ORDER AND DISORDER IN SOME SURFACE
AND COLLOID SYSTEMS

PETER ALLAN FORSYTH Jr

A thesis submitted for the degree of
Master of Secience
at The Australian National University,

Canberra

January 1977




ii

PREFACE

This thesis is an account of work carried out from September
1975 to January 1977 at the Department of Applied Mathematics, Research
School of Physical Sciences, The Australian National University, for the

degree of Master of Science.

During the course of this work I benefited immensely from
discussions with many members of the Department. In particular I
profited from Dr. S. Marcelja's remarks about non-equilibrium exchange
rates, and was constantly elevated by Professor B.W. Ninham's example of
absorption of amber colloidal systems. Of course I would like to thank
my fellow students and friends for their continual assistance; without

their help this work would have been completed far earlier!

I should also acknowledge the financial support I received in
the form of an award under the Commonwealth Scholarship and Fellowship

Plan.

To the best of my knowledge, no work previously written or
published has been used in this thesis except where referenced in the

text -

4 A Pl

Peter A. Forsyth Jr



J.A.

M.A

F.A,

P.A,

EvAs

0 & 8

PUBLICATIONS

Blackburn, M.A.H. Nerenburg, P.A. Forsyth, Jr
"Effect of phase-dependent conductivity on inductive weak 1links"
J. Appl. Phys. 46 (1975) 5315-5316

.H, Nerenburg, P.A. Forsyth, Jr, J.A. Blackburn

"Excitation of cavity modes in rectangular Josephson junctions"
J. Appl. Phys. 47 (1976) 4148-4150

Forsyth, Jr, S. Marcelja, D.J. Mitchell, B.W. Ninham
"Onsager transition in hard plate fluid"
J. Chem. Soc., Farad. Trans II 73 (1977) 84-88

Forsyth, Jr, S. Marcelja, D.J. Mitchell, B.W. Ninham

"Stability of clay dispersions"

Proc. of the International Society of Soil Science Conference on
'Modification of Soil Structure', Adelaide, 1976 (in press)

Forsyth, Jr, S. Marcelja, D.J. Mitchell, B.W. Ninham
"Electrostatically-induced phase transitions in charged lipid
membranes"

(in preparation)




iv

ABSTRACT

This thesis examines the role of statistical mechanics in the

theory of ordering of surface and colloid systems.

The first chapter gives a brief introduction to the
traditional secondary minimum theory of ordered colloidal systems.
Specific examples are discussed which show that this theory is not

always applicable.

The second chapter is concerned with phase transitions in hard
rod and hard disc fluids. The various parameters of the transition are
calculated, and the results are discussed in relation to tobacco mosaic
virus and clay dispersions. In the case of clay dispersions,

qualitatively new results are predicted.

The third chapter gives a brief discussion of surface thermo-
dynamics. The results of the third chapter are used in the fourth to
determine the electrical '"free energy'" of a monolayer or bilayer
consisting of two different types of lipids. Calculations show that
electrostatics alone will not induce a phase separation. However, the
results show that only a small specific interaction between lipids is

required to produce such a separation.

The fifth chapter Is concerned with the ordering of water near
an Interface. It Is shown that In the case of aqueous non-electrolytes,
it is possible to deduce an attractive solute-solute interaction from
quite general assumptions. This solute-solute potential is calculated
numerically. A specific example shows that these results agree with

Monte Carlo calculations.
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CHAPTER 1

ORDERING IN COLLOIDAL SYSTEMS

1.1 INTRODUCTION

Traditionally, the ordering of colloid systems has been
explained in terms of the DLVO theory [1,2]. This theory was developed
to explain the stability of lyophobic colloids, and to this end it has
had a great success. Since lyophobic colloids are not equilibrium
states in the thermodynamic sense, the problem of the stability of
colloidal dispersions is essentially one of kinetics. A case in point
is the gold sol. If a gold crystal is brought into contact with water,
it will never spontaneously disperse into a sol, and yet gold sols have
been produced which are stable for many years. Thermodynamically, the
gold crystal has a much lower free energy than the dispersion. The
entropy gained in the creation of more kinetic units is very much less
than the energy required to form the gold-water interface. Consequently,

the crystal is the stable state.

Deryaguin and Landau [2], and Verwey and Overbeek [1]
explained this stability by considering the total energy of interaction
between two colloidal particles. By summing the van der Waals
attraction and the double-layer repulsion, they were able to calculate
the interaction energy curve as a function of particle separation.

Using kinetic arguments, they showed that if the repulsive barrier is




much greater than kBT, then the possibility of coagulation is extremely
small, and hence for all practical purposes the sol can be considered
"stable". Of course all such sols must eventually flocculate because of
the large depth of the primary minimum (the energy of two particles in
contact). However, when there is a large repulsive barrier, the time

taken for appreciable flocculation may be many years [1].

Since the double-layer repulsion falls off exponentially while
the van der Waals-London forces decrease as some power of the separation,
there will be some point where the attractive force exceeds the
repulsion. This will give rise to a secondary minimum in the potential
energy curves. Verwey and Overbeek suggested that this secondary
minimum should lead to a reversible long-range aggregation in contrast
to the irreversible coagulation in the primary minimum [1,3]. Since the
secondary minimum is usually smaller than kBT for small spherical
particles, they expected this effect to be noticeable only for large
spherical particles, or for highly anisotropic sols, i.e. thin plates
and elongated rods. This theory has had some success in providing a
qualitative explanation of the adherence of glass spheres to plates [4],
and the appearance of '"chains'" of parallel gold platelets [5]. This
theory also applies to Schiller layers [6], where the ordering of the
layers is considered to result from the competition between the double-

layer repulsion and gravity [7].

Of course, since colloidal dispersions consist of a large
number of particles, they must obey the laws of statistical mechanics.
This idea was succinctly put across in a recent article:

. a knowledge of the interaction free energy between two atoms or

particles, taken in isolation, may tell us little of the properties




of an ensemble of such particles ... Thus the first moral to be
learned from statistical mechanics is that the existence of a
minimum in the two-particle interaction free energy in the
associated or ordered state does not guarantee the formation of
this state. Conversely, the existence of an associated or ordered
state does not necessarily imply that the particles are sitting at
a separation where there is a minimum in the two-particle
interaction free energy. [8]

It is important to remember that the appearance of an ordered
phase is determined from the conditions of equilibrium between an
ordered phase and a disordered phase. In dilute solutions, where many-
body effects can be ignored, the assumption of pairwise additivity of
the interaction energies is a good approximation. If, in addition, the
depth of the secondary minimum is much larger than kBT, the increase in
energy of the particles in the disordered phase must be compensated by a
large gain in entropy. This can only be achieved if the disordered
phase is extremely dilute. In this case the equilibrium between the two
phases can safely be ignored, and the particles will undoubtedly sit
very close to the secondary minimum [9]. However, in situations where

many-body effects cannot be ignored, or where the depth of the secondary

minimum is <§kBT, this procedure is not to be trusted!!

1.2 ORDERING IN LATEX SPHERE DISPERSIONS

It might be worthwhile at this point to consider a concrete
example of a system where the secondary minimum theories break down, and
where other theories have successfully explained the observed phenomena.
Recently, it has become possible to produce monodisperse suspensions of

spherical latex particles. If the volume fraction and salt




concentration are suitably adjusted, a phase separation is observed [10,

11,12]. The ordered phase is iridescent when the interparticle spacing
is of the order of the wavelength of visible light, while the disordered
phase appears milky white. The volume fraction vs. salt concentration
phase diagram has been determined experimentally by visual observation

of the iridescent phase [10].

