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ABSTRACT

The precise ultrasonic pulse superposition technique has been

employed to determine the elastic moduli as a function of temperature
from T = 298-650°K for single crystal fluorides crystallising in the
rocksalt (LiF and NaF), fluorite (CaF,, SrF, and BaF,), rutile (MgF,)

and perovskite (KMgFj3) structures. The pressure derivatives of the
elastic moduli were also measured for KMgF3. These new data are
consistent with low temperature (T < 298°K) data obtained by other
ultrasonic pulse techniques and are superior to previous high temperature
data from resonance experiments. We employ these new data to consider
the fluoride-oxide modelling scheme based on Goldschmidt's crystal
chemical considerations and to evaluate the use of fluorides as models

for the high temperature elastic behaviour of their oxide analogues.

The elastic moduli, c, are represented by quadratic functions in
T over the experimental temperature range; however, the curvature is
not in the same sense for all the crystals. For CaF,, SrF,, BaF; and
MgF,, the curvature is consistent with the predictions of classical
lattice dynamics that the c-T plot at constant volume should be linear
in T at high temperatures. The behaviour of the c¢' and c;; modes for
LiF and NaF contradicts these predictions. The fluorides do not appear
to exhibit high temperature elastic behaviour at significantly lower

absolute temperatures than their oxide analogues.

The bulk moduli of equivolume oxides and fluorides in a particular
2 @noEe: .
structure are scaled as 4S°, where S = Z°/Z is the ratio of the
effective unit charges and is approximately 75% for all the crystal
structures. For the rocksalt-structure fluorides and oxides, the
similar values for |(8c/aT)P[ for the members of an analogue pair and
their decrease with increasing molar volume are explained in terms of

nearest neighbour distance in a model incorporating Mitskevich's theory




with K-V systematics. Such similarities do not exist in the values of

(BC/BT)P for fluorides and oxides with the fluorite, rutile and perovskite
structures and trends are absent for the last two structures. For
compounds in all four structures, (BKS/BT)P is dominated by the extrinsic

temperature dependence, whereas for (Bu/BT)P, the intrinsic is at least

as 1mportant as the extrinsic contribution.
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CHAPTER 1

INTRODUCTION

Seismological studies provide the most direct information on the

earth's interior in the form of elastic wave velocities and density as

a function of depth. Mineral physics, the application of the concepts

and techniques of solid state physics to the study of materials of
importance in geophysics, bridges the gap between petrological models

of the earth's interior and earth models derived from seismological
evidence. Knowledge of the elastic moduli and their pressure and
temperature derivatives is important not only for establishing an
equation of state for the earth, but also for examining detailed problems,
such as the nature of the low-velocity zone and elastic wave velocities

in the descending lithospheric slab at plate margins.

Laboratory elasticity studies which employ ultrasonic techniques
to determine the elastic wave velocities are limited in the attainable
temperature and pressure range (T < 1200°C, P < 40 kbar). The approach
adopted in this thesis involves the study of analogue compounds under
conditions accessible in the laboratory, to estimate the high pressure

and high temperature properties of earth-forming compounds.

1.1 Fluoride-oxide modelling scheme and its application to high

temperature elasticity

The concept of analogue compounds was first introduced on the
basis of crystal chemical considerations by Goldschmidt (1927) who
demonstrated that ionic size is one of the most important factors
governing crystal structure. Ringwood (1970) has made extensive use
of the germanates as high pressure models for the physical and crystal

chemical properties of their silicate analogues. The larger size of

the germanium ion with respect to silicon means that the germanates




should transform to high pressure phases at lower pressures than the

corresponding silicates. Germanates have also been useful as models
for the elasticity of high pressure phases of silicates (e.g., Liebermann,

1972, 1974b,; 1975).

Another aspect of Goldschmidt's (1927) modelling concept concerns
fluoride and oxide analogue compounds and is also based on crystal
chemical considerations: (a) the similarity in ionic radii of 02— and
F7; (b) the applicability of the rigid ion model to compounds containing
the O2~ and F ions, which have relatively low polarisabilities resulting
in their ionic radii being almost independent of co-ordination number;
and (c) the correspondence of the crystal structures of oxide and
fluoride compounds in which the cations are also of comparable ionic

radii, but for which the cationic charge of the fluoride is half that

of the oxide.

In the table below we illustrate the central feature of the
entire modelling scheme: the similarity of the ionic radii of 02— and
F~ for various co-ordination numbers (after Shannon and Prewitt, 1969, 1970).
The comparisons also demonstrate that the ionic radii of 02_ and F~ are

almost independent of co-ordination number. Notable examples of simple

Co-ordination number Ionic radii (3)
0Lk F~
IT 15,35 16::285
I1T 1.36 1.30
IV 1.38 193]
VI 1.40 1553

fluorides which exhibit structural correspondences are LiF-MgO (rocksalt
structure), CaF,-ThO, (fluorite structure), MgF,-TiO, (rutile structure)

and BeF,-Si0, (a-quartz and coesite structures). The relative ionic

sizes for fluorides and oxides in the rocksalt structure are illustrated
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Figure 1.1: Diagram of the cubic face layers for the rocksalt structure
illustrating the relative ionic sizes for fluoride-oxide analogue

pairs. The ionic radii and the interionic distances are to scale.




in Figure 1.1. In addition, a number of binary compounds with crystal

structures of interest to geophysical discussions of the earth's interior

are consistent with this modelling scheme and are listed in Table 1.1.

Of particular interest is the close correspondence of the ionic radii of
2+ “4+ o o ! ) y .

Be® and Si (0.27A and 0.26A, respectively, for 4-fold co-ordination)

(Shannon and Prewitt, 1969) which permits the fluoride-oxide modelling

system to be extended to include fluoroberyllates and silicates. One

disadvantage is that trivalent cations have no place in this scheme, so

that it is difficult to model the corundum, ilmenite or garnet structures.

Goldschmidt (1927) also suggested that because of their lower
ionic charge, fluorides should be "weakened'" models of their oxide
analogues, and thus be characterized by lower melting temperature, lower
hardness and lower refractive index. In presenting the ''weakened' model
concept, Goldschmidt (1927) cited the melting points of the phenacites
LipBeF, (470°C) and ZnySiOy (1510°C) to illustrate the greater temperature
sensitivity of the physical properties of the fluorides. We list the
ratios of the melting points of other fluorides to those of their oxide
analogues, Tﬁ/Tg, in Table 1.2; with the exception of MgF,-TiO,, this
ratio is less than 0.6 for all of the analogue pairs. Investigations by
Roy et al. (1953,1954) and by Thilo and Lehmann (1949) have demonstrated
close similarities in the phase diagrams of binary fluoride and oxide
systems at atmospheric pressure with the fluoride systems exhibiting
much lower solidus and liquidus temperatures. Recently, Jackson and
Liebermann (1974) have shown that the fusion curves of rocksalt fluorides
and oxides at high pressure may be correlated in a similar manner. In a
study which parallels that reported in this thesis, Jackson (1976)
employed fluoride and oxide analogue systems in an investigation of

phase equilibria and melting relationships.

The idea that the fluorides might be models for the high

temperature elasticity of their oxide analogues was prompted by the {




Crystal Structure

Olivine
Phenacite
Pyroxene
Diopside
Perovskite
Spinel

Strontium plumbate

E}uoridc

NajpBeFy
LiyBeFy
LiBeF3
LiNaBejFg
KMgF 3
LipNiFy

Na,NiF,

Oxide

CapSi0y
Zn,Si0y
MgSi0O3
CaMgS1i,0¢
SrTiO3

MgoSnOy

Ca,ySn0y




TABLE 1.2: Ratios of Melting Temperatures (Tm) for Fluoride-Oxide

Analogue PairsJr

Pair

LiF-MgO
NaF-CaO
KF-Sr0
RbF-BaO
KF-BaO
CaF,-ThO,
MgF,-Ti0,
MnF,-Sn0;

KMgF3-SrTi03

The melting temperatures for these fluorides and oxides are listed
completely in Table 5.1.

m

.46

0.

56

0

T /T
m




the greater temperature sensitivity of the physical properties of the

fluorides and by the fact that germanates have been used as models for
the high pressure elasticity of silicates. Classical lattice dynamical
theories (e.g., Leibfried and Ludwig, 1961) predict that the elastic
moduli should depend linearly on temperature for temperatures greater
than the Debye temperature; Anderson (1966) referred to this as the
regime of high temperature elastic behaviour. The temperature derivative
of the bulk modulus in the high temperature regime is an important input
parameter to theoretical equations of state. The evaluation of the use
of fluorides to predict the high temperature elastic behaviour of their
oxide analogues involves two approaches. (1) Determination of whether
the fluorides exhibit high temperature elastic behaviour at lower
absolute temperatures than their oxide analogues, which would enable
measurement of high temperature derivatives of the elastic moduli at
temperatures attainable in laboratory experiments. (2) Examination of
the elastic moduli and their temperature derivatives in terms of elastic
moduli systematics to determine whether measured values for the fluorides

can be used to predict those of the oxides.

The quality and the temperature range of the available elasticity
data from the literature precluded evaluation of the high temperature
modelling concept. One of the most promising systems for testing the
validity of the high temperature modelling concept is the rocksalt
analogue pair LiF-MgO. Reliable elasticity data for MgO exist for the
temperature range 73°K to 1200°K (Anderson and Andreatch, 1966;

Spetzler, 1969, 1970). However the high temperature data for LiF from

the resonance experiments of Susse (1961) and Chernov and Stepanov (1961)
were not suited to detailed comparison with MgO. The only other fluorides
for which single crystal elastic moduli have been determined at high

temperatures (T > 300°K) are NaF (rocksalt) and CaF, (fluorite), both

of which were studied by resonance techniques (Nikanorov and Stepanov,




1963; Nikanorov et al., 1968; Vidal, 1974). The uncertainties in the

data for LiF determined by such techniques did not encourage reliance

on the data for NaF and CaF,.

We have therefore undertaken a programme to determine the elastic
moduli of LiF and its isomorph NaF, and of CaF, and its isomorphs SrF,
and BaFjy, by ultrasonic pulse techniques to temperatures well above
room temperature. In addition, we have studied the temperature
dependence of the elastic moduli of the rutile-structure MgF,, and the
perovskite-structure KMgF3;, which are of great interest as structural
analogues of two possible lower mantle phases (see Ringwood, 1970; Liu,

1975, 1976)"%

1.2 Outline of thesis

The purpose of this thesis is to report new and precise values
of the single crystal elastic moduli as a function of temperature from
298°K to approximately 650°K for fluorides in the rocksalt, fluorite,
rutile and perovskite structures, and to examine the data within the
framework of high temperature equations of state and elastic modulus
systematics in order to evaluate the fluorides as models for the high
temperature elastic behavior of the oxides. In Chapter 2, we describe
the experimental techniques employed to determine the elastic wave
velocities and hence the elastic moduli as a function of temperature
and pressure. The elasticity data versus temperature are presented in
Chapter 3 for LiF, NaF, CaF,, SrF,, BaF,, MgF, and KMgF3. These new
data are shown to be internally consistent throughout the temperature
range and are compared with existing data from previous investigators.
Various high temperature equations of state are employed in Chapter 4

for the discussion of the temperature behaviour of our elastic moduli,

and for comparison of the onset of high temperature elastic behaviour




for fluoride and oxide analogues. In Chapter 5, fluoride and oxide

elastic moduli and their pressure and temperature derivatives are
examined in terms of elastic modulus systematics. Chapter 6 contains a
summary and final conclusions on the value of the fluoride-oxide

modelling scheme with regard to high temperature elasticity.

1.3 Extent of publication

Some of the material in this thesis has been published or submitted

for publication while more is being prepared for publication.

1. Jones, L. E. A. and Liebermann, R. C., 1974. Elastic and thermal
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fluorite, rutile and perovskite structures, Phys. Earth Planet.
Interiors., 9:101-107.

