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ABSTRACT

The elastic moduli of 1large single crystals of olivine,
orthopyroxene and garnet of approximate upper mantle compositions have
been measured over a 3 GPa range of hydrostatic pressure at room
temperature. The greater pressure capability, and the use of improved
ultrasonic interferometric techniques including the incorporation of
explicit corrections for transducer-bond phase shifts, have enabled the
measurement of more reliable first pressure derivatives (£1%) of the
elastic moduli than has previously been possible. In addition, second
pressure derivatives (+10%) of the elastic moduli of these relatively

incompressible minerals have been resolved for the first time.

The present measurements confirm the magnitudes of the first
pressure derivatives of the elastic moduli of olivine, garnet and
orthopyroxene of similar compositions determined in previous studies
over much reduced (£1 GPa) pressure ranges. In particular, the first
pressure derivatives of the elastic moduli of orthopyroxene were found
to be very large with respect to those of olivine and garnet - 1in
accord with the findings of Frisillo and Barsch (1972). The second
pressure derivatives of the elastic moduli determined in this study
however, illustrate the importance of accurate high pressure
measurements in the extrapolation of single crystal elasticities to
mantle conditions. Curvature in the pressure dependence of the bulk and
shear moduli of the olivine and garnet crystals reduces the pressure
derivatives from those observed at zero pressure by ~20% over the 3 GPa
pressure range. The pressure dependences of the bulk and shear moduli

of orthopyroxene, however, decrease by 38% and 53% respectively over

this pressure range.
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The anomalous pressure dependence of the elastic moduli of
orthopyroxene 1is due to the kinked and puckered chains of SiOy
tetrahedra in this structure - in contrast to the isolated tetrahedra
in both the olivine and garnet structures. The ability of these chains
to kink and pucker accommodates the 1large distortions of the M2
octahedra in orthopyroxene. The 1large first and second pressure
derivatives observed for orthopyroxene are a direct result of the
distorted octahedra becoming more regular with increasing pressure and
consequently straining the chains of tetrahedra. The large second
pressure derivatives are a measure of the small pressure range required
for an equilibrium to be reached between forces associated with
deformation of the chains of tetrahedra and with distortion of the M2

octahedra.

The determination of the first and second pressure derivatives of
the elastic moduli of olivine, garnet and especially orthopyroxene has
facilitated the extrapolation of the measured elastic properties to
greater pressures. Velocity profiles for specific upper mantle
assemblages have been calculated via aggregate theory using these new
elasticity data, previously determined temperature derivatives of the
elastic moduli, and an average upper mantle geotherm. The compressional
velocity profiles calculated with oceanic and shield geotherms bound
the average upper mantle compressional velocity of the PREM model of
Dziewonski and Anderson (1981). The shear velocities calculated with
these two geotherms however, are up to 5% higher than the shear
velocities of the PREM model. The incorporation of the large negative
second pressure derivatives of the bulk modulus of orthopyroxene
reduces the compressional velocity calculated for 200 km depth assuming

a linear pressure dependence of the bulk modulus, by 2%.



The measurement of the elastic moduli of the wilistite analogue MnO
over the 3 GPa pressure range has facilitated the incorporation of the

crystal-field stabilization energy in existing systematics by providing

a realistic value for the pressure derivative of the bulk modulus of

MnO, where previously oK/oP was estimated on the basis of the observed
elasticity of other minerals. This has enabled the calculation of the
bulk moduli for the 3d transition-metal monoxides, providing a more
reliable estimate of the bulk modulus for stoichiometric FeO. A
negative pressure derivative of the shear modulus Cyy has been observed
(at pressures 21 GPa) in this study. Such reduction in the magnitude of
the modulus Cy)y will tend to increase the thermodynamic competitiveness
of any structure related to B1 by Cyy-controlled shear deformation. The
softening of this modulus has previously been associated with the
paramagnetic*antiferromagnetic transition in MnO at low temperature,
and the B1»*B2 transition in the alkali halides and the alkaline-earth
monoxides at high pressures. These phases are therefore two of the
possible high pressure phases of MnO which are related to the original

phase by Cyy-controlled shear.

The shear modulus Cgg of fayalite has been measured to pressures in
excess of the equilibrium olivine-»spinel transition pressure (~2 GPa).
This modulus 1is the one which might have been expected to soften
significantly prior to a martensitic transformation. No such softening
of the modulus Cgg was observed over this pressure range. Furthermore,
the pressure dependences of the modulus Cgg for fayalite and Cgg for
the forsteritic olivine discussed earlier are comparable, despite the
much closer proximity of fayalite to the high pressure boundary of its
stability field. Thus, there 1is no evidence for pressure-induced
shear-mode softening in fayalite prior to a martensitic olivine-»spinel

transition.




B e

2

W

2.3

2.4

2.5

2.6

Eut

3.1

3.2

3s3

3.4

3.5

TABLE OF CONTENTS

INTRODUCTION

EXPERIMENTAL TECHNIQUES

Introduction

Transducer-bond phase shift

Phase comparison technique

2.3.1 Transducers
2.3.2 Bonds

2.3.3 Measurement of travel-times

Crystal preparation

Pressure generation and measurement

Data reduction

2.6.1 Cook's method for crystals of cubic symmetry

2.6.2 Cook's method for crystals of orthorhombic symmetry

Curve fitting and estimation of errors

PRESSURE-INDUCED SHEAR-MODE SOFTENING AND PHASE TRANSFORMATIONS

Introduction: criteria for lattice stability

Shear-mode softening and B1 lattice instability

The elasticity of MnO

3.3.1 Specimen description

3.3.2 Data reduction

3.3.3 Elasticity systematics among the transition-metal
monoxides

3.3.4 Shear-mode softening and lattice instability in MnO

The mechanism of the olivine»*spinel phase transformation

Search for Cgg mode softening in fayalite

3.5.1 Specimen description

Page

13

14
15
15
16

21
22

24
25

21

33
35

42
42
b2
45

51
55

57
57



GFllllllIlIIIIIIlllllllll.-.-------------'---'-___________________________

3.5.2 Data reduction 58
3.5.3 On the absence of shear-mode softening 61
4y, ELASTICITY OF SOME MANTLE MINERALS o4
4.1 Introduction 64
4.2 Garnet 65
4.2.1 Specimen description 65
4.,2.2 Data reduction 65
4.,2.3 Elasticity and crystal chemistry 68
4,3 0livine 75
4,3.1 Specimen description 75
4,3.2 Data reduction 76
4.3.3 Elasticity and crystal chemistry 80
4.4 Orthopyroxene 87
4.4.,1 Specimen description 87
4.4,2 Data reduction 88
4.4.3 Elasticity and crystal chemistry 93
4.5 The elasticity of single-phase isotropic aggregates 97
.. BLASTICITY AND CRYSTAL STRUCTURE 105
5.1 Introduction 105
5.2 Polyhedral models of garnet, olivine and orthopyroxene 108
5.2.1 Garnet 108
5.2.2 0livine 109
5.2.3 Orthopyroxene 110
5.3 Zero-pressure compliances 113
5.3.1 Compressional compliances 113
5.3.2 0ff-diagonal compliances 116
5.3.3 Shear-mode compliances 118
5.4 The anomalous elasticity of orthopyroxene - pressure 120
dependence of the compressional compliances



6. GEOPHYSICAL IMPLICATIONS

6.1 Introduction

6.2 The elasticity of multiphase composites

6.3 The elasticity of composites of upper mantle phases

6.3.1 Composites of the measured olivine (Fogq),
orthopyroxene (Engp) and garnet (Pyg3) phases

6.3.2 Composites of equilibrium assemblages

6.4 Velocity models for the upper mantle

7. CONCLUSION

7.1 Elasticity of the major upper mantle minerals

7.2 The elasticity of the wiistite analogue MnO

7.3 Search for shear-mode softening premonitory to the

olivine»*spinel transition

REFERENCES

124

124
127

130
130

134

137

144

145
146

147

149



CHAPTER 1

INTRODUCTION

Information concerning the composition of the Earth's mantle is
supplied indirectly through sampling of the mantle to depths of about
200 km by basaltic magmas and kimberlite pipes. The xenoliths from both
sources range in composition from eclogite to peridotite. The observed
compositions however, are predominantly ©peridotitic. Peridotitic
nodules from depths greater than 70 km are generally variably depleted
garnet lherzolites. Magmas from shallower depths carry xenoliths which

are also dominantly peridotitic but these xenoliths exhibit a spinel

lherzolite mineralogy.

