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Introduction 

The main results reported in this thesis are bounds on the 

Engel length and nilpotency class of certain group extensions, G, 

in terms of parameters depending only on a normal subgroup H and 

the quotient group G/H. Closely related to these are results 

giving sufficient conditi ons on H and G/H for the group G to 

have certain properties, ranging from being an Engel group (the 

weakest) to being nilpotent (the strongest). There are also results 

in the converse direction, giving corresponding necessary conditions 

in some special cases of group extensions, one of which is the wreath 

product. 

0,1 Notation 

Lower case letters of the Roman alphabet are generally reserved 

for integers, though "S" and "F" occur for particular integer-valued 

functions. Upper case script Ois>M etc.) is used for sets of 

integers; in particular J\f is the set of all positive integers and 

^ the set of all primes. Group elements (except the identity, which 

is everywhere "1") are denoted by lower case letters of the Greek 

alphabet. Upper case German script (here written U, V,etc.) is 

used for varieties; in particular N^ is the variety of all nilpotent 

groups of class less than or equal to c, B^ is the variety of all 

groups of exponent dividing v, A(= N̂ )̂ is the variety of all 

abelian groups, and A = A^B . ° ^ ^ =v =n=v 
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For any group G and variety V, the corresponding verbal 

subgroup (the intersection of all normal subgroups H of G such 

that G/H e V) is written V(G); where V = A it is usually 

written G' rather than A(G), 

The usual notation is used for conjugates 

(a*̂  = a'*̂  = (a"^)'^), commutators ([a,(3] = a'^p'^ap = a'^a'^, 

inductively [a^^a^, ^n-l^^'n^ " 

and Engel commutators ([cx,,np] = [a^P, . . ., P>] , in particular 
n 

[a,Op] = a). 

Square brackets are also used for references^ and to denote 

the integer part of a real number ([r/s] is the greatest integer 

n such that n < r/s); no confusion should arise. 

If n^ and n^ are any two properties of groups, and the 

group G has a normal subgroup H such that H has property H^ 

and G/H has property TL̂  then G will be said to have the product 

n^n^ of these properties. If for some 11 every group with property 

n n also has property H, then 11 is said to be idempotent. 

The restricted and unrestricted direct products of the indexed 
(x) X set of groups (A_ 5 e A] are denoted by H^ and 11 A„ 

° 5eA S 5eA ^ 
respectively, the free product (see 18.11 of [10] for definition) by 

T T * n A , and the verbal product associated with the variety V 
5eA ^ 
(defined in 18.31 of [10]) by n= A,. 

5eA 0 
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The restricted and unrestricted wreath products^ A wr B and 

A Wr B respectively, of the groups A and B are well-known 
('x) X constructionso When the base group, K = ^U^ A((3) or A(3), 

P £B P £B 
is regarded as a set of functions from B to A with multiplication 

defined componentwise, the support of any element cj) of the base 

group is defined to be [P e B | 3c|) 1} . For any P e B, the set 

of elements of K whose support is contained in [P] is clearly a 

subgroup isomorphic with A. It is denoted A(P) and called the 

coordinate subgroup of W corresponding to P; when P = 1, it 

will be called the first coordinate subgroup, A(l). Under a 

fixed isomorphism from A to A(P), the image of arbitrary element 

a e A will be written a(P). Note that when B is identified D 
with a complement of K in W, a(p) = a(l) for all P e B. 

Similar notation will be employed for the verbal wreath 

product A wr^ B, corresponding to the variety V, of the groups 

A and B which is defined in a similar way to the restricted 
V (x) standard wreath product, except that ^H- A(P) replaces ^H^ A(P) 

as the base group. Elements of the base group can now no longer 

be regarded as functions; however, if an order, ^ say, is 

defined on the elements of B, then 18.35 of [10] shows that every 

element of the base group may be written uniquely in the form 

cx, (PJ a (p ) ... a (p ) r 1 1 z z m m 

where P]̂  ' ' ' ̂  '̂ m' ^ ^ 1 < i < m, and y belongs 

to the cartesian of the verbal product. Note that y depends on 
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the particular ordering, ^ , chosen; but the a^ do not. Hence 

it is still possible to speak unambiguously of the support of an 

element of the base group, and of coordinate subgroups. 

0.2 Background 

The bounds on Engel length and nilpotency class presented in Chap-

ters 3 and 4 do not involve the concept of varieties of groups, but 

they arose from an enquiry directed toward the properties of product 

varieties. 

A group G is said to belong to the product variety VW if 

and only if it contains a normal subgroup N such that N £ V and 

G/N e Wo AS Smel'kin has pointed out (in [ 1 2 ] ) , the fact that 

every variety can be uniquely represented as a product of 

indecomposable varieties gives rise to an interest in knowing the 

properties of a product variety in terms of the properties of its 

factors. (A variety is said to have a property, applicable to 

groups,if every group in the variety has that property.) 

Some such results are trivial. For example, a product 

variety clearly is soluble if and only if all its factors are soluble, 

and has finite exponent equal to the product of the exponents of its 

factors if and only if they all have finite exponent. Several non-
V 

trivial properties are proved by Smel'kin in the same paper. A 

product VW of two non-trivial varieties V and W possess a 

"root property" residually if and only if both V and W do (3.4); 
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it can never be nilpotent (4,2); its free groups of finite rank may 

be presented with a finite number of relators if and only if V has 

the same property and W is locally finite (5,4); and it is a 

Cross variety (i,e,, is generated by a finite group) if and only if 

V is nilpotent^ W is abelian, and V and W have finite coprime 

exponents (6.3), 

To this list we addj in §1,6 of the present thesis, that 

if V and W are both non-trivial, then VW is locally nilpotent 

if and only if V and W are both locally nilpotent, and both have 

exponents equal to powers of one prime, p; and that for W to be 

an Engel variety, it is necessary that V and W both have p-power 

exponent and both be Engel varieties, and is sufficient that both 

have p-power exponent, V be locally nilpotent, and W be Engel. 

Smel'kin's results about the free groups of product varieties 

were obtained as special cases of results about groups of the form 

F/V(R), where F is an absolutely free group, R < F, and V is 

a non-trivial variety. In the special case R = W(F), the group 

F/V(W(F)) is free with the same rank as F in the variety W . 

A major tool used by Smel'kin was his "embedding theorem", stated 

here in a form due to Kovlcs [8] : 

0.2,1 Theorem (SMEL'KIN, [12], Theorem 2.1) 

Let F be an absolutely free group on the generators 

{cc. I i e A] , R a normal subgroup of F, and V a variety. Then 



§0.2 

the factor group F/V(R) may be embedded in F/V(F) wr^ F/R in 

such a way that f^ V(R) is mapped onto f^N . f^V(F)(l) where 

f^N is in the top group, and f^V(F)(1) is the corresponding 

generator in the first coordinate subgroup of the base group. 

It was pointed out by Smel'kin - see also Kovlcs [8] and 

Dunwoody [3] - that the "Magnus embedding" is the special case 

V = A of §mel'kin's embedding theorem. Bachmuth and Hughes [1] 

have used the Magnus embedding to give simple proofs of the following 

earlier results : 

0.2.2 Theorem (B.H. NEUMANN, K. GRUENBERG) 

If F/R' is an Engel group, then F = R. 

0.2.3 Theorem (M. AUSLANDER and R.C. LYNDON) 

The group F/R is finite if and only if F/R' has non-trivial 

centre, 

0.2.4 Theorem (K. GRUENBERG) 

If F/B (R).R' is an Engel group, then either F = R or =m 
m is a power of a prime p, and F/R is a p-group. 

§mel'kin has generalised the "if" part of 0.2.3 : 

0.2.5 Theorem (A.L. SMEL'KIN, [12], 4.1) 

If F is a non-cyclic (absolutely) free group, V is a 

non-trivial variety, and F/R is infinite, then F/V(R) has trivial 

centre. 
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The "only if" part of 0.2.3 can not be similarly generalised. 

Though it remains true if V = N or even V = (N N ... N ) N = =c = =c, n =c 

or if V c A^ it is not hard to show that it is false if V is a 

variety^ such as A^A, whose non-cyclic free groups have trivial 

centre. Theorem 1.2,1 of this thesis generalises both 0.2.2 and 

0.2.4^ and 1.4.1 provides a partial converse. 

Baumslag in §3 of [2] has found a necessary and sufficient 

condition for a wreath product to be nilpotent; the sufficient 

condition actually applies to group extensions in general (Lemma 3.8). 

