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ABSTRACT 

The elastic moduli of large single crystals of olivine, 

orthopyroxene and garnet of approximate upper mantle compositions have 

been measured over a 3 GPa range of hydrostatic pressure at room 

temperature . The greater pressure capability, and the use of improved 

ultrasonic interferometric techniques including the incorporation of 

explicit corrections for transducer-bond phase shifts, have enabled the 

measurement of more reliable first pressure derivatives (±1%) of the 

elastic moduli than has previously been possible . In addition, second 

pressure derivatives (±10%) of the elastic moduli of these relatively 

incompressible minerals have been resolved for the first time. 

The present measurements confirm the magnitudes of the first 

pressure derivatives of the elastic moduli of olivine, garnet and 

orthopyroxene of similar compositions determined in previous studies 

over much reduced (~1 GPa) pressure ranges. In particular, the first 

pressure derivatives of the elastic moduli of orthopyroxene were found 

to be very large with respect to those of olivine and garnet - in 

accord with the findings of Frisillo and Barsch (1972). The second 

pressure derivatives of the elastic moduli determined in this study 

however , illustrate the importance of accurate high pressure 

measurements in the extrapolation of single crystal elasticities to 

mantle conditions. Curvature in the pressure dependence of the bulk and 

shear moduli of the olivine and garnet crystals reduces the pressure 

derivatives from those observed at zero pressure by -20% over the 3 GPa 

pressure range . The pressure dependences of the bulk and shear moduli 

of orthopyroxene, however, decrease by 38% and 53% respectively over 

this pressure range. 



The anomalous pressure dependence of the elastic moduli of 

orthopyroxene is due to the kinked and puckered chains of Si04 

tetrahedra in this structure - in contrast to the isolated tetrahedra 

in both the olivine and garnet structures. The ability of these chains 

to kink and pucker accommodates the large distortions of the M2 

octahedra in orthopyroxene. The large first and second pressure 

derivatives observed for orthopyroxene are a direct result of the 

distorted octahedra becoming more regular with increasing pressure and 

consequently straining the chains of tetrahedra. The large second 

pressure derivatives are a measure of the small pressure range required 

for an equilibrium to be reached between forces associated with 

deformation of the chains of tetrahedra and with distortion of the M2 

octahedra. 

The determination of the first and second pressure derivatives of 

the elastic moduli of olivine, garnet and especially orthopyroxene has 

facilitated the extrapolation of the measured elastic properties to 

greater pressures. Velocity profiles for specific upper mantle 

assemblages have been calculated via aggregate theory using these new 

elasticity data, previously determined temperature derivatives of the 

elastic moduli, and an average upper mantle geotherm . The compressional 

velocity profiles calculated with oceanic and shield geotherms bound 

the average upper mantle compressional velocity of the PREM model of 

Dziewonski and Anderson ( 1981). The shear velocities calculated with 

these two geotherms however, are up to 5% higher than the shear 

velocities of the PREM model . The incorporation of the large negat ive 

second pressure derivatives of the bulk modulus of orthopyroxene 

reduces the compressional velocity calculated for 200 km depth assuming 

a linear pressure dependence of the bulk modulus , by 2% . 



The measurement of the elastic moduli of the wustite analogue MnO 

over the 3 GPa pressure range has facilitated the incorporation of the 

crystal-field stabilization energy in existing systematics by providing 

a realistic value for the pressure derivative of the bulk modulus of 

MnO , where previously 3K/3P was estimated on the basis of the observed 

elasticity of other minerals . This has enabled the calculation of the 

bulk moduli for the 3d transition-metal monoxides, providing a more 

reliable estimate of the bulk modulus for stoichiometric FeO . A 

negative pressure derivative of the shear modulus C44 has been observed 

(at pressures ~1 GPa) in t his study . Such reduction in the magnitude of 

the modulus C44 will tend to increase the thermodynamic competitiveness 

of any structure related to B1 by C44-controlled shear deformation. The 

softening of this modulus has previously been associated with the 

paramagnetic-+antiferromagnetic transition in MnO at low temperature, 

and the B1-+B2 transition in the alkali halides and the alkaline-earth 

monoxides at high pressures . These phases are therefore two of the 

possible high pressure phases of MnO which are related to the original 

phase by C44-controlled shear . 

The shear modulus C55 of fayalite has been measured to pressures in 

excess of the equilibrium olivine-+spinel transition pressure (-2 GPa) . 

This modulus is the one which might have been expected to soften 

significantly prior to a martensitic transformation . No such softening 

of the modulus C55 was observed over this pressure range. Furthermore, 

the pressure dependences of the modulus C55 for fay al i te and C55 for 

the forsteritic olivine discussed earlier are comparable , despite the 

much closer proximity of fayalite to the high pressure boundary of its 

stability field . Thus, there is no evidence for pressure-induced 

shear-mode softening in fayalite prior to a martensitic olivine-+spinel 

transition . 
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CHAPTER 1 

INTRODUCTION 

Information concerning the composition of the Earth's mantle is 

supplied indirectly through sampling of the mantle to depths of about 

200 km by basaltic magmas and kimberlite pipes . The xenoliths from both 

sources range in composition from eclogite to peridotite . The observed 

compositions however , are predominantly peridotitic . Peridotitic 

nodules from depths greater than 70 km are generally variably depleted 

garnet lherzolites . Magmas from shallower depths carry xenoliths which 

are also dominantly peridotitic but these xenoliths exhibit a spinel 

lherzolite mineralogy . 

The realization that the material represented by the peridotitic 

xenoliths is complementary to and not parental to the basaltic magmas 

led to the development of compositional models for the parent mantle 

(Ringwood , 1962;Green and Ringwood, 1963;Clark and Ringwood, 

1964 ; Ringwood , 1966) . These models were given the non-specific name 
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pyrolite , indicating a pyroxene-olivine mineralogy capable of yielding 

basaltic magmas on partial melting with a peridotite residue (Ringwood , 

1962) . This pyrolite composition has been refined by extensive 

petrological and geochemical modelling (Green and Ringwood, 1967;Green, 

1971 ; Ringwood , 1975 ; Green et al ., 1979) , and has been shown to 

crystallize as a mixture of olivine , Al-poor pyroxene and pyrope - rich 

garnet at pressures corresponding to the depth interval -70 to -200 km . 

Below - 200 km , progressive transformation of the pyroxenes to garnets 

with partial octahedral co-ordination of Si results in the formation of 

complex garnet solid solutions . 

Further phase changes occur in this mineralogy with incr easi ng 

depth . A major phase change occurs a t about 400 km where oli vine 

transforms to the B-phase ( Ringwood and Maj or, 1970; Akimoto e t al . , 

1976) ; at greater depths , 500- 550 km, t he Ca si l icate component of 

garnet transforms to the perovskite phas e (R ingwood a nd Major, 1971 ; Liu 

and Ringwood , 1975) , while B-phase comple t es the tra ns f ormat i on to 

spinel (Ito et al . , 1974 ) . At 650 km thi s spinel phase 

disproportionates into orthorhombi c perovsk i te , MgSio3 , plus rocksalt 

structured MgO (Liu , 1975) , and t he r emai ning pyrope - rich garnet 

transforms first to an ilmenite (Ringwood and Maj or, 1968 ; Ito et al ., 

1972) and then to a perovskite phase (Liu, 197 5) . 

The most important source of informa t ion on the physical properties 

of the mantle is provided by seismology . The phas e transformations 

observed in t he model pyro lite mant le occur at depths which are 

consistent with the observed discon t inu i ti es i n the velocity profiles 

of the mantle . The r ange of possible ol iv i ne- pyroxene - garnet 

mineralogies for t he upper ma ntle can be narr owed by comparing the 

measured wave-velocities for na tural sa mples of proposed mi neralogies 
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at mantle conditions with the compressional- and shear-wave seismic 

profiles . However , it is technically difficult to measure velocities 

through specimens of mantle material in the laboratory at conditions 

approaching those of the mantle simultaneous high pressures and 

temperatures being limited to the range < 1 GPa and < 700 K (eg 

Christensen , 1979) . Higher pressures and temperatures are separately 

attainable and the purpose of the present high pressure experiments is 

to reduce the length~ extrapolation from laboratory to upper mantle 

pressures . In particular the combination of improved ultrasonic 

techniques and greater pressure capability provide for more reliable 

characterization of the pressure dependence of elastic wave velocities 

than has previously been possible . 

The present study is concerned primarily with the mantle from -70 

to 200 km depth . The natural samples of rocks from these depths 

together with the experimentally observed mineralogy of the pyrol i te 

compositional model indicate a mineralogy for this region of the mantle 

dominated by olivine, with lesser volumes of orthopyroxene and 

clinopyroxene , and a small volume of pyrope-rich garnet . In view of 

this proposed garnet-pyrolite/garnet-lherzolite mineralogy , the elastic 

modul i of single crystals of olivine, orthopyroxene and pyrope-rich 

garnet with well characterized micro-structure, will be measured at 

high pressure and room temperature . 

There have been previous studies of the elastic properties of 

single crystals of olivine, orthopyroxene and garnet of similar 

compositions . These ear 1 ier measurements however, were conducted over 

smaller (~1 GPa) pressure ranges and linear pressure dependenc es of the 

moduli were generally observed. 
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The pressure dep e ndence of the e lastic moduli of the present 

crystal of pyrope-rich garnet has been previously determined by Bonczar 

et al . (1977) to 1 GPa . Their measured moduli appear somewhat anomalous 

when compared to the elastic moduli computed from the garnet solid 

solution systematics of Babuska et al. (1978) and Leitner et al. (1980) 

for a crystal of this composition . Resolution of this discrepancy is a 

goal of this study . 

The elastic moduli of orthopyroxene have been determined to 1 GPa 

by Frisillo and Barsch (1972) . The value of 8K/8P (9 . 6) deriving from 

their study is anomalously high relative to 8K/8P for most silicate 

minerals including olivine (8K/8P=5.13 , Kumazawa and Anderson, 1969) 

and garnet (8K/8P=4 . 74, Bonczar et al . , 1977;8K/8P=5.43, Soga, 1967) 

The determination of the 

high-pressure elastic moduli of orthopyroxene is therefore a major 

priority in this study . 

The present 3 GP a pressure capability together with the accuracy of 

the measured travel-times allows the determination of reliable first 

pressure derivatives (±1%) and the measurement of second pressure 

derivatives ( ±10%) of the elastic moduli for these minerals for the 

first time . The elasticity data for these three mantle minerals may be 

combined with the aid of aggregate theory to produce upper and lower 

bounds to the bulk and shear moduli of various model mineralog i es for 

an isotropic, homogeneous mantle (Voigt , 1928; Reuss , 1929; Hash in and 

Shtrikman, 1962a , 1962b;Watt, 1979) . These model mantle elasticities 

require only a modest extrapolation from the observed 3 GPa pressure 

range to -6.5 GPa (200 km) . Velocity profiles for specific olivine , 

garnet and orthopyroxene mineralogies may then be calculated from the 

bulk and shear moduli of composites of these minerals together with the 
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previously determined temperature derivatives of the elastic moduli and 

an average upper mantle geotherm . 

The single- crystal elastic moduli of a range of silicates have 

previously been discussed , particularly by Weidner and his colleagues 

(Vaughan and Weidner , 1978 ; Au and Weidner , 1985) in terms of the 

polyhedral lattice models . The relative magnitudes of the elastic 

moduli and their pressure derivatives measured in this study for 

olivine, garnet and orthopyroxene may be rationalized in this manner. 

In particular , it may be possible to provide a qualitative explanation 

for the anomalous pressur e dependence of the orthopyroxene moduli . 

The physical properties of pha~es representative of the mantle at 

greater depths may also be investigated with the present high-pressure 

ultrasonic interferometer . The pronounced discontinuity in seismic wave 

velocities near 400 km depth is attributable to the onset of the 

olivine(a)~spinel(Y) transformation , which, for compositions near 

(Mgo _9Feo . 1 )2Si04 is actually a complex sequence of reactions which 

occur progressively with increasing pressure: a~(a+Y)~(a+B)~s~(B+Y)~Y 

(Ringwood and Major, 1970;Akimoto et al., 1976). The geophysical 

importance of the kinetics of this transformation with its possible 

contribution to the driving force for plate tectonics (Schubert and 

Turcotte , 1971 ;Toksoz et al. , 1971; Ringwood, 1975) and to deep-focus 

earthquakes (Sung and Burns, 1976) has focussed attention on the 

transformation mechanism for which two alternatives have been 

suggested . The first is a nucleation and growth mechanism (Sung and 

Burns, 1976) . The second is a martensitic diffusionless mechanism which 

achieves the conversion of the hexagaonal-close-packed anion array of 

the olivine lattice into the face-centred-cubic geometry of spinel by 

the actions of partial dislocations associated with the (100)[001] slip 
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system (Poirier , 1981a) . Such a transformation would probably be 

accompanied by premonitory shear mode softening of the elastic 

stiffness moduli c55 and C66 governing shear parallel to the ( 100) 

plane (Poirier , 1981a) . The availability of a single crystal of 

fayalite together with the (room temperature) 3 GPa pressure capability 

of t he ultrasonic interferometer affords an opportunity to study the 

pressure sensitivity of the key shear moduli of an olivine to pressures 

in excess of its metastable olivineispinel transition pressure (-2 GPa 

for Fe2Si04 , Ringwood, 1975) . 

Finally , the high pressure polymorphism of the transit ion- metal 

oxides is of considerable current interest in connection with element 

patitioning among the ferromagnesian phases of the Earth's lower mantle 

and the solubility of oxygen in the outer core (Ringwood , 1977 ; 

McCammon et al ., 1983). However, there is confusion concerning both the 

elastic properties (eg Jeanloz and Hazen , 1983) and the high pressure 

polymorphism of wustite , and given the availability a single crystal of 

the FeO analogue MnO , the elastic moduli of MnO will be measured at 

room temperature to 3 GPa . 
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CHAPTER 2 

EXPERIMENTAL TECHNIQUES 

2 .1 Introduction 

The most direct method of determining the elastic moduli of a 

single-crystal is to measure the velocities of elastic waves travelling 

through the crystal. For each direction in a single-crystal, three 

independent waves with mutually orthogonal displacements may be 

propagated. In general , no one of these displacements co inc ides with 

either the normal to the wave front or a direction parallel to the wave 

front . There are however, special directions in any crystal (depending 

upon its symmetry) in which one of the waves is a compressional mode 

with the displacement vector coinciding with the wave front normal, and 

the other two waves are transverse modes with displacement vectors 

perpendicular to each other and in the plane of the wave front. 

The equation of motion for an elastic medium in the absence of body 
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forces is 
.. 

Oij,j = p Ui i = 1,2,3 ( 2 • 1 ) 

where p is the density, Oij is the stress tensor, the comma notation 

implies differentiation and the repeated suffix implies summation. We 

seek a plane wave solution for the particle motion, of the form 

Ui = Uoi exp i(wt - k.r) £ = 1,2,3. (2.2) 

Introducing the elastic stiffness tensor Cijk£, and the stress-strain 

relationship 

a . . lJ i 'j = 1 , 2, 3 ( 2. 3) 

where Ek£= (Ui,k + Uk,i)/2, the equation of motion (Eqn. 2.1) becomes 

.. 
cijkt Ut,kj = P ui i = 1,2,3. ( 2. 4) 

This equation can be solved for any direction of propagation through a 

crystal of any symmetry (see Truell et al., 1969). For the particle 

displacement vector U and the wave vector k = (w/v) n, the term Ut,kj 

(in Eqn . 2 . 4) is 

Ut,kj = - nk nj Uoi (w/v) 2 exp i(wt - k . r ) (2 . 5) 

and the equation of motion (Eqn . 2 . 4) can be rewritten as 

i = 1,2,3, (2 . 6) 
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For the special case of cubic symmetry, where the elastic constant 

matrix is 

(2.7) 

the equation of motion (Eqn . 2 .6) reduces to 

(C11-C44)Uo1n1n1 + (C12+C44)Uo2n1n2 + (C12+C44)Uo3n1n3 = (pv2-c44)Uo1 

(C12+C44)Uo1n2n1 + (C11-C44)Uo2n2n2 + (C12+C44)Uo3n2n3 = (pv2-c44)Uo2 

(C12+C44)Uo1n3n1 + (C12+C44)Uo2n3n2 + (C11-C44)Uo3n3n3 = (pv2-c44)Uo3 

(2.8) 

with the direction of propagation being described by the direction 

cosines ni , and 

(2.9) 

There is a solution to the equation of motion (Eqn . 2 .6 in general , 

and Eqn . 2 . 8 in particular) if and only if the secular determinant is 

zero : 

(2.10) 

For a wave propagating along [ 100] in a cubic crystal, with n1=1, and 

n2=n3=0 , the roots of Eqn. 2 . 10 are 

PV 2[100] = C 11 

PV2[100] = C44 

PV 2[100] = C44. (2 . 11) 
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A pure compressional wave is propagated when the wave front normal 

coincides with the displacement vector U; or 

Uxn = 0 , (2 . 12a) 

and a pure t r ansverse wave is propagated when the wave front normal is 

perpendicular to the displacement vector U; or 

U. n = 0. 

Hence 

pv2[100] = C11 

is the solution for a compressional wave, and 

with any 

polarization 

(2 . 12b) 

(2.13) 

(2 . 14) 

is the solution for the transverse waves propagating in the [ 100] 

direction . 

For the propagation direction [110] in a crystal of cubic symmetry, 

with n1=n2=1//2 and n3=0, the roots of Eqn . 2 . 10 are 

PV2[110] = ( C 11 + C12 + 2C44)/2 

PV2 [ 11 0 J = C44 polarization [001] 

and PV 2[110] = ( C 11 - C12)/2 polarization [110]. (2 . 15) 

Figure 2 . 1 illustrates the propagation and polarization directions for 

the pure shear and compressional waves described by Eqns . 2 . 13-2. 15, 



C" 

/ 

(011) 

C' 

C" 

(011) 

C' = (C11-C12)/2 

C" = (C 11+C12+ 2C44)/2 

Figure 2 . 1 The principal propagation and polarization directions for 

the pure shear and pure compressional waves which propagate through a 

crystal of cubic symmetry . 
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which can be propagated through a crystal of cubic symmetry . 

The equation of motion can also be solved for crystals of 

orthorhombic symmetry , where the elastic constant matrix is : 

(2 . 16) 

The roots of Eqn . 2 . 1 0 for this low crystal symmetry are: 

pV2 [100] = C 11 

2 pv [100] = C55 polarization [ 001] 

2 pv [100] = C55 polarization [010] 

PV2[010] = C22 

2 pv [010] = C44 polarization [001] 

pV2 [010] = c66 polarization [100] 

PV 2[001] = C33 

pV2 [001] = C44 polarization [010] 

pV2 [001] = C55 polarization [100] 

pV 2[110]c = (C44 + C55)/2 polarization [001] 

(2.17) 

pV2[110]c = K12(P) polarization -[110Jc 

polarization -[110Jc 



PV 2[011]c = (C55 + C55)/ 2 

PV2[011]c = K23(P) 

polarization [100] 

polarization -[011Jc 

polarization -[011Jc 

polarization [010Jc 

polarization -[101Jc 

polarization -[101Jc 

1 2 

(2.17) 

where the [101Jc notation describes a direction of propagation with 

respect to a hypothetical cubic lattice isoaxial with the orthorhombic 

lattice . (Thus [101Jc is a direction at 45° to [100] and [001] and 90° 

to [010]) . The compressional and shear modes Kij(P) and Kij(S) are not 

pure modes but are quasi-compressional and quasi-shear modes of 

approximately the polarizations indicated. Figure 2 .2 illustrates the 

propagation and polarization directions for these solutions to the 

equation of motion for a crystal of orthorhombic symmetry. (Note the 

symmetry relations for the shear modes Cii, i=4,5,6.) 

McSkimin and his colleagues in the 1950's pioneered the ultrasonic 

pulse interferometric methods of measuring accurate travel-times of 

elastic waves propagating through single crystals. Today these 



( 100) 

( 1 .1 O )c 

K 1 = (C44 + C55)/2 

K2 = (C55 + C66)/2 

K3 = (C44 + C66)/2 

Figure 2 . 2 The principal propagation and polarization directions for 

the pure shear and pure compressional waves, together with the 

quasi-shear and quasi-compressional waves which propagate through a 

crystal of orthorhombic symmetry . 
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techniques are capable , in principle, of an absolute accuracy of the 

order of 10-5 in the determination of travel- times . These ultrasonic 

techniques should therefore provide the well constrained values of the 

wave velocities and their pressure and temperature derivatives which 

are necessary for extrapolation to the conditions of the Earth ' s 

mantle . However , an examinat i on of the published data for ultrasonic 

experiments on a range of mantle minerals at room temperature , to 

pressures less than 1 GP a ( and often below O. 5 GP a) reveals a wide 

variation among the moduli (-1%) and pressure derivatives (-10%) 

observed fo r each of these minerals . 

These uncertainties in the pressure derivatives are sufficiently 

large as to complicate comparisons of seismic and extrapolated 

laboratory velocities for the Earth ' s mantle , and have thus provided 

strong motivation for both the reassessment of potential sources of 

error in the ultrasonic pulse interferometric techniques and also the 

extension of the pressure capability (Davies and O' Connell , 1977; 

Jackson et al ., 1981 ;Jackson and Niesler, 1982). 

2 . 2 Transducer - bond phase shift 

In the conventional bonded-transducer configuration (Figure 2. 3) 

there arises a phase shift due to the interference between the direct 

reflection from the crystal-bond interface and other reflected waves 

which return to the crystal after multiple reverberations within the 

transducer and bond . Previously, the procedure has been to use 

theoretical models of this reflection phase shift to separate the 

propagation and phase shift components of the measured travel-times . 

The major conclusion from such analyses is that the transducer-bond 



mechanical 
load 

piezoelectric 
transducer 

bond 
sample under test 

exp i (wt+kx) 

R exp i {w( t+ , /w )-kx ) 

Transducer - bond phase shif ts 

in ultrasonics 

Figur e 2 . 3 The creation of phase shift effects due to multiple 

r everberations of the applied signal within the transducer and bond . 
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phase shifts may be negligibly small for sufficiently thin bonds at 

frequencies in the neighbourhood of the bonded transducer resonant 

frequency. 

This assumption is the basis for most ultrasonic techniques in use 

and has contributed to the popularity of the echo overlap and pulse 

superposition techniques. The echo overlap method involves fixing the 

carrier frequency at the nominal bonded resonant frequency and 

superimposing selected echoes from the echo train of the applied pulse 

on a variably triggered oscilloscope (Papadakis, 1967). The pulse 

superposition method also involves pulsed operation of the transducer 

at the nominal resonance frequency, the pulse repetition frequency 

being varied in order to create constructive (or destructive) 

interference between the resultant echo trains (McSkimin, 1950). 

The bonded transducer resonant frequency ( the frequency of zero 

phase shift) for the transducers used in the present experiments has 

been observed to vary widely ( ±10%) from the nominal 60 MHz ( third 

harmonic of 20 MHz fundamental) frequency. This factor, together with 

the pressure dependence of the appropriate elastic modulus and hence of 

the resonant frequency of the transducers (approximately + 1 MHz per 

GP a) makes it difficult to operate consistently under conditions of 

zero phase shift. 

2 . 3 Phase comparison technique 

Thus the apparent round-trip travel-time measured by ultrasonic 

interferometry will in general be the sum of a propagation contribution 

2L/v and a contribution <t>/2nf associated with the reflection phase 
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shift ( see Figure 2 . 3) . These terms can be separated by varying the 

relative contributions of the propagation and reflection phase shifts. 

This was accomplished by performing comparative one- and two-transducer 

experiments (Jackson et al . 1981) which enable direct measurement of 

the transducer-bond phase shift and thus permit explicit correction of 

the measured travel-times . 

2 . 3 . 1 Transducers 

Coaxially plated quartz transducers of 20 MHz (±1%) nominal 

resonance frequency were used in the present experiments . The X-cut 

compressional mode transducers and the AC-cut shear mode transducers 

were 6 . 35 mm in diameter . These transducers were employed in preference 

to the 20 MHz LiNb03 transducers used by Jackson et al . ( 1981) as the 

former produce pure shear and compressional modes of propagation . The 

transducers used in the one- and two-transducer comparative experiments 

were always chosen from the same batch in order to minimize any 

possible variation in the transducer resonance frequencies. 

It was occassionally necessary to reshape the transducers in order 

to match the irregular faces of the crystals used. This entailed 

shaving off some of the coaxial plating and reducing the size of the 

inactive area of the transducer, but always leaving the 3 . 2 mm diameter 

active area of the inner electrode untouched . This process was shown 

experimentally to have no effect on the quality of the signal produced , 

and no effect on the measured travel-times. 

2 . 3 . 2 Bonds 

The transducers were bonded to the crystals with a 9:1 molar 
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mixture of glycerine and phthalic anhydride. This mix was sufficiently 

mobile at 3 GPa to accommodate the deviatoric stresses occurring at the 

crystal-bond-transducer interfaces which could otherwise have cracked 

either the crystals or the transducers. However, at low pressures (<1 

GPa) the bond was often too fluid to allow efficient transmission of 

shear waves. Most room pressure measurements, for both compressional 

and shear waves were conducted using a stiffer bond of 1 :1 glycerine 

and phthalic anhydride. The bonding of the transducer with this viscous 

mixture was accomplished by repeated heating and clamping of the 

transducer, bond and crystal in order to thin the bond sufficiently, 

and to ensure uniform thickness of the bond. The mobile 9: 1 mixture 

could be adequately thinned by repeated clamping at room temperature . 

After some initial experimentation it was demonstrated that bonds of 

reproducible quality could be prepared via these methods. 

2 .3.3 Measurement of travel-times 

The phase comparison technique used in the present experiments is 

based on the procedure of Jackson et al. (1981) and Jackson and Niesler 

(1982) (see Figure 2.4). Application of a pair of appropriately spaced 

phase coherent pulses to the transducer results in interference between 

the respective echo trains. In particular, The first echo from the 

second pulse overlaps with the second echo from the first pulse. For an 

applied pulse A(w)sinwt, the resultant overlapped echo is 

R(w,t) = A(w)sinwt + r(w)A(w)sin(wt + 2wL/v + ~(w)) (2 .1 8) 

where A(w) is the transducer response function and r(w) is the 

reflection coefficient at the transducer-bond-crystal interface (see 

Figure 2.3). For any given w, R(w ,t ) is a sinusoid of the form 



Figure 2 . 4 Block diagram of the ultrasonic interferometer . 
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R(w,t) = R(w)sin(wt + o(w)) 

with R(w) = A(w)/1 + r2(w) + 2r(w)cos(2wL/v + ¢(w)) 
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(2.19) 

(2.20) 

The frequencies of the observed maxima and minima of R(w) are those for 

which dR/dw = O. Thus, the frequencies of these extrema are, for the 

maxima (integral values of p) 

f = (p - ¢/2n + sin-1s + tan-1T)/(2L/v) (2.21) 

and for the minima (half-integral values of p) 

f = (p - ¢/2n - sin-1s + tan-1T)/(2L/v) (2.22) 

r(dr/dw) + ((1+r2)/A)(dA/dw) 
where s = (2.23) 

/(dr/dw + (2r/A)(dA/dw))2 + (r(2L/v + d¢/dw))2 

and T = (dr/dw + (2r/A)dA/dw)/(r(2L/v + d¢/dw)), (2.24) 

( Jackson et al. , 19 81 ) . Therefore the observed frequencies of the 

maxima and minima can be related to the propagation travel-time (2L/v) 

through the crystal: 

p/f = 2L/v + ¢/2nf - (tan-1T ± sin-1s)/f, (2.25) 

the+ sign applying to the maxima . 

The frequencies of the minima of the interference pattern require 

no correction for the frequency dependence of the transducer response 
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function A(w) and the reflection coefficient r(w) as (tan-1T - sin-1s) 

= O to at least four significant figures , and thus Eqn. 2 . 25 can be 

expressed as 

p/f = 2L/v + ~/2nf (2.26) 

for half-integral values of p . Furthermore , the frequencies of the 

minima are less subject to perturbation by noise than those of the 

maxima, as the minima are sharper by a factor (1+r)/(1-r) (Jackson et 

al ., 1981) . This ter m becomes very large as t he reflection coefficient 

r approaches 1 . Consequently , we have measured only the frequencies of 

the minima of the interference pattern , in an effort to avoid 

introducing unwanted errors into the measured travel-times . 

The overlapped echo R(w,t) (Eqn . 2 . 19) is gated to remove the 

transient effects at each end of the pulse due to the finite time 

needed to build up a steady state phase contribution from the 

reverberations within the bond and transducer . The carrier frequency is 

then tuned through a frequency range of 10 MHz centred on the 

approximate frequency of zero phase shift at either the fundamental or 

the third harmonic of the transducer resonance frequency . The analogue 

output (see Figure . 2 . 4) illustrates the resulting maxima and minima of 

the interference pattern modulated by the response envelope of the 

transducer . The flatness of this response envelope is a sensitive 

indicator of the bond quality. For the high quality bonds achieved at 

pressure , the envelope is essentially frequency independent for ±4 MHz 

about the bonded transducer resonant frequency. 

