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Graphical Abstract 

 

HIGHLIGHTS 

 Aqueous solutions of ionic organic dyes were adsorbed by suspensions of graphene. 

 Suspensions prepared by surfactant-assisted ultrasonic exfoliation. 

 Dye adsorption driven primarily by electrostatics. 

 SDS exfoliated graphene maximum adsorption capacity of methylene blue: 782.3 mg/g. 

 Adsorption by SDS exfoliated graphene is rapid and leads to particle aggregation. 

ABSTRACT 

In this study, graphene exfoliated in the presence of surfactants was investigated as an 

adsorbent for the removal of organic dyes from aqueous solution. The resultant graphene 

particles were shown using zeta potential measurements to possess effective surface charges 

dominated by the charge of the adsorbed exfoliating surfactant. In this way, the overall charge 

on the particles, and hence the ability to adsorb dyes, was significantly enhanced compared to 

previously explored surfactant free systems. Furthermore, the graphene particles could be 

produced to have either positive or negative charge allowing the selective removal of anionic 

or cationic species from water respectively. The adsorption of the dyes from solution was 

demonstrated to be driven by electrostatic interactions with the adsorbed surfactant.  The 

maximum removal of dye was achieved when cationic methylene blue was exposed to 

graphene exfoliated using the anionic surfactant, sodium dodecyl sulfate (SDS).  Adsorption 
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of methylene blue on SDS exfoliated graphene was strongly influenced by contact time and 

temperature, while variations in pH were shown to have a minor effect on adsorption.  Indeed, 

the rate of adsorption was faster than previous studies due to the inherent 2D nature of the 

highly exfoliated graphene particles. The adsorption data was modelled using the Freundlich 

and Langmuir adsorption isotherms, whilst the pseudo-second order model and the intraparticle 

diffusion models were used to model the kinetics of the adsorption process.  SDS exfoliated 

graphene particles exhibited a maximum adsorption capacity of 782.3 mg/g at 25oC, greater 

than that of many other graphene-based materials.  Thus, surfactant exfoliated graphene 

particles not only demonstrated excellent adsorption characteristics, but also the ability to 

maximize the amount of dye adsorbed based on solution conditions or the exfoliating 

surfactant. 

Keywords graphene, organic dye, adsorption, Pluronic F108, surfactant 
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1. INTRODUCTION 

The ability to effectively treat industrial effluent contaminated by water-soluble organic dyes 

is a major, ongoing environmental concern.  Organic dyes are widely used as part of coloring 

processes in the textile [1, 2], paper [3], leather tanning [4], food [5, 6], polymer [7], cosmetics 

[8, 9], printing and dye manufacturing [9] industries.  However, their release into the 

environment in processing wastewater poses a serious risk to both human health and the 

ecosystem, with some dyes inducing toxic[10], mutagenic [8] and carcinogenic [1] effects in 

humans and aquatic life.  As organic dyes are generally resistant to natural degradation, it is 

imperative that the dyes are removed from industrial effluent using appropriate water treatment 

technologies prior to their discharge into the environment. 

While organic dyes can be removed from the aqueous phase using a number of treatment 

technologies including membrane filtration and ion-exchange, one of the most effective and 

widespread methods available to remove dyes from wastewater is through adsorption onto 

carbon materials [3, 11].  Here, adsorption is driven by attractive intermolecular interactions 

between the contaminant molecules and the surface of the carbon material.  Most conventional 

carbon adsorbents such as activated charcoal, are produced by either chemical or physical 

activation of natural, carbon-rich precursors such as coal, coconut shells, lignite, peat or wood 

[12], resulting in highly porous or granular structures coupled with chemically heterogeneous 

surfaces.  The high specific surface area as well as the variety of active sites available on the 

these adsorbents is typically credited with greater adsorption capacity and forms the basis upon 

which highly porous carbon adsorbents, have been studied as a means to improve dye adsorption 

[13].  However, the adsorption of organic dye molecules onto the surface of carbon materials 

has also been shown to be affected by a complex combination of interdependent factors which 

further influence the type and number of adsorptive interactions present, along with dye 
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accessibility for the active sites.  These factors include the adsorbent dosage [9, 14, 15], initial 

dye concentration [16, 17], dye structure [14], solution pH [9, 18], ionic strength [19, 20] and 

temperature [9, 20, 21].  Thus, investigating the adsorption capacities of novel carbon materials 

offers a simple method of achieving significant improvement in the removal efficiency of 

water-soluble organic dyes from solution. 

One type of innovative carbon material that holds great potential in the adsorption of organic 

dyes from solution is graphene [22].  Graphene has been the subject of significant research 

over the past decade due to its unique structure, which is characterized by an isolated monolayer 

of sp2 bonded carbon atoms arranged in a planar, hexagonal lattice [23, 24].  This 2-dimensional 

structure is responsible for an assortment of exceptional material properties [25-27], which 

could be applied to a wide variety of technologies including adsorption-based water 

purification.  For instance, graphene is an ideal candidate for removing organic dyes from 

aqueous solutions due to its extremely high surface area to volume ratio and conjugated 

structure, which may enable effective dye adsorption at low loadings compared to conventional 

carbon adsorbents.  Indeed, the ability for similar, graphene-based derivatives to act as effective 

dye adsorbents has already been recognized and investigated in several studies and reviews 

[28], with substantial research undertaken in the use of graphene oxide [17, 21, 29, 30], reduced 

graphene oxide [17, 30-32] and graphene-based nanocomposites [33-35]. 

