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Abstract 

This thesis is concerned with some theoretical aspects of supervised learning of real-valued 

functions. We study a formal model of learning called agnostic leaming. The agnostic learning 

model assumes a joint probability distribution on the observations (inputs and outputs) and requires 

the leaming algorithm to produce an hypothesis with performance close to that of the best function 

within a specified class of functions. It is a very general model of leaming which includes function 

leaming, leaming with additive noise and leaming the best approximation in a class of functions 

as special cases. 

Within the agnostic leaming model, we concentrate on leaming functions which can be well 

approximated by single hidden layer neural networks. Artificial neural networks are often used 

as black box models for modelling phenomena for which very little prior knowledge is available. 

Agnostic leaming is a natural model for such leaming problems. The class of single hidden layer 

neural networks possesses many interesting properties, which we explore in this thesis, within the 

agnostic leaming model. 

Two main aspects of leaming studied here are the amount of information required (the sample 

complexity) and the amount of computation required (computational complexity) for agnostic 

leaming. We determine the sample complexity for agnostic leaming based on properties of the 

function class such as the pseudo-dimension and the fat-shattering function and show that for 

certain function classes, if the closure of the function class is not convex, the sample complexity 

for agnostic leaming (with squared loss) can be worse than the sample complexity for leaming 

with additive noise if we are restricted to hypotheses from the same class. We also show that if 

the closure of the function class is convex, then the sample complexity bound is similar to that 

for leaming with noise. This motivates leaming convex hulls of non-convex function classes. For 

many function classes, the convex hull can be represented by single hidden layer neural networks 

with an unbounded number of hidden units and a bound on the sum of the absolute values of 
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the output layer weights. We show that for certain function classes, agnostic learning of the 

convex hull gives better approximation to the target function (conditional expectation) without 

much penalty to the order of the sample complexity. 

We show that the class of single hidden layer neural networks is efficiently (polynomial-time) 

agnostically leamable if and only if the class of hidden units is efficiently agnostically leamable. 

However, we also show that many classes of single hidden layer neural networks (including that 

with linear threshold units as hidden units) are unlikely to be efficiently agnostically leamable. 

This leads to the study of subclasses of functions which are efficiently agnostically leamable. We 

show that function classes which can be well approximated by single hidden layer neural networks 

with bounded fan-in are efficiently agnostically leamable. We also show that if the functions in a 

class are smooth enough in a certain sense and have small L\ norms, then the class is efficiently 

agnostically leamable using single hidden layer neural networks. 

As many of the function classes considered in this thesis are nonparametric (infinite dimen-

sional), we also consider the rate of approximation for these function classes. We give an iterative 

approximation result for finding the best approximation in the convex hull of a function class when 

the target is outside the class. We also show the existence of a small (polynomial sized) set of 

fixed basis functions for the approximation of certain smooth functions in high dimensions. 
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So / took thought, and invented what I conceived 

to be an appropriate title of "agnostic ". 

— Thomas Henry Huxley 

"Agnosticism" in Gordon Stein, editor, 

An Anthology of Atheism and Rationalism. 

Chapter 1 

Introduction 

Machine learning is concerned with computer programs which improve their performance through 

experience. In this thesis, we investigate certain aspects of machine learning through a formal 

model of learning called agnostic learning. Agnostic learning is a fairly realistic model of learning 

which makes virtually no assumptions about the target function which a learning algorithm is 

trying to learn. Instead, it assumes that the learning algorithm will search a limited space of 

hypothesis functions in an attempt to find the "best" approximation to the target function. 

The agnostic learning model we use is based on the models introduced by Haussler (1992) and 

Keams, Schapire & Sellie (1994) to address the shortcomings of of the Probably Approximately 

Correct (PAC) learning model (Valiant 1984). The PAC model is a formal model for learning 

{0, l}-valued functions which assumes that the target function is known to be in a particular 

class of functions. While these assumptions have permitted rigorous study of the complexity 

of learning as a function of the representational complexity of the target function, it diverges 

from the typical setting encountered in empirical machine learning. In practical machine learning 

problems, observations are often noisy and very little is usually known about the target function. 

Because of limited resources, practitioners usually attempt to find a useful hypothesis from a small 

class of functions which may not necessarily contain the best possible function for the problem. 

Agnostic learning generalizes the PAC learning model to encompass these situations and also to 

allow learning real valued functions. 

Within the agnostic learning framework, we study the function classes represented by artificial 
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neural networks, particularly single hidden layer neural networks. Artificial neural networks form a 

flexible class of functions which has been used successfully for various machine learning problems 

such as learning to play backgammon (Tesauro & Sejnowski 1989, Tesauro 1990), learning to 

recognize hand-written zip codes (Le Cun, Boser, Denker, Henderson, Howard, Hubbard & Jackel 

1989) and learning to navigate a car (Pomerleau 1989). Investigating particular classes of functions 

allows us to elucidate some of the fundamental properties of the agnostic learning framework. 

It also gives considerable insights into the properties of the function class being investigated (in 

this case, artificial neural networks). Such insights are useful for deciding when it is appropriate 

to use the function class. Such insights may also give useful information about the nature of 

the learning task when the hypothesis produced by the learning algorithm fails to perform well. 

Knowing the properties of the function class can also help us to design learning algorithms, to 

choose input representations, to decide on proper preprocessing of the data and to partition the 

learning problems into appropriate subproblems. 

In agnostic leaming, the only assumption made about the phenomenon that is being learned 

is that it can be represented by a joint probability distribution on X x y where X is the domain 

and is a bounded subset of R The term agnostic reflects the fact that the leaming algorithm 

has no a priori "beliefs" regarding the structure of the phenomenon. As such, we cannot expect 

the leaming algorithm to always produce a model with small error. Instead, we demand that with 

high probability, the model produced is at least close to the optimal function in a certain class of 

functions. In this thesis, we use the expected squared error as a measure of the performance of the 

functions. (A more formal definition of agnostic leaming, along with many of the terms used in 

this chapter, is given in Chapter 2.) 

The agnostic leaming model provides a very general framework for investigating leaming 

problems. Any algorithm which performs well in the agnostic leaming framework will also 

perform well in the following special cases: 

• Function Learning. The inputs Xi are independently drawn from an unknown probability 

distribution but there is a deterministic relationship between the inputs and targets Yi = 

f{Xi), such that the function / belongs to the class used for leaming. PAC leaming is just 

a special case where the class of functions have {0, l}-valued outputs. 

• Learning the Best Approximation. This is the same as function leaming except that the 

target function / does not have to be in the class used for leaming. This represents the 
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cases where the target function may be very complex but we are content to have a good 

approximation from a small approximating class. 

• Learning with Noise. The observations (Xj, Yi) are independently drawn from an unknown 

probability distribution on X x y and the optimal function (in the sense of minimum mean 

squared error), f*{x) — E(y|X = x) is inside the class. This is the same as learning 

functions corrupted by additive bounded zero mean noise. 

• Approximating the Conditional Expectation. As in the case of function learning, when 

the conditional expectation is not in the class used for learning, the aim becomes finding the 

best approximation to the conditional expectation. Learning the best approximation to the 

conditional expectation is the most general problem considered in this thesis. 

• Learning Probabilistic Concepts. The targets Yi e {0,1} are noisy labels for a binary 

classification problem. The conditional expectation is again the optimal function. If the 

mean squared error for a function is small, the function will perform well when thresholded 

to give a classification function. 

The generality of the agnostic learning framework has its disadvantages. The algorithms 

are required to perform well under all probabihty distributions on A' x Results showing the 

difficulties of learning certain classes of functions in this framework do not mean that learning 

these classes of functions under certain other realistic conditions is also difficult. We also require 

the algorithms to perform well uniformly over the function class (that is, the best approximation 

may be provided by any function in the class). This is a more severe requirement than allowing the 

performance of the algorithms to depend on the target function. However, this framework provides 

an extreme condition which is useful for comparisons with other frameworks which make more 

assumptions. 

In this thesis, we concentrate on two aspects of learning: the sample complexity and the 

computational complexity. For learning to be feasible, we require the sample size and the amount 

of computation time used by the learning algorithm to be small. As our computational and data 

gathering capabilities improve, the size of the problems which we can solve increases. However, if 

the sample size and the amount of computation required grow exponentially with the problem size, 

the size of the problems we can solve will grow very slowly. As such, we delineate the boundary 

of what is feasibly leamable by the existence of algorithms which use a polynomial sample size 
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and run in polynomial time. We say that a function class is efficiently (agnostically) leamable if 

the sample size and the amount of computation grow at most polynomially with 1 /e, 1 /5 and the 

complexity parameters, where e is the accuracy required and 5 is the probability that the algorithm 

will fail. The complexity parameters are the parameters of interest which affect the complexity 

of the learning problem. For example, the dimension of the input space is a parameter which is 

particularly relevant in neural networks learning since applications using neural networks tend to 

have large input dimensions. 

1,1 Related Work 

The agnostic learning framework that we use follows closely that used by Keams et al. (1994), 

who studied the computational complexity of agnostic learning for boolean functions and some 

simple real-valued functions. The computational complexity of learning has been extensively 

studied since the seminal work of Valiant (1984). Most of these works involve boolean functions 

in the PAC model (see e.g. (Pitt & Valiant 1988, Keams, Li, Pitt & Valiant 1987, Keams 1989)). 

Function classes which have been found to be efficiently PAC leamable include the classes of 

monomials, linear threshold functions, A;-CNF and A;-decision lists. Classes of functions which 

are not efficiently PAC leamable (unless RP = NP) include the class of /c-term DNF, certain 

classes of neural networks (Judd 1990) and classes of two hidden unit neural networks (Blum & 

Rivest 1992, DasGupta, Siegelmann & Sontag 1995). For a survey of results on PAC learning, 

see (Keams 1989). For agnostic PAC learning (agnostic learning with the values of the targets 

and hypotheses restricted to {0,1}), considerably fewer function classes are efficiently leamable. 

Certain function classes which are efficiently PAC leamable, such as the class of monomials 

and the class of linear threshold functions, are not efficiently agnostically PAC leamable unless 

RP = NP (Keams et al. 1994, Hoffgen & Simon 1992). For these hardness results (both PAC 

and agnostic learning), the learning algorithms are restricted to producing hypotheses from the 

same class as the target function. Restricting the hypothesis to be from the same class as the 

target function makes learning harder in some cases. For example, Pitt & Valiant (1988) have 

shown that the class of A;-term DNF is efficiently leamable if the class of A;-CNF is used as the 

hypothesis class, even though it is not efficiently leamable if the hypothesis is restricted to be a 

/c-term DNF. This shows that choosing the appropriate representation for a learning problem is 

important. Representation independent hardness results based on cryptographic assumptions are 
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also available for some function classes (Kearns 1989). 

The computational complexity of learning real-valued functions is not as well studied. Maass 

(1995) has shown that fixed architecture neural networks with piecewise-polynomial activation 

functions are efficiently agnostically leamable (in the sense of being polynomial-time with respect 

to 1/e and 1/(5). Koiran (1994) has shown that single hidden layer neural networks with fixed 

input dimension, piecewise linear activation functions, an unbounded number of hidden units, 

and bounded sum of absolute values of output weights is efficiently leamable with small bounded 

noise. 

The sample complexity of learning has been studied in various areas such as pattern recognition, 

statistics and computational leaming theory. The agnostic learning framework is based on a general 

framework proposed by Haussler (1992). Within this framework, Haussler (1992) has given upper 

bounds on the sample complexity of leaming based on properties of the function class such as 

the pseudo-dimension and the covering number. Function classes examined by Haussler (1992) 

include classes of neural networks with a variety of activation functions. More recent works on the 

sample complexity of agnostic leaming include (Bartlett, Long & Williamson 1994) and (Bartlett 

& Long 1995) where upper and lower bounds on the sample complexity of agnostic leaming are 

given based on a property of the function class called the fat-shattering function. These works 

are based on results on uniform convergence of empirical estimates which has been studied in the 

empirical process literature (Vapnik & Chervonenkis 1971, Pollard 1984, Pollard 1990, Dudley 

1978). Earlier works on sample complexity based on uniform convergence results can be found 

in (Vapnik 1982, Blumer, Ehrenfeucht, Haussler & Warmuth 1989). 

A lot of related work has also been done in the area of nonparametric statistical theory of curve 

estimation and classification. In nonparametric estimation, the target function is only usually 

restricted by some general smoothness properties and is not assumed to be a member of a finite 

dimensional function class. To learn such functions, it is necessary to consider the approximation 

error as well as the estimation error from using a finite sample size. Various nonparametnc 

estimators can be used to leam such function classes (see (Silverman 1986, Eubank 1988, Hardle 

1990)). These classes can also be learned by using sequences of parametric function classes 

where the dimensions of the parametric function classes grow as a function of the sample size 

so that arbitrarily good approximation to the target function can be obtained. The results in the 

nonparametric statistics literature are usually given in the form of the risk of an estimator (leaming 

algorithm) as a function of the sample size and not in the form of sample complexity as is common 
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in the computational learning theory literature. Although the framework used is different, these 

results are similar to those in the computational learning theory literature in the sense that they 

give the rate at which the sample size must grow as we require greater accuracy from the learning 

algorithms. It is known that the minimax rate of convergence of the mean integrated squared error 

for functions with all partial derivatives of order 5 square-integrable is of the order 

where m is the sample size and n is the input dimension (Ibragimov & Hasminskii 1980, Pinsker 

1980, Stone 1982, Nussbaum 1986). These rates suggest that efficient learning (in terms of sample 

size) for these function classes is not possible unless s grows linearly with n. Another way to 

restrict the function class so that the sample size required for learning does not grow exponentially 

with the input dimension is given in (Barron 1994). There he shows that functions with bounded 

first absolute moment of the Fourier transform can be learned using single hidden layer neural 

networks with mean integrated squared error of 0 ( > / l o g m / m ) . 

In order to obtain bounds on the sample complexity for learning functions defined by smooth-

ness constraints using a sequence of parametric function classes, bounds on the rate of approxima-

tion by the sequence of function classes are required. For functions with all partial derivatives of 

order s square integrable, the best approximation rate for the integrated squared error achievable 

by basis function expansions using order r'^ parameters is of order 0 (1 / r ^^ ) for r = 1 , 2 , . . . , e.g. 

see (Pinkus 1985) (r is the degree of the polynomials for polynomial methods and the number 

of knots per coordinate for spline methods). The number of parameters used for approximation 

grows exponentially with the dimension of the input space for these methods. For functions with 

bounded first absolute moment of the Fourier transform, an approximation rate of order 0 ( l / f c ) , 

where k is the number of basis functions, is achievable if the basis functions are adaptable (Barron 

1993). However, it is not known if there is a polynomial time algorithm for adapting the basis 

functions to provide the approximation. 

1.2 Contributions of the Thesis 

In this thesis, we consider agnostic learning with the squared loss functions. We review known 

bounds on the sample complexity of agnostic learning based on properties of the function class 

such as the covering number, pseudo-dimension and fat-shattering function. We then compare 

the sample complexity of agnostic learning with the sample complexity of function learning and 

learning with noise. We show that if the closure of a function class is not convex, the sample 
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complexity for agnostically learning the function class can be worse than the sample complexity 

for learning with noise if we are restricted to hypotheses from the same class. We also show that 

if the function class is convex, sample complexity similar to that for learning with noise can be 

provided for agnostic learning. 

This motivates agnostically learning the convex hull of the function class instead of the function 

class itself. As an example, the class of fixed sized single hidden layer neural networks is not 

convex but the class of networks with an unbounded number of hidden units is. We show that for 

some function classes, the order of the sample complexity for agnostically learning the convex hull 

of the function class is similar to that for agnostically learning the function class if we are restricted 

to hypotheses from the same class. In some cases, the order of the sample complexity is better for 

agnostically learning the convex hull. Since the convex hull usually gives better approximation 

than the original function class, our results shows that in many situations it may be advantageous 

to learn the convex hull of a function class instead of the function class itself. The convex hull 

can be learned by increasing the number of functions in a convex combination of functions from 

the class as a function of the sample size. The convex hull of a function class can be thought of as 

the class of single hidden layer neural networks with an unbounded number of hidden units and a 

bound on the sum of absolute values of the output weights. 

We also extend an iterative approximation result of Barron (1993) and Jones (1992) to the 

case when the target function does not belong to the convex hull of the function class. Then we 

explore the relationship between the computational complexity of learning a single hidden unit 

and the computational complexity of learning a single hidden layer neural network. In agnostic 

learning, a pleasing relationship exists because of the iterative approximation result. We show that 

the class of single hidden layer neural networks is efficiently agnostically leamable if and only if a 

single hidden unit is efficiently agnostically leamable. We also give some evidence showing that 

agnostically learning the class of single hidden neural networks is computationally difficult as the 

dimension of the input space grows. 

Since agnostic learning for the class of single hidden layer neural networks is likely to be 

computationally difficult, we examine subclasses of functions which can be learned efficiently by 

single hidden layer neural networks. We show that low order function classes (function classes 

which can be approximated arbitrarily closely by a single hidden layer neural network with 

bounded fan-in) are efficiently agnostically leamable. We also show that classes of functions in n 

dimensions which are local in space (have small L\ norm) and have finite q-th absolute moment 
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of the Fourier transform are efficiently agnostically leamable as long as q increases linearly with 

n. These function classes can be learned using networks with sinusoidal hidden units as well 

as sigmoidal ones. This shows that sufficiently smooth functions which are well localised are 

leamable. While the capabilities of these leamable function classes are quite restricted, we believe 

they might still be useful in practice. Smoothness is a namral assumption for many learning 

problems and functions with small Li norm often appear in pattem recognition problems. For 

example, for character recognition problems, a single character (e.g. ' A'), without allowing noise 

and invariances is only one possible bitmap out of 2" where n is the size of the bitmap. Allowing 

some noise and invariances, such as translation and some rotation, will increase the Li norm of 

the functions polynomially with n as long as the amount of noise is small. Similarly, low order 

functions can be practically useful as shown in (Boser, Guy on & Vapnik 1992) where good results 

for handwritten digit recognition is achieved using low degree polynomials (low order functions). 

A set of basis functions which can be used to approximate one function to a certain accuracy 

may not necessarily be able to approximate another function from the same class to the same 

accuracy. For functions with uniformly bounded g-th moment of the Fourier series and uniformly 

bounded L\ norm, we show that the size of a set of basis functions which can approximate all 

functions in the class to the same accuracy, need only grow polynomially (instead of exponentially) 

with the input dimension if q grows linearly with the input dimension. Since this set of basis 

functions can be used to approximate all functions in the class, it can be fixed in advance before 

any learning procedure. This result also gives a bound on the number of basis function needed for 

leaming multi-output functions (with arbitrarily many outputs). 

1.3 Outline of the Thesis 

In Chapter 2, we give technical definitions and describe the agnostic leaming model and the 

function classes used in the thesis. 

Chapter 3 provides results for bounding the number of examples (sample complexity) required 

for leaming classes of functions. We also show that if the function class is convex then we can 

provide a sample complexity bound for agnostic leaming which is of the same order as the sample 

complexity bound for leaming with noise. 

In Chapter 4 we give a partial converse. That is, if the closure of the function class is not 

convex, the sample complexity for agnostic leaming can be worse than the sample complexity for 
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learning with noise if we are restricted to hypotheses from the same class. 

Chapter 5 provides sample complexity bounds for learning the convex hull of function classes. 

In Chapter 6, we consider the computational complexity of learning the class of single hidden 

layer neural networks. We show that this class is efficiently agnostically leamable if and only if 

the class of hidden units is efficiently agnostically leamable. We give some evidence indicating 

that some classes of single hidden layer neural networks are unlikely to be efficiently agnostically 

leamable. Finally, we show that single hidden layer neural networks with bounded fan-in are 

efficiently agnostically leamable. 

In Chapter 7, we show that the class of functions with finite g-th absolute moment of the Fourier 

transform is efficiently agnostically leamable if q grows linearly with n, the input dimension. We 

also show that a smooth enough function class can be well approximated with a polynomial sized 

fixed set of basis functions. 

We give the conclusions of the thesis in Chapter 8. 





Learning - to acquire knowledge of or skill in by 

study, instruction, or experience. 

— The Macquarie Dictionary 

Chapter 2 

Definitions and Learning Model 

In this chapter, we define the agnostic learning model, the function classes used and give other 

relevant definitions and notation. The agnostic learning model presented here is based on the 

model used by Keams et al. (1994) and Haussler (1992). 

2.1 Agnostic Learning 

Domain and Range. Let A" be a set called the domain and let a point in X be called an instance, 

denoted x. In this thesis, X is usually or a subset of E". Let ^ C M be the observed 

range. We restrict ourselves to bounded ranges with \y\ < T for every y ey. We call the 

pair Z = {X, Y), randomly sampled according to some probability distribution onX xy, 

an observation. For learning problems, we are interested in finding a mapping from X ioy 

that will perform well. 

Probability Distributions. For agnostic learning, we require that the algorithm be able to perform 

well over the class of all probability distributions on X x y . By restricting the class of 

probability distributions, we obtain the following special cases. 

For function learning, we have an arbitrary distribution on X andY = f { X ) for some / 

restricted to be in some class T which is used by the learning algorithms. The case when 

JT consists of {0, l}-valued functions and Y G {0,1} is the situation in the well-known 

Probably Approximately Correct (PAC) learning model. 

Learning the best approximation is the same as function learning except that the function / 

need not be from T . 

11 
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For learning with noise, Y is allowed to be a random variable but the conditional expectation 

f*[x) = E ( y | X = x) must belong to T. 

Learning probabilistic concepts is the same as learning with noise except that y is restricted 

to be {0, 1}. 

Hypothesis and Target Class. We would often like to learn functions in one class using functions 

from another class. For example, the function class we are trying to learn may only be defined 

in terms of some smoothness properties but we may want to use single hidden layer neural 

networks to learn the functions. We call the function class which we use for learning the 

hypothesis class U, and the function produced by the learning algorithm, the hypothesis. 

The function class we wish to learn is called the target class T. In agnostic learning, we 

judge the performance of the algorithm by how well it performs relative to the best function 

in the target class instead of the hypothesis class. Using a hypothesis class which includes 

the target class (or can approximate the target class arbitrarily closely) makes it possible to 

do as well as the best function in the target class. Using a larger hypothesis class is also 

computationally advantageous in some situations (for an example in PAC learning, see (Pitt 

& Valiant 1988)). 

Parametrized Classes. To study the complexity of learning, we will parametrize the classes of 

functions and classes of probability distributions by several measures of complexity. We 

will consider the classes of all probability distributions with bounded range indexed by 

the bound on the range T. We will index the target classes by a vector p of complexity 

parameters. The complexity parameters used in this thesis includes the dimension of the 

input space, measures of smoothness and other parameters described later in this chapter. 

Loss Functions. To measure the performance of a hypothesis /i on an observation (X, y ) , we 

use a loss function L{h{X),Y) also denoted Lh{X,Y). In this thesis, we concentrate 

on the quadratic loss function Q{h{X),Y) = {h{X) - Y)^. Other loss functions used 

include the absolute loss fiinction A{h{X),Y) = \h{X) - Y\ and the discrete loss function 

Z{h{X), y) = 0 if hiX) = y and Z{h{X), Y) = 1 otherwise. 

Empirical and Expected loss. Let Z = (Zi, Z 2 , . . . , Zm) be a sequence of observations. Call 

the probability distribution formed by giving each of Z i , . . . , Zm equal weighting the empir-

ical distribution. Theem/7zn'ca//o55ofahypothesis/iisE^(L/i) = i). 
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denoted E(L/i) when the meaning is clear from the context. Given observations drawn 

according to a probability distribution, the expected loss is E (L / j (X ,F ) ) which we de-

note E(L/i) when the meaning is clear from the context. For a class T , we define 

opt{T) = mfherT^iLh] a n d o p t ( r ) = 

Agnostic Learning. Let p be a vector of complexity parameters parametrizing a function class T. 

We say that T, parametrized by p, is agnostically learnable (with respect to loss function 

L) if there exists a function class H, a function m{e, 6, T,p) and an algorithm A such that 

for any probability distribution on A" x with C [ - T , T], for every 0 < 5 < 1, e > 0, 

T > 0 andp, the algorithm draws m ( l / e , l/5,T,p) independent observations and gives a 

hypothesis h eK such that with probability at least 1 - S, E[Lh] < opt{T) + e. 

We leave out the parametrization p when the meaning is clear from the context. Despite the 

name "algorithm", A is just a mapping from a sequence of observations to a function in Ti. 

We will impose computational requirements only when we consider issues of computational 

complexity. With appropriate restrictions on the probability distributions, we definefiinction 

leamable and learnable with noise in the same way. In all cases , if the hypothesis class H 

is restricted to be the same as the target class T, we say that the function class is properly 

leamable. 

Efficient Learning. We say that T is efficiently (agnostically) leamable if it satisfies a few other 

conditions in addition to the requirements for (agnostic) leamability. The sample size 

m ( l / e , \/5,T,p) used by the learning algorithm must be bounded by a fixed polynomial 

in 1 /e, 115, T and the components of p. The computation time of the algorithm A must 

be bound by a fixed polynomial in 1 /e, 1 /6, T and the components of p. The hypothesis 

produced must also be evaluable in time polynomial in 1/e, 1/(5, T and the components of 

p. Such an algorithm is called an efficient (agnostic) leaming algorithm. 

Sample Complexity. The sample complexity for agnostically leaming a function class T is the 

smallest number of observations m( 1 /e, 1 /S, T, p) necessary for the existence of a leaming 

algorithm that can leam to accuracy e with probability at least 1 - 5 without regard to 

computational requirements. The sample complexity for efficiently agnostically leaming 

a function class T is the smallest number of observations m ( l / e , 1/5, T,p) necessary for 

the existence of an efficient agnostic leaming algorithm that can leam to accuracy e with 
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probability at least 1 — 5. TTie sample complexity of an agnostic learning algorithm is the 

number of observation used by that algorithm for learning to accuracy e with probability at 

least 1 - 5. The sample complexity is defined similarly for function learning and learning 

with noise. 

Computational Model. For simplicity, we work in the uniform cost model of computation (see 

(Aho, Hopcroft & Ullman 1974)). In the uniform cost model, real numbers occupy one 

unit of space and standard arithmetic operations (addition, multiplication etc.) take one unit 

of time. Where appropriate we also make comments on using the logarithmic cost model 

where numbers are represented in finite precision and operations on them are charged time 

proportional to the number of bits of precision (Aho et al. 1974). 