The minima of the interference pattern were located automatically 

and the frequencies were recorded digitally . A 5 MHz range about the 
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zero phase shift frequency includes at least ten minima for travel­

times > 1 µsec ( see Eqn . 2 . 26) . The frequency measurements were then 

repeated with a second passive transducer bonded to the other end of 

the crystal . This second transducer was earthed in order to produce an 

electrical termination equivalent to that of the first transducer . 

Most of the experiments were conducted within the third harmonic 

response envelope (centred near 60 MHz) of the 20 MHz transducers . The 

phase shift contribution ¢/2nf at this frequency is one third of that 

which would be incurred near the fundamental resonance frequency . 

Hence , the phase shift correction term is smaller for travel-times 

measured at the third harmonic, and any associated errors are also 

smaller . 

The assumption that the total transducer-bond phase shift 

associated with the two-transducer configuration is twice that for the 

one-transducer configuration can now be used to calculate the desired 

propagation travel-time 

(2.27) 

and the transducer-bond phase shift 

¢(f)/2n = fx(t2(f) - t1 (f)) (2.28) 

where t1 (f) and t2(f) are the apparent travel-times at frequency f for 

the one- and two-transducer configurations. Figure 2. 5 illustrates a 

typical set of travel-times calculated across the frequency range, and 

the associated phase shift calculated from the apparent travel-times. 

The frequency independence of the corrected travel-time t 0 (f) is an 
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indicator of the success of this method of analysis , and an 

illustration of the reproducibility of the bonds . The travel- times used 

in the calculation of the elastic moduli are the travel-times measured 

at the zero-phase shift frequency . The quoted error in this travel-time 

is calculated from the scatter of the corrected travel-times measured 

across the frequency range about a straight line fit . Figure 2 . 5 also 

illustrates the errors introduced into the measured travel- times by 

inappropriate assumptions concerning the frequency of the zero phase 

shift . The need for such assumptions is eliminated by use of the 

present empir i cal correction technique. 

Although model- independence is the very essence of this empirical 

phase - shift correction procedure , theoretical analysis of the 

transducer performance provides useful insight into the effects of 

possible transducer and bond var iability . The transmission-line 

approach of Berlincourt (1964) and Sittig (1967) has been used by 

Niesler (1985) to calculate the effect of a 0.2-0 . 5 µm thick gold layer 

on a disc of quartz with a free resonance frequency of 20 MHz . A 0 . 2 µm 

thick layer of gold decreases the resonance frequency by approximately 

1 . 25 MHz . The further increase in thickness of the plating from 0 . 2 to 

0 . 5 µm however , has little effect on the resonance frequency . The bonds 

between the crystal and transducer in the present study are 0 . 2-0.5 µm 

thick . Bonds of this thickness were calculated (Niesler , 1985) to have 

no significant effect on the zero phase-shift frequency of the 

transducers . However, these bonds were calculated to effect the 

phase-shift components of the observed travel-times in the opposite 

sense to that calculated for the addition of a layer of gold . 

Although we have attempted to avoid the mismatching of the 

transducer resonance frequencies within pairs of transducers used in 
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the one- and two-transducer comparative experiments , the measured free 

resonance frequencies of the transducers have been observed to range 

from 20 . 5-22 . 0 MHz (or 61.8-66.1 MHz) . A mismatch in the zero phase 

shift frequencies of a pair of transducers displaces the corrected 

travel-times by a constant amount (either positive or negative) 

throughout the pressure range. This displacement is of the order of 

1 nsec per MHz mismatch of the fundamental frequencies. This would 

result in a systematic error of order O .1 % in the measured elastic 

modulus, but the first and second pressure derivatives of the modulus 

would be unaffected . A further irregularity observed in the plots of 

travel-times versus frequency is the positive frequency dependence of 

the travel-times - attributable to be dispersion effects associated 

with the non-planar nature of the propagating wave (Niesler, pers. 

comm., 1984) . 

The frequencies of the interference minima for each mode of 

propagation were measured at room temperature. The deviations (-1 K) 

from this temperature (295 K) were monitored with a calibrated 

thermistor in intimate contact with the pressure vessel . 

2 . 4 Crystal preparation 

The single crystals used in these experiments were oriented to 

within 0.5° using X-ray Laue back-reflection techniques. Pairs of 

parallel faces of the required orientation were then cut and ground, 

and polished with 8 µm and 3 µm diamond paste, and 1 µm alumina powder . 

The faces were checked with optical flats and found to be flat to 

within A/2 of sodium light . 
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The crystal densities were measured within an uncertainty ±0.1% by 

immersion in ethanol at 295 K. The compositions of the crystals were 

determined by electron-microprobe analysis , and the microstructure of 

each crystal was investigated via both optical and electron microscopy . 

2.5 Pressure generation and measurement 

Hydrostatic pressures up to 3 GPa were routinely generated at room 

temperature in a pis t on-cylinder apparatus ( see Figure 2 . 6) following 

the method of Boehler et al . ( 1977) . The bore of the pressure vessel 

was 12 . 7 mm in diameter and was sealed with Bridgman unsupported area 

seals . The liquid pressure medium used was a 1 : 1 (by volume) mixture of 

pentane and isopentane . 

A coil of manganin wire of nominally 40 Q resistance wound around 

the upper (immobile) seal was used as the pressure sensor (see Figure 

2 . 6) . The resistance of this wire increases at a rate of -1 Q per GPa. 

The pressure dependence of the gauge resistance was calculated from the 

known room- pressure resistance , and the resistance observed at the 

melting pressure of mercury at room temperature (Lloyd et al., 1969) 

given by 

P = 3 . 8227((T/234.29)1 . 1772 - 1), (2.29) 

and at the centre of the 'region of indifference' for the Bi r~rr 

transition (Zeto and Vanfleet, 1971) from the equation 

P = 2 . 550 - 0.00482(T - 298.16) (2.30) 

(Peerdeman et al., 1980) . 
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These three points can be used to define a quadratic 

(2 . 31) 

describing the resistance of the manganin gauge at 295 K. The 

parameters of t his quadratic were calculated to be 

R0 = 42 . 376 n 

a 1 = ( 2 . 6 5 4 ±0 . 0 1 1 ) x 1 O - 2 GP a -1 

a2 =-(5 . 76±0 . 26)x 1o-4 GPa- 2 

for the gauge used 

in the fayalite study 

and 

and R0 = 42 . 796 ± 0 . 001 n 

R0 = 43 . 369±0 . 001 n 

a1 = (2 . 744±0 . 015)x1o - 2 GPa-1 

a2 = -( 9 . 1 8 ±0 . 8 0) x 1 o-4 GP a -2 

for the gauge used 

in the MnO study 

a1 = (2 . 696±0 . 020)x1o-2 GPa-1 

a2 =-(7 . 11±0.78)x1o-4 GPa- 2 (2.32) 

for the gauge used in the garnet , olivine and orthopyroxene studies . 

The resistance of the manganin gauge was measured with an accuracy 

of 0 . 5 mn , allowing the pressures of the one- and two-transducer 

comparative experiments to be reproduced to within 2 mn, or 2x1o-3 GPa . 

The upper seal also functioned as the sample holder ( see Figure 

2 . 6) . The 0 . 13 mm diameter electrical connections for the manganin 

gauge and the transducer contacts were fed through a four bore alumina 

tube which was embedded in a dental cement cone-seal. This sample 

holder could accommodate crystals as large as an 8 mm cube . 
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2 . 6 Data reduction 

The crystals investigated in this study were of either cubic or 

orthorhombic symmetry . The elastic properties of crystals of cubic 

symmetry are described by three independent elastic constants which can 

be determined from the travel-times of elastic waves travelling through 

the crystal (see Eqns . 2 . 13-2.15) . There are seven simple modes of 

propagation through a crystal of cubic symmetry . These are the 

compressional and shear modes propagating in the [100] and [111] 

directions , and the compressional and two independent shear modes 

propagating in the [110] direction . Only three of these modes need to 

be measured in order to determine the three independent elastic 

constants of a crystal of cubic symmetry . 

The elastic properties of the crystals of orthorhombic symmetry are 

described by nine independent elastic constants . There are 18 

relatively simple modes of propagation through crystals of this 

symmetry (see Eqn . 2 . 17) . These are the compressional and two 

independent shear modes which propagate in the axial direct ions, and 

the shear waves and the quasi-shear and quasi-compressional waves which 

propagate in the [110Jc-type directions . The symmetry relations of the 

elastic stiffness matrix are such that the three on-diagonal shear-mode 

constants can be determined from the travel-times of waves propagating 

in two different axial directions ( ie C2323 = C3232). The symmetry 

relations of the elastic stiffness matrix also allow the same 

information to be gained from the quasi-shear mode and from the 

quasi-compressional mode propagating in the same direction. 

In calculating the elastic constants from the travel-times 

determined at different pressures it is necessary to take into account 
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the effects of pressure on the length and density of the crystal. The 

calculations in the present study have been performed using Cook's 

algorithm for the separation of the effects due to variations in the 

elastic moduli from the effects due to static strains in crystals 

subjected to hydrostatic pressures. A detailed account of this 

procedure was originally given for crystals of cubic or hexagonal 

symmetry (Cook, 1957), however the algorithm can also be extended to 

accommodate crystals of orthorhombic symmetry. This treatment of the 

pressure dependence of the elastic moduli of an orthorhombic crystal 

requires the travel-times of 12 modes of propagation to be measured. 

2.6.1 Cook's method for crystals of cubic symmetry 

Consider a crystal having pairs of plane parallel faces, the 

direction of propagation of an ultrasonic pulse being perpendicular to 

the faces. The pressure P reduces the distance lo between the faces to 

l(P) = 10 /s wheres ~1, (2.33) 

and the subscript O refers to zero pressure. In the case of a crystal 

with cubic symmetry, s is independent of the direction of propagation 

within the crystal. The density of such a crystal is 

p(P) = Po s3 (2.34) 

where p0 is the zero-pressure density. The general equa tion for an 

adiabatic elastic modulus is 

c = 4 (1 0 )2 Po f2 s (2.35) 

where f is the reciprocal of the round-trip travel-time . 
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The eigenvalues associated with wave propagation in the [100] 

direction of a cubic crystal are 

C11 = 4 Po (110) 2 (f1 )2 s 

C44 = 4 Po (110) 2 (f4) 2 s with any polarization 

(2 . 36) 

and for a wave propagating in the [011] direction 

(c11 + c12 + 2C44)/2 = 4 Po (1 20 )2 (f 3 ) 2 s 

(c 11 - c12 )/2 = 4 Po (1 20 )2 (f2 )2 s polarized in the [011] 

direction 

polarized in the [100] 

direction 

(2 . 37) 

For a cubic crystal , the equation for the shortening of a length 

within the crystal due to increasing pressure can be expressed as 

ds 
(2.38) 

s dP 

where the SijT are the isothermal stiffnesses . These isothermal terms 

can be related to the adiabatic measurements (Nye, 1957) 

ds 3 a 2 T 
= ( 1 + ) ( S 1 1 + 2S 1 2) 

s dP Po Cp cs,, + 2s,2) 

(2.39) 

for a, the linear thermal expansion coefficient and cp, the specific 

heat. For crystals of cubic symmetry, the elastic stiffnesses in 

Eqn 2.39 are simply related to the elastic compliances 
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(2.40) 

The substitution of Eqns . 2 . 36 and 2 . 37 into Eqn. 2.39 enables the term 

s to be evaluated by numerical integration (ignoring the pressure 

dependence of the term~) 

1 
p 

dP 
s = 1 + (1 + ~) (2.41) 

and used in Eqns . 2 . 36 and 2 . 37 to calculate the pressure dependence of 

the adiabatic elastic constants of a crystal of cubic symmetry . 

2 . 6 . 2 Cook ' s method for crystals of orthorhombic symmetry 

For a crystal of orthorhombic symmetry with pairs of faces cut 

perpendicular to the axes Ox , Oy, and Oz , the distances between the 

(100) , (010), and (001) faces can be written as 

and 

11 (P) = l10/s1 

12 (P) = 1201s2 

l3(P) = l30/s3 

(2.42) 

respectively . For faces cut at 45° to two of the orthogonal axes a nd 

parallel to the third, the distances between the (110)c, (011)c, and 

(101)c faces can be written as 



and 

respectively. The density of an orthorhombic crystal is 

and the equations for the adiabatic elastic constants are 

and 

and 

and K12 = 

K13 = 

K23 = 

C 11 = 4 Po (110)2 ( f 1 ) 2 s2s3/s1 

C55 = 4 Po (110)2 (f5)2 s2s3/s1 

c66 = 4 Po (110)2 (f6)2 s2s3/s1 ' 

C22 = 4 Po (120)2 (f2)2 s1s3/s2 

C44 = 4 Po (120) 2 (f11 )2 s1s3/s2 

C66 = 4 Po (120) 2 (f12) 2 s1s3/s2, 

C33 = 4 Po (130)2 (f3)2 s1s2/s3 

C44 = 4 Po (130)2 (f4)2 s1s2/s3 

C55 = 4 Po (130)2 (f10)2 s1s2/s3, 

8 Po (160)2 (f7)2 s1s2s3/(s12 + s22) 

8 Po (150)2 (fs)2 s1s2s3/(s12 + s32) 

8 Po (140)2 (fg)2 s1s2s3/(s22 + s32)' 
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(2.43) 

(2.44) 

(2.45) 

(2 . 46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

where f· 1 is the reciprocal of the round-trip travel-time. The 

relationships for Kij (Eqns . 2 . 48, 2 . 49 and 2.50) hold for the travel­

times of either the quasi-shear or the quasi-compressional modes 

measured in each direct ion . The redundancy in the measurement of the 

shear modes Cii (i=4 , 5,6) allows the introduction of the relationships 
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= 

= 

= (2.51) 

from Eqns . 2.45, 2 . 46 and 2 . 47. The substitution of these equalities in 

Eqns 2 . 45-2. 50 allows the modulus for each mode to be expressed in 

terms of either s1 , s2 or s3 only . It follows from the form of the 

expressions 

(2.52) 

relating the Cij (i*j) to the moduli of the measured modes that each of 

the Cij (whether or not i=j) may be expressed as the product of any one 

of the unknown sk (k=1,2 or 3) and a corresponding function Fk of the 

known zero-pressure density and dimensions and the mode frequencies. 

Thus each of the Cij is expressible in the form 

(2 . 53) 

The application of hydrostatic pressure causes independent 
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shortening of each of the directions parallel to the orthogonal axes of 

the orthorhombic lattice . This shortening due to isothermal compression 

can be expressed as 

where the S· . T lJ are 

ds · 1 

s· dP 1 

the 

= 
3 
' S·. T l lJ 

j=1 

isothermal elastic 

i=1 , 2,3 (2.54) 

compliance terms . The 

relationship between the measured adiabatic compliance terms and the 

isothermal terms is (Nye , 1957) 

( 1 + 

3 
a · ' a· T 1 l J 

j=1 

3 
Po cp I sij 

j=1 

3 
) I s ij 
j=1 

i=1 ,2,3 

(2 . 55) 

for ai , the thermal linear expansion in directions Ox, Oy , and Oz , and 

Cp , the specific heat , and thus Equation 2 . 53 becomes 

ds· 1 3 
= (1 + lli) l Sij 

j=1 
i=1,2,3. (2.56) 

The compliance matrix Sij is simply the inverse of the stiffness 

matrix Cij , and the elastic compliance terms can easily be related to 

the elastic stiffnesses : 

S11 = (C22C33 - C23C23)/r 

S12 = (C13C23 - C12C33)/r 

S13 = (C12C23 - C13C22)/r 

S22 = (C11C33 - C13C13)/r 

S23 = (C13C12 - C11C23)/r 

S33 = (C11C22 - C12C12)/r 
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and S44 = C44-1 

S55 = C55-1 (2.57) 

S55 = C55-1 

where r = C11C22C33 - C11C23C23 - C33C12C12 + 2C12C13C23 - C22C13C13• 

These pressure dependent values of si can now be substituted into 

Eqns . 2 . 45-2 . 52 to calculate the elastic moduli C ij over the 3 GP a 

pressure range . 

2 . 7 Curve fitting and estimati on of errors 

Successively higher-order polynomials were fitted to the 

compressional- or shear~mode moduli calculated with Cook's algorithm, 

using a multiple linear regression technique (Bevington, 1969) and an 

F-test (with a 99 . 5% confidence level) to test the statistical 

significance of each added term . At this confidence level a polynomial 

of at least second order was required to fit the modulus - pressure 

data for every mode . These polynomials were restricted to quadratics as 

the calibration of the manganin pressure gauge is not sufficiently 

accurate to justify inclusion of higher order terms . This produces a 

quadratic of the form 

where the uncertainties in the parameters 

departures of the data from the model. 

a· 1 

(2.58) 

reflect the 

The variances in the terms ai (i=O, 1 ,2) for each such quadratic 

were calculated from 
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a2(ai) = (ot(ai)) 2 + (aai/aLo) 2 o2 (Lo) + (aai/ap 0 )2 o2 (p 0 ) 

+ ( aai/aa.1 )2 o2 (a1) + ( aai/aa.2) 2 o2 (a2) 

(2.59) 

(Jackson and Niesler , 1982) where 

and 

aai/aLo = 2ai/Lo 

aai/ap0 = ai/p0 . (2.60) 

The last two terms in Eqn . 2 . 61 are associated with the uncertainties 

in the calibr ation of the manganin gauge . The partial derivatives can 

be calculated from the polynomial expansions of the moduli as functions 

of the manganin resistance, which in turn is a function of pressure, to 

give ; 

aao/aa.1 = 0 

aa11aa1 = a1 /a.1 

aa2/aa1 = a2/a1 - a1 a2/(a1 )2 

aao/aa.2 = 0 

aa,1aa2 = 0 

aa2/ aa.2 = a1 / a.1 (2.61) 

The elastic constants Cij i:t:j, which can only be obtained via a 

combination of the simple Cii modes and the Kij modes were calculated 

from the measured travel-times of the Kij modes and the quadratics 

which have been fitted to the other modes (ie Cii) involved, with the 

errors in the fits of the quadratics being propagated through the 

calculation of the Cij (i:t:j) quadratics. 



CHAPTER 3 

PRESSURE-INDUCED SHEAR-MODE SOFTENING 

AND PHASE TRANSFORMATIONS 

3 . 1 Introduction : criteria for lattice stability 
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The stability of a crystal lattice relative to all alternative 

configurations attainable by infinitesimal homogeneous deformations 

requires the strain energy density CijEiEj/2 to be positive definite . 

This condition , known as the Born stability criterion (Born, 1940), is 

met if each of the principal minors of the elastic stiffness matrix is 

positive . 

It is important to emphasize that the Born criterion is a necessary 

but not sufficient condition for the stability of a lattice. It 

obviously does not guarantee stability relative to alternative 

configurations which may be attained by infinitesimal non-homogeneous 

deformations , or by finite deformation of the lattice. Thus 

ferroelectric transitions , which occur as one of the optic mode 
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frequencies approaches zero, involve no anomalous behaviour of the 

elastic moduli which are associated with long wavelength acoustic 

modes . In some special cases , the transformational strain may take the 

form of a finite shear (as in the B1-B2 transformation discussed below) 

or alternatively the transformation may require complete disruption of 

the lattice and proceed by a nucleation and growth mechanism . The large 

atomic displacements required by both of these transformation 

mechanisms are beyond the scope of elasticity theory and the vanishing 

of a principal minor of the stiffness matrix would not be expected . 

The sufficient condition for the stability of a particular crystal 

structure under given conditions of temperature and pressure is that 

the Gibbs free energy be a minimum relative to all alternative 

configurations . The positive strain energy density condition ( ie the 

Born criterion) for the mechanical stability of a lattice against 

infinitesimal homogeneous deformations is a special case of the more 

general thermodynamic stability criterion . 

Of particular importance in this chapter are phase transformations 

which may be accomplished by a finite shear deformation of the original 

structure . For crystal structures which are related in this way, any 

reduct ion (softening) of the appropriate shear modulus ( for example 

with increasing pressure) will reduce both the free energy of the 

deformed lattice relative to the original lattice and the height of the 

energy barrier between the two phases. Such pressure-induced shear-mode 

softening might therefore have implications for th e nature and kin e tics 

of high pressure phase transformations . 
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3 . 2 Shear-mode softening and B1 lattice instability 

General relationships for the elastic moduli of crystals with cubic 

symmetry can be obtained from simple static lattice calculations. 

Weidner and Simmons (1972) formulated equations for the elastic moduli 

of a B1 lattice for a general interatomic central-force model with 

nearest-neighbour and next-nearest-neighbour interactions, to obtain 

the following relationships for the moduli c11 , c12 and C44, the bulk 

modulus Kand hydrostatic pressure P : 

1 G(r/2) 
C11 = (f(r) + g(r/2) - ) + 

r 

1 
C12 = P + 

2r 

1 
C44 = -p + 

2r 

2 1 

(g(r/2) + 

r/2 

G(r/2) 
- ---) + 

r/2 

G(r/2) 
(g(r/2) + ) + 

r/2 

K = P + (f(r) + 2 g(r/2)) + 

3 3r 

1 a(P) 
P = (F(r) + /2G(r/2)) + 

a(C11) 

r4 

a(K) 

( 3 . 1 ) 

( 3. 2) 

( 3 . 3) 

(3.4) 

(3.5) 

where r is the anion-cation distance and a represents the Madelung-type 

summations of the electrostatic con tr i but ions. The in tera tomic forces 

between anions and cations are represented by the general force 

relationships 

f(r) = -(af* ··/ar ··)(r··) lJ lJ lJ 
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and F(r) (3 . 6) 

and between anions and anions; 

and G(r/2) - f*· ·(r· ·) - lJ lJ (3 . 7) 

for f*, the non-electrostatic force between atoms. Substitution of Eqn . 

3.5 into Eqn. 3.3 yields 

- F(r) + (r g(r/2) -
2 

3G( r/2) 

/2 
) (3.8) 

where the nearest-neighbour repulsive forces contribute negatively, and 

the electrostatic attraction and next-nearest-neighbour repulsion 

contribute positively to C44(P). For a simplified central-force model 

in which F(r) and G(r) both have the same form -A(r 0 /r)-n, Eqns . 3.6 

and 3.7 become 

cW F(r) 
f(r) = n 

ck r 

G(r/2) 
and g(r/2) = n ---

r/2 

For this simple model , the modulus C44(P) (Eqn . 3 . 8) becomes 

= 

G(r/2) 
- F(r) + (n-3)---

2/2 

n-3 
- A(r0 /r)n (1 - ) . 

2(n+3)/2 

( 3. 9) 

(3 . 10) 

(3 .1 1) 
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For all plausible values of n (3 < n < 12) (see Anderson and 

Liebermann , 1970) , the negative nearest-neighbour contribution to 

C44(P) is off-set only slightly by the positive contribution of the 

next-nearest-neighbour repulsion . Equation 3 . 11 illustrates that for 

n ~ 3 , the negative contribution from the nearest-neighbour repulsive 

forces will increase in magnitude at a faster rate with increasing 

pressure (decreasing r) than the electrostatic contribution . Thus, the 

pressure derivative of the modulus C44 in this simple model will 

decrease with increasing pressure and eventually become negative . 

Anderson and Liebermann (1970) considered electrostatic forces and 

nearest-neighbour interactions of the form A(r 0 /r)-n, and found 

5 . 776 - n 
= (3.12) 

aP 0 n - 1 

where ac44/aP is small and positive for n < 5.776, becoming negative 

for larger n . The magnitude of the term n is defined by the 

pressure dependence of the bulk modulus , with aK/aP=(n+7)/3 . Demarest 

(1972) fitted the known pressure dependence of the elastic moduli of a 

number of alkali halides to a central-force model which included not 

only electrostatic and nearest-neighbour forces, but also a next­

nearest-neighbour Lennard-Jones interaction . The next-nearest-neighbour 

contribution to the pressure dependence of the modulus C44 in this 

model ranged from the negligibly small terms predicted in Eqn. 3.11 for 

the simplified central-force model, to half the absolute magnitude of 

the negative nearest-neighbour contribution. These central force models 

indicate the likelihood of C44 mode softening at sufficiently high 

pressures for any B1 structure . Such reduction in the magnitude of C44 

will tend to increase the thermodynamic competitiveness of any 

structure related to B1 by C44-controlled shear deformation . 
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The B2 phase to which most B1-structured alkali halides transform 

at sufficiently high pressures is a case in point . Demarest et al. 

(1977) have shown that this transition can be accomplished by 

compression of the B1 lattice along the [111] axis . This mode of 

compression is a simple combination of finite E4-type shears (see Fig. 

3 . 1) . Demarest et al . ' s (1977) simple model for the energy of a 

continuously deforming B1 lattice results in a relationship for the 

Gibbs free energy of the deformed lattice as a function of strain. This 

energy is calculated for a central-force model, with the energy of the 

lattice being given by 

8 
l 

i=1 

b 
(3.13) 

where z is the ionicity term, e is the charge on each atom, Ar is the 

Madelung-like sum for the B1 and B2 phases and the intermediate states 

between these two phases , and ri is the interatomic distance . The 

repulsive term is summed over the six nearest-neighbours in the B1 

lattice and the extra two atoms which become the additional nearest-

neighbours in the B2 lattice . The height of the energy barrier between 

the two states was found to be proportional to C44/K. Therefore it is 

instructive to observe the behaviour of this ratio Y = C44/K for the 

alkali halides as they approach the B 1 ~B2 transit ion . The model of 

Demarest et al . (1977) suggests a critical value for Y of 0.15-0.20 

associated with the pressure induced phase transformation of the alkali 

halides. 

Of the B1 structured oxides, SrO and Cao are known to undergo the 

B1~B2 transformation at high pressures. Values of C44, C44/K and 

a(C44/K)/ap for the alkali halides and these simple oxides are 
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Figure 3.1 Transformation from the B1(NaCl) to the B2(CsCl) lattice by 

compression along [111] (after Demarest et al., 1977). 
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presented in Table 3 . 1 . It can be seen from this table , that for 

crystals with negative values of 8C44/8P , Demarest et al . ' s criterion 

holds reasonably well, but begins to fail for crystals which have 

positive values of 8C44/8P over the pressure range in which the elastic 

moduli were measured. 

Table 3 . 1 Shear -mode softening associated with the B1~B2 

transformation 

C44 K 8C44/8P 8K/8P C44/K 8(C44/K)/8P Ptr * 

GPa GPa GPa-1 

RbI 2 .79 11 . 09 -0. 49 5.41 0.25 -0. 1 7 

RbBr 3 . 84 13 . 66 -0.56 5.30 0.28 -0. 15 

RbCl 4 . 75 16 . 30 -0.61 5;35 0.29 -0. 1 3 

KI 3 . 7 3 12.15 -0.23 5.10 0. 31 -o. 1 5 

KBr 5 . 08 14 . 86 -0 . 33 5.38 0 .34 -o. 15 

KCl 6 . 33 17.89 -0. 41 4~78 0.35 -0 .1 2 

KF 12 . 81 31 . 1 3 -0.45 5 .0 2 0.41 -0.081 

NaCl 12 . 80 25 . 21 0 .37 5.26 0.51 -0.091 

NaF 28 . 22 48 . 20 0 . 21 5 . 1 8 0.59 -0.059 

SrO 55 . 87 91 . 21 -0. 21 5 . 18 0 . 61 -0.037 

Cao 80 . 32 112.50 0 . 20 4 . 83 0 . 71 -0.029 

MgO 155.8 162.5 1 . 1 1 4. 1 3 0. 96 -0 . 018 

* B1~B2 transformation pressures at room temperature . 

References : 

GPa 

0.4 

0 . 4 

0 . 5 

1 . 7 

1 . 7 

1 . 9 

4 

30 

27 

36 

65 

>200 

phase 

Ref . 

1 , 2 

1 , 2 

1 , 2 

3,4 

5,4 

6 ,4 

7,8 

9, 1 0 

1 1 , 1 2 

1 3, 1 4 

1 3, 1 5 

1 6, 1 7 

1. Chang and Barsch , 1971 ;2. Pistorious, 1965a;3 . Barsch and Shull, 

1971 ;4. Pistorious , 1965b;5 . Reddy and Ruoff, 1965;6 . Demarest et al ., 

1977;7 . Koliwad et al ., 1967;8 . Yagi et al ., 1978;9. Spetzler et al ., 

1972 ; 10 . Bassett et al ., 1968;11 . Bartels and Schuele , 1965;12 . Yagi et 

al ., 1983; 13 . Chang and Graham, 1977; 14 Sato and Jeanloz, 1981 ; 15. 

