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Molecular Plant

Letter to the Editor

The cellulose synthases are cargo of the TPLATE agtor complex

Dear Editor,

Clathrin mediated endocytosis (CME) is an evoluignconserved mechanism by which plasma
membrane (PM)-based cargo proteins are recognigedidptor protein complexes and internalized.
Apart from the canonical adaptor complex, AP-2nplzells rely on the TPLATE complex (TPC) to
execute CME (Gadeyne et al. 2014). The TPC is danweric protein complex, consisting of
TPLATE, TASH3, LOLITA, TWD40-1, TWD40-2, TML, AtEHINd AtEH2 (Gadeyne et al. 2014).
As the complex components are not conserved it yeasanimal cells CME initiation appears to be
regulated differently in plants (Hirst et al. 2014)his raises important evolutionary questions
concerning CME and cargo recognition across eukierangdoms (Zhang et al. 2015). Basedion
silico analysis TASH3, TPLATE, TML and LOLITA might havenctions related to AP-2A, AP-2B,
AP-2M and AP-2S, respectively (Hirst et al 2014;adh et al. 2015), which may include cargo
recognition and clathrin recruitment to the PM.dad, similar to Arabidopsis AP2M and AP2S (Fan
et al. 2013), TPLATE and TML are required for clathrecruitment to the PM, even after AP-2
depletion (Wang et al. 2016). Therefore, we hypsittedl that these proteins are involved in cargo

recognition in plants.

Loss of TPC function results in male sterility (@gde et al. 2014), similar to loss-of-function
mutants of cellulose synthesis (Persson et al. RQDVIE has been reported to mediate cellulose
synthase (CESA) complexes (CSCs) internalizatioelangating hypocotyl cells (Bashline et al.,
2013, 2015); supported by live cell imaging datap{@@emental Figure 1; (Miart et al. 2018ince
cellulose synthesis is essential for plant growtid ghe CSCs are unique to plants, it might be
expected that the CESAs are TPC cargo, which cexgdain why the TPC is maintained in plants
but not in animals and yeasts. To test this, wefopmed co-immunoprecipitation (Co-IP)
experiments, which revealed that CESA6, a compoaogtite primary wall CSC, interacts with both
TML and TPLATE (Figure 1A, upper panel). We corradied this finding by bimolecular
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fluorescence complementation (BiFC) between thebilli@psis primary wall CESAs, i.e. CESAL, 3
and 6 and TPLATE (Figure 1A bottom panel and Supplatal Figure 2). To confirm that the
detected fluorescent signals were not due to edkier-expression or random collisions of the split
FP halves, we co-expressed each of the primary GB@th AtEH1, another subunit of the TPC.
Here, we did not observe any detectable fluoressignial from the BiFC assays (Figure 1A bottom
panel and Supplemental Figure 2A and C), confirntingt the TPLATE-CESA interactions are
specific in our BIFC system and suggesting a latklicect interaction between AtEH1 and the
CESAs, while being connected through TPLATE. Notabthe CESA-TPLATE interactions
correlated with a change in CESA localization pagefrom a homogeneous and diffuse distribution
to a speckled pattern (Figure 1A bottom panel andpfmental Figure 2A), possibly indicating
internalized CSCs. To test this hypothesis, we atguk the BIFC assay between CESA6 and
TPLATE in the presence of the clathrin marker CL@2h (Supplemental Figure 2B and D). Here,
the BIiFC signal of the CESA-TPLATE co-localized hvitthe clathrin marker CLC2-mCh
(Supplemental Figure 2B). As expected from the iplaltroles of clathrin, we also observed

mCherry fluorescence at cellular compartments reovked by TPLATE-CESA interactions.

Defects in CESA internalization are likely to reésul severe cellulose deficiency. Accordingly, ne
altered inTML expression, pESTBmiIR-TML (Gadeyne et al. 2014displayed defects in hypocotyl
and root elongation (Figures 1B-upper panels), contant with cell swelling (Supplemental Figure
3C), similar to what is found in seedlings impairegrimary wall cellulose synthesis (McFarlane et
al. 2014). Furthermore, we observed a strong remtuat cellulose content and an increase in sugars
corresponding to non-cellulosic polysaccharidesinipathose of pectin-related monosaccharides
(e.g. uronic acids) compared to control seedliffggures 1B-bottom panel and Table S1). Plants
impaired in two other main steps of CME: vesicleseasbly by clathrin triskelia
(PINTAM>>RFP-HUB) and vesicle scissiodrpla-2/rsw9-2), showed similar phenotypes and cell
wall composition to themiRTML line (Supplemental Figure 3 and Table S1). Intargky, a null
mutant for a subunit of the other plant early adapbmplex, the canonical AP-ap2m-1), showed
increase in hypocotyl length, did not display defea cell swelling and its sugar composition was

comparable to wild-type seedlings (Supplementaliféi@, Table S1; Bashline et al., 2015).