From DLVO theory it is known that a decrease in electrolyte
concentration will decrease the depth of the secondary minimum.
Consequently, if the phase separation of the latex spheres is caused by
aggregation into the secondary minimum, a decrease in the salt
concentration should result in a dissolution of the ordered phase. In
fact, the opposite effect is observed — decreasing the electrolyte
concentration results in increased ordering [10]. Since van der Waals
forces are negligible at the large interparticle spacing in the ordered
phase, the ordering must be determined largely by repulsive

electrostatic forces [13].

There have been several attempts at a theoretical explanation
of this phenomenon. It was apparent from the previous considerations
that it was necessary to consider the statistical mechanics of the
system. Using the well known pair potential for spherical colloidal
particles (i.e. the sum of van der Waals and double-layer forces) the
various thermodynamic quantities of interest were determined from Monte
Carlo calculations [14]. The results were in qualitative agreement with
experimental data. However, because of the small number of molecules
used in the calculation, it was not possible to reproduce a coexistence

region.

The latex system can also be modelled as a collection of hard



spheres. The effective radius of these spheres is taken to be one-half
of the interparticle distance at which the interaction energy exceeds
some small multiple of kBT [15]. It is well known from computer
experiments that hard spheres will undergo a liquid-solid phase
transition between volume fractions .5- .55 [16]. Using this result and
an effective volume determined by the double-layer repulsion, the real
volume fraction vs. salt concentration phase diagram was calculated from
the hard sphere model. The results compared favourably with the Monte

Carlo calculations [15].

The hard sphere model was also compared directly with the
experimental data, with good qualitative agreement [17], although the
coexistence region appeared to be too narrow. This could be the result
of experimental error, or the neglect of attractive forces which would

tend to widen the coexistence region.

The hard sphere model is probably an excellent description of
the transition for large volume fractions and high salt concentrations,
where the electric field is highly screened. However, at low salt
concentrations many-body effects will become important. Also, the
expressions used for the interaction free energy of two colloidal
particles assume that the particles are in equilibrium with bulk
electrolyte. In solutions containing small amounts of salt, the diffuse
double layers of the particles fill up the entire volume of the system,

and there is no place to be regarded as "bulk'.

A remedy to these difficulties was sought in the form of a
Wigner lattice model of the latex system [13]. Here, each particle is
considered to move about in a sphere containing equal and opposite

charge centred on the lattice site. The many-body effects are taken




into account in an approximate way by requiring that the counterions be
localized in a Wigner-Seitz cell associated with each individual latex
particle. This is different from the usual treatment where the counter-
ions are regarded as being dispersed in the bulk region. By comparison
with the numerical simulation of the Wigner transition [18] (fluid-solid
transition of particles interacting via Coulomb forces) the authors were
able to compute the phase diagram of the system. At volume fractions
less than .2, the agreement with experimental data was quite good.
However, because of the nature of the model used (1/r Coulomb potential)

the coexistence region is extremely narrow.

The example of the latex spheres shows clearly that the DLVO
secondary minimum theory of ordering should not be regarded as a
panacea. Although the theoretical models differ in many respects, they
all require the use of statistical mechanics and the consideration of

phase equilibria.
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CHAPTER 2

ORDERING IN TOBACCO MOSAIC VIRUS AND CLAY DISPERSIONS

2.1 TOBACCO MOSAIC VIRUS

Perhaps one of the more interesting colloidal dispersions of
anisotropic particles consists of tobacco mosaic virus (TMV). The
individual virus particles are rod-shaped with a length of approximately
2800 & and a diameter of 180 A. Very dilute (less than 3% by weight)
aqueous solutions of TMV separate into two phases with a narrow
coexistence region [1]. The top layer is isotropic while the bottom
layer exhibits spontaneous birefringence. This indicates of course that
the TMV '"lines up" in the ordered phase. 1In some cases a third phase,
an iridescent gel, will separate from the bottom layer [1]. Many other
biological struétures appear to form an ordered array of long proteins
[2,3,4], and consequently TMV seems to be a good example of such

systems.

If the behaviour of TMV is explained by a secondary minimum
theory, then it is expected that the addition of salt will promote
ordering, vis-a-vis the latex spheres. However, if electrolyte is added
to the two-phase TMV system, the volume of the ordered phase decreases
and eventually disappears altogether [1]. This would seem to indicate

that secondary minimum theories are inapplicable.

The equilibrium gels observed by Bernal and Fankuchen [5] are




clearly the dense phase of a two-phase system, since the separation of
the particles in this phase is determined solely by the properties of

the solvent, and is independent of the amount of solvent present [5].

Many authors [6] have tried to explain the observed X-ray
spacings by a force balance argument assuming that the van der Waals
force balances the electric double-layer repulsion. These arguments
have recently been reanalysed using new experimental data [7]. It
appears that the observed spacings are always greater than those
calculated from force balance, and that the salt dependence of the
particle separation cannot be explained by shifts in the "equilibrium
position'". 1In any case, the depth of the energy well is merely of the
order of kBT. Consequently it is clear that attractive forces will not
strongly affect the ordering of TMV, and that the spacing of the
particles is determined to a large extent from the conditions of phase

equilibrium.

2.2 " CLAYS

Natural clays consist of roughly disc-shaped plates about 20 A
thick and with diameters ranging from 500 A to 10,000 A. The fractions

of relatively uniform size can be separated after centrifugation [8].

In 1938, I. Langmuir and U.J. Schaeffer studied the properties
of dilute dispersions of California bentonite [9]. Examination of the
clay sol between crossed polaroids revealed two distinct phases.
Solutions of less than 27 concentration (by weight) formed an isotropic
phase, while those of more than 2.27 were birefringent. In the range

2-2.27% the two phases separated after standing for several hundred
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hours. Apparently the properties of the anisotropic phase, as well as

the corresponding phase transition, have never been closely examined.

As with the TMV, the particles in the ordered phase must have
a preferred orientation. Since the clay particles are highly irregular
in shape, it is unlikely that they form a periodic crystal lattice.
This contention is supported by the observation that birefringence in
bentonite sols is not associated with mechanical strength [9]. Instead,
the experiments seem to indicate orientational order without a periodic
structure, typical of nematic liquid crystals. Since the clay plates
are very thin, and the interparticle spacings in dilute solutions are
very large (~ 10° X), the van derIWaals energy 1s negligible compared

with the thermal energy.

2.3 THE ONSAGER TRANSITION IN HARD DISC
AND HARD ROD FLUIDS

The physical basis for understanding the behaviour of
colloidal suspensions of anisotropic particles has been described in the
classic work of Onsager [10]. Colloidal particles interacting through
the electrical double layer may be modelled by hard rods or hard discs.
With the correspondence between the two systems established, Onsager has
formulated the statistical mechanics of the problem within the second
virial appro#imation, shown to be valid for highly anisotropic particles.
With increasing concentration, both hard rods and hard discs show a
transition from an isotropic fluid to a nematic fluid. Following
previous work, this transition will be referred to as the Onsager

transition.
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Since Onsager's work, numerous investigations have confirmed
the validity of his theory for systems of hard rods [11]. However, the
hard disc fluid, which is the simplest theoretical model system of clay

dispersions, has been neglected.