Jeanloz et al ., 1979;16 . Jackson and Niesler , 1982;17 . Vassilou and 

Ahrens , 1981 ; 18 . present study and Sumino , 1979; 19 . Akimoto et al ., 

1967 . 
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There exists another class of simple oxides , the transition metal 

monoxides , which experience shear-mode softening prior to a phase 

change . Each of these oxides undergoes a paramagnetic~antiferromagnetic 

phase change with decreasing temperature , at room pressure . A slight 

lattice distortion accompanies this phase change . In the case of Coo , 

this distortion is tetragonal , but NiO , MnO and FeO all experience a 

rhombohedral distortion equivalent to compression along the [111] axis . 

Measurements of the elastic constants of MnO ( Cracknell and Evans , 

1970 ; Seino , 1982 ; Sumino et al ., 1980) and Fe1 -xO (Berger et al . 1983) 

have been perfo r med over a range of temperatures from - 300 K to the 

respective Neel temperatures (118 K and 189 K) at which the 

paramagnetic~antifer romagnetic phase change occurs . Each of these 

studies showed normal behaviour of the moduli c11 and (c 11 -c12 )/2 . For 

both MnO and Fe 1-xo however , the onse t of shear-mode softening of the 

modulus C44 was observed about 100 K above the respective Neel 

temperatures . 

The high pressure polymorphism of the transition metal monoxides is 

of considerable current interest in connection with element 

partitioning among the ferromagnesian phases of the Earth ' s lower 

mantle and the solubility of oxygen in the Earth's outer core (e.g. 

Ringwood , 1977 ;McCammon et al ., 1983). Of particular importance is the 

evidence for a shock-induced phase transformation in wustite (Feo . 940) 

near 70 GP a (Jeanloz and Ahrens, 1980) . This phase transformation 

appears to involve a density increase of 5-9% of the 70 GPa density, or 

10-28% of the zero pressure density. However, the nature of this 

high-pressure phase remains uncertain . 

Navrotsky and Davies (1981) have predicted the transformation 

pressure of FeO from thermochemical systematics . Their preferred 
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transformation to the hexagonal NiAs(B8) phase is calculated to occur 

for a pressure -30 GPa, while the CsCl(B2) transformation favoured by 

Jeanloz and Ahrens (1980) is predicted to occur for pressures -300 GPa . 

Jackson and Ringwood (1981) have discussed the possibilities of a s1~B8 

transition accompanied by spin-pairing. Static compression studies, 

however , have revealed only an essentially rhombohedral distortion of 

the 81 phase at pressures above 5-12 GPa (Zou et al . 1981; Heinz and 

Jeanloz , 1983; Yagi et al ., 1985) . It is possible that this high­

pressure distortion has the same origin as that accompanying the 

paramagnetic~antiferromagnetic transition observed at low temperatures . 

In view of the current state of confusion concerning both the 

elastic properties (e . g . Sumino et al. , 1980;Berger et al., 1981: 

Jeanloz and Hazen, 1983) and the high-pressure polymorphism of wustite, 

and the wide range of possible structural , electronic and magnetic 

transitions , it seems that a systematic study of the high pressure 

behaviour of the transition-metal monoxides might be fruitful . Accurate 

equations of state derived from high pressure ultrasonic measurements 

of the B1 phases will help in the interpretation of static and shock 

compression data . Furthermore , any pressure-induced shear-mode 

softening might provide insight into possible modes of transformation. 

As part of this broader program, the three independent elastic moduli 

of MnO have been measured to 3 GPa . 
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3 . 3 The elasticity of MnO 

3 . 3 . 1 Specimen description 

A large single crystal of MnO was kindly made available by 

Professor T.J . Ahrens of the California Institute of Technology. This 

crystal was opaque with a metallic-black lustre . Pairs of parallel 

(±0 . 5°) (100) and (011) faces were prepared, leaving a crystal with the 

dimensions 7.803±0.003 mm, 6.035±0.003 mm, and -8 mm in the [100], 

[ 0 1 1 J and [ 0 1 1 J direct ions respect iv e 1 y ( see Fi gur e 3 . 2 ) . The dens it y 

of the crystal was measured to be 5.346±0.004 g cm-3 . This is slightly 

less than the X-ray density of 5 . 365 g cm-3 (Sumino et al., 1980). This 

low measured density was due to the presence of -4% (volume) Mn304 

which was observed with both reflected light microscopy and electron­

microprobe analysis as thin (-5 µm x -30 µm) bone shaped surface 

features lying in axial orientations . 

3.3.2 Data reduction 

The elastic moduli were calculated using Cook's (1957) algorithm to 

determine the isothermal length and density changes for a crystal of 

cubic symmetry (see Chapter 2) due to increasing hydrostatic pressure. 

The coefficient of linear thermal expansion used in this calculation 

was 

a = (3 .1 4) 

from Suzuki et al. (1979) , and the specific heat was taken as 

(3.15) 

1 
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from JANAF Thermochemical Tables (1971 ) . The length correction term was 

calculated from Eqn . 2 . 41 to be approximately 

s = 1 + 2 . 23x1o-3 P - 3 . 67x1o-5 p2 + 1 . 98x10-6 p3 (3.16) 

for pressure determined in GPa . The elastic moduli were calculated from 

the five modes of wave propagation available on this crystal and are 

presented in Table 3 . 2 . A typical travel-time versus frequency plot for 

this crystal is illustrated in Figure 3 . 3. The modulus C44 was measured 

in both the [100] (Mode #4 , see Chapter 2 : Eqn . 2 . 36) and [011] (Mode 

#5 , see Chapter 2 : Eqn . 2 . 37) directions (see Figure 3 . 2) . Polynomials 

of degree 2 and 3 have been fitted to the C44 moduli measured at 

intervals over this pressure range . This modulus has also been 

calculated as a combination of the moduli associated with the the modes 

C11 , (C11-C12)/2 and (C11+C12+2C44)/2 . 

The large differences between the pressure dependence of the 

modulus C44 calculated form the combination of c11 , C' and C' ', and the 

dependence of the measured C44 modes are due to the difficulty in 

fitting a quadratic (or cubic) to the measured observed variation of 

C44 with pressure . The zero pressure measurements and the pressure 

dependences of the moduli C44(4) and C44(5) agree within the quoted 

errors for either the quadratic or cubic fits . The pressure dependences 

of these moduli are illustrated in Figures 3 . 4 and 3 . 5 . 



265 

C " 

250 

260 

245 

255 

Cf) 

::J 

::J 
240 "O 

0 
~ 250 
(.) 

.... 
Cf) 

C11 ca -w 

235 

230 

1 2 3 

Pressure / GPa 

Figure 3. 4a The variation with pressure of the compressional moduli 

C11 and C" of MnO . The uncertainties in modulus are everywhere less 

than the diameter of the plotting symbols. 



(.) 

(/) 

('J 

w 

165 

160 

155 

150 

1 2 1 

1 1 8 

1 1 5 

1 2 3 

Pr essu r e / G Pa 

Figure 3 . 4b The variation with pressure of the modulus C12 and the 

bulk modulus of MnO . The uncertainties in modulus are everywhere less 

than the diameter of the plotting symbols . 



79.2 

79. 1 

79.0 

78.9 

Cl) 

:J 65 
:J 

"'O 
0 
~ 

u ... 
Cl) 

~ -w 
60 

(C11-C12)/2 

55 

1 2 3 

Pressure / GPa 

Figure 3 . 5 The variation with pressure of the shear moduli C44(4) , 

C44(5) and C' of MnO . The uncertainties in modulus are everywhere less 

than the diamete r of the plotting symbols . 



44 

Table 3 . 2 The zero pressure elastic moduli of MnO together with their 

first and second pressure derivatives calculated at zero pressure . 

Modulus cij /GPa clC/clP 

C 11 226 . 5 ±0 . 2 9 . 6 3±0 . 07 -0 . 9 4 ±0 . 06 

C12 11 4 . 9 ±0 . 2 3 . 40 ±0 . 08 -o . 52±0 . 08 

( C 11 -C 1 2) I 2 55 . 7 8±0 . 06 3 . 11 ±0 . 02 -o . 21 ±0 . 01 

(C11+C12+2C44)/2 249 . 0 ±0 . 3 6 . 94±0 . 05 -0 . 91±0 . 05 

C44(4) 79 . 0 ±0. 1 0 . 1 4±0 . 01 -o. 1 2 ±0 . 02 

C44(5) 78 . 9 ±0 . 1 0 . 1 4±0 . 01 -0 . 1 0 ±0 . 02 

C44** 78 . 3 ±0 . 6 0 . 42±0 . 01 -0. 18 ±0 . 02 

C44(4)* 79 . 0 ±0 . 1 0 . 30±0 . 01 -0 . 40 ±0 . 02 

0 . 18 ±0 . 03 t 

C44(5)* 78 . 9 ±0 . 1 0 . 29±0 . 01 -0 . 36±0.02 

0. 18 ±0 . 03 t 

K 152 . 1 ±0 . 3 5 . 4 7 ±0 . 09 -0 . 6 6 ±0 . 05 

C44(4) and C44(5) were determined in the [100] and [011] directions 

respectively and have been fitted with a quadratic . C44(4)* and C44(5)* 

have been fitted with a cubic , with the t term being the third pressure 

derivative of the modulus observed over the 3 GPa pressure range . These 

polynomials fit the C44 data to 3 GP a but cannot be extrapolated to 

higher pressures . C44** has been calculated from a combination of the 

c, 1 , C' =(c 11 -c 12 )/2 and C' '=(c 11 +c 12+2C44)/2 moduli . 

The room pressure elastic constants of MnO which have previously 

been measured by Oliver (1969) using the echo overlap technique, Uchida 

and Sa to ( 1973) using both the pulse superposition and echo over lap 

techniques , and Sumino (1980) using the rectangular parallelopiped 

resonance technique, are tabulated in Table 3 . 3. The elastic moduli 

determined in these previous studies are comparable ( ±7%) with the 

present measurements . 
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Table 3. 3 The zero pressure elastic moduli of MnO . 

Modulus 
GPa 

C 11 

C12 

cc 11 -c 12 )12 

(C11+C12+2C44)/2 

C44 

K 

Sumino et al . Uchida and Saito 
(1980) (1973) 

233 ±3 222 ±1 

122 ±4 11 0 ±2 

55 . 8 ±0 . 2 56 . 1 ±0 . 9 

257 ±4 244 ±2 

79 . 4 ±0 . 2 78 ±3 

159 ±4 147 ±3 

Oliver 
(1969) 

223± 6 

120±10 

52± 5 

251± 8 

79± 2 

154±19 

45 

Present 
Study 

226 . 5 ±0. 2 

11 4. 9 ±0 . 2 

55.78±0.06 

249 .0 ±0 . 3 

78 . 9 ±0 . 1 

1 52 . 1 ±0 . 3 

The anomalous high-pressure behaviour of the modulus C44 is of 

particular interest . It is evident from Table 3.2 and from Figure 3.5 

that C44 increases at a modest rate with increasing pressure, attains a 

maximum value near 1 GPa , and thereafter decreases with further 

increase of pressure. Such mode softening is indicative of lattice 

instability at sufficiently high pressures of the paramagnetic B1 phase 

of MnO ( eg Born, 19 40; Demarest et al . , 1977) . The connect ion between 

the observed shear-mode softening and high-pressure lattice instability 

will be discussed in Section 3 . 5 below. 

3. 3 . 3 Elasticity systematics among the transition-metal monoxides 

The present elastic moduli of MnO can be used to predict the 

elastic properties of other transition-metal monoxides from the first 

transition series . Anderson and afe (1965) and Anderson and Anderson 

(1970) have demonstrated that the simple relationship 

KoVo = constant (3 . 17) 
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adequately describes the covariation of molar volume (Vo) and bulk 

modulus (Ko) for non-transition-metal monoxides in the B 1 structure. 

The effects of the crystal-field energy associated with transit ion­

metal ions in octahedral co-ordination with oxygen anions can be 

introduced into this systematic treatment of the bulk moduli of the 

simple rock-salt structured oxides following the theory of Hush and 

Pryce (1958) and Ohnishi and Mizutani (1978). 

The transition-metal atoms of the Fe series have partially filled 

3d shells. The most immediately obvious effect of these partially 

filled shells on the physical properties of the transition-metal 

monoxides is illustrated in Figure 3 . 6 in which the metal-oxygen 

distance is plotted with respect to increasing atomic number. The 

interatomic distance shows a marked periodic variation with atomic 

number . This phenomenon can be explained in terms of the periodic 

variation of the crystal-field stabilization energy (CFSE) with the 

increasing population of electrons in the 3d shell of the transition­

metal ion (Hush and Pryce , 1958) . 

The bulk modulus of the transition-metal monoxides is also 

influenced by the crystal-field stabilization energy . Hush and Pryce 

(1958) and Ohnishi and Mizutani (1978) have discussed the effect of the 

crystal-field potential on the bulk modulus . The bulk modulus is 

defined as 

Ko= 

a2u 
Vo ­

av2 
(3 .1 8) 

P=O 

where Ko and Vo are the zero pressure bulk modulus and molar volume, 

and U is the internal energy of a crystal . 
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The crystal-field stabilization energy (e.g. Burns, 19 70 ) associated 

with the interaction between the oxygen ligands and the eg and t 2g 

orbitals of the transition-metal cations in octahedral coordination with 

these oxygen anions, is 

CFSE = 
-mti 

5 
(3 . 19) 

The quantity m depends upon the occupancies of the t2g and eg orbitals: 

(3.20) 

and ti is the crystal-field splitting given by 

where R is the metal-ligand separation. It follows that the total molar 

internal energy of the transition-metal monoxide may be written as: 

U(V) = F(V) + CFSE 

= F(V) - cv-5/3 (3.2 2) 

where F(V) is the conventional lattice energy of a crystal and is 

assumed to be of the form 

F(V) + 
v1/ 3 vn/ 3 

(3 . 23) 

where the first term on the r ight i s t he a ttractive Cou lombic te r m, an d 

the second term is the repulsive potential. From Eqn . 3. 23, the bul k 



modulus 

and its pressure derivative 

Az1 z2e2(n-1) 

9 vo*4/3 

8 

(3.24) 

= (3 . 25) 
ar P=O 3 

* * can be calculated ; where Ko and Vo are the zero pressure bulk modulus 

and molar volume in the absence of the crystal-field stabilization 

energy . The effects of the CFSE on the molar volume and the bulk 

modulus of a transition- metal monoxide can now be calculated from Eqns . 

3 . 1 8 , 3 . 21 and 3 . 2 2 : 

and 
n- 1 

5 

vo* 4/3 (n-5 
( - - X 

Ve ( 4 

(3 . 26) 
n-1 

v0* (n-1 )/3 ) 

+ 1 ) (3.27) 
Ve ) 

for Ke and Ve the bulk modulus and molar volume of the crystal with the 

crystal-field effects incorporated (Ohnishi and Mizutani, 1978). 

The distribution of the 5 electrons in the 3d shell of an Mn atom 

in octahedral coordination produces an almost spherical atom with zero 

crystal-field stabilization energy . Hence, the elastic properties of 

MnO are unaffected by the crystal-field stabilization energy, with the 

result that the lattice parameter of MnO and the bulk modulus with its 

pressure derivative can be used in Eqns . 3 . 17, 3 . 25 and 3.27 to 
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calculate the bulk moduli of the other Fe series transition-metal 

monoxides. 

This model of 

K0*(v0*)413=constant 

Ohnishi and 

relationship 

Mizutani (1978) 

(Eqn. 3.24) in 

incorporates a 

contrast to the 

KoVo=constant relationship observed by Anderson and Anderson (1970) 

(Eqn. 3.17) for the rock-salt structured oxides MgO , Cao and SrO. The 

present calculations of the bulk moduli of the transition-metal 

monoxides have been based upon the KoVo=constant relationship which 

appears to adequately describe the variation of the bulk moduli of the 

B1 structured monoxides. The predicted bulk moduli for the transition­

metal monoxides are 1 isted in Table 3. 4 and compared with previous 

measurements of the bulk moduli for these crystals in Figure 3.7 . 

The present predicted value of 177 GPa for the bulk modulus of 

stoichiometric FeO is comparable with Yagi et al's (1984) bulk modulus 

of 172±10 GP a for Feo . 980 determined by X-ray diffract ion, and the 

predicted 182±5 GPa of Jackson et al. (1978) extrapolated from the bulk 

moduli determined for polycrystalline (MgxFe 1_x)O aggregates. However, 

the bulk moduli of single crystals of non-stoichiometric Feo.9 50 

wustite determined ultrasonically by Jackson et al. (1985) (K=155.2±0.2 

GPa) and Berger et al . (1981) (K=153±1) are much lower than predicted 

for stoichiometric wustite by the present model. 
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Figure 3 . 7 Relationship between bulk modulus and molar volume for the 

3d transition-metal monoxides . * * The broken 1 ine is the K0 VO = constant 

trend while the steeper solid line represents the calculated covariation 

of bulk modulus (Ke) and molar volume (Ve) for the crystal-field 

* * ( 4 stabilized oxides based on K0 V0 = constant see text and Table 3. for 

details) . The measured bulk moduli of non-stoichiometric wusti te are 

those of Jackson et al . ( 1985) , and Berger et al . ( 1981 ) for Feo . 950, 

and Yagi et al . (1984) for Feo . 980. The open symbol is the bulk modulus 

predicted for stoichiometric FeO from the polycrystalline data of 

Jackson et al . (1978) . The MgO data point is from Jackson and Niesler 

(1982) , and the Cao data point is from Chang and Graham (1977) . 
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Table 3 . 4 The calculated bulk moduli of the 3d transition-metal 

monoxides based on the new elasticity data for MnO . 

Crystal vo*C1) V (2) e Ko* Ke KeCK0*v0*4/3=const.) 

cm3 mol-1 cm3 mol -1 GPa GPa GPa 

MnO 1 3 . 22 13 . 22 1 52 . 1 152 . 1 1 52 . 1 

FeO 12 . 76 12 . 26 t 158 177 1 79 182(3) 

155( 4 ) 

coo 1 2 . 31 11 . 6 3 163 192 197 186(5) 

181 (6) 

NiO 12 . 04 10 . 98 167 218 225 173(5) 

190-220(7) 

(1) molar volumes of hypothetical transition- metal monoxides without a 

CFSE contribution (see Figure 3 . 6) 

(2) molar volumes of the transition-metal monoxides (Shannon and 

Prewitt , 1969) 

( 3) Jackson et al . ( 1978) ( i nference from data for polycrystalline 

(Mg , Fe)O) 

(4) Jackson et al . (1985) Feo . 950 

(5) Sumino et al . (1980) 

(6) Uchida and Saito (1972) 

(7) Notis et al . (1971) (polycrystal) 

t stoichiometric FeO molar volume from McCammon (1983) 

The zero pressure bulk modulus of MnO employed by Ohnishi and 

Mizutani (1978) in their calculations was that observed by Uchida and 

Saito (1972). This measurement of the bulk modulus of MnO is 3% lower 

than that of the present study; hence the zero pressure bulk moduli 

calculated for the hypothetical transition-metal monoxides in the 

present study are higher than those predicted by Ohnishi and Mizutani 

(1978) . The pressure derivative of the bulk modulus of MnO was 

estimated to be between 4 and 5 for the purposes of Ohnishi and 

Mizutani ' s calculations , compared with the measured value of 5.47 . The 
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bulk moduli calculated for the 3d transition-metal monoxides in the 

present study are 5-15% higher than those of Ohnishi and Mizutani due 

to the combined effects of the greater values of Kand 8K/8P measured 

in this study . Figure 3 . 7 illustrates the predicted bulk moduli for 

stoichiometric FeO , NiO and coo (with Ko*vo*=constant) compared with 

previous measurements of the single crystal and polycrystal bulk moduli 

of these monoxides . The predicted moduli are generally higher than the 

measured moduli ; however , given the range of previously determined bulk 

moduli for MnO , similar errors in the determinations of the bulk moduli 

for FeO , Coo and NiO are to be expected . 

3.3.4 Shear-mode softening and lattice instability in MnO 

Pronounced softening of the C44 modulus of MnO has previously been 

observed in the paramagnetic phase within a few tens of degrees of 'the 

room pressure Neel point TN -120K (Sumino et al ., 1980 ; Seino , 1982) . 

The development of antiferromagnetic ordering at TN is accompanied by a 

slight rhombohedral distortion -0.5° (Morosin, 1970) of the cubic 

lattice involving compression of the lattice along [111]. Whereas c 11 

and C' =(c 11 -c12 )/2 both increase monotonically with decreasing 

temperature between room temperature and TN, C44 remains essentially 

constant (within 1%) between room temperature and 220K , but decreases 

at an exponentially increasing rate by a total of 30% between 220K and 

TN . Seino (1982) has demonstrated that the anomalous temperature 

dependence of C44 may be quantitatively modelled in terms of nearest­

and next-nearest-neighbour exchange interactions accompanying the 

development of pronounced short-range magnetic order . Significant 

short-range magnetic order has been shown to persist to temperatures as 

high as 700 K (Babic et al ., 1976) . 
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If instead of decreasing the temperature towards the room pressure 

Neel point, increasing pressure is used to raise the Neel point towards 

room temperature (295K) similar behaviour of the three independent 

elastic moduli, and especially of C44 , might be expected as the Neel 

point is approached . Bloch et al. (1980) have shown the Neel 

temperature of MnO to increase with hydrostatic pressure at a rate of 

3 K GPa-1 over a pressure range of 4 GPa, suggesting that a pressure of 

-60 GP a is required to raise TN to room temperature. Thus , in the 

absence of other thermodynamically competitive phases, the 

paragmagnetic-*antiferromagnet ic transit ion would be expected to occur 

at -60 GPa at room temperature. Under these circumstances, the 

low-temperature elasticity data would suggest that C44 might remain 

essentially independent of pressure, in general accord with our 

observations, to perhaps 40-50 GPa thereafter decreasing exponentially 

as the Neel point is approached and the effect of the increasing short­

range order is felt . 

However , we have already seen that negative ac44/3P is a rather 

general characteristic of B1 lattices at high pressure. The connection 

between C44 mode softening and the Bl -*B2 phase transformation in the 

alkali halides and alkaline earth oxides (Demarest et al ., 1977; see 

Section 3 . 2 of this thesis) is well documented. With reference to Table 

3 . 1 , it is evident that the alkali halides which undergo this 

transformation below 4 GPa have markedly negative (<-0.2) pressure 

derivatives of the modulus C44 . In sharp contrast, halides with 

positive ac44/3P (NaF, NaCl) have Bl-*B2 transformation pressures of -30 

GPa. However, a more reliable indicator of an imminent Bl-*B2 

transformation than C44 itself appears to be the ratio of C44 to the 

bulk modulus K. Demarest et al . (1977) have shown for the alkali 

halides that the Bl-*82 transformation occurs when this ratio decreases 
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to a critical value in the range 0 . 15-0 . 20 . 

Data in Table 3 . 1 may be used to calculate critical values of C44/K 

of 0 . 17 and 0 . 22 , respectively , for the Bl~B2 phase transformations in 

SrO (36 GPa , Sato and Jeanloz , 1981) and Cao (65 GPa , Jeanloz et al ., 

1979) . For MnO , the ratio C44/K decreases from 0.52 at zero pressure 

(C44=79 . 0 GPa , K=l52 . 1 GPa) t o 0 . 24 at 30 GPa , and 0 . 17 at 50 GPa 

(ac44/aP assumed to be - 0 . 12 from the straight line fit t o the C44 

curve for pressures in excess of 1.5 GPa (see Figure 3 . 5), aK/aP==5.5) . 

It is therefore pr edicted on the basis of the stabi lity cr ite r ion 

proposed by Demarest et al . ( 1977) that MnO should undergo a Bl ~B2 

transformation within the pressure interval 30-50 GP a at room 

temperature . 

The softening of the C4 4 mode of a Bl phase does not necessarily 

lead to Bl ~B2 polymorphism . The nature of the Bl ~B2 transformational 

strain , along with pronounced C44 softening in the Bl phase , must imply 

a relatively low free energy for the B2 phase and a relatively low 

energy barrier between the two phases . However, it is always possible 

that an alternative phase might have an even lower free energy . Jackson 

and Ringwood (1981) and Navrotsky and Davies(l981) have suggested 

structures related to nickel arsenide as alternative high pressure 

phases for the transition- metal monoxides . The relatively spherical 

distribution of electron density associated with the Mn2+ d5 

configuration and the observation by McCammon et al . (1984) that 

pressure does not increase the solubility of MnS in NiAs-structured FeS 

may be consistent with Bl~B2 polymorphism in both MnS and MnO . 

Seino (1982) has shown that the development of short-range magnetic 

order in the paramagnetic phase causes anomalous softening of C44 over 
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an extended temperature range above TN. Similar softening of C44 would 

therefore be expected with increasing pressure as the Neel temperature 

increases towards room temperature . 

Simple lattice models for the NaCl structures predict that ac44/aP 

should become negative at sufficiently high pressures for all B1 

phases. This is a consequence of the increased importance of the 

negative contribution of the short-range nearest-neighbour overlap 

interaction as the interatomic distance is reduced by compression. 

Similar softening of the C44 modulus might be expected to occur with 

decreasing interatomic distance in response to decreasing temperature 

at atmosperic pressure . 

The effect of the short-range magnetic order on the magnitude of 

the elastic constants is simply to reinforce the existing effects of 

the central-force nearest-neighbour repulsions due to shortening of the 

interatomic distances with either pressure or temperature. This is 

apparent in the behaviour of C44 with decreasing temperature. The 

intrinsic lattice softening of C44 observed in the NaCl structured 

halides is illustrated by an almost linear C44 versus pressure curve 

with no catastrophic breakdown of this trend before the phase 

transition occurs. The C44 modulus of MnO with decreasing temperature 

begins to breakdown within -50° of the Neel temperature as the added 

effect of the short-range magnetic order becomes much larger than that 

of the intrinsic lattice softening . 

It is noted that the predicted Bl ~B2 transformation pressure for 

MnO of 30-50 GPa is intermediate between the observed transformation 

pressures of SrO ( 36 GP a) and Cao ( 65 GP a) despite the much smaller 

ionic radius of Mn2+ . This possible violation of the general trend 
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whereby Bl -+B2 transformation pressure increases with decreasing ionic 

radius (Jeanloz and Ahrens , 1980) may be due to the additional C44 mode 

softening of magneto-elastic origin in MnO . On the basis of the above 

discussion of the relative stabilities of the various phases of MnO, a 

tentative phase diagram (Figure 3 . 8) has been constructed . 

3 . 4 The mechanism of the olivine-+spinel phase transformation 

Olivine-+spinel phase equilibria are generally considered to exert a 

major influence not only on the mineralogy, but also on the physical 

properties and dynamics , of the transition zone of the Earth ' s mantle. 

For olivine of upper-mantle composition (-Fo89), the olivine(a)-+ 

spinel(Y) transformation is complicated by the stability at 

intermediate pressures of the S-phase . Inspection of published phase 

diagrams (Ringwood and Major, 1970;Akimoto et al. , 1976) reveals the 

following sequence of react ions in the pressure-induced phase 

transformation of Fo89:(a)-+(a+Y)-+(a+S)-+(S)-+(S+Y)-+(Y). Most of the 

associated increase in density and elastic wave velocities is achieved 

by the reactions (a+Y)-+(a+B)-+(8) which occur within a 1 GPa pressure 

interval centred near 12 GP a at 1 ,000-1 , 200 °C ( Ringwood and Maj or, 

1970;Akimoto et al ., 1976;Liebermann, 1975) . Accordingly, the (a)-+(8) 

tranformation is generally associated with the major discontinuity in 

seismic wave velocities near 400 km depth in the Earth's mantle, while 

the (8)-+(Y) transformation may explain a more minor discontinuity 

sometimes observed in the depth range 500-550 km (Ringwood, 

1975;Akimoto et al ., 1976) . 

Elevation of these equilibria within relatively cool subducting 

lithosphere (by virtue of positive Clapeyron slopes dP/dT) may 
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contribute substantially to the driving force for plate tectonics 

(Schubert and Turcotte, 1971 ;Toksoz et al. ,1971 ;Ringwood, 1975) . 

Alternatively, sluggish transformation kinetics in the neighbourhood of 

the equilibrium boundary could result in significant olivine 

metastability, with potentially important implications not only for the 

dynamics of the lithospheric slab but also for its stress state and for 

the origin of deep-focus earthquakes (e.g. Sung and Burns, 1976). Any 

role for transformation plasticity in the rheology of subducting 

lithosphere or surrounding mantle is also dependent upon its kinetics 

of transformation relative to those for dynamic recovery (Paterson, 

1983) . 

The very considerable geophysical importance of the kinetics of the 

(a)~(a+Y)~(a+B)~(B) transformation has stimulated interest in the 

transformation mechanism. The observation that the (a)~(B) 

transformation of Fos9 is initiated by the formation of spinel ( Y, 

composition -(Mgo.5Feo.5)2Si04), and the contraction of the 8-phase 

field with decreasing temperature, have been cited as justification for 

emphasis of the olivine~spinel transformation mechanism (Sung and 

Burns, 1976;Poirier, 1981a), for which two radically different 

alternatives have been proposed. The first is a nucleation and growth 

mechanism (Sung and Burns, 1976) in which the olivine/spinel boundary 

propagates by a generally uncoordinated, thermally activated movement 

of atoms which is rate-controlled by the diffusion of oxygen ions . 