(3]

Jones, L. E. A., 1976. High temperature behavior of the elastic
moduli of LiF and NaF; comparison with MgO and CaO, submitted
to Phys. Earth Planet. Interiors.

3. Jones, L. E. A., 1976. High temperature elasticity of the fluorite
structure compounds, CaF,, SrF, and MgF,, in preparation.

4. Jones, L. E. A., 1976. High temperature elasticity of rutile
structure MgF,, in preparation.

5. Jones, L. E. A., 1976. Elastic moduli of KMgF3-perovskite as a
function of temperature and pressure, in preparation.
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2.1 Introduction

Ultrasonic pulse techniques were employed in determining the
elastic wave velocities in several single crystal fluorides as a function
of temperature and pressure. For the temperature measurements, a
controlled atmosphere furnace capable of T £ 1000°C was specially
designed and built. Existing apparatus of our laboratory was utilized

for the pressure measurements to P < 3 kbar.

2.2 Sample description and preparation

Single crystal specimens of LiF, NaF, CaF,, BaF, and MgF, were
purchased from Harshaw Chemical Company (Cleveland, Ohio, U.S.A.) while
single crystals of SrF, and KMgF; were obtained from Atomergic Chemetals
(Carle Place, New York, U.S.A.). The bulk densities were determined
hydrostatically, using toluene as the density reference fluid, and
agree to within 0.1% with the X-ray densities (Table 2.1); the former

were employed in the calculation of the elastic moduli in Chapter 3.

For the materials of cubic symmetry (all of the above except
MgF,) it was necessary to prepare two sets of crystallographic faces
for ultrasonic measurement to determine and cross-check the three
independent elastic moduli. The LiF, NaF and CaF, crystals were received
as {100} oriented cubes which required further orientation and cutting
to provide a pair of (110) faces and a pair of (001) faces; the SrFj
and KMgFj crystals were purchased in this configuration. Due to the
appearance of a small crack, the BaF, crystal was not altered from its
original configuration which included a pair of (110) faces and a pair

of (111) faces.

The tetragonal MgF, crystal was purchased as a 1 inch cube with

a pair of faces perpendicular to the c-axis, [001]. To enable the

determination and cross-checking of the six independent elastic moduli,




TABLE 2.1

Grys

LiF

NaF

CaF,
SrF,
BaF,
MgFo
M

Fy

o
o

KMgF

Comparison of bulk and X-ray densities

Bulk density

tal

(crystal A)
(crystal B)

3

Miller and Smith (1964)
Wong and Schuele (1968)
Gerlich (1964b)

Haussuhl (1968)

Rosenberg and Wigmore (1967)

(gm.cm”

.641%0.

.806%0.

7

X-ray

(gm.

density
-3
cm )




this specimen was oriented and cut to provide the two crystals illustrated

in Figure 2.1; crystal A, which consisted of a cube with a pair of (001)
faces and a pair of (110) faces; and crystal B, which was a cube with a
pair of (100) faces and a pair of faces at 45° to the (001) and (010)
crystallographic planes. Since the purchased crystal of MgF, was mis-
aligned from the c-axis by 5°, the resultant errors in the orientations

of crystals A and B were corrected in the polishing process.

The physical dimensions of the approximately cubical specimens
lay between 6.3 mm and 7.5 mm for all crystals except KMgF3, for which
the edge length was approximately 5 mm. Lengths at room temperature
and atmospheric pressure were determined with a micrometer and are
accurate to *3 X 10—3 mm. Opposite faces were polished with 8 um diamond

paste to a flatness of within 0.0005 cm and to a parallelness of better

than 0.013°.

The final orientations for LiF and NaF were verified by trans-
mission X-ray techniques to be correct to within 0.3°. Back reflection
X-ray techniques verified that the orientations were correct to within
1.5° for CaFp, SrF, and the (110) face for BaF,. The (111) face of BaFj
was found to have a misalignment of 3.5°. Similar determinations for
MgF, demonstrated that the orientations were correct to within N The
misorientation angles for each of the seven crystals are detailed
completely in Appendix A. The effect of these misorientations on the
elastic moduli and their temperature derivatives is discussed later in
Chapter 3.

"

2.3 Ultrasonic Techniques

The pulse superposition technique of McSkimin (1961, 1962) was

employed in determining the elastic wave velocities as a function of

temperature and pressure. A block diagram of the electronic equipment




Figure 2.1: Diagram showing the orientation of MgF, crystals A and B

relative to the crystallographic axes for tetragonal crystals.




used is shown in Figure 2.2. The 20 MHz quartz transducers (X-cut for

compressional and AC-cut for shear waves, both co-axially-plated and

% inch diameter) were bonded directly to the specimens for the temperature
and pressure measurements. A high temperature lubricating grease

Extemp 9901 (Frisillo and Barsch, 1972) facilitated excellent acoustic
coupling at room temperature although a somewhat poorer signal resulted
at elevated temperatures (see Figure 2.3). Loss of acoustic coupling
due to failure of the bond at high temperatures limited the experimental
temperature range to T < 400°C. For the pressure measurements, Dow-
Chemical Resin 276-V9 was used as the bonding material and provided an
excellent signal in the pressure range 0-2.5 kbar. At higher pressures,
the signal became highly attenuated and we could not obtain systematic,
reproducible data (see Figure 2.4), perhaps due to the increased
viscocity of the pressure transmitting fluid or to deterioration of

the bonding resin.

In the pulse superposition technique, the '"in phase" echo condition
is obtained by varying the pulse repetition frequency, fR’ until a
maximum occurs in the amplitude of the successive internal acoustic echoes

within the specimen. When this condition is achieved:

6 = (l/pr) - (l/fc) [n/p - v/360] 2.1

where & is the round trip delay in the specimen alone, fC is the carrier
frequency (20 MHz) and y is a phase angle associated with reflections at
the transducer-specimen interface. In these experiments, pulses were
applied for each round trip in the specimen, corresponding to the p = 1
condition. The value of fR associated with n = 0 was determined by
measuring the spectrum of repetition frequencies corresponding to integer
increments in n for 10 MHz, 20 MHz and 30 MHz transducers. Unresolved
ambiguities were eliminated by a pulse transmission technique (Liebermann

et al., 1975). For a thin acoustic bond, the phase angle Y should be of

the order of a few degrees (McSkimin, 1961, 1962; Schreiber et al., 1973).
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Figure 2.2: Block diagram of the pulse superposition apparatus in

[ operation with one transducer. The relationship between the pulse

repetition frequency (fR) and the carrier frequency (fc) is

illustrated schematically.




Photos of typical ultrasonic pulse superposition

signals for LiF at room temperature (a) and at high
temperature (350°C)(b). The deterioration of the
signal with

increasing temperature is due to the
failure of the Extemp bond.

is approximately 20MHz and the mode of propagation
is Chb shear mode in the [001] direction.

The carrier frequency




1y

Photos of typical ultrasonic pulse superposition
signals for KMgF3 at ambient pressure (a), at |
kbar (b) and at 3 kbar(c). The increased
attenuation and decrease in the signal quality
at 3 kbar are indicative of bonding problems at
higher pressures. The carrier frequency is
approximately 20 MHz and the mode of propagation
is the Cy), shear mode in the [110] direction




The resultant errors in 6 would lie between 1 x 1()_3 and 1 x 10_4 for

the compressional and shear modes measured. The variation of the phase
angle y with pressure and temperature was minimized by maintaining the
transducer-bond assemblage at its resonant frequency (McSkimin, 1961).
Herein lies the advantage of the pulse superposition technique in its
sensitivity to small changes in the elastic wave velocities due to

changing environmental conditions (P, T, etc.).

Ambiguities in the measurement of pulse repetition frequencies
were observed due to extraneous interference effects which produced
multiple maxima in pulse amplitudes instead of the ideal single maximum.
In addition, not all the displayed echoes peaked in amplitude at the
same frequency, a condition we refer to as 'phasing'. The uncertainties
in fR’ which tended to be larger for the compressional modes, were
estimated on the basis of the separation of the multiple peaks and were
comparable to the errors in & due to phase changes at the transducer-
bond-sample interfaces. Uneven bond thicknesses resulting in varying
phase angles across the transducer could be one explanation for the
multiple peaking and "phasing'". This is supported by the fact that the

pattern of peaks does vary with temperature.

Non-parallellism and departure from flatness of the acoustically
reflecting faces could also result in extraneous interference effects.
Another contributing factor could be diffraction which results in beam
spreading and possible side wall reflections as well as reflection of a
non-planar wave front from the far end of the sample. The choice of
20 MHz transducers is a tradeoff between minimising the effects of non-
parallelism (less significant at lower frequencies) and those of
diffraction (less significant at higher frequencies). At the carrier
frequency of 20 MHz the previously quoted parallelism figures of better

than 0.013° and flatness of better than 0.0005 cm lie on the borderline

of detectable effect (Truell et al., 1969, chapter 2.2). The effects of




diffraction are small for a/x >> 1, where a is the transducer radius

and A is the wavelength of the carrier (McSkimin, 1964). For compressional
waves, a/X v 12 and for shear waves, a/A v 25. Hence diffraction effects
are more likely to be non-negligible for compressional than for shear
waves. The small departures of the echo pattern from exponential decay

at room temperature are typical of the effects of non-parallelism and
diffraction (Truell et al., 1969, chapters 2.1, 2.2). That the extraneous
interferences could be due to the side wall reflections allied with
diffraction is supported by the fact that the occurrence of multiple
peaking was greatly reduced with the change of boundary conditions upon

immersion of the sample in the pressure medium.

The observed multiple peaking and ''phasing' probably arise from
a combination of diffraction and bond effects. However, despite the

errors ascribed to fR on the basis of peak separation, it was, in general,

possible to track a particular peak as a function of temperature,

resulting in a much more systematic data set than the errors would imply.

: o -3
l'he absolute accuracy of fR at any P, T is better than £ 1 x 10 ;
however the relative precision of fR at successive T or P in a particular

: -4
run is better than £ 1 x 10" ".

2.4 Furnace and specimen holder

A small furnace was specially constructed to our design for the
measurement of elastic wave velocities as a function of temperature.
One requirement was a thermal inertia low enough to facilitate a flexible
range of heating rates, yet high enough to prevent short term temperature
fluctuations. The stipulation that the temperature gradient across the
sample be as small as possible demanded the provision of a large uniform

"hot spot'" at the centre of the furnace. Provision also had to be made

for the maintenance of an inert gas atmosphere.




A schematic drawing of the furnace is shown in Figure 2.5,

illustrating the furnace casing built by our workshop, the furnace core
and the packing arrangement. The furnace core consisted of a mullite
tube of 5/8 inch internal diameter which we wound with platinum 20%
rhodium wire of 0.020 inch diameter. The windings were spaced closer

at the ends (approximately 13 turns per inch) than at the centre
(approximately 10 turns per inch) and were anchored in place with alumina
cement. This gradation in winding was intended to produce a large
uniform "hot spot'". The ends of the mullite tube extended beyond the
furnace so that gas seals could be easily made with the specimen holder
and opposing end piece in place. We completed assembly of the furnace by

packing in powdered alumina and magnesium oxide as thermal insulation.

The specimen holder (Figures 2.6, 2.7) was designed to support
the sample, to supply the electrical signal to the co-axial transducer
bonded directly to the sample, and to provide spring loading on the
transducer-sample interface. This last was necessary to maintain good
acoustical coupling as a function of temperature. The opposing end
piece was employed as a thermal and gas seal as well as a means of
introducing the platinum-platinum 10% rhodium thermocouple which was
seated directly against the specimen. A schematic drawing of both the
specimen holder and end piece is shown in Figure 2.6 which also illustrates
their placement in the furnace core. Figure 2.7 1s a photograph of the
assembled specimen holder while Figure 2.8 is a photograph of the
furnace with both specimen holder and opposing end piece in place.

