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A B S T R A C T

Assessing biodiversity is an important step in the study of microbial ecology associated with a given envi-
ronment. Multiple indices have been used to quantify species diversity, which is a key biodiversity measure.
Measuring species diversity of viruses in different environments remains a challenge relative to measuring
the diversity of other microbial communities. Metagenomics has played an important role in elucidating
viral diversity by conducting metavirome studies; however, metavirome data are of high complexity requir-
ing robust data preprocessing and analysis methods. In this review, existing bioinformatics methods for
measuring species diversity using metavirome data are categorised broadly as either sequence similarity-
dependent methods or sequence similarity-independent methods. The former includes a comparison of DNA
fragments or assemblies generated in the experiment against reference databases for quantifying species
diversity, whereas estimates from the latter are independent of the knowledge of existing sequence data.
Current methods and tools are discussed in detail, including their applications and limitations. Drawbacks
of the state-of-the-art method are demonstrated through results from a simulation. In addition, alterna-
tive approaches are proposed to overcome the challenges in estimating species diversity measures using
metavirome data.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Most viruses in the environment exist in the form of parasites
that infect prokaryotes and hence are frequently termed phages or
bacteriophages. Recent studies [1,2] have shown that despite being
identified as parasites, viruses may have symbiotic relationships that
are beneficial to the host as well. Viruses represent the most abun-
dant biological entity in the biosphere with an estimated phage
population of ~1031 [3]. Many microbiological experiments con-
ducted in the past highlight the effect that viruses have on different
processes in our biosphere. Examples include their effects on food
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web and organic carbon flow in the oceans [4], and population
structure of bacterial communities in the human gut [5,6]. The influ-
ence of viruses on driving ecological functionalities and evolutionary
changes of prokaryotes has been previously highlighted, as well as
the effect of viruses on the gene transfer across species [7]. One
study [8] has illustrated the connection between the diversity of
viruses and climate change with eight case studies, concluding that
viruses are significantly influenced by climate change and in turn, are
affecting biological processes contributing to climate changes. These
studies stress the importance of studying viral ecology in different
environments.

The conventional method of analysing the behaviour of viruses
involves infecting them into cultured prokaryotic hosts. Such
culture-dependent approaches are limited in applicability because a
large number of microbial hosts have not been cultured [9]. One way
of studying microbes in a culture-independent manner is the use of
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taxonomic marker genes like 16S ribosomal RNA gene (16S rRNA)
that are conserved in genomes of all the species being studied [10].
However, due to the absence of such a conserved genomic region, the
traditional marker genes based methods such as Polymerase Chain
Reaction (PCR) and Fluorescence in situ hybridization (FISH) cannot
be used to study viruses [9].

The emergence of Metagenomics helped in overcoming these
challenges in studying the dynamics of viruses in different environ-
ments. Metagenomics refers to the biotechnological and bioinfor-
matics methods involved in culture-independent analysis of genetic
material of all microbial organisms in an environmental sample. A
metagenome is the collection of genomic sequences of all the organ-
isms in a given environment [9]. Advancements in high-throughput
DNA sequencing and assembling techniques [11–13] have made
metagenomics a popular approach for studying microbial ecology.
The major steps involved in a metagenomics study have been
previously reviewed [14] and include sample collection; extrac-
tion of DNA and removal of unwanted genetic material such as
proteins, organelles and membranes; fragmentation of DNA using
enzymes or mechanical techniques; sequencing of DNA; and bioin-
formatic analysis [14]. Metagenomics have a range of applications
such as production of novel enzymes, discovery of new antibiotics
and production of biosurfactants [15] and metagenomics related
researches are being conducted around the world [16]. Moreover,
metagenomics is expected to be highly effective in enteric disease
diagnostics [17]. Bioinformatic analyses conducted on metagenomic
data helps in expanding our knowledge on microbes in terms of
taxonomic profiles, metabolic pathways and inter-species interac-
tions etc. [18].

A metagenome of a viral population is termed a ‘metavirome’ [19].
The first metavirome study was an experiment carried out to
study the ecology of viruses in marine environments using samples
extracted from the two oceans Scripps Pier, CA and Mission Bay,
San Diego. [20,21]. Thereafter, many studies have been conducted to
analyse metaviromes of samples collected from different environ-
ments such as sea water [20,22], marine sediments [23], soil [24],
human faeces [25,26] and the human gut [27–29].

