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BORON ISOTOPE GEOCHEMISTRY IN THE SEDIMENTARY

ENVIRONMENT

SUMMARY

This study is an attempt to apply the unique geochemical characteristics of boron 

isotope geochemistry to a variety of aspects of the sedimentary environment. Major 

emphasis has been made to evaluate the potential of boron isotope geochemistry as a 

tracer for the origin of natural solutions and the origin of modem and ancient evaporites. 

Samples selected for boron isotopic analyses were seawater; artificial evaporated seawater 

and co-precipitated salts; brines and groundwaters from salt lakes in Australia, the 

Qaidam Basin of China, and the Rift Valley, Israel (the Dead Sea); and subsurface brines 

from oilfields at the southern Coastal Plain of Israel. In addition, the boron isotopic 

compositions and boron contents of biogenic carbonate skeletons have been determined.

An analytical technique for the rapid and relatively precise determinations of the 

boron isotopic composition in geological materials has been developed. Boron isotopic 

analyses have been carried out by negative thermal ionization mass spectrometry, in 

which BC>2" ions were detected in a reverse-polarity solid-source mass spectrometer. The 

high reactivity of boron (and chlorine) enables production of negative ions directly from 

untreated solutions, water-soluble salts and HCl-soluble minerals.

The study explores several aspects of boron isotope geochemistry as outlined

below:

1) Boron isotope geochemistry has been investigated in brines, groundwaters 

and sediments from the modern Australian salt lakes of Victoria, South and Western 

Australia. The geochemical history of the brines has been reconstructed using 5 n B, 

B/Cl, and Na/Cl ratios.

The Victorian lakes of southeastern Australia are located in volcanic craters and 

have water salinities of up to 60 g/L, Na/Cl ratios similar to the marine ratio (0.87), B/Cl 

ratios of 2.9 x 10‘4 to 4.9 x 10-4 and 8 n B values of 54%c to 59%o (relative to NBS
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951). The depletion of total B and the high positive 8n B values relative to seawater 

(B/Cl ratio=7.9xl0'2 * 4; 811B=39%e) are attributed to a marine (cyclic) salt origin together 

with adsorption processes in closed systems with low water/sediment (W/R) ratios. In 

contrast, salt lakes from South and Western Australia which are large shallow playas 

associated with halite, gypsum, and detrital clay minerals have interstitial and surface 

brines characterized by salinities of 80 to 280 g/L, Na/Cl ratios of 0.85 to 1, B/Cl of 4 x 

10"6 to 4 x 10"4 and 8n B values of 25%c to 48%c. The 811 B values of these brines are 

different from those of groundwaters from the Great Artesian Basin (8n B = -15.9%c to 

2.2%o), country rocks (8UB = -8.7%c to 6.8%c), and modem detrital sediments present in 

these salt lakes (8n B = -3.2%o to 12.3%o). The Sn B values of these salt lakes overlap 

with those of surface and brackish waters (8n B = 28%c to 35%c) and with the boron 

isotopic composition of seawater (8UB = 39%c). Both low Na/Cl (<1) and high 8n B 

values suggest that the source of the bulk of the dissolved solids in the Australian brines 

is dominated by cyclic salts, derived from seawater, rather than from local rock 

weathering. While the low B/Cl ratios and high Sn B values (> 39%c) of some brines 

indicate interaction of the brines with detrital sediments within the salt lake systems, S^B 

values < 39%c suggest mixing of brines of marine origin from which B was partly 

removed by adsorption, with waters of terrestrial origin with low 8n B.

Na/Cl ratios are used as indicators of the origin of the salts as well as halite 

dissolution-precipitation. The 8n B values and B/Cl ratios are sensitive to a marine or 

non-marine origin, adsorption of boron onto clays, and the effective water/sediment ratio. 

At low W/R ratios, the preferential removal of 10B from the solution affects the bulk 

solution, whereas at high W/R ratios, the 8n B value of a solution is not affected by 

adsorption. Although the 8n B value of borate minerals may be a discriminant of marine 

or non-marine origin, boron isotopes are less distinctive in evaporative environments 

where boron is not an abundant component and where water/sediment interaction occurs.

2) Bromide, lithium and boron are considered in the literature as conservative

elements which accumulate in the liquid phase during evaporation of seawater. The well

defined isotopic composition of boron in seawater makes it a potential tracer for
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identifying the origin of brines and salts. The variations of boron isotopes, elemental 

boron, bromide and lithium have been examined in brines and co-precipitated salts during 

fractional evaporation of Mediterranean seawater under laboratory-controlled conditions. 

Analyses of the brines show a deficiency of Br, Li and B relative to their expected 

concentrations from mass-balance calculations. The deficiency occurs beyond a degree of 

evaporation of about 30 and is associated with a gradual increase in the 8^ *B value of the 

evaporated seawater from 39%o to 54.7%e. The high 5 ^ B  values of the brines, and the 

relatively lower 5 ^ B  values of the coexisting precipitates (magnesium-sulfate and 

potassium-magnesium-sulfate salts; 5 ^ B  =11.4%oto 36.0%o) suggest selective uptake of 

by the salts. Coprecipitation of B(OH)4 '  species with Mg-sulfate and K- and Mg- 

sulfate minerals and/or precipitation of Mg-borate minerals with a coordination number of 

four, are the proposed mechanisms for boron isotope fractionation during fractional 

evaporation of seawater.

The boron-isotope and the trace-metal variations observed in the evaporation 

experiment can be applied to the determination of the origin of brines as well as to clay 

adsorption and salt precipitation processes. The depletion of the salts in * *B by 26±6%o 

relative to their coexisting brines permits investigation of the origin (marine versus non­

marine) of ancient salt deposits.

3) The general chemistry and boron isotope composition were investigated in 

freshwaters and hypersaline brines from the Qaidam Basin, northern Tibet, China. This 

basin is a large, tectonically active system, isolated from the ocean and composed of thick 

clastic and evaporite sediments. The modem playas are subject to intense evaporation and 

are characterized by hypersaline brines, and potash and borate evaporites. The chemical 

composition of the dissolved solutes in the modem brines and waters reveals three main 

sources: a) hot springs, distinguished by non-marine solute compositions enriched in 

sodium, sulfate and boron. Evaporation of these waters leads to a high Na/Cl ratio (>1), a 

Na-Cl-S04 brine and an evaporite mineral assemblage of halite-mirabilite-borate (Lake 

X iaoqaidam ); b) inflow surface waters which are modified by preferential dissolution of 

halite and potassium and magnesium salts characterized by a Na-(Mg)-Cl solute type with



low Na/Cl, Br/Cl, Li/Cl and B/Cl ratios; and c) Ca-chloridic subsurface brines which are 

controlled by both salt dissolution and dolomitization processes. Evaporation and salt 

crystallization of the latter two types leads to a "marine-like" brine (e.g. a Na-Mg-Cl type, 

Na/Cl ratio lower than unity) and mineral assemblages similar to that predicted for 

progressive evaporation of seawater (Qarhan playa: halite-sylvite-camallite-bischofite).

The 8 ^ B  values of the input waters to the Qaidam Basin (range of -0.7%o to 

10.9%o) and brines from salt lakes (0.5%o to 15.0%o) are similar to those of associated 

granitic rocks (5^B  = -2.3%c to 3.7%e; n=3) and hence indicate the non-marine origin of 

these fluids. The highest 81 *B values are associated with low B/Li ratios, indicating 

selective removal of elemental boron and ^ B . The boron isotopic composition of the 

brines is thus not related to the internal dissolution-precipitation processes but is affected 

by boron adsorption onto clay minerals. The magnitude of ^ B  enrichment due to 

adsorption is about 15%c, i.e. the boron-isotope signature remains "non-marine". It is 

proposed to use this unique geochemical characteristic of boron isotopes that is 

demonstrated in the terrestrial environment of the Qaidam Basin as a tracer for the origin 

of ancient evaporite environments.

4) A boron isotope study combined with analyses of elemental boron, lithium 

and chlorine are used to suggest that brines from the Dead Sea and on-shore hypersaline 

thermal springs (Hamme Yesha, Hamme Zohar and Hamme Mazor) are the products of 

interaction of evaporated seawater with detrital sediments. The high 8 ^ B  values of the 

Dead Sea brines (55.7%o to 57.4%e) and the hot springs (52.2%o to 55.7%o), and low 

B/Li ratios (2.0 to 2.3 and 2.5 to 2.7, respectively), relative to seawater, indicate 

preferential removal cf ^ B  from the brines and hence boron adsorption onto clay 

minerals. The brackish 'En Feshcha springs and the freshwater 'En Dawid and Nahal 

Arugot springs yield lower B contents and 8* *B values (37.7%o to 40.6%o and 33.8%c to 

36.9%c, respectively). The 8 ^ B  values and B contents of diluted Dead Sea brines lie on 

calculated mixing lines between the composition of the brackish and freshwater springs 

with the composition of the Dead Sea. The 8 ^ B  values of the hot springs however, 

given their boron content, are significantly lower than those of the mixing lines. Thus,



waters from the hot springs cannot be a mixing product of the Dead Sea brine with 

freshwater. Instead, the Dead Sea brine has evolved from the brines of the hot springs 

through further isotopic fractionation and boron adsorption onto detrital sediments.

5) The negative thermal ionization mass spectrometry technique has also been 

employed for the determination of S ^B  values and elemental B in subsurface brines. 

Brines from the Heletz oilfield of the southern Coastal Plain of Israel have 8^B  values of 

32.6%o to 42.2%c, high B/Cl (molar) ratios of 2.9xl0'3 to 4.2xl0'3, Na/Cl ratios of 0.84 

to 0.92 and SO4/CI ratios of lxlO"5 to 5xl0‘3. The marine isotopic signature of boron in 

some brines is concordant with marine Na/Cl ratios of most of the brines while lower 

$1 Iß  values in others are associated with low-salinity water with high Na/Cl and SO4/CI

ratios. This indicates a dilution of the marine brines with freshwaters that have dissolved 

evaporites (halite, gypsum or anhydrite and borates). The B/Cl ratios show an enrichment 

in boron relative to modem seawater which also has been reported in oilfield brines from 

different locations and ages. The excess of boron is interpreted as: a) an enrichment of 

boron in the Messinian Sea, the proposed source of these brines; and/or b) interaction 

with oil or decomposed organic matter.

6) A boron isotope study has been carried out on groundwaters from the Rift 

Valley, Israel. The saline waters from Timna have 8  ̂*B values of 14.4%c to 26.7%o; the 

Hammat Gader thermal springs have 5 ^ B  values of 20.9%c to 41.9%o and springs in 

the Sea of Galilee have 5 ^ B  of 18.5%c to 45%o. The relatively low, "terrestrial" 8* *B 

values of some of the investigated waters suggest that a large fraction of boron is derived 

from high-temperature water-rock interactions. In Hammat Gader the 8 ^ B  values of the 

thermal springs are correlated with temperature, boron content, and salinity and decrease 

gradually from marine values (for dilute cold water) to 20.9%o (for saline hot waters) 

indicating a mixing of meteoric boron with terrestrial boron. The high 8 ^ B  value (45%c) 

and low B/Cl ratios of the saline Tiberias hot spring show that boron can be derived also 

from connate, trapped brines in the subsurface. A comparison of the boron-, oxygen-, 

and strontium isotopic compositions, shows that while oxygen-isotope compositions



reflect the meteoric origin of these waters, the Sr and B isotopic compositions of waters 

are much more sensitive to the composition of rock component in water-rock interactions.

7) The abundances and isotopic composition of boron have been examined by 

negative thermal-ionization mass spectrometry in modem, biogenic calcareous skeletons 

from the open ocean, Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in 

modem deep-sea sediments. The selected species (Foraminifera, Pteropoda, corals, 

Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 

1 ppm in gastropod shells to 80 ppm in corals. The boron content of the biogenic 

skeletons is independent of the mineralogical composition and is probably related to 

biological (vital) effects. The 81 *B values of the carbonates range from \42%o to 32.2%c 

and overlap with the 8 ^ B  values of modem deep-sea carbonate sediments (5^B= 8.9%o 

to 26.2%o). The variations of 8 ^ B  may be controlled by isotopic exchange of boron 

species in which ^ B  is preferentially partitioned into the tetrahedral species, and 

coprecipitation of different proportions of trigonal and tetrahedral species in the calcium 

carbonates. Carbonates with low S ^ B  values (~15%c) may indicate preferential 

incorporation of tetrahedral species, whereas the higher S ^ B  values (~30%o) may 

indicate: a) uptake of both boron species assuming equilibrium with seawater; b) 

preferential incorporation of B(OH)4" from in-situ high pH internal fluids of organisms;

and/or c) isolation of the internal reservoir from seawater.

The B content and 8 ^ B  values of deep-sea sediments, Foraminifera tests and 

corals are used to estimate the global oceanic sink of elemental boron by calcium 

carbonate deposition. As a result of enrichment of B in corals, a substantially higher 

biogenic sink of 6.4±0.9xl010 g/yr is calculated for carbonates. This is only slightly 

lower than the sink for desorbable B in marine sediments (lOxlO10 g/yr) and 

approximetely half that of altered oceanic crust (14xl010 g/yr). Thus carbonates are an 

important sink for B in the oceans being ~20% of the total sinks. The preferential 

incorporation of l^B into calcium carbonate results in oceanic ^B-enrichment, estimated 

as 1.2±0.3xl012 permiFg/yr.
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The boron-isotope composition of authigenic, well preserved carbonate 

skeletons may provide a useful tool to record secular boron-isotope variations in seawater 

at various times in the geological record. In addition, boron isotopes may record 

variations of the alkalinity of seawater. The potential use of boron-isotope geochemistry 

in skeletons as a tracer for palaeoenvironments is demonstrated in Ostracoda and 

Foraminifera from the Gulf of Carpentaria, Australia. The S ^ B  values of glacial-age, 

buried skeletons (4.0%c and 4.9%c, respectively) are lower than that of their modem 

equivalents (13.3%c and 17.6%c, respectively). This may reflect a "terrestrial" boron- 

isotope signature of the water in the Gulf during the Late Quaternary when it was isolated 

from the ocean.

In principle, the isotopic fractionation of boron in nature is controlled by the 

exchange reactions of boron species. is preferentially partitioned into the dissolved 

boron in a solution that is predominantly composed of the trigonal species, i.e. boric acid, 

while is preferentially fractionated into the tetrahedral species that is incorporated into 

the solid phase, i.e. clay, evaporite and carbonate minerals. The association of high S ^ B  

values and low B/Cl or B/Li ratios in solutions indicate the reactivity and the non­

conservative behaviour of boron in nature.

The fractionation of boron isotopes during adsorption onto clay minerals, 

precipitation of Mg-sulfate and potash minerals, and precipitation of biogenic calcium 

carbonate must therefore be considered if boron-isotope systematics are to be successfully 

applied to the reconstruction and identification of the origins of ancient sedimentary 

environments, and in particular in attempts to distinguish between marine and non-marine 

origins.



INTRODUCTION

"In chemical compounds, boron (ionic radius 0.22Ä) is always trivalent, and has 

properties analogous to those of carbon and silicon . Boron forms nonionic bonds with 

oxygen, resulting in two types of oxyanions, those in which boron has a coordination 

number of three (the trigonal B(OH)3° - undissociated boric acid) and those with 

coordination number four..." (the tetrahedral B(OH)4" - borate ion) (REYNOLDS,

1972). The borate ion tends to form complexes with cations that, in turn, form borate 

cations, e.g. MgB(OH)4+, (CHRIST and HARDER, 1978).

The reactivity of boron is particularly high with clay minerals (HARDER, 1970). 

It has been shown that in seawater boron is removed by rapid reversible adsorption 

processes onto the clay surface (SPIVACK, 1986), through a mechanism referred to as 

ligand exchange, where the adsorbed species displaces OH" or H2O from the surface and

forms partly covalent bonds with the structural cations (KEREN and MEZUMAN, 1981). 

The fixation of boron into the clay structure is a slow process which occurs in the high- 

temperature diagenetic r6gime (PERRY, 1972).

Natural boron has two stable isotopes, ^ B  (79.98%) and ^ B  (20.02%). Ion- 

exchange separation experiments have shown that the fractionation of boron isotopes is 

controlled mainly by the exchange reaction of the boron species, between boric acid and 

the borate ion (KAKIHANA et al., 1977). Seawater is enriched by 40%o with ^ B  

relative to crustal material due to isotopic fractionations that occur while boron in the form 

of B(OH)4" is taken from seawater onto detrital clays, weathered basalts and authigenic 

clay minerals (SCHWARCZ et al., 1969; SPIVACK and EDMOND, 1987; SPIVACK et 

al., 1987).

Diagenetic effects, and the fact that the isotopic composition of 'fixed boron' in 

the clay structure overlaps the average terrestrial crustal composition (unaltered basalts 

and island arc volcanics), exclude the potential of using boron isotope geochemistry in 

sediments as a potential tracer for the identification of subducted marine sediments into 

magmatic zones beneath island arcs (SPIVACK and EDMOND, 1987).



The distinctive isotopic composition of seawater relative to that of the continental 

crust, however, may have a role in discriminating between marine and non-marine 

environments. The identification of the origin of evaporites by several geochemical 

techniques (e.g. Br/Cl ratios) has been carried out in the last few decades but recently 

some questions have been raised concerning the validity of these techniques (HARDIE, 

1984). Therefore, the application of boron isotope geochemistry for tracing the origin of 

evaporites seems attractive.

DEVELOPMENT OF ANALYTICAL TECHNIQUES

Knowledge of the isotope geochemistry of boron is surprisingly lacking, mainly 

because of analytical difficulties in chemical extraction and isotopic analyses. The 

determination of boron isotopes has been carried out by ion-exchange separation, methyl 

borate distillation, and by converting boric acid to Na2 B4 (> 7  or CS2 B4 O7  before loading

into a solid-source mass spectrometer (McMULLEN et al., 1961; SPIVACK and 

EDMOND, 1986). One of the aims of this study was to simplify the analytical technique 

for boron isotope determinations. The negative thermal ionization technique has 

been adopted as a replacement for the traditional analytical methods. This method has 

been successfully tested in the MSZ and NUCLIDE mass spectrometers at the Research 

School of Earth Sciences by reversing the polarities (accelerating potential, magnetic field, 

and electrometer). The extraction of boron from waters was initially preformed using 

boron-specific resin (KISS, 1988). However, it was later found that both boron and 

chlorine isotopic ratios can be determined by loading natural water samples directly 

onto filaments for analysis using a reversed polarity solid-source mass spectrometer. The 

new method has been successfully applied to samples with a variety of water chemistries 

and salinities. The comparison of treated and untreated samples yielded the same isotopic 

composition (within the experimental error). The boron concentration of both natural 

waters and sediments was carried out by developing an isotope-dilution technique. The 

high precision and simplicity of the isotope-dilution method makes it the preferred method



for the determination of boron concentrations relative to other commonly used techniques. 

Thus, the negative thermal-ionization technique may also have applications to other areas 

of Earth Sciences.

OUTLINE OF THE THESIS

The thesis is directed towards understanding the isotopic fractionation of boron 

in various sedimentary environments, by examining the following aspects:

1) The potential of boron isotope geochemistry as a tracer for the origin of 

natural fluids, i.e. surface and subsurface brines and groundwaters;

2) The mode of isotopic fractionation of boron during evaporation of seawater;

3) The potential of boron isotope geochemistry as a tracer for the origin of 

ancient marine and non-marine evaporitic environments;

4) The potential use of boron isotope analyses of marine carbonates as indicators 

of modem and ancient oceanographic regimes.

All the chapters in this thesis have also been prepared as separate papers for 

publication. Chapter 1 describes the analytical procedure developed and the potential 

application of boron (and chlorine) isotopes in geochemistry. The manuscript was 

published in Chemical Geology (Isotope Geoscience Section), 79, p. 333-343 (1989).

Chapter 2 presents the results of boron isotope analyses of brines from 

Australian salt lakes. The possible boron sources in the non-marine environments of 

Australia are examined with comparison to the general chemistry of the salt lakes. The 

reactivity of boron with detrital minerals is also investigated with implications for 

evaluation of water/sediment ratios. The manuscript was submitted to Geochimica et 

Cosmochimica Acta.

Chapter 3 examines the mode of isotopic fractionation of boron during fractional 

evaporation of seawater to its final stages.

Chapter 4 investigates the general chemistry and boron isotope composition of 

non-marine brines from the Qaidam Basin, Tibet, China. This study is directed towards 

understanding the processes of evaporite formation and the chemical and isotopic 

signatures of "typical" non-marine brines.



Chapter 5 describes a boron isotope study of the Dead Sea and associated 

springs from Israel. The study attempts to reconstruct the geochemical evolution of the 

Dead Sea and hot springs along its western coast. The manuscript was submitted to 

Geochimica et Cosmochimica Acta.

Chapter 6 introduces the possible application of boron isotopes for tracing the 

origin of subsurface brines associated with hydrocarbons. The study investigates the 

boron-isotope composition of oilfield brines from the southern Mediterranean coast of 

Israel.

Chapter 7 presents the results of boron isotopes in groundwaters from the Rift 

Valley, Israel. The possible boron sources in groundwaters and water-rock interactions 

are examined.

Finally, Chapter 8 examines the boron contents and isotopic composition of 

various biogenic carbonates from the modem marine environments of the open ocean, 

Gulf of Elat (Israel), and Great Barrier Reef (Australia). The study is directed towards 

understanding the coprecipitation and isotopic fractionation of boron with different 

biogenic phases.



DIRECT DETERMINATION OF BORON AND

CHLORINE ISOTOPIC COMPOSITIONS IN GEOLOGICAL 

MATERIALS BY NEGATIVE THERMAL-IONIZATION

MASS SPECTROMETRY

1.1. INTRODUCTION

The large relative mass difference between (abundance 19.9%) and 

(80.1%) and the high geochemical reactivity of boron can produce large natural isotopic 

variations. The most distinctive geochemical reservoir is seawater, which is enriched by 

40%c in H ß  (1 Iß/lOß ratios are normalized to SRM NBS 951) relative to crustal material 

(AGYEI and McMULLEN, 1968; SCHWARCZ et al., 1969; SPIVACK, 1986; 

SPIVACK and EDMOND, 1987). This enrichment is attributed to isotopic fractionation 

that occurs as boron is taken from seawater and adsorbed onto detrital clays (AGYEI and 

McMULLEN, 1968; SCHWARCZ et al., 1969; SPIVACK et al., 1987), and to 

weathered basalts and authigenic clay minerals by adsorption and fixation (SPIVACK and 

EDMOND, 1987). However, until recently, the development of boron isotope 

geochemistry has been limited, mainly by analytical difficulties associated with extraction 

of boron from natural samples and precise determination of its isotopic composition.

Chlorine is a major element in most surface fluids. The chlorine isotopes, 35q  

(75.99%) and 37q  (24.01%) have previously been reported as having constant ratios 

in nature (OWEN and SCHAEFFER, 1955; HOERING and PARKER, 1961; SHIELDS 

et al., 1962; KAUFMANN et al., 1984). The only significant isotopic variations (3%o) 

reported to date have been found in slow-flowing groundwater where a diffusion 

mechanism was suggested as a cause for isotope partitioning of chlorine 

(DESAULNIERS et al., 1987).

The development of a new, rapid and simple procedure for the determination of 

boron and chlorine isotopic compositions in natural geologic materials, has enabled the
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investigation of isotopic patterns of boron and chlorine in various environments. 

Examples using ocean waters, and evaporative environments from Australia, China and 

Israel are presented to demonstrate the geochemical potential of boron and chlorine 

isotope geochemistry.

1.2. BACKGROUND OF ANALYTICAL TECHNIQUES 

1.2.1. Boron

Although boron isotope geochemistry can potentially yield important 

geochemical information, this technique has not been extensively applied in the earth 

sciences . This is mainly due to analytical difficulties associated with quantitative 

extraction of boron from natural materials (GLADNEY and ROELANDTS, 1987) and in 

the determination of boron isotopic composition. The extraction and separation of boron 

has been carried out by ion-exchange resin (MARTIN and HAYES, 1952; AGYEI and 

McMULLEN, 1968; LERNER, 1970; KAKIHANA et al.,1977), boron-specific resin 

(PINON et al., 1968; DESON and ROSSET, 1968; BHATNAGAR and MARTHUR, 

1977; KISS, 1988) and methyl borate distillation (McMULLEN et al., 1961; SHIMA, 

1963; AGYEI and McMULLEN, 1968; EGNEUS and UPPSTROM, 1973; SPIVACK 

and EDMOND, 1986).

The determination of boron isotopes by gas mass spectrometry (INGHRAM, 

1946; THODE et al., 1948) failed due to the memory effects of reactive BF3 (BENTLEY,

1960). Subsequently, McMULLEN et al. (1961) developed a thermal ionization mass 

spectrometric technique, in which Na2B02+ ions were detected using a solid-source

mass spectrometer. This technique was successfully applied in numerous chemical studies 

(DE BIEVRE and DEBUS, 1969; REIN and ABERNATHY, 1972; KAKIHANA et al., 

1977) and geochemical investigations (FINLEY et al., 1962; SHIMA, 1963; AGYEI and 

McMULLEN, 1968; KANZAKI et al., 1979; NOMURA et al., 1982; SWIHART et al., 

1986). As suggested by REIN and ABERNATHEY (1972), RAMAKUMAR et al., 

(1985) and SPIVACK and EDMOND (1986) modified this technique by producing
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Cs2BC>2+ ions. The substitution of 133cs for 23]sja increases the mass of the 

molecular ions and therefore reduces mass discrimination and any preferential 

volatilization effects in the mass spectrometer source. Their reported precision of 0.25 %o 

is better by a factor of 10 than the sodium tetraborate method.

The negative thermal ionization technique in which BC>2‘ ions are measured in a

solid-source mass spectrometer that has been converted for negative ions, is discussed in 

HEUMANN (1982). DUCHATEAU and DE BIEVRE (1983), ZEININGER and 

HEUMANN (1983), HEUMANN and ZEININGER (1985), and DUCHATEAU et al. 

(1986) investigated this technique and found that it has several advantages compared with 

positive thermal ionization:

(1) The B02‘ ion intensity is always higher by a factor of 100 -1000 compared 

with that of the positive ion; (2) in contrast to positive-ion spectrometry, emission of 

negative ions is largely independent of the chemical purity of the samples, as well as the 

mole ratios of the alkali ion and boric acid used to form the molecular complex; (3) with 

positive ions there is a possibility of impurities and interference with other ions, e.g. 

S^Sr, that affects the positive ion emission whereas no interference has been identified in 

the mass range of the BO2" ions (42 - 43); and (4) it is possible to produce negative

ions from ng and sub-ng size boron samples, whereas the positive thermal ionization 

technique requires larger amounts e.g. 13 -54 jig B (SPIVACK and EDMOND, 1986).

1.2.2. Chlorine

Measurements of chlorine isotope abundances have been made by several 

techniques in the past 30 years. Gaseous chlorine compounds have been introduced into 

gas-source mass spectrometers in the forms of HC1 (HOERING and PARKER, 1961) 

and methyl chloride (CH3CI+) (OWEN and SCHAEFFER, 1955; KAUFMANN et al.,

1984). In addition, chlorine isotopes have been measured in gas- and solid-source mass 

spectrometers by negative ionization (SHIELDS et al., 1962; TAYLOR and 

GRIMSRUD, 1969; HEUMANN, 1982). The negative-ion technique has been used for 

total chlorine determination by isotope-dilution mass spectrometry (HEUMANN et al., 

1980; HEUMANN and SEEWALD, 1987). In this method, chlorine was isolated from
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natural materials as silver chloride and was deposited on the filaments in the form of 

ammoniacal solutions.

Although the maximum yield obtained in the preparation of methyl chloride gas 

was only 35% (OWEN and SCHAEFFER, 1955), this technique was recently adopted by 

KAUFMANN et al. (1984) and DESAULNIERS et al. (1987). Their analytical procedure 

included quantitative precipitation of AgCl, reaction with excess methyl iodide for 2 days 

and separation of CH3CI by gas chromatography. High yields were obtained and the

reported analytical precision was 0.24%o (KAUFMANN et al., 1984), better by a factor 

of 10 than previous techniques.

1.3. ANALYTICAL PROCEDURE

The analyses of boron and chlorine isotopes were carried out in two single­

collector, solid-source mass spectrometers, a 'NUCLIDE' type with 90° sector extended 

geometry, and the MSZ 60° sector, normal geometry instrument with retardation lens 

that was built at the Australian National University (CLEMENT and COMPSTON, 

1972). The mass spectrometers were modified for negative ions by reversing the 

polarities of the accelerating potential, the magnetic Field and the electrometer. Droplets of 

sample typically containing 50 -200 ng boron and 1 - 500 p.g chlorine were deposited 

onto single Re filaments and evaporated to dryness in an oven at a constant temperature of 

about 50°C. Each filament had to be loaded individually in the MSZ mass spectrometer; 

however, 15 filaments could be placed in a carousel and loaded simultaneously into the 

NUCLIDE mass spectrometer. The filaments were then pumped to vacuum of 10"8 - 10'7 

Torr. In the early stages of this study some cross-contamination effects were identified. 

These effects were eliminated by careful cleaning of the sample holder between analyses 

and measurement of spiked samples on only one of the instruments (MSZ).

The magnetic field values for 35q  s 37 q } 1 0 ß l 6 o l 6 o  (mass 42) and 

1 Iß  16()16o (mass 43) were set and controlled by computer. Timing and operation 

conditions were strictly repeated in each sample as follows :

(1) 0 - 20 minutes, heating up procedure. Filament current was slowly increased 

over twenty minutes in fixed steps of 0.5A to 1.7 - 2.2A  filament current.
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(2) 20 - 30 minutes, signal optimization by focusing the ion beam and/or 

increasing the filament current in steps of 0.025A until 37q - ion intensity of 2 - 3 volts 

was achieved. The Cl" beam was emitted at a slightly lower temperature than the BO2 '

beam and was therefore measured first.

(3) 30 - 45 minutes, chlorine data collection. Data were collected for chlorine by 

switching the magnetic fields between masses 37 and 35, twelve times per set with a 1-s 

integration time and a delay interval of 1 s. Before each set, the beam was automatically 

centred and the base-line measured at mass position 35.5. Normally each run contained 

8 to 16 sets, i.e. 96 - 192 ratio measurements.

(4) 45 - 50 minutes, the filament current was increased until a 1 1b C>2" i°n beam

intensity of 1.0-1.5 volts was achieved.

(5) 50 - 70 minutes, boron data collection. Data were collected for boron at 

masses 43 (^B 02") and 42 (^ B 0 2 " ) with the baseline at mass 42.5.

1.4. RESULTS AND DISCUSSIONS 

1.4.1. BORON

A stable ion beam with an intensity of 1.5 volt (10UQ input resistor) for lOOng 

boron sample on the filament could be maintained for several hours before exhaustion of 

the sample. The addition of La(NÜ3 )3  to pure boric acid solutions (with mole ratios of

10:1 of boric acid to lanthanum nitrate) was found essential, as no ion beam was detected 

in samples without the La(NC>3 )3  . However, in natural samples that were not processed

through the boron-specific ion-exchange resin (i.e. groundwater, brines, dissolved salts), 

this addition was found to be not necessary. Lanthanum nitrate addition appears to 

result in a reduction of the electron work potential which produces a higher ion yield 

(ZEININGER and HEUMANN, 1983). The presence of natural salts in unprocessed 

samples also enhances the ion beam. For example, one drop of untreated seawater loaded 

directly onto the filament (70 ng boron) produces a BO2 " ion beam intensity of several

volts, which could be maintained for several hours. Analyses of seawater samples
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processed using a boron-specific resin (KISS, 1988) were compared to those without 

previous chemical treatment and the ^ B /^ B  ratios were found to be identical within the 

experimental error. A similar comparison of treated and untreated groundwaters and 

hypersaline brines (Table 1.1) gave the same results. The possible interference of the 

species lO ß lö o l^ o  at mass 43 was corrected by subtracting 0.00076 from the absolute 

n B/10B ratios (CATANZARO et al., 1970).

Both NBS SRM 951 and seawater samples were repeatedly analysed to 

determine the reproducibility of the boron negative-ion technique. The 1 a  standard 

deviation of 24 NBS 951 replicates was 2 %o and of 10 seawater replicates was 1.1 %o at 

the 95% confidence limit (Table 1.1). The reproducibility for the relatively small number 

of replicate analyses, listed in Table 1.3, was calculated using the techniques of DEAN 

and DIXON (1951), applicable to a small number of observations. The standard deviation 

was obtained from the range of observations multiplied by the deviation factor. The mean 

of the standard deviations calculated in this manner is 1.7%c (see Table 1.3), which is 

consistent with the reproducibility obtained from a large number of analyses of the NBS 

SRM 951 standard. This precision is lower than the precision reported by SPIVACK and 

EDMOND (1986) of 0.24 %o but similar to the sodium tetraborate technique of 2 - 3 %o 

(e.g. SWIHART et al., 1986) and higher than the inductively coupled plasma-mass 

spectrometry (ICP-MS) technique with a precision of 7 %o recently reported by 

GREGOIRE (1987).