At first sight, it is difficult to see how a phase transition
can take place in systems interacting only through repulsive (hard core)
forces, i.e. for entropic reasons only. However, it is possible to make
some qualitative arguments for the existence of two phases in a fluid of
hard rods. (The same arguments apply to hard disc fluids, but for

convenience only rods will be discussed in the following.)

If the concentration of a dilute system of hard rods is
increased, it is clear that the rods will experience a loss in entropy,
since they are no longer completely free to rotate. However, if some of
the rods become oriented in a single direction, they are more
efficiently packed than rods of random orientation. Thus the ordered
rods will form a dense phase. The remaining particles will now have a
greater freedom, and hence the disordered phase will gain in entropy.

At some point the gain of entropy in the disordered phase will outweigh
the loss of entropy in the ordered phase, and the system will

spontaneously separate into two phases.

The following brief description of the Onsager theory will be
restricted to the hard disc fluid — the modifications for hard rods are

trivial.

The orientation of a disc can be described by specifying the
angle between the normal to the disc and the preferred axis. If p(R2) is

the number of particles per unit volume having orientation in the solid
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angle ) to Q+d2, then the probability distribution function f(R) 1is

defined by:

p(R) = p, £(Q) 40 ,

where p, 1s the total number density. In the case of random orientation,
i.e. in the isotropic phase, f(f2) =1/4m. The free energy of a fluid of
hard rods or hard discs is given as a series expansion in the

distribution function, viz. [10]:

_Nk% = 1, (T) + log po+f £(R) logl[amf(R)] df

Po

% ” B, (R,2') £(2) £(Q') do dn'

2

+ gf-fjf B, (£2,02" ,02") £(82) £(R") £(Q") A dR' Q"+ ... (2.3.1)
Here uo(T) is a function of temperature only and represents the kinetic
energy of the discs. §,(Q,2') 1is the 'excluded volume'" of two discs of
respective orientation {,R'. Similarly B, (Q,Q',0") represents the
propability that three particles of orientations 2,Q2',Q" will overlap

simultaneously.

For low density dispersions, three-particle overlap is much
less probable than two-particle collision. Higher order terms in the
expansion contain higher powers of P,» as well as the factors
B, £6L, 0" . 8%) , Ba(Q,Q',Q",Q”W, ... which are smaller than B,(Q2,2'). Eqn

(2.3.1) is therefore approximated by:

_NkI;T = 1, (T) + log po-i-f £(Q) loglamf(Q)] dQ
+%°~ ” B,(Q,Q') £(2) £(') 40 dQ' . (2:3.2)

The first two terms in Eqn (2.3.2) represent the free energy of an ideal
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gas, while the next two terms are corrections due to the finite size of
the anisotropic particles. The third term represents an ''orientational
entropy' which is minimized by random orientation, while the fourth term
is an "entropy of packing' which is minimized by perfect ordering [12].
Since all calculations are independent of u,(T), the precise form of
this term is irrelevant. For particles of thickness (length) Z and

diameter d, B, (€,2") is given by P10 1

B, (,R") = 'g d® siny +-g 1d* +'% 1d* |cosy]|
+ 214% E(siny) + 272%d siny . (273.3)

Here Yy is the angle between the normals to the two discs, and E(siny) is

the complete elliptic integral of the second kind.

Some rough estimates of the errors incurred by truncating the
virial expansion were made in the original article [10]. While the
errors can be shown to be small for thin rods [13], it is not possible
to make rigorous estimates of the error in the case of discs. Neverthe-
less it i1s expected that these errors will be small, and that the

results will be at least qualitatively correct.

If the anisotropic phase has cylindrical symmetry about the
preferred axis, then f({) may be expanded in a series of Legendre
polynomials. Furthermore, since O and -0 describe the same orientation,
i.e. f(cosB) = f(-cosO), then the expansion contains only even orders of

Legendre polynomials, viz.:

511 i {14— ) aiPi(cosﬁ)} ] (2.3.4)

il 2 B, 6 s s

In this form the distribution function satisfies the normalization
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condition:

J f3) di "= 1

If the expansion for f(§!) is substituted into Eqn (2.3.2), then the a;
can be determined by minimizing the free energy. The expansion for f(Q)
was truncated after the first seven non-vanishing terms (i < 14) and the
coefficients were determined by using a numerical optimization method
[14] to minimize Eqn (2.3.2). 1In the isotropic phase, of course, the a;
are identically zero, and f(2) =1/4m. TFor a given value of 71/d, the
transition densities were determined by equating the chemical potentials
and pressures of both phases. This procedure is described in Appendix 1.

Note that the use of a "hard" potential results in transition densities

which are independent of temperature.

Colloidal particles are not "hard" in the conventional sense,
but interact through the electrical double layer. The range of the
electrostatic repulsion is determined by the ambient electrolyte
concentration. If the plate diameter is much larger than the Debye
screening length, we can regard the double layer repulsion as an
additive short-range force. In terms of the hard fluid model, this

short-range force will increase the effective size of the particles.

We define the anisotropy ratio x as a ratio of the smallest to
the largest dimension for either rods or plates (i.e. for rods x=d/L,
plates have x=1/d). Isotropic particles will have x=1, while
completely anisitropic particles have x=0. If the salt concentration
1s increased, the range of the electrostatic force will be decreased,
and hence the particles will become more anisotropic. Thus, increasing

the salt concentration corresponds to decreasing x.
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In Fig. 2.1, the transition concentrations are plotted for
both rods and plates as a function of the anisotropy ratio x. It is
immediately clear that the behaviour of plates differs markedly from
that of rods. When x=0, the transition concentration ct of rods is
infinite, while for thin plates, € is finite. As x increases, Gy for

rods decreases, while c, for plates increases.

The physical basis for this behaviour can be understood from
an examination of Eqn (2.3.3), which gives the excluded volume of
anisotropic particles. Plates of infinitesimal thickness have a non-
zero excluded volume, while rods of vanishing diameter have zero
excluded volume. Since a fluid of one-dimensional rods has zero
probability of intersection, G at x=0 is infinite. Consequently any
increase of the diameter (increasing x) will lower Ct to some finite
value. Thus we expect, at least initially, that c, will decrease as x
increases. However, this trend cannot continue indefinitely. Since the
Onsager transition 18 a result of the anisotropy of the particles, c
should at some point begin to increase with x. (Completely isotropic
particles will not undergo an Onsager transition.) However, at x=.2,
the volume fraction of the rods exceeds 1007%, and = is still decreasing,
albeit quite slowly. Of course, at high concentrations the truncation
of the virial expansion in Eqn (2.3.2) 18 inaccurate. Consequently,
over the entire range of concentrations where Eqn (2.3.2) is valid, the
increase of the volume of the rods dominates the effect of decreasing
anisotropy and thus €. always decreases as x increases. In terms of
salt concentration, we see that for rod-like particles increasing the
electrolyte concentration (decreasing x) causes e to increase. This

phenomenon is observed in solutions of tobacco mosaic virus [1]. How-
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Fig. 2.1. Density of hard rod (a) or hard plate (b) dispersions at the

Onsager phase transition as a function of the anisotropy ratio x.

Increase of electrolyte concentration corresponds to a decrease in

the value of x.
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ever, in very dilute salt solutions, the addition of salt causes & of
T.M.V. to decrease [5]. Since the anisotropy ratio is nearly 1 in very
dilute salt solutions, an increase of salt in this regime will increase
the anisotropy, and hence lower C.» as explained previously. This
effect is not predicted by the Onsager theory, which is inaccurate at

large volume fractions.

