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1. 

CHAPTER 0 

0.1 Introduction 

The problem of classifying varieties of metabelian groups has 

attracted several authors recently, and partial results have been 

obtained. For example, Brisley [7] and Weichsel [12] classified all 

varieties of metabelian p-groups of class at most p-1, and Newman [14] 

determined all subvarieties of A A . NeTTraan [15] has al^o 

classified all metabelian varieties of exponent 4. Getting away from 

locally nilpotent situations, Cossey [4] classified the varieties of 

metabelian A-groups, that is, varieties of metabelian groups whose Sylow 

subgroups are all abelian; in particular this includes all subvarieties 

of the product varieties A A , where m,n are coprime. =m=n 

The work in the present thesis derives from an attempt to classify 

the subvarieties of A A . without restriction on m,n. The main 

result is a common extension of the results of Newman and Cossey mentioned 

above. Call two integers m,n nearly coprime if p|m implies 

p^fn. We give a complete classification of the subvarieties of ^ ^ 

whenever m,n are nearly coprime; in particular this covers the case 

A A , V7here p,q are distinct primes. The method can be outlined «»papq 
as follows. A subvariety V of A^A^ can be written V = U.̂ V̂ N 

where U is generated by the non-nilpotent critical groups in V, and 
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where ^̂ jjj is generated by the nilpotent critical groups in V. 

NOV7 V^,^ is locally nilpotent, and is covered by Ne\vman's result, so 

we say no more about it, and concentrate on U. G is a non-nilpotent, 

metabelian, critical group, its Fitting subgroup F is a Sylow p-subgroup 

for some prime p, the derived group G' is contained in F, and F 

is complemented in G by a cycle of order t, say. Let p*̂  be the 

exponent of G'. Then G e A ^ ^ Luplies p^'jm, t|n, and 

var G = (var F)A, ...A A , 

P 

at least for m,n nearly coprime. The non-nilpotent critical groups 

in V fall into classes determined by the exponents of their derived 

groups and the orders of their Fitting factor groups; and in a similar 

manner to (*), each such class generates a variety of the form 

W A^ ^ A A 
= =t A = a=n 

p n 

where W is the p-power exponent variety generated by the Fitting 

subgroups of the critical groups concerned, and U is canonically the 

join of these varieties. This situation is described in Chapter 5. 

In proving (*) I have had to introduce varietal concepts which 

are not concerned V7ith varieties of groups as such. These are the 

concepts of 'split-group' and 'variety of split-groups'5 a split-group 

is a group with a specified semi-direct decomposition. If G is a 
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non-nilpotent, metabellan critical group as above, then G' £ F and 

F splits over G'; thus F may be thought of as a split-group 

and if, in formula (*), one interprets each side as a statement about 

split-varieties, it is true without extra conditions on m,n. When 

m,n are nearly coprime, there is an accidental, very close, relation 

between the variety generated by F quA group, and the variety 

generated by F qut split-group. In the case m,n not nearly coprime, 

there is no such close relationship in general, and formula (*) is not 

true as a statement about varieties of groups; even an apparently more 

restrictive formula fails to hold. 

The split-group idea is capable of wider use than this classification 

problem. In Chapter 4, for example, we prove a finite basis theorem 

for certain varieties of split-groups, which, by way of application, 

shows that certain varieties of metabelian groups have a finite basis. 

Although this is only a special case of D.E. Cohen's finite basis 

theorem for all metabelian varieties [16], it seems worth doing not 

only as a demonstration of the strength of the split-group technique, 

but also for the sake of the additional information obtained about the 

varieties involved, especially as [16] gives no varietal side results 

at all. While a complete classification is lacking, even for subvarieties 

of the product varieties of A A , enough information is obtained to 
" P V q 

answer several questions concerning the lattice of subvarieties of certain 



4. 

for example5, questions of distributivity of the lattice of 

these varities. 

It was pointed out to me by L.G. Kovacs, that split-groups of 

species 2 (that is, groups with a specified decomposition as a semi-

direct product of two groups) could be re-interpreted as group pairs, 

in the terminology of B.I. Plotkin's recent book [19]. In an appendix 

to that book Plotkin defined varieties of pairs and extended to these 

some constructions from the theory of varieties of universal algebras. 

Thus it seems that for split-groups of species 2, some basic definitions 

and results of a general nature could be obtained by specializing 

Plotkin's theory. Instead we show that all varieties of split-

groups can be interpreted as varieties of universal algebras and so our 

fundamentals are derived directly from the theory of varieties of universal 

algebras. However if our results for the case of species 2 are 

thought of as results in certain varieties of group pairs, they are 

(so far as we know), the first detailed results on specific varieties 

of group pairs. 
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0.2 Notation and terminologyu 

For results relating to varieties of algebras we refer the reader 

to B.H. Neumann [21], and for results and notation relating specifically 

to varieties of groups, to Hanna Neumann [3]. 

We differ from [3] only in writing H _< G if H is a subgroup 

of G. If H is a proper subgroup of the group G, that is H =j= G, we 

v^ite H < G. If H is normal in G we write H < G. If- G is generated 

by the subsets then G = 

-1 V 

If G is a group and x,y e G denote y xy by x'', and the 

commutator by [x,y]. Commutators of higher weight are defined 

as left-normed: if e G and [x^,... has been defined, 

then 
[x^, • • • ~ I- • • • ' 

Define [x,Oy] = x, and for r ̂  0, [x,(r+l)y] = E[x,ry],y]. 

If H,K are subgroups of G, then is the subgroup generated 

by the elements [h,k], h e H, k e K. The derived group G' of G 

is [G,G]. A group G is metabelian if [G',G'] » 1, where we use 1 

to denote the identity of the group as well as the trivial subgroup. 
Q 

The normal closure of H in G is denoted by H . 
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The tetms of the lower central series of G are defined 

inductively by 

thus = G'. A group G is nilpotent of class c if 

«(c+l) • °(c) + 

The centralizer of a subgroup H of G is denoted by Cg(H) 

and the centre of G by Z(G). The Fitting subgroup of a finite 

group G, the largest normal, nilpotent subgroup of G, is denoted by 

F(G). 

A finite group with a unique minimal normal subgroup is called 

monolithic, and the unique minimal normal subgroup is called the 

monolith. The socle of a finite group G is the subgroup generated 

by all minimal normal subgroups of G, and is denoted by aG. 

In late chapters. Chapter 4 in particular, many well-known 
commutator identities will be used without comment. The ones used are 
listed here. In any group G the following are identities: 

[x,y2] = [x,zj[x,y](x,y,2], 

[xy,z] = [x,z]{x,z,y][y,z], 

[x,y] = [y,x]"̂ , 
-1 



In a metabelian group G: 

[x,y,z][y,z,xl[z,x,y] = 1; 

and therefore, If d e C_(G'), putting z = d we have 

[d,x,y] = [y,d,x]-^ = [[d.y]"\xl"^ 

7. 

Finally note that we defy convention and write w for the cardinal 

of the natural numbers. 
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CHAPTER 1 

VARIETIES OF SPLIT-GROUPS 

In this chapter we are concerned with varieties of certain objects 

called split-groups, which are defined below. A split-group is, suitably 

interpreted, a universal algebra, and this is pointed out in section 1.2; 

hence much general theory is applicable to our situation, and it will be 

called on to eliminate long proofs which would be redundant. However 

our interest in varieties of split-groups, or split-varieties for short, 

is the way they can be used to give results about varieties of groups; 

more insight seems to be gained by developing the theory of split-groups 

as is done below, then is gained by regarding split-groups and varieties 

of aplit-groups as part of a much more general framework. We repeat 

that our reference for results on varieties of universal algebras is [21]. 

Split-groups 

(1.1.1) Definition. A split-group of the species n, is an 

(n+l)-tuple . where G is a group, are subgroups 

generating G such that, if B^ » <A^,...,A^>, i e {l,...,n}, then A^ 

is normal in B^ and is complemented in B̂ ^ by 

\ < V i + 1 ° ^i ̂  ®i+l " ̂  • 
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We shall denote the split-group ... by G when no confusion 

can arise as to the particular splitting of G involved; also we may 

write A^ « A^(G), B^ « B^(G)s i e {l,...,n}. The group G is 

called the carrier of G; an element of G is an element of G. 

(1.1.2) Definition. A sub-split-group of the split-group 

(G,A^,...,A^) is a split-group ( G , A ^ , . . . w h e r e G is a subgroup 

of G and where A^ = A^ G, i e {l,...,n}. A sub-split-group is 

normal if it is normal as a subgroup. 

(1.1.3) Definition. A morphism u between two split-groups 

(G,Aj^,... ,A^) and (GjA^,... ,A^) is a group homomorphism y : G -»• G 

such that A^u £ A^, i e {l,...,n}. We write y 5 G-»• G. 

Notice that morphisms are defined only between split-groups 

of the same species; this dependence on the species will often be 

left understood, unless it is necessary to clarify the meaning. Note 

also that, in general, every inner automorphism of G is not a self-

morphism of G. 

(1.1.A) Definition. A morphism is epi or mono according as it 

is onto or one-to-one as a group homomorphism of the carriers. 
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(1.1.5) Definition. If G = . . . i s a split-group 

and N is a normal sub-split-group of G, the quotient split-group 

G/N is the split-group 

G/N = (G/M, A^N/N,...,A^H/N) . 

The right-hand side is indeed a split-group: clearly A^N/N < B^N/N 

and if a^ e A^, ^i+1 ^ ®i+l ^i^ ~ ^i+1^ then 

N = (N A^) ... (N A^) which implies a^ e N by the 

uniqueness of the decomposition g = " ' ̂ n element g 

of G. 

(1.1.6) Lemma. If y : G G is a morphism between two split-

groups then (ker Us ker y|A^(G),...^ker y|A^(G)) is a normal sub-split-

group of G. (Here y|A^(G) denotes the restriction of y to 

A^(G)). 

Proof. We have only to verify that ker y splits appropriatelyj 

indeed if a^a^ ... a^ e ker y with a^ e A^(G)s, then (aj^y)(a^) ... 

(a y) = 1 so that a,y = ... = a y = 1, or a. e ker y|A (G), n X n 1 1 ~ 
i e {1,...,n}. 
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(1.1.7) Definition. The cartesian product of a collection of 

split-groups G^ = (G^jA^j^,... of the same species, i e I, is 

the split-group G where G " Il{G^:i e l } and where Aj(G) =» HCA^^:! e l } 

is embedded in G in the natural way: 

A^(G) = {f e G|f(i) e A^^.i e I}. 

The restricted direct product is defined similarly. 

(1.1.8) Definition. A fully-invariant sub-split-group of G 

is one invariant under all self-morphisms of G. 

Note that, as not every inner automorphism of G is a self-

morphism of G, a fully invariant sub-split-group need not be normal. 

It is easy to see that the intersection of the normal sub-split-groups 

which contain a given fully invariant sub-split-group is fully invariant 

(and normal). 

(1.1.9) Definition. A generating set {a^^ e A^(G):j e £ i £ n} 

of G will be called a generating set of G. A split-group is 

finitely generated if it has a finite generating set. 

A split-group will be said to have a certain property if its carrier 

has the property; thus G is finite if G is finite. For split-groups 

of small species, special names will be adopted: a split-group of species 

2 is a bigroup, and one of species 3 is a trigroup. 
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Finally, in this section, we note a few abuses of language that 

will occur from time to time. The trivial split-group should, of 

course, be written as = (l,l3...,l), but we will write 1 for it, 

and also for the trivial sub-split-group of a split-group. A subgroup 

S of G may be referred to as 'the sub-split-group s' of G if it 

splits appropriately, while a sub-split-group may be referred to as 

a subgroup if, by doing so, the desired emphasis is conveyed without 

creating confusion. 
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1.2 Alternative formulation. 

We shall In this section characterize split-groups as certain 

universal algebras. Tha operator domain is defined as follows. 

(1.2.1) Definition. fl^ is a commutative semigroup 

{WQJWĴ , ... of order n+1 with multiplication table 

w^wj = Wj for 0 £ i JS j £ n . 

In the terminology of [6], ft^ is a commutative band, fully 

ordered with respect to the relation: w^ £ w^ if and only if 

(1.2.2) Definition. An fi^-group is a triple (0,^^,6), where 

G is a group and where the mapping e : G x fi^ G has the properties 

(xy)w^e = (xw^e)(yw^e), 

XWqI = X, xw^e » 1, 

and 

(xw^e)wje = x(w^w^)e , 

for all x,y e G, and i,j e {0,1,...,n}. 
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Since an fi^-group is a universal algebra, the concepts of 

sub-Q^-group, quotient fl^-group have standard definitions; we give 

them here using the well-known correspondence between congruences on 

groups and nomal subgroups. 

(1.2.3) Definition. A sub-n^-group of an fi^-group 

(G,fi^,e) is an fi^-group (G where G is a subgroup of G 

and where e = elG x fi . = sal n 

(1.2.4) Definition. If (G,S?^,e) is an Q^-group and 

(N,SJ^,e') is a normal sub-fl^-group (that is, a sub-n^-group which 

is normal qua subgroup), then the quotient n̂ _̂ -group ) 

is the n -group (G/N,fi where e" i G/N x fi ->• c/f is defined n n = = n 
by xNw^e" = xw^eN. 

(1.2.5) Definition. A homomorphism y : (G,n^,e) -v (G,n^je) between 

fl^-groups is a group homomorphism y ; G ->• G such that for all x e G, 

(xT-7̂ e)y = (xy)w^e . 

(1.2.6) Definition. The cartesian product of a collection 

( G . , e . ) (i e l ) of fi -groups is the fi -group (C,fi ,e), where 1 n =1 n n n = 
G = n{G^ : i e 1} and where e ; G x G is defined by 
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fw^ed) = f e G, i e I , j e { 0 , . . . ,n } . 

( 1 . 2 . 7 ) Theorem. There i s a functor $ from the category of 

a l l split-groups of species n to the category of a l l -groups, 

which is one-to-one on both objects and morphisms and which preserves 

sub-structures5 quotient structures and cartesian products. 

Proof. Let . . . b e a split-group. Define the 

endomorphisms a^ of G by 

••• V ^ i = ^i+l ••• \ 

for a l l a, e A . , j e { I 5 . . . , n } , i e { 0 , 1 , . . . , n - l } • and define 0 
3 3 n 

to be the zero endomorphism of G. We c a l l a^ the spl itt ing 

endomorphism of G. Clearly 

(1.2.8) 

''0 " "G ' "n a^ = J a = 0„ . 

Also = Go^ and A^ = kera^^^ B^s i e { 0 5 . . . , n } . Conversely, 

i f a group G has endomorphisms a^ with the properties (1.2.8)3 

then by writing = Ga^, A^ = kera^ n B^̂  i e {0 5 . . . , n } , , (G-A^j.. . . ,A^) 

i s a split-group. For, i f x e then 
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and = ( xa^^^Xxa^^^)""^ = 1, so that 

(xOjXxo^,,) e ker a^., B, = which shows that 

there exists ŷ^̂  e G v/ith y = xjhence 

and therefore r̂  = 1. This shows that (GjA^,».. ̂ A^) 

is a split-group. 

If G = (G,A,j...5A ) is a split-groups, define G$ = (G„a .e) X n — ' n = 
where e ; G x fĵ  g is given by 

(1.2.9) xw^e = xa^ , i e {0,..,,n}5 

for all X E G. Conversely^ if is an Q^-group we use 

(1.2.9) to define endotnorphisms a^ of Gj which may easily be 

verified to have the properties (1.2.8)., and therefore, in this way, 

(.Ĝ Q̂ ê) defines a unique split-group (G, . Clearly 

is the identity mapping on the class of all split-groups of species 

n, and is the identity mapping in the class of all n̂ -groups', 

hence $ is one-to-one and onto on objects. 

If p : G ->• G is a morphisms then u ! G4> ^^ is a 
homoraorphism" for it is easy to verify that if a^, o^ are the 
splitting endomorphisms corresponding to G, G respectively, then 
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a^U » uo^, i e {O,...,!!}. Hencej from (1.2.9) 

(xw^e)M = xo^y » xya^ = (xy)w^| 

for all X e G. Conversely every y : is a morphlsm 

VI G -> G. If we put = y, then clearly $ is a functor. The 

rest of the theorem is proved by similar techniques which we omit. 

We may use I'efinition 1.2.2 to appeal to general results' for 

example the usual horaoBiorphism theorems apply for fJ^-groups j and 

therefore, via Theorem 1.2.7, for split-groups also. Because of the 

application we x^ish to malce^ and for convenience in simplifying 

notation in the calculations of Chapter 4, it is the split-group 

definition rather than the n^-group definition that vre use. In 

the sequel we shall suppress statements in the J2^-group formulation 

except if the comparison is of interest (for example we are led to 

different definitions of free objects)^ or if brevity can be 

obtained by appeal to more general results. 

1.3 Freeness of split-groups. 

Let Y,5...,Y be free groups of rank m,,...5m respectively^ i n i n 

on free generators {y^^ ; j ^ I'̂ il ~ ""i' ^̂ ^ suppose 

that the m^ are finite cardinals. Let 0(m^,...jm^) be the 

split-group defined as follows: the carrier is to be the free product 
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Y * . . . * Y , a n d 
1 n 

A j ( ^ ( m ^ , . . . ) ) = n o r m a l c l o s u r e o f Y . i n Y Y . 
- " 1 i n 

( 1 . 3 . 1 ) D e f i n i t i o n . T h e s p l i t - g r o u p ^ ( m - ^ , . . ;,in ) i s t h e 

a b s o l u t e l y s p l i t - f r e e s p l i t - g r o u p o f r a n k ( m . , . . . ) o n t h e 
i ' n 

s p l i t - f r e e g e n e r a t i n ^ g s e t { y ^ ^ i j e J ^ , 1 £ i < n } . 

T h e u s e o f t h e w o r d r a n k o b v i o u s l y n e e d s j u s t i f y i n g a n d w e t d . l l 

c o v e r t h i s i n L e m m a 1 . 3 . 6 . 

( 1 . 3 . 2 ) T h e o r e m . I f G i s a s p l i t ^ g r o u p o f s p e c i e s n t h e n 

e v e r y s e t o f m a p p i n g s i J ^ s { y ^ ^ ; j e J j . ) A ^ ( G ) c a n b e e x t e n d e d t o 

a m o r p h i s m y ; ^ ( m , , . . . , m ) -> G . 
J. n — 

P r o o f . S i n c e . . . i s a f r e e g r o u p w i t h t h e y ^ ^ ' s 

a s a f r e e g e n e r a t i n g s e t , c e r t a i n l y a g r o u p h o m o m o r p h i s m p , w h i c h 

e x t e n d s a l l e x i s t s ? t h a t . . . , m ^ ) ) y £ A ^ f o l l o w s f r o m 

t h e d e f i n i t i o n o f A . ( Q ( m , , . . . , m ) ) a n d t h e f a c t t h a t 

A ^ ( G ) j C v A ^ ( 0 ) , . . . , A ^ ( 0 ) > . 
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As in more general situations, we have the concept of relative 

freenessj and theorems characterizing it. 

(1.3.3) Definition. A split-group £ of species n is 

relatively split-free if it has a generating set {a^^ ; j e J^, 1 £ i ^^ 

with 1 a^^ e Huch that every set of mappings 

^i ° ^^ii ' ̂  ^ '̂ î  ^ extended to a marphism of G 

into G. Such a generating set is called a split-free generating set 

for G. If m^ = is called the rank of 

note that in this definition, some of the m^ may be zero? 

this would occur if A^(G) = 1. Invariance of the rank will be 

proved in Lemma 1.3.6. 

(1.3.4) Theorem. If G is relatively split-free, then G 

has a representation Q/^i where Q is absolutely free of the same 

rank as G, and ^ is a normal, fully invariant sub-split-group of 

0. Conversely, every such quotient split-group 0/^ is relatively 

split-free: if the rank of 0 is (m^^,... ̂ m^) , then that of 

is (m|,...,m^) where mj, = m^, unless in which 

case m^ = 0. 

Proof. Suppose that G is relatively split-free on the split-

free generating set {a^^ ? j e 1 <_ i j< n}. Let 0 = Q(m^,...,m^) 

where m^ = l^j^U ^ ^ {l,...5n}. Define the epimorphism X • ̂ ->• G by 
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and Theorem 1.3.2. Put S = kerXs then £ is a normal suh-split-group 

of ^ by (1.1.6). To show that _S is fully-invariant, let a be 

an arbitrary self-morphism of 0 and define the mapping 

3 : {a^^ : j e J^, 1 _< i £ n} -f G by 

By definition, 6 can be extended to a self-morphism of G. Since 

the restrictions of aX and Xg to the set {y^^ * j e J^j ^ i. ̂  £ ^^ 

of generators of ^ agree, aX = X3. Hence if s e S, 

saX = sX3 = 1, and so sa e kerX = S. 

In order to prove the converse, we need the following lemma, 

which was proposed to me by L.G. Kovacs. 

(1.3.5) Lemma. Let H be relatively split-free on the 

generating set h = {h^^ ° j e J^s 1 £ i £ n}. Let a ; H ->• K 

be an epimorphism such that A^(n) ^ 1 implies 'j' 1, and such 

that kera is fully invariant. Then a|h is one-to-one, and K 

is relatively split-free on ha. 
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Proof. Firsts a|h is one-to-one. For, if h a = h. a, 
Xj IX 

j =1= then h^^ = ^ij,*' * ^ kera. Define n s H H so that 

îj'̂  ~ ^ij' ^ia^ ~ ^ij ~ îj*̂  = xn e kera since kera is 

fully invariant. Hence {h^^ ; j e J^} £ kera, or A^(H) kera which 

implies A^(K) = 1. It follows that a|h is one-to-one. 