Although there are a number of methods available that can be used to produce pristine 

graphene [36], graphene prepared through the ultrasonic exfoliation of graphite is particularly 

well suited to the removal of dyes from aqueous solutions.  The ultrasonic exfoliation of 

graphite is capable of forming highly concentrated, aqueous dispersions of graphene using 

continuous surfactant addition which promotes exfoliation and separation of the graphite in the 

liquid phase [37-40]. Surfactant adsorbs onto the graphene surface, preventing reaggregation 
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of the graphene by imparting electrostatic and steric interactions specific to the type of 

surfactant employed [40].  Like other modes of producing graphene, the resulting graphene 

layers exhibit exceptionally high aspect ratios [41].  However, surfactant exfoliated graphene 

also offers a number of distinct advantages over other similar, carbon adsorbents.  For instance, 

unlike other methods of producing pristine graphene, the ultrasonic exfoliation technique 

produces particles which exist in aqueous solution, enabling rapid and effective dispersion of 

the particles in contaminated water.  By employing an appropriate ionic surfactant during the 

exfoliation process, the surface properties of surfactant exfoliated graphene can also be altered 

to promote attractive electrostatic interactions while retaining the conjugated lattice structure, 

which is capable of supporting Van der Waals based interactions with the aromatic portions of 

the dyes.  Despite these features however, the adsorption capacity of surfactant exfoliated 

graphene with respect to contaminants such as organic dyes has yet to be explored.  Therefore, 

it is essential that further studies into the adsorption of ionic organic dyes on surfactant 

exfoliated graphene are conducted in order to investigate the potential of these particles in dye 

removal processes. 

The experiments presented in this study examine for the first time, the adsorption of organic 

dyes from the aqueous phase using surfactant exfoliated graphene.  In this project, two organic 

dyes, methylene blue and methyl red were used to study the adsorption behavior of graphene 

particles stabilized using anionic, cationic and non-ionic surfactants.  During this study, various 

experimental conditions were examined to determine their effect on organic dye uptake by 

anionic surfactant exfoliated graphene.  The results of the study suggest the adsorption of 

organic dyes by surfactant exfoliated graphene is a rapid process driven primarily by 

electrostatic interactions at active sites on the adsorbent surface. 

2. MATERIALS 

ACCEPTED M
ANUSCRIP

T



 

7 

 

Synthetic graphite powder with a nominal particle size of less than 20µm was used as received 

from Sigma Aldrich. The surfactants Pluronic® F108 (Mn ~14.6 kDa, 

HO(C2H4O)141(C3H6O)44(C2H4O)141H), Sodium dodecyl sulfate, (SDS, CH3(CH2)11SO4Na) 

and Cetyl trimethylammonium bromide (CTAB, C19H42BrN) were also obtained from Sigma 

Aldrich along with two organic dyes, methylene blue and methyl red sodium salt (properties 

given in Supplementary Material).  0.1 and 0.02 µm syringe filters (Whatmam™ Anotop™, 

25mm diameter, Anopore membrane), along with 20 mL syringes obtained from VWR 

International.  All solutions were prepared using ultra-pure water with a pH of 6.8 and 

resistivity of 18.2 M cm.  An appropriate amount of NaOH and HCl were used to adjust 

solutions to the required pH 

3. METHODS 

3.1. Preparation of Stock Graphene Suspensions 

Stock graphene suspensions were prepared via the method of ultrasonic exfoliation of graphite, 

with continuous surfactant addition [37].  In a typical experiment, surfactant solutions were 

added at a rate of approximately one drop per second to a 2% w/w suspension of graphite 

powder in water over 48 h.  To produce graphene suspensions stabilized using SDS, a 0.1% 

w/w solution of SDS (999 mL) was typically added to the graphite solution.  Similarly, a 10% 

w/w solution of Pluronic F108 (900 mL) was added at a rate of approximately one drop per 

second to a 2% w/w suspension (980 mL) of graphite powder in water under ultrasonication 

for 48 h.  CTAB stabilized graphene suspensions were produced by adding a 10% w/w solution 

of CTAB at a rate of approximately one drop per second to a 2% w/w suspension (980 mL of 

graphite powder in water under ultrasonication for 48 h.  The suspensions were then centrifuged 

at 2500 rpm for 20 min to sediment larger, non-exfoliated graphite particles.  The resulting 

CTAB and SDS exfoliated suspensions were dialyzed using 14 kDa dialysis tubing.  
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Concentrated suspensions of Pluronic F108 exfoliated graphene were prepared by evaporating 

the suspension at a temperature of 70 °C to approximately 5% of the original volume before 

being dialyzed using 100 kDa dialysis tubing.  In both cases, dialysis was performed against 

water for a minimum of 48 h to remove unadsorbed surfactant from the stock suspension.   

The concentration of graphene in the stock suspensions was obtained using the method 

described by Lotya et al. [40].  Samples exfoliated using SDS and CTAB were diluted by a 

factor of 20, while samples stabilized by Pluronic F108 were diluted by a factor of 100 before 

the visible light spectra measured using UV-Vis spectroscopy.  Applying the Beer-Lambert 

Law to the absorption intensity of the samples at a wavelength of 660 nm and applying an 

extinction co-efficient [42], ε, of 54.22 L g-1 cm-1, yielded an average graphene concentration 

of 0.107 mg/mL, 0.954 mg/mL and 0.159 mg/mL for suspensions exfoliated using SDS, 

Pluronic F108 and CTAB respectively. 