The realization that the material represented by the peridotitic
xenoliths is complementary to and not parental to the basaltic magmas
led to the development of compositional models for the parent mantle
(Ringwood, 1962;Green and Ringwood, 1963;Clark and Ringwood,

1964;Ringwood, 1966). These models were given the non-specific name




pyrolite, indicating a pyroxene-olivine mineralogy capable of yielding
basaltic magmas on partial melting with a peridotite residue (Ringwood,
1962). This pyrolite composition has been refined by extensive
petrological and geochemical modelling (Green and Ringwood, 1967;Green,
1971;Ringwood, 1975;Green et al., 1979), and has been shown to
crystallize as a mixture of olivine, Al-poor pyroxene and pyrope-rich
garnet at pressures corresponding to the depth interval ~70 to ~200 km.
Below ~200 km, progressive transformation of the pyroxenes to garnets
with partial octahedral co-ordination of Si results in the formation of

complex garnet solid solutions.

Further phase changes occur in this mineralogy with increasing
depth. A major phase change occurs at about 400 km where olivine
transforms to the B-phase (Ringwood and Major, 1970;Akimoto et al.,
1976); at greater depths, 500-550 km, the Ca silicate component of
garnet transforms to the perovskite phase (Ringwood and Major, 1971;Liu
and Ringwood, 1975), while B-phase completes the transformation to
Shinel o (Iter ef v al., 1974). At 650 km this spinel phase
disproportionates into orthorhombic perovskite, MgSi0O3, plus rocksalt
structured MgO (Liu, 1975), and the remaining pyrope-rich garnet
transforms first to an ilmenite (Ringwood and Major, 1968;Ito et al.,

1972) and then to a perovskite phase (Liu, 1975).

The most important source of information on the physical properties
of the mantle is provided by seismology. The phase transformations
observed in the model pyrolite mantle occur at depths which are
consistent with the observed discontinuities in the velocity profiles
of the mantle. The range of possible olivine-pyroxene-garnet
mineralogies for the upper mantle can be narrowed by comparing the

measured wave-velocities for natural samples of proposed mineralogies




—' "——

at mantle conditions with the compressional- and shear-wave seismic
profiles. However, it is technically difficult to measure velocities
through specimens of mantle material in the laboratory at conditions
approaching those of the mantle - simultaneous high pressures and
temperatures being limited to the range < 1 GPa and < 700 K (eg
Christensen, 1979). Higher pressures and temperatures are separately
attainable and the purpose of the present high pressure experiments 1is
to reduce the 1ength9 extrapolation from 1laboratory to upper mantle
pressures. In particular the combination of improved wultrasonic
techniques and greater pressure capability provide for more reliable
characterization of the pressure dependence of elastic wave velocities

than has previously been possible.

The present study is concerned primarily with the mantle from ~70
to 200 km depth. The natural samples of rocks from these depths
together with the experimentally observed mineralogy of the pyrolite
compositional model indicate a mineralogy for this region of the mantle
dominated Dby olivine, with lesser volumes of orthopyroxene and
clinopyroxene, and a small volume of pyrope-rich garnet. In view of
this proposed garnet-pyrolite/garnet-lherzolite mineralogy, the elastic
moduli of single crystals of olivine, orthopyroxene and pyrope-rich
garnet with well characterized micro-structure, will be measured at

high pressure and room temperature.

There have been previous studies of the elastic properties of
single crystals of olivine, orthopyroxene and garnet of similar
compositions. These earlier measurements however, were conducted over
smaller (£1 GPa) pressure ranges and linear pressure dependences of the

moduli were generally observed.




The pressure dependence of the elastic moduli of the present
crystal of pyrope-rich garnet has been previously determined by Bonczar
et al. (1977) to 1 GPa. Their measured moduli appear somewhat anomalous
when compared to the elastic moduli computed from the garnet solid
solution systematics of Babuska et al. (1978) and Leitner et al. (1980)
for a crystal of this composition. Resolution of this discrepancy is a

goal of this study.

The elastic moduli of orthopyroxene have been determined to 1 GPa
by Frisillo and Barsch (1972). The value of 03K/dP (9.6) deriving from
their study is anomalously high relative to 0K/oP for most silicate
minerals including olivine (3K/3P=5.13, Kumazawa and Anderson, 1969)
and garnet (9K/9P=4.74, Bonczar et al., 1977;0K/0oP=5.43, Soga, 1967)

The determination of the
high-pressure elastic moduli of orthopyroxene 1is therefore a major

pRlopityin this study.

The present 3 GPa pressure capability together with the accuracy of
the measured travel-times allows the determination of reliable first
pressure derivatives (#1%) and the measurement of second pressure
derivatives (+10%) of the elastic moduli for these minerals for the
first time. The elasticity data for these three mantle minerals may be
combined with the aid of aggregate theory to produce upper and lower
bounds to the bulk and shear moduli of various model mineralogies for
an isotropic, homogeneous mantle (Voigt, 1928;Reuss, 1929;Hashin and
Shtrikman, 1962a, 1962b;Watt, 1979). These model mantle elasticities
require only a modest extrapolation from the observed 3 GPa pressure
range to ~6.5 GPa (200 km). Velocity profiles for specific olivine,
garnet and orthopyroxene mineralogies may then be calculated from the

bulk and shear moduli of composites of these minerals together with the



previously determined temperature derivatives of the elastic moduli and

an average upper mantle geotherm.

The single-crystal elastic moduli of a range of silicates have
previously been discussed, particularly by Weidner and his colleagues
(Vaughan and Weidner, 1978;Au and Weidner, 1985) in terms of the
polyhedral lattice models. The relative magnitudes of the elastic
moduli and their pressure derivatives measured in this study for
olivine, garnet and orthopyroxene may be rationalized in this manner.
In particular, it may be possible to provide a qualitative explanation

for the anomalous pressure dependence of the orthopyroxene moduli.

The physical properties of phases representative of the mantle at
greater depths may also be investigated with the present high-pressure
ultrasonic interferometer. The pronounced discontinuity in seismic wave
velocities near 400 km depth 1is attributable to the onset of the
olivine(a)»*spinel(Y) transformation, which, for compositions near
(Mgo .9Feqg 1)2Si0y is actually a complex sequence of reactions which
occur progressively with increasing pressure: a>(a+Y)>(a+B)>B>(B+Y)~>Y
(Ringwood and Major, 1970;Akimoto et al., 1976). The geophysical
importance of the kinetics of this transformation with its possible
contribution to the driving force for plate tectoniecs (Schubert and
Turcotte, 1971;Tokséz et al., 1971; Ringwood, 1975) and to deep-focus
earthquakes (Sung and Burns, 1976) has focussed attention on the
transformation mechanism - for which two alternatives have been
suggested. The first is a nucleation and growth mechanism (Sung and
Burns, 1976). The second is a martensitic diffusionless mechanism which
achieves the conversion of the hexagaonal-close-packed anion array of
the olivine lattice into the face-centred-cubic geometry of spinel by

the actions of partial dislocations associated with the (100)[001] slip




system (Poirier, 1981a). Such a transformation would probably be
accompanied by premonitory shear mode softening of the elastic
stiffness moduli Cgg and Cgg governing shear parallel to the (100)
plane (Poirier, 1981a). The availability of a single crystal of
fayalite together with the (room temperature) 3 GPa pressure capability
of the ultrasonic interferometer affords an opportunity to study the
pressure sensitivity of the key shear moduli of an olivine to pressures
in excess of its metastable olivinezspinel transition pressure (~2 GPa

for Fe»SiOy, Ringwood, 1975).

Finally, the high pressure polymorphism of the transition-metal
oxides is of considerable current interest in connection with element
patitioning among the ferromagnesian phases of the Earth's lower mantle
and the solubility of oxygen in the outer core (Ringwood, 1977;
McCammon et al., 1983). However, there is confusion concerning both the
elastic properties (eg Jeanloz and Hazen, 1983) and the high pressure
polymorphism of wistite, and given the availability a single crystal of
the FeO analogue MnO, the elastic moduli of MnO will be measured at

room temperature to 3 GPa.



CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1 Introduction

The most direct method of determining the elastic moduli of a
single-crystal is to measure the velocities of elastic waves travelling
through the crystal. For each direction in a single-crystal, three
independent waves with mutually orthogonal displacements may be
propagated. In general, no one of these displacements coincides with
either the normal to the wave front or a direction parallel to the wave
front. There are however, special directions in any crystal (depending
upon its symmetry) in which one of the waves is a compressional mode
with the displacement vector coinciding with the wave front normal, and
the other two waves are transverse modes with displacement vectors

perpendicular to each other and in the plane of the wave front.

The equation of motion for an elastic medium in the absence of body



forces is

0ij,5 = p Uj i=1,2,3 (2.1)

where p is the density, 0ij is the stress tensor, the comma notation
implies differentiation and the repeated suffix implies summation. We

seek a plane wave solution for the particle motion, of the form

Uy = Ugg exp i(wt - k.r) g = 1,2,3. (2.2)

Introducing the elastic stiffness tensor Cjjkg, and the stress-strain

relationship
0ij = Cijkp €kg 1,3 ='1,2,3 (2.3)
where epg = (Uz,k 3 Uk,g)/2, the equation of motion (Eqn. 2.1) becomes
Cijske Ug,k3 = o Uj i=1,2,3. (2.4)
This equation can be solved for any direction of propagation through a
crystal of any symmetry (see Truell et al., 1969). For the particle
displacement vector U and the wave vector k = (w/v) n, the term Ug y;
(in Eqn. 2.4) is
Ug,kj = — ng nj Upy, (w/v)2 exp i(wt - K.r) (2.5)
and the equation of motion (Egqn. 2.4) can be rewritten as

(Cijkg Nk Nj = p V2 83q) Ugy = O i=1,2,3, (2.6)

for §i9=1 (i=2), and §5¢=0 (i=Q).



For the special case of cubic symmetry, where the elastic constant

matrix ds

C11 Ci12 Ci2
Ci2 C11 Cr12
Ci2 C12 C11
Cuyy
Cuyy
Cuy (2.7)

the equation of motion (Eqn. 2.6) reduces to

(Cy1-Cyy)Ugqning + (Cqp+Cyy)Uppniny + (Cqp+Cyy)Upsning = (pve-Cyy)Up;

(Cq2+Cyy)Ugynony + (Cqq-Cyy)Ugpnpny + (Cqp+Cyy)Ugsnpny = (pve-Cyy)Ugo
(Cqp+Cyy)Ugingny + (Cqp+Cyy)Uponsny + (Cqq=Cyy)Upsnsgng = (pve-Cyy)Ups
(2.8)

with the direction of propagation being described by the direction

cosines nj, and
Hie . .p” + ng” = 1, (2.9)

There is a solution to the equation of motion (Egn. 2.6 in general,
and Eqn. 2.8 in particular) if and only if the secular determinant is

Zero:

!Cijkl ng ng - p v° Sig| = O. (2.10)

For a wave propagating along [100] in a cubic crystal, with nq=1, and

n2=n3=0, the roots of Eqn. 2.10 are
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A pure compressional wave is propagated when the wave front normal

coincides with the displacement vector U; or

Uxn = 0, (2.12a)

and a pure transverse wave is propagated when the wave front normal is

perpendicular to the displacement vector U; or

=

.n = 0, (2.12b)

Hence

Pver100] = C11 (2.13)

is the solution for a compressional wave, and

pV2[1OO] = Clyy with any

polarization (2.14)

is the solution for the transverse waves propagating in the [100]

direction.

For the propagation direction [110] in a crystal of cubic symmetry,

with ny=n=1/v¥2 and n3=0, the roots of Eqn. 2.10 are

pver110] = (C11 + Crp + 2Cyy)/2
ove[r110] = Cuy polarization [001]
and sz[110] = (Cq1 - Cqp0)/2 polarization [110]. (2.15)

Figure 2.1 illustrates the propagation and polarization directions for

the pure shear and compressional waves described by Eqns. 2.13-2.15,




C/

= (C1 1—C12)/2
CII

(C11+C12+2C4q4)/2

Figure 2.1

The principal propagation and polarization directions for

the pure shear and pure compressional waves which propagate through a
crystal of cubic symmetry.



which can be propagated through a crystal of cubic symmetry.

The equation of motion can also be solved for crystals of

orthorhombic symmetry, where the elastic constant matrix is:

C11 Ci2 C13
Ci2 Co2 C23
Bl tes - B33
Cyy

Cs5
CEE» (2.16)

The roots of Eqn. 2.10 for this low crystal symmetry are:
pve[100] = C11

pv2[100] = Cs5 polarization [001]

pv2[100] = Cpp polarization [010]

pv2r010] = Co2

pv2[010] = Cyy polarization [001]

pV2[O1O] = Cq6 polarization [100]

PVveL001] = C33

pV2[OO1] = Cyy polarization [010]

pV2[001] = Cg5 polarization [100]
pVer110Jc = (Cyy + Cgg)/2 polarization [001]

(2.17)

pV2[11O]c = Kqo(P) polarization ~[110],

(C11+C22+2C66) /H+V(Cq1=Cpp) 2+U(Cq2+Cg6) 2/ 4

Kq12(3) polarization ~[110],

2
PV=[110]c

(C11+Cpp+2Ch[) /U=V(C11-C20)2+U4(Cqo+Cgg) 2/ Y
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PV2[O11]C = (Cgg + Cgp)/2 polarization [100]
pv2[011]C = Ko3(P) polarization ~[011],
= (Cpp+C33+2CyY )/ 4+V(Cpp=C33)2+4(Cp3+Cyy)2/Y
(2.17)

9V2[011]c = Kp3(S) polarization ~[011],

= (C22+C33+2Cuu)/U‘/(ng‘C33)2+M(C23+Cuu)2/u

over101]e = (Cyy + Cgp)/2 polarization [010],

0V2[1O1]c = Kq3(P) polarization ~[101],

= (C11+C33+2C55)/4+/(C11—C33)2+M(C13+C55)2/U

pve[1017c = K13(S) polarization ~[101],

= (C11+C33+2C55)/U-/(C11—C33)2+(C13+C55)2/U

where the [101], notation describes a direction of propagation with
respect to a hypothetical cubic lattice isocaxial with the orthorhombic
lattice. (Thus [101], is a direction at 45° to [100] and [001] and 90°
to [010]). The compressional and shear modes Kjj(P) and Kj;(S) are not
pure modes but are quasi-compressional and quasi-shear modes of
approximately the polarizations indicated. Figure 2.2 illustrates the
propagation and polarization directions for these solutions to the
equation of motion for a crystal of orthorhombic symmetry. (Note the

symmetry relations for the shear modes Cjj;, i=4,5,6.)

McSkimin and his colleagues in the 1950's pioneered the ultrasonic
pulse interferometric methods of measuring accurate travel-times of

elastic waves propagating through single crystals. Today these



)

(110)¢

K1 =(C44+ C55)/2

K2 = (C55+C66)/2

K3 . =(C44+ C66)/2

Figure 2.2 The principal propagation and polarization directions for

the pure shear and pure compressional waves, together with the

quasi-shear and quasi-compressional waves which propagate through a

crystal of orthorhombic symmetry.
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techniques are capable, in principle, of an absolute accuracy of the
order of 10”2 in the determination of travel-times. These ultrasonic
techniques should therefore provide the well constrained values of the
wave velocities and their pressure and temperature derivatives which
are necessary for extrapolation to the conditions of the Earth's
mantle. However, an examination of the published data for ultrasonic
experiments on a range of mantle minerals at room temperature, to
pressures less than 1 GPa (and often below 0.5 GPa) reveals a wide
variation among the moduli (~1%) and pressure derivatives (~10%)

observed for each of these minerals.

These uncertainties in the pressure derivatives are sufficiently
large as to complicate comparisons of seismic and extrapolated
laboratory velocities for the Earth's mantle, and have thus provided
strong motivation for both the reassessment of potential sources of
error in the ultrasonic pulse interferometric techniques and also the
extension of the pressure capability (Davies and O'Connell, 1977;

Jackson et al., 1981;Jackson and Niesler, 1982).

