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CIAPTER 0O

s b Introduction

The problem of classifying varieties of metabelian groups has
attracted several authors recently, and partial results have been
obtained. For example, Brisley [7] and Weichsel [12] classified all
varieties of metabelian p-groups of class at most p-1, and Newman [14]
determined all subvarieties of A aép' Vevman [15] has also
classified all metabelian varieties of exponent 4. Getting away from
locally nilpotent situations, Cossey [4] classified the varieties of
metabelian A-groups, that is, varieties of metabelian groups whose Sylow
subgroups are all abelian; in particular this includes all subvarieties

of the product varieties émén’ where m,n are coprime.

The work in the present thesis derives from an attempt to classify
the subvarieties of émén’ without restriction on m,n. The main
result is a common extension of the results of Newman and Cossey mentioned
above. Call two integers m,n nearly coprime if plm implies
pzfn. We give a complete classification of the subvarieties of émén
whenever m,n are nearly coprime; in particular this covers the case
épépq’ where p,q are distinct primes. The method can be outlined
as follows. A subvariety V of émén can be written V =UYV

=y=LN
where U 1is generated by the non-nilpotent critical groups in V, and



where ZLN is generated by the nilpotent critical groups in V.

Now ZLN is locally nilpotent, and is covered by Newman's result, so

we say uo more about it, and concentrate on d. G 1is a non-nilpotent,
metabelian, critical group, its Fitting subgroup F is a Sylow p-subgroup

for some prime p, the derived group G' 1is contained in F, and F

is complemented in G by a cycle of order t, say. Let pa be the

exponent of G'. Then G ¢ émén implies palm, t|n, and
* =
(*) var G = (var F)ét:\ épaén’

at least for m,n nearly coprime. The non-nilpotent critical groups
in V fall into classes determined by the exponents of their derived
groups and the orders of their Fitting factor groups: and in a similar

manner to (%), each such class generates a variety of the form

=
>
>

o
8

where W is the p-power exponent variety generated by the Fitting
subgroups of the critical groups concerned, and U 1is canonically the

join of these varieties. This situation is described in Chapter 5.

In proving (*) I have had to introduce varietal concepts which
are not concerned with varieties of groups as such. These are the
- concepts of 'split-group' and 'variety of split-groups'; a split-group

is a group with a specified semi-direct decomposition. 1 G 48 a



non-nilpotent, metabelian critical group as above, then G' < F and

F splits over G'; thus F may be thought of as a split-group F,

and if, in formula (*), one interprets each side as a statement about
split-varieties, it is true without extra conditions on m,n. When

m,n are nearly coprime, there is an accidental, very close, relation
between the variety generated by F quid group, and the variety
generated by F qud@ split-group. In the case m,n not nearly coprime,
there is no such close relationship in general, and formula (*) 1is not
true as a statement about varieties of groups; even an apparently more

restrictive formula fails to hold.

The split-group idea is capable of wider use than this classification
problem. In Chapter 4, for example, we prove a finite basis theorem
for certain varieties of split-groups, which, by way of application,
shows that certain varieties of metabelian groups have a finite basis.
Although this is only a special case of D.E. Cohen's finite basis
theorem for all metabelian varieties [16], it seems worth doing not
only as a demonstration of the strength of the split-group technique,
but also for the sake of the additional information obtained about the
varieties involved, especially as [16] gives no varietal side results
at all. While a complete classification is lacking, even for subvarieties
of the product varieties of épé Ly enough information is obtained to

P q
answer several questions concerning the lattice of subvarieties of certain



A én’ for example, questions of distributivity of the lattice of

these varities.

It was pointed out to me by L.G. Kovacs, that split-groups of
species 2 (that is, groups with a specified decomposition as a semi-
direct product of two groups) could be re-interpreted as group pairs,
in the terminology of B.I. Plotkin's recent book [19]. 1In an appendix
to that book Plotkin defined varieties of pairs and extended to these
some constructions from the theory of varieties of universal algebras.
Thus it seems that for split-groups of species 2, some basic definitions
and results of a general nature could be obtained by specializing
Plotkin's theory. Instead we show that all varieties of split-
groups can be interpreted as varieties of universal algebras and so our
fundamentals are derived directly from tlie theory of varieties of universal
aloebras., However if our results for the case of species 2 are
thought of as results in certain varieties of group pairs, they are
(so far as we know), the first dotailed results on specific varieties

of group pairs.



0.2 DNotation and terminology.

For results relating to varieties of algebras we refer the reader
to B.H. Neumann [21], and for results and notation relating specifically

to varieties of groups, to Hanna Neumann {31,

We differ from [3] only in writing H < G if H 1is a subgroup
of G. If H 1is a proper subgroup of the group G, that is H + G, we
write H < G. If H is normal in G we write H <9G. It} G 1is generated

by the subsets H ..,Hr then G = <H yH B

190 1,0-. ¥

If G 1is a group and x,y € G denote y—lxy by xy, and the

1y

commutator x ~x° by [x,yl. Commutators of higher weight are defined

as defisformed: IfF X ,...3X B G gnd [x.,..:% has been defined,
i n 1

n-l]
then

[xl,...,xn] = [[xl,...,xn_l],xn] 5
Define [x,0y] = x, and for r > 0, [x,(r+l)y] = [[x,ryl,yl.

1f H,K are subgroups of G, then [H,%X] 1s the subgroup generated
by the elements [h,k], h e H, k e K. The derived group G' of G
is [G,G]. A group G 1is metabelian if [G',G'] = 1, where we use 1
to denote the identity of the group as well as the trivial subgroup.

The normal closure of H in G 1is dencted by HG.



The terms of the lower central series of G are defined

inductively by

RGl €= [G(c_l), Gl;

thus G = G'. A group G is nilpotent of class c if

(2)
Geesr) = 1 Go) $ 1.

The centralizer of a subgroup H of G 1is denoted by CG(H)
and the centre of G by Z(G). The Fitting subgroup of a finite
group G, the largest normal, nilpotent subgroup of G, is denoted by

F(G).

A finite group with a unique minimal normal subgroup is called
monolithic, and the unique minimal normal subgroup is called the
monolith. The socle of a finite group G 1is the subgroup generated

by all minimal normal subgroups of G, and is denoted by 0G.

In late chapters, Chapter 4 in particular, many well-known
commutator identities will be used without comment. The ones used are

listed here. In any group G the following are identities:

[x,YZ] = [x,z][x,y][x,y,z],
[xy,z] = [x,z])([x,2,ylly,z],
[x,y] = [y,x17%,

i

A O R A



In a metabelian group G:
{x,yv.zllyizixilesxy] = 1

and therefore, if d ¢ CG(G°), putting z = 4 we have
[d,x,9] = [y,d,x]"" = [[d,517 %17

= [d,y,x] [d,y] = [d,y,x].

Finally note that we defy convention and write w for the cardinal

of the natural numbers.



CHAPTER 1

VARIETIES OF SPLIT-GROUPS

In this chapter we are concerned with varieties of certain objects
called split-groups, which are defined below. A split-group is, suitably
interpreted, a universal algebra, and this is pointed out in section 1.2;
hence much general theory is applicable to our situation, and it will be
called on to eliminate long proofs which would be redundant. However
our interest in varieties of split-groups, or split-varieties for short,
is the way they can be used to give results about varieties of groups;
more insight seems to be gained by developing the theory of split-groups
as is done below, then is gained by regarding split-groups and varieties
of aplit-groups as part of a much more general framework. We repeat

that our reference for results on varieties of universal algebras is [21].

1.1 Split-groups

(1.1.1) Definition. A split-group of the species n, 1is an

(n+1)-tuple (G’Al""’An) where G 1is a group, Al""’An are subgroups
generating G such that, if Bi = <Ai,...,An>, 1.8 11,i.,00, ‘EhED Ai

is normal in B, and is complemented in B, by B

1 1 14+1°

A, <B L »

g SByy AB =By, AN B



We shall denote the split-group (G,Al,...,An) by G when no confusion
can arise as to the particular splitting of G involved; also we may
write Ai 1

called the carrier of G; an element of G is an element of G.

=Ai(§), B, = Bi(_g), ie f1,:..,n}. The group G is

(1.1.2) Definition. A sub-split-group of the split-group

(G’Al""’An) is a split-group (é,Kl,...,Kn) where G 1is a subgroup
of G and where Ki = Ai ~n G, ie{1,...,n}. A sub-split-group is

normal if it is normal as a subgroup.

(1.1.3) Definition. A morphism u between two split-groups

(G,Al,...,An) and (-G-’Kl"' .,Xn) is a group homomorphism u : G -+ G

such that A f_Ki, Liedl,. 5.}, We write 51 § G5 G,

Notice that morphisms are defined only between split-groups
of the same species; this dependence on the species will often be
left understood, unless it is necessary to clarify the meaning. Note
also that, in general, every imner automorphism of G 1is not a self-

morphism of G.

(1.1.4) Definition. A morphism is epi or mono according as it

is onto or one-to-one as a group homomorphism of the carriers.



10.

£1:1.5) DeEfuicdon.  If G = (G,A An) is a split-group

ly'..’
and N is a normal sub-split-group of G, the quotient split-group

G/N 1is the split-group

G/N = (G/N, A\N/N,...,A W/N) .

The right-hand side is indeed a split-grouv: clearly AiN/N_S BiN/N

= 1
and if a; € Ai’ bi+l € Bi+1 such that aiN bi+lN then
-1

b ,.a,e N= (Na A) ... (N4 A) which implies a

+134 e N by the

i
uniqueness of the decomposition g = a1, eee 2 for any element g

of G.

{L:3.56)  Jepma.: . :1f 3G +:§ is a morphism between two split-
groups then (ker u, ker ulAl(g),...sker u|An(§)) is a normal sub-split-
group of G. (Here uIAi(g) denotes the restriction of u to

A, (@)

Proof. We have only to verify that ker p splits appropriately;

indeed if a n an cuker 11 with .a

122 { € Ai(g), then (alu)(ajJ) ovs

(anu) =1 go that au = ... =au-= 1, or a, e ker uIAi(g),

e £ co.omn)s
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(1.1.7) Definition. The cartesian product of a collection of

split-groups G, = (G,,A,.,...,A, ) of the same species, i ¢ I, is
== b B W in

the split-group G where G = H{Gizi € I} and where Aj(g) = H{Aij:i e I}

is embedded in G in the natural way:

4,0 = {fe BlE(d) e A,.,1 ¢ I).

: G g

The restricted direct product is defined similarly.

(1.1.8) Definition. A fully-invariant sub-split-group of G

is one invariant under all self-morphisms of G.

Note that, as not every inner automorphism of G 1is a self-
morphism of G, a fully invariant sub-split-group need not be normal.
It is easy to see that the intersection of the normal sub-split-groups
which contain a given fully invariant sub-split-group is fully invariant
(and normal).

(1.1.9) Definition. A generating set {a1

e A;(G):j e J;,1 <1 <n}

3 i’

of G will be called a generating set of G. A split-group is

finitely generated if it has a finite generating set.

A split-group will be said to have a certain property if its carrier
has the property; thus G 1s finite if G is finite. For split-groups
of small species, special names will be adopted: a split-group of species

2 1is a bigroup, and one of species 3 is a trigroup.
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Finally, in this section, we note a few abuses of language that
will occur from time to time. The trivial split-group should, of
course, be writtemn as 1 = (1,1,...,1), but we will write 1 for it,
and also for the trivial sub-split-group of a split-group. A subgroup
S of G may be referred to as 'the sub-split-group S' of G 1if it
splits appropriately, while a sub-split-group may be referred to as

a subgroup if, by doing so, the desired emphasis is conveyed without

creating confusion.
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12 Alternative formulation.

We shall in this section characterize split-groups as certain

universal algebras. Tha operator domain is defined as follows.

(1.2,1) = Definition. Qn is a commutative semigroup

{wo,wl,...,wn} of order n+l with multiplication table

wyw, =w,  for 0 <i1<q<n.,

174 h|
In the terminology of [6], Qn is a commutative band, fully
ordered with respect to the relation: w, < w, if and only if

i

W.W, = W,.
173 3
{1.2.2) @ Definition. An Q -group is a triple (G,Qn,g), where

G 1is a group and where the mapping e : G x Qn + G has the properties
(xy)w,e = (xw e)(yw,e),

XW.e = X, xwe=1,

0 n=
and

(xwig)w e= x(wiwj)g )

3

B 0¥l s v E B bnd 1.4 e {0,1,...,4).
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Since an angroup is a universal algebra, the concepts of
sub-Qn-group, quotient Qn—group have standard definitions; we give
them here using the well-known correspondence between congruences on

groups and normal subgroups.

{1.2.3)  Definition. A sub—Qn-group of an f -group
(G,Qn,g) is an Qn-group (G ,Qn;é) where G is a subgroup of G

and where

o |

= g[@ X Qn.

{1.2.4) Definition, 1If (G,Qn,g) is an S?n-group and
(N,S%)g') is a normal sub-ﬂh—group {that 1s, a sub-&%—group which
is normal qud subgroup), then the quotient Qn-group (G,Qn,g)/CWQn,S‘)
is the Qn—group (G/N39n92m) vhere ¢" : G/N X Qn + G/ 1is defined

by xNw.e" = xwigN.

-
(1.2.5) Definition. A homomorphism u (G,Qn,g) > (EQQngg) between
Qn—groups is a group homomorphism u : G > G such that for all x ¢ G,

(xw edu = (xu)ve .

£1.2.6) Definition. The cartesian product of a collection
(Gi,Qn,gi) {4.¢ 1) ot angroups is the Qn—group (C,Qn,g), where

G = H{Gi E L e I} and uhere e ! G X Q@ > G dis defined by
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fw g(i) = f({)w

3 e SR 5 ORIy

3517

£1,2.7) Theorem. There is a functor ® from the category of
all split-groups of species n to the category of all Q -groups,
which is one-to-one on both objects and morphisms and which preserves

sub-structures, quotient structures and cartesian products.

Proof. Let (G,Al,...,An) be a split-group. Define the

endomorphisms o4 @ G by

(ala2 e an)oi = ai+1 cev @

for all aj € Aj’ G Al .o nt, Ll e d0.1, .o n=1) and define o

to be the zero endomorphism of G. We call o4 the splitting

endomorphism of G. Clearly

al il 3 ==
(1.2.8)
S’ ac
Also Bi+1 = Go1 and Ai = keroi,w By, i {0,...,n}. Conversely,
if a group G has endomorphisms o4 with the properties (1.2.8),

then by writing B, , = Go,, A, = keroi,w By, i 10 o 0k (G:A1>---

is a split-group. ¥or, 1f X € Bi+1 then

AL ((xoi)(x°i+l)—l)(xci+l)
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~ =1, so that

and  ((x0,) (x°1+1)~1)°1+1 = (%0, (x0)

-1
(xoi)(xoi+1) e ker oi+1f\ Bi+l = Ai+1’ which shows that
= A -
Bi+l Ai+lBi+2' Also ) S}Bi+l’ and if vy ¢ Ai+1" Bi+2 then

there exists yi's G with y = yloi+l’ vhence

= =5 2 = =
e e L R LI |

and therefore A =1, This shows that (G,Alyﬁ..sAn)

T g
is a split-group.

If €= (G,A ..,An) is a split-group, define G% = (Ggﬂn,g)

(il

where e: G x Qn > G 1is given by

(1.2.9) =xw.e = xc e 0.0 onl:

i : [
for all 'x € "G. Conversely, if (G,Qn,g) is an Qn—group we use

(1.2.9) to define endomorphisms o, of G, which may easily be

i
verified to have the properties (1.2.8), and therefore, in this way,
(G,Qn,g) defines a unique split-group (G,Qngg)w. Clearly oY

is the identity mapping on the class of all split-groups of species

n, and ¥¢ is the identity mapping in the class of all angroups;

hence ¢ is one-to-one and onto on objects.

If v :G~+G 1is a morphism, then u : Go > Gd is a

homomorphism: for it is easy to verify that if Oys E& are the

splitting endomorphisms corresponding to G, § respectively, then



iy

oM = MO de 10,.::,n}, ‘Hénce, from (1.2.9)

19
(xwi)u = XO.M = Xuo, = (xu)wig

for all x ¢ G. Conversely every u : G¢ > Cé is a morphism
g6 +:§. If we put u® = u, then clearly ¢ is a functor. The

rest of the theorem 1s proved by similar techniques which we omit.

We may use ‘efinition 1.2.2 to appeal to general results: for
example the usual homomorphism theorems apply for Qn--groupss and
therefore, via Theorem 1.2.7, for split-groups also. Because of the
application we wish to make, and for convenience in simplifying
notation in the calculations of Chapter 4, it is the split-group
definition rather than the Q_-group definition that we use. 1In
the sequel we shall suppress statements in the Qn-group formulation
except if the comparison is of interest (for example we are led to
different definitions of free objects)., or if brevity can be

obtained by appeal to more general results.

1.3 Freeness of split-groups.

Let Y Y be free groups of rank Myseeesm respectively,

1’..‘,n
on free generators {yij 8 1 - Ji}’ IJiI =m,. We do not suppose

that the m, 6 are finite cardinals. Let _g(ml,...,mn) be the

split-group defined as follows: the carrier is to be the free product
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B0E e W R e

i *
Ai(g(ml"°"mn)) normal closure of Yi in Yi 1o

{1.3.1) Definition. The split-group g(ml,...)mn) is the

absolutely split-free split-group of rank (ml,...9mn) on: the

I &< nk

split-free generating set {yij :3edy,
The use of the word rank obviously needs justifying and we will

cover this in Lemma 1.3.6.

(1.3.2) Theoren. If G 1is a split-group of species n then
every set of mappings My o {yij i g Ji} -> Ai(g) can be extended to

a morphism :.Q(ml,...,mn)+g§.

Proof. Since Q(ml,...,mn) is a free group with the yij‘s
as a free generating set, certainly a group homomorphism u, which
extends all Hys exists: that Ai(g(ml,...,mn))u i-Ai follows from
the definition of Ai(g(ml,...,mn)) and the fact that

4,(6) 9 <A(B),..5A (O)).
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As in more general situations, we have the concept of relative

freeness, and theorems characterizing it.

(1.3.3) Definition. A split-group G of species n 1is

relatively split-free if it has a generating set {aij a0 Iy 1441 <nl
with 1 # aij € Ai(g) such that every set of mappings
My o {ai_i L Ji} > Ai(g) can be extended to a marphism of G

into G. Such a generating set is called a split-free generating set

for G. If my = |J], (m,...,m ) is called the rank of G.

Mote that in this definition, some of the m, may be zero:

i
this would occur if Ai(g) =1, Invariance of the rank will be

proved in Lemma 1.3.5.

(1.3.4) Theorem. 1t G 418 relatively split-free, then G
has a representation 0Q/S, where Q is absolutely free of the same
rank as G, and S is a normal, fully invariant sub-split-group of
Q. Conversely, every such quotient split-group 0/S is relatively
split-free: 1if the rank of 0 is (ml,...,mn)g then that of
Q/s is (mi,...,m;) where mi =m,, unless Ai(g) < 8, 1in which
case mi = 0,

Proof. Suppose that G is relatively split-free on the split-
free generating set {aij 2 3 ey, Lad & nll, Let 0w Qﬁml,...,mn)

where m = |Ji" R o INTSERE Y 8 Define the epimorphism A : Q> G by
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yijA = aij’ 38 Jio i dlaaiiinl,

and Theorem 1.3.2. Put S = ker); then S is a normal sub-split-group
of Q by (1.1.6). To show that S is fully-invariant, let o be
an arbitrary self-morphism of C and define the mapping

e R R N

13 §£18 4 n)» @ by

i.?
aijB = (yija)x.

By definition, B can be extended to a self-morphism of G. Since
the restrictions of ol and AR to the set {yij L1 e d
of generators of Q agree, al = AB. Hence if s ¢ S,

sal = sAB = 1, and so sa € kerd = S.

In order to prove the converse, we need the following lemma,

which was proposed to me by L.G. Kovacs.

{1.3.5) Lemma. let H be relatively split-free on the

19 i 1<% <d). Let o:B+K

be an epimorphism such that Ai(g) + 1 implies Ai(E) % 1, and such

generating set h=1{h,, : jeJ

that kera is fully invariant. Then a|h is one-to-one, and K

is relatively split-free on ha.
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Proof. Tirst, alh is one-to-one. For, if hija = hiza;

h| + 2; then h,. s h %X & kera.  Define n : H+ H gso that

ij vk

hijn = hij’ hizn = 1: then hij = hijn = xn € kera since kero is

fully invariant. TFence {hi 3 g e Ji} c kera, or Ai(ﬁ)_i kera which

5
implies Ai(g) = 1. It follows that alh is one-to--one.

Seeand, Il s &plit-free on ha. Tor, let B : ha + K

-~

be any map such that hi ﬁ € Ai(g). Nefipe  pi: T > H. 50 That

3

S b der o map awlna from X to the set of

hijn € hij
non-empty subsets of K. Observe that la_lna = (kero)ne < (kero)a = 1:
e U e ). e it o= kilkz thin 1k (kIla‘l)-(kza‘l

in the usual multiplication of subsets of a group, and therefore

1 ik

ka—lna = (k;la— na)-(kza— na).

Thus {1} = (k-la-lna)'(kaglna) for all k ¢ K showing that
lka_lna| = 1. Hence o ‘na is an endomorphism of K, and since it

agrees on ha with 8, it is a morphism X - X.