The temperature distribution along the axis of the furnace and
the exact position of the "hot spot'' were determined with the complete
assemblage shown in Figure 2.8, but with the introduction of a second
thermocouple down the axis of the signal pin. The difference between
the fixed reference thermocouple and the movable one enabled precise

determination of the temperature distribution. For the final deter-

mination, a dummy specimen with a hole for the thermocouple bored
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Fig. 2.7: Photo of the assembled specimen holder




2.8

Photo of the furnace assembly with the specimen
holder and opposing end piece in place. The
signal cable can be seen at the very top of the
photo. Gas input and output tubes are attached
to horizontal tubes on the assembly. The
thermocouple leads enter from the bottom.




along its axis was employed as this simulated the experimental arrangement

more closely. Figure 2.9 demonstrates that the hot spot is indeed very
uniform, the variation in temperature being less than 1°C over a distance
of 12.5 mm at 800°C. At lower temperatures, the hot spot should be even
larger. Determinations of the effect of inert gas flow at 400°C, 600°C
and 800°C demonstrated that for very slow gas flow, the "hot spot'" was

unaltered from the position determined at 800°C.

For a temperature run, inert gas (either argon or dry nitrogen)
was flushed through the system and then reduced to a very slow flow
before the furnace was switched on. The reference junction of the
platinum-platinum 10% rhodium thermocouple remained at room temperature
which was known to +1°C for the runs for LiF and NaF and to #0.2°C for
subsequent runs. The e.m.f. associated with the thermocouple was
measured by either a potentiometer or a digital voltmeter; the uncertainty
in measurement of e.m.f. corresponded to a temperature difference of 0.5°C.
The thermocouples used were calibrated against the melting point of gold
and against the boiling point of water (see Appendix B) and were found
to be correct to within 2°C. It was decided that corrections need not

be made to the measured values of temperature.

2.5 Pressure apparatus

The pressure dependence of the elastic wave velocities was deter-
mined by placing the specimen in a standard specimen holder in a liquid
medium apparatus (Figure 2.10) built by Harwood Engineering Company
according to the specifications of this laboratory (Liebermann et al.,
1975). Silicone oil (Dow-Corning DC-200, 5 centistoke viscosity) was
the pressure medium and the pressure was determined from the millivolt
output of a manganin pressure gauge with a precision of +0.01 kbar.

Temperature was not controlled but was monitored by a copper-constantan

thermocouple with a reference of 0°C in an ice-water slurry. With each
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increase in pressure, the temperature also increased and time to reach

gqui]ihrium was allowed before measurements were taken. Since the

equilibrium values of temperature also increased with pressure, the data

were corrected to 298°K (see also Chapter 3.6).
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CHAPTER 3

TEMPERATURE AND PRESSURE DEPENDENCE OF THE ELASTIC
MODULI OF SEVERAL FLUORIDES: EXPERIMENTAL RESULTS

3.1 Introduction

The single crystal elastic moduli were determined as a function
of temperature using the experimental techniques described in Chapter
2, for fluorides which crystallize in the rocksalt, fluorite, rutile
and perovskite structures. Measurements were performed in the range
298°K to approximately 650°K for LiF and NaF (rocksalt), CaF,, SrFp
and BaF, (fluorite), and MgF, (rutile). The temperature range of the
measurements for KMgFj (perovskite) lay between 298°K and approximately
550°K. The single crystal elastic moduli of KMgF3 were also determined

as a function of pressure from 1 bar to 2.5 kbar.

Propagation of shear and compressional waves in the [110] and
[001] directions for the cubic crystals LiF, NaF, CaF, and SrF, enabled
the determination and cross-checking of the three independent elastic
moduli (Table 3.1) as a function of temperature. For BaF,; and KMgFs,
the three independent elastic moduli were determined by the propagation
of compressional and shear waves in the [110] direction, with the room
temperature crosschecks for BaF, being provided by measurements for
the [111] direction (Table 3.1). The six independent elastic moduli for
MgF,, together with crosschecks to 370°K, were determined by the
propagation of shear and compressional waves in the [100], [110] and
[001] directions, and in a direction at 45° to the [001] and [010]

directions (Table 3.2).

3.2 Data analysis for the elastic moduli (c) as a function of
temperature (T) and pressure (P)

The elastic wave velocities as a function of temperature are

determined from the primary data, the pulse repetition frequencies, fR’
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which are measured during very slow heating (less than 0.5°C per minute).
The values of fR thus obtained are indistinguishable from equilibrium
measurements. The inherent precision of the pulse superposition technique
is reduced by other experimental uncertainties, in particular those
associated with bond and diffraction effects (Chapter 2). For the
purposes of a least squares analysis, it is assumed that the uncertain-
ties in the pulse repetition frequency are instrumental and are all

equal (relative error = 1 Xx 10_4 for most of the measured modes), and

that the random errors in the measurement of temperature can be neglected.

The pulse repetition frequencies, f_ , the elastic wave velocities,

R’

v, and the elastic moduli, c, at any temperature are related by

2

R (3l

2z
c = pv = 4pif

For cubic crystals, p, the specimen density, and &, the specimen length
in the direction of propagation, are related to their respective room

temperature values, po and %o, by

) 3 e
L= Lo(a; + agT + aglT™ + aqTJ) (3:-3)

The coefficients a, in the polynomial expression for the length,
together with the bulk density used in the calculation of the elastic
moduli, are given in Table 3.3 for LiF and NaF, and in Table 3.4 for
CaF,, SrF, and BaF,. For tetragonal crystals for which the thermal

expansion is anisotropic, the corresponding relationships between 2 and

Lo for the [100] and [110] directions is given by
0 22 2 :
( 1-) = <"74> = (aj+ apT + azT") (3.4)
Lo a
L o

and for the [001] direction by




Table 3.3: Basic data for LiF and NaF

Data LiF NaF
Molecular Weight 25.94 41.99
Molar Volume, cm> 9.83 14.98
Bulk Density, gm.cm—: 2.641 2.806
X-ray Density, gm.crﬁ3 2.6391 2.8041
a 0.99252 0.99242
2, deg™! x 107* 0.18452 0.18962
ds des™ %10~ 0.23602 0.22632
1. Miller and Smith (1964)

2 ik (ie= (298) [a1 + azT + aSsz, where a;, a,, and as

are calculated from bl’ b2 and b3 of Srivastava and

-
Merchant (1973) where a*(T) = b Miabp T + bST‘, a* being

the lattice parameter.




Table 3.4: Basic data for CaF,, SrF, and BaF,

Data CaF, SrF, BaF,
Molecular Weight 78.08 125.62 175,34
Molar Volume, cm” 24 .55 29.37 35.89
Bulk Density, gm.cm_J 5. 185 4,282 1.887
, : -3 2 1 A2 .1
X-ray Density, gm.cm Sp L8101 4.277 4.886
a 0.99573 0.99433 0.99503
1

s deg™! x 107 0.0727 0.2616 0.1371

-2 -7 iy ¥

az, deg x 10 0.2863 - 0.3509 0.090
a,, deg " b0 20 - 0.1567 0.390 0.050

1. Wong and Schuele (1968)
2. Gerlich (1964b)
. -
3. 2(T) = 2(298) (a1 +a T a;T“ + 34T3) where £ is the length and

the a. are determined from the thermal expansion data of
i

Sirdeshmukh and Deshpande (1964).




and between p and po by
a2y e
% o L2 o
(p/po) :(T>(c> (3.6)
L N %

a .
where 2% and &= are lengths along the a and c axes respectively. For
propagation in the direction at 45° to the [001] and [010] directions,

the relationship between £ and 2, is

2
e O T L O
7 B e I e
E IS L o

The coefficients a, and < and the bulk density are given in Table 3.5
for MgF,. The raw pulse repetition frequency data and the elastic
moduli calculated from equation (2.1) at each temperature data point
are listed in Appendix C for each of the measured modes for LiF, NaF,
CaF,, SrF,, BaF,; and MgF,. For KMgFs3, only the pulse repetition

frequencies and corresponding temperatures are listed in Appendix C.

The values of the elastic moduli, c, calculated from equation
(2.1), versus temperature were fitted by polynomials in T using the
method of least squares. The standard F-test (Bevington, 1969, chapter
10-2) was applied in determining the statistical significance of adding

further terms to the fitted polynomials. This was used in conjunction

. 2 - :
with a standard x -test (Bevington, 1969, chapter 10-1) to determine the

degree of the polynomial that should be fitted to the c-T data. In
general, it was found that the statistical 'significance of adding a
further term to the polynomial became marginal at the point where the
reduced xz—valuc became approximately equal to unity, indicating that the
scatter of the data about the fitted polynomial was comparable with the
eéstimated experimental uncertainties. In the absence of thermal

€Xpansion data for KMgF3, the polynomial fitting procedure was applied




Tabl

e 3.5: Basic data for MgF,

Data

Molecular Weight 62.31

Molar Volume, cm3 19.61

Bulk Density, gm.cm_s crystal A 3.178
crystal B 3.177

X-ray Density, gm.cm_s 3.178!

a, 0.9970192

a,, deg™t x 107* 0.0877942

a, dog'l oY 0.0405472

& 0.995842

eos degtPx g 0.125943%2

S deg™! x 1ot 0.0439682

1. Haussuhl (1968)

2
e A C : o &
Ra(l) Ra(u)S) [al + 331 + aST ] and

2
r 2C ~ ~ M ~ = 1 =)
QC(F) QC(LJ8) [les* LET + LST ] where

1
21’ % are lengths along the a-axes and
: c

c-axis respectively. The a; and c, are

determined from the thermal expansion d

of Bailey et al. (1975).

ata




directly to the f

R—l data.

The values of the elastic moduli and their temperature derivatives
were evaluated at 298°K from the polynomial equations in T. The
associated errors were determined from the uncertainties in the
polynomial coefficients (Bevington, 1969, chapters 6-5, 8-1) together
with the uncertainties in po (v 0.1%) and %, (v 0.05%). Since the
uncertainties in the polynomial coefficients are not independent, the
calculated errors in the elastic moduli and their temperature derivatives

probably overestimate the actual uncertainties.

The effect of crystal misorientations (Chapter 2) on the elastic
moduli and their temperature derivatives was calculated from the
expressions for the orientation dependence of the elastic wave velocities
given by Waterman (1959). The expression used in conjunction with
Waterman's equations for calculating the error in the temperature

derivatives is given in Appendix A.

The primary pressure data are the pulse repetition frequencies,
fR’ measured as a function of pressure under equilibrium and quasi-
isothermal conditions and corrected to 298°K, using data for the
temperature dependence of the fR. The precision of the measurement of
fp is 2 x 1074 for the compressional mode and 1 x 10" for the shear
modes. The uncertainties can also be roughly estimated from the degree
of reproducibility attained in different runs. For the purposes of a
least squares analysis, it is assumed that the uncertainties in fR are

instrumental and are all equal, and that the random errors in the

measurement of pressure can be neglected.

The pulse repetition frequencies versus pressure were fitted by
straight lines using the method of least squares. The linear relationship

for fR-P simplified the application of the formula introduced by Cook

(1957) for the relative length change with pressure,




ZN ¢1'® A)" P dpP =
(8 S by

B Fediay - f32/3

where f3, fy, fg are the pulse repetition frequencies corresponding to

vy, vy and vs in Table 3.1 and where A is given by

A = (xvyT (5:9))

In (3.9),uv is the volumetric thermal expansion and y is the thermal

Gruneisen parameter

o K.
N = DCp (G0

KS being the adiabatic bulk modulus and C the specific heat per gram

P

at constant pressure. Since the fR depend linearly on P, equation (3.8)

can be rewritten as

) 1 + A p
<E>: 1 g e To e (3.11)
2 12p0%02 0 AP® + BP + C

The integral in equation (3.11) can be evaluated (e.g., see Abramowitz

and Stegun, 1965) as follows:

5 1

dp 1 2AP + B - (B” - 4AC)*|
f_wy____, = Yoo oo ; In oL (Bj 4AL)L
AP + BP + C (B® - 4AC)? 2AP + B + (B - 4AC)*

(B - 4AC > 0)

= ’;/\l,‘——;"fl; (B- - U\(‘ = 0)
2 2AP + B
ST s o atttaNes srrvToa
(4AC - B)* (4AC - B7)™
(Braz34AC % 0)iwn (31 2]

The elastic moduli were calculated at 1 bar and the maximum

experimental pressure from equations (3.1), (3.2), (3.11) and (3.12)

using the values of fR derived from the linear fits to the fR-P data.




