Accepted Manuscript

Two new genera of Apsilocephalidae from mid-Cretaceous Burmese amber

Qingqing Zhang, Xuankun Li, Bingqing Xu, Yimeng Zhu, Ruiqi Lu, Bo Wang, David K. Yeates

PII: S0195-6671(17)30384-1

DOI: 10.1016/j.cretres.2017.11.026

Reference: YCRES 3770

To appear in: Cretaceous Research

Received Date: 25 August 2017

Revised Date: 17 November 2017

Accepted Date: 26 November 2017

Please cite this article as: Zhang, Q., Li, X., Xu, B., Zhu, Y., Lu, R., Wang, B., Yeates, D.K., Two new genera of Apsilocephalidae from mid-Cretaceous Burmese amber, *Cretaceous Research* (2017), doi: 10.1016/j.cretres.2017.11.026.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Two new genera of Apsilocephalidae from mid-Cretaceous Burmese
2	amber
3	Qingqing Zhang ^{a, b*} , Xuankun Li ^{c, d*} , Bingqing Xu ^e , Yimeng Zhu ^e , Ruiqi Lu ^e , Bo
4	Wang ^{a, f} and David K. Yeates ^c
5	
6	^a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of
7	Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Rd.,
8	Nanjing 210008, China.
9	^b University of Science and Technology of China, Hefei 230026, China.
10	^c Australian National Insect Collection, CSIRO National Research Collections
11	Australia, Canberra, ACT 2601, Australia.
12	^d Research School of Biology, Australian National University, Canberra, ACT 2601,
13	Australia.
14	^e High School Affiliated to Nanjing Normal University, Nanjing, 210003.
15	^f Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology,
16	Chinese Academy of Science, Beijing 100101, China.
17	Corresponding author: qqzhang@nigpas.ac.cn
18	* These authors contributed equally to this work.
19	
20	Abstract
21	Apsilocephalidae is an enigmatic dipteran family erected by Nagatomi et al
22	(1991), including three extant genera and three additional extinct genera from the
23	Eocene Baltic amber, Eocene Florissant, and mid-Cretaceous Burmese amber. We
24	describe herein two new genera, Myanmarpsilocephala gen. nov. and Irwinimyia gen.
25	nov., from mid-Cretaceous Burmese amber. The female genitalia of
26	Myanmarpsilocephala gen. nov. and male genitalia of Irwinimyia gen. nov. are
27	described and illustrated. The distribution of all Apsilocephalidae species and a key to
28	all genera of Apsilocephalidae is provided. The described diversity of
29	Apsilocephalidae in Burmese amber strongly suggests that apsilocephalid flies

30 diversified at least by the mid-Cretaceous.

31

32 *Key words:* Apsilocephalidae, *Myanmarpsilocephala gen. nov*, *Irwinimyia gen.nov*,

33 Diptera, Cretaceous, Burmese amber

- 34
- 35

36 **1. Introduction**

37 Apsilocephalidae is one of the four asiloid families in the therevoid clade, with relationships estimated to be ((Scenopinidae + Therevidae) + (Apsilocephalidae + 38 Evocoidae)) (Yeates, 2002; Yeates et al., 2003; Winterton et al., 2015; Winterton and 39 Ware, 2015; Shin et al., 2017). The Apsilocephalidae is an enigmatic group with only 40 four described species known from three genera worldwide. Apsilocephalidae was 41 erected as a family by Nagatomi et al. (1991) to include the three genera 42 Apsilocephala Kröber, 1913, Clesthentia White, 1914 and Clesthentiella Nagatomi et 43 al., 1991. Winterton and Irwin (2008) described Kaurimvia from New Zealand and 44 45 considered Clesthentiella Nagatomi et al., 1991 a synonym of Clesthentia White, 1914. The extant apsilocephalid flies have a highly disjunct distribution, 46 Apsilocephala longistyla Kröber, 1913 is found in the southwestern United States and 47 Mexico; Clesthentia aberrans White, 1914 in Tasmania; C. crassioccipitus Nagatomi 48 49 et al., 1991 in Tasmania and Kaurimyia thorpei Winterton and Irwin, 2008 in New Zealand. There are still a number of undescribed species of Apsilocephala from North 50 America (M. Irwin pers. comm.). 51 Although extant apsilocephalid flies are quite rare in collections, fossil 52 53 apsilocephalids are comparatively abundant and diverse. Five fossil species have been 54 described, from Eocene Florissant of USA, Eocene Baltic amber and mid-Cretaceous Burmese amber. Gaimari and Mostovski (2000) described the first fossil 55 apsilocephalid fly Burmapsilocephala cockerelli in mid-Cretaceous Burmese amber; 56 Hauser and Irwin (2005) transferred the Eocene Florissant species Apsilocephala 57 *vagabunda* Cockerell, 1927 from Therevidae to Apsilocephalidae; Hauser (2007) 58 transferred the Eocene Baltic amber species Apsilocephala pusilla Hennig, 1967 from 59