Second, H is split-free on ha. For, let 3 ; ha K 

be any map such that h^^g e A^(K). Define n ? H so that 

h^^n e h^^aga Consider the map a"^ria from K to the set of 

non-empty subsets of K. Observe that la'^na = (kera)na £ (kera)a = 1° 

that is la'^na = {1}. Also, if k = k^^k^ then ka"^ = (k^^a"^)•(k^a"^) 

in the usual multiplication of subsets of a group, and therefore 

ka ^na = ' (k2a~^na). 

Thus {1} = (k"^a"^na) • (ka'^nct) for all k e K showing that 

ka ^naj = 1. Hence a ^na is an endomorphism of K, and since it 

agrees on ha with 6, it is a morphism S K. 

We return to the proof of (1.3.4). Write for the 

absolutely split-free split-group of rank ( m ^ , . . . , where 

mĵ  = m^ unless in which case m^ = 0. Then there exists 

a natural morphism y = Q ^ Q* such that kery = \ Y^ : _< S)^. 
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If 6 s £ Q/^ is the natural morphism, define a - 0* Q/^ by 

yff = Yi^s 

where yj^, y^^ are split-free generators of Q* and Q respectively. 

Clearly 

ya = 6 . 

Now kera is fully invariant in Q*. for^ if 5 Q* 0* then 

there exists n : Q Q such that y^ = nY; and if q* e kera, 

there exists q e Q with qy = q*. Now qya = q*a = 1 = q6 which 

means q e S. Therefore 

q*Ca = (qyOa = (qnY)a = (qn)6 = 1 

since qn e S. That is, q*C e kera, and therefore kera is fully 

invariant. Also =|= 1 implies =)= 1 and so the conditions 

of the Lemma 1.3.5 are satisfied, and 0/^ has the asserted properties. 

(1.3.6) Lemma. The rank is an invariant of a relatively 

split-free split-group. 

Proof. Let G be relatively solit-free. If A^(G) =|= 1, then 

A^(G) G'. For, if a^^ is an element of a split-free generating 

set consider the self-morphism V s G ->• G such that a. .y = a. 
J J 



23. 

with all other split-free generators mapped to 1. Clearly G' < kery 

and a^j ^ kery. Now G carries a fully Invariant sub-split-group 

of G and the h3rpotheses of (1.3.5) are satisfied by the natural 

morphism a t G G/G•. Hence G/G' is relatively split-free of 

the same rank as G: and since each is a relatively free 

abelian group, its rank is invariant^ anJ therefore so is that of G. 

To finish off this section we mention that had oxie treated a 

split-group as an f^^-group as discussed in section 1.2, one would 

have been led to a smaller class of free split-groups 5 indeed we can 

make a distinction between 'free split-group' and 'split-free 

split-group' as indicated by the following theorem. 

(1.3.7) Theorem. Let (G^fl^je) be a free fi^-group in the 

variety of all f^^-groups, say one of rank k. Then ( C^f^^je)"!)'^ is 

an absolutely split-free split-group of species n, and rank (k5kj...5k) 

Proof. Write G = (GsJ^^.e)"^"^. Let {x^ ; j e J} be 

a free generating set for (GjQ^^e), |j| = k. Put 

z^j = i e {l,...,n}, j e J. 

Then, for each j e J, 
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It is clear, therefore, that (z^^ ; j e J^, ^ 1 i 1 n} is a generating 

set for G. Let H be an arbitrary split-group, = (HjfJ^^e*), 

and y^ : {z^^ t j e J^} a set of mappings. Define 

U : {x^ ; j e J} ->• by 

It follovjs that y can be extended to a hoinomorphism y ; 

and hence, by Theorem 1.2.7, that y : G H is a morphism. It 

is easy to verify that y does extend the y^: 

= ^ij^i • 

If we choose for H the split-free split-group of species n, 

^(k,...,k), define y as above from y^ ^ij ̂  ^ij ® 

^ ' E £ ^y ^ • y^j ^ij Theorem 1.3.2. we get that 

yv = 1_ and vy = 1,^, so G s k = 0(k,...,k). 
C> r. — — 
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1.4 Split-words 

(1«4.1) Definition. A split-word is an element of the 

absolutely split-free split-group Q(a),... ,00) , the definite 

species n being understood. We shall often write for a split-word 

q e p(w,... 5(0) 5 

q = ) 9 

or, more briefly still, 

q = 

to indicate the dependence of q on the variables y^^, though all 

those displayed may not occur explicitly. 

(1.4.2) Definition. Txr70 sets S^^^S^ of split-words of 

species n are super-equivalent if they have the same fully-invariant 

closure in the absolutely free split-group Q(a),...,w) of species n. 

(1.4.3) 'Station. T.je write ^ for 0(w,...,a))5 the 

absolutely free split-group of species n. 

We shall need a version of Theorem 33.45 from [3], To this end, 

note that the carrier of ^ is a free group of countably infinite 

rank on the free generating set {y_ j e Ĵ .̂ 1 i. 1 £ 
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Identify this carrier with X^ and {y^^ M e Ĵ ŝ ^ 1 i 1 with 

• ^ ® Ij^,...}, in the notation of section 3, Chapter of [3]. 

The deletions considered there are morphisms of and hence the 

argument leading to Theorem 33.45 can be transferred to We do 

not wish to repeat the elaborate forn.ili3in whlcli se«2T!i5 necessary to 

give rigorous meaning to the terms used in Theorem 33.451 intuitively, 

they may be described as follows. A split-word will be called special 

if it is equal to a product of powers of commutators whose 

entries are powers of the free generators y^^^, and which have the 

property that if a power of some y^^ occurs as an entry in one c^, 

then a power of y^^ occurs as an entry in each of 

Then Theorem 33.45 can be stated in our situation as follows. 

(1.4.4) Theorem. Each split-word is super-equivalent to a 

finite set of special split-words. 

(1.4.5) Definition. The split-verbal sub-split-group of a 

split-group £ of species n, determined by S ̂ r is the sub-

split-group S(G) whose carrier is the subgroup of G generated by 

the set 

{qa : q e S, a ; ̂  G}. 
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Note that, by definition, this set admits every self-morphisms of 

G hence so does the subgroup of G generated by it. In particular, 

this subgroup admits the splitting endomorphisms o^ of G and hence 

carries a sub-spllt~group; so Definition 1.4.5 is justified. 

^Toreover it follows that every split-verbal sub-spllt~group is fully 

invariant. As the carrier of S ( ^ ) is the least subgroup to contain 

the images of S under all self morphisms of the fully invariant 

closure of S in ^ must contain but as S(Q^) is fully 

invariant and contains S, it follows that the fully Invariant closure 

of S in ^^ is precisely S(^). 

(1.4.6) Theorem. If S £ ^ ^ then the fully invariant closure 

of S in ^ is 

(1.4.7) Definition. Tv/o sets S^^S^ of split words of the 

same species n are equivalent if they have the same normalized fully-

invariant closure in Q^. (It is easily seen that the normal closure 

qua subgroup of a sub-split-group is a sub-split-group: if U £ G, 
B S^i r u e U, g e G, then (u®)a^ = (uo^) £ U ). 

(1.4.8) Theorem. If S^jS^ are super-equivalent, they are 

equivalent. 
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(1.4.9) Theorem. TITO sets 8^582 of split-words of species n 

are equivalent if and only if the normalized split-verbal sub-split-groups 

they determine in every split-group of species n are equal. 

Proof. One way around is obvious. For the other, suppose 

that S^jS^ are equivalent, and let G be any split-group of species 

n. We must show that 

The following lemma is useful here. 

(1.4.10) Lemma. If S is a set of split-words, G a 

split-group and H a normal sub-split-group of G, then 

S(G/n) = S(G)N/N. 

Proof. Every morphism ^ ° G/H can be factored through 

G via the natural morphism \) i G ^/W, say a = 6v. 

Conversely every 6 : ̂  G can be continued to ct : ^ G/N by 

a = Bv. Hence S(G)v = S(G/W) which is what we wanted. 

and 

The proof of (1.4.9) runs as follows. First note that if S Q^ 

« • ^(^n^^ - hence, with E = G/W, we have 
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S^(H) = 1 < i .{kera ? a ; ̂  h} 

Q 

t Si (0 ) " < ̂  Ukera , a ; 0 lO 

t S2(H) = 1 . 

It follovrs that Sj^(G) £ 82(0)'^ (putting N - and therefore 

that < S^CG)^. In a similar way, S^CG)^ < 

and this completes the proof. 

Theorem 1.4.6 can be stated in a more familiar form for all 

relatively split-free split-groups as follows. 

(1.4.11) Theorem. A sub-split-group of a relatively split-free 

split-group is fully invariant if and only if it is split-verbal. 

Proof. Given a relatively split-free generating set of G and 

an element h e H £ G then there exists a finite subset T of that 

generating set such tlvat h e <T>. There exists a finite subset T' 

of a free generating set of ^ and a one-to-one map u ° T' T 

which extends to y* : 0 ->• G. 
-n — 

î ow <T'>y* = < T > : hence there exists q e<T'> with 

qy* = h. Given a ' Q^ ->• G let 6 G G be an extension of 
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y ^a ; T G. Then as y* 3 and a agree on T', they agree on 

hence, in particular, qa = qy*e = h6 e H if H is fully invariant. 

This proves that fully invariant sub split-groups of G are ST)lit varbal 

and the converse is true in any split-group. 

(1.4.12) Theorem. There is one-to-one correspondence betT/een 

Q 
the (normalized) fully invariant sub-split-groups of 0 /S(0 ) and the 

-n Q 

(normalized) fully invariant sub-split-groups of Q^ containing S ( ^ ) 

Proof. This proof is an easy application of the last theorem. 

(1.4.13) Lemma. If ^ is a normal sub-split-group 
of 0 ,, then S(G) is normal in G for all G of species n. 

Proof. It is sufficient to show that (qa)^ e S(G) whenever 

q e S, a : G, g e G. The proof is similar to that of '(1.4.11) j 

there exists ot* ; ̂  ^ G, 'g e such that qa* = qa, ga* = g, so 

that 

(qa)S = (qa*)^"* = e S(G) 

since S <3 0 . 
n̂ 

Examples of sub-split-groups which are not normal are easy to find, 

for example each A^(G) is split-verbal, but of course not necessarily 

normal, in 
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1.5 Spllt-varletles 

(1.5.1) Definition. If S Q^, the class of all split-groups 

G of species n such that S(G) = 1 is the variety of split-groups 

(or, briefly, the split-variety) determined by S. 

(1.5.2) Theorem. Equivalent sets of split-v/ords determine the 

same split-variety. 

Proof. If S^jS^ are equivalent, then, by Theorem 1.4.9, for 

any G, S^(G) = 1 if and only if = 1 that is :3^(G) = 1 

if and only if 8^(0) = 1. 

From this theorem it follows that, in defining split-varieties, 

we need only consider sets of split-words S which are normal, fully 

invariant sub-split-groups of ^ ^ since every sub-set of Q^ is 

equivalent, by definition, to its normalized fully invariant closure. 

The normalized fully invariant closure of S is denoted by cl S. 

(1.5.3) Definition. If ^ is a normal, fully invariant sub-

split-group of the split -variety determined by S will be denoted 

by S. 
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(1.5.4) Theorem. The correspondence ^ S between normal, 

fully invariant sub-split-groups ^ of ^ and the varieties S of 

aplit-groups of species n is one-to-one and reverses Inclusions. 

Proof. Suppose normal and fully invariant in Q^ 

and Sĵ ''̂  S^j then by Lemma 1.4.10 

and so ^^ = S^C^^) ^^ follows that if S^ = $25 then ^^ = £2* 

It is clear that a split-variety is closed under the operations 

of forming sub-split-groups 3 quotient split-groups and cartesian 

products of split-groups. The converse of this is also true on 

account of Theorem 1.2.7, and Birkhoff's corresponding result for 

varieties of universal algebras. We omit the details of proof. 

(1.5.5) Theorem. A class of split-groups is closed under the 

operations of forming sub-split groups, quotient split-groups and 

cartesian products of split-groups if and only if it is a split-variety. 

(1.5.6) Definition. A split-xwrd q ^ is a split-lav 

in G if {q}(G) = 1- simply written, q(G) = 1. If S is a split-

variety determined by the normal, fully invarient sub-split-group 

^ of then the elements of ^ are called the split-laxi7s of S. 
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(1.5.7) Definition. Given a split-variety S and a n-triple 

m - such that iti. = 0 if y^, e S. we call 
i n i ' 

^(m)/S(2(m)) the split-free split-group F^(S) of rank m of S. 

By Theorem 1.3.4 S) is relatively split-free of rank m and 

lies in S. Horeover, 

(1.5.8) Theorem. Every mapping of a split-free generating 

set of into a split-group G e S can be extended to a 

morphism. 

Proof. Let z = {z^^ : j e J^, 1 1 i 1 be a split-free 

generating set for Q(m) then if v ; ̂ (m) ->• F (S) is the natural 

morphism, • j e J^? 1 £ i £ n} = zv is a split-free generating 

set of P (S). Supoose 6 i zv G e S such that z..v3 e A,(G). 
' ^ ij i — 

Then v B ; z -> G extends to a morphism 6 : Since 

0(m)6 1 G e S it follows easily that ker6 S(Q(m)). Hence 6 can 

be factored through v , say 6 = vy and by definition, 

(zv)6 = (zv)B; Y is the extension of 3 . This completes the proof. 

Theorem 1.3.4 yields, 

(1.5.9) Theorem. Every relatively split-free split-group is 

split-free in some S. 
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Finally in this section we note the following results. Imagine 

^(m,,... ,m ) , where m^,... sin are all countable at most, XI X n 

embedded in Q^ in a natural way; then 

(1.5.10) Theorem. If S is a fully-invariant sub-split-group 

of then ^(ra) = ^ n is fully-invariant in ^(m), and 

S(m) = S(Q(m)), 

and = ^(m). 

Proof. Clearly S (Q(m)) _< Q (m) ^̂  ̂  = ^(m) . Conversely, 

if q e ̂ (m) ^ and a is a self-morphism of ^ which maps 

^(m) identically and every thing else to 1, then 

q = qa e S(^(in)) which gives us the opposite inequality. 

For the second part we have 

= (S r, < Q(m) 

= S (Q(m)); by the first part, 

again by the first part. 
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(1.5.11) Defj.nition. The split-variety generated by a set 

{G^ ; i e 1} of split-groups of the same species n is the smallest 

split-variety of species n which contains all G^; equivalently, the 

split-variety generated by {G^ ; i e 1} is the class of split-groups 

satisfying the split-laws which hold in all G,. We denote this 
—1 

split-variety by svar({G^ s i e I}). 

(1.5.12) Definition. The join of two split-varieties 

S,T of the same species is the split-variety generated by the set 

^ ^ ° ^ S or G^ e T}, the intersection of S^T is the class 

intersection of S^T. We denote join and intersection by S ^ T 

and S ̂  T respectively. 

(1.5.13) Theorem. The laws of S T, S ̂  T are £ r, T and 

S^(«ST) respectively. 

Proof. The proof follô r̂s easily from the definitions and we 

omit it. 

(1.5.14) Theorem. A split variety S is generated by its 

finitely generated split-groups. 
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Proof. If T is the sub=-split-variety generated by the finitely 

generated split-groups of S^ let q be a split-law of T, and 

K e S, ct ; ̂  H. As previously, we may suppose that oi acts 

non-trivially on only finitely many free generators y , so that 
J 

^ a j< H is finitely generated, and therefore qa = 1. 

1.6 Examples of split-varieties. 

Let S b e a split-variety of species n, and for each i 

consider the variety of groups V^ = var({A^ 0) ; G e S}). It is 

clear then, that G e S implies G e Yj^Y^ ... V^. Conversely suppose 

that V.,...,V are varieties of groups, and that W c. V^V^ ... V . =1» '=n a f s _ _ -1-2 

Consider the class Ha obtained in the following way: 

!J0 = : G e W, A^ e V^., 1 _< i £ n } . 

Clearly Wa is a split-variety since it is closed under taking sub-

split-groups, quotient split-groups, and cartesian products:, note that 

Wa depends on Yj^f-fY^ well as on W. 

(1.6.1) Definition. Denote by Y^ o V^ o ... o V^ the 

split-variety (V,V- ... V )a. 
=1=^ =n 

(1.6.2) Theoren. To each split-variety of species n there 

corresponds a unique 'smallest' product variety ''' -n ^^^^ 

G e S implies G e V^V^ ... V^ . 
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Conversely, there Is a meet-homomorphism a from the lattice of 

subvarietles of ^ to the lattice of sub-split-varieties of 

Ml 0 ••• 0 If H ••• =n' split-laws of Wa 

are determined by 

V,(Y.), 1 < i < n and W(0 ) 
1 1 — — n 

(where Y^* ... * Y^ is the carrier of . The split-free-group 

of rank (m^,...,m ) of V o ... o V is carried by the iterated 
J. n =1 =n ^ 

verbal wreath product X^^, defined inductively by 

X = F (V ), 
n m ' 

n 

i =i 

(where, as in (1.5.7), we choose m^ = 0 if y^^ e V^(Y^)). 

Proof. To see that a is a meet-homomorphisnij proceed 

as follows. Let W , b e subvarieties of V.V, ... V ' at once 
= 1 = 2 =1=2 =n 

we have 

For the converse, suppose G e W^o^ W^a, and then G £ 

so that G e (W, -
— =1 
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Now the split-laws of V, o ... o V are determined by V (Y ), =1 =n 1 1 

i = l,...sn since a split-group G belongs to V^ o ... o V^ if 

and only if it has these split-laws. The split-free split-group of 

ran!: m in o • • • o ^ is, by definition^ Q(m)/S(^(in)) where 

If S^ = ' S(2(m)) is the normal closure in 0(m) 

of all S.(Q(m)). We construct F (V̂  o .,. o V ) by successively i — > m =1 =n 

factoring out of ])(m), the normal closures of the S^(Q(m)). Write 

^(m) = ^^ usual notation? and at the first stage; since 

" J b e 82) 

(where Y^ * ... - Y^ is the carrier of 0(m)), and since = 

V ^ A ^ ) , i<re get 

A,/V,(A,) 3= (V.) : b e B_})/V, (V.) ; b e B,}) 1 1 1 m̂ ^ =1 m^ =1 z 

= (V.) ; b e B,} =1 m̂ ^ =1 z 

(see 18.22, 18.23, 18.31 in [3]). Hence 

= F^ (V^)wr^ (n*{Y^ ^ 2 < i < n}) . 
' 1 ~ = 1 

Using Theorem 1.4.12 and well knoT-m properties of verbal wreath products, 

we arrive by induction, at the assertion of the theorem. 
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Finally5 Introduce the free group X^ on the free generating set 

{xj : j = IjZ,...}, and the homomorphism v < X^ Q^ defined by 

x^v = Yijypj ••• ynj' ^ ^ {1^2,...}. 

Then it can be proved by standard tricks that T = is the 

normalized fully invariant closure of Wv in 0^. If 

G e T . V, 0 ... 0 V , w e W and B i X -»• G. define a ; 0 G so — , =1 =n ^ 00 ' _ 
that 

ŷ jOt = 1 i _< n, j e {1,2,...} 

where ^ ® • • • » ^^j ^ ̂ ^̂  then va = 6 and 

w6 = (wv)a = 1 

since wv e T and G e T. We conclude that G e W and therefore 

that G e Wa ° hence T ̂  V^ o ... o E • opposite direction 

is proved in a similar manner. 

Mhether or not o is a join-homomorphism I have been unable to 

establish. The mapping a is in general, neither one-to-one nor 

onto, as the following examples show. 

(1.6.3) Example. Tlie mapping a is in general not onto. 



40. 

Consider any product variety UV and the bivariety 

B = {(G,A,B) ; G = A X B, A e U, B e V}, 

and let 

B* = {G e yv : G = A X B, A e U, B e V}. 

How B" may not be a variety (if it were then clearly B*a = B), 

but in any event a is onto only if (var B*)a = B. We construct 

here an example where this is not the case. As var B* 3 U ^ V it 

suffices to produce y,V such that there exists K e U 0 V with 

K e U ^ V but K ^ B. Put G^^^G^sG^ for the follox^ing groupst 

G^ non-abelian, exponent 3, order 27' G^ non-abelian, exponent 9, 

order 273 G^ cyclic, order and put U = var G^, V = var Gj^. 

Then it is well-known that G^ e U ^ V, G^ ^ U, G^ ^ V. As 

G^ is a split-extension of G^ by a cycle of order 3, it cirrias a 

bigroup G^ e y 0 V and therefore ^ ^ However, 

G^ ^ B for G^ has no proper direct decomposition (since all proper 

subgroups of G^ are abelian while G^ is not). 

(1.6.4) Example. The mapping a is in general not one-to-

one. 
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Put U = V » A t > 0, W » A t _< u _< 2t. Then 

" U ^ 1 (1.7.1)), for all such u. Other, much less trivial, 

examples of both situations xrill occur later, in Chapter 5. 