Biodiversity is an important ecological parameter in understand-
ing the dynamics of a given environment as there is a strong
relationship between biodiversity and the stability of an ecosys-
tem [30]. It can be quantified in three ways: a-diversity referring to
the diversity of a given sample or environment, c-diversity quantify-
ing the collective diversity of multiple environments and b-diversity
capturing the difference in diversity among environments [31].
Implications of a, b and c diversities have been reviewed compre-
hensively [32,33]. One aspect often considered in a metagenomics
study is a-diversity which is also termed ‘species diversity’.

The definition of a virus species has been debated [34,35], and is
being updated [36]. Generally, the term species is used to refer to
the lowest category in biological classification; however, whether
the term species should be referred to an individual entity or an
abstract class or category remains debated [35]. Initially, the con-
cept of species was considered to be not applicable for viruses
because the early definition of species as groups of interbreeding
natural populations which are reproductively isolated from other such
groups, may not be related to viruses [34]. The International Com-
mittee on Taxonomy of Viruses (ICTV) which acts as the body
responsible for maintaining the virus taxonomy [37], has accepted
the formal definition of a virus species as “a polythetic class of
viruses that constitutes a replicating lineage and occupies a particu-
lar ecological niche” [34,38]. A polythetic class consists of members
having multiple properties in common, but may not be defined
by a single property [39]. Metagenomics can help in obtaining the
assemblies of complete genome sequences of new viruses, however
the obtained assemblies may lack information of their biological
properties raising the concern how to define a virus species based on

metagenomics data [36]. The term viral genotype has been used in
the first metagenomic experiment of viruses [20] referring to in sil-
ico conditions, assuring that sequences of different phage genomes
may not assemble together [20,40]. The complexities in defining
taxonomy of viruses as mentioned have been reviewed comprehen-
sively [35] and implications of metagenomics in defining taxonomy
of viruses is well documented [36]. In 2016, ICTV endorsed a proposal
made to classify viruses solely based on metagenomics sequence
data. This proposal recommends retaining the ICTV definition of
a virus species and using biological characteristics that may be
inferred from sequence data such as genome organization, replica-
tion strategy, presence of homologous genes and host range or type
of vector [36].

Alternative approaches to quantify biodiversity instead of mea-
sures of species diversity have been proposed [41,42]. An example
is the suggestion to use statistical properties of communities with
straightforward biological interpretations [41]. However, as far as
metavirome studies are considered, estimation of species diversity is
a key step in the bioinformatics analysis pipeline [43]. As far as viral
communities are considered, species diversity indices may be used
to answer a number of questions. Examples include: use of species
diversity estimates to learn the relationship between species rich-
ness and range size distributions in plants [44,45], demonstration of
factors leading to the differences between the ambient and induced
viral communities [46] considering species diversity of viruses,
and prediction of zoonotic potential of mammalian viruses [47],
modelling predator-prey dynamics based on rank-abundance distri-
butions [48], use of evenness indices to determine factors affecting
horizontal gene transfer and functional microbiome evolution in
chicken cecum microbiome [49].

This review summarises the existing bioinformatics methods
and tools for quantifying viral diversity from metavirome data.
The widely considered species diversity measures in metavirome
studies are defined and described in brief. The existing methods
for estimating viral diversity measures are reviewed comparatively
and their limitations are identified. Furthermore, possible alterna-
tive approaches are proposed to address the limitations in existing
methods. Previous reviews have summarised various bioinformatics
strategies used in existing methods for studying viruses [50,51]. This
review discusses further methods for measuring species diversity
from metavirome data with comparisons between them.

2. Common Measures of Viral Diversity

Three commonly used species diversity measures in previous
metavirome studies are species richness, Shannon-Wiener index
and evenness. They represent the key quantitative species diver-
sity measures: species richness, heterogeneity and equability [52].
The rank-abundance distribution and the relative abundances of
genomes have also been considered (e.g.: [20,53-55]).

