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ABSTRACT: Liquid exfoliated graphene sheets were incorporated within α-cyclodextrin-

triblock copolymer supramolecular hydrogels prepared with a range of polyethylene oxide and 

polypropylene oxide block sizes and ratios allowing control over the release properties. The 

strong photothermal activity of graphene was employed to externally activate drug release from 

within the gels using near-infrared (NIR) irradiation. These supramolecular hybrid hydrogels 
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showed thermoreversible changes in viscosity, which is necessary for an injectable, multiple 

release point drug delivery depot. This hybrid graphene-surfactant-α-CD gel system with 

thermoreversible properties is demonstrated herein to be externally NIR activated to induce 

controllable drug release. 

 

Introduction 

Graphene has extraordinary thermal, electronic and mechanical properties,1-4 as well as a strong 

absorbance in the NIR and a low toxicity, making it a promising nanomaterial for drug release 

applications.5-9 There are several well established graphene production methods; (i) physical 

exfoliation allows high quality sheets to be prepared but at very low yield;10, 11 (ii) chemical 

exfoliation can produce large quantities, but the properties are adversely affected;12, 13 (iii) 

chemical vapour deposition produces larger sheet sizes but at a higher price and with a lower 

yield.14, 15 Alternatively, sonication and shear methods in appropriate solvents or in the presence 

of surfactant, such as the method employed herein, can produce defect free sheets at high 

concentrations.16-18 

Surfactant assisted liquid exfoliation has been demonstrated to produce high quantities of single 

and few layer pristine graphene sheets as described previously.18, 19 Pristine graphene exfoliation 

refers to graphene produced with negligible oxidation or basal plane defects, with only edge 

defects present in any appreciable concentration.18 All graphene referred to within this study is 

considered to be defect free and is referred to as pristine. The surfactant molecules aid in the 

initial separation of the sheets by minimizing the interfacial tension between the liquid medium 

and the sheets. By employing large triblock copolymers (Pluronics®) the surfactant molecules 

also act to prevent reaggregation as the polypropylene oxide (PPO) segments are adsorbed onto 
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the basal plane and the large polyethylene oxide (PEO) groups extend into solution, sterically 

preventing suspension collapse.20 

The addition of the cyclic oligosaccharide molecule α-cyclodextrin (α-CD) into a surfactant 

exfoliated graphene suspension allows a supramolecular network to be formed with the resulting 

gel incorporating a homogenous dispersion of graphene.21, 22 It has been reported by several 

groups that the α-CD molecule acts as a host molecule and threads onto available PEO groups to 

form the network, whereby the host-guest interactions occur via non-covalent interactions, such 

as hydrogen bonding and hydrophobic to hydrophobic interactions.23-25 As the inclusion 

complexes are formed, the network extends throughout the medium and large-scale gelation 

results.26 The resulting complexes formed are necklace-like supramolecular structures referred to 

as polypseudorotaxanes.27  

Supramolecular hydrogels are highly attractive for drug delivery applications due to their 

thermoreversible nature,28, 29 their ease of preparation as well as their inherent biocompatibility 

and biodegradability.30-32 As such, these hydrogels have been extensively studied for a range of 

different protein and peptide deliveries.33-36 Systems have been designed to be pH or temperature 

sensitive in order to allow a triggered release, whilst providing protection to the payload prior to 

reaching the targeted site.37 With such temperature activated systems, the challenges then shift to 

activating localized heating in situ. The use of near-infrared (NIR) light and suitable transducing 

materials may answer these challenges.  

The NIR region extends from approximately 650 to 900 nm and is known to be a suitable range 

for biological applications as absorption by water and many other biological tissue components 

in this region is weak, therefore non-specific photothermal heating is minimized.38 By 
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incorporating a NIR responsive photothermal agent within the gel, the challenges of externally 

activating localized heating deep within organic tissue can be addressed. 

A number of graphene-based materials have been explored for photothermal applications with 

varying levels of success.19, 39, 40 Pristine graphene sheets with no oxidized sites on the basal 

plane are excellent absorbers of NIR compared to that of the oxidized counterpart graphene 

oxide (GO), even when this material is subsequently reduced to regain conjugation.40 The strong 

absorption of graphene across a broad range of wavelengths combined with the remarkable 

thermal conductivity of the material, makes it a strong candidate for photothermal applications. 