3.2. Particle Characterization 

The exfoliated graphene particles were characterized using Zeta potential measurements, 

Raman Spectroscopy, UV-Vis Spectrophotometry and a DLS technique.  The zeta potential of 

the graphene particles was determined using a Malvern Zetasizer Nano complete with MPT-2 

autotitrator.  Zeta potential measurements were performed at intervals of 0.5 pH units between 

pH 3.0 and 9, with pH adjustment being performed automatically using an appropriate amount 

of NaOH or HCl.  Raman spectroscopy was conducted on the graphene particles using a 

Renishaw inVia Reflex spectrometer system, with 532 nm excitation laser.  Samples were 

prepared by direct deposition of the undiluted graphene suspension onto silicon wafers and 

measured in the dry state.  Particle sizing was performed using DLS with the Malvern Zetasizer 

Nano. 

3.3. UV-Visible Spectroscopy 
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The main method used to analyses the concentration of organic dyes remaining in solution was 

UV-Vis spectroscopy.  The UV-Vis spectrum of the solutions was measured using a Shimadzu 

1800 UV-Vis spectrophotometer over the wavelength range of 200 - 800 nm with baseline 

correction. 

In order to determine the concentration of organic dye solutions based on UV-Vis spectra, 

calibration curves of the two organic dyes were first constructed.  Calibration curves were 

obtained for solutions of methylene blue at pH 3, 5, 7, and 9, and methyl red sodium salt at pH 

5.  For a typical calibration curve, a 100 mL stock solution of 1000 ppm organic dye solution 

was prepared then adjusted to the appropriate pH.  In the case of methylene blue, 0.25 - 1.5 mL 

of the solution was then diluted to 100 mL with pH adjusted water to yield organic dye solutions 

with a concentration of 2.5, 5, 7.5, 10, 12.5, 15 ppm.  For methyl red, 0.25 - 1 mL of stock 

solution was diluted to 100 mL to yield solutions with a dye concentration of 2.5, 5, 7 and 10 

ppm. Calibration curves were constructed for each of the dyes at each pH.  It was found that a 

linear relationship existed between the concentration and peak absorbance for each organic dye 

at each pH tested (See Supplementary Material).   

3.4. Adsorption of Dyes with Surfactant Exfoliated Graphene 

SDS, Pluronic F108 and CTAB exfoliated graphene suspensions with a graphene concentration 

of 0.053 mg/mL were adjusted to pH 5.  22.5 mL volumes of the suspensions were then added 

to 0.125 mL of 1000 ppm pH 5 methylene blue or methyl red along with 2.375 mL of pH 

adjusted water, yielding 25 mL solutions with an initial dye concentration of 5 ppm (1.56 × 10-

5 M and 1.72 × 10-5 M respectively) and an initial graphene concentration of 0.048 mg/mL.  

Next, the solutions were agitated in a shaker bath at 60 rpm with a temperature of 25 °C for 48 

h and filtered using a 0.02 µm pore size syringe filter.  The filtrate was then analyzed using 

UV-Vis spectroscopy to determine the dye concentration in solution. 
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3.5. Adsorption Isotherms and Temperature Effects on Dye Adsorption 

500 mL SDS exfoliated graphene suspensions were diluted to 1 L with water, and adjusted 

to pH 7.  22.5 mL volumes of the diluted SDS exfoliated graphene suspensions were then added 

to 50 mL conical flasks.  Next, 0.125, 0.25, 0.5, 1.25 and 2.5 mL of pH 7 1000 ppm methylene 

blue, and 2.5 mL of pH 1500 ppm methylene blue were added to the suspensions, along with 

an appropriate amount of pH 7 adjusted water in order to give 25 mL solutions with initial dye 

concentrations ranging from 5 ppm to 150 ppm (4.70 × 10-4 M).  The flasks were stoppered 

and the solutions agitated at 60 rpm in a shaker bath heated to 25 °C.  After 48 h, the solutions 

were filtered using a 0.1 µm pore size syringe filter.  The filtrate was then diluted by a factor 

of 2 for solutions with an initial methylene blue concentration of 20 ppm, and 10 for solutions 

with an initial concentration of between 50 and 150 ppm using water adjusted to pH 7.  The 

UV-Vis spectrum for each sample was then obtained and the peak intensity of each spectrum 

used to determine the concentration of the organic dye from interpolation of the appropriate 

calibration curve.  The equilibrium specific adsorption amount of methylene blue was 

calculated by Equation (1): 

𝑞𝑒 =
(𝐶0 − 𝐶𝑒)𝑉

𝑊
 

(1) 

Where: 

 𝑞𝑒 = Equilibrium specific adsorption amount (mg/g) 

 𝐶0 = Initial concentration of methylene blue in solution (mg/L) 

 𝐶𝑒 = Equilibrium concentration of methylene blue in solution (mg/L) 

 𝑉 = Volume of solution (L) 

 𝑊 = Mass of adsorbent (g) 

3.6. Adsorption Kinetics and Effect of Contact Time on Dye Adsorption 
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Again, 500 mL SDS exfoliated graphene suspensions were diluted to 1 L with water and 

adjusted to pH 7.  90 mL volumes of the diluted suspensions were then added to 100 mL conical 

flasks.  Next, 1, 5, and 10 mL of pH 7 1000 ppm methylene blue were added to the suspensions, 

along with an appropriate amount of pH 7 adjusted water in order to give 100 mL solutions 

with initial dye concentrations of 10, 50 and 100 ppm.  The flasks were stoppered and the 

solutions agitated at 60 rpm in a shaker bath with a temperature of 25 °C and 35 °C over a 

period of 48 h.  Aliquots of approximately 10 mL were then withdrawn at 10, 30, 60, 120 (2 

h), 240 (4 h), 480 (6 h), 1440 (24 h) and 2880 (48 h) min and filtered using a 0.1 μm pore size 

syringe filter.  The UV-Vis spectrum of each sample was obtained in order to determine the 

dye concentration.  The specific adsorption amount of methylene blue for each withdrawal, q𝑡, 

was then calculated in a similar manner to Equation (1). 