We return to the proof of (1.3.4). Write Q* for the
absolutely split-free split-group of rank (mi:...,mg), where
' =
i S

a natural morphism Yy : O =+ Q* such that kery

m unless Ai(g)-i-é’ in which case mi = 0. Then there exists

0
£ « A o
(Y, : A,(Q) < 8)
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If 6 : Q> Q/S is the natural morphism, define o - 2% + Q/S by

* =
yija yijé

where yij, yij are split-free generators of Q* and Q resvectively.

Clearly
Yo =6 .

Now kera i1s fully invaridant in 0% for, if £ : O +0% - then
there exists n : Q + Q such that yE = nY; and if q* ¢ kera,
there exists q € Q with qy = q*. Now qya = q*a = 1 = q§ which

means q € S, Therefore

q*Ea = (qy&)a = (qny)a = (gn)é§ = 1

gingce gqn © S. That is, q*f € kera, and therefore kero is fully
invariant. Also Ai(g%) + 1 implies Ai(g/§) % 1 and so the conditions

of the Lemma 1.3.5 are satisfied, and 0/S has the asserted properties.

(1.3.6) Lemma. The rank is 2n invariant of a relatively

split-free split-group.

Proof. Let G be relatively svlit-free. 1If Ai(p) % 1, then

Ai(g) j_G'. For, 1f a is an element of a split-free generating

ij

set consider the self-morphism u : G+ & such that a,,u = a

ij ij



g
w
L]

with all other split-free generators mapped to 1. Clearly G' < kery
and aij ¢ keru. Now G' «carries a fully invariant sub-split-group
of G and the hypotheses of (1.3.5) are satisfied by the natural
morphism o : G+ G/G'. Hence G/G' 1is relatively split-free of

the same rank as C° and since each Ai(g[g:) is a relatively free

abelian group, its rank is invariant, and therefore so is that of G.

To finish off this section we mention that had one treated a
split-group as an Qn-group as discussed in section 1.2, one would
have been led to a smaller class of free split--groups; indeed we can
make a distinction between ‘'free split-group' and 'split-free

split-group’ as indicated by the following theorem.

11.3.7) Theorem. Let (G,Qn,g) be a free Qn-group in the
variety of all Qn—groups9 say one of rank k. Then ( C,Qn,g)¢-l is

an absolutely split-free split-group of species n, and rank (k,k,...,k).

Proof. Write G =(G,Qn;g)®“l. Let {xj e 9 B

a free generating set for (G,Qn,g), |7] = k. Put
z,. = (xw, ,e){x.w e)ml G-I - et R &
13 1187 9,8 g x ¥y

Then, for each j € J,

xj = lezzj e an
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It i=s elear, thetefore, that {z,. : ¢ J 1 <i<n} is a generating

1j 1’
set for G. Let H be an arbitrary split-group, H} = (H,Qn,g*),

and My ot {zij T B Ji} - Ai(g) a set of mappings. Define

uoe {xj P Y E 4 HE by

I .8 T

Xqu = (zljul)(zzjuz) 0l (znjun -

It follows that u can be extended to a homomorphism p Go » Ho,

and hence, by Theorem 1.2.7, that u : G + H is a morphism. it

is easy to verify that u does extend the Myt

2y4H = ((xjwi_lg)(xjwig)'l)u

((xju)wi__lg*)((:ftju)w»rig*fl

1

(zijui) g znj“n)’((zi+1j”i+1) e (znjun))_

Zij"i .
If we choose for H the split-free split-group of species n,
Q(k,...,k), define u as above from My o zij-+ yij’ and

¥ oHix G by v yij - zij and Theorem 1.3.2. we get that
L

el vand o= 1. o vae -6 &0 = O(k,...,k).

G [

lr—J-:
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1.4 Split-words

(1.4.1) Definition. A split-word is an element of the
absolutely split-free split-group Diw, <. ¢,0), the definite
species n being understood. We shall often write for a split-word
g € 00U, «.q,0),

q=q(YlilS"'9ylir9"'9ynj 9"".‘y . )9

or, more briefly still,

q= q(gls---,gn)

to indicate the dependence of ¢ on the variables though all

yij’

those displayed may not occur explicitly.

(1:4.2) Definition. Two sets Sl,S2 of split-words of

species n are super-equivalent if they have the same fully-invariant

closure in the absolutely free split-group 0(w,...,w) of species n.

(1:.4.3) Wotation. e write Qn for;. 00w .. us0) 5 the

absolutely free split-group of species n.

We shall need a version of Theorem 33.45 from [3]}. To this end,
note that the carrier of gn is a free group of countably infinite

rank on the free generating set {yij s Jed,, 1c1i % N
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Identify this carrier with X_  and {yij M e 1 <4 ¢} vwith

1°
{xk : k=1,2,...}, in the notation of section 3, Chapter 3, of [3].
The deletions Gk considered there are morphisms of gn, and hence the
argument leading to Theorem 33.45 can be transferred to gn' We do

not wish to repeat the elaborate formalism whic! seems necessary to

give rigorous meaning to the terms used in Theorem 33.45: intuitively,
they may be described as follows. A split-word will be called special
if it is equal to a product of powers of commutators CpoeeesCy whose
entries are powers of the free generators Yij’ and which have the
property that if a power of some yij occurs as an entry in one cj,
then a power of yij occurs as an entry in each of CyseeesCpn
Then Theorem 33.45 can be stated in our situation as follows.

(1.4.4) Theorem. Each split-word is super-equivalent to a

finite set of special split-words.

(1.4.5) Definition. The split-verbal sub-split-group of a

split-group G of species n, determined by S E;gn, is the sub-
split-group S(G) whose carrier is the subgroup of G generated by

the set



2l

Note that, by definition, this set admits every self-morphisms of
G hence so does the subgroup of G generated by it. In particular,
this subgroup admits the splitting endomorphisms o4 of G and hence
carries a sub-split-group: so Definition 1.4.5 is justified.
Yloreover it follows that every split-verbal sub-split-group is fully
invariant. As the carrier of S(gn) is the least subgroup to contain
the images of S under all self morphisms of gn’ the fully invariant
closure of S in -gn must contain S(gn); but as s(gn) is fully

invariant and contains S, it follows that the fully invariant closure

of '8 1in -gn is precisely s(gn).

(1.5.6) Theoren. If &5 E-gn: then the fully invariant closure

ofF: S dn gn is S(gn).

K1.4.7) Definition. Two sets S.,S., of split -words of the

127
same species n are equivalent if they have the same normalized fully-

invariant closure in Qn' (It is easily seen that the normal closure

qua subgroup of a sub-split-group is a sub-split-group: if <@g,
go
i

uwel, geG, then (ug)oi = (uoi) € UG).

{1.4.8) . Theorem. Xf §.,S

1°5; are super-equivalent, they are

equivalent.
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(1.4.9) Theorem. Two sets S,,S, of split-words of species n

11x2
are equivalent if and only if the normalized split-verbal sub-split-groups

they determine in every split-group of species n are equal.

Proof. One way around is obvious. For the other, suppose

that §.,S, are equivalent, and let G be any split-group of species

A2

n. We must show that

G G
The following lemma is useful here.

(1.4.10) Lemma. If S is a set of split-words, G a
split-group and » a normal sub-split-group of G, then

S(G/1) = S(G)N/V.

Proof. Every morphism a ¢ gn + G/U can be factored through

G via the natural morphism v : G + G/, say o = Bv.

Conversely every B : + G can be continued to a: gn + G/N by

0
n—ﬂ

a = Bv. Hence S(G)v = S(G/N) which is what we wanted.

|1

The proof of (1.4.9) runs as follows. First note that 1f § = Qn

and o : Q > H, then S5(Q)a < S(H): hence, with E = /N, we have
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Sl(g) =1 > Sl(gn).i{\{kera VI gn > H}

Q

n
5,(0.)

4

<iifkera : o 1 0 - H}
— —-‘n —

25,00 ) <Nikera : & : B A

4

S,() = 1.

G I
It follows that sl(g).g_sz(g) (putting ¥ = Sz(g)p) and therefore
that Sl(g)G g_sz(g)G. In a similar way, SZ(E)G.S Sl(g)G,

and this completes the proof.

Theorem 1.4.6 can be stated in a more familiar form for all

relatively split-free split-groups as follows.

(1.4.11) Theorem. A sub-split-group of a relatively split-free

split-group is fully invariant if and only if it is split-verbal.

Proof. Given a relatively split-free generating set of G and
an element h € H < G then there exists a finite subset T of that
generating set such that h e (T}, There exists a finite subset T'
of a free generating set of gn and a2 one-to-one map u : T' =+ T

which extends to u* : 0 =+ G.
—11 —

Now KT u* =<T): hence there exists q € {T'> with

gu* = h, Given a : Q *G let B : 5+G be an extension of
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=1 V ?
e AR e N T Then as u*g and o« agree on T', they agree on {T"),
hence, in particular, qa = qu*B = hB e I if H is fully invariant.
This proves that fully invariant sub--split-groups of G are split-verbal:

and the converse is true in any split-group.

(1.4.12) Theorem. There is one-to-one correspondence between

the (normalized) fully invariant sub-split-groups of gnls(gn) and the
; Q

(normalized) fully invariant sub-split-groups of Qn containing S(Qn)'n.

Proof. This proof is an easy application of the last theorem.

(1.4.13) Lemma. If S is a normal sub-split-group

of 0., then S(G) 1is normal in G for all G of species n.

Proof. It is sufficient to show that (qa)g e S(G) whenever
q'ES,)" a2 Qn 7 HE G, The proof is similar to that of (1.4.11)¢

there exists a* : Qn = 0 ‘g € Qn such that aqo* = qo, E&* =g, SO

that

(@e)® = (q®)B®" = ((Da* ¢ 5(0)

Examples of sub-split-groups which are not normal are easy to find,
for example each Ai(g) is split-verbal, but of course not necessarily

normal, in G.
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1.5 Split-varieties

{1.5.1) Definition. 1% 8 E:gn* the class of all split-groups

G of species n such that S(G) = 1 is the variety of split-groups

(or, briefly, the split-variety) determined by S.

(1.5.2) Theorem. Zquivalent sets of split-words determine the

same split-~variety.

Proof. 1f Sl,S) are equivalent, then, by Theorem 1.4.9, for
any G, Sl(g)G =1 4f and only if SZ(Q)G £ 1- that is al(g) =1

if and only if SZ(G) = 1.

From this theorem it follows that, in defining split-varieties,
we need only consider sets of split-words S which are normal, fully
invariant sub-split-groups of gn, since every sub-set of gn is
equivalent, by definition, to its normalized fully invariant closure.

The normalized fully invariant closure of S 1is denoted by cl 8.

£1:5.3) Definition. If S is a normal, fully invariant sub-
split-group of gn’ the split-wvariety determined by S will be denoted

by 8.

~
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(1.5.4) Theorem. The correspondence S + S between normal,
fully invariant sub-split-groups S of gn and the varieties S of

-~

gplit-groups of species n 1is one-to-one and reverses inclusions.

Proof.  Suppose 8158, are normal and fully invariant in Q_

and Sl§£ S,s then by Lemma 1.4.10
fols: Sl
and so S, = §2(gn) < £+ If follows that if S; =8,, then §, =§,.

It is clear that a split-variety is closed under the operations
of forming sub-split-groups, quotient split-groups and cartesian
nroducts of split-groups. The converse of this is also true on
account of Theorem 1.2.7, and Birkhoff's corresponding result for

varieties of universal algeLlras. We omit the details of proof.

(1.5.5) Theorem. A class of split-groups is closed under the
operations of forming sub-split groups, quotient split-groups and

cartesian products of split-groups if and only if it is a split-variety.

{1:5.8) Definition. A split-word q € gn is a split-law
in ¢ if {q}(G) = 1: simply written, q(G) = 1. If S is a split-
variety determined by the normal, fully invarient sub--split-group

R 3 Q then the elements of S are called the split-laws of S.

—
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(1.5.7) Definition. Civen a split-variety S and a n-triple

m = (ml,...,mn) such that g, = 0 %if Vi1 € S. we call

~

Q(m)/s(Q(m)) the split-free split-group Fm(S) of tank m of 8.

~

-~

By Theorem 1.3.4 Fm( S) 1is relatively split-free of rank m and

lies in S. oreover,

(1.5.8) Theorem. Every mapping of a split-free generating

set of Fm(S) into a split-group G € S can be extended to a

morphism.

Breer. | let z = {2 . :1ed 1 <i<n} be a split-free

17 1’
generating set for OQ(m) ' then if v : Q(m) ~» Fm(S) is the natural

Bgrphtan, 1z .v 1 ] ¢ Jis 1 <1ic<n}=2v is a split-free generating

ij
set of Fm(S). Suppose B : zv > G e S such that ziij € Ai(g).
Then v B : z > G extends to a morphism & : Q(m) + G. Since

0(m)§ < G e S it follows easily that ker§ > S(Q(m)). Hence & can
be factored through v, say 6 = vy and by definition,

(zv)8 = (zv)B; Yy 1s the extension of B. This completes the proof.

Theorem 1.3.4 yields,

(1.5.9) Theorem. Every relatively split-free split-group is

split-free in some S.



Finally in this section we note the following results. Imagine

g(ml, A ,mn) , where Mysee.sm — are all countable at most,

embedded in _C_)_n in a natural way; then

(1.5.10) Theorem. If S is a fully-invariant sub-split-group

of _Qn then S(m) = S (y Q(m) is fully-invariant in Q(m), and

_S;(gl) = S(_Q_(T))s

Q
)Q(T) =5 "

and S(m

2(13) ;

Proof. Clearly S(Q(m)) < Q(m) ~ S = S(m). Conversely,
if qe Qm)~ S and o 1is a self-morphism of Q, which maps
Q(m) didentically and every thing else to 1, then

q = qa € S(Q(m)) which gives us the opposite inequality.

For the second part we have
Q
§(r~n)Q(‘f) = (S n Q(T))Q(IP) B 5o Q(m)

Q
=S “(g(m)): by the first part,

I A

5 (@)X ™

9

5(m) Q(m)

again by the first part.
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£1:5:11) Defdnition. The split-variety generated by a set
{

gi : 1 € I} of split-groups of the same species n is the smallest
split-variety of species n which contains all giﬁ equivalently, the
split-variety generated by {gi : 1 € I} 1is the class of split-groups
satisfying the split-laws which hold in all 91' We denote this

split-variety by svar({gi et e Ty,

£1.5.12) hefinition. The join of two split-varieties

S;T of the same species is the split-variety generated by the set

~ o~

{G, : G, €S or G, € T}. the intersection of S,T 1is the class
i - A A e

~ o~

intersection of S,T. We denote join and intersection by S , T

~

and S, T respectively.

§f.5.13) Theorem, The laws of 8., T, S, T are S .7 and

~ ~

&1 g(#ﬂ) respectively.

Proof. The proof follows easily from the definitions and we

omit it.

(1.5.14) Theorem. A split-variety S 1is generated by its

finitely generated split-groups.
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Proof. If T is the sub=split-variety generated by the finitely

generated split-groups of S, let q be a split-law of T, and

~ ~

He 8, ot Qn = Hd As previously, we may suppose that o acts

non-trivially on only finitely many free generators so that

Yij 9
gna < H 1is finitely generated, and therefore qa = 1.

1.6 Examples of split-varieties.

Let S be a split-variety of species n, and for each i
consider the variety of groups ¥, = var({Af.g) t GeSh)y. It 18
clear then, that G ¢ § implies G ¢ 2122 onn Xn' Conversely suppose

that 21""’¥n are varieties of groups, and that W C Xlzz S Xn'

If

Consider the class Yo obtained in the following way:
EO={(G’A19...9An) 5, GEW, A. E‘],-', 1<i<n}n

Clearly Wo is a split-variety since it is closed under taking sub-
split-groups, quotient split-groups, and cartesian products: note that
Wo depends on Zl""’gn as well as on W.

{.1.6,1) Definition. Denote by V. oV, 0 .., 0¥ the

split-variety (2122 4 gn)o.

(1.6.2) Theorem. To each split-variety of species n there

corresponds a unique ‘smallest’' product variety 2122 e ¥n such that

Ge § implies G € !122 ny Xn .
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Conversely, there is a meet-homomorphism o from the lattice of

subvarieties of 2122... Zn to the lattice of sub-split-varieties of

Netoines oY
=1 =n

are determined by

e e 15 oo Xn’ then the split-laws of Wo

Vi(Yi)‘ 1:24 <n and W(Qn)

(where Yl* gas ® Yp is the carrier of gn). The split-free-group

of rank (ml,...,mn) of Zl ¥ esi B Xn 1s carried by the iterated

verbal wreath product X defined inductively by

19

>
|

= F (X )wr X S
my i Zi i+l

L § < pal,
(where, as in (1.5.7), we choose fy = ¢ S L Vi1 € vi(Yi))'

Proof. Toc see that o 1s a meet-homomorphism, proceed

4 1 ...V .
as follows. Let ¥1=ﬂz be subvarieties of lez Y at once

we have
() A B)o S0 A Hyo-

For the converse, suppose G € Qlo,\gzo, and then G ¢ 21 . 22



38.

Wow the split-laws of V., o ... o V  are determined by Vi(Yi)’

i=1,...,n since a split-group G belongs to ¥V, o ... 0 Xn - 5 7
and only if it has these split-laws. The split~free split-group of

rank m in zl 8 e gn is, by definition, Q(m)/S(Q(m)) where

S = cl({vl(Yl)g...jvn(Yn)}).

1" S .= Vi(Yi)° then S(Q(m)) 1is the normal closure in Q(m)

i
of all Si(g(m)). We construct Fm(zl O ies D Zn) by successively

~

factoring out of 0(m), the normal closures of the Si(gﬂm)). Write

Q(m) = A;B, in the usual notation: and at the first stage, since

— b
= [[* o
Al Il {Yl Sbic BZ}

(vhere ?i B R ?% is the carrier of O(m)), and since S (0( ))Q(m) =
&

Vf Al), we get

ARG (n*{le(gl) b e B,})/V, (N*{F l(Vl) :be B

Zln{le(gl) : b e Bl

feer Al 22 18.2% 1B.31 ia  13]). . Hepce

Q@ /s, Q@)™ = 5 (v wr, (HT, : 2 <1< b,
l —l

Using Theorem 1.4.12 and well known properties of verbal wreath products,

we arrive by induction, at the assertion of the theorem.
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Finally, introduce the free group X on the free generating set

{xj : §J=1,2,...}, and the homomorphism v : X_ - Q, defined by

xjv e {0 TR ynj’ S i u il

Then it can be proved by standard tricks that T = W(gn) is the
normalized fully invariant closure of Wv in Qn. If

88T Zl O +00 O Zn’ weW and B : X -+ G, define o @ gﬂ & 6. 80

that

yija = aij” L el A u, 3ot 80..)

where x.B = a 5. ae Ai(g)f then va = B8 and

j il Chadhs &

wB = (wv)a =1

since w e T and G e T. We conclude that G e W and therefore
that G e Wo: hence T, ¥, 0 ... 0 X, E o The opposite direction

is proved in a similar manner.

Whether or not o is a join-homomorphism I have been unable to
establish. The mapping o is in general, neither one-to-one nor

onto, as the following examples show.

(1.6.3) Example. The mapping o 1is in general not onto.
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Consider any product variety UV and the bivariety

o
]

G A.8) : C=Ax B Aecl, BeVh

4

and let

B (CEU : C=XKxB, acl, Belyl,

Now B#* may not be a variety (if it were then clearly B*g = B),

but in any event ¢ 1is onto only if (var B*)g = B. We construct

~

here an example where this is not the case. As var B* D =8BV o -

suffices to produce U,V such that there exists K e UoV with

Ex 3 28 obubak LB o But Gl GZ’G3 for the following groups:

Gl non-abelian, exponent 3, order 27: G2 non-abelian, exponent 9.

order 27: G3 cyclic, order 9! and put U = var G3, ¥ = var Gl'

Then it is well-known that G,elU,¥ G ¢ U G ¢ Y. 4s

G2 is a split-extension of G3 by a eycle of order 3, it carrics

bigroup G,eUoV and therefore G, ¢ (U, Y)o. However,

§2 ¢ B for G, has no proper direct decomposition (since all prover

2

subgroups of G2 are abelian while G2 is not).

(1.6.4) Example. The mapping 0 is in general not one-to-

one.
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Put U=V = ézta t20, W= éz“’ s wmgidt,  Then
Wo =UxYV (see (1.7.1)), for all such u. Other, much less trivial,

examnles of both situations will occur later, in Chapter 5.

(1.6.5) Remark. In tackling the descending chain condition
on subvarieties of the product varieties uv it would be sufficient
to show that

i) U oV has descending chain condition on sub-split-varieties
and 1i) for each W= UV, (go)o—l has descending chain condition.

It is 1in situations like this that split-varieties may prove useful.

1.7 Products of split-varieties.

The last section leads us naturally to ask for a product operation
on split-varieties similar to that on varieties of groups. Unfortunately
it doesn't seem possible to do this inside the variety of all split-groups
of the same species. However we can make the following definition,

and this suits our purposes later on.

£1.7.1) Definition, If S,T are split-varieties of species

m,n respectively, then S o T is the split-variety of species mwin:
o H G Sf & LA .
So ? {c: Al(g) ses Am(_) € S, &m+l(§) Am+n(§) € ?}

Also define

= s - "4 LI G\.
§ x ? ne o3 e ,Al(g) uiow Am(s) x Am+1(9) Am+n( ),

~ ~
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That S o T and S x T are split-varieties follows from their
closure under taking sub-split-groups, quotients split-groups and
cartesian products of split-groups. The split-laws of S o T

are now described. First some terminology.