19, 41 Additionally, as the graphene sheets are atomically thin, the surface area to mass ratio is 

highly suitable for optimal absorption and heat transfer. 

For any system considered for in vivo applications the biocompatibility of all components is of 

paramount importance. Several studies have that graphene has low cytotoxicity,9, 42 which is 

further reduced in the presence of the highly biocompatible polyethylene glycol (PEG) or non-

ionic triblock copolymers,43-45 enabling significant doses of graphene to be safely employed. 

When the inherent biocompatibility is considered in conjunction with the excellent photothermal 

ability of graphene nanosheets, the use of a thermoreversible drug delivery depot loaded with 

photoresponsive graphene appears to be a highly promising system. Here, the effectiveness of 

graphene nanosheets as NIR thermoresponsive agents for the promotion of triggered release is 

investigated. 

 

Materials and methods 

Graphene suspension preparation and characterization 
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Natural graphite flakes, α-CD and four triblock copolymers; F108, F68, L64 and P123 were 

purchased from Sigma Aldrich and used in this study without further purification (see Table S1 

for specifications).  

To produce graphene, suspensions of graphite flakes and surfactant were prepared at 0.5 wt.% 

and 0.1 wt.% respectively. Graphite suspensions in batches of 200 ml were maintained at 25 °C 

via a cooling jacket while ultrasonicated with a Q700 Qsonica ultrasonicator and a 13 mm flat 

head probe with replaceable tip at an amplitude of 40 % for 2 hours. Resulting suspensions were 

then centrifuged at 3000 relative centrifugal force (rcf) for 10 minutes.  

The extent of exfoliation was monitored using UV-visible spectroscopy. The concentration of 

graphene in suspension at sequential stages of sonication was determined using a UV-1800 

Shimadzu UV Spectrophotometer via the absorbance at 750 nm using the extinction coefficient 

4237 ml mg-1 m-1 determined by Paton et al. (Figure 1a).46 The absorbance spectra for the 

graphene materials was also measured using a UV-310PC Shimadzu UV-vis-NIR spectrometer. 

The absorbance spectra of GO and reduced graphene oxide (rGO), purchased from Graphenea, 

were measured to provide a comparison against the pristine graphene produced and used within 

this study (Table S2). Each suspension was then adjusted to 0.03 mg ml-1 for all further 

experiments or characterization tests unless otherwise stated. The graphene produced was also 

characterized using Raman spectroscopy, utilizing a Renishaw Raman inVia Reflex with a laser 

excitation of 532 nm. The particles were added dropwise to a 0.22 µm pore size alumina filter 

(Whatman) to 500 µL and spectra were collected with a 100 x lens with a 2400 l/mm grating 

(Figure 1b).  

A Jeol 2100F transmission electron microscope (TEM) was used to image graphene sheets 

throughout the study (Figure 1c). The nanosheets were deposited onto holey carbon TEM grids 
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by vacuum suctioning 100 µL of 0.03 mg ml-1 suspension and allowing the samples to dry for 24 

hours.  

Scanning electron microscopy (SEM) images of the exfoliated graphene sheets were collected to 

contribute to general morphology and exfoliation elucidation using a Zeiss UltraPlus FESEM 

without any coating at a voltage of 1 kV. Samples were added dropwise to an Alumina filter as 

per the Raman sample preparation. 

