is located in the mid North Atlantic ocean atop a spreading ridge between the

Eurasian and North American plates. The high degree of geothermal, volcanic and

seismic activity has led to a wealth of studies on the region and much debate about the

geodynamics that drive these processes.

Volcanism in Iceland, particularly more recent activity, is concentrated along the

spreading ridge which approximately transects Iceland in a North-East direction [Thor-
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Figure 5.1: The spatial location of recent and historic volcanism in Iceland indicated with yellow tri-
angles from a catalogue [Thordarson and Larsen, 2007]. The red dashed box represents the boundary
for this ambient noise study.

darson and Larsen, 2007, Gudmundsson and Högnadóttir, 2007, Tkalčić et al., 2009].

The location of known volcanism in Iceland is shown in Figure 5.1.

Iceland is seismically active [Jakobsdóttir, 2008], again predominantly about the

spreading ridge. Refraction studies of the crust [Darbyshire et al., 1998, 2000] sug-

gest considerable crustal thinning in the volcanic regions with a thickness of around

3km, whereas surrounding areas have a crustal thickness between 25 and 40km.

Previously, the structure of Iceland was explored using ambient noise tomography by

Gudmundsson et al. [2007] using the stations from the HOTSPOT deployment [Allen

et al., 1999]. The same stations are used in this study and are shown in Figure 5.2. A

recent study [Green et al., 2017] using a larger number of stations from more recent

seismometer deployments has revealed more detail of the crustal structure particularly
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Figure 5.2: The seismic stations used in this ambient noise tomography case study

above the spreading ridge.

The location, continuity and even existence of a mantle plume beneath Iceland has

been controversial [Allen et al., 1999]. Earthquake driven surface wave studies such as

that of Li and Detrick [2006] and Pilidou et al. [2005] resolve up to 400 km, yet fail

to resolve a plume at depth. Early tele-seismic tomography results failed to see deeper

than around 600km [Foulger et al., 2001] to 1,000 km [Hung et al., 2004] due to the

aperture of stations on Iceland. Receiver function studies have been similarly limited

[Shen et al., 1998, 2002, Jenkins et al., 2016]. It has only been more recent regional

and global studies that consistently see slow velocity anomalies in the deep mantle that

may correspond to a mantle plume beneath Iceland [Ritsema et al., 1999, Rickers et al.,

2013].

This study focuses on the application of new techniques to inverting the ambient noise

data using the same source stations as those used by Gudmundsson et al. [2007]. The
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aim is to examine periods up to 30s to resolve features between 10 to 100km though

higher uncertainty is expected at greater depths.

5.3 Problem description

Seismic tomography is a well established technique with 40 years of history stemming

from early works of Aki [1977]. In traditional seismic tomography, seismic waves

propagate from a point source, typically an Earthquake, to a receiving station that

observes a waveform some distance away. There are three general classes of seismic to-

mography that vary in the modelling approach used for the propagation of the seismic

signal through the Earth.

The first is based on ray theory [C̀ervený, 2001], which uses a high frequency approx-

imation for the propagation of the seismic waves. The high frequency approximation

reduces the sensitivity of travel time observations to a single infinitesimally thin ray

path between source and receiver. Hence in ray theory tomography, travel times are

picked from received seismograms and these are compared to travel times computed by

performing ray path integrals in candidate models.

In the second method, Dahlen et al. [2000] introduced an extension to ray theory that

accounted for multiple scattering called finite frequency kernels. This extends the ray

path integral to incorporate the frequency dependence of multiple scattering ray paths.

However, most implementations of finite frequency kernels have used a single scat-

tering paraxial approximation whereby parameters of scattered rays are approximated

using values computed along the direct ray. In this sense, finite frequency kernels us-

ing the paraxial approximation are similar to Fresnel volume techniques [C̀ervený and

Soares, 1992]. This has the capacity to improve resolving power by both increasing

the coverage across the domain due to the thickness of the kernels, and by effectively

multiplying the available observations using multiple frequency bands for the same

event-station pair. A common criticism of this approach is that it linearises the for-

ward problem about a reference model and sufficient errors in the reference model
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adversely affect the final result. There has been only one study where kernels were

iteratively refined in the literature [Gautier et al., 2008].

Lastly, in recent years with advances in computational power, full waveform solvers

based on the spectral element method have become popular for tomography problems

at both regional and global scales. The common approach in using full waveform tech-

niques is ad-joint tomography where for each event-station pair, a forward simulation

and a reverse simulation are run using a candidate model to generate a sensitivity kernel

based on a specified misfit function. The collection of these sensitivity kernels, one for

each observation, are then used to perturb the model using a gradient descent approach

often modulated with smoothing constraints or constraints based on sensitivity cov-

erage. This process is repeated a number of times, often with relatively few data and

model parameters due to the huge computation cost, until the model is judged to have

converged.

What these techniques represent is a spectrum through the sophistication of the phys-

ical modelling. At the low sophistication end there is linearised tomography based on

fixed rays computed using a reference model progressing through non-linear ray trac-

ing, finite frequency kernels, to ad-joint full-waveform tomography. There is always

a question of how much improvement is afforded in model construction by adopting

more sophisticated physical forward modelling.

In this ambient noise study, the source observations are path average dispersion curves

between two stations. Additionally, a sampled Bayesian approach requires a large

number of forward model calculations which prohibits the use of computationally

expensive physical simulations. The desire here is also to go beyond existing linearised

approximations and iteratively non-linear approaches and for these reasons, full non-

linear ray theory will be the focus of this study.
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5.4 The forward model

In a ray theoretical approximation, at any given frequency, the propagation of the sur-

face wave between two points, either Love or Rayleigh, occurs along an infinitesimally

thin ray. The path this ray takes is directly related to the velocity field between two

points and dictated by Fermat’s principle, that is, the minimal travel time between two

points. In a uniform velocity field, the ray path between two points is a straight line.

If a slow velocity anomaly were located between the two points, the ray path would

appear to deviate away from it. Similarly, fast velocity anomalies tend to bend or focus

ray paths towards them.

A key component of the forward problem is accurately predicting the time of first

arrival of seismic surface waves between two points in a heterogeneous velocity field.

There are many methods for computing seismic rays through a media and they fall into

three general classes, shooting, bending and network algorithms [C̀ervený, 2001].

In the shooting algorithms [Julian and Gubins, 1977, Sambridge and Kennett, 1990],

the differential equations of the path of the ray are solved numerically from a starting

point and shooting direction. The path of the ray will progress through the domain

of interest until it intersects with the target destination or it is deemed that it will fail

to do so. This process is iterated until the ray intersects sufficiently close to the target

point.

Ray bending approaches [Um and Thurber, 1987, Grechka and McMechan, 1996] gen-

erally start from a straight path or reference path between two points and the ray is

iteratively bent to more closely satisfy Fermat’s principle up to some stopping criteria.

Finally, the network algorithms use a combination of a fine mesh or network of con-

trol points and a Djikstra [Djikstra, 1959] like algorithm to compute a travel time field

from a source location. Ray paths between two points can then be computed using the

gradient of the travel time field. This approach has in recent years been improved with

a stable finite difference updating scheme and has become known as the fast marching

method (FMM) [Sethian and Popovici, 1999, Rawlinson and Sambridge, 2005, Rawlin-
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son et al., 2007].

This last scheme seems a best fit for the problem at hand as the ray path itself is unim-

portant, all that is needed is the travel time. From the travel time and knowledge of the

inter-station distance, the path average phase velocity can be computed. Additionally,

observations are between known stations so although there may be a large number of

ray paths, the number of stations is relatively small. Due to reciprocity, with FMM the

travel times of all ray paths can be computed from travel time fields computed for each

station bar one in the worst case. For example, with the ambient noise observations

collected for Iceland there are 435 observations from 31 stations (some station pairs do

not overlap in time). For this problem 28 travel time field calculations are required to

predict travel times for the 435 station pairs. With other ray calculating methods, it

would be necessary to compute each of the 435 rays independently introducing a much

larger computational burden.

5.4.1 Uniform tests

For the purposes of inversion it is important to understand the limitations of the for-

ward model to accurately predict travel times or path average velocities between points.

To explore this, a simple experiment is to use a uniform velocity model of 3 km/s and

the station locations from the Iceland case study with fixed ray paths shown in Figure

5.3. The travel time can then be computed between each station pair from which the

predicted path average velocity is obtained by dividing by the great circle distance be-

tween stations. It should be expected that all inter-station path average velocities will

be 3 km/s but due to numerical imprecision and the finite resolution of the grid there

will be some degree of error.

The tests that follow were performed using a custom FMM implementation with a

second order upwind scheme and local mesh refinement around the source point. Both

of these improvements to the basic FMM algorithm have been shown to significantly

improve the accuracy of the method [Chopp, 2001, Rawlinson and Sambridge, 2005].
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Figure 5.3: The great circle paths between stations used in this study to give an appreciation of the
coverage available to synthetic and real data inversions.
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Figure 5.4: The distribution of errors between the known true path average velocity computed with
the fast marching method for increasing resolutions in a uniform velocity model. The relative error
is computed from the path average velocity obtained with the fast marching algorithm with respect to
the uniform velocity. In the box plot, the orange line is the median, the box represents the range of the
first and third quartiles, the whiskers the 9th percentile and the 91st percentile, and circles outliers.

For a series of increasing resolution grids, FMM is used to compute the the relative

error of the path average velocity from 3 km/s and the results are summarised in Figure

5.4. In the plot, for each resolution the distribution of the relative error for all paths

is shown with a box plot where the horizontal orange line is the median error, the

box represents the range from the first to the third quartile, the whiskers are at 1.5

times the inter-quartile range, and the circles represent outliers. As the resolution of

the underlying grid increases, the distribution of the errors descends to near zero. For

example, at a resolution of 128 by 64 cells, all paths have a relative error less than 5

percent and the relative errors are predominantly restricted to less than 2 percent.

The computational cost of the FMM is a function of the number of grid cells. This
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Figure 5.5: The synthetic checker board model used to test the accuracy of the fast marching method
in the Iceland region.

means that a double of the number of cells horizontally and vertically results in an

approximate four times increase in the computational cost. Hence there is a trade-off

between the numerical accuracy of the method and the computational expense.

5.4.2 Checker board comparison tests

To extend this test beyond a simple uniform velocity field, a similar experiment can

be performed with a smooth checker board model, shown in Figure 5.5. In this case

a known solution is not available and the errors reported are relative to a higher res-

olution calculation of travel times using a resolution of 256 by 128 cells. The results

are shown in Figure 5.6 where the same pattern of decreasing errors with increasing

resolution is observed.
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Figure 5.6: The distribution of errors between the path average velocity computed with the fast
marching method for varying resolutions compared to a 256 by 128 cell grid resolution solution.
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5.4.3 Summary

In two different tests, using the realistic ray geometry taken from the stations used in

this study, it was demonstrated that travel times can be computed with a grid resolu-

tion of 128 by 64 cells. For this resolution, the median relative error is significantly

less that one percent and the maximum relative travel time error is less than four per-

cent. Increasing the number of cells further is possible, but at significant additional

computational costs.

5.5 Wavelet super resolution

In a wavelet parameterisation, the model is a vector of wavelet coefficients and an im-

age is constructed from these coefficients using the inverse wavelet transform [Mallat,

1999]. A property of wavelets is that a set of wavelet coefficients uniquely defines an

image at any grid resolution that is a multiple of two of its base size. For example, a set

of wavelet coefficients representing an image of 32 by 16 pixels, can equally construct

an image of 64 by 32, 128 by 64, 256 by 128 and so on. This ability, often called wavelet

super resolution, follows from the multi-resolution property of wavelets.

In an geophysical inverse problem, the resolution of the model parameterisation cho-

sen from knowledge of resolvable length scales may not give adequate forward model

accuracy. A solution is to use wavelet super resolution to up-scale the model parame-

terisation to a sufficient resolution to ensure accurate physical modelling.

5.5.1 Uniform velocity

Before applying the super resolution property of wavelets, its accuracy needs to be

verified in similar tests to the previous section. The configuration for these tests is that

travel times are computed in a high resolution grid (256 by 128 cells), and various lower

resolution wavelet representations use wavelet super resolution to up-scale to a 256 by

128 cell image for computing travel times. In Figure 5.7, the results of progressively
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Figure 5.7: The distribution of errors between the path average velocity computed with the fast
marching for a series of wavelet super resolution steps relative to a calculation performed on a 256
by 128 grid of a uniform velocity model.

increasing base resolutions to the more accurate result are shown. The notation in the

figure labels corresponds to width by height by super resolution steps. For example, 32

by 16 by 3 corresponds to a base resolution of 32 by 16 with 3 super resolution steps

each of which doubles the resolution. Hence 32 by 16 by 3 means a wavelet model at

32 by 16 with the travel times computed on a 256 by 128 grid.

As can be seen from the figure, the accuracy is to within machine precision of the

wavelet transform which is to be expected for a uniform velocity model.

5.5.2 Checker Board velocity

The same test is again repeated with the true checker board model in Figure 5.5 with

respect to a reference solution computed on a 256 by 128 grid. This effectively tests the
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Figure 5.8: The distribution of errors between the path average velocity computed with the fast
marching for a series of wavelet super resolution steps to a calculation performed on a 256 by 128
grid of a checker board velocity model.

ability of the wavelet representation to accurately represent the checker board model

with a lower resolution or truncated set of wavelet coefficients. The results shown in

Figure 5.8 demonstrate that the relative errors introduced by the wavelet super resolu-

tion are quite small.

In very complex models where lower resolution wavelet approximations may be poor

predictors, errors may be larger. However, for the characteristic scale length of models

that are expected to be resolvable with surface wave observations, this is likely suffi-

cient.
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5.5.3 Summary

In this section, the use of wavelet super resolution to increase the accuracy of travel

time predictions was demonstrated. This allows tight coupling between a model pa-

rameterisation specified with wavelet coefficients to be up-scaled into a regular grid

image of arbitrary resolution to ensure forward model accuracy. As is common in any

geophysical inversion problem, there is a trade off in terms of accuracy versus compu-

tational effort, and any choice here must be guided by tests to ensure the accuracy is

satisfactory for the purpose at hand. The accuracy tests presented here give confidence

to apply this set of methods to a complete tomographic problem.

5.6 Bayesian formulation

This tomographic inversion will apply the trans-dimensional tree approach with a

wavelet parameterisation. Stemming from the success of this approach in the Air-

borne Electromagnetic tomography in the previous chapter, the formulation of the

problem shares much in common. Both hierarchical error scaling and the hierarchical

Laplacian prior are used. With ambient noise tomography, the observations will in

general only be able to resolve smooth features so the CDF 9/7 wavelet basis is used.

Parallel tempering is also used to improve the robustness of the inversion. For much

of the formulation, the previous chapter provides much of the background and high-

light here the differences in this application, namely the quality of the observations,

the likelihood, and the forward model.

In the tomographic problem, the observations are path average phase velocities be-

tween two points with associated uncertainties obtained using the method in Chapter

2. Previous trans-dimensional tomographic methods [Bodin et al., 2012a] have been

based on travel time observations. These were based upon ambient noise group veloc-

ity estimated using Frequency-Time analysis (FTAN) [Dziewonski and Hales, 1972].

For error estimation, a hierarchical approach was used to invert for the standard devia-

tion of an identically independently distributed Gaussian error process. The drawback
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with this method is that the same level of error (in seconds) is assigned with every path

regardless of length. This states that the expected level of error on a 10 km path is

the same as that on a 1000 km path. In an effort to address this, Galetti et al. [2016]

have incorporated a distance factor into their noise model. In the approach outlined in

Chapter 2, estimates of phase velocity dispersion curves with uncertainties are obtained

and these can be used directly in a likelihood expressed as

p(d|m)∝ exp

¨

−
∑

i

(G(m, f )i − di ( f ))
2

2(λσi ( f ))
2

«

, (5.1)

where di is the previously measured phase velocity and σi its associated posterior un-

certainty estimate. Recall that the results in Chapter 2 generated continuous dispersion

curves and their uncertainties which form the observations used here, and so f repre-

sents the given frequency of interest. G(m, f )i is the forward model that consists of

computing the travel time, coupled with the known inter-station distances, to produce

a model predicted velocity. Lastly the λ parameter is the hierarchical scaling parame-

ter. The point here is that good estimates of uncertainty are available in terms of phase

velocity and this likelihood is faithful to the observations.

Since good estimates of the uncertainty in the phase velocity measurements are avail-

able, it is reasonable to ask why the hierarchical error scaling term is required? The

reason is that the assumed noise process is of the form

vobserved = vtrue+ εobservational+ εtheory+ ε?, (5.2)

that is, for a given observed phase velocity vobserved, the noise is a combination of the

observational noise, obtained from the posterior of the inversion in Chapter 2, theoret-

ical modelling errors from approximations in the forward model, and other unknown

errors. The likelihood approximates these sources of errors as a single independent

Gaussian noise model. So the observational errors should be the dominant source of

errors, but the approximations in the physical modelling of the problem introduces

additional error that is accounted for by the scaling of the observational errors using a
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hierarchical error scaling term λ.

5.7 Resolution Tests

A first test of this tomographic method is a synthetic test, and while the use of checker

board tests is not without controversy within the seismology community, it remains a

standard testing approach. The main criticism of checker board tests stems from their

failure to properly give a indication of the resolving power of the inversion [Lévêque

et al., 1993, Rawlinson and Spackman, 2016]. Rather than enter into this debate here,

checker board resolution tests are used for a synthetic simulation to demonstrate the

operation of the algorithm.

In this experiment, a fine 256 by 128 resolution grid is used to trace rays in a series

of increasing resolution checker boards between all station pairs available in the Ice-

land experiment; the same observations as will be used in the full inversion. Fixed

great circle ray paths between stations were previously shown in Figure 5.3. To these

“true” path average phase velocities, random independent Gaussian noise with a stan-

dard deviation of 0.05 km/s (approximately a 2 percent error level) is added to create

the observations used in these experiments.

The synthetic observations were then inverted using the trans-dimensional tree with

wavelet parameterisation approach in a fully non-linear inversion. A 64 by 32 grid

was used for the trans-dimensional tree with CDF 9/7 wavelet parameterisation and

one super resolution step. This means that the inversion travel times were calculated

on a 128 by 64 resolution grid or half the resolution that the true observations were

generated on. A series of inversions with increasingly finer checker boards patterns was

run to test the recovery of the synthetic observations with the inter-station paths.

Hierarchical Laplacian priors and an inverse Gamma hyper prior with a mode of 0.25

(α = 1 and β = 0.5) was used. For each inversion, six independent chains were used

with parallel tempering using four temperature levels spaced logarithmically between

1 and 5, for a total of 24 chains. Each of the inversions was initialised with a uniform
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velocity field at the mean path average velocity of the observations for a total of 2

million iterations.

The recovery of the checker board models is shown in Figures 5.9, 5.10, 5.11 and

5.12. In each of these figures, the ensemble median is shown in (a), the true model for

comparison in (b), and the ensemble standard deviation in (c). The uncertainty varies

depending on the target model, with areas of larger uncertainty tending to concentrate

along a band approximately following the presumed location of the spreading ridge and

an area of active volcanism. This reflects logistical issues in the siting of seismometers

for the HOTSPOT project and unfortunately would appear to limit the ability to

resolve this interesting area at high fidelity.

It is also interesting to compare the result with an inversion that uses fixed ray paths

for the forward model instead of the fast marching method. To test this, the inversions

are re-run with the fast marching method being replaced by fixed ray paths that follow

the great circle arcs between stations. The results of these inversions are shown with

the corresponding fast marching inversion in Figures 5.13, 5.14, 5.15 and 5.16. From

a qualitative point of view, the recovery is similar in both with some slight artefacts

apparent in the fixed ray case. More broadly it would seem that as the complexity of the

model increases, the fixed ray inversion tends to damp the amplitude of the anomalies

and this is particularly noticeable in Figures 5.15 and 5.16. This is due to large scale

anomalies causing relatively minor deviations from great circle paths. As such, the

results indicate that the fast marching method and linear rays should be comparable

for less complex models.

Another qualitative observation in Figures 5.13, 5.14, 5.15, and 5.16 is that the pattern

of uncertainty seems to change. While the effect is subtle, there does appear to be

higher uncertainty in the inversions with fixed ray paths. This would support the

assertions by Galetti et al. [2015] that use of more realistic physics is necessary to

capture the true uncertainty in the inversion. Only a comparison between fixed rays

and a fully non-linear scheme is presented here. A middle ground approach where rays

are updated at some interval as performed by Bodin and Sambridge [2009] has not been
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Figure 5.9: Synthetic recovery of the lowest resolution checker board test. The median of the ensemble
is shown in (a) which should be compared to the true in (b). The standard deviation of the ensemble
is shown in (c) which gives a measure of uncertainty.
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Figure 5.10: Synthetic recovery of the medium resolution checker board test. The median of the
ensemble is shown in (a) with the true model in (b). The she standard deviation of the ensemble is
shown in (c) which gives a measure of uncertainty.
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Figure 5.11: Synthetic recovery of the fine resolution checker board test. The median of the ensemble
is shown in (a) with the true model in (b). The she standard deviation of the ensemble is shown in (c)
which gives a measure of uncertainty.
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Figure 5.12: Synthetic recovery of the super fine resolution checker board test. The median of the
ensemble is shown in (a) with the true model in (b). The she standard deviation of the ensemble is
shown in (c) which gives a measure of uncertainty.
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Figure 5.13: Comparison of synthetic recovery of the fast marching forward model (left column)
versus fixed great circle paths (right column) of the low resolution checker board test.The median of
the ensemble is shown in (a) and (b) and the standard deviation in (c) and (d).
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Figure 5.14: Comparison of synthetic recovery of the fast marching forward model (left column)
versus fixed great circle paths (right column) of the medium resolution checker board test.The median
of the ensemble is shown in (a) and (b) and the standard deviation in (c) and (d).
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Figure 5.15: Comparison of synthetic recovery of fast marching forward model (left column) versus
fixed great circle paths (right column) of the fine resolution checker board test. The median of the
ensemble is shown in (a) and (b) and the standard deviation in (c) and (d).
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Figure 5.16: Comparison of synthetic recovery of fast marching forward model (left column) versus
fixed great circle paths (right column) of the super fine resolution checker board test. The median of
the ensemble is shown in (a) and (b) and the standard deviation in (c) and (d).
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evaluated.

One of the assumptions in a Bayesian inversion is that the noise model captures both

observational and theory error as well as any other source of errors within the likeli-

hood function. Hierarchical error scaling has been used in both fully non-linear and

fixed rays inversions to invert for the level of noise appropriate for the data. Two in-

versions of the same synthetic models have been run: (1) where the forward model is

nearly exact, namely the fast marching method, and (2) an approximation using fixed

great circle paths. This is reflected in the hierarchical error scale estimation.

In Figure 5.17 the a posteriori histogram of the hierarchical error scale parameter is

shown from the non-linear inversion in the left column and for the fixed great circle

paths inversion on the right. In these synthetic experiments, since the theory error

is zero, this histograms should be centred on the value of one, which appears to be

the case for the non-linear inversion. For the linear approximation this also holds for

the lower resolution checker board tests (b) and (d) but begins to break down as the

resolution of the checker board model increases.

The demonstration of hierarchical error scaling increasing when an approximate for-

ward model is used also goes someway to explain why more simplistic inversion

strategies using linearisation assumptions coupled with regularisation strategies pro-

duce models of low resolution or that are overly smooth such as that in Green et al.

[2017]. The use of physical approximations adds to errors and compensation comes in

the form of regularisation parameters that result in over damped or smoothed models.

Using fixed ray paths gives a conservative estimate but is inferior to the non-linear case,

particularly as the resolution of the checker boards increases.

This section has shown several synthetic studies of the recovery of varying resolution

checker boards using a new method for the inversion of phase velocity maps using

trans-dimensional trees with a wavelet parameterisation and fully non-linear forward

model. It has also been demonstrated that using fixed ray paths results in the reduced

ability to resolve finer scale structure and the under estimation of velocity anomalies.

For these synthetic tests, the fixed great circle path inversion took approximately 45
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Figure 5.17: The comparison of the hierarchical error scaling estimation between the fully non-linear
inversion in the left column to that of the fix ray path (great circle) inversion on the right for the
different resolution checker boards from coarse resolution in (a) and (b) to super fine in (g) and
(h). The expected result is a histogram centred about one in this synthetic test and as the resolution
increase, the performance of using fixed ray paths diminishes with increasing complexity of features.
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minutes and the same inversion with the fast marching forward model took 13 hours.

This is nearly 20 times slower, although 13 hours of computer time is not prohibitive.

While previous applications of trans-dimensional ambient noise tomography have used

an iteratively non-linear approach [Bodin and Sambridge, 2009, Young et al., 2013, Say-

gin et al., 2016], it has been argued by Galetti et al. [2015] that uncertainty should be

estimated using a fully non-linear approach and the difference in uncertainties observed

in these synthetic tests generally support this.