If m,n are natural numbers, imagine gm,gn embedded in Q,In

el 7ay ; ¥ Wiree ¥ i @
in the natural way il Yl Ym+n is the carrier of 0 o

then -9m° for example, is the sub-split-group carried gl T e Ym'

Define a sroup endomorphism of Qm+n’ Say 1, by

Vgt Vs ied e 30 41,0 0l
yijT = aeEhe i e 1250 3
where {yij 2 j =1,2,...} freely generates Y,. With this much

convention we can now state

{1.7:2) Theorem. The split-laws of S o T, whers S,T

are of species m,n resepctively, are c1(S,Tt) = U. and

0
E e ) ) s

: W ie
Proof. B EE U, @8 amd oo gm > Al(gp S Am(;)

then there exists B : + G such that Blgm = o: then
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whence 4,6 ... Am(_G_) €S. If reT, and y g 2 Bm(g) then

there exists § : gm+n + G such that 18 =y, and so
ry =(r1)é§ =1

ginee Lt e T We have shown, therefore, that b8 50 T, A

similar proofdeals with the opposite direction and thus U =S o T.

To conclude the proof, note that ¢1(8,Tt) =( ¢1S)(clTr).
flow observe that it is immaterial wi.ether we regard S as being of

species mi+n, and calculate S(Qm+n)2 or of species m, and

S ' 3
calculate S(Al(gm+n) sl Hm(gm+n)) we get the same result in either

case. Moreover S(Q :

in Al(gm+n) el 2 Aé'g : ), and 1% a, € Ai(Q }o n#l i <mdg

L b () L -evA i
then a, induces a self-morphism of Al(gm+n) m(Q ) which is

) is normal in gm+n; it is certainly normal

therefore admitted by S(Q , ). Also elT: =T (9m+n)Qm+n_ This

finishes the proof.

(1.7.3) Theorem. $; &8, if and only if S, o T ¢ S, 0T

and S o I, =8 oT, if and only if T, <T,. The product

is associative.

Fo'i

The proof of this is completely trivial and we omit it. The
product we have :efined is very similar in its properties. to the
product defined for varieties of groups. We note one other result in

this direction.
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t1.7.4)] = Theorem. i) (§1 7 §2) 0 ? = ?1 0 ? V,§2 o I

L AR e

e e D) e B

By contrast iv) S o (?1 % TZ) = SoT) 80T,

and the inclusion may be proper.

Proof. & To is the variety of all split-groups of species

~

the first assertion for T = TO is equivalent to

G4 50 9 = Sy Sea ).

Write Q = Then, as noted in the proof of (1.7.2). Si(g) =

gm+n'
Sl(Al(g) Am(_(_))). We show that Al( oy o= Am(g) is isomorphic

qua split-group, to gm. For., put
Y, =m*y° :beB ()} l<i<m
i i mEl =i e T e

¥ A =Y. % *
and it is easy to verify, that ¢1(g) - Am(g) Xy P SR

and that Ai(g) is the normal closure of Yi in Yi""°Y .

Hence ( 1) is true for T = To.

~

i ; .g,-gl,.gz are the split-free split-groups of

(§1\, §2) ) T09 S1 0 To, S2 0 To respectively, then G can be

- 5, ~

embedded in G

g =

, according to the monomorphism u . Ex G 28

defined by
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a($; @ A~ S,@)u =(a8,(Q, q5,(®), q e Q.

"‘xG

\7
12 G
Now 'I‘r(__G_l X _Qz) RO e (G) ug for, 1f (xSl(g), ySZ(g)) €
sla
i (_(i1 X _G_z) ~ Gu then there exists q € Q such that qs, =

xSl, o:;S2 = ySz, and with q € TT(_(_\__)Q° Hence q(Sl( a9y Sz(g)) € TT(Q)G
. G
whence (xSl( g),ysz(_g)) e Tt(2)"u. It follows that G/Tv (g)G is
: G G
embedded monomorphically in G, /T (F) Loy G,/T( G, 2, This shows

that

and as the opposite inclusion is trivial, this completes the proof
of “{d). The rest are easy: the only non-trivial thing is to show
that the inclusion (iv) may be proper. In fact the familiar example
which establishes this for products of varieties of groups can be

interpreted to settle this (21.25 in [3]):-

Any bigroup in A o éz v AO 1;3 has the bilaw

2 3
£1.7.3) [ylleleY229Y23] .

Consider the bigroup G e £ o 4, defined as a 7-cycle A, = {ay split
by its automorphism of order 6. <b) = ..!-“.2 say, with G = (AlAz’Al"AZ)'

Now A2 is represented fixed point free on !&l> and so

206 5] 4 1
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showing that the split-word (1.7.5) is not a split-law of G. This

completes the proof of the theorem.

Note that Definition 1.6.1 is in accord with our definition of

produtt, provided that we interpret a variety of groups as a variety of

split-groups of species 1.
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CHAPTEL. 2.

~ISCELLANEOUS _RESULTS

In this brief chapter we record some general results about split-
varieties, results related to the lattice of split-varieties, and then
introduce the bivarieties with which the remainder of this thesis is

principally concerned.

2.1 Lattices of split-varieties.

(2.1.1) Theorem. The split-varieties of the same species n
form a modular lattice with respect to (the inclusion order and) the

join and intersection defined in (1.5.15).

Proof. By virtue of( 1.5.4) and (1.5.13) it is sufficient to
show that the normal, fully invariant sub-split--groups of Qn form a
modular lattice with respect to the inclusion order. This is clear, since
if S,T are normal and fully invariant in Q. 8SATI and ST are also,
and therefore the normal, fully invariant sub-split-groups form a sublattice

of the modular lattice of the normal subgroups of Qn'

Because of this modularity, many results which are essentially
lattice~-theoretic can be taken over to our situation: all here are
quoted without proof. The first is well-known, particularly as a

statement about varieties of groups.
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(2.1.2) Theorem. If S is a split-variety which has a finite
basis for its split-laws, then every sub-split-variety of S has a
finite basis if and only if every descending chain of sub=-split-

varieties of S breaks off.

Of course if there existed an infinite descending chain, gl:j Vo v
say, of varieties of groups. then we could trivially construct an
infinite descending chain of split-varieties of arbitrary species

3
et

(g, o

tta

<

5 05> ... where S 1is any split-variety).

The second result noted here I first proved for varieties of
groups (see 16.25 in [3]). It is however a much older result about

modular lattices, due to Pickert [22].

{2.1.3) Theorem. If S,T are split-varieties of the same
species, each of which has descending chain condition on sub-split-
varieties, then S ,, T does also.

By entirely similar methods one also proves

(2.1.4) Theorem. A split-variety S has descending chain

condition on sub-split-varieties if and only if there exists
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S — § such that So has descending chain condition on sub-split-
varieties. and also all descending chains between S and So break

-~

off.

2.2 The bivariety A4 o A

From now on we will almost exclusively be concerned with varisties
of bigroups (Livarieties). mostly, indeed, with subvarieties of é o A.
It is convenient to modify our notation to suit this situation. Thus
we shall drop double subscripts and write Ym*Zn for the carrier of the
absolutely split-free Ligroup of rank (m,n), with split-free generating

set {y, :+iel, |T| = m}, {zj @ g 3 o=l

We now restate several results for the case of bivarieties,

all of them zpacial cases of Theorem 2l

(2.2.1) Theoren. If q is a biword, then q is equivalent
to a set Uo % V0 g S of special biwords, where Uo’vo are contained
in Yw’zw respectively, and where each element of S is a product of
powerz of commutators, each of which involves at least one 7 and at
least one zj ( and the entries of each are powers of the vy, and zj).

lloreover 1if vlsyz are the varieties of groups determined by the laws

Uo’vo respectively, then Zl o V. is the bivariety corresponding

to the bivariety determined by q, by Theoren 1.6.2.
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£ 2.2.2) Corollary. Each sub~bivariety of A oV 1is determined

by the bilaws of A o V together with a set {yT} v VS of special

<

biwords where m > 0 <2 =V, and each element of S 1is a

w

product of powers of commutators of the type [ylgwl,...pwr], with
each W, a commutator whose entries are powers of the 2z, but which

k|
does not lie in cl(V y V).

Proof, « If T Ao ¥, then by (1.6.2), T = g ¥, meu,
V' < V; and if this m is chosen minimal, {YT’[yl’YZ]} is a basis for
the laws of all Al(g), GelT, aas noted in" ( 2.2.1). If Z' is

chosen minimal, then write V for a set of special biwords which

determine V' modulo V.

By (2.2.1) we are left with considering ‘genuine' commutator
biwvords in T, call one t say. Then t 1is a product of powers of

commutators whose entries are powers of the Yy and z We may

‘i
assume that each commutator in this product involves only Y1 raised to
a power, and no other yi’ss since [yl,yZ] is a bilaw in A o V.

This power of y; may be moved to the front of each commutator so that

we have t expressed as a product of powers of commutators of the form

1%

A .
[yl’wl""’wr] [yl,wl,,...,wr

as required.
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(2.2.3) Corollary. Every sub-bivariety of Aod is
determined by the bilaws of A o A together with a set {yT,zi}g; S
of special bilaws, where m,n > 0 and where every element s € § is
a product of powers of commutators of the type.

Al A

[yl,zl ,...,er]

where r depends only on s, and Al,...,xr are all non-zero, and
Aj e i na By Ll ... ).
Proof., From ( 2.2.2) we have that every element s € S can

be written as a product of powers of commutators of the type
o

1 %y , E
[yl,zil,...,zi ] w here oy + 0 and where {11,...51u} o [ ST, .
If, for example, il = 12 then since
o, +o o o a a.
qEsy =] 2. i
[Y DZ ][Y Sz ] [y az- ] = [Y 9z sz ]!
) ) il 1 i1 1 i, 1 11 i2

we may replace this product by one of the desired type. That the
z's can be rearranged into increasing order of their subscripts
follows since, modulo the bilaws of A o 4, ¥y is in the centralizer

of the derived group of a metabelian group.

(2.2.4) Corollary. Every sub-bivariety of 4 o A 1is determined

o

by the bilaws of A o A together with a set {yT,z1 v ok

special bilaws, where m.n > 0 and where every element of /T 18 4

product of powers of commutators of the type
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€ €,
[yl’ulzl g ]

with Hyseoesh natural numbers and EpsecesE = +1

R moreover, if

n >0 then U, <n and g = Idrdr el o 0.

Proof. Use (2.2.3) and the commutator identity

v
[x,7 b= - [xauy][”] :
p=1l

Finally, in this chapter, a result of a completely different
character. Note that the bivariety A o A consist of bigroups which
are metabelian qud groups. One of the nice features of such groups,
from a varietal standpoint, is that finitely generated ones are
residually finite ([8]), and therefore every subvariety of AA 1s

generated by finite groups. We implicitly adapt this very deep result

of Philip Hall to our situation, in the next theorem.

{2.2.5) Theorem. A bigroup G 1is residually finite qua
bigroup if G 1is residually finite. Consequently every sub-bivariety

of Ao A is generated by finite bigroups.
Proof. Tet 1 + g € G. There exists a normal subgroup N
of C with g ¢ N and |G:N| finite. Write
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and then lAl(g) : Aflfl = IAl(g_)NsNI and |A2(§_) :Agl = IAZ(_q)N;NI are

both finite. Hence

|6 sagax) < |a, @ : a3l 14,00 : A

is finite. Finally put N#% = (AfA%)G, and then Ang.i N* = N

so that N* is normal, of finite index and avoids g, and it carries

a sub-bigroup of G. so we are home.



CHAPTER 3.

CRITICAL BIGROUPS 1IN AoA

In this chapter we define critical split-groups by analogy with
critical groups, deduce some elementary facts about them, and then turn

our attention to the structure of certain critical bigroups in A o A.

3.1 Critical split-groups

(3.1.1) Definition. A finite split-group is critical if it is not
in the split-—-variety generated by its proper sub-split-groups and proper

quotient split-~groups.
Clearly we have

(3.1.2) . Theorem. If G is a split-group and G is a critical

group, then G is critical.

(3.1.3) Theorem. A critical split-group G has a unique

minimal normal sub-split-group.

Proof. If not, then there exist non-trivial normal sub-split-
groups N,,N, of G with N, A N, = 1; and then G can be embedded

in S@Qﬂl x 5@@&2 in the usual way.
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An example of the situation in Theorem 3.1.2 occurs with G = 33,
the summetric group of permutations on three letters, Al(g) the
normal 3-cycle and Az(g) any 2-cycle. However the converse of
(3.1.2) 1is not true: a critical split-group need not be a critical
group. An example of this is tlie bigroup G carried by the wreath

product G = prr(Cp x Cp) in the natural way: Al(g) is the hase group

8 G and AMleE)=w 0w |
> ©) 5 =

Clearly a split-group which is monolithic as a group has a unique,

minimal normal sub-split-group. In certain cases the converse is true:

(3.1.4) Lemma. If G is a bigroup which has a unique minimal

normal sub-bigroup, and Al(g) is abelian, then ¢ is monolithic.

Proof. Suppose that 1 + N 1is a normal subgroup of G. b3
N A Al(g) > 1 then we are finished since N A Al(g) carries a normal
sub-bigroup of G. Hence suppose that N A Al(g) = 1; then as
Al(g) 9 G we have that W < CG(Al(g)) and therefore that
CG(Al(g)) > Al(gp. It follows that 1 < CG(Algg))’“ Az(g) <1 G.
Hence we have a contradiction unless Al(g) = 1, 4in which case the

theorem is trivially true.

In the bivariety A o A the conditions of (3.1.4) are certainly
satisfied. In such cases we shall use 'monolithic’ for brevity, and

denote the monolith of G by 0G. Note that the carrier of oG 1s 0G.
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(3:1.5) 'Lenma. If a split-variety S 1is generated by finite

split-groups then it is generated by critical split-groups.

Proot. Let ?0 be the sub-split-variety of § generated by the
critical split-groups in §. If §o c;§, then there exists a finite
Ove § - §o’ which we may suppose to have minimal order. Every proper
sub-split-group and every proper quotient split-group of G then
lies in Sy but G does not. This means that G is critical.

~

We have thus produced a contradiction and hence S = S.
(3.1.6) Lemma (cf. Theorem 4 in [9]). If G 18 g aritical
bigroup and Al(g) is abelian, then Al(g) contains a unique maximal

normal subgroun of &G.

Proof. it Nl,Nz are maximal normal subgroups of G 1in Al(g),

then NlAZ’ N2A7 carry sub-bigroups of G (writing Ai

We shall show that G € svar{Nl,AZ, NZAZ}' Suppose that q is a bilaw

=a(8), 1=1,2).

in both NlA2 and NZAZ. Since HINZ = Al and since AZ(NlAZ) = AZ’

we may suppose, by virtue of (2.2.2), that q is a product of

commutators of the form

[ W ]-4:1
YpaWpoee oW,

Let o : O, + G be an arbitrary

for some words WyseessW, € AZ(Q

2)°

morphism. We write y& = 3,2,, 3 € Nl, a, € N2 (not necessarily

t



a7 .

uniquely). Define a, : g2 *> N.A 1 =052, by
el s R B P B B . S D

Then [yl,wl,...?wt]a = [yla,wla,...,wta] = [ylal,wlal,...,wtall.
[ylaz,wlaz,...,wtazl. Hence qo = (qal)(qaz) = 1, showing that q

is a bilaw in G. This completes the proof.

Finally in this section an analoguec of the well-known fact that

critical groups which are nilpotent, are p-groups.

(3.1.7) Theorem. If G is a finite monolithic split-group

and G 1is nilpotent, then for some prime p, G is a p-group.

Proof. If G 1is nilpotent and finite, its Sylow subgroups are
fully invariant, hence carry normal sub-split-groups whose pair-wise
intersections are trivial, so G cannot be monolithic unless G has

only one Sylow subgroup.

Note that 'nilpotent’ as used here is a concept related to
varieties of groups. As previously, we may give it a split-varietal
flavour, if that is thought necessary, by saying that a gplit-group of

species n 1s nilpotent if it has the split-law.

[¥19%21 *** Ya1°¥12522 **° Yn22 ***¥1c¥2¢ **° ne

for some natural number c.
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3.2 Non-nilpotent critical bigroups in Aot ;

Throughout the remainder of this chapter G = (G,A,B) will
be a critical, non-nilpotent bigroup contained in A o A-  the notation

introduced in Theorem 3.2.1 will also be carried through.

(3.2.1) Theoren. If G = (G,A,B) € A o A is critical and
not nilpotent, then
i) A 1is a p-group, for some prime p, it is self-centralizing
in G, and is the derived group G(Z) =G' of @
If B=HxK where H is the Sylow p-subgroup of B, then
11) F = AH is the centralizer of the monolith oG of G, and
F is the Fitting subgroup of G;
iii) K is a p'-cycle which acts faithfully and irreducibly
on 0G.
loreover
iv) Every non-trivial element of K acts fixed point free on A,
and

v) ¥ acts faithfully and irreducibly on A/N

where

vi) N = Ap[A,H] is the unique maximal G-normal subgroup of A.



Proof. Since G is critical it has a unique minimal normal
sub~-bigroup oG whose carrier, by Lemma 3.1.4, is the monolith oG

of G.

If A were not a p-group, we could write it as a direct product
of Sylow subgroups, each of which, being characteristic in A would
be normal in G, contradicting the monolithicity of G; hence A is
a p-group for some prime p. If A were not self-centralizing, then
A < CG(A) would imply 1 < CG(A)r\ B < G, again contradicting the

monolithicity of G.

Since B 1is abelian, G’ < A; and since G is not nilpotent,

there exists an integer t such that

< A.

14 L e

By a result of Schenkman [1], G splits over G(t)’ say

ety ® Sy bn L

Therefore A = G(t).(A A Bo)f but A A BO is normal in BO since A
is normal in G, A~ B0 is normal in A since A is abelian: hence

An Bo is normal in G, and so A n B0 = 1 because G is monolithic

and A A Bo avoids G(t)' That is,

A e W

.<_ G(t) i

g ' = A, ' 'This disposes of (1).
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We can describe oG more exactly: if F has class c precisely,

and if F(c) has exponent pr, then
r-1
(3:2.2)  af = F?c) = {z ¢ Z(F) : 2P = 1}.

r= 1
Fagr, 1 + F?c) is characteristic in F and therefore normal in G,

r-1
so dG < F?c) . If this inclusion were proper then, by Maschke's Theorem,

r-1
0G would have a non-trivial, K-admissible complement in F?c) which,

being in the centre of F, would be normal in G, a contradiction. A

similar argument proves the remainder of (3.2.2).

The same argument can be used to prove that K acts irreducibly on
oG. We shall now show not just that K acts faithfully on oG, but
that every non-trivial element of K acts fixed point free on A. To

this end suppose that there exists 14 ke K and 1 ¢ x ¢ A such that

k
e =i

If we write

YT e R ak,

then A is a non-trivial normal subgroup of G 1in A and, by a well-known
result of representation theory (for example, Lemma, p.455 in [2]), A

has a B-admissible complement %k But then A 1is normal in G
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since A is abelian, and therefore A =1 since G 1is momnolithic; that is
A =A. In this case ¢k is central in G, contradicting the

existence of a monolith in G. 1t follows that, 4f 1 + k € K, then

k fixes no non-trivial element of A. Thus F 1is the centralizer of

oG, K acts faithfully (and irreducibly) on oG and so K is cyeclic,

and F is the Fitting subgroup of G. This completes the proof of

(11}, (444), (dv).

By Lemma 3.1.6 there exists a unique maximal normal subgroup of
€& contained in "A:" .eall it'"N. Hence AP[A,H] < N since both
AP and [A,H] = F' are proper subgroups of A and both are normal
in _ G. If the inclusion is proper, then N/AP[A,H] has a non-trivial
K-admissible complement T/AP[A,H] say, in A/Ap[A,H]. But then T
is normal in G and T is not contained in N, a contradiction to

3.1.6.

To finish the proof of the theorem we have to show that X acts
faithfully on A/N, and to do this we use the following lemma which

will be useful later on as well.

£3.2.3) Lemma. 1If G = (G,A,B) is as in (3.2.1) and

14 k, € K, then the mapping a : A > A defined by

is an automornhism of A which extends to an automorphism of G.
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Proof. Define o on the whole of G by
(ba)a = b[a;ko], e B a g A

This is an endomorphism since

b, b,

((blal)(bzaz))a==( blbza1 az)a = blbz[al az,ko]

e b,
s LR BT SR B LR R

= bl[al,ko].bz[az,ko] =('Blal)a.(b2a2)u;

and o is an automorphism since G is finite and b[a,ko] =1 d1implies

b=1 and [a,ko] = 1, which from (iv), gives a = 1.

Finally note that if a € A, ko e K and [a,kol € N, then, since
N 1is characteristic in G, N admits the inverse of the automorphism

a corresponding to ko i . £3.2.3): that dis
a= [a,kolof'1 e N.

Hence K acts faithfully on A/N. The proof of Theorem 3.2.1 is now

complete.