Since the plates are two-dimensional objects, the probability
of intersection in a three-dimensional space is non-zero, and hence the
plates have a finite excluded volume even at zero thickness. Thus an
increase in the volume of the plates is not as important as a
corresponding increase in the volume of the rods. 1In fact, the decrease
of anisotropy dominates the increase in volume, with the result that for

plates ct increases as X increases.

Several of the important parameters at the transition points
are given in Table 2.1. The distribution function behaves in a similar
fashion for both rods and plates. It can be conveniently characterized
by the conventional liquid crystal order parameter, which is the average

"sharpness' of the

value of P,(cosf). This represents the degree of
distribution function about the preferred axis. In the notation of Egn
(2.3.4), the order parameter is given by a,/5. Initially, the order
parameter decreases as X increases, while at larger values of x, the
order parameter begins to increase. This effect can be understood as a
competition between decreasing anisotropy and increasing volume fraction.
The former dominates at small x, while the latter dominates at large X.
In any case, this effect is very small, and since the volume fraction at

which the order parameter begins to increase (307% for plates, 457 for

rods) is relatively large, the validity of Eqn (2.3.2) at these
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Table 2.1
X VopA VopI a, a, a, ag a, a,, ay,
Plates
0 0 0 3.94 4,54 3.62 234 Lo o 164
.05 .279 237 3.88 4.30 3.35 2.02 1545 w516 «+15)
.10 .605 2532 3.87 4,47 3.62 2.40 1,36 .629 1971
L .994 .891 3.98 4.87 421 2.98 1.79 .870 275
Rods
0 - - 3.94 4.54 3.62 234 1.28 I3 164
.05 .216 +182 384 &,81 3.35 2512 LS .510 . 149
.10 437 .397 3,83 4 .36 3.46 2.24 1.24 . 564 .168
4 s 733 052 3.90 4,60 3.80 2.58 1.49 « 701 .216
.20 1.030 e 2] 4.00 4,93 4,30 3.08 1.86 912 .290

The values of volume fractions and order parameters at the phase

transition between the isotropic (I) and the anisotropic (A) phase.

concentrations is questionable. The volume fraction of the transition

is a monotonic increasing function of x for either rods or plates.

2.4 APPLICATION OF RESULTS TO T.M.V.

Since the observed transition concentrations of T.M.V. are
very low [1l], the inter-particle spacing must be large and hence the van
der Waals forces weak. To a sufficient approximation the pariicles
interact solely through the electric double layer. If the salt

concentration is large enough so that the double layer is confined to a

region small compared with the rod length, then the effect of the double
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layer is merely to increase the "effective diameter" of the rod. This
effective diameter can be determined from the separation at which the
double layer energy exceeds some small multiple of the thermal energy
kBT [10]. Typically this will be of the order of 1/k, the Debye
screening length. Consequently, the T.M.V. system can be replaced by a
model fluid of hard rods; the length of the rods is the actual physical
length of the T.M.V., while the diameter is now an 'apparent' diameter

determined by the range of the electric field.

The concentration of the disordered phase in the coexistence
region was observed to be 2.3% by weight [1]. Unfortunately the salt
concentration and pH of the bathing solution were not reported. As a
result, it is not possible to estimate the effective diameter from
energy considerations. A similar calculation to the one presented in
Section 2.3 has been given previously for the case of spherocylinders —
rods with hemispherical caps [12]. Of course for long rods (x small)
the results are similar to Fig. 2.1. (It must be noted that in ref. 12
pv, is plotted vs. x, while of course in the physical situation of
changing salt concentration, the apparent volume of the rods Vv, is not a
constant. The author attempted to compare his calculations with the
experimental data on T.M.V. using an arbitrarily chosen effective

diameter of 500 A. Not surprisingly the agreement was poor.)

It 18 clear from Fig. 2.1 that the addition of salt
(decreasing x) results in an increasing transition concentration as is
observed in T.M.V. If the molecular weight of T.M.V. is taken to be
4%x107, with a length of 2800 R, then the experimental value of ptla
(the dimensionless transition concentration) in the disordered phase is

7.6 [1]. The lowest value obtained from Table 2.1 is ~ 30.1
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(pl3®=4/m pv, x 2) for x=.2. As noted previously, at this value of x,
the volume fraction of hard rods in the ordered phase exceeds 100%;
obviously the Onsager theory is no longer valid for such large values of
X. Since the solvent was reported as '"aqueous solution'" [1], it is
likely that the salt concentration was extremely low. This would give
rise to a large effective diameter, and hence a large value of x. In
fact, light scattering experiments seemed to indicate that the apparent-
or effective diameter was roughly ten times the physical diameter of the
T.M.V. [1]. This would result in a value of x= .64 — much too large for

the Onsager theory to be correct.

Oster [1] claimed excellent quantitative agreement with
Onsager's theory. However, he used the approximate result given in
Onsager's original paper, which was derived for the limiting case x<<1.
He combined this result with the value of the second virial coefficient
obtained from the light scattering experiments. In view of the previous
discussion this seems somewhat absurd. The question which immediately
springs to mind is how can such a procedure lead to good agreement with
experimental results? However, since the parameters calculated from the
Onsager theory for finite values of x are not greatly different from
those for x+0 (see Appendix 1) Oster's calculation can be regarded as
an extrapolation into the regime of large x. In other words, if the
correct solution to the phase transition problem for large x is a smooth
continuation of the Onsager result valid for small x, then Oster's
procedure is reasonable. Of course this extrapolation cannot be carried
too far, since as x+1, the transition is no longer isotropic-nematic

but begins to resemble the '"hard sphere'" type transition.

The observed ratios of the concentrations of the two phases in
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the coexistence region is 1.4, while the theoretical values range from
1.26 (x>0) to 1.11 (x=.2). These ratios appear to be too small, but
this is probably the result of the neglect of the van der Waals forces.
Attractive forces, however small, will tend to increase the coexistence

region.

Bernal and Fankuchen [5] give results for the interparticle
spacing of high density gels which are in equilibrium with the isotropic
phase. Although the salt concentration is given, it is not clear how to
interpret the results in the light of the Onsager theory. The hard rod
model predicts only the transition conceuntrations, which are not

unambiguously converted into interparticle spacings.

To conclude this section, it appears that the Onsager theory
provides an explanation for the low density phase transitions observed
in T.M.V. systems. At present experimental data is either lacking in
crucial parameters or is outside the range of validity of the truncated
virial expansion. A definitive test of the theory will require the
concentrations of the coexisting phases as a function of the pH and

ionic strength.

2.5 APPLICATION TO CLAYS

As with the T.M.V., van der Waals forces are weak at the
spacing characteristic of the phase transition in clays [15]. The
electrical double layer forces however are still significant at low salt
concentrations. If the interaction is weak, the repulsive potential

between parallel plates is given by [16]:
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64nkBTY2e_KR
¥ = p 3 {2:5,1)
where
ewo/ZkBT
i !
iy ey /2k.T
0 B
e + 1

Here n is the univalent salt concentrations, R is the interparticle
spacing, wo is the surface potential, and 1/k is the Debye screening

iength. Ban.(2.5.1) 18 walid for kR >> 1.