Liebeck [9] has found the exact nilpotency class of a nilpotent wreath 

product A wr B in the special case where A and B are both 

abelian. Scruton in [11] has obtained upper and lower bounds for 

the nilpotency class of nilpotent wreath products in general^ but 

these bounds are of widely different magnitudes. In Chapter 4 of 

this thesis^ an upper bound for the nilpotency class of any group 

extension satisfying Baumslag's sufficient condition is obtained. 

It coincides with that of Liebeck for A wr B when A and B are 

both abelian^ and is in fact attained by the wreath product A wr B 

when A and B have arbitrary nilpotency class. However it 

suffers in depending on two rather complicated parameters of the 

group B^ whereas Scruton's bounds use simply the order of this 

group. 
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0.3 Note on weight of a commutator 

In Chapters 3 and 4, ideas closely connected with the weight 

of a commutator occur frequently. The weight of a particular given 

commutator expression may be defined quite simply; however some 

difficulty arises when it is not the expression as such but the 

group element represented by the expression that is under 

consideration. 

In the introduction of [13], Ward gives a summary of the 

"conventional theory of basic commutators". If a group G is 

generated by the set of elements G^, elements of G^ are considered 

to be basic commutators of weight 1, and may be well-ordered in any 

way. When c > 1 and basic commutators of weight less than c 

have been defined and ordered, the basic commutators of weight c 

are expressions of the form [̂ r̂j] where i and T) are basic 

commutators of weights r and s respectively, r+s = c, ^ follows 

R) in the ordering, and if | = then ^^ preceds T]. 

If the last two conditions (about ordering) are omitted, this 

same process gives the weight of any commutator expression, not 

necessarily basic. 

One difficulty which arises in assigning a weight to a 

commutator as a group element is the possibility that two commutator 

expressions with different weights may be equal as group elements. 

For example, if a,P,r;,S,e e G^, and [a,3] = [r^&^S] = | , shall 

we say that ^ as an element of G has weight two or three? 
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Another difficulty is the choice of generating set. Clearly 

it is possible for a group element to have widely differing weights 

when expressed as a commutator in terms of different generating sets. 

Still another question is that of extending the idea of weight 

to arbitrary group elements^ including those which cannot be expressed 

as commutators. What will happen to an element which can be 

expressed as a single commutator of weight two (but not higher weight) 

or as a product of other commutators all of weight four? 

A full discussion of these problems becomes very involved. 

For the purposes of the present thesis, the second difficulty will 

be met by choosing G^ = G, so that every element of every group is 

considered to be a commutator of weight one. Let G^ be the set of 

group elements which may be expressed as commutators of weight i in 

terms of G^. For some applications, we will be concerned simply 

with the fact that an element belongs to G^. One way (which will 

not concern us in this thesis) of defining uniquely the weight of an 

element | is to say that ^ has weight i when | e G^ and 

I / G. for j > i. The weight of an element belonging to an 

infinite number of the G^ (in particular, the identity) could be 

considered infinite. 

Another possible approach, which can give a different answer 

to the third question above, is to say that | has weight i if 
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^ e sgp (G^ 1 i < j] and ^ i sgp [G^ | i < j] 

The choice G^ = G means that sgp [G^ | i < j} = In 

some applications this idea of weight also will be used. 
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Chapter 1 

Non-numerical results 

Related to (i) being nilpotent^ but progressively weaker, are 

the group properties: (ii) being locally nilpotent, (iii) having all 

k-generator subgroups nilpotent for some fixed k e^V^ and (iv) being 

an Engel group. The class of all groups having any one of these 

properties is not a variety. 

However, corresponding to each, there is a bounded, varietal 

property. These are: (i)' being nilpotent of class at most c 

for fixed c e ^ (ii) ' having all k-generator subgroups nilpotent 

of class at most c(k) for all k where c is a function from 

y V to / f ; this we will call being boundedly locally nilpotent; 

(iii) ' having all k-generator subgroups nilpotent of class at most 

c for fixed k, c e/f, and (iv) ' satisfying an Engel condition. 

Every nilpotent group is, of course, nilpotent of finite 

class, so that each group having the property (i) also has (i)'. 

However a group G may have one of the properties (ii), (iii), or 

(iv) without having the corresponding bounded property. In this 

case there are groups in the variety generated by G - for example, 

the countably infinite Cartesian power of G - which do not have the 

property. In a variety in which every group has one of the 

properties (i) to (iv), every group has, in fact, the corresponding 

bounded property. In particular, every group of an Engel variety 
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satisfies the i th Engel condition for a fixed i e ^^^depending 

only on the variety, and every group of a locally nilpotent variety 

is boundedly locally nilpotent, the function c - . J f ^ J ^ determined 

by the variety. 

In order that an arbitrary group G with normal subgroup H 

should have any one of these properties, the only necessary 

condition on H and G/H is that both have the required property. 

This is shown by the example in which H is a direct factor of G 

and the given condition is sufficient. Besides being trivial, 

this necessary condition is much weaker than a sufficient condition 

in general cases, and for this reason necessary conditions are 

considered only for two special types of group extensions. 

In both of these types, one of splitting and one of non-

splitting extensions, all elements outside the normal subgroup H 

have a genuine effect on the normal subgroup, inducing non-trivial 

automorphisms. They are, in §1.2, groups non-trivially of the 

form F/V(R), whose importance in the study of product varieties 

has already been discussed, and in §1.3 the restricted standard 

wreath product A wr B of non-trivial groups. 

It may illuminate the proofs of 1.2.1 and 1.3.1 to point out, 

in very imprecise terms, some other common features of these two 

types of groups which are not shared by group extensions in general. 

It is possible to select an element of the normal subgroup (a free 
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generator of R in F/V(R); an element of one coordinate subgroup 

in the wreath product) whose conjugates by distinct powers^ modulo 

the normal subgroup^ of any element outside it satisfy two properties 

firstly, independence, in that no power of any one of them can be 

expressed in terms of powers of the others, and secondly, the 

possibility of a certain amount of commutativity for themselves and 

their non-trivial powers. In the wreath product, they actually 

commute, since they have trivially-intersecting support; and since 

every variety contains an abelian subvariety with the same exponent, 

R/V(R) has an abelian homomorphic image, R/(V^A)(R), in which the 

powers remain non-trivial. 

These properties are not satisfied in general extensions; for 

example the "commutativity" can not be provided when the normal 

subgroup is perfect. 

In this chapter, §1.1 provides some preliminary information 

about certain Engel commutators. In §1.4 sufficient conditions are 

found for group extensions in general to have most of the properties 

being discussed; these sufficient conditions are closely related to 

the necessary conditions found for certain types of extensions in 

§1.2 and §1.3. Examples given in §1.5 illuminate the distinction 

between the bounded and unbounded conditions. The results of §1.2 

and §1.4 are applied in §1.6 to find conditions for a product 

variety to be Engel and locally nilpotent. 
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1.1o1 Lemma 

If (3 and y are elements of the abelian normal subgroup A 

of the group G, and a and t are commuting elements of G, then 

for all n e J/, 

Proof Proceed by induction on n. When n = 

[a3, Tr] = p'^a'V'^T'^aPry 

When n > Ij 

[ap, n(Tr)] = 

^ ^ - ( T - i r (i-a)^p-(T-ir^-i^p(T-ir 

( T - i r ( i - a ) T 
1 • I 

^ p(T-l)"^(T-ir (l-a) ^ 

and the lemma is proved. 

For the most part, only the special case a = 1 will be 

required, and without further loss of generality f may also be 

chosen to be trivial: 

1.1.2 Corollary 

If 3 is an element of the abelian normal subgroup A of 

the group G, and t e G, then for all n e J f 

[ 3 , I I T ] = 3 

n 
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1.2.1 Theorem 

If V is a non-trivial variety, R is a proper normal 

subgroup of the non-cyclic (absolutely) free group F, and 

F/V(R) is an Engel group, then F/R is a p-group for some p e 

and V is an Engel variety with exponent equal to a power of p. 

Proof Clearly V is an Engel variety, since the non-cyclic 

free group R/V(R) is an Engel group. 

Let TI e F \ R , and L = sgp {R ^ T ] } . NOW R < L (since 

R ^ F ) , L/R is cyclic, and L and R are both free groups. By 

Lemma 43.42 of [10 ] we may, if r| has finite order t modulo 

R, choose a set of generators [a,3,,,.} of L such that 
t-i 

. .. ,a } is part of a set of generators of R. If t) 

has infinite order modulo R, the same procedure gives [a'̂  i 

an integer] as part of a set of free generators of R. In each 

case, let R* be the subgroup of R generated by the subset of 

generators shown, and let L* = sgp [R*,P}. It follows from 12.62 of 

[10] that V(R*) = Clearly L* is a free group of rank 

two generated by a and (3, and R* < L*. 