In the work of Galetti et al. [2016] on ambient noise tomography of the British Isles it

is stated that a 2D inversion takes on the order of a month. The trans-dimensional tree

approach with wavelet parameterisation is significantly faster owing to the tight cou-

pling of the fast marching method to the wavelet parameterisation allowing for a full

2D inversion to run on a cluster in a day (the inversions of Galetti et al. [2016] ran for 3

million steps, compared to the inversion of 2 million steps so the comparable estimate

for 3 million iterations is approximately 20 hours). Given this increase in speed, there

is little reason for not using a fully non-linear approach for this size of problem. The

results of the synthetic inversions using fixed great circle paths are reasonable approx-

imations and might be used effectively for initial test inversions and as starting points

for fast marching inversions to save time on the convergence of independent Markov

chains.

5.8 2D Slice Inversion

After successfully demonstrating the operation of the trans-dimensional tree algorithm

with a wavelet parameterisation in synthetic experiments, a next step is to apply it to

the real observations obtained in Chapter 2. The configuration of the inversion for the

real data is the same as that of the synthetic tests in the previous section. The inversion

is started from a uniform model with the velocity set to the mean of the path average

velocities of the observations. The standard deviations computed for each frequency

from the inversion in Chapter 2 are used as the estimated observational errors and
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this is coupled with a hierarchical error scale estimated as part of the inversion. The

assumption here is that the true errors on the observations are accurate to a constant

scaling term which seems reasonable. A hierarchical Laplacian prior is used for the

wavelet coefficients with a mode of 0.25. Finally, the trans-dimensional tree resolution

is set to a 64 by 32 grid and 1 wavelet super resolution step so the travel times are

computed with the fast marching method on a 128 by 64 cell grid. This gives a good

balance of accuracy and computational cost.

Figure 5.18 shows the median of the ensemble for selected periods. The results gen-

erally show the central rifting region of Iceland to have slower propagation velocities

than the east and western coastal regions consistent with previous studies [Gudmunds-

son et al., 2007, Green et al., 2017]. Another general observation is that the Love wave

slow speed anomalies are generally larger in magnitude and more widely distribution

than that of the Rayleigh wave results. This may either be caused by the greater sen-

sitivity of Love waves to slow speed anomalies or a larger uncertainty in Love wave

dispersion information or some combination thereof.

At periods more sensitive to near surface features, for example Figures 5.18(e) and

5.18(f), a striking slow anomaly in the south east is apparent, corresponding to an area

of recent volcanism. Indeed, this area erupted during the HOTSPOT deployment.

The uncertainty for these same periods is shown in Figure 5.19. The standard deviation

shows similar patterns to that observed in the synthetic tests. That is, areas along the

spreading ridge have higher uncertainties. Again this is most likely a limitation of the

geometry of the deployment dictated by the logistics of the environment. This could

be improved by gaining access to more recently collected data from the study of Green

et al. [2017].

In Figure 5.20 the results of this study are compared with two published studies that

have produced Rayleigh wave group velocity maps. In (a), the work of Gudmundsson

et al. [2007] is shown where the authors used exactly the same source data as this study,

(b) is the median of the ensemble of this study, and (c) is the more recent work of Green

et al. [2017] which had observations generated from 241 seismometers or roughly six
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times the number used in this study. A direct comparison is not possible between

these studies as they invert a different property. That is, the results of other studies are

group velocity maps whereas this study produces phase velocity maps. Nonetheless

they should have structural similarities, and indeed comparison suggests they do.

In the inversion of Green et al. [2017], smoothing regularisation and fixed ray paths are

used to invert for the group velocity map resulting in the smoothness that is apparent

in the figure. Using less data, roughly one sixth of the number of stations, this study

has recovered similar structure and in parts it would appear to have more detailed

structure. Inferences based upon the models recovered in this study can be supported

with uncertainty, where as Green et al. [2017] provide no such justification for their

results.

5.9 3D Inversion

By inverting each frequency or period independently, the correlation between neigh-

bouring frequencies is effectively ignored. This expected correlation between neigh-

bouring frequencies stems from the assumptions from Chapter 2 that dispersion is a

continuous function.

The trans-dimensional tree approach has a great deal of flexibility in both the basis

functions that are used and the dimension of the problem. The trans-dimensional tree

approach is an abstraction that can be applied to many problems. Here an obvious so-

lution is to invert a set of neighbouring frequencies simultaneously using a 3D wavelet

parameterisation.

The details of the inversion change very little. The hierarchical prior, a hierarchical

error scale (which applies to all periods) and parallel tempering are all still used. For

the inversion, 32 frequencies spaced between 0.034 Hz and 0.296 Hz (or 29.2 s and

3.4 s periods) are inverted jointly, with the starting model set to the mean of the path

average phase velocities at each frequency. Recall that the phase velocity observations

are continuous functions meaning it is possible to invert any discretised band of fre-
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Figure 5.18: Median of the ensemble images for Rayleigh (left column) and Love wave (right column)
inversions at selected periods for Iceland.
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Figure 5.19: The ensemble standard deviation of inversions of ambient noise data of Iceland. The
left column is for Rayleigh wave observations and the right for Love wave.
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(a) 7 second period Rayleigh wave group velocity

(b) 6 second period Rayleigh wave group velocity
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Figure 5.20: A comparison of results from Gudmundsson et al. [2007] in (a), this study in (b), and
Green et al. [2017] in (c). The images in (a) and (c) are Rayleigh wave group velocity and (b) is
Rayleigh wave phase velocity.
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quencies. The choice here is a central band of frequencies that envelop the dominant

frequencies excited by ambient noise sources.

With 32 frequencies, the trans-dimensional tree wavelet model becomes a 64 by 32

by 32 volumetric image of longitude by latitude by frequency bin. A single wavelet

super resolution step is used for each frequency to improve the accuracy of the fast

marching method. Since the variation of phase velocity with frequency is smooth, it

is appropriate to use the CDF 9/7 wavelet for both the spatial dimension and that of

frequency. However, it is possible to use different wavelet bases in different dimensions

where warranted.

The travel times of 435 station pairs across 32 frequencies, or nearly 14,000 ray paths,

need to be computed at each iteration. This increases the computational burden sub-

stantially and the computational time for 2 million iterations increases from approxi-

mately 14 hours for a single frequency inversion to approximately 160 hours (7 days)

for a 3D inversion of the same lateral dimension.

The ensemble medians for both the Love and Rayleigh 3D inversions are shown in

Figure 5.21. These results are for the same periods as the single frequency inversion

described in the previous section, and show similar features to those of the previous 2D

inversion where phase velocity maps were inverted independently. In the 3D inversion,

some of the anomalous features seen in the 2D inversions are muted. In Figure 5.22,

the standard deviation of the ensemble is shown and it has much the same character as

before.

The correlated information between neighbouring frequencies will tend to smooth

anomalies across the frequency dimension. This is analogous in a 1D regression prob-

lem to the difference between fitting a piece wise linear curve to a set of data points

with noise and fitting a single linear function to the data. The single linear function

will be smoother but if the underlying true function is linear then a single best fit linear

function will be a more faithful representation than a piece wise linear fit. In the case

here, the independent inversion of frequencies may over fit the velocity anomalies as

addition information from neighbouring frequencies hasn’t been made available. This



§5.9 3D Inversion 235

extra information helps stabilise the inversion and allows resolvability of deeper Earth

structure.

The median and standard deviations of longer periods are shown in Figures 5.23

and 5.24. For the longest period of nearly 30 seconds, features are resolved in the

Rayleigh wave inversion, and while similar features appear in the Love wave inversion,

there are some inversion artefacts and high uncertainty suggesting limited resolvabil-

ity. Nonetheless inversion is completed down to a much longer period than has been

completed by either of the previous published ambient noise studies of the region

[Gudmundsson et al., 2007, Green et al., 2017].

The convergence metrics for the 3D inversion of both the Rayleigh and Love wave

inversions are shown in Figures 5.26 and 5.27 respectively. The hierarchical error scale

is well converged with the number of wavelet coefficients showing more disparity.

Unlike the airborne electromagnetic inversion in Chapter 4, evidence of larger parallel

tempering steps is apparent in the convergence plots (large vertical jumps).

Inverting a band of frequencies at the same time increases the number of parameters

and hence the total number of iterations it takes to converge. However, overall the

3D inversion uses significantly fewer parameters for the inversion compared to the 2D

when considering the number of frequencies inverted. For example, the 3D inversion

uses between 500 and 800 coefficients with the modal value around 600. On average

the 2D inversions run in the previous section use of the order of 50 to 200 coefficients

with a modal number of coefficients of approximately 100. If this modal number is

multiplied by the number of frequencies in the 3D inversion, this would equate to

around 3,200 coefficients (or between 1,600 and 6,400) compared to 500 to 800. So

although there are inherent difficulties in the joint inversion of a band of frequencies,

there are benefits in terms of robustness and ability to resolved features deeper into the

Earth.

The results at approximately the 6 second period can again be compared to previous

studies and these are shown in Figure 5.25 where, (a) and (b) are the group velocity

maps of previous studies, (c) shows the ensemble median of the previous 2D inversion
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Figure 5.21: The ensemble medians for the 3D inversion of Rayleigh wave (left column) and Love
wave (right column) for selected periods.
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Figure 5.22: The ensemble standard deviations for the 3D inversion of Rayleigh wave (left column)
and Love wave (right column) for selected periods.
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(a) Rayleigh 29.2s
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Figure 5.23: The ensemble medians for the 3D inversion of Rayleigh wave (left column) and Love
wave (right column) for longer periods.
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Figure 5.24: The ensemble standard deviations for the 3D inversion of Rayleigh wave (left column)
and Love wave (right column) for longer periods.
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(a) 7 seconds period group velocity map (b) 6 seconds period group velocity map

(c) 6.2 second period phase velocity map
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(d) 6.2 second period phase velocity map
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Figure 5.25: A comparison of results from Gudmundsson et al. [2007] in (a), Green et al. [2017] in
(b), and from this study, the ensemble median of the 2D inversion in (c) and the ensemble median of
the 3D inversion in (d). The images in (a) and (b) are Rayleigh wave group velocity and (c) and (d)
are Rayleigh wave phase velocity.
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and (d) the ensemble median of the 3D inversion. In first comparing the 2D inversion

to the 3D, the structure has be refined considerably. Particular features include the

much stronger contrast between the volcanic zone (red) to old crust (blue) in the south-

east between 16 and 17 degrees longitude west. Some of the anomalies in the north of

the 2D inversion have been replaced with simpler structure in the 3D inversion. In

the 3D inversion, there are two distinct bands of slow velocity zones that agree with

structure proposed by Green et al. [2017] in their study, which has significantly more

data in central Iceland compared with this study. Generally it is found in the 3D

inversion that the resolving power of the observations is improved by jointly inverting

across a range of frequencies.

In this inversion of phase velocity maps, the Love and Rayleigh wave inversions have

been run separately so the relationship between Love and Rayleigh phase velocity ra-

tios from Chapter 2 is not included. Similarly the monotonicity of the dispersion

curve is not enforced in the wavelet parameterisation. Incorporating both these factors

and jointly inverting for Love and Rayleigh phase velocity maps has the potential to

improve results further.

Nonetheless, by looking at 1D profiles of dispersion, these assumptions can be tested,

as shown in Figure 5.28. In this figure it is apparent that for Love and Rayleigh wave

results, the monotonicity assumptions are violated at low frequencies. Additionally,

the numerical studies showing Love wave velocities slightly higher than Rayleigh wave

velocities is also violated at higher frequencies. When accounting for errors, shown

in shaded region, both violations could be accounted for in range of uncertainties. In

future, including joint inversion of Love and Rayleigh wave observations may improve

the results and provide greater constraint.

5.10 Shear wave 1D Inversion

In the previous section, phase velocity maps for Love and Rayleigh wave dispersion

were inverted from a suite of frequencies. The common next step is to invert dispersion
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Figure 5.26: Convergence properties of Rayleigh wave 3D Inversion. Plotted here is the negative
log likelihood, hierarchical error scaling parameter, number of coefficients and the hierarchical prior
width as a function of iteration. Each chain is plotted in a different colour and the black histograms
on the right represent the average histogram of all curves.
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Figure 5.27: Convergence properties of Love wave 3D Inversion. Plotted here is the negative log
likelihood, hierarchical error scaling parameter, number of coefficients and the hierarchical prior
width as a function of iteration. Each chain is plotted in a different colour and the black histograms
on the right represent the average histogram of all curves.
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Figure 5.28: Dispersion curves from 3D inversion of phase velocity shown that the relationship
between Love (blue) and Rayleigh (green) dispersion is preserved during the inversion to within
errors. Shaded regions represent one standard deviation.
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curves for local shear wave velocity structure. The approach used in this study is

outlined in Bodin et al. [2012b] where a trans-dimensional partition model is used

to represent a shear velocity model to a half space. The forward model used is the

DISPERS80 routine of Takeuchi and Saito [1972] and an elastic Earth is assumed to

reduce the parameter space. Love waves are sensitive only to the shear wave velocity,

however, Rayleigh waves are also sensitive to P-waves and an empirical relationship is

used to obtain density [Deschamps et al., 2001] and P-wave velocity [Ritsema and van

Heijst, 2002] from a shear wave velocity in each partition of the model.

A shear wave model is jointly inverted using results from the Love and Rayleigh 3D in-

version of the previous section and included uncertainty estimates from the posterior.

Independent hierarchical scaling parameters are included for the Love and Rayleigh

wave observations to allow the data to decide the relative weight rather than enforcing

this. This results in a likelihood function of the form

p(d|m)∝ exp

¨

−
∑

i

(GLove(m, fi )− dLove( fi ))
2

2(λLoveσLove( fi )
)2

−
∑

i

(GRayleigh(m, fi )− dRayleigh( fi ))
2

2(λRayleighσRayleigh( fi )
)2

«

, (5.3)

where the forward model GLove(m, fi ) computes the phase velocity for the given model

m at the frequency fi , and dLove( fi ) is the corresponding observation at the given fre-

quency. σLove( fi )
is the standard deviation of the observation from the 3D inversion of

the previous section and λLove is the independent hierarchical scaling parameter.

For each spatial grid cell of the 3D inversion domain in the previous section, 1D trans-

dimensional joint inversion using four independent chains is performed to obtain a 3D

shear wave velocity structure. The prior for the shear wave velocity was set to uniform

between 2 and 6 km/s and for the number of layers the prior was set to uniform

between 1 and 12 layers. The model domain is fixed to a depth of 100 km to the

half space. Several different test inversion were attempted to varying depths to verify
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Figure 5.29: The mean shear wave velocity profile of all 1D inversions.

that setting a too shallow domain wasn’t artificially constraining the results. Previous

similar inversions of the area only used Rayleigh wave group velocity and therefore

have lower depth sensitivity than jointly inverting Love and Rayleigh phase velocity.

The mean of all the 1D inversions is plotted in Figure 5.29. In this figure, an interesting

feature of this profile is the high velocity layers around 20 to 40 km depth overriding

lower velocities. This average profile is consistent with oceanic crust [Knopoff, 1972,

see Figure 13] and consistent with previous earthquake driven surface wave studies of

Iceland [Li and Detrick, 2006, see Figure 5].

Maps of the inverted shear wave model at various depths are plotted in Figure 5.30.

Shear wave velocity inversion from dispersion information is a very ill-determined

problem, in that many shear wave models can give rise to the same or similar dispersion

curve. Hence, there is a high degree of uncertainty in this inversion as evidenced by

the large standard deviation across much of the inversion domain. A consistent feature

of the inverted shear wave model is the large slow velocity anomaly slightly to the

south-east of central Iceland. This is located near a zone of active volcanism and above

the presumed location of the Icelandic Hot spot.

Longitude and latitude transects can show additional structure and these are plotted in
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Figure 5.30: Ensemble means (left column) of shear wave velocity and their standard deviations in
km/s (right column) of the surface wave dispersion inversion at various depths.
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Figure 5.31: Longitudinal transect through Iceland showing depth profile of shear wave velocity (a)
and standard deviation (b) in km/s. The transect is taken along the horizontal dashed line in Figure
5.30

Figures 5.31 and 5.32. The general structures show good agreement with the long pe-

riod earthquake driven Rayleigh wave tomography inversion of Li and Detrick [2006],

namely a crust of around 3.25 km/s increasing to 4 - 4.25 km/s up to 50 km deep,

then dropping back to less than 4 km/s below this. These transects are chosen so their

intersection point is approximately located in Vatnajökull region of Iceland, an area

of active volcanism. In Figure 5.32(a) a slow velocity tube rising from a large slow

velocity region at depth is visible directly beneath the area of volcanism. The location

of the slow velocity region at depth is consistent with the presumed location of the

Icelandic hot spot [Thordarson and Höskuldsson, 2008]. It is tempting to claim that

these results show the plumbing between the Iceland hot spot and volcanism at the

surface. The strength of this claim is weakened by the large uncertainty in these results

and the appearance of many of these structures, some of which correspond to other

volcanic regions, for example the other tube feature in Figure 5.32(a) between 65.0 and

65.5 latitude corresponds to a cluster of volcanoes to the north of the Vatnajökull re-

gion volcanic provinces. If the transect is plotted as a relative deviation from the mean

model as in Figure 5.33, the slow velocity anomaly above the location of the hot spot

linked to the active Bárdarbunga and Grímsvötn volcanoes is more apparent. In the

plots, this vertical tube structure is indicated with a dashed line and is a consistent slow

velocity anomaly continuous from the deepest parts of the model to the surface.
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Figure 5.32: Latitudinal transect through Iceland showing depth profile of shear wave velocity (a)
and standard deviation (b) in km/s. The transect is taken along the vertical dashed line in Figure
5.30
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Figure 5.33: Longitude (a) and Latitude (b) transects plotted as a relative deviation from the ensemble
mean velocity, highlighting slow zones. At the dashed line is approximately the location of the active
Bárdarbunga and Grímsv otn volcanoes.
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The shear wave model inversion and uncertainty could potentially be improved by

taking into account spatial correlation between 1D inversions using a technique similar

to that employed in the Airborne Electromagnetic inversion from Chapter 4. This

would mean that rather than inverting each 1D profile independently, a transect could

be inverted as an image using the trans-dimensional tree approach (or the entire volume

depending on computational resources). This is an area for potential future research.

5.11 Summary

In this chapter, a novel fully non-linear trans-dimensional inversion of ambient noise

data has been developed. Its effectiveness was first demonstrated in the inversion of syn-

thetically generated checker board tests and the results were compared to a linearised

inversion where fixed great circle paths were used. This showed that short length scale

features tend to be under-estimated in a fixed ray path inversion.

The new method was then applied to produce phase velocity maps for Iceland for

both Love and Rayleigh waves. This is the first inversion of phase velocity maps from

ambient noise observations in the region and the first ambient noise study to have used

a fully Bayesian inversion, where errors from the path average phase velocity estimates

in Chapter 2 are propagated through to the phase velocity map inversions.

Rather than inverting individual periods or frequencies in 2D inversions, a method for

inverting a band of frequencies jointly to take advantage of the correlation between

neighbouring frequencies was demonstrated. This further stabilises the inversion of

phase velocity maps, improving the resolving power of the observations and allowing

greater resolution deeper into the Earth.

From the phase velocity maps, a joint inversion of Love and Rayleigh wave dispersion

was performed to construct a 3D shear wave velocity model down to 100km depth for

the Iceland region. This model shows tantalising glimpses of what look like volcanic

conduits, however the large uncertainties in this inversion prompt caution. Methods

that would allow better constraint of uncertainties during this stage of the inversion
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would be a fruitful avenue of further research.
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6.1 Introduction

This chapter seeks to apply the trans-dimensional tree algorithm to a problem at the

global scale. Many problems of seismology are naturally at the global scale, either

2D problems on the surface of a sphere, 3D spherical shells (for example, crustal or

Mantle models) or full 3D spheres. Previously trans-dimensional approaches have used

Voronoi cells for inner core tomography [Young et al., 2013], but there has been lim-

ited application of trans-dimensional techniques to such global scale problems. The

reason for this paucity of trans-dimensional inversions on the sphere is that global

data sets are often large and this coupled with traditional trans-dimensional approaches

relying on a computationally inefficient Voronoi cell parameterisation render many

problems intractable.

To give an appreciation of recent applications of Voronoi cell parameterisation applied

to global scale problems, the work of Young et al. [2013] used approximately one

month of compute time to invert 1,871 differential travel time observations. The key

reason behind this large computational cost is that Cartesian Voronoi cells were used,

that is the surface of the sphere is mapped to the Cartesian plane. This required extra

processing to impose continuity across longitudinal boundaries of the Cartesian region.

In re-examining the application of Voronoi cell approaches to global scale tomographic

problems, a new spherical Voronoi cell code has been developed as part of this thesis

and subsequently applied by others(for example Pejic et al. [2017]). This new spherical

Voronoi method treats the problem correctly with proposal distributions that respect

spherical geometry. By taking this approach, polar regions are treated without intro-

ducing distortions and model continuity is maintained throughout the domain. The

spherical Voronoi method has the added benefit of increasing the efficiency of inver-

sions.

One of the yet resolved questions of the inner core is the apparent East-West hemi-

sphericity of travel time anomalies. One way to investigate this is using differential

travel times of phases that sense the outer most layer of the inner core. An example
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of this is the large database of PKIKP-PKiKP differential travel times collected in the

study of Waszek and Deuss [2011]. These data consist of P-wave arrivals where one

has arrival has reflected off the outer-core/inner-core boundary (PKIKP) and the other

has refracted through the upper most layers of the inner-core. It is assumed that the

difference in travel times of these two phases has dominant sensitivity to the P-wave

velocity of the upper most inner-core as the path of these phases through the crust,

mantle and outer-core are similar and therefore cancel out.

In this study a trial inversion of these observations has been performed using trans-

dimensional spherical Voronoi cells. The model is parameterised in terms of Voronoi

cells with value representing deviations from a reference model, in this case AK135

[Kennett et al., 1995]. The rays are fixed, which is a reasonable approximation as the

observations represent short grazing paths of the outer most inner core. Twelve inde-

pendent chains are run for two million iterations with the first one million removed

as burnin. The mean of the ensemble is shown in Figure 6.1 where the globe is shown

from both hemispheres to highlight the distinct hemispherical boundary through the

Pacific and the less distinct boundary through Europe and Africa.

The data set has 5,477 paths, being slightly more than double the number used in

the study of Young et al. [2013]. The inversion using a Voronoi cell approach took

approximately a week to compute on a cluster computer. Although this global data

set is relatively small and the ray paths for the tomographic problem are relatively

short, the inversion is computationally expensive for what is a relatively simple model.

Apparent in the mean image as well are Voronoi cell artefacts. These artefacts would

likely be remedied by averaging over several more chains. However, this amounts to

using even more computational power to mask some of the short comings of Voronoi

cell parameterisations.

For this particular problem, where interrogation of the location and strength of inner-

core boundaries is undertaken with relatively simple models, the Voronoi cell param-

eterisation may be well suited. However, for larger scale problems where the number

of observations is larger and the scale length of resolvable structure is smaller, that is,
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Figure 6.1: The ensemble mean image from inverting PKIKP-PKiKP differential travel times as a
deviation from the AK135 reference model. The hemispherical nature of the travel time anomalies
is clearly apparent.
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greater model complexity, the Voronoi cell parameterisation seems impractical.

6.2 Global surface waves

An example of large global scale data sets are earthquake driven surface wave obser-

vations. Global surface wave observations consist of a number of travel times or esti-

mates of phase velocities between earthquake sources and receiving stations or stations

approximately aligned in a surface wave propagating direction [Bloch and Hales, 1968]

over a broad range of frequencies or modes.

Studies using global surface wave observations have constructed phase velocity maps

for from fundamental model Love and Rayleigh waves using earthquake driven sources

[Montagner, 1986, Trampert andWoodhouse, 1995, Shapiro and Ritzwoller, 2002, Sha-

effer and Lebedev, 2013]. These global surface wave data sets include an order of magni-

tude greater number of observations and require inversion at a large number of periods

rather than a single inversion as required by the differential travel time tomography

example in the previous section. Ongoing collection of global surface wave data, in-

cluding higher order mode phase velocities has only added to the size of this large scale

data problem [Debayle and Sambridge, 2004, Debayle and Ricard, 2012].

The common approach to these inversions is to use a least squares inversion using a

truncated spherical harmonics parameterisation with a smoothing regularisation term.

Spherical harmonics tomographic inversions have a long history in global geophysical

inversion, however a common issue with this parameterisation is ringing artefacts re-

sulting from truncation, similar to ringing caused by Fourier series truncation. Reme-

dies have been proposed that reduce the ringing by imposing a tapering of the spherical

harmonics order rather than a truncation [Whaler and Gubbins, 1981] but a potential

drawback of tapering is a predilection for smooth models and a corresponding reduc-

tion in resolution.