The effective surface charge of the graphene particles was also measured as a function of 

time.  In a typical experiment, 45 mL of the diluted suspension along with 4.5 mL of water 

adjusted to pH 7 was introduced into the autotitrator flow system.  Next, 0.5 mL of pH 7 1000 

ppm methylene blue was added to the suspension in order to yield a 50 mL solution with initial 

dye concentration of 10 ppm.  The zeta potential was measured over a period of 600 min, with 

the system monitoring the pH of the solution and applying intermittent agitation to the solution 

approximately every 2 min. 

3.7. Effect of pH on Dye Adsorption 

100 mL of SDS exfoliated graphene suspension were diluted to 200 mL with water and adjusted 

to pH 3, 5, 7 and 9.  22.5 mL volumes of the diluted graphene suspensions were then added to 

50 mL conical flasks.  Next, 1.25 mL of 1000 ppm methylene blue with corresponding pH was 

added to the suspensions, along with 1.25 mL of pH adjusted water, yielding 25 mL solutions 

with an initial dye concentration of 50 ppm.  The solutions were then agitated in a shaker bath 
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at 60 rpm with a temperature of 25 °C for 48 h and filtered using a 0.1 µm syringe filter.  A 

10% v/v solution of the filtrate was then prepared and analyzed using UV-Vis spectroscopy to 

determine the dye concentration in solution.  The equilibrium specific adsorption amount of 

methylene blue was then calculated. 

4. RESULTS AND DISCUSSION 

4.1. Characterization of Graphene  

The optical, vibrational and physical properties of the exfoliated graphene particles were 

characterized prior to their use in subsequent adsorption experiments using UV-Vis 

spectroscopy, Raman spectroscopy, DLS and zeta potential measurements.  The UV-Vis and 

Raman spectra, together with the DLS particle sizing results were used to confirm the lattice 

quality and size of the graphene sheets (See Supplementary Material)..  The data was consistent 

with earlier measurements [37, 43], and was also supported by previous TEM 

measurements[41].  The zeta potential of graphene particles exfoliated using CTAB, Pluronic 

F108 and SDS were measured as a function of pH in order to determine the effective surface 

charge of the particles (Figure 1).  These measurements are consistent with the literature 

pertaining to surfactant exfoliated graphene [44], where the zeta potential values of the particles 

are dominated by the charge imparted by the adsorbed surfactant during the exfoliation process.  

For instance, the graphene particles exfoliated using SDS, an anionic surfactant, exhibited a 

significant negative charge of between -47.5 and -66.8 mV, whilst graphene particles exfoliated 

using the cationic surfactant, CTAB, demonstrated a considerable positive charge of between 

50.5 and 27.4 mV.  In both cases, the charge exhibited by the graphene particles is consistent 

with the presence of strongly bound ionic surfactant molecules, despite extensive dialysis. 

Furthermore, these zeta potential values remain largely outside the region of colloidal 

instability (±30 mV), indicating electrostatic repulsion alone is sufficient to prevent particle 
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aggregation.  In contrast, graphene particles exfoliated using the non-ionic surfactant, Pluronic 

F108, exhibited low effective surface charges of between -10.0 and -35.7 mV, which is 

consistent with previous studies where the particles were shown to derive colloidal stability 

primarily through steric effects [43].  However, regardless of the surfactant employed during 

the exfoliation process, the zeta potential of the graphene particles becomes progressively more 

negative with increasing pH.  This occurs as a result of the oxygenated edge defect sites on the 

graphene sheets introduced during the sonication procedure [45, 46], which become 

deprotonated at higher pH.  Collectively, these results support earlier work suggesting that 

highly stable suspensions of graphene particles with tailorable surface charges can be produced 

through the surfactant-assisted ultrasonic exfoliation of graphite using variously charged 

surfactants[44]. 

4.2. Adsorption of Ionic Dyes with Surfactant Exfoliated Graphene 

Adsorption studies were conducted using solutions of organic dye and surfactant stabilized 

graphene under a variety of different solution conditions.  These measurements were performed 

to determine the effect of pH, temperature, dye concentration and contact time on the 

adsorption capacity of surfactant stabilized graphene particles.  Experiments were also 

conducted in order to examine the effect of graphene particle surface charge and overall charge 

exhibited by the organic dye molecules on dye adsorption. 

4.3. Effect of Surfactant on Dye Adsorption 

The adsorption capacity of graphene particles exfoliated using various surfactants were 

investigated in order to determine the primary interactions responsible for dye adsorption.  In 

this series of experiments, 25 mL solutions initially containing either 5 ppm methyl red or 

methylene blue and together with 0.048 mg/mL graphene exfoliated using CTAB, Pluronic 

F108 and SDS at pH 5 were studied.  The results of the experiments are shown in  
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Table 1. 