The next step is to show that the case in which T\, and 

hence (3, has infinite order modulo R* can not occur. Since F/V(R) 

is an Engel group, there must be some i e such that 

[a,iP] e V(R), and since a e R* ^ L* and P e L*, this means 

that [a,i|3] e V(R)^R* = V(R*). However, for arbitrary I £ AT, 

Corollary 1.1.2 shows that modulo (VpA)R*, 
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. j e - i f , 7 T Q _ 

If (3 has infinite order modulo R*^ the conjugates of a whose 

powers occur in this product are distinct elements of a set of free 

generators of R*^ and one of the powers (corresponding to i = 0) 

is equal to a^and is therefore non-trivial modulo the verbal 

subgroup (YpA)(R*). Hence the Engel commutator [a^^P] is also 

non-trivial modulo (V^^A) (R*), and a fortiori is not contained in 

V(R*). 

This shows that F/R is periodic, and 3 has finite order, 

t say, modulo R and also modulo R*. The theorem will be proved 

if we show that t and the exponent of V are powers of the same 

prime. 

If they are not, there exist distinct primes p and q such 

that t = uq for some u e and A^ c V. Now A^CR*) 2 YCR*)^ 

and as before, for some 

e / r the Engel commutator [a,jf(3] in 

the free generators of L* is contained in Y(R)pR* and so in A (R*). Hence L*/A (R*) is an Engel group; but it is finite, =p =p 

of order t p̂ "*"̂ , and so by the well-known result of Zorn and 

Zassenhaus (reported without proof in [14]) , is nilpotent. It 

can easily be checked that a and are, modulo Ap(R*), 

elements of orders p and q respectively which do not commute pUp 

(since a and a are distinct free generators of R*). This 

contradicts the nilpotency of L*/Ap(R*), and hence contradicts the 
hypothesis that the theorem is false. 
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1.2,2 Corollary 

If V is a non-trivial variety, R is a proper normal 

subgroup of the non-cyclic (absolutely) free group F, and F/V(R) 

satisfies the I th Engel condition for some f e Jf, then F/R 

satisfies the i^th Engel condition with and has finite 

p-power exponent for some p e P ; and V is an Engel variety with 

finite p-power exponent. 

Proof It is clear that F/R must satisfy the i^th Engel 

condition with < and from Theorem 1.2.1 it follows that for 

some p £ P J F/R is a p-group and V is an Engel variety of 

p-power exponent. We still need to show that there is an upper 

bound on the order of elements of F/R; and in fact £ is such a 

bound o 

To see this, repeat the working of the proof of Theorem 1.2.1 

to show that modulo fo^ the given integer i, 

If t is the order of P modulo R, the conjugates 

3' a' 0 < i < t-1} are distinct modulo (V^A)(R*); so for this 

final product to be trivial modulo (Yp^A)(R it is necessary that 

t-1 < or t < I, as claimed. 

1.2.3 Corollary 

OOrrf̂ ^̂^ I If Y is a non-trivial variety, R is a proper^ subgroup of 

the non-cyclic (absolutely) free group F, and for some k e JY, 
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k > 2, all k-generator subgroups of F/V(R) are nilpotent 

(nilpotent of class at most c)^ then F/R is a p-group (a p-group 

of finite exponent p'̂  < c) for some p e P, whose k-generator 

subgroups are nilpotent; and V is a variety of p-power exponent 

whose k'-generator groups are all nilpotent, where 

k' = max {k, p*̂  + 1] , if F/R has exponent p^; and V is 

locally nilpotent if F/R does not have finite exponent. 

Proof A group whose two-generator (and a fortiori, whose 

k-generator, where k > 2) subgroups are nilpotent is necessarily 

an Engel group, and if there is a bound on the class of two-generator 

subgroups, the group satisfies an Engel condition. Thus all 

conclusions except that concerning the k'-generator groups of V 

follow from 1.2,, 1 and 1.2.2. Clearly k-generator groups of V are 

nilpotent. 

Let a be an element of F with order t modulo R, and 

let L = sgp [R,cx) , As in 1,2.1, use 43.42 of [10] to choose 

a set of free generators of R of the form {tj ,., ,(3̂  ,...} 

where {|3,ri, ...] is a set of free generators of L, and let 
^t'l 

L* = sgp {P,Ti} and R* = sgp {r̂  , p, 3 I, . . ., p I ]. By hypothesis, 

L*.V(R)/V(R) (= L*/L*p|V(R)), being a two-generator subgroup of 

F/V(R), is nilpotent. Its subgroup R*.V(R)/V(R) = R*/V(R)p|R* 

is therefore nilpotent; but from 12.62 of [10] it follows that 

V(R)pjR* = V(R*), so that the free group R*/V(R*) of rank t + 1 

in the variety V is nilpotent. The required result now follows. 
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From Theorem 4.6 in Chapter 4, it will follow 

that if c is an upper bound for the class of two-generator 

subgroups of F/V(R), and p^ is the exponent of F/R, then 

c/p*^ is an upper bound for the class of R*/V(R*);, and so of all 

p'̂  + 1-generator groups of V. 

Clearly we also have: 

1.2.4 Corollary 

If V is a non-trivial variety, R is a proper normal 

subgroup of the (absolutely) free group F of countably infinite 

rank, and F/V(R) is locally nilpotent (boundedly locally nilpotent), 

then for some p e F/R is a locally nilpotent p-group (a 

boundedly locally nilpotent group of p-power exponent), and V is 

a locally nilpotent variety of p-power exponent. 

This result is of interest in that these necessary conditions 

for F/V(R) to be locally nilpotent are also sufficient (see 1.4,3 

and 1.4.4) 

1.2.5 Corollary 

If V is a non-trivial variety, R is a proper normal 

subgroup of the non-cyclic free group F, and F/V(R) is nilpotent, 

then F/R is a finite p-group for some p e ^ , and V has 

p-power exponent. (Clearly also R/V(R) is nilpotent, so that if 

F and hence R has infinite rank, then V is also nilpotent). 
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Proof Since a nilpotent group satisfies an Engel condition^ 

all the required conclusions except the finiteness of F/R follow 

from Corollary 1=2.2. However^ Smel'kin has shown (Theorem 4.1 

of [12]^ see 0.2.5 above) that under the given conditions if 

F/R is infinite then F/V(R) has trivial centre^ and so is not 

nilpotent. This completes the proof. 

Again, the necessary conditions for nilpotency of F/V(R) 

are also sufficient, as is shown in 1.4.5, due to Baumslag. 

• • • 

For the sake of completeness in making comparisons, the 

results applicable to wreath products corresponding to those of 

§lo2 for groups of the form F/V(R) are also stated. Dr. J.Wiegold 

has informed me that those labelled 1.3.1, 1.3.2, and 1,3.4 have 

been proved by R.B.J.T. Allenby (M.Sc.Tech. thesis. University of 

Manchester, 1963); and 1.3.5 is part of a well-known result of 

Baumslag. 

1.3ol Theorem 

If A and B are non-trivial groups and W = A wr B is 

an Engel group, then A and B and hence W are Engel p-groups 

for some p e ^ . 

Proof A and B are clearly Engel groups. To show that both 

are p-groups choose arbitrary elements P from A(l), the first 

coordinate subgroup of W, and T from B, the top group, and 
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apply a similar argument to that of 1.2.1 in the subgroup of W 

generated by these elements. 

1.3.2 Corollary 

If A and B are non-trivial and W = A wr B satisfies 

the i th Engel condition, then A and B satisfy Engel conditions 

and have finite p-power exponents for some p e 

Proof As before, that A and B satisfy Engel conditions is 

obvious; that both are p-groups follows from 1.3.1. If, given I ^Jf, 

there exists an element P(j) of A(l) whose order exceeds , then 

in the expression 
(St\ 

- JT. ' > 
it is clear that the power to which each of the conjugates of 

is raised is non-trivial. Hence A has finite exponent. The 

proof that B has finite exponent is similar to the proof of the 

corresponding result for F/R in 1.2.2. 

The bound given here for the exponent of A is of course 

far too high; a much better bound may be obtained as a corollary 

of Theorem 3.3. 