The aim of this chapter is to demonstrate in a proof of concept study that a large

scale database of multi-mode global surface wave observations can be inverted using a
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Period Mode
(s) Fundamental 1s t 2nd 3r d 4t h 5t h

40 84,145 83,597 79,118 72,319 69,061 77,414
45 84,145 83,250 75,976 76,981 68,371 81,487
50 84,150 82,946 71,107 79,417 73,861 82,480
60 84,172 82,457 66,146 76,992
70 84,189 82,226 69,251 79,747
80 84,203 82,227 80,496 84,206
90 84,211 82,350 82,798 84,186
100 84,193 82,489 83,558
120 110,462 110,578 110,486
140 110,336 110,576 43,035
160 110,458 110,564 43,034
180 110,335 110,556
200 110,093 43,040
220 43,040 43,040
240 43,040 43,040
260 43,038
280 43,029
300 42,993
320 42,726
340 42,338
360 42,720
Total 1,568,016 1,232,936 805,005 553,848 211,293 241,381

Table 6.1: The number of observations at each period and mode in the data set of Durand et al.
[2015].

sampling trans-dimensional approach. The data in question is published by Durand

et al. [2015] and consists of 4,612,479 Rayleigh wave surface wave observations up to

the 5th overtone with the distribution of observational periods and modes shown in

Table 6.1. This data set is several orders of magnitude larger than has been attempted

before with a trans-dimensional sampling approach and therefore provides a good test

of the computational viability of trans-dimensional inversion of large data sets.



§6.3 Problem description 259

6.3 Problem description

The problem is similar to the ambient noise study in Chapter 5 in that the observations

are path average Rayleigh wave phase velocities between two points on the Earth sur-

face. The distinction between these observations and discussed in Chapter 5 are three

fold: firstly, the observations include higher order modes which increases the number

of observations. Second, the paths are major arc paths that span large portions of the

globe rather than being confined to a small region and means that the path integral

in a forward model needs to integrate over a much longer distance for each observa-

tions. Finally, the number of observations is several orders of magnitude larger than

the ambient noise study. These three factors together mean that the computational

effort to evaluate predictions using a forward model for the global surface wave data set

is significantly larger than the ambient noise study in Chapter 5.

Characteristic of most seismic studies, the location of the source events of sufficient

magnitude to generate surface wave observations at large distances are concentrated in

areas of high seismicity such as subduction zones and spreading ridges. Similarly, the

seismic recording stations where events are recorded are concentrated on land masses

which leads to a uneven distribution of events and stations across the globe as shown

in Figure 6.2.

To make this problem more tractable, the complexity of forward model is reduced by

assuming that great circle ray paths are sufficient or serve as a suitable approximation.

The physical propagation path of surface waves is deflected by slow and fast regions.

In the previous chapter it was demonstrated that when using fixed rays as opposed to

computing rays, the recovery of models in synthetic tests was affected in both the reso-

lution resolved and in an under-estimation of the magnitude of fast and slow anomalies.

The limitations of a linearised approach must be accepted, as the scale of the problem

prohibits the use of the Fast Marching method for re-computing travel times at each

step for a fully non-linear inversion. This approximation reduces the forward mod-

elling to integrating great circle paths through a proposed model that can be efficiently
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Figure 6.2: The distribution of events (red dots) and recording stations (blue dots) at a period of 100
seconds in the global surface wave data set of Durand et al. [2015]

.
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computed with a suitable parameterisation.

6.4 Parameterisation

Two different applications of the use of wavelets have previously been discussed in

Chapter 4 and Chapter 5, where they provided an effective parameterisation for image

based geophysical inversions. A key benefits of using wavelets is their ability to repre-

sent reasonable structure with relatively small number of parameters. However, their

major downside is a non-intuitive prior that has been addressed using a hierarchical

prior in Chapter 4. The extension to a 2D spherical surface would appear straightfor-

ward, however the representation of fields on the surface of a sphere is a long standing

and active area of research, a useful review article is Fasshauer and Schumaker [1998].

An obvious choice of parameterisation for spherical problems would be spherical har-

monics. However the difficulty of setting a prior on coefficients with non-physical

meaning is the major issue associated with both spherical harmonics and wavelet pa-

rameterisations. A second problem with spherical harmonics is that they are a global

basis function and this is seemingly incompatible with trans-dimensional sampling.

Trans-dimensional sampling, with the exception of simple examples shown in the in-

troductory chapter, tends to locally adapt complexity driven by the information within

the observations. This is implicitly the case for Voronoi cell parameterisations and ex-

plicitly so for the trans-dimensional tree. However, in a typical inversion using spher-

ical harmonics, the series is truncated up to some degree chosen by the practitioner.

Although in principle it would be possible to select this level through trans-dimensional

sampling (or Bayesian evidence in linear problems), in practice it would be a very dif-

ficult problem as an “increase degree” proposal would change the model by a large

amount making such trans-dimensional steps unlikely to succeed.

Regionalised versions of spherical harmonics are possible based on creating maximal

energy concentration of spherical harmonics in a region [Simons et al., 2006, Dahlen

and Simons, 2008, Simons, 2010, Simons et al., 2011a] with extensions available to
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the 3D ball [Khalid et al., 2014], were originally used in Fourier analysis by Slepian

and Pollak [1960]. Simons et al. [2011a] introduce a multi-resolution version of these

Slepian basis functions on the sphere that show promise for trans-dimensional sampling

with the trans-dimensional tree algorithm developed in Chapter 3. However, Slepian

functions give a basis function set to use in a region and it is not entirely clear how

a trans-dimensional approach could be applied, although this may be an avenue for

future research. Similarly, spherical splines based on spherical harmonics expansions

may be another avenue for future exploration [Michel and Wolf, 2008, Amirbekyan

and Michel, 2008, Berkel et al., 2011]

Several approaches have been made effectively using Cartesian wavelets on a sphere

[Simons et al., 2011b, Charlety et al., 2013]. Both these methods start with the use

of the projection of a cube on to the sphere [Ronchi et al., 1996] to tessellate the

body with six square regions and parameterise each of these regions using a 2D Carte-

sian wavelet basis. However, lack of continuity across each of the six faces leads to

artefacts. Simons et al. [2011b] remedied the continuity issue by using slightly over-

lapping faces with blending, whereas Charlety et al. [2013] wrapped four of the faces

around the sphere using the lifting transform [Sweldens, 1996, 1998, Daubechies and

Sweldens, 1998]. These solutions treat the problem aesthetically rather than from an

inverse problem perspective and still introduce distortions resulting from unequal area

of the pixels. The distortion problem can be potentially remedied using a different

tessellation scheme that preserves equal area such as HEALPix [Górski et al., 2005],

but this approach will always have edge discontinuity problems. Several spherical

wavelet formulations have been developed [Antoine and Vandergheynst, 1999, Bon-

neau, 1999, Bogdanova et al., 2005, Guilloux et al., 2009, Lanusse et al., 2012, Leistedt

and McEwen, 2012, Leistedt et al., 2013a] and some have been applied to inverse prob-

lems on the sphere [Holschneider, 1996, Holschneider et al., 2003, Chambodut et al.,

2005, Michel, 2005, Holschneider and Igelwska-Nowak, 2007, Leistedt et al., 2013a,b].

Many of these approaches are designed for large scale problems and therefore utilise ef-

ficient algorithms. Some advances also include directionality [Hayn and Holschneider,

2009] that could be used for tomographic solutions incorporating anisotropy.
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(a) (b)

Figure 6.3: Comparison between wavelet pyramid (a) and triangular pyramid scheme (b).

Another class of solution of problems on the sphere are subdivision methods, with the

most commonly used icosahedral tessellation [Baumgardner and Frederickson, 1985].

This approach uses a base level subdivision of the sphere that is the projection of an

icosahedron onto the spherical surface, resulting in spherical triangles. Each triangle

can be subdivided into four equal sub-triangles by dividing each edge of the triangle in

half. This subdivision is often known as butterfly subdivision [Dyn et al., 1990]. This

icosahedral approach has been used as a grid for a spherical spline scheme [Wang and

Dahlen, 1995], and a novel wavelet basis [Schröder and Sweldens, 1995, Schroder and

Sweldens, 1995] and for global scale tomographic inversions [Chiao and Kuo, 2001,

Sambridge and Faletič, 2003].

An icosahedral parameterisation is well suited to the trans-dimensional tree approach.

Figure 6.3 shows side by side the wavelet parameterisation introduced in Chapter 3 in

(a) and the triangle subdivision of the icosahedral parameterisation in (b).

In contrast to the use of wavelet coefficients as model parameters, the model parameters

can directly specified as the value of the field within each spherical triangle of the

subdivision. This means that specifying the prior for the values of the parameters is

now more intuitive, for the problem in this chapter it is phase velocity in kilometres

per second, something for which there is prior information. The downside of this

approach is the lost ability from the wavelet parameterisation to compress or reduce

complex fields into a small number of coefficients, particularly for smooth models.
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This new method of parameterisation consists of constant values in each triangle and

this would, similar to a Voronoi cell approach, result in a model with discontinuities

at triangle edges. Recalling the dual of the Voronoi cell tessellation is the Delaunay

triangulation, if the node parameters are instead placed at the vertices of the spherical

triangles of the icosahedral subdivision, values at points within each triangle could be

linearly interpolated. Another option would be to use high order spline interpolants

[Wang and Dahlen, 1995]. A complication here is the tree structure is no longer easy to

define, although a spanning tree [Wu and Chao, 2004] could be constructed. A simpler

approach is use the triangle centred nodes and use spherical barycentric coordinates

[Alfeld et al., 1996, Langer et al., 2006] to produce a smooth interpolant between them.

In this case the linear interpolant described in Langer et al. [2006] is used and this

results in a C 0 continuous field over the sphere for all models with zero gradient at

triangle centres.

6.5 Bayesian Formulation

Due to the size of the global surface wave data, all periods are not inverted simultane-

ously although this may be an area of future work. Instead, the inversion of a single

period for a given mode allows the construction of a phase velocity map covering the

globe. In the preceding sections the linearised forward model and the trans-dimensional

tree parameterisation have been describe. In order to cast this into a Bayesian frame-

work the prior and a likelihood function are required. Recall that a general expression

for the prior from Chapter 3 was

p(m) =
k
∏

i=1

p(vi | Tk , k)p(Tk |k)p(k), (6.1)

of which, only the p(vi | Tk , k) term remains to be defined. A benefit of parameterise

this problem so that the tree nodes represent phase velocity is that the prior can be

set in a more meaningful way. An option here is to set uniform priors for the phase
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velocity based on prior information on their expected maximal range for a given period

and mode. An alternative, and the solution used here, is to use an empirical prior

[Malinverno and Briggs, 2004] based on the statistics of the observed path average phase

velocities. Hence for a given mode and period, the mean, µmode and standard deviation

σmode of a Gaussian distribution are estimated from the observed path average phase

velocities, and the prior is set on individual values for triangle node centres to

p(vi | Tk , k)∝ exp

¨

− (vi −µmode)
2

2σ2
mode

«

. (6.2)

From the observations, there are estimates of the error for each observation as detailed

in Debayle and Ricard [2012]. These can be used to form an independent Gaussian

likelihood function

p(d |m)∝ exp

¨

−
∑

i

(G(m)i − di )
2

2(λσi )
2

«

, (6.3)

where G(m)i is the predicted path average phase velocity computed using a path in-

tegral along the great circle path between the event and receiving station, di is the

observed path average phase velocity, σi the estimated error and λ a hierarchical error

scaling term. A hierarchical error scaling term is included since the forward modelling

is approximate, that is, isotropic great circle propagation paths are assumed and no ray

bending and other physical effects such as anisotropy are considered. The hierarchical

scaling term attempts to account for theory error caused by the approximate forward

modelling and other unknown formulation errors.

Each period and mode was run with four independent chains for one million iterations

starting from a homogeneous model with a phase velocity set to the mean of the path

average phase velocity observations. This results in a total of 60 independent inver-

sions. The time taken for each inversion ranges of approximately from 3 to 8 hours.
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6.6 Phase velocity maps

The mean of the ensemble of the fundamental mode inversions of 40, 100, 200, and 340

second periods are shown in Figures 6.4, 6.5, 6.6, and 6.7 respectively. For comparison,

results obtained by Durand et al. [2015] using a continuous regionalisation scheme

[Tarantola and Valette, 1982b, Montagner, 1986, Debayle and Sambridge, 2004] with a

smoothing regularisation controlled by a Gaussian covariance are plotted on the same

scale as the phase velocity maps.

The inversion using the trans-dimensional approach agrees well with that of the previ-

ously published results of Durand et al. [2015]. In fact, the previously published maps

have the appearance of smoothed or spatially filtered versions of the trans-dimensional

maps. This is a common feature of the continuous regionalisation scheme as the spatial

correlation in a smoothing regularised inversion needs to be tuned for the areas of least

information to globally stabilise the inversion. In contrast with the trans-dimensional

approach, the parameterisation adapts the local resolution of the inversion to the infor-

mation in the observations, in this case independent crossing rays. This results in both

higher resolution where supported by the data, and generally larger magnitude anoma-

lies as they are not blurred or suppressed by some correlation length. Good examples

of these are the greater detail in North America and in Northern Africa in Figure 6.4

where ray density is relatively high and are seismically active being subduction zones

and areas of continental rifting. In contrast, large areas of the Pacific and Southern

oceans where ray coverage is poor, show limited structure.

The benefit of a ensemble approach is that the ensemble can be interrogated to examine

whether features in the mean images have strong support. Plotted in Figure 6.8 is the

histogram of the 40 second period ensemble along a transect of constant Longitude at

37o East, which passes through the African rift area whose location is indicated with

the red vertical line. From the spread of the histogram in this region it is evident

that the phase velocity is highly likely to be well below the reference velocity in this

location. In comparison to the published phase velocity maps of Durand et al. [2015]



§6.6 Phase velocity maps 267

(a)

(b)

Figure 6.4: Comparison of fundamental mode phase velocity maps for the 40 second period inverted
using trans-dimensional tree (a) and published maps of Durand et al. [2015](b)
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(a)

(b)

Figure 6.5: Comparison of fundamental mode phase velocity maps for the 100 second period inverted
using trans-dimensional tree (a) and published maps of Durand et al. [2015] (b)
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(a)

(b)

Figure 6.6: Comparison of fundamental mode phase velocity maps for the 200 second period inverted
using trans-dimensional tree (a) and published maps of Durand et al. [2015] (b)
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(a)

(b)

Figure 6.7: Comparison of fundamental mode phase velocity maps for the 340 second period inverted
using trans-dimensional tree (a) and published maps of Durand et al. [2015] (b)
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shown in this figure with a black dashed line, the smooth continuous regionalisation

approach has significantly over estimated the phase velocity in this region. For the

remainder of this transect there is generally good agreement.

Another interesting aspect of Figure 6.8 is between approximately -50 to -70 degrees

latitude a bi-modality between flat structure and a more complex zig-zag structure is

evident and this is an example of a trans-dimensional trade-off where the inversions

includes aspects of a simpler model (flat structure) and a more detailed model (zig-

zag). However, these figures represent preliminary results and more chains should be

run with rigorous convergence criteria prior to more detailed interpretation.

In summary, it has been demonstrated that using the new trans-dimensional tree

method, it is possible to trans-dimensionally invert large scale seismic data sets. A key

early result is that the trans-dimensional approach produces significantly larger magni-

tude anomalies in some regions than previous continuous regionalisation approaches.

In examining the uncertainties of one of these regions, the African rift, it is clear that

this anomaly is well constrained suggesting it is a robust feature of the data. This un-

derestimation of anomaly magnitudes could have consequences in subsequent inversion

for a shear wave velocity model.

6.7 Shear wave maps

Once the phase velocity maps have been inverted, multi-mode 1D dispersion curves at

each point on a regular grid of the Earth can be constructed using the ensemble mean

and standard deviations. Similar to the methods outlined in Chapter 5, inversion is

undertaken for a 1D shear wave velocity model beneath each point. Using the same

approach as Durand et al. [2015], that is, a linearised inversion based upon depth sen-

sitivity kernels computed for the PREM reference model [Dziewonski and Anderson,

1981], each point on a regular one degree grid is inverted. Two slices of the shear wave

velocity model are shown as relative perturbations from PREM in Figures 6.9 and 6.10

for 100 km and 1000 km depth respectively.
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Figure 6.8: In (a) the location of the transect that passes through the African rift area is shown with
a dashed line. In (b) is the marginal histogram of the ensemble along longitude 37o East shown with
blue shading where darker blue corresponds to higher probability. The ensemble mean is indicated
with a green dashed line, and the the phase velocity determined by Durand et al. [2015] is shown
with a black dashed line. The location of the African rift is indicated with a vertical red dotted line
in the plot. The horizontal line represents the reference velocity used in Figure 6.4.
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(a)

(b)
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Figure 6.9: Shear wave velocity plotted as relative perturbation from PREM at 100 km depth
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(a)

(b)
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Figure 6.10: Shear wave velocity plotted as relative perturbation from PREM at 1,000 km depth
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In the example shear wave velocity slice at 100 km depth, the image contains features

of recognisable tectonic significance. Examples include the African rift region, the

Atlantic spreading ridge, and the Canadian shield. At 1000 km depth, where the sensi-

tivity of the surface wave observations diminishes, the anomalies are only of the order

of one percent from the PREM reference model.

6.8 Summary

This chapter has developed a proof of concept to demonstrate the application of trans-

dimensional sampling to a large scale global surface wave data set. By using some

approximations such as fixed great circle paths and the assumption of isotropy, a very

large number of observations have been inverted in a very modest time frame (rang-

ing from 3 to 8 hours for 60 mode/period observations). This new technique has been

successfully demonstrated and shows promise, with a number of different avenues avail-

able for future development.

It has been demonstrated in the phase velocity maps that in places where the trans-

dimensional result produces significantly larger magnitude anomalies, these are well

supported by the data as evidenced by their uncertainties. In contrast, previous contin-

uous regionalisation inversions have perhaps produced overly smooth models in these

regions, for example, the African rift. This under-estimation of magnitudes can cause

subsequent under-estimation of shear wave velocity models inverted from multiple

phase velocity estimates.

At present the inversion methodology uses Monte Carlo sampling to estimate the pos-

terior. However, since a linearised approximation of the forward model and priors

with analytical integrals (Gaussian) are used, it would be possible to analytically com-

pute both the posterior of a model, and the evidence. This could be used to save

considerable time in an inversion but would have limited such an inversion to a lin-

earised solution. This option could be used to produce approximate starting model for

a subsequent non-linear inversion.
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The broad reasons for not pursuing this path was that in planned future work, namely

the incorporation of extra physics into the inversion. The first of these is to include ray

tracing using the fast marching method as was done for the ambient noise study of the

Chapter 5. Fast marching is a general technique that can support triangulated domains

instead of rectangular grids [Kimmel and Sethian, 1997, Sethian and Vladimirsky,

2000] and can be extended to support anisotropy [Sethian and Vladimirsky, 2003].

Secondly, and a factor that partially motivated the move away from wavelet parame-

terisations for this work is the incorporation of anisotropy [Visser et al., 2008]. This

would entail having at each triangle centre three parameters to represent anisotropy and

potentially inverting for the relative support of the data for isotropy versus anisotropy

locally.

Finally, the preliminary inversion presented here is rudimentary in nature and could

benefit from further parallelisation and include other features presented in earlier chap-

ters such as hierarchically adjusting the prior and parallel tempering. Another potential

extension is to take advantage of the coherency between periods and invert all periods

for a given mode in a single inversion using ideas from Chapters 2 and 5. Nonetheless,

the methods presented here represent significant advances and opportunities for the

inversion of global large scale geophysical data sets.
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Trans-dimensional spectral elements
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7.1 Introduction

The work of Sambridge et al. [2006] showed the equivalence of trans-dimensional sam-

pling to Bayes factors or evidence based model choice. This was demonstrated in a

regression problem where the fit of polynomials of various order formed the model

choice problem, that is, which order polynomial best explained the data.

The parameterisation that was used in the study of Sambridge et al. [2006] was the

leading coefficient terms of a polynomial. For the model m with components m0, m1,

. . ., mk , the polynomial was defined as

y(x) = m0+m1x +m2x2+ . . .+mk xk . (7.1)

An issue with this parameterisation is that the prior specification for each of the coeffi-

cients is difficult, with perhaps the exception of m0. It is rare in practice that one would

ever have prior constraints on derivatives of a quantity y(x) higher than the first. As

the order of the coefficient increases, so does the sensitivity of the polynomial to small

perturbations. This also means that proposals to perturb the higher order coefficients

in McMC sampling are difficult to tune.

Various other polynomial parameterisations have been used in trans-dimensional sam-

pling. In an early example, Denison et al. [1998] proposed using multiple lower order

polynomials in a partition modelling approach for which prior and proposals might

be more easily determined. Alternatively, Mallick [1998] proposed the use of Cheby-

shev orthogonal polynomials with reversible jump change of order proposals. This

was integrated into a partition modelling scheme with variable number of partitions

and variable order in each partition. In recent work, Bernstein polynomials have been

used in a geo-acoustic inversion problem [Quijano et al., 2016].

An alternative scheme using nodal interpolation polynomials is possible, where instead

of specifying the coefficients of individual power terms of the polynomial, the values

the polynomial must attain at fixed interpolation points is specified. At the outset, this
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has the advantage that prior specifications are only required on the function values,

rather than derivatives. This approach is similar to the Bernstein polynomial work

of Quijano et al. [2016], yet subtly different as they specify control points which con-

strain the polynomial rather than directly specifying the values at known interpolation

points.

As an example, for an order p polynomial with a set of p + 1 fixed points x0 . . . xp in a

domain and desired values at those points y0 . . . yp , the unique polynomial coefficients

in (7.1) can be obtained using a simple linear system
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where the matrix on the left is commonly known as the Vandermonde matrix.

For higher order polynomials, the stability of this linear matrix problem is determined

by the condition number of the Vandermonde matrix. The set of points on an interval

−1 . . . 1 that minimise the condition number of the Vandermonde matrix are the Fekete

points[Fekete, 1923, Saff and Kuijlaars, 1997, Bos et al., 2000]. In one dimension, the

Fekete points correspond to the zeros of the Lobatto polynomial

Ln(x) =
d

d x
Pn+1(x), (7.3)

where Pn is the Legendre polynomial and n is the polynomial order.

At a specified order, a set of orthogonal interpolating polynomials can be constructed

using Lagrange cardinal polynomials

l j (x) =
p
∏

m=0,m 6= j

x − xm

x j − xm

, (7.4)

where xi is the i th Lobatto node. A continuous function f can then be approximated
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as a summation over these Lagrange cardinal interpolation polynomials

f̂ (x) =
p
∑

j=0

f (x j )l j (x), (7.5)

where f̂ is the polynomial approximation of f . As an example, the set of Lagrange

cardinal interpolation polynomials for a cubic interpolant is shown in Figure 7.1. A

useful property of specifying polynomials in this fashion is the guarantee that for all

orders, the maximum absolute value of the Lagrange cardinal interpolation polynomial

is one and this occurs at the interpolation node. This results in a parameterisation of

the polynomial that is stable for all orders producing minimal overshoot and ringing

artefacts. This stability coupled with Gauss quadrature rules, have made these Gauss-

Lobatto-Legendre (GLL) polynomials a popular parameterisation for the spectral el-

ement method in seismic full waveform simulation[Pozrikidis, 2005, Kopriva, 2009,

Fichtner, 2011].

The GLL polynomials can be beneficial for polynomial fitting in a Bayesian frame-

work in a number of ways. Firstly, for a single polynomial of a given order, the model

is specified as the values the polynomial takes at the nodal points. These values are

directly in the domain of interest and therefore each can share the same simpler prior

specification. As an example, if the model represented the function of shear velocity

versus depth in a 1D Earth model, the prior on each of the nodal values is a shear

wave velocity distribution which is intuitive to specify. In contrast, if instead the poly-

nomial had been parameterised in terms of leading coefficient terms, a different prior

is required for each term and the prior for higher order terms would be difficult and

non-intuitive to specify.

Another useful property is the minimisation of overshoot and ringing at higher orders

that results from the guarantee that the maximum value of Lagrange cardinal polyno-

mials occurs at the interpolation node. This means that if tight priors are set on the

nodal values, the prior will be approximately respected over the entire polynomial.

Care must be taken here though as there is a degree of overshoot. In Figure 7.2, and
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Figure 7.1: The cardinal functions of Gauss-Lobatto-Legendre polynomials for 3rd order polynomials
which are polynomial approximations of delta functions at nodal interpolation points.
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Figure 7.2: An example of the overshoot using GLL polynomials. The prior range is shown as a
grey shaded region and although all the nodal interpolation points are within the prior, the resulting
polynomial shown as a solid line has sections which are outside the prior bounds.

example of the potential to exceed a prior range is demonstrated. Here all the node

values (black dots) are within the prior (grey shading) yet the resultant polynomial

(solid line) breaches the range of the prior.