Table 1 shows that each type of graphene suspension is able to remove both anionic and 

cationic organic dyes from solution, irrespective of surfactant used during the sonication 

process.  The minimum amount of dye adsorbed by each type of graphene suspension is similar, 

varying between 22.1 and 27.9%.  However, graphene suspensions prepared using a particular 

surfactant favor the adsorption of a particular dye.  Furthermore, the type of dye favored 

generally exhibits an opposite charge to that of the exfoliated particles.  For instance, CTAB 

exfoliated graphene particles adsorbed the greatest amount of methyl red, with over 50% of 

dye removed from solution.  In contrast, SDS exfoliated graphene particles were shown to be 

particularly effective in the removal of the methylene blue, with less than 13.5% of dye 

remaining in solution following exposure to the graphene suspension.  Due to this particular 

result, the adsorption of methylene blue by SDS exfoliated graphene was chosen as the basis 

for all subsequent adsorption experiments.  Pluronic F108 exfoliated graphene particles were 

also able to remove a larger percentage of methylene blue than methyl red, albeit to a lesser 

extent than the SDS exfoliated graphene suspension. Thus, it is clear that the graphene 

suspensions exhibit different maximum adsorption capacities with respect to each of the 

organic dyes. 

The differences in adsorption capacity are likely to be caused by the different types of 

intermolecular interactions possible between the surface of the graphene particles and the dye 

molecules.  These interactions result from the three distinct areas on the graphene particles, 

namely the oxygen containing edge groups, the conjugated graphene structure and the adsorbed 

surfactant, together with the charge and structure of the dye molecules.  At pH 5, the 

electrostatic charge of the adsorbed surfactant dominates the net effective surface charge of the 

graphene particles.  At this pH, CTAB exfoliated graphene particles exhibit a positive charge, 
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the Pluronic F108 exfoliated graphene possesses a low negative charge, whilst SDS exfoliated 

graphene possesses a significant negative charge.  Given the pKa of methylene blue and methyl 

red are 3.8 and 4.8 respectively [47, 48], the dye molecules exist largely in their charged states 

at pH 5.  As a result, specific combinations of effective surface charge on the graphene particles 

and charge on the dyes can be used to facilitate electrostatic based interactions.  In contrast, 

electron-rich species such as the conjugated graphene structure and aromatic systems on the 

organic dye molecules may enable adsorption through non-electrostatic interactions. 

The ability to remove the dyes from solution, regardless of the effective surface charge on 

the graphene particles, is consistent with non-electrostatic interactions between the graphene 

surface and the dye molecules.  It is likely that these interactions are comprised primarily of π-

π interactions, which typically exhibit greater interaction strengths than van-der Waals 

interactions.  π-π interactions have been shown previously to drive adsorption of planar 

aromatic compounds such as phenanthrene and biphenyl from solution onto graphene based 

materials [49].  As methylene blue and methyl red are both planar molecules with aromatic π-

electron systems, they possess the required configuration to align and gain close proximity to 

the conjugated structure of the graphene sheets so as to facilitate π-π stacking.  However, the 

positioning of dye molecules along the graphene surface and subsequent formation of π-π 

interactions is likely to be prevented in areas where the stabilizing surfactant is adsorbed.  

Consequently, the size and number of the surfactant molecules adsorbed to the carbon surface 

may affect the adsorption capacity of the graphene particles.  This may account for the slight 

variation in dye adsorption observed when anionic methyl red is adsorbed using graphene 

exfoliated with a non-ionic and anionic surfactant. 

While the adsorption measurements indicate that dye adsorption is possible through non-

electrostatic interactions, the data also suggests that strong, attractive electrostatic interactions 
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between the dye and graphene particles promote further removal of dye from solution.  Since 

the zeta potential measurements shown in Figure 1 indicate the electrostatic charge imparted 

by the ionic surfactants is distributed across the particle, it is likely areas close in proximity to 

the adsorbed surfactants will experience higher affinity for the dye molecules when favorable 

electrostatic interactions are permitted.  Favorable electrostatic interactions are possible 

between the cationic CTAB exfoliated graphene particles and the anionic methyl red, as well 

as between the anionic SDS exfoliated graphene particles and the cationic methylene blue 

molecules.  Pluronic F108 exfoliated particles are also capable of establishing attractive 

electrostatic interactions with cationic methylene blue, although to a lesser extent than the SDS 

exfoliated graphene due to the magnitude of the particle surface charge.  The presence of these 

interactions is consistent with the results shown in  

Table 1, which demonstrate that the graphene particles adsorb a greater percentage of dye 

when the dye exhibits an opposite charge to that of the particles.  Consequently, the adsorption 

of organic dyes onto surfactant exfoliated graphene particles is maximized when attractive 

electrostatic interactions are permitted to occur. 

4.4. Effect of Contact Time on Dye Adsorption 

The effect of contact time on adsorption of methylene blue onto SDS exfoliated graphene was 

investigated over a period of 48 h using samples with initial dye concentrations of 10, 50 and 

100 ppm.  The results of the adsorption measurements are shown in Figure 2.   

 

Figure 2 indicates that adsorption of methylene blue by SDS exfoliated graphene occurs 

regardless of initial dye concentration and contact time.  A high degree of adsorption is 

observed only 10 mins after contact with the dye.  This was the minimum adsorption time able 

to be measured due to the amount of time required to filter the solutions.  As the experiment 
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proceeds, the specific adsorbed amount of methylene blue dye generally remains constant 

within experimental error.  This suggests that the system achieves equilibrium within the first 

10 min of the experiment.  The rapid rate of adsorption can be attributed to the high surface 

area and accessibility of adsorption sites of the graphene particles in solution that are available 

to participate in the adsorption process.  Given the results presented earlier in  

Table 1, the adsorption process is likely governed by electrostatic interactions between the 

cationic methylene blue and anionic SDS exfoliated graphene particles.  Consequently, the 

effective surface energy of the particles may also vary with contact time. 