The average measured absolute, oxygen-corrected ^ B /^ B  ratio of NBS SRM 

951 was 4.010 ± 0.005 for the MSZ mass spectrometer and 3.996 ± 0.009 for the 

NUCLIDE . These results are similar to the values reported by ZEININGER and 

HEUMANN (1983) of 4.016. However, the certified values of NBS SRM 951 using 

positive thermal ionization is 4.0436 (CATANZARO et al., 1970). The difference may 

reflect varying degrees of fractionation during formation of positive and negative ions 

(ZEININGER and HEUMANN, 1983). Analysis of natural samples of SRM NBS 

951 standard were undertaken using the same conditions. No long-term variations in the 

apparent composition of the SRM NBS 951 standard were identified.
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TABLE 1.1 . Comparison of absolute ^ B /^ B  ratios measured on water 
samples after chemical separation using boron-specific resin (KISS, 1988), and 
with direct measurements of natural materials in the Nuclide mass spectrometer 
without chemical pretreatment.

Samples ratios of H b /^ B  ratios of

samples after column samples without
chemistry chemical pretreatment

seaw ater from  Jerv is B ay , 4 .153 4 .1 4 2

easte rn  A u stra lia 4 .153 4 .1 5 2

4 .1 4 9 4 .141

4 .141 4 .1 5 4

4 .1 6 5

4 .1 3 9

S eaw a te r - m ean  ( ± l a ) 4 .1 4 9 ± 0 .0 0 5 4 .1 4 9 ± 0 .0 0 8

S A  -22  b rin e , L ak e  E y re , 4 .1 5 9 4 .1 5 2

S ou th  A u s tra lia

W A -31  b rin e , 'th e  sa lt  lake ' 4 .1 7 2 4 .1 8 4

W este rn  A ustra lia

G A B  93 , g ro u n d w ate r from  the  G reat 3 .955 3 .9 8 3 ± 0 .0 1 2

A rtesian  B asin , A u stra lia
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1.4.2. Boron assay in natural samples by isotope dilution

Determination of boron concentration in natural materials has been carried out

using isotope dilution with ^B-enriched spike (SRM NBS 952, ^ B /^ B  ratio = 0.0554 

± 0.0001). The spike was added to sample solutions of natural waters and CaCC>3

dissolved in HC1. The spiked solutions were analysed in the mass spectrometer, and 

boron concentrations were calculated using standard isotope-dilution equations. The 

precision of the isotope-dilution technique is dependent on the isotopic composition of the 

spike, natural sample and spiked mixtures as well as the spike concentration. The 

concentration of the spike was calibrated using standard solutions prepared from both the 

NBS SRM 951 as well as a Specpure boric acid. The isotope dilution results are 

presented in Table 1.2 together with boron data obtained by a modified 

spectrophotometric technique using the reagent Azomethine H (KISS, 1988). The results 

obtained by these two methods are in agreement in general although the isotope-dilution 

measurements have a substantially higher precision .

1.4.3. Geochemical application of boron isotopes

Boron isotope analyses (Table 1.3) of terrestrial waters and evaporites are 

expressed in this study in 8 notation such that:

(^ B /^ B )sampje

8 ' 1B=  [  ----------------------- - 1 ]  x 103

(11b/10b ) [MBS 951

The samples were chosen from a variety of environments in order to assess the 

geochemical potential of boron isotope geochemistry, and the magnitude of isotopic 

variations, particularly in evaporites and terrestrial environments . The localities sampled 

include groundwaters from the Great Artesian Basin of Australia (HABERMEHL, 1980), 

salt lakes from inland Australia (BOWLER, 1976), salt lakes from the Qaidam 

Basin,Qinghai (northern Tibet), China (CHEN KEZAO and BOWLER, 1986) and the 

Dead Sea, Israel (NEEV and EMERY, 1967).
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TABLE 1.2

Boron concentration data obtained by isotope-dilution mass spectrometry and spectrophotometric techniques (results are 
reported in ppm)

Sample Description Isotope-dilution
mass-spectrometry
(ppm)

Spectrophotometric
determination
(ppm)

Seawater Jervis Bay, eastern Australia 4.69 ±0.08 4.69 ±0.09
D-2 brine from Dampier halite pond, Western Australia 58.47 ±0.6 59.78 ±0.6
SA-22 brine from Lake Eyre, South Australia 5.92 ±0.08 6.13 ±0.08
GAB-93 groundwater from the Great Artesian Basin, Australia 2.92 ±0.08 1.4 ±0.03
GAB-92 groundwater from the Great Artesian Basin, Australia 1.07 ±0.08 1.02 ±0.08
SA-9 brine from Lake Frome, South Australia 0.27 ±0.08 0.41 ±0.06
SA-32 brine from Lake Cadibarrawirracanna, South Australia 2.47 ±0.08 2.59 ±0.04
SA-34 brine from Lake Cadibarrawirracanna, South Australia 17.31 ±0.08 15.39 ±0.57
V-7 brine from Lake Tyrrell, Victoria, Australia 1.46 ±0.08 1.56 ±0.05
V-8 groundwater from Lake Tyrrell, Victoria, Australia 1.64 ±0.08 1.77 ±0.05
WA-1 brine from Lake Gilmore, Western Australia 4.03 ±0.08 3.66 ±0.01
WA-3 brine from Lake Hann, Western Australia 7.27 ±0.08 6.91 ±0.03
WA-8 brine from lake near Lake Biddy, Western Australia 3.04 ±0.08 2.91 ±0.13
WA-3I brine from “the salt lake” Tammin, Western Australia 2.17 ±0.08 2.19±0.08
WA-37 brine from Lake Brown, Western Australia 1.19±0.08 1.22 ±0.03
DS-1 Ein Gedy hot spring, Israel 20.38 ±0.2
DS-2 Dead Sea brine, Israel 37.76 ±0.4
Aragonite modern coral dissolved in HC1 56.63 ±0.6
N.B.S. 88 dolomite dissolved in HC1 14.6 ±0.2
N.B.S. 19 calcite dissolved in HC1 17.98 ±0.08



TABLE 1.3

Boron and chlorine isotopic results for some evaporites and terrestrial waters

Sample Location and description J UB 
(%0)

Number of 
analyses

<537Cl
(%o)

Number of 
analyses

Seawater Jervis Bay, eastern Australia +  38.411.1 12 012.0 18

Australian salt lakes:

SA-22 Lake Eyre, S.A., interstitial brine +  38.411.9 4
SA-9 Lake Frome, S.A., interstitial brine +  41.312.0 1
SA-32 Lake Cadibarrawirracanna, S.A., interstitial brine +  43.411.4 2
GW-23 Lake Acraman, S.A., interstitial brine +  34.411.4 2
V-l Lake Bullenmeri, Victoria, surface brine +  53.4 + 2.0 1
WA-31 “the salt lake”, Tammin, W.A., surface brine +  47.012.0 1
GW-15 Lake Moore, W.A., interstitial brine +  34.712.0 1
V-7 Lake Tyrrell, Victoria, surface brine +  27.212.4 2

Great Artesian Basin, Australia:

GAB-93 groundwater -6 .8 1 2 .1 3
GAB-92 groundwater -1 5 .9 1 2 .1 3
GAB -83 groundwater -1 4 .7 1 1 .4 2
GAB-81 groundwater -7 .8 1 2 .1 2

Qaidam Basin, Qinghai, China:

Q -;2-A (b)M inlet brine to the artificial ponds 0.011.9 2 -3 .5 1 1 .4 2
Q-72-A(s)"2 halite in first artificial pond +  4.412.0 1 + 2.711.4 2
Q-72-B(b) brine of second pond -7 .2 1 1 .4 2
Q-J2-B(s) halite in the second pond +  3.611.2 3
Q-12-C(b) brine of third pond -2 .0 1 1 .4 2
Q-J2-C(s) sylvite +  carnallite in third pond -4 .9 1 1 .2 3
Q-22-D (b) brine of fourth pond -0 .6 1 1 .4 2
Q-J2-D(s) carnallite in the fourth pond +  14.612.0 1 + 24.712.9 2
Q-42 brine of the fifth pond + 9.111.9 2
Q-41 brine of bitterns final stage + 10.511.4 2 -4 .1 1 2 .5 2
Q-13 brine from Lake Dabuxan + 12.5 + 2.4 2

Dead Sea, Israel:

DS-1 Ein Gedy hot spring + 49.1 + 1.6 3 + 0.511.2 3
DS-2 Dead Sea northern basin, surface brine +  54.511.4 2 -5 .6 1 2 .3 2
DS-V-2 Dead Sea southern basin, 3-m-deep brine + 53.011.4 2 -7 .2 1 2 .0 2

SA, WA, GAB refer to South Australia, Western Australia and the Great Artesian Basin, respectively. Errors are lcr standard 
deviations, and are estimates of the external reproducibility. Errors are calculated from the range of repeat analyses times 
the deviation factor (see text) or the average standard deviation (2%o) divided by the square root of the number of repeat 
analyses, which ever is greater.
*'b = brine; *2s = salt.
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The distinctive boron-isotope composition of seawater ( S ^ B  = 40%o) is 

generally attributed to the preferential incorporation of onto different solid phases in 

the oceanic environment (AGYEI and McMULLEN, 1968; SCHWARCZ et al., 1969; 

SPIVACK, 1986; SPIVACK and EDMOND, 1987). The large difference between the 

isotopic composition of boron in seawater and the continental crust gives boron-isotope 

geochemistry the potential use as a tracer for a distinguishing between marine and non­

marine evaporites. SWIHART et al. (1986) have showed that some marine evaporite 

borates are enriched with ^ B ( 8 ^ B  = +18to +31%c) relative to non-marine evaporite 

borates (8 ^ B  = -22 to 0 %o).

Preliminary boron isotopic data presented in this study (Fig 1.1 and Table 1.3) 

indicate in some cases that boron in brines from non-marine locations has a "marine" 

isotopic composition. This is particularly apparent in the modem Australian inland salt 

lakes where the isotopic composition of interstitial brines in some lakes is similar to that 

of seawater (e.g. Lake Eyre, 8* *B = +38.4 ± 2.1%c). However, in the Chinese salt lakes 

( 8 ^ B  = 0.0%o to +14.6%c) and the Dead Sea brines (8* *B = +49.1%c to +54.5%c) the 

1 lß /lO ß  ratios are respectively lower and higher than that of seawater.

The boron isotopic composition of deeply buried groundwater from the Great 

Artesian Basin, Australia ( 8 ^ B  = -15.9%o to -1%6) is obviously different from the 

surface hypersaline Australian salt-lakes brines ( 8 ^ B  =+27.2%c to +47.0%o) . These 

differences could be the result of different sources of boron and processes. While in the 

Great Artesian Basin boron is probably derived from the argillaceous rocks of the 

intervening confining beds, the high 8* ^B-values in the Australian salt lakes may indicate 

that boron is derived from cyclic (marine) salts. The elevated 8 ^ B  may also indicate a 

high degree of interaction with detrital sediments, e.g. isotopic fractionation during the 

adsorption of boron onto clay minerals.

In the Qaidam basin, Qinghai, China, where borate minerals are precipitating due to 

high concentrations of boron (ZIQIANG and ZHIQIANG, 1983), boron in the brines has 

a typically terrestrial isotopic composition (Table 1.3, Fig. 1.1). Any addition of high- 

8 ^ B  cyclic boron from precipitation in the extremely arid zones of northern Tibet would 

cause a negligible effect on the isotopic composition of the brines.
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Figure 1.1 Histogram of S ^ B  values of terrestrial waters from Australia, China, and 

Israel. Note the large variability of 5 ^ B  values in the waters and the similarity in some 

cases as the inland Australian salt lakes, to seawater isotopic composition.
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Pliocene Mediterranean seawater has also been modified to Ca-chloride brines in 

the modem Dead Sea (STARINSKY, 1974). Therefore, boron in ancient (Pliocene - 

Holocene) and modem Dead Sea brines has had a considerable time over which to interact 

with sediments at elevated salinities, leading to the observed 16%c enrichment of 

relative to seawater. Thus, boron isotope geochemistry is a sensitive tracer of different 

sources (marine and non-marine) and the degree of interaction of fluids with sediments 

and rocks.

1.4.4. CHLORINE

For a directly loaded seawater sample, it was found that an ion beam intensity of 

4 -5  volts, for a typical 10 \xg Cl sample on the filament, could be maintained stable for 

several hours. Seawater samples were repeatedly analysed and used as an external 

standard. The 1 sigma standard error of 18 seawater replicates was 2%c. The mean 

standard deviation calculated for the different samples using the DEAN and DIXON 

(1951) method is 1.5%c which is consistent with the reproducibility obtained from a large 

number of standard analyses. The average measured absolute ^ C V ^ C l  ratio of seawater 

was 0.3152 ±0.0006 for the MSZ and 0.3157 ±0.0006 for the NUCLIDE. Samples were 

loaded and analysed before and after the seawater standards in the same conditions. The 

normalization to the seawater isotopic ratios minimizes the importance of the absolute 

37ci/35q  ratio. In order to test for possible matrix effects, Cl from both natural seawater 

and seawater enriched with MgS04 were analysed. To 1 g of seawater 0.035 g MgS04 

•6H2O was added which raised the Mg content from 1.3 to 4.8 mg g_1 and the SO4 

content from 2.7 to 16.9 mg g_1. The 37c 1/35q  ratio of the artificially enriched seawater 

is the same within analytical uncertainty as that of normal seawater. Addition of NaHC03 

was unsuccessful due to attack and premature burn out of the Re filament. We have not 

excluded the possibility of apparent isotopic variations arising from solute compositions 

(e.g. camallite) outside that of Na-Cl rich brines. Although not all the 8 37q  results 

reported in Table 1.3 used constant amounts of Cl on each filament, we have found it 

convenient and more precise to adopt a uniform procedure of using approximately 

constant amounts of Cl for each sample. We have chosen to dissolve salts or to dilute
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brines to seawater chlorinity and load each filament with similar amounts of solutions. 

Although the precision obtained using negative ions is lower than the precision reported in 

the most recent studies (0.24%c using CH3CI gas mass spectrometry; KAUFMANN et

al., 1984), the advantage of our approach is that it minimizes the chemical preparation 

required for chlorine prior to the analysis. In addition, direct measurements eliminate the 

possible bias introduced by chemical separation, e.g. high-chlorine blank (HEUMANN et 

al., 1980).

1.4.5. Geochemical application of chlorine isotopes

Chlorine isotope results from brines and salts from the Qaidam Basin, China and 

the Dead Sea, Israel are expressed in 8 notation as:

(37Ci/35ci)sample

8 37C1 = [ ------------------------------ 1 ]  x 103
(37Cl/33Cl)seawater

Chlorine isotope geochemistry has been investigated in recent papers, 

particularly in groundwater systems (KAUFMANN et al., 1984; DESAULNIERS et al., 

1986). PHILLIPS and BENTLEY (1987) proposed that the fractionation of chlorine 

isotopes during flow of fluids through semi-permeable clay discs could be a result of 

differences in the ionic mobility of the two isotopes. The chlorine isotopes were not, 

however, studied in hypersaline environments where the brines are saturated with respect 

to chloride minerals. In such systems the removal of chlorine from the brines into solid 

phases may also affect the isotopic composition of the two phases.

Brines and salts from a series of artificial ponds in the Qaidam Basin have been 

analysed. In these ponds, brines are concentrated beyond halite saturation and a series of 

progressively more soluble chloride minerals, i.e. halite, carnallite, and bischofite, are 

precipitated.

The preliminary results ( Table 1.3) indicate that 8 ^ 0  values in

the salts are usually higher than in the coexisting brines. This indicates that ^ C \  

preferentially enters the solid phase during the incorporation of dissolved chlorine into the
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chloride salts. The magnitude of this enrichment is different for the different salts. The 

largest apparent 37q  enrichment was observed in the carnallite pond where the salts are 

enriched by 24 %c relative to the coexisting brine. The brine of the bischofite ponds also 

has an apparently anomalous chlorine isotopic composition ( 5 ^ 0  = -4.1%c and +9.1 %o). 

At present the possibility of experimental biasses due to the Mg-rich nature of the matrix 

cannot be excluded.

It may be possible to use the chlorine isotopes to identify the origin and nature 

of brines. Brines that are in equilibrium with precipitating salts should yield lower 5 ^ 0  

values than brines that are forming from dissolution of an older salt crust . This is 

demonstrated in the Dead Sea system. The isotopic composition of the hot springs of Ein 

Gedy on the west shore of the Dead Sea is different ( 5 ^ 0  = +0.5 ±1.0%o) to that of the 

Dead Sea brines themselves (S^Cl = -7.2%c to -5.6%c). The relative enrichment in 37q  

in the hot spring is probably a result of dissolution of salts in the Mt. Sdom Formation 

that underlies the present Dead Sea (MAGARITZ et al., 1986). In contrast, the 

precipitation of modem halite from the Dead Sea brines (NEEV and EMERY, 1967; 

STARINSKY, 1974) has depleted the residual brines in 37q .

1.5. CONCLUSIONS

It has been demonstrated that it is possible to directly measure BC>2" and CT ions 

in a reverse polarity solid-source mass-spectrometer . The techniques are applicable to 

natural waters and salts where boron and chlorine are dissolved, and also to minerals that 

are dissolved by HC1 (e.g. calcium carbonate). Both elements are two-isotope systems 

and isotopic discrimination in the mass spectrometer source will occur and consequently 

standardized procedures are required for isotopic analysis.

The main advantage of the negative thermal-ionization technique is that for 

waters or acid-soluble minerals no chemistry is involved prior to boron and chlorine 

isotope analysis and boron assay of certain geological materials. Seawater, groundwater, 

brines, salts and HCl-soluble minerals of differing chemistry or boron and chlorine 

concentrations can be loaded directly into the mass spectrometer and successfully 

analysed for boron and chlorine isotopes. The negative-ion method is simple, rapid,
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sensitive, reasonably precise (about ±2%o) and does not require a special instrument, as 

virtually any solid-source mass spectrometer can be converted for negative-ion 

production.

Boron isotope geochemistry can be used to trace the sources of fluids in terms 

of marine or non-marine origin, to estimate the degree of chemical interaction of waters 

with sediments and role of environmental conditions in these reactions. Chlorine isotope 

fractionation accompanies the precipitation of some chloride salts. It may be possible to 

use the 37ci/35q  ratios to discriminate between brines that are in equilibrium with 

precipitated salts and brines that have dissolved former salt crusts or buried evaporites.
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Chapter 2

BORON ISOTOPE GEOCHEMISTRY OF 

AUSTRALIAN SALT LAKES

2.1. INTRODUCTION

The composition of brines and evaporites may provide important constraints on 

palaeoenvironments, particularly the distinction between marine and non-marine 

environments. A number of approaches have been utilised in attempt5to establish 

criteria for identifying the sources of evaporite minerals. Among them is the 

mineralogical analysis of ancient evaporites and comparisons with the evaporation 

products of modern seawater (SONNENFELD, 1985). In addition, the geochemical 

analysis of single elements or ratios of elements in evaporites such as Br/Cl has been 

proposed (HOLSER, 1966; HOLSER, 1979; HARD IE, 1984; SONNENFELD, 1985).

GOLDSCHMIDT and PETERS (1932), LANDERGREN (1945), and 

DEGENS et al., (1957) showed that boron was concentrated in marine argillaceous 

sediments due to adsorption by clay minerals. Hence they proposed that the boron 

content of clays might be used to discriminate between marine and non-marine 

environments. The validity of the use of boron abundances as indicators of 

palaeosalinity has however, been questioned as additional factors controlling boron 

incorporation into clays have been recognized. These factors include diagenesis, boron 

content in solution, salinity, temperature, grain size, mineralogical composition of the 

sediments, abundance of organic material, predepositional history and rate of deposition 

(FLEET, 1965; LERMAN, 1966; HARDER, 1970; PERRY, 1972).

An additional dimension to boron geochemistry was introduced by AGYEI and 

McMULLEN (1968) and SCHWARCZ et al. (1969). They showed that seawater is 

higher in relative to terrestrial rocks by about 40%o, and suggested that this 

enrichment is due to isotopic fractionation during adsorption of boron onto clays. 

SPIVACK and EDMOND (1987) and SPIVACK et al. (1987) have demonstrated that the 

removal of boron from seawater into altered basalts also affects the boron isotopic
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composition of seawater. The large difference between the isotopic composition of 

boron in seawater and the continental crust suggests that boron isotope geochemistry may 

be applied as a potential tracer for distinguishing between marine and non-marine 

evaporites and brines. SWIHART et al. (1986) showed that marine evaporite borates are 

indeed enriched with n B (8n B = 18%o to 31%c) relative to non-marine evaporite borates 

(Sn B = -22%o to 0 %c).

This chapter examines the boron isotope geochemistry in the modem Australian 

terrestrial environment. The boron isotope systematics of seawater during evaporation are 

also discussed.

2.2. BORON ISOTOPIC SYSTEMATICS

Boron in the non-marine environment can be derived from subsurface, trapped 

brines, crustal rocks (51 lB ~ 0%6) and the atmosphere. Boron in the atmosphere exists in 

gaseous and particulate forms, where the gaseous boron makes up 97% of total boron in 

the troposphere (FOGG and DUCE, 1985). The source of boron in the gas phase in the 

atmosphere has long been debated. GAST and THOMPSON (1959) and FOGG and 

DUCE (1985) have argued that the ocean is an ultimate source of boron, whereas 

NISHIMURA and TANAKA (1972) and NISHIMURA et al. (1973) suggested that 

seawater is a sink rather than a source for atmospheric boron. FOGG and DUCE (1985) 

estimated that 43% to 84% and 10%to 49% of the total gaseous boron is derived from 

fumarole gases and sea-salt degassing, respectively.

The residence time of boron in the atmosphere is approximately one month 

(FOGG and DUCE, 1985). Therefore large isotopic variations are expected in the 

atmosphere since the isotopic composition of the source materials is different: the ocean: 

511B=39%c, (SPIVACK, 1986), volcanic gases: 8n B = 1.5 to 6.5%o (KANZAKI et al., 

1979), and clay particles: 811B~0%o (SCHWARCZ et al., 1969). This variability is 

reflected in the wide range of 8n B values (0.8 to 35 %o) reported by SPIVACK (1986) in 

4 rainwater samples from the Pacific Ocean. These few analyses, however, are the only 

reported boron isotope data for rainwaters.
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Boron adsorption. Boron is present in aqueous solutions as B(OH)4" ion, 

undissociated boric acid B(OH)3°, poly borate ions and borates ((Na-Ca-Mg)B(OH)4+) 

(CHRIST and HARDER, 1978). The distribution of these species is controlled by the
ICtilC-

pH, A , and specific cation concentrations (BYRNE and KESTER, 1974; 

REARDON, 1976; KEREN and MEZUMAN, 1981; KEREN et al., 1981; MATTIGOD 

et al., 1985; HERSHEY et al., 1986; ROGERS and VAN DEN BERG, 1988).

The isotopic fractionation of boron is due to the differences in the interatomic 

boron/oxygen vibrational energy and the symmetry between the trigonal boron species 

(undissociated boric acid B(OH)3) and the tetrahedral anions (B(OH)4-). The isotope 

exchange reaction in aqueous solutions is given by:

10B(OH)3 + u B(OH)4- = u B(OH)3 + 10B(OH)4- (1)

Various experiments have examined the isotopic fractionation of boron, 

particularly during the adsorption of boron from seawater onto marine clays (SHERGINA 

and KAMISKAYA, 1967; SCHWARCZ et al., 1969; SPIVACK et al., 1987; PALMER 

et al., 1987). These workers have found that the isotopic fractionation is dependent on 

the distribution of boron species, temperature, pH, and clay mineralogy. It was shown 

that during adsorption, 10B is preferentially incorporated into the adsorbed phase, 

probably as the tetrahedral form. As clays have a stronger adsorption affinity for 

B(OH)4~, the conditions that are favoured for the dominance of B(OH)3 species (e.g. 

low pH) would cause a relatively lower degree of boron adsorption but higher degree of 

isotopic fractionation. Thus, the isotopic fractionation of boron in the adsorption process 

is dependent on the distribution of boron species. The maximum boron isotopic shift 

produced during adsorption onto clay minerals, reported by PALMER et al. (1987), is 

32 %o.

Uptake of boron by clay minerals may occur in two steps. The first is a rapid 

and reversible adsorption onto the clay surface, referred to as "the adsorbed boron", the 

second is slow incorporation into the tetrahedral sites of the mica structure, referred to as 

"fixed boron" (HARDER, 1970). The adsorption process is controlled by a number of 

factors including pH, boron content in the parent solution, the type of clay mineral, 

wetting and drying cycles, ionic strength, the nature of the exchangeable cation, and the
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cation medium of adsorption. (HINGSTON, 1964; LERMAN, 1966; SIMS and 

BINGHAM, 1968; HARDER, 1970; KEREN and MEZUMAN, 1981; KEREN and 

GAST, 1981; KEREN and O'CONNOR, 1982; M ATTIGOD et al., 1985). 

Consequently, in adsorption processes, 10B would enter preferentially onto the adsorbed 

phase and the liquid phase would be depleted in total boron and enriched in 1 *B relative to 

10B.

2.3. THE AUSTRALIAN SALT LAKES

The Australian salt lakes occur in the arid or semi-arid zone of the Australian 

continent (BOWLER, 1976; 1981). Based on geography, geology, and chemical 

composition, the salt lakes investigated in this study can be subdivided into five main 

groups (Table 2.1 and Fig. 2.1). These are: (1) maar lakes from western Victoria; (2) a 

playa lake from northern Victoria; (3) large play a lakes overlying the Great Artesian Basin 

in South Australia; (4) playas from the Gawler Ranges in South Australia; and (5) salt 

lakes from the Yilgam Block, Western Australia.

The Australian basins are located mostly within stable shield areas with 

uniformly low relief. The evaporation and basin filling by rainwater and groundwater 

control the salinities of the brines, and consequently the formation of halite and gypsum 

in the basins (BOWLER 1986). The modem salt crusts are underlain by clastic sediments 

composed of kaolinite, illite, montmorillonite, and rarely chlorite (FÖRSTNER, 1977).

The chemical composition of the inland Australian salt lakes has been the subject 

of several studies. The dominance of Cl" and Na+ ions in the Australian inland brines 

(WILLIAMS, 1967; JOHNSON, 1980; MANN, 1983), and the uniform chemical and 

mineralogical composition of the salt lakes over large area of the weathered Australian 

continent is in conspicuous contrast the variety of chemical c o n d itio n  of hypersaline 

waters from more typical terrestrial environm ents in other continents, e.g. 

EUGSTER,( 1980), HARD IE and EUGSTER (1970). The origin of the salts in the 

Australian inland basins has long been debated and various sources have been proposed. 

Among them are cyclic salts (i.e., marine derived aerosols), weathering of rocks in 

individual drainage basins, evaporated river waters, and relict seawater (see summary in



3 8

Dampie^

Shark
Bay

Vj-Moor§?. ' 'V  O  >-L-Lefroy
L > y ^ r'V^sL : B ; LGUfTjpre

C r '* X  Yilgarn 
Block

0

The Great 
Artesian Basin

Jervis Bay 
L.George

5 0 0  Kilometres

Figure 2.1. Map showing the location of the evaporated-seawater samples (Shark Bay and 

Dampier), Australian salt lakes, and groundwaters from the Great Artesian Basin used in 

this study.
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TABLE 2.1. Location and geological environments of some Australian salt lakes

Lake, Basin and Location Country rocks

Maar lakes from Western Victoria 
Lake Bullenmerri, Lake Gnotuk, Lake 
Keilambete

Northern Victoria

Small volcanic crater lakes (maars), internal 
drainage, Quaternary olivine basalts and tuffs 
overlying Tertiary marine limestones

Lake Tyrrell, Murray Basin Cainozoic fluviatile sediments

The Great Artesian Basin. South 
Australia
Lake Eyre, Lake Frome 
Lake Cadibarrawirracanna

Cretaceous Bulldog Shale, Miocene lacustrine 
dolomites (Etadunna and Namba Formations)

Gavvler Range. South Australia 
Lake Acraman Centre of depressed impact structure in Proterozoic 

dacitic volcanics

Yiteam Block. Western Australia 
Lake Gilmore, Lake Hann, unnamed 
lake near Lake Biddy, "the salt lake" 
near Tammin, Lake Brown , Lake 
Chandler, Lake Moore, Lake Raeside

Weathered profiles of kaolinized saprolites 
overlying Archaean intrusive granitoid and 
metamorphosed rocks (granite-greenstone belts)
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JOHNSON, 1980). Using 87Sr/86Sr, 40Ca/42Ca, 34s/32s and 36C1 isotopes, it has been 

shown that each element has its own budget, and different sources contribute varying 

proportions for each element (CHIVAS et al.,1988; 1990). For example, CHIVAS et al., 

(1988) and NELSON and McCULLOCH (1989) have shown that Sr- and Ca-isotope 

ratios in gypsum from the salt lakes are related to the isotopic composition of the country 

rocks, whereas b ^ S  values (CHIVAS et al., 1990) indicate that much of the sulphur has 

a cyclic marine origin.

Na+ and HCO3' are the major dissolved ions in most of the fresh groundwaters 

and rivers in Australia. The possibility of direct evaporation of these waters as the major 

source for the Australian salt-lakes has been ruled out by JOHNSON (1980) as soda pans 

are not present in the Australian environment. Modification of groundwater by 

preferential salt dissolution and base exchange reactions in the evolution of waters in the 

drainage basin was proposed by HERCZEG and LYONS (1990). MANN and 

DEUTSCHER (1978) have shown that precipitation of calcite, dolomite, sepiolite, and 

amorphous silica during the genesis of calcrete in drainage zones peripheral to salt lakes 

controls the removal of Ca2+, Mg2+, CO32'  and Si02 from the groundwaters. Calcium

and sulphate depletion in the interstitial brines is attributed to gypsum precipitation.

Most of the subsurface playa brines are related to the modem hydrological 

systems. For example, in Lake Frome in South Australia, a large interstitial brine pool 

extends to 60 m below the playa floor and is inter-related with the modem surface system 

(BOWLER, 1986).