The bulk density used in the calculation is listed in Table 3.6. In
(3.11), (1 + A) was replaced by unity for KMgF3. This has a negligible

effect on 2/%, since A ~ 0.05 and the second term in (3.11) is of the

-

o)

order 1 x 10"~ at 2.5 kbar. The pressure derivatives of the elastic moduli

were determined by assuming a linear dependence on pressure for the

elastic moduli. The errors in the elastic moduli and their pressure

derivatives were estimated from the uncertainties in the coefficients

of the linear equations satisfying the fR—P data.

3.3 Rocksalt-structure fluorides: LiF and NaF. c(T).

The elastic moduli calculated from equation (3.1) for LiF and NaF
are plotted for all five modes in Figures 3.1 and 3.2 respectively. Also
shown are the fitted polynomial equations (see also Table 3.7). For all
modes except c'" for LiF and NaF, the addition of a quadratic term to the
fitted polynomial equation was statistically significant at the 99.9%

confidence level. For c'", a cubic polynomial was required for LiF

although a linear fit was sufficient for the NaF data. However, the
uncertainty for c'" is larger than that for the other modes due to
difficulties in identifying the correct peak as a function of temperature.
In view of this it was decided that only a second degree polynomial

was justified by the data for LiF.

The values of the elastic moduli and their temperature derivatives,
calculated by evaluating the polynomials at 298°K, are listed in Table
3.8 for LiF and NaF, together with the associated errors. The effects
of misorientation were found to be negligible. The crosschecks are
provided by comparing cyy from vy and vy and by comparing c'" (measured)
and c'" (calculated fromcj;;, c¢' and cyy); in all cases the agreement for
the elastic moduli is better than 0.5% and for the temperature derivatives
is within 5%. These differences for cyy and c¢'" and their temperature

derivatives are well within the calculated uncertainties for the




Table 3.6: Basic data for KMgFj

Data

Molecular Weight

Molar Volume, cmJ
. -3
Bulk Density, gm.cm

) : -3
X-ray Density, gm.cm

1. Rosenberg and Wigmore (1967)

(93]

(93]

N
w

.151

.15!
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Figure 3wl Elastic moduli versus temperature for the modes cjj, ¢', cyy
and c¢' for LiF. The solid lines represent the fitted second degree
polynomials. For the cyy shear mode, the polynomial curve for the
[001] direction cannot be distinguished from the plotted curve for
the [110] direction. Data points for the crosscheck for cyy from
the [001] direction are indicated by X. For reasons of clarity, not

all the data points used in the fitting procedure are plotted.
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Figure 3.2: Elastic moduli versus temperature for the modes cy1, ¢'", Cuy
and ¢' for NaF. The solid lines represent the fitted polynomials
(quadratics for cj;, c¢' and cyy and a straight line for c¢'"). For

the cyy shear mode, the polynomial curve for the [110] direction
cannot be distinguished from the plotted curve for the [001] direction.

Data points for the crosscheck for cyuy from the [110] direction are

indicated by X. For reasons of clarity, not all the data points used

in the fitting procedure are plotted.




2
Table 3.7: Coefficients of the fitted polynomials, ¢ = A + BT + CT"
for LiF and NaF
A B &
-1 -2 -3
(kbar) (kbar.deg. ) (kbar.deg. " x 10 )
LiF
C11 1’377 -0.810 +0.102
¢! 457 -0.464 +0.140
< 5 - & o) _ 2z
L44(V2) 687 0.142 0.063
C44(V4) 687 -0.149 -0.056
¢’ 1615 -0.552 -0.038
NaF
C11 1166 -0.672 +0.080
¢’ 474 -0.380 +0.074
L41(VZ) 297 -0.045 -0.022
{ 299 -0.0¢ -0.02
cqq(Vy) 9 0.046 0.021

o 994 -0.351 2
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respective modes.

In Table 3.9, values of the elastic moduli from other investigations
are listed for comparison with our data for LiF and NaF at 298°K. For
LiF, the agreement is good with the exception of the values of Briscoe
and Squire (1957) and Susse (1961) which tend to be very much lower.
Similarly for NaF the agreement is generally good with the exception of

the elastic moduli data of Nikanorov and Stepanov (1963).

Also compared in Table 3.9 are the values of the temperature
derivatives of the elastic moduli (ac/a'l‘)P at 298°K. For both LiF and
NaF the agreement between our values and those of Haussuhl (1960) is
remarkably good, the discrepancy being less than 1%. The agreement with

the NaF data of Vallin et al. (1966) and Bensch (1972) is only fair.

The comparison of our elastic moduli with those of other
investigators can be carried out over a wider range of temperatures in
Figures 3.3 and 3.4 which are plots of adiabatic bulk modulus, KS’ versus
temperature from 0-1000°K for LiF and 0-800°K for NaF, respectively.

The data of Briscoe and Squire (1957) for LiF define a smooth curve
offset to lower KS values than ours but with a compatible gradient at
298°K. The data point at 298°K from Haussuhl (1960) is in agreement
with our curve both in absolute value and indicated gradient. The
resonance data of Chernov and Stepanov (1961) and Susse (1961) deviate
markedly from our curve at higher temperatures even though the former

intersects our curve in the neighbourhood of 300°K.

For NaF, there is good agreement between our data (300-650°K) and
those of Vallin et al. (1966) (0-300°K) and Lewis et al. (1967) (0-300°K) .

[n addition the room temperature value of K. and the temperature gradient

S
of Haussuhl (1960) are in agreement with our curve. The values of the

bulk modulus from the resonance experiments of Nikanorov and Stepanov

(1963) are consistently lower at all temperatures and the absolute value




Table 3.9: Comparison of room temperature values of c and (SC/BT)P from various investigators for LiF and NaF
G, EETE
1 c/ 44 Kg it P . ?I P i p Reference
(kbar) (kbar.deg. ")
LiF 1144 331 639 704 -0.749 -0.380 -0.183 -0.242 This work
1137 5511 637 696 Miller and Smith (1964)
1136 330 635 696 -0.749 -0.377 -0.178 -0.247 Haussithl (1960)
1130 327 637 694 Chernov and Stepanov (1961)
1111 345 630 651 Briscoe and Squire (1957
913 276 598 622 Susse (1961)
NaF 973 368 282 483 -0.624 -0.336 -0.059 -0.177 This work
970 366 282 482 Miller and Smith (1964)
970 364 283 485 -0.618 -0. 331 -0.059 -0.177 Haussithl (1960)
970 367 282 481 -0.60 -0.325 -0.085 -0.166 Vallin et al. (1966)
963 359 279 485 Lewis et al. (1967)
963 362 276 482 -0.584 -0.308 -0.045 -0.173 Bensch (1972)
943 372 283 447 Nikanorov and Stepanov (1963)
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of their gradient is 50% higher than that of other investigators.

Of particular note in Table 3.9 is the good agreement between our
room temperature data and those of Miller and Smith (1964) and Haussihl
(1960) , both of whom used ultrasonic pulse techniques. The comparisons
in Table 3.9 support the accuracy and reliability of our data in the
region of 298°K and promote confidence in the elastic moduli data at

higher temperatures.

3.4 Fluorite-structure fluorides: CaF,, SrF, and BaF,. c(T).

The elastic moduli calculated from equation (3.1) for the five
individual modes_for CaF, and SrF, are plotted in Figures 3.5 and 3.6
respectively, while those for the three individual modes for BaF, are
plotted in Figure 3.7. The fitted polynomials are also plotted in
Figures 3.5, 3.6 and 3.7. The addition of a quadratic term to the
linear fit was statistically significant (at the 99.9% confidence level)
for all modes except for cyy (vy) for CaF,. For consistency and
comparison with the c,y (vp) mode, the quadratic term for cyy (vy) was
retained. For some modes, the addition of a cubic term was marginally
significant; however, simultaneous application of the Xz-test indicated
that the reduced xz value was less than unity for the quadratic fit,
which implies that the average scatter of the data about the fitted
polynomial was less than the estimated experimental uncertainty. In view
of this it was decided that the data required only a second degree
polynomial. The polynomial coefficients for all three crystals are

listed in Table 3.10.

The values of the elastic moduli and their temperature derivatives
Calculated by evaluating the polynomials at 298°K are given in Table
3.11 for CaF, and SrF,. In Table 3.12 are listed the calculated values

(from the polynomial) of the elastic moduli and their temperature
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procedure are plotted.
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and ¢' for SrF,. The solid lines represent the fitted second degree
polynomials for c;j, ¢", cyy (vy) and c'. For the shear mode cuyy,
the polynomial curve for the [001] direction is indistinguishable
from the plotted curve for the [110] direction. Data points for the
crosscheck from the [001] direction are indicated by X. For reasons
of clarity, all of the data points used in the fitting procedure

were not plotted.
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Table 3.10: Coefficients of the fitted polynomials, ¢ = A + BT + CT™,

for CaF,, SrF, and BaF,

A B C
(kbar) (kbar.dcg_l) (kbar.dcg_z X 10—3)
CaF, C11 1743.5 -0.2774 -0.1144
ct 633.1 -0.0846 -0.0439
cuy (Vo) 374.2 ~0.1184 ~0.0046
cuy (Vy) 374.7 -0.1214 -0.0021
c" 1486.4 -0.3135 -0.0732
STF, c11 1310.5 ~0.1873 ~0.0810
c! 415.4 -0.0422 -0.0253
cuy (Vo) 345.7 -0.0848 ~0.0130
cuy (Vi) 345.7 ~0.0857 ~0.0123
c! 1241.5 -0.2318 -0.0678
BaF, ct 262.2 -0.0279 -0.0161
cyy 278%.5 -0.0706 -0.0094

c!! 996.5 -0.2296 -0.0351




Table 3.11: Single crystal elastic moduli and their temperature derivatives at 298°K for CaF, and SrF,

Can SI‘FZ

c <3c> " <3C>
9T p oT P

Velocity (kbar) (kbar.dcg_l) (kbar) (kbar.dcg_l)

1650.7+3 .346+0.004 1247. .236+0.002
6041 .111+0.001 : .0573x0.0007
38.5%0. .1212+0.0007 S fud 05 .0925+0.001
38. .1226£0.0015 - e .093+£0.0008
1386. . 357£0.003 4+2 .272+£0.002
1385+5 .356£0.006 1166.2% .271+x0.004

845.4+4 .198+0.005 7135 .159+0.003




Table 3.12: Single crystal elastic moduli and their temperature

derivatives at 298°K for BaF,

c (3)
oT p

Mode Velocity (kbar) (kbar.dcg_l)
c! V3 252.4%0.5 -0.0376%£0.006
Cuy V4 256.7+0.5 -0.0761£0.0005
cll VS 925.0+2 -0.251+£0.002
> G v e £
LL V() 927.5

calc. 926.4+2 -
. 253.8+0.4 L
S V7 253.8

calc 253.8%0.5 L
K calc. 581.2+3 -0.162+0.005
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derivatives for BaF,, together with the measured values of CL(VG) and

CT(V7) at room temperature.

The effect of misorientation on the elastic moduli and their
temperature derivatives was determined as described in Appendix A, and
these errors when significant were incorporated into those listed in
Tables 3.11 and 3.12. For CaF,, the misorientation errors were comparable
with other experimental uncertainties for the elastic moduli (0.2%) and
very much less for the derivatives (0.1%). For SrF,, the errors arising
from misorientation were negligible (< 0.03% for the elastic moduli and
< 0.05% for their derivatives). The large misorientation angle of 3.5°
for the [110] direction in BaF, resulted in errors of less than 0.03%
for the elastic moduli and 0.5% for the derivatives, while the effect
of misorientation in the [111] direction was negligible. The insensitivity
of the elastic wave velocities of BaF, to misorientation results from its

near isotropy (i.e., c' % cyy).