In order to utilize the results of Section 2.3, the clay sol
can be modelled as a fluid of hard discs. The diameter of the discs is
taken to be the average diameter of the clay particles, and the thick-
ness is an effective thickness. As long as the electric field is large
in a region smaller than the plate diameter (kd > 1), then in a manner
analogous with the T.M.V., the effective thickness is the distance at
which the double layer energy is equal to akBT. If 1/k is not too large,
the effective diameter is not a sensitive function of a. In the
following calculations, a=1/2. From Eqn (2.5.1), this thickness . is

given by

log[32ny%nd? /x]
K

{2.8,2)

For large values of the plate separation and a surface charge
characteristic of clays (i.e. ewo/kBT‘<<1) it 1s easily shown that

Y2 ~ 1 [16].® In'erder to simplify the calculations, it has been assumed
that the discs are parallel, but this obviously need not be the case.

If the discs are at some angle to each other, then the double layer
repulsion will be reduced. Thus Eqn (2.5.2) will tend to overestimate Z.

Some values of x are given in Table 2.2 for various values of the salt
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Table 2.2

f .
Electrolyte Effective Thickness (&)

Concentration (M)

D=1 "y D=.5yu D=1 yu

1.0 8 | 14 135
0.1 37 47 51
0 .01 129 160 174
0.001 443 542 375

The effective thickness of a hard plate as a function

of electrolyte concentration and plate diameter.

concentration and plate diameter.

When x2 .15, the "apparent" volume fraction occupied by the
clay is greater than 100% (Table 2.1). Eqn (2.3.2) is clearly
inaccurate at large volume fractions, so that the results are valid only

for x< ,15.

If the surface area occupied by 1 gm of clay is taken to be
375 x 10" cm? [8], then the relation betwaen pd® and the concentration
(by weight) 1is:

375 cd 10"

3 N
£ /4

=0T ed 167, (2:5.3)

Here c¢ 1s the weight fraction of clay, and it is assumed that each plate

1s made up of one unit layer [8].

Langmuir observed that the dispersion became completely
ordered at concentrations above 2.2%. Assuming that 4= 10" &, which is

characteristic of clay plates, Eqn (2.5.3) gives ptd3==10.5. From Fig.
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2.1, the lowest value of ptd3 (in the ordered phase) is 8.5 at x=.15.
Since Langmuir performed his experiments in very low salt solutions
(distilled water), it is probable that x will be larger than .15.
Consequently it is expected that ptd3 should be somewhat larger than 8.5.
However, in the regime of very low salt concentrations, three-body
interactions, which are ignored in Eqn (2.3.2), will become important.
The present theory will break down in this case; mnevertheless it
appears that the trends are predicted correctly. From Fig. 2.1 it is
also clear that the ratio of the two phases appears to become constant
when x2 .05. At the limiting value of x= .15, the ratio is 1.12, in

good agreement with the observed value of 1.1.

It is evident from Fig. 2.1 that the transition concentration
increases as x increases. Recalling the relationship between salt
concentration and x, this gives rise to an interesting physical result.
If the ordered phase is in equilibrium with the disordered phase, the
addition of salt will cause the concentration in the ordered phase to
decrease, and hence the particles will move further apart. This is of

course contrary to what one would expect from DLVO theory.

The osmotic pressure is given as a function of dimensionless
density in Fig. 2.2. The coexistence region is clearly seen from the
characteristic flat portion of the curves. For clay plates of 1000 A in
diameter, the pressure at the transition (x= .05) is ~ 10”2 atm. This

pressure should be within the range of experimental observation.

Fig. 2.3 shows the distribution function f(6) for the ordered
phase at the transition (£/d=0). The curves showing f(6) for other

values of t/d are very similar and hence are not shown.
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Fig. 2.2: Dimensionless pressure of the hard plate fluid as a function of the density.
The coexistence region can be clearly seen from the flat portions of the curves.
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Fig. 2.3: The orientational distribution function f(8) for

the hard plate fluid at the transition (x=0).
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In this section we have only examined the behaviour of low
density clay suspensions where attractive forces between the particles
are negligible. However, the full statistical mechanics description of
colloid dispersions will be necessary as long as the secondary potential
minimum is not much deeper than the thermal energy kBT. This applies to
any ordered array of colloid'particles in equilibrium with the dilute
dispersion, unless of course the particles are held together by specific
chemical binding. For example, the ”theoreticalrequilibrium distances"
calculated for montmorillonite particles from the DLVO theory by Norrish
[16] are accurate only for higher salt concentrations. The depth of the
secondary potential well 1s comparable to kBT at 0.05 N salt
concentration [16] and DLVO theory cannot be applied in such conditions.
If only weak attractive forces are present, any ordering of the
dispersion has to resemble the tﬁo—phase formation mechanism described
above. However, the values of thermodynamic quantities at equilibrium
will be modified even by the small attractive interaction. The most

readily observable difference would be larger concentration difference

between the ordered and the disordered phase.

The description of dilute clay dispersions presented in this
section is expected to be very accurate for clay concentrations less
than 5% (weight) and for salt concentrations of practical interest (e.g.
other than distilled water). Of particular interest are the results for
the osmotic pressure, because similar figures remain valid for poly-

disperse materials of practical importance.

The decrease in the transition concentration of the dispersion
as the electrolyte concentration is increased i1s a qualitatively new

result which should be experimentally observable.
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CHAPTER 3

SURFACE THERMODYNAMICS

3.1 SURFACE QUANTITIES

The subject of surface thermodynamics is undoubtedly confusing.
This situation is not aided by the plethora of definitions of surface
quantities. This chapter is not by any means an exhaustive review of
the subject; 1t merely serves to give plausible arguments for the

definitions which will be used in Chapter 4.

In the following the Gibbs convention for describing thermo-
dynamic quantities of an interface will be used [1l]. In this convention
the interfacial region 1s considered to be a flat plane, called the
Gibbs geometrical surface. (Only flat surfaces will be considered in
this chapter.) Clearly the volume of this region, VO, is zero. The
amount of the 1th substance associated with the interface will be
denoted by Fi’ with dimensions of (area) !. The number of interfacial

particles of the ith type 1is then n ==AFi, where A 1s the area of the

i

surface. If the quantities of interest vary only in one direction, say

J

the x direction, then the surface excess Fi is defined by:

0
Fi = f: (ni(x)-nl) dx%—J e (ni(x)-n;) dx .

Here ni(x) is the actual number density of the i species, and nI- is
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the bulk density as x> tw,
The location of the interface (at x=0) 1is for the moment
arbitrary. However, it i1s usually possible to fix the origin of
coordinates so that quantities which are of no interest, e.g. [ , are

H,0
set equal to zero. In a manner analogous with bulk systems, it is

possible to define surface potentials FO, GO, QO and so on.