A Multimode 8 AFM (Bruker) atomic force microscope (AFM) was used to image graphene 

samples using ScanAsyst-Air mode. Bruker ScanAsyst-Air probes with nominal tip radii of 2–12 

nm and a silicon nitride cantilever of spring constant, 0.4 N m-1 were employed. Analysis on 

flattened images was conducted using NanoScope Analysis software (V 1.5, Bruker) (Figure 1d 

and 1e). Samples were prepared on silicon wafer as described by Wang et al. in 2017.47 

The NIR photothermal properties of the neat graphene suspensions was investigated by 

performing a concentration series of photothermal heating curves. A 0.5 ml aliquot was 

transferred into a 4 ml glass cuvette (cut down to hold a maximum of 2 ml) and fitted into an 

insulated cuvette holder inside a light box. An 808 nm laser diode was positioned outside of the 

light box (to avoid an additional heat source) with an optic fibre positioned within the light box 

directed at the cuvette. A convex lens was used to focus the beam in the middle (both face and 

depth) of the cuvette. The 808 nm 500 mW laser with a spot size of 1.7 mm was then turned on 

and the temperature measured for 15 minutes. Samples were mixed throughout the experiment 

using a magnetic stirrer bar to ensure even heat distribution. It is important to note that the laser 

geometry, suspension volume and concentration will influence the temperature changes 

observed. Some slight fluctuations in the observed photothermal curve maximums are attributed 

to room temperature variations. 
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α-CD gel preparation and characterization 

Solutions of α-CD and surfactant were prepared and mixed to give a final α-CD concentration of 

100 mg ml-1 and 2 wt.% of surfactant unless otherwise stated.  

To study the gelation process a Rheometrics Dynamic Stress Rheometer (DSR) with 25 mm 

diameter parallel plates was used. Dynamic time sweep measurements at 10 rad s-1 frequency 

and 10 Pa stress at 25 °C were conducted. These conditions were selected to ensure that the yield 

point of any of the gels was not exceeded. 

All gels were freeze-dried prior to imaging, the dry gel was then transferred onto the SEM stage 

and mounted with electrically conductive tape. SEM images were performed using a Zeiss 

UltraPlus FESEM with gel samples coated with platinum at 10 mA for 2 minutes prior to 

imaging at a voltage of 1 kV. 

α-CD gel drug release parameters 

A typical gel sample was composed of 2 wt.% surfactant, 0.03 mg ml-1 graphene suspension and 

1 mg ml-1 fluorescein as the drug model and is referred to here as α-CD-surfactant-graphene. Gel 

components were mixed in 5 ml glass rounded 10 mm diameter cuvette tubes 75 mm in height to 

a total volume of 1 ml of gel with α-CD at a concentration of 100 mg ml-1. The fluorescein was 

loaded into the α-CD solution and the pH was adjusted to 9.5 with sodium hydroxide, to allow 

the fluorescein to fully dissolve. All components (excepting the nanosheets) were dissolved prior 

to mixing. Immediately following mixing, the mixture was sonicated for 10 seconds, then 

covered with parafilm to avoid moisture loss and allowed to stand for approximately 6 hours. 

The control samples were prepared both with and without graphene. To remove any fluorescein 

from the walls of the vial, 6 hours after preparation, 4 ml of phosphate buffer solution (PBS) was 

added on top of the gel and left to stand for 16 hours prior to the release test. Immediately prior 
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to the release test the PBS was discarded, the vial rinsed 3 times with PBS and a fresh 4 ml 

aliquot of PBS was added to the vial. The sample to be irradiated was then placed in the path of 

the 808 nm, 500 mW beam and the control samples were placed inside the light box 

approximately 30 cm away from the primary sample. The temperature within the light box was 

measured in both sample positions to ensure all samples experienced an even ambient 

temperature throughout the experiment. The laser was then turned on for the required period and 

then switched off before sample extraction. Each sample had the aqueous phase mixed prior to a 

750 µL aliquot being taken, after which 750 µL of fresh PBS was added to the vial and the 

samples returned to the light box. Fixed extraction times (laser off times) were maintained at 4 

minutes throughout all experiments.  

The aliquot was then centrifuged for 2 minutes at 4000 rcf to remove any graphene that had 

migrated into the PBS layer and then 500 µL was taken and the absorbance was measured at 490 

nm. All release experiments were performed at room temperature which was monitored during 

all experiments and shown to be 22.0 °C ± 1.5 °C. An additional confirmatory experiment was 

performed using a lower power (75 mW) 785 nm laser diode at 37 °C.  