60 Asilidae to Apsilocephallidae; Grimaldi et al (2011) described the second mid-Cretaceous species and genus Kumaromyia burmitica Grimaldi and Hauser, 2011 61 from Burmese amber. Grimaldi (2016) described a new species Burmapsilocephala 62 evocoa Grimaldi, 2016, and emended the diagnosis of Burmapsilocephala. A list of all 63 known Apsilocephalidae and their distributions is provided in Table 1 and Fig. 1. 64 Herein we describe two new genera based on two new species, 65 Myanmarpsilocephala grimaldii gen. et sp. nov. and Irwinimyia spinosa gen. et sp. 66 67 nov., from mid-Cretaceous Burmese amber. The female genital structure of M. grimaldii sp. nov. and male genitalia structure of *I. spinosa* sp. nov. are described and 68 illustrated. A key to the genera of Apsilocephalidae is provided. 69 70 71 2. Material and methods 72 The specimens described herein were collected from the Hukawng Valley of 73 Kachin Province, Myanmar (locality in Kania et al., 2015: their Fig. 1). The age of 74 75 Burmese amber is radiometrically dated at 98.79 ± 0.62 Ma (earliest Cenomanian; Cohen et al., 2013) based on U-Pb zircon dating of the volcanoclastic matrix (Shi et 76 al., 2012). However, the amber displays clear evidence of re-deposition, so the real 77 age of Burmese amber can be older than enclosing rocks (Ross, 2015), hence we 78

79 prefer to refer the amber age as mid-Cretaceous.

The amber pieces have been polished with sand paper with different grain sizes and 80 with polishing power. Photographs were taken using a Zeiss Stereo Discovery V16 81 and Leica DFC 500 microscope systems. In most instances, incident and transmitted 82 83 light were used simultaneously. In some cases, the same piece of amber is coloured 84 differently because the two different microscope systems have different white balance and exposure. All images are digitally stacked photomicrographic composites of 85 approximately individual focal planes obtained using the Helicon Focus 6 and Zerene 86 Stacker software for a better illustration of the 3D structures. The line drawings and 87 figures were prepared with CorelDraw X7. The specimens are housed in the Nanjing 88 Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS). All 89

	ACCEPTED	MANUSCRIPT
--	----------	------------

taxonomic acts established in the present work have been registered in ZooBank (see 90 below), together with the electronic publication LSIC: 91 urn:lsid:zoobank.org:pub:10B71E14-DCB3-4671-B12C-9EA30CF12EE5. 92 93 3. Systematic palaeontology 94 Order Diptera Linnaeus, 1758 95 Suborder Brachycera Zetterstedt, 1842 96 97 Superfamily Asiloidea Latreille, 1802 Family Apsilocephalidae Nagatomi et al., 1991 98 99 Key to genera of Apsilocephalidae 100 1. Cell bm with three corners distally; stylus arista-like, much longer than the length 101 of other antennal segments combined......2 102 103 _ Cell m₃ open; nine pairs of thoracic macrosetae present, including three pairs of 104 2. 105 Cell m₃ closed and petiole; six to seven pairs thoracic macrosetae present, 106 including one or two pairs of notopleural setae present (Burmese 107 amber).....Burmapsilocephala Gaimari & Mostovski, 2000 108 109 3. Antennal stylus elongate, much longer than basal segment of flagellum (North America, Baltic amber, Florissant shale)......Apsilocephala Kröber, 1913 110 111 112 4. Antennal stylus approximately equal length of basal segment of flagellum (apical 113 segment greatly elongate); hind leg longer and thicker than other legs (New 114 Antennal stylus less than half the length of basal segment of flagellum; hind leg 115 116 Vein M₃ straight or absent (Tasmania)......Clesthentia White, 1914 117 5. 118 _ Palp one-segmented; apices of Sc and R_1 without pterostigma surrounded; fore 119 6.