Consider a region of finite volume VO containing the interface,
which is characterized by a surface tension Y and an area A. The amount
of material in this region may vary, but its volume and temperature are
fixed. Since this region is in equilibrium with the bulk, the chemical
potentials of all species ui are the same as in the bulk. The
appropriate thermodynamic potential would appear to be some
generalization of Q, viz:

Q = - PvU+yA

and letting VO-*O in accordance with the Gibbs convention:

< A T (3,1.1)
In analogy with the bulk @ [1]:
dn =" L5 ar - T ni du, +YdA , (3,1.2)
i
where Yy is defined as:
o
& : (3243
oA
L‘li’T

i.e. the work done to increase the area of the surface while maintaining
equilibrium with the bulk. From now on, the superscript 0o will be
dropped, all quantities being surface quantities unless explicitly

stated otherwise. The summation convention, implied summation over
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repeated indices, will also be employed.
15 d(uini-YA) is added to both sides of Eqn (3.1.2), the
surface Gibbs free energy is obtained viz:
dG = - SdT-—Ady-Fui dni
(3.1.4)
G = Uini

Adding d(YA) to both sides of Eqn (3.1.4) gives the surface Helmholtz
free energy:

dF = - SdT+u dni-+ydA

i
(3:1.5)

F = uinii-YA ‘

All these equations are formally identical with the thermodynamic
relations among bulk quantities. Note from Eqn (3.1.5) that Y # F/A
unless the dividing surface is defined so that the surface excess of all
components 1s zero. This is usually only possible for pure substances,

in which case F={=YyA.

The Gibbs-Duhem relation is immediately obtained from Eqn
(3.1.4):

SAT +Ady +AT du, = 0

At constant temperature this implies:

dy = - Fi dui . (Onds)
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3.2 SURFACE TENSION IN SYSTEMS WITH
ELECTRICAL DOUBLE LAYERS
Consider a system composed of dissociable surface active
groups i, the dissociated ions j, and the non-surface active ions and
inert electrolyte k. Thus Eqn (3.1.6) becomes:
dy = - Fidui-Fjduj-deuk ) (3.2.1)
The electrochemical potential of the surface active ions may be split
into two parts:
. = !+ ! 5 3.2.2
My i Bl Yy ( )
where qj is the charge on the jth species, | is the surface potential,
and ui is the chemical part of the electrochemical potential.
Substituting Eqn (3.2.2) into Egn (3.2.1) gives:
= — = ' - =
dy I‘idui Fjduj quj dy deuk . (3.2.3)
It 1is now assumed that:
r e (3.2.4)
5

where 0 1s the surface charge. This definition is rigorously true only

if species J are insoluble. Otherwise Fj also includes the excess of j}

in the diffuse double layer, and the concept of a surface charge becomes
more obscure. Egn (3.2.4) becomes more or less true as long as the

inert electrolyte concentration is large, so that the double layer is

highly compressed [2].

The first two terms of Eqn (3.2.3) represent the non-

electrical part of the surface tension, denoted by Yo+ Thus:

d(y=-Y,) = - odw-deuk . (3:.2:5)
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Since this is an exact differential, it may be integrated in any
convenient fashion, viz.:
Hy
_(Y—‘YO) = J Fldul
0 B o .0
Ul O-O,UZ,Ua,---
Ui
QRN ¥ I' du
TL N PR e
k A e T A . 1 R
2
AR J ody
0 UI’UZ’U3’...
Here ui is the chemical potential of the kth species in the reference
state. If Fk are assumed zero when 0 =0, then:
Y
Y=Y, = - J ody . (3.2:7)

A similar derivation of the above result is given in refs. 2,3.

3.3 SURFACE ENERGIES

When deciding which of the thermodynamic potentials to use, it
is important to bear in mind that each potential has a characteristic
set of independent variables. Just as one does not use a cannon to
shoot sparrows, it is better to tailor the choice of thermodynamic

potentials to the task at hand.

Some colloidal particles, Agl for example, interact in such a
way that the chemical potentials of all species remain constant.
Consequently, the force between Agl particles is given by:

. i {- ?J , (3.3.1)
A



34

where Y is the force conjugate to the spatial variable y. If Eqgn
(3.2.7) is substituted into Eqn (3.3.1), the result for flat plates a

distance y apart is:

which is the well known result [4].

However, in the case of monolayers or bilayers, some of the
surface active species may be characterized by a fixed number, say nj,
and not a fixed chemical potential. (For example j may be an insoluble
lipid.) 1In this circumstance {2 is obviously not the appropriate
potential to use, and thus a change of variable seems indicated. 1If

d(njuj) is added to both sides of Eqn (3.1.2) the result is:

df = - SdT-—niduii-ujdnj-kydA
(3:3:2)

Hh
I

R+n.u,
JUJ

This potential is unusual in that some of the u's and some of the n's
are independent variables. In Chapter 4 this potential will be used in

discussing the possibility of an "electrostatic' phase separation.
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CHAPTER 4

THE ELECTRICAL DOUBLE LAYER, FREE ENERGY
AND PHASE SEPARATIONS IN MONOLAYERS AND BILAYERS

4.1 INTRODUCTION

Phase separations and clustering of membrane components have
been observed in a variety of mixed lipid bilayers and biological
membranes [1-13]. 1In artificial lipid bilayers composed of zwitterionic
lipids and/or cholesterol mixtures, these phase separations depend on
temperature and composition. Both solid-liquid and liquid-liquid phases
have been observed in studies on mixed zwitterionic lipid bilayers [2,5,
7,8]. When anionic lipids are present the phase separations also depend

on such factors as [Ca’*] and pH [3,9,13].

The term '"phase separation' used here is distinct from ''phase
transition" [8]. The former occurs in a multi-component membrane, when
phases of different composition separate. The latter occurs in a one-
component membrane. It is worth adding that asymmetric membranes may
also be considered as having undergone a ''vertical phase separation' of
components as distinct from the '"lateral phase separation' that will be

discussed in the following.
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4.2 THE THERMODYNAMIC POTENTIAL FOR
MONOLAYERS AND BILAYERS

Consider a planar membrane composed of a mixture of
dissociable acidic lipids AH = A" +H' and neutral lipids B (see Fig.
4.1). The "free energy'" of the system is assumed to be dominated by the
double layer energy (i.e. chain-chain interactions, specific head group
interactions, etc., are assumed constant), and the molecular areas of

AH, A~ and B are taken to be identical. Let:

FA = gurface excess of AH+ A groups
TB = surface excess of B groups
= surface excess of A groups

If FA and TB are fixed, as in the case of some insoluble monolayers or
bilayers, then the appropriate thermodynamic potential to use is £

given by (from Eqn (3.3.2)):

£f = YA%—(FA-F)UAH4-FBUB4-FUA_4-FUH+ 3 (4.2.1)

The FUH+ term is included since the number of H' ions that dissociate

(I') is determined by the surface active components.

Assuming that A", AH, B and H*Y are ideal, Eqn (4.2.1) becomes:

B =T 1 T 15g(0, ~T)] + Fy(pp +%,T log Tp)

0
Han

>|rh

+ T(uy- +k,T log [ -epy) +T (ug+ + kT log nH+) RO i P

Here Y, is the surface potential, ug is the chemical potential in the

standard state, and n,+ is the bulk hydrogen ion concentration, [H*]

e
It is assumed that the H® ions that dissociate do not sensibly affect

the bulk [H+]m.
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o
aqueous

® solution
..]

Fig. 4.1: Lipid-water interface. The lipids are a mixture of
dissociable lipids AH (e.g. phosphatidylserine) and undissociable
lipids B (e.g. cholesterol). The dissociable lipids are assumed to
be acidic, and these can be in the charged state A~ or uncharged

state AH.
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Recalling that o=-Te, Eqn (4.2.2) becomes:
f 3 0
e — ' { 0 0 0__ 0
A~ Yo J Y(o')do +FBUB+FAUAH+F(UH++UA uAH)+kBT FB 1ogI‘B

0

- kBT(FA-F)log(I‘A—P)+kBT FlogF+kBT FlognH+ i A%l

Let -b = u°+ + u°_ -

H 5 uZH, with the obvious interpretation of binding energy.