 

Results and discussion 

Graphene production 

The characteristic absorbance scan for exfoliated pristine graphene shows the peak maximum at 

270 nm indicative of non-oxidized graphene sheets.48 The wavelength scan also shows a strong 

and broad absorbance in the infrared region that is stronger than GO and reduced graphene oxide 

(rGO) (Figure 1a). The trend of the strengthening NIR absorbance with increasing conjugation is 
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particularly clear when an incompletely reduced GO sample is compared, showing a strong 

increase in absorbance between that of GO and fully reduced GO (Table 1).40 

 

 

Figure 1. (a.) UV-visible absorbance spectra of the initial F108-graphene suspension (solid red 

line), GO (green long dashes) and rGO (blue dots), with the NIR region highlighted (pale red 

box) and all samples at matched concentrations of 0.01 mg ml-1. (b.) Raman spectra showing 

unexfoliated graphite (top) and exfoliated F108-graphene (bottom) clearly showing the shoulder 

on the 2D peak only present for the unexfoliated graphite. (c.) A TEM image of F108-graphene 

suspension nanosheets. (d.) An AFM scan of the F108-graphene nanosheets with a (e.) marked 

cross section. 

Table 1. Extinction coefficient and absorbance at 808 nm for each graphene type material. 
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r

Extinction coefficient 
(ml mg-1 m-1) 

Absorbance at 808 nm 
(fixed 1 mg ml-1) 

4237 @750 nm
46 47.73 

7380 @ 265 nm
40 36.68 

7380 @ 265 nm
40 28.0040 

6150 @ 230 nm
40 6.08 

 

The Raman spectra collected provides thickness information through the ratio of the intensity of 

the G and 2D peaks, I2D/IG, which is 1:0.87 for the presented spectrum, indicating highly 

exfoliated graphene sheets.49, 50 The shape and positioning of the 2D peak indicates a highly 

exfoliated sample approaching that of monolayer graphene (See Figure S3). The D peak is 

expected to be present for the Raman spectra collected for sheets of this size as the laser diameter 

is larger (0.87 µm) than the sheets and will therefore detect the sp3 hybridized carbon atoms of 

the sheet edges.16 The full width half maximum (FWHM) for the 2D peak is 70 cm-1 which 

indicates this is likely a bi-layer spectrum.51  

The size distribution of the graphene sheets was determined via dynamic light scattering (DLS) 

showing average hydrodynamic diameters of 370, 195 and 310 nm for materials exfoliated using 

F108, F68 and L64 respectively which follow previous reports (Figure S1).52, 53 In addition to the 

DLS measurements, a number of image analysis methods including TEM, AFM and scanning 

electron microscopy (SEM) were used to fully characterize the sheets (see Figure S2 for SEM).  

The AFM scan gives definitive sizing information shown through the cross-sectional thickness of 

the sheet marked in Figure 1d. However, the graphene sheets likely have a surfactant and water 

coating present, increasing the observed thickness.47, 49 Additionally, ensuring the sheets are 

deposited flat on the silicon wafer substrate is challenging as sheet folding and stacking 

contribute to convoluted scans. The polydispersity of the single and few layer graphene sheets 

can also be observed in the AFM scans. 
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In addition to the sizing and thickness analysis, we have demonstrated the structural integrity of 

the graphene through TEM electron diffraction (Figure S11). 

Photothermal properties of pristine graphene 

Single and few layered graphene sheets produced via liquid exfoliation are suitable photothermal 

agents due to the strong and broad absorbance in the NIR region. As can be seen in Figure 1a, 

the absorbance of pristine graphene sheets is far stronger in the NIR region than that of both GO 

and rGO indicating substantially better photothermal efficiency. It is clear that the surfactant 

assisted liquid exfoliation production method is far more suited than the chemical exfoliation 

approaches towards preparing a photothermal agent for such roles. 