1.3.3 Corollary 

If A and B are non-trivial, and for some k e <Af, k > 2, 

all k-generator subgroups of W = A wr B are nilpotent (nilpotent 

of class at most c) then A and B are both p-groups (groups of 
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p-power exponent) for some p e ^ whose k-generator subgroups are 

nilpotent. 

I.3o4 Corollary 

If A and B are non-trivial and W = A wr B is locally 

nilpotent (boundedly locally nilpotent), then A and B are both 

locally nilpotent p-groups (boundedly locally nilpotent p-groups 

of finite exponent) for some p e P . 

1.3.5 Corollary (BAUMSLAG) 

If A and B are non-trivial, and W = A wr B is nilpotent, 

then for some p e IP A is a nilpotent group of finite p-power 

exponent and B is a finite p-group. 

This was proved by Baumslag in §3 of [2]; alternatively, 

it follows from 1.3.2 above and Corollary 3.2 of [2], 

Again the necessary conditions of 1.3.4 and 1.3.5 are shown 

to be sufficient in 1.4.3, 1.4,4 and 1.4.5. 

1.4.1 Theorem 

An extension of a locally nilpotent p-group, for some p e P , 

by an Engel p-group is an Engel (p-)group. 

Proof Let H be a locally nilpotent p-group which is a normal 

subgroup of the group G, such that G/H is an Engel p-group. 

Let a,P be arbitrary elements of G. Since G/H is an Engel 

group, there is a positive integer such that y = [a, e H. 
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Let L = sgp {r:,P} and let H* be the normal closure of y in L. 

Since Hp̂ L < L, it follows that H* < H^L, and so H* is a locally 

nilpotent p-group. Since 3 has finite p-power order^ q say^ 

modulo H*^ and H* is generated by the set [ r ^ I ̂  < i < 

which is finite^ H* is nilpotent and therefore finite. 

Now L, being an extension of H* by a q-cycle is also a 

finite p-group^ and therefore nilpotent. Hence [j, i^P] = 1 for 

some € M', and [a, = 1 where 1 = 1 ^ + I Thus G is 

an Engel group^ as claimed. 

1,4.2 Corollary 

A group satisfies an Engel condition if it is an extension of 

a boundedly locally nilpotent group of p-power exponent for some 

p e ̂  by a group also of p-power exponent satisfying an Engel 

condition. 

Proof Let H be a boundedly locally nilpotent group of exponent p 

which is normal in the group G, such that G/H satisfies the th 

Engel condition and has exponent p'̂ . Let V be the variety 

generated by H and W the variety generated by G/H, Then V 

is a locally nilpotent variety of exponent p ^ and W is an Engel 

variety of exponent p^. From 1.4.1, every group in the product 

variety VW is an Engel group, and hence, by the remarks made in the 

introduction to this chapter, every group in W , and in particular 

G, satisfies an Engel condition. 

k 
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A bound on the Engel length of groups satisfying the conditions 

of this corollary is given in 3.3.2. 

The next tv70 results are conveniently stated in terms of the 

idea of product of properties of a group^ described in §0.1. 

1.4.3 Theorem 

The property of being a locally nilpotent p-group for fixed 

p e P is idempotent. 

Proof Let H ^ G be such that H and G/H are locally 

nilpotent p-groups. If G* is a finitely generated subgroup of Gj 

then G*/H^G* = G*H/H < G/H is nilpotent and finite. Then H^G* 

has finite index in the finitely-generated group G*, so is also 

finitely generated, therefore nilpotent, and hence finite. This 

means that G* is a finite p-group and is therefore nilpotent, and 

the result follows, 

1.4.4 Corollary 

The property of being a boundedly locally nilpotent group 

of p-power exponent, for fixed p e P , is idempotent. 

Proof This follows from 1.4.3 in the same way that 1.4.2 

follows from 1.4.1. 

1.4.5 Theorem ( BAUMSLAG, [2], Lemma 3.8) 

An extension of a nilpotent group of p-power exponent, for 

some p e IP , by a finite p-group is nilpotent. 
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This was proved by Baumslag. It also follows from Theorem 

4o6 of the present thesis, where an upper bound on the class of such 

groups is obtained. 

1.5 Examples 

To illustrate the difference between the corresponding 

theorems relating to bounded and unbounded properties, consider the 

groups (i) F/V(R) where F/R = Z ^ and V = A ; and pM = =p 

(ii) Cp wr Z^^; for arbitrary p e P . Each is an extension of 

an abelian group of exponent p by an abelian p-group. Both groups 

are locally nilpotent, and hence Engel; but they do not satisfy any 

Engel condition, and so also there is no bound on the class of two-

generator subgroups. 

1,6.1 Theorem 

The product W of the non-trivial varieties V and W is 

locally nilpotent if and only if both V and W are locally 

nilpotent varieties with finite exponents equal to powers of one 

prime, p. 

Proof Since F/V(W(F)) is relatively free with the same rank 

as F in the variety W (e.g., by 21.12 of [10] ), the "if" 

part follows from 1.4.3. The "only if" part of the theorem follows 

from 1.2.4, but is more easily proved directly by noting that if 

V and W do not both have p-power exponent, there exist distinct 
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primes q and q' such that C^ e V^ ^ -> hence the 

non-nilpotent group C wr C , e W . q q' == 

1.6.2 Theorem 

For the product W of the non-trivial varieties V and W 

to be an Engel variety, it is necessary that V and W be Engel 

varieties whose exponents are both powers of one prime, p; and it 

is sufficient that both have p-power exponent, V be locally 

nilpotent, and W be an Engel variety. 

The proof parallels that of 1.6.1, following from 1.2.2 and 

1.4.2. 

The results of this chapter raise or leave unanswered several 

interesting questions. Firstly, is it true that every Engel variety 

of prime power exponent is locally nilpotent? This is a restriction 

of the well-known unsolved problem whether every Engel variety is 

locally nilpotent. A footnote in [4 ], and a similar independent 

result of M.F. Newman (unpublished) show the existence of finitely-

generated infinite Engel p-groups. These, however, neither satisfy 

an Engel condition nor have finite exponent. If the answer to this 

first question is in the affirmative, then the necessary and 

sufficient conditions of Theorem 1.6.2 are equivalent; and 1.4.1 

and 1.4.2 show that the necessary conditions of 1.2.1, 1.2.2, and 

1,3.2 are also sufficient. 
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Secondly, if H is an Engel p-group and G/H is (to take 

the simplest case) a p-cycle, does it follow that G is an Engel 

group? Even more restricted forms of this question, where H 

is made to satisfy an Engel condition or to have prime-power 

exponent, appear very difficult; though an affirmative answer to 

the first question above would solve one case at least. 

Thirdly, does there exist an Engel group of finite (prime-

power) exponent which does not satisfy an Engel condition? This 

question is raised by the observation that every extension G, of 

a boundedly locally nilpotent p-group H by a boundedly Engel 

p-group G/H is boundedly Engel unless it fails to have finite 

exponent; and that among the examples of unboundedly Engel groups 

considered, not one has had finite exponent. 
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Chapter 2 

Arithmetical preliminaries 

The results of this section are included in order to obtain 

Theorem 2.8, which is a useful - in fact a basic - tool in 

obtaining the bounds of Chapters 3 and 4. Essentially, Theorem 

2.8 combines 2.4, due to Liebeck, with 2.7, used by Bachmuth and 

Hughes. Apart from 2.8 the only result used later is Lemma 2.1, 

which is in any case well-known. 

a a 

In this section, we write p ||n if p is the highest 

power of p dividing n for some p e } > n £ 

2.1 Lemma 

For arbitrary p e P and h e and for r and s 

such that 0 < r < p'̂  and 0 < s < h, 

s ,, . h-s ,, /p 
P I I r => p 

Proof For any integer n. 

r 

p^ II nl where a = [n/p^] ; 

. •• ~ , , k k+1 
the sum actually contains only k terms where p < n < p 

Thus 

b 
P ^here b = ^ ^ ^ ([n/p^] - [r/p^] - [(n-r)/p^]} . 

In the present case, n = p^, r = p^t with h.c.f. {t,p] = 1. 

Now a term of the form {[ (k+i)/m] - [k/m] - [^/m]} is zero 

whenever m k and m H . Hence the first s terms are zero. If 
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further terms occur, that is, if h > s, each of the h-s remaining 

terms is of the form {[(k+i)/m] - [k/m] - [^/m]} where k+l is 

divisible by m, but k and I are not; and each such term is 

equal to 1. 

Thus b = h-s, as claimed. 