Species richness is the total number of species in a popula-
tion and is estimated from a sample, a representative subset of the
population. While two environments may have equal species rich-
ness, if some species are dominant in number in one environment
(i.e. less diverse) these two environments should be considered as
different in diversity. Evenness captures how uniformly the species
are distributed in number in an environment and is related with the
relative abundances of species. If there are ni number of individuals

from ith species, its relative abundance, fi = ni

/
M∑

i=1
ni where M is

species richness. Heterogeneity measures combine species richness
with evenness [52]. A commonly used heterogeneity measure is
the Shannon - Wiener index. Shannon - Wiener index [56] consid-
ers both species richness and relative abundance and is defined as

H′ = −
M∑

i=1
fi ln fi.
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The equability indices are used to quantify the evenness of a
community [52]. An example is Pielou’s evenness. It is defined as
H/Hmax, where H is a selected heterogeneity measure for the sam-
ple and Hmax is the maximum possible value for H. For example,
considering the Shannon - Wiener Index H′, evenness is calculated as
Evenness = H′/ln M [57].

The underlying community structure is also frequently
considered when studying diversity of an environment. The rank-
abundance curve (also termed Whittaker plot) [58] is one way of
visually representing the community structure based on the relative
abundances of the species. On a rank-abundance plot, relative
abundances of species are plotted against their abundance ranks.
Abundance rank is determined by sorting the species based on their
relative abundance and ranking them in decreasing order.

A set of methods has been proposed and implemented as tools
to address the problem of estimation of viral diversity. An extensive
review of statistical models and methods based on sampling theory
for measuring the number of different classes (i.e. species richness)
in a sample has been previously published [59]. This review suggests
multiple approaches for estimating species richness including the
use of parametric models, estimators of sample coverage and re-
sampling methods etc. The models and methods developed based on
those suggestions [60–63] are being used to analyse bacterial popu-
lations [62,64] and metaviromes [63] as discussed in the next section.
However, due to the nature of fragment sampling methods employed
in next generation sequencing when generating metaviromes, most
of the mentioned suggestions cannot be readily used to analyse viral
populations.

3. Methods for Measuring Species Diversity From Metavirome
Data

Different strategies have been employed to measure viral
diversity and assess their underlying community structure with
the effective application of metagenomics in the study of viral
populations. A summary of existing tools is given in Table 1 includ-
ing species diversity measures that can be estimated using each tool.
All these methods estimate species diversity measures from a given
environmental sample using metagenomic sequences or assembled
sequences (contigs) as the input (Fig. 1).

The existing techniques can be categorised into two as sequence
similarity-dependent methods and sequence similarity-independent
methods. The sequence data of viruses identified from previous
metagenomics studies have been populated in public databases such
asNationalCenterforBiotechnologyInformation(NCBI)[65],viralRef-
Seq database (https://www.ncbi.nlm.nih.gov/genome/viruses) and
METAVIR [66] server (http://metavir-meb.univ-bpclermont.fr/). The
sequence similarity-dependent methods employ the data available in
these reference databases. They estimate species diversity measures
based on the results of a similarity comparison between sequences
generated in the experiment and the sequences of already known
genomes. In contrast, the sequence similarity-independent methods

are based on statistical modelling of observed data and do not utilise
comparisons with known sequences.

4. Sequence Similarity-independent Methods

The common strategy followed in sequence-similarity indepen-
dent methods is to statistically model the observed data. The
observed data that have been utilised in these methods is the ‘contig
spectrum’. A set of overlapping genome sequences is termed a
‘contig’ and a contig spectrum is a vector where ni, the ith element
denotes the number of contigs with i overlapping sequences. Contig
spectrum can be determined from sequence assembly data that
are available subsequent to shotgun cloning and DNA sequencing.
Two tools have been implemented for measuring viral diversity in
a sequence-similarity independent manner, namely PHACCS (PHAge
Communities from Contig Spectrum) [67] and CatchAll [71]. A virus
species is defined as a genotype in PHACCS [67] and a distinct group
of viruses is considered as a species taxa in CatchAll [71].

A key strategy employing contig spectrum for viral diversity
estimation is to firstly derive a model for the expected contig spec-
trum based on Lander-Waterman model for genome sequencing [72]
considering different rank-abundance curve forms. Next, the model
parameters, including the parameters of the assumed functional form
of rank-abundance, giving the least error between expected and
observed contig spectra can be estimated using maximum likelihood
estimation and are used to calculate the species diversity measures.
This strategy was first introduced in the metavirome study con-
ducted to analyse the samples extracted from two oceans, Scripps
Pier, CA and Mission Bay, San Diego [20] considering two rank-
abundance curve forms (power-law and exponential) for estimations.
Subsequently, a metavirome of a human faecal phage community
has been analysed similarly assuming a power law distribution as
the rank-abundance curve form [25]. When using this method, high
stringency ought to be employed in sequence assembly conditions
to ensure that a given contig occurs from the sequences belonging
to the genomes of same phage or quite similar types [20]. Moreover,
an assumed value is used for average genome length when deriving
the model for expected contig spectrum. Later, this methodology has
been implemented in the software, PHACCS [67].

