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ABSTRACT 

Using semi-classical techniques a general theory 

1s developed which enables us to study the effects of 

physical boundaries on the dispersion interaction between 

molecules taken as point dipole oscillators. The formalism 

is then applied to situations in which the oscillators are 

between metallic plates, in a metallic duct and then in a 

dielectric slab. The resonance interaction is also considered. 

It is found that in some instances the interaction is 

considerably altered from the London and Casimir-Polder 

results for free space. 
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CHAPTER 1 

The intermolecular forces bet~een uncharg ed atoms 

and molecules generally fall into one of three basic types, 

orientation effect forces, induction effect forces, and 

dispersion forces. 

'Orientation effect' forces arise when two molecules 

each possessing a permanent dipole attract each other due to 

the attraction between their dipoles when in certain orientations. 

Boltzmann statistics says that the orientations of lower energy 

are statistically preferred, the preference increasing as the 

temperature is lowered. Averaging over all positions an attracti v 

force is found as a result of this preference. 

Forces due to the 'Induction effect' are once again 

attractive forces resulting from attraction between two molecules, 

one of which possesses a permanent dipole, the other being 

polarised by this dipole giving rise to an induced dipole 

(which may be in addition to any permanent dipole) and hence 

an attraction between them. At the same time, if the second 

molecule also possesses a permanent dipole it may be inducing 

a moment in the first to give rise to a further attractive 

contribution. .-

Debye [l] and Keesom [2] were the principal early 

workers in this field, their work mainly being as an attempt 

to determine theoretically the attractive constant in the 

Van der Waals gas equation due to intermolecular attraction. 

The 'Induction effect' calculation arose when it was found 

that the 'Orientation effect' could not be the only explanation 
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as it did not possess the correct temp era ture dependence. 

For those molecules which obviously had no permanent dipole 

moment (e.g. rare gases, Nz, Hz, CH 4 , o2 etc.) the existence 

of quadrupole moments was assumed which woul~ give a similar 

interaction by inducing dipoles in each other. As there was 

no other method available at the time to measure these quad­

rupoles they were determined backwards from the empirical 

Van der Waals gas equation constants. 

However, with the development of Quantum Mechanics 

it was shown that the rare gases were spherically symmetric 

and so possessed no permanent dipole or other multipole. In 

the case of the homonuclear diatomics it was found that they 

possessed at least a permanent quadrupole. When this quadrupole 

was calculated for Hz it was found to give rise to a Van der 

Waals force about one percent of that wnich had previously 

been attributed to a suitably chosen quadrupole. 

On the other hand Quantum Mechanics also provided 

a new aspect of the interaction between neutral atomic systems. 

In 1930 London [3] using the Drude-Lorentz model [4] of the 

atom, which considers the atom to be an assembly of harmonic 

oscillators, calculated the force between such atoms which 

arose due to the interaction of their rapidly fluctuating 

instantaneous dipole moments . This force, again attractive 

was termed the Dispersion Forc e since it involved in the 

expression for the energy, terms related to Classical Dispersion 

Theory. This type of force first appe ared in a calculation by 

Wang [SJ who solved the Schrodinger equation for two hydrogen 

atoms at large separation distances, including the instantaneous 
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dipole interaction between the stationary protons and movi n g 

electrons. For his calculation Wang used a rather cumbersome 

perturbation method developed by Epstein [6]. London [3] in 

his calculation, however, used a more standard Second order 

perturbation procedure to obtain his result. 

In the early years following London's work this was 

the principal technique used, generally coupled with variational 

techniques, in calculating the Dispersion Forces. In the case 

of hydrogen atoms , Pauling and Beach [7] used a total of some 

sixty-nine terms for the dipole-dipole, dipole-quadrupole and 

quadrupole-quadrupole parts of the interaction to gain the first 

three terms in the series expansion for the energy of the inter­

action to a slightly greater accuracy than had been obtained by 

Margenau [8] some years earlier. These calculations were 

principally concerned with obtaining numerical answers for a 

specific substance . 

Another approach adopted by some early workers [9] 

was to write the energy as 

and try to derive generally applicable formulae for C which 

agreed with the cases for which exact values could be measured 

and simultaneously gave some insight into the physical properties 

of the atom that were important in the magnitude of the 

interaction . 

In the mid 1940's Verwey and Overbeek [10] deve loped 

a theory in which the interaction between colloidal particles 

was exclusively ascribed to Dispersion Forces and when applying 

it to suspensions of comparatively large particles they found a 
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discrepancy between their theory and the experimental results 

which could only be resolved if the Dispersion Force between 

two atoms was assumed to fall off faster than 

energy of the interaction falling faster than 

- 7 R (i.e. the 

R- 6). Overbeek 

then pointed out that given the idea of Dispersion Forces as 

being an interaction between instantaneous dipoles in the two 

atoms and hence carried by the electromagnetic field that 

retardation due to the finite speed of light might become 

important at distances comparable to the wavelengths of atomic 

frequencies. Inspired by this suggestion Casimir and Polder [11] 

using Quantum Electrodynamics found that for large separation 
-7 

distances the Dispersion Force energy fell off as R . 

Increasing refinement in the theory and techniques 

of Quantum Mechanics and Quantum Electrodynamics has seen the 

derivation of the energy of the Dispersion interaction by 

several different techniques, each starting from a slightly 

different assumption as to the process involved. 

Fienberg and Sucher [12] using methods similar to 

those of Casimir and Polder have obtained a general form for 

the retarded dispersion force potential. In a later paper [13], 

by treating the interaction as being the exchange of two 

virtual photons between neutral spinless systems, they were 

able to express the energy of the interaction entirely in 

terms of measurable quantities, namely the elastic scattering 

amplitudes for photons of frequency w. 

The time-dependent Hartree method was used by 

McLachlan, Gregory and Ball [14] to solve the problem of 

interacting atoms quantum mechanically, by-passing knowledge 
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of the wave functions of the atoms concerned by using the 

frequency dependent polarisabilities [15]. These polarisabilitie~ 

were then approximated using the time-dependent Hartree method. 