2.2 Transducer-bond phase shift

In the conventional bonded-transducer configuration (Figure 2.3)
there arises a phase shift due to the interference between the direct
reflection from the crystal-bond interface and other reflected waves
which return to the crystal after multiple reverberations within the
transducer and bond. Previously, the procedure has been to use
theoretical models of this reflection phase shift to separate the
propagation and phase shift components of the measured travel-times.

The major conclusion from such analyses is that the transducer-bond



mechanical piezoelectric
load transducer

bond

sample under test

VI

efc.

\

\

A YV

T

etc.

exp i(wt+kx)

\

\
Rexp i (w(t+d/w)—kx)

Transducer - bond phase shifts

In ultrasonics

Figure 2.3 The creation of phase shift effects due to multiple

reverberations of the applied signal within the transducer and bond.
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phase shifts may be negligibly small for sufficiently thin bonds at
frequencies in the neighbourhood of the bonded transducer resonant

frequency.

This assumption is the basis for most ultrasonic techniques in use
and has contributed to the popularity of the echo overlap and pulse
superposition techniques. The echo overlap method involves fixing the
carrier frequency at the nominal bonded resonant frequency and
superimposing selected echoes from the echo train of the applied pulse
on a variably triggered oscilloscope (Papadakis, 1967). The pulse
superposition method also involves pulsed operation of the transducer
at the nominal resonance frequency, the pulse repetition frequency
being varied in order to create constructive (or destructive)

interference between the resultant echo trains (MecSkimin, 1950).

The bonded transducer resonant frequency (the frequency of zero
phase shift) for the transducers used in the present experiments has
been observed to vary widely (#10%) from the nominal 60 MHz (third
harmonic of 20 MHz fundamental) frequency. This factor, together with
the pressure dependence of the appropriate elastic modulus and hence of
the resonant frequency of the transducers (approximately +1 MHz per
GPa) makes it difficult to operate consistently under conditions of

zero phase shift.

2.3 Phase comparison technique

Thus the apparent round-trip travel-time measured by ultrasonic
interferometry will in general be the sum of a propagation contribution

2L/v and a contribution ¢&/2nf associated with the reflection phase
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shift (see Figure 2.3). These terms can be separated by varying the
relative contributions of the propagation and reflection phase shifts.
This was accomplished by performing comparative one- and two-transducer
experiments (Jackson et al. 1981) which enable direct measurement of
the transducer-bond phase shift and thus permit explicit correction of

the measured travel-times.

2.3.1 Transducers

Coaxially plated quartz transducers of 20 MHz (#1%) nominal
resonance frequency were used in the present experiments. The X-cut
compressional mode transducers and the AC-cut shear mode transducers
were 6.35 mm in diameter. These transducers were employed in preference
to the 20 MHz LiNbO3 transducers used by Jackson et al. (1981) as the
former produce pure shear and compressional modes of propagation. The
transducers used in the one- and two-transducer comparative experiments
were always chosen from the same batch in order to minimize any

possible variation in the transducer resonance frequencies.

It was occassionally necessary to reshape the transducers in order
to match the irregular faces of the crystals used. This entailed
shaving off some of the coaxial plating and reducing the size of the
inactive area of the transducer, but always leaving the 3.2 mm diameter
active area of the inner electrode untouched. This process was shown
experimentally to have no effect on the quality of the signal produced,

and no effect on the measured travel-times.

2.3.2 Bonds

The transducers were bonded to the crystals with a 9:1 molar
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mixture of glycerine and phthalic anhydride. This mix was sufficiently
mobile at 3 GPa to accommodate the deviatoric stresses occurring at the
crystal-bond-transducer interfaces which could otherwise have cracked
either the crystals or the transducers. However, at low pressures (<1
GPa) the bond was often too fluid to allow efficient transmission of
shear waves. Most room pressure measurements, for both compressional
and shear waves were conducted using a stiffer bond of 1:1 glycerine
and phthalic anhydride. The bonding of the transducer with this viscous
mixture was accomplished by repeated heating and clamping of the
transducer, bond and crystal in order to thin the bond sufficiently,
and to ensure uniform thickness of the bond. The mobile 9:1 mixture
could be adequately thinned by repeated clamping at room temperature.
After some initial experimentation it was demonstrated that bonds of

reproducible quality could be prepared via these methods.

2.3.3 Measurement of travel-times

The phase comparison technique used in the present experiments is
based on the procedure of Jackson et al. (1981) and Jackson and Niesler
(1982) (see Figure 2.4). Application of a pair of appropriately spaced
phase coherent pulses to the transducer results in interference between
the respective echo trains. In particular, The first echo from the
second pulse overlaps with the second echo from the first pulse. For an

applied pulse A(w)sinwt, the resultant overlapped echo is

R(w,t) = A(w)sinwt + r(w)A(w)sin(wt + 2wL/v + d(w)) (2.18)

where A(w) 1is the transducer response function and r(w) 1is the

reflection coefficient at the transducer-bond-crystal interface (see

Figure 2.3). For any given w, R(w,t) is a sinusoid of the form
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Figure 2.4 Block diagram of the ultrasonic interferometer.
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R(w,t) = R(w)sin(wt + 8(w)) (2.19)
with R(w) = Alw)Y1 + ré(w) + 2r(w)cos(2wlL/v + ¢(w)) (2.20)

The frequencies of the observed maxima and minima of R(w) are those for
which dR/dw = 0. Thus, the frequencies of these extrema are, for the

maxima (integral values of p)

f = (p - &/21 + sin~1S + tan~1T)/(2L/Vv) (2.21)

and for the minima (half-integral values of p)

gisu(pe=-p/2n ' ='sin7 s + tan~1T)/(2L/v) (2.22)

r(dr/dw) + ((1+r2)/A)(dA/dw)
where S = (2.23)

Y(dr/dw + (2r/A)(dA/dw))2 + (r(2L/v + dé/dw))?

and T = (dr/dw + (2r/A)dA/dw)/(r(2L/v + dé/dw)), (2.24)

(Jackson et al., 1981). Therefore the observed frequencies of the

maxima and minima can be related to the propagation travel-time (2L/v)

through the crystal:
p/f = 2L/v + &/27f - (tan™ 1T + sin~18)/f, (2.25)

the + sign applying to the maxima.

The frequencies of the minima of the interference pattern require

no correction for the frequency dependence of the transducer response
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function A(w) and the reflection coefficient r(w) as (tan™1T - sin~13)
= 0 to at least four significant figures, and thus Egn. 2.25 can be

expressed as

p/f = 2L/v + &/2nf (2.26)

for half-integral values of p. Furthermore, the frequencies of the
minima are less subject to perturbation by noise than those of the
maxima, as the minima are sharper by a factor (1+r)/(1-r) (Jackson et
al., 1981). This term becomes very large as the reflection coefficient
r approaches 1. Consequently, we have measured only the frequencies of
the minima of the interference pattern, in an effort to avoid

introducing unwanted errors into the measured travel-times.

The overlapped echo R(w,t) (Egqn. 2.19) is gated to remove the
transient effects at each end of the pulse due to the finite time
needed to build up a steady state phase contribution from the
reverberations within the bond and transducer. The carrier frequency is
then tuned through a frequency range of 10 MHz centred on the
approximate frequency of zero phase shift at either the fundamental or
the third harmonic of the transducer resonance frequency. The analogue
output (see Figure. 2.4) illustrates the resulting maxima and minima of
the interference pattern modulated by the response envelope of the
transducer. The flatness of this response envelope 1s a sensitive
indicator of the bond quality. For the high quality bonds achieved at
pressure, the envelope is essentially frequency independent for +4 MHz

about the bonded transducer resonant frequency.

The minima of the interference pattern were located automatically

and the frequencies were recorded digitally. A 5 MHz range about the
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zero phase shift frequency includes at 1least ten minima for travel-
times >1 usec (see Egn. 2.26). The frequency measurements were then
repeated with a second passive transducer bonded to the other end of
the crystal. This second transducer was earthed in order to produce an

electrical termination equivalent to that of the first transducer.