Defects in CESA internalization should impact CE8ynamics at the PM. Live cell imaging
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revealed an increase in FP-CESAG6 density at theiPmiR-TML seedlings compared to their
control (0.9 + 0.1 foci/uin control cells versus 1.6 + 0.1 foci/im amiR-TML cells; Figure 1C left
and upper-right panels). The increase in FP-CES@A@sity could be due to either an enhanced
delivery or a reduced internalization rate of tf#&33 to and from the PM, respectively. To differateti
between these processes, we calculated the CE&&myalate (Gutierrez et al. 2009), and found no
differences in CESA delivery rate to the PM betwées lines (Figure 1C upper-right panel). The
increased CESAG6 density at the PM should therefeilect a reduction in the internalization rate of
CSC when TML activity is impaired. Moreover, theluetion of CESAG6 internalization correlated
with an increased amount of slow moving CESA phesiat the PM (indicated by less tilted traces in
kymographs; Figure 1C left panel). Tthgpla-2 mutant showed similar CSC homeostasis at the PM
as observed faamiR-TML; i.e., increased CESAG6 density and slow-movindiglas (Supplemental
Figure 4). As CESA movement is related to its afstithis explains the reduced cellulose content in
the TML and DRP1A knockdown/knock-out lines. Asagpd previously (Bashline et al., 2015), we
did not observe any differences in the CSC spedatieaPM betweemp2m-1 and wild-type cells
(Supplemental Figure 4) and nor did we observesagyificant differences in FP-CESA6 density at
the PM inap2m-1 as compared to wild-type (Supplemental Figure ¥®)ile these data contrast with
previous reports (Bashline et al. 2013; 2015), theexplain the absence of cellulose and anisatropi
cell growth reduction in thep2m-1 mutant as compared to the wild-type (SupplemeRiglire 4;
Bashline et al., 2015). Our results therefore iatticthat the TPC is key in the regulation of CSC

trafficking and, hence, cellulose synthesis in Adapsis seedlings.

With the aim of exploring whether CESAs are aldeiinalized via TPC-related CME in other plant
species, we performed split-Luciferase assays aumpithe rice TPC protein©sTML and
OsTPLATE?2, with OSCESA8 andOsCESA4, which are primary and secondary wall riceSBE,
respectively. We could detect clear luciferase agfrom these assays, which indicate that the rice
CSCs also interact with TPC components (Figure 1M). addition, we performed
immuno-precipitation (IP) using a®@sCESA4 antibody coupled with mass spectrometry (MS)
identify OSCESA4 interactors in rice plants. Notably, we foweleral TPC subunits, including
OsTPLATE2, OsTML, OsTWDA40-1, OseH2, OsTASH3, and OsDRP2B/BC3, as well as other

cellulose-related proteins in the pellet (Table.SQur mass spec results did not identify AP-2
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subunits in the pull-downs of any of our IP replea Hence, CSCs might also be CME cargo

recruited by the TPC early adaptor in rice.

In vivo evidence for cargo-CME co-internalization, andloealization of cargo by the CME
components via BiFC, has not been reported in pldntaddition, we were able to identify a plant
CME cargo by IP-MS, which is rare in plant biolodgyence, our results provide a foundation for
further elaborations of CME-mediated events in pleglls. Ourin vivo interaction data between
TPLATE and TML with CSC, both in Arabidopsis andaj indicate that TPLATE and TML might
recognize the CSC for its internalization. TML heasnuHD domain that is also present in APu
subunits (e.g. AP-2M in the AP-2 complex) and ie thuniscins (Hirst et al. 2014; Zhang et al.
2015), so it might be anticipated that TML can gguge cargo. Notably, some protein domains
suggest a relationship between TPLATE and AP-2B¢chvdoes not include any cargo-recognition
motif. Ourin vivo interaction results between TPLATE and CSC sugpesthe TPLATE subunit of

the TPC may have a cargo-binding capacity in piafis.