For CaF, and SrF,, the crosschecks are provided by comparing cyy
from v, and v, and by comparing c" (measured) and c" (calculated from c;j,
c' and cyy); the agreement is better than 0.1% for the elastic moduli
and 2% for the derivatives, well within the calculated uncertainties.
For BaF,, the room temperature crosschecks are provided by comparing the
calculated and measured values of CL and CT which agree to approximately
0.1%. Crosschecks for the temperature derivatives were not possible

because development of the crack in the specimen prevented further high-

temperature measurements.

In Table 3.13, values of the elastic moduli from other investigators
are listed for comparison with our new data for CaF,, SrF, and BaF, at
298°K. For CaF, and SrF,, the value tabulated for cyy is the average of
the values from v, and v, in Table 3.11. The agreement is good for CaFp

With the exception of the values of Nikanorov et al. (1968) and Huffman




Table 3.13: Comparison of room temperature values of c and (BC/ST) from various investigators for CaF,, SrF, and BaF,

9K
, 9C11 ac' dC|_+L+ S
C11 c' Cyy K —> < < > <—>
S <: aT p aT P
(kbar) (kbar.deo Reference

CaF, 1651 604 338 845 -0.346 S(0J0 3 B -0.122 -0.198 This work

1642 601.2 337.0 841 -0.318 -0.107 -0.122 -0.176 Wong and Schuele (1968)

1635.7 597.8 339.2 838.6 -0.335 -0.104 -0.116 -0.197 Haussuhl (1963)

1649.4 601.6 338.0 847.3 Ho and Ruoff (1967)

1652 599 3327 853.3 Brielles and Vidal (1975)

1652.6 599 337.5 854 Vidal (1974)

1700 590 341 913.3 Nikanorov et al. (1968)

1640 555 557,.0 900 Huffman and Norwood (1960)
SrF, 1247.5 400.6 319 7ALS T -0.236 -0.057 -0.093 -0.159 This work

1236 402.3 Sile5.2 699.6 -0.198 -0.017 -0.085 -0.175 Gerlich (1964b)

1246.1 399.9 318.74 713940 -0.239 -0.057 -0.092 -0.162 Alterovitz and Gerlich (1970)
BaF, 920.8 252 .4 2567 581.2 =0:.212 -0.0375 -0.076 -0.162 This work

919.9 2571 256.8 583.8 -0.204 -0.0368 -0.0734 =0 155 Wong and Schuele (1968)

912::2 248.7 25501 580.6 -0.206 -0.0359 -0.0735 -0.158 Haussuhl (1963)

894.8 254..7 249.5 5558 Gerlich (1968)

891.5 245.7 253.5 594.53 Gerlich (1964a)
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and Norwood (1960). Similarly for BaF,, the agreement is generally good
with the exception of the values of Gerlich (1964a, 1968). Our values
of the elastic moduli for SrF; agree very well with those of Alterovitz

and Gerlich (1970), but not as well with those of Gerlich (1964b).

Also compared in Table 3.13 are the values of the temperature
derivatives of the elastic moduli, (BC/BT)Pat 298°K. Our values of
(BC“”/BT)P for CaF, and SrF, are obtained by averaging the values from
vp, and vy listed in Table 3.11. For CaF,, there is good agreement
between our values and those of Wong and Schuele (1968) and Haussuhl
(1963); in particular, there is striking agreement between our value of
(BKS/BT)p and that of Haussuhl (1963). The values of Alterovitz and
Gerlich (1970) for SrF, agree exceptionally well with all of our values
for (ac/aT)P; the agreement is much better than for the earlier data of
Gerlich (1964b). For BaF,, there is good agreement among the values of

(DC/STJP from the present work and those of Wong and Schuele (1968) and

Haussuhl (1963).

As for LiF and NaF, the available high T data from various sources
may be readily compared in Figure 3.8 which is a plot of adiabatic bulk

modulus, K., versus temperature from different investigators from

S)
0-1123°K for CaF,, and from 0-650°K for SrF, and BaF,. The low

temperature values of KS for CaF, calculated from c;j and cyp of
Huf fman and Norwood (1960) do not follow a smooth curve and are offset

to higher Kg values than ours, as are the high temperature resonance data

of Nikanorov et al. (1968). The KS values from both these studies were

considerably higher than those of all other investigators at 298°K in

Table 3.13. However the KS—T data of Nikanorov et al. (1968) does

follow the general trend of the present KS-T data. The KS—T data from
Vidal (1974) obtained by resonance techniques is considerably different

in gradient from our curve (approximately 50% difference in (BKS/BT)P)

although there is agreement with our curve at room temperature. However,
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Figure 3.8: Bulk modulus versus temperature for CaF,, SrF, and BaFj.

The solid line for CaF, will be discussed later in Figure 4.12.




the agreement of our values for (ac/aT)P at 298°K with other data
obtained by ultrasonic pulse techniques in Table 3.13 support the

reliability of the trend of our high temperature data for CaF,.

Also plotted in Figure 3.8 are the low temperature KS—T data for
SrF, calculated from 4-280°K from the single crystal elastic moduli of
Gerlich (1964b) as well as our high temperature KS—T data from 300°-650°K.
The low temperature curve is slightly offset from our curve and slightly
steeper at room temperature; however, as pointed out in the earlier
discussion of Table 3.13, Gerlich's (1964b) values differ from the

present values and those of Alterovitz and Gerlich (1970), evaluated

at 298°K.

The low temperature K.-T data for BaF, from 0-280°K plotted in

S
Figure 3.8 were calculated from the values of cj;; and c;, read from
Figure 1 of Gerlich (1964a). Even though such values are not likely to
be very accurate they are sufficient to indicate the trend of the low
temperature data curve which is offset from our curve at 298°K and also
somewhat steeper in slope. Comparisons of the various data in Table
3.13 indicate that the room temperature value and gradient for our KS—T

curve is reliable and promote confidence in the high temperature data for

BHFZ %

3.5 Rutile-structure fluorides: MgF,. c¢(T).

The elastic moduli calculated from equation (3.1) for MgF, are

plotted in Figure 3.9 for all eleven modes in Table 3.2 together with

the fitted polynomials (Table 3.14). The primary modes for c;;, Cgg, C',

€33, cyy (vg) and CL were measured from 298-650°K while the modes for

the crosschecks, cyy (v3 and vg), C and CT were measured from
2

Ly’ LTI’

298-370°K. The fitted polynomials were determined to be quadratics in T

at a confidence level of better than 99.9% for all modes by the simultan-
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Table 3.14: Coefficients of the polynomials, ¢ = A + BT + CT”,

fitted to the c-T data for MgF,

A : B -1 C_7 3
Mode (kbar) (kbar.deg ) (kbar.deg © x 10 V)
c11 1455.9 -0.1294 -0.1053
Coe 1038.0 -0.2650 -0.0206
el 581.5 -0.0296 -0.0651
CLl 2237 35 -0.3449 -0.2144
ct 2519 +0.0137 -0.0214
Ciyly 582.5 -0.0307 -0.0625
C33 2141.8 502775 -0.0741
Ciyy 586.7 -0.0571 -0.0292
CL2 1839.4 -0.2092 -0.0713
Cr 544.0 -0.0297 -0.0974

(e 808.4 -0.1312 -0.0641
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eous application of the F-test and x -test described previously.

The values of the elastic moduli and their temperature derivatives
calculated by evaluating the polynomial equations at 298°K are listed in
Table 3.15 for MgF, together with the appropriate errors. The value of
KS is calculated as the VRH (Voigt-Reuss-Hill) average, i.e. the
arithmetic mean of the Voigt and Reuss averages for the moduli of a
polycrystalline aggregate (Hill, 1952). In the absence of a theoretical
formulation for the P and T derivatives of the aggregate moduli, it was
assumed that (BKS/BT) could be represented by the arithmetic mean of the
values of (BKS/DT) calculated from the Voigt and Reuss formulae. The

upper and lower bounds for K. and (BKS/aT) are respectively 1023 and

S
1015 kbar, and 0.1604 and 0.1599 kbar. deg_l. The errors due to mis-
orientation were calculated as described in Appendix A and when signifi-
cant were incorporated into the errors listed in Table 3.15. For the
[001] direction the errors were insignificant (< 0.04% for the elastic
moduli and < 0.1% for their temperature derivatives). The errors for
the [100] direction are less than 0.2% for the elastic moduli and less
than 0.5% for their temperature derivatives. For the [110] direction,
the errors in the elastic moduli were less than 0.2% and in their
temperature derivatives less than 0.02% except for (ac'/aT)P for which
the error is 13% (which appears large only because (Bc'/aT)P is near
zero). Consequently, the misorientation of less than 0.3° for the
propagation direction at 45° to the [100] and [010] directions was
assumed to have negligible effect on the elastic moduli and their

temperature derivatives.

For MgF,, the crosschecks are provided by the comparison of cyy
from v3, vg and vg, and by the comparison of the measured values of CLl’
CTI and CT2 with those calculated from the six primary modes. The
crosschecks for the elastic moduli are good to within 0.25%. For

(acuq/aT)p the values from vy and vg agree to within 0.6% whereas the




Tabil ely3il 52

Single crystal elastic moduli and their temperature

derivatives at 298°K for MgF,

, )
oT ),

Mode Velocity (kbar) (kbar.deg™ 1)
C11 Vl 14086 -0.192+0.007
CrE v, 95745 -0.277+0.007
c" Ve 254+1 +0.0009£0.0004
C33 V7 2053%6 -0.322+0.006
il Vg 567+1 -0.0746+0.0007
C ' 1771%5 -0.252+0.005
Lo 9
C12 calc 900+5 -0.194+0.007
C13 calc 63511 -0.086%0.025
KS calc 10197 -0.160£0.015
Cyy V3 567+3 -0.0683+0.007

Vb 568+2 -0.0679+0.004
c v 2115+2] -0.473%0.071
Ly 4

calc 21119 -0.470%£0.012
C 527+8 -0.088%0.026
T, Y10

calc. S27*13 -0.080%£0.019
CTI Vi1 76417 -0.169£0.017

calc. 7623 -0.176%0.004
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values from vg and vg agree to within 10%. The calculated and measured
values of (BCLl/BT)P, (BCTI/BT)P and (BCTZ/BT)P all agree to within 10%.
The errors associated with the measured crosscheck modes are large due
to the limited temperature range and the small number of data points
used in the polynomial fitting procedure; the large errors in the
calculation of these elastic moduli and their temperature derivatives
result from the propagation. of errors, since these elastic moduli are
complicated functions of the six independent elastic moduli. In view of

this, the crosschecks are quite satisfactory.

In Table 3.16, values of the elastic moduli from other investigators
are listed for comparison with our new data for MgF, at 298°K. The
agreement is generally good with the exception of the values of Cutler
et al. (1968) which are all too low (except for c' and cgg). Our value
of the isotropic bulk modulus (VRH average) compares favourably with the

polycrystalline data of Bailey et al. (1975).

Also compared in Table 3.16 are the values of (ac/aT)P at 298°K
from various investigators. The values attributed to Aleksandrov et al.
(1969) are determined from their values at 20°C and -100°C together with
their statement that the elastic moduli depend linearly on temperature
in this range. The agreement between the various values is generally

satisfactory.