A final useful property is that since Lagrange cardinal polynomials are orthogonal,

they can uniquely represent any polynomial with an order less than or equal to them-

selves. This property can be used for the projection of lower order polynomial models

into higher order polynomials for improved forward model accuracy, similar to the

wavelet super-resolution approach in Chapter 5. This aspect will be demonstrated in

the following chapter.
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7.2 Spectral element partition modelling

Having introduced the benefits of the specification of a polynomial in terms of orthog-

onal Gauss-Lobatto-Legendre (GLL) polynomials, a next step is to incorporate this

into a trans-dimensional partition modelling framework. In a spectral element parti-

tion model, the model consists of a series of partitions along the x axis. Within each

partition, the function is defined by an independent GLL polynomial of an arbitrary

order. An example spectral element partition model with a linear, quadratic and cubic

polynomial in three partitions is shown in Figure 7.3.

The GLL polynomials offer a number of alternative ways to treat the partition bound-

aries. First, is to use partition boundaries to represent discontinuities in the model as

shown in Figure 7.3(a). A second alternative is to improve continuity of the interpolant

across partition boundaries by sharing the boundary interpolation nodes between ad-

jacent partitions which results in a piece wise continuous function with C 0 continuity.

A consequence of this parameterisation, shown in Figure 7.3(b), is that the polynomial

in each partition must be at least linear. Third, the values at the boundary nodes can be

solved for to ensure a piece wise C 1 continuous curve. This is shown in Figure 7.3(c)

and requires at least cubic polynomials in each partition.

In the treatment described in this chapter, the discontinuous parameterisation is pre-

ferred although all that follows equally applies to the other cases with only minor ad-

justments. With GLL polynomials, discontinuities of the interpolated function or data

can be represented with partition boundaries and smoothly varying structure can be

represented with higher order polynomials within partitions. The question of which

representation, discontinuous steps or smoothly varying, best explains the data will be

determined via trans-dimensional sampling.

The GLL polynomials are defined on the interval −1 . . . 1 however each partition can

be rescaled to arbitrary width with a simple transform

ξ = 2

�

x − xmin

xmax− xmin

�

− 1, (7.6)
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Figure 7.3: An example partition model with spectral element polynomials with discontinuities in
(a). The partition polynomial is shown in a solid black line with the nodal interpolation points
marked with circles. The individual scaled cardinal interpolation polynomials are shown in faint
lines. Vertical dashed lines represent the partition boundaries. In (b) is shown an example where
nodes on partition boundaries are shared to create a C 0 continuous curve. In (c) is an example
where nodes on partition boundaries as solved for in a linear system of equations to create a C 1

continuous curve.
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where ξ represents the variable x transformed to the −1 . . . 1 domain and xmax and xmin

represent the coordinates of the partition boundaries.

A model in this scheme consists of k, the number of partitions, where in each partition

there is a vector c of the partition widths and a vector p of the polynomial orders.

Lastly, for each partition there is a vector v of p + 1 values at the nodal interpolation

points. The various model parameters are labelled in Figure 7.3(a). Using this model

parameterisation, priors and proposals required by a trans-dimensional framework can

be specified.

7.3 Priors

From the description of the model parameters, the prior can be written

p(m) =
k
∏

i=1

p(vi |pi )p(p|k)p(c|k)p(k), (7.7)

where k is the number of partitions, c is the vector of partition widths which must

sum to width of the entire domain, p is an integer vector of polynomial orders in each

partition and a vector vi of nodal interpolation values.

The prior on k is will commonly be uniform between one partition and some maxi-

mum number but other choices are possible. For the spatial prior on partition widths,

the symmetric Dirichlet distribution is used which is expressed as

p(c|xmin, xmax,α, k) = k! (xmax− xmin)
−k

k
∏

i=1

�

ci − ci−1

xmax− xmin

�α−1

, (7.8)

where xmin and xmax represent the domain boundaries and α is the cell weight which if

set to one reduces the symmetric Dirichlet distribution to the uniform distribution.

Similar to k, the prior on the order of polynomial in each partition is a prior on a

model choice parameter which will generally be a uniform from zero order up to some

maximum.
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Figure 7.4: For each order the minimum and maximum overshoot is computed for a uniform prior
between zero and one. A benefit of GLL polynomials is that the overshoot is bounded for all orders.

As stated earlier, the prior on the values at each node are directly specified in the y axis

domain and are therefore easier to specify for most problems. There is the potential

for overshoot so care must be taken. As an example, if the y axis represented a pa-

rameter such as velocity where negative velocities are invalid the temptation would be

to set a prior from zero to some maximum velocity. Unfortunately this prior would

allow some parts of the polynomial to be negative which may impact model misfits or

forward model validity. Simple calculations can be used for guidance on overshooting

problems, such as those presented in Figure 7.4 where the minimum and maximum

overshoot of a uniform prior between zero and one are computed. For all orders, the

overshoot is bounded, and calculations such as these can be used as a guide for ensuring

overshoot doesn’t impact forward modelling or model validity.

Since each of the interpolation nodes have a fixed location in the domain, it is also
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possible to include a prior with a dependence on location.

7.4 Proposals

Recall that the general Metropolis-Hastings-Green acceptance criteria is expressed as

α(m→m′) =min

�

1,
p(m′)

p(m)

p(d|m′)
p(d|m)

Q(m′→m)

Q(m→m′)
|J |
�

(7.9)

which can be expressed in words as the product of the prior ratio, the likelihood ratio,

the proposal ratio, and the Jacobian. In this framework there are the following set of

proposals:

1. Perturb a nodal value,

2. Perturb the location of a partition boundary,

3. Add a new partition,

4. Remove an existing partition,

5. Increase the polynomial order in a partition by one, and

6. Decrease the polynomial order in a partition by one.

For each of the candidate proposals, the detailed steps taken in the proposal and how

the acceptance criteria is formed is described in the following sections.

7.4.1 Value

The simplest proposal is a value perturbation which changes the y value of an indi-

vidual nodal interpolation point. In Figure 7.5, (a) shows the starting model and (b)

the proposed model. The proposal consists of first selecting a partition, and then the

nodal value within it to perturb. The selected node is indicated with a red circle in
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Figure 7.5: The value proposal starts with selecting an individual nodal interpolation point high-
lighted in (a) with a red circle. In (b) the proposed model is generated by perturbing the y value of
the selected node.

Figure 7.5(a), and its perturbed position in Figure 7.5(b). The forward proposal can be

written as

Q(m→m′) =
1

k

1

pi + 1
Q(vi , j → v ′i , j ), (7.10)

where pi is the order of the polynomial in the selected partition and Q(vi , j → v ′i , j ) is

the proposal density for the perturbation of the nodes value, that is, in the y-direction.

It should be clear that if the proposal to perturb the value of a selected node is symmet-

ric, for example, sampled from a Gaussian or Cauchy distribution, the proposal ratio

will cancel. For the prior ratio, only one single value is perturbed and the rest of the

prior will cancel leaving a term of the form

p(m′)

p(m)
=

p(v ′i , j )

p(vi , j )
. (7.11)

This ratio will only be unity if the prior on the y-values is uniform. In the case of a

prior with finite support where a proposal results in a value outside of the prior range,

the prior ratio is zero and the proposal is rejected.

Since there is a one to one relationship between the proposal distribution and the new
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Figure 7.6: The move proposal starts with selecting a partition boundary to move highlighted in red
in (a). The location of this boundary is perturbed to generate the proposed model in (b).

model variable, the Jacobian is unity, leaving the acceptance criteria for value proposals

as

α(m→m′)value =min

¨

1,
p(v ′i , j )

p(vi , j )

p(d|m′)
p(d|m)

«

(7.12)

7.4.2 Move

For a move proposal, the location of one of the partition boundaries is perturbed so

the proposal, shown diagrammatically in Figure 7.6 consists of first selecting a partition

boundary highlighted in red in (a) and the adjusting the location of the boundary to a

new position in (b).

The forward proposal can be written as

Q(m→m′) =
1

k − 1
Q(ci , ci+1→ c ′i , c ′i+1), (7.13)

where ci and ci+1 are the partition widths on either side of the selected partition bound-

ary. The form of this proposal results from the fact that moving an internal boundary

changes the width of two partitions. In some applications perturbing one of the ex-

tremal boundaries may also be appropriate[Steininger et al., 2013], in which case only
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one partition size will be adjusted.

As with the value proposal, if the proposal density of the perturbation is symmetric,

the proposal ratio cancels. In the case where only the internal boundaries are perturbed

and a symmetric Dirichlet prior is used with the α parameter set to one, the prior

ratio will be unity. The exception to this is when a large perturbation of a partition

boundary results in the ordering of boundaries changing. In this case the prior ratio is

zero due to negative partition widths causing the Dirichlet prior to equate to zero and

therefore such a proposal is rejected.

Lastly, there is a one to one correspondence between the proposal distribution and the

perturbed model variables so the Jacobian is unity for this proposal leaving only the

likelihood ratio for the acceptance criteria,

α(m→m′)move =min

�

1,
p(d|m′)
p(d|m)

�

. (7.14)

In the case where extremal boundaries are perturbed, or if the α parameter of the

Dirichlet prior is not one, there will be an additional prior ratio term. When applica-

ble, it is straight forward to evaluate (7.8) for both the current and proposed models to

obtain the ratio.

7.4.3 Order Birth

The first trans-dimensional proposal is that of order birth within a single partition

which proposes an increase in the order of a partition by one. This proposal is shown

diagrammatically in Figure 7.7 where (a) shows the current model and (b) the proposed

model where the central partition has its polynomial increased in order to three from

the current model (shown superimposed in a dotted line) of order two.

The proposal consists of selecting the partition in which to increase the order, then

proposing new values for each of the new interpolation nodal points. For GLL nodal

points, with the exception of the partition end points, none of the nodal points will
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Figure 7.7: The schematic for the order birth proposal where the central partition in (a) with a
quadratic polynomial, has the polynomial order increased to three in (b).

coincide between order increments. There are two options which are discussed here,

the first and simplest is to resample each point from the prior and ignore the current

model values. The second is to project the current model to the higher order inter-

polation nodes, and then add a perturbation to each value sampled from a proposal

distribution. In either case, the general forward proposal can be written

Q(m→m′) =
1

k

p ′i∏

j=0

Q(vi , j → v ′i , j ) (7.15)

where p ′i is the order of the proposed polynomial and Q(vi , j → v ′i , j ) represents the

proposal density for each of the new y values. The reverse proposal distribution is of

the same form as the forward with the priming of the variables reversed meaning that

in the proposal ratio, the leading 1

k
term will cancel.

Before considering each class of proposal, in either case, the acceptance criteria will

reduce to

α(m→m′) =min







1,

∏p ′i+1

j=1
p(v ′i , j )
∏pi+1

j=1
p(vi , j )

p(d|m′)
p(d|m)

∏pi+1

j=1
Q(v ′i , j → vi , j )

∏p ′
i
+1

j=1
Q(vi , j → v ′

i , j
)
|J |







, (7.16)
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from which can be seen the attraction of “birthing from the prior” where Q(v ′i , j →
vi , j ) = p(vi , j ) and vice-versa, that is the proposal is to sample new values from the

prior. Since the prior and proposal ratios cancel, and the Jacobian is unity due to a

one to one mapping between random variables and new node values, the acceptance

criteria for this type of order birth proposal reduces to the likelihood ratio.

A potential downside of birthing from the prior is that if the prior is relatively wide

compared to the posterior, then the acceptance rates of order birth steps can drop pre-

cipitously decreasing efficiencies of sampling.

Since any polynomial of a given order can be exactly represented with a polynomial of

the next highest order, a more focused proposal can take advantage of this by projecting

the current polynomial to the next higher order. In a GLL polynomial parameterisa-

tion, this entails interpolating the current polynomial to the next highest order nodal

points. To the interpolated values at each of the higher order nodal points, more fo-

cused perturbations can be added. This results in the acceptance criteria of the form in

(7.16), where the prior and proposal ratios need to be fully evaluated.

Unlike in the case of birthing from the prior, the added complexity in this proposal,

from the interpolation of the new model parameters from the current, results in a non-

identity Jacobian matrix. To evaluate the Jacobian the model bijection relationship is

required, which in this case is

v1, . . . , vpi+1, u1, . . . , upi+2↔ v ′1, . . . , v ′pi+2, u ′1, . . . , u ′pi+1, (7.17)

where v are the nodal values, u are the random variates for the perturbations and pi

is the initial polynomial order. It should be clear that the number of nodal values on

the left in (7.17) is one less than on the right and similarly the number of random

variables on left is one more than on the right in order for there to be an equal number

of variables on both sides.

To compute the Jacobian, the relationships between the variables are also needed. A

short hand notation is introduced here where P (v1 . . . vpi+1, x ′j ) is the projection, or
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interpolation function, that projects the polynomial of order pi to the higher order

polynomial at nodal point x ′j . With this short hand notation, the relationship for the

proposed values in terms of current values is

v ′j = P (v1 . . . vpi+1, x ′j )+ u j , (7.18)

which represents the projection of the polynomial to the higher order nodal point x ′j

plus a random perturbation u ′j . A similar operator can be written for the reverse for

the relationships between the random variables u ′j and the current values, that is

v j = P (v ′1 . . . v ′pi+2, x j )+ u ′j . (7.19)

The Jacobian for the proposals between each order are independent of the model and

represent volume change corrections for the trans-dimensional steps. As such the Jaco-

bian determinant can be computed once and stored. The Jacobians for a suite of birth

order proposals were numerically evaluated and all found to be unity, so they fall out

of the acceptance criteria leaving

α(m→m′)birthorder =min







1,

∏p ′i+1

j=1
p(v ′i , j )
∏pi+1

j=1
p(vi , j )

p(d|m′)
p(d|m)

∏pi+1

j=1
Q(vi , j )

∏p ′
i
+1

j=1
Q(v ′

i , j
)







. (7.20)

7.4.4 Order Death

The proposal for order death or reducing the order of a polynomial by one, is the

reverse of order birth and is shown diagrammatically in Figure 7.8. In this class of

proposal, a partition is selected to perform the order death proposal that decrements

the order of the polynomial in the partition. The new values for the lower order

polynomial need to be either sampled from the prior or generated from perturbations

of the lower order projection of the current model, similarly to the order birth proposal.

The acceptance criteria is unchanged from the previous section, and given by (7.20).
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Figure 7.8: The schematic for the order death proposal where the central partition in (a) with a
quadratic polynomial, has the polynomial order decreased to one in (b).

7.4.5 Partition Birth

For a partition birth proposal, the steps taken are

1. select a partition,

2. select a partition splitting point to divide this partition, then

3. select new orders for each of the partitions, and

4. choose new values for each of the new nodes.

This is shown diagrammatically in Figure 7.9 where in (a) highlighted is the selected

partition to split and (b) shows the new partitions and polynomials with the old poly-

nomial plotted as a dotted line.

This proposal can be expressed mathematically as

Q(m→m′) =
1

k

1

ci

Q(p ′i )
p ′i+1
∏

j=0

Q(v ′i , j )Q(p
′
i+1)

p ′i+1
+1
∏

j=0

Q(v ′i+1, j ), (7.21)

where Q(p ′i ) and Q(p ′i+1) are the proposal distributions for order of each of the new

partitions, and similarly Q(v ′i , j ) and Q(v ′i+1, j ) are the proposal distributions for the
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Figure 7.9: For a partition birth proposal, a partition is selected to split, highlighted in red in (a). The
partition is split at a randomly chosen location and new polynomials of random order are generated
in the two new partitions as shown in (b).

new values in each of the new partitions. Just as in the case for the order birth pro-

posal, two alternatives exist for the choosing of the new values, either to sample from

the prior, or use projection of the current model onto the two new partition nodal

interpolation points and add small perturbations. Due to the added complexity, sam-

pling from the prior is the only partition birth proposal considered, although more

focused proposals analogous to the order birth proposal are possible.

Proposing using a uniform distribution between 0 . . . 1 for determining the location of

the partition splitting point results in a non-unity Jacobian. Similar to the partition

approach in Chapter 2, this results in a Jacobian of

|J |= ci , (7.22)

where ci is the width of the partition being split, and as such the acceptance criteria for

this proposal reduces to

α(m→m′)birth =min

�

1,
p(d|m′)
p(d|m) ci

�

. (7.23)
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Figure 7.10: For a partition death proposal, two neighbouring partitions are selected to merge high-
lighted in red in (a). A new partition is formed as the sum of the two neighbouring partitions, and
a new polynomial of random order is generated as shown in (b).

7.4.6 Partition Death

For the partition death proposal, shown diagrammatically in Figure 7.10, a partition is

selected to be merged with its right neighbour. This means the selection occurs from

one of k − 1 partitions, that is, from all partitions except the last.

The acceptance criteria becomes

α(m→m′)birth =min

�

1,
p(d|m′)
p(d|m)

1

ci + ci+1

�

, (7.24)

where ci and ci+1 are the widths of the two partitions being merged into one.

7.5 Synthetic Regression Example

These proposals combined form a general trans-dimensional inversion method for 1D

problems where the underlying model may be some combination of a smoothly vary-

ing function and discontinuities. To verify this method, a test suite is constructed

using observations from three different underlying functions shown in Figure 7.11.

These can be described as (a) a simple cubic function, (b) a set of three constant valued

step functions, and lastly (c) a set of three partitions with different order polynomials
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Figure 7.11: The three different synthetic data examples used in this study. (a) is a continuous smooth
function, (b) is a a partition model with discontinuities with constant polynomials in each partition,
and (c) is a partition model with discontinuities and variable order polynomials in each partition.
In each plot, the true data is shown with a black line and the synthetic data observations with points.

in each. For each of three true functions, 100 random sample points are uniformly

generated along the x-axis and the true y value of the function is evaluated. To the true

value, independent zero mean Gaussian noise is added with a standard deviation of 0.1

or approximately 10% error. In Figure 7.11, the true function is shown with a solid

black line, and the noisy data shown with blue points and representative error bars.

Three inversions are performed for each dataset with different trans-dimensional op-

tions available, these are

1. a single cell but with trans-dimensional order,

2. trans-dimensional partitions but with fixed zeroth order in each partition, and

3. trans-dimensional partitions with trans-dimensional order in each partition.

For each inversion it is assumed that the data noise is estimated and so a hierarchical

error scale is used to estimate the noise level [Malinverno and Briggs, 2004].

Where applicable, a uniform prior is used on the number of partitions of between 1

and 10, and a uniform prior on the polynomial order in each partition of between

0 and 5. With the order birth/death proposals the projection with Gaussian pertur-

bation approach is used. The value, move and hierarchical proposals are configured

identically for all of the inversions and tuned to obtain a reasonable acceptance rate
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across all inversions. Each inversion is run for one million iterations with the first

500,000 iterations removed as burnin.

The results of all nine inversions are shown in Figure 7.12 in a grid layout. The rows

correspond to the synthetic data shown in Figure 7.11. The first column shows the

results for the single partition inversions with a trans-dimensional order. The second

column shows the results of the trans-dimensional partition inversion with fixed ze-

roth order polynomials in each partition. The third column shows the results with

trans-dimensional partitions with trans-dimensional order within each partition. In

the results, the blue shaded region shows the posterior histogram of the ensemble of

candidate curves and green dotted lines show the mean of the ensemble.

Here the three true models are chosen to best suit one of the three inversion methods

used. For example, the first model should be well recovered by the single partition

with trans-dimensional order inversion. Similarly, the second model should be well

recovered by the trans-dimensional partitions with zeroth order polynomials. It is

evident that this is indeed the case in Figure 7.12 (a) and (e), but in both these synthetic

models, the trans-dimensional partition with trans-dimensional order polynomials has

visually identical results in (c) and (f). The results in Figure 7.12 (c) and (f) are striking

examples of the parsimony of trans-dimensional sampling in action. Even though the

trans-dimensional partition and order inversion is able to add more partitions in (c)

or increase the polynomial order in (f), these extra complexities in the model aren’t

required to explain the data further, given the inverted for noise level.

In 7.12(i), the method using GLL polynomials with trans-dimensional sampling of

partitions and polynomial order, is able to successfully adapt to both discontinuities

and variable polynomial order without knowing in advance which is required by the

data. It is also clear in (g) and (h) that approximations of the true model can be re-

covered but the posterior exhibits artifacts related to the limitations within the class

of parameterizations available. This has important ramifications of subsequent infer-

ences, for example, a tendency to miss the presence of discontinuities in the data that

are detectable, as in (g); or the identification of false partition boundaries that are not
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Figure 7.12: The true model and posterior histogram of different trans-dimensional inversion schemes
for three synthetic regression experiments. In the first column is the result of a single partition trans-
dimensional order inversion. The second column is a trans-dimensional partition model with a fixed
zeroth order polynomial in each partition and in the third column is the trans-dimensional partition
with trans-dimensional polynomials in each partition. Blue shading shows the ensemble histogram
of the curve location, the green dashed line is the ensemble mean, and the faint black lines show the
95% credible intervals.
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Figure 7.13: This figure shows the hierarchical error scaling histograms for each of the inversions. The
first column is the inversions using a single partition with trans-dimensional change of order, the
second column is the inversions using trans-dimensional partitions with fixed 0th order polynomials,
and the last column using trans-dimensional partitions with trans-dimensional order polynomials.

actually present in the data, for example as in (h). It is only with the more flexible GLL

scheme with trans-dimensional partitions and polynomial order where both situations

can be resolved correctly.

The histograms for the estimates of the hierarchical scaling factor also show interest-

ing features. In these synthetic regression examples, the true noise is known and the

hierarchical scaling parameter inverted for is a multiplier of this true noise level. An

indication of a successfully estimated noise level is a histogram centred on unity. In

Figure 7.13 the histograms are plotted in the same grid layout as used in Figure 7.12.

From the figure, the histograms are generally well centred about unity with the excep-
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tion of two of the single partition trans-dimensional order inversion in (d) and (g). It is

somewhat surprising that the trans-dimensional partitions with zeroth order polyno-

mials have converged so well to near unity for true models poorly represented by step

functions, that is the smooth cubic in Figure 7.13(b) and the three partition model with

varying order polynomials in Figure 7.13(h). It is generally expected that if the param-

eterization is a poor predictor of the observations, then hierarchical error estimates are

generally larger but this does not seem to have occured in these cases.

As a final comparison, the posterior histogram of the location of partition boundaries

is examined for the two methods with trans-dimensional partitions. This is shown in

Figure 7.14 where the first column represents the results of the trans-dimensional parti-

tion with zeroth order polynomials (corresponding to (b), (e), and (h) in Figure 7.12).

The second column shows the trans-dimensional partitions with trans-dimensional or-

der inversions (corresponding to (c), (f), and (i) in Figure 7.12).

In Figure 7.14(a), in order to represent the smooth cubic function, the trans-

dimensional partition model with zeroth order polynomials has created many artifi-

cial boundaries in an attempt to fit the smooth function. In contrast, the posterior

in (b) correctly shows that no discontinuities are required by the data. In (c) and (d)

the results are almost identical with two strong partition locations at the true parti-

tion boundary locations indicated with vertical red dashed lines. In the last row, once

again due to higher order functions in the true model, the trans-dimensional partition

solution with fixed zeroth order polynomials introduces many spurious boundary lo-

cations. Conversely, when trans-dimensional polynomial order is enabled in (f), the

posterior recovers highly probable partition boundaries representative of the known

truth.

A common application of trans-dimensional partition modelling is to detect disconti-

nuities in data series[Green, 1995, Denison et al., 2002]. However here it was demon-

strated that spurious discontinuities are possible if only zeroth order polynomials are

used within partitions. Partition modelling with zeroth order polynomials is the

most common case in existing implementations used in geophysical applications[Piana
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Figure 7.14: This figure shows the histogram of the partition boundaries. In the left column are the
results for the trans-dimensional partition inversions with fixed zeroth order polynomials and in
the right the results for the trans-dimensional partitions with trans-dimensional order polynomials
method.
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Agostinetti and Malinverno, 2010, Minsley, 2011, Dettmer and Dosso, 2012, Bodin

et al., 2012b, Brodie and Sambridge, 2012]. The trans-dimensional scheme presented

here using both partitions and polynomial order using GLL polynomials avoids arti-

facts of less flexible, fixed order approaches.

7.6 Summary

This chapter introduced a new general method of trans-dimensional partition mod-

elling using Gauss-Lobatto-Legendre polynomials to allow an inversion to adapt to an

unknown number of partitions with an unknown order polynomial within each par-

tition.

The combination of partitions and variable order polynomials allows a trans-

dimensional inversion to adapt a model to a smoothly varying representation using

higher order polynomials, or to a set of discontinuities using partitions. From the re-

sults in synthetic tests it was shown that incorporating both trans-dimensional polyno-

mial order and trans-dimensional partitions enables better recovery of the true model,

better estimation of noise levels and reduction in spurious detection of discontinuities

within the data.

In the following chapter, trans-dimensional spectral elements will be coupled with a

non-linear forward model for the solution of a common and difficult geophysical in-

verse problem.
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8.1 Introduction

In the previous chapter, a novel trans-dimensional spectral element parameterisation

was introduced that allows inversion for both smoothly varying models and mod-

els with discontinuities. Its effectiveness in three synthetic regression problems was

demonstrated, and due to the parsimonious nature of trans-dimensional sampling,

there was not over fitting of the true model.