2.2 Lemma 

For any p e F and integers h and r satisfying h > 2 

and 0 < r < p. 

h ^ h-1 
_ modulo p'̂  

Proof 
^ h ^ P 
\rph-l/ ^i<rp' 

^ h-1 
P 

= \rp h-2 . a/b 
h-1 h . where, if we set ^ = {i 0 < i < rp'' p/i), a = .11 (p"-i) 

and b = .Hi , and the remaining terms in the two products give i ̂ ^ 
( h-1 \ 
P h 2 the binomial coefficient \rp""V . 

Note that for each i e ^ 
h . . , , h p - i s -i 

r(p-l)p 
(mod p ) 

h-2 
and hence a = (-1)'"''^ b (mod p ) 

= b (mod p'̂ ) , 

except in the single case p = 2, h = 2, r = 1. In this case the 

lemma may easily be verified directly. In all other cases, we now 
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have b irph-lj 

b 
P 

= b 

= a 

h-1 

/ h-1 > 

therefore 

mod p'̂ ^ and so 

/ h 
P 
Vrp h-1 = 

since b is coprime with p^. 

2o3.1 Definiti ion 

h-1 

= \rp 

For arbitrary u, I e j V and r such that 0 < r < u-1, 

ui+r 
ui+r 

This definition we extend to all integers r by adopting 

the convention that the third argument is to be taken modulo the 

first; that is^ if r = au+b^ 0 < b < u-1, then S(u^ijr) = S(u,i,b) 

2,3.2 Definiti on 

For arbitrary u,ll e J f , 

F(u,^) = h.c.f. {S(u,£,r) | 0 < r < u-1] . 

2 „ 3. 3 Lemma 

If a £ J\f, then: 

- oJi S(u,^,r-i). 

Proof il (ju+ry 

ZZ ( / 
0<j<[ ^ a ) / u ] 0<i<a 

/ I 
ju+r-i 
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(where we set (^b) = 0 if b < 0 or b > 

0<i<a 

0<i<a ^ ^ 

a 
i 

a 
i/ 

0<j<[ (i+a)/u] ^ ju+r-i 

2.4 Lemma (LIEBECK, [9], Theorem 4.3) 

If t = p^ + (s-l)(p^ - p^'S 

then (i) p® | SCp'^.^jr) for 0 < r < p'^-l, i > t 

(ii) p® ^ SCp'^.t-l^r) for 0 < r < p^-1. 

The proof is rather involved, and is omitted. A fairly 

detailed discussion is given in [9]. 

2.5 Corollary 

If J? € y K satisfies 
h , , 1 . , h h-ls ^ « ^ h , , h h-lx p + (s-l)(p - p ) < jf < p + s(p - p ) 

then p® II 

Proof The fact that p® | for all r, 0 < r < p*^'^, 
s h and hence that p F(p ,i) follows immediately from Lemma 2.4(i). 

If p 
s+1 

s+1 F(p ,1), it would follow by Lemma 2.3 that 

S(p^,p^+s(p^ - p'̂  - 1, r ) , which contradicts Lemma 2.4 (ii) 

2.6 Lemma 

If xx,v,ll e j f , u v , then F(V,J?) F ( U , 0 . 
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P r o o f L e t v = a u . F r o m t h e d e f i n i t i o n s ^ | , r ) 

f o r a l l r , 0 < r < v - l . H e n c e ) | ( - 1 ) ^ ' ' , r + i u ) 

f o r a l l r , 0 < r < u - 1 , t h a t i s , F ( v , 0 | , r ) f o r a l l r , 

0 < r < u - 1 . B u t t h i s m e a n s t h a t F ( v , J ? ) | F ) . 

2., 7 Lemma (BACHMUTH a n d HUGHES, [ 1 ] ) 

I f u = p'^, p , q e p , a n d i f t h e r e i s £ e J / s u c h t h a t 

q I F ( u , i ) , t h e n q = p . 

P r o o f L e t 8 b e a p t h r o o t o f u n i t y ; t h e n 

I Y r 
( 1 - e ) = L. S(P,II,T)S, . A l s o o n s u b s t i t u t i n g x = 1 i n t h e 

r e l a t i o n ^ T x ^ = TT(X-S^), we o b t a i n T T ( l - g ^ ) = p , 
OILIF'I UI-IF'' 

Now q | F ( u , i ) = > q | F ( p , 0 (Lemma 2 . 6 ) 

= > q | S ( p , i , r ) f o r a l l r , 0 < r < p - 1 

= > q | ( i - e ) ^ 

H 
= > q p 

= > q = p , a s r e q u i r e d . 

2 , 8 T h e o r e m 

F ( u , i ) = 
p ^ w h e r e k = [ ( i - p ' ^ " ^ ) / ( p " ^ - p ^ ' ^ ) ] i f u = p'" 

_ 1 , i f u i s d i v i s i b l e by two d i s t i n c t p r i m e s . 

P r o o f T h e f i r s t p a r t , t h e c a s e i n w h i c h u i s a p r i m e p o w e r , 

f o l l o w s i m m e d i a t e l y f r o m C o r o l l a r y 2 , 5 a n d Lemma 2 . 7 . Now s u p p o s e 
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that p and q are distinct primes, both dividing u. By Lemma 2.6, 

F(u,i) F(p,i) and F(u,i) F(q,i). Lemma 2.7 shows that F ( p , 0 

and F(q,i) are coprime, and so F ( u , 0 = I, as required. 
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Chapter 3 

Upper bounds on the Engel length of certain group extensions 

The main result of this chapter is the bound presented in Theorem 

3,3; the crux of the proof is in Lemma 3,1, for which the definitions 

and Lemmas of §3.1 provide useful tools. Following 3,3 some 

applications to slightly more general situations are made; and then 

in 3,4 the result is adapted to give a slightly improved bound for the 

special case of a cyclic extension. The results of §3.5 show that 

the results obtained are best possible for small nilpotency class. 

Throughout section 3.1, p is a fixed but arbitrary prime, 

3.1.1 Definition 

For arbitrary t ^ A f , an element a is a t-element of a group 

H if and only if there exists an element K which can be expressed as 

a commutator of weight w in H such that a = K ^ and U + s > t. 

The weight of the t-element expressed in this way is defined 

to be w , i.e., the weight of the corresponding commutator K. Because 

of the possibility of a variety of expressions for a single element, 

"weight" of a t-element is not in general uniquely defined; what 

concerns us is whether a group element can be expressed as a t-element 

of a particular weight. 

3.1.2 Lemma 

If H is a normal subgroup of a group G, and a is a t-element 

of weight w in H, then every commutator in G which has a as an 

entry is a product of t-elements of weight w in H. 
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Proof For arbitrary r e G, [a,r] = a'^.a^ and [r,co] = . 

Clearly, by induction on the number of its entries^ the given commutator 

in G may be expressed as a product of conjugates in G of a and 

a ^, each of which is a t-element of weight w in Ho 

The following lemma is easily proved by induction on n; it is 

well-known in metabelian groups where each M-. or v. is trivial. 

3,1.3 Lemma 

If ^ and ri are arbitrary elements of a group H, then 
In I 

^ l<i<n 

where each jî  may be expressed as a commutator with at least two 

entries, each of which is a commutator of the form [ ̂ , rj, (i-1) | ] with 

1 < i < n; and each v^ may be expressed as a commutator with at least 

two entries, each of the form with 1 < i < ii-

In both cases, if v^ or (i.̂  is non-trivial, it cannot have 

i = 1 for each of its entries; so each lâ  may be expressed (by 

re-writing, if necessary) as a commutator with as one entry, 

and each v^ with as one entry. 

3.1.4 Lemma 

If a and P are respectively t- and u-elements of weights 

w and X in a group H which is nilpotent of class c for some 

c e y\f, then the commutator [ct,3] is a product of (t+u)-elements of 

weights at least w+x in H. The result is independent of c. 
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r 

P^oof By definition, a = k^ and p = where k and A 

are commutators of weights w and x respectively in H , 

r,s e {0} U w , X e y V , w+r > t, and x+s > u. The proof 

will proceed by induction on (r+s) within the general stage of a 

reverse induction on (w+x) to show that is a product of 

(w+x+r+s)-elements of H , each having weight at least w+x„ The 

lemma will then follow. 

If w+x > c, then, since co e N ^ (H) and P e N ^ (H), it 

follows that [cOjP] e N^(H) = [1], and the lemma is trivially true. 