The following two lemmas are important in the proof of the

crucial Theorem 3.4.4 below.
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(3:2.4) Lemma. 1f G = (G,A,B) is'ds in (3.2.1) with

IKI =r, and ao""’ar—l £ A sueh tghat, for all ke'EK
r-1
3.2:5) i [ai,ik] =1,
=0

then a ko= = 1.
o r-1

Proof. Put k=1 and then B 1; we may suppose, therefore,
that the product is over the range 1 < 1 < r-1. Let K ='<ko>'
Substitute kg, 1 f=a=1," for Xk dn (3.2.5) in tu¥n, and; Meiog
the terminology of (3.2.3) with aj corresponding to kg: we get

. o
L a6 =1, I sr-1 .

i=1 13

Worlking in the endomorphism ring of A and utilizing the fact that

aiaj = ajai, 1 = 3.9 < g1, we deduce that
a_ det (ai) =1 < i rili
£ i 2 e

Now det(a?) is the van der lionde determinant, and
r-1

TR ik ;
det(aj) (tzl at)-(ugv(au «));

each a, is an automorphism of A, and det(a;) will be an automorphism

of A if we can show that for u < v, et is an automorphism of A:

Epr 8k A,
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ala o)) = (aa)(a0) ™ = [a,K%][a,K717]

u v v-u . u u
k -k k ~k -k
= a la il %3 = (a la = ) ° = [askz-u] 4
and therefore a(au-av = 1 implies a =1 by~ (3.2.1) ({iv). Heneca
al fsgsi o= g = 1 as asserted.

r-1

{3.2:5) Lemma. Let € = (G,A,B) be'as in (3.2.1) and
IKI =r, If to each s-tuple e (ul,...,us), where
O0<u; <r-1, ie{l,...,8} there is an element a(u) of A such

thatsfor all 'k k2K,

1,..-, s

H[a(u),ulkl,...,uskS] =1,
5 =

~

Elien  atn) =1 for all j.

Proof. For'each v & {0,..552+1) write
2= 1 [a(E),ulkl,...,us_lks_l];
v=y
s
then
r~-1
n [av,vks] =1
v=0
for all ks E K. Hence by (3.2.4), Ho, = - 1. We may

now use induction to complete the proof.
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33 ‘The erditleality of OC.

Wz aim to show in this section, that if & 2e-asTin - T a1l
then G 418 a critiecal group. By Lemma 3.1.4 and (1.2) of [5] it
suffices to show that © is not contained in the variety generated by
its proper subgroups. To this end we calculate the maximal subgroups

oF " G

O Ty Lemma. If M is a maximal subgroup of G then either
a) M= AHKO, wirere K is maximal in ¥X;

b) M= AHOK9 where H, 1is maximal in H,

or c) M A F = NH.

BProef. Suppose that, as in (1.2.8), 61 is the retraction of

&:.ko. B, Then if Mol <. B we must have A £ M; for, 1f A i_H,

AM = G and therefore

Hence M = A(} ~ B) and clearly M A B must be maximal in B; that

is, M has the form (a) or the form (b).
Assume, therefore. that ‘Iol =B: then M A F = NH, Foxry 1T
N{4?M, G=N{ and if a € A-N,

=9
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e e T a = xm, e N me M
and so x-la = e (AN M. By virtue of (3.2,1)(vi), A is
generated quad B-operator group by any element of A-N, and since

Mol =B and A is abelian,

In other words, M = G; hence N < M. Tc finish off this case we
show that 1f a € A-N and h € H, then ha ¢ M. Bor, 1F L + Kek;

there exists a' € A such that ka' ¢ M; and 1f ha € M,

[ka’,ha] = [ka',al[ka',h][ka’,h,a]

[k,al[a',h]

belongs to M whence, as [A,H] < N < ¥, [k,a]—l = [a,k] € M.
From (3.2.1)(v), [a,k] € (A-N) n 4, and an argument similar to that
which diasposed of (3.3.2) shows that M = G. Hence ha ¢ M.

It follows at once that Mol = B implies

M n F = NH,

as required in (c).

Note that not all the maximal subgroups of G are sub-bigroups.

The ones which are not are those with M N F = NH and ka € I,

a e AN, ke K: in these cases, " = (NH,ka). A similar argument

to the foregoing yields
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(3.3.3) Lemma. The maximal sub-bigroups of G are precisely
FKo’ AHOK and NHK, where HO is maximal in ., Ko is maximal in

K.

We are now ready to prove

(3.3:4) Theorem. If G = (G,A,B) ¢ A o A is critical and not

nilpotent, then G 1is a critical group.

Proof. Since G is critical, there exists a bilaw q of the
maximal sub-bigroups of G which is not a bilaw in G itself. Because
of the nature of the maximal sub-bigroups of G, q must be a genuine

commutator biword, and using (2.2.3) we may assume q to take the

form
s o o. €
S Hpead
q= I [yl,zl ,...,zr ]
i=1
ieRe Eomad aa el 2 el gl el e (1,0, Congides
ij
the word
I, ; [ xail 3 1r]€i
‘“7 - i—'l Xl,X2, 3 ’ L ) r+2 .

Then w 1is a law in every maximal subgroup of G, but not a law in G
itself. For, if M is a maximal subgroup of G, then from (3.3.1)

it follows that (M'.Mcl, M', Mo is a proper sub-bigroup of G;

17
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and each value of w in M is obtained by choosing arbitrary elements

Myseeesm of M and evaluating
s a ) T
5 - G
121 [ml,mz,m3 ,...,mr+2]

i %31
b izl [ml 9m2: (m3ol) () ANLECE (m

L

o
) ir] ;

4271

this is clearly a value of q in a proper sub-bigroup, and is therefore

1t Hence w 1is a law in 1i.

On the other hand, since q i1s not a bilaw in G, there exist
l""’br e Bisuch that

s o G

- fa.b
i=1

elements a € A, b

From ‘{(3:2:3), “4fv1 + Ke R, there exists a' e A with a='{a',k]:

s o
it follows that I [a',k,bl
i=1

ad ¢
il,...,brir] - £ 1 and therefore that w

is not a law in G. By the remark at the beginning of this section,

G 18 eritical. We shall see later that this theorem has a strong converse.

3.4 The bigroup F#*

In this section we show that, in a sense, the bivariety generated by
the critical bigroup G 1is determined by the bivariety generated by a

certain sub-bigroup of G which turns out to be a little more manageable.
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Recall that (3.2.1)(vi) ensures that if a ¢ A-N, then A is
generated, qud B-operator group, by a - Suppose that one such a
is chosen and fixed from now on. Write A0 = (ao>H, F =AH

0

(o]

and

* = = i)
F H = 8T,

This definition depends on a but is unambiguous up to isomorphism,

as the following result shows.

(3.4.1) Lemma. If a , a; € A-N, then the mapping g

1

can be extended to an isomorphism of the corresponding sub-bigroups

1

E; and E&.

Proof. Suppose that r = r(ao,hl,...,ht) =1 1is a relation
among the generating set {ao} v B for F . Every relation in H
is a relation in both FO and Fl’ so we may assume that r takes

the form

for some integers . Now there exist bl""’bu € B such that

for some integers Bi. Therefore
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Bl BB aihi
r(al’hl""’ht) = S A J 33

i=1 j=1 °

af £ "o h BB
= I {n aoi 1t , since A,B are

j=1 i=1

abelian,

=1,

Hence, by von Dyck's Theorem, the mapping B e anq the identity

1

mapping of H extend to a morphism E% > El’ Similarly, the mapping
a; * a, and the identity mapping of H extend to a morphism El + Eo.

Consequently each is an isomorphism.

(3.4.2) Lemma. F and F* generate the same bivariety.

The proof of this is similar to that of (3.1.6), and we omit it.

It would be pleasant if it turned out that F* was a critical
bigroup. However this is not in general the case. The best that
can be said is (3.4.3) below. The trouble comes from the fact that
F* need not be monolithic: this topic will be taken up again briefly

in Chapter 5.

£3.4.3) Lemma. If G is as in (3.2.1), then F* is not in

the bivariety generated by its proper sub-bigroups.
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This will follow from the next theorem, which is much more

important from our point of view in the next two chapters.

(3.4.4) Theorem. Let q be a biword, t a positive integer,
and p a prime which does not divide t. There exist biwords
S UERRERL depending on gq,t,p such that if q is a bilaw in a
non-nilpotent, critical bigroup G ¢ Ao A with K| = t, and
expoG = p, then qyse+->q, are bilaws in F*. Conversely, if
El = (Gl’Al’ Hl b Kl) € é o} é with Al’Hl arbitrary and eprllts and
qys-++5q, are bilaws in (AlHl,Al,Hl), then q 1is a bilaw in gl.

Proof . If q has one of the forms yT,z? then the theorem

is obviously true. Hence, using (2.2.4) we may assume

S € = Qo

ST 5 il 5 ir] 1
9 el Tiekgg 1 sty r

where “ij are all natural numbers, and Eij = +1. Suppose that

q 1is a bilaw of the non-nilpotent critical bigroup G. Consider the

biword

S £ e € E o
11 41 ir_®ir %4
ek 121 17y oty 0 802 100" P eePor 23 1

In this expression for q* expand each commutator, using

repeatedly the identity
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A
b [8) (xo-u)

Ipye] = 0 .. 1 [x,Ay,vz] ‘A el
A=0 v=p-\

modulo the bilaws of A o A. We get a product of powers of commutators

each of which has y, as first entry and some ziﬂ, f-euigdl s A

3
in each other entry. Working modulo the bilaws of A o A we can collect
to the front of each commutator all z?l with 4 e {ekl, .. 8¢}

Hence there exist biwords qf,...gq: such that, modulo £ o é(gz),

N41 Yr

u
% = %
g M [a¥.A 929 50000 oohy 2qp ]

i=1
where q*,...,qz are biwords which are products of powers of

commutators each of which has as entries, Yy in the first place, and
+1

z; s J € {r+l,...,2r} 1in the other places, and where ”1j =+1,
AR R T S 0 o I )
Now consider
u 5 C,
11 ir
= =%
A o 0 Ghai e Z gy 2 o A,
i=1
= =l, and ompcl F oy . owm o=]
where Cij nij it “1j n Clj 17

Making repeated use of the identity

L

[x,y7] = T [x,uy]
u=

we can write, again modulo A o A(Q,),
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v
q** =

?
i) (949121 40p 07+ -2 Vy, %3, ) 0

where each 9 is a linear combination of q*'s, where 0 < v

3 ij
all 1,j, and where q' is a (possibly empty) product of powers of

< t-1

commutators in each of which at least one of z sEa e occurs
1+2r R

raised to a power which is a multiple of t.

Mow suppose that o : 22 + F is arbitrary, and for the moment,

fixed. With each choice kl""°kr e K and o, associate a morphism

B:Q > G such that

yiB = ¥% ficel{li2,.5.. )

Then if B* : 92 + G 13 such that

YiB* = Yia’ i € {19290'.}9
2. R% = (2 .a).k . e 1l ...rk,
JB ( 3 ) 9 :
we have
v
= qB* = q*s = q*:’:B = i-IEl [qiag\)ﬂklgoau;\)irkr],

and this for all such B. Hence, by Lemma 3.2.6, q 0 1, 1 e ik it
and since o was arbitrary, Qyse-+59q, are bilaws in F and so

dn . F¥,
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Conversely suppose that 9ys5-++.q, are bilaws in (AlHl,Al,Hl).
Then if B* :-92 o El is any morphism we can construct
a :_QZ *= Fhand B : 22 +_§1 reversing the procedure in the foregoing
proof. Then so long as epr1|t we have ule S BT 1
implies gB* =1 and so q 1is a bilaw in gl.

(3.4.5) Pemark. (i) It is clear from the proof of Theorem
(3.4.4) that in the case when q is a commutator biword,
Qysee+5q, do not depend at all on p. Also the forward part of the
argument works if we assume no more than that K acts fixed point free
on A, otherwise the criticallity of G is irrelevant.

€1i) The argument above is, of course,

essentially a trigroup argument. However it seems easier to treat it

as we have done, then to develop the necessary conventions and

terminology involved in considering G as a trigroup.

Proof of (3.4.3). Since G is critical, there is a biword q
which is a bilaw in every maximal sub-bigroup of G, but not in €

itself. In particular q is a bilaw in the maximal sub-bigroups of

the type

AHOK, NHK, HO maximal in H.
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Now in the proof of (3.4.4) the crucial property of G was
that K acts fixed point free on A = G'. It follows therefore, that
LE Qpseeesq, correspond to q by (3.4.4), then dq:e+-.q, are
bilaws in all AH0 and in NH. However Qyseeend, cannot all be
bilaws in AH since q is not a bilaw in G. It remains to remark
that the maximal sub-bigroups of F* are precisely AHof\ F* and
NOH = NH~ F* by an argument similar to that of (3.3.1), and

that they generate the same bivarieties as their counter-parts in AH.



76.

CHAPTER 4

A FINITE BASIS THEOREM

4,0 Introduction

Our aim in this chapter is to prove the following theorems.

(4.0.1) Theorem. If n is a natural number, the bivariety
Ao én has descending chain condition on sub-bivarieties.

(4.0.2) Theorem. If m is a natural number, the bivariety
A o A has descending chain condition on sub-lLivarieties.

Then, by virtue of Theorems 2.1.1, 2.1.2, and a relatively simple

argument, one has

(4.0.3) Theorem. Every sub-bivariety of ém oA, Ao A

has a finite basis for its bhilaws.

v
4.1 Ao A : reduction to the case n =p .

Suppose that

H
[}
l



s

is a descending chain of proper sub-bivarieties of A o A . For each
= " =p

Sie dledinali canite

gi = gvar{G ¢ ?i : exp AZ(E) < n}
and

Di = svar{G ¢ Bi : G eritical, exp Az(g) = n},

Clearly 91;2 92 =l

U

B, = oo and B 5D 5 o, = D

o=y — 2 eee are

-

descending chains, and

We turn our attention to the chain of the Di's.

(Galoil) Lemma. The chain Dl'E.szZ iy Di 2 ... breaks

off if the bivarieties A o 4 A nave descending chain condition on sub-

% P
bivarieties, where »p lln.

Proof. With each prime p, each natural number tln, and each

ie {1,2,...} associate the bivariety

D,(p,t) = svar{G € B, : G critical, exp Az(g) = n,

»
K

eig)

expd G = p,

where in the case G is critical and nilpotent we interpret K = 1.

Clearly then



D, (p,t) 2 Dy(p,t) == ... = D, (p,t) = ...

18'a descending chain, and for all 1e {1,2,...},
D, = v{D, (p,t) : p prime, tlal.

Define

?i(p,t)

-~

expo G = p, |K| = t}

78.

svar{F* : G ¢ B,, G critical, exp A,(G) = n,

where we interpret F* = G in the case G critical and nilpotent.

Then for each prime p and t|n,

D¥(p,t) = D5(p,t) 2 ... = D¥(p,t) 2 ...

is a descending chain.

Next suppose that the chain Di(p,t)-g_D;(p,t) > ... breaks off;

that is, for some natural number 2, £ < i implies
* = D*
D¥(p,t) = Df,, (p,t).

If q 1is a bilaw of Pi+l

corresponding to t,p,q according to Theorem 3.4.4.

fp.t)., 1ot pseeerdy, be the biwords

Then CPERREEL

are bilaws in D§+1Cp,t) and therefore in D#*(p,t), whence, using

(3.4.2) and the converse part of (3.4.4), q 1is a bilaw in

D,(p,st). It follows that for ¢ < i,

B = D % o



79.

The proof of the lemma is now nearly complete: we need only the following

lemma.

(5.1.3) Lemma. If {gi : 1 eI} is an infinite set of non-
isomorphic, non-nilpotent, critical bigroups belonging to A o éh such
that

i) Copiithi st ke e G
ii) IAZ(gi)l e R 4

then svarlc 1 1) = A o A .
—i = =n

Proof. Under the conditions imposed, each Gi is a critical

group, by Theorem 3.3.4. According to Cossey [4, Theorem 4.2.2], Gi
is determined uniquely (up to isomorphism) by the invariants exp G, n.
?

Hence, since there are an infinity of non-isomorphic .gi's, exp Gi

is unbounded.

We next employ (3.4.4). Let q be a bilaw in all G- Then
we may assume that q 1is either z? where nlN, or a genuine commutator
biword. In the first case q is a bilaw of A © én’ and in the second,
note that if CPEREREL N correspond to q by (3.4.4), they are
independent of p (as noted in (3.4.5)), and Gys+-+5d, are bilaws in

every bigroup (A,A,1). Hence q 1is a bilaw in every bigroup of A © én.
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Returning to the proof of (4.1.2), note that if pn, then
Pi(p,t) is trivial unless m = n; and by (4.1.3), Pi(p,n) is
non-trivial for only finitely many primes p. Hence there is a finite

set I of primes such that
b, = V{Pi(p,t) =.p £ B,k ind;

and Dl Z-DZ 2 ... breaks off if and only if all Dl(p’t) 5;D2(p,t){2 =0

break off. his completes the proof.

Now since ?i = gi" ?i’ the chain ?1'2.§2.2 «+s breaks off 1¥
and only if both the chains Ct 2€C > ... and Dl E_DZ 5

break off. We make the hypothesis

(4.1.4) Inductive Hypothesis. For every natural number R

A has descending chain condition on sub-bivarieties.

oA
=n
o

Whenever n is not a prime power we have made the inductive step

e t4.1. 1) amd (4.1.2). Since A o él clearly has descending chain

condition on sub-bivarieties, it remains to deal with the case when n

is a prime power, n = pv say.

4.2 Preliminary lemmas

We change our point of view from now on and consider not descending

chains of sub-bivarieties of é o) é "
P

, but ascending chains of normal,
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fully invariant sub-bigroups of E(w m)(é oA v)' In fact it suffices
; =
p
to consider the split-free bigroup E{l w)(é oA v):
,w)'= © 2

(4.2.1) Lemma. The lattices of normal, fully invariant sub-

, bigroups of 'E(w,w)(é 0 épv) and E(l,w)(é 0 épa) are isomorphic.

Proof: We use (1.5.10), imagining Q(1,w) embedded in g2 in
a natural way. Consider the mapping & from the lattice of normal,

fully invariant sub-bigroups of g2 containing the bilaws A o A v(gz)

of & . A R the lattice of normal, fully invariant sub-bigroups of
p
Q(1,w) containing A 0 A v(g(l,w)} defined by
P

SE = 5(Q(L,0)).

Now & is onto by (1.4.11), clearly preserves inclusions, and by (1.5.10)
is an intersection-homomorphism; it is easy to see that & is then a

join-homomorphism if it is one-to-one. 1E Sl,S2 —Aa o R g and
L P

S + S, .then there exists q & (Q(1,w) ~ §1) - §2, say, by virtue of
(2.2.3) and so, from (1.5.10), Q(1,0) ~ S; + Q(1,0) ~ S, implies

Sl(g(l,w)) + Sz(g(l,w)). This completes the proof.

(4.2.2) DNotation. Write ﬂV for E(l,w)(é oA v)’ A=
Al(WQ)’ B = AZ(Hv)' For the split-free generating set of W = write

{yl}“’{21’22’°"’zi""}: no confusion will result from this.
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We will abuse language to the extent of calling elements of E\) biwords.

From Theorem 1.6.2 we have that

where C 1is an infinite cycle and where A is the base group of Wv,
and B = Fw(é v). Our aim is to prove
p
(4.2.3) Theorem. All ascending chains of normal, fully

invariant sub-bigroups of Ev break off.
It is worth noting here

(4.2.4) Lemma. Every fully invariant sub-bigroup of W

contained in A is normal in W..

Proof. This follows since elements of B induce self-morphisms

of K\:’ and A 1is abelian.

(4.2.5) Lemma. If U is a normal sub-bigroup of W , and
if for fixed elements agsesesdy A, and all ‘b e B
m

s W
i=1
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m .
A SR O R e
m u

then for all b
.

l,ooo ] EU,

mie 11,0 .0).

Proof. For u =1 the assertion is the hypothesis. Suppose,

therefore, that for some u e {l,...,m-1} the lemma is true. If

bl""’bu+1 € B are arbitrarily chosen, then
m ’ :
J j=u+l
.H [ajgb]_’".’(bubu-l-l) ] € U.
j=u
That is,
m
] J-nel j j~u+2 . j-u+l
jgu [aj,b ,..,,bu 1{a 3 bl”"’bu—l bu+1 ]
i j=u+l | j-u+l
[aj,b ""’bu ’bu+1 ] el

and from here, using our inductive hypothesis, we obtain that

m
j j=utl . j=u+tl
'H [aj,b s b bu+1 e 'Us
j=u
= j joutl |
Since U is normal we have I [ajgb T u+l] e U and ‘B8a
j=u
m A s T 1
j J-utl -1 j j-udl . J-ut
'H [aj,b ""’bu : u+l] [a 3 bl’ s bu ,bu+1 ]
j=u

-1 E t-1.y
Finally, using the commutator identity [x,y] "[x,y ] = Iz % 1 ke

all integers t, we have

m . b
+1
1 [aj,bJS.. bJ i) il | 5

+1
j=u+tl

& Ui
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which, since U is normal, gives what we want.

This lemma will prove useful in a number of places: first as the
initial step of an induction in the proof of Lemma 4.2.10 below, and

later in dealing with the structure of certain metabelian varieties.

(4.2.6) Notation. If U 41is normal in W, define the sub-

bigroups v, of W for ice 10X .0 by

Ui/U = Zi(wv/U)’

where Zi(wv/U) is the i-th term of the upper central series of

wv/U (see, for example, p.77 in [3]).