2.4. METHODS 

2.4.1. Sampling

In July-August 1987 a series of samples from the Australian salt lakes were 

collected (Table 2.2). Some of the lakes contained water at the surface (depth of few cm to 

~ 1 m, with the exception of the three Victorian maar lakes which contain a permanent water 

column of about 10 m) which is referred to as "surface brine". Other playas were dry with 

or without a halite crust. In order to obtain fluids from such systems, holes (10 cm to 60 

cm) were excavated. The pore water which seeped into the holes is referred to as
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TABLE 2.2. Location, description, pH and density of brines from salt works in Western 

Australia and from Australian salt lakes used in this study.

sample location and description date of collection pH density
(g/cc)

Evaporated seawater (salt works)
UL-1 evaporite pond, Useless Loop, Shark Bay 25/8/87 8.13 1.031
UL-4 evaporite pond, gypsum stage, Useless Loop 25/8/87 7.86 1.115
UL-5 evaporite pond, gypsum stage, Useless Loop 25/8/87 7.67 1.162
UL-6 evaporite pond, halite stage, Useless Loop 25/8/87 7.30 1.24
D-2 evaporite pond, halite stage, Dampier 28/8/87 7.01 1.238
Maar lakes from Victoria
V-l Lake Bullenmerri, surface brine 2977/87 8.82 1.006
V-2 Lake Gnotuk, surface brine 2977/87 8.64 1.041
V-3 Lake Keilambete, surface brine 2977/87 9.00 1.046
"K" K Spring, Lake Keilambete, groundwater 23/2/85 1.001
Northwestern Victoria
V-7 Lake Tyrrell, surface brine 3077/87 7.20 1.210
V-8 Lake Tyrrell, discharge groundwater 3077/87 3.42 1.074
The Great Artesian Basin. South Australia
SA-9 Lake Frome, interstitial brine 4/8/87 7.38 1.193
SA-10 Lake Frome, interstitial brine 4/8/87 7.20 1.198
SA-16 Lake Eyre North, interstitial brine 5/8/87 6.74 1.201
SA-22 Lake Eyre North, interstitial brine 5/8/87 7.35 1.214
SA-26 Lake Eyre South, interstitial brine 7/8/87 7.67 1.227
SA-32 Lake Cadibarrawirracanna, interstitial brine 8/8/87 6.89 1.131
SA-34 Lake Cadibarrawirracanna, surface brine

in a natural channel on the edge of the lake 8/8/87 8.03 1.079
" P " Finke River, freshwater 1.001
Gawler Block. South Australia
SA-38 Lake Everard, interstitial brine 10/8/87 6.89 1.177
SA-43 Lake Gairdner, interstitial brine 10/8/87 7.02 1.206
SA-44 Lake Acraman, interstitial brine 11/8/87 7.20 1.167
SA-45 Lake Acraman, interstitial brine 11/8/87 7.10 1.177
SA-51 Acraman Bore, groundwater 11/8/87 7.98 1.006
Yilgam Block. Western Australia
WA-1 Lake Gilmore, interstitial brine 14/8/87 2.82 1.136
WA-3 Lake Hann, surface brine 14/8/87 3.20 1.089
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TABLE 2.2. (continued)

sample location and description date of collection pH density
(g/cc)

WA-8 unnamed lake near Lake Biddy, surface brine 15/8/87 3.13 1.201
WA-31 "the salt lake", near Tammin, surface brine 22/8/87 3.33 1.157
WA-33 Lake Chandler, interstitial brine 22/8/87 3.55 1.065
WA-34 Lake Brown (SE side), interstitial brine 23/8/87 4.74 1.110
WA-37 Lake Brown (NE side), surface brine 23/8/87 4.29 1.060
WA-38 Quibabbin Soak, groundwater 23/8/87 6.84 1.001

(near Lake Brown)
WA-49 Lake Way, interstitial brine 31/8/87 7.58 1.138
WA-50 Lake Raeside, interstitial brine 1/9/87 7.94 1.066
GW-3 Lake Raeside, interstitial brine 30/10/86 1.083
GW-5 Lake Lefroy, interstitial brine 1/11/86 1.192
GW-15 Lake Moore (North), interstitial brine 7/11/86 6.5 1.146
GW-17 Lake Yarra Yarra, interstitial brine 11/11/86 6.6 1.171
GW-18 Lake Grace, interstitial brine 12/11/86 6.5 1.170
GW-19 Lake King, interstitial brine 13/11/86 6.2 1.170
GW-20 Lake Gilmore, interstitial brine 13/11/86 3.2 1.133

"interstitial brine". pH measurements and water filtration (<0.45Jim) were p«^-formed at 

the collection sites.

2.4.2. Analytical procedure

The determination of boron isotope compositions was carried out by negative 

thermal-ionization mass-spectrometry (ZEININGER and HEUMANN, 1983; 

HEUMANN and ZEININGER, 1985; DUCHATEAU and DE BIEVRE, 1983; 

DUCHATEAU et al., 1986; VENGOSH et al., 1989). The high reactivity of boron 

enables production of B02" from untreated fluid samples which were loaded directly
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onto filaments in a reverse polarity mass spectrometer. Boron from silicate minerals 

(e.g. shales, granites) was separated by KCO3 fusion and boron-specific resin (KISS, 

1988). Droplets of samples typically containing 50-150 ng boron were deposited onto 

filaments and evaporated to dryness before loading into the mass spectrometer. The mode 

of filament loading, rate of heating and running conditions were strictly replicated for each 

sample in order to minimize the variability of mass-spectrometer-induced isotopic 

discrimination. Both NBS SRM 951 (boric acid power) and seawater samples were 

repeatedly analysed to determine reproducibility. The 2-sigma standard error of 24 NBS 

SRM 951 replicates was 1.9 %o and of 10 seawater replicates was l.l%o at the 95% 

confidence limit (VENGOSH et al., 1989). This precision is lower than that reported for 

the dicesium metaborate method by SPIVACK and EDMOND (1986) of 0.24 %o, but is 

similar to that of the sodium tetraborate technique of 2-3 %o (e.g. SWIHART et al., 1986) 

and better than the ICP-MS technique with a precision of 7%o, reported by GREGOIRE 

(1987).

In order to evaluate the negative-ion method, known mixtures of NBS 951 and 

seawater were analysed. The calculated and analysed isotopic compositions of the 

mixtures are in good agreement within experimental error (Fig. 2.2) indicating the validity 

of the negative thermal ionization mass spectrometry procedure.

Boron concentrations from groundwaters and brines were determined by a 

modified spectrophotometric technique using the reagent Azomethine H (KISS, 1988) 

and by isotope dilution mass spectrometry. Boron concentrations in silicate rocks were 

determined by isotope-dilution mass spectrometry (VENGOSH et al., in preparation).

Isotope ratios are reported as permil deviation (S ^ B )  in the 1 ^ B /^ B  ratios 

relative to the standard NBS SRM 951:

8 llB = [( llB /1 0 B sampie /  H B /IO B nbs 95l) - 1 ] 1000 

The mean of the absolute ratios of the NBS SRM 951 replicates,

determined by the negative-ion method is 3.996.
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seawater

b 3 0 -

CQ 20-

NBS 951

5 11 B (calculated)

Figure 2.2. Comparison of the measured and calculated 8!1B values of NBS 951 and

seawater and their mixtures.



4 5

2.5. RESULTS

Evaporation of seawater. The effects of evaporation of seawater on the boron-isotope 

composition of brines was examined by analysing evaporated seawater from successively 

evaporated artificial ponds. Results from brines from the salt works at Useless Loop in 

Shark Bay and at Dampier, Western Australia are presented in Table 2.3. The marine 

boron-isotope signature of the brines (an average of 8n B = 38.6 ± 1.8%o) is maintained 

in the evaporation of seawater to the halite-saturation stage, i.e.degree of evaporation of 

about 10. The gradual increase of boron concentrations and the constant 8n B values are 

consistent with the conservative behaviour of boron in evaporation processes up to a 

degree of evaporation of about 30 (ZHEREBTSOVA and VOLKOVA, 1966; 

VALYASHKO, 1970; see also Chapter 3).

Australian salt lakes. The boron isotope composition and the general chemistry of 

brines from some Australian modem playas is presented in Table 2.3, Fig. 2.3, and Fig. 

2.4. Most of the Australian brines are Na-Cl type and their Na/Cl ratios are lower than 

unity. The S ^B  value for brine from Lake Eyre (8n B = 38.4±1.9 %o) overlaps with that 

of seawater but is significantly different from that of country rock at its shore (Bulldog 

Shale; 8* *B = -8.7%o to -6.7 %o, Table 2.4). Salt lakes from other locations yield 81 JB 

values both lower and higher relative to seawater (S ^B  = 25.5%c to 59.2%o, Fig. 2.3). 

Boron concentrations in the interstitial brines are in the range of 0.3 to 17.3 mg/1. The 

molar B/Cl values of the interstitial brines (4 x 10“6 to 4 x 10“4) are generally lower than 

that of seawater (7.8 x 10“4; Fig. 2.4). The only exception is a surface brine from a 

natural channel on the edge of Lake Cadibarrawirracanna. There is no obvious correlation 

of the 8 ^ B  values of the salt lakes with their geographical position (e.g. distance from 

the sea), drainage area, or rock type.

Analyses of fresh and brackish waters from several locations in Australia yield 

boron concentrations in the range of 0.1 to 0.5 mg/1 and 8n B of 28.2%o to 34.9%o (Table 

2.3, Fig. 2.3). In some cases the isotopic composition of the B in the brackish water is 

similar to that of the salt lake in the same location (e.g. Quibabbin Soak and Lake Brown;
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Acraman bore and Lake Acraman). In another case, the 8 ^ B  value of a spring in the 

drainage zone of Lake Keilambete is lower than that of the lake itself.

The boron content and isotopic composition of groundwaters from the lower 

Cretaceous-Jurassic aquifer of the Great Artesian Basin (8n B = -16%o to 2.2 %o) are 

given in Table 2.3 and Fig. 2.3. The 5n B values are distinctively lower than those of 

seawater and the Australian salt lakes. Molar B/Cl ratios of the groundwaters (1.2 x 10'3 

to 3.8 x 10"2) are, however, higher than that of seawater and the Australian surface 

brines.

The Australian country rocks chosen for boron analysis (Table 2.4) are generally 

representative of the type of the exposed country rocks in the drainage of the selected salt- 

lake basins. These are the Cretaceous Bulldog Shale in South Australia (B = 37.3 to 63.9 

ppm; Ö^B = -8.7%c to -6.7 %c) and late Archaean granites from the Yilgarn Block in 

Western Australia (B = 8.4 to 11.4 ppm; 8U B = -3.2%o to 6.8 %o). Boron in sediment 

samples was extracted by KCO3 fusion and boron-specific resin and hence represents the 

sum of "non-desorbable" or "fixed" boron in the clay structure and "desorbable" boron. 

The total boron concentrations of some modem sediments present in the Australian salt 

lakes (Table 2.4) are lower (45 to 96 ppm) than the total boron content in sediments from 

the ocean (60 to 160 ppm, SPIVACK et al., 1987; 120 to 250 ppm, HARDER, 1970). 

The 5U B values of the total boron (-3.2%o to 12.3%c) in sediments from the Australian 

salt lakes are generally in the range of the isotopic composition of sediments in the oceanic 

environment (5n B= -6%o to 3%o, SPIVACK et al., 1987).
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Table 2.4. Boron isotope composition and concentrations of some country rocks from 
South Australia and Western Australia, and sediments from some Australian salt-lake 
basins.

Sample Description and Location B(ppm) 8]1B (% o)

SA-28 Bulldog Shale, outcrop near the shore of Lake Eyre 
South, South Australia

37.28 -8.7±2.0

Toodla Bulldog Shale (Toodla No.l well, depth 243 m), 
120 km north of Coober Pedy, South Australia 63.95 -6.7±1.8

86-306 Late Archaean coarse-grained biotite granite, 
Readymix quarry, 10 km northeast of Merredin, 
Western Australia

8.42 -3.2±1.0

86-307 Late Archaean coarse-grained biotite granite,quarry 
2km west of Doodlakine, Western Australia 9.39 6.8±1.2

72-864 Late Archaean coarse-grained biotite granite, 
Wheeler Rocks, 10 km east of Lake Johnston, 
Western Australia

11.41 0.4±1.2

V-2-C Black soft mud with high organic content 
Lake Gnotuk, Victoria 96.34 12.3±1.0

V-4-C Black soft mud with high organic content 
Lake Keilambete, Victoria 69.69 11.5±1.2

SA-22-C Grey-green mud, Lake Eyre North, 
South Australia 48.47 -3.2±0.9

SA-26-C Black-green soft mud, high H2S, 
Lake Eyre South, South Australia 63.99 -1.2±2.5

SA-32-C Grey-brown mud, Lake Cadibarrawirracanna, 
South Australia 56.26 4.7±1.4

SA-44-C Brown hard mud, Lake Acraman, 
South Australia 45.47 6.3±2.8
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Maar lakes from Victoria
KXXA

Salts lakes from Western AustraliazI / / / / / / / / / / / / / / 1  
k s S \ N \ \ S \ \ N N  \  S j

Salts lakes from South Australia
I

Surface waters

GAB groundwaters
J » » » Q W K

Sediments, SA Victoria

Bulldog Shale Archaean granites

seawater

- 2 0
S 1 1 B  ( %o

Figure 2.3.

Distribution of 5 1JB values in some Australian brines, surface waters, groundwaters,

sediments and country rocks. The seawater value is from SPIVACK et al., (1987) and this 
study. GAB = Great Artesian Basin.



51

□ □ □

s e a w a t e r  —*

Victoria

■ ■ ■ ■ S. Australia 0
* Gawler

jd i ii i ii □ □ □ Yilgam

0.0002 0.0004 0.0006 0.0008 0.0010
B/CI (molar)

s e a w a t e r

Gawler

Victoria

Yilgam

S. Australia

0.7 0.8 0.9 1.0 1.1
Na/CI (molar)

<—  s e a w a t e r

□ □ □ Victoria

S. Australia ■ ■ ■ ■ ■

Gawler i  u  *
Yilgam □ □ □ □ □ □ ! □ □

1 . 1 . 1 . 1 . |

0 50 100 150 200 250 300
Total dissolved sol ids (g/l)

LEGEND
□ Maar lakes, Victoria ■ GAB, South Australia
* Gawler Block, South Australia □ Yilgam Block, Western Australia

Figure 2.4, Total dissolved solids (TDS), Na/CI and B/Cl ratios of brines from some Australian 
salt lakes
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2.6. DISCUSSION

In the following section the environments of small, maar lakes in Victoria are 

contrasted with those of the large, hypersaline playas in South Australia (SA) and 

Western Australia (WA). Whereas the maar lakes are closed systems in small volcanic 

craters, the salt lakes from SA and WA are large and complex evaporative systems that are 

open to groundwater discharge.

2.6.1. The volcanic maar lakes from Victoria.

The volcanic maar lakes are located in volcanic craters in the western district of 

Victoria, 40 to 50 km north of the Southern Ocean coast (Fig. 2.1). The salinities of 

waters from the three sampled lakes (range from 10 g/L to 60 g/L) are lower than those 

of the other Australian salt lakes (Table 2.3; Fig. 2.4). Halite and gypsum are absent 

from the sedimentary records of these lakes (BOWLER, 1970). The high-pH waters 

(8.5 to 9.0) are depleted in Ca2+, Mg2+, CO32, K+, and S0 4 2" relative to the marine 

ratios, (as normalized to chlorine) (MADDOCKS, 1967; CHIVAS et al., 1986, Table 

III). The mean Na/Cl ratio of 13 maar lakes is 0.87±0.05, similar to seawater and 

therefore suggestive of a marine (cyclic) salt origin for Cl” and Na+ in these lakes 

(MADDOCKS, 1967).

The sediments of the maar lakes are composed of soft black calcareous muds and 

consolidated clays. A large proportion of the sediments is composed of authigenic calcite, 

high-Mg calcite, proto-dolomite, and dolomite (BOWLER, 1970). The carbonate 

minerals may be a sink for Ca2+ and Mg2+, but the observed depletion of SO42" cannot 

be explained by gypsum precipitation, as sulphate minerals are not recorded in the 

sedimentary profiles of the lakes (BOWLER and HAMADA, 1971). We suggest that 

bacterial sulphate reduction by organic matter has depleted the water in sulphate and 

increased the bicarbonate content of the interstitial brines, i.e. high pH. Consequently, 

aragonite precipitation has caused the removal of Ca2+ and the decrease of the Ca/Mg 

ratios of the lakes waters (9 x 10' 3 to 3.2 x 10' 2 relative to 1.8 x 10"1 in seawater). 

Elevated sulphide contents that are associated with low sulphate contents in the sediment-
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water interface at Lake Tyrrell, northwest Victoria (BOWLER and TELLER, 1986), are 

consistent with sulphate reduction .

Lake Keilambete occupies a volcanic crater that forms a closed basin, 1.8 km in 

diameter (BOWLER and HAMADA, 1971). The marine-like Na/Cl ratios suggest a 

cyclic (marine) origin for the salts. By integrating the area of the crater (2.5 xlO6 m2), the 

mean annual precipitation of 788 mm/yr and an estimated chlorine concentration of 7 mg/1 

Cl in rainwaters (data from HUTTON and LESLIE, 1958; HUTTON, 1976), an estimate 

of the chlorine input flux yields 1.4 x 104 g/yr. A chlorine inventory of the lake waters of 

9.9 x 108 g Cl was calculated from the area, water depth (10m) and chloride concentration 

of 39,000 mg/L. Similar calculations for the other elements are summarised in Table 2.5. 

Estimates of the residence times [(mass x concentration)/(flux)] may indicate the 

"probabilities o f removal" (BROECKER and PENG, 1982), or the reactivity of the 

different ions. The calculated residence times for chloride and sodium are 71,000 and 

74,000 yr respectively, and are in fair agreement with the estimated age of formation of 

the crater lake (BOWLER 1970). Hence, chloride and sodium may have accumulated in 

the lake water since its formation. Shorter residence times (0.26 to 10 xlO3 years) are 

estimated for Ca2+, K+ , SO42" and boron (Table 2.5), that is consistent with their 

depletion with respect to chloride.

Table 2.5. Residence time estimates for several elements in Lake Keilambete, assuming 

all ions are initially derived from marine cyclic salts. Data from HUTTON and LESLIE 

(1958), HUTTON (1976) and CHIVAS et al. (1986).

Element Cone, in coastal
rain
(mg/1)

Flux

(g/yr)

Cone, in
lake
(mg/1)

Inventory

(g)

Residence 
Time 
103 years

Cl 7.0 1.4 X  104 39000 9.9 X  108 71
Na 3.9 7.8 x 103 23100 5.9 x 108 74
K 0.14 280 540 1.4 x 107 49
B 0.0016 3.4 5.6 1.4 x 105 42

Ca 0.15 300 20 5.1 x 105 1.7
SO4 0.97 1.9 X 103 100 2.5 x 106 1.3
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Both the 8UB values (range of 53.7%c to 59.2%o) and B/Cl ratios of brines 

(Table 2.3, Fig. 2.3) in the Victorian maar lakes are not marine. In Lake Keilambete 

(B/Cl)iake/(B/Cl)sw=0-59. The boron concentration and the 8n B value of the lake water 

are 5.6 mg/1 and 59.2%o, respectively. If boron had accumulated conservatively in these 

lakes, the boron concentration should be 9.4 mg/1. Consequently, the brines are depleted 

by 3.8 mg/1 B and enriched in n B by 20.2%c assuming a solely marine aerosol input. 

Similar calculations for Lake Gnotuk also yield a lower abundance of boron but an 

enrichment of n B (5.17 mg/1 and 14.7 %o, respectively).

Boron concentrations of 10 to 20 ng/g from rainwaters in marine sites were 

reported by FOGG and DUCE (1985). By using the estimated chlorine content in 

rainwaters of 7 mg/1 at Lake Keilambete, and assuming a marine B/Cl ratio for such 

rainwater, a boron content of 1.6 ng/g for rainwater at Lake Keilambete is estimated. 

Consequently, the residence time of boron in Lake Keilambete waters is calculated to be

42.000 yr (Table 2.5). This estimate is consistent with the observation of relative boron 

depletion. In contrast to chlorine that has been accumulated progressively during the last

70.000 yr, the shorter residence time of boron indicates a removal of boron from the 

system.

If the source of boron to these lakes is also cyclic, originating from seawater, 

the initial 8n B input into the lakes would be expected to have a marine isotopic signature 

(8n B = 39%c). Since 8n B of the lakes falls in the range of 53.7 to 59.2%c (Table 2.3, 

Fig. 2.3), and the B/Cl ratios are lower than that of seawater, additional processes are 

required in order to account for the n B enrichment and elemental B depletion. The 

removal of boron together with 81 *B enrichment in the maar lakes is probably the result 

of adsorption of 10B(OH)4~ onto the clay minerals in the sediments by the mechanism 

proposed by PALMER et al., (1987) and SPIVACK et al., (1987). Incorporation of 

Ca10B(OH)4+ and 10B(OH)4“ species into the aragonite fraction, producing a further 

isotopic fractionation may also affect boron isotopes as high concentrations of boron in 

aragonite minerals are reported by ICHIKUNI and KIKUCHI, (1972); FÜRST et al. 

(1976); KITANO et al. (1978) and VENGOSH et al. (1989). The sediments from the 

Victorian maar lakes have 8UB values of 11.5%o and 12.3%c, higher than those of
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sediments from other salt lakes (5n B of -3.2%o to 6.3%o; Table 2.4). This enrichment 

may be the result of the large carbonate fraction in the maar lake sediments (see Chapter 

8) that is not present in the other Australian lakes.

The large n B enrichment in the maar lakes from Victoria indicate that these lakes 

are closed systems with respect to the local groundwaters implying that the mode of B 

input is atmospheric. Boron accumulation in these lakes has been limited only by removal 

to the sediments, but not by mixing with local low n B groundwaters. This is consistent 

with the hydrological model of Lake Keilambete of input received only by direct 

precipitation and water loss only by evaporation (BOWLER and HAMADA, 1971; 

CHIVAS et al., 1985).

The high 5 U B values recorded in the maar lakes are related to interaction of 

dissolved boron with the sediments. These interactions are probably controlled by the 

water/sediment ratios. In order to evaluate the water/sediment ratios in the maar lakes of 

Victoria, a series of mass-balance equations is derived. According to BOWLER and 

HAMADA (1971), water is lost from the maar lakes by evaporation alone as thick clay 

effectively prevents water loss through the lake floor. For a rainwater flux similar to that 

of the present-day (-800 mm y r 1), a water column of about 10 metres (Lake Keilambete) 

would accumulate in tens of years. Thus, the water budget of the lakes reached a balance 

between evaporation and precipitation in the very early stages of the lake's history. 

Although the maar lakes experienced fluctuations in water level (and thus salinity) due to 

variations in the precipitation/evaporation ratio in the last 10,000 years (CHIVAS et al., 

1985), chlorine has accumulated as a closed system within the lakes.

We can apply the simple mass-balance equation of 

MwiCwi + MpCp = MwfCwf + MsfCsf (2)

where Mwi and Mwf are the initial and final masses of water 

Mp and Ms  ̂are the masses of precipitation and lake sediments, respectively; Cw* 

and Cw  ̂are the initial and final concentrations of dissolved boron in the lake waters, Cp 

and Cs^ are the boron concentrations in rainwaters and lake sediments, respectively. As it 

has been assumed that chlorine accumulates conservatively in the lake waters, the present 

chlorine content (Cl^) is a result of net precipitation, Clp is the chlorine concentration in
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precipitation (rainwaters) and CP is the initial Cl in water derived from the rocks, we 

have:

Mwi CP + MpClp = MwfClf 0 )

Solving for Mp in equations (2) and (3), and assuming that the initial boron 

derived from the tuffaceous country rocks is negligible (MwiCwi = 0) yields

MwfClf(B/Cl)p = MwfCwf + MsfCsf (4)

In the case of a homogeneous boron adsorption distribution coefficient (Kd), 

where the bulk sediments are in equilibrium with the whole solution, then Kd = Csf/Cwf. 

Substituting Csf in Equation (4) (Csf=CwfKd), dividing it by MwfCwf and Kd, and 

rewriting gives:

Msf/Mwf = l/K d[(C l/B )f(B/Cl)p ) - l ]  (5)

where (Cl/B)f and (B/Cl)p are the molar Cl/B and B/Cl ratios of the final 

solution in the lakes and of the precipitation, respectively. As Msf/M wf expresses the 

weight ratio of water to sediment (W/R), Equation 5 can be rewritten as:

W/R = K d/[(C l/B )f(B/Cl)p)- 1], (6)

By analogy to the elemental mass-balance (Equation 2), an isotopic mass balance 

equation can be derived:

MwifVRw1 + MpCpRp= MwfCwfRw4  M /C , fRsf C7)

where Rw', Rw , Rp and Rg* are the ratios of initial and final boron in

the lake, rainwaters and lake sediments, respectively. By a similar derivation we obtain 

the water/sediment (W/R) ratios of:

W/R = aKd/[(Cl/B)f(B/Cl)p(Rp/Rwf) - l ] .  (8)

where the fractionation factor a  = Rs f/Rwf.

In order to solve the W/R ratio equations, B/Cl ratios of the precipitation must 

be estimated. By combining Equations (6) and (8), an expression for (B/Cl)p can be 

derived:

(B/Cl)p = [a-1] /  [a(Cl/B)f - (Cl/B)f(Rp/Rwf)]. (9)

Applying the experimental Kd and a  values from PALMER et al., (1987) for the 

Victorian high-pH maar lakes, several (B/Cl)p and W/R ratios values have been calculated
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Table 2.6. Estimated water/sediment (W/R) ratios and B/Cl ratios of precipitation, 

(B/Cl)p5 using boron-isotope mass-balance equations for the Victorian maar lakes. The 

distribution coefficient (Kd) and isotopic fractionation factor (a) of boron adsorption is 

calculated from PALMER et al. (1987).

Lake PH Kd a (Cl/B)t Rw (B /C l)n
(xlO -*)

W/R

Keilambete 9.0 4.18 0.9795 2113 4.23259 67.8 0.31

Gnotuk 8.6 3.59 0.9777 3460 4.21062 7.7 2.15

Bullenmerri 8.8 3.87 0.9786 2564 4.21421 12.6 1.73

(Table 2.6). Using these Equations the following is obtained: (1) B/Cl ratios of the 

precipitation in the Victorian lakes are in the range of 8 x 1 0 ^  (marine values) to 6 x 

10-3 (rainwater values: MARTENS and HARRIS, 1976; FOGG and DUCE, 1985); (2) 

if we apply, in these equations, Rp values (U B /10B of precipitation) that are lower than 

that of the marine value, we obtain negative non-realistic (B/Cl)p values; and (3) the 

calculated W/R ratios are in the range of 0.31 to 2.15 (Table 2.6). Consequently, this 

model has further constrained the chemical and isotopic composition of the atmospheric 

input in the maar lakes, marine Ö^B, and a range of high to marine B/Cl ratios.

In conclusion, the maximum effect of the isotopic fractionation during boron 

adsorption would take place in conditions of low W/R ratios. However the bulk of the 

solution would be less sensitive to boron adsorption as the W/R ratios increase.

2.6.2. The salt lakes of South and Western Australia.

The playas of Lake Eyre and Lake Frome (Fig. 2.1) are large closed basins 

within large catchment areas overlying the Great Artesian Basin (GAB), South Australia. 

Halite and gypsum crusts are underlain by thick clay sediments (5 to 10 m depth). The 

internal drainage system of Lake Eyre covers an area of 1.14 million km2> receives 100-
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150 mm annual rainfall, and is subject to evaporation rates exceeding 3000 mm yr'l 

(KOTWICKI, 1988). The GAB, which underlies a large portion of the central and the 

northeastern Australian continent, was previously the site of lacustrine sedimentation at 

the end of the Cretaceous (JOHNS and LUDBROOK, 1963; JESSUP and NORRIS, 

1971). The deep groundwaters in the basin were investigated by HABERMEHL (1980). 

The basin consists of a multi-layer confined aquifer system, with aquifers occurring in 

continental quartzose sandstones of Triassic, Jurassic and Cretaceous age. The 

intervening confining beds consist of siltstone and mudstone, and are overlain by a thick 

argillaceous sequence of Cretaceous marine sediments (HABERMEHL, 1980).

The playas from the Gawler Block in South Australia and the Yilgam Block in 

Western Australia are located in Proterozoic dacitic volcanics and Archaean granites and 

greenstone, respectively. These salt lakes are also associated with halite, gypsum and 

clay minerals.

Although the salt lakes of the GAB, Gawler Block and Yilgarn Block are located 

in different geological environments, the major-element chemistry of these lakes is similar 

(Table 2.3): The salinities of the brines are in the range of 85 to 280 g/L, the brines are 

mainly composed of Na+ and Cl' and strongly depleted in Ca2+, Mg2+, CO32', K+ and 

S042"relative to the marine ratio (as normalized to chlorine). Na+Cl/TDS equivalent 

ratios in all the lakes, regardless of their locations, are in the range of 0.82 to 0.97. The 

chemical uniformity of the brines suggests that the sampling undertaken in this study is 

reasonably representative of the salt-lake systems.

Evaporation of a brine and halite precipitation from it removes equivalent 

amounts of Cl" and Na+ from the brine and the Na/Cl ratio of the brine residue is changed 

accordingly. Mass balance requires that if the Na/Cl ratio of the initial brine is lower than 

1 (e.g. seawater, Na/Cl=0.86), the Na/Cl of the residual brine will be lowered for each 

mole of precipitated halite. Conversely, if Na/Cl in an initial solution is higher than 1, 

halite precipitation would increase the Na/Cl ratio of the residual brine.

Based on (Na/Cl ratios, three main groups of waters can be identified in 

Australia:



59

(1) Brines with low Na/Cl ratios (<1). The interstitial brines from salt lakes on 

the Yilgam Block, Gawler Craton, and the Great Artesian Basin have Na/Cl ratios ranges 

of 0.82-0.98, 0.82-0.87, and 0.75-1.03, respectively (Table 2.3; Fig. 2.4);

(2) Fresh groundwaters and rivers with distinctively higher Na/Cl ratios. Na/Cl 

ratios of groundwaters from the Cretaceous aquifer of the GAB are in the range of 1.71 

to 9.57 (mean 6.05; n=17) in the east, and 1.11 to 2.20 (mean 1.37; n=5) in the west 

(HERCZEG et al., in prep.). The mean of Na/Cl ratios of rivers and freshwater lakes is 

3.82 (range of 1.55 to 6.33, n= 16; JOHNSON, 1980);

(3) Rainwaters with marine Na/Cl ratios. As reported by HINGSTON and 

GAILITIS (1976), the mean of Na/Cl ratios in rainwaters from inland locations in 

Western Australia is 0.83 (n=45).

If the fresh groundwaters of the GAB, or the river waters with the high Na/Cl 

ratios, are the major sources of Cl" and Na+ in the Australian salt lakes, then even higher 

Na/Cl ratios are expected since the brines have precipitated halite. Instead, Na/Cl ratios in 

most of the Australian salt-lakes are lower than 1 (Fig. 2.4). Halite dissolution can 

reduce the high Na/Cl ratios in the brines. Even so, the Na/Cl ratios for any mixture 

between dissolved halite and brine residue with Na/Cl>l should always be greater than 1. 

Therefore, the low Na/Cl ratios of the Australian salt lakes rule out the possibility of 

evolution of these brines by concentration of groundwaters with initally high Na/Cl ratios.

The only salt lakes with Na/Cl ratios higher than unity are those from the Great 

Artesian Basin in South Australia (Table 2.3; Fig.2.4 ). It seems that Lake Eyre and lake 

Frome are influenced by an input with Na/Cl ratio >1, i.e., discharge of the GAB 

groundwater. This source, however, cannot be the ultimate source for the salts budget of 

these lake^as halite precipitation would increase the Na/Cl ratios to » 1 .  Another source 

or sources with Na/Cl<l must also contribute salts to these lakes.

In order to obtain the Na/Cl ratios recorded in most of the Australian salt lakes 

(range of 0.82 to 1.03), another component with low Na/Cl ratios must be introduced, 

i.e. seawater (Na/Cl=0.86), or marine brines that have precipitated halite. However, the 

Australian salt lakes have probably not originated directly by evaporation of seawater as 

the sea has not penetrated inland during the Quaternary Period, and only limited



60

transgressions have occurred during the Tertiary (JOHNSON, 1980). In addition, no 

trapped, subsurface, "basinal" brines are known to exist or to discharge to the modern 

hydrological systems of the Australian salt lakes. Consequently, the bulk of the salts i.e. 

N a+ and Cl", in the Australian salt lakes must be derived from marine aerosol salts, 

originating from seawater.

The linear correlations of Na+Cl/TDS (equivalent) ratios with Na/Cl ratios (Fig. 

2.5A), Na+Cl/TDS with Mg/Cl (molar) ratios (Fig. 2.5B), and Na/Cl with Br/Cl ratios 

(Fig. 2.5C) of brines from Western Australia suggest that the bulk of the solutes in these 

systems is controlled by halite dissolution, originating from marine salts. Most data 

points in Fig. 2.5A, 2.5B, and particularly in Fig. 2.5C lie below the theoretical mixing 

line between marine salts and pure NaCl solution . This may indicate mixing of NaCl 

solution with a brine having Na+Cl/TDS ratio higher and/or Na/Cl ratio lower than the 

marine value. During precipitation of gypsum from evaporated seawater, the Na+Cl/TDS 

ratios (in equivalents) will increase from the marine value of 0.84 to 0.86 due to the 

removal of Ca2+ and SO42" (the "gypsum" arrow in Fig. 2.5A ). By removal of all the 

sulphate and its balanced cation (in milliequivalents) from evaporated seawater, 

Na+Cl/TDS ratios would increase to 0.93 ("sulphate reduction" arrow in Fig. 2.5A). In 

some low-pH lakes, such as Lakes Hann and Gilmore, alunite precipitation 

(McARTHUR et al., 1989; BIRD et al., 1989) may be an alternative mechanism for 

sulphate removal. Therefore, the shift of the data points from the marine-NaCl mixing 

line may be the result of gypsum precipitation, sulphate reduction and/or alunite 

precipitation that has removed much of the sulphate and caused high Na+Cl/TDS ratios in 

the Western Australia brines. This is consistent with low SO4/CI ratios of some the 

brines from Western Australia (range 6 x 10'3 to 6.9 x 10"2) that are lower than the 

SO4/CI ratios of seawater ( 5.0 x 10"2).