PHACCS has been used in a number of metavirome
studies [27,67,73-75] and may be considered as the state-of-the-art
method. It can be used to estimate the species richness, evenness,
Shannon-Weiner index and the parameters of the rank-abundance
distribution. The user inputs required by PHACCS are the experimen-
tal contig spectrum, average genome length of the sample and a set
of parameters related to sequencing and assembly (i.e. the number
of DNA fragments being studied, the average DNA fragment size and
the minimum overlap length considered in sequence assembly). An
expression for the expected contig spectrum based on these input
parameters is derived from a parametric model similar to [20].
PHACCS considers six rank-abundance curve forms in the computa-
tion and the best fitting parameters giving the least error between

Table 1
Summary of existing tools for estimating species diversity measures in metavirome studies.

Tool Estimated species diversity measures Published in Resource

Sequence similarity- independent methods PHACCS (20) Species richness 2005 https://sourceforge.net/projects/phaccs/
Shannon-Wiener index
Evenness
Rank-abundance distribution

CatchAll [63] Species Richness 2012 http://www.northeastern.edu/catchall/
Sequence similarity-dependent methods UCLUST [68] Clusters of similar sequences 2010 http://www.drive5.com/usearch/

GAAS [55] Genome relative abundance 2009 https://sourceforge.net/projects/gaas/
GRAMMy [69] Genome relative abundance 2011 http://meta.usc.edu/softs/grammy/
GASiC [70] Genome relative abundance 2012 https://sourceforge.net/projects/gasic/

https://www.ncbi.nlm.nih.gov/genome/viruses
http://metavir-meb.univ-bpclermont.fr/
https://sourceforge.net/projects/phaccs/
http://www.northeastern.edu/catchall/
http://www.drive5.com/usearch/
https://sourceforge.net/projects/gaas/
http://meta.usc.edu/softs/grammy/
https://sourceforge.net/projects/gasic/
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Fig. 1. A schematic diagram summarising the stages where existing tools for measuring viral diversity can be integrated in a metagenomics data analysis pipeline.

experimental and estimated contig spectra are calculated using
maximum likelihood estimation. It provides a visualisation of com-
munity structure and the error details associated with the estimates.
PHACCS may be regarded as the only tool facilitating estimation of all
three aforementioned species diversity measures and visualisation
of community structure of a metagenomic sample of viruses.

A method to estimate the species richness of a microbial com-
munity based on the frequencies of selected operational taxonomic
units (OTU) s, named CatchAll [62] has been later adopted to estimate
viral richness [63,71]. In this approach, as the viruses lack a univer-
sal phylogenetic marker gene, frequencies of the contigs with a given
number of overlapping sequences are used instead of the frequencies
of OTUs [63,71]. In the original approach of CatchAll, the observed
frequency distribution of OTUs is first fitted into a set of parametric
finite mixture models and coverage-based non-parametric models.
Next, the species diversity measures are estimated from the best
model (i.e. the model with the least error) from each (i.e. para-
metric and non-parametric models) and the overall best model. In
addition to calculating the species richness estimates, CatchAll tool
provides graphical representations of the corresponding parametric
model, a performance comparison of different estimators consid-
ered and standard errors, confidence intervals, and goodness-of fit
assessments associated with the estimates. Two differences between
CatchAll and existing tools for calculating coverage-based nonpara-
metric estimates have been identified [62]. Firstly, CatchAll can be
used to determine the variation of estimates from coverage-based
non-parametric model as more frequency counts are included in

the data. Secondly it implements algorithms to compute standard
errors and confidence interval values of the estimates with a higher
accuracy than the other methods [62].