Most of the experiments were conducted within the third harmonic
response envelope (centred near 60 MHz) of the 20 MHz transducers. The
phase shift contribution ¢/2nf at this frequency is one third of that
which would be incurred near the fundamental resonance frequency.
Hence, the phase shift correction term 1is smaller for travel-times
measured at the third harmonic, and any associated errors are also

smaller.

The assumption that the total transducer-bond phase shift
associated with the two-transducer configuration is twice that for the
one-transducer configuration can now be used to calculate the desired

propagation travel-time

to(f) = 2L/v = 2t (f) - to(f) (2.27)

and the transducer-bond phase shift

o(£)/2m = £x(to(£) - tq(£)) (2.28)

where t4(f) and to(f) are the apparent travel-times at frequency f for
the one- and two-transducer configurations. Figure 2.5 illustrates a
typical set of travel-times calculated across the frequency range, and
the associated phase shift calculated from the apparent travel-times.

The frequency independence of the corrected travel-time t,(f) is an
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shift and corrected travel-times are, respectively, the best fitting

quadratic and linear representation of the data.
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indicator of the success of this method of analysis, and an
illustration of the reproducibility of the bonds. The travel-times used
in the calculation of the elastic moduli are the travel-times measured
at the zero-phase shift frequency. The quoted error in this travel-time
is calculated from the scatter of the corrected travel-times measured
across the frequency range about a straight line fit. Figure 2.5 also
illustrates the errors introduced into the measured travel-times by
inappropriate assumptions concerning the frequency of the zero phase
shift. The need for such assumptions 1is eliminated by use of the

present empirical correction technique.

Although model-independence is the very essence of this empirical
phase-shift correction procedure, theoretical analysis of the
transducer performance provides useful insight into the effects of
possible transducer and bond variability. The transmission-line
approach of Berlincourt (1964) and Sittig (1967) has been used by
Niesler (1985) to calculate the effect of a 0.2-0.5 um thick gold layer
on a disc of quartz with a free resonance frequency of 20 MHz. A 0.2 um
thick layer of gold decreases the resonance frequency by approximately
1.25 MHz. The further increase in thickness of the plating from 0.2 to
0.5 um however, has little effect on the resonance frequency. The bonds
between the crystal and transducer in the present study are 0.2-0.5 um
thick. Bonds of this thickness were calculated (Niesler, 1985) to have
no significant effect on the zero phase-shift frequency of the
transducers. However, these bonds were calculated to effect the
phase-shift components of the observed travel-times in the opposite

sense to that calculated for the addition of a layer of gold.

Although we have attempted to avoid the mismatching of the

transducer resonance frequencies within pairs of transducers used in
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the one- and two-transducer comparative experiments, the measured free
resonance frequencies of the transducers have been observed to range
from 20.5-22.0 MHz (or 61.8-66.1 MHz). A mismatch in the zero phase
shift frequencies of a pair of transducers displaces the corrected
travel-times by a constant amount (either positive or negative)
throughout the pressure range. This displacement is of the order of
1 nsec per MHz mismatch of the fundamental frequencies. This would
result in a systematic error of order 0.1% in the measured elastic
modulus, but the first and second pressure derivatives of the modulus
would be unaffected. A further irregularity observed in the plots of
travel-times versus frequency is the positive frequency dependence of
the travel-times - attributable to be dispersion effects associated
with the non-planar nature of the propagating wave (Niesler, pers.

comm., 1984).

The frequencies of the interference minima for each mode of
propagation were measured at room temperature. The deviations (~1 K)
from this temperature (295 K) were monitored with a calibrated

thermistor in intimate contact with the pressure vessel.

2.4 Crystal preparation

The single crystals used in these experiments were oriented to
within 0.5° wusing X-ray Laue back-reflection techniques. Pairs of
parallel faces of the required orientation were then cut and ground,
and polished with 8 ym and 3 pym diamond paste, and 1 pm alumina powder.
The faces were checked with optical flats and found to be flat to

within A/2 of sodium light.
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The crystal densities were measured within an uncertainty +0.1% by
immersion in ethanol at 295 K. The compositions of the crystals were
determined by electron-microprobe analysis, and the microstructure of

each crystal was investigated via both optical and electron microscopy.

2.5 Pressure generation and measurement

Hydrostatic pressures up to 3 GPa were routinely generated at room
temperature in a piston-cylinder apparatus (see Figure 2.6) following
the method of Boehler et al. (1977). The bore of the pressure vessel
was 12.7 mm in diameter and was sealed with Bridgman unsupported area
seals. The liquid pressure medium used was a 1:1 (by volume) mixture of

pentane and isopentane.

A coil of manganin wire of nominally 40 Q resistance wound around
the upper (immobile) seal was used as the pressure sensor (see Figure
2.6). The resistance of this wire increases at a rate of ~1 Q per GPa.
The pressure dependence of the gauge resistance was calculated from the
known room- pressure resistance, and the resistance observed at the
melting pressure of mercury at room temperature (Lloyd et al., 1969)
given by

P = 3.8227((T/234.29)1.1772 - 1y, (2.29)

and at the centre of the 'region of indifference' for the Bi I->II

transition (Zeto and Vanfleet, 1971) from the equation

P =2.550 - 0.00482(T - 298.16) (2.30)

(Peerdeman et al., 1980).
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These three points can be used to define a quadratic
R =Ry (1 + aqP + asP?) (2.31)

describing the resistance of the manganin gauge at 295 K. The

parameters of this quadratic were calculated to be

Ry = 42.376 9 and Ro = 43.369+0.001 @
a1 = (2.654+0.011)x1072 GPa™! a1 = (2.744+0.015)x1072 GPa~!
ar ==(5.7620.26)x10"% GPa=2 as ==(9.1820.80)x10”4 GPa=2
for the gauge used for the gauge used
in the fayalite study _ in the MnO study
and Re =ndi2.7960+ 0.001.0
a1 = (2.696+0.020)x1072 GPa™!
ap _—(7.1140.78)x10"% Gpa=2 (2.32)

for the gauge used in the garnet, olivine and orthopyroxene studies.

The resistance of the manganin gauge was measured with an accuracy
of 0.5 mQ, allowing the pressures of the one- and two-transducer

comparative experiments to be reproduced to within 2 mQ, or 2x1073 GPa.

The upper seal also functioned as the sample holder (see Figure
2.6). The 0.13 mm diameter electrical connections for the manganin
gauge and the transducer contacts were fed through a four bore alumina
tube which was embedded in a dental cement cone-seal. This sample

holder could accommodate crystals as large as an 8 mm cube.
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2.6 Data reduction

The crystals investigated in this study were of either cubic or
orthorhombic symmetry. The elastic properties of crystals of cubic
symmetry are described by three independent elastic constants which can
be determined from the travel-times of elastic waves travelling through
the crystal (see Egns. 2.13-2.15). There are seven simple modes of
propagation through a crystal of cubic symmetry. These are the
compressional and shear modes propagating in the [100] and [111]
directions, and the compressional and two independent shear modes
propagating in the [110] direction. Only three of these modes need to
be measured in order to determine the three independent elastic

constants of a crystal of cubic symmetry.

The elastic properties of the crystals of orthorhombic symmetry are
described by nine 1independent elastic constants. There are 18
relatively simple modes of propagation through crystals of this
symmetry (see Egn. 2.17). These are the compressional and two
independent shear modes which propagate in the axial directions, and
the shear waves and the quasi-shear and quasi-compressional waves which
propagate in the [110],-type directions. The symmetry relations of the
elastic stiffness matrix are such that the three on-diagonal shear-mode
constants can be determined from the travel-times of waves propagating
in two different axial directions (ie Cp3p3 = C3p3p). The symmetry
relations of the elastic stiffness matrix also allow the same
information to be gained from the quasi-shear mode and from the

quasi-compressional mode propagating in the same direction.

In calculating the elastic constants from the travel-times

determined at different pressures it is necessary to take into account
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the effects of pressure on the length and density of the crystal. The
calculations in the present study have been performed using Cook's
algorithm for the separation of the effects due to variations in the
elastic moduli from the effects due to static strains 1in crystals
subjected to hydrostatic pressures. A detailed account of this
procedure was originally given for crystals of cubic or hexagonal
symmetry (Cook, 1957), however the algorithm can also be extended to
accommodate crystals of orthorhombic symmetry. This treatment of the
pressure dependence of the elastic moduli of an orthorhombic crystal

requires the travel-times of 12 modes of propagation to be measured.