In this chapter the aim is to apply this trans-dimensional framework to a geophysi-

cal problem. The motivation is the common problem in geophysics inversion that

observations can often be explained equally well by 1D Earth models that are either

smoothly varying, or a series of homogeneous layers with discontinuities. An early

example discussing this trade off was described by Bullard et al. [1940] in a seismic

refraction experiment (see section 4, particularly point (e)).

There are a number of methods for obtaining localised information of the Earth’s

structure using 1D models. An example are receiver functions [Langston, 1979, Owens

et al., 1984] where the convolution of horizontal and vertical components of seismo-

grams of an event, or series of events, are used to infer where interfaces have caused

conversions from P-waves to S-waves. This method is sensitive to the interfaces but is

dependent on a velocity model. There is a well established strong trade-off between the

velocity model and the location of the interfaces as discussed by Piana Agostinetti and

Malinverno [2010].

Another example, which was discussed in the ambient noise study of Chapter 5, is sur-

face wave dispersion [Dettmer et al., 2012]. In this type of problem, an Earth model

can predict the dispersion of phase or group velocity as a function of frequency. Sur-

face wave dispersion inversion is highly non-unique as many Earth models can produce

the same dispersion curves to within errors. In general, surface wave dispersion obser-

vations have low sensitivity to interfaces and is most sensitive to shear wave velocity as

a function of depth (Rayleigh waves have some sensitivity to p-wave velocity). For this

reason, the complementary sensitivities of receiver functions and surface wave disper-
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sion measurements are often used in joint inversions for local 1D Earth models [Julia

et al., 2000, Bodin et al., 2012b].

In surface wave dispersion problems, existing methods for forward modelling are

restricted to matrix propagator methods [Thomson, 1950, Haskell, 1953] that can

only model a series homogeneous layers. Rayleigh-Ritz methods [Wiggins, 1976] use

smooth basis functions and therefore are not able on their own to properly model dis-

continuous Earth models. The numerical integration scheme of Takeuchi and Saito

[1972] can incorporate both smoothly varying structure and discontinuities but is in-

efficient because it requires multiple numerical integrations to converge. Additionally

this method also has numerical accuracy issues [Aki and Richards, 2002]. Another

general class of method uses a linearisation from a reference model [Fang et al., 2015].

Typically this approach depends strongly on the choice of reference model and results

in both simplistic uncertainties, and most importantly, an inability to properly solve

the non-linear model choice problem that is addressed in this chapter.

In order to answer the question of whether the difference between layered structure

and smoothly varying velocity can be discerned, an appropriate solution to the forward

problem is first needed. This will be one that can use a 1D Earth model parameterised

with the spectral element polynomials described in the previous chapter, and accurately

compute predictions for dispersion.

8.2 Equations of Motion

This section gives a brief recapitulation of the elastic equations of motion for a body

based on the linearisation or small deformation with a flat Earth approximation which

is amalgamated from several sources [Love, 1927, Anderson, 1961, Takeuchi and Saito,

1972, Kennett, 1973, Achenbach, 1975, Thomsen, 1988, Chapman, 2004, Fichtner,

2011].

The equations of motion in a vector/tensor form are
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ρü=∇ ·σ + f, (8.1)

where ρ is the density, ü is the second derivative of displacement with respect to time,

σ is the stress, f are externally applied forces. For brevity, the dependence of ρ on a

spatial coordinate, x, and the dependence of u, σ and f on the spatial coordinate and

time t are omitted.

In a non-dissipative medium, the relationship between the stress and displacements is

given by the tensor form of Hooke’s law

σ =C :∇u, (8.2)

where “:” is the tensor contraction operator, ∇ the spatial gradient operator, and C is

the elastic tensor with elements ci j k l which can vary spatially as a function of x. Due

to the required symmetry of the elastic tensor, the general case of an anisotropic ma-

terial in matrix form can be expressed using Voigt notation. Given the 3 dimensional

coordinate system where x= (x, y, z), the stress tensor is

σ =











σx x σxy σx z

σxy σyy σy z

σx z σy z σz z











. (8.3)

With Voigt notation, the ordering
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x x← 1 (8.4)

yy← 2 (8.5)

z z← 3 (8.6)

y z← 4 (8.7)

x z← 5 (8.8)

xy← 6, (8.9)

is used to unwind the stress tensor into a vector

σ =





























σx x

σyy

σz z

σy z

σx z

σxy





























, (8.10)

and with mappings from the terms of the elastic tensor ci j k l to Cmn where m→ i j and

n→ k l . The constitutive relationship in matrix form can then be written





























σx x

σyy

σz z

σy z

σx z

σxy





























=





























C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

























































εx x

εyy

εz z

2εy z

2εx z

2εxy





























, (8.11)

where ε is the strain, related to the displacement by the template
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εi j =
1

2

�

d ui

d j
+

d u j

d i

�

, (8.12)

for example,

εxy =
1

2

�

d ux

d y
+

d uy

d x

�

, (8.13)

and

εx x =
d ux

d x
. (8.14)

Since the interest here is 1D inversion it makes sense to at most consider transversely

isotropic media where the axis of symmetry is defined to be the z, or the radial, direc-

tion. This equates to the case where there are different wave speed velocities laterally

and azimuthally. In this case, using the terms introduced by Love [1927], the elastic

tensor in matrix form becomes

C=





























A A− 2N F 0 0 0

A− 2N A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N





























. (8.15)

These can be related to seismic wave speed parameters using
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A= ρα2
H = λ⊥+ 2µ⊥ (8.16)

C = ρα2
V = λ‖+ 2µ‖ (8.17)

N = ρβ2
H = µ⊥ (8.18)

L= ρβ2
V = µ‖ (8.19)

where αH , αV are the horizontal and vertical P-wave velocity respectively and βH , βV

are the horizontal and vertical S-wave velocity respectively. Also shown above is the

equivalence to the parameters used in Chapman [2004], λ⊥, µ⊥, λ‖, µ‖, and not shown,

F = υ. Finally, in the purely isotropic case these parameters can be reduced to

A=C = λ+ 2µ (8.20)

N = L=µ (8.21)

F = λ, (8.22)

where λ and µ are the Lamé elastic parameters.

Finally, restating the equation of motion in terms of vectors

ρ
d 2

d t 2











ux

uy

uz











=
h

d
d x

d
d y

d
d z

i

·











σx x σxy σx z

σxy σyy σy z

σx z σy z σz z











+











f1

f2

f3











. (8.23)

The individual components of the equations of motion can now be obtained in terms

of the five transverse isotropic parameters.
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ρ
d 2ux

d t 2
=

d

d x

�

A
d ux

d x
+ (A− 2N )

d uy

d y
+ F

d uz

d z

�

+

d

d y

�

N

�

d ux

d y
+

d uy

d x

��

+

d

d z

�

L

�

d ux

d z
+

d uz

d x

��

+ fx (8.24)

ρ
d 2uy

d t 2
=

d

d x

�

N

�

d ux

d y
+

d uy

d x

��

+

d

d y

�

(A− 2N )
d ux

d x
+A

d uy

d y
+ F

d uz

d z

�

+

d

d z

�

L

�

d uy

d z
+

d uz

d y

��

+ fy (8.25)

ρ
d 2uz

d t 2
=

d

d x

�

L

�

d ux

d z
+

d uz

d x

��

+

d

d y

�

L

�

d uy

d z
+

d uz

d y

��

+

d

d z

�

F
d ux

d x
+ F

d uy

d y
+C

d uz

d z

�

+ fz (8.26)

These three coupled equations represent the general equations of motion for a trans-

versely isotropic material. This can be simplified further assuming locally smooth

lateral heterogeneities so that the material parameters ρ, A, C , F , L, N depend only on

the dimension z, to obtain
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ρ
d 2ux

d t 2
= A

d 2ux

d x2
+ (A−N )

d 2uy

d xd y
+ F

d 2uz

d xd z
+

N
d 2ux

d y2
+N

d 2ux

d xd y
+

d

d z

�

L

�

d ux

d z
+

d uz

d x

��

+ fx (8.27)

ρ
d 2uy

d t 2
= N

d 2ux

d xd y
+N

d 2uy

d x2
+

(A− 2N )
d 2ux

d xd y
+A

d 2uy

d y2
+ F

d 2uz

d yd z
+

d

d z

�

L

�

d uy

d z
+

d uz

d y

��

+ fy (8.28)

ρ
d 2uz

d t 2
= L

d 2ux

d xd z
+ L

d 2uz

d x2
+

L
d 2uy

d yd z
+ L

d 2uz

d y2
+

d

d z

�

F
d ux

d x
+ F

d uy

d y
+C

d uz

d z

�

+ fz . (8.29)

8.2.1 Love Waves

Consider now a 1D Earth model using the previous direction vectors in which the the

propagation of a Love wave is in the x direction. Love waves in this configuration

oscillate laterally perpendicular to the propagation direction, that is, the y direction.

The oscillatory displacement for a given frequency ω and wave number k in each

direction can be written

ux(t ) = 0, (8.30)

uy(t ) = V (k ,ω, z)exp [i (k x −ωt )] , (8.31)

uz(t ) = 0, (8.32)
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where V is the depth dependent amplitude of the oscillations. The non-zero stresses

associated with this displacement are

τy z = L
dV (k ,ω, z)

d z
exp [i (k x −ωt )] (8.33)

τxy = i kNV (k ,ω, z)exp [i (k x −ωt )] . (8.34)

Since ux , uz are zero and uy has no dependence on y, (8.24) and (8.26) are zero. For

(8.25), using

d 2uy

d t 2
= −ω2V (k ,ω, z)exp [i (k x −ωt )] (8.35)

d 2uy

d x2
= −k2V (k ,ω, z)exp [i (k x −ωt )] (8.36)

d uy

d z
=

dV (k ,ω, z)

d z
exp [i (k x −ωt )] , (8.37)

giving

−ω2V ρ=−k2NV (k ,ω, z)+
d

d z

�

L
dV (k ,ω, z)

d z

�

, (8.38)

after imposing the source free condition, that is fy = 0, and cancelling the oscillating

exponential term from both sides.

From (8.38), it is evident that Love waves are only sensitive to the shear wave velocity

through the N and L parameters which are related to the horizontal and vertical shear

wave velocities respectively.

The solution of these equations require boundary conditions which are given by
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lim
z→∞

V = 0 (8.39)

τy z(zsurface) = 0 (8.40)

. (8.41)

These conditions are required by the “source-free” condition where there are no body

forces. This condition requires that no source exists at infinity and that the traction

vanishes at the surface. Hence τz z , τx z , and τy z must be zero at the surface of which

only τy z is non-zero for Love waves. For a non-zero L parameter, this condition is

satisfied by

dV

d z
(zsurface) = 0. (8.42)

Additionally, the displacement V and traction τy z must be continuous functions of z.

In an isotropic homogeneous half space, where ρ, N , L are constant for all z, with L

equal to N , the differential equation simplifies to

−ω2V ρ=−k2LV + L
d 2 l

d z2
, (8.43)

which has the well known solution

V (z) =C exp

�

−
s

k2− ω
2ρ

L
z

�

, (8.44)

with C some arbitrary scaling term.

8.2.2 Rayleigh Waves

Similarly to the Love wave case, 1D equations for the oscillations of a propagating

Rayleigh wave can be formulated. Rayleigh waves, when propagating in the x direction
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in the coordinate system, consist of an oscillation in the x direction and an out of phase

oscillation in the z direction, resulting in elliptical particle motion in the x z plane.

Again the oscillations for a given frequency ω and wave number k in each direction

can be expressed independently as

ux(t ) = U (k ,ω, z)exp [i (k x −ωt )] (8.45)

uy(t ) = 0 (8.46)

uz(t ) = iW (k ,ω, z)exp [i (k x −ωt )] , (8.47)

where U is the depth dependent amplitude of oscillations in the x direction and W in

the z. The non-zero stresses associated with this displacement are

τz z = i

�

F kU (k ,ω, z)+C
W (k ,ω, z)

d z

�

exp [i (k x −ωt )] (8.48)

τx z = L

�

d U (k ,ω, z)

d z
− kW (k ,ω, z)

�

exp [i (k x −ωt )] . (8.49)

Since uy is zero, both sides of (8.25) are zero leaving two equations. Using

d 2ux

d t 2
= −ω2U (k ,ω, z)exp [i (k x −ωt )] (8.50)

d 2ux

d x2
= −k2U (k ,ω, z)exp [i (k x −ωt )] (8.51)

d 2uz

d xd z
= −k

dW (k ,ω, z)

d z
exp [i (k x −ωt )] (8.52)

d ux

d z
=

U (k ,ω, z)

d z
exp [i (k x −ωt )] (8.53)

d uz

d x
= −kW (k ,ω, z)exp [i (k x −ωt )] , (8.54)

after cancelling oscillation terms, this simplifies (8.24) to
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−ρω2U =−k2AU − kF
dW

d z
+

d

d z

�

L
�

d U

d z
− kW
��

. (8.55)

For (8.26), using

d 2ut

d t 2
= −iω2W (k ,ω, z)exp [i (k x −ωt )] (8.56)

d 2ux

d xd z
= i k

d U (k ,ω, z)

d z
exp [i (k x −ωt )] (8.57)

d 2uz

d x2
= −i k2W (k ,ω, z)exp [i (k x −ωt )] (8.58)

d ux

d x
= i kU (k ,ω, z)exp [i (k x −ωt )] (8.59)

d uz

d z
= i

dW (k ,ω, z)

d z
exp [i (k x −ωt )] (8.60)

results in

−ρω2W = Lk
d U

d z
− Lk2W +

d

d z

�

F kU +C
dW

d z

�

. (8.61)

The solution of these equations require boundary conditions which are given by

lim
z→∞

U = 0 (8.62)

lim
z→∞

W = 0 (8.63)

τz z(zsurface) = 0 (8.64)

τx z(zsurface) = 0. (8.65)

Additionally, for the same reasons as in the Love wave case, U , W , τz z and τx z must

be continuous functions of z.
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8.3 Forward modelling

The most common method for the solution of computing the dispersion curve from a

model of the Earth’s crust is the propagator matrix method due to Thomson [1950] and

Haskell [1953]. In this approach, the Earth is modelled as a stack of thick blocks and

within each block the elastic properties and density are constant. The last or deepest

block is a half space model. The benefit of this approach is that it is relatively quick

to solve for a dispersion curve with computational time a function of the number of

layers. The drawback is that a smooth, continuously varying velocity function must

be crudely approximated by a many layered Earth model.

Takeuchi and Saito [1972] proposed an alternate iterative scheme that begins from a

rigid boundary, or predetermined starting condition at a great depth, and numerically

integrating the displacement to the surface using a trial value for the wave number k.

For any given value of k, the traction free surface condition may be violated, so an

iterative search technique is used to find valid k values such that the surface traction

is zero (or close to zero given numerical precision). As a result, this method allows

Earth models to have more complex structure, but results in a more computationally

expensive forward model and convergence can become difficult at higher frequencies.

A finite element scheme is known to be an effective method for the solution of Love

and Rayleigh waves [Lysmer, 1970, Lysmer and Drake, 1972]. In this scheme, a num-

ber of cells down to a rigid basement are constructed from which a linear system of

equations can be formulated into an Eigen value problem that can be solved with stan-

dard approaches. This Finite Element approach to surface waves is analogous to beam

vibration problems from structural mechanics and the rigid base is generally only a

problem for long period waves which have greater sensitivity at depth. This approach

has recently been revisited by Haney and Douma [2011] for Love waves.

A similar approach to finite elements is the Rayleigh-Ritz method which was employed

by Wiggins [1976] with smooth basis functions. A draw back of the choice of basis

functions is that sharp discontinuities are poorly represented.
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In recent years, the spectral element method (SEM) has gained traction in simulat-

ing full waveform propagation through 2D and 3D media [Komatitsch and Tromp,

1999, 2002a,b, Fichtner et al., 2009]. In particular, the method easily incorporates free-

surface boundary condition and can accurately represent the propagation of surface

waves. The spectral element method is arbitrary order, restricted only by computa-

tional limits, and can incorporate spatial discontinuities in Earth parameters. To this

end, it seems a good fit for the forward modelling of 1D surface wave dispersion for

Love and Rayleigh waves.

8.4 Spectral element solution

The development of a continuous Galerkin projection spectral element method for

the calculation of Love and Rayleigh wave dispersion has not previously appeared in

the literature and this is an original contribution of this thesis. The details of the

derivation is given in Appendix A and follows a similar treatment to introductory

texts [Pozrikidis, 2005, Kopriva, 2009]. The results of the derivation are summarised

here.

8.4.1 Love waves

From the derivation of the spectral element method for Love waves which solve the

differential equation in (8.38), a matrix equation of the form

�

ω2A− k2B−C
�

V= 0, (8.66)

is obtained with A and B diagonal matrices, C a block diagonal matrix, and V a vector

representing the values of the Eigen function at the nodal interpolation values. Here

the diagonallity of B means its inverse can be trivially computed allowing rearrange-

ment to
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�

D− k2I
�

V= 0, (8.67)

where D= B−1
�

ω2A−C
�

. For non-trivial solutions of V, it is required that

det
�

�D− k2I
�

�= 0, (8.68)

and this can be efficiently solved using standard Eigen value calculation codes [Moler

and Stewart, 1973]. The Eigen values of the system can be complex where the imagi-

nary part is a decay term resulting in a Love wave that does not propagate. For negative

real Eigen values, the wave number is purely imaginary and the wave does not prop-

agate. Therefore, the positive Eigen values are the only propagating modes, and these

are called static instabilities in the vibrational analysis community [Chang et al., 2010].

Lysmer and Drake [1972] gives a more detailed discussion of the Eigen values and their

meaning than the summary presented here.

So for a given Earth model and frequency, it is possible to assemble the Eigen problem

in (8.68) and solve for the real positive Eigen values. Each of these represent a sur-

face wave mode whose wave number is the square root of the Eigen value from which

the phase velocity can be computed. Additionally the Eigen vectors are the displace-

ment function of the oscillations. In summary, this derivation forms the basis for a

novel spectral element approach to computing dispersion information for Love wave

propagation from arbitrary 1D Earth models.

8.4.2 Rayleigh waves

From the derivation of the spectral element method for Rayleigh waves as solutions of

the coupled equations (8.55) and (8.61), the matrix equation
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ω2





Ax 0

0 Az



+ k2





Bx 0

0 Bz



+ k





0 Cx

Cz 0



+





Dx 0

0 Dz















rx

rz



= 0, (8.69)

can be constructed where the vectors rx and rz represent the eigen functions of the

horizontal and vertical oscillations. Note that the coupling between the two systems

is confined to factors of k. For non-trivial solutions, it is required that

det
�

�ω2A+ k2B+ kC+D
�

�= 0, (8.70)

which is a quadratic Eigen value problem [Tisseur and Meerbergen, 2001]. The ap-

proach to solving this problem is a two step process of scaling the problem for numer-

ical accuracy and restating the equation in one of the many companion forms which

reduce the problem to a general Eigen problem. The details are in Hammarling et al.

[2013], but the synopsis is that first scaling terms are computed using

γ =

√

√

√ ||ω2A+D||2
||B||2

(8.71)

δ =
2

||ω2A+D||2+ γ ||C||2
, (8.72)

and then solve the second companion form of (8.70) resulting in the general Eigen

system

det

�

�

�

�

�

�





γδC −I

δ(ω2A+D)



−λ




−γ 2δB 0

0 −I





�

�

�

�

�

�

= 0. (8.73)

This solution will give Eigen values that need to be scaled to obtain the wave number,

that is, for each Eigen value λ, the wave number k is given by
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k = γλ. (8.74)

If the Earth model is parameterised in terms of N spectral element nodes, the Eigen

vectors of this solution will be of dimension of 4N . The first N elements of the Eigen

vector give the amplitude function for the lateral displacement and the next N are for

the radial displacement. In summary this derivation forms the basis for a novel spectral

element approach to computing dispersion information for Rayleigh wave propagation

from arbitrary 1D Earth models.

8.4.3 Boundary condition at depth

The discussion of how to treat the boundary of the solution at depth was deferred

until now. The boundary condition of the differential equations, both for Love and

Rayleigh waves, is that the displacement function(s) decay to zero as depth tends to

infinity. In previous methods [Lysmer, 1970, Lysmer and Drake, 1972, Haney and

Douma, 2011] for computing phase velocities from a 1D or 2D Earth model, a rigid

boundary at a sufficiently large depth was applied as an approximation to the infinite

boundary condition. This approach is a reasonable approximation if the depth of the

model is sufficient that for all frequencies and modes considered, as the eigen functions

are near zero at the basement.

In the spectral element field, there have been various approaches to providing robust

solutions to half space problems using either a mapping from a finite to a half space,

for example −1 . . . 1 to 0 . . .∞ [Boyd, 1987, 2001]. The solution can then proceed

with exactly as described in Appendix A with the exception that the last element has

different partial derivative terms due to the modified affine transformation, that is, the

same GLL polynomials and quadrature rules are used. This type of mapping technique

has very recently been applied to full waveform spectral element codes for representing

the gravity potential [Gharti and Tromp, 2017] to enable larger periods to be modelled.

An alternative approach to the “finite to infinite” domain transformation technique is
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the use of either Laguerre polynomials or Laguerre functions introduced by Mavriplis

[1989]. Laguerre polynomials and functions can be seamlessly incorporated into an

Gauss-Lobatto-Legendre framework with the coupling of a finite domain to an infinite

one [Shen, 2000, Valenciano and Chaplain, 2005]. In a comparison of the mapping

approach to Laguerre polynomials, Black [1998] found that the relative merits of one

over the other was problem dependent.

Laguerre polynomials are defined recursively as

L0(x) = 1

L1(x) = 1− x

Ln(x) =
2n− 1− x

n
Ln−1(x)−

n− 1

n
Ln−2(x), (8.75)

and Laguerre functions

L̂n(x) = L(x)exp
n−x

2

o

. (8.76)

The attraction of the Laguerre functions is that their formulation in a spectral element

solution is exactly the same as that for Gauss-Lobatto-Legendre polynomials, with only

the quadrature weights and differential operators differing. This means an infinite do-

main element can be readily incorporated using the existing derivation in Appendix A

that correctly models a decay to zero of the amplitude functions with depth. In such a

formulation, the Earth model will consist of some number of Gauss-Lobatto-Legendre

cells from the surface to the half space layer, then one Gauss-Laguerre-Legendre cell

to model the half space. In Figure 8.1, in (a) the Gauss-Lobatto-Legendre orthogonal

polynomials are shown and in (b) the corresponding Gauss-Laguerre-Legendre polyno-

mials for the same order are shown where the same orthogonal properties are evident,

except the the Laguerre polynomials decay to zero as x tends to positive infinity.

For finite spectral elements, a physical part of the domain is mapped to the −1 . . . 1
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Figure 8.1: The similarity between the Gauss-Lobatto-Legendre (a) and Gauss-Laguerre-Legendre (b)
for the 5th order set of cardinal polynomials is shown.

interval. For an infinite spectral element, a half space in the physical domain needs

to be mapped from z..∞ to 0..∞. The offset here is of little interest, however a

scaling allows the Laguerre cell to optimally to fit the problem at hand. For Love wave

dispersion, in a constant layer over a half-space, the well known analytical solution for

the eigen functions is given by

V (z)∝ exp

�

−
s

k2− ω
2ρ

L
z

�

. (8.77)

Hence when determining the transform from the physical domain to the spectral ele-

ment domain, the transform

z(ζ ) =
ζ
q

k2− ω2ρ
L

, (8.78)

is optimal, and the Laguerre polynomials can perfectly fit the corresponding Eigen

function. Unfortunately there is a circularity here in that in order to solve for k, k

needs to be known for each frequency ω. The approach here is to iterate and use the

result of a previous computation from which k is known to have changed little. Pos-

sibilities are to initially estimate k using a previous k from a neighbouring frequency

when computing a dispersion curve.
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ρ Vs Vp

(kg/m3) (m/s) (m/s)
Layer 2,800 3,000 5,000
Half space 3,200 5,000 8,000

Table 8.1: The Earth model parameters for the calculation of Love wave phase velocity. The model
is a simple homogeneous 10km thick layer over a half space.

8.4.4 Accuracy

In order to evaluate this new method of computing phase velocity from a 1D Earth

model, in this section several comparisons are made between analytic results and solu-

tions obtained using existing techniques. Arguably the most common approach used

by practitioners for the calculation of phase velocity for a given Earth model and fre-

quency is the Thomson-Haskell method using propagator matrices [Thomson, 1950,

Haskell, 1953]. It is a fast, efficient and generally stable method although for Rayleigh

waves the prior sampling of Chapter 2 did on occasion numerically fail for some veloc-

ity models.

For Love waves, the Earth model used is from Aki and Richards [2002] that consists

of an homogeneous 10 km layer over a half-space with material properties shown in

Table 8.1.