2.2 Function Classes 

Basis Functions. A class of real-valued functions ^ is an admissible class of basis functions if G is 

permissible and there exists 6 > 0 such that |^(2;)| < b for aXXg eQ,x ^ A". Permissibility 

is a mild measurabililty condition which will be discussed in Section 2.3. We will also 

call a class of basis functions a class of hidden units. A class of basis functions is called 

symmetric ii —g ^ Q for all ^ G 

Single Hidden Layer Neural Networks. Let ^ be an admissible class of basis functions. Then 

for every K > 0, let 

= ^ + Wigi{x):gi e tOi € M, ^ < K L 
I i=\ i-0 ) 

Then = I J ^ i J^^^i^ is the class of linear combinations of functions from Q |J{a; 1} 

with the sum of magnitudes of weights bounded by K. We will also call such function 

classes single hidden layer neural networks. The class of single hidden layer neural networks 

is the convex hull of the symmetric function class Q]^ = {x^ Kg{x),x —Kg{x),x M-

K,x ^ - K : g e g}. 

We will often use the following function class (indexed by k) to approximate Af^. 
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Let S be the class of all one-to-one mappings from {1 , . . . , r } to {1 , . . . , n}. Let P := 

{(xi , . . . . G 5}. We say Q has fan-in r if there exists a class of 

functions Q' mapping from W into M and = {x ^ op{x):x G W,p E V,g G G'}. 

We say a single hidden layer neural networks with hidden units from Q has fan-in r if ^ has 

fan-in r . We also call classes of functions which can be approximated arbitrarily closely 

by a single hidden layer neural network (with linear threshold hidden units) with fan-in r 

(relative to the metric) classes of functions of order r . 

Hidden Units. The following classes of hidden units are used in this thesis. The input space is a 

subset of W and for u, a; e K", w • x = 

• Linear threshold units: {g{x) = h{v • x -f- VQ):V G M", t'o G M} where h{u) = 1 for 

u > 0 and h{u) = 0 otherwise. 

• Standard sigmoid functions: {g{x) = a{v • a; -I- •uq): ^ ^̂o £ IR} where cr(w) = 

1 / ( 1 + e - " ) . 

• Sinusoidal basis functions: {g{x) = sin{v • x),g{x) = cos{v • x):v G G M}. 

2.3 Other Definitions and Notations 

Function Norm. The L\ norm of a real-valued function / defined on A" is \f{x)\dx. The 

L2 norm of a real-valued function / defined on X is f{xYdx. The sup-norm of a 

real-valued continuous function / defined on X is sup3.g;̂ . \f{x) . 

Metric Spaces and Covering Number. A pseudo-metric on a set 5 is a function p from 5 x 5 

into E+ (the set of real numbers greater than or equal to zero) such that for all x,y,z e S, 

X = y ^ p{x,y) = 0, piy,x) = p{x,y) (symmetry), and p{x,z) < p{x,y) + p{y,z) 

(triangle inequality). If p{x,y) = 0 x = y, then p is a metric. (5,p) is a (pseudo-) 

metric space. 

Let T C 5. For a given p, for any e > 0, an e-cover for T is a finite set iV C 5 (not 

necessarily contained in T) such that for all x G T there is a y G iV with p{x, y) < e. The 

e covering number, denoted N{e,T,p) is the size of the smallest e-cover for T using the 

(pseudo-) metric p. A set i? C T is e-separated if for all distinct x,y e R, p{x,y) > e. 

We denote the size of the largest e-separated subset of T by M(e, T, p) and refer to it as a 

packing number. 
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Some of the metrics and pseudo-metrics used in this thesis are described here. 

• For a class of continuous functions JT with f , g e J^, d L ^ { f , g ) = sup{|/(a;) -

g { x ) \ : x G A'} is a metric on T . 

• Let P be a probability distribution on A". For f,g e T, - J \f(x) -

g ( x ) \ d F ( x ) is a pseudo-metric on 

• L e t x = ( x u . . . , x m } and let / |a; = { f { x \ ) , . . . , f { x m ) ) for / G J^. l^&i T\x = 

{f\x- f ^ The following are metrics on the subset of induced by x and JT. 

Foru,^; G d i , { u , v ) = and d i ^ { u , v ) = max{|ui - V i \ : i = 

For notational convenience, we denote these (pseudo-)metrics by their subscripts when used 

for covering and packing numbers e.g. N{e, T, di^) is denoted as N{e, T, LQO)-

Closure-Convex Function Classes. Suppose = ^ f ( f ( x ) - g ( x ) ) ^ d P ( x ) is the 

pseudo-metric induced by the probability distribution P on Af. JF is closure-convex if 

for all P on X, the closure of T under the pseudo-metric is convex. Let T denote 

the closure of T . 

VC-dimension. Let JF be a class of functions mapping f r o m t o {0,1} and let cc i , . . . , cc^ € X. 

We say a; 1 , . . . , ccm are shattered by J^ if for each b = { b i , . . . ,bm) G {0,1 j ' " , there is an 

/ G ^ such that for each i, 

1 if = 1 

0 i { b i = 0. 

f { X i ) = 

The VC-dimension is defined as 

VCdim(J') = max{m G N: 3a ; i , . . . , Xm, T shatters Xm} 

if such a maximum exists, and oo otherwise. 

The VC-dimension was used in (Vapnik & Chervonenkis 1971) for the study of uniform 

convergence of relative frequencies to their probabilities. 

Pseudo-dimension. Let JF be a class of functions mapping from to M and let x i , . . . , Xm G X. 

We say x i , . . . , Xm are pseudo-shattered by T if there exists r G E"^ such that for each 
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{bu...,bm) e {0,1}"", there is an / G J" such that for each i. 

f{Xi) 
>n ifb^ = \ 

<ri i f 6 i = 0 . 

The pseudo-dimension is defined as 

Pdim(:r) = max{m G N: B x i , . . . , T pseudo-shatters x i , . . . , Xm] 

if such a maximum exists, and 00 otherwise. The pseudo-dimension is a useful generalization 

of the VC-dimension to real-valued functions. It is defined in this form in (Haussler 1992) 

and (Pollard 1990). 

Fat-shattering dimension. Let be a class of functions mapping from A" to Eand let x 1 , . . . , G 

X. We say aJ i , . . . , X T J J are '•^-shattered by T if there exists r e W^ such that for each 

b = (61, . . . , bm) G {0,1}'", there is an / G ^ such that for each i. 

fixi) 
> r i + 7 if6i = l 

<n-7 ifbi=0. 

For each 7, let fat:r(7) = max{c? G N: 3a ; i , . . . , Xd, JT 7-shatters x i , . . . , xj,} if such a 

maximum exists and 00 otherwise. 

The fat-shattering function was introduced in (Keams & Schapire 1994) for the purpose of 

constructing lower bounds on the sample complexity for learning probabilistic concepts. 

Permissible Classes of Functions. Some of the results used in this thesis requires certain measur-

ability assumptions to be made concerning the function class Following Pollard (1984) 

and Haussler (1992), we have indicated this by requiring these classes to be permissible. 

Let be a class of real-valued functions on a set X and let ^ be a a-algebra of subsets of 

such that each function in T is measurable. We say that the function class T is permissible 

if it can be indexed by a set T such that 

1. T is a Borel subspace of a compact metric space S and 

2. the function f-.X xT ^ R that indexes by T is measurable with respect to the 

cr-algebra A x B{T) where B{T) is the cr-algebra of Borel sets on T. 
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More details on these conditions can be found in (Pollard 1984, Haussler 1992). 

Asymptotics. Givenfunctions/andgofp variables, we say that/(a i , . . . ,ap) = 0{g{a\,... ,ap)) 

if there exist constants iir,Q;i,. . . ,ap such that / ( a i , . . . , a p ) < . . . , Op) for all 

Cj > Qi, ? = 1 , . . . Wesay that / (a i , . . . ,ap) = f2(^(ai, . . . ,ap)) if there exist constants 

K,a\,... ,ap such that f{a\,... ,ap) > Kg{a\,. ..,ap) for all aj > cnj, i = 1 , . . . 



A little learning is a dang'rous thing; 

Drink deep, or taste not the Pierian spring; 

There shallow draughts intoxicate the brain, 

And drinking largely sobers us again. 

— Alexander Pope, 

An Essay on Criticism, 215. 

Chapter 3 

Upper Bounds for Sample Complexity 

The sample complexity is arguably the most important component of many learning problems. 

Observations associated with a learning problem are often time consuming and difficult to obtain. 

As such it is desirable for the number of observations used to be as small as possible. 

In this chapter, we study how the sample complexity scales as we require better performance 

from the learning algorithm. We also study how the sample complexity relates to the complexity 

of the function class used for learning. We review known bounds which depend on various 

measures of complexity of the function classes such as the covering number, pseudo-dimension 

and fat-shattering function. The pseudo-dimension and fat-shattering function are useful measures 

of complexity because they can sometimes be more easily bounded than the covering number. We 

also review examples of function classes with known bounds on these complexity measures. These 

bounds show that for many of the function classes used in practice, such as linear functions and 

fixed sized multilayer neural networks, the sample complexity scales reasonably (polynomially) 

with many of the parameters of interest such as the number of parameters parametrizing the classes 

and the input dimension. 

We also examine the sample complexity required for agnostic learning compared to some 

special cases such as function learning and learning with noise. We find that better bounds can 

be given on the sample complexity for function learning and learning with noise when compared 

to the available bounds for agnostic learning. In fact, if we are restricted to hypotheses from the 

19 
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Learning Problem Sample Complexity 
Function leaming 0 (inmaxxex^rn N 
Leaming with noise oU [Inrnaxxex^m N 

Agnostic leaming oU (inmaxx^x^rn N 

Agnostic leaming 
{T closure-convex) 

(inrnaxxex^m N ?)) 

Proper Agnostic leaming 
{T not closure-convex) 

Table 3.1: Sample complexity m ( l / e , \/5) for learning with squared loss (assuming that the 
covering number grows polynomially with 1 /e and does not grow with m). 

target class, the better sample complexity achievable for function learning and learning with noise 

cannot be achieved for agnostic learning for some function classes (as we will show in Chapter 4). 

However, we show that if the function class satisfies the property that it is closure-convex (which is 

implied by convexity, see Chapter 2 for the definition of closure-convex), then a sample complexity 

bound similar to that for function learning and learning with noise can be achieved for agnostic 

learning. 

All the sample complexity bounds given in this chapter can be achieved for proper learning 

(where the hypotheses are restricted to be from the target class). We will consider allowing 

leaming with other hypothesis classes in Chapter 5. The constants in various bounds on the 

sample complexity are not the best possible. The bounds are meant to be used to relate the 

dependence of the sample complexity on various parameters and are not tight enough for practical 

purposes. 

In Section 3.1, we review Haussler's work (Haussler 1992) which shows how uniform con-

vergence of the empirical loss to the expected loss can be used with optimization algorithms to 

construct agnostic leaming algorithms. We then give bounds on the sample complexity for uniform 

convergence based on the covering number of the function classes. 

In Section 3.2, we consider some special cases of agnostic leaming. For function leaming 

and leaming with noise, we show that the sample complexity bounds can be improved. We then 

show that if the function class is closure-convex, better bounds can be achieved for proper agnostic 

leaming. These results are summarised in Table 3.1. 

Finally, in Section 3.3, we give bounds on the covering number based on the pseudo-dimension 

and fat-shattering function. The results are summarised in Table 3.2. We also give examples of 

function classes for which bounds on the pseudo-dimension and fat-shattering function are known. 
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Learning Problem Pseudo-dimension Fat-shattering function 

Function learning 0 ( i ( P d i m ( ^ ) l n i + l n i ) ) 

Learning with noise 0 ( i ( P d i m ( . ^ ) l n i + l n i ) ) 0 ( i ( f a t ^ ( . ) l n 2 ^ + l n i ) ) 

Agnostic learning 0 ( ^ ( P d i m ( . F ) l n i + l n i ) ) 

Agnostic learning 

{T closure-convex) 

0 ( i ( P d i m ( . F ) l n i + l n i ) ) 0 ( i ( f a t ^ ( 6 ) l n 2 f % M + l n i ) ) 
V V / / 

Table3.2: Sample complexity m ( l / e , 1/5) for learning with squared loss for function classes based 
on pseudo-dimension and fat-shattering function (assuming that fatjr(e) grows polynomially with 
1/e). 

3.1 Uniform Convergence and Agnostic Learning 

Most of the results in this section are based on (Haussler 1992). The following lemma shows how 

a uniform convergence result can be used with an optimization algorithm to construct an agnostic 

learning algorithm. 

Recall (from Chapter 2) that E ( L / ) is the expected value of the loss of / , E ( L ; ) is the 

empirical loss of / , opt{T) is the smallest expected loss of functions in T and opt{T) is the 

smallest empirical loss of functions in T . 

Lemma 3.1 Let T be a function class of functions mapping from X toy. Let e > 0, 0 < 5 < 1 

and suppose that the sample size m(e, 5) is such that for any probability distribution on X x y, 

?T[3f e T:\E{Lf) -E{Lf)\> e/3] < 6. (3.1) 

Suppose further that we have an algorithm which, for any sample S € {X xY)"^, produces f G T 

such that 

E{Lj)-opts{T)\<€/3. 

Then 

Pr E{Lj) - opt{T)\ > e} < (J, 

Proof. By the triangle inequality, if we have 

E ( L ^ - ) - E ( L / ) | < e / 3 , 

E ( L y ) - o p t s ( J ^ ) | < e / 3 

(3.2) 

(3.3) 
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and 

optsiT) - opt{T) < e / 3 , (3.4) 

then — opt{T) < €. From the uniform convergence assumption (3.1), both (3.2) and (3.4) 

hold with probability at least 1 - 5 . (If(3.4) fails, there exists a / G .F such that E ( L / ) - E ( L / ) 

e/3.) Since (3.3) comes from the assumption, the result follows. • 

> 

It follows from Lemma 3.1, that if we have a uniform convergence result, all we need is an 

optimization algorithm which finds a function which gives small empirical loss. For the uniform 

convergence results, the following results from (Haussler 1992) can be used. 

Theorem 3.2 ((Haussler 1992)) Let T be a permissible class of functions from Z to [0, M]. Let 

P be any probability distribution on Z. For m > I, u > 0 and 0 < a < 1, 

P - {z 6 Z^:3f 6 (E(/),E(/)) > a} 

OLV 

The metric (see (Haussler 1992) for properties of this metric) can be used to allow both 

additive and multiplicative deviations from optimality and allows a better sample complexity 

bound to be obtained for function learning (compared to the general agnostic case). The following 

corollary can be used to obtain results using additive deviations from optimality which is the form 

we are using for our definition of agnostic learning. 

Corollary 3.3 ((Haussler 1992)) Let T be a permissible class of functions from Z to [0, M]. Let 

P be any probability distribution on Z. For m > 1 and 0 < e < M, 

Since we are using the quadratic loss function, we are interested in uniform convergence of 

the quadratic loss function class 
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where Qf{x,y) = {f{x) - y)^. When the observation and function ranges are bounded, the 

covering number of the quadratic loss function classes can be bounded by the covering number of 

the function classes as shown by Bartlett et al. (1994). 

Lemma 3.4 ((Bartlett et al. 1994)) Let J^ be a class of functions from X to y. Suppose y C 

- T , T] and letQ-.yxy ^ [ 0 , b e the quadratic loss function, Q{y', y) := (y' - y f . Then 

max < N ( • 
ze{xxy)^ ^ ^^^ ' - xex^ \6T i*^' 7 

We can now bound the sample complexity for agnostic learning based on the covering number 

of the function class. 

Corollary 3.5 Let T be a permissible class of functions from X to y. Let y C [ - T , T] and let 

Q-.y x y [ 0 , b e the quadratic loss function, Q{y', y) := {y' - y)^. Then T is agnostically 

leamablefrom m observations, provided 

9216T^ 
- e2 N • (3-7) 

\ \£ce-v2m V288i J J oj 

Proof. Assume that we have an optimization algorithm which can provide a hypothesis with 

empirical loss less than e/3. A suitable mapping always exists. From Lemma 3.1, uniform 

convergence to accuracy e/3 suffices for agnostic leaming. Setting the right hand side of (3.6) to 

6 and using Lemma 3.4 we obtain (3.7). • 

3.2 Improving the Sample Complexity 

In this section, we give some special cases of agnostic leaming which allow improved bounds on 

the sample complexity. We also give improved bounds for closure convex function classes. 

3.2.1 Function Learning 

For function leaming. Theorem 3.2 can be used to obtain a better bound for the sample complexity. 

Setting // = e and a = 1/2, we get E(Q;) < 3E(Q/) + e. For function leaming, it is possible 

to set the empirical loss to zero by choosing an appropriate function / , hence giving E(Qy) < e. 
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With these values of a and u together with Theorem 3.2 and Lemma 3.4, a sample size of 

m > 
128T2 / / / e 4 

In max N 
Kxex^"" \96T ' J J 0 

suffices for agnostically learning T . 

3.2.2 Learning with Noise 

For learning with noise, Barron (1990) and McCaffrey & Gallant (1994) have shown that the sample 

complexity for functions with finite Lqo covering number is O Q (in iV(e, JF, Loo) + In j ) ) . The 

Loo covering number is always at least at large as the l\ covering number but may be considerably 

larger. For example, the class of sigmoid functions without a bound on the input weight size 

has a finite l\ covering number (see Section 3.3) but cannot have a finite Loo cover. (It is easy 

to see that for any finite set of functions, we can always find a sigmoid function, with distance 

close to 1 /2 from all the functions in the set by considering linear threshold functions which 

can be approximated arbitrarily closely by sigmoid functions.) We extend the result for learning 

with noise (Barron 1990, McCaffrey & Gallant 1994) to function classes with finite h covering 

numbers by using the following theorem. 

Theorem 3.6 Let T be a permissible class of functions mapping from X toy C [ - T , T]. Let P be 

an arbitrary probability distribution on Z = X x y. Let C = max{T, 1}. Assume u,uc> 0,0 < 

a < 1/2. Letf*eJ'wheref*{x)=E[Y\X = x] andgf{x,y) = {y - f{x)f - {y - f*{x))^. 

Then form > 1, 

I + i/c + E(5/) J 

< jnaxJN expi-a'um/iSlSC')). (3.8) 

The proof is included in Appendix A. The main idea (in addition to the ideas of the proof of 

Theorem 3.2) is to bound the variance of the random variable Y) in terms of its expectation 

and to use Bernstein's inequality to take advantage of the variance bound. 

To obtain a bound on the sample complexity, we first rescale the function class and target 

random variable by dividing by T to give C = 1 and consider the new learning problem. (This 

rescaling trick allows us to obtain a sample complexity which has a T^ term instead of a T'̂  term.) 

The e covering number of the scaled fiinction class is the same as the Te covering number of the 
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unsealed function elass. To get the correct accuracy when the function class is scaled back to the 

original scale, we need to learn to accuracy e/T^. Assume the scaled function class is T . Setting 

u = Uc = a = 1/2 and the right hand side of (3.8) to 6, we get with probability 1 - 5, 

< lEziOf) + e/T^ for all f e T. From the definition of gj, notice that it is possible 

to choose / such that Ez iOf ) < 0 (since it is possible to choose the function giving the best 

empirical loss which is no more than the empirical loss for /* ) giving < e/T^. Setting the 

right hand side of (3.8) to S and solving for m shows that 

lOOOT^ 
m > 

observations suffices for agnostically learning the function class. 

3.2.3 Agnostic Learning of Closure-Convex Function Classes 

Given that it is possible to obtain better sample complexity (with respect to e) for the special cases 

of function learning and learning with noise, we would also like to investigate the possibilities 

for the more general agnostic case. However, better sample complexity is not possible without 

some conditions on the function class if we are restricted to hypotheses from the same class. For 

example, consider the class of functions which consists only of f\ (x) = 0 and /a (a;) = 1. Let the 

target be a {0,1} random variable which is 1 with probability p and 0 with probability 1 - p. The 

sample complexity for properly learning this function class with this type of target is Q. 

(see Lemma 4.5). 

However, with closure-convex function classes, it is possible to obtain the same sample 

complexity bound as the case for leaming with noise. This is done by using the following 

theorem. The proof of the theorem is given in the Appendix A. The convexity of the function 

class allows us to bound the variance of the random variable g f { X , Y ) in terms of its expectation 

hence giving the better bound. The theorem is given in a more general form which is useful for 

leaming the convex hull of function classes in Chapter 5. 

T h e o r e m s . ? Let T = U^i-^fc be a closure-convex class of functions mapping from X to 

y C [ - T , T] such that each Tk is permissible. Let P be an arbitrary probability distribution on 

2 - X x y . Let T be the closure of J^ in the space with inner product { f , g ) = j }{x)g{x)dPx{x). 

LetC = max{T, 1}. Assumeu,uc > 0,0 < a < 1/2. Let f*{x) = E [ y | X = x] andgf{x,y) = 

{y - - (y - where fa e T and fa 6 argmin^^^/(/(x) - f'{x))^dPxix). Then 
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for m > 1 and each k, 

[ u + uc + E{gf) J 

< max 6N (3.9) 

Let J'fc = ^ for A; = 1 , . . . , oo where ^ is a closure-convex class of functions (hence 7 = Q). 

As in the learning with noise case, we first rescale the function class and target random variable 

by dividing by T to give C = 1 and consider the new learning problem. The e covering number 

of the scaled function class is the same as the Te covering number of the unsealed function class. 

To get the correct accuracy when the function class is scaled back to the original scale, we need to 

learn to accuracy e/T^. Assume the scaled function class is T. Set v — Vc = e/lT'^ and a = 1/2, 

and set the right hand side of (3.9) to 5 to get with probability 1 - 5, ^ { g f ) < 2 E z ( ^ / ) + e/T^ 

for all / G From the definition of g j , again it is possible to choose / such that ' ^ z i g f ) < 0 

giving < e/T^. Setting the right hand side of (3.8) to 5 and solving for m shows that 

^ 7000r2 / / ^ / e ^ , \ , , 6 \ \ 
m > In max N + In j 

e V xxex^"' V512T ' / 6 J J 

observations suffices for agnostically learning the function class. 

3.3 Bounding the Covering Number 

In order to use the results in the previous section, we need to bound the covering number of 

various function classes. For many classes of ftinctions, this can be done using properties of the 

function classes called the the pseudo-dimension and the fat-shattering function (see Chapter 2 for 

the definitions of these properties). The following lemmas give bounds for the covering number 

of function classes in terms of these properties. 

Lemma 3.8 ((Pollard 1984, Haussler 1992)) Let T be a class of functions from a set X into 

- T , T] and suppose Pdim(:F) = d for some \ < d < oo. Then for allO < e <2T and any finite 

sequence x of points in X, 
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The following result follows from a result in (Alon, Ben-David, Cesa-Bianchi & Haussler 

1993). The proof is given in the Appendix A. A slightly better result (without d but including m 

in the log term) is given in (Bartlett & Long 1995). 

Lemma 3.9 LetO < e <2T and let T be a family of functions from a set X into [-T, T] such 

that 0 < d = fat j-(e/(8T)) < oo. For any finite sequence x of points in X, 

< exp 
Sd 

In^ e4 In 2 / / 

Corollary 3.10 Let T be a permissible class of functions mapping from X to Let the observed 

range [ - T , T] D y where T > 1, and let d = Pdim(J^). Then 

L The sample complexity for agnostic learning using T is bounded from above by 

9216T4 
din 

1152er2 1152eT2\ , 
In 

-) 
+ 1117 

0 

2. The sample complexity for function learning using T is bounded from above by 

128r2 
din 

/384eT2 384eT2 
In 

V \ / 

3. The sample complexity for learning with noise using T or for agnostic learning if T is 

closure-convex is bounded from above by 

7000T2 / , / 2 0 4 8 e r 2 2048er2 \ 
din V In , 12 

+ ln — 
0 

Corollary 3.11 Let Tbea permissible class of functions mapping from X to y. Let the observed 

range [-T, T]Dy where T > 1, and assume fatjp(7) < 00 for all 7 > 0. Then 

L The sample complexity for agnostic learning using T is 

O + l n 7 
0 

2. The sample complexity for function learning using T is 

O fat^(e/(8T))ln2 
•Tfa t^ (e / (8T)) \ 
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3. The sample complexity for learning with noise using J" or for agnostic learning if J' is 

closure-convex is 

O ( M M m in^ ( w z m i m ) + ' ^ ^ 
\ e V \ e J 0/ J 

3.3.1 Function classes with known dimension bounds 

In this section we give examples of function classes with known bounds on the pseudo-dimension 

or the fat-shattering function. 

Dudley (1978) has shown that the pseudo-dimension of a d-dimensional vector space of 

functions from a set A" to M is d. This gives the pseudo-dimension of linear functions as well 

as linear combinations of fixed basis functions such as polynomials. Pollard (1990) gives useful 

invariance properties of the pseudo-dimension including the fact that if each function in a function 

class is composed with the same non-decreasing function, the resulting function class cannot 

have a larger pseudo-dimension than the original function class. This gives a bound of d -f 1 

for the pseudo-dimension of the sigmoid function in d dimensions. (A sigmoid function is 

just a linear function with a bias composed with an increasing function.) Goldberg & Jerrum 

(1993) and Maass (1995) have shown that multilayer neural networks with piecewise polynomial 

functions have pseudo-dimension bounded by 0{W^) where W is the number of adjustable 

parameters. Karpinski & Macintyre (1995) have shown that the pseudo-dimension of multilayer 

neural networks with standard sigmoid activation functions is bounded by 0{W'^). 

It is easy to see that the fat-shattering function of the class of non-decreasing functions with a 

bounded range is 0 ( 1 / 7 ) . Gurvits & Koiran (1995) have shown that single hidden layer neural 

networks with linear threshold hidden units and bounded sum of absolute values of output weights 

have fat-shattering function bounded by O In where n is the input dimension. 

From these examples, we see that for many commonly used function classes, the sample 

complexity grows slowly (polynomially) with many of the complexity parameters of interest such 

as the input dimension and the number of parameters parametrizing the class. 



Some for renown, on scraps of learning dote. 

And think they grow immortal as they quote. 