(1.6.5) Remark. In tackling the descending chain condition 

on subvarieties of the product varieties UV it would be sufficient 

to shoi7 that 

i) y 0 V has descending chain condition on sub-split-varieties 

and ii) for each UV, ('!|cy)a"̂  has descending chain condition. 

It is in situations like this that split-varieties may prove useful. 

1.7 Products of split-varieties. 

The last section leads us naturally to ask for a product operation 

on split-varieties similar to that on varieties of groups. Unfortunately 

it doesn't seem possible to do this inside the variety of all split-groups 

of the same species. However we can make the following definition, 

and this suits our purposes later on. 

(1.7.1) Definition. If S5T are split-varieties of species 

mjn respectively, then S 0 T is the split-variety of species m+n, 

S o T = {G : ... Aj^(G) e S, A^i(£) ... e T}. 

Also define 

S X T = , G e S 0 T : G = A, (G) ... A (G) x (G) ... A_^(G)) — ^ i — m — m+i — m+n — 
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That S 0 T and S x T are split-varieties follov7s from their 

closure under taking sub-split-groups, quotients split-groups and 

cartesian products of split-groups. Tha split-laws of S o T 

are now described. First some terminology. 

If m^n are natural numbers.; imagine embedded in ^ ^ 

in the natural viayi if Y * ... * Y ̂  is the carrier of 0 i m+n -^n 
then 0 , for example, is the sub-split-group carried by Y, * ... Y . ^^ 1 m 
Define a -̂ roup endomorphism of say x, by 

^ij^ " yi+mj-' 1 1 i 1 ^ E {1,2,...} 

y^^T = 1 , n + lj<i, je {1,2,...}, 

where {y_ ; j = 1,2,...} freely generates Y^. With this much 
convention we can now state 

(1.7.2) Theorem. Tlie split-laws of S o T, where S,T 

are of species M,n resepctively, are CI(S.^TT) = U, and 

Proof. If G e U, q e S and a ? 0 A, (G) ... A (G) ~ -Til 1 — m — 

then there exists B i ̂ ^ G such that = a' then 

qa = qS = 1 
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whence A. (G) ... A ( G ) e S. If r e T, and y % 0 B (G) then m ^ -aju HI — 

there exists 6 j ̂ ^ G such that T6 = YP and SO 

ry = ( rT)6 = 1 

since rx e TT. TJe have shown, therefore, that G e S o T . A 

similar proofdeals with the opposite direction and thus U = S o T. 

To conclude the proofs note that C 1 ( S „ T T ) = ( C 1 S ) ( C 1 T T ) . 

How observe that it is iramaterial wLether we regard S as being of 

species m+n, and calculate SC^^^^), or of species TOJ and 

calculate ... ^'^(jO^^^)) we get the same result in either 

case. Moreover S C ^ ^ ) is normal in it is certainly normal 

^^ ^ i ^ ^ - i ^ W ' n̂  + l l i l m + n, 

then a^ induces a self-morphisra of A^(Qjj^j^) ••• "^m^^m+n^ which is 

therefore admitted by Also C I T T = T This 

finishes the proof. 

( 1.7.3) Theorem. Ŝ ^ ̂  S^ if and only if S^ o T c. S^ o T 

and S 0 T^ ^ S o T2 if and only if T^ E'^i' product 'o' 

is associative. 

The proof of this is completely trivial and v;e omit it. Tlie 

product v/e have defined is very similar in its properties, to the 

product defined for varieties of groups. We note one other result in 

this direction. 
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( 1 . 7 , 4 ) Theorem. i ) (S^ S2) o T = S^ o T ^ S^ o T; 

i i ) ° ? ' ° A ° 

i i i ) ? ° A " ? ° ? 1 A ? 0 

By c o n t r a s t i v ) S 0 (T^ ^ T^) ^ S 0 T^ ^ S 0 T , , 

and the i n c l u s i o n may be p r o p e r . 

P r o o f . I f T^ i s the v a r i e t y of a l l s p l i t - g r o u p s of s p e c i e s n, 

t h e f i r s t a s s e r t i o n f o r T = T^ i s e q u i v a l e n t to 

W r i t e ^ = Then, as noted i n the p r o o f of ( 1 . 7 . 2 ) , S^(Q) = 

Sj^(A^(Q) A^(Q)). We show t h a t A^(Q) . . . i s i s o m o r p h i c 

qua s p l i t - g r o u p , to F o r , put 

Y^ = H M y J : b e Q ) } , 1 < i < m, 

and i t i s e a s y t o v e r i f y , t h a t i , ( Q ) . . . A (Q) = Y * . . . * Y , 
i — m — 1 m 

and t h a t A . (Q) i s t h e n o r m a l c l o s u r e of Y^ i n Y^ ,Y . 
1 i i ' m 

Hence ( i ) i s t r u e f o r T = T . 

I f G, G , . G , a r e the s p l i t — f r e e s p l i t — g r o u p s of 

^2^ ° ^ "^o' ^ 2 ° r e s p e c t i v e l y , then G can be 

embedded i n G^ x G^ a c c o r d i n g to the monomorphism y » G ->• G^ x g^ 

d e f i n e d b y 



45. 

n S^CO))^ = (qS^(Q), qS^CQ)), q e 

V S . G Now TT(G^ X G^) V GY = TT(G) for, if (xS^(Q), YS^C^)) e 

TT(GJ^ X G^) Gy then there exists q e Q such that qS^ = 

xS^, qS^ = yS^. and with q e TT(0)Q, Hence ^^ S^C^)) £ TT(G)^ 

x^hence (xS^( e TT(£)%, It follows that G/TT(G)^ is 
G G 

embedded monoraorphically in G^/TT (Ĝ )̂ X G^/TTCG^ . This shows 

that 

' ?1 ° T - 5i ° IV' ° 

and as the opposite inclusion is trivial, this completes the proof 

of (i). The rest are easy' the only non-trivial thing is to show 

that the inclusion (iv) may be proper. In fact the familiar example 

which establishes this for products of varieties of groups can be 

interpreted to settle this (21,25 in [3]) -

Any bigroup in A o A^ ^ A o A^ has the bilaw 

(1.7.5) iyivyzvylz^yy • 

Consider the bigroup G e A o A^ defined as a 7-cycle Â ^ = '(a / split 

by its automorphism of order 6, <(b) = A^ say> with G = (A^A^.A^,A^). 

Wow A^ is represented fixed point free on and so 

[a,b,b2,b3] :|= 1 , 
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showing that the split-word (1,7.5) is not a split-law of G. This 

completes the proof of the theorem. 

Hote that Definition 1.6.1 is in accord with our definition of 

product, provided that we interpret a variety of groups as a variety of 

split-groups of species 1. 



47. 

CHAPTEn 2, 

tlSCELLANEOUS RESULTS 

In this brief chapter we record some general results about split-

varieties, results related to the lattice of split-varieties» and then 

introduce the bivarieties with which the remainder of this thesis is 

principally concerned. 

2.1 Lattices of split-varieties. 

(2.1.1) Theorem. The split-varieties of the same species n 

form a modular lattice with respect to (the inclxision order and) the 

U join and intersection defined in (1.5.15). 

Proof. By virtue ofC 1.5.4) and (1.5.13) it is sufficient to 

show that the normal, fully invariant sub-split-groups of ^ form a 

modular lattice with respect to the inclusion order. This is clear, since 

if ^jT are normal and fully invariant in ^ s ^ n 1 and ST are also, 

and therefore the normal, fully invariant sub-split-groups form a sublattice 

of the modular lattice of the normal subgroups of Q^. 

Because of this modularity, many results which are essentially 

lattice-theoretic can be taken over to our situation- all here are 

quoted T̂ rithout proof. The first is well-known, particularly as a 

statement about varieties of groups. 
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(2.1.2) Theorem. If S is a split-variety which has a finite 

basis for its split-laws, then every sub-split-variety of S has a 

finite basis if and only if every descending chain of sub-split-

varieties of S breaks off. 

Of course if there existed an infinite descending chain, ^ V^ 

say, of varieties of groups^ then we could trivially construct an 

infinite descending chain of split-varieties of arbitrary species 

i^i ° ? - ° 5 • • • where S is any split-variety). 

The second result noted here I first proved for varieties of 

groups (see 16.25 in [3]). It is however a much older result about 

modular lattices, due to Pickert [22]. 

(2.1.3) Theorem. If S,T are split-varieties of the same 

species, each of which has descending chain condition on sub-split-

varieties, then S v T does also. 
»» 

By entirely similar methods one also proves 

(2.1.4) Theorem. A split-variety S has descending chain 

condition on sub-split-varieties if and only if there exists 
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S ^ S such that S^ has desceiiding chain condition on sub-split-

varieties» and also all descending chains between S and S break 

off. 

2.2 The bivariety A o A 

From now on we v/ill almost exclusively be concerned with varieties 

of bigroups ('^ivarieties) ̂  mostly^ indeed, with subvarieties of A o A. 

It is convenient to modify our notation to suit this situation. Thus 

we shall droo double subscripts and write Y for the carrier of the ^ m n 

absolutely split-free bigroup of rank (m^n), with split-free generating 

set {y^ ! i e I, |l| = m},, {z^ i j e J^ |j| - n}. 

We now restate several results for the case of bivarieties, 

all of them cases of Theorem 1.4.4. 

( 2.2.1) Theorem. If q is a biword, then q is equivalent 

to a set U , V u S of special biwords^ where U ,V are contained 
0 0 0 0 

in Y , Z respectively and where each element of S is a product of 
(Jj ^ ' 

powers of commutators, each of which involves at least one y^ and at 

least one z^ C 4nd the entries of each are powers of the y^ and z^). 

Iloreover if V^jV^ are the varieties of groups determined by the laws 

U ,V respectively, then V, o V^ is the bivariety corresponding 
o' 0 ^ ^ =1 

to the bivariety determined by q, by Theorem 1.6.2. 
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(2.2.2) Corollary. Each sub~bivariety of A o V is determined 

by the bilaws of A o V together with a set {y™} ,, V S of special 

biwords where m ^ V ^ Z^ - V, and each element of S is a 

product of powers of commutators of the type [y^^^w^,... , with 

each Wj^ a commutator whose entries are powers of the z^ but which 

does not lie in cl(V u V), 

Proof. If T £ A 0 V, then by (1.6.2), T o A o V , m > 0, 
- ~ ~ ^ — =m = — 

V' ^ V; and if this m is chosen minimal, {yp[yj^5y2]} is a basis for 

the laws of all A^(G), G e T, as noted in (2.2.1). If V' is 

chosen minimalj then write V for a set of special biwords which 

determine V modulo V. 

By (2.2.1) we are left with considering 'genuine' commutator 

bix/ords in T, call one t say. Then t is a product of powers of 

commutators whose entries are powers of the y^ and z^. We may 

assume that each commutator in this product involves only y^ raised to 

a power, and no other y^'s., since [y^,y2] is a bilaw in A o V. 

This power of y^ may be moved to the front of each commutator so that 

we have t expressed as a product of powers of commutators of the form 

as required. 
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(2.2.3) Corollary. Every sub-bivariety of A o A is 

determined by the bilaws of A o A together with a set {ŷ jz'ĵ } , .. S 

of special bilaws, where m,n 0 and where- every element s e S is 

a product of powers of commutators of the type. 

X, X 
r 1 IVli^l s-.-jZ^ J 

where r depends only on s, and are all non-zero, and 

Xj < n if n 0, j e {lj...sr}. 

Proof. From (2.2.2) we have that every element s e S can 

be written as a product of powers of commutators of the type 

t^here a^ + 0 and where } = {l,...,r}. 
1 u " 

If, for example, i^ = i^ then since 

[yijz. Jiyi^z. J [yi,z ] = [yi,z ,z ], 

X iĵ  X 1 X2 1 I2 

we may replace this product by one of the desired type. That the 

z's can be rearranged into increasing order of their subscripts 

follows since, modulo the bilaws of A 0 A, y^ is in the centralizer 

of the derived group of a metabelian group. 

(2.2.4) Corollary. Every sub-bivariety of A 0 A is determined 

by the bilaws of A 0 A together x^ith a set T of 

special bilaws, where m.n ^ 0 and where every element of T is a 

product of powers of commutators of the type 
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with natural numbers and = moreover, if 

n > 0 then û ^ < n and ê ^ = 1, i e r}. 

Proof. Use (2.2.3) and the commutator identity 

V 
= n [x^yy] 

M=1 

Finally, in this chapter, a result of a completely different 

character. Note that the bivariety A o A consist of bigroups which 

are metabelian qui groups. One of the nice features of such groups, 

from a varietal standpoint, is that finitely generated ones are 

residually finite ([8]), and therefore every subvariety of M is 

generated by finite groups. We implicitly adapt this very deep result 

of Philip Hall to our situation, in the next theorem. 

(2.2.5) Theorem. A bigroup G is residually finite qu^ 

bigroup if G is residually finite. Consequently every sub-bivariety 

of A 0 A is generated by finite bigroups. 

Proof. Let 1 =j= g e G. There exists a normal subgroup N 

of G with g ^ N and |G:N| finite. Write 

A^(G) , , iJ - A|S A^ (G) ̂  = A^ , 
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and then A^(G) s AJ = and |a^(0);A*| = |A2(G)N:N| are 

both finite. Hence 

G ; A*A*| < |A^(G) ; A*|.|A2(G) ; A*\ 

is finite. Finally put N* = and then A*A* £ N* £ N 

so that N* is normal^ of finite index and avoids g, and it carries 

a sub-bigroup of G, so we are home. 



54. 

CHAPTER 3. 

CRITICAL BIGROUPS IN A o A 
ss = 

In this chapter we define ciritical split—groups by analogy with 

critical groups, deduce some elementary facts about them; and then turn 

our attention to the structure of certain critical bigroups in A o A. 

3.1 Critical split-groups 

(3.1.1) Definition. A finite split-group is critical if it is not 

in the split-variety generated by its proper sub-split-groups and proper 

quotient split-groups. 

Clearly we have 

(3.1.2) Theorem. If G is a split-group and G is a critical 

group, then G is critical. 

(3.1.3) Theorem. A critical split-group G has a unique 

minimal normal sub-split-group. 

Proof. If not, then there exist non-trivial normal sub-split-

groups of G with N^ = Ir. and then G can be embedded 

in G/W^ X G/N^ in the usual way. 
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An example of the situation in Theorem 3.1.2 occurs with G = S^y 

the summetric group of permutations on three letters, A^(G) the 

normal 3-cycle and A^CG) any 2-cycle. However the converse of 

(3.1.2) is not true J a critical split-group need not be a critical 

group. An example of this is the bigroup G carried by the x-nreath 

product G = CpWr(Cp x c^) in the natural way: A^(G) is the base group 

of G and A^(G) = C x C . 2 — p p 

Clearly a split-group which is monolithic as a group has a unique, 

minimal normal sub-split-group. In certain cases the converse is true: 

(3.1.4) Lemma. If G is a bigroup which has a unique minimal 

normal sub-bigroup, and A^(G) is abelian, then G is monolithic. 

Proof. Suppose that 1 4 N is a normal subgroup of G. If 

N A A^(G) > 1 then we are finished since N A^(G) carries a normal 

sub-bigroup of G. Hence suppose that N A^(G) = 1; then as 

A^(G) < G we have that N £ Cg(A^(G)) and therefore that 

Cg(A^(G)) > A^(G). It follows that 1 < Cg(A^(G)) A2(G) <3 G. 

Hence we have a contradiction unless A^(G) = in which case the 

theorem is trivially true. 

In the bivariety A o A the conditions of (3.1.4) are certainly 

satisfied. In such cases we shall use 'monolithic' for brevity, and 

denote the monolith of G by aG. Note that the carrier of oG is oG. 
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(3.1.5) Lemma. If a split-variety S is generated by finite 

split-groups then it is generated by critical split-groups. 

Proof. Let S^ be the sub-split-variety of S generated by the 

critical split-groups in S. If S^ d S, then there exists a finite 

G e S - which V7e may suppose to have minimal order. Every proper 

sub-split-group and every proper quotient split-group of G then 

lies in S^, but G does not. This means that G is critical. 

We have thus produced a contradiction and hence S = S. 

(3.1.6) Lemma (cf. Theorem 4 in [9]). If G is a critical 

bigroup and A^(G) is abelian, then A^(G) contains a unique maximal 

normal Gubgroup of G. 

Proof. If NJ^JIT^ are maximal normal subgroups of G in A^(G), 

then Nĵ Â s, N^A^ carry sub-bigroups of G (writing A^ = G), i = 1,2) 

We shall show that G e svar{N^,A2, N2A2}. Suppose that q is a bilaw 

in both N^A2 and Since = A^ and since A2(Nj^A2) = A^, 

we may suppose, by virtue of (2.2.2), that q is a product of 

commutators of the form 

r 1+1 
• • • 

for some words e - Let a 0,2 ^ - arbitrary 

morphism. We write y^a = ^ ^2 ^ '̂ 2 necessarily 



57. 

uniquely). Define a^ : Q^ N^A^, j = 1,2, by 

= z^a, j = 1,2, i e {1,2,...}. 

Then = ... = ... . 

^^ " (qai)(qa2) = showing that q 

is a bilaw in G. This completes the proof. 

Finally in this section an analogue of the well-known fact that 

critical groups which are nilpotent, are p-groups. 

(3.1.7) Theorem. If G is a finite monolithic split-group 

and G is nilpotent, then for some prime p, G is a p-group. 

Proof. If G is nilpotent and finite, its Sylow subgroups are 

fully invariant, hence carry normal sub-split-groups whose pair-vjise 

intersections are trivial, so G cannot be monolithic unless G has 

only one Sylow subgroup. 

Note that 'nilpotent' as used here is a concept related to 

varieties of groups. As previously, we may give it a split-varietal 

flavour, if that is thought necessary, by saying that a split-group of 

species n is nilpotent if it has the split-law. 

for some natural number c. 
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3.2 Non-nilpotent critical blgroups in A o A . 

Throughout the remainder of this chapter G = (G,AjB) will 

be a critical, non-nilpotent blgroup contained in A o A» the notation 

introduced in Theorem 3.2.1 will also be carried through. 

(3.2.1) Theorem. If G = (G,A,B) e A o A is critical and 

not nllpotent, then 

i) A is a p-group, for some prime p, it is self-centralizing 

in G, and is the derived group G^^) ~ G. 

If B = H X K where H is the Sylow p-subgroup of B, then 

11) F = AH is the centralizer of the monolith aG of G, and 

F is the Fitting subgroup of G, 

ill) K is a p'-cycle which acts faithfully and irreducibly 

on aG. 

Moreover 

iv) Every non-trivial element of K acts fixed point free on A, 

and 

v) IC acts faithfully and irreducibly on A/N 

where 

vl) N = A^[A,H] is the unique maximal G-normal subgroup of A. 
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Proof. Since G is critical it has a unique minimal normal 

sub-bigroup oG whose carrier, by Leirana 3.1.4, is the monolith oG 

of G. 

If A were not a p-group, we could write it as a direct product 

of Sylow subgroups, each of which, being characteristic in A would 

be normal in G, contradicting the monolithicity of G; hence A is 

a p-group for some prime p. If A were not self-centralizing, then 

A < Cg(A) would imply 1 < Cg(A) n B <3 G, again contradicting the 

monolithicity of G. 

Since B is abelian, G' £ A; and since G is not nilpotent, 

there exists an integer t such that 

^ + ^(t) = ^(t+1) = ••• 

By a result of Schenlcman [1], G splits over (̂(.̂ s say 

Therefore A = G, ..(A n B )- but A n B is normal in B since A (t) ^ o' 0 0 
is normal in G, A. n B is normal in A since A is abelian! hence ' 0 
A r\ B is normal in G, and so A n B = 1 because G is monolithic 

0 0 

and A n B avoids G.^v. That is, 0 (t; 

A 1 1 G' £ A, 

or G' = A. This disposes of (i). 
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We can describe aG more exactly; if F has class c precisely, 

and if F^^^ has exponent p^, then 

r-1 
(3.2.2) aG = F^^^ = {z e Z(F) ; z^ = 1}. 

r-1 

For, 1 + F^^^ is characteristic in F and therefore normal in G, 

r-1 so aG £ F^^^ . If this inclusion were proper then, by Haschke's Theorem, 
r-1 

aG would liave a non-trivial, K-admissible complement in F^^^ which, 

being in the centre of F, would be normal in G, a contradiction. A 

similar argument proves the remainder of (3.2.2). 

The same argument can be used to prove that K acts irreducibly on 

aG. We shall now show not just that K acts faithfully on aG, but 

that every non-trivial element of K acts fixed point free on A. To 

this end suppose that there exists 1 =j= k e K and 1 =|= x e A such that 

k 

X = X. 

If we ^^ite 

A = {a G A s â ^ = a}, 

then A is a non-trivial normal subgroup of G in A and, by a well-known 

result of representation theory (for example, Lemma, p.455 in [2]), A 
S S3 has a B-admissible complement A in A. But then A is normal in G 
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since A is abelian, and therefore A = 1 since G is monolithic; that is 

A = A. In this case <k> is central in G, contradicting the 

existence of a monolith in G. It follows that, if 1 =j= Ic e K, then 

k fixes no non-trivial element of A. Thus F is the centralizer of 

aG, K acts faithfully (and irreducibly) on aG and so K is cyclic, 

and F is the Fitting subgroup of G. This completes the proof of 

(ii), (iii), (iv). 