Alternatively, the offset of the data points from the seawater-NaCl solution 

mixing lines can be the result removal of sodium, i.e., Na/Cl ratio lower than that of 

seawater (the "Na" arrow in Fig. 2.5A ). This is apparent in Fig. 2.5C where the offset of 

the data points may be due to either depletion of bromide and/or sodium. Cation exchange 

reactions on clays can possibly remove Na+ by replacement of Ca2+, Mg2+ and K+ and
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NaCl solution

seawater

gypsum sulfate reduction

0.88 0.92
Na+CI/TDS (eq) ratios

Figure 2.5. A. Na/Cl (molar) ratios versus Na+CI/TDS ratios (in equivalents) in brines 

from Western Australia. Most data points plot below the mixing line of marine salts and NaCl 

solution (see text).
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Figure 2.5. B. Mg/Cl (molar) ratios versus Na+CI/TDS ratios (in equivalents) in brines 

from Western Australia.
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Figure 2.5. C . Br/CI versus Na/CI (molar) ratios in brines from Western Australia. Most 

data points plot below the mixing lines of marine salts and NaCl solution (see text).
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hence reduce the Na/Cl ratio (CARPENTER, 1978). The brines from Australian salt lakes 

are not, however, Ca-chloridic as their Ca/S04 ratios are always lower than 1 (in the 

range of 0.08 to 0.98). It seems that selective uptake of sodium by cation exchange has 

had only minor affects if any, on of the general chemistry of the brines.

Finally, based on the general chemical composition, it is suggested that the bulk 

of the salts of the Australian salt lakes have originated from marine aerosol salts. 

Additional processes such as halite dissolution, halite precipitation, gypsum precipitation, 

sulphate reduction, and alunite precipitation have modified the initial largely marine 

composition of the Western Australian brines. Apart from halite dissolution and halite 

precipitation, the chemical variations of the brines cannot distinguish between these 

processes. Other elements however, e.g. Ca2+, Sr2+, CO32" and K+, and Si02 are 

partly controlled by rock weathering (CHIVAS et al., 1986; CHIVAS et ah, 1988; 

NELSON and McCULLOCH 1989), precipitation of calcite, dolomite, sepiolite, and 

amorphous silica during the genesis of calcrete in the drainage zones (MANN and 

DEUTSCHER, 1978), and reactions with authigenic and detrital sediments within the 

salt lake basins.

The boron isotope composition of fresh and brackish waters from various 

locations in Australia may provide constraints on the sources of boron in the Australian 

salt lakes. This is mainly because the boron isotopic composition in these waters is not 

affected by some of the processes that occur within the salt-lake environment. Values of 

Ö^B of these surface waters (28.2%c to 34.9%o, Table 2.3) overlap in part with those of 

the brines of the salt lakes but are distinct from the composition of groundwaters of the 

Great Artesian Basin (S^B = -16%o to 2.2 %6) (Fig. 2.3).

The relatively narrow range of 8 ^ B  values recorded in the fresh and brackish 

surface waters from different locations in Australia, may indicate a similar source (or 

sources) of boron. The relatively high Ö^B values of these waters may indicate their 

origin by a mixture of a large fraction of cyclic boron, originating from seawater, with a 

subordinate amount of terrestrial boron with a low S^B value. In contrast, the lower 

S^B values (Fig. 2.3) and the high B/Cl ratios of the groundwaters from the Great
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Artesian Basin indicate that boron in these waters is terrestrial, and is derived from 

leaching the aquifer rocks.

The b1JB value of Quibabbin Soak (33.0%c) and Acraman Bore (31.2%o) in the 

drainages of Lake Brown (bn B= 27.6%o) and Lake Acraman (bn B= 34.4% c),  

respectively, show that there is no substantial difference between the boron isotopic 

composition of the brackish waters and the salt lakes. This may indicate that both the 

surface waters and the salt lakes have a common boron source or sources, i.e cyclic salts 

of marine origin. There are parallels with the marine-dominanted b ^ S  values which are 

similar for salt-lake brines and the dissolved sulfate of regional groundwaters on the 

Yilgarn Block (CHIVAS et al., 1990) However, the bn B value of a freshwater spring in 

the drainage of Lake Keilambete, Victoria, (28.2%c) is lower than that of the lake (bn B = 

59.2%o).

The Na/Cl ratios of salt lakes from South and Western Australia suggest marine 

(cyclic) input. If one assumes that boron in these lakes is also of largely marine origin, 

the variations of its isotopic composition (bn B = 25.5%o to 48%c, Fig. 3) and the 

conspicuously low B/Cl ratios require special explanation. The processes that can 

decrease B/Cl ratios and affect the boron-isotope composition of the interstitial brines are: 

1) boron adsorption onto clay minerals; and 2) mixing with a low-B and bn B-value 

reservoir, e.g. groundwater. Dissolution of halite would reduce the B/Cl ratios but not 

the bn B values. As boron in the salt lakes from South and Western Australia is depleted 

even with respect to the mixing line between marine salt and NaCl solution (Fig. 2.6), it 

seems that boron has also been removed also by clay adsorption.

This study has shown that in evaporation of seawater to the degree of halite 

saturation, the boron concentration of evaporated brine increases conservatively and the 

boron isotope composition of the brine is not affected. The variations in the isotopic 

composition of boron in the Australian salt lakes is therefore not related to evaporation 

and halite precipitation or halite dissolution processes. In lakes where bn B is higher than 

that of seawater, adsorption processes appear to control the isotopic composition of boron 

in the brines. For such cases the water/sediment (W/R) ratio must have been low enough 

for sediment adsorption to effect the boron isotope composition of the bulk solution, e.g.,
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Figure 2.6. B/Cl versus Na/CI ratios in Australian salt lakes. Most of the lakes are 

depleted in boron with respect to the mixing line between marine salts and halite. The 

vector rosette describes schematically the effects of adsorption, halite dissolution and 

precipitation processes. Note that the Western Australian ("WA") and Great Artesian 

Basin ("GAB") brines have lower B/Cl ratios than those of the Victorian maar lakes.
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Lake Gilmore, "the salt lake" near Tammin, and Lake Raeside. In contrast, in lakes 

where the 5 1 value is lower than that of seawater, a component of groundwater with 

low S ^ B  value may have mixed with the brines. For such cases we can not evaluate the 

W/R ratio as the system is not closed. Consequently, brines with 6 n B<39%o have a 

"terrestrial" component, i.e. boron that has been leached from the country rocks.

If the boron isotope signature is modified by clay adsorption, one might argue 

that the initial boron input into the salt lakes of Western and Southern Australia is solely 

terrestrial, leached from country rocks and modified by n B enrichment due to the 

reactions with clay minerals. We have shown that for the case of the Victorian maar lakes 

the initial 8n B must be marine. Also the general chemistry and the Na/Cl ratios of most 

of the Australian salt-lakes (Na/Cl<l) suggest that both Cl" and Na+ cannot be derived 

entirely from the high Na/Cl groundwaters of the Australian continent.

SWIHART et al., (1986) have shown that ancient marine evaporite borates are 

isotopically heavier than their non-marine counterparts. The S1 *B results reported in this 

study demonstrate that in common evaporites such as the inland Australian salt-lakes, this 

is not the case. Therefore high S ^B  values do not necessarily indicate deposition in a 

marine environment although the salts themselves may have a marine origin.

The Australian salt lakes represent a terrestrial evaporitic environment in which 

the brine chemistry (Na/Cl ratios and 8 n B) and the authigenic minerals (gypsum and 

halite) are similar to that of evaporated seawater. Australia has had a long history of 

surficial weathering. Some land surfaces and weathered profiles have been preserved on 

the surface since their formation in the late Palaeozoic, Cretaceous and Tertiary (BIRD 

and CHIVAS, 1988; 1989). A large input of marine cyclic salts to an exposed continental 

surface can result in the chemical composition of the terrestrial brines being similar to that 

of evaporated seawater. Any interpretation of ancient evaporite environments, e.g. 

HARDIE (1984), must therefore take this complexity into account as exemplified by the 

example of the Australian salt lakes.

The high 8 n B values of the inland Australian salt lakes is interpreted as 

reflecting a source largely derived from marine aerosols, internal (adsorption) processes 

within the basin, and mixing with terrestrial waters. This may imply that some terrestrial



6 8

inputs to the ocean do not necessarily have a low 6n B value. The possibility of high 

51]B values for some terrestrial inputs to the ocean need consideration in attempts to 

reconstruct the global mass-balance of boron in the oceans (McCULLOCH, in prep.).

2.7. CONCLUSIONS

1) The following geochemical criteria (5n B, B/Cl and Na/Cl ratios) are 

proposed for the recognition of brine origins: A) high 8UB (>39%o), low B/Cl, and 

Na/Cl<l indicate a marine-origin brine and boron adsorption onto clay minerals; B) low 

S^B (<39%c) and Na/Cl<l indicate a marine-origin brine and mixing with terrestrial (low 

Ö^B ) groundwaters; C) marine 5n B values, high B/Cl and low Na/Cl (< 0.86) indicate 

evaporation and halite precipitation from seawater; D) low B/Cl and Na/Cl~l indicate 

halite dissolution; and E) low §UB (~0%o), high B/Cl and N a/C l» l indicate a terrestrial- 

origin brine. A partial exception to these proposed criteria are those brines where low 

Na/Cl ratios (< 1) are achieved in terrestrial solutions due to dissolution of K- and Mg 

chlorides. Such cases, although rare, have been identified (e.g. the Qaidam Basin, China; 

Chapter 4).

2) The Na/Cl ratios of a brine would not be affected by boron adsorption onto 

clay minerals and should reflect the original pre-adsorption values of the waters, the 

boron isotope composition is sensitive to adsorption but not to evaporation, halite 

precipitation, and dissolution. Therefore, by using both the Na/Cl ratios and 8 ^ B  values 

it is possible to estimate the origin of a surficial fluid (marine versus non-marine), and 

identify processes of adsorption onto clay minerals, evaporation, halite precipitation and 

halite dissolution.

3) The general chemistry of the Australian salt lakes indicate that the bulk of the 

salts are cyclic, originating from seawater. Halite precipitation and dissolution, gypsum 

precipitation, sulphate reduction, and alunite precipitation are among the different 

processes that have altered the original marine signature of the Australian brines, 

although it can still be recognized.
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4) The cyclic origin of the salts in the Australian salt lakes and surface inland 

waters is also supported by boron isotope geochemistry. The 5n B of these solution is 

either similar to seawater boron isotopic composition, or its value can be accounted for 

by a combination of adsorption and mixing with a large fraction of terrestrial water.

5) Although boron is considered a conservative element in evaporitive 

environments, this study shows that it can be removed from the liquid phase by reacting 

with clay minerals. The 8 ^ B  and B/Cl ratios in a solution reflect boron reactivity with 

clays. The depletion of elemental boron and enrichment of ^ B  relative to seawater are 

recorded in some Australian lakes and indicate removal of B and associated isotopic 

fractionation.

6) Lake Eyre (-100 km x 80 km) is located within a large continental basin, 

near the centre of the Australian continent. The basin contains evaporitic sediments such 

as gypsum and halite, and its brine chemistry and boron isotope composition are similar 

to that of evaporated seawater. All these factors do not necessarily indicate deposition in a 

marine environment or connection to seawater. This may have a general implication in 

interpretations of ancient evaporite environments. The possibility of the creation of "seas 

within continents" must therefore be considered in attem pts to interpret 

palaeoenvironments.
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Chapter 3

BORON ISOTOPE SYSTEMATICS IN THE FRACTIONAL 

EVAPORATION OF SEAWATER

3.1. INTRODUCTION

One of the main problems in the identification of the origin of ancient evaporites 

is the discordance between the mineralogical composition of potash evaporites and the 

mineralogical sequences predicted by the evaporation of seawater (HARDIE, 1984; 1990; 

LOWENSTEIN and SPENCER, 1990). In particular, the absence of MgS04 salts in 

evaporites from the geological record is in conspicuous contrast to the predicted 

paragenesis of marine evaporite minerals where MgS04 is the dominant component 

(HARVIE et al., 1980; HARDIE, 1984; 1990). Several explanations have been 

postulated in an attempt to understand this phenomena among them are syndepositional 

and post-depositional modification processes (see LOWENSTEIN and SPENCER 

1990).

HARDIE (1984; 1990) suggested that the MgS04-poor potash evaporites 

originated from terrestrial solutions in non-marine environments where the Ca-chloridic 

signature of their associated brines is a result of high-temperature water-rock 

interactions.

The distinctive isotopic composition of boron in seawater makes it an attractive 

geochemical tracer for discriminating marine from non-marine evaporites. Natural boron 

has two stable isotopes, (80.1%%) and (19.9%). Seawater is largely enriched 

in H B relative to average terrestrial rocks due to isotopic fractionations which occur 

while boron is taken from seawater onto detrital clays and weathered basalts 

(SCHWARCZ et al., 1969; SPIVACK and EDMOND, 1987; SPIVACK et al., 1987). 

The selective removal of ^ B  and elemental boron into solid phases depends on the 

distribution of boron species in the solution . The relative proportions of boric acid and 

borate ion species in the solution controls the distribution coefficient and isotopic 

fractionation of boron in the processes of clay adsorption and precipitation of borate
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1989).
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In order to evaluate the potential of boron-isotope geochemistry as a tracer for 

the origin of ancient evaporites, i.e. to define the "rules of the game", we chose to study 

laboratory evaporation of seawater. Numerous investigations have examined the 

variations of brines and salts during evaporation of seawater, both in artificial and natural 

conditions (e.g. ZHEREBTSOVA and VOLKOVA, 1966; McCAFFREY et al., 1987 and 

references therein). In this study we examined in laboratory controlled conditions the 

variations of B, Br, Li concentrations and boron isotopes in brines and precipitates during 

fractional evaporation of seawater.

3.2. EX PE R IM E N T A L

Two sets (Y and R series) of 20 litres of Mediterranean seawater were evaporated 

in fume-hoods, under clean conditions where the air was filtered. At various stages of 

evaporation, measured fractions of residual brines and all the precipitated salts were 

separated from the main brine reservoir for chemical and isotopic analyses. In each stage 

the residual brine was not allowed to interact with brines and salts of previous stages. The 

brines were filtered several times after separation and the precipitates were rinsed with 

ethanol, dried at 60OC and crushed. Further details of the technical procedures of the 

fractional evaporation of seawater and the general chemistry results are reported in RAAB 

and SPIRO (in prep.).

Negative thermal-ionization mass spectrometry techniques (VENGOSH et al., 

1989) were used to determine boron isotopic compositions. Brines and H20-dissolved 

salts at the various stages of evaporation were directly deposited onto Re filaments and 

evaporated to dryness before loading into a reverse-polarity, NUCLIDE-type, solid- 

source mass spectrometer. 15 sample solutions, including NBS SRM 951 standard 

solutions, were simultaneously loaded and analysed in the mass spectrometer over a day 

or two. The long term 2-sigma standard error of NBS SRM 951 replicates is 1.5%o at 

the 95% confidence limit. Boron abundances were determined by isotope dilution mass
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spectrometry.
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3.3. RESULTS and DISCUSSION

The experimental evaporation of Mediterranean seawater yielded

progressively concentrated brines and soluble salts that are predicted for fractional 

evaporation of seawater (ZHEREBTSOVA and VOLKOVA, 1966; HARVIE et al., 1980; 

McCAFFREY et al., 1987). Results of B, Li, Br, and boron-isotope analyses of brines 

and salts are presented in Table 3.1. In the artificial experimental evaporation of seawater 

where the volume, boron concentrations and hence the amount of total boron in each of 

the evaporation stages are known, mass-balance calculations can evaluate the expected 

concentration of boron (or other conservative element) and hence the theoretical 

"absolute" degree of evaporation at different stages. The degree of evaporation of a brine 

can be expressed as the the ratios of a conservative element to its concentration in the 

initial solution, i.e. seawater. An error may be introduced into the mass-balance estimates 

due to the aliquots of the separate fractions which were taken for chemical analyses and 

measured by volume. Assuming that an element accumulates conservatively in the 

solution, and considering the amounts which were removed during the experiment for 

chemical analyses, one can calculate the "absolute" degree of evaporation. The mass- 

balance calculations for boron ("e (B)"), lithium ("e (Li)"), bromide ("e (Br)") and the 

"absolute" degree of evaporation ("e calc") are summarized in Table 3.1.

Bromine, lithium, and boron are considered as conservative elements in 

evaporation processes and thus were used in the past as indicators of the degree of 

evaporation, e.g. ZHEREBTSOVA and VOLKOVA (1966) and McCAFFREY et al., 

(1987). The concentrations of these elements do indeed increase with evaporation (Fig. 

3.1); however, when the actual (=volumetric) evaporation of boron, lithium and bromide 

is compared to the expected (calculated) degree of evaporation of the experiments ("e 

calc"), a deficiency of these elements in the late stages of evaporation (Fig. 3.2) is 

demonstrated. The measured and expected values remain on a line with a slope of 1 up to 

a degree of evaporation of about 40. With further evaporation, the degrees of evaporation
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TABLE 3.1. Concentrations (in mg/1) of boron, lithium, bromide, and 5 ^ B  
values (in permil) in brines, and boron abundances (in ppm) and 8 ^ B  values in co­

precipitated salts during fractional evaporation of seawater. The calculated degree of 
evaporation (" e calc ") is estimated by mass-balance. e(B), e(Li) and e(Br) are degrees 

of evaporation calculated for B, Li and Br, respectively. The abbreviations for the salts 
precipitated from each aliquot are: ha=halite; mg=Mg sulfates; k,mg=K and Mg 
sulfates.

sample 
and field

B Li Br 5 n B B S ^ B e
calc

e(B) e(Li) e(Br)

brines salts

seawater 5.33 0.24 75 39 - - 1 1 1 1

R-5 (ha) 53.17 - 630 41.7 - - 9.5 9.9 - 8.4

Y -ll  (ha) 82.82 - 1261 - - - 18.6 15.5 - 16.8

Y-13 (ha) 130.85 - 1681 - - - 25.8 24.5 - 22.4

Y-14 (ha) 158.63 7.00 1978 43.4 - 13.2 32.9 29.8 29.4 26.4

R-15 (ha) 152.77 - 2169 42.9 - - 34.7 28.7 - 28.9

R-16 (mg) 192.29 8.29 2534 46.1 2.5 14.0 42.3 36.1 34.8 33.8

Y-15 (mg) 222.62 - 2766 - - - 47.2 41.8 - 36.9

Y-16 (mg) 266.38 10.63 3254 44.1 8.5 11.4 54.8 49.9 44.7 43.4

Y-17 (mg) 369.11 14.41 4580 46.5 16.4 24.2 82.1 69.3 60.6 61.0

R-18 (k,mg) 603.50 23.69 7080 54.7 38.5 36.0 155.7 113.2 99.6 94.4
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Figure 3.1. Concentrations of bromine (A), boron (B), and lithium (C) versus the calculated 
degree of evaporation during the fractional evaporation of seawater.
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Figure 3.2. Measured versus calculated degree of evaporation (D.E.) of B, Br and Li in 

marine brines. The theoretical degree of evaporation was calculated by mass balance, 

assuming that the conservative elements in the evaporation experiment do not enter the 

solid phases. Note the depletion of B, Li and Br relative to the expected ("absolute”) 

degree of evaporation in brines beyond a degree of evaporation of about 40.



as determined from the B, Li and Br abundances deviate negatively from that line. The 

three elements are thus not truly conservative - they do not accumulate solely in the liquid 

phase. In the late stages of evaporation, the measured apparent degree of evaporation of 

boron is higher than for lithium, which is, in turn, higher than for bromine (Fig. 3.2), 

yet considerable amounts of all these elements are lost to the solid phases.

The gradual increase of S ^B  values of the brines (up to 54.7%c), the relatively 

low 8*1 B values of the coprecipitated salts (8 ^ B =  11.4 to 36.0%o; Fig. 3.3), the 

gradual increase of B content of the salts, and the relative depletion of B in the brines 

during the fractional evaporation of seawater suggest incorporation of some boron into 

the precipitates. An alternative mechanism for boron (and Br and Li) removal is trapping 

in fluid inclusions within the salts. Such mechanism, however, cannot affect the boron 

isotopic compositions of both the brines and the co-precipitated salts. Fractionation of 

boron isotopes during fractional evaporation of seawater can be described by using 

Rayleigh distillation terminology:

(511Bb+1000) = (511Bsw+1000) F « ’1 (!)

where ö ’ ’ B b and 5* ’Bsw are the S” b values of the brines at different stages 

of evaporation and the initial seawater, respectively; F is the fraction of boron remain in 

the solution and a  is the "effective" isotopic fractionation that can be defined as

a  = (8” b s+1000) / (8” Bb+1000) (2)

where 8’ ’ Bs is the S” B of the precipitating salts.

Applying Equation (2), the empirical isotopic fractionation factor for the bulk of 

the precipitates during evaporation of seawater is estimated as 0.974+0.006 (n=5, Table 

3.1).

The distribution of boron species, i.e. the ionization of boric acid and the 

formation of borate ion-pairs (e.g. MgB(OH)4+) is dependent on the pH, ionic strength 

and chemical composition of the solution (BRYNE and KESTER, 1974; REARDON, 

1976; HARSHEY et al., 1986; ROGERS and VAN DEN BERG, 1988). HARSHEY et 

al. (1986) have shown that with increasing ionic strength (up to 6 molar) the pK* values 

of boric acid increase, i.e. the fraction of boric acid in the solution increases. As the pH
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Figure 3.3. Iß  values of evaporated seawater (open squares) and coexisting

precipitated salts (filled squares) versus the degree of evaporation for the experimental 

fractional evaporation of seawater. Note the relative enrichment and depletion of of the 

brines and the salts for degrees of evaporation beyond 30.
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of seawater decreases with evaporation (ZHEREBTSOVA and VOLKOVA, 1966; 

McCAFFREY et al., 1987), AKSENOVA et al. (1989) have demonstrated that during 

evaporation of seawater the predominant form of dissolved boron is boric acid (99.9%).

KAKIHANA et al. (1977) and 01 et al. (1989) suggested that the distribution of 

boron isotopes between two chemical species depends on the isotopic reduced partition 

function ratios ("f*") of the species. The heavier isotope, 1*B is preferentially 

fractionated into the species with the larger f* values. The f  values of B(0H)3 and 

B(0H)4_ species have been calculated experimentally by KAKIHANA et al. (1977) as 

1.2008 and 1.1780 respectively, at 25°C, i.e., B(OH)3 species would be enriched in H ß  

relative to B(OH)4_.

The respective enrichment and depletion of ^ B  in the brines and precipitates, 

during fractional evaporation of seawater (Fig. 3.3) may be related to the isotopic 

fractionation between boron species. While boron in the solution is mainly composed of 

boric acid and hence tends to be enriched in 1 *B, it seems that the borate ion (together 

with 10ß) js preferentially removed from the solution and incorporated in the precipitated 

salts.

The calculated fractionation factor (a) for the isotopic exchange of B(OH)3 and 

B(OH)4- species at 25°C is 0.981 (KAKIHANA et al., 1977), or 0.969, (PALMER et 

al., 1987). Applying Equation (1) and the fractionation factors suggested by 

KAKIHANA et al. (1977), PALMER et al. (1987), and determined by the brine-salt 

pairs (Equation 2), the fractions of boron remain in the solution (F) at different degrees of 

evaporation are solved and illustrated in Fig. 3.4. The fractionation factor obtain in this 

study (an average of 0.974±0.006) is similar in sign and magnitude to that suggested by 

KAKIHANA et al. (1977) and PALMER et al. (1987). At a degree of evaporation of 

155, about half the quantity of boron is removed by precipitating salts (Fig. 3.4).

VALYASHKO (1970; and references therein) has shown that during 

evaporation of seawater boron is precipitated mainly in the form of magnesium 

chloroborate which in diagenesis is converted to boracite (Mg3Cl[B7 0 i3]). In addition, 

AKSENOVA et al. (1989) have demonstrated that borate minerals can crystallize from 

evaporated seawater that has not yet reached the eutonic state. Evaporated seawater at the
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cc= 0.969

0.981

Fraction of boron in solution

Figure 3.4. The 5 ^ B  values of residual seawater versus the calculated fraction of boron 

remaining in solution during the fractional evaporation of seawater. The two lines were 

calculated using the fractionation factors suggested by KAKIHANA et al. (1977) (0.981) 

and PALMER et al. (1987) (0.969). The data points were calculated by the fractionation 

factor obtained from the salt-brine pairs.
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stages where magnesium sulfate and potash salts are deposited, are close to saturation 

with respect to various Mg-borate minerals (ascharite, kaliborite, and pinnoite) 

(AKSENOVA et al., 1989). The mechanism of boron removal from the highly 

evaporated seawater may therefore be by direct precipitation of Mg-borate minerals 

and/or formation of a magnesium-borate ion pair (MgB(OH)4+) and coprecipitation with 

the salts. This is consistent with the coordination number of four of boracite 

(VALYASHKO, 1970) which allows the preferential removal of B(OH)4~ and hence 

Other borate phases with atomic configurations which include both boron species 

(OI et al., 1989) cannot exclusively remove ^ B  from the solution.

3.3.1. Applications for tracing the origin of evaporites

The large fractionation of boron isotopes during late stages of evaporation of 

seawater can place additional constrains on the geochemical application of this tracer. It 

has been shown that the high reactivity of boron and the preferential incorporation of ^ B  

into clay minerals would increase the 5^B  value of a solution where low water/sediment 

ratios pertain. Also brines with high 5* *B values in non-marine locations can be derived 

from marine-origin atmospheric salts, as demonstrated for some Australian salt lakes 

(Chapter 2).

The results reported in this study indicate that high b ^ B  values in brines can 

also be the result of isotopic fractionation associated with the incorporation of boron into 

evaporite minerals. This constraint, however, is limited to evaporite systems with very 

high degrees of evaporation; so high , that they are relatively scarce in the geological 

record. In contrast, in evaporite environments where the brines have evolved only to the 

stage where halite is precipitated, the isotopic composition of boron is not controlled by 

evaporation processes (see Chapter 2)

The relationship between the "conservative" elements (B, Li, Br) and S^B  can 

be used to infer the origin of brines. As shown in Fig. 3.2 the degree of conservation 

during evaporation of seawater is in the order of B>Li>Br, i.e., boron is the most 

conservative. One can reconstruct the history of a brine by using these parameters. Brines 

with high 8*1 B values (higher than that of seawater) associated with marine or higher
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ratios of B/Li, must have evolved from seawater through evaporation and precipitation 

of potassium and magnesium salts (and/or borate minerals). In contrast, brines with high 

5l values that are associated with low B/Li or B/Cl ratios indicate preferential removal 

of boron via isotopic fractionation and hence interaction with clay minerals. The latter 

case is demonstrated in the evolution of the Dead Sea, Israel. High S ^ B  values in the 

range of 50%c to 56%c, low B/Li and B/Cl, high Li/Cl and Br/Cl, marine Li/Br ratios, and 

marine 5^Li values of the surface brine of the Dead Sea may indicate that (1) the salts in 

the Dead Sea were derived from seawater, probably the Pliocene Mediterranean; and (2) 

boron has been partially removed by adsorption onto clay minerals (Chapter 5).

During fractional evaporation of seawater, the salts are depleted in their 5 ^ B  

values by 26±6%c (1000 In a) relative to their coexisting brines. This difference

can also be a useful tool in deducing the origin of evaporite deposits. The boron isotope 

composition of potassium- and magnesium chloride minerals should reflect therefore the 

isotopic composition of their parent brines. In the case of the Dead Sea, which is enriched 

in H ß  (Chapter 5), one would expect also precipitation of ^B-enriched salts, with 

5l-B values of 30±6%o. However, a carnallite sample from a core at Mt. Sdom, adjacent 

to the Dead Sea (see Fig. 5.1, Chapter 5), has a S ^B  value of 12.7±1.5%c. The Ö^B 

value of the carnallite suggests that it was precipitated from a brine with 8* *B value of 

39%c, i.e. seawater, and confirms its marine origin, e.g. ZAK (1967). Consequently the 

boron isotopic composition of the investigated carnallite puts an additional constraint on 

the evolution of the Dead Sea. Assuming that the boron isotopic composition of the 

buried carnallite has maintained its original signature, i.e., has not been affected by 

recrystallization, the low 8 ^ B  value may indicate that adsorption processes (that caused 

the high 8^B  values of the Dead Sea; Chapter 5) occurred largely after the deposition of 

potash salts in Mt. Sdcm.

It is suggested that the isotopic fractionation of boron that is related to salt 

precipitation at the extreme stages of evaporation controls the boron isotope variations in 

evaporite environments. Halogenesis of seawater (8^B  = 39%c) and terrestrially derived 

brine (8 ^B  = 0±5%c), in a closed system would result an appreciable enrichment and 

depletion of the evaporated brines and precipitated salts in ^ B , respectively, relative to
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their parent solutions. Assuming an a  of 0.974±0.006, the marine and non-marine brines 

would have 5 ^ B  values in the ranges of 39%e to 55%c, and 0%o to 16%c, whereas the 

coexisting marine and terrestrial precipitates would have 5 ^ B  values of ll%c to 36%c 

and -26%c to 0%o, respectively. The predicted range of 5 ^ B  values for marine and non­

marine salts overlap respectively with those of marine and non-marine borate minerals, 

reported in SWIHART et al. (1987) and 01 et al. (1989) (Fig 3.5).

01 et al. (1989) suggested that the boron isotopic composition of borate salts is 

related to their atomic configuration, i.e. the proportion of boron species in the mineral. 

Boron minerals can be composed of 100%-B04 (boracite), 66%-B04 (colemanite), 60%- 

BO4 (ulexite), and 50%-BC>4 (borax), and hence always depleted in ^ B  relative to their 

parent brines that are predominantly composed of boric acid, e.g. AKSENOVA et al. 

(1989). Consequently, 5 ^ B  variations of borate salts in the geological record are related 

both to the boron isotopic composition of their parent brines and to the fractionation of 

boron isotopes (Fig. 3.5).

Selective uptake of ^ B  by borate salts can also explain the conspicuously low 

5* -B of non-marine borates (5* AB= -30%c to 8%o\ SWIHART et al., 1987) and of some 

tourmalines (8 ^ B  as low as -22.8%o; SLACK et al., 1989; PALMER and SLACK, 

1989), relative to the S ^ B  value of the continental crust (5^B=-3±5%o; SPIVACK, 

1986). If the * Iß-depleted tourmalines originated from non-marine borates (SLACK et 

al., 1989; PALMER and SLACK, 1989) their boron-isotope signature may reflect early, 

low-temperature, isotopic fractionation of boron.

In conclusion, by using the boron isotopic signature in potassium- and 

magnesium salts one can reconstruct the origin of ancient salt deposits and the nature 

(marine versus non-marine) of their parent brines.



non-marine borate minerals marine borate minerals

non-marine salts non-marine brines

marine salts marine brines

\  /
Terrestrial rocks seawater
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Fig. 3.5 Predicted S ^ B  variations of marine brines, marine salts (magnesium- and 

potassium sulphate minerals), non-marine brines, and non-marine salts, assuming a 
fractionation factor for salt precipitation from brine of 0.974. The model considers 
evolution of marine and non-marine brines in closed systems, in a manner that is similar 
to the seawater-evaporation experiment. Boron in non-marine original solution is derived 
from the terrestrial crust (5* ^B=-3±5%o; SPIVACK, 1986). Note the respective overlap 
of the predicted 5 ^ B  values of the marine and non-marine salts with those of marine 

and non-marine borate minerals, reported in SWIHART et al. (1987) and 01 et al. 
(1989).
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Chapter 4

BORON ISOTOPE GEOCHEMISTRY OF NON-MARINE 

BRINES FROM THE QAIDAM BASIN (CHINA)

4.1. INTRODUCTION

Although salt lakes from terrestrial environments are not abundant in the 

geological record, the characterization of such deposits has important tectonic applications 

such as the identification of initial rift valley proto-oceans (HARDIE, 1984; KINSMAN, 

1975; EVANS, 1978). The Eocene Green River Formation with its valuable trona and oil- 

shale deposits (BRADLEY, 1964; BRADLEY and EUGSTER, 1969; EUGSTER and 

HARDIE, 1973) and the Quaternary deposits from The Great Basin, Mojave Desert 

(HARDIE, 1968; JONES, 1966) are good examples of typical non-marine environments. 

Yet, the chemical composition of some non-marine brines and their associated minerals 

are not different from that of evaporated seawater and marine salts, giving additional 

uncertainties in distinguishing marine from non-marine evaporites (HARDIE, 1984).

The chemical and isotopic composition of brines in modem closed basins 

contain valuable information on the origin of the salts and evaporation processes. The 

interpretation of the depositional environment of ancient evaporites can therefore be based 

on their modem equivalents where the depositional conditions are known.