120	femur with a row of posterior setae, mid and hind femora devoid of
121	setaeKumaromyia Grimaldi & Hauser, 2011
122	- Palp two segmented; apices of Sc and R_1 with pterostigma surrounded; fore
123	femur devoid of setae, mid and hind femora with short and strong ventral
124	setaeIrwinimyia gen. nov.
125	
126	Genus Myanmarpsilocephala Zhang, Li, Wang and Yeates gen. nov.
127	(urn:lsid:zoobank.org:act:A541059F-CFA3-4F3C-B935-0D8A6E3BF601)
128	Derivation of name. The name is derived from the country of the type locality,
129	Myanmar.
130	Type species. Myanmarpsilocephala grimaldii sp. nov. By monotypy.
131	Diagnosis. Body slender, thorax short and strongly arched, abdomen elongate
132	and slender. Eyes large, dichoptic in female. Antennal scape elongate, ca. 2x length of
133	pedicel; basal flagellomere round-triangular shaped, stylus arista-like, ca. 3x length of
134	other segments combined. Nine pairs of thoracic macrosetae present, including three
135	pairs of notoplural setae. M_3 and M_4 convergent apically, but cell m_3 open.
136	
137	Myanmarpsilocephala grimaldii Zhang, Li, Wang and Yeates sp. nov.
138	Figs. 2–4
139	(urn:lsid:zoobank.org:act:AAEBC4BB-3E41-4618-9CC9-AD209CBD885F)
140	Derivation of name. Patronym, for David Grimaldi, from the American Museum
141	of Natural History, New York, in recognition of his remarkable contributions to
142	dipterology and paleontology.
143	Material. Holotype specimen number NIGP166977 (female) and paratype
144	specimen number NIGP166978 (female), all stored at Nanjing Institute of Geology
145	and Palaeontology (NIGP), Chinese Academy of Sciences, Nanjing, China.
146	Diagnosis. As for genus, by monotypy.
147	Description. Based on two female flies. Body length 5.8 mm, wing 4.2 mm.
148	Head subsphaeroidal. Eyes completely bare and large, occupying most part of the
149	head; dichoptic in female, inner margins of eyes parallel; all facets with the same

diameter. Frons bare, ca. 2x length of ocellar tubercle. Ocellar tubercle slightly raised, 150 with some short fine hairs. Face small and recessed, bare, clypeus not visible. Gena 151 narrow, with long hairs. Occiput convex except slight concavity behind ocellar 152 tubercle, covered with sparse strong hairs. Antennal scape and pedicel with short hairs. 153 Scape slender, cylindrical, ca. 2x length of width; pedicel rounded, ca. 1x length of 154 width. Length of scape, pedicel and basal flagellomere about 2:1:1. Basal 155 flagellomere round-triangular, apex attached with long, arista-like stylus, covered 156 157 with short pubescence, ca. 3x length of other three segments of antenna combined (Fig. 3B). Proboscis with fleshy labellum protruding slightly beyond oral margin, with 158 sparse fine hairs; palp not visible (Figs. 2B, 3B). 159

Thorax mostly bare of hairs, with only very sparse setulae on scutum and coxae, except scutum and postalar callosity with some hairs. Bristle-like macrosetae as follows: 1 postpronotal; 3 notopleural; 1 suparaalar; 1 postalar; 2 dorsocentral; 1 scutellar (apical). Scutum strongly arched, dorsum of scutellum slightly below that of scutum, scutellum small with some fine hairs on posterior margin, no proscutellum present, subscutellum present (Fig. 2C). Halter fusiform, apically pointed (Fig. 2E).