The second possibility is a martensitic diffusionless mechanism 

(Poirier , 1981a) which would achieve the conversion of the hexagonally­

close-packed anion array of olivine into the face-centred-cubic 

geometry of spinel by the action of dislocations . Specifically, it is 

suggested by Poirier that partial dislocations associated with the 
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(100)[001] slip system sweep across the basal plane of olivine creating 

layers of stacking faults with the spinel structure, which become more 

stable as the transition is approached . It is envisaged that the 

necessary cation rearrangement over atomic distances is accomplished by 

a coordinated shuffle known as syncroshear . 

It is further suggested (Poirier , 1981a) that such a transition 

would probably be accompanied by softening of the elastic stiffness 

moduli (C55 and C66 ) governing shear on the (100) plane. In this 

connection , Poirier draws attention to the fact that pressure 

derivatives of the elastic moduli for single-crystal forster i te and 

-Fogo olivine are least for C55 and C66 · The availability of a single 

crystal of fayalite together with . the high pressure capability of our 

ultrasonic interferometer , affords an opportunity for study of the 

pressure sensitivity of the key shear moduli of an olivine to pressures 

beyond its equilibrium olivine~spinel transition pressure (-2 GPa for 

Fe2Si04 , Ringwood , 1975) . 

3 . 5 Search for C55 mode softening in fayalite 

3.5 . 1 Specimen description 

The original objective of this study was measurement of the 

pressure dependence of all nine single-crystal elastic stiffness 

constants of a large crystal of fayalite (Fe2Si 04, space group Pbnm) 

grown by the floating zone technique (Takei, 1978). However, minor 

cracks which developed along the (010) cleavage plane during 

preparation of the crystal faces were found to seriously af feet the 

propagation of certain modes (especially those with propagation vector 



58 

k parallel to [010] , thereby eliminating the possibility of a 

comprehensive study (see also Sumino, 1979). 

It was possible , however, to obtain high quality data for the 

shear-mode with propagation direction [001] and polarization direction 

[100], and thus measure the pressure dependence of the key shear 

modulus, c55 . Accordingly, a pair of parallel (001) faces was cut, 

ground and polished. The density of the virgin (uncracked) crystal 

boule was 4 . 400±0 . 003 g cm-3 which compares favourably with the X-ray 

density of 4.397 g cm-3 (Sumino, 1979). The orientation of the polished 

faces was within 1 ° of (001) and their spacing was 6.375±0.002 mm. 

3.5.2 Data reduction 

The high ultrasonic attenuation of fayalite dictated the use of 

LiNb03 ( 41 ° rotated X-cut) transducers as this shear-mode transducer 

has a higher electromechanical coupling factor and a higher impedance 

than the AC-cut quartz transducers employed in the present studies, 

resulting in a correspondingly higher signal/noise ratio. 

Unfortunately, this gain in signal level is at the expense of mode 

purity (Warner et al ., 1967) and care must be exercised in the 

positioning of the receiver gate to avoid compressional mode 

interference (Jackson et al ., 1981 ). 

The modulus C55 may was calculated from the expression 

C55(P) = p(P)v2(p) = 4p(P)L2(p)/t2(p) (3.28) 

where p , L, v and tare respectively the density, length, wave velocity 

and travel-time. Figure 3.9 illustrates a typical travel-time versus 



59 

frequency plot for this mode of propagation . p(P) and L(P) were 

calculated from Murnaghan expressions of the form 

p/po = (Lo/L)3 = (1 + Ko'P/Ko)11Ko'. ( 3. 29) 

The values of K0 and K; used in this calculation were, for p(P), the 

single-crystal volume incompressibility and its pressure derivative and, 

for L(P), the corresponding quantities for a hypothetical cubic crystal 

with the same linear incompressibility as fayali te parallel to [001 J 

( see Nye, 1957, p. 146, for details) . The necessary K0 were calculated 

' from the elastic moduli reported by Graham et al. (1982), whereas the K0 

were set equal to the pressure derivative of the bulk modulus of 

magnesian olivine presented in Chapter 4 . 

However , variation from this assumed value of Ko'=4 . 87 to that 

(Ko ' =3 . 62) extrapolated from the pressure dependences of the bulk 

moduli of the ferro-magnesian oli vines observed in the present study 

and the studies of Graham and Barsch (1969) and Kumazawa and Anderson 

(1969) (see Table 4 .1 2) does not perturb the calculated pressure 

dependence of the modulus C55 beyond the limits of the quoted errors . 

The pressure dependence of the modulus c55 calculated in this 

manner was found to be 

C55 = 46 . 9 ±0 . 1 GPa 

ac 55 1ar = 1. 76±0. 01 

a2c55/ap2 = -0.14±0.01 GPa-1 (3 . 30) 

Figure 3 . 10 illustrates the behaviour of this modulus over the 3 GPa 

pressure range. 
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Table 3 . 5 The pressure dependence of the modulus C55 of fayalite 

compared with the pressure dependence of the shear moduli of the 

forsteri tic olivine presented in Chapter 4, and the zero pressure 

shear moduli of fayalite determined in previous studies . 

Modulus C .. lJ I GPa 

C44 * 31 . 6 ±0 . 2 

C55 * 46 . 7 ±0 . 1 

c66 * 57 . 3 ±0 . 1 

C44 ,r 32 . 4 ±0 . 1 

C55 ,r 46 . 7 ±0 . 1 

c66 ,r 57 . 3 ±0 . 1 

C55 t 46 . 9 ±0 . 1 

C44 tt 63 . 6 ±0 . 1 

C55 tt 76 . 9 ±0 . 1 

c66 tt 78 . 1 ±0 . 1 

* Graham et al . (1982) 

,r Sumino ( 1979) 

t Present fayalite study 

tt Fo90 . 5 (see Chapter 4) 

3C/3P 

1 . 76±0 . 01 

2 . 23 ±0 . 02 

1 . 73±0 . 01 

2.53±0.02 

-0 . 14±0.01 

-0 . 19 ±0 . 02 

-0 . 15±0 . 01 

-o. 21 ±0 . 01 

The present determinations of the modulus c55 and its pressure 

derivatives are compared in Table 3 . 5 with room pressure measurements 

of the shear moduli of fayalite reported by previous authors, and with 

the zero pressure shear moduli and pressure derivatives for the 

forsteritic olivine from Chapter 4 . The zero pressure determinations of 

the modulus C55 by Sumino et al. (1979) and Graham et al. (1982) agr ee 

within the quoted errors with the present measurement. Among the 

transition-metal silicate olivines, C55 decreases across the sequence 

Ni, Co, Mn, Fe in accord with the variation of C44 among t he 

transition-metal monoxides with the B 1 structure (Bass, 1982); and 

therefore, c55 of fayalite is expected to be less than those obse rved 

for the forsteritic and the transition-metal olivines . 
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3 . 5 . 3 On the absence of shear-mode softening 

The measured first pressure derivative of the modulus C55 of 

fayalite is "normal" in the sense that it is positive and comparable in 

magnitude with 8C55/8P of the forsteritic olivine presented in Chapter 

4 . The second pr essure derivative is also comparable to that of the 

forsteritic olivine , in spite of the much closer proximity (at 

atmospheric pressure) of Fe 2Si04 to the high-pressure boundary of its 

stability field . it is also instructive to compare the value of C55/K 

with corresponding quantities for the alkali halides (Table 3 . 6) . 

At room temperature and pressure, fayalite exhibits a value of 

C55/K (0 . 37) which is comparable with C44/K for the potassium halides 

and therefore suggestive of marginal stability of the olivine phase for 

2 GPa < P < 4 GPa . There is , however , no comparable evidence 'for 

pressure- induced shear-mode softening of fayalite since ac55 ;ap is 

strongly positive, and a(C55/K)/8P is near zero and positive for all 

plausible values of 8K/8P (eg 3 . 6-4.9) . 

Although extrapolation of the high-pressure high-temperature 

olivine~spinel boundary for Fe2Si04 (Akimoto et al . , 1967) suggests an 

equilibrium pressure of -2 GP a at room temperature, it is well known 

that the transformation (unlike the B1~B2 transitions) requires 

significant thermal activation. Thus, although the measurements 

reported here extend beyond the equilibrium boundary without showing 

any clearly anomalous behaviour of the shear modulus c55 , they are 

conducted under conditions which preclude the occurrence of the 

transformation . We note that the need for substantial thermal 

activation may be readily incorporated into a martensitic model for the 

oli v ine~spinel transformation via the temperature dependence of the 
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Peierls stresses acting on dislocations (Poirier , 1981b) . 

Table 3 . 6 Shear-mode softening associated with the B1~B2 phase 

transformation and the comparable calculations for the present 

fayalite crystal and the forsteritic olivine presented in Chapter4 . 

C44 K 3C44/3P 3K/3P C44/K 3(C44/K)/3P Ptr * 

GPa GPa 

RbI 2 . 79 11 . 09 

RbBr 3 . 84 13 . 66 

RbCl 4 . 75 16 . 30 

KI 3 . 73 1 2 . 15 

KBr 5 . 08 14 . 86 

KCl 6 . 33 17. 89 

KF 12 . 81 31 . 1 3 

NaCl 12 . 80 25 . 21 

NaF 28 . 22 48 . 20 

SrO 55 . 87 91 . 21 

Cao 80 . 32 112 . 50 

MgO 155 . 8 162 . 5 

Fe 2Sio4t 

C55 46 . 9 127 . 7 

Fo90 . 5tt 

C44 63 . 6 1 29 . 1 

C55 76 . 9 

c66 78 . 1 

-0 . 49 

- 0.56 

-0 . 61 

-0. 23 

- 0 . 33 

-0 . 41 

-0 . 45 

0 . 37 

0 . 21 

-0 . 21 

0 . 20 

1 . 1 1 

1 • 7 6 

2 . 23 

1 • 7 3 

2 . 53 

5 . 41 0 . 25 

5. 30 0 . 28 

5.35 0 . 29 

5 . 1 0 0 . 31 

5 . 38 0 . 34 

4. 7 8 0 . 35 

5.02 0 . 41 

5 . 26 0 . 51 

5 . 18 0 . 59 

5 . 18 0 . 61 

4 .83 0 . 71 

4 . 1 3 0 . 9 6 

4 . 9** 0 . 37 

3 . 6*** 

4 . 87 0 . 49 

0.60 

0 . 61 

GPa-1 

-0 . 1 7 

-0 . 15 

-0 . 1 3 

- 0 . 15 

-o. 1 5 

-o . 12 

-0 . 081 

-0 . 091 

-0 . 059 

-0.037 

-0 . 029 

-0 . 018 

0.000 

0.003 

-0.001 

-0.009 

-0 . 003 

81~82 transformation pressures at room temperature. 

GPa 

0 . 4 

0 . 4 

0 . 5 

1 . 7 

1 . 7 

1 . 9 

4 

30 

27 

36 

65 

>200 

* 

** pressure dependence assumed from the forsteritic olivine in 

Chapter 4 . 

*** 

t 

tt 

pressure dependence extrapolated from the data presented in Table 

(4 . 12)for the ferro-magnesian olivines. 

the C55 modulus of the present fayalite 

the shear moduli for the forsteritic olivine in Chapter 4. 
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Under these circumstances, it is conceivable that shear-mode 

softening associated with a martensitic olivine~spinel transformation, 

like the transformation itself , might require thermal activation . 

However , Fukizawa and Kinoshita (1982) have recently measured the shear 

wave velocity of polycrystalline fayalite under conditions of 

simultaneous high pressure and high temperature to 5.2 GPa and 700° C, 

at which point the olivine~spinel transition began to occur , without 

observing an anomalous decrease in velocity . There is thus no evidence 

from either the present single- crystal study or the work of Fukizawa 

and Kinoshita on polycrystalline material, for pressure induced shear­

mode softening in fayalite prior to a martensitic olivine~spinel 

transformation . 
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The mineralogy of the upper mantle is dominated by olivine, with 

lesser volumes of orthopyroxene and clinopyroxene and a small volume of 

pyrope-rich garnet . The difficulties in measuring the elastic 

properties of whole rocks of this mineralogy has resulted in the 

development of techniques designed to measure the elastic properties of 

single crystals of mantle minerals at moderate pressure and temperature 

(see Chapter 2). The methods detailed in Chapter 2 have been applied to 

the determination of the pressure dependence of the elastic moduli of 

single crystals of olivine, garnet and orthopyroxene. 
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4 . 2 Garnet 

4.2 . 1 Specimen description 

A large natural single-crystal of pyrope-rich garnet (space group 

Ia3d) of composition (Mgo_5 2Feo.35Cao.02) 3A1 2Si3012 was made available 

by Prof . E. K. Graham of Pennsylvania State University. This gem quality 

crystal was blood-red in colour and free from inclusions . The crystal 

had been prepared with parallel (±0 . 5°) pairs of (100) and (011) faces 

(see Figure 4.1 ). The density of the crystal was determined by 

immersion in ethanol to be 3.839±0.003 g cm-3. Previous determinations 

of the density of this crystal by immersion in water have been quoted 

as 3 . 76±0 . 01 g cm-3 (Isaak and Graham, 1976) and 3.726±0.002 g cm-3 

(Bonczar et al ., 1977). These low densities were queried by Leitner et 

al . (1980) who calculated a density of 3.847 g cm-3 from the chemical 

composition of the crystal. This calculated density is in good 

agreement with the present measurement . 

The three modes of propagation required to measure the elastic 

constants C11 , (C11-C12)/2 and C44 (see Figure 4 . 1) were measured on 

this crystal . Figure 4.2 illustrates a typical set of travel-time data 

from the comparative one- and two-transducer experiments for these 

modes over the 3 GPa pressure range. 

4.2 . 2 Data reduction 

The elastic constants of this garnet were calculated from the 

measured travel-times using Cook's method for a crystal of cubic 

symmetry ( see Chapter 2) to correct for the effects of hydrostatic 

pressure on length and density . The specific heat a nd the coefficient 
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Figure 4 . 1 Propagation and polarization directions for the elastic 

moduli of garnet . 
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of garnet . 

Phase comparison data at 3.00 GPa for the shear mode C44(5) 
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of linear thermal expansion required for this calculation were 

determined by combining the molar values for the end-members pyrope , 

almandine and grossular according to their mole fractions in the solid 

solution . The specific heat was calculated to be 

( 4 . 1 ) 

from Kieffer (1980), and the linear thermal expansion coefficient was 

taken to be 

a. = (4.2) 

from Skinner (1956) . The correction factor for pressure-induced changes 

in length and density (calculated from Eqn . 2.41) was calculated to be 

approximately 

s = 1 + 1 . 94x1o - 3 P - 2.55x1o-5 p2 + 8 . 96x10-7 p3, ( 4 • 3) 

for pressure measured in GP a . The resulting modulus versus pressure 

behaviour observed over the 3 GPa range is illustrated in Figures 4.3 

and 4 . 4 . The zero pressure elastic stiffnesses, together with their 

first and second pressure derivatives are presented in Table 4 . 1 . It is 

evident that this crystal is only mildly 

C44==(C11-c12)/2, and also c 11 ==(c 11 +c 12+2C44)/2, 

anisotropic , with 

throughout the 3 GPa 

pressure range . The elastic compliances calculated from the measured 

stiffnesses, together with their first and second pr essure derivatives 

are tabulated in Table 4.2. 
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Table 4 . 1 The measured zero-pressure elastic moduli of the pyrope-rich 

garnet , together with the first and second pressure derivatives of 

the moduli calculated at zero-pressure . 

Modulus 

C1 1 

(C11-C12)/2 

C44 

C12 

K 

C · · /GP a lJ 

301 . 2 ±0 . 3 

95 . 7 ±0 . 2 

94 . 3 ±0 . 2 

1 09 . 8 ±0 . 4 

1 73 . 6 ±0 . 4 

ac;ap 

7 . 1 4 ±0 . 05 -0 . 45 ±0 . 04 

1 . 64 ±0 . 01 -o . 1 0 ±0 . 01 

1 . 56 ±0 . 02 -0 .1 3±0 . 01 

3 . 88±0 . 06 -o . 26 ±0 . 04 

4 . 9 6 ±0 . 06 -0 . 31±0 . 04 

Table 4 . 2 The zero- pressure elastic compliances for the present pyrope­

rich garnet , together with the first and second pressure 

derivatives calculated at zero-pressure . 

Modulus 

S 11 

s .. lJ 
I ( 1 o-3 GP a -1 ) 

4. 1 2 ±0. 03 

10 . 60 ±0 . 08 

-1 . 10±0 . 01 

as;ap 
/(10-3 GPa-2) 

-0 . 077±0 . 003 

- 0 . 1 7 4 ±0 . 0 0 6 

0 . 0 1 1 ±0 . 0 0 1 

a2s;ap2 
I ( 1 0 - 3 GP a - 3 ) 

0.003±0.001 

0 . 0 0 9 ±0 . 0 0 3 

-0 . 001±0 . 001 

The elastic constants of this crystal have previously been measured 

at room pressure by a number of authors. The preliminary measurements 

of Wang and Huang (1975) and Isaak and Graham (1976) have been 

superseded by the more extensive study of Bonczar et al . (1977) who 

measured the elastic stiffnesses of this garnet to ~1 GPa , by the pulse 

superposit i on technique . In this study however , the calculations were 
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based upon a density measurement which has since been found to be 

incorrect . The room pressure moduli and the pressure derivatives 

calculated by Bonczar et al . ( 1977) have been recalculated using the 

present density measurment and are presented in Table 4 . 3. 

Table 4 . 3 The zero - pressure moduli for the pyrope - rich garnet together 

with the first pressure derivatives of Bonczar et al . (1977), 

recalculated using the density determined in the present study . 

Modulus 

C 11 

cc 11 -c 12 )12 

C44 

C12 

K 

C · · /GP a lJ 

301 . 1 ±0. 4 

95 . 8 ±0 . 5 

94 . 4 ±0 . 1 

109 . 4±0 . 5 

1 73 . 3 ±0 . 4 

These corrected values of the 

3C/3P 

7 . 0±0. 2 

1 . 6 ±0 . 1 

1 . 5 ±0 . 1 

3 . 8 ±0 . 2 

4 . 9 ±0 . 2 

elastic moduli and the first 

pressure derivatives determined for this crystal by Bonczar et al. 

(1977) at low pressures , agree within the errors quoted with the 

corresponding quantities measured in the present study . The importance 

of the second pressure derivatives determined in the present study is 

illustrated by the 18- 25% decrease in the observed pressure dependence 

of the elastic moduli over the 3 GPa pressure range. 

4 . 2 . 3 Elasticity and crystal chemistry 

The general structural formula for silicate garnets is A3B2Si3012 · 

Extensive solid solutions occur in both the A and B sites, but only 

limited solid solutions occur between these two sites. The garnets can 

• 
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be divided into two groups by the occupancy of these sites (Winchell, 

1933). The pyralspite (pyrope-almandine-spessartine) series has either 

Fe+2, Mg+2, or Mn+2 cations in the A site, with an A1+3 cation in the B 

site. The second group is the ugrandite (uvarovite-grossular-andradite) 

series in which the A site is occupied by a ca+2 cation while the B 

site is occupied by either a cr+3, A1+3, or Fe+3 cation. 

Of particular geophysical interest is the elasticity of the 

pyrope-almandine solid solution. However, systematic variation of 

elastic moduli associated with Fe-Mg substitution tends to be obscured 

to some extent by varying admixtures of the other end-members in the 

natural and synthetic garnet single crystals whose elastic properties 

have been measured. Simple elasticity-density systematics do not 

adequately describe the elasticity of these complex sol id solutions. 

More rewarding is a multivariate analysis of the measured elasticities 

of the various solid solution members to calculate the elastic 

properties of the end-members of the series. 

There have been a number of analyses of the end-member elasticities 

using this multi variate approach. The single crystals of garnet whose 

elastic properties have been measured range across both the pyralspite 

and ugrandite solid solutions. It is therefore necessary to invert the 

data for the elastic properties of the six end-member garnets of these 

solid solution series. Isaak and Graham (1976), Babuska et al. (1978) 

and Leitner et al. (1980) have assumed the elastic moduli Cij of a 

solid solution to be related linearly to the mole fraction of the 

constituent end-members . Thus, the elastic modulus of a member of a 

solid solution can be given by 

n 
(Cij )ss = I Xk (Cij )k + e 

k=1 
( 4 • 4) 
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where (Cij )ss is the measured modulus of the solid solution member, 

(Cij)k is the same modulus for the kth end-member, Xk is the mole 

fraction of the kth component in the solid solution, and 'e' is a 

normally distributed error term with a mean of zero. The results of 

these analyses are listed in Table 4 . 4. Isaak and Graham (1976) 

constrained their calculations with the measured elastic properties of 

seven pyralspite garnets, while Babuska et al. (1978) used a data base 

comprising 23 garnets. Leitner et al. (1980) added a synthetic pyrope 

to the range of garnet compositions available for the calculation of 

the end-member elasticities . In this latter study both the elastic 

stiffnesses and the elastic compliances of the end-member compositions 

were calculated . No preference was shown for either method however, as 

they resulted in the calculation of similar end-member elasticities. 

Isaak and Graham (1976) found an increase of -8% in the oulk 

modulus with increasing Fe content between the pyrope and almandine 

end-members. However, Babuska et al. ( 1978) and Leitner et al. ( 1980) 

with the end-member elasticities constrained by extended data sets 

found only -2% increase in the bulk modulus. Table 4.4 illustrates the 

effects of Fe (or Mn) substition for Mg on the elastic moduli of pyrope 

garnet. The moduli C11, C' and C44 all increase by 5-11% with 

increasing of Fe (or Mn) content, while the modulus C12 decreases by 

-6% with increasing Fe (or Mn) content. 
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Table 4 . 4 Least-squares solutions for end-member elastic moduli (GPa) 

(after Leitner et al. , 1980) where the modulus C'=(C11-C1 2)/2 . 

* 

End member Sol* 

Pyrope 1 

Mg3Al2Si3012 2 

3 

4 

5 

Almandine 1 

Fe3Al2Si3012 2 

3 

4 

5 

Spessartine 1 

Mn3Al2Si3012 2 

3 

4 

5 

Grossular 1 

Ca3Al2Si3012 2 

3 

4 

Solutions 1 

K 

175±1 

175±2 

1 73±1 

166±1 

17 4±1 

176±1 

177±2 

17 8±1 

180±1 

1 78±1 

176±2 

175±3 

17 4 ±1 

172±1 

175 ±1 

169±2 

160±3 

169 ±1 

170±1 

C 11 

294±1 

294±1 

297 ±1 

287 ±1 

309±1 

312±2 

309±1 

311 ± 1 

304±1 

303±1 

302±1 

301 ±1 

31 7 ±1 

297 ±1 

31 7 ±1 

319 ±1 

C' 

89±1 

89±1 

93±1 

91 ±1 

100±1 

101 ±1 

98±1 

98±1 

96±1 

96±1 

96±1 

97±1 

111 ± 1 

103±2 

111 ± 1 

112 ±3 

(averaging of stiffnesses) 

11 6 ± 1 

11 6 ± 1 

111 ± 1 

105 ±1 

109 ±1 

109±1 

11 3 ± 1 

115 ±1 

112 ± 1 

111 ± 1 

11 0 ±1 

107 ±1 

95±1 

91 ±1 

95±1 

95±1 

91 ±1 

91 ±1 

92±1 

92±1 

97±1 

97±1 

96±1 

93±1 

94±1 

93±1 

94±1 

96±1 

102±1 

94±2 

102±1 

102±1 

and 2 (averaging of 

compliances) of Leitner et al. (1980) based on weighted pyrope data. 

Solution 3 by Babuska et al .( 1978) . Solution 4 by Isaak and Graham 

(1976) . Solution 5 of Leitner et al . omits the data of Bonczar et al. 

( 1977) . 

The end-member elasticities presented in Table 4.4 can now be used 

to calculate the zero pressure elastic properties of the present 

pyrope-almandine-grossular sol id solution . Table 4 . 5 shows that the 
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elasticities calculated from the small data set of Isaak and Graham 

(1976) result in a reasonable approximation to the measured elastic 

moduli of this pyrope-rich garnet, while Babuska et al. (1978) achieve 

a closer approximation to the elastic properties of the present garnet. 

Solutions 1 and 2 for the end-member elasticities (Leitner et al., 

1980) are only marginally affected by the inclusion of the Bonczar et 

al. (1977) data which were based on an erroneous density determination. 

This is a consequence of the weight given to the Brillouin scattering 

data for the pyrope end-member. These solutions, and solution 5 for the 

bulk moduli only, yield calculated moduli for the crystal of the 

present study which are in good agreement with the observed values. 

Table 4. 5 The zero pressure elastic moduli measured in the present 

study compared with the values predicted by the various systematic 

treatments. 

Solution* K /GPa C11 /GPa C12 /GPa C44 /GPa C' /GP a 

present 1 73. 6±0 . 4 301 . 2 ±0 . 2 1 09. 8 ±0. 4 94. 3 ±0 . 1 95. 7 ±0. 1 

study 

1 17 5. 2 ±0 . 8 300 ±1 11 3 ±2 93 . 4 ±0 . 7 93. 1 ±0. 7 

2 175 ±1 301 ±2 11 3 ±2 93 ±2 93. 6 ±0. 7 

3 174. 7 ±0 . 7 302 ±1 11 1 ±2 93. 6 ±0 . 7 95. 2 ±0. 7 

4 1 71 . 1 ±0 . 7 296 ±1 108 ±2 92 . 6 ±0 . 7 93 . 9 ±0 . 7 

5 1 75 . 5 ±0 . 8 

* Solutions 1-5 have the same significance as in Table 4.4. 

The anomaly which previously existed between the elastic moduli 

predicted for this garnet by the systematics of Leitner et al . (1980) 

and the elastic moduli measured by Bonczar et al. ( 1977) has been 
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removed by the present measurements. This linear addition of the 

elastic properties of the end-members of the solid solution appears to 

give reliable calculations of the solid solution elasticities, 

especially when a large pool of elasticity data is used to constrain 

the calculations (eg Leitner et al., 1980;Babuska et al., 1978). 

Leitner et al . (1980) have calculated the end-member elasticities 

by summation of both the elastic compliances and the elastic 

stiffnesses of the solid solution garnets. There is no significant 

difference between the moduli calculated for the pyralspi tes using 

these two methods . The predictions for the end-member ugrandites 

however depends upon which equation is used. The calculations for the 

elasticity of the present pyrope-almandine garnet is almost independent 

of the grossular component , and there is no reason to prefer one method 

to the other for the calculation of the elastic properties of the 

present garnet . 

The first pressure derivatives of the pyralspite garnets (see Table 

4 . 6) at zero pressure, like the moduli themselves, are not strongly 

affected by changes in the Mg-Fe-Mn composition, with only a slight 

trend towards lower values of the pressure derivatives appearing with 

increasing cation radius . The addition of large Ca cations to the 

structure however tends to further decrease the values of the 

derivatives of the bulk modulus and the moduli c11 and C44 while 

increasing the derivative of the modulus C12· 
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Table 4 . 6 The first pressure derivatives together with the lattice 

parameters of a number of pyralspite garnets . 

ac1aP Garnet #1 Garnet #2 Garnet #3 Garnet #4 Garnet #5 

a ci) 11 . 4 8 11 . 53 11 . 55 11 . 57 11 . 8 4 

K 4. 96 5 . 43 4 . 95 4.59 4 . 25 

C 11 7 . 1 4 7 . 48 7 . 1 5 6 . 69 5 . 1 0 

c,2 3 . 88 4.41 3 . 85 3 . 54 3 . 83 

C44 1 . 56 1 . 31 1 . 30 1 . 26 0 . 52 

#1 (Mgo . 62Feo . 36Cao . 02)3Al2Si3012 present study 

#2 (Mgo . 21Feo . 76Cao . 03)3Al2Si3012 Soga (1967) 

#3 (Feo . 46Mno . 54)3Al2Si3012 Wang and Simmons (1974) 

#4 (Feo . 52Mno . 46Cao . 01 )3Al2Si3012 Isaak and Graham (1976) 

#5 (Feo . 08Mno . 07Cao . 85)3Al2Si3012 ·Halleck ( 1973) 

Tables 4 . 4 and 4 . 6 illustrate the effects of chemical composition 

on the elastic moduli of garnet . The variations in garnet chemistry 

across the pyralspite series do not substantially affect the magnitudes 

of the elastic moduli or their pressure derivatives . This indicates 

that the elasticity of the pyralspite garnets is controlled by the Al-0 

and Si-0 bonds and the resultant ·coordination polyhedra, with the atom 

in the 8-fold coordination site having little effect on the elastic 

properties of the garnet lattice . 