— Edward Young 

Love of Fame, Satire i, 89. 

Chapter 4 

Lower Bounds for Sample Complexity 

In this chapter, we give lower bounds on the sample complexity for agnostic learning. 

In Section 4.1, we first review a result of Bartlett et al. (1994) which gives a lower bound 

on the sample complexity for agnostic learning (with the absolute loss function) based on the 

fat-shattering function. This shows that if the fat-shattering function fatjF(7) is infinite for some 

7, then the function class is not agnostically leamable (with the absolute loss function). We then 

observe that this is true for the squared loss function as well. It is easy to see that the class of 

single hidden layer neural networks with an unbounded number of hidden units and no bound on 

the magnitude of the output weights (with sigmoid or linear threshold hidden units) has infinite 

fat-shattering function. Hence, for single hidden layer neural networks with an unbounded number 

of hidden units to be agnostically leamable, some constraints on the output weights are necessary. 

We will show that a bound on the sum of the absolute values of the output weights is sufficient 

(and give the sample complexity) in Chapter 5. 

In Chapter 3, we showed that if the function class is closure-convex, then the sample complexity 

for agnostic learning is O ( i (in (maxx^x^m N + In Section 4.2, we give a 

partial converse for this result by showing that if the function class is not closure-convex, then the 

sample complexity for proper agnostic learning is Vt{\n[\ / 8) I e^). This shows that if the logarithm 

of the covering number of a function class grows slower than l /e, then the sample complexity for 

learning with noise is better than the sample complexity for proper agnostic learning. Lemma 3.8 

shows that function classes with finite pseudo-dimension satisfy this growth condition. 

29 
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4.1 A Lower Bound based on the Fat-Shattering Function 

In (Bartlett et al. 1994), it was shown that efficient agnostic learning of a function class with the 

absolute loss function is possible only if the fat-shattering function of the function class grows at 

most polynomially with 1 /e and the relevant complexity parameters. With minor modifications to 

the proof in (Bartlett et al. 1994), it is possible to show that this is also true for the quadratic loss 

function. 

Definition 4.1 For a G IR+, define the quantization function 

^a{y) = a 
'y - oc/2 

a 

For asetS CK let Aa{S) = {Aa{y):y e S}. For a function class T C [0,1]-^, let he 

the set {Aq O f : f £ J^} o/Aq([0, \])-valued functions defined on X. 

Lemma 4.2 ((Bartlett et al. 1994)) Let a G IR+. Choose a set T of functions from X to 

Aa([0,1]), rf > 400 and 7 > 0 such that fatjF(7) > d. With fewer than 

d-400 
4 + 1921n[l /a 

examples, there is no algorithm which can produce a hypothesis with expected absolute loss less 

than 7/32 with probability at least 1/16. 

The following is essentially from (Bartlett et al. 1994) with minor modifications so that the 

squared loss is used in place of the absolute loss function. 

Theorem 4.3 Let 7 be a class of [0, \]-valued functions defined on X. Suppose 0 < 7 < 1, 

0 < e < 7/65, 0 < 5 < 1/16 flrti/ d e N. / / f a t ^ (7 ) > d > 800, then with the quadratic loss 

function, no algorithm can agnostically learn T to accuracy 3e^ with probability 1 - 5 with fewer 

than 

m > 
d 

400 l o g f 

observations. 



Lower Bounds for Sample Complexity 31 

Proof. Set e = 7/65, 5 = 1/16. Consider the class of distributions on X x [0,1] for which there 

exists an f e T such that, for all x e X, 

P{Y\x) = 
1 i f r = A2,(/(:r)) 

0 otherwise. 

Fix a distribution P in this class. Let h be the hypothesis produced by an algorithm that can 

agnostically learn T to accuracy with probability 1 - <5. Then 

Pr(E[Q,,] > jn{^E[Qf] + < 5 

where Q is the quadratic loss. By definition inf/gjr E[Qf] < e^. So 

Pr(E[Q,,] < 4^2) > {-6. 

By the Cauchy-Schwartz inequality, 

E[Qh] < 4e2 < 2e 

where A is the absolute loss function. Hence the algorithm can learn the quantized function class 

A2e(JF) to accuracy 2e with probability 1 - 5 . By hypothesis, fatjF(7) > d, sofat^2£(J^)(7-e) > d. 

Since e < 7 / 6 5 , 2e < (7 - e)/32. Also, (J = 1/16, so Lemma 4.2 implies 

m > 
> 

> 

d-400 
4 + 1921n["l/(2e) 

d 
8 + 3841og(65/(27)) 

d 
4001og(40/7)" 

• 

Note that a [ - T , T]-vaIued function class can be transformed into a [0, l]-valued function class 

by adding T to the function class then dividing by 2T. With e and 7 similarly transformed into 

2eT and 27T, the lower bound holds for [ - T , T]-valued functions. 

The lower bound also implies that if a function class has infinite fat-shattering function, then 

it is not agnostically leamable. 
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4.2 Lower Bounds for Classes which are not Closure-Convex 

In this section we give a lower bound on the sample complexity for agnostic learning with squared 

loss. 

Theorem 4,4 Let T be a class of functions mapping from X to y. If T is not closure-convex, 

then the sample complexity for agnostically learning T with squared loss is 

The idea behind the proof is to show that if the closure of JF is not convex, an agnostic algorithm 

for learning T to accuracy e can be used to estimate the expected value of a Bernoulli random 

variable to accuracy kt for some constant k using the same number of observations. Since, as we 

now show, estimating the expected value of a Bernoulli random variable requires Q.{\n{\/5)/e^) 

observations, the agnostic learning algorithm also requires l l( ln(l /5)/e^) observations. 

Lemma 4.5 L e t . . . be a sequenceofi.i.d. {0, \ }-valuedrandom variables where Pr((̂ t = 

1) = a where a can take the value a i = 1/2 + e/2 with probability 1/2 and a2 = 1/2 — e/2 

with probability Xjl. Deciding the value of a correctly with probability at least 1—5 requires a 

sample of size m = Q, 

Proof. The decision rule which minimizes the probability of choosing the wrong a is to choose 

a \ when half or more of the sample is 1 and a^ otherwise (Fukunaga 1972) (assuming ties are 

broken in favour of a i ) . We show that with such a rule, if m is less than fi(ln((5)/e^), then for 

small enough e and 5, the probability of choosing the wrong a is greater than 5. 

We require m such that 

- r 2 i<m/2 

a € 
2 + 2 

\ » 

/ 

1 \ m—t 1 1 \ I 1 
X + X 

\ m—i 
>s. 

i>m/2 \ / 

This will be satisfied if one term (choose 5 ( ^ 2 ) ( l ~ and assume m even for 

convenience) is larger than 5. Using Stirling's approximation, ( ^ 2 ) is approximately 

for m large enough. Hence ^ ( ^ 2 ) ( J " ~ (1 - Hence for small enough 

e and b, there will be some ki and ki (both positive) such that 

In 
/ I ( ] f l m/2\ 

V2 [m/lj u / 
> A;imln(l — e^) > —k2me^ 

Hence for m < k2 ln(l /5)/e^, the probability is greater than 5. • 
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We now give some results on function classes which are not closure-convex. They are used in 

the proof of Theorem 4.4. 

The following lemma shows that if T is not convex, there is a ball touching at least two points 

in T whose interior does not intersect T . 

Lemma 4.6 Let The a subset of a Hilbert space H. IfT is not convex then there exist /i, /i G T, 

ceH such that / i ^ f2, ||c - / i II = ||c - Ml > 0 an^ { / € : lie - /II < ||c - / , ||} = 0. 

Proof. Since JF is closed and not convex, there exists g,h e T, a e (0,1) and (5 > 0 such that 

fc = ag + {\-a)h is not in and { / G JF : | | / - / d j < 5} = 0. Let S' = min{5 : {f E T : 

\f - fcW < ^ 0}- If the set G = { / e : | | / - /dl = 5'} contains more than one function, 

we are done. If G contains only one function / i , setting c = tfc + {I - t ) f i with the smallest 

^ > 1 such that { f E T : f ^ f i , \ \ f - c\\ = | | /i - c||} 0 gives the required result, provided 

such a t exists. We show that such a t must exist. Now \ \ f i - = t ^ W f i - fc\\^ and 

h — c 2 = \ \ h - f , f + f \ \ f , - f , f + 2 t { h - f u h - f c ) 

h - / i l l ' + t ' l l / l - /clp + 1t{h - f c + f c - f u f l - f c ) 

h - h II' + t^Wh - f c f - 2 t \ \ f , - f c f + 2t{h - f c , f x - f c ) 

= \\h - fi II' + li/i - c||2 - 2^||/, - f c f + 2t{h - fc, fx - fc). 

Similarly, - c||2 = ||g - / i f + | |/i - cjp - 2t | | / i - f c f + 2t{g - f c f x - fc). Now 

{h - fc, f\ - fc) and {g - fc, fx - fc) must have opposite sign unless they are both zero. In any 

case, for t large enough, either | | /i - c|| > \\h - c|| or | |/i - c|| > - c|| or both. Since g and h 

belong to T this completes the proof. • 

Again suppose T C H such that T is not convex. Let / i , /a e JF and c G i / be as in 

Lemma 4.6. (Figure 4.1 shows fx, f i , c in a two-dimensional slice through H.) Define the sets 

B\= {f eH :\\f - c|| = ll/i - c||} and Bp := J^n {B contains the circle in Figure 4.1, and 

Bj^ contains fx and f i . ) Pick /m G ^ in the hyperplane { / G if : (/i - c, / - c) - (/a - c, / - c)} 

such that ( / i - c , f m - c) is maximized. Choose a two dimensional plane P through c, f x , f i and 

fm. Pis illustrated in Figure 4.1. Let fax, /d2 G P be such that fax - c and fdi - c are orthogonal 

to fm - c, and ||/di - / i | | < ||/d, - Ml-

For 0 < p < 1 define /,* = p / , + (1 - p)c and f^ = p/2 + (1 - P)c. Define 7 by 

f* = {f* + f*)/2 + 7(/di - c). It is easy to show that f l = (/f + fl)l2 - 7(/d, - c). The 
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Figure 4.1: Function class with labelled functions schematically represented in two dimensions. 

following claim relates 7 to p, and to e := ||/m - / f | p - l|/i - / f 

Claim 4.7 

7 = 
p(/i - c, fd\ - c) e(/i - c, fd\ - c) 

llU-cP 

Proof. Let fc = ( / f + f^)/2. Then 

/ r - / c = 7 ( / d i - c ) 

(p/i + (1 -p)c-c,fdi -c) 
ll/dl - c | | | | / d i - C 

p{fl - C, fdl - c) 

{fdl - c) 

fdX - c||2 
(/dl - c) (4.1) 

which gives the first equality. To prove the second, first notice that 

/ c - c = 
/m - C 

(P/I + ( 1 -P)c-C,fm-C) 
I l / m - c 2 (/m - C) 
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p ( / l - C, f m - c ) 

- 2 y f m - c ) 
f m - C 

(4.2) 

and 

ii/i -/ril' = ll/i -Pfi - (1 = (1 - p ) ' | | / i - c f = (1 _c | |2 . (4.3) 

With that, by Pythagoras Theorem 

/m — / * • 2 / r - fcf + Wfm - fcf 

f : - f c f + \\fm-C + C - f , 

P^ifi - c j d i - c f 
Wfdl - C 

+ l l / m - c i r + 2 , P^if l - c j m - c f 
f m - C\ 

2 M f l -C,fm- C) 
f m - C||2 

fm-C 

+ 2 { f m - C , C - fc) 

(4.4) 

where the third equality follows from (4.1) and (4.2). 

Note that from the construction, | | / i - c|| = - c|| = \\fdi - c||. From the definition of e, 

we see that taking (4.3) from (4.4), we get 

2 _ i f i - c j m - c ) 
f m - c \ 2 = 6 

P = n f ] - (/i-g./m-c)^ f _ 
li/m-clp ) 

From (4.1) and (4.5), 

(4.5) 

7 = 
p(/i - c, fdi - c) 

fdl - Cll2 

(/l - c, fdl - c) 

Wfm-cf ) frn 

e(/i - C, fd\ - c) 

9 /1 {f\-cjm-c)\ f 

fdX - 2 

(4.6) 

• 

The following lemma can be used to show how an agnostic learning algorithm can be used for 

selecting between /,* and f ^ when either function can be the target conditional expectation. 
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Lemma 4.8 Suppose fx, fi, / f , f^, e af^d the function class T are as defined above. Then for 

any f ^ T and e' < e, 

f - nr - ii/i - /ri i ' < e' ^ 11/ -M< 11/ - fi (4.7) 

and 

f - f i f - 11/1 - f l f 11/ - /2II < 11/ - /ill-
2 ^ J (4.8) 

Proof. Recall that - - ||/i - f * f = e. We show that 

/ - / 2 i i < i i / - / i i i = ^ i i / - / r i i > i i / m - / r 

which implies 

We have 

/ - / r f - i i / i - / r f > e ' 

i i / - / r i i ' = i i / - / c + / c - / r i i ' 

= 11/ - fcf + life - / r I I ' + 2 { f - / „ - /r) 

> ii/m - f c f + ii/c - f i f + 2 { f - f c j c - / D 

where the inequality follows from the fact that / is in T . Thus we need only show that the second 

term is greater than zero when ||/ - /2II < ||/ - /i||. 

We have 

l l / - / 2 f < | | / - / l 

^ 11/ - fcf + ll/c - f l f + 2{f - /e, fc - fl) 

< 11/ - fcf + li/c - fx II' + 2(/ - /c, f c - f x ) 

{f - fcJc - fl) < {f - fc, fc - fx) 

^ ( / - / c , / 2 - / l ) > 0 

^ ( / - / c , / c - / r ) > o . 
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since f i - f\ and f c - / f are in the same direction. 

By symmetry, the second statement of the lemma is also true. • 

Assuming the agnostic learning algorithm is successful, we can choose the correct target 

conditional expectation by choosing / f if | | / - / i | | < | | / - /2II and if | | / - /2II < | | / - / i | | . 

The case | | / - / i || = | | / - /2II cannot happen if we choose e' < e. (For convenience we will use 

e' = 6/2.) 

Proof (Theorem 4.4). Assume an algorithm A exists such that for any probability distribution on 

A'xy, the algorithm draws m examples and with probability at least 1 - it produces / such that 

11/ - / I P - Ufa - / I P < e, where f*{x) = E[Y\X = x] and ||/a - / 1 | = in f /g^ | | / -

The function /Q e is the best approximation to / * in T . Algorithm ^ is an agnostic learning 

algorithm for T . 

If the sample complexity of Algorithm A (to accuracy e /2 and confidence 1 - is m, then 

there exists an algorithm. Algorithm B (which depends on P x and the non-convex ^ which with 

probability 1 solves the problem in Lemma 4.5 (for 7 which depends on e according to Claim 4.7) 

with sample complexity m. Let f{ = {f* + f^)/2 + {fai - c ) and f{ = {f* + f^)/2 + [ f a i - c). 

Algorithm B generates a sequence { x i , . . . , x m ) G ^ ^ independently from Px- If = 1, 

Algorithm B gives {x i , f [ {x i ) ) to Algorithm A; otherwise it gives {xi^f^ixi)) to Algorithm A. 

The target conditional expectation is / f if a = Xjl-V^jl and if a = 1/2 - 7/2. Algorithm B 

receives / from Algorithm A. If | | / - / i || < | | / - /2II the Algorithm B chooses a = 1/2 + 7 / 2 ; 

otherwise it chooses a = 1 /2 - 7 / 2 . Lemma 4.8 shows that it is the correct choice (with 

probability at least 1 - <5). From Lemma 4.5 obtaining the correct a with probability 1 - 5 requires 

Q(ln( 1 /8) /-y^) observations. Algorithm B uses the same number of examples as Algorithm A, so 

Algorithm A also requires at least fi(ln(l/(5)/7^) = f2(ln(l/<5)/e2) observations. 

To satisfy the definition of agnostic learning, we require that the range of the random variables 

be bounded. This can be done if the appropriate functions f i , / i and c are chosen according to the 

construction in Lemma 4.6. Assume that / i and / i are bounded (if they are not, arbitrarily close 

bounded functions can be chosen since they are in the closure of which contains uniformly 

bounded functions). From the construction, c is also a bounded function. This means that / * 

and / I are always bounded since they are convex combinations of c with / i and / i - Finally, 

- c = i (/,* - for all 7 in the appropriate range. We can fix a value for 7 to bound 

/rfi - c. Hence / ( and / j can be constructed to have ranges which are always bounded by a 
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quantity which depend only the function class and not on 7. • 

4.3 Discussion 

A lower bound on the sample complexity for proper agnostic learning is not as strong as a lower 

bound for the sample complexity for agnostic learning. (We show in Chapter 5 that this lower 

bound is valid in general only for proper agnostic learning by giving examples where learning the 

function class using the convex hull of the original function class gives better sample complexity.) 

However, proper learning is important in many cases where the form of the representation is 

important. This is often the case when it is desired to be able to interpret the results. The 

parameters in the representation may have some physical significance or it may be necessary to 

have a particular representation which is easy to understand. 

While positive results for agnostic learning are very useful, negative results have to be in-

terpreted with care. The results in this chapter show that for small enough accuracy and high 

enough confidence, there will be probability distributions for which we cannot achieve the desired 

performance unless we have more than the number of observations stated in the bounds. However, 

this may not necessarily be the case for any particular learning problem we are interested in. For 

example, we have shown in Chapter 3, restrictions on the probability distributions, as in the case 

of function learning and learning with noise, can give smaller sample complexity than the lower 

bound for proper agnostic learning given in this chapter. 



The brain is composed of about 10^' neurons of 

many different types. 

— Hertz, Krogh and Palmer, 

Introduction to the Theory of Neural Computation. 

Chapter 5 

Learning Single Hidden Layer Neural 

Networks 

In Chapter 4, we showed that if a function class is not closure-convex, then the sample complexity 

for properly agnostically learning the function class can be worse than the sample complexity for 

learning with noise. In view of this, we now consider agnostically learning the convex hull of 

the function class (which is closure-convex). Besides being closure convex, the convex hull will 

usually give a better approximation to the target function if the target function is not in the function 

class. This makes learning the convex hull a fairly natural way of using a different hypothesis 

class to learn a function class agnostically. 

However, the convex hull of the function class may have a larger covering number than the 

function class. In this chapter, we study the sample complexity of learning the convex hulls of 

function classes. We obtain bounds for learning the convex hull of a function class in terms of the 

covering number of the original function class. For function classes with finite pseudo-dimension 

which are not closure-convex, we find that the sample complexity for agnostically learning the 

convex hull is not significantly worse (within constant and logarithmic factors) of the sample 

complexity for properly agnostically learning the function class. 

The class of single hidden layer neural networks with an unbounded number of hidden units 

and a bound on the sum of absolute value of output weights is the convex hull of a symmetric class 

of hidden units (see Chapter 2 for definitions). Many classes of hidden units such as classes of 

39 
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sigmoid or linear threshold hidden units are not closure-convex making the results in this chapter 

particularly applicable. In fact, it is easy to see that the class of single hidden layer neural networks 

with any fixed number of sigmoid or linear threshold hidden units is not closure-convex. 

With an unbounded number of hidden units, the class of single hidden layer neural networks 

can also be used to approximate many nonparametric function classes. We start off in Section 5.1 

by reviewing work by Barron (1994) on learning classes of functions with finite first absolute 

moment of the Fourier transform using single hidden layer neural networks. We then extend this 

result to agnostic learning of single hidden layer neural networks with linear threshold hidden 

units and other more general hidden units in Section 5.2 by giving sample complexity bounds. We 

end this chapter with a discussion on the optimality of the results. 

5.1 Function Classes with Finite First Absolute Moment of Fourier 

Transform 

The approximation properties of single hidden layer neural networks with sigmoid hidden units 

was studied in (Barron 1993). There it was shown that for functions with a finite first absolute 

moment of Fourier transform, a single hidden layer neural network can achieve integrated squared 

error of 0{\/k) where k is the number of hidden units. 

Let F] the the class of functions with the first absolute moment of the Fourier transform 

bounded by C, that is Z]=i \2TTUj\\F{u)\du < C where F{u) = /^n is the 

Fourier transform of / . Recall that is a single hidden layer neural networks with k hidden 

units. 

Theorem 5.1 Suppose that Q is either the class of linear threshold junctions or the class of 

sigmoid functions. For every function in Fi and every probability measure P, there exists a 

function fk G such that 

Here K = < 2C andwQ = /(O). 

Barron (1993) has also provided examples for which the constant in the bound grows only mod-

erately with dimension including positive definite functions that are continuously differentiable at 

the origin. Various closure properties for sums, products and certain compositions of functions 
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where the constants grow polynomially are also given. 

Using the approximation result and the sample complexity result from (Barron 1990), it was 

shown in (Barron 1994) that the sample complexity for learning with noise from functions in Ti 

i s O ( i ( i l n i + l o g i ) ) . 

5.2 Learning Convex Combinations of Basis Functions 

In this section, we give bounds on the sample complexity for agnostic learning in terms of the l\ 

covering number. This extends the result of (Barron 1994) in several ways. First it extends the 

result for learning functions with bounded first moment of the Fourier transform from the case 

of learning with noise to agnostic learning. By using the l\ covering number we are also able to 

learn a larger class of functions than the class of functions with a bound on the first moment of the 

Fourier transform. In (Barron 1994), the function class is learned by discretizing the weights of the 

neural networks (finding an LQO cover) and optimising over the discrete set of weights. By using 

bounds involving the li covering number, it is possible to learn some classes of functions which 

are not continuous and have no finite LQO cover such as single hidden layer neural networks with 

linear threshold hidden units. Using the bounds involving the pseudo-dimension and fat-shattering 

function in Chapter 3, we also give upper bounds on the sample complexity for learning classes 

of single hidden layer neural networks with other basis functions as hidden units, in terms of the 

pseudo-dimension or fat-shattering function of the basis function classes. The results are stated in 

the following theorem and corollaries. 

Theorem 5.2 Let Q be an admissible class of basis functions mapping from X into y with 

^(2;)! < bfor all g e G. The sample complexity for agnostically learning Mf^ is no more than 

\ ^ 

where C = max{i^6,T, 1}. 

Using bounds from Lemma 3.8 and Lemma 3.9, we obtain the following two corollaries. 

Corollary 5.3 Let Q be an admissible class of basis functions mapping from X into y with 

g{x)\ < bfor all g e Q. Suppose the pseudo-dimension of Q is d. The sample complexity for 
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agnostically learning is no more than 

14000(7^ AC^d 
In 

\ ^ 

4096eC2 4096(^2 \ SC^ ^ 6 
In + 1 + In 2 + In -

e e e 6 

where C ^ max{/C6, T, 1}. 

Corollary 5.4 Let Q be an admissible class of basis functions mapping from A" into y with 

< bfor all g e g. Let d = fatg(e/8192C^). The sample complexity for agnostically 

learning is no more than 

14000C2 

V ^ V 

where C = max {K6,T , 1}. 

ln2 " 
+ In 2 + In -

e 0 

For the proof of Theorem 5.2, we will need to bound the number of terms in the convex 

combination needed to achieve a desired accuracy. For that we use the following result attributed 

to Maurey in (Barron 1993). 

Lemma 5.5 I f f is in the closure of the convex hull of a set Q in a Hilbert space, with Hg^H < b for 

each g e Q, then for every A; > 1, and every c> b^ - \\f\\^, there is an fk in the convex hull ofk 

points of Q such that 

\ \ f - f k f < l . 

Furthermore fk can be chosen to be fk = ^ gi where gi E G for i = .. ,k. 

Observe that for functions with range in [-B, B], Hg'lp is always bounded by B^. 

Recall (from Chapter 2) that = {a; ^ ^ ^ k ] where g]^ = {x ^ 

Kg{x),x ^ -Kg{x), x ^ K,x -K: g e g}. Note that is the convex hull of g}^. We 

will use functions from ^ ^ ^ to approximate functions from A/"^. We bound the covering number 

of these function classes in terms of the covering number of g . 

Lemma 5.6 Let x = {x\,..., Xm) G Then 
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Proof. Let C/ be an e/iiT-cover for Q^x with \U\ = N{elK,G\xM). Pick an arbitrary function 

Kf gG}^ where f eg. Pick veU such that di^ {f\x,v) < e/K. Then 

1 J^. K ^ 

i=\ 

Obviously, {Kv, -Kv : v e U}[j{{K,..., K), { - K , - K ) } is a an e-cover . • 

Lemma 5.7 Let x = {xi,..., Xm) e Then 

< < + l ) ' - (5.1) 

Proof. Let U be an e-cover for Q]^ with \U\ = N{e, Gk^x^h)- Let / = ^ ZLi h Ui G Qk^ 

i= 1 , . . . , A;) be afunction in For each/ j , pick a member of such t h a t < e-

Let/i = Wi- Then 

1 m 1 m I A; 

J=1 J=l 1=1 

1 1 m k 

j=\i=\ 
J fc J m 

1=1 j=i 

1=1 

So for any f\x ^ ^̂  ^ vector in the set Yli=i Ui'.Ui G U} with distance less than 

e from it. Since YlLi ^i'-'^i ^ U}\ < \U\'' the first inequality in (5.1) follows. The second 

inequality in (5.1) follows from Lemma 5.6. • 

We are now give the proof of Theorem 5.2. 