The use of CatchAll to estimate species richness of a metavirome
using contig spectrum data has been proposed with CatchAll version
3.0 [63,71]. The best overall estimate of species richness is given after
computing twelve different estimates and assessing their errors [63].
The number of overlapping sequences observed y, is plotted against
the number of overlapping sequences x, and the distribution is anal-
ysed to predict an estimate including the number of unobserved
species, i.e. y value at x = 0. To improve the accuracy, a discounted
estimate is calculated by adjusting the component with the highest
frequency in the selected model.

A notable distinction between PHACCS and CatchAll is that
PHACCS considers rank-abundance curve, while CatchAll considers
the frequency count curve. Another distinction between PHACCS and
CatchAll is that in parametric estimation of species richness, CatchAll
considers the number of unobserved species which is calculated by
curve fitting and projection. A comparison of richness estimates from
CatchAll and PHACCS using 21 metaviromes from different environ-
ments demonstrate that estimates from CatchAll are consistent across
thesamples fromsimilarenvironmentsandarehigherthanthosefrom
PHACCS [71]. Examples of applications of CatchAll to estimate viral
richness are analysis of metaviromes from aquatic systems [76,77] and
rumen microbiome [78]. An evaluation using 100 simulated metavi-
romes has shown that PHACCS outperforms CatchAll in estimation
accuracy [79]. This evaluation is discussed in more detail in Section 7.
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5. Sequence Similarity-dependent Methods

Sequence similarity-dependent methods estimate the species
diversity measures utilising sequence data available in reference
databases. Firstly, the sequence reads generated in the experi-
ment are compared against known genome sequences and their
similarities are measured. Subsequently, measured similarity values
are used to estimate species richness and relative abundances of
known genomes within the sample. The tools, GAAS (Genome rela-
tive Abundance and Average Size) [55], GRAMMy (Genome Relative
Abundance estimates based on Mixture Model theory) [69], GASiC
(Genome Abundance Similarity Correction) [70] and UCLUST fall
under this category (Table 1). All these methods separate sequences
into clusters based on the nucleotide sequence similarity.

The BLAST algorithm is a widely used method for similarity
searching between metagenomics reads and known genome
sequences [80]. A parameter termed ‘E-value’ quantifies the signifi-
cance of the similarity measures obtained by BLAST [81]. GAAS [55]
tool introduces three steps to eliminate the limitations in conven-
tional BLAST-based sequence comparisons and the biases that can
be introduced in a BLAST search. First, only the sequences with a
strong similarity to the reference sequences are considered based
on maximum E-value, minimum similarity percentage and mini-
mum relative alignment length. Second, the similarities are weighted
based on the lengths of target genomes. Through normalisation
based on the genome length, GAAS enables the consideration of
single-stranded-RNA (ssRNA) viruses which are smaller, in the anal-
ysis. Thereby, GAAS improves the accuracy in estimating genetic
diversity over a method based on conventional BLAST search [55].
The relative abundances of sequences in a metagenomic library is
proportional to both the relative abundances and the genome lengths
of the genomes in the sample [55]. Therefore, finally, the sum of
weighted similarity of each genome is further normalised by its
genome length to improve the accuracy of estimates. However, if a
sequence read maps to multiple reference genomes, GAAS assigns it
to a reference in an ad hoc manner. Consequently, the accuracy of
estimates from GAAS is reduced in the dominant presence of such
reads [69,70]. GRAMMY [69] suggests mapping reads in a probabilis-
tic manner, improving the accuracy of estimates of genome relative
abundance. However, the similarities among the reference genomes
could affect the accuracy of both GAAS and GRAMMY. GASiC [70]
improves the estimation accuracy by correcting this bias. In GASiC,
the initial abundances are estimated based on similarity to the ref-
erence genomes and then corrected based on similarities among
the reference genomes. Quantification of viral RNA is challenging
because many RNA viruses do not exist as a group of identical clones,
but as groups of closely related variants (termed clouds of quasis-
pecies [82]). The correction step based on similarities in reference
genomes in GASiC has been demonstrated to be effective in quantify-
ing viral RNA over considering only the reads similarity to reference
genomes, without the correction step [70].

GAAS tool has been evaluated on 99 metaviromes with a
similarity threshold less than that considered for bacterial, archeal
and eukaryotic metagenomes [55]. Results from a simulation
study have shown that the error in relative abundance estimates
from GAAS increased from 0.0756 to 0.563 when the number of
unknown species in the sample was increased from 0% to 80%.
This finding highlights the importance of a comprehensive reference
database.