The terms FBug and FAUXH are non-electrical quantities, i.e. they refer

to the uncharged membrane. Defining a new reference state by:

0

a0 & £ 0
BT A Tt Talyt Tgpes

& U

_I‘A

then Eqn (4.2.3) becomes:

g
s LY s
v i fo Y, (0')do Fb-FkBT g 1ogFB

+ kBT(FA-F)log(FA—-F)4—kBT FlogI“+kBT Flogrﬂf-. (4.2.4)

Since f' may be regarded as a ''free energy'", the equilibrium value of T

is rthat which minimizes Eqn (4.2.4) viz.:

o[£ . 2
BI‘[A] = kBTlogF—kBT 1og(FA—F)—b—elp0+kBTlognH+ = 0
or
—ewo/k {
FHH-Q- e " K eb/kBT
FA-F
= constant = K . (4.2.5)
—ewo/kBT
— L = % —-— =
Since I'=[A], N+ e [H ]X=O and (FA I') =[AH], Eqn (4.2.5) is
equivalent to
- +
(A7) ("], g

[AH]
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The constant K is readily identified as the reaction constant for the
dissociation of the acidic lipid AH = A" +H'. K is related to the
intrinsic or surface pK of the acidic lipid, which is of course not the
same as the apparent PK (since [H+]0=#[H+]w) [14]. n is a constant of

proportionality which depends on the units used.

Substituting Eqn (4.2.5) into Egqn (4.2.4), gives the

equilibrium (minimum) free energy:

W
B 0 'y ! A
B JO B r LT T Yogl +ic TP, Log(T, ~T) . (4,2,6)

Subtracting (FA4-FB)log(FA+-FB) (which is a constant for systems of

fixed total number of lipids per unit area) from both sides of Eqn

Cha 2.6
£ fel lPO ¥ l-‘B
S i = B = ' PSRN S
A (FAfFFB)log(FA4-FB) A e J F(wo)dwo-kkBT FB log T %7
0 ¢
FA FA-F
+ kBT FA log FA—"‘I—TI; +kBT FA log I-.A . (4:2.7)

A different derivation of this result in the limit FB-+O has been given

previously [15,16,17], but it is not as easily generalized as the above

method.

4.3 GOUY-CHAPMAN THEORY

Consider the planar membrane of Fig. 4.1. The inert
electrolyte solution is taken to be NaCl and CaCl,. The number

densities in the bulk (x=») are:
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n, o= [Na-i—H+]oo
n,, = fca®’],
Bl =OIEL = n107PR
where 1" has the same meaning as before.
The one-dimensional Poisson equation is:
i e R (4.3.1)

dx? & Ine

where p(x) is the charge density as a function of x, Y is the electro-
static potential at x, and € is the dielectric constant of water. The
concentrations of the various ions in solution are given by the usual

Boltzmann relation, viz.:

gt —Zew/kBT
[Ca ]x ok TR -
—ew/kBT
[Na++H+]x = n, e (4.3.2)
+e¢/kBT
[Cl—]X A dknld2e Yre

Eqns (4.3.2) and (4.3.1) may be combined to give the Poisson-Boltzmann

(P.B.) equation:

2 eP/k,T -2eP/k,T -eP/k T
%;% = ﬁgé (i, +28,.) e P =20, . € R -n, e .
453,3)

Integrating this equation with the boundary condition dy/dx~>0, Y~>0 as

x> yields:

(dy)? AHkBT ew/kBT —Zew/kBT
i 2 (n+4-2n++) e *n, . e
—eW/kBT
+n, e -(2n+4-3n++) . (4.3.4)
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Since
g& ARG 4mle
dx <=0 £ >
then:
P>
en,k T|? e, /k,T eP,y/k,T
- B 1 B B
' = e e -+(1-F2c1) e
-2e [k, T %
g, e - (2%—3c1) 5 (4.3.5)

Here c1==n++/n+, and y, is the surface potential. The above development
is standard (see e.g. ref. 18) except for the inclusion of [H+]oo in"n; .
While this contribution is always negligible in comparison with the
inert electrolyte concentrations, its inclusion is essential for a

complete description of the double layer. This is because I' and Y, are

related through Eqn (4.2.5).

4.4 LINEARIZED POISSON-BOLTZMANN EQUATION
AND DISCRETE SURFACE CHARGE

If the full P.B. equation is linearized, the result is [19]:
-2y = 0 . (4.4.1)

Here 1/k is the Debye screening length [19]. The linearization
procedure is valid for |e¢/kBT|'<<]J If the average distance between
charges a, is greater than 1/k, the discrete charge effects should
become important. Consider a set of discrete charges on the x=0 plane.

The Eqn (4.4.1) becomes:

V2 - 2y = -ﬂgﬁ S 8(x) 8(-D,) - (4.4.2)
K

-
Here p is a two-dimensional vector in the y-z plane and g is the charge
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on the surface group. For the membrane in Fig. 4.1, the aqueous
solution is assumed to have a dielectric constant €,, and the membrane
itself €,. In most cases of interest €,/€, <<1. Letting ¢ represent
the two-dimensional Fourier transform of Y, i.e.:

-> - i++ -
o(x,q) = f dq e 1P y(x,p)
then Eqn (4.4.2) becomes:
i—* >
P, -q
P Lot - L7, ¢ (4.4.3)
zz >
k
The problem is now reduced to determining the Green's function, viz.:
b i wghye w22 (4.b.b)
zz E ’ . .
where
€ % €, % 20
= £, x<O0
g® e gt x>0
= 0 %<0
The solution to Eqn (4.4.4) is:
L
e_(K2+q2)2X
i P £ (x>0)
€4 (K2+q‘)')2+'£q
Eq
2 2\ %
e—(K Fkex £,
e i 2 F Lo
E:l[l<2+qz]2 1
Therefore
i+—5 (K2+ 2)1/2
q . - q X
d(x>0) = AL 2 e e :

& 1




L4
> > > L
iq.(p, - p) -(k*+q%)%x
HEet 07 . « 4mq zlaz[dge Kk e ql/
£y (2m) k (Kz-i-qz)2
> >
—Klr-pkl
& %ﬁlze — . (4.4.5)
Yk |r—-pk|

In the linearized limit, with 0 being a constant charge distribution:

N
fdrf "oWydy = oy, 4 . (4.4.6)
0

Since the charge distribution is no longer uniform, the discrete version

of Eqn (4.4.6) is:

> b > > >
fdrf D o()dy = %fom W(E) dF .
0

Consequently the energy of the Nth surface charge will be:

> >
—K'r_pk'
g[qa(}*-BN)zﬁge dr

€

> > >
%IQN(r) Y(r) dr g
K Ir—pkl

l—> ->
2 Wi pk“pN|
e R
& > >
Pk o - eyl

This sum contains an infinite term when Bk—+EN' This represents the
gself-energy of a fundamental charge. In reality of course the self-
energy of an electron is not infinite (i.e. an electron is not a point
charge), but has some finite value. In any case the self-energy is
merely a constant independent of the properties of the membrane, and can

be neglected. Consequently the electrical energy of the Nth charge 1is:
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[0, = by
2 _ka_pN
Energy _ 4 3y &
Charge

1 kN o, -0y ]

In order to simplify this result, the charge sites are assumed to be on
a periodic array. This approximation is somewhat extreme, since the
charge sites are much more randomly distributed in practice. However,
making this assumption, the Energy/area is:
-
el 9 ’Klpkl

B q =l
A €,[area of unit cell] > '
: k ol

Iok|aéo

The difference between this result and the free space result is a factor
of 4. This is because of the discontinuity in € at x=0, and the
assumption that €,/e, <<1. If the lattice is square with repeat

distance a, then:

L
el 5 —Ka(Zz-l—mz)2

EA_ - 89 -, e - . %)
3 1,m (1% +m?)?

where the prime indicates that the term with Z=m=0 is omitted.