This method also enabled them to obtain a simple description 

of the non-additive three body forces and other extensions of 

the basic ideas, including temperature effects. 

The problem was also attacked by Tang [16] using the 

dynamic polarisabilities. In the two earlier papers he 

approximated the polarisabilities by using a two-point Pade 

approximant . Using this he was then able to obtain the form 

for the two-body force previously obtained by Slater and 

Kirkwood [9] while for three-body forces he reproduced the 

results of Midzuno and Kihara [17]. In the later paper he 

used a continued factorisation method for approximating the 

polarisabilities thereby gaining tighter bounds than with the 

Pade approximant. 

A totally different aspect of the problem has been 

considered by Boehm and Yaris [18]. In their paper they 

considered the small separation distance part of the problem, 

specifically the area in which orbital overlap becomes important 

and hence the force between the atoms tends to become repulsive. 

The complexity of tht problem was somewhat reduced by their use 

of linear response methods from Quantum Mechanics. 

The interaction between charged particles located 

between conducting plates, a problem which is a forerunner of 

a situation to be considered in this present work, was considered 

in 1970 by Barton [19] using Quantum Electrodynamics. He found 

that for the two particle interaction, the energy of the system 
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including the charged particles arose from the coupling of 

the charged particles to the quantized electromagnetic field, 

thereby altering the energy of the quantized field. 

Most of the methods of attack on the problem so 

far mentioned have been essentially of a quantum-mechanical 

nature using ideas and techniques developed principally since 

the rise of Quantum Theory around the 1920's. Several excellent 

reviews by Margenau and Kestner [20], Power[21] and Dalgarno 

and Davison [2Z] have been written on the Quantum theoretical 

development of the theory of intermolecular forces as well as 

a non-technical review by Winterton [23], these reviews giving 

a complete quantum treatment of intermolecular forces for the 

interested reader. See also the reviews of Israelachvili, [46] 

and of Parsegian, [45] who emphasise applications in biology. 

More recent years have seen the rise of a different 

line of attack on the throry of intermolecular forces, the 

semi-classical approach. Any quantum treatment of the theory, 

by its very nature, tends to become rather complicated for 

even simple problems, and exact functional representations for 

many basic functions used (wave functions etc.) are not known 

and hence perturbation or other approximating techniques are 

used. The semi-classical approach, on the other hand, with 

its heavy flavouring ~of classical equations and techniques is 

basically much simplar to use, being able to draw on the vast 

body of classical theory already known. 

An early use of classical ideas was by Lifshitz [24] 

in his work on the dispersion forces between continuous media 

and its later expansion [25] giving the well known Lifshitz 
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theory for forces between continuous media. This work was 

based on macroscopic electrodynamic and fluctuation analysis. 

It is interesting to note that it was some many years before 

Renne and Nipoer [26, 27] were able to give an atomistic 

derivation of this macroscopic theory. 

In an early paper, Boyer [28) expounded the connection 

between Quantum Mechanics as represented in the work by London [3] 

and Casimir and Polder [11] and Classical Electrodynamcis of 

fluctuating fields, the work of Lifshitz [24]. In a later 

series of papers [29], Boyer then went on to give a recalculation 

of the long range dispersion force potentials using Maxwell's 

equations for the electrodynamic field and classical electro~ 

dynamics. 

Combining classical ideas and the quantum concept of 

zero-point energy, Van Kampen et al [30] achieved an important 

result when they showed how the energy of the intermolecular 

force may be calculated from a 'Dispersion Relation', a relation 

which determined the frequencies of the coupled atomic oscillators 

This work was at first applicable to non-dispersive media [31] 

but was later shown to be applicable to dispersive media as 

well [32]. 

A completely general theoretical treatment of the 

dispersion interaction was gained using the semi-classical 

approach by Mitchell et al [33] which gave both the repulsive 

limit mentioned earlier as well as the London [3] and Casimir 

and Polder (11] results as certain limiting cases, the method 

also being used to give an exact solution for the three body 

forces. 

It is the semi-classical approach which we adopt in 

this work in determining the boundary effects on dispersion 
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forces. Dispersion Force theory has in recent times been 

carried into many and varied fields as their importance 1n 

physical phenomena has been realised. We have already 

mentioned the application to the theory of colloids [10, see 

also 34] where Dispersion forces play a major part. 

The Physical Adsorption process is another area 1n 

which dispersion forces play a major part, the adsorption 

process being governed by the dispersion forces within and 

between the various constituent parts. Two very good disserta­

tions on the subject have been written by Young and Crowell [35] 

and De Boer [36] to which the interested reader is referred. 

As Dispersion Force theory is carried into wider 

applications it becomes increasingly important to know how the 

dispersion interaction changes according to the environment of 

the problem at hand. It is one aspect of this problem that we 

look at in this work, namely that of how the dispersion forces 

between molecules taken as point dipole oscillators vary accord­

ing to the boundaries of their physical environment. 

In the first part of this work we develop the theory 

of interacting molecules in the manner outlined by Mahanty and 

Ninham [37, 38] and consider their application of it to a simple 

system and then in the later parts consider its application to 

slightly more complex configurations. 
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CHAPTER 2 

The problem of interacting molecules has a simple 

formulation when set up in semi-classical terms [37]. For 

this formulation we regard the molecules as being point-dipole 

oscillators, mutually coupled via the electromagnetic field 
• 

which is treated classically. The dispersion ener gy is then 

the difference in zero-point energy between the coupled 

oscillator system and that of two individual non-coupled 

oscillators. The boundary effects enter through the structure 

of the Green function of the electromagnetic field coupling 

the oscillators. 