Suppose w+x < c, and the hypothesis proved for all pairs of 

powers of commutators such that the sum of the weights of the 

commutators is greater than w + x . W h e n r = s = 0, the commutator 

r s 

[a,P] = [k^ ] is simply which is by definition a commutator 

of weight w + x , and hence a (w+x)-element of weight w+x in H, as 

required. W h e n (r+s) > 0, since the inverse of a t-element in H 

is also a t-element in H , with the same weight, suppose without loss 

of generality that r > 0. Let T] = K^ SO that a = Then, 

by Lemma 3.1.3, 

[CX.P] = [Tl^.P] 

/ p I 

• i S • 

where each M-, , and also each commutator in the first product except 
tc 

that in the term corresponding to i = 0, may be expressed with 

[r),3,T]] as one of its entries. 
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Consider now the commutator [ti.P.t]]. The inductive hypothesis 

on r+s shows that 

[ti,P] = [k^' ' , ap'] = n V. 
jer J 

where each v^ is a (w+x+r+s-1)- element of weight at least (w+x) in H. 

By repeated applicati on of the Hall identities^ [ 11 v.^ t|] is a product 
jer j 

of commutators each containing an entry of the form [ v ^ ti] for some 

j e To From the reverse-induction hypothesis on w+x, this entry is 

a product of (2w+x+2r+s-2)- elements of H , each of weight at least 

2w+x; and since r > 1 and w > this is a fortiori a product 

of (w+x+r+s)- elements of H , each of weight at least w+x. By Lemma 

3.1„2, each factor in the expansion of [j^p y ^ product of 

(w+x+r+s) - elements of Hj, each of weight at least w+x; and hence, 

again by 3.1.2, so is each commutator in the expression for [a,T]] which 

has [rj^P^Ti] as an entry. 

Only the term corresponding to i = 1, that is, in the 

expression for [a,P] remains to be considered. As before, 

[•n,(31 = n„ V. where each v. is a (w+x+r+s-1)- element of weight 
' jer J J 

at least w+x in H . Now 

where for each i e A , p^ is a commutator with at least two entries, 

each from the set t ̂ j I j e r} . By the hypothesis on w+x and Lemma 

3.1.2, each p^ is a product of 2(w+x+r+s-1)- elements of weights at 

least 2(w+x) in H , so a fortiori is of the required form. Clearly 
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is a (w+x+r+s)- element of weight w+x in H, so also of the 

required form. 

This establishes the truth of the inductive hypothesis, and hence 

that of the lemma. 

Though they are not immediately required, the following corollaries 

will be useful in chapter 4 : 

3.1„5 Corollary of the proof 

The p-th power of a product of t-elements of weight w in H 

is a product of (t+1)-elements of weight w in H. 

This was proved in the last stage of the proof of 3.1„4, when 

(.n v.)^ was considered, 
jer J 

3,1,6 Corollary 

The commutator of a product of t-elements of weight at least w 

in H with a product of u-elements of weight at least x in H is a 

product of (t+u)-elements of weight at least w-hx in H, 

Proof If co^ is a t-element of weight at least w in H for 

each i e r, and is a u-element of weight at least x in H for 

each j e A (where T and A are both finite sets) then from the Hall 

identities 

[ a . , .n^ (3.] = , n ^ r, 
^ler i' jeA keQ 'k 

where each T, contains an entry of the form [a,.,P.] with i e r, 
K 1 J 

j e A . The result now follows from 3.1.4 and 3,1.2. 
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3.2 Lemma 

If 3 is an element of a normal subgroup H of a group G^ and 

if an element T of G has order p'̂  modulo H for some p e f 

and h eyT then 

where ti e N for arbitrary r eA^, the element 6. may be 
O X 

expressed as a commutator of weight w^ in H, 1 < w. < r ^ for 

1 < i < y, and d(i) = p^^^^ where v(i) > 0 and 

V . > 1 + 

Proof For brevity, let a = p'̂  and b = p'̂  - p'̂  ̂ . Since 

p®|s(a,l,i) for 0 < i < a-1 if s = max (0, 1 + [(^-a)/b]}, the 

lemma will follow when it is proved by induction on I that, with the 

same hypotheses, 

[p^^T] = r r ( r r ^ ^ v(r,^,j).q(r)y 
^ ' r 0<j<a-l r ' 

where rj e N^ (H), M-̂  is a commutator of weight w^ in H, 
u 

1 < w^ < r^, q(r) = p for some u^ e {0} U Jf, and 

/ if ^ > (w^-l)a + u^b (form (A)) 

\ 

1 if j = 0 

0 
if i < (w__-l)a + u^ 

(form (B)). 
if j ^ 0 / " ^ " • "" 
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(Note that the third argument of v can be any integer and the value of 

V depends only on the residue modulo a of this third argument.) 

When i = I ^ 

which is of form (A) with [î  = p, w^ = 1, u^ = 0 (since for arbitrary 

prime-power a, the definition of S(a,l,j) with 2 < j < a-1 gives 

simply (jj , which is interpreted as being zero). 

When i > I, suppose the result proved for l-l, expand 

= using the result for and 

collect conjugates of each commutator Resulting terms either 

(i) are in collections of the form 

r r q(r)(v(r,f-l,j-l) - v (r, £-1, j ) ) T' -q(r)v(r,i-l,a-l) 
0<j<a-l ^r " 

q(r)v(r,^-l,a-l)T^ 
r 

^ f j q(r)v(r,^j)/ q (r) v (r, ̂ -1, a-1) a 
0<j<a-l ^r -^^r ^ ^ 

with l > (w^-l)a + u^b (These expressions follow from the definition 

2,3.1 and the case a = 1 of Lemma 2.3.3. The case in which 

^-1 = (w^-l)a + u^b is simple^ but requires separate checking; may 

be either one of the commutators in the expression for [PJ(^-1)T] 

or the inverse of such a commutator.); or 

(ii) are of the form with I < (w^-l)a + u^b (in this 

case (î  is either the inverse or the T-conjugate of one of the 

commutators in the expression for [Pj(i-1)T]); or 
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(iii) are commutators^ each of which has as an entry a 

commutator of the form 

q(r)v(r,l-l,i)T' q (s) v (r, ̂ -1, j ) t̂' 

whose entries are from the expansion for 

At this stage, note that if d^ = max {0, 1+ [(f-1-w^a)/b]}, then 

each term of the form -1, j) ^^ ̂  )-element of 
r r r 

weight w^ in H. Note also that if a, say, is a (d^+w^+1)-

element of weight at least w^ + 1 in H, then a can be regarded as 

having the form (B) required by the hypothesis, since a = K^ 

where K is a commutator of weight w > w^ + 1 in H and 

w + s > d + w + 1 ; and hence — r r ' 

(w-l)a + sb = w^a + (w-w^-1) (a-b) + (w-w^+s-1) 

> w a + d b - r r 

> jf-1 (from the definition of • 

Hence (w-l)a + sb > £, as required. 

Return now to the expansion of For terms of type (i), 

the first part of the product is clearly of the form (A) required by the 

hypothesis. The remaining factor, [ ^ is the 

commutator of a (d +w ) - element of weight w with a 1-element of r r ° r 
we ight 1 in H, hence by Lemma 3.1.4 is a product of (d^+w^+l)-

elements of weights at least w^ + 1 in H, and hence by the preceding 

paragraph is a product of terms of the form (B) required by the hypothesis 
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Terms of type (ii) are clearly of the form (B). Terms of type (iii) 

are, by Lemmas 3.1.4 and 3.1.2, products of (d +d Ht̂  -fv )- elements of 
r s r s 

weights at least (w +w ) in H and these, since d > 0 and w > 1, l b g — g ^ } 

are (d^+w^+1) - elements of H of weights at least w^ + I, and so are 

of form (B) , 

3.3 Theorem 

If H is a normal subgroup of a group G such that G/H satisfies 

the th Engel condition and has exponent p^ for some p e V and 

h ^ J{, H is nilpotent of class r , and for 1 < r < r every o — — o 
element which can be expressed as a commutator of weight r in H has 

kr 
order dividing p for some k^ e ./t/", then G satisfies the I th 

Engel condition where 

1 = 1 ^ max (rp'̂  + (k -1) (p'̂  - p'^"^)} o l<r<r ^ ^ V ̂  vf f /J — — o 

Proof Let a and T be arbitrary elements of G. Then 

(3 = [a, ^^t] e H, since G/H satisfies the th Engel condition. 

Let H^ = j^max^ {rp'̂  + (k^-lXp'^ - p'^'^)} so that 
— — o 

< 1 + - - P^"^) for 1 < r < r^ , 

and, since k^ is an integer, 

< 1 + [(^1 - - p'^'b] = v^ , say. 