Nete that if a e:'A, then [a,b "’br] e U dorvall b ovagll BN

1,. l,o o,r

if and only if a ¢ Ur'

(4.2.7) Lemma. If to the hypotheses of (4.2.5) we add m < p - 1,

Bl For 1 e {1,.scm), a; € Um :

Proof. From @ (4.2.5),

m 2
[am,bl,...,b

m-l’bm] i

sor all b B £ B Since 1,2,...,m are all prime to p, we have
m

1°°°"

ae U .
m m
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Assume that it has been proved that a U

141 € Um,...,am € =
m j j-i+1
for some i > 1. Then since 1 [aj,b ,...,bi

] € U, we have by
3=t

i
i+l""’bm that [ai’bl”'"bi’bi+l"”’bm] e U

and hence, as before, a, € Uﬁ. This completes the proof.

commuting with b

(4.2.8) Lemma. If U 1s normal in Hv and if for fixed

elements ayseeesd € A and gll b e B,

=)

o=l [ai,bi] (==
i=1
then

P 2p .
i) ([at,b ][at+p’b et & Um-l’ P £ < 2p - 13

u utp i o
ii) ([au,b ][au+P,b lhsi) e Um+p-2’ T2a:p~-1

iii) (avav+P...) € Um+p—2’ 1S € g,

In the proof of this lemma we need the following notation and

Lemma 4.2.10 below.

(4.2.9) Notation. 1If bl,...,bm are arbitrary elements of B,

write

G s+ip up-v+ip+l | (u+i-l)p b(i+l)P]
o« s,u,v,1) = [as+ip’b1 ser 2 Pguptv ’ s-(u-1)p+l’ ’“s-p+l
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Whese 8 e fd,usoamt. 1 8. 00,...,0)} wvhere 2 = [(m-s)/p],

ve {l,...,p} and where u has the range:
we {1,800} if pla;
ue {1,...,[8/p] + 1} if pis,

with the conventions:

; L (u+i-1)p d+l)p.
srupdv < 0 implies c(s,u,v,1) = [as+ip’ s-(u-l)p+l""’bs—p+l ;
s=uptv < s<s =-(u-1)p + 1 implies

o s+ip up-v+ip+l,
elau.v.d) = [as+ip’bl ""’bs-up+v i
+i ip+l
s < s-uptv implies c(s,u,v,i) = [a 5T b 58 ]

s+ip, 1 9v ey s

Also write

)

p(s,u,v) = N'e(s,u,v,0) = 1 c(s,u,v,i),
i=0

' = . e 0 -
and I as asaS+p as+2p

(4.2.10 Lemma. IfF o 1s as in (4.2.8) then
p(s,u,v) ¢ Ur

for all relevant s,u,v, where r =m - s + u(p-1) - v + 1.
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Proof. From (4.2.5) we have

1, = L) 2 2
p(m,1,p) = [a_ ,by ;b2 150 1 € U;

l’
m-i+1
and in this expression we may replace bi by bi whenever p + m-1i+1.
Hence
p(m,u,v) = [a b ..sbup-v+1 (u-1)p P ]

ey m-up+v’ m-(u—l)p+l""’bm-p+l

for all relevant u,v, and therefore
p(m,u,v) € Ur

where r = m - (m-up+v+u-1l) = u(p-1) - v + 1. We use this as the

start of an induction, the induction being taken over the
lexicographically ordered set of triples (-s,u,-v). Suppose, therefore,
that for all (-s,u,-v) < (-t,w,-x+l) where x ¢ {2,...,p},

the assertion of the lemma is true.

First note that from Lemma 4.2.5 we have

L 3-tHl o

m
H [a bj, CRCIEY ] = n p(j’l’t+p—j)
L t .
J: J’t
B

Hence, by the inductive hypothesis we deduce from this that
pit,1l,p) & Um—t

as required. Second,
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L
plE.w,x) = I c(t,w.x,1)
i=0
and
_ t+ip wp-x+ip+l . (w+i-1)p (i+1)
t b e o0 p
c(t,w,x,1) [at+ip’bl # ’bt-wp+x : t—(w—l)p+1""’b -p+l ]
e ’bt+ip’.'.,bwp-x+ip+2, (w+i-1)p T b(i+l)p bwp—x+ip+1]
tHip' 1l t-wptx-1 ’ t-(w-1)p+1’ >Tt-p+l T t-wptx
Sue wp-x+1
= [c(t,w,x-;,l),btgw:+x]
wp-x+1
o ’bt+ip’... wp—x+ip+2 _ (w+i-1)p (i+1l)p bip ] t-wp+x
t+ip’ 1 PTtmwptx-1 t=(w-1)p+l’ """’ Tt-p+l ’ t-wpix 2
Therefore
bwp—x+l
wp-x+1 t-wp+x

p(t,w,x) = [p(t,w,x-1),b l.p'( t4+p,w+l,x-1)

t-wp+x

where p'(t+p,w+l,x-1) differs from p(t+p,wt+l,x-1) only in that the

in any event

element b occurs as bt-

(t+p)-p+l wp+x’

bwp-x+1

o' (t+p,wt+l,x-1) C VPTX

belongs to Ur where
r=m- (t+p) + (w+l)(p-1) - (x-1) +1 =m -t + w(p-1) - x + 1,
by the induction hypothesis. Hence since also p( t,w,x) € Ur by the

inductive hypothesis,

: wp-x+1 y
[o(t,w,x 1)’bt-Wp+X] € Urs

and the fact that wp - x + 1 is prime to p under the assumptions
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en x, and that b does not occur in p(t,w,x-1), means that

t-wp+x

p(t,w,x-1) € Ur+l

as required.

Finally, note that for u > 2,

p(s,u,p) =L (B’u-l’l)

and this completes the induction, and the proof of (4.2.10).

Proof of (4.2.8). Put s=p, u=]1, v=1 1in (4.2.10) and

we get

2
nfa
i=0

(i+l)p]
(i+1l)p’ l & —1 '

If p<s < 2p-1, put u =2, v=_2p~s and we get

2
S (i+1)p]

1=0 s+ip’ s ptl m -1’

and these together are just the assertion (i).

To prove ( 1ii) proceed as follows. Note that for
p<y<2p-l, [a;b]l =e(p,1,1,00 4f j=p and [aj,b{] -
c(j-p,1,2p-j+1,1) if p < j: hence in the following argument, I’
notation can be used. We have

p-1 1 2p-1 j
p= T [ag,b]]. T {n'[a,,bj1}
i=1 j=p J
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p-1 5 2p-l J‘P
= 1 [a;blle Ty, S e A
i=1 j=p j
(Here H'[aj,bgl = j bp][aj+p 1 ]... is a harmless abuse of notation).
By part (i) we have then
p-1 2p-1
i [ai,bi]. I [Nn'a bj T e
1=1 fegil
and therefore
p_l ; i
.H [n ai’b1] € Um—l’
i=1
Then from Lemma 4.2.7,
\j
I ai € Um+p-2

for all 1 e {1,...,p-1}, and this completes the proof of (iii).

The proof of . (ii) wuses (i), (iii) and the identity

v
b
(4.2.11) 1'[a, ,by ] = (', i - a bp]
p P 2p
or w e {l,..s,p1} (vhere 1R' {a b ] [ap+v’b1][a2p+v’bl j PO
again an abuse of notation). The proof of (4.2.8) 1is now complete.

{4,2:.12) Definition. An element of Qu which belongs to the

subgroup generated by the set {yl}\ {z 2, g i’ ..} will be called

a fbiword.
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(4:2.13) Lemma. If q € A, then there exist +-biwords

91395594 and a natural number v such that
cl{ql,...,qd} 2 ellqk 3_c1{[qi,vB]; ioadt gl

Moreover if q is special, so are Qpsee594e (As usual,
[qi,vB] stands for the subgroup generated by the commutators

[qi’bl""’bv]’ bl”"’bv £ B).
The proof of this lemma depends on the following consideration.

(4.2.14) Lemma. If q* ¢ A is a special biword, say involving
the variables YysZpseces2g precisely, then there exist special biwords
qf,...,q? in which zs, if it occurs at all, does so raised to a power
which is a multiple of p, and qf,...,q? involve no variables other

than yl,zl,...,zs; and there exists a natural number v* such that

Cl{Qf"~-’Q¥}.Z cl{q*} 3_Cl{[q§,v*B]: 1315 B8

Proof. We may write

£ A A o
s 11 ds. a1
q¥ = T [y;,2z;77.0052 ]
i=1
v
where 0 < Aij-i pv =1 for all 4,1. Tor 3 e {1,...,p ~1} detius
A A o
1l is-1,"1 &
;I I [yl’zl a""zs_l ] 9 ]iaj B )‘is’
% j=kis
gl
j i

1, otherwise.
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p -1
Then ¢g* =

i

= <

[aj,zg]. Since by construction the aj's do not
1

involve Z s the hypotheses of Lemma 4.2.8 are satisfied, with

U = cl{q*}. Hence

! PrLs P 2p A
I [au,zS] [au,zS][au+p,zS Vo5 Upv_z,u € @, sislp=dl
H'a E U ’ V -€ {1,o-o,p-l}n
v pv+p_3
By virtue of the fact that
* = v vip
q vfl__l {[av,zs][av+p,zs esat,

and ( 4.2.11), we have
q* € Cl{ﬂ'[au,zgl,ﬂ'av pp<a<ip-l, 1y <all

Put {q{,...,qt} = {H'[au,zz ,H'av :p<u<2p-l, 1<y <pl} Oul

vk = ﬁv + p-3 and we are finished.

Proof of (4.2.13). We can, without loss of generality, assume
q to be special. Then apply (4.2.14) to q, say q involves precisely
yl,zl,...,zs, and obtain q{,...,q? in which zs occurs either not at
all, or to a power which is a multiple of p. Then use( 4.2.14) on
qf,...,qg, first moving zs_1 up to the back of each commutator, and
making z__q 'good' according to (4.2.14). Continue this process until

we have dealt with Z_seeesZy in turn, and hence reached a set of
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t~biwords Qyseeesdy and a natural number v (the sum of all the

relevant v*'s) which satisfy the assertions of the lemma.

(4.2.15) Lemma. Suppose that U is a biverbal sub-bigroup
of y” determined by +t-biwords, and suppose q € A-U. Then q $¢ Ur

for any natural number r.

Proof. We may suppose that the f-biwords determining U are

PA
= P, ; a1 ]S =
q.= 1 ‘ly..2 iJl,...,z 4 ij, el
4 3 § s s
j=1 &
where Aijk > 0. Clearly it suffices to show that lq,zd] ¢ U, where

q 1involves Y2295 0092q.1 at most. Suppose to the conttary, that
q' = [q,zd] e U,

Then there are values of the biwords Qqs VyseeesVy S3Y, such that

{4.2.16) q' = ViVy eee Vg oo

Each v, 1is obtained from some qy by subsituting for y; an element

3

of A, and for ZyseeesZg s elements of B. By applying to
: 4

(4.2.16) the method of Chapter 3, section 3 in [3], we may suppose
that each vj involves Zqe These zd's entered vj by substitution
in some qy either for y; or for some Z,5 in the latter case the

relevant zd's will occur raised to a power which is a multiple of p.
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Consider the self-morphism yu of 3% defined by

v-1
Y1u B yl! zju = zj’ j + d’ zdu = Zg .

Then, under yu, (4.2.16) becomes

(o e ) ) =,
Jl jw

where vj involves Z3 only by virtue of the substitution for Y1
|3
in the relevant q;- Indeed, since the commutators involved in the

expressions for q; are linear in the first entry, we may suppose,

by remaming if necessary, that vj is obtained from some a by a
k
substitution for vy of a power of a single commutator of the form

) 6u 5

1
[yl’zd ""’zd ,zd]
u “

where d.,,...,d ,d are distinct, and where pi§, and some unspecified
1 S ;
substitution for ZyyeeesZ (though it does not involve zd). That
i
is, there exist values vi,...,vé of the qy which do not involve

2, "ar*all, such that

d
=1 =1
> ek Ay
! =
(4.2..18) (q N)[Vlszd ]"'[vRQZd ] 1’
with 1 <4z, <... <gp< p-1, say.

Lemma 4.2.7, or at any rate the same proof exactly, can now

be used to conclude that
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pv—l pv-l

] -

(402.19) [qc 21 Viszd ,""zd+p_2] = 1‘
at

By a result of Baumslag [10] (24.22 in [3]),

and in consequence, q € U, contrary to hypothesis. Hence

[a,2,] ¢ U.

4.3 Proof of (4.2.3)

Write B for the lattice of normal, fully invariant sub-
bigroups of EM. We aim to show that, using the lemmas of the
previous section and others to be developed here, that the +-biwords

provide an embedding of Av-l into Av in a convenient way.

Suppose, therefore, that W,_, 1is free on {yl}U {21’22""}’
that A =AW ,), B= A,(W,_,) and that the morphism Gy P

is defined by

Y1k, = 2, =2, e {L2,.)

The morphism gv induces a mapping Av : Av—l » Av in the following

natural way: if L e A that is, if L is normal and fully

= v-12

invariant in W , then
el
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(4.3:1) L}v = cl{QEV £ 3e L)L

It is clear at once that Av is a join-homomorphism, but not so

clear that it is an intersection-homomorphism. In fact we prove

(4.3.2) Lemma. The mapping Aot Av—l o Av is a one-to-one

lattice homomorphism.

Proof. First note that Av preserves inclusion. We are left
to show that Av is an intersection-homomorphism and .that it is
one-to-one. To prove the former it suffices to prove that for

L.,L A

2102 & Ahare
(4.3.3) Lixv’* LQAv f-(Ll’“ LQ)Av
since the opposite inclusion is obvious. We need several lemmas to

prove what we want.

W
b v
(4.3.4) Llemma. If Le A ,, then LA = e ) .

Proof. Let o : W —+u , then if B : B > B is defined by
v oy

define a : Ek—l +-EL_1 by
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Also define o, : W > W by
2. = =y

Y19 = ¥1% zjal = zj, el 50

il W
Then 1f L e L, (ZEV)a = (za)gval € (_I:._gv)al z (_I:._E;v) " required.

This last inclusion is seen from the fact that every normal subgroup

O fE Sy admits a, .
V) i

£4:3.5) Lemma. If Le Av—l’ then

_I_-'}‘V A= (I-‘_ I A)A\)’ L)\\) b= (l-‘_/ B)g\)-

A obviously, and if

Prapf. For (L » K)Av LA

X € _I:)\v n A then there exist 21,...,2t 0 bl""’bt € B such
By b, 2y
that x = (215\)) (2':5\)) , Wwhence 1 = X0, = (zlgvol)

b b b

g 1 - t -
(ltgvol) = (21015\)) (ztotc‘:\)) (where 0y» 0, are the

splitting endomorphisms (1.2.8)) and so

1 L
by L g B

-~ -1
x=((11(2101) )Ev) ((lt(ltol) )Ev)

for some b),...,b] € B. Hence x e (L X))\v. That LA ~ B =

t

(L n E)gv is proved similarly.
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From this lemma, and from the definition of Ev’ we have that
('I—"lk\) n I‘_Z}\\)) N B = (_I_‘_l)\v 8 B) 8 (LA\) o), B)

SO BVE G O B B oL e

= (_I:l £y 'I'-"Z)A\) N B .

Hence in order to prove (4.3.3) it suffices to show that
LA L~ A< (Ll,q LZ)Av’“ A, or that

(4'3°6) (Ll N\ A)A\) a) (L'Z "2 A)A\) i (‘Iil o) _I_"_Z A A))\\).

If q belongs to the left hand side of (4.3.6) then, by virtue
of (4.2.13) there exist +~biwords CERERRL PP and an integer v such

that
[q;,vB] < (L, AK)A\) A @y A K)xv, f el

However (qu\z)xv, ((_1_.._2 A bev are determined by +-biwords and there-
fore Lemma 4.2.15 ensures that for each i, q € L. o K)Av A (szx K)Av.
The other piece of information from (4.2.13) is that q € CI{q1’°"q4};

hence (L, . K)Av i T bev is determined by -biwords.

In order to finish off the proof of (4.3.3) we need the following
lemma. The proof given is due to L.G. Kovacs, and replaces my

original, much longer, proof.



£4:3:.7) Lemma. FE. L.e.h

+biword, then q ¢ Lgv.

Proof. By: (4:3:4);° qic (Egv) V' and hence there exist

21 e L "and bi € B such that

t bi
g= (2i€v) .
i=1

Write T for a fixed transversal of BP in B with 1 e T.

=i ' P T
Then bi bib 5 bi e B, bi e & and,

bl
i\b
o T ey

beT b;=b

Ka
i

5}
blE
i G ok

Weas 1 v
beT bi b

b

it (zbsv)b where lb e Pl
beT

98.

L & A,..and 4f qs_I:._Av is a

Note that gq, lb all belong to Wv_lgv,ﬁ A and therefore each has

its support contained in 8P, However supp(lbgv)b is contained

in pr-l, and since these cosets are pairwise disjoint,

supp q = U supp(lbgv)bug_Bp

beT
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whence 1 $b e T implies supp LE, = 0, or 2, = 1; thus

q= 2.15\) € _I:EV.

To complete the proof of (4.3.3) observe that (Ll’“ X)Av,\

(L2 - A) )\V is determined by +-—biwords, one of which is q+, say.

Since q+ € (—Iil = X)Av - (_I12 = X)Av, Lemma 4.3.7 shows that
.f. c—— — i —
g HE (-I—‘l A A)Ev A (1"-2 A A)Ev = (_I_al " LZ A A)Ev

= (L‘.l'\ 1‘_2 N A))‘\)

This completes the proof of (4.3.3).

To finish off the proof of (4.3.2) we need to show that Av is

ohe=-to-one, . If I"—l)‘v = 1._2)\\) then -I-’-lkv ~ B = _I._.ZAV ~ B so that,

from ( 4.3.5) (—111 Lo —f)&v = (_L._2 = 'E)gv whence Ll’\ B = LZ o

Also Ll}‘v ~ A= LZA\) A~ A and therefore, by (4.3.5) (—111 o, A)A\) =

(_I:Z/\ A)Av. Now (_I:._2 o A))\v is determined by t-biwords EE\),
e 1.._2 ~ A, and Lemma 4.3.7 then gives EE\) € (1‘-1 ~ K)‘c’,v, or

« ~ That 11, LA A< L, ~ A In a similar way we prove

>|

e 1,

__1f\

le KS__L_Z ~ A and therefore _111 oA —L-Z ~ A, and so _L_I = LZ’

This completes the proof of (4.3.2).

We now derive some properties of the embedding )\v which are

essentially extensions of Lemma 4.2.13, using the Inductive Hypothesis

4.1.4.
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(4.3.8) Lemma. To every Ue «), with U < A there corresponds

a unique L € AV*l’ with ;”5'K, and an integer v = v(U) such that

Proof. To each q € U associate the +t-biwords CPEERREL ¥ of
(4.2.13) and also the integers, vq say, involved there. If §q

is the normalized verbal closure of {ql,...,qd} then
S v Bl < dligl =8 .
L_q, % ] < cliq AN E

As the q, one i-biwords, there exists L e A with LA =S§ .
1 ==y v-1 g v

Write
L= 1L : q M),
= - Ll

Since we have the inductive hypothesis, Av-l has ascending

chain condition, and therefore L 1is the join of a finite number of the

1t
Lq's, say those corresponding to q(l),...,q( ) e 1. Put

v = max{v oy ¢ a4 =7

q i)

Then U < n{gq cq e} = H{quv : q € U} = I{L tyy TR T}
= LA ; and
i
= 124 2%, 98
(LA, ,vB] [m{L DM %00 ]
q
it
w 0 IL ;A 5 VvB]
i
1k
o

e ARG
e q(i) v q(i_)

<L
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which finishes the proof of the theorem except for the uniqueness of L:

if there exists L', v' with the asserted properties, then
[L'A,,v'B] < LA and [LA ,vB] < L'A ,

mnd Leuma 4.2.15 shows that L'A <1h < L'A , or LA =1L")
=== v==95 = v

whence L =1L' from (4.3.2).
The last lemma necessary to prove Theorem 4.2.3 1is the following.

(4.3.9) lemma. Let L€ Av-l’ L<A, and let v be a
natural number. There exists a natural number s = s(L,v) such that
it g e L}v is special and involves more than s elements of the free

generating set {zl,zz,...} then q ¢ [LAv,vB].

Proof. The proof will be by induction on wv. If v =l
then q € L}v can be written

t § 8 o
11 a1
q= I [yl,zl sersZy ]

i=1

where 1 f-aij-i b= 1 ror akl" 1,], and (611,...,61u) are

distinct for distinct i. Employ (4.2.7) u times to deduce that

®4
vy, € (_I:._}\v)6 e S S o

u 4]
where § = Z max 6,, . Lemma 4.2.15 then yields yli e LA whence
ju1 1 13 Y
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q € [L}v,uB]. Hence s = v will do, and the proof of the first step

is complete.

Assume, therefore, that v > 2 and that the lemma is proved
for v-1. Associate with q the special +-biwords CTERRERL: # of
et} By (4.2.13) and (4.2.15), SPERRRFL P L}v. Suppose

that qy involves s, variables =z e f1 o5 @) < Ieg E:e A

i ¥ 0
according to (4.3.8), and define

v-2

and L < L\
== 2%-1

s(L,v) = s(L,v(L) +Vv) +v

where v(L) 1is defined as in (4.3.8), assuming inductively that s

can be defined for v-1.