By Lemma 3.1.6 there exists a unique maximal normal subgroup of 

G contained in A: call it N. Hence aP[A,H] _< N since both 

A^ and [A,H] = F' are proper subgroups of A and both are normal 

in G. If the inclusion is proper, then ,H] has a non-trivial 

K-admissible complement T/A^[A,H] say, in A/A^[A,H]. But then T 

is normal in G and T is not contained in N, a contradiction to 

3.1.6. 

To finish the proof of the theorem we have to show that K acts 

faithfully on A/N, and to do this we use the following lemma which 

will be useful later on as well. 

(3.2.3) Lemma. If G = (G,A,B) is as in (3.2.1) and 

1 =1= k e K, then tlie mapping a x A A defined by 0 

aa = 

is an automorrihism of A which extends to an automorphism of G. 
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Proof. Define a on the whole of G by 

(ba)a = b e B, a e A. 

This is an endomorphism since 

b b 

and a is an automorphism since G is finite and bCa,!:^] = 1 implies 

b = 1 and = 1, which from (iv), gives a = 1. 

Finally note that if a e A, k^ e K and [a,k^] e N, then, since 

N is characteristic in G, N admits the inverse of the automorphism 

a corresponding to k^ in (3.2.3); that is 

a = [a,k^]a"^ e N. 

Hence K acts faithfully on A/N. The proof of Theorem 3.2.1 is now 

complete. 

The following two lemmas are important in the proof of the 

crucial Theorem 3.4.4 below. 
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(3.2.4) Lemma. If G = (G,A,B) is as in (3.2.1) with 

k| = r, and e A such that, for all k e K 

r-1 
(3.2.5) n [a ,ik] = 1, 

i=o 

then a a = 1. 
0 r - 1 

Proof. Put k = 1 and then a^ = 1; we may suppose, therefore, 

that the product is over the range 1 < i < r-1. Let K = ck ). — — ^ o' 

Substitute k^, 1 jl j £ r~l, for k in (3.2.5) in turn, and, using 

the terminology of (3.2.3) with a^ corresponding to k^^ we get 

i n a j a . = l , l < j < r-1 . 
i=l i J - -

Worl:ing in the endomorphisra ring of A and utilizing the fact that 

a^a^ = a^a^, 1 ^ we deduce that 

a^ det (a^) = 1 , 1 1 t £ r-1. 

Mow det(aj) is the van der Monde determinant, and 

i 
det(ap = ( n a ).( n (a-aj); 

J t=l ^ u<v "" ^ 

each a^ is an automorphism of A, and det(a^) will be an automorphism 

of A if we can show that for u < v, a^ - a^ is an automorphism of A: 

for a e A, 
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"-•-0 0 / " l O v O r . V-U, O 
= a a . a a = ( a a ) = [a,k ] ° 

0 

and therefore a(a^-a^) = 1 implies a = 1 by (3.2.1) (iv). Hence 

a- = ... = a , = 1 as asserted. 
1 r-1 

(3.2.6) Lemma. Let G = (G,A,B) be as in (3.2.1) and 

K = r. If to each s-tuple y = (y ), v/here 
J. s 

0 £ _< r-1, i e {l,...,s} there is an element a(y) of A such 

that for all k-j.-.^k e K, 
1' s 

n[a(y),y^k , k 1 = 1, 

^ ~ J. i s s 

then a(y) = 1 for all y. 

Proof. For each v e {0j...5r--l} xrrite 

then 

1 = 1 
v=0 

for all kg e K. Hence by (3.2.4), a^ = ... = = 1. We may 

now use induction to complete the proof. 
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3.3 The criticality of G. 

W2 aim to show in this section, that if a is as in (3.2.1)3 

then G is a critical group. By Lemma 3.1.4 and (1.2) of [5] it 

suffices to show that G is not contained in the variety generated by 

its proper subgroups. To this end we calculate the maximal subgroups 
of G. 

(3.3.1) Lemma. If is a maximal subgroup of G then either 

a) M = AHK^, where K^ is maximal in 

b) M = AH^K, where H^ is maximal in H, 

or c) M n F = NH. 

Proof. Suppose that, as in (1.2.8), a^ is the retraction of 

G to B. Then if Ka^ < B we must have A <_ M; for, if A ̂  M, 

Al̂l = G and therefore 

B = Ga^ = (AM)a^ = liâ . 

Hence M = A(H n B) and clearly M n B must be maximal in B; that 

is, M has the form (a) or the form (b). 

Assume, therefore, that 'lâ  = B; then M n F = i\'H. For, if 

N G = Nl'I and if a e A-N, 
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(3.3.2) a = xm, x e N, m e M 

and so x~^a = m e (A-N) n M. By virtue of (3.2.1)(vi), A is 

generated qui B-operator group by any element of A-N, and since 

= B and A is abelian^ 

A = <m>^ = <_ II. 

In other words, M «= G5 hence N _< M. To finish off this case we 

show that if a e A-M and h c H, then ha i M. For, if 1 + k e K, 

there exists a^ t A such that ka' e and if ha e M, 

[lea',ha] = [ka',a][ka',h][lca',h,a] 

= [k,a][a%h] 

belongs to M whence, as [A,H] £ N £ [k,al~^ = [a,k] e M. 

From (3.2.1)(v), [a,kl e (A-N) n M, and an argument similar to that 

which disposed of (3.3.2) shows that M = G. Hence ha ^ M. 

It follows at once that Ma^ = B implies 

M n F = M , 

as required in (c). 

Note that not all the maximal subgroups of G are sub-bigroups. 

The ones which are not are those v/ith M 1 F = NH and Ica e M, 

a e A-N, k e K: in these cases, M = <NH,ka/. A similar argument 

to the foregoing yields 
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(3.3.3) Lemma. The maximal sub-bigroups of G are precisely 

FK^, AH^K and NHK, where H^ is maximal in II, K^ is maximal in 

K. 

We are nox<r ready to prove 

(3.3.4) Theorem. If G = (G,A,B) e A o A is critical and not 
ss ss 

nilpotent, then G is a critical group. 

Proof. Since G is critical, there exists a bilaw q of the 

maximal sub-bigroups of G which is not a bilaw in G itself. Becausc 

of the nature of the maximal sub-bigroups of G, q must be a genuine 

commutator biword, and using (2.2.3) we may assume q to take the 

form 

s a - a e 
q = n ^ 

i=l ^ 

where e^ =±1? > i e {l,...js}5 j e {l,...,r}. Consider 

the word 

s a.. a. e. 
_ TT r 1 

w - II IX^,X2 5X2 » •• • 

Then w is a law in every maximal subgroup of G, but not a law in G 

itself. For, if M is a maximal subgroup of G, then from (3.3.1) 

it follows that (M'.Ma^, M', Ma^^) is a proper sub-bigroup of G, 
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and each value of w in M is obtained by choosing arbitrary elements 

m^,... of and evaluating 

this is clearly a value of q in a proper sub-bigroup^ and is therefore 

1. Hence w is a law in 

On the other hand, since q is not a bilaw in G, there exist 

elements a e A , b ^ , . . . e B such that 

s a - a e 
n [a,b/-',...,b ^ ^ 1. 

i=l ^ ^ 

From (3.2.3), if 1 =(= k e K, there exists a' e A with a - [a',k]: 

s a a e 
it follows that n [a',k,b ,...,b ] 1 and therefore that w 

i=l ^ ^ 

is not a law in G. By the remark at the beginning of this section, 

G is critical. We shall see later that this theorem has a strong converse. 

3.4 The bigroup F* 

In this section we show that, in a sense, the bivariety generated by 

the critical bigroup G is determined by the bivariety generated by a 

certain sub-bigroup of G which turns out to be a little more manageable. 
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Recall that (3.2.1) (vi) ensures that if a^ e A-N, then A is 

generated, qu§ B-operator group, by a . Suppose that one such a 
0 0 

is chosen and fixed from now on. Write A ^ / a V ^ , F = A H 
0 ^ q/ 0 0 

and 

F* = F = (F ,A ,H). 
— -o o' 

This definition depends on a^ but is unambiguous up to isomorphism, 

as the following result shows. 

(3.4.1) Lemma. If a^, a^ e A-N, then the mapping a^ -*• a^ 

can be extended to an isomorphism of the corresponding sub-bigroups 

F and F.. 
—0 —1 

Proof. Suppose that r = r ( a ^ . . . , h ^ ) = 1 is a relation 

among the generating set u ^Q* Every relation in H 

is a relation in both F^ and F^^, so we may assume that r takes 

the form 

t a h 
r = n = l 

i=l ° 

for some integers a^. Now there exist e B such that 

H 

^ i=l ° 

for some integers Therefore 
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t u 6 b a h 
r(a , h . ) = n { n a ^ J} ^ ^ 

t J T . l O i=l 

u t a^h^ 6.b 
= n { l l a since A,B are 

j=l i=l ° 
abelian, 

= 1. 

Hence, by von Dyck's Theorem, the mapping a^ a^ and the identity 

mapping of H extend to a morphism F̂ .̂ Similarly, the mapping 

a^ a^ and the identity mapping of H extend to a morphism Fĵ  

Consequently each is an isomorphism. 

(3.4.2) Lemma. F and generate the same bivariety. 

The proof of this is similar to that of (3.1.6), and we omit it. 

It would be pleasant if it turned out that F* was a critical 

bigroup. Hox7ever this is not in general the case. The best that 

can be said is (3.4.3) below. The trouble comes from the fact that 

F* need not be monolithic: this topic will be taken up again briefly 

in Chapter 5. 

(3.4.3) Lemma. If G is as in (3.2,1), then F^ is not in 

the bivariety generated by its proper sub-bigroups. 
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This will follow from the next theorem, which is much more 

important from our point of view in the next two chapters. 

(3.4.4) Theorem. Let q be a biword, t a positive integer, 

and p a prime which does not divide t. There exist biwords 

depending on q,t,p such that if q is a bilaw in a 

non-nilpotent, critical bigroup G e A o A x̂ ith |K| = t, and 

expaG = p, then are bilaws in F*. Conversely, if 

G^ = H^ X k^) e a 0 a with arbitrary and expK^jt, and 

are bilaws in , then q is a bilaw in Gy 

Proof. If q has one of tha forms then the theorem 

is obviously true. Hence, using (2.2.4) we may assume 

s e., e, a. 

where are all natural numbers, and = +1. Suppose that 

q is a bilaw of the non-nilpotent critical bigroup G. Consider the 

biword 

i=l 

In this expression for q* expand each commutator, using 

repeatedly the identity 
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y y 
[x,yyz] = n n [x,Xy,vz] 

X=0 v=vi-X 

fiA X 

.xJ X+v-y_ 

modulo the bilaws of A o A. We get a product of powers of commutators 

each of which has y^ as first entry and some zj^, j e {r+l,...„3r} 

in each other entry. Working modulo the bilaws of A o A we can collect 

to the front of each commutator all Zj^ with j e {r+1,...,2r}. 

Hence there exist biwords qj^.-.^q* such that, modulo A o Aiq^^) , 

where q*5...5q^ are biwords which are products of powers of 

commutators each of which has as entries, ŷ ^ in the first place, and 

zj^, j e {r+l,...,2r} in the other places, and where n^^ = +1, 

i e {l,...,u}, j e {2r+l,...jSr}. 

Now consider 

1=1 

where = n^^ if n̂ ,̂  = 1 , and 

llaking repeated use of the identity 

t-1 if n^^ = -1. 

W, 
N 

[x,y ] = n [x,My] 
y=l 

we can write, again modulo A o ACQ^), 
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V 

where each q^ is a linear combination of q^'s, where 0 j< v^^ < t-1 

all i,j, and where q' is a (possibly empty) product of powers of 

commutators in each of which at least one of z,,. occurs 
l+zr 3r 

raised to a power which is a multiple of t. 

Now suppose that a : Q^ -»• F is arbitrary, and for the moment, 

fixed. With each choice e K and a. associate a morphism 

yj.3 = y^a, i e {1,2,...}, 

Then if 6* : ̂ ^ £ is such that 

= ŷ ot, i e {1,2,...}, 

= (z^a).k^, j e {l,...,r}, 

we have 

V 
1 = qg* = q>vg = = n [q^a.v^k^, . . . , 

and this for all such B. Hence, by Lemma 3.2.6, q^a = 1, i e {l,...,v}, 

and since a was arbitrary, bilaws in F and so 

in F*. 
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Conversely suppose that are bilaws in (A^H^^A^jH^). 

Then if 6* ' —l ^̂ ^̂  morphism we can construct 

a : ^ ® " 5-2 £1 reversing the procedure in the foregoing 

proof. Then so long as expK^ 11 we have q^a = ... = q^a = 1 

implies q6* = 1 and so q is a bilaw in G^. 

(3.4.5) Remark. (i) It is clear from the proof of Theorem 

(3.4.4) that in the case when q is a commutator biword, 

do not depend at all on p. Also the forward part of the 

argument works if we assume no more than that K acts fixed point free 

on A, otherwise the criticallity of G is irrelevant. 

(ii) The argument above is, of coursej 

essentially a trigroup argument. However it seems easier to treat it 

as we have done^ then to develop the necessary conventions and 

terminology involved in considering G as a trigroup. 

Proof of (3.4.3). Since G is critical, there is a biword q 

which is a bilaw in every maximal sub-bigroup of G, but not in G 

itself. In particular q is a bilaw in the maximal sub-bigroups of 

the type 

AH K, NHKs H maximal in H. 0 0 
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Mow in the proof of (3.4.4) the crucial property of G x̂ as 

that K acts fixed point free on A = G'. It follows therefore, that 

if correspond to q by (3.4.4); then are 

bilaws in all AH^ and in M . However q^j.-.sq^ cannot all be 

bilaws in AH since q is not a bilaw in G. It remains to remark 

that the maximal sub-bigroups of F* are precisely AH o F* and 

N^H = N H n F* by an argument similar to that of (3.3.1), and 

that they generate the same bivarieties as their counter-parts in AH. 



76. 

CHAPTER 4 

A FINITE BASIS THEOREM 

4.0 Introduction 

Our aim in this chapter is to prove the following theorems. 

(4.0.1) Theorem. If n is a natural number, the bivariety 

A 0 A^ has descending chain condition on sub~bivarieties. 

(4.0.2) Theorem. If m is a natural number, the bivariety 

A ^ 0 A has descending chain condition on sub-bivarieties. 

Then, by virtue of Theorems 2.1.1, 2.1.2, and a relatively simple 

argument, one has 

(4.0.3) Theorem. Every sub-bivariety of ^ o A ^ A o A^ 

has a finite basis for its bilaws. 

V 
4.1 A 0 A : reduction to the case n = p . as ssj^ — 

Suppose that 

^X - " • - ^i — " • 
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is a descending chain of proper sub-bivarieties of A o A . For each 
= =n 

i e {1,2,...} write 

C^ = svar{G e B^ t exp A^(G) < n} 

and 

D^ = svar{G e B^ : G critical, exp A^(G) = n}. 

Clearly C^ 2 2 • • • E ^^ 2 • • • ^nd D^ -£ - ' " - - *'' 

descending chains, and 

(4.1.1) C^ 2 0 ° t f n, t|n}. 

We turn our attention to the chain of the D.'s. 

(4.1. 2) Lemma. The chain D^ ^ D^ 2 • • • Z E! " • • breaks 

off if the bivarieties A o A ^̂  have descending chain condition on sub-

X 
bivarieties, where p n. 

Proof. With each prime p, each natural number t|n, and each 

i e {1,2,...} associate the bivariety 

^^^(Pst) = svar{G e B. s G critical, exp A,(G) = n, 

expo G = p, |k| = t} 

where in the case G is critical and nilpotent we interpret K = 1. 

Clearly then 
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2 D2(p,t) -2 ... 2 D^(p,t) £ .. 

is a descending chain, and for all i e {1,2,...}, 

V{D^(p,t) : p prime, t|n}. 

Define 

D|(p»t:) = svar{F* : G e B^, G critical, exp A2(G) = n, 

expo G « p, |K| = t} 

where we interpret F* = G in the case G critical and nilpotent. 

Then for each prime p and t|n, 

D*(p,t) £ D^(p,t) 3 ... £ D*(p,t) £ ... 

is a descending chain. 

Next suppose that the chain D*(p,t) £ D*(p,t) £ ... breaks off; 

that is, for some natural number i, ^ i. i implies 

If q is a bilaw of let be the biwords 

corresponding to tjpjq according to Theorem 3.4.4. Then 

are bilaws in and therefore in D*(p,t), whence, using 

(3.4.2) and the converse part of (3.4.4), q is a bilaw in 

D^(p,t). It follows that for i < i. 
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The proof of the lenma is now nearly complete: we need only the following 

lemma. 

(4.1.3) Lemma. If {G^ t 1 e 1} is an infinite set of non-

isomorphic, non-nilpotent, critical bigroups belonging to A o A^ such 

that 

i) A^(G.) = F(G.), i e I, 

ii) = n > 1, i e I, 

then svar{G^ : i e l} = A o A . 
—i = =n 

Proof. Under the conditions imposed, each G^ is a critical 

group, by Theorem 3.3.4. According to Cossey [4, Theorem 4.2.2], G^ 

is determined uniquely (up to isomorphism) by the invariants exp G|s n. 

Hence, since there are an infinity of non-isomorphic G^'s, exp G^ 

is unbounded. 

We next employ (3.4.4). Let q be a bilaw in all G^. Then 

we may assume that q is either z^ where n|M, or a genuine commutator 

biword. In the first case q is a bilaw of A o A^, and in the second, 

note that if correspond to q by (3.4.4), they are 

independent of p (as noted in (3.4.5)), and are bilaws in 

every bigroup (A,A,1). Hence q is a bilaw in every bigroup of A o 
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Returning to the proof of (4.1.2), note that if pjn, then 

D^(p,t) is trivial unless m = n^ and by (4.1.3), D^(p,n) is 

non-trivial for only finitely many primes p. Hence there is a finite 

set n of prines such that 

" v{D^(p,t) ; p e n , t|n}; 

and D^ £ D^ ... breaks off if and only if all D^(p,t) D2(p,t) ̂  .. 

break off. This completes the proof. 

Now since ^^ = C^ ̂  D^, the chain B^ ̂  B^ £ ... breaks off if 

and only if both the chains Ĉ  ^ ^̂ ^ • • • ^^ £ — ' " 

break off. We make the hypothesis 

(4.1.4) Inductive Hypothesis. For every natural number n^ < n 

A 0 A has descending chain condition on sub-bivarieties. 
~ o 

Whenever n is not a prime power we have made the inductive step 

in (4.1.1) and (4.1.2). Since A 0 A^ clearly has descending chain 

condition on sub-bivarieties, it remains to deal with the case when n 
V is a prime power, n = p say. 

4.2 Preliminary lemmas 

We change our point of view from now on and consider not descending 

chains of sub-bivarieties of A 0 A ^ ascending chains of normal, 
P 
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fully invariant sub-bigroups of o A In fact it suffices 
P 

to consider the split-free bigroup F^^ ^^(A o A : 
P 

(4.2.1) Lemma. The lattices of normal, fully invariant sub-

bigroups of F ^ ^ ^ ^ ^ ( A o A ^ ) and (A o A are isomorphic. 
! P ' p 

Proof. We use (1.5.10), imagining Q(l,u) embedded in in 

a natural way. Consider the mapping ? from the lattice of normal, 

fully invariant sub-bigroups of Q. containing the bilaws A o A (QJ / = = V -̂ 2 
P 

of 4 0 4 V lattice of normal, fully invariant sub-bigroups of 
P 

^(l,w) containing 4 0 4 ^(Sd,'*')^ defined by 
P 

SC = S(Q(l,a))). 

Now 5 is onto by (1.4.11), clearly preserves inclusions, and by (1.5.10) 

is an intersection-homomorphism; it is easy to see that 5 is then a 

join-homomorphism if it is one-to-one. If 5^,82 A 0 A ^ and 

S^ =1= S2 then there exists q e (Q(l,a)) n - Ŝ '̂ virtue of 

(2.2.3) and so, from (1.5.10), £(l,u)) ^^ f Qdj*^) ̂  I2 ^P^^®® 

5^(^(1,0))) 4 82(0(1,^)). This completes the proof. 

(4.2.2) Notation. Write W for F,, .(A 0 A ), A = —(l.iOJ = = V 
P 

B = A2(Wy). For the split-free generating set of W^ write 

{y^} .,, {z^.z^,... ... }: no confusion will result from this. 
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We will abuse language to the extent of calling elements of ^ biwords. 

From Tlieorem 1.6.2 we have that 

^v = C wr 

P 

where C is an infinite cycle and where A is the base group of W^, 

and B = F (A ). Our aim is to prove 

(4.2.3) Theorem. All ascending chains of normal, fully 

invariant sub-bigroups of W ^ break off. 

It is worth noting here 

(4.2.4) Lemma. Every fully invariant sub-bigroup of W ^ 

contained in A is normal in W^. 

Proof. This follows since elements of B induce self-morphisms 

of W . and A is abelian. 
— V 

(4.2.5) Lemma. If U is a normal sub-bigroup of W^, and 

if for fixed elements e A, and all b e B 

® i 
n [ a . , b ^ ] e U 

i=l 
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m 
then for all b ,...,b e B, n [a e U, 

j=u ^ " 

u e {1,...,m}. 