In Figure 3.10, the present values of KS versus T are compared
with those of Bailey e tsal. (1975). The values of KS for Bailey et al.
(1975) were calculated from their linear equations in T for the average
compressional and shear velocities of a number of polycrystalline
samples. Our values of K are the VRH averages calculated at each
temperature from the single crystal moduli. The difference between the
Voigt and Reuss aggregate averages is indicated in Figure 3.10. Also

plotted in Figure 3.10 are the two data points calculated from the single




Table 3.16: Comparison of room temperature values of c¢ and (BC/BT)P for MgF, from various investigators

Reference

-}

This work

Aleksandrov et al. (1969)
Cutler et al. (1968)
Davies (1976)

Haussuhl (1968)

Bailey et al. (1975)

0 W 00w
LYo 3N \S I &3 o]

LN NNO
(o)) WV, o) We )
(TR I S R I NS I A |
~]l —= O\ U1

),

(kbar.deg ") .192 .322 .19¢ 7 +0.0009 This work
3 -0.025 Aleksandrov et al. (1969)
+0.004 Haussuhl (1968)
- Bailey et al. (1975)
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will be discussed later, when this figure is presented again as

Figure 4.13.
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crystal elastic moduli of Aleksandrov et al. (1969) at 173°K and 293°K.
Except for a slight offset, the present KS—T data curve and that from
Bailey et al. (1975) agree very well over the entire high temperaturec
range. This agreement between the bulk modulus calculated as a
complicated function of the single crystal elastic moduli and that

determined from many polycrystalline samples indicates the compatibility

of both sets of high temperature data.

3.6 Perovskite-structure fluorides: KMgF3. c(T), c(P).

The elastic moduli were not calculated as a function of temperature
in the absence of thermal expansion data for KMgF3. The pulse repetition

frequencies, f,, versus T are plotted in Figure 3.11 for the three

R’
individual modes for the [110] direction (Table 3.1), together with

the fitted straight lines. Only a straight line fit to the f{—T data

I
was statistically significant. The coefficients of these linear

equations are given in Table 3.17.

The values of the elastic moduli calculated from the linear fR—T
equations at 298°K are given in Table 3.18. The errors due to misorient-
ation were negligible. The temperature dependence of the elastic moduli

was expressed in the form

d In &
<9’(1TE_L>= s 2 ‘Tn—R> (3.13)

where o is the linear coefficient of thermal expansion. Equation (3.13)
is obtained by differentiating equation (3.1) with respect to T and then
by dividing the resultant equation by equation (3.1). The temperature
dependence of the elastic moduli at 298°K can then be found directly

from equation (3.13), once the value of the thermal expansion coefficient
1s known. In Table 3.18 are listed the values of (3 1ln fR/BT)P together

With the appropriate errors. If the linear thermal expansion coefficient




plotted for reasons of clarity.
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Coefficients of the straight lines,

fR = A + BT, fitted to the fR—T data

for KMgFj
A B -1
(kHz) (kHz.deg )
c! 393.29 0.09708
Shiy 404.89 0.02685
c" 680.61 0.06976




Table 3.18: Room temperature values of the elastic moduli for KMgF3 and

their temperature derivatives expressed in the form

dInf
dlnc . .
9% & o Z—aT——- where o, the linear thermal expansion

+
coefficient, is taken to be 3.76 x 0 dcg_l

o <?}B£B> (dlnc) (dc)
dT : dT dT
I 2 p p

Mode Velocity (kbar) (10_3 dcg—l) (10 dcgil) (kbar.deg_l)
e V3 471.9%1 -0.4937+£0.0006 -0.5313+0.0013 -0.251+£0.001
Cyy V4 S00 A% -0.1326+0.0003 -0.1702+£0.0008 -0.085+0.001
c" V5 1413.3+3 -0.205%0.0008 -0.243+0.002 -0.343£0.004
Sk calc.  1385%5 ~0.509+0.006
e1s calc. 44145 -0.007+0.006
K= calc. 756%4 -0.174+0.005

T See Footnote p. 29.
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_5 _1 _ar
is assumed to be 3.76 x 10 deg for KMgl'31 (see footnote), values for

(3 1n c/aT)P and (BC/BT)P can be calculated at 298°K and these are also

£ '

tabulated in Table 3.18.

The values of fR versus pressure to 2.5 kbar for KMgF3 are plotted
in Figures 3.12, 3.13 and 3.14 for c', cyy and c'" respectively, together
with the fitted straight lines (Table 3.19). Only a linear fit to the
data was justified for the small number of data points which span a
limited pressure range. For c', run 2 data was analysed in preference
to run 1 data, since the decreasing P data points for run 1 did not
exactly follow the trend for increasing P. In addition, fR evaluated at
1 bar and 298°K from run 2 is in much better agreement with the corres-
ponding value from the temperature run. The data for run 3 for cyy (see
Figure 3.13) were taken as the primary fR—P data since these data are
more numerous and reproducible than for runs 1 and 2. The data for c"
versus pressure are reproducible within the limit of experimental
uncertainty in determining fR’ which was larger for this mode. The

above pressure measurements are limited to 2.5 kbars, since at higher

pressures the data are not reproducible.

In Table 3.20 are listed values of the elastic moduli and their
pressure derivatives for KMgF3 at 298°K. The elastic moduli at 298°K
determined from the pressure runs agree to within 0.06% of those deter-
mined from the temperature runs (Table 3.18), which is of the order of
the uncertainty expected from the straight line fitting procedure. (The

larger errors listed in Tables 3.18 and 3.20 result from the incorporation

This value of o for KMgF3 is determined by multiplying by 4 the value
of a for SrTiO3 (Lytle, 1964). This follows from the thermal
expansion studies of Megaw (1939) and Austin (1952) which demonstrated

that for compounds with the same structure, a is proportional to ZCZ,1

\\/hor‘cZC,Z,l are the cationic and anionic valence charges respectively.

&
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Table 3.19: Coefficients of the straight lines, f_ = A + BP,

R
fitted to the fR—P data for KMgFj

A B 1

(kHz) (kHz .kbar )
¢' (run 1) 393.69 1.18
¢' (run 2) 393.40 13
cyy (Tun 1) 404.71 0.43
cyy (Tun 2) 404.76 0.43
cyy (run 3) 404.75 0.44

c" 680.59 196




Table 3.20: Elastic moduli and their pressure derivatives at

1 bar and 298°K for KMgFj

c dc
Mode Velocity (kbar) dp
c! Vs 472,21 2.94+0.12
Cyy V4 499.8+1 1.31+0.03
et Ve 1413.2+3 7.3%0.4
C11 calies 1386+5 8.93%+0.55
C12 calc. 441+5 3.05+0.55
K calc. 756%4 5.01+0.47
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of the measurement errors for po and %£o). It is worth pointing out that
the values of (ac/aP)T calculated from the less reliable runs for c¢' and

cyy lie within the uncertainty limits on the values 6f (BC/BP)T listed

in Table 3.20.

In Table 3.21, our values of the elastic moduli at 298°K for
KMgF3 are compared with those of other investigators. There is very
good agreement between our values and those of Reshchikova (1969) while

the values of Rosenberg and Wigmore (1967) all appear too low.

The values of (BC/BT)P at 298°K are also compared in Table 3.21.
The agreement between our values of (ac/aT)P calculated neglecting thermal
expansion and those of Reshchikova (1969), who also ignored thermal
expansion, is excellent. Table 3.21 also illustrates that the effect of
neglecting thermal expansion is an error of approximately 10% in all the
(BC/BT)P except for the smaller magnitude (acuq/aT)P for which the error

1s approximately 25%.

3.7 Conclusion

Utilising the precise technique of pulse superposition, we have

measured as a function of temperature (and pressure) the single crystal
elastic moduli of several fluorides crystallising in the rocksalt,
fluorite, rutile and perovskite structures. The reliability of our data
is supported by its internal consistency and compatability with other
data. 1In general, crosschecks are good to within 0.25% for the elastic
moduli and 5% for their temperature derivatives for LiF, NaF, CaF,, SrF,
and MgF,. These results are evidence for the reliability of our data for

KMgF3 (no crosschecks) and BaF, (room temperature crosschecks only).

The agreement between our values of the elastic moduli and their
temperature derivatives at 298°K and those of other investigators using

ultrasonic pulse techniques attests to the reliability of our data in




Table 3.21:

Comparison of the room temperature values of c¢ and (3c¢c/3T)

—_—

for KMgF3 from various investigators

l)

C11 el Cuy KS Reference
(kbar)
1385 472 500 756 This work
1380.1 471.8 498.3 751 Reshchikova (1969)
1320 462 485 704 Rosenberg and Wigmore

(1967)

-0.509

-0.46

29l -0.085
574 -0.066
RS -0.061

This work

This work neglecting

thermal expansion

Reshchikova (1969)




the room temperature region and promotes confidence in our elastic

moduli data at higher temperatures. Our high temperature data appear

to be superior to the existing high temperature’elastic data determined

from resonance experiments.

These precise new data will be central to the discussions of
high temperature elastic behaviour (Chapter 4) and elastic modulus

systematics (Chapter 5).
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CHAPTER 4

HIGH TEMPERATURE ELASTICITY
4.1 Introduction

Many workers, both in the fields of solid state physics and earth
sciences, have been interested in the characterisation of the temperature
dependence of the elastic moduli; such studies have involved either experi-
mental determinations or theoretical derivations (or both). There are
many reasons for this interest. The parameters in various interatomic
force models can be further constrained by information on the behaviour of
the elastic moduli, c, versus temperature, leading to a greater understand-
ing of the nature of the short range repulsive forces in the lattice. Such
an approach assumes that the elastic behaviour versus temperature is
correctly described by the particular lattice dynamical model; for instance,
Garber and Granato (1975) expressed the temperature dependence of the
second-order elastic constants in terms of second-order, third-order and
fourth-order elastic constants. Alternatively, the experimentally deter-
mined values of c-T can be employed in testing the validity of certain
lattice dynamical approaches as well as in supporting semi-empirical
derivations. An understanding of the dynamic lattice is essential in
assessing thermal and finite compression effects so that physical proper-
ties can be extrapolated to pressures and temperatures beyond the accessible
laboratory ranges; these extrapolations have special importance in geo-
physical discussions of the Earth's interior, where pressures of 3.5 Mbar

and temperatures of greater than 3000°K are achieved.

The regimes of low- and high-temperature elasticity have received
particular attention in theoretical studies of the solid state. Here
"low" temperature refers roughly to the ”T3” region in the Debye theory
of specific heat and '""high" temperature refers to temperatures above

which all of the lattice vibrational modes are activated and the
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classical Dulong-Petit specific heat 1limit is attained (.i.e., for

T BD, the Debye temperature). Various formulations of finite strain
equations of state depend on the knowledge of the high temperature value

of (aK/aT)P in the reference state so that thermal effects can be incorpor-
ated (e.g., Thomsen and Anderson, 1969; Thomsen, 1970, 1972; Davies, 1973).

The temperature derivatives of the elastic moduli, (38c¢/3T),, at high

P)
temperatures are also important to discussions of lattice instability

theories of melting (e.g., Jackson and Liebermann, 1974).

The dependence of the elastic moduli on pressure and temperature
is a direct consequence of lattice anharmonicity. Such behaviour is not
predicted by harmonic theories which are based on the assumption that
the interatomic potential energy can be expanded as a power series in
atomic displacements terminated after the quadratic term. Harmonic
theories predict that the elastic moduli should be independent of
temperature and pressure and that the thermal expansion should be zero

(see Kittel, 1971, chapter 6; Leibfried and Ludwig, 1961).

Anharmonic effects were considered by Gruneisen (1926) in his
explanation of the thermal expansion of solids. Born and his co—workers1L
presented a thorough thermodynamical characterisation of solids in which
calculations of the elastic moduli versus temperature were carried out
for various values of the exponentsmand n in the power law potential,

b = 5 + E—u The approaches of both Born and Gruneisen were restricted
n
T T

by the use of such a simple, power law interatomic potential.