75 

4.3 Olivine 

4.3 . 1 Specimen description 

The nine independent elastic constants of single-crystal olivine 

(Mg , Fe)2Si04 (space group Pbnm) were determined over the 3 GPa pressure 

range . It was necessary to use four crystals of olivine in order to 

measure the travel-times of the twelve modes of wave propagation 

required in the calculation of the elastic constants. Four large 

crystals of San Carlos olivine were kindly provided by Prof . D.L . 

Kohlstedt of Cornell University . The presence of low-angle tilt and 

twist boundaries within these crystals (Ricoult and Kohlstedt, 1983) 

results in a small uncertainty in each wave propagation direction. The 

lattice rotations across such boundaries are random rather than 

cumulative with at most a 2° mismatch between grains, and a total 

misorientation across each crystal of less than 3° . Calculations based 

on the method of Waterman (1957) indicate that a crystal misorientation 

of 2° would perturb the measured elastic wave velocities by less than 

0. 1 % • 

The four olivine crystals of essentially the same composition (see 

Table 4.7) were prepared with pairs of parallel (±0.5°) faces oriented 

to enable the measurement of the twelve modes necessary for the 

calculation of the pressure dependence of the nine independent elastic 

constants . The six on-diagonal moduli were measured on crystal #1 (see 

Figure 4 . 5) which was a magnificent specimen with no visible flaws or 

inclusions , cut from a large single crystal of San Carlos olivine. The 

three off-diagonal moduli were measured on crystals #2 - #4 . Crystals #2 

and #3 were both long rectangular prisms, while crystal #4 was a small 

hexagonal prism (see Figure 4 . 6) . These three crystals all contained 
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minor inclusions and cracks; however, each had a region of gem quality 

through which the ultrasonic signal could be propagated . Figure 4. 7 

illustrates typical travel- time versus frequency plots for these 

crystals over the 3 GPa pressure range . 

Table 4 . 7 Microprobe analyses and densities of the four single - crystals 

of San Carlos olivine . 

element Crystal 111 Crystal 112 Crystal 113 Crystal 114 

Si02 40 . 97 41 . 20 41 . 1 9 40 . 95 

MgO 49 . 31 49 . 26 49 . 24 49 . 1 5 

FeO 8 . 93 8. 90 8 . 84 8 . 84 

NiO 0 . 36 0 . 40 0 . 40 0 . 40 

MnO 0 . 1 2 0 . 1 5 0. 1 4 0.00 

Mg/(Mg+Fe) 90 . 5 90 . 8 90 . 6 90 . 6 

Density 3 . 325 3 . 368 3 . 347 3 . 349 

g cm-3 

4 . 3 . 2 Data reduction 

The elastic moduli for modes 111-1112 (see Eqns . 2 . 45-2.52) were 

calculated from the measured travel-times using Cook's method for a 

crystal of orthorhombic symmetry (see Chapter 2) . The specific heat cp 

was calculated by combining the specific heats for the end-members 

forsterite (118 . 6 J mol-1 K-1, Robie et al., 1982b) and fayalite (131.9 

J mol-1 K-1, Robie et al . , 1982a) to give the specific heat 

( 4 • 5) 
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the shear modulus C4 4 (mode 11 ) and the quasi -shear modulus K1 3 of 

olivine at 1 . 50 GPa, 2 . 30 GPa and 0 . 90 GPa respectively . 
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for an Fogo . 5 composition. The coefficients of linear thermal expansion 

were taken to be 

a1 = 6.5x1o-6 K-1 

a2 = 9 . 7x1o-6 K-1 

a3 = 9 . 7x1o-6 K-1 ( 4 . 6) 

from Suzuki (1975) , for an Fo92 olivine. For the purpose of calculating 

the length corrections due to the applied hydrostatic pressure, all 

four crystals were assumed t o have the same density and composition . 

The density of crystal #1 was used in these calculations as nine of the 

twelve modes involved were measured on this crystal. 

The length correction factors calculated from Eqn . 2.56 are : 

s1 = 1 + 1.79x1o-3 P - 3 . 15x1o-5 p2 + 9 . 85x1o-7 p3 

s2 = 1 + 3 . 68x10-3 P - 6 . 67x1o-5 p2 + 2.11x1o-6 p3 

s3 = 1 + 2 . 45x1o-3 P - 3.95x1o-5 p2 + 1.69x1o-6 p3 

for lengths in the a , b , and c crystallographic directions, where 

i = 1,2,3. 

( 4 • 7) 

( 4 • 8) 

These values of the coefficients of axial strains due to hydrostatic 

pressure can now be used in the calculation of the isothermal pressure 

derivatives of the adiabatic elastic constants of San Carlos olivine. 

The calculated moduli for each of the 12 modes at room pressure, 

with the first and second pressure derivatives of the moduli also 

calculated at room pressure are tabulated in Table 4. 8 . The moduli 
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(Cij, i*j) calculated from the quasi-compressional and quasi-shear 

modes Kij are also tabulated. Figures 4 . 8-4 .11 illustrate the behaviour 

of the moduli with increasing pressure. 

Table 4.8 The zero-pressure elastic moduli of Fo90. 5 olivine with the 

first and second pressure-derivatives calculated at zero-pressure. 

Crystal/Mode Modulus Cij /Gpa 

1 / 1 C 11 320. 2 ±0. 4 7. 40 ±0. 06 -0. 40 ±0. 04 

1 / 2 C22 19 5. 9 ±0. 3 5. 53±0. 04 -0. 20 ±0. 03 

1 / 3 C33 233. 7 ±0. 3 6. 08±0. O 4 -0.36±0.04 

1 / 4 C44 6 3. 5±0. 1 2. 20 ±0. 03 -0. 19 ±0. 02 

1 / 11 C44 6 3. 6±0. 1 2.26±0.03 -0. 19±0.01 

1 / 5 C55 77.5±0.2 1 . 71 ±0. 02 -0.15±0.01 

1/10 C55 76. 4 ±0. 2 1 • 7 4 ±0. 0 2 -0. 15 ±0. 01 

1 / 6 c66 78. 1 ±0. 1 2.67±0.05 -0.21±0.02 

1/12 c66 7 8. 0±0. 1 2 . 39±0. 05 -0. 21 ±0. 01 

31 7(S) K12 88. 8 ±0. 1 1 . 24±0 . 01 -o. 05±0.01 

2/ 8(S) K13 1 00. 1 ±0 . 2 1 . 45±0 .01 -0. 1 2 ±0. 01 

4/ 9 (P) K23 21 0. 1 ±0. 4 7.28±0.06 -0. 48 ±0 . 04 

7+ 6 C12 67. 8 ±0 . 3 4 . 18 ±0 . 04 -0.21±0.04 

7+12 C12 67. 8 ±0 . 3 4. 1 5 ±0 . 04 -0.21±0.04 

9+ 5 C13 70 . 6±0.3 3. 89 ±0 . 04 -0. 15 ±0 . 04 

9+10 C13 70 . 6 ±0 . 3 3. 89 ±0 . 04 -0. 1 6 ±0. 0 4 

8+ 4 C23 77.0±0.4 4 . 43±0 . 07 -0.28±0 . 07 

8+ 11 C23 77 . 0±0. 4 4 .32 ±0 . 07 -o. 2 9±0 . 07 
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The cross-check modes for C44, C55 and C66 show sli ght 

disagreements between the measured pressure dependence of the elastic 

moduli. In all cases, however, the two sets of travel-time versus 

frequency data are of equally high quality. The final tabulated values 

for these moduli are the means of their respective measured values. The 

effect of the differences in the cross-check modes can be seen to have 

a minor influence in the calculation of the Cij ( i*j) modes. The nine 

independent elastic constants of San Carlos olivine are tabulated in 

Table 4.9. The importance of the second pressure derivatives determined 

in the present study is illustrated by the 10-25% reduction in the 

pressure dependence of the elastic moduli over the 3 GPa pressure 

range. The elastic compliances for this olivine together with their 

first and second pressure derivatives are tabulated in Table 4 .10. 

Table 4 . 9 The nine independent elastic constants of Fo90 _5 olivine with 

the first and second pressure-derivatives calculated at zero­

pressure. 

Modulus 

C 11 

C22 

C33 

C44 

C55 

c66 

C12 

C13 

C23 

C · · /GP a lJ 

320. 2 ±0 . 4 

19 5. 9 ±0 . 3 

233 . 7 ±0 . 3 

63. 6 ±0. 1 

76. 9 ±0. 2 

7 8. 1 ±0 . 1 

67 . 8 ±0 . 3 

70 . 6 ±0 . 3 

77 . 0±0 . 4 

7. 40±0 . 06 -o. 40 ±0 . 04 

5 . 53±0. 04 -0. 20 ±0. 03 

6. 08 ±0 . 04 -o. 36 ±0. 04 

2 . 23 ±0 . 03 -o. 1 9 ±0. 02 

1 . 7 3±0. 02 -0.15 ±0 .01 

2. 53±0. 07 -o. 21 ±0 .01 

4. 1 7 ±0 . 04 -0.21±0.04 

3 . 89 ±0. 04 -0. 16±0.04 

4 . 38±0. 07 -0.29±0.07 
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Table 4. 10 The zero-pressure elastic compliances of Fo90 . 5 olivine with 

the first aqd second pressure derivatives calculated at zero­

pressure . 

Modulus S·. lJ 
/(10-3 GPa-1) 

S11 3 . 48±0 . 05 

S22 6 . 1 0 ±0 . 08 

S33 5 . 08 ±0 . 08 

S44 15 . 7 ±0 . 2 

S55 1 3 . 0 ±0 . 3 

S66 12 . 8 ±0 . 2 

S12 -0 . 91 ±0 . 01 

S13 -0 . 75±0.01 

S23 -1 . 7 4 ±0 . 02 

as;ap 
/(10-3 GPa-2) 

-0 . 057±0 . 003 

- 0 . 1 0 3 ±0 . 0 0 5 

-0.081±0 . 004 

-0 . 54 ±0. 04 

- 0 . 29 ±0 . 03 

- 0 . 41 ±0 . 05 

- 0 . 0 1 2 ±0 . 0 0 1 

-0 . 000±0.001 

-0 . 016±0 . 001 

4 . 3 . 3 Elasticity and crystal chemistry 

a2s;ap2 
/(10-3 GPa-3) 

0 . 0 0 3 ±0 . 0 0 1 

0 . 0 0 3 ±0 . 0 0 1 

0 . 0 0 3 ±0 . 0 0 1 

0 . 0 3 4 ±0 . 0 0 1 

0 . 0 1 7 ±0 . 0 0 4 

0 . 025±0.007 

0 . 0 1 1 ±0 . 0 0 3 

0.001±0.001 

-0 . 003±0.001 

The elastic constants of single crystals of olivine and the 

end-members forsterite and fayalite have been measured previously (see 

Table 4 . 11) . The room pressure elastic constants of single-crystal 

natural olivine (Fo8 7 . 8) have been determined by Brillouin scattering 

( Yeganeh-Haeri and Vaughan , 1984) , while the room pressure elastic 

constants of single-crystal fayalite (Fe2Si04) have been determined by 

the rectangular parallelopiped resonance method (Sumino, 1979) and the 

pulse superposition method (Graham et al., 1982) . 

Kumazawa and Anderson (1969) measured the elastic constants of both 
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a natural olivine (Fo92.7) , and a synthetic forsterite (see Tables . 11 

and 4 . 12) . The elastic constants were determined over a 0 . 2 GPa 

pressure range using the pulse superposition method o ::-:easure the 

repetition frequencies required to bring successi e echoes in o phase . 

The elastic constants were calculated from the relationship 

( 4 • 9 ) 

where Fi is the inverse of the two way travel-time. The measured 

crystal dimensions , dens ity and travel-times, and the calculated 

elastic moduli were assumed to behave linearly with pressure , resulting 

in the linear pressure dependence of the elastic constant 

for 

C =Co+ Co(2b - 28j - B) 

Co= 4 PO (Lo)2 (Fio)2 

(4 . 10) 

(4 :11) 

where the subscript ' 0 ' refers to the room pressure value, Sj is the 

isothermal linear compressibility, B is the isothermal volume 

compressibility , and 

(4 .12) 

The elastic constants of a synthetic forsterite have also been 

measured by Graham and Barsch ( 1969) ( see Tables 4 . 11 and 4 . 12). Once 

again a pulse superposition technique was used to determine the 

repetition delay times . These delay times measured over a 1 GPa 

pressure range were found to have a linear pressure dependence . The 

pressure dependence of the elastic moduli was calculated using an 

algorithm developed by Thurston and Brugger (1964) . This involved 

calculating a natural wave-velocity for the crystal at pressure using 
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the zero pressure length and density measurements . This natural 

velocity has a pressure dependence 

To - 1 
= ( ) (4.13) 

c3P p 

where Tr is the measured repetition delay time (two way travel-time) at 

pressure, and To is the measured repetition delay time at room 

pressure . This pressure derivative of the natural velocity was then 

used to calculate the pressure derivative of the real velocity and 

hence the derivative of the elastic modulus; 

(4.14) 

where the sTijkl are the isothermal elastic compliances, and the Ni are 

the direction cosines for the direction of propagation of the wave . 

This procedure adds correction terms for the effect of pressure on 

length and density to the measured velocity, in contrast to the 

algorithm develped by Cook (1957) and used in the present analysis in 

which the correct ion terms are applied to the measured travel-times, 

which are then used to calculate the velocities. 

The close ageement between the zero-pressure elastic moduli 

determined by Kumazawa and Anderson ( 19 69) for an Fo92. 7 olivine and 

the present study is illustrated in Tables 4.11 and 4.12. It is 

difficult to compare the first pressure derivatives between these two 

studies as the second pressure derivatives of the present study allow 

better resolution of the pressure dependences of the elastic moduli. 

However, the magnitudes of the first pressure derivatives observed in 
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both studies are in general accord. 

The elastic constants of a synthetic forsterite have been 

determined to 4 GPa (see Tables 4.11 and 4.12) by Brillouin scattering 

in a gasketted diamond anvil cell (Bassett et al., 1982). The 

apparently different pressure derivatives obtained in this way ( see 

Table 4 .12) are of significantly lower accuracy than the ultrasonic 

determinations. 

Table 4.11 The zero-pressure elastic moduli of a number of olivines of 

the forsterite-fayalite solid solution series. 

Modulus Fo Fo Fo Fo92.7 Fo90.5 Fo37.8 Fa Fa 

t ** ,r t tt * ,r ,r *** 

C 11 328.4 329 331 323.7 320.2 315 267.4 267 

C22 199 . 8 200 . 5 191 197.6 195.9 194 159 . 8 174 

C33 235.3 236.3 230 235. 1 233.7 237 220 . 9 239 

C44 65.9 67.2 65.7 64.6 63.6 64 31 . 6 32 . 4 

C55 81 . 2 81 . 4 83.8 78. 1 76.9 81 46.7 46.7 

c66 80.9 81 . 1 82.4 79.0 7 8 . 1 72 57.3 57.3 

C12 63.9 66.3 66.4 67.8 73 93 95 

C13 68.8 68.4 71 . 6 70.6 67 82 99 

C23 73.8 72.8 75.6 77.0 80 87 98 

t Kumazawa and Anderson ( 19 69) 
tt Present study 

* Yeganeh-Haeri and Vaughan ( 1 9 84 ) 

** Graham and Barsch ( 1969) 
,r Bassett et al ( 1 9 82) 
,r ,1 Graham et al . ( 1982) 

*** Sumino (1979) 
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Table 4 . 12 The first pressure derivatives of a number of single crystal 

fo r steritic olivines , calculated at zero pressure . 

ac;ap Fa** 

c,, 8 . 47 8 . 32 

C22 6. 56 5 . 93 

C33 6. 37 6 . 21 

C44 2 . 1 2 2 . 12 

C55 1 . 6 6 1 . 6 5 

c66 2 . 37 2 . 32 

C12 4 . 67 4 . 30 

C13 4 . 84 4 . 23 

C23 4 . 11 3 . 53 

t Kumazawa and Anderson (1969) 

** Graham and Barsch ( 1969) 

,1 Bassett et al . (1982) 

tt Present study 

Fo92 . 7 t Fo90 . 5tt 

9 . 83 7. 98 7. 40 

1. 03 6.37 5 . 53 

7 . 55 6 . 38 6. 08 

1 . 72 2. 1 7 2.23 

1 . 50 1 . 6 4 1 . 7 3 

2.20 2.31 2.53 

4 . 7 4 4 . 1 7 

4.48 3.89 

3 . 76 4.38 

Figures 4 . 12- 4 . 14 illustrate the effect of increasing Fe content in 

the forsterite end-member . There are some inconsistencies in the 

measured elastic constants of both the forsterite and fayalite 

end-members . In the case of forsterite , the agreement between the 

measurements of Kumazawa and Anderson ( 1969) and Graham and Barsch 

(1969) is taken to indicate the correct values of the elastic moduli. 

The substitution of Fe for Mg in olivine has the effect of reducing 

the magnitude of the compressional and shear moduli while increasing 

the magnitude of the off-diagonal moduli. The measurement of the 

modulus C33 by Graham et al . ( 1982) is preferred to that of Sumino 

(1979) as it is difficult to reconcile Sumino's high values of C33 with 
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the trends observed for the other compressional moduli. 

Throughout the forsterite-fayalite solid solution series the 

relative magnitudes of the on-diagonal moduli remain constant with 

and 

C11 > C33 > C22 

C66 == C55 > C44 

(4.15) 

(4 . 16) 

with the modulus C33 being the least sensitive to addition of Fe to the 

lattice. The observed off-diagonal moduli show a more complex behaviour 

between the various studies, although a general trend 

(4 . 17) 

is observed among the ultrasonic measurements. The first pressure 

derivatives of a number of forsteritic olivines have also been measured 

(see Table 4.12). Here, the small range of compositions over which the 

pressure dependence of the moduli has been determined together with the 

variations in measurements between studies creates difficulties in the 

observation of consistent trends with increasing Fe content . However, 

the relative magnitudes of the pressure derivatives remains constant , 

with 

and 

ac 11 ;ap > ac 331aP == ac 221aP 

ac 661aP > ac 441aP > ac 551aP; 

(4 . 18) 

(4 . 19) 

with the off-diagonal pressure-derivatives showing no consistent trends 

in the relative magnitudes. The maintenance of the same relative 

magnitudes of the elastic moduli of these olivines with changing 

crystal chemistry indicates that these relative magnitudes are 

controlled mainly by the crystal structure, with substitution of the 
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octahedrally coordinated atoms (Mg,Fe) causing only minor variations in 

the lattice elasticity . This observation forms the basis of structural 

interpretations of the major trends in olivine elasticity (Bass et al ., 

1984 ; Au and Weidner , 1985;see Chapter 5) 

• 
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4 . 4 Orthopyroxene 

4 . 4 . 1 Specimen description 

Four single crystals of orthopyroxene (see Figure 4.15) (space 

group Pbca) were required in order to measure the twelve modes of 

propagation necessary for the calculation of the nine independent 

elastic constants of a crystal of orthorhombic symmetry . 

All four crystals were natural specimens of unknown provenance. In 

their uncut state they appeared badly weathered and cracked. However, 

when the outer 1-2 mm of material was removed, each crystal revealed an 

interior of gem quality material suitable for our use. Each crystal was 

deep yellow-brown in colour and slightly pleochroi c. These pyroxenes 

were bronzites with Mg/(Mg+Fe) ratios of 78-82.5 (see Table 4.13). One 

crystal was cut in half and examined for possible zonation in crystal 

growth by comparing electron-m icroprobe analyses obtained at O. 5 mm 

intervals along a traverse across the cut face of the crystal. No 

change (within the error of the analyses) in the composition was 

observed. 

Irregular semi-coherent needles of amphibole (see Figure 4 .1 6a) 

were observed by electron-microscopy to be present in these crystals -

comprising -0.1 vol% of each crystal . These needles of hornblende are 

-0 . 2 µmin width (see Figure 4.16b), elongate parallel to [001] in the 

orthopyroxene lattice, and apparently responsible for [ 001 ] 

interference fringes observed when the crystals are viewed along [010]. 

These needles are too small to interact directly with the elastic waves 

of this study (wavelength -0 .1 mm) although scattering from larger 

heterogeneities associated with the strain fields of the amphibole 
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Figure 4. 16a Election diffraction pattern of orthopyroxene , with the 

diffraction pattern of the twinned amphibole superimposed on it . 

(Courtesey of J . Fitz Gerald) 

Figure 4. 16b Tw inned amphibole needles -0 . 2µm in width , elongate 

parallel to [001] of or thopyroxene . (1µm = 6cm) 
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inclusions may account for the observation of relatively high apparent 

attenuation at the third harmonic frequencies ( - 60 MHz) . 

Table 4 . 1 3 Electron microprobe analyses and densities of the four 

bronzites . 

element Crystal #1 Crystal #2 Crystal 113 Crystal #4 

Si02 56 . 1 0 55 . 40 55 . 41 55 . 17 

MgO 30 . 88 29 . 93 28 . 80 29 . 24 

FeO 11 . 68 13 . 06 14 . 54 13 . 69 

Al203 0 . 90 1 . 00 1 . 02 1 . 20 

MnO 0 . 1 7 0 . 20 0 . 12 0 . 24 

Cao 0 . 1 2 0 . 30 0 . 1 7 0 . 1 7 

Mg/(Mg+Fe) 82 . 7 80 . 2 78 . 0 79 . 4 

Density 3 . 366 3 . 369 3 . 395 3 . 362 

g cm-3 

The crystal faces were oriented to within O. 5 ° using the Laue 

back-reflection technique . Some slight ambiguity remained between the b 

and c crystallographic directions . This ambiguity was removed by 

orienting a thin section of one crystal from its electron diffraction 

pattern and using this as a cross-check for the X-ray orientation . 

4 . 4 . 2 Data reduction 

The elastic constants were calculated from the measured 

travel-times of the modes of propagation #1-#12 using Cook's algorithm 

(Eqns . 2 . 45-2 . 52) for crystals of orthorhombic symmetry . The signal 

echoes propagating at the third harmonic (60 MHz) were greatly 
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attenuated, possibly for the reasons discussed above , and the travel­

times measured at this frequency were not of a reproducibly high 

quality. Therefore, all of the travel-time measurements for waves 

propagating through the orthopyroxene crystals were made within the 

fundamental response envelope (20 MHz) of the transducers. Figure 4.17 

illustrates typical travel-time versus frequency plots for these 

crystals at various pressures. 

The length correction terms for the effects of hydrostatic pressure 

were calculated for a crystal density of 3. 366 g cm-3. The specific 

heat was taken as 

(4.20) 

from JAN AF Thermochemical Tables ( 1971) for an ens ta ti te end-member, 

MgSi03. The linear thermal expansion coefficients were 

a1 = 1.64x1o-5 K-1 

a2 = 1.45x1o-5 K-1 

a3 = 1 . 68x10-5 K-1 (4.21) 

from Frisillo and Buljan (1972) for an Enso bronzite. The length 

correction factors calculated from Eqn . 2 .56 are; 

s1 = 1 + 2 . 21x1o-3 P - 9.78x10-5 p2 + 1 . 00x1o-5 p3 

s2 = 1 + 3 . 98x1o-3 P - 1 . 31x1o-4 p2 + 5. 43x10-6 p3 

s3 = 1 + 3.09x1o-3 P - 1.88x10-4 p2 + 1.64x1o-5 p3 

for lengths in the a , b, and c crystallographic directions, where 

i = 1,2,3. 

( 4 • 22) 

(4 . 23) 
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These coefficients for the axial compression due to increasing pressure 

can now be used in the calculation of the isothermal pressure 

derivatives of the adiabatic elastic constants of the present 

bronzites . 

The room pressure adiabatic elastic constants and the first and 

second pressure derivatives for each of the twelve modes of propagation 

calculated at zero pressure are tabulated in Table 4 . 14 . Figures 

4.18-4 . 21 illustrate the behaviour of these twelve moduli with 

increasing pressure . There is some dicrepancy in the observed behaviour 

of the modulus C44 (see Figure 4 . 19) . The data obtained from the #11 

mode is preferred to that of the #4 mode, as the corrected travel-time 

versus frequency data for this latter mode exhibit a non-zero slope. 

This indicates that the matching of the transducer and bond conditions 

in the one- and two-transducer experiments for the #4 mode was 

questionable . 

The cross-checks for both the c55 and C66 moduli show some slight 

discrepancies , but in both cases, the two sets of corrected travel-time 

data over the pressure range were of high quality. The average of the 

two measurements of the elastic constants is taken as the correct 

value . 

The modulus C11 determined on crystal #1 was in a direct ion of 

propagation which was intersected by a large crack. The effect of this 

crack at the surface of the crystal was to create difficulty in 

achieving a high quality bonding of the transducer to the crystal. This 

data is however, in good agreement with the modulus c11 measured on 

crystal #4 despite the greater scatter of the calculated moduli about 

the fitted curve . 
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Table 4 . 14 The elastic moduli of orthopyroxene (Enso) with the first 

and second pressure-derivatives calculated at zero- pressure . 

Cryst al/Mode Modulus 

1 / 1 C 11 

4/1 C11 

1/2 C22 

1/3 C33 

1/4 C44 

1 / 11 C44 

4/5 C55 

1/10 C55 

4/6 c66 

1/12 c66 

3/7(P) K12 

2/8(P) K13 

4/9(P) K23 

7+ 6 C12 

7+12 C12 

8+ 5 C13 

8+10 C13 

9+ 4 C23 

9+ 11 C23 

C · · /GP a lJ 

232 . 6 ±0 . 8 

231 . 0 ±0 . 4 

1 69 . 8 ±0 . 2 

215 . 7 ±0 . 3 

83 . 1 ±0 . 2 

82 . 6 ±0. 2 

76 . 2 ±0 . 3 

76 . 8 ±0 . 3 

7 8 . 1 ±0. 1 

7 8 . 1 ±0. 1 

219 . 5±0. 4 

218. 8 ±0 . 3 

205 . 5±0 , 3 

79 . 5±0 . 6 

79 . 4 ±0. 6 

61 . 6 ±0. 6 

60 . 3 ±0 . 6 

50 . 2 ±0 . 4 

51 . 2 ±0 . 4 

ac;ap 

11 . 9 ±0 . 6 - 1 . 3 ±0 . 1 

11 . 2 ±0 . 1 - 1 • 1 4 ±0 . 08 

10 . 86 ±0 . 08 -1 . 30 ±0 . 07 

1 6 . 4 ±0. 1 - 2 . 6 ±0 . 1 

2 . 13±0 . 04 -0. 1 7 ±0 . 02 

2 . 34 ±0 . 0 4 - 0 . 31 ±0 . 01 

2 . 6 3±0 . 04 - 0 . 4 3±0 . 02 

2 . 7 2±0 . 05 -0 . 46 ±0 . 02 

2 . 80 ±0 . 02 - 0 . 25±0 . 02 

2 . 79 ±0 . 02 -0. 26 ±0 . 02 

11 . 8 ±0 . 1 -1 . 21 ±0 . 0 7 

1 6. 9 ±0 . 1 -3.5 ±0 . 1 

14.8 ±0. 1 -2. 4 ±0 . 1 

7.2 ±0 . 1 -0. 74±0 . 09 

7.2 ±0 . 1 -0. 7 2±0 . 09 

1 5. 0 ±0. 3 -4. 4 ±0 . 1 

14 . 8 ±0 . 3 - 4 . 4 ±0 . 1 

11 . 5 ±0 . 3 - 2 . 3 ±0 . 1 

1 1 . 1 ±0 . 3 -2 . 1 ±0 . 1 

The final values of the room pressure elastic constants for 

bronzite , together with their first and second pressure derivatives 

calculated at zero pressure are tabulated in Table 4 . 15 . The zero 

pressure elastic compliances of these bronzites are presented together 

with their first and second pressure derivatives in Table 4 . 16 . 
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Table 4 . 15 The elastic moduli of orthopyroxene (Enso) with the first 

and second pressure-derivatives calculated at zero-pressure. 

Modulus 

C 11 

C22 

C33 

C44 

C55 

c66 

C12 

C13 

C23 

C · · /GP a lJ 

231 . 0 ±0 . 4 

1 69. 8 ±0 . 2 

21 5 . 7 ±0 . 3 

82 . 6 ±0 . 2 

76.5±0.3 

78 . 1 ±0 . 1 

79 . 5 ±0 . 4 

61 . 0±0 . 6 

50. 7 ±0 . 4 

ac1aP 

11 • 2 ±0 . 1 -1 . 1 4 ±0 . 08 

10 .9 ±0 . 1 -1 . 33±0. 07 

16 . 4 ±0 . 1 -2.6 ±0 . 10 

2. 34 ±0 . 04 -o. 31 ±0 . 01 

2. 68 ±0 . 05 -0. 45 ±0 . 02 

2 . 80±0 . 02 - 0 . 26±0 . 02 

7.2 ±0 . 1 -0. 7 4 ±0 . 09 

1 4 . 9 ±0 . 3 -4.4 ±0 . 10 

11 . 3 ±0 . 3 - 2 . 2 ±0 . 10 

Table 4.16 The zero-pressure elastic compliances of orthopyroxene with 

the first and second pressure derivatives calculated at 

zero-pressure . 