Since T has order dividing p'̂  and > Lemma 3.2 shows that 

[P, is a product of commutators each raised to a power which is 
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a multiple of its order. Thus [a, (I^ + = [p, ^^T] = I, and 

so G satisfies the I th Engel condition where t = i + i . as 
o 

required. 

A simpler^ though slightly cruder^ bound may be obtained as an 

immediate consequence of 3.3. 

3.3.1 Corollary 

If H is a normal subgroup of the group G, with exponent p^ 

and nilpotency class c^ and G/H satisfies the th Engel condition 

and has exponent p^, then G satisfies the H th Engel condition 

where ^ = + cp^ + (k-1)(p^ - p^"^). 

Corollary 3.3.1 may be applied in the more general situation of 

1.4.2: 

3.3.2 Corollary 

If H is a normal subgroup of G with exponent p ^ such that 

for all d ejY, every d-generator subgroup of H is nilpotent of 

class c(d) for some function 

c : y r —> and if G/H satisfies 

the th Engel condition and has exponent p'̂ , then G satisfies 

the I th Engel condition where I =!. ̂  + cCp'̂  + D.p'^ + (k-1) (p'̂  - p'̂  

Proof The proof proceeds as for Theorem 1.4.1. Since H* has 

index dividing p'̂  in the two-generator group L, it follows that H* 

is p'̂  + 1-generator, and hence nilpotent of class at most cCp'̂  + 1). 

The result follows on applying 3.2 to the group L. 
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3.4 

In the special case where F/R is cyclic, the preceding results 

may be improved : 

3^4 C o r o l l a r y o f t h e p r o o f s o f 3 . 2 a n d 3 . 3 . 

I f G / H i s c y c l i c o f o r d e r p^ f o r some p e "P a n d h e . / f , 

and H is nilpotent of class r and such that for 1 < r < r every o — — o 

element which can be expressed as a commutator of weight r in H has 

order dividing p for some k^ e Jf, then G satisfies the m th 

Engel condition^ where 

™ " l < r < r " P ^ ' ^ ) } • 
o 

Proof Let | and T be arbitrary elements of G. If the order 

of T modulo H is less than p'̂ , then 3,2 and the proof of 3.3 

already show that there is an integer n < m such that [i, nx] = 1. 

Otherwise, TH generates the cyclic group G/H, and so | = T 3 

with 0 < z < p'̂ -l and P e H. Now 

= T] = [T^ T]^ [P, T] = [3, T] . 

Hence for all n eVT, , nr] = [P, nr] , and the required result 

follows from 3.2 and the proof of 3.3. 
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Alternatively, this result may be obtained as an immediate 

consequence of 3.3 and 4.6. In fact this is analogous to the way 

in which Liebeck ([ 9 ], Theorem 6.2) obtains the corresponding 

result for the Engel length of A wr B when A is abelian and 

B is cyclic. The preceding proof has been included because it is 

independent of the involved arguments early in Chapter 4. 

A group G satisfying the conditions of Theorem 3.3 or 

Corollary 3.4 may of course satisfy an Engel condition for a much 

smaller integer than that given by the corresponding result. The 

simplest and most extreme example is the case in which H is a 

direct factor of G. Nevertheless, the results even of Corollary 

3.3.1 are best possible when H has small nilpotency class, in the 

sense that for arbitrary p e "JP and h, k e and r such 

that 1 < < p-1, there is a group satisfying the conditions of 

3.3 (3.4) with k^ = k for 1 < r < r^, but not satisfying the 

H-l th (m-1 th) Engel condition, respectively. Example 3.5.1 

following is for ^^ = 1 in Theorem 3.3; the same method should 

serve to construct examples for arbitrary I 

The proofs of 3.5.1 and 3.5.2 follow Lemma 3.5.3, on which 

they depend. 

3.5.1 Example 

Given p e V and h,k e J \ f , and an integer c such that 

1 < c < p-1, let F be the absolutely free group of rank two 
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generated by a and and R the normal subgroup of F generated 

P*" p'' by a , ^ , and [a,(3], so that F/R = C X C , Let 

p'' P" 

Y = Q 1 ^• Now the group F/V(R) satisfies the conditions of 

3„3 and 3.3.1, and contains a non-trivial Engel commutator 

[a,(i-1)3].v(R) of length 

a - I ) = cp^ + (k-i)(p^ - p ^ - ^ . 

3.5.2 Example 

Given p e 1P and h^k e M , and an integer c such that 

1 < c < p-1, let F be the absolutely free group of rank two 

generated by a and P>, and R the normal subgroup of F generated 

by a and , so that F/R is a p'^-cycle. Now with 

Y ~ B , the group F/V(R) contains a non-trivial Engel 

V> V» 1 
commutator [a, (m-l)p].V(R) of length m-1 = cp + (k-1)(p - p " ) -1, 

The proof of these examples depends on the following result 

about free groups in the variety Y ~ N „ B : 
- ^ -p^ 

3.5.3 Lemma 

If ^ and ri are distinct elements of a set of free 

generators of a relatively free group in the variety N ^̂  B , 
-c I I -pi 

where 1 < c < p-1, then (c-Dt]]^ f 1. 

Proof It is sufficient to construct a two-generator group of 

exponent p^ and class c with an Engel commutator of length c-1 
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whose order is p , since this group must be a homomorphic image 

of the free group described. 

Let A and B be cyclic groups of order p^ generated by 

a and T respectively, W = A wr B, and K the base group of 

W. By induction on r, it is easily shown that the subset 

{a(T^) I 0 < i < r] of elements of the natural basis of K is 

equivalent to the set {[a, ir] [ 0 < i < r] and hence that 

([a, ir] 0 < i < p -1} is a basis for K. It is also easy to 

see that for c e J^^ is generated by [[a, ir] | c < i < oo} 

Now X = W/N^(W) is the required group. Clearly it has 

class c. Every element of W may be expressed in the form 

T^P with 3 e K and 0 < v < p^-1. If v = 0, this is clearly 
g 

of order dividing p , and if v 4 0, then 

= T^P'pP' . [3, iT] modulo N^(W) „ 

fp' ) 

However for 1 < i+1 < c < p-1, the exponent is divisi 

by p^, so this expression represents the identity element, and X 

has exponent P^. The Engel commutator [0, (C-1)T] is clearly 
< displayed as one of the basis elements outside with order p' 

Proof of 3.5.1 For this example let p'̂  = q. First obtain 

a set of free generators of R by the Schreier-Reidemeister 

procedure, using | 0 < a < q , 0 < b < q ] as a Schreier 

transversal for R in F. The generators are: 

sible 
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a ^ a^p^a p'^a'^^+l^ (0 < a < q-2, 1 < b < q-1), 

(1 < b < q-1), and a^p^a'^ (0 < a < q - D . 
2 

Only q+2 of these q + 1 free generators of R will be needed, 

name1y : 
^̂ ^ = = cc^-lp^-a (1 < i < q-l) 

= . and = 

These, however, are now replaced by an equivalent set 

obtained as follows: 

Let = 

1-1 

^i = V l ' ' ^i-l"' V l ^ ^ 2 < i < q 

^q+1 = ^ = 

Since the ' s can be expressed also in terms of the ({̂ 's, the 

two sets are equivalent, and I < i < i® part of a set 

of free generators for Ro 

From now on, work modulo V(R), From above, [cc.,3] = (j)̂, 

and for 1 < i < 't'jî^ ^i+1' Hence an induction similar to 

that in Lemma l.lol shows that for 1 < -f < q^ 

where the <. are the commutators of weights from 2 to c whose 
J J ̂  

entries are from i 1 < i < q) • In particular, this is true 
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when f = q^ and so, when ^ = q+1: 

46 

[cc,(q-l)3] = ĉ , = T T . (-1)' 

/ 
q i-l 3 q . (j), . a l<i<q • 

since = cj)̂. Here a is a product of commutators. The product 

on the second line^ / I k . , is equal to a multiplied by 
•j J J q"""-!-

further commutators which are the result of moving ())j to its new 

position. Entries of a commutator k. when > q may come 
J ̂ " 

from the larger subset, (cj)̂  | 0 < i < q} , of the free 

generators of R, but note that of those k's which have weight 

two, none has an entry equal to cj)̂; and as the process of 

commutation by (3 is repeated, the only commutators of weight two 

with (f)̂  as an entry are those arising from the factor 

in the expression for [a, (q+l)(3]. 