For an oscillator of a single frequency, its zero-

point energy is given by 
- I f:. :: 21:W (2.1) 

where w is the circular frequency. If the ground state of 

the molecule is an assembly of oscillators of frequency w. [27] 
J 

then the zero-point energy of the molecule is given by 
;I; 

Eo = 2. z:_ Wj (2. 2) 
~ 

If D
0

(w) is the secular determinant for the molecule 

i.e. D (w.) = n all j,then using Complex Variable Theory [39] 
0 J 

we can write 

.-
4. ~, I olw w D.c~,) 

C D~(~J (2.3) 

:: t · z~• J,_w i ~ D. (u,)) c;iw 

since D 1 (w)/D (w) has simple poles at the zeros of D0 (w). 
0 0 

The contour C in the complex-w plane is chosen so as to 

include the positive real axis. 
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If the oscillator is now coupled to the electro­

magnetic field, there will be a change in the secular 

determinant, the difference 

::: l ·-i;L ( W d ~~ ~,(w) I clw J¢ ciW l ~0 (c./)( 

where D (w) is the secular determinant of the coupled 
1 

situation, being a measure of the self-energy of the 

oscillator. 

(2.4) 

Now if we couple the two oscillators to the field, 

the interaction energy is the difference between the energy 

of the pair and the individual self-energies of the two ­

oscillators 

£ (i,2) = r 2~( [ u; iw~( :~~~~~(w~}Jw ( 2. 5) 

In equation (2.5) D2 (w) is the secular determinant 

for the second oscillator coupled to the field and D12 (w) the 

secular determinant for both oscillators coupled to the field. 

Integrating equation (2.5) by parts and choosing a 

contour including the imaginary axis we obtain 

E ( 1, 2.) = ~ (~ _Q(w)cLw 
2ir 1.. J . (2.6) 

0 

where lv..0-(w) is evalu~_ted on the imaginary axis by analytic 

continuation of the function 

( 2. 7) 

Equation (2.6) is one of the results on which we 

base our treatment. 
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We now turn our attention to the equations of motion 

of two isotropic oscillators [38], natural frequency w , 

charge (-e) and mass m. In Fourier Transform (time-independent) 

form these are 

• 

ft'\(w~- w<-) ~j(w) == <-~Q, ~ (!t,w') -t e. Vcj>(Bj,w) j= JJ2. (2.8) 

where u. is the displacement from equilibrium of the jth 
-J 

oscillator, and R. the co-ordinates of its equilibrium position ,.... J 

and also that of the core positive charge (+e), assumed to be 

stationary. 

The time-independent equations for the vector and 

scalar potentials t and rf are (using Coulomb gauge) 

4.rr,.:we ~ 
-C. L U... (w) Si(-+ R.·) J -; ,.. ) --J 

and 

Solving for A and¢ from equations (2.9), (2.10) and 
,v 

( 2.11) in terms of G(l) (1. ~· ) ' the Green function 
) ,-J 

.-

f/1-¢ ~ 0 

and G( 2) (1
1 
i' ,w) the diadic Green function of 

with the appropriate boundary conditions, we obtain on 

substitution into equations (2.8) 

(2.9) 

(2.10) 

(2.11) 

of 

(2.12) 

(2.13) 
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(2.14) 

(2.15) 

Here I is the unit diadic and 
= 

(2.16) 

l 
with VU the diadic operator formed from the gradient 

operators for primed and unprimed co-ordinates. 

Hence from equations (2.14) and (2.15) we have 

the secular determinant for the coupled system as 

(2.17) 

and also 

(2.18) 

Therefore we have that -, 
Dn .. c.. v-,) _ 

u,(.v.:>) vi.Cw) -
- lbTt1.e~ ~(~~,~,~w)"b(wol..·vl)t t- 4nC~(~,~~~w)J 

(2.19) 
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So to order (e 4 ) we obtain 

(2.20) 

Substituting equation (2.20) into equation (2.6) 

in the form 

(2.21) 

and writing w = iJ we then have 

(2.22) 

The use of the Coulomb gauge enables us to separate 

out the non-retarded form of ~("!)1\w) in equation (2.22). 

Therefore in the non-retarded limit with c-;:> ~ 

equation (2.22) becomes 

E(~) = 

' 

Equations (2.22) and (2.23) will form the basis 

for further analysis -. 
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CHAPTER 3 

3.1 The Green Functions 

We see from equations (2.22) and (2.23) that the 

energy of the interaction is dependent on the Green function 

of the problem configuration. In bounded regions the structure 

of the Green function 1s altered by the discretization of some, 

or in some cases all, of the modes of the electromagneti c field 

1n the bounded region. The actual boundary conditions to be 

used depend on the physical nature of the boundary (metal, 

dielectric etc.) and may involve physical properties of the 

boundary such as dielectric constant, electrical conductivity 

etc. 

For the problem of the oscillators between perfectly 

conducting metallic walls it 1s advantageous to use an 
{I) 

eigenfunction expansion for the two Green functions C. (:t, z') 

and s'l.) (-l: 1 :t' ~ w) , the genera 1 theory being we 11 kno,vn [ 4 0] . 

In an eigenfunction expansion then, C(\' ( ':!) :t') 

of equation (2.12) is constructed from the solutions of the 

scalar equation 

(3.1) 

where XA is suitably no rmalised and is chosen to satisfy the 

same boundary conditions as¢. Using the A) we then have 

~).(:t) -X~(l') 
A ( 3. 2) 
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We obtain the diadic Green function cj.t) (~ > !' ~ w) 

from the divergence-free vector solutions of equation (2.13), 

or equivalently from 

(3.3) 

It is possible (see [40]) to write the two independent 

divergence-free solutions of equation (3.3) in the form 

(3.4) 

( 3. 5) 

where Cf-;.., cj;/ satisfy equation (3.1), and k (dimensions 

of wavenumber) and the direction of the unit vector ~ are 

adj us t e d to make the fun ct ion f'>- = 0 ~ t (YA satisfy the same 

boundary conditions as the vector potential A. -
The functions ~ )..(i) and ~>.(i)are normalised as 

(3.6) 

We then have 

(3.7) 

- ... 
with ~1l !:J>. tt 

vectors IJJA 

and 'i. >. t:!>. being the diadics formed out of the 

a."-d A/ 
~).. 

We now turn our attention to the problem in which 

the oscillators are between two parallel perfectly conducting 

plates, separation L [38]. Since the plates are perfectly 

conducting, the tangential component of the electric field 
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and the electrostatic potential are zero there. We use a 

co-ordinate system in which the or1g1n 1s on one of the 

plates and the positive z-axis is normal to the plates, 

directed towards the other plate. The boundary conditions 

are then 

d A-z. = 0 
dZ.. 