The large variations in * Iß /lO ß  ratios in nature and particularly the distinctive 

isotopic composition of boron in seawater relative to that of the terrestrial crust makes 

boron isotope geochemistry a potential candidate for tracing the origin of evaporites 

(SCHWARCZ et al., 1969; SWIHART et al., 1986). As part of a study of boron isotopes 

in m odern non-m arine environments, the general chemistry and boron isotope 

geochemistry of the Qaidam Basin have been investigated.

The Qaidam Basin located in the northern Qinghai-Xizang (Tibet) Plateau, 

China, is a typical 'terrestrial basin' that has evolved since the Jurassic (CHEN 

KEZAO and BOWLER, 1986). Brines from the basin are characterized by high salinity
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Credit erf
and extremely high potassium, boron and lithium contents, severalmagnitude higher 

than those of evaporated seawater (QIAN ZIQIANG and XU AN ZHIQIANG, 1985).

Several early studies analysed the boron isotopic composition of modem or near­

modem borate deposits from non-marine environments (PARWEL et al., 1956; FINLEY 

et al., 1962; McMULLEN et al., 1961). However, due to analytical difficulties 

contradictory results were reported. SWIHART et al., (1986) interpreted the origin of 

ancient borates according to their boron isotope composition. They distinguished 

ancient evaporite borates with high 8 ^ B  values (18.2 %o to 31.7%o) and low 8 ^ B  

values (-21.9%c to 0.3 %c), and attributed the enrichment of * *B in the borates to their 

marine origin.

This chapter attempts to monitor water composition from dilute inflows to 

concentrated brines in the Qaidam Basin. We analyse different geochemical tracers, 

including boron isotopes, in an attempt to use these parameters as geochemical tools to 

investigate the origin of salts.

4.2. THE QAIDAM BASIN

The Qaidam Basin is located in the northern margin of Tibet Plateau (Fig. 4.1) at an 

elevation of 2800 m. Surrounded by high mountains (up to 5000 m), the large basin is 

isolated from oceanic air masses and has a mean annual precipitation of 25 mm to

evaporation of 3000 mm. Streams draining snow-capped mountains to the basin margin 

terminate in a series of saline lakes. The area lies within a region of strong northwesterly 

winds that transport large quantities of loess (BOWLER et al., 1986). The basin consists 

of clastic sediments, salt lakes and dry playas. The geological history of the basin is well 

reviewed in CHEN KEZAO and BOWLER (1986): the modem deposits in the Qaidam 

Basin are underlain by a thick pile of sediments. Continental sedimentation has continued 

since the earliest known deposits, dated as Jurassic, that are composed of coal units and 

clastic red beds. These deposits are unconformably overlain by fluviatile Lower Tertiary 

sediments. During the Neogene, Miocene and Pliocene, lacustrine environments are 

recorded and the accumulation of sediments in the basin was mainly controlled by
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Figure 4.1. Location map of A) the Qaidam Basin on the northern margin of Qinghai- 

Xizang (Tibet) Plateau; B) salt lakes and rivers sampled from the Qaidam Basin. Note the 

location of samples Q-35, Q-37, and Q-38A marked respectively as A, B, and C in the

Golmud River.
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intensive tectonic activity, including the rapid rise of the Tibet Plateau. By the end of the 

Pliocene thick (1000 m) evaporitic sulphate and chloride deposits record the major shift 

in climate conditions. Late Pleistocene mudstone, sandstone and conglomerates mark the 

shorelines of an elongate mega-lake (500 km by 100 km) from which evolved the 

modem salt lakes (CHEN KEZAO and BOWLER, 1986).

In September 1987 a series of samples from the Qaidam Basin were collected by 

A. R. CHIVAS. The general data, description and locations of the samples are in Table 

4.1 and Fig. 4.1. The samples can be subdivided into different groups: (1) granitic 

rocks from the mountains on the margin of the Qaidam Basin; (2) fresh, saline and 

hypersaline fluids associated with the Qaidam Basin, referred to as "input water". These 

are the Daqaidam hot spring in the north of the basin near Daqaidam town and the 

Golmud River sampled at several locations in the south of the basin, near and north of the 

town of Golmud (marked as A, B and C in Fig. 4.1). At site C the river transverses 

salt-laden soils and the river waters (sample Q-38A) are saline. The brine from the "karst 

pond" in the Qarhan playa represents also an input of deep subsurface brine that has 

risen to the surface along faults (LOWENSTEIN et al., 1989) and formed karst-like sink­

holes in the massive halite crust; (3) natural brines from salt lakes in the Qaidam Basin. 

These are Lake Chaka, Lake Xiaoqaidam and Lake Dabuxan in the Qarhan playa (Fig. 

4.1); and (4) brines from artificial ponds from the Qarhan Salt Works. In a series of 

industrial ponds, the brines are concentrated and precipitated as a series of progressively 

more soluble minerals (halite, camallite and bischofite).

Lake Dabuxan, fed by waters of the Golmud River, lies within a large salt-flat 

known as the Qarhan salt crust in the centre of the Qaidam Basin (Fig. 4.1). This is the 

largest playa lake in China, extending 150 km in a NW-SE direction (BOWLER et al., 

1986). The halite flat is underlain by up to 60 m of Holocene halite beds which in turn is 

underlain by thick lacustrine deposits that represent a freshwater and slightly saline 

environment formed under a relatively humid climate. The Holocene halite beds occur 

with interbedded clastic sediments, composed of quartz, micas, feldspar, illite and 

chlorite. A large fraction of the detrital sediment is composed of loessic deposits. The 

uppermost halite layer consists of potassium salts (sylvite and camallite) in addition to
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Table 4.1. Location, temperature, pH, and density of water samples from the 

Qaidam Basin.

sample location and description date of T(°C) pH density

collection (g/cc)

input w ater

Q-22 Daqaidam hot spring, north of Daqaidam town 23/9/87 29.2 7.32 1.001

Q-35 West Golmud River, south of Golmud town 24/9/87 9.5 8.46 1.001

Q-37 East Golmud River, at Xiaoqao, 23 km

north of Golmud town 24/9/87 12.5 8.58 1.001

Q-38A East Golmud River, 35 km north of Golmud town 25/9/87 - 7.93 1.027

Q-19 "Karst pond", 30 km north of Qarhan,

brine from natural pond 22/9/87 15.9 6.46 1.217

A rtificial ponds from O arhan  Salt W orks

Q12-A inlet (natural) brine 21/9/87 14.0 6.31 1.236

Q12-B brine from artificial "halite" pond 21/9/87 15.9 6.01 1.257

Q12-C brine from artificial "camallite" pond 21/9/87 11.2 5.82 1.281

Q12-D waste brine from artificial "camallite" pond 21/9/87 21.7 4.94 1.345

Q-42 brine from artificial "bischofite" pond 24/9/87 4.94 1.359

Q-41 final stage brine (bitterns) 24/9/87 4.79 1.357

Salt lakes

Q-9 brine from Lake Chaka 20/9/87 12.2 6.92 1.253

Q-13 brine from Lake Dabuxan in Qarhan playa 21/9/87 5.58 1.301

Q-30 brine from Lake Xiaoqaidam 23/9/87 7.75 1.221
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halite, gypsum (2-6%) and carbonate (2-8%). The carbonate consists predominantly of 

low-magnesium calcite, dolomite and minor traces of aragonite and magnesite (CHEN 

KEZAO and BOWLER, 1986). The inlet brine at the Qarhan Salt Works (sample Q12-A) 

is a natural brine which seeps from channels cut in the Holocene Qarhan salt crust.

Lake Xiaoqaidam (sample Q-30) is a small lake on the northern basin margin 

(Fig. 4.1) fed by artesian springs and south-flowing streams. Sedimentary borate bodies, 

composed mainly of pinnoite and ulexite, associated with halite, gypsum and mirabilite 

(N aSO q-lO ^O ) occur at the bottom of and within the shoreline of the lake. A boron

extraction industry is located at Lake Xiaoqaidam (BOWLER et al., 1986, QIAN 

ZIQIANG and XUAN ZHIQIANG, 1985).

Lake Chaka (sample Q-9) is located in an inter-montane sub-basin at the eastern 

margin of the Qaidam Basin (Fig. 4.1).

4.3. R ESU LTS

The general chemistry and the isotopic composition of boron of the solutions 

sampled from the Qaidam Basin are presented in Table 4.2. The charge balance (in 

equivalents) of the brines are in the range of of -3% to 3 %. The freshwater and saline 

samples have positive electrical imbalances that represent the HCO3" component which

was not analysed in this study. For the less saline waters, approximate estimates of the 

HCO3" contents are given (Table 4.2) based on a restoration of charge balance. The 

implied high HCO3" contents are consistent with the values reported by LOWENSTEIN 

et al. (1989). The boron isotopic composition of granitic rocks from the margin of the 

Qaidam Basin are reported in Table 4.3. Several geochemical parameters of the different 

solutions are summarized in Table 4.4.

Input waters

The Daqaidam hot spring (Q-22) and Golmud River samples south and north of 

Golmud town (samples Q-35 and Q-37, respectively, marked as "A" and "B" in Fig. 4.1)
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Table 4.3. Abundance and isotopic composition of boron from granitic rocks from the 
Qaidam Basin.

sample Location and description B content S ^ B

_______________________________________________________________________ (ppm")______ (%c)

Q-25 near Daqaidam hot spring, coarse feldspathic granite 15.0 -2.4±1.9

Q-43 41 km east of Golmud town at altitude of 2960m 14.0 3.7±2.0

Q-44 276 km east of Golmud town (9km west of Xiang Ri De town) 14.6 3.6±2.3

are solutions with a very low TDS. The salinity of the Golmud River (Q-38A), sampled 

35 km north of Golmud Town, towards Qarhan, is higher (TDS of 33.7 g/1; Fig. 4.2.A). 

The 'karst pond' that represents subsurface brine, is a hypersaline brine with TDS of 244 

g/1. The chemical compositions of the freshwaters (Tables,4.4) are characterized by 

relatively high Na+, Mg2+, Ca2+, K+, SO4* 1 2 3 4 5 6-, HCO3-, B r, Li+ and boron to chlorine

ratios. The 5 ^ B  values of the freshwaters from the Golmud River and the Daqaidam 

hot spring (-0.3±0.6%o and 3.9%c, respectively) overlap with the 8 ^ B  values of the 

granitic rocks associated with the Qaidam Basin (8^B= -2.4%c to 3.7%c, Table 4.3).

The progressive downstream increase in the salinity of the Golmud River is also 

accompanied by changes in the chemical composition of the river water (Table 4.4):

(1) The Na+Cl/TDS ratios (in equivalents) increase from 0.49 to 0.81 as the

solution is modified to a Na-Cl type;

(2) The Na/Cl (molar) ratio decreases from 1.13 to 0.97 (Fig. 4.2.B);

(3) All ion/chlorine ratios (Mg/Cl, Ca/Cl, K/Cl, SO4/CI, HCO3/CI Br/Cl, Li/Cl,

and B/Cl) decrease;

(4) The Ca/Mg and Ca/SC>4 ratios decrease;

(5) The Ca/HC03 ratio increases; and

(6) The B/Li ratio decreases and the 8 ^B  values increase from 0%o to 9.6%c.

The brine from the karst pond is also of a Na-Cl type, characterized by a high 

Ca/S04 ratio and low Na/Cl, Br/Cl, Li/Cl and B/Cl ratios (Fig. 4.2).
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10'17 A Golmud River (freshwater stage)

e5 10‘2H
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Figure 4.2.A. The evolution of solutes in the Qarhan playa is controlled by dissolution of 

evaporite minerals in the early stages and evaporation and salt-precipitation in later stages. The 

increase of the TDS of the Golmud River and the hypersaline brine of the karst pond are 

associated with gradual decrease in Na/Cl, Br/Cl, Li/Cl and B/Cl ratios.
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Golmud River (freshwater stage)

0.0 2 -

dissolution curve

0.01 - evaporation curve
Golmud River (saline stage)

karst pond seawater

0.6
Na/Ci (molar)

Figure 4.2.B. B/Cl versus Na/Cl ratios of waters from the Golmud River (3 locations), and 

of the karst pond brine, describe a "dissolution curve". For comparison, the ratios in seawater 

are plotted together with the compositions of brines (labelled "evaporation curve") during 

progressive crystallization in the artificial ponds.
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evaporation curve0.004 -
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0.002 -

dissolution curveGolmud River (saline stage)
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Br/CI (molar)

0.0150.0050.000

Figure 4.2.C. Li/Cl versus Br/CI ratios of waters from the Golmud River (3 locations), 

the karst pond brine ("the dissolution curve"), seawater, and progressively evaporated 

brines from the artificial ponds (the "evaporation curve").
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The Qarhan Salt Works

The evaporation of the brines is examined in a series of artificial ponds from the Qarhan 

Salt Works where halite, camallite, and bischofite are precipitated. Several geochemical 

trends are identified in the brines from the artificial ponds as a function of progressive 

evaporation (Table 4.4; Figs 4.3):

(1) The Mg2+, Li+, CT, S O ^ -, Br" and B concentrations increase;

(2) The Na+, K+ and Ca^+ contents decrease;

(3) The Na+Cl/TDS ratios (in equivalents) decrease from 0.61 to 0.47;

(4) The Na/Cl ratios decrease from 0.244 to 0.007;

(5) The Br/Cl, B/Cl, Mg/Cl, SO4/CI and Li/Cl ratios increase;

(6) The K/Cl, Ca/Cl, Ca/Mg and Ca/SC>4 ratios decrease;

(7) The pH values decrease; and

(8) The 8- *B values, which are in the range 10.5%c to 15.0%c, are not related to

the evaporation path.

Salt lakes

The sampled natural brines from salt lakes in the Qaidam Basin can be 

subdivided into two groups according to their geography and chemical composition 

(Table 4.4 and Fig 4.1): (1) Lake Dabuxan (sample Q-13) from the Qarhan playa in the 

southern areas of the basin which is characterized by a high Ca/SC>4 ratio (470), Na/Cl

ratiocl and a brine type of Mg-Cl, according to the brine classification scheme of 

EUGSTER and HARDIE (1978). The (natural) inlet brine (Q-12A) has similar chemical 

characteristics (Mg-Na-Cl type, and Na/Cl<l) yet its Ca/SC>4 ratio is less than 1;

(2) brines from Lake Xiaoqaidam (Q-30) and Lake Chaka (Q-9) at the northern 

and eastern margins, respectively, of the Qaidam Basin are characterized by low Ca/SC>4 

ratios (« 1 ), Na/Cl>l (only in Lake Xiaoqaidam) and are brines of Na-Cl-S04 type and 

Na-Mg-Cl-(S04) type, respectively.
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4.4. DISCUSSION

The compositional history of closed-basin fluids can be separated into two 

phases. In the first, the solute composition of the dilute waters are the result of 

weathering-type reactions with the host country rocks . In the second phase the chemical 

composition of the fluids is controlled by evaporation and precipitation of evaporite 

minerals (JONES, 1966; GARRELS and McKENZIE, 1967; HARDIE, 1968; HARD IE 

and EUGSTER, 1970; EUGSTER, 1970; EUGSTER and HARDIE, 1978). In order to 

understand the chemical and isotopic composition of fluids from the Qaidam Basin, we 

first analyse the input fluids. Then we monitor evaporation trends by evaluating brines 

from evaporated artificial ponds from the Qarhan Salt Works. Once the chemical and 

isotopic composition of the inflows and the evaporation trends are considered, we analyse 

the natural brines from salt lakes in the basin.

4.4.1. Characterization of input salts

The Daqaidam hot spring and the Golmud River sampled near Golmud are 

enriched in Na+, Mg2+, Ca2+, K+, SO42', HCO3-, B r, Li+ and boron, as normalized to

chlorine, compared to the marine ratios (Table 4.4). This is a reflection of the relative 

deficiency of chlorine in the granitic country rocks and is consistent with the waters' non­

marine origin.

The boron isotopic composition of the Daqaidam hot spring and the Golmud 

River also reflects a "terrestrial" source. The 8* *B values of these waters (5^B = 3.9%o 

and -0.3±0.6%c, respectively) overlaps with the 5* *B values of granitic rocks associated 

with the Qaidam Basin (8* *B= -2.4%o to 3.7%o; Table 4.3).

It has been demonstrated by GARRELS and MACKENZIE (1967) that nearly all 

the chlorine and sulphate in the Ephemeral Springs in the granite area of the Sierra 

Nevada, California, have been derived from atmospheric precipitation. The Na+, Ca^+, 

Mg2+, K+ and HC03” contents of the solutions are the results of reactions with silicate

minerals in the host igneous country rocks, e.g. silicate hydrolysis (JONES, 1966). The 

relatively high Na/Cl, Ca/Cl, Mg/Cl ratios and the abundant calculated HCO3' content in
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the hot spring and freshwater river are the results of such processes in the drainage area of 

the Qaidam Basin.

As the freshwaters of the Golmud River flow within the Qarhan playa (Fig. 

4.1), their salinity increases and their chemical composition is changed (Table 4.4). The 

high cation/chlorine ratios are progressively reduced. The Na/Cl ratio, for example, 

decreases from 1.13 to 0.97. The increase of TDS, Na+Cl/TDS ratios and the decrease of 

all cation/chlorine ratios (Table 4.4) accord with the observable dissolution of salts from 

the surface saline sands and salt crust in the Qaidam Basin. The gradual decrease of B/Cl, 

Li/Cl and Br/Cl ratios with progressive salinization of the Golmud River indicates 

dissolution of halite (see "dissolution curve" in Fig. 4.2) . However, in order to reduce 

the Na/Cl ratio of the river water, the assemblage of the dissolved minerals must also be 

composed of soluble salts, such as sylvite and camallite that contribute chlorine but not 

sodium. This is consistent with the mineralogical composition of the uppermost halite 

layer of the Holocene salt crust in Qarhan where camallite minerals are found (CHEN 

KEZAO and BOWLER, 1986; LOWENSTEIN et al., 1989). The more saline portion of 

the Golmud River is also characterized by high Ca/HC03  and low Ca/SÜ4 ratios relative

to the freshwater river, indicating precipitation of calcite or aragonite.

The karst pond is a hypersaline brine, yet its chemical characteristics are similar 

to that of the saline Golmud River. The Na/Cl ratio of the brine is 0.52. If the high TDS 

and the low Na/Cl ratio were the result of net evaporation and halite precipitation, we 

would expect high B/Cl, Li/Cl and Br/Cl ratios, as demonstrated in the artificial ponds 

(see "evaporation curves" in Fig. 4.2). In contrast, the low Li/Cl, B/Cl, Br/Cl ratios and 

the high Na+Cl/TDS ratio (0.8) of the karst-pond brine indicate dissolution of halite. We 

suggest that the low Na/Cl ratio also indicates dissolution of soluble K-chloride or Mg- 

chloride minerals. The high TDS of the karst pond is associated with lower values of 

Na/Cl, Li/Cl, B/Cl and Br/Cl ratios (Fig. 4.2), indicating further dissolution of the 

uppermost Qarhan salt crust and that the brine of the karst pond originated from a 

solution similar to that of the saline Golmud River.

The karst pond is also characterized by high Ca/S04  ratios (>1) (Table 4.4).

LOWENSTEIN et al. (1989) recognized that the fluids from the karst zone in the northern



99

margin of the Qarhan Playa are Ca^Cl springs and suggested a mechanism of formation 

via water-rock interaction. The modification to a Ca-Cl type brine can also be the result of 

dolomitization processes, e.g. the Dead Sea, Israel (STARINSKY, 1974). As the brine of 

the karst pond emerges at the surface along a linear fault zone (LOWENSTEIN et al., 

1989), it may have been modified to a Ca-Cl type by dolomitization in the subsurface. In 

addition, the low SO4/CI ratios of the karst pond (Table 4.4) indicate removal of sulphate, 

i.e. precipitation of gypsum. As the Ca/SC>4 ratios of the subsurface brine become lower 

than 1 due to dolomitization processes, removal of an equivalent amount of calcium and 

sulphate would further increase these ratios. Alternatively, the low SO4/CI and high 

Ca/S04 ratios may also indicate removal of sulphate by sulphate reduction in the 

subsurface. Consequently, we interpret the chemical composition of the brine from the 

karst pond as reflecting a combination of subsurface processes of halite- and KMg-salt 

dissolution, dolomitization, gypsum precipitation and/or sulphate reduction.

The S^B  values of the saline Golmud River are also modified from -0.3±0.6%o 

to 9.6%c. This is accompanied by a decrease of the B/Li ratio from 10.8±1.8 to 5.9 (Table 

4.4). The karst pond also has a similar 5* *B value (10.9% 6) and a low B/Li ratio (4.2). 

As both lithium and boron are usually considered conservative elements, these variations 

may be the result of adsorption, i.e. selective removal of elemental B and ^ B  from the 

solution. The ^ B  enrichment cannot be a result of salt dissolution, as it has been shown 

(Chapter 3) that 6 ^ B  values of K- and Mg-chloride minerals are lower that those of co­

existing brines.

The magnitude of the shift in 8  ̂*B values is only 10%o. While the bulk chemical 

composition of the diluted natural waters are largely affected by the dissolved minerals, 

the 5l Iß  value is not as much affected and its original terrestrial signature is maintained.

4.4.2. Evaporation processes in the Qarhan Salt Works

The evaporation systematics of the brines is examined in a series of artificial 

ponds from the Qarhan Salt Works. The initial inlet brine is a natural brine which seeps 

from the Holocene Qarhan salt crust. The chemical composition and the evaporation path 

of the subsequent brines are dependent on the initial brine composition.
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Although Li+ is considered conservative in evaporation processes 

(McCAFFREY et al., 1987), a parallel study shows that a fraction of lithium may be 

incorporated in salts at high degrees of evaporation (Chapter 3). Nevertheless, the lithium 

concentrations are used to determine the degrees of evaporation (calculated from 

Libnne/Liinitiai)- Several geochemical trends can be identified (Table 4.4 and Fig. 4.3):

(1) The precipitation of halite during all the evaporation stages is reflected in the 

decrease in the absolute content of sodium, a decrease in Na+Cl/TDS ratios (in equivalent 

units) from 0.61 to 0.47, a decrease in Na/Cl ratios from 0.244 to 0.007, and the increase 

of Mg2+, SC>42‘, B r, Li+ and boron ratios to chlorine (see "evaporation curve", Fig.

4.2). The gradual reduction in the Na/Cl ratios with progressive evaporation (Fig. 4.2) 

reflects the relatively low (<1) Na/Cl ratio of the inlet brine (Na/Cl=0.24). As the initial 

brine has a Na/Cl ratio lower than unity, halite precipitation removes equivalent amounts 

of chlorine and sodium, and further reduces this ratio in sequential brines.

(2) The precipitation of gypsum or anhydrite during all stages is reflected by the 

gradual decrease in the Ca/S04 and Ca/Mg ratios. As the initial Ca/SC>4 ratio in the inlet 

brine is lower than 1 (Ca/SC>4 in Q12-A = 0.48), removal of equivalent amounts of 

calcium and sulphate further reduces this ratio.

(3) The precipitation of sylvite and/or carnallite in the advanced stages of 

evaporation is shown by the decrease of the absolute content of potassium and a decrease 

in the K/Cl ratios.

(4) The precipitation of bischofite is reflected in the constant absolute contents of 

magnesium and chlorine and the slight decrease of Mg/Cl ratios.

4.4.3. The origin of the salt lakes from Qaidam Basin

The investigated salt lakes from the Qaidam Basin have a variety of chemical 

compositions. Lake Dabuxan (Q-13) from the Qarhan playa is a Ca-chloridic 

(Ca/S04=472), Mg-Cl type brine with low (<1) Na/Cl ratios. The inlet brine in the

Qarhan playa (Q-12A) is a Mg-Na-Cl brine with low Na/Cl ratios. The brines from Lake 

Xiaoqaidam (Q-30) and Lake Chaka (Q-9) are sulphate-rich (Ca/S04 « 1 )  and are Na- 

CI-SO4 and Mg-Na-Cl-S04 types, respectively.
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Figure 4.3. Concentrations of elements versus the degree of evaporation, expressed as 

(Lisamplc/Läinitial) of progressively evaporated brines from artificial ponds in the Qarhan Salt 

Works.



The variety of chemical compositions of the salt lakes may indicate that they have 

originated from different parent solutions. The low Na/Cl ratios of Lake Dabuxan and the 

inlet brine indicate that they have originated from a solution with Na/Cl ratios lower than 

unity. During both evaporation and precipitation of halite, it is expected that a brine with 

initial Na/Cl>l will evolve into one with N a/C l»  1, as equivalent amounts of Cl and Na 

will be removed. In contrast, if the initial Na/Cl is lower than 1, such as in seawater 

(0.86), the evolved brine would have even lower Na/Cl ratios. Similar evolutionary 

patterns apply to Ca/SC>4 ratios during gypsum precipitation. Consequently the variations 

of Na/Cl or Ca/SC>4 ratios with respect to unity is virtually a "chemical ofrv i dcL " which

controls the chemical composition of the brine with further evaporation.

The extremely high Ca/SC>4 ratios of the CaS04-saturated Lake Dabuxan (Table

4.4) indicate that this brine has evolved from a Ca-chloridic solution. The only identified 

input solution with these chemical signatures is the brine from the karst pond with Na/Cl 

and Ca/SC>4 ratios of 0.52 and 11.3, respectively. This is consistent with LOWENSTEIN

et al. (1989) who suggested that Lake Dabuxan has originated from mixed proportions of 

Ca-Cl spring waters (from the karst zone) and water from the Golmud River.

The inlet brine (Q-12A) has originated from a brine with Ca/SC>4<l and

Na/Cl<l. As the karst pond is Ca-chloridic, the inlet brine must have evolved from a 

precursor that is similar to the saline stage of the Golmud River in which Ca/S04 is

lower than 1.

The boron isotopic compositions of Lake Dabuxan (Q-13; 5* = 12.5%o) and

the inlet brine (Q-12A; 5* lß=15.0% o) are also similar to that of the saline Golmud River 

(Q-38A; S ^ B  = 9.6%o) and to the karst pond (Q-19; 5^B=10.9%o) but not to the 

freshwater river with the low S ^ B  of -0.7%o to 0.2%o. Consequently, using a 

combination of three geochemical parameters (Na/Cl and Ca/S04 ratios and S^B ) we are 

able to trace the origin of salts in the salt lakes from the Qaidam Basin. Salts in these 

brines did not originate directly from the freshwater inflows but from saline waters and/or 

hypersaline brines that have been modified by salt dissolution, dolomitization and gypsum 

precipitation.



The chemical composition of the brine from Lake Xiaoqaidam (Q-30, Table 4.4) 

indicate that it has evolved from a parent solution with the chemical characteristics of: (1) 

Na/Cl ratio higher than 1; (2) Ca/SC>4 ratio lower than 1; (3) high B/Cl ratio; (4) low

Mg/Cl ratio; and (5) low 5 ^ B  value. These categories are in concordance with the 

chemical signature of the Daqaidam hot spring (sample Q-22; Table 4.4). We suggest that 

similar hot springs are the major source of salts for Lake Xiaoqaidam which supports the 

field observation of high boron content in hot springs that are located in that area 

(ZIQIANG and ZHIQIANG, 1985).

The brine from Lake Chaka (Q-9) is also sulphate-rich (low Ca/S04 ratio), yet

its Na/Cl ratio is lower than 1, it has a relatively high magnesium content, and has a 

5l 1B value of 7.1%c. Therefore, we cannot identify a unique input to this lake which 

probably receives solutes from mixed sources.

4.4.4. Boron isotope variations and applications for tracing the origin of 

marine versus non-marine evaporites

The brines from the Qarhan playa are Mg-Cl types, and are associated with 

gypsum or anhydrite, halite, carnallite and bischofite minerals. The brine from Lake 

Xiaoqaidam is Na-Cl-SOq-rich and the mineral assemblage at the bottom of Lake 

Xiaoqaidam consists of halite, mirabilite (Na2SO4-10H2O), Na-borate (borax) and Mg- 

borate (pinnoite) (ZIQIANG and ZHIQIANG, 1985; CHEN KEZAO and BOWLER, 

1986).

Although the mineral paragenesis of the Qarhan playa is broadly similar to that 

predicted from progressively evaporated seawater, the evaporite minerals of Lake 

Xiaoqaidam are typically non-marine (e.g. HARD IE, 1984). This is also consistent with 

the chemical composition of both the proposed input waters and salt lakes. Lake 

Xiaoqaidam has evolved from a water similar to the typically non-marine Daqaidam hot 

spring whereas the brines in the Qarhan playa have evolved from non-marine solutions 

with a chemical composition similar to that of seawater. Both the saline Golmud River 

and the karst pond have low Na/Cl (<1), Br/Cl, Li/Cl and B/Cl ratios which are similar to 

those of seawater although the absolute values are different (Table 4.4, Fig. 4.2).
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Consequently, based on the chemical signatures, particularly of the conservative trace 

elements (Li, B and Br), the Qarhan brines have chemical characteristics similar to those 

of evaporated seawater. The non-marine inflows become 'seawater-like' due to recycling 

processes, i.e. preferential dissolution of evaporite minerals.

In contrast, the data presented in this study indicate that the 8 ^ B  values differ 

sharply from that of seawater and clearly reinforce a non-marine origin for the Qaidam 

brines. The 5 ^ B  values of the investigated brines vary with both the B/Li (molar) ratios 

(Fig. 4.4) and the pH of the brines (Fig.4.5A). As boron is extractable with water that 

can leach over 50% of total B in granitic rocks (SAUERER et al., 1990), it seems that a 

terrestrial input of boron and lithium (5^B  of 0±3%o, a relatively high B/Li ratio) has 

been modified by selective uptake of elemental boron and ^ B . Removal of elemental 

boron that has undergone isotopic fractionation can occur during adsorption processes 

(SCHWARCZ et al., 1969; SPIVACK et al., 1987; PALMER et ai., 1987) or possibly 

by precipitation of borate minerals from borate-saturated brines (01 et al., 1989).

For the case of borate precipitation, one would expect that Lake Xiaoqaidam 

which has been saturated with borate minerals (QIAN ZIQIANG and XUAN 

ZHIQIANG, 1985) to have a high 5 ^ B  value. In fact, Lake Xiaoqaidam has the lowest 

and highest 8 ^ B  value and B/Li ratio (0.5%o and 19.8, respectively), indicating that the 

observed enrichment of ^ B  in the other salt lakes is a result of interaction with detrital 

sediments, rather than precipitation of borate minerals. In addition, in a parallel study 

(Chapter 3) it has been shown that the B/Li ratio increases during the extreme stages of 

evaporation and salt precipitation, i.e. lithium is also removed by salts.

The enrichment of ^ B  in the brines is also associated with low pH (Fig.4.5A). 

PALMER et al., (1987) have demonstrated that the isotopic fractionation of boron is 

dependent on the distribution of boron species in the solution, which is, in turn, a 

function of the pH (Fig. 4.5B). During adsorption process, the borate ion and ^ B  are 

preferentially adsorbed onto clay minerals. The magnitude of isotopic fractionation of 

boron is therefore increased with a larger fraction of boric acid in the solution, i.e. lower 

pH (PALMER et al., 1987). The association of higher 8 ^ B  values with low-pH brines 

in the Qaidam Basin (Fig.4.5A) may be related to the larger isotopic fractionation of
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Figure 4.4. 5 ^ B  values versus B/Li ratios of brines from the Qaidam Basin. The 

enrichment of ^ B  in some brines relative to the terrestrial source (8 ^ B  = 0±3%o\ e.g. 

granitic rocks) is associated with depletion of boron, normalized to lithium, and thus 

indicates selective removal of elemental boron and ^ B .
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Figure 4.5.A 8 ^ B  values versus pH values of brines from the Qaidam Basin. B. Distribution 

of boron species in solution as a function of the pH (KAKIHANA et al., 1977; PALMER et al., 

1987).



boron that is predicted for a solution in which the dissolved boron consists predominantly 

of boric acid.

Although the major-element composition of some of the brines of the Qarhan 

playa have been modified by dissolution of salts, dolomitization, and precipitation of 

calcium carbonate, 8 ^ B  values are enriched by only 15%o due to adsorption processess 

and the 5 ^ B  signature remains non-marine. Similar magnitudes of ^ B  enrichment have 

been shown in other environments such as the Australian salt lakes and the Dead Sea, 

Israel (VENGOSH et al., 1989; Chapters 2 and 5). Although boron is highly reactive 

with detrital sediments, the initial isotopic composition of the source fluids (terrestrial or 

marine) will determine the isotopic composition of the residual brines.