Now by (4.2.13) and (4.3.4), q 4is in the normal closure of

SUERRRRY FE Hence we may write

Q

t a bt
q= I [qi ,zkj%...,zk J] 3
j=1 s S jrj

where 1 < a, j-pv -1, all j,%. We may assume, by using the

T
argument leading to Theorem 33.45 in [3], that if q involves

precisely the variables Yys2y0eeesZy (where u > s(L,v)) then

for each j, the set of variables z, involved in qy together with
J

z P b o omey 2,02 ). (This can also be concluded from
kjl kjr 3 u
|
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a close look at the proof of (4.2.13)). If for some j e {1,...,t},

84 < s(L,v) = v then I{k l,...,k }| > v and therefore the commutator
j h| jr b
beginning with a4y belongs to [L}v,vB]. If on the other hand

s; > stll,v)'= v "for'seme’ '{ & (1,..:,t}; ‘then sy
j j

hence

> s(L,v(L) + v):

q1j5§1 e [TA,_p, (VL) + v)B]

= [[LA _;,v(L)B],vB]
< [L,vB]

so that q € [E,vﬁ]kvj_[gkva]. Clearly, then, the commutator

beginning with this qa belongs to [LAv,vB]. Therefore q ¢ [L@v,vB].
]

Prook of (4.2.3). Suppose that 21 j_gz < oo E_Hi % e
is an ascending chain in Av' Clearly the chain

_ql/'\ Bf_p_zm Bi LRI .f..lli (-\\Bio-n

terminates in a finite number of steps; hence it suffices to consider

the chain of the yi,q A, or, without loss of generality, to assume

By rh 1 i g i.:). 'Inothis case (4.3.8) ensures that there

exists to each 1 ¢ {1,2,...} a unique L, ¢ A,_, and an integer v,

such that
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N L 82 kg
ow =<'} ‘"implies Li-i

_i
hypothesis (4.1.4) it follows that there exists an integer m such

and* (4.2.15) "and {4.3.7) give 'L E.Lﬁ' Under the inductive

Ehat Tor “*m < 17 Lm = Li’ HeneE P tor T mc -4

By virtue of (4.3.9) there exists an integer 5g = s(Lm,vm) such

that 1f g e_gi is special and involves more than 80 variables zj,

then 'qg ¢ [L A ,v B): It follows that U, can be determined, modulo
=MV m —i

[Lmlv,va], by bilaws involving at most yl,zl,...,zso. By the
inductive hypothesis (4.1.4), Theorems 2.1.1 and 1.5.4,

mev is finitely based, and therefore so is [Lmkv,va]; we may suppose
the latter to have a basis involving to variables zj. Hence Ei’

m < i, is defined by laws involving at most B o tO variables Zj'
It follows that the biverbal sub-bigroup lattice between

1Lk ;v B) and 1) is isomorphic to the corresponding one in the
FmoV: m -m Vv

free bigroup of ramnk (l,s0 + tO) of AoA 0" This is however,

a finitely generated metabelian group, and, by a well-known result of

P. Hall [20], has ascending chain condition on normal subgroups. This

completes the proof of (4.2.3) and therefore of (4.0.1).
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4.4 Descending chain condition for ém o

>

The first lemma proved here is similar to (4.1.3); indeed a

similar proof will do. However we give a different one here.

(4.4.1) Lemma. If m,t are coprime, then the bigroup Cm wr Ct

generates ém o ét' The bigroup Cm wr C generates ém o A. (Here

Cm’ Ct are cycles of order m,t, and C 1is an infinite cycle).

Proof.  Let:. C be critical in A oA

A ; then if either Al(g)

or AZ(—G-) =1, Ge svar{Cm wr Ct}. If Al(g), Az(g) $+ 1 then by
€3.2.1), Az(g) is cyclic, and Al(g) is generated qu4 AZ(Q)-
group by a single element; hence since Cm wr Ct is the split-free

bigroup of rank (1,1) in ém ) ét’ G 1is an epimorphic image of

Cm wr Ct’ That is, ém o ét is generated by Cm wr Ct'

To prove the rest, suppose that {tl’tz""} is an infinite set

of natural numbers all prime to m, with tilti+1

We show that A o A=vVv{A oA :1i=1,2,...}; clearly this implies
=m = =m =ti

that Cm wr C generates ém o A. Consider the descending chain
2 " £ £2

i = . 1
of biverbal sub-bigroups of W F(w,w)(ém o A); these biverba

sub-bigroups are those corresponding to the bivarieties ém o ét .
14

tor all T2 15 20.i



106.

Now the chain

t t
15 2

has trivial intersection, and if we can show the same for the chain

o £
[A, (0,8, "1 > (A W,4,@ %] > ...
then we shall have proved what we want. To this end, let Ti be a fixed
)2
set of coset representatives for Azqg) 1 in AZ(E), such that
2
Tl E;TZ E- v i a Now if a € [Al(ﬂ),AZ(E) i] then, by an argument similar

to that in (4.3.7), we may write

o (1)
supp a = U{Fb s boe Ti}

t t
where Féi)gz AZ(E) ib_l. It ‘&t [Al(ﬂ),AZ(H) i] for all i, then

clearly, since supp a 1is finite, each qfi) = ¢ and therefore a = 1.

This completes the proof of (4.4.1).

The next lemma is a trivial adaptation of an unpublished result of

L.G. Koviacs about varieties of metabelian groups.

(4.4.2) Lemma. If U is a proper sub-bivariety of ém o A
then all bigroups in U satisfy the bilaw
s, t
11 g

for some integers r,s,t with mit.
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Proof. Consider the split-free bigroup of rank (w,w) in
ém o A, call it W say, and the biverbal sub-bigroup U of W. Then
V.8 zi
(4.4.3) I yli i eU
i=0
for some integers Ggseeesly with m+a0; for, if there is no such

relation holding, then the factor bigroup W/U has a sub-bigroup

(¥;8,2,U > isomorphic to C, wr C which generates A o4, by (4.4.1).

From (4.4.3) we deduce that
ij

¥oae
i yli S e
i=0

are bilaws in W/U and therefore in U. Working in the endomorphism

ring of Al(ﬂ[g) we have

Z aizl. =B 5 e 10,...:%

o
This implies g Jif (zi - zi) =0 and so a, H f{z J_ 1) = 0,

j<i afisal
Hence
A v-k+1
aq it (zl - 1) =0
k=1
whence 1
Be 'zv( v+l)
S ()
a&le 1)

Putiir = %v(v+1), g syl tim % and we have

[yl,rzi]t € H e
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(4.4.4) Lemma. Every proper sub-bivariety of ép o A, where
p 1is prime, is contained in some Eo A A o A .
= =V =p =N
Proof. If "YU ép o A then every bigroup in U has a bilaw

s
[yl,rzll, since p+t. Let v be a natural number chosen so that

v
pv > r. Then every bigroup in U has a bilaw [yl,zip ], since
= v
sp’ ﬁv s 3
lypszy 1= 1 [y, 2]
u=1

v
P
modulo the bilaws of ép O%As - End st f_pv implies pl[u ].

In particular the non-abelian critical bigroups G of U satisfy

v
[yl,zip 1. Since Al(g) is self-centralizing and not 1 it follows

v
that zip is abilaw in G, and hence G ¢ ép oA V' This
sp

concludes the proof.

(4.4.5) Theorem. A i o A has descending chain condition on

P
sub-bivarieties.

Proof. The proof is by induction on u, the previous lemma
providing a starting point. We show that all descending chains of

bivarieties between A * oA and A
P P
assume that é Ry oA has descending chain condition on sub-bivarieties,
P
Theorem 2.1.3 gives that A " o A does also.
p

e oA break off; hence if we
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Work in the split-free bigroup of rank (w,w) in A o0 A,
=2
P
call it W say, with A = AI(H)’ B = AZ(E). The mapping

>

u=-1
a : W/AP > (AP B} defined by

P i
(baAP)o = baP

p-1
is easily checked to be an isomorphism; hence <Ap ,B> 1is isomorphic

s

=1
to F (A o A). VNow if B 1is a self-morphism of <AP ,B)
(w,w) '=p ~ =

p=1 p-1

then yg B = az - ai e A: Define g*': W + W by

yiB* = a,, zjs* = sz, 1.3 el v bs

p-1
Clearly B*](Ap ,B) = B and therefore a fully invariant sub-bigroup

M H=
of W contained in (AP | B) is fully invariant in £

Therefore all ascending chains of normal, fully invariant sub-bigroups
of W contained in (Ap ,8) break off; in other words, all

descending chains of bivarieties between A . oA and A
P P

break off. This completes the proof of (4.4.5).

u-loé

It remains to remark that for relatively prime integers u,Vv:

o A= é ) é.d o

A
=gy = u

>

A
=y

by (1.7.4), and then (2.1.2) and (4.4.5) give Theorem 5.0,2
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To prove (4.0.3) the only unproved thing is that ém oA AN én

is finitely based. This is shown by the following lemma, due to

L.G. Kovécs.

(4.4.6) Lemma. For natural numbers m,n, A oA Ao A
e =m = =

has a finite basis for its bilaws.

Proof. In fact ém oA, Ao én is determined by the bilaw
[y?,z?], together with the bilaws of A o A. We have to show
that if W is the split-free bigroup of rank (w,w) in A o A,

then

n,W

m R m n
AWM A A,W)" = (A, (DA, W],

Now if vy is the natural morphism from W to the split-free bigroup

of rank (w,w) of Ao éh’ then
n
ker v o A,0D) = [A,@),4,1"].

Since Al(ﬂ)/[Al( _W_),AZ([/J_)n] is therefore a free abelian group,

[Al(g),AZ(E)n] is complemented in Alqg). Hence
.l nw _ m . n
A, A,@HY = A @", [AL1,4,W"]
nm - m n
= [a,,4,®"1" = [4,@",4,@"].

This completes the proof of (4.4.6) and therefore that of (4.0.3).
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CHAPTER 5

FURTHER RESULTS AND APPLICATIONS

In this chapter we shall attempt to pin down the structure of the
lattice of sub-bivarieties of ém o éh further then we have done already.
We shall show that essentially every thing can be described in terms of
prime-power exponent sub-bivarieties, and for these we get a complete
classification only for the sub-bivarieties of A B ép' Thus when
m,n are nearly coprime, a complicated, yet complzte description of
A(ém o én) can be given. In section 5.5 the question of classifying
the subvarieties of éméh is taken up, and we show how a complete

classification can be given in the case m,n nearly coprime, and that

this type of classification cannot be extended to general m,n.

A question that has come into vogue recently is that of distributivity
of the lattice of varieties of groups. It is known, for example, that the
lattice of varieties of A-groups is distributive (Cossey [4]), that the
lattice of nilpotent varieties of class at most 3 is distributive
(Jonsson [11]), and that certain metabelian varieties form distributive
lattices (Brisley [7], Weichsel [12], Newman [14, 15].). On the
other hand Higman [23] constructed a non-distributive lattice of
varieties of exponent p(>7) and class at most 6. The formulation of

some of the results in this chapter is done with the question of
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distributivity in mind. Among the results proved in this direction is
the following: if V is a variety of metabelian groups of bounded
exponent, such that Sylow p-subgroups of groups in v have class at
most ¢ < p, then A(V) is distributive provided QAN Qc) is

distributive; and if Sylow p-subgroups of groups in V have class

greater than p, then A(g) may not be distributive. The results of
Brisley, Weichsel and Jonsson mentioned above can then be employed to

get positive results about distributivity.

5.1 Further results on critical bigroups in AoA

We saw in Chapter 3 something of the structure of non-nilpotent
critical bigroups in A o A; in particular we saw that each such bigroup
G has a sub-bigroup F#*, which has p-power exponent and does not
belong to the variety of its proper sub-bigroups. Unfortunately F*
may be non-monolithic and therefore non-critical: one example of such
a situation occurs with F* equal to the central factor group of
C2 wr (C4 x CZ). It is easy to prove a general result which
implies that if F* is monolithic, then it is critical fef. L1.:4)

in [5] of Kovacs and Newman):

3. 1uid) Theorem. It e Ap 8 1s monolithic and not in the

bivariety generated by its proper sub-bigroups, then G 1is critical.
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Proof. Let G = (G,A,B). It follows as in (3.1.6)
that there exists a unique maximal normal subgroup of G contained in
A, and hence that N = AP[A,H] where A 1is a p-group and H is the
Sylow p-subgroup of B. Also it is easy to see that the maximal
sub-bigroups of G are ABO, NB where Bo is maximal in B.
We show that G/oG e svar{NB}. If q is a bilaw in NB we may
assume it to be special, involving yl’zl""’zt-l(t 21 If

a:gz-»g, define B:QZ+NB by

yIB = (yla)p, ziB = z,q, de {107 5.4k

and y :Q, +NB by
le = [ylyzzla ziY = zia, 1 e {l,Z,..o}

where r = exp B/H. It is easily seen that (qoz)p =qB =1,

[q,z:]cx =qy = 1. Thus q(G) 1lies in the socle of AH, that is, in
0G. Hence q is a law in G/oG. Since all proper quotient
bigroups of G are quotient bigroups of G/oG it follows from the

hypotheses that G is critical.

(5.1.2) Theorem. If Pe Ao A is nilpotent and critical,
A, (®) + 1, then there exists to each natural number t which is

prime to the order of P, a non-nilpotent critical bigroup G € A o

>

with |K| =t and F* &P,
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%3 @:e , G= (G,A,H x K) where AH is a p-group, A

>

o

>

is non-trivial and self-centralizing in G and K is a p'-cycle
which acts fixed point free on A, then there exist critical bigroups
G,5.+,6_  such that each F* is critical, each |K,| = |K| and

-1 = =l 1L

svar{G,,...,G } = svar{G}.

Proof. From (3.1.6). Alcg) is monogenic qua P operator

group; also P is monolithic. Choose the natural number s so that
SP,I u

tlp =" but t+p =1 I i<, Let 21,...,23 be isomorphic copies
of P, say Xi . 21 + 31 is an isomorphism. 4 a; € Al(gi) is
such that

A (P )

_i
{a;) - = A, (B))

we may suppose a; = alki, i e {18....80%

In the direct product 21 X x gs write A = Al(_f’_.1 BT gs),

H for the diagonal of Az(gl XL BS); that is
H={f : £(1) = f(l)Ai € Az(gi)},

and set F = (AH,A,H). We aim to extend F by a t-cycle so that the

resulting bigroup is eriticals

\ t —
Put Ao = (al,...,as; <A amd ler K {k : k = l> be a cycle

of order t. According to Cossey (Theorem 4.2.2 1in [4]) there
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exists a unique critical group AOK; in this group let k induce an
automorphism o on Ao. Define the action of a on H to be the
identity mapping of H. Then o extends to an automorphism of F.

let

r = r(al,...,

be a relation among the generating set {al,...,as} H of oF.

(&)

Clearly r =1 is equivalent to a set of relations

r, =1, (a oI ..,hu) =1 4 gl gk

e

Because of the way we have constructed F, Bhe™ 1 1is a relation in

F if and only if ri(aj,hl,.
e ;
3 a.= N a4 is any element of A_, then
0 i 0
i=1
s BJ
T (ao, l,...,h Y= Nar (aJ hl"" hu)
3=l
s Bj
= 1 ry (a hl’ ..,hu) R [
1=1

By von Dyck's Theorem, o may be extended to an endomorphism of F.

Since Aoa = AO,

Next we verify that (FK,A,HK) 1is critical. As a first step
we show that K acts fixed point free on A, If N = AP[A,H],

= p = ~ d
Ni Al(gi) [Al(gi), AZ(EQ] then Ni N A Al(gi) an

"’hu) sl «lea relation In Pt 46 1100

Fo = F and consequently © 1is an automorphism of F.

B
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so that A/N & A1/Nl LR g AS/Ns z AO/AB where the isomorphisms are
K-isomorphisms. Hence K acts faithfully and irreducibly on A/N,
Now there exist elements hl,...,hu € H and an integer vy > 0 such

that

o7
1. B ffia bbb T sior, P e dineeRe

and the mapping aiN - Xy extends to a K-homomorphism pu of A/N

into OF, the socle of F. In fact u is a K-isomorphism since K

acts faithfully and irreducibly on A/N and since clearly (xl,...,x X

s
= oF. It follows that K acts faithfully and irreducibly on oF,
and therefore fixed point free on A. Finally a calculation similar to
that in the proof of (3.3.1) shows that the maximal sub-bigroups of
FK are precisely AH

K, AHK NHK where HO’ K. are maximal in H,K

0 b* 0

respectively; and, as in the proof of (3.1.6), svar(AHo,A,HO) =
svar(Al(gl)Ho,Al(g),Ho), and also = gvar (NH,N,H) = svar(NlH,Nl,H).
By hypothesis therefore, there exists a biword q which is a bilaw in
AHO, NH,  but not in AH. If q 1involves the variables

21323500052 from {zl’ZZ”"’} and tys-++st  are the maximal
divisors of t, not equal to 1 (if any), consider the biword

t tV
Vi 1
N LY

where q' 1is obtained from q by replacing z,, 1€ o PR S

E

{ Then q'" 1is a bilaw in all maximal sub-bigroups of FK but not

zZ



117,

in, FK drself. Since FK is monolithic, (5.1.1) concludes the proof

of the first part of the theorem.

To prove the second assertion let G be as stated. Now
§:= (AH,A,H) 1s contained in the bivariety irredundantly generated by
some of its critical factors 1,...,F* say. We may suppose
Al(gi) il s B e S Sl S A, (F%), say, were 1, then
exp AZ(Ei) > exp AZ(Eg), 1iged?,V. ;%) . (orglee Eﬁ_ would be

redundant), and then Fi, ..,E;, and therefore f would have a bilaw

B B

P P
[yl’zl ] where 2y

and self-centralizing in F and therefore we would have a contradiction.

is not a bilaw in .E. But Al(ib is non-trivial

According to the first part of the theorem, we may construct critical

bigroups ’Ew from F¥%

gl’... 1,
isomorphic to K. Then svar G = svar{gi,...,gw}; for if q 18 a8

..,Es respectively, and the same cycle

biword, and Qyseeesq correspond to q,p,t by Theorem 3.4.4, then,
by (3.4.3), q 18 a bllav in E: if and only if qys+--»q, are
bilaws in E; hence if and only if 4yse-+5q, are bilaws in g},...,g;,

and therefore if and only if q 1is a bilaw in gl,...,gw.

We have already seen that non-nilpotent critical bigroups in A o A

are critical qua groups (3.3.4). The converse, suitably interpreted,

is also true.
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(5.1.3) Theorem. If G is a non-nilpotent, metabelian, critical
group, then G' is complemented in G, say by B, and (G,G',B)
is a critical bigroup. Moreover, all such bigroups arising from G

are isomorphic.

Proof. Since G 1is non-nilpotent there exists a natural number

u such that 1 ¢ G(u Since G is abelian,

=G = e ® 9
) (ut+l) (u)
it is complemented in G, and all such complements are conjugate
(Shenkman [1]). The same proof as that of (3.2.1) can now be used,

together with (3.1.2); the conjugacy of complements ensures that

different bigroups (G,G',B) are isomorphic.

5.2 The bivarieties A o A
=m =n

We commence with a few remarks of a general character.

(5.2.1) Definition. If B is a bivariety, define

B¢ = svar{G ¢ B : G critical, Al(g) $ 1},
By = {G e B: A G =1}

Also define

Il

¢ (B) {9¢

Ll

I

we)
L)

¥ (B) {gw

&
I
o
-
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£5:2:.2) Definition. Denote the lattice of sub-split-varieties

of a split-variety S by A(S).

(5.2.3) Lemma. Each of ¢(B), ¥(B) equipped with the
inclusion order inherited from A(B) is a complete lattice. The
mappings ¢ : A(B) >~ ®(B), ¢ : A(B) > ¥(B) are onto lattice-

homomorphisms.

Proof. low Y(B) 4is clearly a sub-lattice of B, in fact equal
to A(B N EO 2) where 0 1is the variety of all groups). In
®(B), the join of any subset is equal to its join in A(B), and the
intersection of any subset is the largest element of &(B) contained

in all elements of the subset: indeed if Ci B {1 E I}, thep

~

R{gi¢ b4 gL} = (A{91 e e g

(An instance of C; A C, + C, A C, occurs in the lattice A(a, © A, A T3)

in section 5.4 with 91 =4A,0 é& - §3, 92 = YB)'

That y 1is a homomorphism follows since the bilaws defining
9¢ for any 9 are precisely g_f;Az(gz) =_§gl (by (1.2.8)), and 9y

is a lattice homomorphism. To show that ¢ is a homomorphism we need

the following lemma.

(5.2.4) Lemma. If G is critical with A, (G) $ 1, and if
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Ge svar{gj :de dkEE 0.0

where for each j, Al(gj) $ 1, then

G e svar{gj  dae s

Proof. 1f. .q (ds.a bilaw in all gj we may assume by virtue of
{2:2.1), that. either. q ¢ Al(gz) oE: f: € Az(gz). Write q' = q
in the first case, and q' = [yl,q] in the second: then q' 1is a
bilaw in all Ej and in E o 0, whence in G. Since Al(g) is
non-trivial, and the centralizer of Al(g) in Az(g) isstrivial

we deduce that q is a bilaw in G. This completes the proof.