2.6.1 Cook's method for crystals of cubic symmetry

Consider a crystal having pairs of plane parallel faces, the
direction of propagation of an ultrasonic pulse being perpendicular to

the faces. The pressure P reduces the distance 1l between the faces to

1(P) = 1g/s where s 21, (2.33)

and the subscript 0 refers to zero pressure. In the case of a crystal
with cubic symmetry, s is independent of the direction of propagation

within the crystal. The density of such a crystal is

p(P) = pg 83 (2.34)

where p, 1is the zero-pressure density. The general equation for an
adiabatic elastic modulus is

C =14 (19)2 po £2 s (2.35)

where f is the reciprocal of the round-trip travel-time.
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The eigenvalues associated with wave propogation in the [100]

direction of a cubic crystal are

C11 = 4 po (119)2 (£1)2 s

; Cyy = 4 pg (110)2 (fy)2 s with any polarization
(2.36)

and for a wave propogating in the [011] direction

(Cq1q + Cqo + 2Cyy)/2 4 po (120)2 (f3)2 S

(C11 = C12)/2 = b4 pgy (159)2 (£2)2 s polarized in the [011]
direction

Cyy = 4 pg (159)2 (£5)2 s polarized in the [100]
direction

(2437)

For a cubic crystal, the equation for the shortening of a length

within the crystal due to increasing pressure can be expressed as

ds

— S11T =+ 2812T (2.38)
s dP

where the SijT are the isothermal stiffnesses. These isothermal terms

can be related to the adiabatic measurements (Nye, 1957)

ds 302 T
I8 & ) (Sq1 + 2512)
s dP Po Cp (S1q1 + 2812)
= (1 + A)(Sq1 + 2592) (2.39)

for a, the linear thermal expansion coefficient and Cp>» the specific
heat. For crystals of cubic symmetry, the elastic stiffnesses in

Egn 2.39 are simply related to the elastic compliances




C11 + 2C12 = S11 + 2512. (2.40)

The substitution of Egns. 2.36 and 2.37 into Eqn. 2.39 enables the term
s to be evaluated by numerical integration (ignoring the pressure

dependence of the term A)

1 dpP
sewil.® L+ A) T (2.41)
Yoo 0 3(110)2(£1)2 = U(150)2(F0)2

and used in Egns. 2.36 and 2.37 to calculate the pressure dependence of

the adiabatic elastic constants of a crystal of cubic symmetry.

2.6.2 Cook's method for crystals of orthorhombic symmetry

For a crystal of orthorhombic symmetry with pairs of faces cut

perpendicular to the axes 0x, Oy, and 0z, the distances between the

(100), (010), and (001) faces can be written as

11(P) = 110/81
15(P) = 1p09/s5 (2.42)
and 13(P) = 1l3p/s3 for sq,sp,s3 2 1

respectively. For faces cut at 45° to two of the orthogonal axes and
parallel to the third, the distances between the (110),, (011),, and

(101), faces can be written as

V2 lgo V2 1y0
1lg(P) = ; 1y(P) =
/812 + 822 /522 + 832
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/2 1lsg
and 15(P) = (2.43)
/812 * 832
respectively. The density of an orthorhombic crystal is
p(P) = poS1sps3, (2.44)
and the equations for the adiabatic elastic constants are
Ci11 = 4 po (110)2 (f1)2 8283/81
Cgg = 4 po (110)2 (f5)2 8253/81
Cop = 4 po (119)2 (£4)2 sps3/sq, (2.45)
and Coo = U py (159)2 (f5)2 $153/82
Cyy = 4 pg (120)2 (f11>2 S1S3/82
Ceg = 4 po (120)2 (f12)2 8183/52, (2.46)
and C33 = U Po (130)2 (f3)2 S1S2/S3
Cyy = 4 po (139)2 (£)2 sysp/s3
Cs5 = 4 po (130)2 (f1o)2 8182/83, (2.47)
and Kip = 8 po (160)2 (£7)2 sysps3/(512 + 552) (2.48)
K13 = @ Po (150)2 (f8)2 S1S2S3/(S12 + 832) (2.49)
Koz = 8 po (1yg)2 (£g)2 sysps3/(sp2 + s32), (2.50)

wnere fj is the reciprocal of the round-trip travel-time. The
relationships for Kj 3 (Eqns. 2.48, 2.49 and 2.50) hold for the travel-
times of either the quasi-shear or the quasi-compressional modes
measured in each direction. The redundancy in the measurement of the

shear modes Cjj (i=4,5,6) allows the introduction of the relationships
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(119) (fg) S1
= Al = )‘6
(129) (£f12) S2
(110) (f5) S1
= — = }s
(130) (f10) S3
(1og) (f11) S2
= == = AJy, (2.51)
(130) (fy) 53

from Eqns. 2.45, 2.46 and 2.47. The substitution of these equalities in
Egqns 2.45-2.50 allows the modulus for each mode to be expressed in
terms of either sq, sp or s3 only. It follows from the form of the

expressions

Cip = V(Cop + 16°Cgg = (1+162)K12)(Xg2Ce1 + Cgg - (1+162)K102)/ g = Cgqg

VB B 9520ee ~ {1+ 4520130 (k52C11 + Cs5 = (1+45°2)K13)/5 = Cs5

(@]
w
Il

Coz = V(C33 + AuSCyy - (14242)K23) (Ay2Cop + Cyy = (1+Ay%)Kp3)/ Ay = Cyy.

(2.52)

relating the Cjj (i#j) to the moduli of the measured modes that each of

the Cij (whether or not i=j) may be expressed as the product of any one
of the unknown sy (k=1,2 or 3) and a corresponding function Fj of the
known zero-pressure density and dimensions and the mode frequencies.

Thus each of the Cij is expressible in the form

C = sk Frlpo,1j0(J=1,2...6),f5(j=1,2...6)) (2.53)

The application of  hydrostatic pressure causes independent
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shortening of each of the directions parallel to the orthogonal axes of
the orthorhombic lattice. This shortening due to isothermal compression

can be expressed as

dSi

3
= Z SijT i=1,2,3 (2.54)

sy dP J

where the SijT are the isothermal elastic compliance terms. The
relationship between the measured adiabatic compliance terms and the

isothermal terms is (Nye, 1957)

3
o z 05 T
J=1 3
e I SR ) L Sij i=1,2,3
el x: 143 j=1
Po Cp Z Sij
j=1 (2.55)

for aj, the thermal linear expansion in directions Ox, Oy, and 0z, and

Cps the specific heat, and thus Equation 2.53 becomes

dSi 3
= (1 + A3) ) Sij i
Si dpP J=1

I

1,2,3. (2.56)

The compliance matrix Sij is simply the inverse of the stiffness
matrix Cij’ and the elastic compliance terms can easily be related to

the elastic stiffnesses:

S11 = (C22C33 o C23C23)/T

(C13C23 = C]2C33)/T

p
()
I

(C12C23 e C13C22)/T

n
w
I

Soo = (C11C33 - C13C13>/T
323 = (C13C12 st C11C23)/F

(C11C22 = C12Cqp)/T

W
w
w

I
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and Syy = Cyy~!
Ssg = Cgg™ | (2.57)
S66 = Ce6 |

where T = C11C22C33 v C11C23C23 - C33C12C12 + 2C12C13C23 o C22C13C13.

These pressure dependent values of s; can now be substituted into
Egns. 2.45-2.52 to calculate the elastic moduli Cjj over the 3 GPa

pressure range.

2.7 Curve fitting and estimation of errors

Successively higher-order polynomials were fitted to the
compressional- or shear-mode moduli calculated with Cook's algorithm,
using a multiple linear regression technique (Bevington, 1969) and an
F-test (with a 99.5% confidence 1level) to test the statistical
significance of each added term. At this confidence level a polynomial
of at least second order was required to fit the modulus - pressure
data for every mode. These polynomials were restricted to quadratics as
the calibration of the manganin pressure gauge 1s not sufficiently
accurate to justify inclusion of higher order terms. This produces a

quadratic of the form

C =ag + otlag) + (a1 + or(ay)) P + (ap = or(an)) P2 (2.58)

where the uncertainties ot(aj) in the parameters a; reflect the

departures of the data from the model.