HARDIE (1984; 1990) and LOWENSTEIN et al., (1989) postulated that ancient 

evaporites with a "marine" mineralogical signature may have formed in non-marine 

environments. The chemical signatures of brines and the mineralogical sequence of 

precipitated salts in artificial ponds from the Qarhan are consistent with this observation.

We suggest that boron isotopic compositions can be used as geochemical tracers 

for the origin of brines and evaporites, and particularly in identifying marine and and 

non-marine evaporites. In evaporite systems such as the Qaidam Basin, boron 

accumulates to high concentrations. An input of atmospheric boron with a high (marine) 

5* Iß  value in the extremely arid zones of northern Tibet would have a negligible effect 

on the isotopic composition of the boron-rich hypersaline brines, i.e. there is little scope 

for the possibility of derivation of boron from (marine) cyclic salts.

4.5. CONCLUSIONS

1) The salts in the salt lakes of the Qaidam Basin are derived from three main 

sources: (a) directly from 'terrestrial' inflows, such as the hot springs which are enriched 

in Na, SO4, and B; (b) from surface solutions that are modified by preferential

dissolution of halite and other soluble salts (e.g. the Golmud River contribution to the 

Qarhan playa); and (c) from subsurface brines (e.g. the karst pond in the Qarhan playa)
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which are controlled by the combinations of preferential dissolution, dolomitization, 

gypsum precipitation and perhaps sulphate reduction processes.

2) The hot springs evolve into obviously non-marine brines and minerals (Lake 

Xaioqaidam), while surface and subsurface waters in the Qarhan play a evolve into 

marine-like brines and salts. The evolution of the Qarhan brines is controlled by 

dissolution of halite and other soluble minerals in early stages, dolomitization at the 

subsurface and evaporation and salt-precipitation (Fig. 4.2).

3) The boron isotopic composition of both the input waters and the salt lakes is 

typically non-marine (8 ^ B  of 0%o to 15%o). The clear terrestrial signature of boron 

isotopes in the brines from the Qaidam Basin makes this method a potential tracer for 

identifying the origin of ancient evaporites, that is less prone to error than trace-element 

techniques.
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BORON ISOTOPE GEOCHEMISTRY AS A TRACER FOR THE 

EVOLUTION OF BRINES AND ASSOCIATED HOT SPRINGS 

FROM THE DEAD SEA, ISRAEL

5.1. INTRODUCTION

The Dead Sea is a terminal hypersaline lake, located in one of the rhomb-shaped 

grabens along the Jordan Rift Valley in Israel. Its brines are characterized by high salinity 

and are typically Ca-chloridic (STARINSKY, 1974). BENTOR (1961), ZAK (1967), 

NEEV and EMERY (1967) and STARINSKY (1974) suggested that the the Dead Sea 

salts are derived from subsurface brines, which originated from Pliocene seawater. The 

evolution of the Dead Sea started with a marine incursion in the Pliocene, followed by 

evaporative lagoon conditions where the salts of the Mount Sdom Formation were 

precipitated (ZAK, 1967). Using major-element ratios STARINSKY (1974) has 

postulated the sequence and mode of processes as follows: (1) precipitation of large halite 

bodies from seawater (resulting in a residual brine with low Na/Cl and high Br/Cl ratios); 

(2) bacterial sulfate reduction (SC>42‘ depletion, leading to high Ca/SC>4 ratios); (3) both

early diagenetic and late epigenetic dolomitization (producing high Ca/Mg); and (4) 

contribution of terrestrial salts from inflows into the basin. In contrast, HARDIE (1990) 

recently suggested that the Ca-chloridic signature of the Dead Sea is a product of high- 

temperature water-rock interactions, and that virtually all the salts in the Dead Sea have a 

terrestrial origin.

The waters from hypersaline thermal springs along the western shore of the Dead 

Sea are also Ca-chloridic. GAT et al., (1969), MAZOR et al., (1969) and LERMAN 

(1970) suggested that these hot springs are mixture of fresh waters (e.g. Jordan River) 

with subsurface hypersaline brines. In contrast, STARINSKY (1974) considered these 

hot springs as sources for the modem Dead Sea, rather than products of its mixing.

Due to the unique geochemical characteristics of boron, its isotopes can be used 

to detect the sources of boron and hence the origin of brines and reactivity with clay
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Figure 5.1. Location map of the investigated brines and waters. Note that what used to 

be the southern basin of the Dead Sea is now a huge evaporation pond.



TABLE 5.1. General description of samples analysed in this study.

sample description location

Dead Sea, northern Basin
DS-2 Dead Sea surface brine
DS-11 Dead Sea surface brine

'En Gedi beach (April 1988)
'En Gedi beach (November 1988)

Dead Sea, southern Basin (artificial evaporation ponds) 
DS-V-2 Dead Sea, brine (from depth of 3m) halite pool
DS-16 Dead Sea surface brine halite pool, 1 km north of Moria 

beach
Diluted Dead Sea
DS-10 Dead Sea surface brine 
D-715 hypersaline spring

northern basin, 'En Feshcha beach 
northern basin, seepage in 
conglomerates, 2.5 km north of 
Nahal Kidron

Hot springs 
DS-1 hot spring Hamme Yesha, 'En Gedi Spa, 3 

km south of 'En Gedi
DS-14 hot spring Hamme Mazor, 100m west of the 

lake, 1 km south of 'En Gedi Spa
DS-17 hot spring Hamme Zohar, "Hamme Zohar 

drilling" in the upper part of

DS-18 hot spring
Zohar Spa
Hamme Zohar, lower spring in the 
beach of Zohar Spa

D-717 hot spring Hamme Yesha, 1 km north of 'En 
Gedi

'En Feshcha brackish waters
DS-5 spring 'En Feshcha spring, the northern 

spring in 'En Feshcha Reserve 
(Enot Zukim)

DS-9 spring 'En Feshcha southern spring, in 
'En Feshcha Reserve 
(Enot Zukim)

Freshwater springs 
DS-12 freshwater spring 'En Dawid, Nahal Dawid, 1 km 

northwest of 'En Gedi
DS-13 freshwater spring Nahal Arugot, 2 km west of 'En 

Gedi
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minerals (SCHWARCZ et al., 1969; SWIHART et al., 1986; SPIVACK et al., 1987; 

VENGOSH et al., 1989). In an attempt to reconstruct the geochemical evolution of the 

Dead Sea brines and hot springs along its western coast, we analysed boron isotopes, and 

abundances of elemental boron, chlorine, and lithium in these brines. Samples were 

taken from the Dead Sea, hypersaline thermal springs along the western coast of the Dead 

Sea, brackish springs at 'En Feshcha and freshwaters from 'En Dawid and Nahal Arugot 

(Fig. 5.1 and Table 5.1). The chemical characteristics of the waters investigated in this 

study are summarized in Table 5.2.

5.2. RESULTS

The isotopic and chemical results are summarized in Table 5.3. Several groups 

of waters are recognized:

1) Surface brines from the Dead Sea are characterized by high 8 ^ B  values 

(55.7%c to 57.4%c; cf seawater with 5 ^ B  of 39%e), high contents of boron (37.8 to 

43.1 mg/kg), lithium (12.2 mg/kg), and chlorine (172,700 mg/kg). The B/Cl ratios are 

marine but the B/Li ratios (2.26) are lower than that of seawater (14.5). In the southern 

basin, which presently is an artificial evaporite pond of the Dead Sea Works Ltd, the 

concentrations of boron (54.69 mg/kg) and chlorine (191,760 mg/kg) are higher. The 

lithium content in the halite pond is also higher than that of the northern basin, in the 

range of 16.0 to 17.8 mg/kg (GANOR and KATZ, 1989). The 5 ^ B  value however, is 

similar in the northern and southern basins of the Dead Sea.

2) The brines, sampled at 'En Feshcha beach (DS-10) and at seepage in 

conglomerates, 2.5 km north of Nahal Kidron (D-715) are diluted Dead Sea brines, i.e. 

mixtures of the Dead Sea surface brine with freshwaters. Their 6  ̂*B values (55.7%c to 

57.4%c) are not distinguishable from those of the other Dead Sea samples, but their B, Li 

and Cl contents are lower. In the case of samples from 'En Feshcha beach, these elements 

are relatively depleted by a factor of -0.4.

3) Hot springs from the western coast of the Dead Sea have 8 ^ B  values in the 

range 51.7%c to 54.9%c, B contents of 20.38 to 30.94 mg/kg, Li of 5.45 to 7.62 mg/kg 

and Cl of 97,474 to 162,092 mg/kg. B/Li ratios are in the range of 2.5 to 2.7.
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TABLE 5.2. Average chemical composition of seawater, the Dead Sea, associated 
hot springs, and less saline springs at 'En Feshcha, 'En Dawid, and Nahal Arugot. 
Chemical data from STARINSKY (1974), GANOR and KATZ (1989), GAVRIELI et 
al. (1989), MAZOR et al. (1969), and MAZOR and MOLCHO (1972).

sample t(°C) TDS (g/1) Na/Cl Br/Cl rx 10-31 Ca/SOA
(molar ratios)

seawater 35 0.86 1.5 0.35
Dead Sea 15-25 319-335 0.28-0.30 10.4-10.8 67.7-98.1
Hamme Zohar 15-32 52-130 0.31-0.40 4.9-9.9 10.2-23.6
Hamme Yesha 39* 159-201 0.32-0.39 2.3-8.3 18.7-41.1
'En Feshcha springs

26-30 3 -7 0.38-0.45 7.4-19.2 10.0-12.1
'En Dawid and Nahal Arugot 

15-20 0.5-0.8 0.81-0.91 - 1.5-3.9

* at a depth of 30m
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TABLE 5.3. Boron isotopic and chemical composition of the investigated brines and 

freshwaters from the Dead Sea region. Boron, lithium and chloride concentrations are in 

mg/kg; B/Cl and B/Li ratios are molar.

S a m p l e S n B

( % e )
B L i C l B / L i B / C l

( x l O ' 4 )

d e n s i t y  

i ( g / c c )

s e a w a t e r 39.0 4.7 0.2 19000 15.1 8.1 1.023

D e a d  S e a ,  n o r t h e r n  b a s i n

DS-11, Dead Sea (north) 57.3±1.0 43.08 12.22 172745 2.26 8.1 1.224

DS-2, Dead Sea (north) 57.2±1.6 37.76 na na - -

D e a d  S e a ,  s o u t h e r n  b a s i n  ( a r t i f i c i a l e v a p o r i t e  p o n d )

DS-16, Dead Sea (south) 56.4±1.5 54.69 na 191760 - 9.4 1.243

DS-Y-2, Dead Sea (south) 55.7±1.0 na na na - -

D i l u t e d  D e a d  S e a

DS-10, *En Feshcha beach 57.4±1.5 16.99 5.40 71124 2.02 7.8 1.083

D-715, saline spring 55.7±1.5 8.57 2.74 38462 2.01 7.3 1.040

H o t  S p r i n g s

D-717, Hamme Yesha 52.2±1.5 22.05 na 98478 - 7.3 1.117

DS-1, Hamme Yesha 51.7±1.6 20.38 na na - - -

DS-14, Hamme Mazor 54.9±1.0 21.13 5.45 97474 2.49 7.1 1.108

DS-17, Hamme Zohar 52.9±1.5 22.69 5.32 56621 2.73 13.1 1.065

DS-18, Hamme Zohar 52.9±1.5 30.94 7.62 123884 2.60 8.2 1.144

'E n  F e s h c h a  b r a c k i s h s p r i n g s

DS-5, 'En Feshcha 40.6±1.0 0.44 na 1170 - 12.3 1.001

DS-9, 'En Feshcha 37.7±1.0 0.69 na 1824 - 12.4 1.002

F r e s h w a t e r  s p r i n g s

DS-12, ’En Dawid 33.8±1.1 0.25 na 84 - 97.5 1.000
DS-13, Nahal Arrugot 36.9±1.2 0.13 na 116 - 36.8 1.000



4) The brackish springs from 'En Feshcha have 8 ^ B  values of 37.7%o and 

40.6%o, B contents of 0.44 and 0.69 mg/kg.

5) The 5 ^ B  values of meteoric freshwater springs from 'En Dawid and Nahal 

Arugot are 33.8%c and 36.9%c, and B contents are 0.13 and 0.25 mg/kg. The B/Cl ratios 

(9.75xl0'3 and 3.68xl0'3) are higher than that of the Dead Sea and seawater (Table 5.3).
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5.3. DISCUSSION

5.3.1. The origin of boron in the Dead Sea brine

Boron, lithium and bromine are usually considered as conservative elements, that 

is they remain in the solution during evaporation and are not removed into precipitated 

salts. In contrast, chlorine in halite-saturated brines is not conservative (ZHEREBTSOVA 

and VOLKOVA, 1966; STARINSKY, 1974, McCAFFREY et ai., 1987).

The degree of evaporation of the Dead Sea brine determined by bromine, that is 

Broead Sea/B rseawater ratio, in similar to that of lithium (L i Dead Sea/Li seawater ratio). Both 

elements indicate a similar degree of evaporation of seawater of about 80 . In contrast, the 

degree of evaporation determined by boron is only 11.5. The B/Li ratios (range of 2.0 to 

2.3) of the Dead Sea are also lower than that of seawater (14.5) and indicate a relative 

depletion of elemental boron in the Dead Sea by a factor of 7. This is a minimum 

estimate, as some Br was coprecipitaed in the formation of halite in the Mount Sdom 

Formation (ZAK, 1967).

The marine B/Cl ratios of the Dead Sea brines and the hot springs (Table 5.3) do 

not indicate conservative behavior of both boron and chlorine in the Dead Sea system. In 

a plot of Na/Cl versus B/Cl ratios (Fig. 5.2) one can see the variations of these 

parameters during progressive evaporation of seawater: Na/Cl ratios decrease while B/Cl 

ratios increase (Chapter 3). For the Na/Cl ratios of the Dead Sea (0.28) and hot springs 

(0.31 to 0.40) (STARINSKY, 1974), we would expect much higher B/Cl ratios (Fig. 

5.2). Consequently, the "marine" B/Cl ratios indicate a depletion of boron. This is 

consistent with the low B/Li ratios.
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Figure 5.2. B/Cl versus Na/Cl ratios of evaporated seawater, Dead Sea, hot springs, 

'En Feshcha, 'En Dawid and Nahal Arugot. The curve for progressive evaporation of 

seawater is from Chapter 3. The B/Cl ratios of the Dead Sea and hot springs are typically 

marine, but are lower than that of the evaporation curve, as normalized to their Na/Cl 

ratios. The B/Cl ratios of the freshwater ('En Dawid and Nahal Arugot) are higher than

that of seawater.



117
In addition to depletion of elemental boron, the brines from the Dead Sea system 

are enriched with (8^B = 51.7%o to 57.4%c) relative to seawater (8^B =  39%o), 

indicating that ^ B  was preferentially removed from the liquid phase. The depletion of 

elemental boron and ^ B  in the Dead Sea can be the result of: (1) adsorption of boron 

onto clay minerals (SCHWARCZ et al., 1969) and (2) coprecipitation of boron into 

soluble minerals during the late stages of evaporation of the original seawater. In a 

parallel study (Chapter 3) it is shown, however, that during evaporation of seawater to its 

final stages both the S ^ B  values and B/Li ratios increase. The low B/Li ratios in the 

Dead Sea therefore rule out the latter possibility and hence the depletion of boron is 

interpreted as being due to adsorption onto clay minerals. The possible sinks for boron 

are the detrital sediments in the bottom of the modem Dead Sea and/or its precursor, 

Lisan Lake (KATZ and KOLODNY, 1989).

Assuming that (1) the original seawater had B/Li and 8 ^ B  values similar to that 

of the present ocean; (2) the boron contribution from terrestrial inflows and rocks is 

negligible; and (3) the effective water/sediment ratio is close to 0, we use the measured 

B/Li and 8* 1lB in the modem Dead Sea to detect the empirical boron-isotope fractionation 

factor (a) between dissolved and adsorbed boron in the Dead Sea.

If the interaction of the brines with clay minerals is completely reversible and the

adsorbed boron is in isotopic exchange equilibrium with the dissolved boron, the

magnitude of the fractionation factor is:
(S1 >BSW+1000)-X (811b ds +1000)

a = l / ( 8 11BDS+1000) [ ----------------------------------------------- ]  (1)
1 - X

where 8 ^ B sw and 8 ' '  B r e p r e s e n t  seawater and Dead Sea brines, 

respectively; X is the fraction of boron which remains in the solution, normalized to 

lithium: X = (B/Li)DS/ (B/Li)sw. a  is the boron-isotope fractionation factor between 

dissolved and adsorbed boron. The calculated X and a  for the Dead Sea are 0.14 and 

0.980, respectively .

The normalization of boron to lithium in the Dead Sea is made because of the 

conservative behavior of lithium, as reflected in its isotopic composition. Seawater is
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enriched with ^Li relative to submarine hydrothermal solutions, its principal Li source. 

This enrichment has been attributed by CHAN and EDMOND (1988) to isotopic 

fractionation associated with low-temperature alteration of basalt and incorporation in 

authigenic sediments. The preferential removal of ̂ Li from seawater is grossly similar to 

the processes of depletion of seawater by (SPIVACK and EDMOND, 1987; 

SPIVACK et al., 1987). The ^Li/^Li ratios of the Dead Sea brine are similar to that of 

modem seawater (CHAN and EDMOND, 1988), indicating that the original marine Li has 

accumulated in the brine residues without isotopic exchange. In contrast to lithium, the 

high 5* Iß  values of the Dead Sea indicate the non-conservative behavior of boron.

The unique chemical matrix of the Dead Sea (STARINSKY 1974; GAVRIELI et 

al., 1989) may affect the distribution of boron species in the Dead Sea and hence the 

isotopic fractionation. The ion-pair formation of B(OH)4" with major cations presented 

in seawater has been shown in several studies (BRYNE and KES'TER, 1974; 

REARDON, 1976; HARSHEY et al., 1986; ROGERS and VAN DEN BERG, 1988). 

The formation of of an ion-pair can be described as:

Mn+ + B(OH)4- = MB(OH)4n' 1 (2)

where Mn+ is the metal cation and n is its charge. The ionization of boric acid 

and the formation of borate ion-pairs are depend on the chemistry of the solution, its ionic 

strength, the cation concentrations and the stability constants (HARSHEY et al., 1986; 

ROGERS and VAN DEN BERG, 1988). For the conditions of the Dead Sea of ionic 

strength=9.5M, Ca= 0.51M, Mg=1.98 M (GAVRIELI et al., 1989) and total B of 

0.0049M, we would expect a large fraction of the boron to be present as MgB(OH)4+ 

and CaB(OH)4+.

The dissociation of boric acid and the formation of borate ion-pairs can reduce 

the pH of the system. REARDON (1976) has shown that in a high-pH dilute 

Na2B4O7.10H2O solution an addition of MgC^ will cause a pH drop due to ion-pairing 

of Mg2+ with B(OH)4‘ that enhances the dissociation of B(OH)3. Thus, it may be that the 

borate ion-pair formation has been one of the factors that cause the low pH of 5.95 to 

6.56 in the Dead Sea (NEEV and EMERY, 1967; NISSENBAUM, 1969; AMIT and 

BENTOR, 1971; SASS and BEN-YAAKOV, 1977).
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In addition, the total alkalinity in the Dead Sea brine has been measured by 

conventional titration that includes all the charged species, including boron species. 

However, analyses of total dissolved CO2 by NEEV and EMERY (1967) and 

NISSENBAUM and KAPLAN (1976) yield only one-third to one-fourth of the amount 

obtained by titrimetry. One may suggest that the fraction of the charged borate species are 

relatively important constituents in the Dead Sea. This can be determined only by careful 

measuring of the apparent dissociation constants of boric acid and borate ion-pairs in the 

unique chemical matrix of the Dead Sea.

5.3.2. The origin of boron in the hot springs

Upon mixing two solutions (a,b) with different boron-isotope compositions, the 

mixed solution (mix) will have a 8 ^ B  value and an elemental boron content of:

Ba*5^Ba*F Bb*8l lßb*(l-F)
S n Bmix-------------------  + ----------------------  ; and (3)

Bmix Bmix

Bmix = Ba*F + Bb*(l-F) (4)

where Ba, Bb and Bmix are boron concentrations, and 5 ^ B a, 5 ^ B b  and 

5* Ißmix are the 5 ^ B  values of the component a, b, and mixtures, respectively. F is the 

fraction of component a.

In a mixture of the Dead Sea brine (8^B=57.4%o, B=43 mg/kg) with 'En 

Feshcha springs (8^B =39.2 , B=0.6 mg/kg) and meteoric freshwater ('En Dawid and 

Nahal Arugot, 8^B=35.4%o, B=0.2 mg/kg) mixing trends are apparent in a plot of 

elemental boron versus S ^ B  values (Fig. 5.3). The S ^ B  values and B contents of 

diluted Dead Sea that were sampled at 'En Feshcha Beach (DS-10) and the Dead Sea coast 

(D-715) lie on the mixing lines (Fig. 5.3) and illustrate the sensitivity of the 8 ^ B  values 

to the mixing processes.

In contrast, the data points of the hot springs are not on the mixing lines (Fig. 

5.3). The relative low 8 ^ B  values of the hot springs, as expected from their B contents, 

indicates that these springs are not mixing products of the Dead Sea with brackish or 

freshwater, as suggested by GAT et al. (1969), MAZOR et al. (1969) and LERMAN
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Figure 5.3. 5 ^  B values versus boron contents of the Dead Sea brines, diluted Dead 

Sea, hot springs, brackish water ('En Feshcha) and freshwaters in the Dead Sea 

system. The mixing lines were calculated from mixing equations of the Dead Sea brine 

with 'En Feshcha springs and with freshwater.
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The lower 5^B  values and higher B/Li ratios of the hot springs, relative to those 

of the Dead Sea (Fig. 5.4), suggest that the hot springs are the sources of the Dead Sea. 

The data points in Fig. 5.4 indicate that the hot springs have lost less elemental boron and 

10ß. This could be the result of (1) higher water/sediment ratios in the hot springs; or 

(2) a higher degree of "maturation" of the Dead Sea, i.e. more adsorption. It is difficult to 

accept the first possibility, as one would expect much lower water/sediment ratios in a 

subsurface brine relative to the surface brine of the Dead Sea.

It is more probable that the relatively lower 5 ^ B  values and higher B/Li ratios in the hot 

springs preserve the early stages of boron evolution in the Dead Sea system. Assuming 

that the 8* *B values and B/Li ratios in the original seawater were similar to that of the 

modem ocean (Table 5.3), the 8* *B values and B/Li ratios of the hot springs represent an 

early stage of the evolution of the Rift Valley brines. The adsorption of boron onto clay 

minerals caused the shifts in the 5 ^ B  values from 39%c to 52.9±1.2%o and in B/Li ratios 

from 15.1 to 2.61±0.12, as represented by the hot springs (Fig. 5.4). During the 

evolution of the modem Dead Sea from its parent brines, further isotopic fractionation and 

boron adsorption onto detrital sediments have increased the 8 ^ B  values of the hot 

springs to 57.0±0.7%c and decreased the B/Li ratios to 2.1±0.1 (Fig. 5.4). Although the 

Dead Sea brine has lost more boron due to adsorption, the boron concentration in the lake 

is higher than that of the hot springs due to net evaporation processes. In addition, it may 

be that the boron content in the hot springs was higher than that of the Dead Sea, but 

dilution with freshwater has decreased their B concentrations but has not changed their 

relative higher B/Li ratios or their 8 ^B  values.

This interpretation is consistent with the concept that the Dead Sea brine is the 

product of evaporation of the hypersaline thermal springs as suggested by STARINSKY 

(1974). The hot springs therefore contain important information on the early phases of the 

Dead Sea and provide a link to the original seawater composition. This conclusion 

contradicts however, the "terrestrial" source for salts in the Dead Sea as argued by 

HARDIE (1990). If the Ca-chloridic signature of the Dead Sea and the thermal springs 

were a product of high-temperature water-rock interaction, one would expect low 8^B
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Hot springs

Dead Sea

adsorption

5 11 B

Figure 5.4. B/Li ratios versus 5 ^ B  values of Dead Sea brines (squares) and hot 

springs (filled squares). The trend of adsorption is suggested by the lower B/Li ratios and 

higher 5 ^ B  values of the Dead Sea brines relative to the hot springs.



values for the brines. SPIVACK and EDMOND (1987) have shown that the boron from 

marine hydrothermal vents (5 ^ B  values in the range 30.0%c to 36.6%c) is a mixture of 

original seawater boron with boron that was extracted from the basaltic rocks. The high 

8 ^ B  values, particularly of the subsurface thermal springs rule out such a mechanism for 

the origin of salts in the Dead Sea.
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5.3.3. The origin o f boron in the brackish waters and freshwaters

The low B contents and 8 ^ B  values in the freshwater springs from 'En Dawid 

and Nahal Arugot (Table 5.2) indicate that that boron in these waters is not derived from 

the Dead Sea brine by internal cyclic processes within the Rift Valley. This is consistent 

with the Na/Cl ratios of these waters (a range of 0.81 to 0.91) that are higher than that of 

the Dead Sea of 0.28 (Table 5.2).

Boron in the freshwater springs could be derived from (1) country rocks with 

1B ~0%o (SCHWARCZ et al., 1969); or (2) atmospheric cyclic salts that originated 

from seawater and have marine 5 ^ B  values (SPIVACK, 1986; see also Chapter 2). 

Most of the country rocks in the eastern Judea Desert are composed of Cenomanian and 

Turonian carbonate rocks. Therefore an additional boron reservoir could be the carbonate 

fraction in these rocks. At this stage, we do not know the isotopic composition of boron 

in these rocks. Preliminary results of modem biogenic marine carbonates show that B 

concentrations in carbonates are in the range of 10 to 20 ppm (FÜRST et al., 1976) with 

ö l Iß  values of 20%o to 30%c (Chapter 8).

The S ^ B  value of the freshwater (33.8%c to 36.9%c), high B/Cl ratios (higher 

than that of seawater and the Dead Sea) and the marine Na/Cl ratios (Fig. 5.2) suggest that 

boron in these groundwaters is the product of mixing of meteoric boron, derived from 

marine cyclic salts (S ^ B  =39%o, B/Cl=8xl0*4, Na/Cl = 0.86), with terrestrial boron, 

derived from clays ( 5 ^ B  ~0%o) and carbonates ( 5 ^ B  ~20%c to 30%c). It seems that 

boron isotopes in the freshwaters are sensitive to rock leaching whereas Na/Cl ratios are 

not. The terrestrial end-member would have high B/Cl ratios and low 8 ^ B  values.
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The 'En Feshcha springs have higher 81 values and elemental boron contents, 

and lower B/Cl ratios relative to the freshwaters (Table 5.3, Fig. 5.2). In addition, their 

Na/Cl ratios are low (0.38-0.45, Table 5.2). This can be the result of mixing of the Dead 

Sea brines or the hot springs with groundwaters, such as those of 'En Dawid and Nahal 

Arugot (Fig. 5.3). In any combination, the fraction of the freshwater component is high. 

For mixing with the Dead Sea and with the hot springs the calculated freshwater fractions 

are 0.99 and 0.98, respectively.

5.4. CONCLUSIONS

1) The concordance of high 8 ^ B  values and low B/Li ratios in a brine indicates 

adsorption of boron onto clay minerals, and hence interaction of brines with sediments.

In a system that is saturated with halite, or has been saturated during its history, the B/Cl 

ratios should be normalized to the Na/Cl ratios.

2) The combinations of high 8 ^ B  values, low B/Li, low Na/Cl and high Br/Cl 

ratios a of a brine indicates that it has originated from seawater (5**B=39%c, 

Na/Cl=0.86) through evaporation, precipitation of salts, and interaction with clay 

minerals, i.e. adsorption. This is the interpretation that is suggested for the evolution of 

brines from the Dead Sea system.

3) An addition of boron derived from the country rocks in the Dead Sea basin, 

with a low 5 ^ B  signature, may affect the isotopic composition of brackish and 

freshwaters. However, due to its relatively larger boron content, the main boron reservoir 

(the Dead Sea and hot-spring brines) is not isotopically affected by processes that 

contribute boron from rock leaching.
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Chapter 6

BORON ISOTOPE SYSTEMATICS OF OILFIELD 

BRINES FROM THE COASTAL PLAIN OF ISRAEL

6.1. INTRODUCTION

The origin of deep subsurface brines, referred to as "oilfield brines" or 

"formation waters" has been investigated by means of their chemical composition 

(DEGENS et al., 1964; CARPENTER, 1978; EGEBERG and AAGAAD, 1989), 

oxygen- and hydrogen-isotope compositions (CLAYTON et al., 1966; FLEISCHER et 

ai., 1977), and Sr isotopes (VEIZER and DEMOVIC, 1974; STARINSKY et al., 1983). 

Various models, often controversial, have been postulated in attempts to elucidate the 

origin and history of these waters (EGEBERG and AAGAAD, 1989). The various 

possible sources (seawater, meteoric water), as well as complex modification processes, 

such as interaction with the confining rocks (STARINSKY, 1974), make this task 

difficult.

The distinctive isotopic composition of boron in seawater makes it an attractive 

geochemical tracer for identifying the sources of boron in formation waters. Seawater is 

largely enriched in ^ B  (5^B=39%o) relative to terrestrial rocks (8^B~0% o) due to 

isotopic fractionation that occurs as boron is adsorbed onto detrital clays and altered 

basalts (SCHWARCZ et al.,1969; SPIVACK et al., 1987). High 5 n B values and 

depletion of elemental boron (as normalized to chlorine or lithium) in brines may indicate 

adsorption onto clays. Such processes are demonstrated for instance in some Australian 

salt lakes and in the Dead Sea in Israel (VENGOSH et al., 1989; Chapters 2 and 5).

In order to evaluate the potential application of boron isotopes to the study of 

oilfield brines, well studied brines from the oilfield of the southern coastal plain of Israel 

have been investigated (Fig. 6.1). The brines were sampled from the Lower Cretaceous 

Heletz Formation (STARINSKY, 1974; FLEISCHER et al., 1977; STARINSKY et al.,
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Figure 6.1. Location map of Heletz in the southern coastal plain of Israel.
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1983). The rocks of this formation are carbonate-cemented sandstones with dolomitic 

lenses that have yielded about 16 million barrels of oil over the last 35 years. The brines 

were sampled in actively pumped wells and were originally mixed with oil.

6.2. R ESU LTS AND D ISCU SSIO N

Subsurface brines that are associated with oil from the Heletz field were 

analysed for Na+, C l', S O ^ ',  B content and boron isotopic composition (Table 6.1).

These brines are Ca-chloridic, and characterized by TDS contents of 28 to 93 g/1 and low 

S0 4 ^ ' contents (STARINSKY, 1974). The brines have 8 ^ B  values of 32.6%c to

42.2%o, high B/Cl ratios of 2 .9xl0"3 to 4 .2x l0 ' 3 , Na/Cl ratios of 0.84 to 0.92, and 

low SO4/CI ratios of lxlO"5 to 5xl0 ' 3 (Table 6.1).

The relatively high 8^ B  values of the subsurface brines from Heletz indicate a 

major contribution of marine boron with 5^B=39% o, or it may reflect adsorption 

processes similar to those of the Australian salt lakes and the Dead Sea, Israel (see 

Chapters 2 and 5). Brines with high S ^ B  values which are solely the result of 

adsorption processes should be, however, associated with low B/Cl or B/Li ratios (see 

Chapters 2 and 3). This is obviously not the case in the investigated oilfield brines where 

the B/Cl ratios are high. A plot of B/Cl ratios versus 5 ^ B  values (Fig. 6.2) shows an 

enrichment of boron relative to seawater, as normalized to chlorine. The 5 ^ B  values of 

most of the brines overlap however, with the 8^ B  values of modem seawater. The 

marine signature of boron is in concordance with the Sr isotopic composition of these 

brines (STARINSKY et al., 1983).

The enrichment of boron relative to modern seawater can be defined as 

(B/Cl)brine/(B/Cl)sw- In the investigated brines the magnitude of this enrichment is in 

the range 3.7 to 4.9.
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seawater

0 . 0 0 4 0 . 0 0 50 . 0 0  1 0 . 0 0 2 0 . 0 0 30 . 0 0 0
B/CI ratios (molar)

Figure 6.2. 5 ^ B  values versus B/Cl ratios of brines from Heletz relative to modern 

seawater. Note the relative enrichment of elemental boron in the oilfield brines although 

their 8^B  values are broadly similar to the marine value.
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The enrichment of boron could be the result of several processes:

(1) Evaporation and halite precipitation. The Na/Cl ratios of the investigated 

brines (Table 6.1, Fig. 6.3) indicate that halite has never been precipitated from these 

brines (STARINSKY, 1974; STARINSKY et al., 1983). Hence this argument is not 

valid for the case of the Heletz brines.