<I -:. 0 ) Z= 0 L 
J 

We Obtai. n rJ.,>r!., !') f t. ~ LA ~- using unc ions 

per equations (3.1) and (3.2) where 

giving 

c.l·'c !) 1:') )( rr ~,c.U,tL Q.,)(.~[ ~ p., c..---·) ~ 1,.,(y'j')11 

- 01& -

Ctt.)( I ) 

For the construction of :!:, i · w we use 
: J 

and 

(3.8) 

as 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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are unit vectors in the x, y, z 

directions respectively. 

Normalising ~~ and ti>i we find 

(3.13) 

is seen to satisfy the 

boundary conditions of this problem. 

Using equation (3.7) we then have 

J\•,.'t\ £. · ~ 1Y'l.1 

- ~ -L L 

.-

l 
(3.14) 

with 

where the express 1 on s of the type ( ~ 0( ht4 - ~ ~ k ~) ( CJ; z k<r) 

are the diadics formed from the vectors ( 1. k1 - f3::,,kt5) 

and n 1 
~c '¥t 
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Substituting equations (3.10) and (3.14) into 

equation (2.16) we obtain after simplification 

s" s ''- S,3 

C (-t i•W) - s ;;l.\ s:3.').,_ S 1:~ (3.15) -,....)...,..) 
-= 

s 3 \ s ?°L Si3 

where 

with 

(3.17) 

and 
If'.:: 0 

(3.18) 

.• 
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3.2 The Non-Retarded Limit [38] 

For notational convenience 1n this problem we 

define a variable 

(3.19) 

and obtain the interrtion 1n terms of 

(3.20) 

The non-retarded limit ( ~-~oo ) corresponds to 

the case when both Land R (and hence f,~ ) are much less 

than the chacteristic wavelength 

(3.21) 

Considering firstly the case where f '>> L we 
,,-,l') 

note from e qua t ions ( 3 . 1 6 ) and ( 2 . 1 6 ) that as c.-~ ~ > - 0 , ~ ~ 

hence we start with 

where 

Using the formulae 
~"l\ 

--

r cLG (il,)<H'-XSU>Oe) - -<11 ::f0 (1<1) 
0 

and 

(3.22) 

(3.23) 

(3.24) 
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thEn substituting into equation (3. 22) and letting e,--;>-o 

we get 

+I 
1T L '-" :, I 

Now we also have that 

(3.25) 

(3.26) 

For large f /L , we need retain only the first 

term in equation (3.25) and using the asymptotic form for 

Ka (h~/L), on substituting into equations (3.26) and (2.23) 

we obtain 

(3.27) 

When Lis large, in equation (3.22) we sum over 

using Poissons Summation Formula [41] before integrating 

over J( and e to Je-+ 
0¢ 

-t }', . \ __ , r ){ cJ-.x :r O (Xf) X [ e.,,y, r ( K \7 .. - i·n-+ ~r (-k \-z.--z.'\ + ~ ,, L) 
-'J · c, - ; - ~ \ i - :i.. TI" ! KI e,J(r (-.1<.4-1\ 

(3.28) 

Re-arranging equation (3.28) and using the identity 

(3.29) 
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where fl_ = 1 ("z.--i)' ~ r r'- we then have 

-3, (1::, t''i -.: '\) ~ __l_ [ o-xr{-~%.) + -2__ f;:x '°" Jo (xr) 
4-ir R O K t Q))(j,( .,_ K L)-1} 

(3.30) 

In this form the Green function shows explicitly the free 

space term plus correction terms due to the boundaries. 

Using now the non-retarded form of equation (3.30) 

and substituting ~XL= it we obtain 

(3.31) 

Now, since the main contribution to the integral comes from 

the neighbourhood of we expand the Bessel and 

cosh functions in power series and integrate term by term 

-( (i +-z.
1 -L)1- _ 

8 l 1 

(3.32) 

In equation (3.32) {(s>½) is a generalised zeta function 

satisfying !(c;.>{); )(S)(~s_ lJ [42]. For the case when 

(z.,-+21.- L')<< L we substitute into equations (3.26) and 
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(3.23) neglecting the term ('2..~-z.'-L)' /0 Hence when the 

oscillators are nearly in the middle of the two conducting 

planes (i.e. (~\-t-2.1. • L'\ <.~ L ) we have 

(3.33) 

is the non-retarded London 

interaction between oscillators 1n free space. 

For the case when ( z.., -t ,l.) << L ) the 

oscillators close to one of the conducting planes, we rearrange 

(3.28) into the form 

(3.34) 

where 

and proceed as before to obtain 

s 

L:: ( tx) ~ EL-(!?) f ; ( I - j (3) f-&) I (3.35) 

; the oscillators one near 
.-

each conducting plane) we start with 

C' (-t_ );.') = _J_ ( d) :Jo (F*/~L) QJ)(KiJ} c,,,l(h--~1-L)-k{ _ ~~,.·~-L)yr 
4-11 L Jei,.p (>l)-1 / z h. 3 6) 

to obtain 

(. 

- /(.BJ" [l J(s)J j C ~ (R) L . i . - - . 
6 . 

(3.37) 

the neglected terms being O ( f ,-,,/L.)'- e,.,.,.;J.. of(\?., H,j-1.. J/L( 
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We note at ~his stage that equation (3.33) 

implies an enhancement from the free space value when 

\z.,-?.-i..\ > ~,1./S:l. but a diminishing when z,:-z_, , 1.e. 

the oscillators on the medial plane . 

. -
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3.3 The Retarded r egi on [38] 

In the retarded region it is necessary to use the 

Green function of equation (3.15). 

For we start with (see equations (3.22) - (3.24)) 

(3.38) 

o.nd 

Substitution now into equations (3.15) and (2.22) yields, 

after some straightforward algebra 

-rfl. ic.e 4 I (3.40) 
T, A,y..1. Wo'r L 2. f, t 

which represents an enhancement from the Casimir-Poldor free 

space result [11]. 