Modulus S·. lJ 
/(10-3 GPa-1) 

S11 5 . 4 ±0 . 1 

S22 7.2 ±0 . 1 

S33 5 . 2 ±0 . 1 

S44 1 2 . 1 ±0 . 2 

S55 1 3. 1 ±0 . 2 

s66 12 . 8 ±0 . 2 

s12 -2. 21±0 .04 

S13 -1 . 00 ±0 . 03 

S23 -1 . 08 ±0 . 03 

as;ap 
/(10-3 GPa-2) 

-0 . 11 ±0 . 01 

-0. 30±0 . 03 

-o . 1 8 ±0 . 02 

-0 . 34±0 . 05 

-o . 45 ±0 . 05 

- o . 45±0 . 05 

0 . 08 ±0 . 01 

-o. 1 5 ±0 . 02 

-0. 09 ±0 . 01 

a2s;ap2 
/(10-3 GPa -3) 

0 . 005±0. 001 

0 . 027±0 . 007 

0 . 0 0 7 ±0 . 0 0 1 

0 . 0 2 7 ±0 . 0 0 7 

0 . 04 ±0 . 01 

0 . 0 3 0 ±0 . 0 0 8 

-0.013±0 . 004 

0 . 04 ±0 . 01 

0 . 011±0 . 003 
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4 . 4 . 3 Elasticity and crystal chemistry 

The elastic constants of bronzites of similar compositions (Enso) 

have previously been determined by Frisillo and Barsch (1972) to 1 GPa 

using the pulse superposition technique . Four single crystals of 

unknown microstructure were used in this study, with the crystals 

having an average density of 3 . 354±0 . 002 g cm-3. The compressional 

moduli were found to increase linearly with pressure, while the shear 

and off-diagonal moduli were found to fit quadratic curves. The first 

and second pressure derivatives were calculated from the natural 

wave-velocity of Thurston and Brugger (1964), 

(4 . 24) 

and the further development of this procedure for orthorhombic symmetry 

by Barsch and Frisillo (1973). The elas tic constants measured in this 

study are tabulated in Table 4.17. 

The room pressure moduli measured by Frisillo and Barsch (1972) are 

in general accord with those determined in the present study for 

crystals of similar compositions. However, there are significant 

differences which deserve comment . The moduli measured by Frisillo and 

Barsch are invariably lower than those of the present study: by -1% for 

C11 , C44 , C55 and C66; -3% for C33; -5% for C22; and by 9- 10% for the 

Cij (i*j) . This indicates there may be a need to be fully cognisant of 

the microstructure of each crystal in order to catalogue any possible 

microstructural effects on the measured travel-times. 
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Table 4. 17 The elastic moduli and the first and second pressure 

derivatives calculated at zero pressure for the bronzites of 

Frisillo and Barsch (1972) . 

Modulus cij /GPa 3C/3P 

C11 228.6 ±0 . 1 11 . 04 ±0 . 06 

C22 160.5 ±0 . 1 9. 19 ±0. 08 

C33 210.4 ±0 . 1 1 6 . 42 ±0 . 04 

C44 81 .7 4±0 . 09 2. 38 ±0 . 03 -0.281±0.025 

C55 75. 48 ±0. 07 2.92±0 . 04 -0.595±0.022 

c66 77. 66 ±0 . 05 2 . 75 ±0. 01 - 0 . 1 7 3 ±0 . 0 1 2 

c,2 71 . 0 ±0. 2 6 . 9 7 ±0. 1 0 0. 507 t 

C13 54 . 8 ±0 . 2 9 . 09 ±0. 1 0 0 . 663t 

C23 46 . 0 ±0 . 2 8. 7 3±0 . 1 0 0 . 6 20 t 

t Calculated by assuming a2c 11 1aP2, 3C22/3p2 , and 32c 33;3p2 to be zero . 

The first pressure derivatives observed by Frisillo and Barsch are 

also generally consistent with the present measurements . The comparison 

between the pressure derivatives of the compressional moduli is 

extremely good , despite the linear pressure relationship observed by 

Fr is illo and Barsch . The observed pressure dependences of the shear 

moduli are not in such close agreement , there being a significant 

discrepancy for 3C55/3P. The second pressure derivatives for these 

shear moduli, although varying between studies, have the same relative 

magnitudes . The pressure dependence of the off-diagonal moduli of 

Frisillo and Barsch are low by up to 38%, although the relative 

magnitudes are comparable to those observed in the present study . The 

calculated second pressure derivatives of these off-diagonal moduli of 

Frisillo and Barsch are complicated by the linear pressure dependence 

of the compressional moduli . 
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In both studies, the first pressure derivatives are much larger 

than those observed for the other mantle minerals garnet and olivine 

(see Tables 4.1 and 4 .9). The original study of Frisillo and Barsch 

(1972) left this anomaly unresolved by finding linear relationships for 

the compressional moduli with pressure to 1 GPa. In the present study 

we have measured large negative second pressure derivatives for the 

on-diagonal compressional moduli and also the off-diagonal moduli; with 

second pressure derivatives for the on-diagonal shear moduli which are 

comparable to the pressure derivatives for the shear moduli of the 

other mantle minerals garnet and olivine. 

The room pressure elastic constants of orthopyroxene and the 

end-members ens tat i te and orthoferrosil i te have previously been 

measured. Kumazawa and Anderson (1969) measured the elastic constants 

of a small bronzite crystal En34 _5 using the pulse superposition 

technique. More recently, Weidner et al . (1978) and Bass and Weidner 

(1984) have measured the elastic constants of an orthoenstatite and an 

orthoferrosilite respectively by Brillouin scattering . The results of 

these studies are tabulated in Table 4 . 18 . Figures 4.22, 4.23 and 4.24 

illustrate the behaviour of the room pressure elastic constants of 

orthopyroxene with increasing substitution of Fe for Mg in the 

enstatite end-member . 

The influence of Fe/Mg substitution on the elasticity of pyroxenes 

has been discussed by Bass and Weidner (1984). The substitution of Fe 

in the orthoenstatite end-member has the overall effect of reducing the 

magnitudes of the on-diagonal moduli Cii, and increasing the magnitudes 

of the off-diagonal moduli Cij . The substitution of ~20% Fe in the 

enstatite end-member causes a slight increase in the moduli c11 , c22 

and C44 against the overall trends, with C55 and C23 being insensitive 
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to small amounts of Fe , and C23 in general being insensitive to the 

addition of Fe . 

Table 4. 18 The zero pres sure elastic moduli for the orthoenstati te­

orthoferrosili te solid solution. 

Modulus 

C 11 225 229. 9 

C22 1 78 165 . 4 

C33 215 205 .7 

C44 78 83 . 1 

C55 76 76.4 

c66 82 78 . 5 

C12 72 70 . 1 

C13 54 57.3 

C23 53 49 . 6 

t Weidner et al . (1978) 
,r ,r Kumazawa and Anderson (1969) 

* Bass and Weidner (1984) 

** Frisillo and Barsch (1972) 

Ensott 

231 . 0 

169 . 8 

215 .7 

82 . 6 

76 . 5 

78 . 1 

79 . 5 

61 . 0 

50 .7 

** Enso 

228 . 6 

1 60. 5 

210.4 

81 . 7 4 

75 . 48 

77 . 66 

71 . 0 

54.8 

46 . 0 

Fs* 

198 

136 

1 75 

59 

58 

49 

84 

72 

55 

In these studies of the elasticity of the orthoenstatite­

orthoferrosilite solid solution, consistent trends in the relative 

magnitudes of the elastic moduli may be observed, with 

and 

C11 > C33 > C22 

C44::: C55 > C66 

C12 > C13 > C23• 

(4 .25) 

( 4 . 26) 

(4 . 27) 
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The immunity of these trends to chemical variation indicates that the 

elasticity of orthopyroxene is dominated by the elasticity of the 

lattice structure, with variation of the Mg/Fe occupancy of the 

octahedral site resulting in subsidiary changes in lattice elasticity. 

4 . 5 The elasticity of single-phase isotropic aggragates 

The elastic properties of single-phase isotropic aggregates were 

first considered by Voigt (1928) and Reuss (1929). Voigt assumed 

uniform strain throughout an aggregate and derived the effective 

elastic stiffnesses of the aggregate averaged over all possible 

orientations of the constituent crystals. The bulk and shear moduli 

calculated in this manner are; 

and 

where 

Kv * = ( A + 28) / 3 

Gv* = (A - B + 3C)/5 

A= (C11 + C22 + C33)/3 

B = (C12 + C23 + C13)/3 

C = (C44 + C55 + C66)/3. 

(4.28) 

(4.29) 

Reuss assumed uniform stress throughout the aggregate to derive 

expressions for the effective isotropic compliances in terms of the 

single crystal compliances averaged over all possible orientations. The 

bulk and shear moduli thus derived are; 

and 

KR*= (3(a + 2b))-1 

GR*= 5/(4a - 4b + 3c) (4 . 30) 



where a= (S11 + S22 + S33)/3 

b = (S12 + S23 + S13)/3 

c = (S44 + S55 + S66)/3 . 
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(4.31) 

The use of these Voigt and Reuss expressions as bounds for the elastic 

properties of single phase aggregates is intuitively reasonable given 

the expectation that the boundary conditions for the behaviour of such 

aggregates must lie between those of uniform stress and uniform strain. 

Hill (1952) gave a rigorous proof of the bounding properties of these 

two averages and suggested the use of the arithmetic mean as an 

approximation to the effective moduli of the aggregate. This arithmetic 

mean of the the Voigt and Reuss bounds, the Voigt-Reuss-Hill (VRH) 

average has been widely used in discussions of the properties of 

polycrstals ; however, this average is not physically meaningful as the 

actual moduli are known only to lie within these bounds (Thomsen, 

1972). 

In these models for the effective elastic moduli of an aggregate, 

Voigt and Reuss have replaced an aggregate of randomly orientated 

crystals with an equivalent isotropic homogeneous elastic medium. 

Hashin and Shtrikman ( 1962a, 1962b) have obtained more closely spaced 

bounds for the effective elastic moduli by deforming a homogeneous and 

isotropic elastic body and comparing its behaviour to that of a large 

polycrystalline quasi-homogeneous, quasi-isotropic reference-body of 

randomly orientated crystals . This reference-body is regarded as 

quasi-homogeneous and quasi-isotropic, in that the mean value of a 

physical quantity in a unit volume equals that of the whole body . 

Subject to the surface deformation of the homogeneous isotropic body, 

the stress and strain of the reference-body define the effective 

elastic moduli and the energy of the reference body. These effective 
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elastic moduli together with the energy of the reference body can then 

be used in the variational approach of Hashin and Shtrikman ( 19 63) to 

calculate upper and lower bounds for the effective bulk and shear 

moduli of the polycrystal in terms of the moduli of the constituent 

single-crystals . This treatment requires no knowledge of the 

orientations of the crystals of the aggregate - only the single crystal 

moduli . The Hashin - Shtrikman bounds on the effective elastic moduli of 

single- phase aggregates of crystals of orthorhombic symmetry can be 

expressed as ; 

K0 + 3B1 + 2B2 

3 + a(3B1 + 2B2) 
(4.32) 

(4 . 33) 

where K* and G* are the effective moduli, and G0 (and hence K0 ). are 

chosen from the maximum and minimum energy requirements of the 

reference body . The initial moduli G0 and K0 are used to calculate the 

terms a and S, 

a= -3/(3K0 + 4G0 ) 

S = -3(K0 + 2G0 )(5G0 (3K0 + 4G0 ))-1 (4 .34) 

while B1 and B2 are related to the conditions necessary for t he maximum 

and minimum energy conditions (see Watt, 1979) of the reference body. 

These equations collapse to the appropriate equations for a crystal of 

cubic symmetry when the elastic constants of such a crystal are used as 

the input parameters. 

The Hash in-Sh tr i kman bounds for the bulk and shear moduli of the 

garnet , olivine and orthopyroxene crystals have been calculated 

following the procedure of Watt ( 1979), and are presented in Table 

4 . 19 . The Voigt and Reuss bounds have also been calculated and are 
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compared with the Hashin-Shtrikman bounds in Table 4.19 and Figures 

4 . 25 and 4 . 26 . In all cases the Hashin-Shtrikman bounds lie between the 

Voigt and Reuss bounds (as expected ) , and the VRH average lies wi thin 

the Hashin-Shtrikrnan bounds. These bounds have been calculated across 

the 3 GPa pressure range by calculating the elastic constants of each 

mineral from the Cij(P) quadratics and using these values to calculate 

the bounds at pressure. The bounds calculated for the bulk modulus of 

garnet are equal using both the Voigt and Reuss and the Hashin­

Shtrikman methods of calculation, a s is expected for a crystal of cubic 

symmetry. The bounds on the shear modulus of garnet were also found to 

be equal using both bounding procedures, due to the near isotropy of 

the present pyrope-rich garnet. 

Table 4 .19 Hashin-Shtrikman bounds on the elast ic moduli for single 

phase aggregates of the garnet , olivine and orthopyroxene crystals 

characterized in this study (see Tables 4 . 1, 4 . 9 and 4.15). The 

values quoted are the average of the Hashin-Shtrikman bounds with 

the errors giving the spacing of the bounds ; the terms in brackets 

give the spacing of the Voigt-Reuss bounds . 

Mineral M /GPa 8M/8P 

Garnet 

K 17 3. 6 4 .97 - 0 . 32 

G 94.9 1 . 59 -0. 11 

Olivine 

K 1 2 9 . 1 ±0 . 3 ( ±2 . 0) 4 . 8 7 ±0 . 01 ( ±0 . 01 ) - 0 . 2 7 ±0 . 01 ( ±0 . 01 ) 

G 7 7 . 7 ±0 . 3 ( ± 1 . 6 ) 1 . 7 6 ±0 . 01 ( ±0 . 01 ) - 0 . 1 3 ±0 . 0 1 ( ±0 . 01 ) 

Orthopyroxene 

K 1 0 9 . 9 ±0 . 3 ( ± 1 . 5 ) 11.62±0 . 01 (±0 . 05) -1 . 4 6 ±0 . 01 ( ±0 . 01 ) 

G 75 .0 ±0 . 3(±0 . 7) 1 . 9 7 ±0 . 01 ( ±0 . 05) - 0 . 3 3 ±0 . 0 1 ( ±0 . 0 1 ) 
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Table 4 .19 illustrates the effectiveness of the Hashin-Shtrikman 

method in the calculation of tight bounds on the bulk and shear moduli 

of single-phase polycrystals, and compares this with the more widely 

spaced Voigt and Reuss bounds. 

For a model mineralogy dominated by olivine, we see that the room 

pressure bulk and shear moduli of garnet are substantially higher than 

those of the olivine phase, while the moduli for orthopyroxene are 

slightly lower. The pressure dependence of these moduli however is not 

as straightforward. The first pressure derivative of the bulk modulus 

of garnet is slightly higher than that of the dominant phase olivine, 

while the first pressure derivative of orthopyroxene is more than twice 

that of olivine. The pressure derivatives of the shear moduli however 

are not so divergent, with the pressure dependence of the shear modulus 

of garnet being slightly lower than that of olivine, while· the 

derivative of the shear modulus of orthopyroxene is slightly higher. 

For these three mantle minerals, the importance of the second 

pressure derivatives in decreasing the pressure dependence of the bulk 

and shear moduli of garnet, olivine and orthopyroxene becomes obvious 

(see Figures 4.25, 4.26 and Table 4 .19). At 3 GPa, the values of the 

pressure derivatives of the bulk and shear moduli of garnet and olivine 

are comparable, while the pressure dependence of the bulk modulus of 

orthopyroxene has decreased by 38% and the pressure dependence of the 

shear modulus of orthopyroxene has decreased by 50%, and is less than 

that of both garnet and olivine. At 6 GPa, not only are the 

extrapolated pressure derivatives for the bulk and shear moduli of 

garnet and olivine comparable, but the extrapolated derivatives for the 

moduli of orthopyroxene are lower than those of garnet or olivine. This 

quadratic extrapolation from 3 to 6 GPa for orthopyroxene however is 
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tenuous as the elastic moduli are changing so rapidly with increasing 

pressure that the behaviour observed at 3 GPa cannot be expected to be 

sustained over large increments in pressure . 

Table 4. 20 Pressure derivatives of the bulk (K) and shear (G) moduli 

for isotropic garnet , olivine and orthopyroxene polycrystals 

calculated at 0 , 3 and 6 GPa . 

Mineral 0 GPa 3 GPa 6 GPa 

Garnet 

3K/3P 4. 97 4. 01 3 . 05 

3G/ 3P 1 . 59 1 . 26 0. 93 

Olivine 

3K/3P 4. 87 4. 06 3. 25 

3G/ 3P 1 . 7 6 1 . 37 0 . 98 

Orthopyroxene 

3K/3P 11 . 6 2 7. 24 2. 86 

3G/ 3P 1 . 97 0 . 98 - 0 . 01 

The zero pressure bulk and shear moduli and their first and second 

pressure derivatives calculated in previous studies of the elastic 

properties of garnet , olivine and orthopyroxene can be compared with 

the data presented in Table 4 . 19 . The subs ti tut ion of Fe for Mg has 

little effect on the bulk moduli of either the pyrope-almandine garnets 

(see Table 4 . 21), the forsterite-fayalite olivines (see Table 4 .22) , or 

the orthoenstatite-orthoferrosilite pyroxenes (see Table 4 .23 ) . The 

addition of Fe does however , result in - 10% increase in shear modulus 

across the pyrope-almandine solid solution series, while the shear 

moduli of olivine and orthopyroxene experience a decrease of 

approximately 35% with the substitution of Fe for Mg (Jackson et al ., 

1978; Leitner et al . , 1980) . 
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Table 4. 21 The bulk and shear moduli and their first pressure 

derivatives for the pyrope-almandine solid solution . 

Modulus 

K 

c3K/8P 

G 

8G/8P 

Pyropet 

1 76 . 6 

89 . 6 

t Leitner et al . (1980) 

tt Present study 

* Soga (1967) 

1 73 . 6 

4. 97 

94 . 9 

1 • 59 

177.0 

5. 43 

94.32 

1 • 40 

Almandinet 

177 

98.6 

Table 4. 22 The Hashin-Shtrikman bulk and shear moduli together with 

their and their first pressure deivatives for the fo rsterite­

fayalite solid solution . 

Modulus Fo** Fa*** 

K 128 . 5 129 . 0 129 . 3 129 . 1 129 . 0 127 . 7 1 38 . 1 

8K/8P 5 . 35 4.85 5. 14 4 .87 

G 81 . 0 81 . 5 78.9 77 . 7 76 . 8 50 .3 51 . 0 

8G/8P 1 . 80 1 . 82 1 . 7 8 1 . 7 6 

t Kumazawa and Anderson (1969) 

** Graham and Barsch ( 19 69) 
tt Present study 

* Yeganeh-Haere and Vaughan (1984) 

Graham et al . ( 19 82) 

*** Sumino (1979) 



Table 4 . 23 The bulk and shear moduli and their 
derivatives for the orthoenstatite-orthoferrosilite 

Ent En84 . 5~~ 

K 108 107 . 1 

3K/3P 

G 76 74 . 3 

3G/3P 

t Weidner et al. (1978) 

tt Kumazawa and Anderson ( 1969) 

tt Present study 

** Frisillo and Barsch (1972) 

* Bass and Weidner (1984) 

En8ott Enso ** 

109 . 9 103 . 5 

11 . 6 2 9 . 54 

75.0 74 . 8 

1 . 9 7 2 . 37 

1 04 

first pressure 

solid solution 

Fs* 

102 

52 
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The considerable expansion of the single-crystal elasticity dataset 

for silicate minerals which has resulted from the application of 

Brillouin spectroscopy to microcrystals by Weidner and his colleagues 

(Weidner et al., 1978;Vaughan and Bass , 1983;Bass et al ., 1984) has 

provided a clearer picture of the relative roles of crystal structure 

and chemical composition as determinants of crystal elasticity . It has 

been demonstrated, particularly for olivines and pyroxenes (Weidner and 

Vaughan , 1982;Vaughan and Bass , 1983;Bass et al ., 1984) , that the 

relative magnitudes of the stiffness or compliance moduli tend to be 

controll ed primarily by gross features of the crystal structure with 

cation composition playing a subsidiary role. 

Another important development in the last decade has been the 
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advent of high- pressure and high-temperature crystal structure 

refinements which have provided a firmer basis for the polyhedral view 

of crystal structures , along with detailed information concerning 

polyhedral compressi bili ties and expansi vi ties 1e . g .Hazen and Finger, 

1978, 1980, 1981;Levien and Prewitt , 1981) . 

These factors along with the inherent difficulty of ab initio and 

atomistic approaches to the elasticity of these complex crystal 

structures have led to both qualitative (Weidner and Vaughan, 1982; 

Vaughan and Bass, 1983) and quantitative (Au and Weidner, 1985) 

discussion of crystal elasticity in terms of polyhedral models. 

Cation- and Si-centred polyhedra of known relative rigidities and 

compressibilities are thus regarded as the basic building blocks for 

the structure , and are linked (eg by corner, edge and face sharing) to 

form structural elements ( such as chains , columns and layers) whose 

mechanical properties provide at least a qualitative explanation of 

many of the major features of crystal elasticity . 

The elasticity of a crystal may be described in terms of either the 

compliances or the stiffnesses of the structural elements. The elastic 

stiffness moduli arise naturally in the context of wave propagation 

because of their close relationship to the wave-velocity eigen-values 

(see Chapter 2) . The Cij describe the stresses required to produce a 

simple one-component strain Ej , since 

a· - C · ·E · 1 - lJ J i,j=1,2 .. 6. ( 5 . 1 ) 

However, it is more appealing in the present discussion to emphasize 

the elastic compliances, which yield the strain components arising from 
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the application of a single stress component . Thus an appli ed uniaxi al 

stress, 01 , results in the strains 

E:1 = S11 01 

E:2 = S1201 

E:3 = S13o1 · 

Similarly , the shear stress , 06 , produces the strain 

(5 . 2) 

( 5 . 3) 

( 5 . 4) 

( 5 . 5) 

In their discussions of the elastic properties of polyhedral models 

for crystal structures , Vaughan and Weidner ( 1978) , Bass ( 1982) and 

Weidner and Vaughan (1982) formulated the following set of basic rules 

for the relationships between the lattice compliances and the 

compliances of the major structural elements . When the compliance of a 

lattice is measured parallel to a set of structural elements, the least 

compliant element will determine the overall compliance in that 

direction . However, when compliance is measured normal to a set of 

structural elements , the compliance is determined by the most compliant 

element . The lattice compliances defined in this manner, can be 

increased by the introduction of polyhedral linkages with rotational 

degrees of freedom . 

An attempt will be made in the following sections to identify the 

important structural elements and to assess their inf l uence upon the 

elasticity of the olivine, orthopyroxene and garne t structures . The 

approach follows that of Weidner and colleagues except that attention 

is focussed on the elastic compliances rather than stiffnesses. Many of 

the principal conclusions concerning the relative magnitudes of the 
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compressional and shear moduli have previously been drawn by Weidner 

and his collaborators. However , the arguments concerning the 

off-diagonal moduli and the anomalous pressure dependence of the 

orthopyroxene compressional moduli represent a significant extension of 

this earlier work. 

5 . 2 Polyhedral models of garnet , olivine and orthopyroxene 

5 . 2 . 1 Garnet 

The cubic garnet structure (space group Ia3d, Figure 5.1) consists 

of a three-dimensional network of 

tetrahedra and Al06 octahedra with 

dodecahedrally (8-fold) co-ordinated 

alternate corner-linked Si04 

divalent atoms M(Mg , Fe,Ca) in 

interstices (Novak and Gi~bs, 

1971) . The major structural elements in this lattice are the kinked 

chains of corner-sharing tetrahedra and octahedra which run parallel to 

the crystallographic axes . These chains are 1 inked to form a three 

dimensional framework which is braced against further kinking by the 

edge sharing of both tetrahedra and octahedra with the large distorted 

M08 dodecahedra . Each tetrahedron shares two edges with dodecahedra, 

and each octahedron shares six edges with dodecahedra . Each 

dodecahedron shares four edges with octahedra, two edges with 

tetrahedra, and four edges with other dodecahedra. The edge sharing of 

the dodecahedra with eachother and with the tetrahedra and octahedra 

comprising the axial chains, restricts any possible rotation of 

polyhedra within the chains. The Si04 tetrahedra are the least 

compliant polyhedra in this structure, with the dodecahedra being the 

most compliant (Hazen and Finger, 1978) 



a 
' 

Figure 5 . 1 The crystal structure of garnet viewed down [001] . 

(redrawn after Novak and Gibbs , 1971) 



109 

With increasing pressure, the distorted M08 polyhedra become more 

regular in shape (Hazen and Finger, 1978) and thus less compliant due 

to the shorter A-0 bond lengths. This strengthening of the dodecahedra 

with increasing pressure will result in stronger bracing of the chains 

of isolated tetrahedra and octahedra against deformation. 

5.2 . 2 Olivine 

The structure of orthorhombic (Mg, Fe )2Si04 olivine ( space group 

Pbnm) is built up of isolated Si04 tetrahedra and two symmetrically 

distinct types of M06 octahedra (M=Mg , Fe) . The M1 octahedron is the 

smaller and the more distorted , sharing the six edges in a pair of 

opposite faces with neighbouring polyhedra (see Figure 5.3). Of these, 

two edges are shared with Si04 tetrahedra , two with other M1 octahedra, 

and two with M2 octahedra which are larger and more regular in shape. 

The M2 octahedra share only the three edges of one face with 

neighbouring polyhedra , two with M1 octahedra, and one with an Si04 

tetrahedron . This geometry minimizes the cation-cation repulsion in 

adjacent polyhedra , with the shared edges shorter and thus less 

compliant than unshared edges . The Si04 tetrahedron is the least 

compliant polyhedron in the lattice (Hazen and Finger, 1980), with the 

average compressibility of the M1 octahedron being larger than that of 

the M2 octahedron . 

There are three major structural elements in the olivine lattice. 

The least compliant of these are columns ( see Figure 5. 2 ) parallel to 

[ 100] of alternate Si04 tetrahedra and triangular clusters of edge­

sharing octahedra ( 2M1 , 1 M2) . Each tetrahedron shares its basal plane 

edges with the three octahedra of the cluster below and its apical 

corner with the three octahedra of the culster above. The shared edges 
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Figure 5 . 2 A schematic view of the polyhedral linkages in the olivine 

structure , viewed approximately down [010] . (Bass , 1982) 



Figure 5.3 The crystal structure of olivine projected down [100]. 

(redrawn after Bass , 1982) 
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Figure 5 . 4 Idealized view of successive ( 100) layers of the olivine 

structure; with the unit cell indicated (after Morimoto et al ., 1974) . 
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of the tetrahedron are shorter than the unshared edges and hence the 

tetrahedron is elongate in the [100] direction . 

The second structural element of significance in the olivine 

lattice consists of relatively straight chains of M1 octahedra which 

run parallel to [001] . These chains can be seen clearly in the (100) 

polyhedral layers of Figur e 5 . 3 . These layers of polyhedra are stacked 

along [100] , with each layer identical but displaced by an [010] gl i de 

of b/2 (see Figure 5 . 4) . These chains are well braced by the linking 

tetrahedra in the layers above and below (Figure 5 . 2) and also by the 

M2 octahedra in the same layer (Figure 5 . 3) . These braced octahedral 

chains parallel to [001] serve to link the previously mentioned columns 

parallel to [100] - thus forming (010) layers three polyhedra thick . 

These t r iple layers are joined along [010] by the sharing of a layer of 

M2 otahedra . The long and hence compliant unshared edges of the' M2 

octahedra are favuorably oriented for compression or extension parallel 

to [010] (ie E2), As a consequence, these (010) layers of M2 octahedra 

constitute a third important structural element with considerable 

compliance parallel to [010] . Hazen and Finger (1980) have shown the 

M06 octahedra in the olivine lattice are compressed with increasing 

pressure , while the Si04 tetrahedra remain relatively incompressible . 

The M1 and M2 octahedra are most compressible in the [010] direction. 

5 . 2 . 3 Orthopyroxene 

The orthorhombic structure of orthopyroxene (space group Pbca) 

consists of alternate (100) layers of Si04 tetrahedra and M06 octahedra 

(Cameron and Papike , 1981) (see Figures 5 . 5 and 5.6) . In each layer of 

tetrahedra , adjacent tetrahedra share corners to form kinked chains 

running parallel to [001] . There are two symmetrically distinct kinked 
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Fi gure 5 . 5 

Key: 

[001] 

[010] 

....__ _ __.., [o 1 o J 
[001] 

The structure of orthopyroxene 

viewed down [100] - top left 

[o 1 o] - top right 

[oo 1] - bottom 

[001] 

[010] 

(.) 