(2) Contribution of boron from the country rocks. The Sr isotopic composition

and Sr/Ca ratios of these brines indicate exchange reactions of the marine brines with 

Cretaceous carbonate rocks (STARINSKY et al., 1983). Carbonate rocks contain only 

about 10-20 ppm boron (FÜRST et al., 1976; VENGOSH et al., 1989) and thus are not 

a major source of boron. However, boron is enriched in clay minerals (up to 150 ppm in 

marine sediments, HARDER, 1970; SPIVACK et al., 1987), thus leaching of clays can 

possibly contribute boron to the brines. Such boron would, however, have a different 

isotopic signature. The 5- values of desorbable and non-desorbabie boron of modem

marine sediments were estimated as 13.9%c to 15.8%c and -4.3%c to 2.8%o, respectively 

(SPIVACK et al., 1987). If the enrichment of boron in the subsurface brines of Heletz 

was the result of leaching of clays we would expect much lower 8 ^ B  values for the 

brines.

(3) High B/Cl in the original Messinian seawater. As the content of boron in the 

ocean through geological time has not been determined it is difficult to asses this 

argument;

(4) The observation that many oilfield brines from other locations and ages also 

have high B/Cl ratios (GULYAYEVA et al., 1966; COLLINS, 1975) may suggest that 

boron is also derived from organic matter. Most of the oilfield brines worldwide are 

characterized by high boron contents (up to 100 mg/1) and B/Cl ratios higher than that of 

the normal evaporation curve of seawater. The few examples of oilfield brines where the 

B/Cl ratio is not high are related to large fractions o f dissolved halite in the brines 

(COLLINS, 1975).

The chemical properties of boron are analogous to those of carbon and silicon. 

Therefore boron is largely enriched in algae (up to 1500 ppm, NICHOLLS et al., 1959; 

FÜRST et al., 1981), coal (BROWN and SWAINE, 1964) and oil (range of 71 to 1043



131

ppm, GULYAYEVA et al., 1966). In oil, boron is concentrated in the wax fraction 

mainly in complexes with acid components, carbonic acids and phenols. Some of these 

components are soluble in water and hence boron in petroleum may pass to brines in 

close contact (GULYAYEVA et al., 1966).

The enrichment of boron in the oilfields of Heletz is also associated with an 

excess of bromine (STARINSKY, 1974). The (Br/Cl)brine/(Br/Cl)Seawater rati° s are 

about 1.2, i.e. a bromine enrichment of 20%. An enrichment of bromine (and iodine) in 

fluids is generally attributed to derivation from decomposition of organic matter in the 

sediment (CAMPBELL and EDMOND, 1989; MACPHERSON and LAND, 1989). 

Consequently we suggest that the enrichment of boron in the investigated brines that are 

associated with oil may be the result of interaction with oil.

Although the bulk of the oilfield brines from Heletz have a marine signature 

(Na/Cl ratios and S ^ B  values), small but significant additional variations can be 

identified: low-salinity (TDS) brines are associated with higher Na/Cl ratios (Fig. 

6.3A), lower 8 n B values (Fig. 6.3B) and higher SO4/CI ratios (Fig. 6.3C). We 

distinguish between "normal marine" brines (with Na/Cl ratios of the range of 0.84 to 

0.88 and S ^ B  values of 36.7%c to 42%c) and brines with "non-marine" values. The 

latter are also associated with an enrichment of sulphate (Fig. 6.3C). It is suggested that 

these associations indicate that the marine oilfield brines from Heletz have been diluted 

with water with a distinctive chemical signature. The more dilute component has a signal 

indicative of dissolution of rock salt (Na/Cl=l), anhydrite or gypsum (a source for 

sulphate) and borate minerals with low S ^ B  values. In order to decrease the 8* Iß  

value of the oilfield brines from 39%c to 32.6%c, a relatively large quantity of boron with 

low 8^ B  value is required. It has been shown that the 8^ B  values of marine evaporite 

borates is 25±4%o (SWIHART et al., 1987). In addition, a parallel study of boron 

isotope variations in evaporated seawater (Chapter 3), has indicated that some fraction of 

boron is taken into salts in late stages of evaporation. The removal of boron is associated 

with isotopic fractionation where the salts tend to be enriched in 10b  (Chapter 3). The 

bulk of the boron in the oilfield brines however, could not have been derived from borate
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Figure 6.3.A. Na/Cl ratios versus TDS (g/l) of brines from Heletz. A distinction is 

made between brines that have a marine signature and brines that are characterized by 

lower TDS and higher Na/Cl ratios. The latter is interpreted as involving dissolution of 

Messinian evaporites.
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Figure 6.3.B. Na/Cl ratios versus 5 ^ B  values of brines from Heletz. A distinction is 

made between brines that have a marine signature and brines that are characterized by 

lower 5 ^ B  values and higher Na/Cl ratios. The latter is interpreted as involving 

dissolution of Messinian evaporites composed of rock-salt and borate minerals with 

lower 5 ^ B  (<39%o) values.
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Figure 6.3.C. Na/Cl ratios versus SO4/CI ratios of brines from Heletz. A distinction is 

made between brines that have a marine signature and brines that are characterized by 

higher Na/Cl ratios and SO4/CI ratios. The latter is interpreted as involving dissolution 

of Messinian evaporites composed of rock-salt and anhydrite or gypsum.
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minerals, or these brines would not have retained a largely marine 8 ^ B  value. Only 

the more dilute brines have this "evaporite-dissolution" signature. Consequently, 

dissolution of Messinian (?) evaporite borates would contribute a large boron reservoir 

with low 5 ^ B  values, high Na/Cl ratios and high sulphate contents.

Assuming that the oilfield brines have mixed with a freshwater end-member that 

has a Na/Cl ratio of 1, by mass-balance calculations, the concentrations and boron 

isotopic composition of the freshwater are estimated as: 1) Na and Cl of 625 mmoles; 2) 

S04^“ of 45 mmoles (SO4/CI ratio of 0.072); 3) 8 ^ B  value of 21%o.

6.3. CONCLUSIONS

We suggest that the subsurface brines from Heletz have evolved in the following

stages:

1) evaporation of Mediterranean seawater during the Messinian followed by 

sulphate reduction and dolomitization processes, i.e. modification into Ca-chloridic 

brines (STARINSKY, 1974; SASS and STARINSKY, 1979; STARINSKY et al., 

1983).

2) interaction with oil and/or decomposed organic matter that has enriched the 

brines in boron but has not modified their 8^B  values, which remain marine;

3) dilution with water with a distinctive chemical and isotopic signature derived 

from the dissolution of Messinian evaporites.

The elemental boron and boron isotope data presented in this study have potential 

applications for both the reconstruction of the origin of oilfield brines and tracing their 

interaction with organic matter. The simplicity of the negative thermal-ionization mass 

spectrometry technique (VENGOSH et al., 1989) makes boron isotope analysis of 

oilfield brines a rapid and practical geochemical tool that assists in the identification of 

the sources of salts, diagenetic history and migration of fluids associated with oil.
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Chapter 7

BORON ISOTOPE GEOCHEMISTRY OF 

GROUNDWATERS FROM THE RIFT VALLEY (ISRAEL)

7.1. INTRODUCTION

The sources of dissolved salts and the interaction of groundwaters with host 

rocks are usually studied by analysing the chemical and isotopic compositions of the 

water. In this chapter an investigation of the isotopic composition of boron in 

groundwaters is presented, in an attempt to apply boron isotope geochemistry as a tracer 

for the origin of groundwaters. The main advantages of the boron isotope method are the 

the conspicuous isotopic signature of seawater relative to that of terrestrial rocks 

(SCHWARCZ et al., 1969) and the large isotopic fractionation associated with adsorption 

of boron onto clay minerals (SCHWARCZ et al., 1969; SPIVACK et al., 1987, 

PALMER et al., 1987). These characteristics have been investigated in salt lakes from 

Australia and China (the Qaidam Basin) and in the Dead Sea, Israel (see Chapters 2, 4, 

and 5).

In this study, analyses of boron isotopes have been performed on several types 

of groundwaters that include a large range of salinities, different chemistries and different 

types of country rocks.

7.2. GEOLOGICAL AND GEOCHEMICAL SETTING

The Jordan-Arava Rift Valley (Fig. 7.1) is a transform fault, a branch of the Red 

Sea Rift extending from East Africa to Turkey. Waters in the rift range in salinities from 

snow in Mount Hermon at the north to the terminal, hypersaline Dead Sea, located about 

400 m below sea level. The Ca-chloridic brines of the Dead Sea system evolved from a 

marine trangression in the Pliocene, through evaporite formation and interactions with 

sediments and country rocks (BENTOR, 1961; NEEV and EMERY, 1967; ZAK 1967; 

STARINSKY, 1974).
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Figure 7.1. Location map of waters, sampled 

from the Rift Valley in Israel.
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The sampling sites for this study (Table 7.1) are briefly described below.

1) Timna . The ancient copper mine of Timna is located in the the southern Arava 

Valley, 25 km north of Elat (Fig. 7.1). The investigated waters were collected from 

seepages in an open pit and underground copper mine. The chemical and isotopic 

characteristics (temperatures of 16°C to 32°C, TDS of 6000 mg/1 to 16000 mg/1, Ca- 

chloridic type, high Ca/Mg ratios and the low ^^Sr/^^Sr ratios (in the range of 0.7058 to 

0.7065; Table 7.2) of Timna waters are the result of interaction of ancient Ca-chloridic 

Rift Valley brines with basaltic rocks and dilution with meteoric water (STARINSKY et 

al., in prep.). The 8 ^ 0  (-8.4%e to -6.4%c) and 8D values of these waters are low and 

are interpreted as representing glacial-age palaeowaters (GAT and GALAI, 1982).

2) The Hammat Gader (El-Hamma). The Hammat Gader hot springs discharge 

at the Yarmouk Valley, a major tributary of the Jordan River, 7 km east of the Sea of 

Galilee (Fig. 7.1). Five large springs with temperatures from 25 to 50°C emerge from 

Eocene chalks at the northern margin of the Ajlun anticline. The content of the dissolved 

salts increases with increasing temperature. MAZOR et al., (1973) proposed a mixing 

model of a hot saline end-member with cold freshwaters. The 8 ^ 0  and 8D values 

decrease with increasing temperature and salinity and were interpreted as mixing of 

ancient and recent meteoric waters (MAZOR et al., 1980). In contrast, STARINSKY et 

al., (1979) explained the chemical composition of the springs by the mixing of an ancient 

Ca-chloridic brine with modern meteoric waters. ARAD and BEIN (1986) suggested that 

the higher temperature low-S^O component is derived from recharge areas in the 

northern Golan Hights.

3) The Sea of Galilee (Lake Kinnereth). The Sea of Galilee is sorrounded by 

brackish and saline springs which contribute salts to the lake. The investigated springs in 

this study are the Roman Tiberias Hot Springs and 'En Tabgha on the western shore; 

Biet Habeck on the north-eastern shore, and ’En Gofra on the western shore of the Sea 

of Galilee (Fig. 7.1). Although MAZOR and MERO (1969) suggested that seawater was 

the source for the salts in these springs, STARINSKY (1974) postulated a model of 

migration and dilution of ancient Ca-chloridic subsurface brines.
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TABLE 7.1. Temperatures and sources of investigated groundwaters from the Rift 

Valley.

Sample T (c°) Source

Timna
D-682 22 spring
D-686 29 spring
D-735 27 spring
D-742 30 spring

Sea of Galilee and springs 
D-25,’En Gofra 31 spring
D-26, Sea of Galilee 25 lake
D-27, 'En Tabgha 25 spring
D-654, Beit Habeck - drill hole
DS- 40, Tiberias Hot Spring 60 spring

Hammat Gader
D-641 25 spring
D-642, 'En Saina 28 spring
D-643, 'En Reach 26 spring
D-644, 'En Balsam 42 spring
D-645, 'En Makle 50 spring
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7.3. RESULTS

Timna saline waters

The four saline samples from Timna yield almost identical boron contents of 0.97 

to 1.19 mg/1 in spite of large differences in salinity, i.e. chlorine contents of 3323 to 

8670 mg/1 (Table 7.2). The 5* values range from 14.4%c to 26.7%o and B/Cl (molar) 

ratios are from 4.4x1 O'4 to l.lx lO 3. Samples with high 8 ^ B  values are associated with 

higher TDS (Fig. 7.2A) and low B/Cl ratios (Fig. 7.2B).

Sea of Galilee

The Sea of Galilee has a boron content of 0.11 mg/1, a 5 ^ B  value of 24.0±2%o 

and a B/Cl ratio of 1.8x1 O'3. The springs in the area of the Sea of Galilee have boron 

concentrations of 0.03 to 3.92 mg/1, 5 ^ B  values of 18.5%c to 44.0%c and B/Cl (molar) 

ratios of 1.8xl04 to 1.84 xlO3 (Table 7.2).

Hammat Gader

The five springs of Hammat Gader have boron contents of 0.09 to 0.34 mg/1 and 

S ^ B  values of 20.9%c to 41.9%c (Table 7.2). The boron content increases with 

increasing salinity (Fig. 7.3A) and temperature. The 8* *B values decrease progressively 

with increasing boron content (Fig. 7.3B.), TDS and temperature (Fig. 7.3C). The B/Cl 

(molar) ratios are in the range of 2.24xl0‘3 to 3.96x10"3 and are inversely correlated with 

TDS (Fig 7.3D), boron content and temperature.

7.4. DISCUSSION

7.4.1. Characteristics of boron isotopes in groundwaters

Boron in groundwaters may be derived from country rocks, meteoric waters and 

connate (ancient) subsurface brines. Each of these reservoirs has a distinct boron isotopic 

composition. Granites, fresh oceanic basalts, and non-desorbable ("fixed") boron in 

marine sediments have 8 ^ B  values of about 0 %o\ altered oceanic basalts and desorbable 

boron in sediments have 8 ^ B  values of 0%o to 9%o and 15%o, respectively 

(SCHWARCZ et al., 1969; SPIVACK and EDMOND, 1987; SPIVACK et al., 1987). 

Marine connate brines have high 8^B  values whereas non-marine brines, such as those
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TA BLE 7.2. Boron isotopic data for some groundwaters from the Rift Valley, 

Israel. The B/Cl ratios are molar.

sample location 
No.

Cl
(mg/1)

B
(mg/1)

B/Cl
(xlO-3)

8 n B
(%c)

^ S r /^ S r  *

T im n a

D-682 8180 1.19 0.48 23.3 0.70603
D-686 3450 1.18 1.12 16.2 0.70642
D-735 8670 1.15 0.44 26.7 0.70579
D-742 3323 0.97 0.96 14.4 0.70649

S ea  o f  G a lile e  a n d  sp r in g s

DS-25 'E nG ofra 2700 1.52 1.84 31.6 -

DS-26 Sea of Galilee 200 0.11 1.80 24.0 -

DS-27 'En Tabgha 1240 0.32 0.85 31.8 -

D-654 BeitHabeck 11078 0.62 0.18 18.5 0.70586
DS-40 Tiberias 18000 3.92 0.71 44.0 0.70770

H a m m a t G a d er

D-641 91 0.11 3.96 39.4 0.70773
D-642 'En Saina 74 0.09 3.99 41.9 -

D-643 'En Reach 210 0.19 2.97 28.2 -
D-644 'En Balsam 303 0.23 2.49 25.4 -

D-645 'EnM akle 497 0.34 2.24 20.9 0.70773

* data from A. Starinsky (personal communication)
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TDS g/l
1000

B/CI ratios (molar)

Figure 7.2.A 5 ^ B  values versus total dissolved solids (TDS in gA). B. 5  ̂ values versus B/Cl 
ratios of the saline waters from Timna. Note that the saline waters have higher 5 ^ B  values.
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Cl = 0.0053 + 0.0019 B R = 0.99

0.03 -

E 0.02 -

0.01 -

Chlorine (mmole/I)

0.2
Boron (mg/I)

Figure 7.3.A . Boron versus chlorine (in mmole/1); B. 5 ^ B  values versus boron content (in 
mg/1) of the thermal springs of Hammat Gader.
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Figure 7.3.C . 8  ̂*B values versus temperature (°C); D. 5* *B values versus B/Cl ratios of 
the thermal springs of Hammat Gader.
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from the Qaidam Basin, China, have low, "terrestrial" S ^B  values (Chapter 4). In the 

case of the Rift Valley in Israel, STARINSKY (1974) and STARINSKY et al., (1979) 

have proposed that ancient saline brines have been trapped deep in the subsurface and 

contribute salts to the hydrological systems along the Rift Valley. Such brines would be 

characterized by low Na/Cl and B/Cl ratios, high Ca/S04 ratios and high 8 ^ B  values 

(>39%c) (STARINSKY, 1974; see Chapter 5).

The few available analyses of rainwater and river water suggest that meteoric 

boron is derived from marine cyclic salts (SPIVACK, 1986). In the case of Australia, it 

has been shown that cyclic boron with a high (marine) 5 ^ B  value is one of the sources 

of boron in Australian salt lakes (Chapter 5).

It has been shown that during low-temperature interaction of natural solutions 

with basalts or detrital sediments on the sea floor, boron is removed from solution. This 

removal is associated with isotopic fractionation in which is incorporated 

preferentially into the solid phase while the residual solution is enriched in 1*B, 

(SPIVACK and EDMOND,1987; SPIVACK et al., 1987; PALMER et al., 1987). In 

contrast, at higher temperatures (~ 380°C) boron is extracted from oceanic basalts with no 

resolvable isotopic fractionation and the boron isotopic composition of the fluids is 

determined by 5* Iß value of the rocks (SPIVACK and EDMOND, 1987).

Consequently, high 8 ^ B  values and low B/Cl ratios in groundwaters may 

indicate that boron is removed from solution whereas low S ^ B  values and high B/Cl 

ratios reflect extraction of boron from the rocks. The B/Cl (molar) ratios of igneous and 

sedimentary rocks range from 0.066 to 0.417 (data compiled from CHRIST and 

HARDER, 1978 and BREHLER and FUGE, 1974) and are significantly higher than that 

of seawater (8xl0-4). Both boron and chlorine are extractable with water that can leach 

over 50% of total Cl and B from igneous and sedimentary rocks (ELLIS and MAHON, 

1967; SAUERER et al., 1990).

7.4.2. The origin of boron in the saline waters of Timna

According to STARINSKY (1974) the subsurface brines of the Rift Valley along 

the Dead Sea originated from ancient (Pliocene?) seawater, which evaporated and was
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responsible for the deposition of salts of the Sdom Formation. Thus such brines should 

have common chemical and isotopic fingerprints. In the case of boron, we would expect 

for these waters high 8 ^ B  values (>39%©; Chapter 5). Low-temperature interactions of 

Rift-Valley brines with igneous rocks, which are abundant in the area of Timna, would 

also result in the brines maintaining high 5^B  values. The boron isotopic composition in 

Timna waters, (Table 7.2) ranging from 8* *B values of 14.4%c to 26.7%o, suggest that 

these two sources cannot contribute significant boron to the waters from Timna.

Instead, high-temperature interactions with igneous rocks with low 8 ^ B  values 

would reduce the 8 ^ B  value of the brines. Similarly, interactions of seawater with 

basalts at elevated temperatures reduce the 8^B  values of the hydrothermal solution to a 

range of 30%c to 34.9%o (SPIVACK and EDMOND, 1987).

The association of high 8 ^ B  values with brines with high salinity (Fig. 7.2A) 

and low B/Cl ratios (Fig. 7.2B) may reflect mixing of a Rift Valley brine with freshwater 

having a low 8 ^ B  value (close to 0%6) . The low 8 ^ B  values, high B/Cl ratios and low 

salinity end-member may be related to a solution that has interacted with country rocks. 

Thus, the boron isotopic composition of the saline waters from Timna suggest that 

boron has been derived from two sources: the Rift Valley brine with high 8 ^ B  values, 

and the country rocks.

In spite of the large differences in salinity, the boron content in the waters from 

Timna (Table 7.2) is constant. This indicates that the extraction of boron from the rocks 

took place after the dilution of the ancient Rift Valley brine. Consequently, the suggested 

geochemical history of Timna waters is: (1) dilution of the ancient Ca-chloridic brines;

followed by (2) interaction with igneous rocks.

The low Na/Cl and 87Sr/86Sr ratios of the waters from Timna (Table 7.2) 

suggest that these waters have originated from interaction of ancient Ca-chloridic Rift 

brines with mantle-derived materials, i.e. basalts or gabbro (STARINSKY et al., in prep.; 

BEYTH et al.,1984) and in agreement with the mechanism that is proposed based upon 

the boron isotopic results.
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7.4.3. The origin of boron in the Sea of Galilee and surrounding springs

The chlorinity of the springs on the shore of the Sea of Galilee varies from 200 

mg/1 to 18000 mg/1. On the basis of chlorinity, the waters may be considered in two 

groups:

Two samples of saline springs around the Sea of Galilee yield different 5 ^ B  

values and ^^Sr/^^Sr ratios (Table 7.2): (1) water from the drillhole at Beit Habeck has a 

low 8^ B  value of 18.5%c and a ^Sr/^ Sr  ratio of 0.70586; (2) the Tiberias Hot Spring 

has a high 8* *B value of 44 %c and a ^ S r /S tö S r  ratj0  0f 0.7077. However, both springs 

have low Na/Cl ratios (of about 0.4). The low 8^B  values, 87sr/86sr and Na/Cl ratios 

of Beit Habeck may indicate a high-temperature interaction of an ancient Ca-chloridic 

brine with basaltic rocks that reduced the 8* *B value to 18.5%c and the ^^Sr/^^Sr ratio to 

0.70586. This suggested "basaltic" imprint is derived from Post-Pliocene basalts on the 

north-east of the Sea of Galilee (Fig. 7.1). The low Na/Cl ratios, the high 8^B  value and 

87sr/86sr ratios of the Tiberias Hot Spring may reflect the original composition of the 

ancient Ca-chloridic brine.

The brackish springs of 'En Gofra and 'En Tabgha (Table 7.2) have 8 ^ B  values 

of about 31.7%c. It is suggested that boron in these springs is a mixture of a high-8^B 

value component (connate brine) with a low 8^B  end-member, i.e. country rocks.

The boron isotopic composition of the Sea of Galilee itself is relatively low 

(8^B=24.0±2%o). This may indicate that boron in the lake is derived from several 

possible sources: (1) The Jordan and associated small rivers that have catchments within 

basaltic and carbonate terrains; and (2) saline springs with 8 ^ B  values in the range of 

18%o to 44%o.

7.4.4. The origin of boron in the thermal springs of Hammat Gader

According to STARINSKY et al., (1979) the thermal springs of Hammat Gader 

have originated from mixing an ancient, Ca-chloridic rift brine with present-day meteoric 

waters. If this were the case, we would expect that the deep, hot waters would have the 

signature of a rift brine, i.e. high 8 1 *B values. Instead, the 81 *B values of the waters
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from Hammat Gader decrease with increasing boron content (Fig. 7.3B.), salinity and 

temperature (Fig. 7.3C). Sample D-641 which is the sample with the lowest salinity and 

temperature (Table 7.2) and the youngest age (MAZOR et al., 1973; MAZOR et al., 

1980) has, on the other hand, a marine 8* signature.

The hyperbolic relationship between boron contents and 8 ^ B  values (Fig. 7.3B) 

and the linear correlation of reciprocal boron with 8 ^ B  values (Fig. 7.4) suggest mixing 

between a low-B, high-S^B  component (freshwater; sample D-641) and a high-B, low- 

81 ^B end-member (hot, saline, deep water; sample D-645). In addition, the low -S ^B  

end-member has low B/Cl ratios whereas the h igh-5^ B and low-B component has much 

higher B/Cl ratios (Fig. 7.3D.). The B/Cl ratios of all of the springs from Hammat Gader 

(2.24x10 3 to 3.96xl0-3) are higher than that of seawater, or the Dead Sea (8X10*4).

The boron isotope data suggest that boron in the thermal springs of Hammat 

Gader is derived from a reservoir with a 5* -B value lower than 20.9%o. Two possible 

modes of formation are considered:

(1) The relationship between 5 ^ B  values and temperature (Fig. 7.3C) may 

indicate in situ leaching of the rocks. At high temperatures boron with a low 5* *B value 

is leached from the aquifer rocks and mixed with meteoric water with a low boron content 

and a high S ^ B  value. According to this model, the budget of boron would not 

necessarily be related to that of the other dissolved components in the springs.

(2) It has been shown that the ^^Sr/^^Sr ratios of Pliocene CaS04 minerals in 

the northern Jordan Valley are low (M. RAAB, personal communication). The low 

87sr/86$r ratio (0.70587) and low 5* Iß  value (18.5%c) in the subsurface saline waters 

from Beit Habeck may well be related to the low ^^Sr/^^Sr ratios of the Pliocene CaSC>4 

minerals and suggest that an ancient Rift Valley brine had interacted with basaltic rocks. 

By a similar mechanism, which is described for the waters from Timna, the isotopic 

compositions of B and Sr were modified by the basalts at early stages in the history of 

this brine. Other parameters such as the Na/Cl ratios were not affected and maintained 

their Ca-chloridic inheritance. The interactions with basalts have modified the Ca-chloridic 

brine into a low -8^B  brine.
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R = 0.99

1/boron (l/mg)

Figure 7.4. 5 ^B  value versus reciprocal boron content (l/mg) of water samples from the 

thermal springs of Hammat Gader.
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The behaviour of boron is therefore a result of mixing of a low-5 

modified brine with a h i gh - 5en d - m em ber .  The h i g h - 5 c o m p o n e n t  could be 

meteoric boron which has a marine isotopic composition or could be a brine similar to that 

of the Tiberias Hot Spring. This would also explain the observed decrease of B/Cl ratios 

with increasing TDS and 5 ^ B  values (Fig. 7.3D) and would relate the dissolved boron 

content to the other major dissolved constituents in the Hammat Gader springs.

7.4.5. Sensitivity of boron to water-rock interactions

The rate of isotopic exchange between minerals and water depends upon the 

temperature of the system, the chemical composition, and grain-size and structure of the 

mineral involved. For oxygen isotopic exchange, quartz is the most resistant mineral, 

while the oxygen of clay minerals is more easily exchanged. Waters in deep sedimentary 

basins are commonly enriched in due to oxygen isotopic exchange at elevated 

temperatures with carbonates and silicates. In addition to the controls exerted by 

temperature and mineralogy, the magnitude of this enrichment depends on the amount of 

oxygen in the rock and in the fluid (HITCHON and FRIEDMAN, 1969).

The data presented in this study suggest that boron dissolved in groundwater 

contains a terrestrial isotopic signature, and hence was derived from the aquifer rocks. In 

contrast, the 5 ^ 0  of all the investigated groundwaters indicate little oxygen exchange 

with the aquifer rocks and no "oxygen isotopic shift" has been seen recognized (GAT and 

GALAI, 1982; ARAD and BEIN, 1986). In Timna, the Sr isotopic compositions of the 

waters are also dominated by rock compositions. The observed relationships are 

consistent with the expected behaviour given the relative concentrations of the different 

elements in water and rock.

This notion is considered further using, as examples, the relative abundances of a 

given element in a volume of water, say a litre, to its abundance in a gram of rock. In the 

case of Timna, where waters interact with basaltic rocks, the ratio of the amount of 

boron in a litre water (1 mg/1, i.e. 1000 mg) to that in a gram of basaltic rock (3 ppm, 

CHRIST and HARDER, 1978) is about 300. For the range of 20 to 70 mg/1 Sr in these 

waters (STARINSKY et al., in prep.) the ratio of strontium in a litre of water to that in a



gram rock (2000 ppm) is in the range of 10 to 35. In contrast, the ratio of oxygen in the 

water relative to that in the rock is about 1600.

These abundance-ratio figures are consistent with the measured isotopic 

compositions of boron, strontium and oxygen of the waters from Timna (Table 7.2; GAT 

and GALAI, 1982). Whereas the boron and strontium isotopic values of the waters 

reflect the interaction with the country rocks, the oxygen isotopic signature remains 

meteoric. Hence, whereas the isotopic composition of oxygen in water in an aquifer will 

be water (meteoric) dominated, that of Sr and boron will be influenced by rock 

composition.

7.5. CONCLUSIONS

1) The variations of 5^B  values in groundwaters may be used to trace the 

sources of dissolved boron (meteoric, connate, country rocks) and hence the origin of 

the dissolved salts in the water.

2) The large difference in the isotopic compositions of the boron reservoirs 

that contribute boron to the groundwaters, e.g. marine salts (5^B=39%o), igneous 

rocks (Ö1 1b =0%c), makes boron isotope compositions in groundwater sensitive

indicators of water-rock interaction.
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Chapter 8

COPRECIPITATION AND ISOTOPIC FRACTIONATION 

OF BORON IN MODERN BIOGENIC CARBONATES

8.1. INTRODUCTION

In spite of the high content of boron in clay minerals, boron concentrations in 

sediments are poor candidates for the determination of palaeosalinity (FLEET, 1965; 

LERMAN, 1966; HARDER, 1970; PERRY, 1972). SPIVACK et al., (1987) have 

shown that the bulk of boron in clays, that is fixed or "non-desorbable boron", is not in 

an isotopic equilibrium with modem seawater, while "adsorbed boron" (only -10%  of 

the bulk boron in clays) is governed by the boron isotopic composition of seawater. 

Hence the isotopic composition of bulk boron in clay minerals cannot indicate their 

depositional environment. In contrast, authigenic phases that are precipitated directly 

from seawater may monitor the nature of the parent solution and are worthy of 

investigation as a palaeoenvironmental tracers.

The best candidates for palaeoenvironmental indicators in the marine

environment are th< d components. A few studies of boron geochemistry in
A

carbonate materials have revealed boron enrichment in aragonite (15 ppm) relative to that 

in calcite (9 ppm) and that boron is concentrated in the non-organic parts of the shell 

matrices of bivalved molluscs. The boron content in the shells is related to the boron 

concentration in the host waters as well as the salinity (FÜRST et al., 1976). KITANO et 

al. (1978) have also demonstrated that inorganic coprecipitation of boron in calcium 

carbonate is proportional to both the concentration of boron in the parent solution and the 

mineralogical composition.

This chapter is directed towards understanding the m echanisms for 

coprecipitation and isotopic fractionation of boron in several skeletal components. In 

addition, an examination is made of the potential of boron isotope geochemistry for 

tracing palaeoenvironments and evaluation of the boron budgets of biogenic calcareous 

sediments being deposited in the oceans.
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8.2. ANALYTICAL TECHNIQUES

Boron concentrations in calcium carbonate minerals have been previously 

determined by a-track counting (FÜRST et al.,1976) and spectrophotometry 

(ICHIKUNI and KIKUCHI, 1972; KITANO et al., 1978) techniques. In this study, 

CaC03 is dissolved in HC1 and loaded directly into a reverse-polarity solid-source mass 

spectrometer (VENGOSH et al., 1989); thus both the isotopic composition and elemental 

concentration of boron are determined in small amounts of carbonate materials.

Carbonate minerals were freed of organic matter by hypochlorite solution or 

hydrogen peroxide and cleaned in distilled water with ultrasonic agitation. Analyses of 

aliquots of a sample cleaned only in distilled water, or H2O2 solution, or hypochlorite 

solution, yielded similar boron concentrations within the experimental error. Weighed 

amounts o f powdered CaC03 were mixed with a ^B-enriched spike (NBS 952, 

1 lß /lO ß  = 0.0554) and dissolved in IM HC1. The spiked solution was analysed in the 

mass spectrometer. Duplicate analyses of boron concentrations indicate a precision of 

0.25% to 4% for the carbonate samples, with the main uncertainty being weighing errors.