Proof. For u = 1 the assertion is the hypothesis. Suppose, 

therefore, that for some u e {l5...5in-l} the lemma is true. If 

b^,... e B are arbitrarily chosen, then 

m . -4.1 
n [a e U. 

j=u 

That is, 

™ r uj i-j -U+lnr x-j , j-U+1, 

n [a ][a bJ ,bJ ] 
j=u 

r l-j TT 

and from here, using our inductive hypothesis, we obtain that 

r T-j T-j'^+ll TT 

n [a ] e U. 
j=u ^ 

m . . 
Since U is normal we have n e U and so j=u ^ 

: [ a . . b J . . . . . b J . . . . . u 
j=u 

Finally, using the commutator identity [x.yj'^txjy^] = [x,y^ for 

all integers t, we have 

n [a b^.-.-.h^:;"^]''"^^ . u, 
j=u+l ^ 
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which, since U is normal, gives what we want. 

This lemma will prove useful in a number of places: first as the 

initial step of an induction in the proof of Lemma 4.2.10 below, and 

later in dealing with the structure of certain metabelian varieties. 

(4.2.6) Notation. If U is normal in ^ define the sub-

bigroups U^ of W^ for i e {0,1,...} by 

where is the i-th term of the upper central series of 

W^/U (see, for example, p.77 in [3]). 

Note that if a c A, then [a,b^,... e U for all e B 

if and only if a e U^. 

(4.2.7) Lemma. If to the hypotheses of (4.2.5) we add m p - 1, 

then for i E {l,...,m}, ^^ ^ ̂ m • 

Proof. From (4.2.5), 

for all b,,...,b e B. Since 1,2,...,m are all prime to p, we have 1 m 
a e U . m m 
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Assume that I t has been proved that a^.- e U , . . . , a e U 
i+1 m' ' m m 

m . j - i+1 
for some i ^ 1. Then s ince n [a .b^ . . . , b ] e U, we have by 

j=i ^ 

commuting with b ^ , . . . , b that [ a . . . . ,b, , b , b ] e U IT"-"- m 1 1 1 i+± m 
and hence, as before , a^ e U^. This completes the proof. 

( 4 .2 .8 ) Lemma. If U i s normal in ^ and i f for f ixed 

elements a . , . . . , a e A and a l l b e B, 1 m ' 

m 
p = n [ a , , b^ ] e U 

i=l ^ 

then 

i ) e p < t £ 2p - 1; 

i i ) e 1 < u < p - 1; 

^ V - 2 ' I P -

In the proof of t h i s lemma we need the following notation and 

Lemma 4 .2 .10 below. 

( 4 . 2 . 9 ) Notation. If are a rb i t r a ry elements of B, 

wr i te 

, - r K^+iP ,up-v+ip+l (u+i-l)p 
c ( s , u , v , i ) = [ag^ip.b^ ' • • " V u p + v ' V ( u - l ) p + l " - " V p + l ^ 
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where s e {1,... ̂ m}, 1 e {0,...,il} where I = [(m-s)/p], 

V e {l , . . . ,p} and where u has the range: 

u e {1,...js/p} if p|s; 

u e {l,...,[s/p] + 1} if p-j-s, 

with the conventions: 

s - u p + v < 0 Implies c(s.u.v.l) . 

s-up+v _< s < s -(u-l)p + 1 implies 

s < s-up+v implies c(8,u,v,i) = f^+ip'^i'^^^j • • • . 

Also write 

I 
p(s,u,v) = n'c(s,u,v,0) = n c(s,u,v,i), 

i=0 

and Il'a = a a , . . . a , „ 
s s s+p s+£p 

(4.2.10) Lemma. If p is as in (4.2.8) then 

p(s,u,v) e U^ 

for all relevant s,u,v, where r = m - s + u(p-l) - v + 1. 
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Proof, From (4.2.5) we have 

p(m,l,p) = [a ,,b ] e U; 
m i m—1 la 

and in this expression we may replace b, by b. whenever p j m — i + 1. 

Hence 

/ \ r V® ,up-v+l , (u-l)p , p , 
' ' m' 1* ' m-up+v' m-(u-l)p+l' ' m-p+1 

for all relevant u,v, and therefore 

p(m,u,v) e U^ 

where r = m - (m-up+v+u-1) = u(p-l) - v + 1. We use this as the 

start of an induction, the induction being taken over the 

lexicographically ordered set of triples (-s,u,-v). Suppose, therefore, 

that for all (-s,u,-v) < (-t,w,-x+l) where x e {2,...,p}, 

the assertion of the lemma is true. 

First note that from Lemma 4.2.5 we have 

® 1 i-t+1 
n [a,,bJ,...,b; = n p(j,l,t+p-j) 

j=t J ^ j-t 

e U. 

Hence, by the inductive hypothesis we deduce from this that 

p(t,l,p) e 

as required. Second, 
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p(t,w,x) = n c(t,w,x,i) 
i=0 

and 

, wp-x+1 

X Fa b^'^^P ,wp-x+ip+2 (w+i-l)p , (i+l)p ,ip , t-wp+x 

Therefore 

^wp-x+1 

where p' (t+p,w+l,x-l) differs from p (t+p,w+l,x-l) only in that the 

element b,. . , occurs as b^ , | in any event 
(t+p)-p+1 t-wp+x ^ 

^wp-x+1 

p'(t+p,w+l,x-l) ^ ^P"^ belongs to U^ where 

r = m - (t+p) + (w+l)(p-l) - (x-1) + 1 = m - t + w(p-l) - x + 1, 

by the induction hypothesis. Hence since also p( fe,w,x) e U^ by the 

inductive hypothesis, 

[pCt.w.x-D.b^'^'t^] e U ; 
' ' ' t-wp+x r 

and the fact that w p - x + 1 is prime to p under the assumptions 
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on X, and that does not occur in p(t,w,x-l), means that 

p(t,w,x-l) e U^^j^ 

as required. 

Finally, note that for u ^ 2, 

p(s,u,p) = p(a,u-l,l) 

and this completes the induction, and the proof of (4.2.10). 

Proof of (4.2.8). Put s = p, u = 1, v = 1 in (4.2.10) and 

we get 

I 

If p < s £ 2p-l, put u = 2, V = 2p-s and we get 

n [ a , , s U ,, 
s+ip' s-p+1 m-1' 

and these together are just the assertion (i). 

To prove ( iii) proceed as follows. Note that for 

P l J 1 2p-l, = c(p,1,1,0) if j = p and = 

c(j-p,l,2p-j+l,l) if p < j: hence in the following argument, n' 

notation can be used. We have 

p-1 , 2p-l 
P = n [a,,b|]. n {n'[a.,b^]} 

i=i ^ ^ j=p ^ ^ 
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p-1 i 2p-l b f P 

j=p ^ j 1 

( H e r e n U a ^ . b ^ ] = fa^ .bj] . . . is a h a r m l e s s a b u s e of n o t a t i o n ) 

B y p a r t (i) w e h a v e t h e n 

p - 1 2 p - l 

n [a b h . n [n'a.,bfP] e U 
i = l ^ ^ j = p + i 3 1 m - l 

a n d t h e r e f o r e 

P - 1 i 
n [n'a.,b5-] e u 

i=:l m - i 

T h e n f r o m L e m m a 4 . 2 . 7 , 

i m + p - 2 

f o r a l l i e { l , . . . , p - l } , a n d t h i s c o m p l e t e s t h e p r o o f of ( i i l ) . 

T h e p r o o f o f ( i i ) u s e s ( i ) , ( i i i ) a n d t h e i d e n t i t y 

b:' 
( 4 . 2 . 1 1 ) = ^ 

f o r V e { l , . . . , p - l } ( w h e r e n ' f k ^ ^ ^ . b P ] = [^jh-v'^I^ ''' 

a g a i n a n a b u s e of n o t a t i o n ) . T h e p r o o f o f ( 4 . 2 . 8 ) is n o w c o m p l e t e . 

( 4 . 2 . 1 2 ) D e f i n i t i o n . A n e l e m e n t of W^ w h i c h b e l o n g s to the 

s u b g r o u p g e n e r a t e d b y t h e s e t { y ^ } ^ { z j , z P , . . . , z j , . . . } w i l l b e c a l l e d 

a "h-biword. 
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(4.2.13) Leimna. If q e A, then there exist t-biwords 

qjijfjjq^j and a natural number v such that 

^ cl{q} ^ cl{[q^,vB]; 1 •< i _< d}. 

Moreover if q is special, so are (As usual, 

[q^^jVE] stands for the subgroup generated by the connnutators 

[q̂ .b;!̂ .-• • , e B) . 

The proof of this lemma depends on the following consideration. 

(4.2.14) Lemma. If q* e A is a special biword, say involving 

the variables precisely, then there exist special biwords 

in which z , if it occurs at all, does so raised to a power 
X IT S 

which is a multiple of p, and involve no variables other 

than ... and there exists a natural number v* such that 

cl{q*,...,q*} 1 cl{q*} ^ cl{[q*,vAB]: 1 1 i 1 r}. 

Proof. We may write 

t X A a. 
q* = n [y z 

i=l ^ ^ ® 

where 0 < X^^ j< p^ - 1 for all i,j. For j e {l,...,p -1} define 

I n '•••'^s-i ^ ' ^ ^is' 

1, otherwise. 
i 
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i Then q* = n [a ,2^]. Since by construction the a.'s do not 
1=1 J ® J 

Involve z , the hypotheses of Lemma 4.2.8 are satisfied, with 

U = cl{q*}. Hence 

p -2 

n ' a e U , V e { l , . . . , p - l } , 
p^'+p-S 

By virtue of the fact that 

P 

and (4.2.11), we have 

q* e cl{n' = P_5 " 1 ^p-l, 1 £ v £ p-1}. 

Put {q*,. .. ,qj} = {n' = P 1 " 1 2p-l, 1 1 v j< p-1} and 

V* = p^ + p-3 and we are finished. 

Proof of (4.2.13). We can, without loss of generality, assume 

q to be special. Then apply (4.2.14) to q, say q Involves precisely 

y, ,z^,...,z , and obtain q* q* In which z occurs either not at X X S X IT S 

all, or to a power which Is a multiple of p. Then use ( 4.2.14) on 

q*,...,qj, first moving up to the back of each commutator, and 

making z 'good' according to (4.2.14). Continue this process until 

we have dealt with z in turn, and hence reached a set of S X 



92. 

t-biwords and a natural number v (the sum of all the 

relevant v*'s) which satisfy the assertions of the lemma. 

(4.2.15) Lemma. Suppose that U is a biverbal sub-bigroup 

of W^ determined by t-biwords, and suppose q e A-U. Then q ^ U 

for any natural number r. 

Proof. We may suppose that the t-biwords determining U are 

t ^.^Ijs a 
q = n [y z ] \ i e I, 

where > 0. Clearly it suffices to show that Iq,z^] ^ U, where 

q involves ... at most. Suppose to the conttary, that 

q' = [q̂ Zjjl e u. 

Then there are values of the biwords q^, say, such that 

(4.2.16) q' = ^N ' 

Each v^ is obtained from some q^ by subsituting for y^ an element 

of A, and for z^,...,z , elements of B. By applying to i s^ 

(4.2.16) the method of Chapter 3, section 3 in [3], we may suppose 

that each v^ involves z,. These z.'s entered v by substitution j d d j 
in some q^ either for y^ or for some z^; in the latter case the 

relevant z.'s will occur raised to a power which is a multiple of p. d 
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Consider the self-morphism y of W defined by 
-V ^ 

y^y = y^, z^M = Z y j =j= d, z^y = 

Then, under y, (4.2.16) becomes 

v-1 

(4.2.17) (q'y)(v:\) ... (vT^) = 1, 

where v. involves z only by virtue of the substitution for y^ CI 1 
in the relevant q^. Indeed, since the commutators involved in the 

expressions for q^ are linear in the first entry, we may suppose, 

by renaming if necessary, that v. is obtained from some q by a 

substitution for y^ of a power of a single commutator of the form 

6 6 

JUt ^ 

where d. ,...,d ,d are distinct, and where p{6 , and some unspecified -L S 
substitution for (though it does not involve z^). That 

is, there exist values v',...,v' of the q which do not involve i R 1 
z^ at all, such that 

(4.2.18) (q'y)[v',z^'- 3 = 1 , 

with 1 1 1 ••• 1 ^R 1 say, 

Lemma 4.2.7, or at any rate the same proof exactly, can now 

be used to conclude that 
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(4.2.19) n v ^ . z f ' = 1. 
i" 

By a result of Baumslag [10] (24.22 in [3]), 

q n v' = 1 , 

and in consequence, q e U, contrary to hypothesis. Hence 

i U. 

Proof of (4.2.3) 

Write A^ for the lattice of normal, fully invariant sub-

bigroups of W^. We aim to show that, using the lemmas of the 

previous section and others to be developed here, that the t-biwords 

provide an embedding of into A^ in a convenient way. 

Suppose, therefore, that is free on {ŷ }̂ {z^^z^,...}, 

that A = B = and that the morphism : W^ 

is defined by 

^l^v ^j^v ° ^ ^ {1,2,...}. 

The morphism ^^ induces a mapping X^ : A^ ^ ->• A^ in the following 

natural way: if L e A^ that is, if L is normal and fully 

invariant in W ,, then 
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(4.3.1) LX^ = cl{Jl5y : Jl e L}. 

It is clear at once that X^ Is a join-homomorphism, but not so 

clear that it is an intersection-homomorphism. In fact we prove 

(4.3.2) Lemma. The mapping X : A , A is a one-to-one 
" V v-1 V 

lattice homomorphism. 

Proof. First note that X^ preserves inclusion. We are left 

to show that X^ is an intersection-homomorphism and that it is 

one-to-one. To prove the former it suffices to prove that for 

h^h " V r 

(4.3.3) L^^X^. h K ^ h - h K 

since the opposite inclusion is obvious. We need several lemmas to 

prove what we want. 

W 

(4.3.4) Lemma. If L e then LX^ = (U^) 

Proof. Let a : W W , then if 6 : B B is defined by 
- V --v 

z^B Z y j e {1,2,...}, 

define a : -i ^^ 

y^a = y^, z^a = (2^0)6 . 
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A l s o d e f i n e a , : W ->• W b y 
1 —v; —V 

V l ' V ' ^ ^ { 1 , 2 , . . . } . 

_ W 
T h e n i f H e L , ( ^ C ^ ) o i = ( i l a ) C ^ a j ^ e ( U ^ ) a ^ 1 ( U ^ ) ^ a s r e q u i r e d . 

T h i s l a s t i n c l u s i o n i s s e e n f r o m t h e f a c t t h a t e v e r y n o r m a l s u b g r o u p 

o f W a d m i t s a , . 
V 1 

( 4 . 3 . 5 ) L e m m a . I f L t A^ t h e n 

L A ^ , A = ( L ,, L X ^ B = ( L , 

P r o o f . F o r ( t ^ A ) X ^ L X / , A o b v i o u s l y , a n d i f 

X e r, A t h e n t h e r e e x i s t e L , e B s u c h 

t h a t X = ( ^ t ^ v ^ ' w h e n c e 1 = xo^^ = 

\ - ^ - ^ 
^ ^ t V l ^ ° ^^I '^ l^v^ • • • ^ V t ^ v ^ ( w h e r e o ^ , o ^ a r e t h e 

s p l i t t i n g e n d o m o r p h i s m s ( 1 . 2 . 8 ) ) a n d s o 

- - 1 4 - - 1 ^ t 
X = ( ( A j ^ O l ^ a ^ ) ^ . . . i a ^ a ^ o ^ ) 

f o r s o m e e B . H e n c e x e ( L A ) X ^ . T h a t n B = 

( L n i s p r o v e d s i m i l a r l y . 
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From this lemma, and from the definition of £ , we have that 
v' 

(ki\ o, L^X^) ,, B = (L^X^ B) (LX^ ,, B) 

Hence in order to prove (4.3.3) it suffices to show that 

(4.3.6) (t^ ^ A)X^ ^ (L2 ^ A)X^ £ (L^ ^ L^ • 
V 

If q belongs to the left hand side of (4.3.6) then, by virtue 

of (4.2.13) there exist f-biwords and an integer v such 

that 

[q^,vB] < (L^ ^ A)X^ ^ (L^n A)X^, i e {l,...,d}. 

However (L^r, A)X^, ((1.2 n are determined by f-biwords and there-

fore Lemma 4.2.15 ensures that for each i, q^ e (Lĵ  A)X^ ̂ ^ 

The other piece of information from (4.2.13) is that q e cl{q^,...q^}; 

hence (L^ ̂  ^^^v ^ ^^^v is determined by t -biwords. 

In order to finish off the proof of (4.3.3) we need the following 

lemma. The proof given is due to L.G. Kovacs, and replaces my 

original, much longer, proof. 
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(4.3.7) Lenima. If L e L £ A, and if q e LA^ is a 

+-biword, then q e L^ 
V 

W 

Proof. By (4.3.4), q e (L?^) and hence there exist 

e L and b^ e B such that 

q = ^ ' 
i=l 

Write T for a fixed transversal of B^ in B, with 1 e T. 

Then b^ = bl^b^, b^ e B^, b'̂  e T and, 

h 
q = n ( n ) n 

beT b^=b ^ "" 

b T ^ 
= n ( n (ii/ ^ 

beT b'^=b ^ 

n where e L . 
beT ^ 

Note that q, Jl̂^ all belong to n A and therefore each has 

its support contained in B^. However is contained 

in B^b"^, and since these cosets are pairwise disjoint. 

supp q = U supp(£, ^ B^ 
beT 
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whence 1 =|= b e T implies supp = (j), or Jl̂  = 1; thus 

To complete the proof of (4.3.3) observe that (L^nA)A^^ 

(h.2 r. is determined by -I—biwords, one of which is q"̂ , say. 

Since q"̂  e ( L ^ ( L ^ , , Lemma 4.3.7 shows that 

1 ^h-^hr. . 

This completes the proof of (4.3.3). 

To finish off the proof of (4.3.2) we need to show that A is 
V 

one-to-one. If L̂ X̂  = L̂ X̂  then L̂ X̂  o B = L̂ X̂  B so that, 

from ( 4.3.5) (L̂ ^ = (L2 ^ B)?̂  whence L̂  ^ B = L̂  ^ B. 

Also L̂ X̂  A = L̂ X̂  ^ A and therefore, by (4.3.5) ( L̂  ̂  A)X̂  = 

(L2 p, Now (L2 ^ A)X̂  is determined by t-biwords 

A e L̂  A A, and Lemma 4.3.7 then gives e (L̂  

£ e Lĵ  ^ A. That is, L2 ^ — —1 ^ similar way we prove 

L̂  ^ A L^ ^^ A and therefore L̂  n A = L̂  A, and so Lj. ~ ]±2' 

This completes the proof of (4.3.2). 

We now derive some properties of the embedding X̂  which are 

essentially extensions of Lemma 4.2.13, using the Inductive Hypothesis 

4.1.4. 
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(4.3.8) Leinma. To every U e Â  , with U _< A there corresponds 

a unique L e with L <. A, and an integer v = v(U) such that 

[LX^,vB] 1 U ^ U ^ . 

Proof. To each q e U associate the -f-biwords of 

(4.2.13) and also the integers, v^ say, involved there. If ^ 

is the normalized verbal closure of then 

[S , V B] < cl{q} < S . - q q - q 

As the q. «ae- t-biwords, there exists L E A , with L X ® S . -q v-1 -q V -q 

Write 

L = n{L : q e U}. _q H _ 

Since we have the inductive hypothesis, A^ ^ has ascending 

chain condition, and therefore ^ is the join of a finite number of the 
(1) (T) 

^'s, say those corresponding to q q e U. Put 

v = max{v : 1 £ i _< T). 

Then U £ : q e U} = "tLq'̂ y : q E U} = n{L : 1 £ i £ T} 
= LX : and — v' 

[LX^,vB] = [n{L ^^^X^ : 1 < i < T}, vB] 
q 

T 
= n [L vB] 

i=l q 

i=l q q 

< u. 
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which finishes the proof of the theorem except for the uniqueness of L: 

if there exists L', v' with the asserted properties, then 

[L'X^,v'Bl and [LA^.vB] £ L'X^, 

and Lemma 4.2.15 shows that L'X < LX < L'X , or LX ® L'X — V V V — V — V 
whence L = L' from (4.3.2). 

The last lemma necessary to prove Theorem 4.2.3 is the following. 

(4.3.9) Lemma. Let L e L _< A, and let v be a 

natural number. There exists a natural number s = s(L,v) such that 

if q e LX^ is special and involves more than s elements of the free 

generating set {z^yz^,...} then q e [LX^,vB]. 

Proof. The proof will be by induction on v. If v = 1 

then q e LX can be written ^ — V 

q = n [y-,,z J 
i=i 

where 1 1 £ P - 1 for all i,J, and ... are 

distinct for distinct i. Employ (4.2.7) u times to deduce that 

Vl e ^ k W > i ^ {l,...,t}, 

u a^ 
where 6 ® max 6.. . Lemma 4.2.15 then yields y, e LX whence 

j=l i ^ 
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q e [LX^,uB]. Hence s = v will do, and the proof of the first step 

Is complete. 

Assume, therefore, that v ^ 2 and that the lemma is proved 

for V-1. Associate with q the special t-biwords of 

(4.2.13). By (4.2.13) and (4.2.15), q ^ , . . . e LX^. Suppose 

that q^ involves s^ variables Z y i e {l,...,d}. Let L e 

and L 1 according to (4.3.8), and define 

s(L,v) = s(L,v(L) + v) + V 

where v(L) is defined as in (4.3.8), assuming inductively that s 

can be defined for v-1. 