The photothermal properties of the graphene suspensions were characterized via simple 

photothermal heating curves, as shown in Figure 2., using a wavelength in the center of the NIR 

region. The stability of these suspensions under ambient and elevated temperatures is also 

without competition, with many similar photothermal materials showing a decrease in efficiency 

after several cycles,54, 55 as has been demonstrated previously.19  

 

Figure 2. (a.) Photothermal curves as function of concentration showing in ascending order; 0, 

0.075, 0.15, 0.225 and 0.30 mg ml-1 F108-graphene over 15 minutes of irradiation. (b.) The 

respective temperatures achieved after 15 minutes as a function of graphene concentration. 
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For photothermal applications, high thermal conductivity (reported as high as 5000 W m-1 K-1)56 

is important for dissipating the localized heat within the system. For single and few layer 

graphene the thermal conductivity at room temperature is primarily dictated by acoustic 

phonons. As there is a clear change in the behavior of the Raman active phonons, as indicated by 

Figure 1b, it can be assumed that the acoustic phonons and therefore the thermal properties of the 

exfoliated graphene sheets have been altered and improved.3 Further, as the production method 

does not produce defects within the basal plane,57 the phonon scattering at such points is 

minimized, maintaining the desired thermal properties. The extent of the contribution of internal 

thermal properties on the external heat dissipation within the system remains unclear with 

significant barriers requiring consideration such as the Kapitza resitance.58-60 However, 

percolation events61, 62 and Ballistic transfer linking63, 64 will likely result to allow substantial 

improvements on the bulk thermal transfer.65 

 

Photothermal release  

α-CD-surfactant drug release studies 

The unstimulated release profiles for each of the three surfactant systems F108, F68 and L64 

demonstrates that the different compositions produce subtly different gels which influence the 

release rates of the drug model significantly (Figure 3a). The F108 and F68 surfactant based gels, 

both with an 80 wt.% PEO composition but with substantially different sizes (14600 and 8400 

Da respectively), showed very similar release profiles, indicating that the size difference between 

these surfactants has a minimal effect on the final product. The release rates of the two high PEO 

composition surfactants showed a significant decrease when compared to that of the smaller 

surfactant with the lower PEO composition, L64 (2900 Da). 
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Figure 3. (a.) Baseline release for each α-CD-surfactant showing the different release rates for 

F108 (blue circles), F68 (green triangles) and L64 (red squares). Error bars show the maximum 

and minimums and the data presented is the average of three samples. (b.) Concentration of 

fluorescein released from irradiated α-CD-F108-graphene gel (red series) and irradiated α-CD-

F108 gel (blue triangles) demonstrating the photothermally induced drug release. To show the 

photothermally induced release the blank release values are subtracted from both series. 

The larger release rate of the L64 based gel reflects a more open internal network that allows the 

fluorescein molecules (1.09 nm maximum length66) to discharge. The irradiated α-CD-F108-

graphene gel showed a dramatic increase in the concentration of fluorescein released into the 

PBS compared to that of the stimulated graphene free gel (Figure 3b). As such the blank sample 

data (sample with no graphene present) was subtracted from that of the graphene loaded sample 

to easily observe the stimulated release values. This demonstrated that no component of the α-

CD-surfactant system (other than the photothermal agent) was absorbing sufficient amounts of 

the NIR light to induce any additional drug release. There was no identifiable difference in the 

unstimulated release rates of the graphene loaded gel or that of the irradiated un-loaded graphene 

gel (Figure S4). It is a fair assumption that the drug model fluorescein could interact with 

graphene in the gel through π-π stacking, however as no changes were observed between 

graphene loaded and graphene free unstimulated gel samples, if this event is occurring it is of a 
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negligible extent and effect. Further, it is likely that the surfactant previously adsorbed during the 

exfoliation process will leave little room for significant graphene to fluorescein interaction. 

The irradiation profile of the α-CD-F108-graphene gel versus that of the unloaded counterpart 

indicates that the increase in fluorescein release was entirely due to the photothermal action of 

the graphene sheets, resulting in localized heating. This localized heating was likely expanding 

the gel network or simply inducing enough of a phase change to activate the increased diffusion 

of fluorescein. Further, it has been demonstrated previously that hydrogen bonding plays a 

significant role in the interaction between PEO and α-CD moieties.25, 67 Therefore it is fair to 

assume that as the hydrogen bonding is disrupted by the localized high temperature conditions 

upon irradiation and that the inclusion complexes are weakened inducing gel expansion and 