Proof. (Theorem 5.2) First note that M ^ is convex and hence closure-convex. We also have 

-^ik ^ -^K permissible for each k. Scale the function class and target random variable by 

dividing by C. The covering number of the scaled function class is the same as the Ce covering 

number of the unsealed class. By learning to accuracy e/C^ and rescaling back, we obtain the 

desired bound. Assume the scaled function class is T . In Theorem 3.7, set a = X/ l and use 
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Theorem 3.7 and Lemma 5.7 with = fc = e/4C^ to get 

P - {z G : 3 / e E [(y - f{x)f - {y - / , ( x ) ) 

> lEz [(y - f { x ) f - (y - fa{x)Y + e /{IC^)] 

< 6 max N . , ^^, „, 
~ V 1 0 2 4 C 

< 6 x 2 * = max N 
\Q2ACK' + exp( -em/14000C2) . (52) 

Suppose f'{x) = Ez[y\X = x]. Let fk be the estimated function and let fa 

be the function in the convex closure which minimizes the empirical error. Then 

E z \{y - fk{x)f - { y - fa{x)Y] = Ez \{f'{x) - - ( f i x ) - fa{x)) Note that 

Bz 

Ez 

( f i x ) - A(x))2 - ( f i x ) - fa{x)f 

ihix) - fa{x))^ 

< Ez {f'{x)-Mx))^-{f'{x)-fa{x)y 

In Lemma 5.5, set c = 1. To get approximation within e/4C^ (with respect to the empirical 

mean squared error), we require k > AC^/e. Setting the right hand side of (5.2) to be 5 and 

k — AC^ Ie, we see that 

m --
14000^2 e 

In max N 
e \ e xex^rn \ \ 1024CK 

\ \ AC^ 6 
+ ln2 + l n -

will suffice for agnostic learning. • 

5.3 Discussion 

Corollary 5.3 shows that for function classes with finite pseudo-dimension which are not closure 

convex, the sample complexity for agnostically learning the convex hull of the function class is at 

worst within a logarithmic factor of the sample complexity for properly agnostically learning the 

function class itself. The convex hull can be learned by increasing the number of hidden units as a 

function of the required accuracy. Learning the convex hull gives better approximation capabilities 

and hence may be preferable to properly agnostically learning the function class in view of the 

sample complexity bounds. 

The function class Fi is in the closure of the convex hull of single hidden layer neural networks 

with linear threshold hidden units. Since the pseudo-dimension of linear threshold units is n -h 1, 

the class Fi is agnostically leamable with sample complexity O ^^ (j^ln j + log Barron 
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(1992) has also shown that the sample complexity for learning Fi using an arbitrary estimator 

cannot be better than Hence the sample complexity bound is close to optimal 

for learning Ti. The bound is also close to optimal for learning the class of single hidden layer 

neural networks with linear threshold hidden units since functions in Ti can be approximated 

arbitrarily closely single hidden layer neural networks. 

There are also function classes for which using the convex hull as the hypothesis class (instead 

of doing proper agnostic learning) results in a much better sample complexity. For example if Q 

has a finite number of functions, then the pseudo-dimension of the convex hull of Q is bounded by 

Q\ (the convex hull is a subset of a |^|-dimensional vector space of functions, hence as mentioned 

in Section 3.3.1, the pseudo-dimension is bounded by \Q\ (Dudley 1978)). Since the pseudo-

dimension is finite. Corollary 3.10 shows that the sample complexity is O ^^ ^In ^ -I- log In 

contrast, since Q is not closure-convex, the sample complexity for properly agnostically learning 

Q is 0 ( ln ( l /5 ) / e2 ) . This shows that for such classes, by learning the convex hull of the function 

class, not only do we get better approximation, we also get a better sample complexity. Since the 

upper bound is smaller than n(ln(l/(5)/e2) (for small enough e) this also shows that the lower 

bound for the sample complexity for learning function classes which are not closure convex only 

holds for proper agnostic learning and not agnostic learning in general. 





a computer whose merest operational param-

eters I am not worthy to calculate and yet I will 

design it for you. A computer which can calculate 

the Question to the Ultimate Answer. ' 

— Deep Thought, 

in The Hitchhiker's Guide to the Galaxy. 

Chapter 6 

Computational Complexity 

Another important component of a learning problem is its computational complexity. As comput-

ing capabilities increase, we expect to be able to solve harder learning problems. However, if the 

computational requirements grow too quickly with the size of the problem, the size of solvable 

problems will remain quite restricted. One of the main aims of computational learning theory 

is the study of the maximum size of learning problems which can be solved using a reasonable 

amount of computation (Valiant 1984). We delineate the boundary of what is feasibly leamable 

by requiring the computational requirements of leamable problems to be polynomial in 1 /e, I / 5 

and the relevant complexity parameters. Classes of functions for which this can be done are said 

to be efficiently leamable. 

In this chapter, we study the computational requirements of agnostically learning single hidden 

layer neural networks. We first relate the computational complexity of agnostically learning the 

basis function class to the computational complexity of learning the class of single hidden layer 

neural networks. We do this via an iterative approximation result which shows that by iteratively 

adding a function to the convex combination of a function class such that the distance to the 

target function is minimised, good convergence to the best approximation in the convex hull of the 

function class can be achieved even when the target function is not in the convex hull. The iterative 

approximation result is described in Section 6.1. We then show in Section 6.2 how the iterative 

approximation result can be used to show that if a basis function class is efficiently agnostically 

47 
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leamable, then the convex hull of the function class is also efficiently agnostically leamable. Since 

a basis function class is contained in the convex hull, this means that the convex hull of a function 

class (and the class of single hidden layer neural networks with those basis functions) is efficiently 

agnostically leamable if and only if the basis function class is efficiently agnostically leamable. 

Leaming {0,1 }-valued functions with {0,1} valued targets is widely studied in computational 

learning theory. We call the proper agnostic version of this problem proper agnostic PAC leaming 

(Keams et al. 1994). In Section 6.3, we show how a proper efficient agnostic PAC leaming 

algorithm for a basis function class G can be used to efficiently agnostically leam single hidden 

layer neural networks (with real-valued outputs) with hidden units from Q. 

In Section 6.4, we show that the problem of agnostically leaming of some classes of single 

hidden layer neural networks (including networks with linear threshold hidden units) is likely to 

be difficult computationally. We do this by showing that an algorithm for agnostically leaming 

the network can be used for PAC leaming polynomial sized DNF formulae. Whether the class 

of polynomial sized DNF formulae is PAC leamable has been an open problem in computational 

leaming theory since it was first posed by Valiant (1984). It is generally believed that polynomial 

sized DNF is not efficiently leamable (Jermm 1994). 

In view of this, we consider leaming subclasses of single hidden layer neural networks. In 

Chapter 7, we will study functions with finite q-th absolute moment of the Fourier transform. In 

Section 6.5, we show that the class of single hidden layer neural networks with linear threshold 

hidden units and bounded fan-in is efficiently agnostically leamable. We end the chapter with a 

discussion of the results in Section 6.6. 

6.1 Iterative Approximation 

The iterative approximation result in this section is an extension of the results of Jones (1992) and 

Barron (1993). They showed that if a function is in the closure of the convex hull of a bounded set 

of functions in a Hilbert space, then it can be approximated by iteratively adding functions from 

the set such that the squared distance to the target function is of order 0(1/A;), where k is the 

number of functions added. We extend the result in order to allow agnostic leaming. We show that 

even if the target function is not in closure of the convex hull, the iterative approximation scheme 

will converge to the best possible approximation such that the squared distance to the target will 

approach the optimal squared distance at a rate of 0 ( l / f c ) . 
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We now give the iterative approximation result which is the key to showing the equivalence 

between efficient agnostic learning of a function class and efficient agnostic learning of its convex 

hull. 

Theorem 6.1 Let K be a Hilbert space with norm || • ||. Let Q be a subset ofH with |1 g || < 6 

for each g G Q. Letco{Q) be the convex hull of Q. For any f eV., let df = infg>^co(g) W g' - f 

Suppose that f\ is chosen to satisfy 

/ i - / f < inf W g - f f +ei g&y 

and iteratively, fk is chosen to satisfy 

f k - f l r < inf i| afk-i + a g - f f +ek g&y 

where a = 1 - l/{k + I), a = \ — a, c > b^, and e^ < Then for every fc > 1, 

f - f k f -d) < 
4c (6.1) 

Proof. Given 5 > 0, let / * be a point in the convex hull of g with \\ f* - f \\< df + 5. Thus 

f* = E i l i ngi with and 7i = 1 for some sufficiently large N. Then for all 

a e [0,1], 

afk-x+ag-f\\^ 

=11 + 

= 11 afk-x +ag-f* f + || /* - / +2{afk-i +ag- f \ f* - f ) , 

where (•, •) is the inner product in the Hilbert space H. Thus, 

c ^ f k - i + ^ g - f f - W r - f 

afk-i +ag-f* f +2{afk-x + a g - f * J * - f ) 

- n + ^ i g - n 11̂  + 2 ( « / f c - i + ^ g - r j * - f ) 

= i i A - i - r f +a'\\g-r f + 
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2aa{fk-x - f \ 9 - f*) + + a g - f*,/* - / ) • 

Let g be independently drawn from the set { g i , . . . , g^} with P{g = gi} — j i . The average value 

of II a / , _ , + a ^ - / | | 2 _ | | r - / | | 2 i s 

E t z P II fk-i - r f II 9^ - r II' - f\9^ - D 
i=\ 

= II fk-x - r II' E 7 i II 9^ - r f + 2 a a ^ ' y i { h - i - f\gi - / * ) 
i=l i=l 

N 
+ 2 Y , ' y i { a f k - i + a g i - f * J * - f ) 

= a fk-i - r IP - 2 { g i , n + \ \ r 11'))+® 
\ i=i / 

N 

+ 9 i - cx9i - f*J* - f ) 

/ N 
= a f k - i - r II' II 9i II' - II r II' + 2 a ( / , _ , - r , r - / ) 

\i=i 

< a^ II f k - i - r II' + 2 a ( A _ i - r - / ) • 

Since the average is bounded in this way, there must be a y G {g\,-- • ,gN} such that 

II a / f c _ i + a ^ - / | | 2 - | | r - f f 

< II fk-i - r II' + 2a{fk-i - /*, f* ' f ) 

« II A - i - II' + 2 ( A _ , - f \ r - / ) ] + a^b" 

II - r II' + 2 { h - i - r , r - / )1 + 

= a 

< a (6.2) 

since a G [0,1]. Noting that 

i i / f c - i - / i i ' = i i / f c - i - r + r - / 

= II fk-x - r II' + II r - / II' +2(/fc_i - r , r - / ) , 
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we get 

fk-x - / II' - II r - / f = 1 1 A - , - r f + 2 ( / , _ , - r , r - / ) . 

Substituting into (6.2) and letting 5 go to 0, we get 

inf II afk-, +ag-f ||2 -d) < a [|| - / ||2 -d) + 

Setting fc = 1, a = 0 and /o = 0, we see that 

inf II ^ - / f -d] < b^. 

Hence the theorem is true for fc = 1. Assume as an inductive hypothesis that 

2 ^ 4c 

Then 

inf II +ag~f jp -d) + e, < + a'b^ + 
g&G ^ k - l {k + iy 

- k l i Letting a = 1 - 2/{k + 1) = a = 2/{k + 1), 

2 j2 4c 4(c - b^) 

Then (6.1) follows directly. • 

4c 4c 
+ A;+l (A;+1)2 

4c 

Recently, Koiran (1994) has independently obtained a similar result for iterative approximation 

when the target function is not in the convex closure of the set of functions. In (Koiran 1994), he 

obtained bounds of the form \\ f - f k - d j < ^ + x ^ ^ e r e C > yjb^ + dj. In comparison, 

our bound of O is asymptotically better than Koiran's bound of O . The constant in our 

bound is also independent of the target function, unlike the constant in his bound. 
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6.2 Equivalence in Efficient Learning 

In this section we show that the class of single hidden layer neural networks with hidden units 

from an admissible class of basis functions is efficiently agnostically leamable if and only if the 

class of basis functions is efficiently agnostically leamable. This is done by using the iterative 

approximation result together with the agnostic learning algorithm of the basis function class as a 

subroutine to learn one hidden unit at a time. 

We will need the following uniform convergence result which follows from Hoeffding's 

inequality (Hoeffding 1963) and the union bound. 

Theorem 6.2 Let T be a finite set offiinctions on some set Z with 0 < f{z) < C for all f e T 

and z e Z. Let S be a sequence of m points drawn independently from Z according to an 

arbitrary distribution P on Z, and let e > 0. Then 

G T : \ t s i f ) - E(/)l > e) < . 

For 0 < (5 < 1 and sample size 

C^ ( 2\ 
In + In -

2e2 V 5 J 

this probability is at most 5. 

We now show how an agnostic learning algorithm for G (using any hypothesis class K) can 

be used as a subroutine to construct an algorithm for agnostically learn Af^. 

Theorem 6.3 Let Q be an admissible class of basis functions with |g(2;)| < b for all g £ Q. Then, 

with the quadratic loss function and K > 0, is efficiently agnostically leamable if and only if 

Q is efficiently agnostically leamable. 

Proof. The only if part is trivial because and e can be rescaled such that ^ is a subset of A/"^. 

The function class is the convex hull of = {wg: |iy| = K,g e G} U{2; K,x 

-K}. Theorem 6.1 shows that to get within e of the best expected loss, a number of iterations 

equal to k = ^ will do. Set c = and = ^ ^ for 1 < i < fc. Assume that the 

agnostic algorithm for learning G produces an hypothesis from H. Since we are not making any 
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SUBLEARNd, K, b, T,e,d,k,fi-i) 

1. Set confidence to ^ and accuracy to where ei = 

2. Pass this confidence and accuracy to algorithm A and, for each observation (X, F) from 
the original probability distribution, pass {X, ^ ( ( 1 - 2/(i + l ) ) / j_ i (X) - F ) to A. The 
bound on the magnitude of the new target random variable, (i + 1)T/K, is also passed to 
A. Assume the hypothesis produced is h\. 

3. Repeat Step 2, except that each observation (X, Y) is replaced by (X, ^ ^ ^ ^ ((1 - 2/(i + 
l ) ) / i_ i (X) - Y). Assume the hypothesis produced is h^. 

4. Draw (In 4 + In additional observations from the original distribution. Test the 
four hypotheses clipTO {{I-2/{i +1)) fi^i+2K hi/{i+\)), clipTo{{\- 2/{i+ l)) / i_i -
2Kh2/{i + 1)), (1 - 2/{i + l )) / i_i + 2K/{i + I) and {I- 2/{i + l))/ i_i - 2K/{i + 1) 
against the observations and select the one which gives the minimum error as fi. 

Figure 6.1: Pseudo code for each iteration of the agnostic learning algorithm for jV^ (algorithm 
A is an agnostic learning algorithm for learning Q). 

assumptions about H we do not know that it is bounded. We introduce the function clipr where 

cliprix) = ' 

- T if a: < T 

X if-T<x<T 

T if X > T. 

After each iteration, we compose the resulting function with dipr- This can only improve 

the performance of the function since the observation range is a subset of [ - T , T]. It also allows 

us to bound the range of the resulting hypothesis at each iteration. Assume the agnostic learning 

algorithm for learning g is A. The pseudo-code for each iteration of the algorithm (SUBLEARN) 

is shown in Figure 6.1. 

Let / be the target function (conditional expectation of target Y given input X). To satisfy 

Theorem 6.1, at the ith iteration, we must find function h such that 

f {2h{x)/{i + 1) + (1 - 2/{i + \))fi-i{x) - y)^dP{x,y) 
JxxY 

< inf / {2g{x)/{i + l) + { l - 2 / { i + l ) ) f ^ - ^ { x ) - y f d P { x , y ) + e ^ . 
SSG' JxxY 

where f i - i is the linear combination which has been found so far (possibly composed with dipr 

after each iteration). 

Now members of consist of wg where w = ±K ^nd g G g[j{x \,x ^ - 1 } . 
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Furthermore 

f {2wg{x)/{i + 1) + (1 - 2/{i + l ) ) / , - i ( x ) - yfdP{x,y) 
JxxY 

\ l + l j JxxY \ 2w ) 

We now use the agnostic learning algorithm for Q with respect to the new target random variable 

which has magnitude bounded by {i + l )T/ iC (Step 2 and 3 in SUBLEARN). Set confidence to 

5/2k and accuracy to (i + ifei/SK^. Then with probability at least 1 - 6/2k, the hypothesis hi 

produced is such that 

f {2whi{x)/{i + 1) + (1 - 2/{i + l ) ) / i - i ( x ) - y)"dP{x,y) 
JXxY 

inf / f5(x) + ^ ( ( l - 2 / ( z + l ) ) / , - i ( x ) - y ) ' ) dP{x,y) 
gegJxxY \ 2w J 

= inf [ {wg{x)/i + {I - l/i)fi-i{x) - y)^dP{x,y) + ei/2. 
g^Q JxxY 

This has to be done for both w = K and w = -K. We also have to compare the performances of 

the functions x ^ K and x -K. Hence at each iteration, we produce four hypotheses from 

which we have to choose one. If we have no other way of choosing between the four hypotheses, 

we have to do hypothesis testing (Step 4 in SUBLEARN). From Theorem 6.2, a sample size of 

(In 4 + In is large enough so that the empirical quadratic loss is no more that et/4 from 

the expected quadratic loss for all functions with probability at least 1 - 5/2A;. If we choose the 

hypothesis which has the smallest empirical loss, the expected loss will be no more that ei/2 away 

from the expected loss of the best hypothesis with probability 1 - 5/2k. 

So at each iteration, given an efficient agnostic learning algorithm for learning Q, we can 

produce an hypothesis which satisfies the requirements of Theorem 6.1 with probability at least 

1 - 5/k. Since the probability of failure at any of the k iterations is no more than 5, we have 

produced a learning algorithm for Af^. It is easy to see that if the time complexity of the algorithm 

for learning Q is polynomial in the relevant parameters, the time complexity of the resulting 

algorithm for learning Aff^ will be polynomial in the desired parameters. • 

In Theorem 6.3, we make no assumptions about the hypothesis class used by the agnostic 

learning algorithm for learning Q. If we have a proper agnostic learning algorithm (or we know 



Computational Complexity 55 

the hypothesis class), we can use a different algorithm which minimizes the empirical error at each 

stage instead of the expected error. With a proper agnostic learning algorithm for Q this algorithm 

gives a better bound on the sample complexity. 

We need to bound the covering number of the network constructed using Theorem 6.1. Let 

= {2; ^ Y!l=\ai9i{x)-gi e where ajf = {x ^^ Kg{x),x ^ -Kg{x),x ^ K,x^ 

- K . g e Q} and a i , . . . , a/t is the fixed sequence of numbers constructed according to Theorem 6.1 

with Gi > 0,i = ... ,k and = 1. 

Lemma 6.4 Let X — (cci,... , Xrri) where Xi E X for i ~ 1, • • •,'m-

N i e X t k ^ ^ J i ) < < 2 ' + l ) ' . (6.3) 

The proof is essentially the same as the proof for Lemma 5.7. 

Theorem 6.5 Let Q be an admissible function class. ThenM^ is properly efficiently agnostically 

leamable if Q is properly efficiently agnostically leamable. Furthermore the sample complexity 

for properly efficiently learning M^ is at most 

14000C^ /32C2 \ \ 32C^ 12\ 
,Q\x,hj + l j + — ^ I n 2 + l n y 1 

where C = max{iC6,T, 1}. 

Proof. As in the proof of Theorem 5.2, we can scale the function class and target random variable 

by dividing by C. 

The covering number of the scaled function class is the same as the Ce covering number of 

the unsealed class. By calculating the bounds for accuracy e/C^ and rescaling back, we obtain 

the desired bound. Assume the scaled function class is f . Let a = 1/2 in Theorem 3.7 and use 

Lemma 6.4 with u = Uc = ejAC^ to get 

3771 z G : 3 / e E [(y - f{x)f - (y - /alx))^^ 

> 2Ez [(y - - (y - fa{x))'] + e/{2C')} 

< 6 max N 
xex^"' 

/ / 
<6x2" max N 

\ \ 1024CK' 
,^^|x,/i) + l ) ' e x p ( - e m / 1 4 0 0 0 C 2 ) . 
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Let f'{x) = Ez[y\X = 2;]. Let be the estimated function and let fa 

be the function in the convex closure which minimizes the empirical error. Then 

E Note that {y - fk{x)f - {y - fa{x))'\ = ^z[{f'{x)-Mx))^-{f'{x)-fa{x)y 
E z [(/ '(X) - - { f i x ) - /a(x))2] < E z [ { f i x ) - - ( / ' ( x ) - f a{x ) f 

In Theorem 6.1, set c = To get approximation within e/4 (with respect to the empirical 

mean squared error), we require k > yiC^lt. Setting the right hand side of (5.2) to be bjl and 

k — 32C^/e and solving for m, we get a sample size bound of 

14000C^ (T.'yn'i- f f f \ \ 12^ 
In max iV — ^ 

xex^"' \ \ 1 0 2 4 C a ^ J J e 0 J \ ^ 

Having selected a sample of size m, we now need an algorithm to find fk. We show that a 

proper efficient agnostic learning algorithm for G can be used as an efficient randomized algorithm 

for optimizing the error on the sample using Cf^ Learning algorithms are often formed from 

optimization algorithms, and in such cases, the algorithms can be used directly to minimize the 

error on the sample. The idea is to use the learning algorithm to sample and learn from the 

empirical distribution so that at each stage i of the iterative approximation, the error relative to the 

optimum is less than ê  (from Theorem 6.1) with probability greater than 1 - 5/2k. This can be 

done in a way similar to the proof of Theorem 6.3 except that we can test the hypotheses directly 

using the same sample (and we do not have to compose the resulting function with clipr at each 

iteration). Knowing the covering number of Q enables us to bound the size of the sample required 

to be sampled according to the empirical distribution (Corollary 3.5). Note that since we are 

sampling from the empirical distribution, no new observations need to be drawn from the original 

distribution. Theorem 6.1 assures us that if we are successful at each iteration, we will be within 

the desired error on the empirical distribution which gives us the desired error on the sample. • 

6.3 Relationship with Agnostic PAC learning 

Let ^ be a class of {0, l}-valued functions. Let the observed range be {0,1}. We call proper 

agnostic learning with discrete loss under these assumptions proper agnostic PAC learning. In 

this section, we show that if Q is properly efficiently agnostically PAC leamable, then jV^ is 

properly efficiently agnostically leamable (with the squared loss function). Note that Mf^ has 

real-valued output with real-valued targets while the algorithm for agnostic PAC learning only 
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handles {0, l}-valued function classes with {0, l}-valued targets. 

As shown by Jones (1992), the iterative approximation result holds even if the inner product 

of the basis function with fk - f (where / , the target function is in the closure of the convex 

hull and fk is the current network) is minimized instead of the empirical quadratic error. This is 

also true for the proof given by Koiran (1994) for the case where the target function is not in the 

closure of the convex hull of the function class. We use this property and transform the problem 

of minimizing the inner product on a finite set of observations into the problem of agnostic PAC 

learning. 

The following theorem follows from the proof of Theorem 1 given in (Koiran 1994) with 

minor changes. For completeness we include the proof here. 

Theorem 6.6 Let Q be a subset of a Hilbert space U with || 5 ||< 6 for each g eQ. Let co{Q) be 

the convex hull of Q. For any f eH, let dj - infg/gco(a) II ~ / II- Let fo = 0, c> 2b +df and 

iteratively for k > suppose fk is chosen tobe fk = — \/k)fk-\ + g'/k - /, where g' E Q is 

chosen to satisfy 

{ f k - i - f , g ' ) < inf {fk-x-f,g)+ek g^G 

and €k < - — T h e n 

f - f k f - 4 < 
2cdf 

Proof. We will show that for any function h in H and any a G [0,1] and a = \ - a. 

\ah + ag- / f < Q^\\h - f\\^ + 2aadf\\h - f\\ + a^{2b + dfY + ^k (6.4) 

where g is chosen to satisfy {h - f,g) < infg'^cih - f,g') + ^k- Setting a = 0 shows that the 

result holds for A; = 1. Assume the desired inequality holds for fk-\. The result then follows by 

induction. From (6.4), with o: = 1 - 1/A; and a = l/Zc, we get 

f J\\2 ^ [k - m\fk-i - fW , 2{k-l)df\\Jk-i-f\\ , {2b + df)^ ^ {c?-{2b + df)^) 
A;2 

By the induction hypothesis. 

\fk-f < 
k^ 

4 + 
2dfC + 

c2 

y / k ^ { k - l ) 
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2df{k- \)idf + ^ 
^ A;2 ^ A;2 

k^ ^ k ^ fc • 

It follows that 

as required. We now verify (6.4). 

For any g E Q, 

\\ah + ag- f f = a^\\h - f f + - f f + 2aa{h - f , g - / ) . 

Given 5 > 0, let f* G co(^) be such that \\f* - f\\ < df + 5. For some sufficiently large p, f* is 

of the form Xlf^, ^igi with > 0, = 1 and ĉ j G The average value of the inner product 

{h - f , f - f ) for g e {gi,...,gp} is 

f,gi- f ) = {h- f , r - f ) <{df + §)\\h- f 
i=l 

(6.5) 

Furthermore, for any g £ G, 

9 - f f = \\9 - r + r - /ir < (li^ii + iirii + iir -/iir < i^b+df + sy. 

Hence, with the average of the inner product bounded as in (6.5), if the g chosen as described. 

ah + ag- f f < a^\\h - f f + a^[{2b + df + + 2aQ\\h - f\\{df + 5) + 2aaefc. 2 , 

Letting 5 go to 0 and noting that 2aa < 1 completes the proof. • 

Theorem 6.7 Let Q be a class of admissible {0, l}-valued basis functions. Then M^ is properly 

efficiently agnostically leamable with the quadratic loss if Q is properly efficiently agnostically 

PAC leamable. 

Proof. Since the target range is bounded we can easily find a bound for d f . Using Theorem 6.6, 

pick the number of basis functions k in the linear combination to obtain approximation 6/4 for 

approximation under the empirical distribution. Then, as in the proof of Theorem 5.2, find the 
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sample complexity so that E [ ( y - / ( a ; ) ) 2 - ( y - / ^ ( a ; ) ) 2 ] < 2Ez[{y-f{x))^-{y-fa{x))^] + e/2. 

Since Q is agnostically PAC leamable, the VC-dimension (hence pseudo-dimension) is polynomial 

in the complexity parameters (Blumer et al. 1989). Hence, the sample size needs to grow no faster 

than polynomially in all the desired parameters. Finally we need to show how an algorithm for 

agnostically PAC learning Q can be used to obtain an efficient randomized optimization algorithm 

for the selected sample. With the empirical distribution. Theorem 6.6 shows that this can be done 

by approximating to accuracy Cj at each iteration. 

For each iteration i, I < i < k, v/e want to find g ^ G io minimize {fk-i - f,wg) = 

— f {xi))g{xi) for both w = K and w = -K where / is the conditional 

expectation on the sample under the empirical distribution. For w = K define a function h on the 

sample such that 

h{xi)=0 iffk.i{xi)-f{xi)>0, 

h{xi) = l iffk-i{xi)-f{xi)<0 

Thus h is the {0 , l}-valued function which minimizes the inner product. A similar {0, l}-valued 

function can be defined for w = - K . We will use the agnostic PAC learning algorithm to leam h 

under a modified distribution. 