Now by (4.2.13) and (4.3.4), q is in the normal closure of 

Hence we may write 

t a "jr 6 
q = n [q ,z J] 

j=l 3 ''jl ''jrj 

where l£oi.o - all j,il. We may assume, by using the 
J ̂  

argument leading to Theorem 33.45 in [3], that if q involves 

precisely the variables (where u s(L,v)) then 

for each j, the set of variables z involved in q. together with 

z, ,...,z, is just {z^,...,z }. (This can also be concluded from 
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a close look at the proof of (4.2.13)). If for some j e {l,...,t}, 

£ s(L,v) - V then |{k_,...,k }| > v and therefore the conuautator j ^^ ~ 
beginning with q belongs to [LX ,vB]. If on the other hand 

s > s(L,v) - V for some j e {l,...,t}, then ŝ  > sa,v(L) + v); 'j î  - -

hence 

e [LX^_^,(V(L) + V)B"] 

< [L,VB] 

so that q^ e [IÂ ,vB]. Clearly, then, the commutator 

beginning with this q^ belongs to [LX^,vB]. Therefore q e [LX^,vB] 

Proof of (4.2.3). Suppose that U^ 1 £^ ... 1 1 ••• 

is an ascending chain in A^. Clearly the chain 

U- ^ B £ U - ^ B £ . . . £ U B . . . 

terminates in a finite number of steps; hence it suffices to consider 

the chain of the U ^ A , or, without loss of generality, to assume 

U^ j< A, i e {1,2,...}. In this case (4.3.8) ensures that there 

exists to each ie{l,2,...} a unique L^ e and an integer v^ 

such that 

t V v ' V ^ l U ^ l V v -
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Now i < j implies L. < L,; for 
- ^ 

f V v . v ^ B ] l U ^ < U. < L^X^ 

and (4.2.15) and (4.3.7) give L. < L,. Under the inductive 
2 

hypothesis (4.1.4) it follows that there exists an integer m such 

that for m < i, L = Hence for m < i — —m —i — 

[L X ,v B] < IT < L X . - m v m — ^ m v 

By virtue of (4.3.9) there exists an integer s_ = s(L ,v ) such U —m m 
that if q e U^ is special and involves more than SQ variables z^, 

then q e [L X ,v B]. It follows that U, can be determined, modulo —m V m —1 
by bilaws involving at most . By the 

inductive hypothesis (4.1.4), Theorems 2.1.1 and 1.5.4, 

L X is finitely based, and therefore so is [L X ,v B]; we may suppose —m V —HI V m 

the latter to have a basis involving t^ variables Z y Hence U^, 

m _< i, is defined by laws involving at most SQ + t^ variables Z y 

It follows that the biverbal sub-bigroup lattice between 

FL X ,v B] and L X is isomorphic to the corresponding one in the -m v' m -m V 

free bigroup of rank (1,SQ + t^) of A o A This is however, 

a finitely generated metabelian group, and, by a well-known result of 

P. Hall [20], has ascending chain condition on normal subgroups. This 

completes the proof of (4.2.3) and therefore of (4.0.1). 
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A.4 Descending chain condition for A o A — asm = 

The first lenuna proved here is similar to (4.1.3); indeed a 

similar proof will do. However we give a different one here. 

(4.4.1) Lemma. If m,t are coprime, then the bigroup C wr C 
m t 

generates A o A . The bigroup C wr C generates A o A. (Here 

^m' ^t cycles of order m,t, and C is an Infinite cycle). 

Proof. Let G be critical in ^ o A^; then if either A^(G) 

or A2(G) = 1, G e svar{C^ wr C^}. If A^(G), A2(G) ={= 1 then by 

(3.2.1), A2(G) is cyclic, and A^(G) is generated qud A^(G)-

group by a single element; hence since C wr C is the split-free m t 
bigroup of rank (1,1) in ^ o A^, G is an epimorphic image of 

C wr C^. That is, A o A^ is generated by C wr C . m t ' = m = » t ® - ^ m t 

To prove the rest, suppose that {t^jt^,...} is an Infinite set 

of natural numbers all prime to m, with t̂ jt̂ ^̂ ^ for all 1 e {1,2,...}. 

We show that ^ o A = oA^ : 1 = 1,2,...}; clearly this implies 

that C wr C generates A o A. Consider the descending chain m =m = 

A^W '•[A^(W),A2(W) ""l > A2(W) ^[A^(W),A2(W) > .. . 

of biverbal sub-blgroups of W = F, v(A o A): these blverbal 

sub-blgroups are those corresponding to the blvarietles ^ o A^ . 
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Now the chain 

A,(W) " > A ^ W ^ > ... 

has trivial intersection, and if we can show the same for the chain 

[ A ^ W . A ^ W > [ A ^ W . A ^ W > ... 

then we shall have proved what we want. To this end, let T be a fixed 
t. 

set of coset representatives for A ^ W in A^(W), such that 

' Now if 

to that in (4.3.7), we may write 

I — ''2 ~ " ' ' """ -Li a e [A^(W),A2(W) ] then, by an argument similar 

supp a = : b e T.} D 1 

Where r^^^ £ A^CW) V ^ . If a e [A^(W),A2(W) for all i, then 

clearly, since supp a is finite, each r/^^ = (1) and therefore a = 1. 
D 

This completes the proof of (4.4.1). 

The next lemma is a trivial adaptation of an unpublished result of 

L.G. Kovacs about varieties of metabelian groups. 

(4.4.2) Lemma. If U is a proper sub-bivariety of ^ o A 

then all bigroups in U satisfy the bilaw 

r Sit 

for some integers r,s,t with m-ft. 
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Proof. Consider the split-free bigroup of rank (u^w) in 

^ o A, call it W say, and the biverbal sub-bigroup U of W. Then 

i 
V a z 

(A.4.3) n y / ^ e U 
i=0 ^ 

for some integers with m|aQ; for, if there is no such 

relation holding, then the factor bigroup W/U has a sub-bigroup 

<y^U,Zj^U> isomorphic to C^ wr C which generates ^ o A, by (4.4.1) 

From (4.4.3) we deduce that 

V a^z^^^ 
n y / , j e {0,...,v} 

i=0 ^ 

are bilaws in W/U and therefore in U. Working in the endomorphism 

ring of Aj^(W/U) we have 

V ., 
I a.zJ-J = 0 , j e {0,...,v}. 

i=0 ^ ^ 

This implies n (zf - z^) = 0 and so a. n (z^'^ - 1) = 0. 
"j<i ^ j<i 

Hence 
Z , k ,^v-k+l . a n (z^ - 1) = 0 

k=l 

whence 
iv(v+l) 

aj^zl'-ir = 0 . 

Put r = -|v(v+l), s = v!, t = a^ and we have 

[y^rz®]^ e U 
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(4.4.4) Lemma. Every proper sub-bivariety of A o A, where »p as 
p is prime, is contained in some E o A A o A . = = V ap tan 

Proof. If Ucr: Ap o A then every bigroup in U has a bilaw 

[ŷ ĵ̂ ẑ ], since p|t. Let v be a natural number chosen so that 

p^ ̂  r. Then every bigroup in U has a bilaw [YĴ .z®̂  since 
V p^ 

[ y p z f ^ - I [y,, z^]^ 
u=l VI 

modulo the bilaws of A^ o A, and y < r ̂  p^ implies p P 

In particular the non-abelian critical bigroups G of U satisfy 
V 
]. Since A^(G) is self-centralizing and not 1 it follows 

V 
that zfP is a bilaw in G, and hence G e A o A . This 1 —' — =p = V ^ sp 
concludes the proof. 

(4.4.5) Theorem. A o A has descending chain condition on 
P 

sub-bivarieties. 

Proof. The proof is by induction on p, the previous lemma 

providing a starting point. We show that all descending chains of 

bivarieties between A o A and A , o A break off; hence if we = u = = n-l = p p 
assume that A ^̂  o A has descending chain condition on sub-bivarieties, 

P 
Theorem 2.1.3 gives that A o A does also. 

V = 
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Work in the split-free bigroup of rank (w.o)) in A o A, 

call it W say, with A = B = A ^ W . The mapping 
y-1 

o : W/A^ -»-<aP ,B> defined by 

y-1 
(baAP)a = baP 

is easily checked to be an isomorphism; hence (A^ ,5) is isomorphic 
u-1 

to F, v(A o A). Now if g is a self-morphism of •(A^ ,B> QUjw; =p = 

„Vi-l u-l 
then yj 6 = aj , a^ e A. Define 8* : W -»• W by 

= a^, z^B* = z^B, i,j e {1,2,...}. 

Clearly ,b} = 3 and therefore a fully invariant sub-bigroup 
y-1 y-1 

of W contained in (A^ , b) is fully invariant in (A^ , B). 

Therefore all ascending chains of normal, fully invariant sub-bigroups 
u-1 

of W contained in (A^ ,3) break off; in other words, all 

descending chains of bivarieties between A o A and A o k 
P^ p^' 

break off. This completes the proof of (4.4.5). 

It remains to remark that for relatively prime integers u,v: 

A o A = A o A , A o A =uv = =u = ^ =v = 

by (1.7.4), and then (2.1.2) and (4.4.5) give Theorem 4.0.2 . 
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To prove (4.0.3) the only unproved thing is that ^ o A ^ A o A^ 

is finitely based. This is shown by the following lemma, due to 

L.G. Kovdcs. 

(4.4.6) Lemma. For natural numbers m,n. A o A A o A 
' ' =m = = =n 

has a finite basis for its bilaws. 

Proof. In fact A o A ,, A o A is determined by the bilaw =m = V = »n 

together with the bilaws of A o A. We have to show 

that if W is the split-free bigroup of rank (U),(D) in A o A, 

then 

Now if Y is the natural morphism from W to the split-free bigroup 

of rank (a),a)) of A o A^, then 

ker Y n = [A^(W),A2(W)'']. 

Since A^( W)/[A^( W) ,A2(W)"] is therefore a free abelian group, 

[AJ^(W),A2(W)^] is complemented in A^(W). Hence 

This completes the proof of (4.4.6) and therefore that of (4.0.3). 
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CHAPTER 5 

FURTHER RESULTS AND APPLICATIONS 

In this chapter we shall attempt to pin down the structure of the 

lattice of sub-bivarieties of ^ o ̂  further than we have done already. 

We shall show that essentially every thing can be describ ed in terms of 

prime-power exponent sub-bivarieties, and for these we get a complete 

classification only for the sub-bivarieties of A o A . Thus x̂ hen 
= a =p P ^ m,n are nearly coprime, a complicated, yet complete description of 

° ^^ given. In section 5.5 the question of classifying 

the subvarieties of ^ ^ is taken up, and we show how a complete 

classification can be given in the case m,n nearly coprime, and that 

this type of classification cannot be extended to general m,n. 

A question that has come into vogue recently is that of distributivity 

of the lattice of varieties of groups. It is known, for example, that the 

lattice of varieties of A-groups is distributive (Cossey [4]), that the 

lattice of nilpotent varieties of class at most 3 is distributive 

(Jonsson [11]), and that certain metabelian varieties form distributive 

lattices (Brisley [7], Weichsel [12], Newman [14, 15].). On the 

other hand Higman [23] constructed a non-distributive lattice of 

varieties of exponent pCW) and class at most 6. The formulation of 

some of the results in this chapter is done with the question of 
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distributivity in mind. Among the results proved in this direction is 

the following: if V is a variety of metabelian groups of bounded 

exponent, such that Sylow p-subgroups of groups in V have class at 

most c £ p, then A(p is distributive provided A(V ^ N^) is 

distributive; and if Sylow p-subgroups of groups in V have class 

greater than p, then A(p may not be distributive. The results of 

Brisley, Weichsel and Jonsson mentioned above can then be employed to 

get positive results about distributivity. 

5.1 Further results on critical blgroups in A o A 

We saw in Chapter 3 something of the structure of non-nilpotent 

critical bigroups in A o A; in particular we saw that each such bigroup 

^ h as a sub-bigroup , which has p-power exponent and does not 

belong to the variety of its proper sub-bigroups. Unfortunately F* 

may be non-monolithic and therefore non-critical: one example of such 

a situation occurs with F̂ * equal to the central factor group of 

C^ wr (C^ X c^). It is easy to prove a general result which 

implies that if F* is monolithic, then it is critical (cf. (1.2) 

in [5] of Kov^cs and Newman): 

(5.1.1) Theorem. If G e A o A is monolithic and not in the 

bivariety generated by its proper sub-bigroups, then G is critical. 
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Proof. Let G = ( G , A , B ) . It follows as in (3.1.6) 

that there exists a unique maximal normal subgroup of G contained in 

A, and hence that N = A^[A,H] where A is a p-group and H is the 

Sylow p-subgroup of B. Also it is easy to see that the maximal 

sub-bigroups of G are AB^, NB where B^ is maximal in B . 

We show that G/oG e svar{NB}. If q is a bilaw in NB we may 

assume it to be special, involving ... ^(t ^ 1) . If 

a : —' define 6 : Q^ ^ NB by 

= z^e = ẑ ot, i e {1,2,...}, 

and Y ! ^^ 

y^y = z^Y = z^a, i e {1,2,...} 

where r = exp B/H. It is easily seen that (qa)'^ = q3 = 1, 

[q>z^]a = qY = 1. Thus q(G) lies in the socle of AH, that is, in 

oG. Hence q is a law in G/oG. Since all proper quotient 

bigroups of G are quotient bigroups of G/aG it follows from the 

hypotheses that G is critical. 

(5.1.2) Theorem. If P e A o A is nilpotent and critical, 

4 1» then there exists to each natural number t which is 

prime to the order of P, a non-nilpotent critical bigroup ^ e A o A 

with K = t and F* = P. 
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If G e A o A, G = (GjAjH x K) where AH is a p-group, A 

is non-trivial and self-centralizing in G and K is a p'-cycle 

which acts fixed point free on A, then there exist critical bigroups 

such that each F̂ * is critical, each |K | = (k| and i w 1 1 
svar{G,,...,G } = svar{G}. —1 —w — 

Proof. From (3.1.6), is monogenic qui P operator 

group; also P is monolithic. Choose the natural number s so that 

tip®-! but t-l-p" - 1 if 
u < s« Let P-s•••jP isomorphic copies X s 

of P, say ĵL ' —1 —i isomorphism. If a^ e is 

such that 

we may suppose a^ = i e {l,...5s}. 

In the direct product P^ x x ^ write A = x ... x 

H for the diagonal of x ... x p^); that is 

H = {f : f(i) = f(l)X^ e 

and set F = (AH,A,H). We aim to extend F by a t~cycle so that the 

resulting bigroup is critical. 

I. .. ,a > 1 A and let K = <k : k^ = 1> be a cycle X S 

of order t. According to Cossey (Theorem 4.2.2 in [4]) there 

Put A = <a O N 
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exists a unique critical group Â K", in this group let k induce an 

automorphism a on A^. Define the action of a on H to be the 

identity mapping of H. Then a extends to an automorphism of F. For, 

let 

r = r(a^,...,ag,h^,...,h^) = 1 

be a relation among the generating set {a-,... ,a } H of F. -L S 
Clearly r = 1 is equivalent to a set of relations 

r^ = ... = 1, i e {l,...,s}. 

Because of the way we have constructed F, r^ = 1 is a relation in 

F if and only if jh^^,... = 1 is a relation in F, i,j e {l,...,s} 

s 3. 
If = n a^ is any element of A^, then 

6 

3 
= n r (a ,h. ,...,h ) = 1 . 

j=l ^ 

By von Dyck's Theorem, a may be extended to an endomorphism of F. 

Since A^a = A^, Fa = F and consequently ot is an automorphism of F. 

Next we verify that (FK,A,HK) is critical. As a first step 

we show that K acts fixed point free on A. If N = A^[A,H], 

N^ = A^CP.)] then N^ = N A^(^) and 

N = N- X ... X N , 1 s 
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so that A/N S A ^ / M ^ X ... X A ^ / N ^ S A Q / a J where the Isomorphisms are 

K-isomorphisms. Hence K acts faithfully and irreducibly on A/N, 

Now there exist elements e H and an integer y 1 0 such 

that 

Y 

1 T X^ = e a P ^ , i E {1,...,S}; 

and the mapping a^M x^ extends to a K-homomorphism y of A/N 

into OF, the socle of F. In fact y is a K-isomorphism since K 

acts faithfully and irreducibly on A/N and since clearly 

= oF. It follows that K acts faithfully and irreducibly on aF, 

and therefore fixed point free on A. Finally a calculation similar to 

that in the proof of (3.3.1) shows that the maximal sub-bigroups of 

FK are precisely AH^K, AHK^, NHK where H^, K^ are maximal in H,K 

respectively; and, as in the proof of (3.1.6), svar(AHQ,A,HQ) = 

svar(A^(P^)HQ,Aj^(P),HQ), and also ^̂  svar(NH,N,H) = svar (N^H,N^,H). 

By hypothesis therefore, there exists a biword q which is a bilaw in 

AHQ, WH, but not in AH. If q involves the variables 

^1*^2'"''^u ^^^ the maximal 

divisors of t, not equal to 1 (if any), consider the biword 

t 
II r f 1 V , q = [q 

where q' is obtained from q by replacing z^, i e{I,...,u} by 

t 
'i" 
z!". Then q" is a bilaw in all maximal sub-bigroups of FK but not 
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in FK itself. Since FK is monolithic, (5.1.1) concludes the proof 

of the first part of the theorem. 

To prove the second assertion let G be as stated. Now 

F = (AH,A,H) is contained in the bivariety irredundantly generated by 

some of its critical factors F*,...,]?* say. We may suppose 

+ 1 , i e {l,...,w}. For if A^(F*), say, were 1, then 

exp A^CF*) > exp A^CF*), i e {2,...,w} (or else F* would be 

redundant), and then F* ...,F*, and therefore ? would have a bilaw A 

[y^,z£ ] where z£ is not a bilaw in F. But A^(F) is non-trivial 

and self-centralizing in F and therefore we would have a contradiction. 

According to the first part of the theorem, we may construct critical 

bigroups G.,...,G from F*,...,F* respectively, and the same cycle —X —W —X w 

isomorphic to K. Then svar G = svar{£^,... ; for if q is a 

biword, and correspond to q,p,t by Theorem 3.4.A, then, 

by (3.4.5), q is a bilaw in G if and only if are 

bilaws in F, hence if and only if are bilaws in 

and therefore if and only if q is a bilaw in 

We have already seen that non-nilpotent critical bigroups in A o A 

are critical qua groups (3.3.4). The converse, suitably interpreted, 

is also true. 
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(5.1.3) Theorem. If G is a non-nilpotent, metabelian, critical 

group, then G' is complemented in G, say by B, and (G,G',B) 

is a critical bigroup. Moreover, all such bigroups arising from G 

are isomorphic. 

Proof. Since G is non-nilpotent there exists a natural number 

u such that 1 + G, . Since G, . is abelian, ' (u) (u+1) (u) 

it is complemented in G, and all such complements are conjugate 

(Shenkman [1]). The same proof as that of (3.2.1) can now be used, 

together with (3.1.2); the conjugacy of complements ensures that 

different bigroups (G,G',B) are isomorphic. 

5.2 The bivarieties A o A =m =n 

We commence with a few remarks of a general character, 

(5.2.1) Definition. If B is a bivariety, define 
«v 

B(f) = svar{G e B : G critical, A^(G) =|= 1}, 

= {G e B : A^(G) = 1}. 

Also define 

<I>(B) = {C(j) : C ̂  B} , 

'i'(B) = : C e B}. 
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(5.2.2) Definition. Denote the lattice of sub-split-varieties 

of a split-variety S by A(S). 

(5.2.3) Lemma. Each of $(B), TCB) equipped with the 

inclusion order inherited from A(B) is a complete lattice. The 

mappings tj) : A(B) ^ $ (B), ; A(B) ¥(6) are onto lattice-

homomorphisms. 

Proof. Now 4'(B) is clearly a sub-lattice of B, in fact equal 

to A(B ^ E o 0) where 0 is the variety of all groups). In 

^(B), the join of any subset is equal to its join in A(B), and the 

intersection of any subset is the largest element of ii>(B) contained 

in all elements of the subset: indeed if C^ ̂  B (i e I), then 

A{ĉ (j) : i e 1} = (A{C^ : i e l})(|). 

(An instance of A C^ + C^ A. C^ occurs in the lattice A(A^ o A 

in section 5.4 with C^ = A^ o A^ ^ N^, C^ = V^). 

That f is a homomorphism follows since the bilaws defining 

Ciĵ  for any C are precisely £ r, A^(Q^) = (by (1.2.8)), and a^ 

is a lattice homomorphism. To show that (|) is a homomorphism we need 

the follo\id.ng lemma. 

(5.2.4) Leirana. If G is critical with A^(G) + 1, and if 
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G e svar{^ ' 3 e J) I ° 2 

whare for each j j A^(G^) =[= 1, then 

G e svar{^ : j e J}. 

Proof. If q is a bilaw in all G^ we may assume by virtue of 

(2.2.1) that either q e A^CO^) or q e Write q' = q 

in the first case, and q* = [yĵ ,q] in the second- then q' is a 

bilaw in all ^ and in E o 0, iirhence in G. Since Aj^(G) is 

non-trivial, and the centralizer of A^(G) in A^CG) is trivial, 

we deduce that q is a bilaw in G. This completes the proof. 