The zeta potential of the graphene particles was monitored during the initial stages following 

dye addition in order to further examine the mechanism of adsorption as a function of contact 

time.  As shown in Figure 3, the zeta potential of the graphene particles increases from -46.3 

mV during the first 240 minutes after initial contact with the dye to an approximate plateau 

value of -30 mV.  This initial increase in zeta potential over time is again consistent with the 

electrostatically driven adsorption of methylene blue onto SDS exfoliated graphene particles.  

As the amount of cationic dye molecules adsorbed to the graphene particles increases, the 

number of unbalanced negative charges on the particle surface decreases, thereby increasing 

the overall effective surface charge.  Typically, as the zeta potential enters the region of 

colloidal instability, ±30 mV, repulsive electrostatic interactions are insufficient to maintain 

particle stability.  This tendency to aggregate at low surface charges is supported by visual 

observations (Figure 4), which show significant aggregation after 120 min and near complete 

aggregation of dispersed particles after 240 min.  In contrast, graphene dispersions remain 

stable for several months in the absence of dye. 
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4.5. Adsorption Kinetics 

The mechanism controlling the adsorption of methylene blue from solution by SDS exfoliated 

graphene was further investigated by modelling the adsorption kinetics of the process.  The 

data presented in Figure 2 was analyzed using two common kinetic models, the pseudo-second 

order [50] and intra-particle diffusion kinetic model [51] (See Supplementary Material).  The 

results of the kinetic models are shown in Figure 5 and Figure 6 with relevant constants and 

model fitting parameters given in Table 2.  The pseudo-second-order model offers excellent 

agreement with the experimental data for all dye concentrations studied, as evidenced by the 

very high coefficients of determination for the linear regression.  The model also predicts the 

equilibrium specific adsorbed amount of methylene blue accurately, with less than 2.3% 

difference between the experimental (𝑞𝑒,𝑒𝑥𝑝) and calculated (𝑞𝑒,𝑐𝑎𝑙𝑐) equilibrium specific 

adsorption amount, 𝑞𝑒.  In contrast, the intra-particle diffusion model provides a poor 

description of the experimental data, with 𝑅2 values less than 0.5.  In the event that the model 

is applicable, 𝐶, the model constant, indicates whether intraparticle diffusion is the rate 

controlling step in the adsorption process.  Here, 𝐶 is non-zero for all dye concentrations 

studied, indicating that adsorption of methylene blue dye onto SDS exfoliated graphene occurs 

through a complex adsorption mechanism instead of simple intraparticle diffusion. 

 

 

 

 

4.6. Effect of Temperature on Dye Adsorption 
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As temperature is also a critical factor in determining the adsorption capacity of a material, the 

effect of temperature on the adsorption of methylene blue was also investigated.  The 

adsorption of dye onto SDS exfoliated graphene particles was studied at equilibrium using 

initial dye concentrations of 5, 10, 20, 50 and 100 ppm at 25, 35 and 45 °C.  The results of the 

these experiments are shown in Figure 7, where the specific adsorbed amount of methylene 

blue, 𝑞𝑒, is presented in terms of the equilibrium concentration of methylene blue in solution, 

𝐶𝑒. 

 

 

The majority of adsorption experiments described in this study were performed at 25 °C, 

where SDS exfoliated graphene exhibits a maximum adsorption capacity for methylene blue 

of 782.3 mg/g.  This value is greater than that of nearly 200 other adsorbents listed in the 

literature[52], including various natural materials, bioadsorbents, agricultural wastes, industrial 

adsorbents, as well as activated carbons and coals used for commercial and research purposes.  

It is also greater those of other graphene-based materials including reduced graphene oxide[53] 

and graphene oxide[54].  Additionally, SDS exfoliated graphene exhibited higher maximum 

adsorption capacities for methylene blue than several other novel adsorbent particles recently 

reported in the literature[55-57].  However, there remains a small number of materials which 

exhibit greater maximum adsorption capacities than SDS exfoliated graphene including 

commercial activated carbon (980.3 mg/g)[58], PMAA modified biomass of baker’s yeast 

(869.6 mg/g)[59] and teak wood bark (914.59 mg/g)[60].  In general, these adsorbents require 

at least 30 minutes to achieve maximum adsorption of methylene blue, unlike the SDS 

exfoliated graphene particles, which have been shown to reach equilibrium within 10 minutes 
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(Figure 2).  Thus, SDS exfoliated graphene particles exhibit excellent adsorption characteristics 

with respect to methylene blue at 25 °C. 

From Figure 7, it is clear that an increase in temperature reduces the adsorption capacity of 

SDS exfoliated graphene.  As the temperature increases from 25 °C to 45 °C, the maximum 

adsorption capacity of SDS exfoliated graphene decreases to 701.4 mg/L.  Despite a reduction 

in adsorption capacity, these values remain far greater than other graphene-based materials 

such as reduced graphene oxide, which has maximum adsorption capacities ranging from 

153.85 to 204.08 mg/g when the temperature is varied from 20 to 40 °C [53].  Consequently, 

SDS exfoliated graphene remains an effective adsorbent under different environmental 

temperatures.  The inverse relationship between adsorption capacity and temperature such as 

that shown in Figure 7 is indicative of an exothermic process[61], which is consistent with the 

standard thermodynamics of adsorption. 

 

4.7. Equilibrium Adsorption Isotherm 

In order to further investigate the process governing the adsorption of methylene blue onto SDS 

exfoliated graphene, the data presented in Figure 7 was analyzed using two frequently utilized 

adsorption isotherm models, the Langmuir and Freundlich adsorption isotherms (See 

Supplementary Material).   