4.5 FREE ENERGY

The free energy fel for the monolayer is (Eqn (4.2.7)):

fel [Wo FB
L AT P yay + 1. k.T logls— 7
A 0 B B FA+FB
TA FA-F
+ FA kBT log-fgqug 4—FA kBT log FA : (4.5.1)

In the discrete case this becomes:
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el 2 L s —-Kl“—l/z(lz-i-ﬁzz)l/2 r
EX_ &M, %— b & » + FB kBT log T g
1 L,m (L= +m*) * A" B
I FA-T
+ FA kBT log T;—ﬁ_}; P FA kBT log FA § (4.5.2)

where I'=1/a”. Eqns (4.4.5) and (4.2.5) will determine Y, and I' for
fixed values of the other parameters. These results are substituted

into Eqn (4.5.2) to give the free energy.

On the other hand, the assumption of a continuous charge
distribution requires simultaneous solution of Eqns (4.2.5) and (4.3.5)
for I' and wo. These values are then substituted into Eqn (4.5.1). This
procedure requires some numerical computation and is described in
Appendix 2. The calculations were carried out for the continuous charge
distribution only; the many approximations involved in Eqn (4.5.2) make

this result somewhat doubtful.

4.6 PHASE SEPARATION

There have been several recent theoretical attempts to show
the effect of double layer energy changes on phase separations in
bilayer membranes. Some authors [9] have concluded that the double
layer energy favours a phase separation. However, these authors used Y
for the free energy, plus an entropy of mixing term. This is incorrect
for the reasons discussed in Chapter 3. More recently, another attempt
at this problem has been made [17]. This time the correct form of the
free energy (as FB->O) was used, but charge dissociation was not taken

into account. Furthermore, these authors compared the free energy of
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the states of '"complete phase separation' and '"homogeneous mixing'. In
other words, they compared the free energy difference between a bilayer
membrane where charged lipids were scattered randomly throughout the
membrane, and a bilayer where all the charged lipids clustered together.
Since energy always favours a '"'mixed state', it was concluded that the
double layer energy inhibits a phase separation. However, this

procedure is incorrect in principle.

Consider the Gibbs free energy of a multi-component system,

G(T,Y,ni). Let X=n,/(n, +n,), then the condition of thermodynamic

stability 1is [20]:

nz,na,...,T,Y

In geometric terms, a graph of G vs. X must always be concave upwards.
Regions where the curve is convex upwards are thermodynamically unstable.
Systems which have such regions will phase separate; the values of X in

each phase are determined by the double tangent construction [20].

In the case of the membrane described in the previous section,
X-FA/(FA+-FB). Recall that f can be derived from G by making two
Legendre transformations, one on the palir YA, and the other on the pairs
njuj, where j is summed over the non-surface active species. Since X 1is
determined from the ratio of surface active species, it follows from the
properties of Legendre transformations that:

3°6 i
oX?

(m} X=qm,/{n, +0,) ,

T,Y,nz,na,... “1’T’A’n2’n3""’n1_1

and therefore that f vs. X must also be concave upwards.

The free energy per particle g==fe1/N was computed numerically
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using Eqn (4.5.1). (Note that since

£ f 0 0
EAN TS SRR Y, RN
A T T "B T “aMam °

there should be linear terms in X added to g. However, these terms are
of no importance as far as phase separations are concerned since they do
not affect the second derivative. Alternatively, if pg==u0 , then this
additional term is independent of X.) The free energy/particle g was
plotted as a function of X for a wide range of relevant parameters.

Some of the results are shown in Figs. 4.2 and 4.3, for T=25 °C, area
per lipid = 60 Kz, and a dielectric constant for water of € =80. The
inert electrolyte concentrations, [NaCl], [CaCl,], and the (pH - pK)

values are shown in the figures.

For low values of (pH- pK) there is little dissociation and
hence the electrical energy contributes weakly to g. Consequently the
ideal mixing term: X logX+ (1-X) log(1l-X) dominates the expression for
the free energy, and for (pH- pK) <0 the curves are roughly symmetric
about X= .5, with a minimum at X ~ .5. For higher values of (pH- pK),

the minimum shifts towards X=1.

It was observed in all the curves generated that dg/dX was
monotone increasing. This implies that this model does not exhibit a
phase separation. Some of the curves were almost straight in the

++].

vicinity of X ~ .5, particularly at higher pH and [Ca This suggests
that only a small effect, due to some other interaction, is required to

"nudge'" the membrane into a phase separation. It is therefore necessary

to examine what other factors could lead to a phase separation:

(1) First, the validity and applicability of the Poisson-Boltzmann

equation must be justified. The P.B. equation has been found to work



£~ WM~ O

pH-pK =6

0.01M NaCl

mole fraction X

Fig. 4.2: Double layer molar free energy g as a function of mole
fraction X = FA/(FAﬂ-FB) for a two-component lipid layer consisting
of dissociable lipids AH (AH == A" +H') and undissociable lipids B.
The curves are based on Eqn (4.5.1), and are plotted for a surface

area per head group of 60 32. The electrolyte is 0.01 M NacCl,
T'% 28 2¢,
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401/,1

—

_ D —

0.01M NaCl S
0.001M CaCl,
10k pH-pK=6\

Loy | el | | | I I

mole fraction, X

Fig. 4.3: Same as Fig. 4.2, but plotted for 0.01 M NaCl with 1 mM CaCl,.
Higher CaCl, concentrations do not modify the curves much more.
Qualitatively similar results were obtained with 0.1 M NaCl. None
of the curves obtained exhibited a phase separation. However, in
all cases the curves become straighter (less curved) near X =~ 0.5 as
the pH and Ca’* concentration increases. This indicates that phase
separations, arising from some other type of interaction, would be

more favourable at higher pH and [Ca’*], as often observed.
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surprisingly well in a variety of membrane studies, even at high surface

potentials [18,21,22].

(2) The surface areas of the different lipids have been assumed
equal and constant, and consequently the ideal expressions for ui were
used in the derivation of f. However, since the surface areas of 1lipids
are not greatly different, and since ideal solution theory often gives
better results than any modified theories which attempt to account for
molecular size differences [23], these assumptions are not expected to

give rise to any serious qualitative errors.

(3) Other possible interactions between lipids, such as specific
polar group or chain-chain interactions have been ignored. Any specific
interaction between pairs of molecules AA, BB and AB with interaction

free energies Bap> 8pp and gAB such that

will give rise to a phase separation if the inequality is sufficiently

large [24].

In view of the fact that there is no phase separation when
such interactions are ignored, specific interactions must be responsible
for the observed phase separation in membranes. However, in view of the
"straightness'" of some of the curves in Figs. 4.2 and 4.3, this specific

interaction need not be very large.
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