breakdown with a corresponding spike in fluorescein release.25, 68 

 The thermoreversible nature of the prepared gels allowed an activation switch cycle to be 

demonstrated by simply alternating periods of irradiation and non-irradiation sequentially, and 

measuring the fluorescein release (Figure 4a). The release of fluorescein during the 

photothermally activated periods presented a marked increase, while the non-irradiated sample 

showed a consistent low rate of release. The release rates between the activated and non-

activated periods could then be directly compared by looking at the ratio of the fluorescein 

concentration released during each segment for the sample and blank (Figure 4b). This showed a 

marked difference between the release rates and also showed a slow upwards trend, likely 

indicating a decrease in the integrity of the gel structure with multiple heating and cooling 

cycles, or a slight residual increase in baseline temperature.  
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Figure 4. (a.) α-CD-F108-graphene gel photothermally induced drug release with alternating 

laser on off periods to demonstrate the reversible nature of the gel. (b.) The relative degree of 

release of the irradiated graphene loaded gel and the release rate of the control. 

In order to demonstrate the versatility of graphene in the role of photothermal drug release 

activator a confirmatory experiment was performed using a laser with a different wavelength of 

785 nm (Figure S9). The same trend was observed showing the flexibility provided by the 

strong, broadband absorbance of the graphene sheets. This is of particular value as one of the 

limitations observed for gold nanoparticles is the specificity of wavelengths required for 

activation, a challenge circumvented by a broadly absorbing material. This again reinforces the 

suitability of graphene in this role. 

From the fluorescein drug release experiments a clear correlation between the surfactant 

molecular architecture (likely due to the PEO compositions) and the observed release rates is 

demonstrated (Figure 3a.). In an attempt to understand the observed differences in release 

profiles the gel viscoelastic properties were explored. 

 

Influence of surfactant composition on gel properties 
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The gelation kinetics of α-CD with F108, F68, L64, and P123 surfactants were explored in this 

study (see Table S1 for compositions). The evolution of storage (G’) and the loss moduli (G’’) 

were measured in time sweep experiments immediately after mixing the gel components (Figure 

5). The G’ and G” increase as the α-CD molecules thread onto the PEO chains. The point at 

which the elasticity modulus crosses over the loss modulus is the gel point, a property 

characteristic of viscoelastic gel materials. 

  

 

Figure 5. Gelation kinetics of the α-CD gels formed with 2% of (a.) F108, (b.) L64, (c.) F68 and 

(d.) P123, measured by the evolution of the storage (G’) (red circles) and loss (G’’) (blue 

triangles) moduli in time sweep experiments at 25 °C. 
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The gel point of the α-CD based gels shows a clear dependency on the surfactant chemical 

structure, specifically the PEO ratio in their molecular structure (See Figure 6). For the F108 

system, a large triblock copolymer (14600 Da) with a PEO composition of 80 wt.%, the PEO 

groups are readily available for α-CD threading, resulting in a short gel point time. Compared to 

that of the L64 system, a 40 wt.% PEO composition surfactant (2900 Da), the gel time is 

considerably larger than that of the F108 system. This emerging trend is clearly demonstrated 

when comparing both the F108 and F68 (80 wt.% PEO, 8400 Da) based gels to the L64 and then 

to the P123 (30 wt.% PEO, 5750 Da) based gels showing that with decreasing PEO composition, 

gel formation is slowed. It is also likely that the critical micelle concentration (CMC) values, 

which at 2 wt.% are exceeded for the L64 and P123 surfactants, may be slowing the gel 

formation time as the micelles must be broken before the PEO chains are available to partake in 

the gel formation (Table S1 for CMC values). 

The co-assembly of the α-CD and PEO moiety of the surfactants in the gelation process is 

dependent on the geometry of these two components. The cross-section diameter of a PEO unit is 

3.1 Å,27 and the diameter of the α-CD cavity is 4.7 Å,27 providing matching geometries to allow 

the PEO chain to thread into the α-CD rings. As the height of the α-CD cavity (7.9 Å) is 

approximately twice the contour length of the PEO repeat unit, multiple α-CD molecules can 

thread onto the polymeric surfactant chains.27 As the surfactant with the shorter PEO chains 

(F68) based gels showed no significant difference in the gel point time to that of the surfactant 

with the longer PEO chains (F108), it appears that even this significant difference in surfactant 

size does not influence the efficiency of the PEO to α-CD interaction. 