The phase velocity over a frequency range of near 0 to 1 Hertz was computed for the

various methods. The comparison is performed between the results of a Thomson-

Haskell calculation, a spectral element solution with a fixed boundary condition, a

spectral element solution with a Laguerre boundary condition with fixed scaling, and a

spectral element solution with a Laguerre boundary condition with automatic scaling.

Each of these methods is compared to the known analytical solution derived in Aki

and Richards [2002].

For the spectral element solution with a fixed boundary condition, the domain is ex-

tended to 100 km depth with additional cells to approximate the half-space. For the

spectral element solution with a Laguerre half space, a fixed scaling of 1.0× 10−4 was
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Figure 8.2: These plots show dispersion curves computed with different methods for the model from
Aki and Richards [2002]. The methods are (a) the Thomson-Haskell propagator matrix method , (b)
the spectral element method with fixed boundary , (c) the spectral element method with a Laguerre
boundary with fixed scale, and (d) the spectral element method with automatic scaling. In each plot
the computed dispersion curve is shown in solid black and the analytical solution with a red dotted
line. The grey shaded region represents the frequency range generally of interest to ambient noise
studies. While (b) and (c) have artefacts at low frequencies, (d) is accurate across all frequencies.

used and for the automatic scaling, the phase velocity is computed from high frequency

(where incorrect scaling has little impact) to low and the Laguerre scaling term is up-

dated using the wave number of the previous result. For all spectral element solutions,

5th order polynomials are used. The results of the calculations are plotted in Figure 8.2

It can be seen from the plots that in general the match between the analytical result

and computed dispersion curve is visually identical with the exception of (b) and (c).

In (b), as frequency approaches zero, there is divergence from the analytic result. This

is because at low frequencies, the wave number becomes sensitive to the un-physical
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Figure 8.3: These plots show the log10 relative error of the various methods tested. The methods are the
Thomson-Haskell propagator matrix method (a), the spectral element method with fixed boundary
(b), the spectral element method with a Laguerre boundary with fixed scale (c), and the spectral
element method with automatic scaling (d). In each plot, the horizontal red and blue dashed lines
represent 5 and 1 percent relative errors respectively. The grey shaded region represents the frequency
range generally of interest to ambient noise studies.

fixed boundary and causes the phase velocity to become unstable. In (c) there is a

similar effect except that in this case it is poor scaling of the Laguerre spectral element

representing the half-space. In (c), the Laguerre scale is tuned so that performance is

good in the range of frequencies of interest to ambient noise studies. In (d), with the

automatic updating of Laguerre scaling, the accuracy of the lower frequencies is far

better.

In Figure 8.3, the log10 of the relative error compared to the analytic result for each

of the calculations is shown. In each of the plots, the horizontal blue dashed line

represents a one percent relative error and a reasonable threshold for accuracy. In
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ρ Vs Vp

(kg/m3) (m/s) (m/s)
Layer 1 2,800 3,000 5,100
Layer 2 3,000 4,000 6,800
Half space 3,200 5,000 8,500

Table 8.2: The Earth model parameters for the calculation of Rayleigh wave phase velocity. The
Earth model consists of two simple homogeneous 10km thick layers over a half space.

(b) the spectral element solution with a fixed boundary can satisfactorily compute

the dispersion across the range of frequencies of interest by sufficiently padding the

model (down to 100km depth in this case). Similarly in (c), a fixed Laguerre scale

can ensure accuracy over a frequency range of interest. However, the most accurate

method in this case is the spectral element method with the automatic updating of

the Laguerre scaling term in (d). It additionally out performs the Thomson-Haskell

method at higher frequencies.

Similar tests are performed with the Rayleigh wave solvers for a two layer model over a

half-space with material properties shown in Table 8.2. In this experiment, there is no

analytic solution with which to compare and so here the Thomson-Haskell solution is

adopted as the best estimate of the truth.

In Figure 8.4 the results of computing each of the spectral element solutions are shown.

In (a) is the spectral element solution with a fixed boundary condition, (b) with a

Laguerre boundary condition and fixed scale, and (c) the Laguerre boundary condition

with automatic scaling. Across the range of frequencies of interest, the match is visually

good with the exception of (a) at the low end of the grey shaded region.

The relative error plot, compared to a Thomson-Haskell solution, is shown in Figure

8.5. Both of the solutions using the Laguerre boundary element are well below the

one percent error line across the range of frequencies highlighted. One disconcerting

feature is that in this case the error increases as frequency increases. In this problem

there are factors that are responsible: firstly the Rayleigh wave dispersion problem is

known to be unstable at higher frequencies [Takeuchi and Saito, 1972], and secondly,
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Figure 8.4: These plots show the dispersion curve computed with different methods. The methods are
the spectral element method with fixed boundary (a), the spectral element method with a Laguerre
boundary with fixed scale (b), and the spectral element method with automatic scaling (c). In each
plot the computed dispersion curve is shown in solid black and the Thomson-Haskell solution with a
red dotted line. The grey shaded region represents the frequency range generally of interest to ambient
noise studies.
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Figure 8.5: These plots show the log10 of the relative errors with respect to the Thomson-Haskell
solution for the different methods. The methods are the spectral element method with fixed boundary
(a), the spectral element method with a Laguerre boundary with fixed scale (b), and the spectral
element method with automatic scaling (c). The grey shaded region represents the frequency range
generally of interest to ambient noise studies.

the quadratic Eigen problem is numerically difficult.

If higher frequencies are of interest, then the options available are the typical options

available to all spectral element solutions. Namely, the grid can be made finer or the

order of the polynomial in each cell can be increased. These are known as h-refinement

and p-refinement in the broader finite element research community. As an example,

if the order of the polynomial is increased from 5 to 10, the results shown in Figure

8.6 are obtained where the Thomson-Haskell solution is matched across the entire

frequency range. The downside of increasing the order is that this increases the size

of the matrices in the generalised Eigen problem and therefore the computational cost
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Figure 8.6: If the order of the polynomials is increased in the solution, the accuracy is improved at
higher frequency. In (a) is the dispersion curve computed with higher order elements compared to the
Thomson-Haskell method, and (b) shows the log10 of the relative error.

[Hammarling et al., 2013].

A final verification is to check that the boundary conditions of the differential equa-

tions are satisfied. Recall that for Love waves, the displacement and the traction, dic-

tated by the leading term L d l
d z
, must both be continuous functions of depth. Addition-

ally the traction must be zero at the free surface and decay to zero at depth. In Figure

8.7 the displacement is shown in (a), and the traction shown in (b), for three repre-

sentative periods normalised so the maximum amplitude is one. In this Figure, both

displacement and traction are continuous with depth, and the traction is zero at the

surface. In the Figure, the red dashed line indicates the half space boundary and the La-

guerre element, which represents these functions below this point, accurately reflects

an exponential decay. Careful inspection of the 10 second period curve in (a) reveals

an extremely subtle oscillation which is a reflection of Laguerre scale mismatch. This

could be remedied through increasing the order of the Laguerre function, or through

further iterative refinement of the Laguerre scaling term, but this oscillation is negligi-

ble.

For Rayleigh waves, two tractions, τx z and τz z must be zero at the surface and decay

to zero at depth. Similarly, the displacements must be continuous and decay to zero.

In Figure 8.8 the horizontal displacement is shown in (a) and vertical displacement in
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Figure 8.7: The normalised eigen functions for Love waves of selected periods for the synthetic model.

(a) is the horizontal displacement, (b) is L d l
d z
.

(b). The traction τx z is shown in (c) and τz z (d). In this model, there is an extra layer

compared, and the first layer boundary is represented with a black dashed line and the

half space boundary with a red dashed line. Visual inspection reveals that all boundary

conditions and continuity requirements are satisfied for the Rayleigh wave tests.

8.4.5 Computational Time

A last comparison between the existing approach using the Thomson-Haskell method

and the spectral element method developed here is the computational effort required.

In Table 8.3, the relative time taken for the dispersion curve points computed in the

accuracy test. In the table, the newly developed spectral element method is competi-

tive with the Thomson-Haskell method. The spectral element method with Laguerre

boundaries are marginally quicker than the fixed boundary case as extra elements need

to be added to the model to approximate a half space and this padding increases the

matrix dimension of the solution. The computational cost is dictated by the size of the

matrix which in turn is controlled by the number of layers and the polynomial order
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Figure 8.8: The normalised eigen functions for Rayleigh waves of selected periods for the synthetic

model. (a) is the horizontal displacement, (b) is the vertical displacement, (c) is L( d U
d z
−kW ) and (d)

is F kU +C dW
d z

.
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Method Time
(seconds)

Analytic 0.010
Thomson-Haskell 0.150
Spectral Element (Fixed) 0.200
Spectral Element (Laguerre) 0.140
Spectral Element (Auto-Laguerre) 0.160

Table 8.3: A comparison of the computational time for the methods of inverting for Love wave
dispersion. The times quoted represent the time to evaluate 512 different frequencies and as can be
seen all non-analytic methods are competitive in terms of computational cost.

Method Time
(seconds)

Thomson-Haskell 0.53
Spectral Element (Fixed) 5.07
Spectral Element (Laguerre) 3.01
Spectral Element (Laguerre) 3.09

Table 8.4: A comparison of the computational time for the methods of inverting for Rayleigh wave
dispersion. The times quoted represent the time to evaluate 512 different frequencies and as can be
seen that for Rayleigh waves, the spectral elements are approximately six times slower.

used in the cells.

For Rayleigh waves a similar comparison between Thomson-Haskell and the spectral

element method is shown in in Table 8.4. In this case there is a significant extra cost

in the spectral element method, approximately a factor of six times slower. The pri-

mary cause of this is that the matrix necessary to solve is a factor of four larger than

an equivalent Love wave spectral element solver. In the current implementation, the

matrix equation is reconstructed for every calculation, so it is possible that this could

be optimised. Nonetheless, for typical dispersion inversions involving Rayleigh waves,

a forward model computation would cost less than a second and is feasible for an in-

version algorithm.

8.4.6 Summary

In summary, an accurate and effective method of computing surface wave dispersion

for both Love and Rayleigh waves using the spectral element method has been demon-
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strated. A novel aspect of this approach is the introduction of the Gauss-Laguerre-

Legendre element for more faithfully representing the boundary condition at depth.

Calculations of the new method have been compared to analytic results and existing

approaches and showed a high level of accuracy, although particular care must be taken

with Rayleigh wave dispersion at higher frequencies.

A key difference between this new method and existing approaches is that it can model

smoothly varying Earth models with higher order polynomials and interface discon-

tinuities. Previous matrix propagator techniques [Thomson, 1950, Haskell, 1953] can

only model interface changes with homogeneous model structure whereas Rayleigh-

Ritz techniques [Wiggins, 1976] can only model smoothly varying structure. Iterative

numerical integration schemes are possible [Takeuchi and Saito, 1972, Fichtner and

Igel, 2008] however these require multiple numerical integrations of two coupled equa-

tions for Love waves and four coupled equations for Rayleigh waves iterating using

trial wave numbers. The reason that the number of equations double for the numer-

ical integration scheme is that this is required to enforce continuity of the tractions

τx z , τy z and τz z whereas in the spectral element method this requirement is enforced

implicitly in the weak form of the equations, hence only a single solution of one or

two coupled equations needs to be solved in a generalised Eigen problem for Love and

Rayleigh waves respectively.

Many other geophysical forward models use homogeneous layer approximations and

the general approach here could be equally applied to those problems. An example

is the Airborne Electromagnetic forward model used in Chapter 4 which is similarly

a propagator matrix solution to Maxwell’s equations [Brodie and Sambridge, 2006,

Brodie, 2010].

An important question now presents itself: when inverting for Earth models, can the

difference between sharp contrasts and smoothly varying structure be resolved.
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8.5 Trans-dimensional inversion

A spectral element method for solving for Love and Rayleigh phase velocity given a

1D Earth model parameterised as a series of elements with arbitrary polynomials in

each element has been developed in the previous section. This can be used to represent

smoothly varying structure with a higher order polynomial, or structural discontinu-

ities with element boundaries.

Given this general forward model, in an inversion there are many options available. A

possibility would be to compute gradients of a misfit function with respect to the model

parameters through modelling of perturbations and the adjoint state method [Takeuchi

and Saito, 1972, Plessix, 2006] as is commonly used in both Thomson-Haskell based in-

versions in surface wave dispersion problems and in full waveform tomographic prob-

lems using the spectral element method. However, the aim here is to explore the model

choice problem between representing a 1D Earth model with a series of homogeneous

layers, or a smaller number of layers with smoothly varying structure.

In order to test this, the trans-dimensional spectral elements inversion framework from

the previous chapter is coupled to the spectral element forward model developed and

verified in the previous sections. An issue here is that in some cases, particularly for

Rayleigh wave calculations, the polynomial order must be reasonably high, for exam-

ple, 5th order and perhaps higher for higher frequencies. In trans-dimensional inver-

sion, the desire is to infer whether the observations are best predicted by some number

of constant layers (zeroth order) or smoothly varying structure (higher order), and

zeroth order may not provide sufficient forward model accuracy.

Fortunately, the orthogonality of the spectral polynomials can be used to ensure accu-

racy in the forward model when computing dispersion for lower order models, since

any lower order polynomial is exactly represented by a higher order spectral element

polynomial. An example is shown in Figure 8.9 where in (a) a simple quadratic func-

tion is shown with a solid black line with faint lines showing the cardinal functions.

In (b) this quadratic can be exactly represented with a higher order polynomial simply
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Figure 8.9: With orthogonal polynomials, lower order polynomials can be perfectly represent with
higher order polynomials, for example, the quadratic function shown in (a), can be represented with
higher order polynomials as shown in (b).

by interpolating the quadratic function at each of the higher order polynomials nodal

points. This same property is already used in polynomial change of order proposals

of the previous chapter. Here it is used to project low order models to higher order to

ensure forward model accuracy, in a similar fashion to Chapter 5 where wavelet super

resolution was used to improve the accuracy of the Fast Marching method.

The question that is a focal point of this chapter is under what conditions can surface

wave dispersion observations be used to distinguish between homogeneous layers and

slowly varying layers in a 1D Earth model? To attempt to answer this, a simple 1D

Earth model has been constructed with a 2 km thick homogeneous layer, above an 18

km thick layer with a linear function over a homogeneous half space. The spectral

element method developed in previous sections has been used to compute dispersion

curves for both Love and Rayleigh wave dispersion across the range of frequencies used

in the Iceland ambient noise study in Chapter 5. Independent Gaussian noise is added

to each observation to create synthetic observations.

For this test, three inversion are performed with the same observations with different

restrictions on the trans-dimensional inversion algorithm used. The three inversions

all have trans-dimensional partitions but differ in the maximum order allowed within

each partition. The first has fixed 0th order polynomials and is therefore equivalent to
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existing techniques, the second can trans-dimensional select between 0th and 1st order

polynomials in each partition, and the third allows up to quadratic polynomials.

For each of the inversions in the following sections, eight independent chains were

simulated without parallel tempering. Each independent chain was initialised with a

single zeroth order cell model with the velocity in the cell sampled from the prior

and simulated for 1 million iterations. A hierarchical error scaling estimate of the

true noise level within the observations is used, hence the hierarchical scaling term

should converge to approximately one. The model is parameterised in terms of shear

wave velocity at each nodal interpolation point and the parameters required in the

forward model, namely ρ, A, C , F , L, and N , are computed using the assumption

of isotropy and the empirical relationships between shear wave velocity, density and

P-wave velocity of Brocher [2005].

A symmetric Dirichlet prior is used for layer thicknesses with a variable depth to the

lower most half space. This allows the depth of the model to expand or contract to fit

the observations [Steininger et al., 2013].

For the prior on the shear wave velocity, three separate priors are used to test the effect

of the prior on the inversion. The prior is a depth dependent Beta prior specified by a

reference model and a concentration parameter. The Beta distribution is given by

p(x) =
Γ (α+β)

Γ (α)Γ (β)
xα−1(1− x)β−1, (8.79)

where α and β are shape parameters and x is between 0 . . . 1. Through a simple change

of variable the Beta distribution can be defined for a range of shear wave velocities, in

the case here, 1 to 6 km/s (the true model ranges from 2 to 5 km/s). In the priors

used in this experiment, the α and β parameters are set as a function of depth using a

reference model to defined the mode, then
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Figure 8.10: The three priors used in the synthetic inversion. In (a) is a uniform prior represent
no prior information. In (b) is a Beta prior with the mode set using a reference model near the true
model (red curve) and a concentration parameter of 4 to represent a weakly informative prior. Lastly
in (c) is again a Beta prior this time with a concentration parameter of 8 for a strongly information
prior.

α(z) =Mo(z)(κ− 2)+ 1 (8.80)

β(z) = (1−Mo(z))(κ− 2)+ 1, (8.81)

where Mo(z) is the mode or reference model value at depth z and κ is the concentration

parameter. A convenient feature of this formulation of the prior is that setting the

concentration parameter to two results in a uniform prior between the range of shear

wave velocities specified. For these experiments, three separate values of concentration

parameter are used, 2 (giving a uniform prior), 4 and 8. These are shown as probability

density plots in Figure 8.10. They aim to represent little prior information in (a),

weak prior information in (b) and strong prior information in (c) for the experiments

to follow.

For each forward model/observations problem, nine separate inversions are simulated

for the tree trans-dimensional inversions and three priors. The results are presented in

a three by three grid format with columns corresponding to the fixed zeroth order in-

versions, trans-dimensional zeroth and linear inversions, and trans-dimensional zeroth,

linear and quadratic inversion respectively. The rows correspond to the uniform prior,

Beta prior with κ = 4 and Beta prior with κ = 8 respectively. Only summary results

are presented here, with more detailed plots shown in Appendix B.
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8.5.1 Love wave results

The results for the Love wave inversions are shown in Figure 8.11 as a posterior his-

togram of the ensemble with blue shading representing relative probability. The sensi-

tivity of Love waves to structure is very broad resulting in poor depth resolution.

For each of the inversions, the results are poor in different ways. In the top row where

the prior is uniform, there is a strong preference for fast velocity at the surface which

is far from the true model. In a real world inversion, this range of velocities at the

surface would be implausible. In the more informative priors in the 2nd and 3rd rows,

this issue has been resolved. In (f) and (i), the results are better with the top of the

Earth model being represented by a quadratic function that appears to average the low

velocity layer of the true model and the top part of the next layer. In (c) and (h), the

ensemble supports two linear layers which reasonably approximate the true model.

A common motivation for partition modelling in 1D geophysical problems is to esti-

mate the location of interfaces at depth in a probabilistic sense using the histogram of

partition boundaries as a proxy for likely interfaces. The low information content of

the posterior is also evident in the posterior histograms of partition boundary locations

shown in Figure 8.12 where there is no strong signal for either of the two true velocity

contrast interfaces. The posterior histograms have preference for partition boundaries

near the surface from which no strong inference as to the location of interfaces could

be reliably made.

With these generally poor results, the fit to the data could be expected to be poor.

These are shown in Appendix B in Figure B.2 where it can be seen that the fit to data

in all inversions is to within noise level, and yet the Earth models are generally poor

predictors of the true model. Similarly, the hierarchical noise scale is approximately

one in Figure B.1 of the appendix indicating good convergence to the true noise level.

This result gives an indication of the difficulty posed by this inversion problem, in that,

many Earth models can equally well predict the observations to within noise.

In summarising, with only Love wave dispersion information resolve ambiguities be-
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Figure 8.11: Love wave inversion histograms with blue shading representing regions of higher prob-
ability, the green curve the mean of the ensemble, the red curve the true model and the purple curves
showing the spread of the standard deviation from the mean. The first column represents trans-
dimensional solutions with 0th order only, the second column trans-dimensionally selects between
0th and 1st order, and the third trans-dimensionally selects between 0th, 1st, and 2nd order polyno-
mials. The first row uses a uniform prior between 1 and 6 km/s, the second row a Beta prior with
the mode set from a reference model and a concentration parameter of 4 and the last row is again a
Beta prior with a concentration parameter of 8.
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Figure 8.12: Love wave boundaries histogram showing the posterior location of partition boundaries
in the ensemble. The first row is from inversions with a uniform prior, the second with a Beta prior
with a concentration value of 4, the third with a concentration parameter of 8. The first column is
an inversion with 0th order only, the second allows trans-dimensional selection between 0th and 1st
order polynomials, and the third allows trans-dimensional selection between 0th, 1st, and 2nd order
polynomials.
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tween structure with this formulation of the problem. Even with stronger prior in-

formation, the mean of the ensemble converges close to the true model but regions of

high likelihood in the ensemble posterior do not share similarities. The convergence

of the mean for the more informative prior inversions, that is the Beta priors with con-

centration parameters of four and eight, is likely to be a reflection of the prior rather

than the observations.

8.5.2 Rayleigh wave results

For the experiments with Rayleigh wave dispersion observations the results of the

inversions are shown in Figure 8.13. The results show improvement compared to the

Love wave inversions. This is likely due to the different depth sensitivities of Love and

Rayleigh wave dispersion observations.

Here, unlike the Love wave inversion, the high probability regions of the histograms

generally follows the true model. For the 0th order polynomials in the first column,

the true model has been approximated with three homogeneous layers. In contrast,

the inversions that allow trans-dimensional selection of the polynomial order, that is

the second and third columns, have a strong preference for two layers: a linear gradient

over a half-space. In the posterior, the slope of the first layer does not match that of the

linear gradient in the true model’s second layer. On closer inspection it is evident that

the model that these inversions have preferred is averaging the shallow homogeneous

first layer and the second layer with the linear gradient. Another interesting aspect in

these results is that the three different priors has relatively little impact in the posterior.

The posterior histograms of the location of partition boundaries are shown in Figure

8.14. For the inversions, there does seem to be support for an interface around 2km

deep as in the true model. In the zeroth order inversion, there is also less precise sup-

port for an interface at approximately 10km deep, however this is a spurious interface

and caused by the parameterisations inability to model the linear gradient of the second

layer in the true model. For the two inversions that allow trans-dimensional selection
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Figure 8.13: Rayleigh wave inversion histogram with blue shading representing regions of higher
probability, the green curve the mean of the ensemble, the red curve the true model and the purple
curves showing the spread of the standard deviation from the mean. The first column represents
trans-dimensional solutions with 0th order only, the second column trans-dimensionally selects be-
tween 0th and 1st order, and the third trans-dimensionally selects between 0th, 1st, and 2nd order
polynomials. The first row uses a uniform prior between 1 and 6 km/s, the second row a Beta prior
with the mode set from a reference model and a concentration parameter of 4 and the last row is
again a Beta prior with a concentration parameter of 8.
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Figure 8.14: Rayleigh wave boundaries histogram showing the posterior location of partition bound-
aries in the ensemble. The first row is from inversions with a uniform prior, the second with a Beta
prior with a concentration value of 4, the third with a concentration parameter of 8. The first col-
umn is an inversion with 0th order only, the second allows trans-dimensional selection between 0th
and 1st order polynomials, and the third allows trans-dimensional selection between 0th, 1st, and
2nd order polynomials.

of the polynomial order, there is no strong indication of an interface at depth.

In summarising, with only Rayleigh wave dispersion information there is better re-

solvability of slowly varying structure with this formulation of the problem. Rayleigh

waves have better depth sensitivity to depth that Love waves which can be observed in

the Eigen function plots in Figures 8.7 and 8.8, and this in part explains the marginally

better recovery in these results.
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8.5.3 Joint Love and Rayleigh wave

In a final test, Love and Rayleigh dispersion observations are jointly inverted. The

details remain the same as summarised previously with a minor distinction being that

there are now independent hierarchical error scaling terms for the Love and Rayleigh

observations. The results of these inversions are shown in Figure 8.15 where there

is much better recovery of the true model. Another general observation is that the

combination of Love and Rayleigh observations has reduced the uncertainty in the

models.

In the first column where the inversions are only allowed 0th order polynomials the

first homogeneous layer of the true model is well recovered. The second layer in the

true model with a linear gradient is approximated with a homogeneous layer in the

posterior.

For the inversion that allows up to 1st order polynomials, that is the second column

where features from the first column are evident in the posterior, but linear features are

also visible. Careful examination of the mean curve (green dashed lines) shows that the

three inversions in the second column have generally recovered the true model better

than the first, particularly in the mid range of depths.

For the third column, there is evidence of quadratic features, particularly in (c) and

(f). The result in (i) is perhaps the best fitting posterior to the true model and visually

appears to consist of a linear first layer and quadratic second layer. The histogram on

the number of parameters shown in the Appendix in Figure B.14(i) shows that the

posterior modal number of parameters is eight compared to the true number of six.