Le t s = \fk-\{xi) - f{xi)\. Set up a distribution P on such that 

P{Xi) = 
fk-l{Xi) - f{Xi) 

Let g* e Q minimize the error for target h and distribution P. Let g' be produced by the 

agnostic algorithm such that 

Pr(/i ^ g') < Pr(/i g*) + 
mei 

^ E 
h{Xi)=l 

fk-l{Xi) - f{Xi) 

E 
h{xi)=0 

\fk-x{Xr)-f{Xi) 

^ E 
h{Xi)=l 

s E 
hiXi)=\ 

E 
h(xi)=0 

fk-l{Xi) - f{Xi) 

{h{xi)-g'{xi)) + 

{g'ixi) - h{x^)) 

{h{x^)-g*{x^)) + fk-l{Xi) - f{Xi) 

mei 

{g*{xi)-g'{xi))-
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z^ [g [Xi) - g [Xi)) <— 

K ^ 

Similarly we can show that Kg* minimizes the inner product {fk-\ - f,Kg). A similar 

argument can also be used form = -K. Finally note that Ks/m is bounded by + X) . The 

rest of the proof follows in a manner similar to Theorem 6.5. • 

6,4 Hardness Results 

While Theorem 6.7 is interesting in relating agnostic PAC learning to learning a single hidden layer 

neural network, there do not appear to be many basis function classes which are properly efficiently 

agnostically PAC leamable. Available results show the hardness of properly agnostically PAC 

learning monomials and halfspaces under the assumption RP ^ NP (Keams et al. 1994, Hoffgen 

& Simon 1992). This implies that for networks of functions from these classes, it is unlikely that 

an efficient algorithm can be obtained from the approach given here. Since the quadratic loss is 

equivalent to the discrete loss when the function class as well as the target functions are {0,1 }-

valued, the approach given in Section 6.2 for properly learning networks by properly learning the 

basis functions with the quadratic loss is also unlikely to produce an efficient agnostic learning 

algorithm for these function classes. However, these results do not rule out efficient agnostic 

learning using other methods or other hypothesis classes. To do that requires representation 

independent hardness results. 

In (Keams et al. 1994), it was shown that if the class of monomials is efficiently agnostically 

leamable (with any hypothesis class) with respect to the discrete loss function, then the class 

of polynomial-size DNF is efficiently leamable in the PAC learning model. (It is generally 

believed that polynomial-sized DNF is not likely to be efficiently leamable (Jerrum 1994).) Using 

techniques similar to that in (Keams et al. 1994), it is possible to show that if a class of {0,1}-

valued basis functions include monomials, then an efficient agnostic leaming algorithm for the 

class using the quadratic loss function can be used to efficiently find a randomized hypothesis 

for polynomial-sized DNF. (We say a hypothesis h is randomized if there exists a probabilistic 

polynomial time algorithm that, given h and an instance v, computes h's prediction on v.) If we 
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assume that it is hard to find a learning algorithm for DNF, then agnostically learning such basis 

function classes as well as the network of the basis functions is hard. 

The idea behind the proof is to show that the network can be used as a weak PAC learning 

algorithm for learning p(n)-term DNF. The result then follows from the fact that a {0, l}-valued 

function class is efficiently PAC leamable if and only if it is efficiently weakly PAC leamable 

(Schapire 1990). 

Definition 6.8 The class of monomials over n Boolean variables x\,. ..,Xn consist of all conjunc-

tions of literals over the variables. For any k, the class of k-term DNF consist of all disjunctions 

of the form Mi V . . . V M ;̂ where each M is a monomial. 

Definition 6.9 Let Q be a class of functions mapping from X to {0,1}. Suppose Q is parametrized 

by complexity parameter n. Then Q is efficiently weakly PAC leamable if there exists a polynomial 

p and an algorithm A such that for all n > 1, for all target functions g E Q, for any probability 

distribution D on X, and for all 0 < d < 1, algorithm A, given the parameters n and 5, draws 

instances from D labelled by g, runs in time polynomial in n and 1 /S, and outputs a hypothesis h 

that with probability at least 1 - 5 has expected error no more than 1 / 2 - 1 /p{n). 

Theorem 6.10 ((Schapire 1990)) Let Q be a function class mapping from X to {0,1}. Q is 

efficiently weakly PAC leamable if and only if it is efficiently PAC leamable. 

For any function /i : A' -)• [0,1], define $h{x) to be a boolean random variable that is 1 with 

probability h{x) and 0 with probability 1 - h{x). We will need the following result. 

Lemma 6.11 ((Kearns et al. 1994)) Let f : X {0,1} any boolean function, and let h : 

X [0.,\] be a real-valued function. Then for any distribution D on X 

?r{f{x) # $h{x)) < E[(/(x) - h{x)f] + 1/4. 

Theorem 6.12 Let Q = U^i where each Qn is a permissible class o/{0, \ }-valued functions on 

such that the class of monomials is a subset of and letp{n) be any polynomial in n. If 

Q is efficiently agnostically leamable with respect to the quadratic loss function, then there exists 

an efficient algorithm (which produces randomized hypotheses) for learning p{n)-term DNF 

Proof. We will show that there exists a weak learning algorithm (which produces randomized 

hypotheses) forp(n)-term DNF. The result then follows from Theorem 6.10. 
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For any target p(n)- term DNF formula, there exists a monomial that never makes an error on 

a negative example and gets at least 1 / p ( n ) of the positive examples right (because the p ( n ) terms 

cover all the positive examples). Let uj ^ Q he equivalent to this monomial when restricted to 

{0,1}'^. Then cj' = 5(0; + 1) G J\ff will have quadratic error 1 /4 on the negative examples. On 

the positive examples the quadratic error of u ' will be zero when the monomial to gives the correct 

classification and 1 /4 when it gives the wrong classification. 

The algorithm for producing the randomized hypothesis goes as follows. (The constants 

are chosen for convenience.) Assume that the probability that an instance is labelled 1 is a . 

Draw a large enough sample (using e.g. Theorem 6.2) so that with probability at least 1 —5/2, 

the empirical average a is within e /2 of a for some small e < 7 / (32p(n ) ) . If the empirical 

average is less than 1 /4 + e/2, choose the all zero monomial. If the empirical average is more 

than 3 / 4 — e /2 choose the the all one monomial. Either of these hypotheses will then have 

error no more than 1/4 + e. Otherwise the probability of a positive example is between 1 /4 

and 3 /4 . We then use the agnostic learning algorithm to learn the function using A/'f with 

quadratic loss. From Section 6.2, Mf is efficiently agnostically leamable if Q is efficiently 

agnostically leamable. The above argument shows that there exists a function in J\ff with 

expected quadratic error less t h a n i ^ l - ^ ^ + i ^ l - i ) = i - Let / be our target 

DNF. Use the agnostic algorithm to produce a hypothesis h which is no more that l / ( 3 2 p ( n ) ) 

away from the optimum with probability at least I - 5/2. Then from Lemma 6.11, we have 

PT[f{x) # $h{x)] < E[{f{x) - h{x))^] + 1 /4 < 1 /2 - l / ( 3 2 p ( n ) ) , where $/,(a;) is a boolean 

random variable that is 1 with probability h{x) and zero with probability l-h{x). The probability 

of the algorithm failing to produce a hypothesis with error less than 1 / 2 - 1 /{32p{n)) is no more 

than S. Hence the algorithm is a weak learning algorithm which produces randomized hypotheses 

for learning p(n)- term DNF. • 

It is easy to see that the result also holds in the logarithmic cost model of computation (Aho et 

al. 1974) because the second layer weights of the neural network are fixed at 1 /k, where k is the 

number of hidden units. 

6.5 Learning Bounded Fan-in Neural Networks 

From the result in the previous section, it would appear that agnostically learning a single hidden 

layer neural network with linear threshold hidden units is likely to be computationally difficult. In 
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this section, we consider learning a computationally tractable subclass: the class of single hidden 

layer neural networks with bounded fan-in. 

6,5.1 Sample Complexity 

We first bound the sample complexity for learning networks with bounded fan-in. Let the basis 

Sanction class be 

Qr := {x I-)- h{vi • X + Vio) : at most r of the coordinates Vij of Vi are nonzero} 

where h is the step function, h{z) = 1 for z > 0 and h{z) = 0 otherwise, x e W, and 

Vi • X = VijXj. 

Lemma 6.13 Let x be a sequence of points from R". Then for 0 < e < 1, 

( - I n -

Proof. The class C of linear threshold functions in r dimensions has pseudo-dimension r + 1. 

From Lemma 3.8, for any sequence of points cc the covering number iV(e,£|a;,/i) < • 

A cover for QT can be formed from the union of (") < r f such covers. • 

Corollary 6.14 The sample complexity for efficiently agnostically learning A/̂ '" is bounded by 

14000C2 '32C^T 

\ ' 
In 

204SeC^n, 204SeC^ A \ ^ .12 
In + 1 + 

V V ^ ^ J J 
+ In 2 + In , 

e 0 3e 

where C = max{ir,T, 1}. 

Proof. The proof follows from Theorem 6.5 and Lemma 6.13. • 

6.5.2 Loading Algorithm 

Having bounded the sample complexity, we still need to find an algorithm which will produce 

a network which will give the required approximation. In this section we describe an algorithm 

CONSTRUCT which produces a network by iteratively adding hidden units as suggested by the 

approximation result in Section 6.1. Note that in Theorem 6.1, we have a fixed set of output 

layer weights for each iteration. The algorithm receives as inputs the number of iterations 
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SPUTTING(A) 

W := 0; 
0; 

for all T-tuples (^i , . . . , t r ) from { 1 , . . . , n } with ti < . . . < U 
for all (r + l)<-tuples ( r i , . . . ,r<) from { I , . . . , m } with r\ < ... <ri 

for all /-tuples ( a i , . . . , a i ) e { - 1 , 1 } ' 
if a solution 

{vo,vo^) e e only are nonzero} 
to the system of linear equations 

Xr^ • V + Vt = u = I,... J 

exists then 
Split A into two subsets A' and A" by the hyperplane given 

by VQ- X = -VOT; 

if {A', A"} ^ P then 

P : = P U { K , A " } } ; 
endif; 

endif; 
endfor; 

endfor; 
endfor; 
return W; 

Figure 6.2: Subroutine SPLITTING 

k, the bound on the sum of magnitudes of output weights K, the fan-in r and a sequence 

S := {{x\,yi),... ,{xm,ym)} from X xy. At each iteration, the algorithm generates all 

possible dichotomies of the sample with a bounded fan-in hidden unit and then adds the hidden 

unit which minimizes the empirical loss at each stage. 

We first describe a subroutine SPLITTING for generating all possible dichotomies (Figure 6.2). 

The subroutine and proof of correctness are adapted from (Farago & Lugosi 1993). The input to 

the subroutine is a set A := { x i , . . . , Xm]- It returns a set VV of weight (and bias) vectors which 

correspond to all possible dichotomies on A. For notational convenience, an m<-tuple means an 

/-tuple for some \ < I < m. 

Lemma 6.15 The subroutine SPLITTING generates all possible dichotomies ofm points using a 

linear threshold unit with r or fewer nonzero weights in in steps. 

Proof. The algorithm goes through 2 ^ 7 ) < iterations of the innermost 

loop where it does comparisons and solves linear equations. Each set of linear equations has no 

more than r + I variables and no more than r -I- 1 equations. By Gaussian elimination solving 
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CONSTRUCT(k,K,T,S) 

/ : = 0; 
r := 0; 
W := SPLimNGiSA)-, 
g ua{v • X - vo):v ew,\u;\ = K}LI {K, -K}-, 
{or j I to k 

for each g e Q 
if cosm - 2/{j + 1))/ + 2g/{j + 1), 5) <COST{f', S) then 

/ ' : = ( l - 2 / ( ; + l ) ) / + 2 ^ / ( j + l); 
endif; 

/ / ' ; 
endfor; 

endfor; 
return / ; 

Figure 6.3: Algorithm CONSTRUCT 

each system takes O(t^) operations. Each comparison against P takes 0(71"̂ 771"̂ +'). So the total 

number of operations is 

We now show that all dichotomies are generated. Note that a dichotomy generated by a 

unit with fewer than r weights can also be generated with a unit with r weights. All possible 

combinations of r inputs are generated. So we only need to ensure that all possible dichotomies 

of a unit with a set of r weights are generated. This is the same as considering a linear threshold 

unit in r dimensions. 

First note that any dichotomy in W can be implemented by a hyperplane of the form b-x+bt = 0 

with some (&, bt) G . For any Xj G A, either b • Xi + bt > 0 or b • Xi + bt < 0. A suitable 

b can be found by replacing > 0 and < 0 by > 1 and < - 1 and solving the arising system of 

inequalities' for (6, bt). Let Hi and H2 be the two open halfspaces generated by the hyperplane. 

Then given a partition A f ) Hi, A D H2 of A, an appropriate {b, bt) can be found by taking any 

solution to the linear system of inequalities 

Xi-v + vt> I, Xie AnHi 

xj -v + vt < - I , Xj e AnH2 

This system of inequalities defines a polyhedron in weight space. It is possible to select I 

'Farago & Lugosi (1993) set bt to - 2 and then replace the inequalities with 6 • i > 3 and 6 • x < 1 but that gives 
an incorrect result. For example, let x i = ( 1 , 0 ) be labelled 1, X2 = ( 1 , 1 ) be labelled 0 and 1 3 = ( 0 , 1 ) be labelled 1. 
Although the dichotomy can be implemented by a 6 such that b • x = 2, there is no b that satisfies 6 • n > 3, 6 • 12 < 1 
and 6 • X3 > 3. 
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inequalities for some / < r + 1 such that they can be satisfied if and only if the polyhedron is 

nonempty and every solution of the arising system of linear equation also satisfies the whole system 

of inequalities (see (Farago & Lugosi 1993)). Since we are considering all possible systems of 

T + 1 or fewer equations, all possible dichotomies are generated by the algorithm. • 

The pseudo-code for the algorithm CONSTRUCT is given in Figure 6.3. It receives as 

inputs the number of iterations k, the bound on the sum of magnitudes of output weights K, 

the fan-in r and a sequence S = {{xuVi), • • •, {xm,ym)}- At each iteration j, we multiply 

the previous network / by 1 - 2 / ( j + 1) and add the function 2g/{j + 1) which minimizes 

COST{{\ - 2 / { j + l))f + 2g/{j + l),S) over all g given by the subroutine SPLITTING (here 

COST[{ \ - 2 / ( i -H 1)) / -I- 2g/{j + 1), S) is the sum of squared errors on the sequence S). The 

time complexity of the algorithm is 

Since the algorithm minimises the error at each iteration, the algorithm is an agnostic learning 

algorithm if the sample size is chosen according to Corollary 6.14. Since the computation time is 

polynomial in all the parameters (with the fan-in fixed) the algorithm is efficient. 

If the hidden unit used is not the linear threshold unit but has a Lipschitz bound, the parameters 

can be discretized with an appropriate grid size (instead of obtaining all dichotomies, see (Barron 

1994)) to get a similar result. 

6.6 Discussion 

We have shown that if a basis function class is efficiently agnostically leamable, then a single hidden 

layer neural networks with hidden units from the basis function class is efficiently agnostically 

leamable. This is done by iteratively learning one function of the linear combination at a time and 

using the agnostic learning algorithm for the basis function class as a subroutine. For many function 

classes, for example classes of functions with finite pseudo-dimension, the sample complexity for 

agnostically learning the class of single hidden layer neural networks is not much worse than the 

sample complexity for properly agnostically learning the basis function class. Another advantage 

of the iterative approximation approach is the ease of learning linear combinations of functions 

from more than one basis function class. In the fixed network approach common in the neural 

network literature, the number of basis functions from each basis function class has to be specified 

in advance. For linear combinations of k basis functions from s basis function classes, this leads 

to (/c 4- s - 1)!/A;!(s - 1)! = (when k is fixed) possible combinations to choose from. 
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In contrast, the time complexity of the greedy iterative approximation approach is approximately 

s times the time taken to learn the linear combinations of the most difficult basis function class 

(ignoring increased sample complexity). Since the covering number of the union of 5 basis 

function classes is bounded by s times the largest covering number of function classes in the 

union, the sample size needs to grow only logarithmically with s, assuming a similar covering 

number for each basis function class. 

Unfominately, our results also indicate that agnostic learning of single hidden layer neural 

networks is likely to be computationally difficult for many interesting basis function classes. 

However, we should note that the agnostic learning framework is a very demanding framework 

and it is possible that learning many of these function classes may not be difficult under other 

realistic assumptions. 

Within the agnostic learning framework, we have shown that the class of single hidden layer 

neural networks with bounded fan-in (with linear threshold hidden units) is efficiently leamable. 

In fixed dimension or with bounded fan-in, the class of linear combinations of axis parallel 

rectangles with bounded sum of magnitudes of weights is also efficiently agnostically leamable. 

These results are generalized in the following corollary which is particularly useful for {0,1 }-

valued basis function classes. 

Corollary 6.16 Let Q be an admissible basis function class. Let x = {xi,x2,..., Xm) be an 

arbitrary sequence of points from X. IfQ\x can be enumerated in time polynomial in m and the 

complexity parameters, then is properly efficiently agnostically leamable. 

Proof. The covering number is bounded by the number of functions in which is polynomial 

in m and the complexity parameter. Since the functions can be efficiently enumerated, choosing 

the function which minimizes the loss on a large enough (but polynomial) sample size will result 

in an efficient learning algorithm for • 

By having bounded fan-in, we lose some of the approximation capabilities of these networks. 

For boolean functions, Minsky & Papert (1969) have shown that some functions such as parity 

cannot be learned (or even well approximated) by two layer networks with bounded fan-in. 

However, the class of functions that can be approximated by such networks is still interesting 

and useful. For example, Boser et al. (1992) have shown that even with networks with bounded 

fan-in (low degree polynomials), good results can be achieved for the task of handwritten digit 

recognition. Hence, we think that the study of such subclasses of efficiently leamable functions is 
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worthwhile. 



[W]e have seen a rabble of junctions arise whose 

only job, it seems, is to look as little as possible 

like decent and usejul junctions. No more con-

tinuity, or perhaps continuity but no derivatives. 

Moreover, jrom the point of view of logic, it is 

these strange functions which are most general; 

whilst those one meets unsearched for and which 

follow simple laws are seen just as very special 

cases to be given their own tiny comer. 

— Henri Poincare 

Collected Works. Vol. 11, p. 130. 

Chapter 7 

Learning Smooth Functions 

In Chapter 6, we showed that networks which can approximate monomials are unlikely to be 

efficiently agnostically leamable. This means that fairly severe conditions have to be imposed on 

function classes in order for them to be efficiently agnostically leamable. In this chapter, we study 

how smoothness of the function class affects efficient agnostic learning. 

Barron (1993) has shown that the class of functions with bounded first absolute moment of the 

Fourier transform can be learned with sample complexity O ^ j InJ + l o g i ) ) . However, it is 

not known if this function class is efficiently leamable (computationally). In this chapter, we put 

more restrictions on the function class by demanding that the g-th absolute moment of the Fourier 

transform of the functions (where q depends linearly on the input dimension n) and the L\ norm of 

the functions in the class be uniformly bounded. We show that such a function class is efficiently 

agnostically leamable. 

Previous work in nonparametric statistics on learning functions in high input dimensions 

usually does not concentrate on the computational complexity but rather on the sample size 

69 



70 Learning Smooth Functions 

Basis Functions Agnostic learning Learning with noise 

Sinusoidal (In ( 0 + I n J ) ) 0 ( l n ( 0 + l n | ) ) 

Linear threshold a i n ( i ) + l n i ) ) 

Sigmoid 0 , „ ( ! ) + i n D ) 

Table 7.1: Number of basis functions for used for efficiently learning the class of functions with 
bounded q-th absolute moment of the Fourier transform (q and n fixed). 

required (stated in terms of the rate of convergence of the risk of the estimator as a function 

of the sample size). Kernel methods are computationally efficient in high dimensions and give 

good rates of convergence for certain classes such as the class of s-times differentiable functions 

when the s-th derivative is Holder continuous and s is proportional to n (see (Hardle 1990)). 

However, unlike our framework, which requires bounds to hold for arbitrary input distributions, 

the bounds for kernel methods depend on the input distribution. For functions where all partial 

derivatives of order s are square-integrable, the asymptotic minimax rate of convergence of the 

mean integrated squared error is O (Ibragimov & Hasminskii 1980, Pinsker 

1980, Stone 1982, Nussbaum 1986), where m is the sample size and n is the input dimension, and 

this rate can be achieved by using a linear combination of fixed basis functions. With s of order n, 

learning can be done with a reasonable sample size. However, to achieve this rate, an exponential 

number (with respect to the input dimension) of basis functions is used. 

To obtain our results for functions with bounded Fourier transform moments, we use a Monte 

Carlo method to evaluate the function via the inverse Fourier transform. For computational effi-

ciency, we multiply the Fourier transform with an appropriate sized uniform window and evaluate 

the resulting inverse Fourier transform (integral) by sampling uniformly over the appropriate 

subset of the parameter space. Because we are using the Fourier transform, our hypothesis class 

consists of linear combinations of sinusoidal basis functions. Similar results can be achieved using 

linear threshold basis functions and sigmoid basis functions. The sample complexity is bounded 

by O ( i [k In ( i ) + j ) ) where k, the number number of basis functions used, is shown in 

Table 7.1. 

The results are obtained in the agnostic leaming framework. However, as shown in Table 7.1, 

we are able to obtain a better bound for the case of leaming with noise, where the target conditional 

expectation satisfies the assumptions we are using. 

For the class of functions with a uniform bound on the -̂-th absolute moment of the Fourier 
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series and a uniform bound on the Li norms of the functions (with (j growing linearly with n) we 

are also able to show that for a desired accuracy of approximation, the size of a fixed set of basis 

functions which will provide the required approximation to all the functions in the class grows 

only polynomially (instead of exponentially) with the input dimension. The fact that the set of 

basis functions is fixed means that for multi-output networks, the number of hidden units does not 

need to grow as the number of outputs grow. This is interesting because in most neural network 

applications, all the different outputs of the network share the same hidden units. 

In Section 7.1, we describe the class of functions with bounded ^-th moment of the Fourier 

transform. We state the results and describe the algorithm used in Section 7.2. We discuss the 

results on learning smooth functions in Section 7.3. 

In Section 7.4, we show the existence of small (polynomial size) sets of fixed basis functions 

that can be used to uniformly approximate all the functions with uniform bounds on g-th absolute 

moment of the Fourier series and the L\ norm {q growing linearly with n). 

7.1 Functions with Bounded q-th Absolute Moment of the Fourier 

Transform 

We will restrict the domain to [-tt , tt]" . Any bounded subset of M" can be rescaled to be within this 

domain. For T, M, C G 1R+, let Fg be the class of functions satisfying the following conditions: 

1. \f{x)\ < T f o r a l l x e 

2. \f{x)\dx < M 

3. /Rn \2T^Uj\^\F{u)\du < C where F (u ) = /«„ ^^e Fourier trans-

form of / and Uj is the j th component of u. 

Functions on a bounded domain can be represented as a Fourier series by having a periodic 

extension outside the domain. However, for a condition similar to (3) on the Fourier series to be 

satisfied, the functions and their derivatives have to be continuous on the boundary of the domain. 

By having a Fourier transform representation, the functions do not have to satisfy the boundary 

conditions. 

Using techniques from (Barron 1993), it is possible to show that if all partial derivatives of 

order less than or equal to s = [ n / 2 j + g + 1 of a function / are square-integrable, then it 
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satisfies the moment condition for Tg. Write = a{u)b{u) witha(w) = (1 + 

and b{u) = |'Uj|^|F(u)|(l + By the Cauchy-Schwarz inequality, J a{u)b{u)du < 

(fa^(u)duy/^(fb^(u)duy/^. The integral / = /(I + is finite for 2i > n. 

By Parseval's theorem the integral / b^{u)du = f + is finite when 

the partial derivatives of / of order t + qand of order q are square-integrable on W. This relates 

the class Tg to more traditional smoothness classes considered in nonparametric statistics. 

7.2 Results and Algorithms 

The results are stated in the following theorems. 

Theorem 7.1 Let e <T and B = M + C + T. The function class Tg is efficiently agnostically 

learnable using single hidden layer neural networks with sample complexity (for fixed n and q) 

O k\n 
\ ^ / 

\ \ 

0 / / 

where 
2n 

k = 0 
{TC^yfM^{T + M + C) (n^, (TCM\ , 1 

-In 
\ e y 

if sinusoidal basis functions are used as hidden units and 

k = 0 2 , 2n±2 
e 9 

In 
fTCM 
\ e J 

if either linear threshold functions or sigmoid functions are used as hidden units. 

Theorem 7.2 Let e <T and B = M + C -{• T. The function class Tg is efficiently learnable with 

noise using single hidden layer neural networks with sample complexity (for fixed n and q) 

O 
/ ^ i / 

fcln 
'B^ 

\ ' V e 5 / / 

where 

k = 0 
^c'fM^fn?, fCM\ 

n - e / 
+ I n -

0 
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if sinusoidal basis functions are used as hidden units and 

/ ^ -), / 2 / r ' ! \ / f \ 1 \ ^ 
k = 0 In 

rcM 

V e ' + T V ^ / v y 

if either linear threshold functions or sigmoid functions are used as hidden units. 

The algorithms for achieving these results are given in the next subsection. The proofs that 

the algorithms give the required bounds are given in Appendix B. 

7.2.1 The Algorithms 

The pseudo-code for the basic algorithm is shown in Figure 7.1. The algorithm needs to use M, 

C, T and q. Explicit bounds on the number of observations, the size of W and the number of basis 

functions k can be calculated (see Appendix B). To be able to do the Monte Carlo integral, we first 

approximate the Fourier transform by multiplying it with an appropriate uniform window. The 

set W is a subset of the parameters of the basis function class which results from the windowing 

procedure. It depends on the basis function class, M , C, T, q and is described below. The number 

k of basis functions required is given in Theorem 7.1 and Theorem 7.2. Note that constrained 

mean squared optimization of a linear combination of fixed basis function can be done efficiently 

(Nestorov & Nemirovskii 1994). 