The gel point for each surfactant system was also explored using a simple “inversion test” where 

the gels were considered formed when no visible movement could be observed for 30 seconds 
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when placed upside down (Figure S5).69 The results correlated well with the rheologically 

determined gel points, but the inversion test experiment does have a bias, inferring a delayed end 

point as it relies on the viscosity being sufficient to stop the movement of the entire gel matrix, 

which may occur well after the cross over point of the storage and loss moduli. Additionally, the 

inversion test highlighted that the α-CD-P123 gels did not form a gel of sufficient stability to be 

used for the release assays and was therefore not further explored. This is supported by the 

maximum measured storage modulus (Table 2) for the P123 system which was considerably 

lower than the other gels exhibited. The F68 system showed the greatest overall increase in 

maximum storage modulus which is likely due to the high PEO content, in addition to the 

smaller size of the polymers, forming a strongly connected but brittle gel.70 

 

 

Figure 6. Average gelling points (G’/G’’ Crossover point) as a function of different surfactant 

(red bars) and the PEO wt.% for each surfactant (green asteriks). 
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Table 2. The gel point times and the maximum storage modulus (G)’ for respective surfactant 

based gels. 

Surfactant  Gel point (min) Maximum G’ (kPa) 
F108 32 206 
F68 28 828 
L64 57 268 
P123 95 16 

 

A concentration series of F108 based α-CD gels were prepared to further explore the gelling 

mechanism of these systems. This again demonstrated the relationship between increased PEO 

concentration and that of the faster gelling time (Figure 7a). The full viscoelastic plots can be 

seen in Figure S6. These results follow similar trends previously reported in literature whereby 

gelling time and release rates are faster with the increased concentration of cross-linker, or in this 

case the inclusion complex components (α-CD).21, 27, 30 In addition to studying the influence of 

surfactant concentration, a graphene concentration series was established which showed a 

distinct delay in the gel formation upon the addition of graphene. This was evident with even the 

lowest graphene concentration explored. Both the graphene present and graphene free samples 

showed a strong linear dependence on the surfactant concentration. No further change in the 

gelling time with increasing graphene concentration was observed (Figure 7b). As the α-CD 

molecules are much smaller than all other components within this system, they would likely be 

the most mobile group and therefore the gelation mechanism should be viewed as the α-CD 

molecules threading onto the PEO chains, as opposed to the PEO chains entering the cavity of 

the α-CD molecules. This graphene concentration series indicates that the initial concentration of 

nanosheets was sufficient to sterically inhibit the mobility of the α-CD molecules within the 

solution whilst the large-scale network is forming. This is reasonable as the graphene sheets are 

by far the least mobile component within the gel matrix due to size and geometry. The full 
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viscoelastic plots of the graphene loaded gels as a function of surfactant concentration can be 

seen in Figure 7c. 

 

 

Figure 7. (a.) Average α-CD-F108 gel point as a function of F108 concentration with (blue 

triangles) and without (red circles) graphene (0.03 mg ml-1). (b.) The gel point as a function of 

graphene concentration at a fixed F108 concentration of 2 wt.%, showing a distinct delay in gel 

formation time and then negligible further change with increasing graphene concentration. (c.) 

Time sweep data for 0.03 mg ml-1 graphene loaded gel with F108 concentrations of 3 (series a.), 

2 (series b.) and 1 (series c.) wt.%. 

SEM images were used to study the morphology and micro-structure of the gels explored within 

this study. The SEM images show the porous three-dimensional network of the dried α-CD gels, 
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giving an approximate indication of pore sizes within the network, however possible artifacts 

associated with the freeze-drying process must not be ignored (see Figure 8).  

 

 

Figure 8. SEM images of freeze-dried α-CD gels with (a.) F108-graphene, (b.) F108, (c.) 4% 

F108, (d.) F68, (e.) L64 and (f.) P123 at 5,000 x magnification. All gels were prepared at 2 wt.% 

respective surfactant concentration unless otherwise stated. 