Returning to the proof of (5.2.3) we note that, if G e C D

-~

is critical, and A, (®) $+ 1, then by (5.2.4), G e Cp. D¢, whence

(C . D) = Co ., D

~

As the converse inclusion is obvious this shows that ¢ 1is a join-

homomorphism. By definition, ¢ is an intersection homomorphism, so

(5.2.3) 1is proved.

(5.2.5) Theorem. If B 1is a bivariety in which every sub-
bivariety is generated by finite bigroups, then A(B) 1is a sub-

direct product of ¢(B) and Y(B).
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Proof. In this case, if C< B, then

~ ~

(@]
|

= 94’ v C¥:

~

and therefore C¢ = D¢, ¢y = Dy implies C = D. whence the result.

(5.2.6) Corollary. If B 1is a bivariety every sub-bivariety of
which is generated by finite bigroups, then A(B) is distributive if and

only if &(B), V¥(B) are distributive.

We start our investigation proper of ém o én in the special

case when m = p%, n = pBN where ptN and p is prime.

2. 7) Theorem. A(é > oA 8 ) can be embedded sub-directly

P PN
into the lattice.

s-1

=

MEo &) x Ma o4 ) xe@ o

P P P PB

]
i

where s is the number of divisors 1 .,tS of N. Indeed

there exist onto lattice-homomorphisms AO e A(é s oA 8 ) >
P pN

BRSNS S SRR To'E ) B BT o AR AW oL
= éN  § = a —PBN pa pB i 5 pBN

HMMA oA ) A% €5 suhithat 1f 55 A o A , then
= 0 = Re? — — Eas = 8"1
P P p p X
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iltj implies Shy S8y, lc4,§c<s,

=Eo A implies SAj =EoE, tj+ti.

Before proving this result we need a lemma similar to (5.2.4), and,
if the bigroups involved are thought of as groups, identical with a
special case of a result of Xovédcs and Ilewman ((1.12) in [5]).

(5.2:8) lemma. Let { v 4 e T, AR

s K,

bigroups in ém o én (m,n > 0), where each gi is non-nilpotent, and

3 e d} be critical

each ‘gj is nilpotent. If G 1is critical and not nilpotent and

Q_esvar{g_i,gj:ieI,jeJ},

then
Gesvar{G, :1eI, [K IKiI, expaG = expoG, }

(in the notation of (3.2.1)).

Proof. Suppose first that q 1is 2 bilaw im all gi, gﬂ

such that p = equgi = expoH, = expoG. As usual we may suppose that

__j
either q ¢ Al(gz) or q € AZ(QZ); write q' for q in the first case

and for [yl,q] in the latter. If m= me' where pim', then q'm

§

is a bilaw in all G, 1% and therefore in G. Since pim', gq

is a bilaw in G and therefore q 1is a bilaw in G since Al(G) is

self-centralizing.
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Without loss of generality, then, we may suppose that expogi = expo_l_lj

w'p. Toxr aly 1.1, Then let q be a bilaw in all 91 such that

IKil : again we may assume q € Al(gz) or q e A?(QZ) and define q'

as in the last paragraph. If {nl,...,nu} = {|xz

Loy IKIHKiI}

then
B
fovB Dy anu
[q )Zr?i ”'°)zr_H1 ]
is a bilaw in all -Ei’ Ej’ where pB||n and r 1is chosen large enough
to avoid z's which occur in q. lowever, since K acts fixed point

free on A (), q' is a tilaw in G and, as before, q 1s a bilaw

in" G.

Proofsof (5.2.7). Let. 5§ c A 2. A g > and define Ai as follows:
i 2 pN
§10 - § ~Eo éNs
S\, = svar{F* : G ¢ S -~ Eo A, critical, t, = |%|},

~

ie{1,...,8}, where we interpret F* =G, K=1 incase G is a

p-group. If 5 e S is critical, with || ty and tiltj write G
for the sub-bigroup (FK,A,H x K) of G where X

= ti' From (5.1.2),

%,| = t, such that
i

there exist critical bigroups gl,...,gw with 9

svar{C .,G } = svar{G}, svar{F¥,...,F*} = gvar{F*k}. Hence
—w . o i - ~W e

Cisee

j \.SA Also if SXO Eo é » then whenever tj+ti,
v £
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ihe ' G 'S - Eo éN’ tj = |K|} is empty, and therefore ij = 5o L

We have to show that the Ai are homomorphisms. Clearly AO

is an intersection-homomorphism; and it is a join-homomorphism since

B
Hefs 5) EoA dmplies H=4,(H) ¢ varla,(®° :Ke§ or

~

Ke 8’} and therefore He (S, EoA) , (5", Eo A). That is

{8 . S')Aofg SAg v S'A, and as the opposite inclusion is obvious, we

- i 0
have dealt with AO'
Now suppose G e S, S° is critical and t, = {K; by
{i P R B avar{G. - G, e85 o G. g 8", G .eritiesl; £ LIE 11
= Flletah T =iste 8 s i
and so
F* ¢ svar{fg PG eS8y S' critical, t; IKjI}
= v °
= v{SA,, S"A, : tiltl}
= §
e iy
whence (S , S")A; < SA, S'A;. The converse inclusion is clear so we
have shown that Ai is a join-homomorphism. To show that Ai is an

intersection-homomorphism, suppose that P e SAi,p S°Ai is critical and
Al(g) + 1 (in the case ti + 1) By (5.1.2) there exists a critical

bigroup G with F*# =P and |K| =t : it follows from (3.4.4) in a

i
routine fashion, that G ¢ svar{gj &5 Qj critical, t, = lKj‘}A
svar{gj € :::' : Gy erirtcal, t, = |1<J.|}, or GeS, 8. Thus
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N S')Ai, and therefore

-~

1 e L]
S =

In
~
wn

as the opposite inclusion is obvious, )\, is an intersection-

1 &
homomorphism. Note that the case ti =1 1is easy, since ?Al =
§ A é o o é B*
p P
Finally, note that ? is determined uniquely by the §Ai,
8« i 5: for, 1f SA; = E’Ai for mll i, amd I for -d >4
G e S is critical with (K] ® £/, then e ?“Ai, and using

(3.4.4) again we deduce G ¢ S'; hence S < S', and, in a similar

manner, S' < S, or S =S"'. This then shows that the mapping
S »> (SAO,...,SAS) provides an embedding for A(é o0 © A 8 ) which
i i = P p N
is clearly sub-direct.
i 1 %y
£5.2.9) Theorem. If m,n >0, m= Py” e+ P for

r

distinct primes PysecesPs then A(é.m 0 én) is a sub-direct product

of A(A ) én)’ ie {1l,...,r} according to homomorphisms
= o =

!
Py
: d
My f A(ém 0 én) > A(é 0‘io én) defined by
Py
Buy =B A8 oy ° &) >
Py
for: B c A o A
. —=m =n



Proof. That each My is an intersection homomorphism is obvious.
To prove that it is a join-homomorphism we must show that for B,C <

Aol Al
=m =n

(B 9)"1 < Buy y Cuy,

-~

glnce the converce is elear. If Ge (B, C) A A

Al(g) + 1 then Lemma 5.2.8 yields Ge (B A A g- A"

((:J A A e én) which is what we want:; if Al(g_) =1, then

i
Py

N R LR L R B, TR

uslne (5.2.3). ¥inally note that for 1~3§ é‘m 0 én’
B=v{Bui:1_<_i_<_r}
and therefore the theorem is proved.
{5.2.10) . .Corollary. 3 ?——ém 0 én’ then A(}~3) is

distributive if and only if for each pi[m, each A(B)ui)‘j is

distributive, where )\j are defined for each i as in (5.2.7).
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Proof. Since the ihomomorphisms Hy provide a sub~-direct
decomposition of A(?) then A(B) is distributive if and only if
each sub-direct factor of it is; that is, if and only if each
A(?)ui is distributive. From (5.2.7), and for the same reason,

each A(B)ui is distributive if and only if A(B)ui)\j is distributive.

Theorem 5.2.7 can be formulated, a little artificially, but in some
respects more naturally, in a different manner using the concept of
products of split-warieties introduced in section 1.7. Here we give

an informal discussion without proof of how this can be done. Note

ghat 1f € = (G, A,B) e A o A 8 then B can be written uniquely as
P p U

Bos i K with He A B’ e éN' The mapping

X ép“ 8 épﬁm id =p°‘ °(A x A) defined by

Gx = (6,4,H,K)

is easily verified to be one-to-one, to take sub-bigroups to sub-
trigroups and to take quotient bigroups to quotient trigroups. Ve
can, moreover, easily turn x into a functor: if u : G~ G

then clearly u is a morphism between Gx and Gx. Define

X = U. We can, in these terms, state
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(5.2.11) Theorem. To every sub-bivariety S of

b
)
ny

containing E o éq there exist unique sub-bivarieties S_ of

~

>

e A for each t|i, such that

e

Sy = V{St o A T e ing

=

Waere - 1T = A g (A . % A ), and such that 8. ¢ A o A
= —pa =PB Y 21 — =pa =p

B R0 épe), 1+ eln, =nd iF tfe W, then s ‘e §..

S
Zie ~tg — -~

The proof is in many respects similar to that of (5.2.7) and we

omit it.

Finally in this section, we investigate the nature of join-

decompositions of A o A .
=m =n

a a
(5.2.12) Theoremn. If m= pll i prr for distinct primes

PysecesP. then

and this is the only way that ém 0 én can be written as an irredundant

join of join-irreducibles.
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Proof. First we show that for prime pia T A is join

D

irreducible; this is patent for B8 = 0. We use induction on B,

assuming that A 4D A 5 is join irreducible.
B

Suppose that A’ A = Bt B.: “EHAL1e. Af Ev is the

=L

Q
B P

free bigroup of rank (l,w) in A o A S (changing the notation of

P P

Chapter 4 slightly) then in .ﬂvg

El N EQ = 1.

Clearly we may suppose that Bl’ B, are contained in Al(ﬂv)’

by (4.3.8) there exist L,,L

LysLy e AW,

and integers ViV

-l) 2

L T 58 S b L At

Therefore [L A A L A (v 2)Y_A]v] 5_21(q §2 = 1 whence, by

B ), L.y L) =1 9which ylelds (L

thq LQ

therefore §1 = 1, proving what we want.

1

lext suppose that for p}l! (and a > 0),

= S'
= a ® 4 B, § i
P p

~

From (5.2.7) we have that for each tilN,

Then

such that

= 1 Frem 1(4.3.2). By hypothesis, L. say, is trivial and
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N welA . =.B) Sia
= - i V4 2
pa pB Bkt
in particular, with t1 =, SAN =A g A 8 say. Hence
= =q =
p P
ok, = &7 pid Eor'all 1 =1,...,8 and therefore S =A oA "
T SRR R 5 =a =8
P P P p N

Certainly, then, ém o A has a decomposition as an irredundant

join of join-irreducibles. Suppose that

is another such decomposition. Then using (5.2.9) we have for

o - ¢ G

i i A e o e B
= 0 =n ?1“1 % v ~tui

>
o
">
]

whence for some j ¢ {1,...,t},

A oA =3B My = B,

ai =n e )
Py
That is, each 4 a 0 én is contained in some gj: and each gj
Py
does contain an A By én since otherwise it is clearly redundant.
Pii

Also since each Bj is join irreducible, and B, = v{iji 1} x4 €T,

~
~

i That is
i ?j“i for some i s
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whence Bj =00 o e A , and this completes the proof.
¢ L
P3

Sy ! The bivarieties A o A .

The problem of determining all sub-bivarieties of ém 0 én has
been reduced to the case when m,n are powers of the same prime.
In general this case seems to be difficult. The results of Chapter 4
show that we can obtain upper and lower bounds for each sub-bivariety

of 4 1P A 8 in terms of the sub-bivarieties of A o A but the

= o = p-1°
P P P P

fine structure escapes us in general. Only in the case B =1 do we

get a complete picture. First we prove two lemmas similar to (4.2.7).

(5.3.1) Lemma. 1T it the notation of (4.2.2), Bgsenesd e A

p-1

are fixed elements, and if U is normal in Hv such that for all b ¢ B

p-1

6 > i da. tibl e Uil
. 3l S
i=0

e a. e U 1 & (0. seapll.

: | - o

2}

r
r : [iJ
Proof. VUsing the identity I[x,y 1 = T [x,iy] , Wwe may
i=1

express ¢ as

p-1 1i
piie il [ai,b Je B
i=0
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where each ai is a linear combination of ai,...,ap“l, and

' =
ap—l apwl. From (4.2.7) we deduce that ap_l € Upnl’ whence

P2
il [ai,ib] g lgs
1=0

An easy induction is indicated to finish the proof, and we omit the

details.

(5e3:2) Lemna. Define up = (ul,...,us) where 0 S g < p-1
for ail 1. If a(u) are fixed elements of A, and 1if for all

bl,...,bS € B

H[amhyﬂr.uw;%]eg
: :

~

(vhere U is normal in ﬂ&), then a(E) € UT where 1 = My E BTN Mg

Proof. We oroceed by induction on s, the case s =1 being

covered by the last lemma. For i e {0,...,p-1} write

RS [a(g)oulbl,.--9ushlbswllf
=

p-1
then I [aisib] gl for all b e B, Hence by (5.3.1),
i=0
a, € Ui’ e (0. .. .00 Now e u; implies (ul,...,us_l) +
(ui,...,u' 1) if uw =yu’. We may then, by induction, assume that
s- e

~
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aw) e (),

where i = M1 s B us—l' That is, a(u) ¢ UT, T = it+j

My IR Moo for each u as required.

Before commencing the statement and proof of our main results
in this chapter, we introduce the following notation. Write Ea

for the split-free bigroup of rank (1,w) in A ) ép on the split-
P

free generating set {yl} b oY - It 15 clesy from (L2 1)

1922,'.
that the lattice of normal, fully invariant sub-bigroups of §a
is dually isomorphic to A(A s ép). Write (d,c) for the fully
g
. P : y o
invariant closure of [yl,zl,...,zd] in gad abusing convention,

then

(5.3.3) ' Notatden., 'Fors-deze@;-ee {0,1,...,4-1}

o
a p

(d,0) = cl{[yl,zl,...,zd] i

(5.3.4) Theoren. “very fully invariant sub-bigroup of Ka

contained in Al(za) can be written as a product of finitely many

(d,o)'s.

Proof. From (2.2.4), every fully invariant U contained in

Al(X ) 1is the closure of special biwords of the type
“

¢4

(a3

2t H [Yls U\ilzl:."'ﬁ'riiszsl
i=1
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where 1 i-uij Ep=lg <L <oy f_pa—l, all i,}, and where - d + j

implies (uil,...;uis) # (ujl,...,ujs). Lemma 5.3.2 gives that

a.
i
¥ (cl{q})T‘} T =gy T My

2
Clearly, then, q 1is equivalent to a set of (d,o)'s and therefore so

is U.

With this theorem we can in fact determine all sub-bivarieties of

A
P
sets of (d,o0)'s determine different sub-bivarieties. We take up

i A2 however we have as yet no way of knowing when two different

this problem now.

(5.3.5) Theorem. The commutators

[ylgulz, egioiie surzr] )

£ >0, 0 < uy = p-1 for 1€ i e SR It > 0, form a basis for
A1(§a). If d > 0, then a basis for (d,0) is the set of all

T
bP , where b 1is a basic commutator of weight > 2 and where T is

minimal with respect to o <t and wt b + (t-0) (p-1) > d+1;

o
the set {b? : b basic} is a basis for (0,0).
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Proof. The set of commutators of the type described certainly

generate Al(gu): the only thing to check is that, using the

identity

o -
[ylspzl] = il.-_I-l [ylﬁizll

we can remove p or more repetitions of any variable zj, replacing

the offending commutator by a product of commutators each of which has

fewer than p occurences of =z,. That these commutators with

3

few repetitions are basic follows from (5.3.2); for, if

t (v}

B (i a8, sasnalle: &) = ]
e 225 4] is, 's;

where (ugqseceslgy ) b Guypaeeesiy )y 173 end 0<uy, <pol,
:

3

by, T e 1 el divak) parl Bellaive,a

i}, then, if s = max{s
1

5
1<ic<t} we have by defining w., = 0 for s, <& <s where
necessary, that

e ]ai
N | TR 2o eealy 2o =1
i=1 : Mgl % g 4 s

with (uil,...,uis) + (ujl,...,ujs), : + L We may therefore apply

fomma 5.3.2 to deduce for each 1 ¢ {1,...,t}, that

i 4
[ylpzlzw"&z,r] il
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where T = Myt e e Hio this would then be a bilaw in X , and

~0
a panl

therefore p |ai. For if not, then [y; »Z7+:552 ] =1 and

therefore [yl,zl,...,zT] is a bilaw in Cp wr C;, which is not true

(see Liebeck [13]). Tence palai for all i, and tais shows that

the set of commutators [yl,ulzlg...,urzr] wish ¢ >0, 9 bt B < p-1

and ur > (0 1is a basis for Al(éa).

a
It is quite clear that the set {b® : b basic} is a basis for

(0,0)., but the remaining assertion of the theorem requires proof.
g q P

The crucial point is the following result.

{5.3.6) Lemma. (e,r) < (d,0) 1f and only if o < 7 Hoe

gi=0 df e = 0 and d < e+ (1-o0)(p-1l) if €2 0O;

Proof. The first part is easy: if (e,t) < (d,0) then

T
[yl,zl,...,ze]p can be written as a product of po—th powers, and

a-1
Zz ]p = 1 which, as we have observed,

hence, 1f o > T, [yl,zl,..., .

T
P

is impossible. Also if e=0 and d > 0, then y; can be written
as a product of commutators all involving at least one zj; then by

T

mapping £ e £ and zj +1 for all j we have y? =1 which is a

contradiction.
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Suppose therefore, that e > 0 and o < t. Then

(5.3.7) (e;1) < (e + (1-0) (p-1),0)

and

(5.3.8) (e,T) i_(e + (t-0) (p~1) + 1,0).

Consider the identity

P 2
]p = H ] 1 ;

[y):295-052 . [y o2gseeaz g0z g,

edr
from this one deducesthat for r < p-2
(etr+l,1) < (etp-1,0) implies (e+r,l) < (e+p-1,0)

and therefore, by downward induction on r, (e,l) < (e+p-1,0). This

then gives by induction on Tt-0((5.3.7) 1is trivially true if 1 = o),

-1 -1

T
(e, 1)? < (etp-1,0)P

(e,T)

(e+tp-1,1-1) < (e+p-l+(t-1-0)(p-1),0)

(e+(t~0) (p-1),0).

This proves (5.3.7). The proof of (5.3.8) is more difficult,

and uses the next two lemmas.
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£5:3.9) Lemma. tEvm >0 and

p--1 )
[Yl,mzll = ’Hl [yl,izllaon’i)
=

g = woF (i-l)(p-l) ¥ 1" QO <y<p-l, Oc<qy, then

i) u =0 dimplies 6(m,i) = 1,0 according as m =i or m + e
11) r = 0 implies p“lé@n,i), I =4 ¢ p-1:
31i) ur > 1 implies pU+1|6(m,i), iR S
and puldon,i), rhd € 1 ped,

Proof. Clearly (i) is a consequence of the uniqueness already
provaed ‘1n (5.3.5). For u=1,r =0 (ii) is easily seen to be true.

Suppose that the lemma has been proved for some m with m > p. Then

[Ylg(m+1)21] = [yl3zlsmzl]

p-1 5 ;
= 0 [yl’zl’izll fm, )

1=1

p-2 AT _[E]G(m p-1)
= T [y, (3+)z ] 77 m [y.iz,] g

i=1 - i=1

and so, by the uniqueness from (5.3.5),

P
6(m+l,i) G(m:i"l) -[i}é(m,p-'l); 2 _<_ i .<_ pl’

]

§(m+l,1) = -pd&(m,p-1).
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By assumption pu Blm, 1) £ £ £ -apd puls(m,l), r < i, whence

the proof may be completed.

£5:3:10) Lemma. IE.m 33k - and

1’...,md

B(1)

[yl,mlzl,...,mdzd] = q [yl,ilzl,...,idzd] "
i

id) with 1 f_ij £ 8=1, then m ¥ .u: ¥

where i = (i 1

l,l.t,

my > d + tlp=-1) + 1. implies pT+l|B(l,...,l).

Proof. With d =1 we have d + 1(p-D)+ 1 =p + (t-1)(p--1) +1
and Lemma 5.3.9 applies. We use this as a starting point for
induction on d. Suppose m, = gip-1) +p > 1; 1< g < p=l;

0<é¢. Then

Mmoo cEm

. 4.1 2 (@1 + @-4)(-1) - (0-2).

Y(})

dow if [yl’mlzl""’md-lzd~l] =1 [yl’ilzl""’id~lzd—1] , then

g

we may assume inductively that
2Tl (it Bdeptes O,

oo oD L R TS

Also from (5.3.5),

B3, .iel) ™ G(md,l)y(l,...,l),

and
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¢+l|6(m s b HE e pis,

i), 1) el o < 1 .

T+1
In any case, IB(l,...,l) as required.

Proof of (5.3.8). If (e,t) < (e + (1-0)(p-1) + 1,0), then

L Ohv e
(*) [yl’zl’°"’ze]p = g [ylsjlzls..asjeze]p 6 (2)

~

where j1 e je > e+ (t~0)(p-1) + 1. Now (*) can be re-written

by replacing ecach [yl’jlzl""’jeze] by a product of powers of basic

commutators. Then, using the uniqueness from (5.3.5),

o ]PGB(J;)

T
s :
..,ze] [ylfal;.” 5

[y;:275-

b IS O e |

where for each o+l|8(3) by (5.8.10).. ' Hence

9

LT,

p' = pOXB(g)o

T+1

and since the right-hand side of this equation is divisible by »p we

have a contradiction. This completes the proof of (5.3.8).