Returning to the proof of (5.2.3) x<re note that, if G e C ̂  D 

is critical, and A^(G) =f= 1, then by (5.2.4), G e C(f) ^ DcJ), whence 

(C ̂  D)<j. ̂ C ^ y 04.. 

As the converse inclusion is obvious this shows that (j) is a join-

homomorphism. By definition, (}> is an intersection homomorphism, so 

(5.2.3) is proved. 

(5.2.5) Theorem. If B is a bivariety in which every sub-

bivariety is generated by finite bigroups, then A(B) is a sub-

direct product of $(B) and f(B). 
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Proof. In this case5 if C £ B, then 

C = C(|) ^ Ctf,; 

and therefore C(p = D(j), C\p = D̂ ) implies C = D, whence the result. 

(5.2.6) Corollary. If B is a bivariety every sub-bivariety of 

which is generated by finite bigroups^ then A(B) is distributive if and 

only if 4'(B) are distributive. 

We start our investigation proper of ^ o iĵ  the special 

case when m = p̂ ', n = p^W where pfN and p is prime. 

(5.2.7) Theorem. A(A ^ o A ^ ) can be embedded sub-directly 
~P ~P N 

into the lattice. 

A(E o X A(A ^ o A ) X $(A ^ o A 
P P P P 

where s is the number of divisors 1 = tT,...,t of N. Indeed i s 
there exist onto lattice-homomorphisms : A(A o A ) ^ V "p'̂ N 

A(E o A^), : A(A ^ o A ) - A(A ^ o A g), X^ : A(A ^ o A ^ ) 
p p N P P P P N 

-^<I>(A^oA ), 2j<ij<S3 such that if S ^ A ^ o A ^ ^ , then 
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(i) 

(li) 

t^itj implies SX^ £ SX^, 1 1 i» J 1 s, 

SXQ = E o A^ Implies SX̂  = E o E, t^+t^ 

Before proving this result we need a lemma similar to (5.2.4), and, 

if the bigroups involved are thought of as groups, identical with a 

special case of a result of ICovdcs and ITewman ((1.12) in [5]). 

(5.2.8) Lemma. Let {G^ : i e I}, (l̂  : j e J} be critical 

bigroups in ^ o A^ (m,n > 0), where each G^ is non-nilpotent, and 

each IL is nilpotent. If G is critical and not nilpotent and 

G c svar{Gj,,^ : i e I, j e J}, 

then 

G e svar{G^ : i e I, [k] expoG » expoG^} 

(in the notation of (3.2.1)). 

Proof. Suppose first that q is a bilaw in all G., ^ 

such that p = expoG^ « expaH^ « expcG. As usual we may suppose that 

either q e <1 ̂  write q' for q in the first case 
Y m' and for [yĵ jql in the latter. If m = p^m' where pjm', then q' 

is a bilaw in all and therefore in G. Since p-fm', q' 

is a bilaw in G and therefore q is a bilaw in G since Aĵ (G) is 

self-centralizing. 
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Without loss of generality, then, we may suppose that expa^ = expaH 

= p for all i,j. Then let q be a bilaw in all G, such that 
—i 

kI : again we may assume q e or q e and define q' 

as in the last paragraph. If = : i e I, |k|-(-|k^|} 

then 
6 6 p n^ p n 

r . i ""'^r-hi ^ 

a 

is a bilaw in all G^, F^, where p | |n and r is chosen large enough 

to avoid z's xirhich occur in q. 'owever, since K acts fixed point 

free on A^(G)j q' is a tilaw in G and, as before, q is a bilaw 

in G. 

Proof^of (5.2.7). Let S c A o A . , and define X. as follows 
~ - V i 

SXQ — S 

SX^ = 3var{F* : G e S - E o Â ^ critical, t^ = | k | } . 

i e {l,...,s}5 where we interpret F* = G, K = 1 in case G is a 

p-group. 

for the sub-bigroup (FK,A,H x K) of G where 

there exist critical bigroups with 

If 2 ^ S is critical, with k| = t^ and t^ l t^ write G 

= t^. From (5.1.2), 

= t^ such that 

svar{G,,...,G } = svar{G}, svar{F* ...,F*} = svar{F*}. Hence —̂ j. —w — —J. "~V/ — 

SX SX.. Also if SX- = E o A , then whenever t.-ft., -> J ~ 1 ^ u — t^ J 1 
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{F'̂  : G e S - E o t = jK|} is empty, and therefore SX = E o E. ^ ""H J ^ "1 s ss 

We have to show that the X^ are homomorphisms. Clearly X^ 

is an intersection-homomorphlsm" and it is a join-homomorphism since 

H e (S ̂  S') 1 ° ^N "̂'Plî s ^̂  = ^ var{A2(K)P : K e S or 

K e S'} and therefore H e (S ̂  E o A.̂ )̂ (S' ̂  E o A. J. That is 

(S 

V S ^^Q V ^'^Q opposite inclusion is obvious, we 

have dealt with X^. 
Kow suppose G c S S' is critical and t K ; by 

(5.2.8) G e svar{G_. s G. e S or G. e S', G. critical, t. - -j ~ -3 ~ -J i 
and so 

K. }, 

F* e svar{F* : G. e S S' critical, t. - -J -J ~ ~ 1 

= sx^^ s'x., 

whence (S ^ S')X^ SX^ S'X^. The converse inclusion is clear so we 

have shown that X^ is a join-homomorphism. To show that X^ is an 

intersection-homomorphism, suppose that P e SX S'X is critical and 

A^(P) =f 1 (in the case t^ =|= 1). By (5.1.2) there exists a critical 

bigroup G with F̂ ^ = P and |k| = t^; it follovzs from (3.4.4) in a 

routine fashion, that G e svar{^ e S : G^ critical, t^ = |k^1}a 

svar{G^ e S' : G^ critical, t^ = or G e S ̂  S^ Thus 
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F* e (S ̂  and therefore 

as the opposite inclusion is obvious, is an intersection-

homomorphism. Note that the case = 1 is easy, since SX^ = 

S . A 0 A ^ A = A = 3 P P 

Finally, note that S is determined uniquely by the SX^, 

0 £ i £ ss for, if SX = S'X for all i, and if for i ̂  1, ^ i ^ J. 

G e S is critical with |K| = t^, then F* e S'X^, and using 

(3.4.4) again we deduce G e S'; hence S c: S', and, in a similar 

manner, S' ̂  S, or S = S'. This then shows that the mapping 

S > (SX-,...,SX ) provides an embedding for A (A o k ) x;hich 
p p ̂^ 

is clearly sub-direct. 

a, a 1 r (5.2.9) Theorem. If m,n >0, m = p^ • • • P̂ , for 

distinct primes then o A^) is a sub-direct product 

of A (A 0 A ), i e {l,...5r} according to homomorphisnis = a^ =n 
Pi 

^i ' ° a ° defined by 

Pi 

Pi 

for B c: A 0 A . _ — =m =n 
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Proof. That each is an intersection homomorphism is obvious. 

To prove that it is a join-homoraorphism we must show that for B,C 

A o A , =in =n 

(B V E V 

since the converse is clear. If G e (B ,, C) A o A , and — ^ A = a^ =n 

AT (G) 4= 1 then Lemma 5.2.8 yields G e (B A o A ) ,, 1 — — ^ = a^ =n ^ 
Pi 

(C . A 0 A ) which is what we want^ if A. (G) = 1, then _ = âĵ  =n 1 — 
Pi 

G e (B V C) E o A^ = (B ̂  C)ip = B\p ^ Cip ^ By^ Cy^, 

using (5.2.3). Finally note that for o A^, 

B = v{By^ t 1 1 i 1 ^^ 

and therefore the theorem is proved. 

(5.2.10) Corollary. If B o ^ o A^, then A(B) is 

distributive if and only if for each p^|m, each A(B)y^Xj is 

distributive, x̂ here X^ are defined for each i as in (5.2.7). 
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Proof. Since the liomoiaorphisms y^ provide a sub-direct 

decomposition of A(B) then A(B) is distributive if and only if 

each sub-direct factor of it isj that is, if and only if each 

is distributive. From (5.2.7), and for the same reason, 

each A(B)y^ is distributive if and only if A(B)y X. is distributive. 

Theorem 5.2.7 can be formulated, a little artificially, but in some 

respects more naturally, in a different manner using the concept of 

products of split-varieties introduced in section 1.7. Here we give 

an informal discussion without proof of how this can be done. Note 

that if G = (G,A,B) e A o A then B can be written uniquely as 
V 

B = H X K with H e A K e The mapping 
P 

X • A 0 A A o(A X Aĵ ) defined by 
p p^P p p 

Gx = (G,A.H,K) 

is easily verified to be one-to-one^ to take sub-bigroups to sub-

trigroups and to take quotient bigroups to quotient trigroups. We 

can, moreover, easily turn x into a functor: if U G G 

then clearly y is a morphism between Gx and Gx. Define 

yx = y. We can, in these terms, state 
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(5.2.11) Theorem. To every sub-bivariety S of A o A 

containing E o there exist unique sub-bivarieties S of 
® ^ t 

A ^ o A ^ for each t H, such that 

S x = 0 A^ , T : t|H} 

where T = A 0 (A . x A. ), and such that S, c:: A 0 A „, 
- a - = a = 3 
P P P P 

Nj then S^ c- Ŝ .. S^ e $(A O A - ) , 1 + and if t|t„ ~ t — ( X — p U ^ 
P P 0 

The proof is in many respects similar to that of (5.2.7) and we 

omit it. 

Finally in this section, we investigate the nature of join-

decompositions of A 0 A . =m =n 

a- a 1 r 

(5.2.12) Theorem. If m = p̂ ^ • • • P̂ . for distinct primes 

Pl>"'»Pj. then 
A 0 A = v{A 0 A : 1 < i < r} 
=m =n = a^ =n — — 

Pi 

and this is the only way that A 0 A can be \^itten as an irredundant 

join of join-irreducibles. 
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Proof. First we shov7 that for prime p ̂  A o A is join 

irreducible: this is patent for 6 = 0. We use induction on 

assuming that A ^ o A is join irreducible. 

Suppose that A o A = B. ̂  B.; that is, if VI is the = a = V —V P P 

free bigroup of rank (l,w) in A o A (changing the notation of 

Chapter 4 slightly) then in 

B^ n B^ = 1 . 

Clearly we may suppose that contained in Then 

by (4.3.8) there exist 2 ^ integers v^jV^ such that 

[L.A ] < B. < L.X , i = 1,2. —i V i-v V 

Therefore n 1 n I2 ~ ^ whence, by 

(4.2.15), L^X^ = 1 yields (L^ n = 1 or 

L^ ̂  L^ = 1 from (4.3.2). By hypothesis, L^ say, is trivial and 

therefore ^̂ ^ = Ij proving what we want. 

ilext suppose that for pftT (and a > 0), 

A 0 A . = S ^ S' . = a = Pm ~ ~ P P 

From (5.2.7) we have that for each t^|N, 
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in particular, v/ith t = H, SX, = A o A „ say. Hence 
P P 

SX = A 0 A for all i = l,...,s and therefore S = A o A „ 
~ 1 - a - p = (J ss g P P P P N 

Certainly, then, ^ o A^ has a decomposition as an irredundant 

join of join-irreducibles. Suppose that 

A 0 A = B- . .. ^ B^ =ra =n V V ̂ t 

is another such decomposition. Then using (5.2.9) we have for 

each i e {1,...jr} 

a. ° ^n = V ••• V V i X 
Pi 

whence for some j e {l,...,t}5 

Pi 

That is, each A o A is contained in some B.- and each B. ' = a^ =n -3 -j 
Pi 

does contain an A o A since otherwise it is clearly redundant. = a^ =n 

Pi 

Also since each B^ is join irreducible, and B^ = vlB^y^ : 1 £ i 5 

Bj = B^y^ for some i. That is, 

Pi Pi 
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whence B^ = A ^ ° -n' this completes the proof. 

P / 

5.3 The bivarieties A o A . =in =p 

The problem of determining all sub-bivarieties of ^ o A^ has 

been reduced to the case when m,n are powers of the same prime. 

In general this case seems to be difficult. The results of Chapter 4 

show that we can obtain upper and lox-jer bounds for each sub-bivariety 

of A 0 A - in terms of the sub-bivarieties of A o A ^ ,, but the = a = p = a - p~-L P P P P 

fine structure escapes us in general. Only in the case 6 = 1 do we 

get a complete picture. First we prove two lemmas similar to (4.2.7). 

(5.3.1) Lemma. If in the notation of (4.2.2), a.^,... e A 

are fixed elements, and if U is normal in T;̂  such that for all b e B 

P--1 
p = n [a ,ib] e U , 

i=0 

then a^ e U^, i e {0,...,p-l}. 

r 
r ^ 1 

Proof. Using the identity [x,y^]= n [x,iy]'''', we may 
i=l 

express P as 

p-1 i 
p = n [a' b"-] e U 

i=0 
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where each a', i s a linear combination of a . , . . . , a and 1 i p~l 
a' , = a From (4.2.7) we deduce that a , e U , , xirhence p-x p" l p - 1 

p-2 
n [a^,ib] e U . 

i=0 

M easy induction i s indicated to f inish the proof, and we omit the 

detai ls . 

(5 .3 .2) Lemma. Define y = ) where 0 PJ i P~1 

for a l l i . If a(ii) are fixed elements of A, and i f for a l l 

b- , . . . , b c 6 1 s 

n . . e U 
y 

(where U i s normal in W ) , then a (y) e U where T = y, + . . . + y 
— V ^ T -»• . 

Proof. We oroceed by induction on s , the case s = 1 being 

covered by the last lemma. For i e { 0 5 . . . , p l } write 

y =i ~ s 
p-1 

then H [a , ib ] e U for a l l b e B. Hence by (5 .3 .1) , 
i=0 ^ 

a^ e U^, i e { 0 , . . . ,p--l} . Now y^ - y^ implies (y . . . + 

( y y ' ) i f y - y ' . We may then, by induction, assume that 
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a(u) e (U^)^ 

V7here j = + ... -!- That is, a(y) e U^, T = i+j = 

y^ + ... + y^, for each y as required. 

Before commencing the statement and proof of our main results 

in this chapter, we introduce the following notation. Write X 
-a 

for the split-free bigroup of rank (l.w) in A o A on the solit-
= a P ^ 

free generating set {y^} ̂  {z^^z^,...}. It is clear from (4.2.1) 

that the lattice of normal, fully invariant sub-bigroups of 

is dually isomorphic to A (A o A ). Write (d,a) for the fully P®' a 

invariant closure of . . . i n abusin® convention, 

then 

(5.3.3) Notation. For d > 0, a e {3,1,...,a-1} 

a 
(d,a) = ... }. 

(5.3.4) Theorem. Every fully invariant sub-bigroup of 

contained in can be vzritten as a product of finitely many 

(d,a)'s. 

Proof. From (2.2.4), every fully invariant U contained in 

is the closure of special biwords of the type 

t a^ 
q = n [yi^UiiZi^-'-'yis^^] 

i-=i 
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where I < p-1, 1 1 a^ < all and where i f j 

Implies (Uii^.-.-yig) + ). Lemma 5.3.2 gives that 

a. 

Clearly, then, q is equivalent to a set of (d,o)'s and therefore so 

is U. 

With this theorem we can in fact determine all sub-bivarieties of 

A o A ' however we have as yet no way of knowing when two different 
-ptt -p 

sets of (d,a)'s determine different sub-bivarieties. We take up 

this problem now. 

(5.3.5) Theorem. The commutators 

r ^ 0, 0 £ y^ ^ p-1 for i e {1,... ,r} and > 0, form a basis for 

If d > 0, then a basis for (d,0) is the set of all 

T 

b^ , where b is a basic commutator of weight ^ 2 and where x is 

minimal with respect to a £ x and xr/t b + (x-o)(p-l) d+1-

a the set {b^ : b basic} is a basis for (0,a). 
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Proof. The set of commutators of the type described certainly 

generate A^^C^): the only thing to check is that, using the 

identity 

p-1 
[y.jpzj = n [y, jizJ i 1 L 1 

we can remove p or more repetitions of any variable z^, replacing 

the offending commutator by a product of commutators each of which has 

fewer than p occurences of z . That these commutators with 
•J 

fex̂  repetitions are basic follows from (5.3.2); for, if 

t a^ 
n [y, ,y.,z z ] = 1 i=l -1- iJ- i is^ s. 

where (y ... ) + (Vji'• • • js^ ̂ ' ^ ^ ^ 0 1 1 P 

M^ > 0, i e {l,...,t}, I e {l,...,s }, then, if s = max{s : 
is^ ^ 

1 £ i £ t} we have by defining ŷ ^̂  = 0 for s^ < )l ̂  s where 

necessary, that 

t 

with =1= i + J- ^̂ ^ therefore apply 

Lemma 5.3.2 to deduce for each i e {l,...,t}, that 
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where T = + ••• l̂ig t:his would then be a bilaw in and 

a therefore p For if not, then [yP = 1 and 

therefore [y-, sZ ,... ] is a bilaw in C v;r c"̂ , which is not true 
± ± T P P 

(see Liebeck [13]). Thence p^ja^ for all i, and tais shows that 

the set of commutators [y^^jy^z^j... with r ̂  0, 0 _< £ p-1 

and > 0 is a basis for 

a 
It is quite clear that the set {bP . b basic} is a basis for 

(0jO)„ but the remaining assertion of the theorem requires proof. 

The crucial point is the folloi'Ting result. 

(5.3.6) Lemma. (e.t) _< (d,a) if and only if o £ x and 

d = 0 if e = 0 and d £ e + (r-a) (p-1) if e > 0. 

Proof. The first part is easy: if (e^x) (d,o) then 

. . c a n be written as a product of p^-th powers^ and 

a-1 
hence, if a > x, [y^.z^^,... = 1 which, as we have observed, 

X 

is Impossible. Also if e = 0 and d > 0, then yj can be witten 

as a product of commutators all involving at least one z^; then by 
X 

mapping and z. 1 for all j we have yP = 1 which is a 
1 X J 

contradiction. 



137. 

Suppose therefore, that e > 0 and a £ T. Then 

(5.3.7) (e,T) 1 (e + (T a)(p-1),a) 

and 

(5.3.8) (e,T) i (e + (T-a)(p-l) + l,a). 

Consider the identity 

p 

from this one deduces that for r _< p-2 

(e-hr+l,!) £ (e+p~l,0) implies (e+r,l) £ (e+p--l,0) 

and therefore J by dot^nward induction on r, (e-1) (e+p-1,0). This 

then gives by induction on T-A((5.3.7) is trivially true if T = a). 

T-1 T-1 
(e,T) = (e,l)P 1 (e+p"l,0)P 

= (e+p-l,T-l) < (e+p-l+(T-l-a)(p-l),o) 

= (e+(T-o)(p'l),o). 

This proves (5.3.7). The proof of (5.3.8) is more difficult, 

and uses the next two lemmas. 
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(5.3.9) Lemma. If m > 0 and 

i=l 

and if m = n + (y-l)(p~l) + r, 0 £ r < p-1, 0 £ y, then 

i) y = 0 implies 6(mji) = 1,0 according as m = i or m =|= i; 

11) r = 0 Implies p^|6(m5i), 1 < i < p-lj 

ill) yr ^ 1 implies p^"^^] 5(m,i), 1 1 i 1 r 

and p^|6(m,i), r + 1 £ i j< p-1. 

Proof. Clearly (i) is a consequence of the uniqueness already 

proved in (5.3.5). For y = 1, r = 0 (ii) is easily seen to be true. 

Suppose that the lemma has been proved for some m with m ^ p. Then 

[y^,(m+l)z^] = [y^jz^^mz^] 

K^ r . i6(ra,i) = n [y ,z ,i2 ] 
i=l 

V [y.,(i+l)z V [y iz ] 
6(m,p-l) 

and so, by the uniqueness from (5.3.5), 

6(m+l,i) = 6(m,i-l) - 6(m,p-l), 2 £ i £ p l , 

6(m+l,l) = -p6(m,p-l). 
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By assumption 16 (m,i), l ^ r and p^|6(m,l), r < i, whence 

the proof may be completed. 

(5.3.10) Lemma. If m,,... ,m, > 1 and 
1 a — 

6(i) 

where i = with 1 j< i^ £ p~l, then m^ -1- ... + 

m^ ^ d + T(p-l) + 1 implies p"̂"*"̂  | 3(1,... ,1) . 

Proof. With d = 1 we have d + x (p-1) + 1 = p + (T~l)(p -1) +1 

and lemma 5.3.9 applies. We use this as a starting point for 

induction on d. Suppose m^ = (l)(p-l) + 0 ^ p < p-1, 

0 £ ({). Then 

m^ + ... + ^ (d-l) + (T-(f))(p-l) -- (p-2). 

Y(i) 

iiow if ... = n lyj^'i^^j^,. .. , then 

we may assume inductively that 

y(1,...,1) if P 1 1, 

T-({)+l 
D 

p^-'f'lYd,...,!) if 1 < P 

Also from (5.3.5), 

8(1,...1) = 6(ra^,l)Y(l,...,l); 

and 
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(j)+l p if 1 < p J 

if p <1 . 