Sinusoidal basis functions 

Each parameter Ui drawn from W is used to parametrize two basis functions x i-^ cos[2'nUi • x) 

and X M- sin(27rC/i • x). Here the set W := {u G W:\ui\ < r} where r = O for 

agnostic learning and r = O for learning with noise. 

SMOOTHLEARN(M, C, T,k,W) 

1. Select a set ofk parameters by uniformly sampling from W. The set ofk parameters is used 
to parametrize a set of basis functions Q. 

2. Let B = M + C + T. Draw O (A; In + In j ) ) observations. 

3. Do constrained mean squared optimization over the empirical loss on the observations 
in Step 2 to accuracy of order e using the linear combinations of all the basis functions 
from g as the hypothesis class. The constraints to be satisfied are f{Xi) < B for all the 
observations, where f is the hypothesis produced. 

Figure 7.1: Pseudo-code for the algorithms for learning Tq. 
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Linear threshold basis functions 

Each parameter (J7i, Ti) drawn from W is used to parametrize a basis function x i-^ h{2TTUi-x — Ti) 

where h is the threshold function. Here W := {{u,t) G |ui| < r, \t\ < l-rr^nr} where 

r = O for agnostic learning and r = O for learning with noise. An additional 

basis function g{x) = 1 has to be added to the set of basis functions. 

Sigmoid basis functions 

Each parameter {Ui, Tj) drawn from W is used to parametrize a basis function x i-)- a{a{2TrUi • 
X - Tj)) where a is the sigmoid function. Here W := G |ui| < r, < In^nr} 

where r = O agnostic learning and r = O for learning with noise. An 

additional basis function g{x) = 1 has to be added to the set of basis functions. The value of a 

depends on e and is of order {T + M + C){M + C)/e. 

The basic idea behind the proof (given in Appendix B) is to separate the error into three 

components and to bound them separately. The three components are the component caused by 

windowing the Fourier transform, the component caused by approximating the windowed Fourier 

transform by the sampling procedure and the component caused by estimating the parameters of 

the linear combinations of basis functions from the sample. 

7.3 Discussion on Learning Smooth Functions 

The L\ norm of the function (over the domain M.'̂ ) is used to bound the magnitude of the 

Fourier transform. This in turn bounds the variance of the random variable for the Monte Carlo 

approximation of the Fourier transform. The L\ norm of the function appears to be an important 

parameter for efficient agnostic learning. For example, function classes which appear to be difficult 

to learn, such as polynomial sized DNF, do not have a uniform polynomial bound on the Li norm 

(over the appropriate domain). 

From Chapter 5, we see that the sample complexity for agnostically learning Fi is 

^ (e e ! ) ) • functions Fg are subsets of Fi and hence can be learned with the 

same sample complexity. However the order of the sample complexity for our algorithm (the 
3+ — 

agnostic version) is 1/e i (ignoring log factors). This shows that we may be trading off some 

of the sample complexity to be able to learn efficiently. 

The algorithms used for learning Tq choose the basis functions randomly from a uniform 
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distribution over an appropriate sized subset in the parameter space. This is similar to the way that 

the initial set of parameters are chosen for the basis functions for some gradient descent learning 

algorithms such as backpropagation (Rumelhart, Hinton & Williams 1986) which optimize over 

all parameters including those which parametrize the basis functions. This suggests that for 

smooth enough target functions with small Li norm, if the number of the hidden units is large 

enough, gradient descent algorithms which randomly choose the initial values of the parameters 

are likely to find local minimums which will perform well. Even if the target function is not 

smooth, the fact that the algorithms perform well in the agnostic model suggests that if a good 

smooth approximation to the target exists, the gradient descent algorithm will still perform well. 

(These suggestions are strictly true only if the output weights are learned first with the hidden units 

fixed before all the weights are optimized together and if the hidden units are chosen as described 

earlier in this chapter.) 

Similar work on learning by randomly drawing basis functions has been done by (Delyon, 

Juditsky & Benveniste 1995). They used the wavelet transform and learned the transform from 

the data before drawing the basis functions from the distribution induced by the learned transform. 

However, they did not consider computational complexity issues. We have not considered using 

the data to learn the transform. It would be interesting to know what advantage such a method 

will offer. 

Igelnik & Pao (1995) have examined a similar scheme to that described in this chapter where 

the basis functions are drawn uniformly from a suitable subset of the parameter space. However, 

they did not consider any specific function class and did not study the rate at which the size of the 

subset must increase to give bounds on the performance of the algorithm. They claimed that the 

method worked well for several practical applications. 

7.4 Small Set of Fixed Basis Functions 

In this section, we give upper bounds on the size of a fixed set of basis functions, linear combinations 

of which can approximate smooth functions with a given accuracy. By a set of fixed basis functions, 

we mean that the same set of basis functions can be used to give the required approximation to 

all the functions in the class i.e. we do not require different sets of basis function for different 

functions in the class. 

Let R^ be the class of functions on [-TT, TT]"" which satisfy the following conditions: 
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1. | / ( a ; ) | r f x < M 

2. EueZ" E ^ i i27ru,f |F(u) | < C where F{u) = is the Fourier 

coefficient of / at u, Uj is the jth component of u and Z is the set of integers. 

Since functions in T® have Fourier series representations, they have periodic extensions outside 

the domain f-7r,7r]". We do not consider the class redefined in Section 7.1 because it is technically 

more difficult. 

The approximation provided by our fixed basis function is in the sup-norm sense i.e. \fk{x) -

f*{x)\ < e for all x € [ - t t , tt]", where fk is the approximating function and f* G is the target 

function. By truncating the Fourier series appropriately (by multiplying it with a window with 

sides of length 2r), it is possible to show that the rate of convergence for the approximation error 

is 0 ( l/r*?) for r = 1 , 2 , . . . , oo. Unfortunately, even with q growing linearly with n, we still need 

to use an exponential number of basis functions to achieve any specified accuracy (because the 

number of basis functions in the window is (2r + 1)"). 

We would like to be able to choose an appropriate polynomial sized subset of the exponential 

number of basis functions for any specified accuracy. Theorem 7.3 shows this can be done with 

a number of basis function k of size O for fixed n and q. This shows that if q grows 

linearly with the dimension of the input space, the number of fixed basis functions required for any 

accuracy grows only polynomially (instead of exponentially) with the input dimension. However, 

the bound given in Theorem 7.3 is worse than the bound on the number of basis functions required 

for learning such functions as shown in Section 7.2. This is because instead of approximating 

one function (the function that is being leamed), we require the basis functions to be good for all 

functions in the class F®. 

We will only consider approximation using sinusoidal basis functions. Similar results can 

be obtained for linear threshold and sigmoid basis functions. We do not give an explicit method 

for constructing the set of basis functions. However, the method in the proof can be used for 

constructing a probabilistic algorithm for finding the set of basis functions. 

The main result of this section is stated in the following theorem. 

Theorem 7.3 There is a fixed set of sinusoidal basis fiinctions (for fixed n and q) of size 

O 
(n^M^C^^'I'i / . , CM\\ 

i^c a 
ln2 

\ q^e " " ^ ^ ^ / 
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which can be used to approximate any function in F® to accuracy e. 

The proof is given in Appendix B. The idea behind the proof is similar to that used for the 

proof of the results in Section 7.2. We show that if the Fourier series is appropriately truncated 

and the basis functions of the truncated series are sampled uniformly, an appropriate set of basis 

functions is likely to be found. 

7.5 Discussion on Approximation with Fixed Basis Functions 

Work on Loo approximation using methods similar to those used here was first done by Barron 

(1992) who showed that a sup-norm approximation of order 0(1/fc), where k is the number of 

hidden units, exists for single hidden layer neural networks with linear threshold hidden units. 

Barron (1992) used basis functions which are adapted for the particular function that is being 

approximated. Related work on sup-norm approximation has also been done by (Gurvits & 

Koiran 1995, Darken, Donahue, Gurvits & Sontag 1993, Yukich, Stinchcombe & White 1995). 

For the class Ff , Barron (1993) has also shown that for Li approximation (which is implied 

by sup-norm approximation), the number of fixed basis functions required is r2(l/e"). With 

adaptable basis functions, the number of basis functions required is 0 ( l / e ^ ) . This shows that 

for approximating a single function, having adaptable basis functions may give considerable 

advantage over having fixed basis functions. It also shows that the existence of a polynomial-sized 

set of fixed basis functions requires stronger conditions (such as those imposed in this chapter) 

than those satisfied by functions in F^. 





Paul, thou art beside thyself; 

much learning doth make thee mad. 

— Acts, xxvi, 24. 

Chapter 8 

Discussion and Conclusions 

In this thesis, we have studied agnostic learning with the squared loss function. We showed that if 

the closure of a function class is not convex, the sample complexity for agnostic learning can be 

worse than the sample complexity for learning with noise if we are restricted to hypotheses from 

the same class. Furthermore, for some function classes, the order of the sample complexity for 

learning the convex hull of the function class (a single hidden layer neural networks) is comparable 

with the order of the sample complexity for learning the function class itself. Since the convex 

hull usually gives better approximation than the original function class, it may be advantageous to 

use the convex hull for agnostic learning. 

We have also found that agnostic learning of the class of single hidden layer neural networks 

can be done in a computationally efficient manner if agnostic learning of the basis function class 

can be done in a computationally efficient manner. Unfortunately, we have also shown that agnostic 

learning of many classes of single hidden layer neural networks is likely to be computationally 

difficult. In view of this, we studied some natural but fairly restricted classes of functions which 

can be approximated by single hidden layer neural networks. We found that properties of function 

classes which make learning computationally tractable includes being smooth, having small L\ 

norm and having low order. 

The aim of this thesis (and most of the research in computational learning theory) is to use 

rigorous mathematical analysis to gain insights into various aspects of learning. To be tractable, 

the formal model of learning which we use must be simple. We have examined one fairly extreme 

model of learning and a reasonably flexible class of functions. Although the results obtained 

are not refined enough for practical use, we believe they give useful insights on the amount of 
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information and computation needed for learning and on how the difficulty of learning scales as the 

complexity of the learning problems grows. Much remains to be done. We list a few interesting 

questions related to the work done in this thesis. 

8.1 Sample Complexity 

Agnostic Learning with other Loss Functions. We have studied the sample complexity of ag-

nostic learning using the squared loss function. For a function class with finite pseudo 

dimension, the sample complexity is 0 ( l n ( l / e ) / e ) if the closure of the function class is 

convex and ^ ( l / e ^ ) if the closure of the function class is not convex and we are restricted 

to hypotheses from the same class. For general loss functions, by considering {0, l}-valued 

functions with {0, l}-valued targets, we see that a lower bound of ^ ( l / e ^ ) holds for agnostic 

learning if we are restricted to hypotheses from the same class. Finding conditions on the 

function classes which will allow a better sample complexity than for other loss 

functions, such as (y, y') ^ \y - p 2, would give interesting generalizations of our 

results. 

8.2 Computational Complexity 

L\ Norm. We think that identifying the properties of functions which makes learning computa-

tionally tractable is important because knowing these properties makes intelligent prepro-

cessing of data and partitioning of the learning task into smaller tasks possible. In Chapter 7, 

we have shown that it is useful for the L\ norm of the functions to be small when considering 

efficient agnostic learning. While it is well known that having low order can make function 

classes easier to learn, we have not seen any work on how the difficulty of learning scales 

with the L\ norm, a parameter which we think is both natural and interesting. It would also 

be worthwhile to identify other natural parameters which affect the difficulty of learning. 

Input Distribution. In studying agnostic learning, we have neglected the effects of the probability 

distribution on leamability in favour of properties of the function class. To gain insights 

into the effect of input distributions on the leamability of function classes, it would be 

worthwhile to study the leamability of function classes under input distributions with well 

understood properties. One well understood input distribution is the uniform distribution. 
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For efficient agnostic learning, we have shown that it is useful for the Li norm of the 

functions to be small. It is interesting to note that if the domain is large enough, functions 

with small L\ norm are essentially negligible under the uniform distribution. This suggests 

that less restricted function classes may be leamable under the uniform distribution. Another 

interesting input distribution with well understood properties is a mixture of Gaussians where 

the inputs are clustered around few centres. Finding out what other function classes are 

efficiently leamable under these distributions will help us understand better the effect of 

input distributions on the computational complexity of learning. 

8.3 Smooth Functions 

Other Transforms. Functions with small L\ norms are well localised in space (otherwise they 

are small everywhere) but have a highly distributed network representation in the sense that 

the weights of the hidden units are close to uniformly distributed. This corresponds to using 

the Fourier transform for defining the output weights. (The L\ norm bounds the magnitude 

of the Fourier transform preventing the hidden units from being concentrated in any one 

region. This also bounds the variance of the random variable in the Monte Carlo procedure 

that is used for learning the smooth function class in Chapter 7.) Other transforms such as 

wavelet transforms may have other properties (such as locality) which are not present in the 

Fourier transform. It may be possible to exploit these properties for efficient learning. 

Comparison between Algorithms. The classes of efficiently leamable functions which we have 

studied have fairly intuitive properties (small Li norm and fast decay of the Fourier trans-

form). We have studied the performance of a neural network algorithm which uses randomly 

chosen basis functions on these function classes. It would be interesting to compare the 

performance of different algorithms on these function classes. For example, we may want 

to consider the performance of the fc-nearest neighbour algorithm for learning the class Tq. 

Given that we know the properties of these function classes, comparisons of the sample 

and computational complexity of different algorithms on these function classes may reveal 

some useful insights into the properties of the different algorithms. 

T r a d e - o f f between Computation and Information. The class of functions with bounded q-

th absolute moment of Fourier transform can be learned with sample complexity 



82 Discussion and Conclusions 

O În i + log j j j for all g > 1 if we are not concerned with computational com-

plexity. The order of the sample complexity for our algorithm, which is efficient when q 

'J I 2 n 

grows linearly with n, is 1/e « (ignoring log factors). We do not know whether a compu-

tationally efficient algorithm with sample complexity O Q În j + log | j j exists or if the 

increase in the the sample complexity is essential in order to have an efficient algorithm. 

More generally, the trade-off between computation and sample size for learning is not well 

understood and is a worthwhile but presumably deep research problem. 



Appendix A 

Proofs of Results from Chapter 3 

In Section A.l, we give the proofs of Theorem 3.6 and 3.7. In Section A.2, we give the proof of 

Lemma 3.9. 

A. 1 Proof of Theorems 3.6 and 3.7 

We restate the two theorems into a single theorem and then give the proof. 

Theorem A.l Let T = U^i ^k be a class of functions mapping from X toy C [-T, T] such 

that each is permissible. Let P be an arbitrary probability distribution on Z = X x y. Let 

C = max{T, 1}. Assume i/, z/g > 0,0 < a < 1/2. Let f be the closure of T in the space 

with inner product {f,g) = f f{x)g{x)dPx{x). Let f*{x) = E[y|X = x] and gf{x,y) = 

{y - f{x))^ - {y - fai^))^ where fa G argmin^g^/(/(a;) - f*{x)fdPx{x). Assume either 

/* = e or T is a closure-convex class of functions. Then form > land each k = l , . . . , o o , 

1 U + Uc + E{gf) I 

< sup 6N 

Theorem 3.6 follows by letting = ^ for A; = 1 , . . . , oo. 

The proof is similar to that used by Haussler (1992) and Pollard (1995). Theorem A.l is 

a uniform convergence result for the empirical average of i.i.d. random variables gf{Xi, Yi) = 

{Yi - f{Xi)f - {Yi - fa{Xi)Y indexed by / G Haussler's result applies to more general 

random variables but only when they are nonnegative while Pollard's result provides bounds in 

terms of the magnitudes of the random variables instead of the random variables themselves. We 
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use a Bernstein-type inequality in place of Hoeffding's inequality used by Haussler and Pollard 

and require that the second moment of each random variable be bounded by a linear function 

of the expectation of the random variable. The convexity condition on T is used to satisfy this 

condition. The condition is also satisfied if the conditional expectation is a member of T . First 

we introduce the following functions for notational convenience. For r, s G M, î , fc G M"*", let the 

functions d^ and d l ^ be defined by 

r — s r - s 
u + uc + r + s u + uc + r 

The function (r, s) is a variant of the function introduced by Haussler (1992). 

We will bound the probability of the event with the probability of the union of two events. 

e z ^ : 3 f e J^ ,d l , ^ iE{gf ) ,Ez{9f ) ) > a } (A.l) 

< P^{z e : 3 / G T,dl^,^{E{gf),Ez{gf)) > a and < «} + 

P - { z G : 3 / € > a} . 

The two probabilities will be bounded separately. The random variables in the second term on 

the right hand side of inequality A.l are nonnegative; hence a result similar to Haussler's can be 

used. With minor modification to the proof. Theorem 3 in (Haussler 1992) becomes 

Theorem A.2 ((Haussler 1992)) Let T be a permissible set of functions on ZwithO < f{z) < M 

for all f e !F and z E Z. Assume i/, î c > 0 and 0 < a < 1. Suppose that z is generated by m 

independent random draws according to any probability measure P on Z. Then 

< sup 4 iV(a i / c /2 , J ' | 2 , / i ) exp( -a^ i /m / 2 M ) . 
zez^m 

We will now bound the first term on the right hand side of equation (A.l). First we will turn 

the problem of bounding the probability involving the difference between the empirical average 

and expectation into a problem of bounding a probability involving the difference between the 

empirical averages of two independently sampled sequences of the same length. This is done in 

Lemma A.6. Then we make use of the independence property of the random variables to bound 
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the probability involving the difference between the two empirical averages by the probability 

involving the difference between the empirical averages of two fixed sequences, when each 

member of the first sequence is equally likely to be interchanged with the member of the other 

sequence in the same position. This last probability depends only on the sequences involved, and 

thus allows the use of covering numbers instead of the Loo covering numbers. This is done in 

Lemma A.9. The following three results will be useful for the proof. 

We will use the following result derived by Haussler (1992) from Chebyshev's inequality. 

Lemma A.3 ((Haussler 1992)) Let Vi,..., l^rn be independent identically distributed random 

variables with range 0 < Vi < M and = /i, 1 < i < m. Assume u + Uc > 0 and 

0 < a < 1. Then 
( 

Pr 
/ 1 

\ 1=1 
> a < 

M 

/ + Uc)m' 

As in (Barron 1990), we use the following inequality developed by Craig (1933) in his proof 

of Bernstein's inequality. 

Lemma A.4 ((Craig 1933)) Let Vi,... ,Vm be independent identically distributed random vari-

ables which satisfy \Vi - EVi\ < 3h for i = 1 , . . . , m. Then 

Pr 
m 

n -f^ 
1 

m 
i=\ 

- m i ^ 2 ( 1 - c ) 
< e x p ( - r ) , 

where r > 0 and 0 < ^ / i < c < l . 

Lemma A.5 Let ... ,Vm be independent identically distributed random variables with | Vi| < 

Ki, EVi > 0 and E{V^) < K2EVi, K2 > I for i = I,... ,m. Then for 0 < a < 

Pr 
/ / 

E 
1 771 m \ 

m / 1=1 / 
> a < exp 

3cP-{u + Ucjm 
\ ' 2{K, + K2) 

Proof. Let = E E I ^ i ^i] and Sy = ^ E I ^ i Use the random variables in 

Lemma A.4 to interchange the position of the empirical average and the expectation. Note that 

V a r ( - K , ) = Var (yO and m V a r ( 5 v ) = Var(V^i) < We get 

Pr 
2 ( 1 - c ) / 

(A.2) 
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Now \Vi - EiVil < 2K\ so h = ^ satisfies the required condition in Lemma A.4. Let 

c = = Set 4 = to get = Next set r = ^ ^ ^ which gives 

^ r= a(i/ + Uc). Note that r > Substituting into (A.2) gives the required inequality. 
• 

Lemma A.6 Let T be a permissible class of functions, with \f{z)\ < K\ for all f e T and 

z^Z. Suppose the distribution P of z is such that E ( / ) > 0 and E{f^) < K2E{f), Ki > 1 for 

all f eT. Assume {u + Uc) > 0,0 < a < I. Then form > max | ^ ' 

P^{z eZ^:3fG > a and < «} 

Proof. Consider any / and a sample z G Z^ such that 

E ( / ) - E z i f ) > cc{y + yc) + a E ( / ) (A.3) 

and < a. Draw another independent random sample z' of length m. 

From Lemma A.5, for m > > ' ^^^ P'-obability that E ( / ) - E z ' ( / ) > 

a{u + Vc)l2 + q E ( / ) / 2 is less than 1/4. Since \f{zY\ < K^, from Lemma A.3 we find that 

for m > the probability that > a is less than 1/4. So for 

m > max with probability at least 1/2, both 

E ( / ) - B z ' i f ) ) < a{u + v,)l2 + q E ( / ) / 2 (A.4) 

and du,uc i ^ z ' < a . Subtracting (A.4) from (A.3), and using the independence of the 

samples, we have 

p ^ z z e z - a / e ^ , ^^^^^^^^^^^ > 2 a n d 

4 , . . (EZ( /2 ) ,E ( /2 ) ) < aandd , , , , (Ez . ( /2 ) ,E ( /2 ) ) < a". 

> {zz' e Z^^ : 3 / G - E z ( / ) ) > a a n d < , , ( E ( / ) - E z ' { f ) ) > a/l 

andd^,^,(Ez(/^),E(/2)) < a and E(/2)) < a } 
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• 

The following two Lemmas will be useful for proving Lemma A.9. 

Lemma A.7 Suppose m> \ is arbitrary and let U be the uniform distribution over { -1 ,1} . For 

a fixed zz' € Z^^, any function f , and random variables Ui, i — 1 , . . . , m drawn independently 

from U, 

mVar 
/ J m 

- ^ U^ifiz,) - f{z[)) < 3Ez(/2) + rm ' * 

Proof. 

(<rn ^ m /j m 

- E - f iz i ) ) = - E / ( - i ) ' + - E n ^ i f - - E 
i=l / i=l i=\ i=l 1 iji 1 Jii 1 j't 

1=1 2=1 \ 1=1 \ 
, m 1 m r , m , m 

^ i E / ( ^o^ + ^ EM? + 2 E i E /(^O^ 
1=1 1=1 1=1 1=1 J 

< 3 E z ( / 2 ) + 3EZ'(/2). 

• 

Lemma A.8 Suppose m > \ is arbitrary and let U be the uniform distribution over { -1 ,1} . 

Then, for a fixed zz' e Z^'^ and any function f , 

U^ | u 6 { - 1 , 1}"^ : 3 / G T, ^ p M f i z i ) - f{z[)) > a + 

< G {-1,1}"^ : 3 / € Ge, - f{4)) > 

where Qe is an /i e-cover of T\zz'-

Proof. Suppose ^ E ^ i u^{f{zi) - / ( z ^ ) > a + e. There exists a ^ G such that 

m 1 1 
- E - + - E \9i4) - fi4)\ < III • , 77T . , 1=1 i=\ 
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= 1 u,(g(z^) - f(zi) + f{z,) - f{z[) + f{z[) - g{z[)) 

' m m 
E - /(^O) + E - f{zi) - g{z[) + f{z[)) 

m 
m 

> i 
™ Lfa[ 

> a + e — e — a. 

i = l 
m 

• 

In the following lemma, we bound the probability involving the difference between the two 

empirical averages that arose in Lemma A.6, by a probability involving the difference between the 

empirical averages of two fixed sequences, when each component of the first sequence is randomly 

interchanged with the corresponding component of the other sequence. This probability depends 

only on the sequences involved, and thus is bounded by a function of the l\ covering number. 

Lemma A.9 Let J^ be a permissible class of functions with |/(^)| < K\forall f 6 J^ and z G Z. 

Suppose K2 > 1 and the distribution P of z is such that E / ( z ) > 0 and < K2E{f) for all 

f e T . Assume a < l/l. Then for m > max { }. 

[ z z ' G : 3 / G > ? and < a and 
{u + Uc) + E { f ) - 2 

< a } < ^sup^ AT exp 
AKi + \62K2 

. (A.5) 

Proof. We are interested in z and z' such that there exists an / with 

(A.6) 

and 

and 

E z ( / 2 ) - E ( /2 ) | < a{u + u,) + a E ( / 2 ) + a E z ( / ' ) 

|Ez'(/2) - E(/2)| < a{u + uc) + aE(/2) + aEz'if)-

(A.7) 

(A.8) 
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When that happens, (1 + a ) E ( / 2 ) > (1 - a ) E z { f ^ ) - a{u + Uc) and similarly for E z ' i f ) , so 

we have 

IK2 
^ a{v + Uc) a 
- 2 2 2K2{\+a) 2 ^ 2 ( 1 + a ) 

2 2^2(1+a) 12(l + a)K2 

The fact that the random variables are independent means that the probability in (A.5) re-

mains unchanged when each component of 2 is randomly interchanged with the corresponding 

component of z'. Let U be the uniform distribution over { - 1 , 1 } . We have 

Lz' e : 3 / G > ? and < « and 
I {u + Uc) + E ( / ) 2 

< p - { z z ' e : 3 / e - E . ( / ) > ^ ^ ^ -

f2\ _L ^•^. .(f'i] 

\2(\^a)K2 / ^ 

{1 

z z ' G u G { - 1 , i r : 3 / G - U^{f{Zi) - f{z[)) > 
^ i=\ 

aii^j^ _ oH^i^c) a{\-a){3Ez{f)+3Ez'{f)) 
2 2 X 2 ( 1 + a ) 12(l + a)K2 m u G { - 1 , i r : 3 / e - - -

^ i=\ 
o f t M ^ _ z/c) « ( l - a ) ( 3 E ; , ( / ^ ) + 3 E z ' ( / ' ) ) 

2 2 ^ 2 ( 1 + a ) 1 2 ( l + a ) i ^ 2 

< 
zz {I m 

U G { - 1 , i r •• 3 / e Qc, - - -^ i=l 
au a^u a ( l - a ) ( m V a r ( ; ^ E ^ i - f (<)))) I (^.10) 
2 2K2{\+a)'^ l2{\+a)K2 J 

u s i n g Lemmas A . 8 and A . 7 , where ^ c is an az/c/4-cover of (Note that ^ < { ^ - j l ^ ^ j f ^ ) 

f o r a < 1). 
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Now \ui{f{zi) - f{z'^))\ < 2Ki. Set h = ^ to satisfy the condition in Lenima A.4 

Let c = = ^ in Lemma A.4. We want = = 
2 ( 1 ^ 2(1-2/^,^/3)' 

So e = Now Set f - ^ ^ ^ ^ = This gives r/m = 

With these settings, the expression in (A. 10) is less than 

sup AT ] exp 
V 4 J 

3a2 wm 

zez^ AKx + 162i^2 / 

• 

The following lemma is useful for bounding the second term on the right hand side of Equation 

(A . l ) , using Theorem A.2. 