For the case when I~<< L.. we begin with equation 

(3.38) rewritten with 
- ..-""n.z. . ~· :: J. [ ~ {i_""(z.-r.:J) - ~ (L'(z..+i!)){ 
~ r~ L- 2.. 

and apply Poisson's Summation Formula [41] to obtain 

(3.41) 

where 

We now use the formula 

(3.42) 
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to write 

!v!-.~ (- Rt 1/s,) = 

~.L 

(3.43) 

This expansion is permissible since ~lL:::>') R. J ~:/ 0 

F o r the s econ d s urn over '2-x p ( - 3 R ~ I c.) / R ~ 

we write 

2.+z' ::: ~Lf- $ O<~<- I s~ o ( ~) 

We then have 

(3.44) 

where 

so using equation (3.42) we have 

£ c,< p(-Rl ~/c) ~ J (,21, 1) J r )(,',i {-<L }(.i.-f)l~l + (-lj l (·,![:<Ls {.l1-,)kj1) 

/-o -- R.i, J.,•0 /.,- f ~L(L-f)ft (,L{.U(s-1)1{ } 

L~1 ( f 1?1c) 
j ~ .,-

P1.,,· ( (2.~21
) - "). Lj ) 

R'' / 

Combining now equations (3.43) and (3.45) we have 

(o) -Jl-,.e{Sl\/c) 
'3 1 = 4lf K 

(3.45) 

(3.46) 

. () 
where ~'' is the correction to the free-space Green funct i on. 
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After substitution of equation (3.46) into equation 

(3.15) we carry out the integration over 1 in equation 

(2. 22) by expanding the Bessel functions Ji~1 (A'ik.) J,t'.! (R''!!c) 
L ) J 

in powers of their arguments, retaining terms of order 

[ (!~/.:.. C. ·r; Gi. \ 0,.,..,-., <A.. l ( \ R" /" ,'l.. /
1
' I R· i Two limiting cases 

then become apparent. 

For we have 

L::--(t<l ~ ~-;. (I() [1 f ( J(~-:i ... 1) s*-RJ/ (t/J (4-) /- o aJ7 .. J 

For 

Here 
- ~skc '2- 4-

4rr R' "),y\ 1. w/4 

(3.47) 

we have 

(3 . 4 9) 

is the Casimir- Polder result for the retarded interaction 

in free space [11]. 

We note that as was the case in equation (3.33) the 

interaction is enhanc-ed for \2.,-22-\ > (ft"1-/fi.) . 
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CHAPTER 4 

4.1 The Green Functions 

We now turn our attention to the consideration of the 

oscillators when they are inside an infinitely long rectangular 

duct, sides of length a and b, with perfectly conducting sides. 

We use a co-ordinate system in which the origin is at 

one corner of the duct with the positive x and y axes lying in 

the walls of the duct with the z axis directed along the duct, 

parallel to the walls. Our boundary conditions are then 

¢ = 0 X - o,a ¢ = 0 y = o,b 

( 4. 1) 

4-. : {lz = ~ fl';! - 0 :} = 0~ b ~~ 11, .: .:Jfh = 0 ~ = 0,1 't_. dJ d )( 

We proceed as in Chapter 3 to construct the Green 

function for this configuration obtaining 

00 

~· [ 4 °")(!(. l, h.(-z.-2!)] 

-~ ~~~ ( 4. 2) 
--

where = 

For the construction of the Green diadic we use 

( 4. 3) 
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( 4. 4) 

with 

The (:J) and ;;I~ are normalised according to 

( 4. S) 

We therefore have 

_!\ A - ( 4. 6) 

and 

I 
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where the prime on the summation denotes that the zero term 

is to be taken with weight½. 

Combining now equations (4.2) and (4.7) according 

to equation (2.16) we obtain 

- -

s\, S' \ \. S"3 
G(~:r'·w) - s~, s~:t.. SA.S : -.., ..... ) -

s5, S 11. S'" ~ 1 
' ( 4. 8) 

,_ -

where 

+ 

(4.9) 

with 

(4 .1 0) 
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(4.11) 

and 

(4.12) 

--
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4.2 The Non-retarded Limit 

We consider firstly the non-retarded case where the 

dimensions of the duct, a and b, and Rare both much less than 

the characteristic wavelength of the system ~ 0 -= -<"c/w
0 

Considering the case when \-z. - z.'\ >> a_ ) b 

(hence R >"> a.> b ) we start with 

(4.13) 

where 

Evaluating the integral according to 

(4.14) 

and retaining only the first term of the double sum since 

/z-2'/ >':> ct) b we have 

(4.15) 

Now for the non-retarded case, c~ ~ we then have 

(4 .16) 
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Using now equations (3.26) and (2.23) we then have 

- '8T1 4 ;/;. (l, u. 

~ ~ wo1 ( o.., L-1- ~~ 

~ " ( ~) A~~--? (~j 
b 't 

(4.17) 

For the case when a 1s large, we begin by using 

Poisson's Summation Formula [41] in the form (for F(n) even) 

0() 

+ 2 !. f FH= ~"TI~-""-)~ 
_c,0 

(4.18) 

Applying equation (4.18) to equation (4.10) 1n 

non-retarded form yields 

A ( I "\ - j \ :t ) t ') - l, \ j =-

--

-c,<J 

(4.19) 
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In this form~' is seen to be composed of three parts, 

one being the same as obtained in section 3.2, due to the plates 

at x = o,a, the second being due to the plate at y = o and the 

third being the contribution from the plate at y = b. 

If we now carry out the integration over m, we obtain 

for the sum over r 

--

(4. 20) 

This is valid since 

for ~=/=-0 

When bis large, we retain only the first term 1n 

the sum over r to obtain 

A..0 

- J ' 

+ 

X 

4.21 



- 34 -

where is the two plate function for the plates 

x = o,a. 

We now integrate over k before applying Poisson's 

Summation formula again to the third term, treating the second 

term as outlined in section 3.2 we obtain for leading terms 

- 3 \ ( -! ) j ') - ~ \) 
Ao _i_[J_ \ 

~-J =- -3, 4- A--lf Rb - R'«> • 
(4. 22) 

where Rb - ( :i. -.)C.')'\.. + (~b- (':j-'j1))1.t ~- -i.') l.. -

"'l.. (x - .:,c..' f· 4- (=z~ - (J+·:f))'-+ (-i..-~·)'-~ b. --

1. c~ -~f + ( ~ -l -~f )')_ (1- - ?..')'-
~J"' 

-\-
':.. 