The crystals of the α-CD gels appear as lamellar flakes with well-defined edges in the majority 

of the freeze-dried samples as described previously.27 Several morphological variations can be 
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observed when the SEM images of the different surfactant based α-CD systems are compared, 

the presence of graphene, however, does not appear to present an identifiable change similar to 

previous reports (Figure 8a and 8b).21 The lamellar flakes forming for the neat 2% F108 gel 

(Figure 8b) appear slightly smaller and less connected than those of the 4% F108 gel (Figure 8c). 

Interestingly the L64 gel (Figure 8e) shows a larger and less dense network than the F108 and 

F68 based gels, which could potentially be linked to the increased release rate (Figure 3a). The 

P123 gel appears to be a highly dense structure with much smaller pore sizes (Figure 8f). The 

morphologies of both the 2% F108 (Figure 8b) and F68 gels (Figure 8d), both with a PEO wt.% 

of 80, do not appear significantly different, which correlates strongly with the almost identical 

release rates observed for each. 

In a further attempt to gain insight into the microstructure of the α-CD gels, XRD scans were 

performed for each of the surfactant type gels as well as the neat α-CD powder (Figure S10). The 

XRD spectra of the freeze-dried gels show the characteristic strong peak at approximately 2θ = 

20.0° (d = 4.44 Å) which is assigned as the 210 reflection.29, 67 The channel-type crystalline 

structure resulting from the long-chain nature of the guest-molecules (PEO segments) has been 

well studied and the corresponding peaks have been identified in both hydrated and freeze-dried 

gels.29 The 210 reflection can be observed as a sharper, more well defined peak for the 4% F108 

α-CD gel present at 2θ = 19.905 while the F108 and L64 surfactant gel shows a broader peak at a 

slightly lower diffraction angle of 2θ = 19.795. The broader peak indicated a less crystalline 

structure with lower surfactant compositions. 

The thermoreversible nature of these α-CD gels determined previously,23 was explored to 

demonstrate the injectability of this drug delivery depot preloaded with both the photothermal 

and medically active agent (Figure 9). A substantial decrease in viscosity was observed to occur 
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below or near the cloud point of the employed surfactants respectively suggesting that a 

sufficient phase change had occurred and the α-CD molecules were disassociating from the PEO 

segments. The gel system reformed after a short period of time post excitation, demonstrating the 

recovery of the complex. The ability of the gels to reform the stable complex after heating is 

particularly important for a potential drug depot application allowing spikes of drug release to be 

controlled. 

 

 

Figure 9. Images of an α-CD-L64 based gel demonstrating the thermoreversible nature of these 

systems with the gel (a.) prior to heating, (b.) immediately after heating and (c.) 5 minutes after 

heating. 

The gel studies showed a strong correlation of gel formation time with that of the PEO 

composition of the surfactant and with the observed release of fluorescein from the 

photothermally stimulated gels. As the gel formation time and the PEO composition will 

influence the packing structure of the final gel product, it is a fair correlation to draw on while 

not entirely elucidating the mechanism behind the release profile changes. 
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Conclusion 

A range of triblock copolymer surfactants with varying PEO compositions were explored for the 

formation of a pristine graphene hybrid α-CD gel. The graphene was then externally activated 

through NIR irradiation resulting in highly localized heating sufficient to activate the release of a 

drug model from within the gel network. Control by photothermal activation was then 

demonstrated through a switching experiment showing distinct changes in the relative release 

rates of the drug model. The thermoreversible nature of the gels and the ability to externally 

activate release demonstrates that pristine graphene-α-CD hybrid gels are a versatile injectable 

delivery depot. 
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Highlights 

• Successful incorporation of surfactant exfoliated graphene as an intrinsic component (not an 

additive) of an alpha-cyclodextrin based gel. 

• Exploration of gelation properties of the hybrid gels and the relationship with PEO composition. 

• Demonstration of photothermally induced drug release through near-infrared irradiation of 

embedded graphene 

• Extensive characterisation of the gels produced with a focus on the drug release properties. 