The Langmuir adsorption isotherm as applied to the experimental data is shown in Figure 8, 

with relevant constants and model fitting parameters given in Table 3.  Figure 8 shows good 

agreement between the adsorption model and experimental data at 25 °C, which is supported 

by the high coefficient of determination presented in Table 3.  However, the other 𝑅2 values 

suggest the data becomes less consistent with the Langmuir model of adsorption as the 

temperature increases.  Additionally, the theoretical maximum specific adsorption amount, 
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𝑞𝑚𝑎𝑥, shown in Table 3 does not correspond well with experimental results, indicating the 

adsorption process is not adequately described by the Langmuir isotherm. 

 

 

 

The Freundlich adsorption isotherm is shown in Figure 9, with relevant constants and model 

fitting parameters given in Table 4.  Figure 9 shows reasonable agreement between the 

experimental data and adsorption model at all temperatures studied.  This is supported by the 

high 𝑅2 values given in Table 4, which suggest better overall agreement with the Freundlich 

model than the Langmuir adsorption isotherm.  Consequently, the data indicates that the 

surfaces of SDS exfoliated graphene particles tend to behave like heterogeneous surfaces with 

specific active sites during the adsorption process.  Such a result is consistent with the known 

surface properties of surfactant exfoliated graphene, including the presence of chemically 

distinct species in specific areas along the surface and edges of the carbon lattice.   

 

 

The relationship between temperature and the isotherm constants shown in Table 4 also 

suggests the experimental data is compatible with the Freundlich adsorption isotherm.  As the 

temperature decreases, the slope of the isotherm 
1

𝑛
 approaches 0, indicating the surface becomes 

more chemically heterogeneous [62].  This could directly reflect changes in the amount of 

adsorbed SDS present on the graphene surface with temperature, as the quantity of adsorbed 

ionic surfactant at a solid surface generally decreases at heightened temperatures due to an 

increase in kinetic energy of the species [63].  While 
1

𝑛
 is related to surface heterogeneity, the 
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Freundlich exponent, 𝑛, indicates the favorability of the adsorption process, with adsorption 

typically occurring for 𝑛 < 1.  The values for 
1

𝑛
  in Table 4, suggests that adsorption of the dye 

onto the particles is favorable at all temperatures studied, yet becomes less favorable as the 

temperature is increased.  Given dye adsorption does occur and is likely to be driven primarily 

by strong electrostatic interactions involving the charged surfactant, this trend is also consistent 

with a reduction in the amount of surfactant adsorbed on the graphene particles as the 

temperature is raised.  The proposed relationship between temperature and surface 

heterogeneity is also supported by the trend in the Freundlich adsorption constant, 𝑘𝐹, which 

is observed to decrease with increased temperature.  𝑘𝐹 is an approximate indicator of 

adsorption capacity, suggesting that the adsorption capacity of surfactant exfoliated graphene 

particles decreases upon raising the temperature.  Thus, the isotherm constants shown in Table 

4 suggest the experimental data is reasonably consistent with the Freundlich adsorption 

isotherm model. 

 

 

4.8. Effect of pH on Adsorption 

In order to determine the effect of pH on the adsorption capacity of SDS exfoliated graphene, 

the adsorption of methylene blue was investigated at pH 3,5,7 and 9.  It was found that the 

specific adsorbed amount of dye varies little with pH and is well within experimental error for 

all pH conditions tested (See Supplementary Material).   

The results of this study indicate that surfactant-exfoliated graphene holds great potential as 

an adsorbent for the removal of organic dyes from aqueous solutions.  For instance, the minimal 

time required to achieve equilibrium adsorption of methylene blue coupled with the excellent 

adsorption capacity of SDS exfoliated graphene at 25oC are two highly attractive properties 
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which demonstrate the superior performance of surfactant exfoliated graphene as a carbon 

adsorbent.  The ability for surfactant exfoliated graphene particles to aggregate upon adsorption 

of the dyes may also prove valuable in the separation of these nanoscale adsorbents from the 

liquid phase.  However, a major advantage of these types of particles compared to other 

graphene derivatives is the ability to tailor their particle surface interactions by simply altering 

the type of surfactant employed in the exfoliation process.  This can allow the effective, 

targeted removal of dyes based on electrostatic charge.  For example, unlike surfactant 

exfoliated graphene, graphene oxide inherently possesses negative charges arising from the 

presence of epoxy, hydroxyl and carboxyl groups along the basal plane and has shown to be 

effective in adsorbing only cationic dyes[28].  Furthermore, as electrostatic interactions are the 

primary driver for dye adsorption onto surfactant exfoliated graphene, the particles may have 

the potential to remove a variety of other ionic contaminants from the aqueous phase including 

heavy metal ions and ionic pesticides. 

 

5. CONCLUSIONS 

The ability to adsorb pollutants onto carbon-based materials is a major processing technology 

critical to many industrial wastewater treatment operations and environmental remediation 

activities.  It is particularly efficient at removing biologically harmful contaminants such as 

organic dyes which often resist degradation in aqueous mediums.  In this study, surfactant 

exfoliated graphene particles were used to adsorb two ionic organic dyes, methylene blue and 

methyl red from solution.  The graphene particles were prepared in the presence of a cationic, 

non-ionic and anionic surfactant through aqueous phase exfoliation of graphite.   

At 25 °C, graphene particles stabilized by the anionic surfactant SDS demonstrated excellent 

adsorption of cationic methylene blue from the aqueous phase.  The particles exhibited a 
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maximum adsorption capacity of 782.3 mg/g, greater than that of many other adsorbents in the 

literature.  Furthermore, the adsorption of dye was found to be exceedingly rapid, reaching 

equilibrium within the first 10 mins of contact for all initial dye concentrations tested.  Visual 

observations obtained throughout the adsorption process also indicated rapid particle 

aggregation, which was attributed to a reduction in electrostatic particle stabilization using 

corresponding zeta potential measurements.  This feature could enable rapid separation of the 

particles from solution through either sedimentation or filtration. 