Use of equation (4.22) then gives us the energy as 

(4.23) 

where cj_p(~) is the two plate case result of section 3. 2 

and '=cc~) the correction due to the second pair of walls 

where 

+ - ~I) + j 
(4.24) 
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When bis small, we sum the geometric series involved 

in equation (4.20) to obtain 

e>O 

:x ff A cl-k, <2.-;X r [_ t I I., ( ~ •J') -1- k( -i..-r)J] 
-'° k,1. "° k"'L ~ """""L~1.. 

a. 

+ l, ~ ~ ~ "';~' [ e LkJl-2Jx ('[-{ ~2 +kf~i] 
-o,IJ 

X [ ~ 1 ( ~\ k'-)\ Jj')J - u,)._, 1 ( kc:£- t ~'-) \c~ +::J') n 
I 

\ - cvx r c -c \,.~ t~4.) ~~bJ 

(4. 25) 

Expanding the third term in equation (4.25) in a 

power series since bis small and retaining terms of order 2b 

we obtain 

(4. 26) 

For \-z.. ---z..l I/ Q. large we retain the first term in each sum to 

obtain 

. / ' Tf) ' ~/; Q. -J)z--z.}j !J.T( '1l f 
.. trha.. ~ a: ~ Ct. L e -B-J·) 1' ( a. 2.-z)J J 

(4. 27) 
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Expanding the Bessel function for large values of 

the argument and substituting into equations (3.26) and (2.23) 

we obtain as before 

where here 

- ~ irlz.- 'Z.. If l. 

e- ce ' ' lj, -J0 11~'t(~X!H')~ 1~) + c.,y} r~) ~c:.tJ, 
\-z..-21 q ) 

' l. 

+ :: ( 4Y.)'\_"d')~ ~') + ~ "-f.J') c,,,}-~J) 1 
(4.28) 

--
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4.3 Interaction in the retarded region 

For the retarded interaction it 1s necessary to use 

the full Green function of equation (4.8). When a, b :::>;::>R 

,I\ 

we start with ~' in the form (see equations (4.13) and (4.14) 

with 

for 

(4.28) 

, with similar expressions 
A 

and q 0 3 • 

We now apply Poisson's Summation formula [41] four 

times to equation (4 .28) to give 

- ~.(~1!\-~l) = 4~ l-f-= [ <2-?<f(~~~R.-.) -t ""'~[-R{: f-\,.,j 
~f"S+ 

(4. 29) 

--

where l ~ 

R .,, - [ <2< - x') * ~ ""--j -\ [ (__~ -j' )t- .:i.s l, J 1. + (..2- - ?.'.)'-

R.:, -[ ( x + ~·) + :._ta.]'" -+ [ ( ~ +'j') t 2s bi + ( 2 - 2')' 
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Rewriting equation (4.29) we then have 

_ q c ~ ~I. • "1') _ _I [ o.. x~ ( -1 R/c.) 
c) .,.. , ,.. .> -1. ~ - 4 TI I~ -t- ~SJ; <>?<~~-¾R.,) ;- ~i ~f(lf<,a) 

o, 'Xr 0 

f': -00 

e,J 00 - ¥c. '<rs ~ QIIJ (?1/c Rrtt -+ 42~ e ~:10Z t"'.:1 ~::, 
~('~ 

r-:-.JO S=-.-<:> ~ C"S -f 

00 oC -1/c.R~,.s -'!vc. ~~r :z :f...t-u 
-.ci. 0-t> 

] e 
~ ~ e ~ 

-t 
r-:.. -dO -5~ "'° Rt..-~ '("'"; __ s ~ _c>Q Rtl-~+ 

(4.30) 

Note in equation (4.30) that the free space Green 

function is exhibited explicitly. Proceeding now as in 

section 3.3 in rewriting the sums of exponentials and constructior 

of the diadic we obtain once more two limiting cases. 

For r{ W o. / C <. < J o.-..tJ.. °' b << Ao We Ob ta in 
) 

--

and a, b ""> :::> Ac we have 

(4.31) 

( 4 .32) 
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CHAPTERS 

5.1 The Green Function 

When the oscillators are embedded in a dielectric 

slab it is convenient to construct the Green Function by 

another method [43]. We consider the situation wher e we have 

two semi-infinite slabs of dielectric (1 and 3) separated by 

a slab (2) of thickness L. We choose axes in which the ori g i n 

lies on the 1-2 interface and the positive z-axis i s dir e ct ed 

towards the 2-3 interface and is perpendicular to both 

interfaces. 

The equation that 

then == 

~(\) ( :t ') :t \ \ 

s ( t -i) 
JC~) 

with boundary conditions that G(''and 6 c}2. 

satisfies 1s 

( S. 1) 

be continuous 

across the boundaries. Now have that E , the normal component z 
- d c.(•> 

of the electric field, (also o< dz. ) is discontinuous acros s 

the interfaces. Let A(x,y) and B(x,y) denote the jumps in E z 

at the 1-2 and 2-3 interfa ces respectively. Then the electro -

static potential G(•)is equivalent to that arising fro m a poin t 

charge immersed in an infinite medi u m 2 to gether with that du e 

to surface cha r ge densities A(x,y) and B(x,y) at the bound a r ies 

(we ar e taking 0 < z.' < L at present). With th is eq u ivalence 
.-

we are able to write 

(1) 

G;' ( :l: , ~') = <) ( 1, :!:') t- f d (-J:, t'') [ '-'I (x :,f)H'-") + B (x ·~ f) Sh 'C. L) J J' -t' 

( 5 . 2) 

with 
-l (5.3) 

4-n E'- R._ 
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The potential G")is now automatically continuous 

across the interfaces. Imposing the remaining boundary 

and using the identity 

--t­
z_ ---;> o-

2 

(5.4) 

( s . s) 

gives two simultaneous integral equations for A and B, viz. 