Wing 4.3 mm long, 1.4 mm wide, hyaline; tip of Sc reaching nearly to middle of 166 wing; tip of R₁ slightly beyond middle of wing. Crossvein sc-r present. R₁ and R₂ 167 almost straight and nearly parallel; R_4 arising half way from the base of R_{4+5} ; R_4 168 strongly curved on basal half and slightly sinuous apically, nearly parallel to R₅; tip of 169 R₅ ending at apex of wing. Crossvein r-m located in the middle of cell d, cell br much 170 longer than cell bm, cell bm with three corners apically. Vein R₅, M₁ and M₂ nearly 171 parallel. Vein M₃ slightly curved to M₄, but cell m₃ open. Cell cu closed with a short 172 173 petiole. A₁ short and apically evanescent. Anal lobe well developed, alula and upper calypter not developed (Figs. 2D, 3A). 174

Legs. Metacoxa with well-developed peg on anterior surface (Fig. 2F). Femora
without setae, tibiae and tarsi with sparse setae. Apical spurs absent. Pulvilli slender,
slightly shorter than claw; empodium bristleform, as long as claw.

Abdomen elongate and slender, nearly cylindrical. Tergites 1 to 3 covered withhairs, tergites 4 to 7 with tiny fine hairs.

Terminalia (female): tergite 8 simple, without long hairs. Tergites 9+10 with ca. 180 8 short acanthophorite spines on each half, posterolaterally with a cluster of ca. 4 long 181 strong setae. Cerci small, shallow, lying between acanthophorite spines, as seen in 182 posterior view (Figs. 3C–D and Figs. 4B–D). 183 184 Genus Irwinimyia Zhang, Li, Wang and Yeates gen. nov. 185 (urn:lsid:zoobank.org:act:C59E8172-662E-40EA-9FB4-40971500E04E) 186 187 Derivation of name. Patronym, for Michael E. Irwin, Arizona State University, Tucson, in recognition of his remarkable contributions to dipterology and collection 188 189 development. *Type species. Irwin spinosa* sp. nov. By monotypy. 190 Diagnosis. Body stout. Eyes large, bare. Scape very slender, width ca. half of 191 pedicel; apical segment of stylus long, ca. 1/2 length of basal flagellomere. Palp 192 two-segmented. Eight pairs of thoracic macrosetae present. Mid and hind femora with 193 ventral setae; hind coxa with small knob on anterior surface. Wing with C ending 194 195 between apices of R₅ and M₁; apices of Sc and R₁ with pterostigma surrounding apices; crossvein r-m located on basal half of cell d, cell br much longer than cell bm; 196 M₃ curved to join M₄, cell m₃ closed and petioled; R₄ and R₅ divergent, not parallel 197 for any part of their lengths. 198 199 Irwinimyia spinosa Zhang, Li, Wang and Yeates sp. nov. 200 (urn:lsid:zoobank.org:act:991DDAC6-B055-4EBB-8585-742EDAE68893) 201 Figs. 5-6. 202 203 Derivation of name. This name refers to the ventral setae on mid and hind femora. 204 Material. Holotype specimen number NIGP166979 (male), stored at Nanjing 205 Institute of Geology and Palaeontology (NIGP), Chinese Academy of Sciences, 206 207 Nanjing, China. Diagnosis. As for genus, by monotypy. 208 Description. Based on a male fly. Body length 4.2 mm; wing length 3.7 mm. 209

Head hemispherical. Eyes completely bare and large, occupying most of the head;
holoptic in male; all facets with the same diameter. Medial margins of eyes meeting
from ocellar triangle to just above bases of antennae, frons small and bare. Ocellar
tubercle slightly raised, with some short fine hairs. Face small and recessed, bare,
clypeus flat. Gena narrow, with long hairs. Postgena well developed, with long hairs.
Occiput flat, covered with sparse strong hairs (Fig. 5B).