In any case, p̂ "*"̂ ! 6(1,... ,1) as required. 

Proof of (5.3.8). If ( e , T ) < (e + (t-a) (p--l) + l,a), then 

3 

where + ... + > e + (t-aXp-l) + 1. Now (*) can be re-v7rltten 

by replacing each [y^, j^z^,... J^z^] by a product of powers of basic 

commutators. Then, using the uniqueness from (5.3.5), 

where for each a(j) by (5.3.10). Hence 

p' = pIbCJ). 

T+1 

and since the right-hand side of this equation is divisible by p we 

have a contradiction. This completes the proof of (5.3.8). 

Proof of (5.3.5). If d > 0 and are distinct basic 

commutators such that 

b^ ... b^ e (d,a). 
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then, from (5.3.2); if b^ has weight e^ + 1, and p g^, 

(e^pT^) <. (d,a) 

whence, from the part of (5.3.5) already proved, and (5.3.6), 

® - "^i' ^ d £ e^ + (T^-O)(P"1). 

Tliis completes the proof of (5.3.5). 

The main result of this section can now be stated. As the 

proof is of a routine nature using Theorem 5.3.5 we will omit most of 

the details. 

(5.3.11) Theorem. Every normal, fully invariant sub-bigroup 

U + 1 of X can be ^Tritten uniquely as 
— ' -a 

U = A-(X ) ^ ( d ,a) ... (d ,,a-l) 
— 2 —a cr ot-J. 

where e = 0,1 (according as ẑ ^ ^ U or e U) and 

i) e = 1 implies a = 0, d^ _< 1; 

ii) if <|) e {a,...,a-2} then 

<d^-p+l, if P l d ^ . 

0 , if 0 . d^. 
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Proof. Theorem 5.3.4 ensures that every U =|= 1 can be written 

as a join as indicatedr if z^ e U then [ŷ ŝZĵ ] e U and hence 

(1,0) £ U. 

Let a be the smallest element of {05...ja-l} for which 

(d,a) j< U for some integer d, and let d^ be the smallest integer 

such that ( d ^ , T ) £ U for a T £ A-1. Since by (5.3.6) 

(d,T+l) < (d+p-l,T) 

for d > Oj we have that d^ ^ p implies d^^^ j< d^ p+1. If 

1 < d < p-1 then for all d > 0 — T — 

(d,T+l) £ (d+p--l,T) £ (d^,T) 

hence I. If ^^ ~ 0 fo^ some T e {A5...,a-2} then 

clearly d , = ...= d , = 0. This establishes the existence of T+1 a-1 
such a join decomposition for IJ. 

The uniqueness is a consequence of the next lemma, whose proof we 

omit. 

(5.3.12) Lemma. If (d,T) £ (d^^.a) ... (d^_^,a-l) 

where d ,...,d , satisfy the condition (ii) of (5.3.11), then 
o* a-1 

a _< T and d^ ^ d. 

(5.3.13) Corollary. Let J = {0,1,... ,i,...} {"> 
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and T = {0,1} hava their natural orders, then the lattice 

T X J^ 

embeds A(A o A ). A(A o A ) is distributive. = a =p = a =p P P 

The details of proof are routine and we omit them. 

(5.3.14) Corollary. Theorems 5.3.11, 5.2.7 (or 5.2.11) and 

5.2.9 afford a complete description of o A^) if are 

nearly coprime. In particular o A^) is distributive in such 

cases. 

5.4 The bivarieties A o A . i: N = a = a ~c 
P P 

In this section we give a classification of another class of 

bivarieties, and produce an example of a non-distributive bivariety 

lattice. First note the following: 

(5.4.1) Lemma. A bigroup G e A o A has the bilaw 

if and only if G has the law [x^^.x^, •.. . 

Proof. Now G has the law . .. if and only if G 

has the bilaw [y^^i, • • • .yan-l̂ d-fl̂ "'" of A 0 A 
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we have 

and therefore fyi^;^,... is equivalent, modulo the bilaws of 

A 0 A, to 

iTote that, in particular, G has class c if and only if G has 

the bilaxj [y^^jZ^,... . 

(5.4.2) Notation. Denote by N^ the variety of all bigroups 

in A 0 A of class at most c. 

(5.4.3) Notation. Let Y^ be the split-free bigroup of rank 

(1,0)) in A 0 A N , and again abuse convention by writing (d,a) 

a 

for the normal fully-invariant closure of ... jẐ ]'̂  in 

Y^, d e {0,...,p-l}, a e {0,...,a-l}. 

(5.4.4) Theorem. Every normal, fully invariant sub-bigroup 

U 4= 1 of Y can be written uniquely as — ' —a 

Y 

U = (d^,a) ... 

where Ye{0,...,a}, a e {0,... ,a-l}, P"! 1 ^ ... ^ ^ 0, 
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and if y < a. then a £ y and d £ 1. A(A o A N ) is 
Y =pa A ^p 

distributive. 

Proof. That every U has a decomposition of this form follows 

from (2.2.4) and (5.3.2)- choose a as the smallest element of 

{0,...,a-l} for which there exists d e {O,...,?-!} such that (d,a) 

£ U, then choose d^ as the smallest d for which (d,T) _< U, 

a < T < a-1. Clearly then d > ... > d The rest of the proof — — a — — a~l 

will follow easily from the next lemma which will also prove useful 

again in this section. 

(5.4.5) Lemma. The split-free bigroup of rank (1,1) in 

A 0 A N (where a > 1) can be presented on the generators "p*̂  p" -

aQ3...,apS b subject to the defining relations 

a a a-1 a 
ag = ... = = aP = b^ = [a^.a^] =1, 0 ± ±,3 1 P, 

4 = 0 < i < p - l . 

Proof. We omit the details: note that the group presented here 

is generated by the set {a^jb} and that fairly obviously it is a split-

free generating set. The lower exponent on a^ occurs because 

1 = [a,,bP"] = n [a^,ib] 

a 
P 
IP 
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Return to the proof of (5.4.4), If (d^x) £ U then (d.t) ^ 

... and therefore 

(d,a-l) < (d^,a-T-l+a) ... (d^,a-l) 

:< (d^,a-T-l+0) ... (d^,a-l) 

= (d^,a T -l+o). 

However Lemma 5.4.5 yieldsj that even in the free bigroup of rank 

(1,1) in A 0 A ^̂  N (with a > 1) this can happen only if 

d > d 5 a-1 > a-T-l+a; that is, d > d and x > a, whence 
— X — — X — 

(d,x) _< (d^,x). Since y is quite clearly unique, we have shovm 

that this expression for IJ is unique, it only remains to remark, that 

Y Y Y Y 
z£ e U implies [y^sZ^ ] e U and that [yj^jZ^ 1 and 

are equivalent modulo the bilaws of A o A a ^̂  s from (5.4.5). 
— QL — 0, ^P 
P P 

As the case a = 1 is covered by (5.3.11), this completes the proof 

of (5.4.4). 

(5.4.6) Theorem. A(A 2 ° - 2 ^ +1^ distributive. 
P ~P ^ ^ 

Proof. We show that in the split-free bigroup of rank (1,1) in 

A 0 A ^ 'T ,, there exist normal, fully invariant sub-bigroups 
= 2 = 2 ^p+1 
P P 

pairwise incomparable and whose pariv/ise joins and 
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intersections are respectively equal. Let V^.V^jV^ be determined by 

the bilaî s 

[y^yzl], [yi^PZil 

respectively, and let V be determined by . In the notation 

of (5.4.5) it is clear that 

V = (aP aP ^ 2''' *' p—1'' * 

V^ = <aP,V.>, V3 = (a ,V>. 

Also since 

P 
n 
i=l 

kp' kp' 
[a^^ib] i W y kp 

1 P 
.P, 

/ P = 

kp 
IP = k(modp)), we have that modulo V (using the fact that 

V^ = (aja^.v). 

Hence (5.4.5) yields that V^V^ = V^V^ = V^V^ = (aP,ap,v), and 

' = ^̂  ^ ^^^ clearly V^.V^jV^.V are all 

distinct. This completes the proof of (5.4.6); a picture of the 

lattice A(A^ ° /\ drawn by way of illustration, but it is 

not here verified that it has this precise form. 
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Note that, as we have been working only in the free bigroup of rank 

(1,1) throughout this section, both results could have been 

formulated in terms of Engel-type bilaws rather than class bilaws. 



A, 0 A, X N-
= 4 = 4 
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A^ 0 A, . N 

A, 0 A , N-
= 4 = 2 ~ 3 

A o E = 4 

E 0 A 

A^ 0 E 

E 0 E 
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5.5 Applications to metabellan varieties. 

In this final section x̂ e give soma applications of the results 

and methods we have for the sub-bivarieties of A o A to the subvarieties 

of M . First let it be noted that as far as the descending chain condition 

goes. Remark 1.6.5 already provides a reduction of the problem" we 

sharpen this slightly. A classification result in terms of prime-

power exponent varieties and bivarieties is also given, as is a complete 

classification of A(^A^) x^hen mjn are nearly coprime. Questions 

of distributivity are also discussed. 

(5.5.1) Lemma. If q is a biword, then there exist words 

such that q is a bilaw in the non-nilpotent critical 

bigroup G e A 0 A if and only if are laws in (the group) 

G. ConverselyJ if w is a word, then there exists a biword q' such 

that w is a law in the carrier of the bigroup H if and only if 

q' is a bilav; in H. 

Proof. We may assume the biword q written, modulo the bilaws 

of A 0 A, in one of the forms 

t X., X, a, 
a 3 TT r ^ 

i=l 

by (2.2.3). The words 

J > 
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respectively,, then do what vje want. For the converse direction 

q' = w ( y z ,...,y z ) will serve. 
X X S S 

(5.5.2) Lemma. There is a one-to-one inclusion preserving 

correspondence between the set of all subvarieties of AA generated 

by non-nilpotent critical groups and the set of all sub-bivarieties of 

A 0 A generated by non-nilpotent critical bigroups; call it 6. 

Proof. From (3.3.4) and (5.1.3) there is a one-to-one 

correspondence between (isomorphism classes of) non-nilpotent 

critical groups in M and (isomorphism classes of) non-nilpotent 

critical bigroups in A o A which we may write G G. If Y £ M 

is generated by non-nilpotent critical groups: 

V = var{G^ : G^ non-nilpotentj critical, i e l) 

define 

V = svar{G^ : i e I}. 

The mapping V -v V may easily be verified to be one-to-one and onto, 

using (5.5.1). 

(5.5.3) Theorem. The variety M ^ ( ^ A ) has descending chain 
6 ot 

condition on subvarieties if and only if for all p n(p m), M g 
•n 

(A A) does. 
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Proof. Let Y^i-lz- ^^ ̂  descending chain in A(M^). 

We may write 

V = V' V'' =i =i ̂  =i 

where V^ is generated by the nilpotent critical ĵ roups in V^ and 

yî  by the non-nilpotent critical groups in V^. Clearly V^ £ 

... is a descending chain» which, by virtue of (5.5.2) and (4.0.1), 

breaks off. Hence V^ £ Y2 £ ... breaks off if and only if V^ V^ 

^ ... breaks off. Since 

V' V{AA - : n = p. ... p^ , 1 < i < t} =1 — ~ 1 t — — 
Pi 

the theorem follows from (2.1.2). 

Now A A = v{A A : p°'| |m} by 21.23 in [3], and therefore =in= = a= P 
(2.1.2) completes the proof. 

(5.5.4) Corollary. AA^ has descending chain condition on 

subvarieties if and only if for primes pjn the chains ^ g H 
P 

V r: ... with V,a = V^a for i e {1,2,...} break off. — =2 — =1 
A A has descending chain condition on subvarieties if for primes pjrv the 
=m= 
chains A A - V, a V "J ... with V a = V a, i = 1,2,... break off. = a= — =1 — —^ ^ ^ 

P (The definition of a is on p.36). 
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Proof. This follovjs from (1.6.5). Of course as noted in the 

Introduction, Cohen [16] has proved descending chain condition for 

all metabelian varieties; but it is perhaps worth noting that our 

methods are strong enough to yield such reduction theorems. 

We turn our attention noxir to classification results. Theorem 

5.2.7 can be modified in the following way. 

(5.5.5) Theorem. A(A A ) can be embedded sub-directly 
' P % N 

into the lattice 

A % , ) " A(A ^A ) X •(A ^ 0 A 
P P P P 

where s is the number of divisors 1 = t^^.t^,... of N. Indeed 

there exist lattice homomorphisms f̂. • 4 q ) 
0 V p ^ n 

?! ^ A(A A ) -> A(A A ) . . H A J 3 ) - M A A ), 2 < i < s, 
^ p̂ ' p'̂ N p p^ p P W p p 

such that if Y £ A A then 
- V p ^ n 

i) implies 2 < i j < s, 

ii) 2 £ i < s , 

iii) V^o = A^^ implies VC^ = E 0 E, t^+t^, 2 < j < s. 
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Proof. We may write 

VCn = V „ = V A A = 0 = ^ ^ - 1 = A = a= 6 P P 

VC = var{G e V : G critical, non-nllpotent}. 

The set of subvarletles of A A „ generated by non-nllpotent 
"p^^'p N 

critical groups Is not a sub-lattice of A(A ^A ^ but does foirra a 

lattice under the inherited inclusion order. Define = 

(where X^ is defined in 5.2.7); 2 £ 1 £ s. 

It follows from a result of Kov^cs and Newman ((1.12) in 

[5]) and one of Higman (51.1 in [3]), that are lattice 

homomorphisms; also, in the appropriate sense, 8 is a homomorphism 

(see (5.5.2)). Hence the are lattice homomorphisms. Moreover 

V = 1^0 - - ^^ 

and therefore, using (5.5.2) and (5.2.7) again, V is determined 

uniquely by {V?^ - i=0,...,s}. That the have the properties 

(i), (ii)s (ill) is obvious from their construction and from (5.2.7). 

We have the following result similar to (5.2.9), proved by using 

again (1.12) in [5] and 51.1 in [3]. 
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1 r 
(5.5.6) Theorem. If in,n > 0 , m = p^ • • • P̂ . for distinct 

primes then is a sub-direct product of 

A C A ^ A ) , ie{l,...5r} according to homomorphisms n. s A(A A ) i =m=n Pi 
^ A(A A ) defined by 

Pi 
Vn. = V . A A , = i = A = a^=n ' 

Pi 
for V c A A . = — =m=n 

(5.5.7) Corollary. If V - A A , then A(V) is distributive ^ =r — =sm=n = 

if and only if for each p^|m, A(V)ri^C^ is distributive, where 

is defined for each i as in (5.5.5) 

(5.5.8) Corollary. If m^n are nearly coprime, then A(^A^) 

is distributive, 

(5.5.9) Corollary. Let V be a variety of metabelian p-groups 

of bounded exponent in which p-groups have class at most c^. If ^p P 

when p <_ 3 and c^ = p-1 when p > 3, then A(V) is distributive. 

On the other hand if W is the subvariety of A ^A ^ which 

p p N 

consists of groups whose Sylow p-subgroups have class at most p+1, 

then A(W) is not distributive. 



156. 

Proofs. The proof of (5.5.8) uses (5.5.7), (5.3.13), (5.2.6) 

and M.F. Nevmian's unpublished result that A(A A ) is distributive. 
-pC-P 

To prove (5.5.9), use (5.5.7), (5.4.4) and Jonsson [11], 

Weichsel [12] (or Brisley [7]), (5.4.6) and (5.2.6). 

Finally we take up the possibility of getting a classification 

result along the lines of (5.2.11), and prove the follov/ing result. 

(5.5.10) Theorem. Let V be a subvariety of A A -pOt-p 
Write Yq = V ^ Â j, V^ = V ^ A ^A . There exists a unique subset 

A of the set of divisors of N and to each 6 e A a subvariety 

U. of A A with E o E 4= U.o e $ (A A ) and an integer a(6) < =6 = a=p = = I =(S a=p ° — 
P P 

min(a,exp U^) such that 

i> V = Vq ^ V^ , {U^A^ . ^^a(6)4pN ^ ^ ^ ^ 

a(6) < a(6Q), 

iii) U.a and a(6) are unique. =0 

Proof. For each 6|n, 6 > 1, xrrite 

V- = var{G £ V : G critical, non-nilpotent, |k| = 6}: =6 = 
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and write A for the set of all such 6 for which V, =1= E. Also 
=6 ' = 

put for 6 e A, 

Ug = var { F (G ) : G e V critical, non-nilpotent, |k| = 6}, 

and p ^ ' = raax{exp G' : G e V critical, non-nilpotent, |k| = 6}. 

We show that 

Now Vg is dearly contained in the right-hand side, and we must show 

the opposite inclusion. To this end let G e U^A^ A Q^^g^Ajj 
P 

critical; if G e A A or G e .A,, then clearly G e V , = a=p =0 and 
P ' "" 

hence we may assume G to be non-nilpotent. 

Now let w = be a law in V^, that is a law 

in the generating non-nilpotent critical groups of V^ - call them 

{G. : i e 1} say. Now w is a law in a non-nilpotent metabelian critical 

group G if and only if q = ... sy^z^) is a bilaw in G. 

If correspond to q,p,5 as in Theorem 3.4.4 then 

are bilaws in FJ, i e I. Now from (5.3.11) each q^ is equivalent, 

modulo the bilaws of A o A , to a set of biwords of the form -p 

( 0 < a , T < a , e = 0,l, 0<e). We must have 

0 _ 
a(6) 1 a, and therefore yj is a bilav? in F. If z^ is a bilaw in 

all FJ then the F* are abelian and U^ is abelian: hence z^ is a 
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bilaw in F. In the case of [y^^z^^,.,, ,z we note that, from e 
T P (5.4.1), it is a bilaw in H e A o A if and only if ... 

is a law in H. Hence since clearly ¥ e U. = var{F* : i e l}, =0 i 
are all bilaws in F, whence q is a bilaw in G and thus 

w is a lax-r in G. We have proved, therefore, that 

Is Hfiifi A • 
Now V is generated by its critical groupsand therefore, 

V = Vq V V^ V . 6 e A} 

and this disposes of (i). By construction a(6) _< minCOjexp U^) 

and U-a e $(A o A ), U. =1= E. Also if G e V, G critical, =6 a =p ' =6 = P 
K| = 6 and 6, consider the subgroup G^ = F(G)KQ, where K^ 

is the subgroup of K of order From 5.1.2 it follows that there 

exist critical bigroups G^,...,,^ such that = and svar{G^,..., 

G } = svar{G„}, and hence that variG^,.. . ,G } = var{G } (from the — — 0 X v7 U 
second part of (5.5.1)). It follows that 

v a r { F ( G , F ( G ) } = var{F(G)} X w 

and therefore that U^ , a(6) This completes the 

existence part of the proof. 

For the uniqueness, note that if V has an expression 

p 
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which satisfies the hypotheses of the theorem, then there exists 

1 + P e Uja, P critical. Hence by (5.1.2), (3.3.4) and (1.12) of 

[5] there exists a critical group G with IkI = 6 and G e U^A^ , 
= 0 = 0 

« a(6)^N' Hence P e U^ and therefore P e U^o, or yj0 - U^a. 

The converse is proved similarly. Finally, since a'(6) < exp U' , 
— =0 

I / X \ 
there exists the critical group C(p^ ) of Cossey (Theorem 4.2.2 

in [4]) which belongs to V and therefore to U»A. . A hence 
° = =0=0 = a(o)=pN 

a'(6)'<a(6). Similarly a(6)j<a'(6), and also A = A', and 

this completes the proof. 

The subvarieties of A A have been classified by M.F. Newman 
= a=p 
P 

and thus we have an elaborate, but complete story for A ^A 

By way of illustration, the lattice A(k^A^) has been drawn. Note 

that even in this simplest case, the expression (!) in (5.5.10) is not 

always unique: both the varieties ^ A^A^ and Ŝ ^ give rise to 

the same non-nilpotent critical groups, that is 

(5.5.11) Corollary. If m,n are nearly coprime, then (5.5.6) 

and (5.5.10) give a complete description of 
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(5.5.12) Example. In general (5.5.10) is not true. 

Consider the following bigroups: 

W^ = C^ wr (C^ X c p , W^ = C^ wr (C^ x C^. x C2)/(C2 wr(C^ x C^ x C^))^^^, 

W3 = C2 wr(C^ X wr C^ x C^)^^^. 

It is tedious, though not difficult, to verify that generate 

the same variety qut groups; indeed any bigroup in A^ 0 A^ which 

does not satisfy the bilaw [y^fSz^jZ^] and has class 5 exactly, 

generates the variety A^A^ ̂ ^ N^ qu^ group. However W^ has the bilaws 

, [y^.Zz^.z^.z^] [y^^z^.z^yZz^], 

W^ has the first, but not the second, and W^ has neither. Now 

may not be critical bigroups (though W^ is) but we can replace 

them by a set of critical bigroups generating the same bivariety. It 

is clear, therefore, that if G is critical and non-nilpotent, with 

F* s W^ (by (5.1.2)) and |k| = 3 say then 

var G (var W^) A^ ^ ^2=12 ' 

Indeed var G is not even maximal in the right-hand side. Moreover 

if we write V^ = var W^ = var ^3(0, V^ = var 43^2(0) and 

V = var A A A.(G) then it is clear on examining the bigroups 
=3 =3=2=2 

that var G is at best second maximal in 

V1A3 V^Ag , V3A^2 • 
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