Boron isotopic compositions were determined by dissolution of the powdered 

carbonate in IM HC1, filtration, then addition of ultra clean La(N03)3 or MgCl2 

solutions prior to loading onto filaments for mass spectrometry. The 1 ^B/^B ratios were 

determined by analysing the B 02' ions and are reported as permil deviations (5 ^ B )  

relative to the standard NBS SRM 951 :

Sn B= [(IIb/IOb^ pu/ U b /IOBn b s^ ! ) - ! ]  1000

The NBS SRM 951 and HCl-dissolved carbonate solutions were simultaneously 

loaded and analysed in a reverse-polarity, NUCLIDE-type, solid-source mass 

spectrometer. The addition of La(NC>3)3 or MgCl2 solutions enhanced the intensity of the 

ion beam. Both the carbonate samples and NBS SRM 951 solutions were modified for 

the same runs by La(N03)3 or MgCl2 matrix. The precision of the isotopic analysis by 

negative thermal-ionization is about 1.5%c. Analyses of direct-loaded HCl-dissolved 

calcium carbonate and samples in which B was separated through XE-243 columns yield 

similar isotopic compositions within the experimental error (H. BAADSGAARD, 

personal communication), and validate use of the direct loading technique.
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8.3. RESULTS

Biogenic skeletons. A variety of calcareous biogenic skeletons was sampled 

from the Atlantic Ocean; Gulf of Elat, Israel; and the Great Barrier Reef, Australia (Table 

8.1). The concentrations and boron isotopic compositions of the investigated biogenic 

carbonates are summarized in Table 8.1, Fig. 8.1 and Fig. 8.2. For comparison, the 

boron concentrations of particular species or species from the same groups previously 

compiled by MILLIMAN (1974) are also included in Fig 8. 2. The boron concentrations 

of aragonitic corals are conspicuously higher (51.4 to 79.7 ppm) than those of other 

biogenic skeletons. Aragonitic gastropod shells on the other hand have the lowest boron 

concentrations (2.1 to 3.3 ppm).

The coral Platygira sp. from several locations in the Gulf of Elat has similar 

boron concentrations, whereas a variety of coral genera (Platygira sp., Fungia sp. and 

Stylofora pistilata) from the same location yielded a range of boron concentrations from 

64.3 ppm to 79.7 ppm. Porites sp. coral from Lady Elliot Island from the Great Barrier 

Reef, Australia, has a higher boron concentration (58.7 ppm) than that of Porites sp. 

from Palm Island (53.3 ppm), also located in the Great Barrier Reef.

The 5 ^ B  results of the biogenic carbonate skeletons are in the range of 14.2%c 

to 32.2%o, and in all cases are lower than that of seawater (8* ^B=39%o, measured both in 

the G ulf of Elat and off-shore eastern Australia, Fig 8.1). Calcitic planktonic 

Foraminifera have the lowest 8 ^ B  values of 14.2%c to 19.8%c whereas the aragonitic 

corals have the highest 8 ^ B  values (and boron concentrations) among the carbonates 

(26.7 %o to 31.9%o; Fig. 8.1). The large variations in boron concentrations of the 

different coral species from the Gulf of Elat and the Great Barrier Reef (range of 28.3 

ppm) is not reflected in their minor 8* *B variations (range of 5.2%c).
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TABLE 8 .1 . Abundances and isotopic composition of boron in selected biogenic 

carbonate skeletons (Cal = calcite; Arg = aragonite). Square brackets [] are A.N.U. 

sample numbers.

Sam ple Group Name Mineral B content
(ppm)

5 n B
(%c)

E q u a to r ia l  A tla n tic  (6^46 .7 \S 1 2 ° 4 7 .0 ’W )

C-71 Foram inifera (plankton) Globigerinoides ruber Cal 17.9 14.2

C-72 Foram inifera (plankton) Globigerinoides sacculifer Cal 16.6 19.8

C-73 Foram inifera (plankton) Globorotalia menardii Cal 9.0 15.5

C-74 Foram inifera (plankton)
G u lf o f  E la t

Orbulina universa Cal 22.4 18.0

C -l Foram inifera (plankton) Globigerinoides sacculifer Cal 14.2 14.7

C-2 Foram inifera (plankton) Globigerinoides ruber Cal 12.4 -

C-3 Foram inifera (benthos) Am phisorus hemprichii Cal 14.2 32.2

C-4 Foram inifera (benthos) A m phistegina  spp. Cal 54.0 20.3

C-5 Pteropoda Clio convexa Arg 18.5 18.5

C-6 Pteropoda Creseis acicula Arg - 18.0

C - l Pteropoda Limacina inflata Arg - 30.7

C-8 Coral (Taba) Platygira  sp. Arg 64.1 29.6

C-9 Coral (Japanese Gardens) Platygira  sp. Arg 64.4 31.5

C-10 Coral Fungia  sp. Arg 77.6 30.2

C - l l Coral Stylofora pistilata Arg 79.7 31.9

C-12 Gastropoda Tectum virgatum Arg 2.1 31.5

C-16 Gastropoda Fusus polygam oides Arg 3.3 19.8

C-36
L a d v  1

Pelecypoda
E llio t I s la n d . T h e  G re a t

Tridacna sp.
B a r r ie r  R eef

Arg 15.0 20.1

C-49 Coral [LE-59] Porites  sp. Arg 58.7 26.7

C-50 Pelecypoda [LE-60] Tridacna sp. Arg 11.0 25.3

C-51 Pelecypoda [LE-7] (age 6.5 ka)

Tridacna sp.
P a lm  Is la n d . T h e  G re a t  B a r r ie r  R eef

Arg 9.7 23.8

C-53 Coral [PI-3] Porites sp. Arg 53.3 27.4

C-54 Coral [PI-LONG] 
G u lf  o f C a r p e n ta r ia

Porites sp. Arg 51.4 27.9

C-42 Ostracoda Bairdiids (modem) Cal - 17.6

C-43 Foram inifera (benthos) Miliolids (modem) Cal - 13.3

C-46 Ostracoda (97.5 cm. deep in core)

Cyprideis sp. Cal - 4 .0

C-47 Foram inifera (benthos) (97.5 cm. deep in core)

Am m onia beccarii Cal - 4.9
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Surficial deep-sea sediments. Carbonate sediments (carbonate contents are 

estimated as 85% to 97%; P. MILLS, personal communication) from the core top or near 

the core top from the Atlantic and Pacific Oceans have boron concentrations of 9.9 ppm to 

17.1 ppm and 5 ^ B  values of 8.9%c to 26.2%o (Table 8.2). The boron concentrations and 

811B values of the surficial sediments overlap with those of planktonic Foraminifera 

(Fig. 8.1 and 8.2).

Gulf o f Carpentaria. Ostracoda and benthic Foraminifera were sampled from the 

sea floor and from a core in the centre of the Gulf of Carpentaria, northern Australia at a 

sediment depth of 97.5 cm (Table 8.1). The S ^ B  values of the buried, ancient 

Ostracoda and Foraminifera shells (8 ^ B  o f4 ‘0  %o and4  c{%6) are lower than that of 

their modem equivalents (17 and I3-J%c).

Cretaceous carbonate rocks. Analyses of carbonate rocks (limestones and 

dolomites) of Lower Cenomanian to Turonian age from outcrops in the Judea Mountains, 

Israel yielded boron concentrations of 1.5 ppm to 17.9 ppm and 8^ ^B values of 1.5%o 

to 8.4%o (Table 8.3). The 8 ^ B  values of the limestone and dolomite rocks are 

significantly lower than that of modern carbonate sediments and biogenic calcareous 

skeletons.
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TABLE 8.2 Abundance and isotopic composition of boron in surficial carbonate 

sediments from the Atlantic and the Pacific Oceans.

s a m p l e s h i p  c r u i s e - l e g c o r e # d ep th
(cml

l a t i t u d e l o n g i t u d e B co n t en t  
(brnn)

5 n B
(% c )

Subtropical Atlantic

C-63 AD 107-9 104 GC 0 31°15.8'S 35°54.9'W 11.6 26.2

C-64 ah 107-9 119 GGC 1 30°52.8'S 38°25.6'W 14.7 14.3

Eauatorial Atlantic

C-66 CHAIN 99-3 16PC 7 6°46.7'S 12°47.0'W 9.9 24.5

C-66B CHAIN 99-3 16PC 7 6°46.7'S 12°47.0'W 9.9 25.9

C-66C CHAIN 99-3 16PC 7 6°46.7'S 12°47.0'W 14.6 19.4

Equatorial Pacific

C-68 AH 54-2 4PG 0 9°59.0'S 91°13.0'W 17.1 20.5

C-68B An 54-2 4PG 0 9°59.0'S 91°13.0'W 11.2 10.3

C-69 An 52-2 17PG 0 5°30.6’S 102°43.2'W 16.7 17.3

C-70 CHAIN 100-10 83CC 0 7°15.7'S 168°27.6W 17.1 8.9

B - fraction > 64 pm 

C- fraction < 64 pm

TABLE 8.3 Abundance and isotopic composition of boron in carbonate rocks from the 
Judea Mountains, Israel.

Sample Formation and age description B content 8 ^ B  
(ppm) (%c)

C-82 Bi'na, Turonian bio-micritic limestone, rich fauna 1.5
C-83 Weradim,Cenomanian micritic grey dolomite, no fauna 6.0
C-84 Kefar Sha'ul, Cenomanian bio-micritic limestone 2.3
C-85 Soreq,Cenomanian micritic grey-yellow dolomite, no fauna 6.3

C-86 Soreq,Cenomanian micritic yellow marl-dolomite, no fauna 17.9

1.5 
4.1

5.3
2.5
8.4
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Figure 8.1

Histogram of 51 lB values from biogenic skeletons and deep-sea carbonate sediments. 
Note that all the carbonates have 5 11 B values that are lower than that of seawater.
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Figure 8.2

Histograms of boron concentrations of biogenic skeletons and deep-sea carbonate sediments 
analysed in this study and in various sources compiled by MILLIMAN (1974). Note the 
relative boron enrichment in corals. Symbols are the same as those used in Fig. 8.1.
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8.4. DISCUSSION

8.4.1. Mode of boron uptake by biogenic calcium carbonate

The mechanism of inorganic boron coprecipitation in calcium carbonate has been 

investigated by ICHIKUNI and KIKUCHI (1972) and KITANO et al. (1978). These 

studies have shown that the amount of boron coprecipitated with aragonite is larger than 

that with calcite. ICHIKUNI and KIKUCHI (1972) proposed that boron concentrations 

of hot-spring travertines from Japan is controlled by adsorption processes. They 

suggested that boron incorporated into carbonate through two different stages: interaction 

of B(OH)4- species with positive charge sites on CaCC>3 and formation of hydrogen 

bonds between B(OH)3 and CO32- of calcium carbonate (ICHIKUNI and KIKUCHI, 

1972).

KITANO et al. (1978) suggested boron coprecipitation is dependent also on the 

distribution o f boron species in the parent solution. They showed that the amount of 

coprecipitated boron in aragonite and calcite decreases and increases, respectively, with 

increasing salinity, and proposed that coprecipitation of B(OH)4_ is dominant for 

aragonite and B(OH)3 for calcite (KITANO et al., 1978).

By extrapolation of the experimental data, KITANO et al. (1978) concluded that 

the boron content of calcium carbonate precipitated from seawater with a boron content of 

4.7 mg/1, would be about 5 ppm for aragonite and 3.5 ppm for calcite.

A comparison of boron data presented in this study and from MILLIMAN 

(1974) (Fig 8.2), shows that the boron content of various marine calcareous skeletons is 

both lower and higher than the experimentally anticipated "inorganic" boron content and 

is not simply related to the mineralogical composition. Aragonitic corals, for example, 

contain large amounts of boron (up to 100 ppm) whereas aragonitic gastropod shells 

contain only 1 to 3 ppm (Fig. 8.2).

Consequently, it seems that biogenic ("vital") affects control the relative 

preferential incorporation (in the case of corals) or exclusion (e.g. gastropods) of boron. 

In molluscs the carbonate shell is precipitated from the extrapallial fluid which is isolated 

by the mantle membrane from the external solution, i.e. seawater (WILBUR and 

SALEUDDIN, 1983). The biological fractionation of ions between the extrapallial fluid
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and the ambient seawater (CRENSHAW, 1972) may control the exclusion mechanism of 

gastropods against boron uptake.

The dependence of boron coprecipitation on the distribution of boron species 

should be reflected in the boron isotope composition of the carbonates. It has been shown 

by KAKIHANA et al. (1977) and 01 et al. (1989) that the distribution of boron isotopes 

between two chemical species depends on the isotopic reduced partition function ratios 

("f*") of the species. The heavier isotope, is preferentially fractionated into the 

species with the larger f* values. The f* values of B(0H)3 and B(0H)4~ species have 

been calculated experimentally by KAKIHANA et al. (1977) as 1.2008 and 1.1780 

respectively, at 25°C. Consequently, the B(OH)3 species would be enriched in ^ B  

relative to the B(OH)4" species.

OI et al. (1989) suggested that the isotopic composition of boron minerals is 

related to the proportions of B(OH)3 and B(OH)4_ in the mineral. A B(OH)3-rich 

mineral is enriched in ^ B  whereas a coexisting borate mineral with a higher B(OH)4_ 

fraction would have a lower 5 ^ B  value. We adopt this concept in evaluating the boron 

speciation in carbonates.

By mass balance, the ^ B /^ B  ratio of seawater, that is RSw is:

Rsw = R3 F + R4 (1-F) (1)

where R3 and R4 are the ÜB/lOß ratios of B(OH)3 and B(OH)4_ species 

respectively, F is the mole fraction of B(OH)3.

The fractionation factor, is a  = R4/R3, therefore

R4 = oc R3 (2)

Substitution of Equation 2 into Equation 1 produces

R3 = Rsw / (F+ a  - aF) (3)

The ionization constant of boric acid, that is

K* = [ B(OH)4"] [H+] / [B(OH)3] (4)

has been determined experimentally by HARSHEY et al. (1986) at various ionic 

strengths. At salinity and pH of seawater (pK*=8.83; pH=8.2) the mole fractions of 

B(OH)3 ("F") and B(OH)4_ species are 0.81 and 0.19, respectively.
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The calculated fractionation factor (a) for the isotopic exchange of B(OH)3 and 

B(OH)4- species at 25°C is 0.981 (1000 lna=-19.2%o, KAKIHANA et al., 1977), or 

0.969, (1000 lna=-31.5%o) according to PALMER et al. (1987). Calculating these 

values in Equation 3, the * ^ B /^ B  ratios of B(OH)3 and B(OH)4" species are 4.157 

(§1 lß=42.9%o) and 4.078 (8^B=23.1% o), respectively for the a  proposed by 

KAKIHANA et al. (1977) and 4.167 (45.3%o) and 4.037 (12.9%c) for the a  proposed 

by PALMER et al., (1987).

Consequently, if the B(OH)4" species is preferentially incorporated from 

seawater into calcium carbonate we would expect that its S ^ B  would be 23.1%c 

(KAKIHANA et al., 1977) or 12.9%c (PALMER et al., 1987). Low S1 *B values such as 

in calcitic planktonic Foraminifera (5 ^ B =  14.2%c to 19.8%c, Table 8.1) may indicate 

preferential coprecipitation of the B(OH)4" species. The low S ^ B  values also indicate 

that a large fractionation factor pertains that is not compatible with the value suggested by 

KAKIHANA et al., (1977) and hence in further discussion we will use the larger a  

suggested by PALMER et al. (1987).

Coprecipitation of both boron species would yield an isotopic composition that is 

proportional to the fraction of each species. The 8 ^ B  value of calcium carbonate would 

increase with higher fractions of B(OH)3 in the mineral (Fig 8.3). The 8 ^ B  results 

reported in this study (Fig 8.1) may indicate a fraction of 80% of B(OH)4_ species in 

CaCC>3 for 8 ^ B  of 20%o, and 50% for 8 ^ B  of 30%o. The enrichment of corals with 

both elemental boron and ^ B  (8 ^ B =  26.7%o to 31.9%c; Fig 8.1 and 8.2), may be 

related to the relative abundance of B(OH)3 species in seawater (81%). Hence, 

coprecipitation of a large quantity of boron would be associated with the abundant, ^ B -  

enriched B(OH)3.

In the calculations of the dependence of 8 ^ B  on the proportions of boron 

species in the skeletons we assumed that boron is extracted from the ambient 

environment, i.e. seawater. As mentioned earlier however, in molluscs the carbonate 

shell is precipitated directly from the extrapallial fluid and not from seawater (WILBUR 

and SALEUDDIN, 1983). In addition, KUILE and EREZ (1987) and KUILE et al. 

(1989) have shown that some benthic Foraminifera perforate species (Amphistegina
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0C= 0.981 (KAKIHANA et al., 1977)

CD 30 -

a  = 0.969
(PALMER etal., 1987)

0.00 0 . 2 0  0 . 4 0  0 . 6 0  0
fraction of borate in calcium carbonate

1 . 0 0

Figure 8.3. Possible 5 ^ B  variations of carbonates as a function of the proportion of 

B(OH)4" species in the mineral. The positions of the two lines were calculated using the 

fractionation factors of 0.981 and 0.969, determined by KAKIHANA et al. (1977) and 

PALMER et al. (1987), respectively.
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lobifera) seem to have a large internal inorganic carbon pool which serves for 

calcification. In contrast, imperforate species (Amphisorus hemprichii) take up carbon 

and calcium directly from seawater.

The mechanism of boron coprecipitation can be therefore related to the chemistry 

and the characteristics of the internal reservoir. Two modes are considered:

1) If the pH in the internal fluid is different tc that of the ambient seawater 

the distribution of boron species (F) and hence their isotopic compositions (Equation 3) 

would be also different. Variations in the pH of the internal fluids would change the 

isotopic composition of boron species and hence the 6 ^ B  of biogenic skeletons. The 

5l 1B values of both boron species would increase with the pH, as illustrated in Fig 8.4. 

Hence the S ^B  results may indicate preferential coprecipitation of the charged B(OH)4" 

species in relative high pH conditions. As shown in Fig 8.4, 5 ^ B  values of 20%o and 

30%c would indicate a pH of 8.7 and 9.2, respectively .

Using pH microelectrodes, JORGENSEN et al. (1985) have showed that in 

light, the pH value within the planktonic foraminifer G. sacculifer increases to 8.62. In 

addition, microelectrode measurements in corals detect pH values of up to 9.5 

(Y.COHEN, personal communication). Consequently, precipitation of CaC03  from a 

high-pH microenvironment, where the isotopic exchange between boron species reaches 

an equilibrium, can be related to the relatively high 8^B  in some skeletons.

2) If the internal reservoir is a closed system with respect to the ambient 

seawater, selective uptake of the ^B-depleted B(OH)4" species would progressively 

enrich the internal fluid residue and consequently the skeleton with ^ B . On the other 

hand, an open system would produce low 5 ^ B  values. The 5 ^ B  variations can 

therefore be related to the isolation of the internal fluid from seawater where the higher 

S ^ B  values indicate uptake of boron, as B(OH)4", from an internal reservoir. As the 

system is reopened, the B(OH>4" supply would lower the 8 ^ B in the skeleton.

In conclusion, assuming that the fractionation of boron isotopes is related only to 

its chemical speciation, the 8^B  data of the investigated carbonates (Table 8.1) indicates 

that the * ^B-enriched boric acid could not coprecipitate exclusively into the carbonates. 

Instead, high 8 ^ B  values (corals) may indicate uptake of both boron species where the
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oc= 0.969

a  = 0.981

seawater

Figure 8.4 Possible variations of 5 ^ B  values of B(OH)3 and B(OH)4" species as a 

function of the pH at the site of calcification. The two sets of lines were calculated using 

the fractionation factors of 0.981 and 0.969, determined by KAKIHANA et al. (1977) 

and PALMER et al. (1987), respectively. Note the progressive ^ B  enrichment in both 

species as a function of increasing pH.
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fraction of boric acid in the mineral is about 50% (Fig 8.3). Alternatively, it may indicate 

preferential coprecipitation of B(OH)4 _ in a microenvironment of high pH (Fig 8. 4) 

and/or uptake of B(OH)4 - from an internal reservoir that is isolated from the ambient 

seawater.

8.4.2. The carbonate sink for boron in the oceans

In order to constrain the global boron sink by calcium carbonate we use the 8  ̂^B 

values and boron concentration results of both planktonic Foraminifera and deep-sea 

sediments (Tables 8.1 and 8.2). As these sediments consist mainly of biogenic calcareous 

skeletons, both their boron abundances and isotopic compositions overlap with those of 

planktonic Foraminifera (Fig. 8.1 and 8.2).

Among the major recognized sinks for boron in the ocean are low-temperature 

basalt alteration and adsorption on detrital clay sediments (HARRISS, 1969; SEYFRIED 

et al., 1984; SPIVACK, 1986; SPIVACK et al., 1987). The magnitude of these 

processes is debated. HARRISS (1969) and SEYFRIED et al. (1984) estimated that 

basalt alteration and clay mineral adsorption remove about 18xl010 g B/yr and 33x1010 g 

B/yr, respectively; whereas SPIVACK et al. (1987) estimated these fluxes as 14xl010 g 

B/yr and 9.7xl010 g B/yr, respectively. The estimates of HARRISS (1969) and 

SEYFRIED et al. (1984) were based on the difference in boron concentrations between 

marine and freshwater sediments. On the other hand, the lower flux of boron removal by 

adsorption was calculated by SPIVACK et al. (1987) using adsorption experiments.

The boron sinks estimated by HARRISS (1969) and SEYFRIED et al. (1984) 

are balanced by continental runoff (~50xl010 g B/yr) and hydrothermal springs (oceanic 

volcanism, 13xl010 g B/yr). SPIVACK and EDMOND (1987) estimated a lower input 

flux by hot springs of 0.9x1010 g B/yr. SPIVACK (1986) suggested that fluviative 

boron is dominated by cyclic, atmospherically derived boron. The various proposed 

elemental and isotopic fluxes of boron are summarized in Table 8.4.

The delivery of Ca to the world's oceans via rivers is estimated as 13.2xl014 g 

Ca/yr (WILKINSON and ALGEO, 1989; and references therein). In addition, alteration 

of basalts and hydrothermal Ca-Mg exchange, groundwater seepage and submarine
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TABLE 8.4 Elemental and isotopic mass-balance of boron in the modern oceanic 

system. The processes and boron flux estimates are discussed in the text. A 5^B  is the 

difference in 8 ^ B of the fluxes relative to seawater.

Process elemental B flux 

(xlO10 g/yr)

A5n B

(% c)

 ̂Iß  contribution to the ocean 

(x lO ^ permil*g/yr)

Continental runoff

-30° -25c '7.5C

Hydrothermal flux 0.9b -42±5b -0.4±0.1

Oceanic crust alteration 14b 31±4b 4.3+0.5

Adsorption on detrital sediments 10b 25±lb 2.4±0.1

Coprecipitation with calcium carbonates 6.4±0.9C 19±5C 1.2±0.3C

a SEYFRIED et al. (1984) 

b SPIVACK and EDMOND (1987)

c this study
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dissolution also contribute to the global calcium flux. According to mass-age data for 

global sediments, WILKINSON and ALGEO (1989) suggested that the present calcium 

flux to carbonates is 23.7xl012 mole Ca/yr, i.e. 23.7xl014 g CaC03 /yr. Similarly, the 

accumulation of calcium carbonates in the oceans was estimated by MILLIMAN (1974) 

as 18.9x1014 g CaC03 /yr.

Both SMITH (1978) and MILLIMAN (1974, Table 64) suggested that coral 

reefs precipitate about 6 x l0 14 g CaC03 /yr. That means that reef production precipitates 

about 25% of the global CaC03  flux. Assuming that the investigated corals (B content 

=64±11 ppm, 8^B=29±2% o) represent the reef environments and the carbonate 

sediments and planktonic Foraminifera from the ocean floor (B content =15± 4ppm, 

5* lß=17±5%c) represent the deep sea, by mass-balance we suggest that the global boron 

sink due to oceanic CaCC>3 precipitation is 27±4 ppm with a mean S ^ B  value of 

20±5 %o.

Consequently we estimate the global boron removal by calcium carbonate as 

6 .4 x l0 10 g B/yr. This value is substantially higher than previously estimates, e.g. (0.5- 

1 .3)xl010 g/yr (SPIVACK et al., 1987) , and suggest that carbonates are an important 

sink for B in the oceans being -20%  of the total sinks.

Assuming that boron in seawater is in steady state, i.e. the input fluxes are 

balanced by the output fluxes , the true boron input to the ocean can be calculated by the 

sum of the boron sinks. Adopting the more recent evaluations of fluxes by SPIVACK 

(1986) and adding the calcium carbonate flux (Table 8.4) we suggest that the total boron 

sink in the ocean is 30.4x10 10 g B/yr. Consequently it seems that only -60%  of the 

observed flux (fluviatile and hydrothermal; ~50xl010 g B/yr) is the true boron input, i.e. 

terrestrial input, to the ocean.

The flux of 1 Iß  to and from the ocean (A^I ß ) can be estimated by

A11B = FBA S11B (5)

where FB is annual input or output of elemental boron and A 8 ^ B  is the 

difference in 8 ^ B of the fluxes relative to seawater. Considering that the mean 8 ^ B  of 

calcium carbonate in the ocean is 20%c (A8^ ^B=19%o) we estimate that the global sink of 

H ß  in CaCC>3 skeletons is 1.2xl012 permil-g/yr (Table 8.4). Including the calcium



169

carbonate flux, the total sink in the ocean is about 7 .9x l012 permil-g/yr. Extracting 

the hot-spring input (0.4 xlO12 permil-g/yr, Table 8.4) we estimate that in steady state, 

7 .5x l012 permil-g/yr of 1 enters the ocean via fluviatile runoff. As the true continental 

runoff is now estimated to be 30.1xl010g B/yr, we suggest that A8^ ^B (Equation 5) is 

-25 %o. Hence the 8 ^ B  value of continental runoff is about 14%o. This calculated 8* 1B 

value is consistent with the measured S ^ B  value in some major rivers (Amazon, 

Orinoco, Fraser and others, with a 8* Iß  range of 9.2%o to 14%c; SPIVACK, 1986).

As the 811B value of the bulk Earth, including the terrestrial crust is -2±3 

(SPIVACK, 1986) one would expect that this value would be reflected in the isotopic 

composition of fluviatile boron, as is the case for the Sr isotopic composition of rivers 

(PALMER and EDMOND, 1989). The estimated high 8 ^ B  value of fluviatile boron 

(~14%c) probably integrates desorbable boron with a higher 8 ^ B  value that is easily 

removed from terrestrial sediments and cycled boron within the continental crust.

In addition, it has been shown in Chapter 2 that adsorption processes within 

modern Australian continental sediments increase the 8 ^ B  value of the residual solution 

up to 60%c. Therefore internal processes in the upper continental crust can modify its 

boron isotopic composition. Processes that occur within the oceanic environment such as 

adsorption onto clay minerals can also take place in the terrestrial environment 

(VENGOSH et al., 1989; Chapter 2) and hence the 8* ^B value of the end-products, the 

rivers, will be consequently enriched in ^ B  relative to the bulk terrestrial crust.

The observed large oceanic boron sink attributed to CaCC>3 may have a 

significant role in the balance of the boron budget in the oceans through geological time. 

Throughout the Phanerozoic the boron budget in the oceans could be effected by a 

combination of: (1) variations in rates of seafloor spreading and hence hydrothermal 

activity; (2) continent configuration, climate, and hence fluviatile runoff; (3) variations in 

sea level and formation of shallow epicontinental seas; and (4) deposition of CaCC>3 on 

continental shelves. As the hydrothermal flux of boron to the oceans is not significant 

(Table 8.4) the boron budget seems to be balanced by the fluviatile input and the boron 

sinks. During the Cretaceous for example, the combination of high sea-level, intensive 

CaCC>3 deposition, high rate of seafloor spreading and consequently intensive oceanic
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crust alteration may have effected both the boron content and the 5 ^ B  value of seawater 

compared to today's values. The low marine ^^Sr/^^Sr ratios through the Cretaceous 

suggest dominance of mafic sources over continental (higher ^Sr/^^Sr)  input (BURKE 

et al., 1982). Consequently, a constant or even reduced fluviatile boron input relative to 

more intense removal of boron by altered basalts and calcium carbonate may deplete and 

enrich seawater in elemental boron content and 1 Iß , respectively.

8.4.3. Possible palaeoenvironmental applications

In order to evaluate the potential of the isotopic composition of boron in calcium 

carbonate as a palaeoenvironmental tracer, we examined the variations of 5 ^ B  of some 

biogenic skeletons from the Gulf of Carpentaria, Australia and in limestone and dolomitic 

rocks from Cretaceous strata in Israel.

The Gulf o f Carpentaria, Australia. The Gulf of Carpentaria is a shallow, 

epicontinental sea separating Australia and New Guinea. During glacial times in the Late 

Quaternary the Gulf was isolated from the ocean due to lowering sea-level and became a 

large closed-basin lake (TORGERSEN et al., 1988). The lacustrine environment is 

reflected in non-marine Mg/Ca and Sr/Ca ratios (DE DECKKER et al., 1988) and high 

8 7 sr/8 6 sr ratios (McCULLOCH et al., 1989) of ostracod shells from piston core 

sediments.

Modern Ostracoda and benthic Foraminifera from the upper part of core GC-2 

from the centre of the Gulf of Carpentaria have S ^ B  values of 17.6%c and 13.3%c, 

respectively (Table 8.1). The 8 7sr/86$r ratios of these shells have modern seawater 

values (0.70912; McCULLOCH et al., 1989). From a depth of 97.5 cm (~ 18,000 yr 

BP) in the same core, the 8 ^ B  values of Ostracoda and benthic Foraminifera are 4.0%c 

and 4.9%c, respectively (Table 8.1). The lower 8* ^B values occur at a time of low sea- 

level, where the carbonate shells record also high ^^Sr/^^Sr ratios (0.7100 to 0.7103: 

McCULLOCH et al., 1989), and were formed in a perched lacustrine basin.

The difference in 8 ^ B  values between the modem and ancient shells is 13.6%c 

for ostracods and 18.2%o for foraminifers. We suggest that these shifts reflect variations
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in the isotopic composition of the waters of the ancient "Lake" Carpentaria. Consequently 

the Iß  value of the ancient lacustrine water is estimated at 21 %o to 25%o.

By simple mass-balance, the estimated low 8 ^ B  value of the ancient lacustrine 

water may indicate a terrestrial boron fraction of 0.4 to 0.6 for fluviatile fluxes with 8 ^ B  

values of 0%o to 15%o, respectively. For comparison, assuming that the rivers from 

northern Australia and Papua New Guinea had a 87Sr/86Sr ratio similar to the average 

global runoff of 0.7119 (PALMER and EDMOND, 1989), the highest 87Sr/86Sr ratio 

recorded in the ostracod shells (0.71039; McCULLOCH et al., 1989) can be represented 

as reflecting a terrestrial fraction of 0.4 for strontium.

A decrease in the pH of the ancient lake to a degree where the B(OH)3 species 

composed the bulk of the dissolved boron would decrease the 8 ^ B  value of the B(OH)4“ 

species to l%o. Hence, the even lower measured 8 ^ B  values of 4.0%o and 4.9%o 

recorded in the glacial-age shells can not be accounted for simply by low pH in the 

ancient lake.

Cretaceous carbonate rocks. The 8 ^ B  values of Cretaceous limestones and 

dolomites from the Judea Mountains (Table 8.3; 8 ^ B =  1.5%o to 8.4%o) are lower than 

those of modern sediments (8 ^ B =  8.9%c to 26.2%o) and modern biogenic calcareous 

skeletons (Fig. 8.1). Except for one sample, the carbonate rocks also have relatively 

lower boron concentrations (Table 8.3). The low boron content of these rocks cannot be 

accounted for by a large fraction of biogenic skeletons that preferentially excluded boron, 

e.g. Gastropoda (Fig. 8.2), as the 8 ^ B  values of modern gastropod shells are higher 

(20%o and 31.5%o). The depletion of elemental B and 1 *B may be, however, the result of:

(1) recrystallization of the calcite in the presence of groundwater depleted in 

boron and having a "terrestrial", low-S* *B signature; (2) water-rock interactions in which 

a new isotopic equilibrium has been established: ^ B  would partitioned into the 

tetrahedral species that incorporates preferentially into the carbonate, while ^ B  would 

partitioned into the trigonal species that would remain in the liquid phase in an aquatic 

environment of pH lower than 7; and (3) secular variations in seawater 8 ^ B  values and
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boron contents that are reflected in the shallow-water shelf environment of the Cretaceous 

of Israel.

8 .5 . C O N C LU SIO N S

1) The abundances of boron in several groups of biogenic calcareous skeletons 

show large variations between 1 ppm (Gastropoda) and 80 ppm (corals). The variations 

are not related to the mineralogical composition and probably reflect biological ("vital") 

effects.

2) Variations in the boron isotopic composition of the biogenic carbonates 

suggest preferential incorporation of boron species, in particular the tetrahedral species.

3) The estimated global boron sink by biogenic calcium carbonate in the ocean is
C O tr\lf0 l

larger than previously estimated, and may have exerted an important , on the oceanic 

boron budget throughout geological time.

4) The boron isotopic composition of well preserved, ancient biogenic skeletons 

may provide information on the chemistry of their host waters. In particular, the 

sensitivity of boron isotopes to terrestrial input may be used to detect isolation of 

epicontinental basins from the ocean and hence sea-level changes.
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