Lemma A.IO Let T be a class of functions with \f{z)\ < K\ for all f ^ T and z E Z. Let 

jr2 = . J ^ jT} and z G Then for all e > 0, 

Proof. For any f , g e T we have 

Ez\f - <'Ez\f + 9\\f - g\ <2KiBz\f - g\. 

Hence if T = { / i , . . . , /^v } is an e/lK i-cover for = {/?>••• is an e-cover for . 

• 

We are now ready to state a uniform convergence result with the condition that the second 

moment of the random variable can be bounded by a linear function of the expectation. 

Theorem A . l l Let T be a permissible class of functions with \f{z)\ < K\ for all f e T 

and z e Z. Let K^ > 1 and P be a probability distribution on Z such that Ef{z) > 0 

and E(/2) < K2E{f) for all f ^ T. Assume u,uc > 0 and 0 < a < 1/2. Then for 

J - , < , J E ( / ) , E z ( / ) ) > a } < sup 2N (^^J'^zM) ^ 
2g22m \ ^ / 

exp 
4Kx + 162^2 

+ sup 4N cxp{-a^um/2K}). 
V4AI / 
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Proof. From equation (A.l), 

From Lemma A.6 and Lemma A.9, the first term on the right hand side is bounded by 

2N exp ( - j j ^ ^ f ^ ) - From Theorem A.2 and Lemma A.IO, the sec-

ond term on the right hand side is bounded by sup^ig^^™ ^A/" 

• 

We now show that if either f * = fa e !F or J^ is closure-convex, then E{gj) < K2E{gf) for 

some constant iir2. 

Lemma A.12 Let T be a class of functions with | /(a;) | < T for every / G ^ and x e X. Let 

y\ < T for every y G y. Let X and Y be randomly generated according to some joint probability 

distribution P and suppose fa in the closure of J^ is such that f ( f a ( ^ ) - f*{x))^dPx{x) = 

inf/gjp J{f{x) — f*{x))^dPx{x) where f*{x) = E[Y\X = x]. Assume T is closure-convex or 

f* = f ^ e T. Then for every f eT 

E [ { { y - f { x ) f - { y - f a i x ) ) Y ] < l 6 T ' E { f { x ) - f a { x ) f 

< \ 6 T ^ E [ i y - f { x ) f - { y - f a { x ) f ] . (A. l l ) 

Proof. For the first part of inequality (A.l 1), 

E [ ( ( y - f{x))^ - (y - fa{x))Y] = E[((2yi - f{x^) - fa{ximfa{x^) -

< \6T^E[{f{x)-fa{x)f]. 

For the second part of inequality (A. 11), we have 

= E[{y - fa{x)f + ifaix) - f{x)f + 2{y - fa{x)){fa{x) - f {x)) - {y - fa{x)f 

= E[fa{x) - /(x))2 + 2{y - f*{x) + r{x) - fa{x)){fa{x) - f{x)) 

= E[fa{x) - f { x ) f ] + 2E[{f*{x) - fa{x)){fa{x) - f{x))]. 
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We need only to show that E[(/*(x) - fa{x)){fa{x) - f{x))] > 0. This is automatically true if 

f* = fa- For the case where T is closure-convex, let f be the closure of T. Then T is convex 

and fa G T. From convexity, f e T implies a / + (1 - a) fa e T for a e [0,1]. Since fa is the 

best approximation in T , 

mr-fa{x)f 

<n{f*{x)-af{x)-{l-a)fa{x)f 

= E[{f*{x)-fa{x)+a{fa{x)-f{x))f 

= E[{f*{x) - fa{x)f + a^ifaix) - f{x)f + 2a{f*{x) - /a(x))( /a(x) - f{x)). 

This gives E(/*(a;) - fa{x)){fa{x) - f{x)) > - a E ( / ( x ) - fa{x)f/2 for all a G [0,1], which 

implies E{f*{x) - /a(rr))(/a(x) - f{x)) > 0. • 

Lemma A.13 Let J^ be a class of functions with \f{x)\ < T for all f E T and x e X. Suppose 

\y\ < Tfor all y e y . Let g = {gf : gf{x, y) ^ {y - f{x))^ - {y - fa{x))\ f € J"}, where fa 

is an arbitrary function. Let z e Z"^ = {X x y)'^. Then 

Proof. For any have 

- - /(^i))' - iVi - - iVi - 9{Xi)? + {yi - faix^)f 

. m 

i=i 
^ m 

= - E[(2yi - fi^i) - 9i^i))i9{xi) - f{xi)) 

4/3 

Hence if T = { / i , . . . , / y v } is an e/4r-coverfor = {i//,, • • • is an e-cover for Q^z-

• 

We now have everything we need to prove Theorem A.l. 

Proof.(Theorem A.l) In Theorem A. l l , Ki can be set to Using the convexity of JF = 

U ^ i ^k and Lemma A. 12, Kz can be set to to 16C^ . Using Lemma A.13, the right hand side of 
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Theorem A. 11 can be bounded by 

au, 
sup 2N exp 
c 72m \ lOU / 

3a2 um 
2624C2 + 

/ 
aVr 

zez^"' Vizou-' 

• 

A,2 Proof of Lemma 3,9 

To prove Lemma 3.9, we will bound the packing number of the function class. (See Chapter 2 

for the definition of packing number.) For a set T and (pseudo) metric p, it is easily seen that 

N{e,S,p)<M{e,S,p). 

We will bound M(e, Li{P)) for all P in terms of the fat-shattering function of J^. This 

provides a bound on N{€, J", Li{P)) for all P which bounds N{e, ) for any finite sequence 

of points X (via the isometry between the two metric spaces and where 

P\x is the empirical distribution on x). We use techniques due to Haussler (1992) which go back 

to Pollard (1984) and Dudley (1978). The following result follows trivially from a generalization 

of Sauer's lemma by Alon et al. (1993). 

Theorem A. 14 ((Alon et al. 1993)) Let T he a class of [0, \]-valued functions defined on X, 

0 < € < 1, and m > logy + 1 (with log denoting base 2 logarithm), where 

y= ^ i , i=\ w 

andb= \2/e] + 1. Then for all xe 

Corollary A.15 Let T he defined as in Theorem A.14 and 0 < e < d = fatjr(e/4) and 

m > 4d log Then for all x G 

/ 2 .. 2 16m^ 
M{e,T\x,loo) < exp i j ^ c l ^ ^ 
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Proof. If d = 0 then M(e, T^xJoo) = 1 • Assume ci > 1 and let y be defined as in Theorem A. 14. 

First we want to show that if m > 4(ilog then m > logy + 1. We have b < 4/e and 

l o g y + 1 < l o g V 
^ W 

< log d{ — ] 

- 1 + 1 
Ve. 

\ e 
+ 1 

/ 
/ 4 m \ 

= rflog — + l o g d + l 
\ e / 

< 2d log 
4m 

\ e / 

It is easy to see that 2(ilog grows more slowly than m for m > 4dlog Furthermore, 

4dlog ^ = 2dlog > 2dlog when m = 2dlog ( f Hence, if m > 4rflog f then 

m >logy + I. 

Finally, 

\nM{e,TixJoc) < ln2 + logyln 
16m 

, ^ / ,1 4m , , I6m < ln2+(^dlog — + logdj I n - ^ 

2d , 4m , 16m < In — In —T-In 2 e e2 
2d , 2 /16mN 

• 

Lemma A.16 Let T be a family of functions from a set X into [0,1] and let P be a probability 

distribution on X. Let X = ,Xm) be a random vector in X"^ drawn at random 

according to P^. Then for all 0 < e < I, 

E(M(e/2, ^oo)) > M(6, Ĵ , L, (P))(1 - M(e, L, 

Proof. Choose e > 0. Let Q be an e-separated subset of T (with respect to dî f̂ p )̂, with 

\g\=M{e,J^,Lx{P)). Then 

\f[Xi)-g{Xi)\>el2}\) 
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= Pr(V^ e ^ / , 32 G { 1 , . . . , m } | / ( X , ) - g{X,)\ > e/2) 
feg 

feg 

\f{X,)-g{Xi)\<e/2)) 

> max P r ( V i e { l , . . . , m } | / ( X , ) - ^ ( X , ) | < e / 2 ) ) . /€a geG^g^f 

First, note that if | / ( X i ) - < e/2 for every i e {1,... ,m}, - ^(^z) 

must be less than or equal to e/2. 

We have from the definition of G, 

[ \f{0-9{0\P{0dC>e. 
Jx 

e/l for every z e { 1 , . . . , m}. Hoeffding's inequality (Hoeffding 1963) implies 

Pr 
r 1 

/ 1 / ( 0 - g i c m o d c , - - x : - > J X ^ I 

Thus 

feg 

• 

Lemma A.17 Let T be a family of functions from a set X into [0,1]. LetO < e < 1 and suppose 

T is such that 0 <d = fatjr(e/8) < 00. Let P be a probability distribution on X. Then 

(A.12) 

Proof. From Corollary A. 15 and Lemma A. 16 we have for m>4d\og—, 

exp ( ^ d l n 2 > M(e, T , L, (P))( 1 - M(e, L, 

for all probability distributions P on Z. If 4 ln(2M(e, < 4(ilog then the bound 
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(A. 12) follows trivially. Hence we assume ^ ln{2M(e, JF, Li ( P ) ) > 4 d \ o g ^ . Also we assume 

m> ^ \n{2M{e,T,Li{P)), so m > 4 d l o g - ^ . With such an m we also have 

Thus we obtain 

Hence we have 

In 

This cannot be true for 

• 

ti 2 V e e / 

Lemma 3.9 follows from Lemma A. 17 and the fact that J^ can be transformed into a class of 

0,1]-valued functions by adding T to the functions and then dividing the result by 2T. 



Appendix B 

Proofs of Results from Chapter 7 

In Section B.l, we give the proof of Theorems 7.1 and 7.2. In Section B.2, we give the proof of 

Theorem 7.3. 

B.l Proof of Theorems 7.1 and 7.2 

Let the target conditional expectation be /*, that is f*{x) = E[y|x]. Let fa be the best approxi-

mation in Tq to f*, that is E ( y - fa{X)f = i n f ; g j rE (y - f { X ) f . (For convenience, we will 

assume fa G F^, otherwise we can always find an / G F^ such that E ( F - f{X))'^ is arbitrarily 

close to E ( y - fa{X))^.) The range of the functions in F^ is bounded, that is |/(2;)| < T for 

every x € [—TT, TT]" and every / G Fg. Suppose the absolute value of the target observations is 

bounded also by T, that is |F | < T. For simplicity, throughout the proofs we will assume that 

T > I, C > 1 (the bound on the moments) and M > 1 (the Li norm of the functions). 

For agnostic learning, we require that the learner produce an hypothesis / such that with 

probability at least 1 - 5 , 

E{Y - f{X))^ -E{Y - fa{X)f < e. 

Note that fa{x) can be represented as 

fa{x) = Re / 
JR" 

where Fa is the Fourier transform of fa- To evaluate an approximation to the integral, we multiply 

the Fourier transform with an appropriate window and use a Monte Carlo sampling procedure over 

97 
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a restricted set of parameters. Let R{r) = {u G R" : \ui\ < r,i = ... ,n} and let the window 

= 1 if li G R{r) and W{u) = 0 otherwise. The windowed approximation to fa {x) is 

fr{x) = Ref (B. l ) 
jRir) 

Let V{r) = (2r)" be the volume of R{r) and let fk{x) = ™ Ej=i ^^ Fa{Uj) be the 

function produced by the Monte Carlo procedure by sampling uniformly from R{r). We will use 

uniform convergence methods to give approximation bounds which are valid for all x £ [—TT, TT]". 

The Monte Carlo procedure will give the required approximation if we know the values of 

Fa{Uj) at the sampled points Uj, j = l , . . . , k . Unfortunately, we do not know the values of 

Fa{Uj). However, we can represent Re '"'Fa(u) as aj cos{2nUj •x) + bi sin(27r[/j • x) where 

aj and bj are to be learned from the data by minimising the empirical loss. The hypothesis / is 

selected by choosing a linear combination of the sinusoidal basis functions which produces small 

empirical loss. 

It is also possible to use a linear combination of linear threshold functions to approximate the 

sinusoidal functions and this forms the basis of the proof for efficient learning of the function class 

Fq using linear combinations of linear threshold functions. Similarly, sigmoids can be used to 

approximate linear threshold functions and hence can be used to learn the function class. 

For the proof, it is convenient to rewrite E ( y - f{X))^ - E ( y - fa{X))^ in the following 

way. 

E ( y - - E ( y - f a { X ) f = B { f * { X ) - f { X ) f - E { f * { X ) - f a { X ) f 

= E ( / * ( X ) - - E ( / * ( X ) - f k { X ) f + E ( / * ( X ) - f k { X ) f - n n x ) - f r { X ) f 

Estimation Error Monte Carlo Error 

+ E ( r ( X ) - f r { X ) f - E ( r ( X ) - f a { X ) f . 

Windowing Error 

We will bound the error caused by the windowing procedure E ( / * ( X ) - f r { X ) ) ^ — E ( / * ( X ) — 

fa{X))^ in Section B.1.1. In Section B.l.2, we will bound the error caused by the Monte Carlo 

procedure E ( / * ( X ) - fk{X))^ - E ( / * ( X ) - f r { X ) f . In Section B.1.3 we will bound the 

estimation error from learning the linear combination of the basis functions E ( / * ( X ) - f { X ) ) ^ — 

E ( / * ( X ) - We conclude the proofs by adding these three bounds together to provide a 
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bound for E{Y - f{X))^ - E ( y - fa{X))^ in Section B.1.4. 

B.1.1 Windowing Error 

In this section, we will bound E( /*(X) - f r { X ) f - E( /*(X) - Ja{X)Y, the error caused by 

windowing the Fourier transform. 

We will use the following lemma to bound the mean square error in terms of the Fourier 

transform of the functions. 

Lemma B.l Let f be a real-valued function and F be the Fourier transform of f . Let 

/jjn < oo and P be a probability distribution. Then f{x)^dP{x) < 

F{u)\du)^. 

Proof. The result follows from the fact that \f{x)\ < \F{u)\du. • 

The following lemma gives the expected squared error between fa and fr-
Lemma B.2 

E{fa{X) - fr{X))' < (27rr)29' 

Proof. 

[ \Fa{u) - Fr{u)\du = [ \Fa{u) - Fr{u)\du 

" ' ' \27rui\'^\Fa{u) < ±f [ 
< y f \27TUi\'^\Fa 
- ^ (27rr)'? Un 

du 

< 

i t 
c 

{lirrY 

i{u)\du 

The lemma then follows from Lemma B.l • 

We can now bound E{f*{X) - fr{X)f - B{f*{X) - f a { X ) f . The following corollary 

gives the bound we require. 

Corollary B.3 Assume r > 

C^ 4TC 
E { f * { X ) - f r { X ) f - E { f * { X ) - f a { X ) ) ' < J ^ + J ^ , 

^ (27rr)'?' 
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Proof. 

E ( / * ( X ) - fr{X))' - E ( r ( X ) - fa{X)f 

= E{fa{X) -friX))^ + 2E{f*{X) - fa{X)){fa{X) - / . ( X ) ) . 

We have \f*{X) - fa{X)\ < IT. From Cauchy-Schwarz inequality and Lemma B.2, 

W { X ) - f a { X ) ) { f a { X ) - f r { X ) ) < ^JE{f*{X) - fa{X))^\/nfa{X) - fr[X)f 
2TC 

- {2TTr)<}' 

So 

Q2 ATC 
E ( / , ( X ) - f M ) f + E{f*{X) - faiX)){fa{X) - friX)) < + . 

• 

A better bound can be obtained for the case of learning with noise, where f* = fa-

Corollary B.4 Assume f* = fa- Then 

E { f * { X ) - f r { X ) r < 2 - C' 
(27rr)2'7 • 

Proof. The proof follows from the proof of Corollary B.3 since the cross term is zero. • 

B.1.2 Monte Carlo Approximation Error 

In this section, we bound E{f*{X) - fk{X)f - E{f*{X) - fr{X))^, where fk is the func-

tion produced by the Monte Carlo procedure. For the approximation bounds, we use uniform 

convergence methods to obtain a sup-norm approximation of f r with fk-

We use three different types of basis functions and indicate this by setting fk to when using 

sinusoidal basis functions, to f ^ when using linear threshold basis functions and to f ^ when using 

sigmoid basis functions. 

We will use the following corollary of Corollary 3.3 which permits the random variable to take 

negative values. 
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Corollary B.5 Let T be a permissible class of functions from 2 to Let P be any 

probability distribution on Z. For m> 1, i/ > 0 and 0 < a < I, 

< 8 max 
z'ez^"^ \ 3 2 ' 

(B.2) 

Proof. Separate the random variables into its positive and negative components and bound them 

separately to accuracy e/2. The proof follows from the triangle inequality and union bound. • 

Sinusoidal Basis Functions 

First we consider approximating f r using a linear combination of sinusoidal basis functions. 

Considering (B.l), there is a function such that 

fr{x) = Re [ 
jRir) 

= / \Fa{u)\cos{27ru • X + 6{u))du 
jR{r) 

= / |Fa(tt) |(cos(0(u)) cos(27r« • x) - sin(0(u)) sin(27ru • x))du 
jR{r) 

= / (2r)" |Fa(w)|(cos(0(u)) cos(27ru • x) - sin(0(u)) sin(27rtz • x))dPu{u), 
JRir) 

where Pu is the uniform distribution over R{r). 

We will sample Ui from Pu, and use results on the uniform convergence of empirical averages 

to the expected values of random variables to show that with high probability, the empirical average 

fki^) = iI:i=li^^)''\Fa{Ui)\{cos{e{Ui))cos{2^TU^ • x) - sin{e{Ui))sm{27TU^ • x)) is a good 

approximation to fr{x) for all x e [ - t t . t t ] " . In order to do that, we first need to bound the 

covering number of the relevant function class. 

Lemma B.6 Let = {u ^ a{u) COS{2TTU • x) + 6(u) sin(27ru • x) : \xi\ < ^T,\u^\ < r} 

where a{u) = (2 r ) " |Fa(u) | cos(0(u)) and b{u) = - ( 2 r ) " | F a ( « ) | sin(6l(u)). For any u = 

{ u \ , . . . , U m ) , Ui G [ - r , r ] " , 

V ^ 
In 

Proof. Note that |a(u) | < ( 2 r ) " M and < ( 2 r ) " M . We also have |cos(27ra) -
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cos(27r/3))| < lTT\a - /5| and | sin(27ra) - sin(27r/3))| < 27r|a - Let u G Let 

C = {u^u-x\ \xi\ < TT, < r} and let C bean e/(47r(2r)"M)-cover for >C|u. Then for any 

X G f-TT, tt]", there exists a c € C such that 

J in 
— Y |a(u)(cos(27rMi • x) - cos(27rci)) + 6(u)(sin(27ruj • x) - sin(27rQ))| 
m ^ t=i 

J m 
< — y |a(w)||(cos(27rui • x) - cos(27rQ))| + |6(u)||(sin(27rui • x) - sin(27rci)) 

m ^ 1=1 
. m 

< — y 27r(2r)"M • a; - ĉ l + 27r(2r)"M|ui • x - Ci 
m 1=1 

J m 
= 47r(2r)"M— V • x - q 

i=\ 
< e. 

Hence < iV(e/47r(2r)"M, /i). From Lemma 3.8 Ar(e/47r(2r)"M, /i) < 

Knowing a bound on the covering number, we can now bound the number of basis functions 

needed for the required approximation. 

Lemma B.7 LetUi, i = ... ,k be uniformly sampled from R{r). Then, with probability at least 

1 -5, for 

k > 
1024(2r)2"M2 

nln 
/5127r2en2V"+iM. S H t t W V ' ^ + I M A 

In + ln 
16 

/ 

fr{x) - < e for all X G [-1,1]^ 

Proof. Let be the class {u g{x,u) : g{x,u) = (2r)"|Fa(w)|(cos(0(u)) cos(27ru • x) 

sin(0(u)) sin(27rw • a;)), l^il < l,u e R{r)}. From Corollary B.5 and Lemma B.6, we have 

1 f 
g{x,u)dPu{u) 

k f-1 Jrm 

< 16 

R(r) 

In 

> e 

exp(e^ A;/ 1024(2r)^''M^). 

Setting the right hand side to be less than or equal to S, we obtain 

k > 
1024(2r)2^M2 / /5127r2en2"r"+iM, M \ , 16 

nln 
\ \ 

In 
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Wecannow giveaboundon Note that < 

= /[_i/2,i/2]n \Fa{u)\du + /Rn\[_i/2,,/2]n \Faiu)\du. We have < M and 

-1/2,1/2]" \Fa{u)\du < /Rn\[_i/2,i/2]n Yll=\ \2TTUi\\Fa{u)\du < C. Hence | < M+C. 

Corollary B.8 Let Ui, i = l,...,k be uniformly sampled from R{r). Then, with probability at 

least 1 — S, for 

k > nln In + ln 

- - E{f*{X) - <e^ + 2{T + M + C)e. 

if f* = fa (for learning with noise) and instead 

k > 

then 

Proof. 

nln In + ln 

nf*{X) - - E{f*{X) - fr{X)f < 6 + 

E ( /* (X) - - E{f*{X) - fr{X)f = 

WAX) - f^{X)f + 2 E ( r ( X ) - friXmfriX) - f^iX)). 

We h a v e \ f * { X ) - fr{X)\ <T + M + C. Hence, from Lemma B.7 

W A X ) - f^{X))^ + 2E{f*{X) - fAX)){fAX) - f^iX)) <e' + 2{T + M + C)e. 

For learning with noise, we use the Cauchy-Schwarz inequality to get 

E { f * { x ) - f A X ) ) { f A X ) - f ^ { x ) ) < ^nf*{x) - fAX))'^E{fAX) - f^.ix))^ 
C^/l < 

(27rr)'? 

The result follows from Lemma B.2, Lemma B.7 (by replacing e with ^ and the assumption 

r = fa. • 
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Linear Threshold Basis Functions 

Let h be the threshold function, h{x) = 1 if x > 0 and h{x) = 0 otherwise. We can write fr{x) 

as an integral involving linear threshold functions as follows: 

fr{x) = [ (2r) ' ' |Fa(w)|(cos(0(«)) cos(27rw • x) - sin(6'(w)) sm{2nu • x))dPu{u) 
jR{r) 

r ( ( \ 
= / (2 r ) " |Fa(u) | cos(0(«)) / -sm{t)dt + cos{-2'K^nr) 

( T \ \ 
-sin(0(u)) / cos{t)dt + sini-lTT^nr) dPuH 

\Jt=-2-K^nr J J 

r ( f T 
= / (2r)"|Fa(u)| cos(6'(u)) / - s\n{t)h(lTTU • x - t)dt + cos{-lTT^nr) 

jR{r) \ \Jt=-27r^nr y 

-sin(6'(u)) / cos{t)h{2'Ku • X - t)dt + sini-lTT^nr) \dPu{u) 
\Jt=-2n'^nr / / 

r ( plit^nr 
= / ( 2 r ) " | F a ( u ) | / -sxn{e{u) + t)h{l-KU-x-t)dt+ 

jR(r) \Jt=-2TT^nr 

cos{e{u) - iTT^nr)^ dPu{u). 

Let = iE?=i (2 r )M7rnr |Fa (C/ i ) | ( - s in (0 (C/ i )+ r i ) / i (27r f / i -x - r , )+cos (0 (C/ i ) -27r2nr ) ) . 

Lemma B.9 Suppose {Ui, Ti),i = 1 , . . . , /c are uniformly sampled from R{r) x [-In^nr^ l-K^nr], 

(Denote the probability distribution by Pu x Pt.) Then, with probability at least 1 - 5, for 

k > 
16384(202^"^(nrM)2 f 5l2e{2r)''Tr^nrM 512e(2r)"7r2nrM^ 

n l n 
V V 

In + ln 
16 

fr{x) - f^{x)\ < e for all X G 

Proof. Let 

G*" = {(u, t) ^ g{x, u, t) : g{x, u, t) = {2r)''4Tr\r\Fa{u)\ ( - sm{e{u) + t)h{27vu • x - t ) + 

cos{9{u) -2TT^nr)^ ,x e [-7r,7r]"}. 

The class Q^ has pseudo-dimension n. From Corollary B.5 and Lemma 3.8, we have for fc > 1, 

{PuxPrr{{u,t)'':3x, 
1 r 
-Tg{x,Ui,ri)- / g{x,u,t)dPu{u)dPrit) 
k JR{r) 

> € 
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< 16 
512e(2r)"7r2nrM, 512e(2r)"7r2nrM^ " 

In 
/ 

exp(-e2m/(16384(2r)2"7r'^(nrM)2) 

Setting the right hand side to be less than or equal to 5, we see that 

16384(2r)2^7r4(nrM) k > 
/ / nln 512e(2r)"7r^nrM ^̂  512e(2r)"7r^nrM 

+ ln 
16 

will give the required result. • 

The following corollaries give bounds on the error terms we require. 

Corollary B.IO Let [Ui, n), i = l,...,kbe uniformly sampled from R{r) x [-lir'^nr, In^nr 

Then, with probability at least 1 - 5, for 

k > 16384(2r)2V^(nrM)2 /^512e(2r)"7r2nrM, 512e(2r)"7r2nrM\ . 16^ 
n In In + ln 

W i X ) - fl:{X)f - E{f*{X) - fr{X)f <e' + 2{T + K + C)e. 2 / , 2 

Vf* = fa (for learning with noise) and instead 

k > 
16384(2r)2"7r^(nrM)2 / (5\2e{2rYTT^nrM ^ 5I2e(2r)"7r2nrM 

nln 
\ \ 

In + ln 
16 

then 

E{f*{X) - ji{X)f - E( /*(X) - fr{X)Y < e 
IC^f. 
{Ittt)'}' 

The proof is essentially identical to the proof for Corollary B.8. 