Species richness can be estimated by identifying the number of
similar groups after clustering reads based on their similarity to
known genome sequences. Applicability of such strategies to esti-
mate viral richness has been evaluated in [79] using UCLUST. UCLUST
is a tool for fast sequence comparison and can be used to identify
the number of similar groups based on read similarity [79,83]. A
faster sequence searching algorithm named USEARCH [83] is used in

UCLUST to select matching clusters for a given sequence. The heuris-
tic approach adopted in UCLUST identifies one or few better hits
faster than finding all the homologous sequences and it has been
shown to provide better results than BLAST [83]. The output from
UCLUST is a set of clusters of similar sequences and is an indicator of
the number of different species.

6. Software Implementations

Table 2 summarises implementation details of tools that have
been discussed in this review. It lists the input data required by each
tool and the programming language used. In addition, the operat-
ing system(s) that each tool supports and ways that they can be
executed, either via Graphical User Interface (GUI) or Command Line
Interface (CLI), are stated. All the tools are available as standalone
software packages and hence support integration of them into a
metagenomics analysis pipeline.

Both PHACCS and CatchAll require a contig spectrum vector
which can be computed after sequence assembly. In addition,
PHACCS requires the sequencing and assembly parameters used in
the experiment and a value for average genome length. If the latter
is not provided, a value of 50 kbp is used by default. PHACCS may be
executed from the command line and can also be deployed as a web-
based tool with a GUI. CatchAll is a standalone package and can be
executed either via the CLI or GUI. CatchAll may be considered more
user-friendly than PHACCS as it requires only the contig spectrum
vector.

UCLUST, GAAS, GRAMMy and GASiC require the metagenomics
reads as the input. Since they implement sequence similarity-
dependent strategies, they also require a database of reference
genome sequences. They all provide execution from the command
line only. Since GAAS can be used to estimate a value for average
genome length, it can be integrated with PHACCS as a pre-step in
estimating species diversity measures from PHACCS. A schematic
diagram showing the steps where existing tools can be used in a
metagenomics study is shown in Fig. 1.

7. Limitations of Existing Methods

Both sequence similarity-dependent and sequence similarity-
independent methodologies discussed in this review pose limita-
tions. Moreover, the applicability of a given approach may depend
on the species diversity measures of interest. Use of contig spectrum
employing a frequency count approach for estimating species
richness as implemented in CatchAll has shown to result in richness
estimates that are order of magnitude higher than the actual rich-
ness [79]. The accuracy of existing approach of statistical modelling
of expected contig spectrum based on rank-abundance distribution
forms is affected by its assumption on genome length distribution.
Despite their limitations, approximations made using sequence-
similarity dependent methods are useful in comparative studies of
viral diversity in different environments [79]. Sequence similarity-
dependent approaches are mainly limited by the amount of available
reference genome sequence data. However, such approaches may
effectively be used for inferring relative abundances of known viral
types in a metavirome. These limitations of existing methodologies
are discussed in detail in subsequent sections.

7.1. Unrealistic Estimates

We find the most recent evaluation of the accuracy of richness
estimates from existing tools in [79] based on one set of simulated
data and considering only PHACCS, CatchAll and UCLUST. Results
from this study [79] indicate that estimated richness values from
CatchAll and UCLUST are significantly higher than the estimates
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Table 2
Summary of implementation details of the existing tools.

Tool Input data Programmed in Operating system/s supported Interface

PHACCS [67] Contig spectrum Matlab, Perl Linux,Mac OS, Windows Web based GUI
Average genome length
Sequencing and assembling settings

CatchAll [63] Contig spectrum .Net Framework Linux,Mac OS,Windows GUI, CLI
UCLUST [68] Metagenomic reads –a Linux, Mac OS, Windows CLI
GAAS [55] Metagenomic reads Perl Linux, Mac OS, Windows CLI
GRAMMy [69] Metagenomic reads C++ Linux CLI

Python
GASiC [70] Metagenomics reads Python Linux CLI

a Implementation details of the tool is not available.

from PHACCS, which has resulted in the most accurate richness esti-
mates. Normalisation of the estimates based on average genome
length has improved the estimation accuracy of UCLUST; however,
estimates from CatchAll have remained at least one order of magni-
tude higher than the expected value. When using contig spectrum
to analyse a metavirome, CatchAll regards each contig as a viral
type in contrast to the real world scenario where multiple contigs
can be spawned from one genotype. This assumption could lead
to erroneous higher richness estimates. An advantage of frequency
count approach proposed with CatchAll is that it can be used to esti-
mate the number of genotypes that are unobserved in the sample.
However, its application to estimate species richness from metavi-
rome data based on contig spectrum may lead to higher richness
estimates.