The posterior histogram of discontinuities in each of the inversions is shown in Figure

8.16. The discontinuity at 2km depth is well recovered in all inversions. In the first

column, the true second interface at 20km is under-estimated at approximately 15 to

16km. In reviewing the results of the first column in Figure 8.15, the reason for this is

that in order to approximate the linear layer with homogeneous layers, a consequence

is a shallower second layer causing mis-identification of the true interface.
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Figure 8.15: Joint Love and Rayleigh wave inversion histograms with blue shading representing
regions of higher probability, the green curve the mean of the ensemble, the red curve the true model
and the purple curves showing the spread of the standard deviation from the mean. The first column
represents trans-dimensional solutions with 0th order only, the second column trans-dimensionally
selects between 0th and 1st order, and the third trans-dimensionally selects between 0th, 1st, and 2nd
order polynomials. The first row uses a uniform prior between 1 and 6 km/s, the second row a Beta
prior with the mode set from a reference model and a concentration parameter of 4 and the last row
is again a Beta prior with a concentration parameter of 8.
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In the second column, where the parameterisation can perfectly recreate the true

model, the second interface is generally recovered although with larger uncertainty and

perhaps a little under-estimated. The uncertainty is a product of reduced resolvability

at greater depths. This highlights an important point in that incorrectly representing

a linear (or perhaps higher order) layer with a 0th order layer then results in incorrect

recovery of discontinuities in the Earth model.

The third column has good recovery of the second interface at 20km deep, with the

exception of the result in 8.16(i). The reason for the poor result in (i) is that the in-

versions have preferred a quadratic function from the surface to represent the observed

dispersion and this incorrect parameterisation causes the partition boundaries to not

reflect interfaces in the true model. This is again caused by the ill-determined nature of

the problem, that is there are many Earth models that give rise to the same dispersion

curve.

Nonetheless, an important result here is that with joint observations of Love and

Rayleigh dispersion information, an Earth model with discontinuities and smoothly

varying structure can be feasibly resolved with trans-dimensional partitions and trans-

dimensional order polynomials. Additionally, the location of discontinuities is impor-

tant for inference of phase transitions so the methods presented here may be important

for better constraining the depths of these discontinuities.

8.6 Summary

This chapter has derived a stable spectral element method for computing phase veloc-

ity from a 1D Earth model. Its accuracy was demonstrated against known analytical

solutions and existing codes. A key advantage of this new method is that smoothly

varying Earth structure and discontinuities can be modelled together which may more

faithfully represent the true Earth.

In a series of synthetic tests, comparisons between inversions using fixed zeroth or-

der partitions and trans-dimensional polynomial partitions for the recovery of known
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Figure 8.16: Boundaries histogram for the joint Love and Rayleigh wave inversions showing the
posterior location of partition boundaries in the ensemble. The first row is from inversions with
a uniform prior, the second with a Beta prior with a concentration value of 4, the third with a
concentration parameter of 8. The first column is an inversion with 0th order only, the second
allows trans-dimensional selection between 0th and 1st order polynomials, and the third allows trans-
dimensional selection between 0th, 1st, and 2nd order polynomials.
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Earth models were made. It was seen that in general that the recovery by Love waves

on their own was not sufficient to disambiguate between slowly varying structure and

discontinuities. Rayleigh wave observations appear to be on the cusp of being able to

resolving the difference between smooth and discontinuous structure. It is only with

the combination of Love and Rayleigh waves where it was demonstrated that inclu-

sion of variable polynomial orders as part of the trans-dimensional inversion made a

significant difference. Additionally, the uncertainty is substantially reduced and with

the addition of higher order polynomials to represent smoothly varying structure, it

was demonstrated that we can get better estimates of the location of discontinuities at

depth, which may have important ramifications for inference on phase transitions.

The limitations of the study presented here are: firstly that the independent synthetic

noise level may not represent reasonable attainable levels in inversion of real obser-

vations. Secondly, that independent noise may be an invalid assumption. Lastly, the

independent chains are simulated without parallel tempering and therefore can fixate

on single models rather than efficiently traverse the prior. The addition of parallel

tempering should be included to ensure that all reasonable models are included in the

posterior.

In this synthetic study, only isotropic Earth models have been considered although

the derivation of the spectral element forward model is parameterised in terms of stan-

dard parameters introduced by Love [1927]. This means that equally the inversion

could trans-dimensionally select between azimuthal anisotropy and isotropy similar to

Bodin et al. [2016], and determine the support of isotropy versus anisotropy in ad-

dition constant layering versus smoothly varying structure. This is likely to result

in a more difficult convergence and further ambiguities and may require the addition

of other information such as receiver functions or body wave data. It is interesting

to speculate here whether azimuthal anisotropy reported in the literature is indeed a

well supported inference given the observations or an artefact of inversions where the

forward modelling cannot account for smoothly varying structure. This may prove a

fruitful area for further research.
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The spectral element method presented here is for surface waves but a similar forward

modelling approach could be derived for receiver functions. This would enable joint

inversion for surface wave dispersion with receiver functions and allow smoothly vary-

ing structure in each layer. The sensitivity of receiver functions to interface changes

and P-wave velocity could complement the sensitivity of surface wave dispersion and

improve the resolvability of local structure.

The spectral element method derived in this chapter can accurately recover the Eigen

functions of Rayleigh waves and at higher frequencies, this could be used to invert for

Rayleigh wave ellipticity for basin hazard studies. The sedimentary layer often resolved

by these studies tends to have a power law shear wave velocity model with respect to

depth. This smooth shear wave velocity model is generally approximated with constant

layers due to limitations in existing techniques. With the methods presented here, there

is the potential to recover these features more robustly and in turn better recover the

interfaces representing the sedimentary/bedrock interface, which may have important

implications for local seismic hazards.

At the other end of the frequency spectrum, for very long period surface waves, the

spherical nature of the Earth needs to be accounted for. Additionally, the change in

the gravity potential field needs to be included for Rayleigh waves [Alterman et al.,

1959, Woodhouse, 1974, Wiggins, 1976, Tromp and Dahlen, 1992a,b]. It is possible

to extend the derivation presented here in order for the spectral element method to

be suitable for long period surface waves such as those inverted in Chapter 6. In the

formulation presented, each mode of propagation is inverted for at the same time so

a single inversion obtains the wave number ( and hence phase velocity) for multiple

modes. However, there is an issue of accuracy since higher order modes have more

oscillatory Eigen functions that require either a finer mesh or higher order polynomials

for their accurate representation. This increases computational cost but it is feasible

that the methods presented here could be extended to global scale frequencies and

multi-modal observations, to answer similar questions of the deeper Earth.



352 Surface wave Inversions



Chapter 9

Conclusions

353



354 Conclusions

9.1 Contributions of this thesis

This thesis has considered new approaches to the field of geophysical inversion across

a diverse range of applications.

Chapter 2 presents a new approach for extracting phase velocity dispersion information

from ambient noise cross-correlations of signals recorded with three component seis-

mic stations. The benefit over existing techniques is that this joint inversion provides

both Love and Rayleigh dispersion observations in a single automatic inversion. Jointly

inverting Love and Rayleigh observations is shown to reduce the multi-modality of the

posterior distribution, a difficulty that is common in other methods. The lack of a

stable and consistent method of extracting phase velocities from cross-correlated noise

has resulted in many previous authors using group velocity data that while simpler to

obtain, provides less precise dispersion information. The new method presented in

Chapter 2 provides a stable solution for ambient noise tomography practitioners for

the extraction of phase velocity dispersion information with uncertainties.

A major contribution of this thesis is the development of the trans-dimensional tree

method for geophysical imaging presented in Chapter 3. This method provides a more

flexible and computationally efficient than existing trans-dimensional Voronoi cell ap-

proaches. In this chapter, which includes published material [Hawkins and Sambridge,

2015], the algorithm is compared to the existing Voronoi cell approach. The method

has now been applied in a number of geophysical problems, some of which feature in

this thesis (in Chapters 4, 5, and 6).

An example, not specifically discussed in this thesis, demonstrating the contribution

of the development of the trans-dimensional tree method was a collaboration with Jan

Dettmer in which the initial sea surface deformation resulting from the great Tohoku

earthquake was inverted. This inversion applied the trans-dimensional tree method

to a complex joint inversion of disparate observations from ocean bottom pressure

(OBP) gauges, global positioning sensors (GPS) and coastal wave gauges (CWG). This

work was published in Dettmer et al. [2016] and demonstrated the effectiveness of the
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trans-dimensional tree method over existing approaches.

In appendices of Dettmer et al. [2016], the benefit of a trans-dimensional inversion

compared to a fixed dimensional inversion of the region was shown in its ability in

reducing inversion artefacts and uncertainties. Analysis of the effects of uniform prior

widths on wavelet parameters were included to demonstrate the sensitivity of the result

to different priors. The results show that although the result is sensitive to the prior, the

effect is subtle and this is important to understand in trans-dimensional formulations

of geophysical inverse problems.

The inverted initial sea surface displacement showed high resolution in most parts of

the source region, that is, near the earthquake hypo centre where there was good cov-

erage. This region was well constrained in the inversion with low uncertainties. An

interesting feature, not previously observed in other studies, was a peak of the source

elongated parallel to the trench showing a well resolved bi-modal finger-like feature in

the northern source region that closely follows the trench. Consequently the trans-

dimensional tree method developed as part of this thesis has enabled greater under-

standing of the rupture mechanics of large tsunamigenic events through the inversion

of sea surface deformations.

A second application of the trans-dimensional tree approach was to the inversion of

Airborne Electromagnetic (AEM) observations in 2D transects. This work was pub-

lished in Hawkins et al. [2017] and reproduced in Chapter 4 with additional develop-

ment using hierarchical priors and covariant noise models.

This approach is the first application of a trans-dimensional image based inversion that

takes advantage of expected spatial correlation as a means to stabilise the inversion. The

study showed improved resolution compared to existing results using a damped and

smoothed optimisation approach and also included a quantification of uncertainties

of anomalies at greater depths. Further to the material in the published work, the

trans-dimensional tree AEM inversion was extended to include a hierarchical Laplacian

prior that showed similar results to the tuned uniform prior used in the original study.

The success of the hierarchical prior in matching the result of a tuned uniform prior
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offers a solution to the difficulty in specification of the prior for trans-dimensional tree

inversions with wavelet parameterisations, that is, to hierarchically invert for the prior.

This provides easier specification of the prior for practitioners and was demonstrated

to improve mixing by adapting the prior width to the data.

One of the difficulties in a Bayesian framework is in adequate modelling of the noise.

In many inverse problems, noise can be correlated between observations, for example,

in the case in Airborne Electromagnetic observations, where different frequencies have

different but overlapping sensitivities to depth. In a final AEM inversion, estimates

of Gaussian correlated noise were obtained from the posterior of a previous inversion

to construct a correlated noise model. This method can be applied even for single

flight lines. Chapter 4 demonstrated that inverting with the estimated correlated noise

produced simpler models suggesting that properly accounting for correlated noise is

important for producing a truly parsimonious result in trans-dimensional inversion.

This suggests further synthetic tests to determine the impact of incorrectly assuming

an independent noise process when the truth is known to be covariant.

In Chapter 5, a fully non-linear method for the inversion of phase velocity maps from

ambient noise dispersion observations was detailed. In some numerical studies, the ac-

curacy of the Fast Marching forward model used for predicting travel times was tested

as a function of the grid resolution. The super resolution property of wavelets was

used to promote arbitrary models to a resolution that gives acceptable accuracy. In

controlled experiments, 2D phase velocity maps were inverted from observations cre-

ated with synthetic checker board patterns, demonstrating that the trans-dimensional

tree approach is an effective scheme for this problem. Additionally the difference be-

tween using a fixed ray path forward model and a fully non-linear approach was shown.

The conclusion was that the use of fixed ray paths results in failure to resolve higher

resolution features and the underestimation of anomaly magnitudes.

Traditionally, group or phase velocity maps are created at specific periods or frequen-

cies independently. Another innovation of this thesis is a new method for the joint

inversion of a contiguous band of frequencies. This joint approach acknowledges that
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the observations, obtained using the methods in Chapter 2, are continuous functions

of frequency and therefore naturally correlated. The method in effect is a three dimen-

sional inversion of phase velocity maps with two spatial dimensions and a frequency

dimension. This would have been a difficult problem with the previous Voronoi cell

approach but is a straight forward extension for the trans-dimensional tree approach de-

veloped in Chapter 3 due to its inherent flexibility. By inverting a band of frequencies

jointly, the inversion is further stabilised, and comparisons between independently re-

covered phase velocity maps and those jointly inverted demonstrated improved images

at selected frequencies.

Finally, the trans-dimensional tree method was applied on a global scale to invert sur-

face wave observations to build a global tomographic shear wave model. Using a fixed

ray approximation, the method is able to invert a large data set of approximately 5

million ray paths, previously intractable with trans-dimensional inversion due to the

computational cost of existing Voronoi cell parameterisations.

It was also demonstrated that in previous inversions using a continuous regionalisation

scheme with smoothing regularisation, that the magnitude of anomalies was underes-

timated compared to the trans-dimensional result. Additionally, uncertainties in these

regions are low, that is the magnitude of the anomalies are well constrained by the

observations. This is caused by two factors, first, the smooth regularisation in the

continuous regionalisation scheme will tend to dampen higher magnitudes of smaller

scale lengths, and second, the trans-dimensional tree method is able to adapt to local

features, thus improving resolution where the data allows it.

Typically, these phase velocity maps are used in subsequent 1D inversions to invert

for a shear wave velocity model of the Earth’s mantle. Any under or over estimated

phase velocity anomalies would consequently be amplified in the shear wave velocities.

Although Chapter 6 is essentially a proof of concept, it nonetheless demonstrates that

the trans-dimensional tree approach is superior to existing techniques. Future applica-

tions of the trans-dimensional tree approach on a global scale include exploration of

the Earth’s mantle using surface wave observations.
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In summary, the trans-dimensional tree approach has been applied in geophysical in-

verse problems and the success of the method is demonstrated in a variety of applica-

tions, including airborne electromagnetic, ambient noise and global surface inversions.

Additionally, the approach was published in an initial sea surface deformation inver-

sion [Dettmer et al., 2016] as part of the study of large tsunamigenic earthquakes.

Critically, these applications demonstrate the efficiency and flexibility of the trans-

dimensional tree method compared to existing approaches making this new method a

significant advance for improving geophysical imaging.

In a final contribution of this thesis, the concept of trans-dimensional spectral elements

was introduced and its usefulness demonstrated in performing model choice between

functions that are smoothly varying and those that have discontinuities in some sim-

ple synthetic regression tests. An assumption of trans-dimensional sampling is that a

parsimonious result is always obtained, yet this only holds if the “true” (or approx-

imately true) parameterisation is available in the candidate parameterisations in the

formulation of the trans-dimensional problem.

This approach was extended by developing a new spectral element method for the solu-

tion of Love and Rayleigh wave dispersion for 1D Earth models and running some syn-

thetic tests to determine if the difference between layered or smoothly varying struc-

ture can be resolved. It was shown that this is still a very difficult problem, but that

in a joint Love and Rayleigh wave dispersion inversion some true models can be recov-

ered, but still with some evidence of ambiguity. This combination of trans-dimensional

spectral elements with a spectral element solver is likely to feature in many future in-

versions with different forward models. The ground work presented here is a major

contribution of this thesis.

In short, the concepts and methods developed within this thesis have allowed us to see

deeper into the Earth with higher resolution while quantifying uncertainties.
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9.2 Future work

In three and a half years, one cannot hope to solve all problems and therefore no

thesis is the final word on a subject. There are many avenues that may be pursued and

improvements to make.

In Chapter 2, one of the aspects of the inversion that could be improved was the use

of optimal scaling for fitting the Bessel function computed in the forward model to

the observed real part of the spectrum. This could be extended to fit the observed

amplitude as another part of the inversion process to better constrain the inversion in

general. It also has the potential to enable attenuation information to be obtained in

the inversion from the frequency dependent magnitude of the Bessel function.

In the trans-dimensional tree approach, two parameterisations featured in this thesis:

wavelets were used in the trans-dimensional tree chapter, in the inversion of airborne

electromagnetic and in the inversion of ambient noise data, whereas in the global sur-

face wave inversion, phase velocity values were directly specified. Each of these pa-

rameterisations are choices made in the formulation of the problem. Firstly, there are

many other bases available and Discrete Cosine Transforms [Ahmed et al., 1974] or

over complete bases such as Curvelets [Candes and Donoho, 1999] might be better

suited to certain problems.

Ultimately, following the trans-dimensional philosophy of allowing the data to de-

termine the parameterisation, an extension would be to use the same ideas to select

between competing bases. In principle, this could be implemented as jumps between

wavelet bases within the same families, a good example are the Daubechies wavelets

[Daubechies, 1988] where there is an increasing regularity with order in the sequence

of wavelet basis from D2 or the Haar wavelet which is discontinuous, through D4,

D6 (used in Chapter 3) and so on. While jumps between families of related bases are

plausible, jumps between unrelated bases are likely to be more difficult, for example,

jumps between wavelets and curvelets. In these cases, recent advances in the numerical

evaluation of the evidence in a Bayesian inversion may be more appropriate.
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The ambient noise study in Chapter 5 developed a tightly coupled Fast Marching im-

plementation to the trans-dimensional tree with a wavelet parameterisation. This inver-

sion assumed elastic isotropic propagation of surface waves but many studies have pro-

posed crustal anisotropy. Fast marching can be readily extended to include anisotropy

[Sethian and Vladimirsky, 2003], however a potential short-coming of the wavelet pa-

rameterisation is the difficulty in encoding anisotropy with wavelets. The common

parameterisation of anisotropy for surface waves [Backus, 1965, Smith and Dahlen,

1973] consists of 3 or 5 parameters. There are wavelet transforms for complex num-

bers [Shukla, 2003, Selesnick et al., 2005] or two parameters but none for 3 or 5 pa-

rameters. A naive solution where three separate wavelet images representing the three

anisotropy parameters are possible but may not be efficient. A method of efficiently

applying the trans-dimensional tree method to anisotropy would be an important area

of future research.

In the subsequent surface wave dispersion inversion to recover a shear wave velocity

model from the 3D phase velocity maps, recovered uncertainties were rather high. An

under-utilised aspect of the 3D inversion is that posterior model covariances can be es-

timated from the ensemble and may be used in the subsequent surface wave dispersion

inversion. It remains to be seen if this can be used to reduce the uncertainties in the

shear wave velocity model.

In Chapter 5, using a fixed ray path approximation in the forward model, to a fully

non-linear inversion where ray paths are updated from the velocity model, was shown

to produce lower magnitude velocity anomalies. For the global surface wave inver-

sions in Chapter 6, fixed ray paths were used and given the relatively efficient inversion

there is room to incorporate the Fast Marching method. The Fast Marching method

is general enough to be equally applicable to computing travel times on the surface of

a sphere [Kimmel and Sethian, 1997] and as stated before can be extended to include

anisotropy. It is here where the non-wavelet parameterisation used in the global sur-

face wave inversion may have an advantage as it would be relatively simple to include

trans-dimensional jumps within active tree nodes between isotropic phase velocity and
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anisotropic, that is jumps between one and three parameters for each active tree node.

In Chapter 8 three example problems of surface wave dispersion were presented. An-

other that could be explored is Rayleigh wave ellipticity. This method is important for

basin hazard studies and is used to determine the thickness of the sedimentary layer and

first interface which typically represents the sedimentary/bedrock transition. Of in-

terest is that the shear wave velocity of the sedimentary layer typically follows a power

law relationship with depth and this would be better represented by a higher order

polynomial. Methods developed in this thesis mean that both the trans-dimensional

infrastructure and a forward model capable of being applied to this problem are now

available to potentially give greater constraints on sedimentary cover. An additional

application would be as part of the Australian “Uncover” project that has the major

goal of mapping regolith thickness [Blewett, 2017].

The derivation of the spectral element solver in Chapter 8 and Appendix A uses a flat

Earth approximation which is suitable to relatively high frequency surface waves. At

the other end of the frequency spectrum, this could be re-targeted to a derivation in

a spherical Earth and then this method could be applied to longer period Love and

Rayleigh waves and may even be applied to the trans-dimensional inversion of the

phase velocity maps generated in Chapter 6. In Chapter 8, trans-dimensional jumps

between different polynomial orders were used in the examples, but the forward model

used supports anisotropy meaning that jumps, or model choice questions, could be

proposed between isotropic and anisotropic layering. Ultimately though, the surface

wave dispersion problem is highly non-unique and as such may require joint inversion

with other data types to more confidently resolve these model choice problems.

As a more general comment, relatively simplistic sampling approaches have been used

in all the inversions performed in this thesis, with the exception that Parallel Tempering

was heavily relied upon. This was a deliberate decision so as to not conflate the ability

of the new methods developed during this thesis with performance improvements af-

forded by more advanced sampling methods. Relatively small numbers of independent

chains have been used in the presented inversions but much larger numbers of inde-
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pendent chains have become popular and allow the population statistics to improve

convergence, for example Liu and Chen [1998], Andrieu et al. [2010]. These popula-

tion based approaches have been used in conjunction with trans-dimensional methods

and seem to provide faster convergence to the posterior [Jasra et al., 2007a,b, 2008,

Koutsourelakis, 2009, Dettmer et al., 2011].

A simple idea for improving McMC proposals is the concept of using parallel propos-

als [Liu et al., 2000, Liu, 2001, Calderhead, 2014]. Similarly, where gradients can be

computed, there are methods ranging from simple incorporation of direction into pro-

posals [Roberts and Tweedie, 1996, Roberts, 1998] to the more complex Hybrid or

Hamiltonian Monte Carlo [Duane et al., 1987, Neal, 2011].

The convergence of trans-dimensional samplers is in general hampered by the low ac-

ceptance rates of trans-dimensional steps. Various approaches [Tierney and Mira, 1999,

Green and Mira, 2001, Al-Awadhi et al., 2004, Sen and Biswas, 2016] have been pro-

posed. Similarly, in the improving or optimising the acceptance rates of more typical

fixed dimensional proposals, there are many methods that could be used to adapt pro-

posals for improved convergence rates [Haario et al., 2005, 2006, Andrieu and Thoms,

2008, ter Braak and Vrugt, 2008, Vrugt et al., 2009, Vrugt and ter Braak, 2011, Laloy

and Vrugt, 2012]. Often these schemes are adapted to the fixed dimension case and

required some modification to suit trans-dimensional algorithms.

The inversions have also typically been initialised using homogeneous models to

demonstrate the ability of the methods presented here to converge to complex models.

In real world applications it may be beneficial to initialise McMC chains with some

optimised model. An interesting area of future work would be to look at the com-

patibility between the trans-dimensional tree with a wavelet parameterisation using

compressive sensing ideas [Candes et al., 2006] in which l1 norms are used for regu-

larisation of sparse model parameterisations. If a wavelet parameterisation is indeed a

sparse parameterisation for a problem, then comparing the result of l1 normed inver-

sions to the trans-dimensional tree approach would be interesting. It would be hoped

that they are largely compatible so that the l1 normed optimisation could be used for
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generating a good starting model, and the trans-dimensional tree approach could be

used to explore the posterior about this model to estimate uncertainties.

As a last note, a qualitative metric for convergence for trans-dimensional chains was

generally used. Where the qualitative convergence metric was tested against known

criteria [Sisson and Fan, 2007], it has been shown to be conservative. However, formal

effective metrics for trans-dimensional convergence should be an area of future work.
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A spectral element solution for 1D

surface wave dispersion
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366 A spectral element solution for 1D surface wave dispersion

A.1 Introduction

This appendix provides the detailed derivation of the new spectral element solution to

1D surface wave dispersion for Love and Rayleigh waves used in Chapter 8.

A.2 Love waves

This section presents a spectral element solution of the differential equation that de-

scribes the propagation of Love waves in a 1D Earth model with a flat Earth approx-

imation. For Love waves, the solution describes the amplitude of oscillations in the

y direction as a function of depth or z. These oscillations are perpendicular to the

propagation direction x.

Restating (8.38)

−ω2V ρ=−k2NV (k ,ω, z)+
d

d z

�

L
dV (k ,ω, z)

d z

�

. (A.1)

The domain is divided into E elements from the surface, zsurface which is negative in

the coordinate system, to the basement, z = 0 and then forming the weak form of the

equation by multiplying by a smooth test function v and integrating to obtain
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The function v is arbitrary except for the fact that it must obey the boundary condi-

tions equally imposed on the solution for the displacement V .
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This last term can then be integrated by parts to obtain
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Recall that the displacement V and the traction L dV
d z

must be continuous everywhere

which requires that the last term perfectly cancels except for the surface and basement

values leaving
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v(0) = 0. (A.4)

This can be reduced further by using the fact that the traction must vanish at the

surface, hence L(0) dV (0)
d z
= 0, and
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ω2
E
∑

e=1

∫ ze

ze−1

ρV vd z

− k2
E
∑

e=1

∫ ze

ze−1

NV vd z

−
E
∑

e=1

∫ ze

ze−1

L
dV

d z

d v

d z
d z+

L(zb )
dV (zb )

d z
v(zb ) = 0. (A.5)

An option here is to assume that the distance from the surface to basement is sufficient

so that oscillation amplitudes are approximately zero at the basement over the range of

frequencies considered. That is V (0) is near zero and therefore v(0)≈ 0 to remove the

last term, but this is left to be treated later.