Sigmoid Basis Functions 

The sigmoid function approximates the linear threshold function as the weight size grows. It is 

possible to bound the error of the approximation as a function of the weight size. Let 

jR{r) Wf=-27r2nr 

+ cos{e{u)-27r\r))dPu{u) 
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We have, for o; > 0, 

/• / rlir'^nr 
f ^ { x ) - f ^ x ) \ < / {2rr\Fa{u)\ / \-sm{d{u)+t)\\h{2nu-x-t) 

< 

-a{a{2TT^u • X - dPu{.u) 

2(M + C) In 2 
a 

where h is the threshold function and a is the standard sigmoid because for any a > 0, 

/

oo 2 In 2 
h{x) - cr{ax)\dx = . 

-oo 

Let/fc^ = ^ E?=i(2r)"47rnr|Fa(C/i)|(-sin(0(C/i)+T-i)(7(27rC/ra;-ri)+cos(^(C7i)-27r2nr)). 

We can bound the error term we require in the following way: 

E( /* (X) - f^X))^ - E{f*{X) - fr{X)f 

= E i f i X ) - - E ( r ( X ) - r + 

E ( r (X) - r - E ( r (X) - fr{x))^ 

= E{f*{X) - - E{f*{X) - r + 

n f r i X ) - r { X ) f + 2E(/*(X) - fr{X)){fr{X) - T ( X ) ) 

< E i n x ) - r k { x ) f - E { f * { x ) - r ( x ) ) 2 + 
(2(M + C)ln2)2 4{T + M + C){M + C)\n2 

+ 
a 

(B.3) 

It remains only to bound E{f*{X) - f^{X)f - E{f*{X) - f i X ) ) ^ . We proceed in the same 

way as in Section B. 1.2 

Lemma B. l l Let {Ui,Ti), i = be uniformly sampled from R{r) x [-2TT^nr,2'K^nr 

Then, with probability at least 1—5, for 

16384(2r)2"7r4(nrM) 
k > 

/ / 

nln 
\ \ 

512e(2r)"7r2nrM, 512e(2r)"7r2nrM' 
In + ln 

16 

\r{x)-f^{x)\<e for all 

Proof. Let 

g"" = ^ g{x,u,t) -.gix^u.t) = (2r)"27rnr|Fa(u)| ( -s in(0(u) + t)cr(27ru • x - t) + 
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cos{6{u) - lunr)) ,x e [-7r,7r]"} 

The class has pseudo-dimension n. The rest of the proof is identical to the proof of Lemma B.9. 

• 

Corollary B.12 Let {Ui, n), i = be uniformly sampled from R{r) x [-lir^nr, l-n^nr 

Then, with probability at least 1 - 5, for 

k > 
16384(2r)2"7r'^(nrM)2 /^512e(2r)"7r2nrM, 512e(2r)VnrMA . 16 / / 

n In 
V 

In + ln 

E{f*{X) - - E{f*{X) - r{X)Y < ê  + 2 ( r + M + C + 2(M + C) In 2/a)e. 

\ 

((Jivwl ^ ,2 

U f* — fa (for learning with noise) and instead 

k > nln 
\ \ v/i 

+ ln 
16 

then 

- mx)? - n n x ) - n x ) ? < ^ + -

Proof. The proof for the first part is similar to the proof for Corollary B.8. For the second part, 

we have 

- rk{x)f - E ( / * ( x ) - r { x ) f 

= E ( r (X) - + 2 E ( / * ( x ) - r ( x ) ) ( r (X) - ft{x)) 

< E i n X ) - f^X))^ + 2E\f*{X) - fr{X)\\f^{X) -

+2E\fr{x) - n x ) \ \ n x ) - r,{x)\. 

By the Cauchy-Schwarz inequality, 

E\f*{X)-fr{X)\\f'^{X)-fUX)\ < .jE{f*{X) - - fkiX))' 

< 
(27rr)'?' 

The result follows from Lemma B.2 and LemmaB.l l . • 
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B.1.3 Estimation Error 

With the randomly selected basis functions, all we need to leam is the second layer weights of 

the linear combinations. With the sinusoidal basis functions, we have 2k second layer weights 

(pseudo-dimension 2k) while with the linear threshold and sigmoid basis functions we have k + 1 

second layer weights (pseudo-dimension k + 

Since \fr{x)\ < M + C, if the approximation step in Section B. 1.2 is successful \fk{x)\ < 

M + C + e. Lete<T. This gives \fk{x)\ <M + C + T. Least squared optimisation with the 

constraints \fk{xi)\ < M + C+ T = B,i = I,... canhe done in polynomial time. Note that 

with these constraints, the function class is still convex. 

Rescale the functions and the target random variable by dividing by B. (The rescaling is just to 

calculate the sample complexity. There is no need for it in the actual algorithm.) In Theorem 3.7, 

setting J/ = i^c = e/AB^,a = 1/2, we get with probability at least 1 - 5 that £ ( 5 / ) < 2Ez(c/;) + e 

for sample z of size 

70005^ / .. / 20486^2 . 20486^^ 
d\n In 

6 
+ d\r\2 + \n-

0 

where d is the pseudo-dimension of the function class. Recall that ^ / (x , y) = {y - f{x)f - [ y -

fa{x))^ and E ( g / ) = E ( / * - f ) ^ - E ( / * - fa)^- If we optimise to within e of the best function, 

we obtain an expected mean squared error within at most 3e of the best function. 

B.L4 Combining the Error Bounds 

We can now combine the bounds from the previous sections to give bounds on the sample 

complexity and number of basis functions needed for learning the function class. Assuming the 

sampling and estimation step is successful, the algorithm will be successful. Since the probability 

of failure at each step is no more than the probability that we will be unsuccessful is no more 

than 26. This can be rescaled to give 6. In each of the following sections, the accuracy will also 

have to be rescaled to give the desired accuracy e. This does not change the order of the sample 

complexity and the order of the number of basis functions used. 
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Sinusoidal Basis Functions 

For agnostic learning, select r in Corollary B .3 so that E ( / * (X) -fr{X))'^-'E[f*{X)-fa{X)f< 

= €. From Corollary B.8, we can get 

n n x ) - - E{f*{X) - fr{X)f < e 

for (fixed n and q) 

/ o.i" 
k = 0 

( T C 2 ) T M 2 ( T + M + C) (TCM\ , 1 
2 + ^ e 1 / 

with n and q fixed. 

For learning with noise, select r in Corollary B.4 so that E{f*{X) - fr{X))'^ < 

From Corollary B.8, we can get 

E ( r ( X ) - - E{f*{X) - fr{X)r < 36 

for 
/ 

k = 0 
CfM^fn^^ fCM\ , r 

— In + In T 
I — ; 

/ 

Finally, the sample complexity for E ( / * ( X ) - f{X)Y - E ( / * ( X ) - ft,{X)f = e is 

O A; In 
B^ . B 2\ 

In 
\ ^ 6 / 

+ I n -
0 

where B = M + C + T. 

Linear Threshold Basis Functions 

Foragnostic learning, selectr in Corollary B.3 so t h a t E ( / * ( X ) - / r ( X ) ) 2 - E ( / * { X ) - / a ( X ) ) 2 < 

^ ^ = e. From Corollary B.IO, we can get 

E ( r (X) - fi{x)Y - E ( r w - fr{x)f < e 

for 

k = 0 
+ M + C) 

e 1 

f v } . fTCM\ . 1 \ \ 

In 
V e 

+ In -
0 
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For learning with noise, select r in Corollary B.4 so that E ( / * ( X ) - fr{X))'^ < j^^pji^ -

From Corollary B.IO, we can get 

n n x ) - - E{f*{x) - fr{x)f < 36 

for 

k = 0 
'c-^n'M^ ( n \ {CM\ , l'^ 

V 9 
— In 

V e / 
+ ln-r 

0 
n 

Finally, the sample complexity for E{f*{X) - f{X))^ - E{f*{X) - f^{X)f = e is 

(B^ ( 
0 

(B^ 
A; In — In — 

\ ^ e 6 ; 

where B = M + C + T. 

Sigmoid Basis Functions 

Foragnostic learning, selectr in Corollary B.3 so t h a t E ( / * ( X ) - / r ( X ) ) 2 - E ( / * ( X ) - / a ( X ) ) 2 < 

= e. From Corollary B. 12, we can get 

E ( / * ( X ) - f'k{X)f - E{f*{X) - r { X ) r < e 

for 

k = 0 
((T + + M + C) ^^ /{T + M + C){T + B)CM\ ^ ^^ 1 

\ \ 

If ^ ^ 4(T+M+C)(M+C)ln2^ 

E{f*{X) - - E{f*{X) - fr{X))^ 

< E{f*{X) - f a x ) f - E{f*{X) - r(X))2 + 

(2 (M + C) In2)^ 4 ( r + M + C ) ( M + C) ln2 
1 "I" a 

< 3e 

for small enough e. 

For learning with noise, select r in Corollary B.4 so that E{f*{X) — fr{X))^ < = e 
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From Corollary B.12, we can get 

E ( r ( X ) - - E ( r ( X ) - r < 46 

for 

k = 0 
\ 

+ l n -In 
9 V e y 

if ^ > 4(M±ciin2 ^ 4(r+M+c)(M+c)in2^ From (B.3) 

E(rW - - E{f*{X) - fr{X)f 

< E{f*{X) - f^{X)f - E{f*{X) - f-{X)f + 

( 2 ( M + C ) In2)^ ^4{T + M + C){M + C) In2 
+ 

a 

< 6e 

for small enough e. Finally, the sample complexity for E{f*{X) - f { X ) f - E{f*{X) -

O 
/ / 
A; In 

\ ^ \ 
— In — 

\ 
+ ln 

7 / 
where 5 = M + C + T . 

B.2 Proof of Theorem 7.3 

The proof of Theorem 7.3 is similar to the proof of the approximation error component of 

Theorem 7.2. However, instead of just finding a set of basis functions which can be used for 

approximating a single function, we want to find a set of basis functions which can be used for 

uniformly approximating all functions in the class. 

Let R{r) = {w G Z " : < r, ; = 1 , . . . , n } . First we bound the error caused by truncating 

the Fourier series by excluding the terms outside R{r). Let /* e F^ be any function in and let 

/* be the corresponding function with the truncated Fourier series. Then 

r { x ) - f r ( x ) 

|Kj|>r, 

l'KUj\'i\F*{u) 

Uttu-X 

2nui 
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< y ^ - " -T- y i^ttujI 
ueZ" 

C 

F*{u)\ 

< 
(27rr)9' 

Setting the truncation error to e /2 we get 

27rei/'7 
(B.4) 

Note that there are (2r + 1)" Fourier coefficients in R{r). Let f , be the class of functions 

which are represented by the class of truncated Fourier series of functions in Tq. We will now 

show that if we select a sample U u - - - , U k (with an appropriate k) from R{r) according to the 

uniform distribution, the probability that there exists a function / ; (with Fourier transform F*) 

in f , and an x G [-7r,7r]" such t h a t \ f ; { x ) - ^ ^ Re F * > e /2 is less 

^ ( i n ^ ^ ) ) . This shows than one. The value of k, such that this is true, is k = O 

the existence of a set of basis functions of size k which can be used to uniformly approximate 

all truncated functions in that class to accuracy e/2. The result then follows from the triangle 

inequality. 

To get the uniform convergence result, we require a bound for the covering number of the 

following function class 

g = {u^ {2r+\)''\F{u,t)\cos{e{u,t))cos{2TTu-x)-{2r+\)''\F{u,t) 

sm{6{u,t)) sin(27rii • x) : |xi| < tt, \uj\ < r,Uj e'Z,teT} 

where T is the set of indices for the Fourier coefficients of functions in T^. 

We will bound the covering number using the following lemma. 

Lemma B.13 Let Q = {u a{u, t) cos{27ru • x) + h{u^t) s\x\{2-i:u • x) : |xi| < tt, liij| < 
r,Uj e Z,t e T} where a(u,t) = (2r + cos(0(u, t)) and b(u,t) = -(2r + 

l ) " |F (u , i ) | s in (6 ' (u , t ) ) . Let A = {u h-). a(u,t) : t e T,\uj\ < r,Uj 6 Z } and let 
B — {u b{u, t) : t ^T, \uj\ < r, Uj G Z}. Then for any u — {u\,..., Um), 

N{e,g\uJi) < 2 
32Tr^enr{2r + 1)"M , ?,2TT^enr{2r + O'^M \ " 

In 
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P r o o f . N o t e that | a ( u ) | < ( 2 r + 1 ) " M and | 6 (u ) | < ( 2 r + 1 ) " M . We also have | cos(27ra) -

cos(27r/3)) | < 2TT\a - /3| and | s in(27ra) - sm{2np))\ < 27r |a - Le t u G Let 

£ = {it u • a; : | x i | < tt , < r , U j e Z } . L e t C i be an e / (87 r (2 r + l ) " M ) - c o v e r fo r 

C2 b e an e / 4 - c o v e r f o r and C3 be an e / 4 - c o v e r fo r B^u- T h e n fo r any x e [ - t t , t t ]" and any 

t eT, t he re exis ts c ' G Ci , c^ e C2 and c^ e C3 such that 

m 
— cos(27rUi • x ) - c | cos(27rc | ) + i) s in(27rui • x ) - c^ s in(27rc | ) ) 

I m 

= — J ] | a ( u i , t ) c o s ( 2 7 r u i • x) - a{ui, t) cos{2tt cl) + a ( u i , t ) cos(27rc]) - c - cos (27rc ] ) 

+b{ui, t) sin(27rwi • x) + b{ui, t) s in(27rc | ) + b{ui, t) s in(27rc | ) - c- s in(27rc | ) | I m 
< \a{ui,t){cos{2TTUi • x) - cos(27rc-)) + {a{ui,t) - c j ) cos(27rc-) | 

^ 1=1 

+ \b{ui,t){sm{2nui • x) + s in(27rc-)) + {b{ui,t) - cj) sin(27rc-) 
^ m 

< — ^ | a ( w i , t ) | | cos (27ru i • x) - cos (27rc | ) | + | a ( u i , t ) - c | | | cos (27rc ' ) | 
^ i=i 

+ | 6 ( u i , t ) | | s in(27rui • x) + s in(27rc | ) | + \b{ui,t) - c^H sin(27rc | ) 
J m 

< - V 27r(2r + \TM\ui • x - c] | + \a{ui, t) -

+ 2 7 r ( 2 r + l ) " M | u i •x-cl\ + \b{ui, t) - c] 

< e. 

W t n c c N { e , G \ u M ) < N { € l U { 2 r + \ Y M , C \ u M ) N { e l A , A \ u M ) N { e l A , B \ u M ) - F r o m 

L e m m a 3 .8 N{elM2r + h) <2 ( H Z E ^ M ^ m HlWlMiiZM^-^ • 

W e n o w b o u n d the cove r ing n u m b e r fo r ^ and 5 (as def ined in L e m m a B.13) . No te that 

f u n c t i o n s f r o m A a re the (sca led) real par t of the Four ie r series, whi le func t ions f r o m B are the 

( s ca l ed ) i m a g i n a r y par t . Fo r a func t ion / G F^, let 

Fa{u, f ) = ( 2 r + l ) " R e / = ( 2 r + 1)" / f{x) cos(27ru • x)dx 
v/[—7r,7r]" ^[-tt.TT]" 

a n d 

Fb[u, f) = (2r + l)"Im [ = (2r + 1)" / -f{x) sm{2nu • x)dx. 

W e wil l a p p r o x i m a t e the integral with a s u m of a finite n u m b e r of t e rms us ing the s u p - n o r m 
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approximation method similar to that used in (Barron 1992), and then bound the covering number 

of the sum. 

Lemma B.14 Let Abe as defined in Umma B. 13. LetUk = {u ^ f Ef=i(2r + O '̂ot cos(27ru-

Xi) : Xi e [--7r,7r^" 

( u i , . . . arid 

Uj < r,u e e { - 1 , 1 } , & e [-M,M]}. Then for any u = 

^ (nln(2r + 1) + In 8), 

N{e,Aiu.h)<N{e/2,nk\u,h)-

Proof. We can represent Fa(u, /) as 

Fa{u, f ) = f {2r + sign{f{x)) cos(27rix • x)P{dx) 
7[-7r,7r]" 

where M/ = \f{x)\dx < M, sign{f{x)) is the sign of f { x ) and P{dx) = \f{x)\dx/Mf 

is a probability distribution. 

There are no more than (2r + 1)" values of u that we are interested in. Corollary B.5 shows 

that 

V 
k 

^ ^ ( 2 r + \Ysign{f{xi)) cos(27ru • x{) - Fa{u, f ) 
i=i 

> 6 / 2 \ 

Setting the right hand side equal to 1 shows that for 

1024(2r+ , , ^̂  , nx 
k > (nln(2r+ I) + ln8), (B.5) 

for every F a (•,/), there is a function of the form w ^ ^ 1)"M/ sign{f{xi)) cos{2ttu-

Xi) that is within e/2 of it for all the u's we are interested in. The triangle inequality ensures that 

an e/2 cover for Tik would also be an e cover for A. • 

LemmaB.15 Let Hk ^ {u ^ | E i L i ( 2 r + l)"ajcos(27ru • Xi) : Xj G [-tt,tt]", luj] < 

r,u e Z'^.ai e { - 1 , 1 } , 6 G [ - M , M ] } . Thenforanyu = (u i , . . . ,um) . (uj G [ -r , r ] "/or 

j = I , . . . , m ) 

N{e,nkiu,h) < 
47rM(2r + l)"" ( + l ) "nrM ^̂  167r^e(2r + l ) "nrM 

nk 
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Proof. Wehave|cos(27ra)-cos(27r/?))| < 27r|Q;-/?|. Let£ = {u w x : 0 < Xj < 2-K,\uj\ < 

r,Uj e Z } a n d l e t C b e a n e / ( 4 7 r ( 2 r + l )"M)-coverfor£|^i . Let B be an e/(47r(2r + I)^)-cover 

for {b:b e [ - M , M ] } . Then there exists a Qj G C for each uj • Xi and a b' e B for each 

b e [ - M , M ] such that 

m 1 
- Y^{2r + l) ' 'a i(6cos(27rUj • Xi) - 6'cos(27rci,)) 

i=\ 
m ^ 

J A; J m 

- k ^ m ^ l)"l(^cos(27r-Uj • Xi) - bcos{27rcij) + bcos{27rcij) - b'cos{27rcij))\ 

i=i j=i 

I /c I m 

^ r E - + l)^|(6(cos(27rUj • x^) - cos(27rcij)) + (6 - &') cos(27rcij)) fv , 771 . J = 1 
1 A; J m 

^ r E - E + • Xi - + e/(4n(2r + 1)") 
K . , TTl . , 1=1 1=1 
1 A; , m 

= fc E + 1 ) " M - ^ In, • - + e/2 
i=l i=l 

< e. 

The size of 5 is no more than 4nM{2r + l )"/e. Hence N{e,Qc\uJi) < 

47rM(2r+i)" 2''N{e/4tt{2r 4- /i )^ From Lemma 3.8 ^•(6/47r(2r + 1)"M, ^i) < 

2 ^167r^e(27-+l)"nrM 167r^e(2r+l)"nrM g 

It is easy to see that the same bound applies to the covering number of B. We can now bound 

the covering number of 

Corol lary B. 16 Let Q {u a{u, t) cos{2nu • x) + b{u,t) sm{27ru • x) : \xi\ < n,\uj\ < 

r,Uj e Z^t e T} where a{u,t) = (2r + l ) " | F ( w , c o s ( 0 ( u , t ) ) and b{u,t) = - ( 2 r + 

l ) "|F(w, i )|s in (0 (u , t ) ) . Let A = {u ^ a{u,t) : t e T,Uj < r,Uj e Z} and let 

5 = {u i-> b{u, t) : t e T , Uj < r , uj e Z}. Then for any u = ( u i , . . . , Um). 

N{e,g\uM) < 2 

24A: 

3 2 7 r W ( 2 r + 1 ) "M . 3 2 7 r W ( 2 r + 2567r^M^(2r + 
In — 5 

/ 

^ 1287r2e(2r + l ) " n r M , 1287r2e(2r + XYnrM^ 
In 

where 

16384(2r+ l l^^M^ . , ^̂  , 
k = ^—=— (n ln(2r + 1) + In 8 ) . 

Given the covering number for Q, we can now obtain a the uniform convergence result, and 
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hence give the appropriate number of basis functions k. 

Let Pu be the uniform distribution on R{r). Let f® be the class of functions formed from the 

truncated Fourier series of functions in F^. For a function / G F^, let the corresponding function 

with truncated Fourier series be f r G F®. Using Corollary B.16 and Corollary B.5 we get 

—7r, TT 

1 ^ 
- ^{FA{Ui, f ) COS{l-KUi • x) - FsiUi, f ) sinilwUi • x)) - fr{x) 

i=\ 

>ell 

< 16 
20487r2enr(2r + 1 ) " M lQA%TT^enr{2r + l ) " M y 5 1 2 V M ^ ( 2 r + l)^'^ 

/ 
In 

V 
X 

^Ak' In 

where 
, , 6 7 1 0 8 8 6 4 ( 2 r + , ^^ , 
k' = ^ ( n l n ( 2 r + I) + ln8) 

Setting the right hand side equal to 1 shows that for 

k > 
1 0 2 4 ( 2 r + / / 2 0 4 8 7 r W ( 2 r + 1 ) " M , 20487 rW(2 r + 1 ) " M 

n l n I In + 

5127rM(2r+1) " , , , , ^ 
2 In — + Ak' In 2+ 

2nk' In 
81927r2e(2r + l ) " n r M , m i n ^ e f l r + U ' ^n rM 

In + l n l 6 

there is a function of the form i Yli=i{FA{ui, f ) cos(27rUi • x) - Fsiui, f ) sin(27riti • x)) that is 

within e/2 of fr{x) for all the / r 6 f ® and x G [—tt, tt]". Setting r appropriately to give truncation 

error e/2 (using (B.4)) completes the proof of Theorem 7.3. 
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Irrata 

Pg 5 1 -14 An additional reference (Alon et al. 1993) should be added here. 

Pg 15 Sec 2.2 1 -1 This line should be changed to: "Sinusoidal basis functions: {g(x} = sin(t;-
x),g{x) = cos(^; • x) : v G R'^}." 

Pg 16 1 2 It should be mentioned that for bounded measurable functions, the essential supre-
mum is usually used in place of the supremum in the definition of the LQ© norm. 

Pg 21 In Table 3.2, assuming that fatjr(€) grows polynomially with 1/e, the fatjr(e) term can 
be removed from inside the log. 

Pg 24 1 3 This line should be changed from "suffices for agnostically learning .F" to "suffices 
for learning J ' " . 

Pg 25 1 8 & Pg 26 1 13 Both these lines should be changed to: 

m > 
7000r^ 

In max N V512r 
. 6\ 

0 J 

Pg 28 1 -5 This line should be changed from "networks with linear threshold hidden units and 
..." to "networks with linear threshold hidden units (or sigmoidal hidden units) and ...". 

Pg 32 It should be mentioned that for sets of at least two {0, l}-valued functions, an 
lower bound on the sample complexity for proper agnostic learning follows from the results 
of the following two papers: 

• L. Devroye and G. Lugosi. Lower bounds in pattern recognition and learning. Pattern 
Recognition, 28(7):1011-1018, 1995. 

• H. U. Simon. General lower bounds on the number of examples needed for learning 
probabilistic concepts. The 1993 Conference on Computational Learning Theory, 
pages 402-412, 1993. 

Pg 32 1 -1 The term k2 shold be in the denominator, not the numerator. 

Pg 32 1 -10 The term "Q(ln(6)/e2)" should be changed to "n(ln( l /6 ) /e2)" . 

Pg 41 Theorem 5.2 The sample complexity boand should be changed to 

14000C'^ 16C2 / 

\ 
In max 

V xex^"^ 
N + 1 + l n 2 + l n -1()24CA" J J J 6 

r\ 



The bounds in Corollary 5.3 and 5.4 should also be changed accordingly. In the proof, the 
last equality on page 44, line 9 and 10 is incorrect. To correct the proof, on page 44 line 
11, use Theorem 6.1 in place of Lemma 5.5. This results in the sample complexity bound 
given above. 

P g 4 3 1 7 The sentence "Let / = i ^ t i should be replaced by "Let / = ^ ^ t i / t - " -

P g 4 3 E q n 5.1 ) ^^ replaced with /i). 

P g 4 3 1 -9 G y^l'fc should be replaced with G 

P g 44 1 -10 The sentence "Corollary 5.4 shows ..." should be changed to "Corollary 5.4 and 
Theorem 4.4 show ...". 

P g 51 1 10 The term a is missing from the numerator of 

P g 53 1 4 ,8 Bracket missing after Y (should be two close brackets). 

P g 53 1 -7 The sentence begining with "Let / be ..." should be removed. 

P g 54 1 10 This line should be changed to 

= inf / {2wg{x)l{i+ l) + {l--2l{i+\))U_,{x) - yfdP{x,y)+ e,l2. 
aeOJxxY 

P g 58 1 -3 The following sentence should be added: "Let / be the target function and let 
df = ll̂ f' - /II, where co{Q) is the convex hull of (/.". 

P g 59 1 15 The sentence begining with "We will use ..." should be changed to "We will use the 
agnostic PAC learning algorithm to learn h under a modified distribution with confidence 
1 — S/2k and an accuracy which will be determined below." 

P g 61 1 -6 The sentence "Let Q = (J^^i where ..." should be changed to "Let Q = Ur=i ^n 
where ...". 

P g 83 I -6 "J'fc = should be changed to = 

P g 84 E q n A . l In the third line, £(5/ ) )" should be changed to 

P g 91 1 -2,-1 "E[A(a:) - f{x)f..:' should be changed to "E[(/„(x) - /(a;))^..." . 

P g 93 1 -10 The sentence begining with "The following result..." should be changed to "Corol-
lary A.15 ...". 

P g 102 1 -3 "exp(62A;/l()24(2r)2^M2)" should be changed to "exp(-62A;/1024(2r)2'^7V/2)". 