Leibfried and Hahn (1958) employed a more generalized approach to
arrive at the now commonly accepted result that the elastic moduli are
linearly decreasing in temperature at high temperatures (T >> GD, where
GD is the Debye temperature) and are approximately constant with

temperature at low temperatures (T << GD) (see Figure 4.1). This

e.g., Born (1943), Born and Bradburn (1943), Bradburn (1943), Furth
(1944), Gow (1944).
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Figure 4.1: Plot of KS versus T demonstrating the general behaviour of

the elastic moduli as a function of temperature. At very low
temperatures, KS is approximately constant while at high temperatures

Kg is almost linear in T.
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results from their expression for the elastic moduli, c.., in terms of
1)

the internal vibrational energy, €

Cij = Co(1¥="Dg) (4.1)
where D is a parameter which depends on the crystal structure and on
the model employed. Nevertheless, some doubt has been cast on the
ability of this theory to correctly predict the magnitude of the
(ac/aT)P (see Slagle and McKinstry, 1967). An extensive treatise on
on the theory of anharmonic effects in crystals by Leibfried and
Ludwig (1961) arrives at the same conclusion for the behaviour of Cij
versus T as the Leibfried and Hahn (1958) paper. However, this later

treatment is more satisfactory in the agreement between the experimental

and theoretical curves for the Cij as a function of temperature.

An important point to note in the discussion of these lattice
dynamical theories is that they are couched in terms of volume (strain)
and temperature as the independent variables, whereas in the experimental
regime the measured variables are pressure (stress) and temperature. It
appears, therefore, from the form of the high temperature equations that
the predicted linearity should occur at constant volume, rather than at
constant pressure (see also Thomsen, 1972). This is supported by
Stern's (1958) theory of the anharmonic properties of solids which is
formulated in terms of stress and temperature. Stern demonstrated that
the temperature derivative of the adiabatic compressibility was
proportional to the specific heat at constant pressure which increases
with temperature; this implies that the adiabatic bulk modulus should

not depend linearly on temperature at constant pressure.

The theories of Garber and Granato (1975) and Mitskevich (1965)
also illustrate the high temperature linearity of the elastic moduli as
a function of temperature, without the restriction of Leibfried and Hahn

(1958) that the temperature dependent part of the elastic moduli should
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be proportional to the vibrational energy. Finite strain theories of

Thomsen (1970, 1972) and Davies (1973), the so-called 4th order anharmonic

theories, extend the considerations of Leibfried and Ludwig (1961) who
discussed the effect of temperature and infinitesimal strain. This
should obviate the difficulty that classical theories of lattice

dynamics are not valid where the strains become larger.

However, all of the preceding theories are limited by their
reliance on the quasi-harmonic approximation. This can be illustrated

briefly as follows. The isothermal elastic moduli are defined as
P vl el i,i,k,1 = 1,2,3 (4.2)
1jkl Vio anijankl 4

are measures of the strain and F, the Helmholtz free

where ”ij’ ”kl

energy, is given in the quasi-harmonic approximation by

F=d,+F (4.3)

. + F :
harmonic anharmonic

o being the static lattice potential energy. The term F s
anharmonic

an explicit function of T only and does not contribute to the elastic

moduli in (4.2). F . is represented by the harmonic expression
harmonic
Tw how
. " - B _ ho. 7.
Pharmonic _{2 + kT 1n [1 - exp ( kT)]} (4.4)

k

with the proviso that the vibrational frequencies, y, are now explicit
functions of volume (strain). The validity of this quasi-harmonic
approximation may be subject to doubt at temperatures where the thermal

vibrations become large (e.g. Leibfried and Ludwig, 1961).

Semi-empirical equations of state, for example Anderson's (1966)
version of Wachtman's equation, avoid the difficulty of correctly

describing the anharmonic effects by relating the elastic moduli to the

measured values of other properties which reflect the contributions of
high temperature anharmonicity (e.g., the enthalpy data). This approach
has also been followed by Madan (1971) and will be discussed later in

this Chapter.
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Our new experimental data for the elastic moduli at high tempera-

tures will be discussed in terms of the theories of high temperature
elasticity for the rocksalt, fluorite, rutile and perovskite structures.
Particular attention will be paid to the question of the relative onset
of the high temperature elastic regime for the fluorides and their oxide

analogues.

4.2 Intrinsic and extrinsic temperature dependence of the elastic
moduli

To evaluate the various theoretical predictions of the high
temperature behaviour of the elastic moduli, it is useful to express the
measured temperature dependence as a combination of intrinsic and

extrinsic components:

(&), - (), - G&),).(50),

intrinsic extrinsic
ac> : (8c>

S (L) R (4.5)
oT v VKT aF T

- (), - T (3)
oT v (1 + aVyT) oP T

. 1 [V
where Volume thermal expansion ay =y (ET)p
- A © b , d 1 3 - _V ﬂ)_
[sothermal bulk modulus KT - 3V s
Adiabatic bulk modulus Kq = KT (1 + aVyT)
i A O\’l\s
Thermal Gruneisen parameter Yy =
oC
P
Specific heat (per gram) at constant P = CP

Values of CP and y for LiF, NaF, CaF,, SrF,, BaF, and MgF; are listed in

Table 4.1. The extrinsic temperature dependence of the elastic moduli




TABLE 4.1: Thermodynamic Data

(cal. deg_1 mole )

LiF 9.978
2
NaF 11.198
i
CaF, 16.393
3
STF, 18.1
"
BaF, 17.020
1
MgF, 14.73

Douglas (1959)
JANAF (1971)
Touloukian (1967)

Wicks and Block (1963)
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.80

2
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in (4.5) arises through their dependence on volume and its dependence on

temperature.

Equation (4.5) is strictly applicable only to solids with cubic
symmetry. Fritz (1974) has shown that for the rutile structure the

equivalent expression is

o, K
ac) 92) e S e D
<8T)P (BT M T ) (ap)T = BC (4.6)

where B is a correction term involving the axial thermal expansion
coefficients, the axial compressibilities and the uniaxial strain
derivatives of the elastic moduli. The magnitude of B is discussed in

section 4.5 for MgF,.

433 (ac/aT)P versus T for LiF and NaF

The intrinsic and extrinsic temperature dependence of the elastic
moduli for LiF and NaF is illustrated in Figures 4.2 and 4.3 which are
plots versus temperature of (BC/BT)P, determined from the polynomial
equations (Table 3.7), and (BC/BT)V calculated from equation (4.5), for
the moduli c¢;;, c'", c¢' cyy and KS' Our experimental values for KS and
those of Srivastava and Merchant (1973) for oy as a function of
temperature were used in the calculations in equation (4.5). For
simplicity, it was assumed that y and (8c/aP)T are independent of
temperature, the values for the latter being taken from Miller and Smith
(1964). Figure 4.2 and Figure 4.3 also demonstrate that the crosschecks
described earlier (Chapter 3) for c¢'" and cyy are valid over the entire

temperature range, T = 300°-650°K.

The linear temperature dependence of (ac/aT)P for all moduli is
a direct consequence of fitting the data by a second degree polynomial.

For both LiF and NaF, |(8¢11/0T),| and | (3c'/aT)p| decrease with T while

$
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|(acuq/8T)PI, ](ac”/aT)p| and I(UKS/BT)Pl either increase or (in the case

of c" for NaF) remain approximately constant. There is no doubt that

this observed curvature is a real feature of our experimental data and
is statistically significant. Neither errors in the thermal expansion
data used in equations (3.1)-(3.3) nor uncertainties due to bond effects
are large enough to account for the deviation of the c vs T curves from
linearity; in any case, these effects would cause curvature in the same

sense for all the modes.

For comparison, (ac/aT)P and (BC/BT)V for MgO are plotted versus
temperature in Figure 4.4 using Spetzler's (1969) data, for which
(BC/BP)T does depend on temperature. [(ac/aT)P! increases initially
(except for c'), becomes approximately constant for KS and cyy, but

thereafter decreases for cjj;, c¢' and c'".

The reduction to constant volume for LiF and NaF lowers the
curves of (30/8T)P versus temperature in Figures 4.2 and 4.3 and also
alters their temperature dependence; I(ac”/aT)l now decreases with
increasing temperature. In the above reduction it is assumed that
(BC/BP)T is independent of temperature. Comparison of the curves of
(BC/BT)P and (ac/aT)V versus temperature for MgO in Figure 4.4 demonstrates
that the term involving (BC/BP)T in equation (4.5) increases with increas-
ing temperature. It is assumed as a first approximation that this
behaviour reflects that of LiF and NaF. Application of this result to
the (9¢/dT)-T curves in Figure 4.2 and Figure 4.3 for LiF and NaF
indicates that although the temperature dependence of (ac/aT)v may be
eliminated for the modulus cyy (resulting in a linear c-T plot at

constant volume), that for the moduli cjj;, c' and c'" will be accentuated.

Several interesting comparisons emerge from Figures 4.2-4.4.

Firstly, ](acll/aT)v| and |(3c‘/8T)V| for MgO decrease with

temperature as they did for LiF and NaF. Secondly, the reduction to
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constant volume reduces the |(8c/oT)P| for all modes for each compound
to more comparable values; this results from the large extrinsic effect
for the modes cy;, c¢'" and c¢'. Thirdly,the decrease of K

S with T is

entirely an extrinsic effect as KS in fact increases slowly with
temperature at constant volume. Similar behaviour was pointed out by
Roberts and Smith (1970a) for the sodium and potassium halides.

Comparisons of (3c/9T) for LiF, NaF and MgO will be discussed further

in Chapter 5.

4.4 (9¢/3T) versus T for CaF,, SrF,, and BaF,

The intrinsic and extrinsic temperature dependence of the elastic
moduli for CaF,, SrF, and BaF, is illustrated in Figures 4.5-4.7 respect-
ively. The values of aV(T) from Sirdeshmukh and Deshpande (1964) and
the experimental values of KS(T) were used in the calculations in
equation (4.5). We have assumed that y is independent of temperature
and will show later that this assumption is valid. In any case, the
expression (4.5) is not sensitive to minor variations in Y. For CaF,
and BaF,, values of (ac/BP)T at 298°K were taken from Wong and Schuele
(1968); estimates of (32¢c/3TaP) were also made from their data at 298°K
and 195°K. For SrFy, only the room temperature value of (8c/8P)T from
Alterovitz and Gerlich (1970) was available. Figures 4.5 and 4.6 also
demonstrate the crosschecks described earlier (Chapter 3) for c¢'" and cyy
for CaF, and SrF, to bevalid over the entire temperature range, T =

300-650°K.

The linearity of the (8c/3T)P curves in T for all moduli is again
a direct consequence of fitting the data by second degree polynomials
(Table 3.10). For all of the moduli for CaFp, SrF, and BaFj, l(ac/aT)P|
either increases with T or remains approximately constant. This is in
contrast to the behaviour for LiF and NaF (section 4.3) where |(ac/BT)P|

for some moduli actually decreases with temperature. As discussed
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earlier, the observed curvature is a real feature of the data and cannot

be explained by uncertainties in either the experimental or analysis

procedures.

The reduction to constant volume for CaF,, SrF; and BaF; lowers
the curves of (ac/BT)p versus temperature in Figures 4.5, 4.6 and 4.7
and also alters their temperature dependence. The above reduction for
CaF, and BaF,; took account of the variation of (ac/aP)T with temperature,
albeit at somewhat modest temperatures. For CaF,, the values of
kac/aT)lat constant volume do not increase as rapidly with temperature
as those at constant pressure. This indicates that the curvature in the
c-T plot can be partly removed by the conversion to constant volume. In
Figure 4.5 for CaF,, we have plotted constant volume curves for KS for
two cases; (i) (3C/8P)T a function of T and (ii) (ac/BP)T independent of
T. The curvature in the c-T plot for case (i) is much more nearly
eliminated than for case (ii). For BaF,; and SrFj, (acuq/aT)V and (3c'/8T)V
are almost independent of temperature, whereas I(ac”/BT)V] and
|(8c11/8T)V| now decrease with temperature. Additional information on
the variation of (BC/BP)T with T is required before more definite
conclusions can be drawn from these plots of (ac/aT)V versus temperature;
however it does appear that the curvature observed in the c-T plots at
constant pressure for these compounds is compatible with linearity in the
c-T plots at constant volume, since the correction term aVKT (BC/BP)T

becomes larger with increasing temperature.

Several other interesting features can be seen in Figures 4.5-4.7.