The variances in the terms aj; (i=0,1,2) for each such quadratic

were calculated from
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02(a;) = (ot(aj))2 + (3aj/3Lg)2 02(Lg) + (dai/3pg)2 0°(pgp)
+ (8aj/8aq1)2 02(aq) + (8ay/3an)2 o2(an)
(2.59)
(Jackson and Niesler, 1982) where
oaj/dLg = 2aj/Lg
and 0aj/dpy = aj/pg- (2.60)

The last two terms in Eqn. 2.61 are associated with the uncertainties
in the calibration of the manganin gauge. The partial derivatives can
be calculated from the polynomial expansions of the moduli as functions

of the manganin resistance, which in turn is a function of pressure, to

give;
380/3&1 = 0 oap/das = O
dai/daq = aqg/oy oa1/das = 0
das/daq = as/aq - aq ap/(aq)? das/das = ay/oq (2.61)

The elastic constants Cij i#j, which can only be obtained via a
combination of the simple Cjj modes and the Kjj modes were calculated
from the measured travel-times of the Kjj modes and the quadratics
which have been fitted to the other modes (ie Cjj) involved, with the
errors in the fits of the quadratics being propagated through the

calculation of the Ci; (i#j) quadratics.
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CHAPTER 3

PRESSURE-INDUCED SHEAR-MODE SOFTENING

AND PHASE TRANSFORMATIONS

3.1 Introduction: criteria for lattice stability

The stability of a crystal lattice relative to all alternative
configurations attainable by infinitesimal homogeneous deformations
requires the strain energy density Cij€i€j/2 to be positive definite.
This condition, known as the Born stability criterion (Born, 1940), is
met if each of the principal minors of the elastic stiffness matrix is

positive.

It is important to emphasize that the Born criterion is a necessary
but not sufficient condition for the stability of a lattice. It
obviously does not guarantee stability relative to alternative
configurations which may be attained by infinitesimal non-homogeneous
deformations, or by finite deformation of the lattice. Thus

ferroelectric transitions, which occur as one of the optic mode
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frequencies approaches zero, involve no anomalous behaviour of the
elastic moduli which are associated with 1long wavelength acoustic
modes. In some special cases, the transformational strain may take the
form of a finite shear (as in the B1-B2 transformation discussed below)
or alternatively the transformation may require complete disruption of
the lattice and proceed by a nucleation and growth mechanism. The large
atomic displacements required by both of these transformation
mechanisms are beyond the scope of elasticity theory and the vanishing

of a principal minor of the stiffness matrix would not be expected.

The sufficient condition for the stability of a particular crystal
structure under given conditions of temperature and pressure is that
the Gibbs free energy Dbe a minimum relative to all alternative
configurations. The positive strain energy density condition (ie the
Born criterion) for the mechanical stability of a lattice against
infinitesimal homogeneous deformations is a special case of the more

general thermodynamic stability criterion.

Of particular importance in this chapter are phase transformations
which may be accomplished by a finite shear deformation of the original
structure. For crystal structures which are related in this way, any
reduction (softening) of the appropriate shear modulus (for example
with increasing pressure) will reduce both the free energy of the
deformed lattice relative to the original lattice and the height of the
energy barrier between the two phases. Such pressure-induced shear-mode
softening might therefore have implications for the nature and kinetics

of high pressure phase transformations.
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3.2 Shear-mode softening and B1 lattice instability

General relationships for the elastic moduli of crystals with cubic
symmetry can be obtained from simple static 1lattice calculations.
Weidner and Simmons (1972) formulated equations for the elastic moduli
of a B1 lattice for a general interatomic central-force model with
nearest-neighbour and next-nearest-neighbour interactions, to obtain
the following relationships for the moduli Cq41, Cqo and Cyy, the bulk

modulus K and hydrostatic pressure P:

1 4 G(P/E) a(C11)
Bopr=rmiflr)« glrv2) - s s (3.1)
r rv2 4
1 Ly nGlrd2) a(Cyy)
Cio = P + — (g(rv/2) + om—— e —— (3.2)
or rv2 rH
1 G(rv2) a(Cyy)
D= == Laf/p) 4 ——) 3 ——— (3.3)
2r rvy2 r“
2 1 a(K)
K=—P+ — (f(r) + 2 g(r/2)) + (3.4)
3 3r rt
1 a(P)
P =— (F(r) + y2G(rv2)) + , (3.5)
re rh

where r is the anion-cation distance and a represents the Madelung-type
summations of the electrostatic contributions. The interatomic forces
between anions and cations are represented by the general force

relationships

fip) e ~(8f*ij/arij)(rij)
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and F(r) = f*ij(rij), (3.6)
and between anions and anions;
glnd@) = =(3" j5/8r;3) (rs ;)
and G(rv2) = £*55(ri;) (3.7)

for f*, the non-electrostatic force between atoms. Substitution of Eqgn.

3.9 into Eqn. 3.3 yields

alChu) - afP) 1 B 3G(rv2)
ré Cyy(P) = - F(r) + (roglrv2) - ——— ) (3.8)
re 2 V2

where the nearest-neighbour repulsive forces contribute negatively, and
the electrostatic attraction and next-nearest-neighbour repulsion
contribute positively to Cyy(P). For a simplified central-force model
in which F(r) and G(r) both have the same form ~A(r,/r’)~T, Eqns. 3.6

and 3.7 become

oF F(r)
flr) == —— =n ,
or r
v G(rv2)
and girv2) = n ———— (3.9)
rv2
For this simple model, the modulus Cyy(P) (Egqn. 3.8) becomes
a(Cyy) - al(P) G(rv2)
re Cyy(P) = - Fir) + (p=-3)——— (3.10)
re 2v/2
alCuy ).~ alP) n-3
= - A(rg/r) (1 - —). (3.11)
p2 o(n+3)/2
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For | all plausible values of n (3 < n < 12) (see Anderson and
Liebermann, 1970), the negative nearest-neighbour contribution to
Cyy(P) is off-set only slightly by the positive contribution of the
next-nearest-neighbour repulsion. Equation 3.11 1illustrates that for
n 2 3, the negative contribution from the nearest-neighbour repulsive
forces will increase in magnitude at a faster rate with increasing
pressure (decreasing r) than the electrostatic contribution. Thus, the
pressure derivative of the modulus Cyy in this simple model will
decrease Wwith increasing pressure and eventually become negative.
Anderson and Liebermann (1970) considered electrostatic forces and

nearest-neighbour interactions of the form A(r,/r) 1, and found

aCyuy BITE -
= (3.12)
aP |0 n - 1

where 09Cy)y/dP is small and positive for n < 5.776, becoming negative
for larger n. The magnitude of the term n is defined by the
pressure dependence of the bulk modulus, with 09K/oP=(n+7)/3. Demarest
(1972) fitted the known pressure dependence of the elastic moduli of a
number of alkali halides to a central-force model which included not
only electrostatic and nearest-neighbour forces, but also a next-
nearest-neighbour Lennard-Jones interaction. The next-nearest-neighbour
contribution to the pressure dependence of the modulus Cyy in this
model ranged from the negligibly small terms predicted in Eqn. 3.11 for
the simplified central-force model, to half the absolute magnitude of
the negative nearest-neighbour contribution. These central force models
indicate the likelihood of Cy) mode softening at sufficiently high
pressures for any B1 structure. Such reduction in the magnitude of Cyy
will tend to 1increase the thermodynamic competitiveness of any

structure related to B1 by Cyy-controlled shear deformation.
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The B2 phase to which most Bl-structured alkali halides transform

at sufficiently high pressures is a case in point. Demarest et al.

(1977) have shown that this transition <can be accomplished by

compression of the B1 lattice along the [111] axis. This mode of

compression is a simple combination of finite ey-type shears (see Fig.