A key component of the spectral element method is the use of Lagrange nodal inter-

polation polynomials with nodal points arranged at the zeros of Lobatto polynomials.

The domain for these Gauss-Legendre-Lobatto (GLL) nodes in 1D is [-1, 1] so each of

the element integrals requires transformation to this domain. This is achieved with a

simple linear transformation so that

ze(ζ ) = ze−1+
ζ + 1

2
(ze − ze−1) = ze−1+

(ζ + 1)∆ze

2
, (A.6)

where ζ is the spectral element coordinate. The substitutions for the required change

of variables are

d z =
∆ze

2
dζ (A.7)

d

d z
=

2

∆ze

d

dζ
. (A.8)

With this linear transform, the system of equations becomes
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ω2
E
∑

e=1

∆ze

2

∫ 1

−1

ρV vdζ

− k2
E
∑

e=1

∆ze

2

∫ 1

−1

NV vdζ

−
E
∑

e=1

2

∆ze

∫ 1

−1

L
dV

dζ

d v

dζ
dζ+

L(zb )
dV (zb )

d z
v(zb ) = 0. (A.9)

If each of the varying functions of ζ are approximated with Gauss-Legendre-Lobatto

polynomial approximations, that is

f (ζ )≈
P
∑

i=0

fi l (P )
i
(ζ (P )

i
), (A.10)

where l (P )
i

is the P th order Lagrange interpolating polynomial, ζi is the i th Lobatto

co-location point for and fi is short hand for f (ζ (P )
i
).

The integrals of functions of ζ can then be approximated

∫ 1

−1

f (ζ )dζ ≈
P
∑

i=0

fi w
(P )
i

, (A.11)

where w (P )
i

is the quadrature weight.

Now taking the first two terms of (A.9) in turn, the first two are

ω2
E
∑

e=1

∆ze

2

∫ 1

−1

ρV vdζ ≈ω2
E
∑

e=1

∆ze

2

P
∑

i=0

viViρi wi , (A.12)

and

− k2
E
∑

e=1

∆ze

2

∫ 1

−1

NV vdζ ≈−k2
E
∑

e=1

∆ze

2

P
∑

i=0

vi NiVi wi . (A.13)
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For the third term, the derivatives of the functions add a complication. Given the

approximation of the functions of ζ with polynomials, the derivatives of said functions

are given by

d f (ζ )

dζ
≈

P
∑

i=0

fi

dV (P )
i

dζ
(ζ (P )

i
), (A.14)

and the third term can be written

−
E
∑

e=1

2

∆ze

∫ 1

−1

L
dV

dζ

d v

dζ
dζ ≈−

E
∑

e=1

2

∆ze

P
∑

j=0

w j L j

�

P
∑

k=0

Vk

d lk j (P )

dζ
(ζ (P )

j

�





P
∑

i=0

vi

d l (P )
i

dζ
(ζ (P )

j



 ,

(A.15)

in which the ordering of summation can be rearranged to

E
∑

e=1

2

∆ze

P
∑

i=0

vi





P
∑

k=0

Vk





P
∑

j=0

w j L j

d l (P )
i

dζ
(ζ (P )

j
)
d l (P )

k

dζ
(ζ (P )

j
)







 (A.16)

Combining these, the full equation becomes

E
∑

e=1

P
∑

i=0

v e
i

�

ω2∆ze

2
Viρi wi

− k2∆ze

2
NiVi wi

− 2

∆ze





P
∑

k=0

Vk





P
∑

j=0

w j L j

d l (P )
i

dζ
(ζ (P )

j
)
d l (P )

k

dζ
(ζ (P )

j
)













+ L(0)
d l (0)

d z
v(0) = 0. (A.17)

Now since the interpolation polynomials are orthogonal, the v e
i ’s are linearly indepen-

dent with the exception that at element boundaries the condition v e
P = v e+1

0 must be

met for continuity of the test function v. This means that internal collocation points
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must satisfy

ω2∆ze

2
Viρi wi−k2∆ze

2
NiVi wi−

2

∆ze





P
∑

k=0

Vk





P
∑

j=0

w j L j

d l (P )
i

dζ
(ζ (P )

j
)
d l (P )

k

dζ
(ζ (P )

j
)







= 0.

(A.18)

These independent equations can be assembled into a matrix equation

�

ω2A− k2B−C
�

V= 0, (A.19)

with A and B diagonal matrices, C a block diagonal matrix, and V a vector representing

the values of the Eigen function at the nodal interpolation values. Here the diagonallity

of B means its inverse can be trivially computed and rearrange the equation to

�

D− k2I
�

V= 0, (A.20)

where D= B−1
�

ω2A−C
�

. Non-trivial solutions for V require

det
�

�D− k2I
�

�= 0, (A.21)

and this can be efficiently solved using standard Eigen value calculation codes [Moler

and Stewart, 1973]. The Eigen values of the system can be complex of which the

imaginary part in effect is a decay term resulting in a Love wave that does not propagate.

For negative real Eigen values, the wave number is purely imaginary and the wave does

not propagate. Therefore, the positive Eigen values are the only propagating modes,

and these are called static instabilities in the vibrational analysis community [Chang

et al., 2010]. Lysmer and Drake [1972] gives a more detailed discussion of the Eigen

values and their meaning than the summary presented here.

So for a given Earth model and frequency, the Eigen problem in (A.21) can be assem-

bled and the eigen problem solved for the real positive Eigen values. Each of these
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represent a surface wave mode whose wave number is the square root of the Eigen

value from which the phase velocity can be computed. Additionally the Eigen vectors

are the displacement function of the oscillations.

A.3 Rayleigh waves

This section presents the spectral element solution of the coupled equations that de-

scribe the propagation of Rayleigh waves in a 1D Earth model with a flat Earth ap-

proximation. The solution for Rayleigh waves consists of a system of two equations, a

radial equation with oscillations in the x direction along the direction of wave propa-

gation and a vertical equation with oscillations in the z direction, or into the Earth.

A.3.1 Radial equation

Restating (8.55)

−ρω2U =−k2AU − kF
dW

d z
+

d

d z

�

L(
d U

d z
− kW )
�

. (A.22)

The domain is divided into E unevenly sized cells from the surface, z = zsurface, to the

basement, z = 0, and then forming the weak version of the equation by multiplying

by a smooth test function, v, and integrating. After these steps the equation becomes

−ω2
E
∑

e=1

∫ ze

ze−1

ρU vd z =− k2
E
∑

e=1

∫ ze

ze−1

AU vd z

− k
E
∑

e=1

∫ ze

ze−1

F
dW

d z
vd z

+
E
∑

e=1

∫ ze

ze−1

d

d z

�

L
�

d U

d z
− kW
��

vd z. (A.23)

Integrating the last term by parts gives
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−ω2
E
∑

e=1

∫ ze

ze−1

ρU vd z =− k2
E
∑

e=1

∫ ze

ze−1

AU vd z

− k
E
∑

e=1

∫ ze

ze−1

F
dW

d z
vd z

−
E
∑

e=1

∫ ze

ze−1

L
�

d U

d z
− kW
�

d v

d z
d z

+
E
∑

e=1

L
�

d U

d z
− kW
�

v

�

�

�

�

ze

ze−1

. (A.24)

The term L
�

d U
d z
− kW
�

is the amplitude of the stress σz x which must be continuous

across cell boundaries. This means that most of these terms cancel will each other in

the summation leaving only the end points at z = zsurface and z = 0, that is

−ω2
E
∑

e=1

∫ ze

ze−1

ρU vd z =− k2
E
∑

e=1

∫ ze

ze−1

AU vd z

− k
E
∑

e=1

∫ ze

ze−1

F
dW

d z
vd z

−
E
∑

e=1

∫ ze

ze−1

L
�

d U

d z
− kW
�

d v

d z
d z

+ L
�

d U

d z
− kW
�

v

�

�

�

�

0

zsurface

. (A.25)

At z = zsurface the traction σz x must vanish and therefore the term L
�

d U
d z
− kW
�

must

be zero. For now it is assumed the basement will be treated separately, leaving
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−ω2
E
∑

e=1

∫ ze

ze−1

ρU vd z =− k2
E
∑

e=1

∫ ze

ze−1

AU vd z

− k
E
∑

e=1

∫ ze

ze−1

F
dW

d z
vd z

−
E
∑

e=1

∫ ze

ze−1

L
�

d U

d z
− kW
�

d v

d z
d z. (A.26)

Lastly, the right hand side is rearranged to collect polynomial terms of k giving

−ω2
E
∑

e=1

∫ ze

ze−1

ρU vd z =− k2
E
∑

e=1

∫ ze

ze−1

AU vd z

− k
E
∑

e=1

∫ ze

ze−1

F
dW

d z
v − LW

d v

d z
d z

−
E
∑

e=1

∫ ze

ze−1

L
d U

d z

d v

d z
d z. (A.27)

A change of variable is required to adjust the integrals in each cell to span from−1 . . . 1.

The affine transform from the ζ to z coordinate in each cell is given by

ze(ζ ) = zk−1+
ζ + 1

2
(ze − zk−1) = zk−1+

(ζ + 1)∆ze

2
. (A.28)

From these, the substitutions for the change of variables are

d z = ∆ze

2
dζ (A.29)

d

d z
=

2

∆ze

d
dζ (A.30)

Substituting these into the equation gives
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−ω2
E
∑

e=1

∆ze

2

∫ 1

−1

ρe r e
x v e dζ =− k2

E
∑

e=1

∆ze

2

∫ 1

−1

Ae r e
x v e dζ

− k
E
∑

e=1

∫ 1

−1

F e dW e

dζ
v e − LeW

d v e

dζ
dζ

−
E
∑

e=1

2

∆ze

∫ 1

−1

Le d r e

dζ

d v e

dζ
dζ , (A.31)

where the superscript e represents the piece wise function in element e . In a similar

manner to the Love wave derivation, integrals can be replaced with their approximate

Gauss-Lobatto-Legendre quadrature rule equivalents, that is

Φ(ζ )≈
N
∑

j=0

l j (ζ )Φ(ζ j ), (A.32)

where Φ is the interpolated function, l j is the j th Lagrange cardinal polynomial and ζ j

is the j th Lobatto point. The substitutions of each of the terms of (A.31) follow.

The first two terms are straight forward substitutions

∫ 1

−1

ρe r e
x v e dζ ≈

P
∑

j=0

w jρ j rx j
v j , (A.33)

and

∫ 1

−1

Ae r e
x v e dζ ≈

P
∑

j=0

w j Aj rx j
v j . (A.34)

The third term has derivative terms that can be computed from the polynomial repre-

sentation. It is useful to arrange the summations with the outer summation over the

smooth test function v, for this reason the integral is initially split the integral where

individual summations are computed the rearranged to
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∫ 1

−1

F e dW e

dζ
v e − LeW

d v e

dζ
dζ ≈

P
∑

j=0

w j v j F j

P
∑

k=0

rzk
l ′k(ζ j )−

P
∑

k=0

wk Lk rzk

P
∑

j=0

v j l
′
j (ζk)

≈
P
∑

j=0

w j v j F j

P
∑

k=0

rzk
l ′k(ζ j )−

P
∑

j=0

v j

P
∑

k=0

wk Lk rzk
l ′j (ζk)

≈
P
∑

j=0

v j

P
∑

k=0

�

F j w j rzk
l ′k(ζ j )− Lk wk rzk

l ′j (ζk)r
�

≈
P
∑

j=0

v j

P
∑

k=0

rzk

�

F j w j l
′
k(ζ j )− Lk wk l ′j (ζk)r

�

(A.35)

The last term similarly has derivatives the summation is re-ordered so that the outer

summation is over the smooth test function v

∫ 1

−1

Le d U e

dζ

d v e

dζ
dζ ≈

P
∑

l=0

wl Ll

�

P
∑

k=0

rxk
l ′k(ζl )

�





P
∑

j=0

v j l
′
j (ζl )





≈
P
∑

j=0

v j

�

P
∑

k=0

rxk

P
∑

l=0

wl Ll l ′k(ζl )l
′
j (ζl )

�

(A.36)

Now since the interpolation polynomials are orthogonal, the v e
i ’s are linearly inde-

pendent with the exception that at element boundaries the condition v e
P = v e+1

0 must

be met for continuity of the test function v. This means that when combining all

substitutions above, the internal collocation points must satisfy
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E
∑

e=0

P
∑

j=0

v e
j

�

−ω2∆ze

2
w jρ

e
j r e

x j

+ k2∆ze

2
w j Ar e

x j

+ k
P
∑

k

r e
zk

�

w j F
e
j l ′k(ζ j )−wk Lk L′j (ζk)

�

+
2

∆ze

P
∑

k=0

r e

k

P
∑

l=0

l ′k(ξ j )l
′
l (ξ j )wl L

e
l

�

= 0. (A.37)

Next is the vertical equation solution required before coupling the two results into a

single system of equations.

A.3.2 Vertical equation

Restating (8.61),

−ρω2W = Lk
d U

d z
− Lk2W +

d

d z

�

F kU +C
dW

d z

�

. (A.38)

The domain is divided into E unevenly sized cells from the surface, z = zsurface, to the

basement, z = 0, and then forming the weak version of the equation by multiplying

by a smooth test function, v, and integrating. After these steps the equation becomes

−ω2
E
∑

e=1

∫ ze

ze−1

ρW vd z =− k2
E
∑

e=1

∫ ze

ze−1

LW vd z

+ k
E
∑

e=1

∫ ze

ze−1

L
d U

d z
vd z

+
E
∑

e=1

∫ ze

ze−1

d

d z

�

C
dW

d z
+ F kU
�

vd z. (A.39)

Integrating the last term by parts gives
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−ω2
E
∑

e=1

∫ ze

ze−1

ρW vd z =− k2
E
∑

e=1

∫ ze

ze−1

LW vd z

+ k
E
∑

e=1

∫ ze

ze−1

L
d U

d z
vd z

−
E
∑

e=1

∫ ze

ze−1

�

C
dW

d z
+ F kU
�

d v

d z
d z

+
E
∑

e=1

�

C
d U

d z
+ F kU
�

v

�

�

�

�

ze

ze−1

. (A.40)

The term C d U
d z
+ F kU is the amplitude of the stress σz z which must be continuous

across cell boundaries. This means that most of these terms cancel will each other in

the summation leaving only the end points at z = zsurface and z = 0, that is

−ω2
E
∑

e=1

∫ ze

ze−1

ρW vd z =− k2
E
∑

e=1

∫ ze

ze−1

LW vd z

+ k
E
∑

e=1

∫ ze

ze−1

L
d U

d z
vd z

−
E
∑

e=1

∫ ze

ze−1

�

C
dW

d z
+ F kU
�

d v

d z
d z

+

�

C
dW

d z
+ F kU
�

v

�

�

�

�

0

zsurface

. (A.41)

At z = zsurface the traction σz z must vanish and therefore the term C d U
d z
+F kU must be

zero. The basement will be treated separately and it is removed from this derivation,

leaving
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−ω2
E
∑

e=1

∫ ze

ze−1

ρW vd z =− k2
E
∑

e=1

∫ ze

ze−1

LW vd z

+ k
E
∑

e=1

∫ ze

ze−1

L
d U

d z
vd z

−
E
∑

e=1

∫ ze

ze−1

�

C
dW

d z
+ F kU
�

d v

d z
d z. (A.42)

Lastly the right hand side is rearranged to collect terms of a polynomial in k giving

−ω2
E
∑

e=1

∫ ze

ze−1

ρW vd z =− k2
E
∑

e=1

∫ ze

ze−1

LW vd z

− k
E
∑

e=1

∫ ze

ze−1

F U
d v

d z
− L

d U

d z
vd z

−
E
∑

e=1

∫ ze

ze−1

C
dW

d z

d v

d z
d z. (A.43)

The affine transform for the mapping of the cells from z to the ζ coordinates is used

to obtain

−ω2
E
∑

e=1

∆ze

2

∫ 1

−1

ρe r e
z v e dζ =− k2

E
∑

e=1

∆ze

2

∫ 1

−1

Le r e
z v e dζ

− k
E
∑

e=1

∫ 1

−1

F e U
d v e

dζ
− Le d U e

dζ
v e dζ

−
E
∑

e=1

2

∆ze

∫ 1

−1

C e dW e

dζ

d v e

dζ
dζ , (A.44)

where the superscript e represents the piece wise function in element e . As before, each

integral term in the above equation is replaced with their corresponding polynomial

approximations and evaluate the integrals using GLL quadrature. The first two terms

are straight forward substitutions
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∫ 1

−1

ρe r e
z v e dζ ≈

P
∑

j=0

w jρ j rz j
v j , (A.45)

and

∫ 1

−1

Le r e
z v e dζ ≈

P
∑

j=0

w j L j rz j
v j . (A.46)

The third term has derivative terms that can be computed from the polynomial repre-

sentation. It is useful to arrange the summations with the outer summation over the

smooth test function v, for this reason the integral is split and individual summations

computed before rearranging to give

∫ 1

−1

F U
d v e

dζ
− Le d U e

dζ
v e dζ ≈

P
∑

k=0

wk rxk
Fk

P
∑

j=0

v j l
′
j (ζk)−

P
∑

j=0

w j L j v j

P
∑

k=0

rxk
l ′k(ζ j )

≈
P
∑

j=0

v j

P
∑

k=0

rzk
wk Fk l ′j (ζk)−

P
∑

j=0

w j L j v j

P
∑

k=0

rxk
l ′k(ζ j )

≈
P
∑

j=0

v j

P
∑

k=0

�

rzk
Fk wk l ′j (ζk)−w j L j rzk

l ′k(ζ j )
�

≈
P
∑

j=0

v j

P
∑

k=0

rzk

�

Fk wk l ′j (ζk)−w j L j l
′
k(ζ j )
�

(A.47)

The last term similarly has derivatives and again the summation is rearranged so that

the outer summation is over the smooth test function v

∫ 1

−1

C e dW e

dζ

d v e

dζ
dζ ≈

P
∑

l=0

wl Cl

�

P
∑

k=0

rzk
l ′k(ζl )

�





P
∑

j=0

v j l
′
j (ζl )





≈
P
∑

j=0

v j

�

P
∑

k=0

rzk

P
∑

l=0

wl Cl l ′k(ζl )l
′
j (ζl )

�

(A.48)

Now since the interpolation polynomials are orthogonal, the v e
i ’s are linearly inde-
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pendent with the exception that at element boundaries the condition v e
P = v e+1

0 must

be met for continuity of the test function v. This means that when combining all

substitutions above, the internal collocation points must satisfy

E
∑

e=0

P
∑

j=0

v e
j

�

−ω2∆ze

2
w jρ

e
j r e

z j

+ k2∆ze

2
w j L j r e

z j

+ k
P
∑

k

r e
xk

�

Fk wk l ′j (ζk)−w j L j l
′
k(ζ j )
�

+
2

∆ze

P
∑

k=0

r e
zk

P
∑

l=0

l ′k(ξ j )l
′
l (ξ j )wl L

e
l

�

= 0. (A.49)

A.3.3 Coupled equation

Using the same approach as for the Love wave spectral element formulation, combin-

ing(A.37) and (A.49) into a single matrix equation gives







ω2





Ax 0

0 Az



+ k2





Bx 0

0 Bz



+ k





0 Cx

Cz 0



+





Dx 0

0 Dz















rx

rz



= 0, (A.50)

where the vectors rx and rz represent the eigen functions of the horizontal and vertical

oscillations. Note that the coupling between the two systems is confined to factors of

k. Non-trivial solutions require

det
�

�ω2A+ k2B+ kC+D
�

�= 0 (A.51)

which is a quadratic Eigen value problem [Tisseur and Meerbergen, 2001]. The ap-

proach to solving this problem is a two step process of scaling the problem for numer-

ical accuracy and restating the equation in one of the many companion forms which
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reduce the problem to a general Eigen problem. The details are in Hammarling et al.

[2013], but the synopsis is that scaling terms are computed using

γ =

√

√

√ ||ω2A+D||2
||B||2

(A.52)

δ =
2

||ω2A+D||2+ γ ||C||2
, (A.53)

and then solve the second companion form of (A.51) which results in the general Eigen

system

det

�

�

�

�

�

�





γδC −I

δ(ω2A+D)



−λ




−γ 2δB 0

0 −I





�

�

�

�

�

�

= 0. (A.54)

This solution will give Eigen values that need to be scaled to obtain the wave number,

that is, for each Eigen value λ, the wave number k is given by

k = γλ. (A.55)

If the Earth model is parameterised in terms of N spectral element nodes, the Eigen

vectors of this solution will be of dimension of 4N . The first N elements of the Eigen

vector is the amplitude function for the lateral displacement and the next N are for the

radial displacement.
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B.1 Introduction

This appendix contains extra results from the synthetic inversions in Chapter 8.

The figures are grouped into a grid layout with the rows corresponding to the three

priors used, a uniform prior, a Beta prior with the mode set to a reference model and a

concentration parameter of 4, and a Beta prior with the mode set to a reference model

and a concentration parameter of 8. The columns, from left to right are the three

different trans-dimensional inversions. Hence, the lettering in the figures to follow is

(a) Fixed 0th order polynomial inversion with uniform prior,

(b) Trans-dimensional 0th or 1st order polynomial inversion with uniform prior,

(c) Trans-dimensional 0th, 1st, or 2nd order polynomial inversion with uniform prior,

(d) Fixed 0th order polynomial inversion with a Beta prior and concentration param-

eter of four,

(e) Trans-dimensional 0th or 1st order polynomial inversion with a Beta prior and

concentration parameter of four,

(f) Trans-dimensional 0th, 1st, or 2nd order polynomial inversion with a Beta prior

and concentration parameter of four,

(g) Fixed 0th order polynomial inversion with a Beta prior and concentration param-

eter of eight,

(h) Trans-dimensional 0th or 1st order polynomial inversion with a Beta prior and

concentration parameter of eight,

(i) Trans-dimensional 0th, 1st, or 2nd order polynomial inversion with a Beta prior

and concentration parameter of eight.

There are figures are grouped in order by the Love wave, Rayleigh wave and joint Love

and Rayleigh wave inversions. The first set of plots are the hierarchical histogram plots.

Successful inversion is indicated by a histogram centred about unity.
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The second set of plots is the posterior dispersion histograms demonstrating the fit to

the observations. In these plots, the true dispersion is shown with a red dotted line,

the observations and their errors are shown with black dots and whiskers and the pos-

terior histogram of the dispersion curve(s) are shown with blue shading representing

posterior probabilities (dark blue corresponds to more likely).

The third set of plots is the posterior histogram on the number of partitions in the

model and the fourth set of plots is the number of parameters. The number of param-

eters for each model which is computed using

Np =Nc +
Nc∑

i

(pi + 1)+ 1, (B.1)

where Nc is the number of cells, pi is the polynomial order in cell i . The addition of 1

captures the shear wave velocity parameter in the half space. The true model consists

of 6 parameters, that is 2 cells of 0th and 1st order.
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Figure B.1: Hierarchical error scale histogram for each of the Love wave inversions. The coloured
lines represent each of the independent chains and the solid black line is the combined histogram
across chains.
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Figure B.2: Love wave dispersion histogram with blue shading representing regions of higher prob-
ability, the black points are the observations with error scale marked and the red dashed line is the
true model.



388 Synthetic surface wave inversion results

(a)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(b)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(c)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(d)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(e)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(f)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(g)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(h)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

(i)

0 2 4 6 8 10
No. Elements

Pr
ob

ab
ilit

y

Figure B.3: Love wave histogram of the number of cells.
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Figure B.4: Love wave histogram of the number of parameters.
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Figure B.5: Hierarchical error scale histogram for each of the Rayleigh wave inversions. The coloured
lines represent each of the independent chains and the solid black line is the combined histogram
across chains.
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Figure B.6: Rayleigh wave dispersion histogram with blue shading representing regions of higher
probability, the black points are the observations with error scale marked and the red dashed line is
the true model.
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Figure B.7: Rayleigh wave histogram of the number of cells.
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Figure B.8: Rayleigh wave histogram of the number of parameters.
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Figure B.9: Histogram of the hierarchical Love wave error scale for each Joint inversions. The
coloured lines represent each of the independent chains and the solid black line is the combined
histogram across chains.
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Figure B.10: Histogram of the hierarchical Rayleigh wave error scale for each Joint inversions. The
coloured lines represent each of the independent chains and the solid black line is the combined
histogram across chains.
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Figure B.11: Love wave dispersion histograms from the joint inversion with blue shading represent-
ing regions of higher probability, the black points are the observations with error scale marked and
the red dashed line is the true model.
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Figure B.12: Rayleigh wave dispersion histograms from the joint inversion with blue shading repre-
senting regions of higher probability, the black points are the observations with error scale marked
and the red dashed line is the true model.
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Figure B.13: Joint inversion histogram of the number of cells.
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Figure B.14: Joint inversion histogram of the number of parameters.
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