If- 4 >0 sad b "’bt are distinct basic

Proof of (5.3.5). 17

commutators such that

B
L btt e (d,0),
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T

then, from (5.3.2), if b, has weight e, + 1, and p i||Bi,

i p §

whence, from the part of (5.3.5) already proved, and (5.3.6),
Gispionapers O, 4 = efet (Ti-O)(P“l).

1

This completes the proof of (5.3.5j%.

The main result of this section can now be stated. As the
proof is of a routine nature using Theorem 5.3.5 we will omit most of

the details.
(5.3.11) Theorem. Every normal, fully invariant sub-bigroup
21 of X, can be written uniquely as
€
= ° aee “1
_q Az(ga) (do,so) (da_]-?a )

where ¢ = 0,1 (according as z, ¢ U or g, e¢U) and

i) e=1 implies 0 =0, d; o £
ii) if ¢ ¢ {0,...,0-2} then
~ f < 8. 5
< d -pil, 1£ F 2y
. € X N RN L T
o 7] | - =% =
=0 Sl L e LR
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Proof. Theorem 5.3.4 ensures that every U # 1 can be written
as a join as indicated: if z) € U then [yl,zl] € U and hence

$4,0) < 1.

Let o be the smallest element of {0,...,a-1} for which
(d,0) < U for some integer d, and let dT be the smallest integer

such that (dT,T) = Fov g <is -l Since'by £5.3.6)
(d,t+1) < (d+p-1,1)

for d > 0, we have that dT > p implies dT+l 5-dr - p+l, Ir

0 pEieSrhen Fortall d's 0
(d,t+l) < (d+p-1,7) 5_(dT,r) £ U

hence d < 1. If"d =0 for some 1 ¢ {0,-..,0-2} £hen
T+l — T

clearly d el d 0. This establishes the existence of
=

1 o-1 ¥

such a join decomposition fo: U.

The uniqueness is a consequence of the next lemma, whose proof we

omit.

£5.3.12) Lemma. 3E - td.1) 5_(do,o) S P (da_l,a~l)

where d _,...,d 1 satisfy the condition (ii) of (5.3.11), then
o o~

g =t and dT < d.

B tonllary.  let J = (o TG RN ST © )
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and T = {0,1} have their natural orders, then the lattice

N

embeds A(épu 0 ép). A(épao ép) is distributive.

The details of proof are routine and we omit them.

(5.3.14) Corollary. Theorems 5.3.11, 5.2.7 (o 5.2.11) asd

5.2.9 afford a complete description of A(Am 0 én) if m,n are

nearly coprime. In particular A(ém 0 én) is distributive in such

cases.

St The bivarieties é . 0 é M

In this section we give a classification of another class of
bivarieties, and produce an example of a non-distributive bivariety

lattice. First note the following:

(5.4.1) Lemma. A bigroup G e Ao A has the bilaw

(e ; m
[yl,zl,...,zd] if and only if G has the law [xl,xz,...,xd+l]

m
Proof. Now G has the law [Xl’XZ”"°xd+l] if and only if

m e
has the bilaw [ylzl""’yd+1zd+l] ,  Modulo the bilaws of Ao A

|
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we have

zZ 2

" 1 2
[y12150 -5V 2am] = DVpo2p-eenzgyy] 71205502450 00025 ]

and therefore [ylzl”"’yd+lzd+1]m is equivalent, modulo the bilaws of

Aod, to [yl,zl,...,zd]m.

llote that, in particular, G has class c¢ if and only if G has

the bilaw [yl,zl,...,zc].

(5.4.2) Notation. Denote by Nc the variety of all bigroups

~

in é o é of class at most c.

{5.4.3) Netation.  Let Y be the split-free bigroup of rank

(1,0) in A e A N , and again abuse convention by writing (d,o)
P P
o

for the normal fully-invariant closure of [yl,zl,...,zd]p in

Xa9 de 40, .. .01, ...ovenll; . v ga-1}).

(5.4.4) Theorem. Every normal, fully invariant sub-bigroup

U+ 1 of Y can be written uniquely as
= =0

pY
U=2a,)° @,0 ... (d,_;,0-1)

shora a0 ooa), . o e {0,...0-1}, p-1 Z_do X oson Z.da_l > 0,
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and 1f v .« & then o <y and dY <l A(A o A is
& 2 = a

N )
= a/'\ %
p p .

distributive.

Proof. That every U has a decompositicn of this form follows
from (2.2.4) and (5.3.2): choose ¢ as the smallest element of
{0,...,0-1} for which there exists d e {0,...,p-1} such that (d,o0)
< U, then choose dT as the smallest d for which (d,t) < U,

s e Clearly then dc 2 5 Z-daml' The rest of the proof

will follow easily from the next lemma which will also prove useful

again in this section.

(5.4.5) Lemma. The split-free bigroup of rank (1,1) in

A g2 A L Np+1 (where o > 1) can be presented on the generators
= ~p+l

ao,...,aps b subject to the defining relations

pa pa Pa-l pa
ao R e = ap"l = ap = b = [ai,aj] 5 1’ 0 f. l’J _i p’
b b

Proof. We omit the details: note that the group presented here
is generated by the set {aogb} and that fairly obviously it is a split-
free generating set. The lower exponent on ap occurs because

a a
P P

e e
- 15 B kP

tedga v 1= 10 fa.ib]
0 f
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Return to the proof of (5.4.4). If- (dyt) < U then «(d.1} <

(do,o) N (da— ,0-1) and therefore

il
(d,a-1) 5_(do,a-r~l+o) i (dT,a—l)
5_(dT,a~T~l+o) % (dT,a—l)

However Lemma 5.4.5 yields, that even in the free bigroup of rank

(L T3 1n A e A 5 Hp (with a > 1) this can happen only if

p P

~

d 2-dr’ -1 ® a-t-140; ¢Ethat is,  d Z_dT and t > 0, whence
(d,t) 5_(dT,T). Since y 1is quite clearly unique, we have shown
that this expression for U is unique: it only remains to remark, that

p’ pY p' D'
zy € U implies [yl,z1 ] e U and that [yl,,z1 ] and [yl,zl]

are equivalent modulo the bilaws of A e A ol Np, from (545"
P P

As the case o =1 is covered by (5.3.11), this completes the proof

of (5.4.4).
(5.4.6) Theorem. A(A , o QPZ'N §p+l) is not distributive.

Proof. We show that in the split-free bigroup of rank (1,1) in

A_ oA there exist normal, fully invariant sub-bigroups

3 PR 3 Jpal?
wiy

Vl’VZ’V3 which are pairwise incomparable and whose pariwise joins and
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intersections are respectively equal. Let V1 VZ’VB be determined by

the bilaws

Iz, B, Iyaail Iy ipt]

respectively, and let V be determined by [yl,Zzl]p. In the notation

of €5.4.5) 1t is eclear that

V= Cah,..a p,
V= <al,v}, Vs <ap.,V>.

Also since

[aO,

sea
BAET = . e amit akpap P
= (a1 )

kp
modulo V (using the fact that [p] z k(modp)), we have that

SR
V2 <a1ap,V_.
= = = P \
Hence (5.4.5) yields that V,V, = V,V, = V.V, (al,a .V), and
E) = ; = = ‘
Vl” V2 2 3 V3 A V1 V and clearly VZ,V3,V are all
distinct. This completes the proof of (5.4.6); a picture of the

lattice A([_&4 oA, ﬁ\NB) is drawn by way of illustration, but it is

not here verified that it has this precise form.
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Note that, as we have been working only in the free bigroup of rank
(1,1) throughout this section, both results could have been

formulated in terms of FEngel-type bilaws rather than class bilaws.
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5.5 Applications to metabelian varieties.

In this final section we give some applications of the results
and methods we have for the sub-bivarieties of Ao A to the subvarieties
of AA. First let it be noted that as far as the descending chain condition
goes, Remark 1.6.5 already provides a reduction of the problem:; we
sharpen this slightly. A classification result in terms of prime-
power exponent varieties and bivarieties is also given, as is a complete

classification of A(émén) when m,n are nearly coprime. Questions

of distributivity are also discussed.

{5.5:1) Lemma. If q dis a biword, then there exist words
WyseeesWy such that q 1is a bilaw in the non-nilpotent critical

bigroup G € A o A if and ouly if Wisees,W, are laws in (the group)
G. Conversely, if w is a word, then there exists a biword q' such
that w is a law in the carrier of the bigroup H if and only if

q' is a bilaw in H.

Proof. We may assume the biword q written, modulo the bilaws

of Ao A, in one of the forms

t A A o

o B il 2 Uy clAgES
Y b Z 5 H [y ,Z ,"‘92 ]
ik 1 3l 1221 o
by (Z.Z:.3). The words
o A A o
o B il 2 b ol &
[xl,le ’[xl’XZ‘XB]’ 2 [xl,xz,x3 ﬁ""xr+3] s
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respectively, then do what we want. For the converse direction

q' = w(ylzl,...,yszs) will serve.

(5.5.2) = L&ma. There is a one-to-ome inclusion preserving
correspondence between the set of all subvarieties of AA generated
by non-nilpotent critical groups and the set of all sub-bivarieties of

A o A generated by non-nilpotent critical bigroups; call it ¢,

Proof. From (3.3.4) and (5.1.3) there is a one--to-one
correspondence between (isomorphism classes of) non-nilpotent
critical groups in AA and (isomorphism classes of) non-nilpotent
critical bigroups in A o A which we may write G+ G. If V < AA

is generated by non-nilpotent critical groups:

n<

= var{Gi PGy non-nilpotent, critical, i € I}

define

svar{G, : i ¢ 2 ¥

The mapping V + V may easily be verified to be one-to-one and onto,

~

usling (5.5.1).

(5.5.3) Theorem. The variety één(émé) has descending chain

B al
condition on subvarieties if and only if for all p In(p m) , AA 8
P

A) 4 "
(éde) oes
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Proof. Lt Moo ¥ .. be a descending chain in A(AA ).
==n

We may write

57U
=i Zi Vo=i
where Zi is generated by the nilpotent critical groups in v, and
Z; by the non-nilpotent critical groups in yi. Clearly 2;43 yi -

... 1is a descending chain, which, by virtue of (5.5.2) and (4.0.1),

breaks off. Hence Xl 2_22 = ... breaks off if and only if V. f_yz

= ... breaks off. Since

i s 5 =
gl;__.v{é_ési.n Py" +er Py s 1 &4e )

Py

the theorem follows from (2.1.2).

Now A=viA GA p*||m} by 21.23 in [3], and therefore

P

A
=m

(2.1.2) completes the proof.

7

£5.5.4) .Corollary. één has descending chain condition on

subvarieties if and only if for primes pjnthe chains AA 8 2.21
P

=¥y = ... with Vo= Vo for 1 {1,2,..21 brigk ofF.

A A has descending chain condition on subvarieties if for primes p|

bheinn A 2009 ¥ o havrwith V.0 = V.o, 1= 1,2,... break of¥,
=G=_=l'—=2_ =] =i

p
(The definition of o 1is on p.36).

n the
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Proof. This follows from (1.6.5). Of course as noted in the

Introduction, Cohen [16] has proved descending chain condition for

all metabelian varieties. but it is perhaps worth noting that our

methods are strong enough to yield such reduction theorems.

We turn our attention now to classification results. Theorem

5.2.7 can be modified in the following way.

(5.5.5) Theorem. ACA A 8 ) can be embedded sub-directly

into the lattice

s-1
A
May) x M@ & ) x o4 04 Q)
P P P P
where s 1is the number of divisors 1 = tl,tz,...,t8 of . Indeed
there exist lattice homomorphisms £, : A(A oA 8 ) > MAY,
P PN
. - : > 0(A -0 A W A S =
67 A B o) T MG 8 ) E ARG A ) e 0 B, 254
p pN PP P P P P
such that 1f V< A A then
_——_a_B
p pN
1) ti|tj implies Zij :;ggi, 2<£1,1% 8,
ii) Ve, < Y 0, Bk 4% &
1ii) Ve, = A, implies V&, =Eo E, tj+ti;,2f_j_<_s‘

|
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Proof. We may write

o = Enke LLTalty
P

VE = var{G € V : G critical, non-nilpotent}.

The set of subvarieties of A aé 8 generated by non-nilpotent
P PN

critical groups is not a sub-lattice of A(A aé 8
p pit

). but does form a

lattice under the inherited inclusion order. Define Ei = gexi

(where A, 18 defined in 5.,2.7), 2 < 1 < s.

s 4

It follows from a result of Kovidcs and Newman ((1.12) in

[5]) and one of Higman (51.1 in [3]), that & £ are lattice

0951,

homomorphisms: also, in the appropriate sense, 0 1is a homomorphism

{see {5.5.2)). Hence the Ei are lattice homomorphisms. Moreover

V=, 0 6

and therefore, using (5.5.2) and (5.2.7) again, V is determined

uniquely by {g&iﬁ i=0,...,8}. That the £, have the properties

1l
(1), (ii), (iii) is obvious from their construction and from (5.2.7).

We have the following result similar to (5.2.9), proved by using

again (1.12) in [5] and i T R 3
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g a
(5.5.6) Theorem. If m,n >0, m=p, ... prr for distinct
primes PyseeesPrs then A(émén) is a sub-direct product of

1
A(h qién); ie {1,...,r} according to homomorphisms ny ¢ A(émén)
Py

- A(é 4 én) defined by

i
Py

for 'V e A

(9:0.7) " Cerellary. 1f ¥ c , then A(V) is distributive
if and only if for each pilm, A(’)nii. is distributive, where gj

is defined for each i as in (5.5.5)

(5:5.8) Corollary. If m,n are nearly coprime, then A(émén)

is distributive.

15.5.9) Corollary. Let V be a variety of metabelian p-groups
of bounded exponent in which p-groups have class at most cp. If cp =p

when p < 3 and cp =p-1 when p > 3, then A(V) is distributive.

On the other hand if W is the subvariety of A Zé 9 (p$N) which
p PN

consists of groups whose Sylow p-subgroups have class at most p+l,

then A(E) is not distributive.
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Propte. 'The proofr of " (5.5.8) uses (5.5.7), (5.3.13), (5.2.6)

and M.F., Newman's unpublished result that AA aép) is distributive.
P

To prove (5.5.9), « use ' (5.5.7), (5.4.4)  and Jonsson [11].

Weichsel [12] (or Brisley [7]), (5.4.6) and (5.2.6).

Finally we take up the possibility of getting a classification

result along the lines of (5.2.11), and prove the following result.

=nil°

(5.5.10) Theorem. Let V be a subvariety of A aA
P

Write XO - éN’ Xl = épaép' There exists a unique subset

A of the set of divisors of N and to each § € A a subvariety

EG of A aép with E o E % 260 € @(épaép) and an integer oa($) <

min(a, exp 26) such that

IR b I R P A TIOL R
1i) Uoc ¥y A =¥y and 64|86 implies 255250 and
a(8) < aldy),
iii) U.c and «a(8) are unique.

=6

Proof. For each &N, 6 > 1, write

Viim var{G € ¥ : G critical, non-nilpotent, || = 8};
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and write A for the set of all such § for which YG + E. Also

put for - &= A,

0 = var{F(6) : G € V critical, non-nilpotent, |K| = 6},

(6)

o
and p max{exp G' : G € V critical, non-nilpotent, |x] = 61.

We show that

6~ £ a(8)3pN -

<3
L]
[ (==

=

Now ZG is clearly contained in the right-hand side, and we must show

th i i i L]
e opposite inclusion To this end let G € QGQG.‘ épa(é)épN be

eEitiecal: 13 G € épaép or G € éN then clearly G ¢ XG’ and

hence we may assume G to be non~nilpotent.

Mow let w = w(xl,...,xr) be a law in 26’ that is a law
in the generating non-nilpotent critical groups of V. -~ call them
{Gi t 2°¢ 1} =ay. Wow w is a law in a non-nilpotent metabelian critical
group G’ if'and only if q = w(ylzl,.,.syrzr) is a bilaw in G.

If Qpse-esdy correspond to q,p,8 as in Theorem 3.4.4 then Qqseeedy

are bilaws in Ei, i & T. Now from (5.3.,11) each a4y is equivalent,
modulo the bilaws of A r ép’ to a set of biwords of the form
P
o 14
yg ,zi,[yl,zl,...,ze]p e oa =m, e =By O< e). We must have
0 —_—
a(8) < o, and therefore yg is a bilaw in F. 1E zq is a bilaw in

all Eﬁ then the Fi are abelian and 26 is abelian: hence 2z, is a
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T
bilaw in F. In the case of [yl,zl,.,,,ze]p we note that, from

5.4.1 it iS a bilaW in II € I& (0} ‘L i aIld Only if | X es09X '
( ) 2 - = f x] 9 ;!3 b e ']

is a law in H. Hence since clearly F ¢ o= var{Fi =i

qys--+»qy are all bilaws in F, whence q is a bilaw in G and thus

w. .18 .a law in. G, We have proved, therefore, that

61 & ae)2pn -

<3
| [==

s = Usd

Now V is generated by its critical groups, and therefore,

B Usod¥, o vV, 16 £ 8}

and this disposes of (i). By construction a(68) < min(a,exp 26)
and Ugo € (4 0 A), Uy +°E.  Also if G e ¥, G critical,

p
|K| =¢§ and 6.|S8, consider the subgroup GO = F(G)KO, where K0

ol
is the subgroup of K of order 60. From 5.1.2 it follows that there
exist critical bigroups G,,....G ~ such that |k, | = §, and svar{G,,...,
Ew} = svar{go}, and hence that var{Gl,.,.,Gw} = var{GO} (from the

second part of (5.5.1)). It follows that
var{F(Gl),...,F(Gw)} = var{F(G)}

and therefore that gG :>26 . cnk8) :_a(do). This completes the

0

existence part of the proof.

For the uniqueness, note that if V has an expression

& A RO S B
= !o \ Xl V{25i5 g =Da'(6)=pN
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which satisfies the hypotheses of the theorem, then there exists

1 + 2 E géo, £ eritical. Hence by (5.1.2), (3.3.4) and (1.12) of

[5] there exists a critical group G with IKI § and G e U A6

=0=
A Q(G)épN' Hence P € 26 and therefore P ¢ Uso, or Eé = Do

The converse is proved similarly. Finally, since a&'(6) < exp g' "

i
there exists the critical group C(pa (GzS)of Cossey (Theorem 4.2.2
in [4]) which belongs to V and therefore to 26é6 b hence

pa(6) N’
a' (8) < a(d). Similarly o(8) < a'(6), and also A =A', and

this completes the proof.

The subvarieties of A aép have been classified by M.F. Newman
and thus we have an elaborage but complete story for A ApN
By way of illustration, the lattice A(é2é6) has been drawn. Note
that even in this simplest case, the expression (i) in (5.5.10) is not

always unique: both the varieties EZA—I 5 ézéz and gk give rise to

the same non-nilpotent critical groups, that is

AA)0 =8

Eyn-1 » 222209 = 2,

(5.5.11) Corollary. If m,n are nearly coprime, then (5.5.6)

and (5.5.10) give a complete description of A(émén)'



BN
N
=
N ; *
b N (é2é2 A N7)
A (é2é6) S : N \’\
| ; AN s B
B\
N . : X “\\ég
- ‘y\ ; 3
.‘,\\" 6 \ (ézéz A Es)
. \\ e 7 \\.
7 = o i &
e c (A8, A )
2 2 5 U :
- \( . s
88 ~ B s e e
\_ % o §
§3 S (‘ézﬁ*z A §3)
X
887 &5 - PuR R SN ( g
: o ; A8, A N
NG BN
=S=2 \<\\ ,,,’\'(\\
: 7F -
44, ~ I3 b s g 9
/ 5 AS
88, 5 Sl ) .
&, &
7 E*x = A
8, =
-

g% = U3y A A58¢
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(5.5.12) Example. In general {5.5:10) ' is not true.

Consider the following bigroups:

W = C —

1 2

Wy = C, wr(C, x C)/(C, wr C, x Cp)egy-

It is tedious, though not difficult, to verify that Wl’WZ’W3 generate

the same variety qué groups; indeed any bigroup in éz 0 44 which
does not satisfy the bilaw [yl,BZl,zzl and has class 5 exactly,

generates the variety A.A

2 N. qu& group. However Wl has the bilaws

4 N =5
[Ylszzl’zzz] 5 [YI’2219229Z3] [yl’z1)2229z3] [yl’zl’zz,zz3] 9

WZ has the first, but not the second, and W3 has neither. Now WZ’W3

may not be critical bigroups (though Wl is) but we can replace

them by a set of critical bigroups generating the same bivariety. It

is clear, therefore, that if G is critical and non-nilpotent, with

F* = Wl {(by (5.1.2)) and |K| = 3 say then

var G < (var Wl) éB - 42512 5

Indeed var G is not even maximal in the right-hand side. Moreover

if we write Xl = var W, = var é3(G), 22 = var é3éz(G) and

clear on examining the bigroups W,,W,,W,,
vy

= | U
23 var é3é2é2(G) then it is

that var G is at best second maximal in

gk, Mohe . LsRya

1
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