3.1). Demarest et al.'s (1977) simple model for the energy of a

continuously deforming B1 lattice results in a relationship for the

Gibbs free energy of the deformed lattice as a function of strain. This

{ energy is calculated for a central-force model, with the energy of the

M lattice being given by

z2e2A,, 8 b
Uy =—— b J — (3.13)
| G 1=1 Pin

where z is the ionicity term, e is the charge on each atom, A, is the
Madelung-like sum for the B1 and B2 phases and the intermediate states
between these two phases, and rj 1s the iﬁteratomic distance. The
repulsive term is summed over the six nearest-neighbours in the B1
lattice and the extra two atoms which become the additional nearest-
neighbours in the B2 lattice. The height of the energy barrier between
the two states was found to be proportional to Cyy/K. Therefore it is
instructive to observe the behaviour of this ratio Y = Cyy/K for the
alkali halides as they approach the B1+B2 transition. The model of
Demarest et al. (1977) suggests a critical value for Y of 0.15-0.20

associated with the pressure induced phase transformation of the alkali

halides.

Of the B1 structured oxides, SrO and Ca0 are known to undergo the
B1+B2 transformation at high pressures. Values of Cyy, Cyy/K and

o(Cyy/K)/3P for the alkali halides and these simple oxides are




Figure 3.1 Transformation from the B1(NaCl) to the B2(CsCl) lattice by

compression along [111] (after Demarest et al., 1977).
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presented in Table 3.1. It can be seen from this table, that for
crystals with negative values of 0oCyy/oP, Demarest et al.'s criterion
holds reasonably well, but begins to fail for crystals which have
positive values of 9dCyy/9dP over the pressure range in which the elastic

moduli were measured.

Table 3.1 Shear-mode softening associated with the B1+B2 phase

transformation

Cyy K 3Cyy/dP 3K/BP Cyy/K d(Cyy/K)/3P  Prp.  Ref.

GPa GPa GPa™] GPa
RbI 2.79 110090m0 =049 Bl 0.25 =0.17 0.4 1,2
RbBr 3.84 §2ab0 1 0. 56 5.30 0.28 -0.15 0.4 1,2
RbCl B.T% 16.30 -0.61 5435 0.29 =0.13 0.5 1,2
K1 3ol 3 1215 3 5«10 0.31 -0.15 1.7 3,4
KBr 5.08 14.86 =033 5.38 0.34 -0+15 1.7 5,4
KC1 6.33 17 .89 -0. 41 4.78 0.35 ) 1.9 6,4
KF 12.81 30130 ~0.45 5.02 0.H1 -0.081 4 7,8
NaCl 12.80 252l 037 5.26 0.51 -0.091 30 9,10
NaF 28.22 48.20 0.21 5.18 ' 0.59 -0.059 27 11,12
SroO g 91 .21 =0 .21 5.18 0.61 -0.037 36 13,14
Cal 80.32 112550 0.20 4,83 0.71 -0.029 65 13,15
MgO 155.8 162.5 st 4,13 0.96 -0.018 >200 16,17

* B1+B2 transformation pressures at room temperature.

References:

1. Chang and Barsch, 1971;2. Pistorious, 1965a;3. Barsch and Shull,
1971;4. Pistorious, 1965b;5. Reddy and Ruoff, 1965;6. Demarest et al.,
1977;7. Koliwad et al., 1967;8. Yagi et al., 1978;9. Spetzler et al.,
1972;10. Bassett et al., 1968;11. Bartels and Schuele, 1965;12. Yagi et
al., 1983;13. Chang and Graham, 1977;14 Sato and Jeanloz, 1981;15.
Jeanloz et al., 1979;16. Jackson and Niesler, 1982;17. Vassilou and
Ahrens, 1981;18. present study and Sumino, 1979;19. Akimoto et al.,
1967.
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There exists another class of simple oxides, the transition metal
monoxides, which experience shear-mode softening prior to a phase
change. Each of these oxides undergoes a paramagnetic»antiferromagnetic
phase change with decreasing temperature, at room pressure. A slight
lattice distortion accompanies this phase change. In the case of CoO,
this distortion is tetragonal, but NiO, MnO and FeO all experience a
rhombohedral distortion equivalent to compression along the [111] axis.
Measurements of the elastic constants of MnO (Cracknell and Evans,
1970;Seino, 1982;Sumino et al., 1980) and Feq_-4O (Berger et al. 1983)
have been performed over a range of temperatures from ~300 K to the
respective Néel temperatures (118 K and 189 K) at which the
paramagnetic-+antiferromagnetic phase change occurs. Each of these
studies showed normal behaviour of the moduli Cq4q and (Cyq-Cqyp)/2. For
both MnO and Feq-40 however, the onset of shear-mode softening of the
modulus Cyy was observed about 100 K above the respective Néel

temperatures.

The high pressure polymorphism of the transition metal monoxides is
of considerable current interest in connection with element
partitioning among the ferromagnesian phases of the Earth's lower
mantle and the solubility of oxygen in the Earth's outer core (e.g.
Ringwood, 1977;McCammon et al., 1983). Of particular importance is the
evidence for a shock-induced phase transformation in wistite (Feg gy0)
near 70 GPa (Jeanloz and Ahrens, 1980). This phase transformation
appears to involve a density increase of 5-9% of the 70 GPa density, or
10-28% of the zero pressure density. However, the nature of this

high-pressure phase remains uncertain.

Navrotsky and Davies (1981) have predicted the transformation

pressure of FeO from thermochemical systematics. Their preferred
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transformation to the hexagonal NiAs(B8) phase is calculated to occur
for a pressure ~30 GPa, while the CsCl(B2) transformation favoured by
Jeanloz and Ahrens (1980) is predicted to occur for pressures ~300 GPa.
Jackson and Ringwood (1981) have discussed the possibilities of a B1-BS8
transition accompanied by spin-pairing. Static compression studies,
however, have revealed only an essentially rhombohedral distortion of
the B1 phase at pressures above 5-12 GPa (Zou et al. 1981; Heinz and
Jeanloz, 1983; Yagi et al., 1985). It 1is possible that this high-
pressure distortion has the same origin as that accompanying the

paramagnetic-antiferromagnetic transition observed at low temperatures.

In view of the current state of confusion concerning both the
elastic properties (e.g. Sumino et al., 1980;Berger et al., 1981:
Jeanloz and Hazen, 1983) and the high-pressure polymorphism of wlstite,
and the wide range of possible structural, electronic and magnetic
transitions, it seems that a systematic study of the high pressure
behaviour of the transition-metal monoxides might be fruitful. Accurate
equations of state derived from high pressure ultrasonic measurements
of the B1 phases will help in the interpretation of static and shock
compression data. Furthermore, any pressure-induced shear-mode
softening might provide insight into possible modes of transformation.
As part of this broader program, the three independent elastic moduli

of MnO have been measured to 3 GPa.



3.3 The elasticity of MnO

3.3.1 Specimen description

A large single crystal of MnO was kindly made available by
Professor T.J. Ahrens of the California Institute of Technology. This
crystal was opaque with a metallic-black 1lustre. Pairs of parallel
(£0.5°) (100) and (011) faces were prepared, leaving a crystal with the
dimensions 7.803+0.003 mm, 6.035+0.003 mm, and ~8 mm in the [100],
[011] and [011] directions respectively (see Figure 3.2). The density
of the crystal was measured to be 5.346+0.004 g cm™3. This is slightly
less than the X-ray density of 5.365 g cm™3 (Sumino et al., 1980). This
low measured density was due to the presence of -~4% (volume) Mn30y
which was observed with both reflected light microscopy and electron-
microprobe analysis as thin (~5 ym x ~30 um) bone shaped surface

features lying in axial orientations.
3.3.2 Data reduction

The elastic moduli were calculated using Cook's (1957) algorithm to
determine the isothermal length and density changes for a crystal of
cubic symmetry (see Chapter 2) due to increasing hydrostatic pressure.

The coefficient of linear thermal expansion used in this calculation

was

a = 11.5x10"6 g1 (3.14)

from Suzuki et al. (1979), and the specific heat was taken as

cp = 617 J kg~1 k1 (3.15)



F—7.803mm —

CII

C'= (C11-C12)/2

= (C1 1-|-C12+:2C44)/2

MnO

Figure 3.2 Propagation and polarization directions for the elastic

moduli of MnO.
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