Our results indicate that the TPC is the main eadlgptor that recognizes CSC for its internalizatio
via clathrin. The data presented in the currentkvese in agreement with the fact that the TWD40-2
subunit of the TPC contributes to cellulose syrith@ashline et al. 2015), supporting a prominent
role of the TPC in this process. AP2-M has beenvshio bind to the central cytosolic domain of the
primary CESAs (Bashline et al. 2013), which contaiiative AP-2M binding domains (Y®) in a
yeast assay. Therefore, the CSC might be recogiiydubth plant TPC and AP-2 early adaptors,
possibly at different regions of its cytosolic dang Notably, TPC and AP-2 co-localize in
approximately 50% of all CME events, suggestingomglementary role of these CME adaptors
(Gadeyne et al. 2014), plausibly relating to pattc cargo or certain growth circumstances. This
might be the case under certain stress conditgund) as those experienced by the plant when the

TPC is not fully active (Barth and Holstein 20044dBline et al. 2015).

In summary, although it has been shown that sewargo proteins showed defective internalization
upon depletion of TPC subunits (Gadeyne et al.420&ur data represent the CSC as the first
identified TPC-cargo interaction in seed plantsognized by TML and TPLATE subunits, adding

insights into the evolution of cargo recognitiorpiant CME.



117  Figure Legend

118 Figure 1. TPLATE and TML interact with CESAs and influence cellulose synthesis

119 A. Arabidopsis primary wall CESAs interact with TML and TPLATE in planta. (Upper panel)

120 Co-immunoprecipitation (Co-1P) shows that CESA@ratts with the TPC subunitéJgper-left) 10

121  pL of total extract of proteins Input (1), Non-bal(N\b) and Bound (B) fractionsUpper-right) 25

122 L of Bound fractions. The experiment was perfornwete with similar results.Bottom panel)

123 Bimolecular Fluorescence Complementation (BiFC)agssshowing interaction of Arabidopsis
124  primary wall CESAs and TPC subunitshinbenthamiana epidermal leaf cells. The N-terminal (YN)
125 or C-terminal (YC) part of VENUS was fused in framgh CESA6, TPLATE and\tEH1. Construct
126 combinations are indicated in each figure panel.aAsansformation control, the nuclear marker
127  CFP-N7 (cyan) was included in all experiments.

128 B. TML is essential for cell elongation and cellulse synthesis in Arabidopsis. (Upper-left
129 panel) Representative images of 5-day-old etiolated segsll expressing pEST&niR-TML

130 (amiR-TML) and their control grown on either EtOH- or on 3V pbeta-estradiol (in
131  EtOH)-containing medium. Scale bars= 1¢pper-right panel) Hypocotyl length of lines shown
132 in (Upper left). Data represent the average (xSEh & 3 biological replicates, each containing
133 20-30 seedlings(Bottom panel) Cellulose and uronic acid (UA) content of the éinghown in
134  (Upper panels), represented as pg of glucose (P-@lqig of glucuronic acid (GIcA) per mg of
135 dried alcohol insoluble residue (AIR), respectiveBata represent the average (xSE)nof 3
136  biological replicates, each with three technicaltéions. Student'stest; P-value **<0.01, *< 0.05.
137 C. Impaired TML function alters the density and dynamics of plasma membrane localized
138 CESAs. (Left panel) Representative images from movies obtained withiangng disk confocal
139 microscope of tdTomato-CESA6 amiR-TML background and its control at the plasmam membrane
140 (PM) in hypocotyl cells of 3-day-old etiolated skeds. PM patrticle density shown in single-frame
141 images (particles highlighted in magenta). Timeraged projections of frames acquired over 5 min,
142  and corresponding kymographs showing CESAG trajest@nd movement, respectively. Scale bars=
143  5um.(Upper-right panels) Quantification of tdTomato-CESA6 density and dalweate at the PM
144  in photo-bleached areas of cells imaged with arspgnhdisk confocal microscope. Data represent
145 average (xSE) of at least 6 cells per treatmegeootype; Studentstest P-value *<0.05; **<0.01.

146  (Bottom-right panel) Histogram of CSC speeds at the PM in tdTomato-GE&#pressing seedlings
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shown in (Left panel). Mean (xSE) speeds for eqwh or treatment are given in parentheses.
589 particlesx> 6 cells and> 6 seedlings were tracked. A graph showing thegmgage of slow
(0-200nm/min) and fast (>200nm/min) moving CSiduded in each panel.

D. Rice primary and secondary wall CESAs can interet with TML and TPLATE2 in planta.
Split-luciferasecomplementation assay showing that the primarywealll OSCESA8 can interact with
OsTML (Upper panel) andOsTPLATE2 (Middle panel). The secondary waldsCESA4 can interact

with OsTML (Bottom panel). Scale bars = 1cm
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