( S. 6) 

and 

--
~ 

- Ctr~,_) L f ( dx'' ~ '' (l ( >< ", ~") 

-o0 [(:x. -.:,<.'j <- ~ (j-'j ''J\ L' 11/t 

( S. 7) 

We solve these equations by means of Fourier 

transforms. 

Defining 

~ 

ll { /4_ 1 /~ <) =c (;,_;, )"'- § ol X tJ f/ ( X; 'J) c_-1,/ _q, X t-k1-!J) 
--00 

( S. 8) 
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with a similar definition for B we then have from equations 

(5.6) and (5.7) 

where 
f( - (:J' 

~~ + ~j 

From these two equations A(x,y) and B(x,y) are 

determined. Substituting into equation (5.2) we find, 

on changing into polar co-ordinates ink space and carrying 

out the angular integration, that 

where 

-t 

- \ 5 l 
t\-1t tl, t R t 

--

(5.11) 

( ( 
-X.(L~IL-1.llt-\z.l) -x(tL-~I ~ IL.-.. 'I) s...o L- l.') b.,, line - .!l11. e I 

(5.12) 
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I 
The removal of the restriction on the position of r ,w 

I 
results in an immediate generalisation. The factor -
outside the curly brackets in equation (5.11) is replaced by 

[ 
B(--z..') ;-

t, 
6 (-2.1) (3 (l- 2) 

+ 

(5.13) 

where 0(z) is the step function to give 

(5.14) 

--
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5.2 Interaction in the Non-Retarded Limit 

From equation (5.12) we note that the form of the 

function F()('>"2.,,'; will be considerably altered according to 

the relative positions of the two oscillators, in particular 

their positioning with regards their z co-ordinate. 

We consider firstly the case for which Lis large. 

Taking the situation in which both oscillators are between 

the two dielectric boundaries i.e. 

equation (5.12) then gives us 

o <- z z.' < L 
) 

, use of 

(5.15) 

Substituting now into equation (5.14) we expand the 

denominator in the integral as a power series and, assuming 

retain terms to order o..,)( ~( - X t...] to get 

- \ ) J_ 
4-n ft. L K t 

-.){ (-2.+""Z-') - K~L- (t-2.j) 
)([-Dn.e +- Dn. 1~1,e -><. (~l- ("l-+-i!)) f 

'1J2 e ] 

(5.16) 

The second and third terms in the square brackets 

in equation (5.16) are retained initially since in certain 

configurations these terms will be of order e.-;,<p(-XL). 
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When the oscillators are near the middle of the 

two interfaces, we retain all the terms in equation (5.16) 

and using the formula 

we obtain 

where 

0 

- I ) 
41T€\. l ~ - ~.(. A. 

- - LJ1,1 
K+ - + 

RL.+ 

R} = f 1 -t (-z. 't -z..')'- ) R L~ = ft t (~L - (2ti))'1. 

'-
R L ~ r,.½- {~L- (,-~))L 

Use now of equations (3.26) and (2.23) gives us 

--

-t 

where E
1

(R) is as previously defined. 

(5.17) 

(5.18) 

(5.19) 

(5. 20) 
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When both oscillators are near one of the interfaces 

1. e. we have 

(5. 21) 

which gives us 

(5.22) 

+ ~)1. (f ,-,q_ - (~,--z.~)'"(~L-(1..,-tl.1))j 

RL!'" 

Equations (5.21) and (5.22) should be compared to 

the corresponding results for two oscillators near a single 

interface (obtained by putting € 1 = E:3 in equation (5.16)) 

_, 
4Trf1.. (5.23) 

E(Rl 
\ 

I:: L. ( ;\t \ /.) ll R1 l)\'l. R C ~,,.°< - (2, --i.~'"t.(2, t4)j - -3 - E~ - -
"i R+ R/-

+ A: R '-

b~ (5.24) R .. 

If now we have one oscillator each side of the 1-2 

interface then we have 

(5.25) 
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which gives, proceeding as before 

_J_ [l ., 
A-TT 6, f\ I

P<J -xh-z.') -><(u.-{-c..n.')) 

0 

h. J'0 (x.f) [ 6,L e - lhdfl o,.J e J ] 

(5.26) 

If both oscillators are near the 1-2 interface then we have 

C ( 1, i' ) - [~j 
and E (R) = b Et.(,<?) ( I t- 6,._)1· 

(5.27) 

(5.28) 

However if the first oscillator is near the 2-3 

interface then we have from equation (5.26) 

(5. 29) 

to give 

E (R) 

.-

(5.30) 

which is the result of equation (5.28) plus a correction term 

due to the proximity of the 2-3 interface to the first 

oscillator. 
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When the oscillators are placed one 1n region 1 and 

one 1n region 3, both near the interfaces we have 

(5.31) 

and working as before 

(5.32) 

and 

E(R) = (5.33) 

Turning now our attention to the case when Lis 

small, we write the denominator of the integral in equation 

(5.14) as 

[ ( 
l~.XL)' ]-\ 

\- l),\.6"}'- l-~Y-.Lt i"1: -----·) 

-, 
~ 

(5.34) 

This then enables us to write 

00 
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With the oscillators in the slab i.e. o<z)z'<.\__ 

expanding the function Fin power series and retaining 

leading terms we get 

(5.36) 

which yields 

(5.37) 

When the oscillators are located either side of 

the thin slab we have 

) J_ + 
l lZ 

giving the energy of the interaction as 

E (R) 

(5.38) 

(5.39) 

We note that the results of equation (5.24) agree 

with the zero temperature limit of the results obtained by 

Richmond and Sarkies [47] for the free energy of interaction 

between two oscillators in a similar physical environment. 
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CHAPTER 6 

In this chapter we turn our attention briefly to 

the resonance interaction between two oscillating dipoles. 

This situation arises when two molecules, one in an excited 

state, the other in the ground state, interact with each other, 

the excitation energy being transferred from one to the other 

in rapid succession [48]. 