Antennal scape and pedicel with short hairs. Scape slender and very thin,
cylindrical, ca. 2x length of width, and width ca. half of pedicel; pedicel rounded, ca.
1x length of width. Length of scape, pedicel and basal flagellomere about 1.2:1:3.
Basal flagellomere long, drop-shaped; second flagellomere annular, stylus longer,
about half length compared to basal flagellomere (Figs. 5B and 6A). Proboscis short,
labellum fleshy and slightly beyond oral margin, with sparse fine hairs; palp clavate
with long ventral hairs, two-segmented, ca. 0.75 length of proboscis (Fig. 6B).

Thoracic scutum and scutellum densely covered with fine setulae. Bristlelike
macrosetae as follows: 0 postpronotal; 3 notopleural; 1 suparaalar; 1 postalar; 2
dorsocentrals (posterior half); 1 scutellar (apical). Scutum strongly arched, dorsum of
scutellum slightly below that of scutum, no proscutellum or subscutellum present.
Pleura mostly bare, except proepisternum and antepisternum covered with fine hairs.
Wing 4 mm long, 1.2 mm wide, tip of Sc reaching nearly to middle of wing; tip

of R₁ reaching slightly beyond middle of wing. Crossvein sc-r absent. Apices of Sc 229 and R_1 with pterostigma surrounding. Apex of cell R_1 and R_2 straight and nearly 230 parallel; R_4 arising over half way from the base of R_{4+5} ; R_4 arising at right angle and 231 slightly sinuous apically, curved anteriorly; tip of R₅ ending at apex of wing. 232 233 Crossvein r-m located on basal half of cell d, cell br much longer than cell bm, cell bm with four corners apically. Apex of R₅ slightly curved forward, M₁ and M₂ nearly 234 parallel. Vein M3 strongly curved to join M4, cell m3 and cu closed and petiolate. A1 235 not visible. Anal lobe well developed, alula and upper calypter not developed (Fig. 236 5C). 237

Legs. Metacoxa with well-developed peg on anterior face. Fore femur withoutsetae; mid femur with two short ventral setae on apical half; hind femur with a row of

short ventral setae, setae denser on apical half (Fig. 6D). Tibiae and tarsae with sparse
setae. Apical spurs absent. Pulvilli slender, slightly shorter than claw; empodium
bristleform, just over half length of claw.

Abdomen 2.4 mm long (excluding genitalia), 0.8 mm wide, taper apically. 243 Tergites and sternites covered with hairs. Terminalia (male): projecteing posterially, 244 slightly flexed dorsally. Epandrium arched over gonocoxites, deeply divided distally; 245 acinacifoliate cercus and thin hypandrium projecting between epandrium lobes. 246 247 Gonocoxite setose, entirely free from epandrium and hypandrium, slightly longer than gonostylus; gonostylus apex slender, handle-shaped, rounded apically; gonocoxite and 248 gonostylus articulating in horizontal plane. Phallus projecting posterodorsally, only 249 middle part visible between epandium and gonocoxite (Figs. 5D, 6E). 250

251

252 4. Discussion

The main diagnostic characters of Apsilocephalidae are antenna with basal 253 flagellum rounded-triangular, with an apical stylus; thorax convex; mesoscutum and 254 255 scutellum with setae; vein R₅ ending at or close to apex of wing; surstyli of male epandrium present (Nagatomi et al., 1991; Hauser, 2007; Winterton and Irwin, 2008). 256 Myanmarpsilocephala gen. nov. is similar to Burmapsilocephala Gaimari and 257 Mostovski, 2000 in having the cell bm with three corners distally and stylus arista-like, 258 259 much longer than the length of other antennal segments combined. It differs from Burmapsilocephala in having the antennal scape elongate, ca. 2x length of pedicel (vs. 260 subequal); cell m3 open (vs. closed); Proboscis short with fleshy labellum (vs. slightly 261 longer and not appear to be fleshy); nine pairs of thoracic macrosetae present, 262 263 including three pairs of notoplural setae (vs. six and two). All except these two Apsilocephalidae genera have three distal corners of cell bm, and the character of 264 three distal corners of bm occurs in combination with a long antennal stylus and only 265 in the extinct species from Burmese amber. The open m₃ cell is only found in the new 266 genus *Myanmarpsilocephala*, and this character is an apomorphy of the genus. 267 Irwinimyia gen. nov. is similar to Kumaromyia, but can be easily distinguished 268

by a two-segmented palp (vs. one-segmented in *Irwinimyia*); the pilosity of both the

thorax and abdomen (vs. pleura devoid of fine or bristle-like setae); wing with Sc complete and pterostigma surrounding apices of Sc and R_1 (vs. without); crossvein r-m located on basal half of cell d (vs. base), br much longer than bm (vs. nearly as long as); mid and hind femur with short and strong ventral setae (vs. bare).