7.2. Effect of Genome Length Distribution on Viral Diversity Estimates

When estimating viral diversity measures employing the model
derived for expected contig spectrum based on Lander-Waterman
model for genome sequencing to estimate viral diversity measures,
an assumption is made on an average genome length. PHACCS
implements a similar strategy and consequently requires a value
for average genome length as user input. This assumption of all the
genotypes in the sample are of the same size may affect the accuracy
of estimated diversity measures due to two reasons: use of differ-
ent methods to estimate an average genome length, the variation of
genome lengths.

When using this method to estimate viral diversity measures,
average genome length value has been determined in three ways
in previous studies. One is to use an assumed value [84,85] or the
default value of 50 kbp [27,67,73,86]. The use of 50 kbp as average
genome length for marine viral populations is supported by previ-
ous research [87] but may not be applicable for viral populations
from different environments. The estimates from PHACCS are sen-
sitive to the average genome length and different assumptions can
lead to different estimates [74,84]. The second method of estimat-
ing average genome length is to use GAAS tool [55]. However, it is
mainly limited by the amount of reference sequences available. The
third method is to use the in vitro method of PFGE (Pulsed Field
Gel Electrophoresis) [84,87]. In PFGE, electrophoretic bands on an
agarose gel are used to identify the spectrum of genome lengths.
The estimated value from PFGE could be erroneous due to multiple
genomes being represented in a single band [55].

The requirement of average genome length as user input has been
identified as a limitation in PHACCS and has been addressed by a
recently developed tool ENVirT [88]. ENVirT is based on a modelling
approach similar to PHACCS but considers average genome length
as a variable. A Genetic Algorithm based optimisation strategy is
suggested in ENVirT to simultaneously estimate average genome
length and species diversity measures by minimising the error
between experimental and predicted contig spectra.

7.2.1. Results From a Simulation to Determine the Effect of Variation of
Genome Lengths on Accuracy of Estimates From PHACCS

Moreover, the variation of genome lengths of viruses in similar
environments could be large. Therefore, assuming that all the
genotypes in the sample are of identical size may affect the accu-
racy of estimated species diversity measures. In order to assess the
effect of variation in genome lengths on estimates from PHACCS,
contig spectra were simulated for 3 communities of richness =
10, 000, mean genome length, L = 50 kbp and evenness = 0.81
having a power-law rank-abundance distribution and their genome
lengths following a normal distribution N(L, (Lv)2) with varying v. The
values of v considered are v = {0.001, 0.001, 0.1}. Ten contig spectra
were generated from each community and Root Mean Squared Error
(RMSE) of richness estimates from PHACCS are shown in Fig. 2. The
results suggest that the variation of genome lengths of the popula-
tion can significantly affect the accuracy of richness estimates that
are calculated using the approach implemented in PHACCS.

7.3. Limited Mappings in Reference Databases

Sequence similarity-dependent approaches utilise data available
in reference databases. However, as far as viruses are concerned, a
larger proportion of the viruses in the environment is yet unknown.
Consequently, in the absence of a comprehensive database of ref-
erence genomes, viral richness estimated by grouping sequences
based on their similarity to already known genome sequences may
be inaccurate.

However, sequence similarity-dependent approaches are useful
in understanding the abundances of already known genomes in
the environment under consideration. Such methods are also useful
in time series experiments where the composition of the studied
community is known from previous studies and a comprehensive set
of reference sequences is available [70].

Fig. 2. The effect of variation of genome lengths on the accuracy of species richness
estimates from PHACCS.
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7.4. Analysis of RNA Viruses

The application of the methods discussed will be limited in
analysing RNA viruses, mainly due to constraints of the experimen-
tal set-up. When isolating the viral community DNA, larger viruses
and ssRNA viruses may be filtered out and their sequences may not
be included in the contig spectrum [20,67]. Consequently, ssRNA will
be omitted when estimating species richness based on the contig
spectrum [67]. The tools GAAS and GASiC have steps implemented to
effectively analyse RNA viruses (Section 5), however their estimates
on RNA data may be lower than their estimates based on DNA
data [70].