Firstly, the curvature in the c-T plot, as indicated by the gradient of

the (ac/aT)P—T plots, is largest for CaF, and smallest for BaF,. This
behaviour is in accord with the magnitude of the Debye temperatures
(514°K for CaF,, 380°K for SrF, and 282°K for BaF) since the predicted
linear behaviour of ¢ vs T should occur for temperatures greater than the

Debye temperature. Secondly, the magnitudes of (ac'/aT)P and (BCQQ/BT)P
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are very similar, indicating that the degree of anisotropy should not

be very temperature sensitive. This is in contrast to the alkali
fluorides, LiF and NaF, where ‘(8c’/8T)|P is much larger than |(acqq/aT)P|.
Thirdly, the reduction to constant volume reduces the l(ac/aT)Pl for all
modes to much more comparable values; the results from the large extrinsic
effect for the modes c;; and c¢'". Fourthly, the decrease of K. with T is

S

entirely an extrinsic effect as (BKS/BT)V is actually small and positive.

4.5 (9c¢/9T) versus T for MgF,

The intrinsic and extrinsic temperature dependence for MgF, is
illustrated in Figure 4.8, which is a plot of (BC/BT)P and (ac/aT)V versus
T for the independent single crystal elastic moduli and KS. The values
of (BC/BT)p were determined from the polynomial equations (Table 3.14);
values of (ac/BT)V were calculated via equation (4.5) using our experi-
mental values of KS vs T, the values of a
and the values of (ac/aP)T at 298°K from Davies (1976). <y was assumed

v vs T from Bailey et al. (1975)

to be independent of temperature.

As mentioned earlier, equation (4.6) is the appropriate equation
for the approximate separation of (ac/BT)P into intrinsic and extrinsic
components for the rutile structure. Fritz (1974) has shown that i
the axial strain derivatives of the elastic modulus are of the same

sign, then the magnitude of B can be bounded in the following inequality,

(0ta><C - o X_.)K.

B c”a’ 'S
Ol Aeiesi b AR (L 12 | (4.7)
~ a ~
aVKS(Bc/ P)T ay
where o_, a, are the coefficients of axial thermal expansion, and
Xoisds (o h123/3P)T, X = - (9 1n lC/BP)T, are the axial compressibilities.
(o

From the stress-strain relationship involving the single crystal elastic

constants (e.g. Musgrave, 1970, chapter 4.4), it can be shown that
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Figure 4.8: -(0c/9T) versus temperature for MgF,. The values of (BC/BT)P,

represented by the solid lines,are determined from the fitted
polynomial equations. The dashed lines represent the values of

(BC/BT)V which are calculated from (4.5).
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Evaluation of the r.h.s. of equation (4.7) using values of o, and o,
from Bailey et al. (1975) demonstrates that the possible error of the
correction term relative to the extrinsic term could be as large as 14
per cent. The error in determining (ac/aT)V will thus be larger when
the extrinsic term represents a large fraction of the temperature
dependence. The foregoing analysis only applies for the case where the
uniaxial strain derivatives of the elastic moduli are of the same sign;
it is conceivable that they could be of opposite sign and the errors in
neglecting B could be even larger in this case. In the absence of
measured uni-axial strain derivatives which would permit a rigorous
separation of (BC/ST)P into intrinsic and extrinsic components, equation
(4.5) is used as a first approximation, with the possible errors kept in

mind.

Figure 4.8 for MgF, illustrates that for all the moduli,|(ac/aT)P|
either increases with temperature or remains approximately constant.
This is similar to the behaviour for CaF,, SrF, and BaF,, but in contrast

to that for LiF and NaF. For TiO,, Manghnani et al. (1972) reported values of

I(BC/BT)P| which decreased with increasing temperature. The behaviour

of (ac/aT)V versus temperature for MgF, supports the possibility of
linearity in the c-T plots at constant volume, particularly if account
could be taken of the temperature dependence of (Bc/aP)T. As discussed
earlier in sections 4.3 and 4.4, an increase in the correction term with

temperature would tend to reduce the slope of the (3c¢/3T)-T curves.

The remarks made previously for the rocksalt and fluorite fluorides

regarding the similarity in magnitude of the (Bc/aT)V vs T curves do not
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apply for MgF,. There seems to be no simple trend relating (ac/aT)P and
(ac/aT)V for the various moduli. However, as noted for the other
structures, the temperature dependence of KS is entirely an extrinsic

effect, as K, actually increases very slowly at constant volume.

S

4.6 High temperature equations of state

The predictions of many classical lattice dynamical theories that
cij should exhibit linear dependence on T for T > 6D were discussed
earlier (4.1). However, although the expressions for Cij vs T reduce to
simple analytical expressions in the high temperature and low temperature
limits, none of the theories is able to furnish a simple analytical

expression for the Cij vs T that is valid for the entire temperature

range from 0°K to the melting temperature.

In the absence of an exact theoretical equation of state, recourse
may be made to equations derived on a semi-empirical or approximate
theoretical basis. For example, Varshni (1970) has claimed some

theoretical justification for the following equation

t/T

C = Co + S/(e =15 (4.9)

where co, S and t are parameters determined by fitting the equation to
the c-T data. Equation (4.9) is based on the result of Leibfried and
Hahn (1958) that the temperature dependent part of the elastic moduli is
proportional to the internal vibrational energy € (equation 4.1), as

obtained from the Einstein model,

- Tw
1 /
e = Bho + —F7— (4.10)
ehw/kl" 5 1
where h is Planck's constant, T1 = gﬂ and k is Boltzmann's constant.

Varshni demonstrated good agreement of (4.9) with the experimental data
for metals and ionic compounds (some alkali halides and BaF;). Attempts

to fit equation (4.9) to the present c-T data for LiF and NaF indicated




that it was incompatible with the data for the modes cj;; and c¢'. Analysis
of the functional form of equation (4.9) revealed that it cannot accommo-
date data for which (9c¢/dT) is negative and increasing, i.e., data for
which the c-T plot is concave upward. Equation (4.9) is functionally
compatible with the c-T data of CaF,, SrF,, BaF, and MgF,; however it

was decided not to fit the data by this equation since the parameters

are not well constrained by the c-T values in the high temperature region
and are extremely sensitive to small differences in slope. This occurs

in the absence of constraining data on the parameters at lower tempera-
tures (T << GD) where a significant fraction of the curvature occurs (see

Figure 4.1 for the general shape of c-T curves).

Another semi-empirical equation of state has been proposed by

Wachtman et al. (1961)
E = Eg - bT exp (-Ty/T) (4.11)

where E is Young's modulus and b and T, are the parameters to be determined
from the data. Anderson (1966) has placed this equation on a firmer
theoretical basis for KS and has demonstrated that KS is linear in T for

T > GD/Z (which he defines as the regime of high temperature elastic

behaviour). Anderson's final form of the Wachtman equation (Soga,

Schreiber and Anderson, 1966) is expressed in terms of the enthalpy data

J6 . :
H" and is given by

o, T
Baf Jewtr a-— (4.12)

298
= - H™" )
C
S V2)8

T
K (H -
298 . o : . .
where V is the volume at 298°K and & is another dimensionless

Gruneisen parameter defined by

. _<a In KS>/<8 - V\z ! /BKS> S
BRI oT / o, Kg\3T 4

P

On theoretical grounds (Anderson, 1966; Madan, 1971), ¢ should lie
approximately between 3 and 4 for alkali halides; this is verified in

Figure 4.9 for some of our fluoride compounds. These theoretical
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derivations depend on assumptions on the nature of the interatomic

potential; nevertheless their advantage is that equation (4.12) can be

used to extrapolate K, to high temperatures in the absence of a value

S
for (BKS/BT).

The derivation of (4.12) assumes that y and & are independent of
temperature, an assumption which has been demonstrated to be valid for
MgO, Mg,SiOy and MgSiO3 (Anderson, 1966; Soga and Anderson, 1967). In
Figure 4.9, we have illustrated the temperature dependence of y and § for
several fluorides of the present sfudy, and demonstrated that y and & are
indeed approximately constant over the range T = 300-650°K. The product
Yé varies even less over this temperature range, perhaps since the
product is independent of both KS and oy - This observation is particularly

interesting since it is sufficient in deriving (4.12) that yé be indepen-

dent of temperature.

Figures 4.10 and 4.11 compare the experimental values of KS for
LiF and NaF with those calculated from 0°K to the melting point from
the enthalpy data via equation (4.12). The calculated curves are matched

298 .
and (BKS/BT)P

in value and slope to our data curves at 298°K, since KS
are input parameters to (4.12). Figures 4.10 and 4.11 demonstrate the
excellent agreement between our data and the calculated curve for

T > 300°K. This provides additional support for the reliability of our
high temperature data, particularly since our values of KS and (BKS/BT)P

at 298°K were earlier demonstrated to be in excellent agreement with the

most reliable results of other investigators (Chapter 3). For LiF, the

calculated curve between 0°K and 300°K follows the general trend of the
offset Briscoe and Squire (1957) data (Figure 4.10). The agreement
between the low temperature curves is better illustrated by adjusting
Briscoe and Squire's data to agree with ours at 298°K. For NaF, the
calculated low temperature curve agrees remarkably well with the low

temperature data of Lewis et al. (1967) and Vallin et al. (1966). This
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Figure 4.9: The Griineisen paramaters, y, 6 and their product, y§,

versus temperature for LiF, NaF, CaF, and MgF,. y and 6 were
calculated using our experimental values of KS and (BKS/BT)P as a
function of temperature, together with values of CP(T) from Douglas
(1959) for LiF and MgF,, and from JANAF (1971) for NaF and CaFj.

o (T) was calculated from the data in Tables 3.3-3.5; values of the
thermal expansion, aV(T), were taken from the appropriate references

in Tables 3.3-3.5.
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further supports our earlier claim (Chapter 3) that our high temperature
data for LiF and NaF are in accord with the low temperature data of other
experimenters using ultrasonic pulse techniques and lends credence to the
construction of composite (8KS/8T)—T curves using experimental data from

the low and high temperature regions.

In Figures 4.12 and 4.13, values of K. versus T are plotted for

S
comparison with the values determined from the enthalpy data for CaF, and
MgF,, respectively. For both CaF, and MgF,, there is excellent agreement
between the present data and the calculated curves for T > 300°K. The
non-systematic behaviour of the low temperature data of Huffman and
Norwood (1960) for CaF, and its offset from ours at 298°K make further
comparisons with the calculated curve impossible. For MgF,, the two

data points from Aleksandrov et al. (1969) are in quite good accord with
the calculated curve at low temperature. The absence of very low
temperature data for MgF, and the poor quality of the existing data for

CaF, preclude construction of a composite (BKS/BT)-T curve using experi-

mental data.

Plots of (BKS/BT)P versus temperature provide a much more
sensitive way of examining the temperature behaviour of the bulk modulus
since the high temperature linearity of the KS—T plot is reflected by
(BKS/BT)p attaining a constant value (e.g., Anderson and Andreatch, 1966).
In Figure 4.14, the measured (E)KS/aT)P is plotted versus temperature for
LiF, NaF, and MgO in order to determine the onset of high temperature
elastic behaviour. For comparison, (BKS/BT)P calculated from the enthalpy
data for LiF and NaF are also given in Figure 4.14 and the acoustic Debye

temperatures, 6 are indicated (see Chapter 5.6 for GD).

D’

The combined measured and calculated data in Figure 4.14 for LiF

and NaF exhibit a very rapid increase of |(8KS/3T)P| with temperature at

low temperatures followed by a levelling out to constant values at high
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Figure 4.12: Bulk modulus versus temperature for CaF,. The dashed curve

represents values of the bulk modulus calculated from the enthalpy

data (JANAF, 1971) via equation (4.12).
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Figure 4.14: —(aKS/aT)P versus temperature for LiF, NaF and MgO. Values
of (DKS/BT)P for LiF and NaF for T > 300°K were determined from the
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(1957) and Lewis et al. (1967) respectively, the temperature
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(DI\'S/B