The enigmatic family Apsilocephalidae has an extant distribution in western 274 north America and Australasia. The distribution of extinct species in the Palaearctic 275 and Nearctic regions indicates that the extant distribution is a reduced relictual one. 276 277 The fossil record indicates that the family Apsilocephalidae was diverse at genus and species level and widely distributed in the mid-Cretaceous, pushing the origin of this 278 family back, much earlier than 100 million years ago. Consistent with this implication, 279 molecular divergence time estimation suggests the family originated in the early 280 Cretaceous (Wiegmann et al., 2011). 281

282

283 5. Conclusion

The discovery of two new well preserved apsilocephalid species *Myanmarpsilocephala grimaldii* and *Irwinimyia spinosa* increases the diversity of Apsilocephalidae in mid-Cretaceous Burmese amber. The origin of this family should be much earlier than 100 million years ago. Our findings also further illuminate the relictual nature of the extant distribution of Apsilocephalidae.

289

290 Acknowledgements

We are grateful to Richard Kelly for improving the language, Dany Azar and one anonymous reviewer for reviewing the manuscript and their useful comments on the first version of the paper, Dr. Junfeng Zhang for his recommendation on the general classification of the family Apsilocephalidae. This research was supported by the National Natural Science Foundation of China (41572010, 41622201, 41688103), the Chinese Academy of Sciences (XDPB05), and Youth Innovation Promotion Association of CAS (No. 2011224).

298

299	References
300	Cockerell, T.D.A., 1927. Fossil insects from the Miocene of Colorado. The Annals
301	and Magazine of Natural History 9, 161–166.
302	Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, J.X., 2013 (updated). The ICS
303	International Chronostratigraphic Chart. Episodes 36, 199–204.
304	http://www.stratigraphy.org/index.php/ics-chart-timescale
305	Gaimari, S.D., Mostovski, M.B., 2000. Burmapsilocephala cockerelli, a new genus
306	and species of Asiloidea (Diptera) from Burmese amber. Bulletin of the Natural
307	History Museum Geology 56, 43–46.
308	Grimaldi, D., Arillo, A., Cumming, J., and Hauser, M., 2011. Brachyceran Diptera
309	(Insecta) in Cretaceous ambers, part IV, Significant New Orthorrhaphous Taxa.
310	ZooKeys 148, 293–332.
311	Grimaldi, D.A., 2016. Diverse Orthorrhaphan flies (Insecta: Diptera: Brachycera) in
312	amber from the Cretaceous of Myanmar: Brachycera in Cretaceous Amber, Part
313	VII. Bulletin of the American Museum of Natural History 408, 1–131.
314	Hauser, M., 2007. Baltic amber Therevidae and Apsilocephalidae (Diptera). Studia
315	dipterologica 14, 37–59.
316	Hauser, M., Irwin, M.E., 2005. Fossil Therevidae (Insecta: Diptera) from Florissant,
317	Colorado (Upper Eocene). Journal of Systematic Palaeontology 3, 393-401.
318	Hennig, W., 1967. Therevidae aus dem baltischen Bernstein mit einigen Bemerkungen
319	über Asilidae und Bombyliidae (Diptera, Brachycera). Stuttgatter Beiträge zur
320	Naturkunde 176, 1–14.
321	Kania, I., Wang, B., Szwedo, J., 2015. Dicranoptycha Osten Sacken, 1860 (Diptera,
322	Limoniidae) from the earliest Upper Cretaceous Burmese amber. Cretaceous
323	Research 52, 522–530.
324	Kröber, O., 1913. Beiträge zur Kenntnis der Thereviden und Omphaliden. Jahrbuch
325	der Hamburger Wissenschaftlichen Anstalt 31(Beiheft 2), 29–74.
326	Latreille, P. A., 1802. Histoire naturelle, générale et particulière des Crustacés et des
327	Insectes. Tometroisième. Families naturelles et genres 1762–1833.
328	Linnaeus, C., 1758. Systema naturae per regna tria naturae, secumdum c