In line with the semi-classical ideas developed in 

this work, the process can be interpreted as the energy of 

one oscillating dipole in the radiation field of the other 
-

[49, SO]. We consider the radiation pattern of an oscillating 

dipole at ~l' frequency (+w
0
), and the energy in the resulting 

electric field of another oscillating dipole with the same 

amplitude, but frequency (-w) located at R2 . The change in 
0 -

sign of the frequency is consistent with the quantum mechanical 

description of the interaction as the adsorption of a photon by 

one molecule after its emission by the other. 

The electric field due to the first dipole can be 

written as 

(6.1) 

where ti is the dipole moment amplitude of the first dipole 

and G(Z) is the diadic Green function for the electric field 
= 

wave equation with appropriate boundary conditions [51]. The 

expression for the transferred energy i s therefore 

E(R) = 

-- A.._l.) 

~1.. ~· ( ~', ~. \ w) - 11, j ( 6. 2) 

where ,~1-- (3,\. 
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We see from equation (6.2) that it is the diadic 

Green function ~( 2) which determines the R- dependence of 

the energy of the interaction. 

If we consider firstly a duct of the type dealt 

with in chapter 4, fuen the diadic Green function is given by 

equation (4.7). For simplicity we take the two oscillators 

to lie on the axis of the duct, i.e. )<\-= Xt = °'-/, 

'j \:; jl. ~ b/2. ) 0..""--c,l__ ~~~ I~:, 1-z..-'Z-'\ • 

The typical element we then have to consider is 

(6.3) 

where g(k) has no zeroes fork real. Evaluating C~~ 

by contour integration methods [39] we will have (closing the 

contour in the upper half plane) 

C ~'""' ( R) w) z. ~,r ~ L ( +e_c; i: o\.u e ~ \ ~ V rpe.v- ~I.C r1~e.) 

where this is a Principal Value evaluation of the integral. 

Any residue enclosed by the contour in the upper 

half plane will contribute a term of the form e.-.x~ (-o< R.) 1 c<>o 

which for large R we neglect. Hence the only terms of interest 

are those arising from poles on the real axis. When a,b are 

of the order of the wavelength 

(6.4) 



- 51 -

will be real for only ·the lowest order terms. Returning 

now to equation (4.7) we see that only one term is both 

non-zero and of interest to us, namely 

- ~ a. a. foe ~ o.~k~ ( ;~ ~ t~) 
'fr~ .-. ) ..._ 3. -oO /'y 1.. _ '-')( L<- u ~ .l\ 1) 

\..._011 re t't + Q..'-;-t'-
( 6. S) 

Using equation (6.5) in equation (6.2) we see that 

E(R) has the form 

E(R) ~ (6.6) 

which represents a considerable enhancement from the free 

space result [SO] 

E (R) ( 6. 7) 

As a second example we consider the situation of 

Chapter 3, the oscillators between metallic plates for which 

the Green function diadic is given by equation (3.14), where 

we again take L to be of the order of A O == ~il c. / Wo . 

Proceeding 1n a similar manner to that just outlined we find 
--

that terms of importance have the form 

C 1 ~ ( k.Q ,~ - {TT) 

(ko R_)\. 
(6.8) 

E (R) (6.9) 
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Equation (6.9) also represents an enhancement from 

the free space value. 

These examples illustrate that the alteration of 

the radiation field in a bounded region, seen in the alteration 

of the Green function diadic for the electric field, can 

markedly influence the resonance interaction process. 
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CHAPTER 7 

Scrutiny of the results for the three physical 

configurations considered here reveal that, in some instances, 

quite marked alterations to the interaction between molecules 

can occur due entirely to the boundaries of the physical 

situation in which the molecules are placed. In the formalism 

used here these effects are seen to enter via the alteration 

of some or all modes in the two Green functions (scalar and 

diadic) for the scalar and vector potentials for the electric 

field. 

While we have seen that the semi-classical foimalis m 

used here provides a simple formulation for the problem of 

the interaction between oscillating dipoles, it readily becomes 

apparent that the situation can become complex if arbitrary 

shaped containers with mixed types of boundaries are considered. 

The difficult part then becomes the calculation of the two 

Green functions and their subsequent manipulation to obtain 

meaningful results for the interaction energy. 

Of the three cases considered in this work, the 

dielectric slab configuration although being more difficult 

with regards the computation of the Green functions tends 

to show the smaller departures from the free space results, 

due mainly to the fact that dielectric boundary conditions 

do not produce the massive discretization of modes that occurs 

with perfectly conducting walls , hence the deviations from 

free space values are not so marked. Examination of the 

results of chapt er Swill reveal that the dielectric properties 

of the materials are also capable of altering the nature of the 

interaction via means of the dielectric differences 
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In the cases of the perfectly conducting wall 

situations of chapters 3 and 4, we see in some of the results 

situations where enhancement from free space results can 

arise while in others a degradation is evident. The duct 

model of chapter 4 is an important beginning for modelling 

of waveguides and the processes occurring with them. 

The enhancement of the resonance transfer process 

as evidenced by equations (6.6) and (6.9) may play an important 

part in biological system in excitonic energy transfer [SO]. 

For the excitation of a molecule or radical, the characteristic 

wavelength of the radiation involved is much larger than its 

size. Hence if the molecule is in an inhomogeneously distributed 

material where the characteristic length of the inhomogenity of 

the distribution is of the order of this characteristic 

wavelength it is possible for a strong channelling effect to 

occur 1n certain directions giving a great efficiency in 

resonant energy transfer in those directions. 

Extensions of this work occur in several directions. 

Since this work was begun, the semi-classical formalism, here 

used to treat only the dipole-dipole part of the interaction, 

has been extended using perturbation methods to produce a 

theory which readily allows inclusion of higher order multipole 

interactions [52]. 

Extension of dispersion force theory has already 

begun to include finite size molecules, giving rise to non­

divergent self energies and two particle interactions at 

zero-limit separation [53]. It is worthwhile to note that 

Richardson [52] also obtains non-divergent zero-limit inter­

actions when higher order multipole interactions are considered. 
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Further avenues for exploration are opened up when spatially 

dispersive media are involved. It is in these directions that 

this work will be carried in an endeavour to obtain a better 

understanding of the dispersion interactions occurring in 

the real world. 
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