1 

The structure of orthopyroxene ( after Miyamoto et al ., 

1975) ; illustrating the serrated [001] chains of M1 octahedra braced by 

edge sharing M2 octahedra and capped by pairs of opposed kinked and 

puckered chains of tetrahedra - top left ; the alternate layers of edge 

sharing octahedra and tetrahedra forming [ 1 00 J I - beams - bot tom ; and 

the long bonds of the distorted M2 octahedra connected to the bridging 

corner s of the puckered and kinked [001] chains of tetrahedra capping 

th e I -beams - top right . The M2 octahedra are indicated by their M-0 

bonds. 



C 

Figure 5 . 6 The 

Hawthorne and Ito , 

b 

orthopyroxene 

1977) . 

sytucture viewed down [100] (after 
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chains of Si04 tetrahedra in the orthopyroxene structure, labelled A 

and B, with the B-chain being the more kinked. The Si-0-Si kink angles 

for both of these chains are close to the calculated equilibrium angles 

for the respective average Si-0 bond lengths obtained by Newton et al. 

(1980) from molecular orbital calculations . The ability of the 

relatively small restoring force for this Si-O-Si angle to maintain 

approximately the equilibrium angle for H3SiOSiH3 despite the bonding 

of the tetrahedra to the distorted M2 octahedra is indicative of very 

considerable compliance in the long bonds of the M2 octahedra . 

The layers of octahedra consist of small , regular M1 octahedra and 

larger , more distorted M2 octahedra . These M1 octahedra share edges to 

form serrated chains running parallel to [001 J ( see Figures 5. 5 and 

5 . 6) . The chains are braced by edge sharing M2 octahedra . Each M1 

octahedron shares an edge with two adjacent M1 octahedra, and two edges 

with bracing M2 octahedra . All six corners of each M1 octahedron are 

shared with tetrahedra - two are apical oxygens (01 B) and one is a 

non-bridging oxygen (02B) in the B-chain above; two are apical oxygens 

(01A) and one a non-bridging oxygen (02A) in the A-chain below 

(terminology of Miyamoto et al ., 1975) . 

The M2 octahedra are situated on the outer edges of the chains of 

M1 octahedra . All six corners of each M2 octahredron are shared with 

tetrahedra - the upper three being an apical oxygen ( 01 B), a non­

bridging oxygen (02B) and a bridging oxygen atom (03B) of the B-chain; 

the lower three corners are the corresponding oxygen atoms of the 

A-chain . In addition , one of the M2 octahedral edges is shared 

( 02A-03A) with a tetrahedron of the A-chain . The tetrahedral basal 

planes are constrained to approximate parallelism with the (100) plane 

by their corner linkages to the M1 and M2 octahedra . 



A chain 

C 

A chain 

B chain 
B chain 

b I 

Figure 5. 7 The linkages of the A- and B-chains of tetrahedra to the M1 

and M2 octahedra . 
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The principal structural element of the orthopyroxene lattice is 

the braced, serrated chain of M1 octahedra parallel to [001] which is 

linked above and below to two kinked chains of tetrahedra. This element 

has been termed an 'I-beam' by Cameron and Papike (1981) because of its 

appearance in (001) cross-section (see Figure 5 . 5). These I-beams 

interconnect laterally via the edge- and corner-sharing of the 

tetrahedra with the M2 octahedra and the corner-sharing of the 

tetrahedra with the M1 octahedra (see Figure 5.5) . 

The Si04 tetrahedra are the least compliant polyhedra (Levien and 

Prewitt , 1981 ;Hazen and Finger, 1981) in the structure, with the M2 

octahedra being the most compliant. The orthopyroxene structure is made 

up of deformed and unsymmetrical polyhedral linkages and therefore the 

effects of rotational degrees of freedom and polyhedral distortion must 

be included in the qualitative discussion of the lattice compliances. 

Rotational freedom within a structural element has the potential to 

increase the compliance of the element more than distortion of the 

component polyhedra (Vaughan and Bass, 1983;Bass and Weidner, 1984). 

The deformed B-chain kinks more with increasing pressure than the 

A-chain (Ralph and Ghose, 1980). This kinking is accompanied by 

compression of the long bonds of the distorted M2 octahedra which 

therefore become more regular with increasing pressure. This B-chain is 

linked by corner-sharing only to the chains of M1 octahedra and to the 

M2 octahedra, while the A-chain is similarly linked to the chains of M1 

octahedra and to the M2 octahedra by corner sharing, but also by edge­

sharing with the M2 octahedra Thus , the B-chain has silghtly more 

rotational freedom than the A-chain. 
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5.3 Zero-pressure compliances 

5.3.1 Compressional compliances 

The dominant influence of crystal structure upon the relative 

magnitudes of the elastic moduli of garnet, olivine and orthopyroxene 

has been demonstrated in Chapter 4. Uniaxial stresses cri (i=1 ,2,3) and 

the associated strains si determined by the compressional compliances 

Sii are the easiest to envisage and will be discussed first. these 

compressional compliances for the three structures olivine, garnet and 

orthopyroxene are listed in Table 5.1 in order of increasing 

compliance, along with information concerning the principal structural 

element parallel to xi for each case. It is immediately evident that 

there is an impressive correlation between increasing measured 

compliance down the table and increasing inferred compliance of the 

principal structural element. The directions of the compressive 

stresses in the upper part of the table correspond to sturdy columns or 

well-braced chains of relatively incompressible polyhedra whereas the 

lower entries have compressive stresses acting normal to unusually 

compliant layers. A number of the compliances in the centre of the 

table are comparable and the relatively small differences among them 

are probably beyond the resolution of this qualitative analysis . On the 

other hand the low values of s11 for olivine and garnet and the high 

value of S22 for orthopyroxene deserve special consideration. 
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Table 5 . 1 The zero-pressure compressional compliances together with 

their first and second pressure derivatives, and the principal 

structural elements of the garnet, 

lattices. Units for Sii, asii/3P and 

10-3 GPa-2 and 10-3 GPa-3 respectively. 

olivine and orthopyroxene 

323. ·/ap2 are 10-3 GPa-1 11 , 

S·. 11 s 3S/3P 

s 11 (ol) 3.5 -0.06 

S11Cgt) 4 . 1 -0.08 

S33(ol) 5 .1 -0.10 

S33Copx) 5.2 -0.18 

a2s;ap2 Principal structural element 

0.006 columns of rigid triangular clusters of 

three edge-sharing octahedra (2M1 ,1M2) 

capped by isolated Si04 tetrahedra sharing 

basal plane edges and apical corners with 

the clusters of octahedra 

0.006 chains of alternate corner-sharing Si04 

tetrahedra and Al06 octahedra braced by 

edge-sharing distorted M03 dodecahedra 

0.006 relatively straight chains of M1 octahedra 

well · braced by edge-sharing with Si04 

tetrahedra and M2 octahedra 

0 . 014 serrated chains of M1 octahedra braced by 

edge sharing M2 octahedra and capped by 

pairs of opposed kinked and puckered A­

and B-chains of tetrahedra 

S11 (opx) 5 . 4 -0.10 -0. 010 alternate layers of octahedra (M1 and M2 

edge-sharing and hence relatively densely 

packed within the layer) and of tetrahedra 

(layer of tetrahedra may have finite 

compliance due to presence of the degree 

of freedom of movement inherent in the 

puckering of the chains) 

S22Co1) 6 .1 -0.10 

alternate layers of M2 octahedra ( corner 

0 . 004 shared and thus not densely packed within 

the layer) and of tetrahedra and M1 

octahedra (the latter edge share with the 

tetrahedra) 

0 . 05 4 long bonds of the di started M2 octahedra 

connected to the bridging corners of the 

tetrahedra in the kinked and puckered 

chains capping the I-beams 

( ol )-olivine, ( gt )-garnet, ( opx )-orthopyroxene 
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The repeat unit in the [100] columns of olivine is a triangluar 

cluster of three edge-sharing octahedra capped by an Si04 tetrahedron 

sharing a basal plane edge with each of the octahedra in the cluster 

(Figure 5 . 2) . Most of the compliance of this umit would be expected to 

come from the triangular cluster of octahedra rather than the capping 

tetrahedron . However , the very symmetrical arrangement of short shared 

octahedral/octahedral and octahedral/tetrahedral edges (they define an 

empty tetrahedron) must confer unusually low compliance on the cluster 

of octahedra . 

The load-bearing element associated with the next lowest compliance 

S1 1 for garnet is a chain of alternate corner-sharing Si04 

tetrahedra and Al06 octahedra, braced by edge-sharing with MOs 

dodecahedra . The lesser compressibility of Si04 tetrahedra and Al06 

octahedra relative to Mg06 octahedra, along with the dodecahedral 

bracing explains why S11 for garnet is less than Sii for braced chains 

of M06 octahedra .( eg S33 for olivine and orthopyroxene) . 

The large compressional compliance of the orthopyroxene structure 

parallel to [01 OJ is related to the nature of the lateral linkages 

between the I - beams which are the principal structural elements running 

parallel to [001 J . The I-beams are linked mainly by corner-sharing 

between M1 and M2 octahedra associated with a given I-beam and 

tetrahedra belonging to the kinked and puckered chains of adjacent 

I-beams. The substantial compliance of the longest M2-0 bonds and the 

rotational degrees of freedom associated with kinking and puckering of 

the tetrahedral chains account qualitatively for the high value of s22 . 

The intermediate compressional compliances of Table 5. 1 are 

associated with principal structural elements intermediate in character 
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between the sturdy columns and well braced chains of incompressible 

polyhedra at the top of the table and the long bonds and rotational 

degrees of freedom at the bottom . 

5 . 3 . 2 Off-diagonal compliances 

The relative magnitudes of the off- diagonal moduli can now be 

discussed in terms of the magnitudes of the respective compressional 

compliances . For example, the application of a uni axial compressive 

stress o1 to the olivine structure results in a small strain E1 (S11 is 

small) which is concentrated in the clusters of edge- sharing octahedra 

in the stiff [ 1 00 J columns . The increase in internal energy of the 

octahedra due to this shortening parallel to [100] is partially 

compensated by extensional strains E2 and E3 , related to the moduli S12 

and S13 respectively . The relative magnitudes of E2 and E3 and hence 

s12 and S13 can be inferred from the relative compressional compliances 

of the structural elements parallel to [010] and [001] . Accordingly it 

is expected that more extensional strain will appear across the 

compliant layers of M2 octahedra parallel to [010] than along the [001] 

braced chains of octahedra, and thus , that IS12I > IS13I . Similarly, a 

uniaxial compressive stress 02 results in thinning of the compliant 

layer of M2 octahedra . This deformation is accompanied by extensional 

strains E1 and E3 in the M2 octahedra . The fact that S11 < S33 

guarantees that E1 < E3 and hence that I S21 I = I S12 I < I S23 I - In the 

same way, the deformation experienced by the chain of M1 octahedra due 

to the application of a uniaxial stress 03 is compensated by the 

thickening of the layers of linking M2 octahedra, with the rigid [100] 

columns accommodating little strain, and thus IS23I > !S13I - These 

three predictions of the relative magnitudes of the off-diagonal moduli 

form a consistent trend with 
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(5 . 6) 

which is in accord with the observed magnitudes of the off-diagonal 

moduli for olivine (see Table 5 . 2) . 

Table 5 . 2 The off- diagonal compliances of garnet , olivine and 

orthopyroxene together with their first and second pressure 

derivatives . 

S·. lJ 

S13(ol) 

s12 (ol) 

S13(opx) 

S23(opx) 

S12(gt) 

S23(ol) 

S12(opx) 

s .. lJ 
I ( 1 o-3 GPa- 1 ) 

- 0 . 75 

- 0 . 91 

- 1 . 00 

- 1 . 08 

-1 • 1 0 

-1 . 7 4 

-2 . 21 

as;ap 
/(10-3 GPa-2) 

-0 . 000 

-0 . 012 

-0 . 1 5 3 

-0 . 087 

0 . 012 

- 0 . 016 

0 . 084 

( ol )-olivine , ( gt )-garnet , ( opx )-orthopyroxene 

a2s;ap2 
/(10 - 3 GPa-3) 

0 . 001 

0 . 022 

0 . 084 

0 . 022 

-0 . 001 

- 0 . 006 

- 0 . 026 

The relative magnitudes of the compressional compliances of the 

orthopyroxene structure can now be employed in the discussion of the 

off- diagonal moduli . A compressive stress 02 will result in shortening 

of the long compliant bonds of the M2 octahedra and associated 

increased kinking of the chains of tetrahedra . However , increased 

kinking of a chain of incompressible tetrahedra contributes equally to 

E2 and E3 and would therefore result in S23 > 0 - in conflict with the 

observations . In an alternative scenario, the high compliance s22 might 

be related to the other rotational degree of freedom which is 

associated with puckering of the chains of tetrahedra (ie relative 

rotation about edges joining bridging oxygen atoms) . Extension parallel 



1 18 

to [100] accompanies shortening parallel to [010] achieved by puckering 

- so that one might expect ls12I < ls23I . 

Similarly , a strain E1 resulting from the application of a 

compressive stress 01 may be accommodated by reduction of the puckering 

of the chains of tetrahedra, with significant extensional strain E2, 

and thus IS12I > IS13I · The stress 03 is resisted by the rigid chains 

of M1 octahedra which are braced against compression by the M2 

octahedra . The isolation of the [100] puckered and kinked chains of 

tetrahedra and deformed M2 octahedra from the strained M1 octahedra 

indicates S13=S23 · Thus, given the initial constraint of negative S23 

and the structural behaviour necessary for this observation , the 

off-diagonal compliances form a consistent trend , with 

( 5 . 7) 

This trend in the relative magnitudes of the off-diagonal modul i is 

comparable with the observed moduli tabulated in Table 5.2 . 

It is the distorted M2 bonds to the kinked and puckered chains of 

tetrahedra together with the control exerted by the chains of M1 

octahedra which results in the anomalous compliances of the 

orthopyroxene lattice . With increasing pressure , however , the distorted 

M2 octahedra are known to become regular (Ralph and Chose , 1980) with 

further kinking of the chains of tetrahedra . 

5 . 3 . 3 Shear-mode compliances 

Resistance to shear (low compliance) implies bracing of the unit 

cell ; that is incompressible , inextendable structural elements 
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approximately parallel to the diagonals of the unit cell. Table 5. 3 

lists the shear-mode compliances of garnet, olivine and orthopyroxene 

in order of increasing compliance down the table. It is evident that 

the majority of the shear compliances are comparable , with S44 of 

garnet being the least compliant, and S44 of olivine being the most 

compliant. 

The magnitudes of the shear compliances s55 and S66 of both olivine 

and orthopyroxene (see Figures 5.2 and 5.5) are controlled by the 

structural elements parallel to the -[101] and -[110] diagonals 

respectively. The structural elements in these directions are braced 

against compression or extension by rigid tetrahedra fixed in the (100) 

plane by either edge or corner sharing with octahedra. The shear E4 in 

orthopyroxene (see Figure 5.5) is resisted by the linkages of the 

chains of M1 octahedra and the chains of tetrahedra with rotational 

freedom about [100]. This rotational freedom however, is restricted by 

the resistance to deformation of the M1 octahedral edge which links the 

apices of neighbouring tetrahedra. The shear compliance S44 of 

orthopyroxene is comparable in magnitude with the compliances s55 and 

S66 of both olivine and orthopyroxene. 

The modulus S44 of garnet is the least compliant . The garnet 

lattice (see Figure 5.1) is well braced against shear by the space 

filling and edge sharing dodecahedra which act effectively as bracing 

components. The most compliant shear modulus is S44 for olivine. The 

-[011 J diagonals of the olivine lattice (see Figure 5.3) consist of 

small chains of three octahedra connected by tetrahedra. These 

tetrahedra share their basal edges with three octahedra in the ( 100) 

layer below. This would imply only moderate compliance, cont rary to the 

observations ( see Table 5 . 3) . Thus , the shear compliance S44 must be 
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increased by the freedom of the tetrahedra to rotate about [ 100] , 

deforming the edge-sharing octahedra in the (100) layer below . 

Table 5 . 3 The shear-mode compliances of garnet , olivine and 

orthopyroxene , together with their first and second pressure 

derivatives . 

S·. lJ s as;ap a2s;ap2 

/(10-3 GPa-1) /(10 - 3 GPa-2) /(10-3 GPa-3) 

S44(gt) 10 . 60 -0 . 174 0 . 018 

S44(opx) 1 2 . 11 - 0 . 337 0 . 054 

S66(opx) 12 . 80 -0 . 451 0 . 060 

S66(ol) 12 . 80 -0 . 409 0 . 050 

S55(ol) 1 3 . 00 -0 . 290 0 . 034 

S55(opx) 13 . 07 -0 . 446 0 . 086 

S44(ol) 15 . 72 -0 . 542 0 . 068 

(ol)-olivine , (gt)-garnet, (opx)-orthopyroxene 

5 . 4 The anomalous elasticity of orthopyroxene - pressure dependence of 

the compressional compliances 

With increasing pressure, the deformed compliant dodecahedra of the 

garnet lattice become more regular and thus less compliant . This 

strengthening of the bracing of the chains of tetrahedra and octahedra 

will reduce the already low compliance s 11 . As these A08 dodecahedra 

( and 806 octahedra) compress regularly, the rate of change of the 

pressure derivative is negligible . Similarly, for the olivine lattice, 

increasing pressure causes the slightly deformed octahedra to become 

more regular and thus less compliant . The regular compression of these 
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octahedra is mirrored in the small rate of change of the pressure 

derivatives of the compressional moduli of olivine . In comparing the 

pressure dependences of the compressional compliances for these three 

minerals (see Table 5 . 1) , it can be seen that the moduli S22, and to a 

lesser extent S33 , of orthopyroxene have anomalously large pressure 

derivatives . 

For the orthopyroxene lattice, increasing pressure causes the 

longest bond of the distorted M2 octahedra to shorten significantly in 

association with f ur ther kinking of the kinked chains of tetrahedra 

(Ralph and Chose , 1980) . The modulus s11 however, is determined by the 

compliances of the alternate layers of octahedra and tetrahedra in the 

direction normal to the layer . Pressure-induced kinking operates in the 

plane of the layer and is therefore unlikely to have a significant 

influence on S11, for which a normal pressure derivative is expected . 

The behaviour required of the kinked and puckered chains of 

tetrahedra in response to the shortening of the long bonds of the 

distorted M2 octahedra has been analysed with respect to the effects of 

hydrostatic pressure . 

This analysis reveals that distances in the b-c plane are changed 

uniformly by kinking . However, for the band c lattice parameters to be 

equally affected by the kinking of the A- and B-chains requires the 

A-chain to change its kink angle by about twice the change in the kink 

angle of the B-chain. This is contrary to the observations of Ralph and 

Chose (1980) . 

If both kinking and puckering are allowed in the orthopyroxene 

lattice , the b lattice parameter is reduced by both kinking and 
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puckering , the c lattice parameter is reduced by kinking and the a 

lattice parameter is increased by puckering. The long M2 edge length is 

the dimension most sensitive to kinking of the chains, while it is 

insensitive to puckering . 

Therefore, the initial compression of the orthopyroxene lattice can 

be accommodated by the kinking and puckering of the chains of 

tetrahedra with the shortening of the long M2 bonds in response to the 

kinking . This combination of kinking and puckering is controlled by the 

resistance of the appropriate M1 octahedral edge, which links the apical 

corners of the tetrahedra, to deformation 

This unusually large rearrangement of the three-dimensional network 

of polyhedra with increasing pressure causes the lattice to very 

rapidly lose its compliance in the [010] and [001] directions as tnese 

are the directions are most affected by the kinking of the chains . The 

puckering of the chains with pressure does not appear to greatly affect 

the compliance of the [ 100] I-beams . Thus s22 and S33 have large 

pressure derivatives due to the loss of compliance in the [010] and 

[001] directions accompanying the kinking of the chains and the 

shortening of the dominantly corner - shared lateral linkages between the 

I-beams . However, the compression of the deformed M2 octahedra quickly 

reaches an equilibrium with the kinking and puckering of the chains of 

tetrahedra, with further kinking becoming energetically unfavourable . 

At this point the pressure derivatives of the moduli S22 and S33 must 

be comparable with those observed for the S11 modulus and the 

compressional moduli of olivine . Hence, not only are the first pressure 

derivatives of S22 and S33 of orthopyroxene large , but the second 

pressure derivatives are also anomalously large. The anomalous rate of 

change of the pressure derivative of the S11 modulus for orthopyroxene 
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may be due to the complex interaction of the puckering of the chains of 

tetrahedra with increasing pressure affecting the compliance of the 

lateral corner-sharing bonding of the I-beams. 
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CHAPTER 6 

GEOPHYSICAL IMPLICATIONS 

6 . 1 Introduction 

Models for the mineralogy of the mantle have been based primarily 

upon natural samples of the upper mantle provided by basaltic lavas and 

the dominantly peridotitic xenoliths carried by magmas of deep-seated 

origin . The geochemical and petrological information provided by these 

samples of upper mantle melt and the complementary residue, together 

with laboratory studies of the relevant phase equilibria has 

facilitated the development of a pyrolite model for the chemical 

composition of the upper mantle (Ringwood, 1966) . At depths between -70 

and 200 km, the pyrolite composition crystallizes into an olivine, 

Al-poor pyroxene and pyrope-rich garnet mineralogy . At shallower depths 

the aluminous phase garnet is replaced by spinel and Al-rich pyroxenes, 

and at depths in excess of -200 km the Al-poor pyroxenes begin to 

dissolve in complex garnet solid solutions featuring partial octahedral 
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co-ordination of silicon. 

The physical properties of these mineral constituents of the upper 

mantle determine the velocities of seismic waves travelling through the 

mantle. Therefore, laboratory measurements of the velocities of 

ultrasonic pulses propagating at approximate mantle conditions through 

rocks representative of the proposed upper mantle mineralogy should 

reproduce the observed seismic velocities. 

However, there are a number of sources of error associated with 

this laboratory measurement of velocities through upper mantle 

specimens. It is important to ensure that the physical properties of 

the necessarily small (<10-1 m) rock samples on which the wave 

velocities are measured are statistically representative of the 

properties of the mantle (with heterogeneities >101 m); and furthermore 

that velocity differences between samples are due to mineralogical 

variations and not to the physical competance of the samples or to the 

variable effects of mineral alteration within the aggregates. 

Difficulties arise in the determination of the wave velocities due to 

the changing effects of cracks, pore spaces and pore fluids on the 

propagating signal with increasing temperature and pressure . A further 

source of error lies in the extrapolation of these laboratory 

measurements to the high temperature and high pressure conditions of 

the upper mantle . 

Most of these technical and theoretical hazards can be sidestepped 

by the measurement of the elastic properties of single crystals of 

representative upper mantle minerals at temperature and pressure. The 

resulting single crystal data may then be combined via aggregate theory 

to produce bounds on the velocities of waves propagating through 
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hypothetical isotropic aggregates of specified compositions, with no 

spurious effects introduced by the presence of pore spaces or cracks in 

the samples . This mathematical approach does however, leave the 

resulting velocity models at the mercy of the assumptions and 

limitations of the mathematical theory . 

In the present study, the elastic constants of single crystals of 

garnet , olivine and orthopyroxene of approximate mantle compositions 

have been determined at high pressures and room temperature with 

sufficient precision to provide accurate determination of the first 

pressure derivatives , and the first measurements of the second pressure 

derivatives of the elastic moduli . These new data facilitate the 

immediate computation of bounds on the elastic properties of a model 

' garnet harzbergite' mantle at 295 K and pressures to 3 GPa , where 

previously data existed for these minerals only to pressures -1 GPa . As 

observed previously (see Chapter 4) , the effects of these second 

pressure derivatives become important with increasing pressure , 

especially in the case of orthopyroxene . The 3 GPa pressure capability 

of the present study substantially shortens the extrapolation to upper 

mantle pressures. Temperature derivatives of elastic moduli from the 

literature permit the further extrapolation to upper mantle 

temperatures to be made and thus facilitate calculation of bounds for 

upper mantle velocity profiles for specified mineralogies . The 

velocites calculated in this manner may be slight over - estimates (1-5%) 

of the seismic velocities due to possible dispersion occurring across 

the frequency range between the seismic (-0 .1 Hz) and ultrasonic (-100 

MHz) frequencies (Goetze, 1977) . 
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6 . 2 The elasticity of multiphase composites 

There are a number of mathematical treatments for the calculation 

of the effective elastic moduli of composites of two or more isotropic 

phases . The simplest approach is that of Hill ( 1963) in which the 

average stresses and strains of a body with prescribed boundary 

conditions are defined in terms of the average stresses and strains of 

the constituent phases; 

and 

n 
(E) = l Vi (Ei) 

i=1 

n 
< o) = l Vi < 0 i) 

i=1 

( 6 . 1 ) 

( 6. 2) 

where vi is the volume fraction of the ith phase and oi and Ei are the 

stress and strain respectively for the ith phase . The effective moduli 

can then be defined as 

<o> * = C <E> . (6.3) 

The Voigt and Reuss bounds on the effective elastic properties can then 

be found by assuming uniform stress and uniform strain respectively 

throughout the body to give the bounds on the moduli of the composite; 

n 
MR*= (L vi /M i)-1 

i=1 

n 
~ M* ~ l viMi = Mv* 

i=1 
( 6. 4) 

where Mi is the bulk or shear modulus of the ith phase and M* is the 

effective modulus of the composite . 
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Hashin and Shtrikman (1963) have derived bounds for an isotropic 

composite which are much tighter than those derived using the Voigt and 

Reuss assumptions . This approach replaces a heterogeneous body of 

modulus C(x) , stress a(x) , and strain E(x) , with a reference body of 

C', a' a nd E'; where the internal stress field a' (x) does not alter the 

strain E(x) and 

a' (x) = (C - C' )E(x) ; ( 6 . 5) 

where xis the position vector; or alternatively , the strain field 

E' (x) leaves the stress a(x) unchanged 

E' ( x) = (S ' - S)a(x) . ( 6 . 6) 

The bounding process involves choosing either a' or E' in the reference 

body subject to the constraints of Equations 6 . 5 and 6 . 6 . his 

t r eatment produces the following equations for the lower and uppe r 

bounds on the bulk and shear moduli respectively; 

where 

and 

and 

a1 = -3/(3 K1 + 4G1) 

n 
A1 = L vil((Ki - K1 ) - 1 - a1 ) 

i=2 

n-1 
An= l vi/((Ki - Kn)-1 - an) 

i=1 

c_* = c1 + 811c2c1 + B18 1 )) 

G+ * = Gn + 8n/ ( 2 ( 1 + Sn8n)) 

( 6 . 7) 

( 6 . 8) 

( 6 . 9) 

(6 . 10) 

(6 . 11) 

(6 . 12) 
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where 

n 
and B1 = l vi/((2(Gi 

i=2 

n-1 
Bn = l Vn/((2(Gi 

i=1 

where 

and 

-G1))-1 - B 1 ) 

- Gn)) -1 - Bn) 
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(6 . 13) 

(6.14) 

(6.15) 

(6 .1 6) 

with K1 and G1 being the smallest moduli (in the present case those of 

orthopyroxene) and Kn and Gn being the largest moduli (in the present 

case those of garnet) . The bounds thus calculated on the bulk modulus 

of two-phase aggregates have been shown by Hashin (1962) to coincide 

with the bulk moduli of the special composite which is formed by 

incorporation of spherical inclusions of one phase in a matrix of the 

other phase . This result demonstrates that the Hashin-Shtrikman bounds 

are the closest possible bounds given only the volume fractions of the 

phases and the single crystal elastic moduli. There exist treatments 

which will produce bounds tighter than those of Hash in and Shtri kman 

( eg Miller, 19 69; Kuster and Toksoz, 19 7 4; Berryman, 19 80) but knowledge 

of the distribution of orientations and shapes of the grains making up 

the aggregate is required. 

The calculation of the bounds on the bulk and shear moduli for 

single-phase polycrystals, followed by the calculation of the bounds 

for the bulk and shear moduli of multiphase composites of isotropic 

phases is a procedure which has been widely used in the geophysical 

literature (eg Davies , 1974;Watt and O'Connell , 1978;Jackson, 1983), 

and for which there exists some observational support (Watt and 
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O' Connell , 1979) yet it is far from obvious that it results in 

rigorous bounds on the elastic properties of the most general 

multiphase aggregate . Rather , the bounds for the elastic properties of 

an isotropic composite which is an aggregate of isotropic polycrystals 

(not single crystals) have been calculated . It is possible therefore 

that bounds calculated in this way actually bound the elastic moduli of 

a subset only of the complete set of polycrystalline aggregates . 

6 . 3 The elasticity of composites of upper mantle phases 

6 . 3 . 1 Composites of the measured olivine (Fogo) , orthopyroxene (Enso) 

and garnet (PY63) phases 

The bounds on the elastic moduli of isotropic polycrystals of the 

measured garnet , olivine and orthopyroxene phases calculated in 

Chapter 4 , can now be used in the calculation of the bounds for the 

bulk and shear moduli of specific composites of these mantle minerals 

to 3 GPa at 295 K. Three composites of non-equilibrium mineralogies 

have been chosen in a simplified MgO-FeO-Si02-Al203 system . The first 

is a dunite whose bulk and shear moduli were calculated from the single 

crystal moduli of the San Carlos olivine . The other composites are a 

' harzburgite ' and a 'garnet harzburgite' - the latter with fractions of 

olivine, orthopyroxene and garnet similar to pyrolite (see Table 6 .1 ) . 