329	lasses, ordines, genera, species, cum characteribus, differentiis, synonymis, locis.
330	Tomus I. Editio decima, reformata. Laurentius Salvius, Holmiae, 824 pp.
331	Nagatomi, A., Saigusa, T., Nagatomi, H., and Lyneborg, L., 1991. Apsilocephalidae, a
332	new family of the orthorrhaphous Brachycera (Insecta, Diptera). Zoological
333	Science 8, 579–591.
334	Ross, A., 2015. Insects in Burmese amber. Entomologentagung 0205.03.2015
335	Frankfurt/M. Programm und Abstracts. Frankfurt/Main, 72.
336	Shi, G.H, Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Wang, M.C., Lei, W.Y.,
337	Li, Q.L., Li, X.H., 2012. Age constraint on Burmese amber based on U-Pb
338	dating of zircons. Cretaceous Research 37, 155–163.
339	Shin, S., Bayless, Bayless, K.M., Winterton, S.L., Dikow, T., Lessard, B.D., Yeates,
340	D.K., Wiegmann, B.M., and Trautwein, M.D. (2017). Taxon sampling to address
341	an ancient rapid radiation: a supermatrix phylogeny of early brachyceran flies
342	(Diptera). Systematic Entomology DOI: 10.1111/syen.12275.
343	White, A., 1914. The Diptera-Brachycera of Tasmania. Part I. Families Leptidae,
344	Stratiomyiidae, Nemestrinidae, and Cyrtidae. Papers and Proceedings of the
345	Royal Society of Tasmania, 1914, 35–74.
346	Winterton, S.L., Irwin, M.E., 2008. Kaurimyia gen. nov.: Discovery of
347	Apsilocephalidae (Diptera: Therevoid clade) in New Zealand. Zootaxa 1779,
348	38–44.
349	Wiegmann, B.M., Trautwein, M. D., Winkler, I.S., Barr, N.B., Kim, J.W., Lambkin, C.,
350	Bertone, M.A., Cassel, B.K., Bayless, K.M., Heimberg, A.M., Wheeler, B.M.,
351	Peterson, K.J., Pape, T., Sinclair, B.J., Skevington, J.H., Blagoderov, V., Caravas,
352	J., Kutty, S.N., Schmidt-Ott, U., Kampmeier, G.E., Thompson, F.C., Grimaldi,
353	D.A., Beckenbach, A.T., Courtney, G.W., Friedrich, M., Meier, R and Yeates,
354	D.K., 2011. Episodic radiations in the fly tree of life. Proceedings of the National
355	Academy of Sciences 108, 5690–5695.
356	Winterton, S.L., Hardy, N.B., Gaimari, S.D., Hauser, M., Hill, H.N., Holston, K.C.,
357	Irwin, M.E., Lambkin, C.L., Metz, M.A., Turco, F., Webb, D., Yang, L.L., Yeates,
358	D.K., and Wiegmann, B.M., 2015. The phylogeny of stiletto flies (Diptera:

Therevidae). Systematic Entomology 41, 144–161.

- Winterton, S.L., and Ware, J.L. 2015. Phylogeny, divergence times and biogeography
 of window flies (Scenopinidae) and the therevoid clade (Diptera: Asiloidea).
- 362 Systematic entomology 40, 491–519.
- 363 Yeates, D.K., 2002. Relationships of extant lower Brachycera (Diptera): a quantitative
- 364 synthesis of morphological characters. Zoologica Scripta 31, 105–121.
- 365 Yeates, D.K., Irwin, M.E., Wiegmann, B.M., 2003. Ocoidae, a new family of asiloid
- flies (Diptera: Brachycera: Asiloidea), based on *Ocoa chilensis* gen. and sp.n.
- 367 from Chile, South America. Systematic Entomology 28, 417–431.
- 368 Zetterstedt, J.W., 1842. Diptera Scandinaviae disposita et descripta. Officina
- Lund-bergiana Lundae 1, 1–894.
- 370