7.5. Effect of Microdiversity

Microdiversity refers to the diversity of closely related organ-
isms [89]. Recent research suggest that microdiversity affects the
metagenomic sequence assembly and more reads remain unassem-
bled as the microdiversity of a sample is increased [90]. Similarity-
independent methods that are based on the contig spectrum
considers the unassembled reads when calculating the diversity
estimates. However, they do not include a correction for the contigs
belonging to the same virus being placed into separate contigs due
to limitations in the assembly. Consequently, similarity-independent
methods may provide higher estimates than the real diversities in
the presence of microdiversity.

8. Summary and Outlook

Viruses play an integral part in the ecology of different envi-
ronments and metavirome studies have enabled the effective
study of viruses associated with these environments in a culture-
independent manner. Frequently considered viral diversity measures
in metavirome studies include species richness, Shannon-Wiener
index, evenness and rank-abundance distribution. Existing meth-
ods for estimating species diversity measures from metavirome
data may be categorised into two as sequence similarity-dependent
methods and sequence similarity-independent methods. Sequence
similarity-dependent methods are based on similarity measures cal-
culated by comparing the sequences generated in the experiments
against the sequence data available in reference databases. In con-
trast, species diversity estimates calculated employing sequence
similarity-independent methods do not depend on read similarity to
known genome sequences.

Sequence similarity-dependent methods are useful in identify-
ing the abundances of known genomes in a metavirome. Improving
the accuracy of these methods will help to evaluate the diver-
sity of known genotypes in a given environment. However, their
application for analysing viruses in a given environment, may be lim-
ited by the amount of reference sequence data available. Therefore,
the availability of reference databases and their continuous update
is crucial in making sequence similarity-dependent approaches
applicable for viral diversity estimation.

Sequence similarity-independent approaches mainly use contig
spectrum to estimate species diversity measures. However, existing
frequency count approach has shown to result in richness estimates
higher than the expected values. The approach employing rank-
abundance distribution forms is limited by its requirement of an
average genome length of the sample which is not readily available.
Its accuracy is also affected by the variation in genome length of the
sample. Development of alternative models based on additional data
that are readily available (such as sequencing depth) and suitable
optimisation strategies will alleviate the limitations associated with
sequence similarity-independent approaches.

Recent metavirome studies have investigated protein-clustering
to identify groups of similar species [91–93]. In protein-clustering,

the assembled reads are clustered based on their corresponding pro-
tein similarities. The methodology UCLUST which enables clustering
of nucleic acid sequences can also be used to generate protein-
clusters [93]. Estimation of functional diversity of a metavirome and
its comparison between metaviromes of other environments can
be effectively performed based on protein-clusters [93]. Therefore,
coupling species diversity measures with protein-cluster analysis of
metaviromes would broaden the knowledge on ecology of viruses in
different environments.

The microdiversity of a metavirome affects the metagenomic
sequence assembly. Future work on its effect on accuracy of species
diversity methods using current methods will be beneficial in
development of robust methods to analyse environments with (low
to high) varying levels of microdiversity.

A broader knowledge of viral diversity in a given environment
may be obtained by considering estimates from both similarity-
dependent methods and similarity-independent methods [53,94].
A study has analysed 31 metaviromes from different environ-
ments (hypersaline, marine, freshwater and eukaryote) considering
estimates from both PHACCS and UCLUST. The mentioned study has
shown that the environments are similar in number of virotypes, but
differ in genetic diversity (number of clusters of similar genes) [53].
Another study on human skin virome has considered species diver-
sity estimates from both PHACCS and GAAS. The estimates from
GAAS have been lower than estimates from PHACCS. Moreover,
estimates from GAAS have been similar across the considered
environments whereas PHACCS estimates have been different in
different environments. The observed differences between estimates
from GAAS and PHACCS may be due to the limited availability of
reference sequences for GAAS. A previous study has evaluated the
accuracy of species richness estimates from existing methods using
simulated data. However, it considers only three implementations of
existing methods. A comprehensive analysis of available methods in
terms of their performance based on real data and accuracy based
on simulated data will provide a better understanding for a user to
choose between these methods and use them in a complementary
manner.
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