For the purposes of the present calculation the compositions of the 

olivine , orthopyroxene and garnet phases are those of the measured 

crystals and obviously do not necessarily constitute an equilibrium 

assemblage under any conditions of pressure and temperature . In Section 

6 . 3 . 2 the properties of equilibrium assemblages will be calculated . The 

bulk and shear moduli for these three mantle models were calculated 
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using the garnet , olivine and orthopyroxene bulk and shear modulus data 

presented in Table 6 . 2 

Table 6 . 1 Compositions , densities and Mg/(Mg+Fe) ratios for the three 

composites of the measured phases . 

Model 

Garnet 

Mg/(Mg+Fe) 

vol% 

Olivine 

Mg/(Mg+Fe) 

vol% 

Orthopyroxene 

Mg/(Mg+Fe) 

vol% 

Density 

g cm-3 

Dunite 

91 

100 . 0 

3 . 325 

' Garnet Harzburbi te' ' Harzburgi te' 

63 

10 . 9 

91 

59 . 1 

80 

30 . 0 

3. 393 

63 

1 • 5 

91 

75.4 

80 

23 . 1 

3.342 

Table 6 . 2 The average Hashin-Shtrikman bounds on the e lastic moduli for 

single phase aggregates of the garnet , olivine and orthopyroxene 

crystals characterized in the present study (see Tables 4 . 1, 4. 9, 

4 . 1 5 and 4 • 1 9 ) 

Mineral 

Garnet 

K 

G 

Olivine 

K 

G 

Orthopyroxene 

K 

G 

M /GPa 

17 3. 6 

94.9 

1 29. 1 

77.7 

109 . 9 

75.0 

8M/8P 

4.97 

1 . 59 

4.87 

1 • 7 6 

11 . 6 2 

1 • 9 7 

- 0 . 32 

-0. 11 

- 0 . 27 

-0. 1 3 

-1 . 46 

-0 . 33 
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The Voigt and Reuss bounds for the elastic properties of the composites 

were defined as the lower (Reuss) bound for a composite of isotropic 

polycrystals whose bulk and shear moduli were calculated using the 

Reuss method ( see Table 4. 1 9) , and the upper (Voigt) bound for a 

composite whose bulk and shear moduli were calculated using the Voigt 

method (see Table 4.19) . The Hashin-Shtrikman bounds for the composites 

were calculated using the averages of the Hash in-Shtr i kman bounds on 

the bulk and shear moduli of the various polycrystals since these 

bounds were in all cases very closely spaced. 

The calculated Hashin-Shtrikman bounds for the multiphase 

composites were found to be co-incident within the uncertainties in the 

elastic moduli of the aggregates . The Voigt and Reuss bounds on the 

bulk and shear moduli were ±(2-3) % and ±(1 - 2)% respectively about the 

Hashin-Shtrikman values . The comparison of these Hashin-Shtrikman 

bounds and Voigt and Reuss bounds for the shear and bulk moduli of both 

single-phase aggregates and multiphase composites illustrates the 

greater ef feet i veness of the Hashin - Shtr i kman variational approach in 

producing tight constraints on the moduli of an aggregate . Figures 6 .1 

and 6 . 2 illustrate the Hashin-Shtrikman effective bulk and shear moduli 

for the isotropic dunite, 'harzburgite ' and ' garnet harzburgite' 

composites at 295 K, with the pressure dependence extrapolated from the 

observed 3 GPa range to 6 GPa . 

At zero pressure, the relative magnitudes of the bulk and shear 

moduli of these garnet , olivine and orthopyroxene polycrystals are 

1 . 34 : 1 : 0 . 85 and 1 . 22 :1 :0. 97 respectively . Thus , for a mineralogy 

dominated by olivine, the addition of equal volumes of garnet and 

orthopyroxene will result in a small increase in the bulk modulus and a 

substantial increase in the shear modulus , by virtue of the magnitudes 
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of the garnet moduli . For the 'garnet harzburgi te' and 'harzburgi te' 

mineralogies the volume ratio of orthopyroxene to garnet is at least 

3 : 1. This large volume of orthopyroxene swamps the effects of the high 

bulk modulus of the garnet phase in both of these assemblages and 

results in bulk moduli for the 'garnet harzburgite' and the 

'harzburgite ' which are lower than that of the dunite (see Figure 6 . 1). 

Despite this volume disparity, the high shear modulus of the garnet 

phase of the 'garnet harzburgite' results in a modest increase in the 

modulus of the composite with respect to that of duni te. The shear 

modulus of the ' harzburgite' composite, however , is lower than that of 

the dunite . 

The first pressure derivative of the bulk modulus of the isotropic 

orthopyroxene phase ( and to a lesser degree , the pyrope-ri ch garnet 

phase) , which is high with respect to that of olivine (see Table 6. ~) , 

results in the bulk moduli for the 'harzburgite' and 'garnet 

harzburgite ' composites increasing more rap idly with increasing 

pressure than the bulk modulus of the dunite. This effect of the high 

pressure-dependence of the bulk modulus of orthopyroxene is illustrated 

in Figure 6 . 1 , where the bulk moduli of all but the most pyroxene rich 

assemblage (and therefore the composite with the lowest zero pressure 

bulk modulus) , are higher than that of the dunite at -6 GPa. The large 

negative pressure derivative measured in the present study results in 

significantly lower bulk moduli at 3-6 GPa than has previously been 

inferred by linear extrapolation of the lower pressure data of Frisillo 

and Barsch (1972). 

The three isotropic mineral phases comprising these composities 

have more similar first pressure derivatives for the shear moduli. The 

second pressure derivative for the shear modulus of orthopyroxene 
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however, is much larger than than that of either garnet or olivine . It 

is this factor which causes the curvature in the pressure dependence of 

the shear moduli (illustrated in Figure 6 . 2) for the 'harzburgite' and 

the 'garnet harzburgi te' composites to be apparent even at pressures 

-3 GPa . At high pressures the shear moduli for the 'garnet harzburgite' 

and the 'harzburg i te' composites are lower than that for the duni te . 

These calculations indicate the general impact of the high pressure 

elasticity measurements , especially the anomalous pressure dependence 

of the orthopyroxene bulk modulus upon the moduli of orthopyroxene 

containing assemblages . 

6 . 3 . 2 Composites of equilibrium upper mantle assemblages 

The elastic moduli for representative fertile and depleted garnet 

lherzolites (see Table 6 .3 ) (respectively PHN1611 and PHN1569 of Nixon 

et al . (1963) and Nixon and Boyd (1973)) were calculated using the 

pressure derivatives measured in the present study, with the zero 

pressure moduli adjusted (see Table 6 . 4 and Chapter 4) for variation in 

the Mg/(Mg+Fe) ratios between the measured single crystals of garnet, 

olivine and orthopyroxene, and the phases which comprise these rock 

samples . As no data are available for the elastic moduli of 

clinopyroxene, it was assumed, due to the similarity of the crystal 

structure ( see Chapter 5 . ), that the elastic moduli of clinopyroxene 

together with their pressure derivatives are the same as those observed 

for orthopyroxene . The dunite discussed in the previous section has a 

plausible upper mantle composition and therefore is included in the 

present discussion of composites of mantle mineralogie s and 

composition . These lherzolites are probably not genetically related -

otherwise less orthopyroxene would be expected in the lherzolite than 

in the garnet lherzolite . 
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Table 6 . 3 Compositions , densities and Mg/(Mg+Fe) ratios for the three 

upper mantle composites . 

Model Dunite Garnet Lherzolite Lherzolite 

Garnet 

Mg/(Mg+Fe) 81 84 

vol% 9. 3 0 . 7 

Olivine 

Mg/(Mg+F e) 91 88 93 

vol% 100 . 0 58 . 9 52 . 1 

Pyroxene 

Mg/(Mg+Fe) 89 94 

vol% 31 . 8 47 . 2 

Density 3 . 325 3 . 39 3 . 30 

g cm-3 

The increase in the Mg/(Mg+Fe) ratios f rom those of the garnet and 

orthopyroxene measured in the present study (see Table 6 . 2) to those of 

the minerals comprising the garnet lherzolite and the lherzolite (see 

Table 6 . 4) has the effect of decreasing the shear modulus of garnet and 

the bulk modulus of pyroxene , while increasing the bulk modulus of 

garnet , with the shear modulus of pyroxene remaining unchanged . These 

zero pressur e moduli have been calculated from measurements of the 

elastic moduli of the various solid solution members by previous 

authors . The garnet moduli were calculated from Leitner et al . 's (1980) 

systematics for members of the pyralspite solid solution series . The 

olivine moduli and the bulk moduli for the pyroxenes were calculated 

from linear regressions of the moduli determined by previous authors 

for crystals of varying compositions (see Tables 4. 22 and 4 . 23) . The 

shear moduli of the pyroxenes were calculated from a linear regression 

of the data obtained for the magnesium-rich orthopyroxenes in Table 

4 . 23 . 
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Table 6.4 The average zero-pressure Hashin-Shtrikman effective bulk and 

shear moduli for the garnet, olivine and pyroxene polycrystals 

which are used in the calculation of the bounds of the elastic 

properties of the dunite, garnet lherzolite and lherzolite. 

Mineral 

Garnet 

K /GPa 

G /GPa 

Olivine 

K /GPa 

G /GPa 

Pyroxene 

K /GPa 

G /GPa 

Present 
Study 

173.6 

94.9 

129. 1 

77.7 

109.9 

75.0 

Dunite 

1 29. 1 

77.7 

Garnet 
Lherzolite 

175.4 

91 . 8 

1 29. 1 

77.3 

107.4 

75.2 

Lherzolite 

175.3 

91 . 5 

129. 1 

77.3 

107.7 

75.5 

These compositionally adjusted bulk and shear moduli (Table 6. 4) 

affect the elastic properties of the olivine rich composites in the 

same manner as previously observed for the non-equilibrium assembalges 

(see Figures 6.1 and 6.2). Again the large volume of pyroxene swamps 

the competing effect of garnet and decreases the bulk modulus of the 

composites with respect to that of the dunite. The shear modulus of the 

garnet-rich mineralogy is higher than that of the duni te despite the 

high pyroxene/garnet volume ratio. As can be seen from Table 6.4, the 

increase in Mg content between the fertile garnet lherzoli te and the 

depleted lherzolite has little effect on the bulk and shear moduli of 

the various phases of the aggregates, and it is the loss of garnet and 

the addition on pyroxene which causes the bulk and shear moduli of the 

lherzolite to decrease with respect to the moduili of the garnet 

lherzolite. 
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The 'garnet harzburgite' and the garnet lherzol i te differ 

essentially by Mg/(Mg+Fe) ratios. Figures 6.1 and 6.2 illustrate that 

the effect of t0e change in composition from the 'garnet harzburgite' 

to the garnet lherzolite composite is to decrease both the bulk and 

shear moduli . Such a decrease must be due to the effect of the large 

increase in magnesium content (see Tables 6 . 2 and 6 . 4) from that of the 

present crystals (of approximate upper mantle compositions) to that of 

the phases of the garnet lherzolite. Comparison of Tables 6 . 2 and 6 .4 

reveals the shear modulus of garnet and the bulk modulus of pyroxene 

for the garnet lherzolite composition are reduced with respect to the 

moduli for the 'garne t harzburgite'. 

6 . 4 Velocity models for the upper mantle 

The compressional- and shear-mode velocities of waves propagating 

through these isotropic composites have been calculated from the bulk 

and shear moduli and the densities of the composites at high pressure 

and room temperature , where the compressional velocity is 

Vp = /(K + (4/3)G)/p (6.17) 

and the shear velocity is 

(6.18) 

These velocities have be extrapolated to -6 GPa (200 km depth) using 

the quadratics determined over the observed 3 GPa pressure range. The 

temperature dependence of these velocities has been introduced to the 

calculations as 
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(6.19) 

where Mi and pare the zero pressure modulus and density and a is the 

thermal volume expansion coefficient at 295 K. For the purposes of the 

present study and in an effort not to introduce the possibly misleading 

high linear temperature dependence of the elastic moduli of 

orthopyroxene ( Fr isillo and Barsch, 1972), the temperature dependence 

of the bulk and shear moduli of the dominant phase olivine, with 

3K/3T=-0.016 GPa K-1 and 3G/3T=-0.013 GPa K-1 (Kumazawa and Anderson, 

1969) and the thermal volume expansion coefficient of olivine 

a=26x10-6 K-1 (Suzuki, 1975), have been used in Eqn. 6.19. 

The oceanic and shield geotherms of Clark and Ringwood (1964) have 

been used in these calculations - being plausible upper and lower 

bounds on the upper mantle temperature profile. The pressure dependence 

of the calculated room temperature velocities has been converted into a 

depth dependence by a conversion factor of 31. 15 km GPa-1 (from PREM, 

Dz i e wons k i and Anderson , 1 9 81 ) . Fi g ur es 6 . 3 and 6 . 4 i 11 us tr ate the 

resulting compressional and shear velocity profiles for the upper 200 

km of the mantle for these two temperature gradients. 

Figure 6.3 illustrates the effectiveness of the large volumes of 

orthopyroxene in the garnet lherzolite and lherzolite mineralogies in 

r educing (by - 2%) the low temperature, low pressure compressional 

velocities from that of the dunite, despite the presence of significant 

amounts of garnet (which will tend to cause the compressional velocity 

to increase) in the garnet lherzoli te aggregate . The initial large 

temperature gradient of the oceanic geotherm produces a zone of low 

velocity at -75 km depth (Figure 6.3), reducing the calculated 



.c 
+-' 
0. 
(l) 

0 

25 

50 

75 

100 

125 

150 

175 

200 

Figure 6. 3 

Compressional Velocity /km s-1 

8.00 

/ 
/. / 

/ 

I ·/ 

I . 
. I 
I . 
I . / 
. I 
\ I 
\ : 
. \ 
\ I 
\ . \ 

I 

. \ 
\ \ 
\ . 
. \ 
\ .. 
I : 
. \ 
I 
I 

I 

\ 

/ 

I 

\ 

\ 
\ 

oceanic 

geotherm 

8 .10 8.20 8.30 

.1/ 
./ I / 

. / . . · I :/, ;· ... 
. /. .··1 I 

,,, .. :.,,,, I 
. . / 
. I.,,,,/ 

; 1' ... 
I 

I • 

I 
I . 

I 

I 

. ~ I 

' : . 
I I 

' : 
! I 
I : 

~ I 
I : .. 

! I 
I . 

! I 

/ 

I 
I 

I 

I 

I 

' I 

I 

I 

I 

I 

' 

I 

shield 

geotherm 

I 

/ 

/ 

I 

/ ., 

/ 

/ 

/ 
// 

/ / 
/ / 

/ / 

/ 

/ 

/ 

/ 

/ 

/ 

Dunite 

Garnet 

Lherzolite 

/ 

Lherzolite 
/ /PREM 

* * 

The variation with depth and temperature of the 

compressional velocity profiles for specific upper mantle assemblages, 

together with the average upper mantle velocity profile of Dziewonski 

and Anderson (1981 ) . The solid stars indicate the velocities calculated 

for the orthopyroxene-rich mineralogy, assuming a linear pressure 

dependence of the elastic moduli of orthopyroxene . The hollow stars 

indicate the velocities calculated assuming a linear pressure 

dependence of the elastic moduli of orthopyroxene for depths greater 

than 100 km. In both cases , the velocity profiles to about 100 km depth 

are similar. 
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zero-pressure, room temperature compressional velocities of the 

lherzoli te and garnet lherzoli te by -0. 23 km s-1 , and reducing the 

dunite velocity by 0.34 km s-1. This illustrates the importance of the 

large first pressure derivatives of the bulk modulus of orthopyroxene 

in overcoming the opposing effects of the temperature dependence of the 

velocities. This zone of low velocity is effectively absent for the 

model based on the shield geotherm. Here the velocities of the garnet 

lherzolite and the lherzolite at -75 km are reduced with respect to the 

zero-pressure, room temperature velocities by only -0. 10 km s-1 , and 

the velocity of the dunite is reduced by 0.17 km s-1. 

Figure 6.4 illustrates the shear velocity profiles for these three 

mineralogies. Again, the large volume of orthopyroxene overcomes the 

competing effects of the small volume of garnet and reduces the shear 

velocities from that calculated for the dunite. Here, 'the 

zero-pressure, room temperature velocities are reduced by only -0. 5% 

due to the near equivalence of the shear moduli of olivine and 

orthopyroxene. 

The zero-pressure, room temperature velocities for these two 

natural lherzoli tes were calculated previously by Jordan ( 1979), and 

are compared with the present calculations in Table 6.3. 
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The variation with depth and temperature of the shear 

velocity profiles for specific upper mantle assemblages , together with 

the average upper mantle velocity profile of Dziewonski and Anderson 

( 1981) . The solid stars indicate the velocities calculated for the 

orthopyroxene-rich mineralogy, assuming a linear pressure dependence of 

the elastic moduli of orthopyroxene . The hollow stars indicate the 

velocities calculated assuming a linear pressure dependence of the 

elastic moduli of orthopyroxene for depths greater than 100 km . In both 

cases, the velocity profiles to about 100 km depth are similar . 
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Table 6.3 The zero-pressure, room temperature shear and compressional 

velocities calculated for the garnet lherzolite and lherzolite 

composites . 

Composite Jordan ( 1979) Present study 

garnet lherzolite (PHN1161) 

Vp /km s -1 8.22 8 . 22 

Vs /km s -1 4 . 7 6 4 . 79 

lherzolite (PHN1569) 

Vp /km s -1 8 . 30 8 . 18 

Vs /km s -1 4.87 4 . 82 

The present calculations (which are based on improved elasticity 

data which have become available since 1979) illustrate the 

insensi ti vi ty of the zero pressure room temperature mantle velocities 

to compositional changes, in accord with the conclusion of Jor.dan 

(1979) . The changes in elastic properties due to the increase in 

magnesium content between the garnet lherzol i te and the lherzol i te, 

together with the increasing orthopyroxene/garnet volume ratio, result 

in no increase in compressional velocity - as calulated by Jordan . 

Rather , it is the variations in density (due to the increase in 

magnesium content) and the orthopyroxene/garnet volume ratio which are 

important , and in the present case result in a slight decrease in the 

compressional velocity with depletion of the garnet lherzolite (while 

the shear velocity increases slightly) . 

The global average seismic velocities for an isotropic upper mantle 

are presented in the 'preliminary reference Earth model' of Dziewonski 

and Anderson (1981) . These velocity profiles are plotted in Figures 6 .3 

and 6. 4 . The compressional velocities predicted by PREM for the upper 

mantle are bounded by the present velocities calculated with the shield 
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geotherm and the lower velocities calculated with the oceanic geotherm. 

The slope of the PREM compressional velocity profile is -0 . 62x1o-3 km 

s-1 per km , which can be compared with the linear fit to the present 

velocity profiles from 25-200 km depth . The slopes for the duni te, 

garnet lherzolite and lherzolite composites range from -0 . 88 to 

-0 . 48x1o-3 km s-1 per km for the oceanic geotherm , to -0.51 to 

-0 . 10x1o-3 km s-1 per km for the shield geotherm . Thus, the rate of 

change of velocity with depth for the average PREM upper mantle 

compressional velocity is also bounded by the profiles calculated for 

the dunite and the lherzolite composites . 

The present well-defined first pressure derivatives and the second 

pressure derivatives are especially important in the comparison of 

these compressional velocities . Use of the high first pressure 

derivative of the bulk modulus of orthopyroxene, without the large, 

negative second pressure derivative results in the compressional 

velocities calculated at 200 km depth being -0.2 km s-1 higher than the 

present velocities (see Figure 6 . 3). This results in substantial 

positive velocity gradients between 100 and 200 km depth, for profiles 

calculated with both geotherms . Therefore not only are reliable first 

pressure derivatives required in the calculation of the upper mantle 

velocity profiles, but also second pressure derivatives are necessary 

for reliable extrapolation to high pressure. These second pressure 

derivatives have not been available previously, resulting in over­

estimates of the compressional velocities for models of the upper 

mantle . The velocity profiles have also been calculated assuming 

a2M/3P2=o from 100-200 km depth for orthopyroxene. This results in an 

increase in velocities at 200 km, -0.1 km s-1, with the largest 

increases occurring for the orthopyroxene-rich compositions (see Figure 

6 . 3) . 
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The average upper mantle shear velocities predicted by PREM ( see 

Figure 6 . 4) are 1- 4% lower than the velocity profiles calculated using 

either the oceanic or the shield geotherms . This may be due in part to 

frequency dispersion of the measured elastic moduli , or the presence 

some of partial melt in this region of the mantle . The slope of the 

PREM model shear velocity is - 0.37 x1o- 3 km s-1 per km , compared to the 

profiles for the dunite , garnet lherzolite and lherzolite composites 

for depths of 100- 200 km , which range from -0 . 45 to -0 . 81x1o-3 km s -1 

per km for the oceanic geotherm and -0 . 62 to - 0 . 97x1o- 3 km s -1 per km 

for the shield geother m. Thus , the rate of change of velocity with 

depth for the PREM model shaer velocity i s also lower than that of the 

profiles calculated for the present three composites of upper mantle 

mineralogies and compositions . 

The effect of neglecting the second pressure derivatives· of 

orthopyroxene is less spectacular for the shear velocities . The 

velocities at 200 km depth would be - 0 . 05 km s - 1 higher if the second 

pressure derivatives of orthopyroxene were neglected. The ef feet of 

assuming a2M/aP2=o at 100 km is to increase the velocities by 

- 0 . O 2 km s -1 ( see Fi g ur e 6 . 4 ) . 

Thus we can see that with the inclusion of the second pressure 

derivatives of the elastic moduli of garnet , olivine and especially 

orthopyroxene determined in this study , the compressional velocities 

calculated for the three isotropic equilibrium assembalges are close 

approximations to the average upper mantle compressional velocity 

calculated in PREM , with the calculated 200 km velocities for the 

lherzolites being -2-3% lower than if the second pressure derivatives 

of orthopyroxene were neglected . The compressional velocity calculated 

for the duni te however , tends to be slightly higher than the PREM 
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velocity . The calculated shear velocities for these compositions tend 

to be higher than predicted by PREM . The large second pressure 

derivatives of the shear modulus of orthopyroxene however , tends to 

reduce the shear velocities towards that of the PREM model at depths 

approaching 200 km . 
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CHAPTER 7 

CONCLUSION 

Improved techniques of high-pressure ultrasonic interferometry have 

been applied in the characterization of a number of mantle minerals and 

their structural analogues . A procedure for the elimination of the 

unwanted transducer-bond phase shift provides for more accurate 

measurement of elastic-wave travel-times than has previously been 

possible . The combination of more precise ultrasonic interferometry and 

a 3 GPa hydrostatic pressure capability has allowed the determination 

not only of more reliable first pressure derivatives (within ±1%) , but 

also the first measurements of the second pressure derivatives (±10%) 

of the elastic moduli for these r elatively incompressible minerals . 

These experimental techniques have been applied in three distinct 

areas of geophysical interest : 

(i) the elastici y of the major upper mantle minerals olivine , 

orthopyroxene and garnet, 
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(ii) the study of the transit ion-metal monoxide MnO as an analogue 

for Fe1-xO wustite, and 

(iii) a search for possible shear-mode softening premonitory to the 

olivine~spinel phase transformation in Fe2Si04 fayalite. 

7 . 1 Elasticity of the major upper mantle minerals 

In general , the results of this study of the elasticity of 

farsteritic olivine (-Fogo), enstatitic orthopyroxene (-Enso) and 

pyrope-rich garnet (-PY63) confirm and significantly refine the 

findings of previous investigations . Remeasurement of the density of a 

previously studied crystal of pyrope-rich garnet (Bonczar et al ., 1977) 

has resolved an apparent discrepancy in the otherwise systematic 

variation of the elastic moduli with composition for garnet solid 

solutions (Leitner et al ., 1980) . Of particular interest is the 

confirmation of very high pressure derivatives for some of the 

compressional moduli (and hence the bulk modulus , K) for single-crystal 

orthopyroxene (Frisillo and Barsch , 1972). However, it has also been 

demonstrated that these moduli display unusually large second pressure 

derivatives . An explanation is offerred for the anomalous elasticity of 

orthopyroxene in terms of an internal degree of freedom of the 

lattice arising from the interplay between the kinking of tetrahedral 

chains and distortion of the M2 octahedr a . 

These new data for t he pressur e depende nc es of the bul k and shear 

moduli of the major upper mantle minerals can be us ed t o construct 

better-constrained velocity-depth profiles for specific mantle 

assemblages . These profiles illustr a te the s ensitivity of the 

calculated mantle velocity to the volume fractions of the various 
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phases and to the assumed geotherm. Jord an ' s ( 19 79) earlier conclusion 

concerning the insensitivity of wave veloc iti es to the degre e of 

depletion of garnet lherzolites is reinforced . The large ne gative 

second pressur e der ivative of the bulk modulus of orthopyroxene reduces 

the 200 km compressional velocity calculated for a typical garnet 

lherzolite mi neralogy from that which would be calculated from a linear 

pressure depende nce of the modulus, by about 2% , and has th e overa ll 

effect of r educing calculated velocity gradi e nts be tween 100 and 200 km 

depth . Calculated shear-wave ve loci ti es are h i ghe r t ha n those of t he 

PREM model (Dziewonski and Anderson , 1981) for both continenta l and 

oceanic geothems and all plausibl e chemical compositions . This 

discrepancy might reflect si gnificant dispers io n ( 1-5% i n shea r 

velocity) between ultrasonic a nd seism i c fr equenc ie s . 

7 . 2 The elasticity of the wustite analo gue MnO 

The pr essure dependence of the e lasti c moduli of the wustite 

analogue MnO have been de termined for the first time . The determination 

of 8K / 8P and a more re l iable value of K for MnO help constrain the 

calculation of the bulk moduli of the 3d B1-struc t ured trans it i on- metal 

monoxides based upon the model of Ohnishi and Mizutani (1978) for the 

incorporation of the crystal-field stabilization energy . A bulk modulus 

of 177 GP a is inferred for stoichiometric wust i te , in good agreeme nt 

with the bulk modulus predicted for FeO from the measurement s of 

Jackson e t a l . ( 1978 ) on polycrys t alline (MgxFe1 - x )0 and the recen t 

static compress i on measur ements of Yagi e t al . (1985) for Feo . 980 . 

Inspection of the experi me nt a l data for non- sto ichiometric wustite 

(Feo . 950) indi cates that the bul k modulus for t his composition is much 

lower than predicted by the present systema tics . 
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The investigation of the pressure dependence of the elastic moduli 

of MnO has also resulted in the observation of C44 shear-mode softening 

the pressure derivative becoming negative for P ~ 1 GPa . The 

connection between mode softening and the B1-+B2 phase 

transformation in the alkali halides and the alkaline earth oxides is 

well documented (Demarest et al ., 1977). However, pronounced softening 

of the modulus C44 has also been observed in the paramagnetic phase of 

MnO within -50 ° of the room pressure Neel point in response to the 

nearest-neighbour exchange interactions accompanying the development of 

short-range magnetic order (Seino , 1982). Thus, the negative pressure 

dependence of the shear modulus C44 in MnO may be indicative of 

short-range magnetic order developing as pressure raises the Neel 

temperature towards room temperature, or it may simply be shear-mode 

softening characteristic of the B1 lattices at high pressure . Hence , 

there are two likely modes of high pressure phase transformation· for 

MnO: the paramagnetic-+antiferromagnetic phase transformation which 

would occur if - pressure were to raise the Neel point to room 

temperture, or the B1 -+B2 transition which is so common in the alkali 

halides and the alkaline earth oxides with increasing pressure . 

7. 3 Search for shear-mode softening premonitory to the oli vine-+spinel 

transition 

The shear modulus c55 of fayalite has been measured to pressures in 

excess of the equilibrium olivine-+spinel transition pressure . This 

modulus is one of the shear moduli which might be expected to soften 

prior to a martensitic olivine-+spinel phase transition (Poirier , 

1981a) . No softening of the modu~us c55 was observed over this pressure 

range. In fact , the first and second pressure derivatives of the 
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modulus C55 of fayalite are comparable to those of the modulus c
55 

of 

the forsteritic olivine discussed earlier, despite the much closer 

proximity of fayalite to the high pressure boundary of its stability 

field. There is however, the possible need for substantial thermal 

activation of the martensitic transition and hence the shear-mode 

softening associated with it. Measurements of the wave velocity of 

polycrystalline fayalite under simultaneous high pressure and high 

temperature (Fukizawa and Kinoshita, 1982) to the point of transition 

however , has failed to observe an anomalous decrease in velocity. Thus, 

there is no evidence for the pressure-induced shear mode softening in 

fayalite which might have been expected prior to a martensitic 

olivine4spinel phase transition . 
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