371	Figure Captions
372	Fig. 1. Distribution of extant and fossil Apsilocephalidae worldwide. Regions filled
373	with red colour represent distribution of extant species; Δ triangles represent
374	Eocene records; 🛠 star represents Cretaceous records.
375	Fig. 2. Myanmarpsilocephala grimaldii sp. nov., holotype NIGP166977. A,
376	photograph of lateral features, scale bar represents 2 mm; B, photograph of head
377	in ventral view, scale bar represents 0.2 mm; C, photograph of head and thorax in
378	lateral view, scale bar represents 0.5 mm; D, photograph of wing, scale bar
379	represents 0.5 mm; E, photograph of haltere, scale bar represents 0.2 mm; F,
380	photograph of hind coxa, scale bar represents 0.2 mm.
381	Fig. 3. Myanmarpsilocephala grimaldii sp. nov., holotype NIGP166977. A, drawing
382	of wing, scale bar represents 0.5 mm; B, drawing of antenna, scale bar represents
383	0.2 mm; C, photograph of genitalia in lateral view, scale bar represents 0.2 mm; D,
384	drawing of genitalia in lateral view, scale bar represents 0.2 mm.
385	Fig. 4. Myanmarpsilocephala grimaldii sp. nov., paratype NIGP166978. A,
386	photograph of dorsal features, scale bar represents 1 mm; B, photograph of
387	genitalia in dorsal view, scale bar represents 0.1 mm; C, photograph of genitalia
388	in ventral view, scale bar represents 0.1 mm; D, drawing of genitalia in dorsal
389	view, scale bar represents 0.1 mm.
390	Fig. 5. Irwinimyia spinosa sp. nov., holotype NIGP166979. A, photograph of lateral
391	features, scale bar represents 1 mm; B, photograph of head in lateral view, scale
392	bar represents 0.2 mm; C, photograph of wing, scale bar represents 0.5 mm; D,
393	photograph of genitalia in lateral view, scale bar represents 0.1 mm.
394	Fig. 6. Irwinimyia spinosa sp. nov., holotype NIGP166979. A, drawing of antenna,
395	scale bar represents 0.1 mm; B, drawing of palp, scale bar represents 0.1 mm; C,
396	photograph of hind tibia, scale bar represents 0.2 mm; D, drawing of hind tibia;
397	E, drawing of genitalia in lateral view, scale bar represents 0.1 mm.
398	

Genus	Species	Locality	Geological age
Apsiocephala Kröber,	A. longistyla Kröber, 1914	Southwest of US	Extant
1914		and Mexico	
	A. pusilla Hennig, 1967	Baltic amber	Eocene
	A. vagabunda Hauser and	Florissant, USA	Eocene
	Irwin, 2005		
Burmapsilocephala	B. cockerelli Gaimari and	Burmese amber	mid-Cretaceous
Mostovski, 2000	Mostovski, 2000		
	B. evocoa Grimaldi, 2016	Burmese amber	mid-Cretaceous
Clesthentia White,	C. aberrans White, 1914	Tasmania,	Extant
1914		Australia	
	C. crassioccipitus Nagatomi et	Tasmania,	Extant
	al., 1991	Australia	
Irwinimyia gen. nov.	I. spinosa sp. nov.	Burmese amber	mid-Cretaceous
Kaurimyia Winterton	K. thorpei Winterton and Irwin,	New Zealand	Extant
and Irwin, 2008	2008		
Kumaromyia Grimaldi	K. burmitica Grimaldi and	Burmese amber	mid-Cretaceous
and Hauser, 2011	Hauser, 2011		
Myanmarpsilocephala	M. grimaldii sp. nov.	Burmese amber	mid-Cretaceous
gen. nov.			

Table 1. An updated list of all known Apsilocephalidae.

400

401

CER MA

CER AN

CHR MAN

AR AN