The main mechanism responsible for the adsorption of methylene blue onto SDS exfoliated 

graphene was analyzed using a series of theoretical models, while the effect of solution 

conditions on adsorption were also investigated.  In particular, the temperature of the solution 

had a significant influence on dye removal, with lower temperatures favoring dye adsorption.  

Conversely, adsorption capacity showed little variation with pH, indicating the attractive 

interactions between the oxygenated edge groups and dye had a negligible effect on the amount 

of methylene blue adsorbed.  Meanwhile, the experimental kinetic data provided excellent 

agreement with the adsorption parameters predicted using the pseudo-second order kinetics 

model.  The results from the adsorption experiments were also consistent with the Freundlich 

adsorption isotherm, suggesting adsorption of methylene blue at active sites along the 

chemically heterogeneous SDS exfoliated graphene surface.   

The adsorption of methylene blue and methyl red by surfactant exfoliated graphene was 

shown to be highly dependent on the charge of the stabilizing surfactant.  Zeta potential 

measurements indicated that the overall effective surface charge of these particles was 

dominated by the electrostatic charge on the stabilizing surfactant.  In the case of the non-ionic 

surfactant, particle surface charge was largely influenced by the presence of negatively charged 

oxygenated edge groups.  The percentage of dye removed by each type of surfactant stabilized 
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graphene was maximized when the dye and graphene surface was exhibited opposite charges.  

This adsorption behavior was primarily attributed to attractive electrostatic interactions 

between the ionic dyes and surfactants, with weaker, π-π interactions playing a secondary role 

in dye adsorption.  altering dye-particle interactions through changes in processing conditions 

enabled overall changes in adsorption efficiency.  Thus, the results of these experiments 

collectively illustrate the potential of surfactant exfoliated graphene to act as an effective 

carbon-based adsorbent. 
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Figure 1: Zeta potential measurement of graphene exfoliated using CTAB, Pluronic F108 and 

SDS in NaCl 10-4 M. 
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Figure 2: The effect of contact time on the specific adsorption amount of methylene blue on 

SDS exfoliated graphene particles at various dye concentrations at 25 °C. 

 

 

Figure 3: Zeta potential measurement of SDS exfoliated graphene suspension with 10 ppm 

methylene blue as a function of time at 25 °C. 
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Figure 4: Suspensions of SDS exfoliated graphene with 10 ppm methylene blue 10, 30, 60 

min, 120, 240, 480, 1140 and 2880 min after initial contact with dye at 25 °C. 

 

 

Figure 5: Pseudo-second order model adsorption kinetics for methylene blue adsorbed onto 

SDS exfoliated graphene, where 𝑡 is contact time and 𝑞𝑡 is the specific adsorption amount at 𝑡. 
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Figure 6: Intra-particle diffusion model adsorption kinetics for methylene blue adsorbed onto 

SDS exfoliated graphene. 

 

 

Figure 7: The effect of temperature on the adsorption of pH 7 methylene blue on SDS 

exfoliated graphene particles. 
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Figure 8: Langmuir adsorption isotherms for methylene blue on SDS exfoliated graphene 

particles. 

 

 

Figure 9: Freundlich adsorption isotherms for methylene blue on SDS exfoliated graphene 

particles. 
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Table 1: Percentage of organic dye removed from solution by graphene particles produced 

using surfactants with different electronic characteristics at pH 5. 

Surfactant Methyl Red Removal 

Efficiency (%) 

Methylene Blue 

Removal Efficiency (%) 

CTAB 55.0 22.1 

Pluronic F108 23.5 38.9 

SDS 27.9 86.5 

 

Table 2: Kinetic parameters for pseudo-second order model and intra-particle diffusion model, 

where 𝐶0 is the initial dye concentration, 𝑘2 is the pseudo-second order rate constant, 𝑘𝑝 is the 

intraparticle diffusion rate constant. 

𝑪𝟎 

(ppm) 

Pseudo-second order  Intra-Particle Diffusion 

𝒒𝒆,𝒆𝒙𝒑, 

(mg/g) 

𝒒𝒆,𝒄𝒂𝒍𝒄 

(mg/g) 

𝒌𝟐 

(min-1) 

𝑹𝟐  𝒌𝒑  

(mg g-1 min-0.5) 

𝑪 

(mg/g) 

𝑹𝟐 

10 147.72 172.41 0.000967 0.9996  -0.0689 175.36 0.1051 

50 523.00 526.31 0.000269 0.9997  -0.7409 544.93 0.2364 

100 602.00 588.23 -0.00011 0.9995  -1.238 658.82 0.3026 

 

Table 3: Langmuir adsorption isotherm constants and model fitting parameters, where 𝑘𝐿 is 

the Langmuir constant. 

Temperature (°C) 𝒒𝒎𝒂𝒙 (mg/g) 𝒌𝑳 (L/g) 𝑹𝟐 
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25 833.33 0.085 0.9781 

35 769.23 0.046 0.8896 

45 1428.57 0.008 0.6550 

 

Table 4: Freundlich adsorption isotherm constants and model fitting parameters. 

Temperature (°C) 𝟏
𝒏⁄  

𝒌𝑭 

(mg/g) 𝑹𝟐 

25 0.354 4.95 0.9667 

35 0.307 4.85 0.8809 

45 0.782 2.83 0.9767 
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