Now assume inductively that for some r, 1 < ^ < the 

commutator [a, (rq+l)(3] may be expressed as a product in which one 

of the factors is' [ cj)̂ ,rcj)̂ ] , and that no other commutator factor 

of weight r+1 has r of its entries equal to (j)̂; and a similar 

procedure shows that the same is true for the integer r+1. Hence 

it is true for all r < c-1; and in particular [a,((c-l)q+l)3] may 



be expressed as a product in which one of the terms is 

T = [cĵĵj, and no other term has c-1 entries equal to cfi , 

Now Lemma 3.5.3 shows^ since and c})̂  belong to a set 

that/ generators of R, ^ [(j)̂ , (c-l)(j)̂ ] has order p^ 

modulo (N^ ^ B (R) = V(R). 
P 

In addition, Y . V ( R ) e Z ( R / V ( R ) ) SO Corollary 1 . 1 . 2 shows 

that modulo V ( R ) , for j £ A/^, 
/ .\ J 

p \1/ 

Since e R, and all conjugates of y are in Z(R) modulo V(R)j 

r 

It follows that 

(aq+i) aq i i 
• = R = R modulo V ( R ) . 

[r.jP] = oJJ.i modulo V ( R ) 

R^ RS 
The elements r and r with 0 < r-s < q, can not 

be equal, for then 

^ _ g 

=> [CL)^'^ (c-l)cl)J E V ( R ) , 

and Lemma 3.5.3 shows this to be impossible. 

Thus the conjugates of y in the product 

are all distinct; and some of their powers 
0<i<q-l ' 
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remain non-trivial as long as p^ does not divide F(q,j). But, 

by Theorem the smallest value of j for which p^ | F(q,j) is 

h , 1 V . h h-1, 

J = p 4= (k-l)(p - p ) „ 

Hence [y, [p^ + (k-l)(p'' - ^ V(R); 

hence [a, [cp'̂  + (k-l)(p^ - p'^'^jP] ^ V(R); 

that is, [a, (f-l)|3] V(R), as required. 

Proof of 3.5.2 By Lemma 43.42 of [10], [c))̂  [ 0 < i < q} 

is a set of free generators for R, where (f)̂  = and 

3 i-1 = a , 1 < i < q, Now [a,P] = a ^ a*̂  = . (j)̂; 

and the proof that [co, (m-l)P] i V(R) exactly parallels the 

corresponding proof in the previous example, with the length of 

the Engel commutator in a and P reduced by 1 throughout. 

When c > p > 3, the results of this chapter are no longer 

best possible, and may be improved by combining two results described 

here in brief outline only. The proof that groups of exponent p 

satisfy the p-1 th Engel congruence given in [6], Kapitel Til, 

Satz 5.9, is very easily adapted to show that in a group H of 
k exponent p , 

.k-i 
[a, (p-l)P]^ e Np(H) for all a,p e H. 
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When c > Lemma 3„2 may be refined to show that as the length 

of an Engel commutator in G is increased^ the last commutator 
k-1 

of weight c in H to remain raised to the p th and not the 

p th power is in fact an Engel commutator in H. 

When p = 2, the arguments described in the previous 

paragraph show that in a group H of exponent 2 , every k-1 commutator of weight w > 2 has in fact order dividing 2 

modulo N (H). By this method^ then^ 3.3.1 but not 3.3 may be —w 
improved. 
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Chapter 4 

An upper bound on the nilpotency class of certain group extensions 

The main result of this chapter is the bound given in Theorem 

4.6 for the class of those group extensions shown to be nilpotent by 

Baumslag in Lemma 3.8 of [2], stated as 1.4.5 earlier in this thesis. 

Lemmas 4.3 and 4.5 play parts in the proof of 4.6 similar to those 

of 3,1 and 3.2 respectively in the proof of 3.3. The results of 

§4.2 and 4.4 on rearrangement of commutators are needed mainly to 

overcome difficulties caused by the fact that the quotient group 

G/H is not abelian. Most of the calculations are carried out in 

terms of the ordered basis for a finite p-group defined in §4.1. 

In §4.7 it is shown that the wreath product always attains 

the bound given by 4.6^ and therefore that this result gives the 

exact class of every nilpotent wreath product. This result is 

closely related to the lower bound on the class of a wreath product 

found by Scruton in Theorem 3.5 of [11]; the improvement is made 

possible by the use of the ordered basis defined in §4.1^ in place 

of the generating set described in Lemma 3.1 of [11]. 

4.1.1 Definition and Notation 

Suppose that G/H is a finite p-group with nilpotency class 

c, and that for 1 < i < c N^.^^CG/H) / N^(G/H) is a direct 
h.. 

product of z(i) cyclic groups of orders p ^ 1 < j < z(i)^ where 

h , > h. . for 1 < j < z(i). For 1 < i < c, let 
il - ij 
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'̂ i ~ I 1 < j < z(i)} be a set of elements of N. ^(G) which 
form a basis for N._^(G/H) modulo N.(G/H), ordered in such a way 

h.. . 
that T has order p .nodulo N.(G)„H, Let T = , T , and •LJ -1 l<i<c i 
extend the orderings defined on each of the T^ separately to one, 

which we denote , on the whole of T, by adding the condition 

that 

l < i < i ' < C => T..<>T.,., - - ij I'j' 

The ordered set T will be called an ordered basis for G 

modulo H» 

The use of the term "basis" may be justified by the following 

result, which is stated without proof ; 

4.1.2 Lemma 

If H ^ G, and T = {t.^ | l < i < c , l < j < z(i)} is an 

ordered basis for G modulo H, as described in 4.1.1, then every 

element of G may be expressed uniquely in the form 

zlc) 

where 0 < e _ < p -1 for 1 < i < c, 1 < j < z (i), and 

T] e H. 

4.2 Lemma 

If P is an element in the centre of the normal subgroup 

H of G, where G/H is a finite p-group and T is an ordered 

basis for G modulo H, and if a. e N , (G) \ N (G) for 1 —ŵ  - i — w. 
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1 < i < m, then the commutator a^] may be expressed 

as a product of commutators of the form where 

a) ^ 1 < i < 1 < v^ < c; 

b) V. < w. ; and 

c) if 1 < i < i' < n, then ^ , where 

is the ordering on T. 

The proof depends on the following auxiliary lemma : 

4.2,1 Lemma 
* 

If |3 is an element in the centre of the normal subgroup 

H of G^ where G/H is a finite p-group and T is an ordered 

basis for G modulo H (see 4.1.1)^ if for all 

i {j e 1 < j < -F} the element T. E T , and k is 1 Ut the least integer in ^ such that T ^ T. for all i e , and 
K. 1 

if there are precisely x integers f e Jf such that u^ = u^^ 

then 

[P^ = aSr ^a ^ 

where either (first form) r)̂  = [P ' ° '' ^vaj (second 

V f 
where form) n = [3 ,0,, . . 0 ]; in either case, 0 e T 'a i nii ^ 

V > u for all i e j l = [ ] e J{ 1 < j < m ] and there are at i — k a a 

most x-1 integers f eJi^ such that V̂  = û ;̂ also if TÎ  has 

the first form, then u^ + v. > Jj. u. , while if T]̂  has 

the second form,then if^^'^i > if,j|f "i ' 
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Proof If k = 1, the given commutator already satisfies all 

conditions on T], and the result is obvious. Suppose inductively 

that the result is proved if k < r for some integer r > 1, and 

consider a commutator [P , T TJ such that T <; T. for 1 « r - 1 
all i eif, and d < r = > T ^ ^ T ^ . Let = , r^, . . ., 

and I = r^], Now 

-Tr.) -Tr T̂ ., T^ 

-̂X-

and eventually, after more computation of the same sort, 

From the fact that = '̂d ^ < ^ < 

X. e T, , X, and the Hall identities 1 (Up., + u^) 

and = [cx,r] [cc,|3] . 

it follows that 

p = n f 
^ beA b̂ 

where for each b e A , L either is equal to 
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or is of one of the forms : 

with iy > 1 in each case. The commutator first given now takes 

the form 

since ^^ e Z(H) for all b e A . It is easily checked that when 

each commutator of the last product above is written out in full 
* 

as a left-normed commutator with P as its first entry and the 

i th of the remaining (n̂  say) entries from T^ for 1 < i < n, 

then , w. > u. . 

1 - leJtf 1 

For each b e A such that ^^ has form (i)^ (ii) or (iii)^ 

the inductive hypothesis shows that the corresponding commutator in 

the product may itself be expressed as a product of commutators of 

the required form. For the other b e A , ^^ has form (iv) or 

(v)^ and the corresponding expanded commutator already satisfies the 

required conditions^ taking the second form for t)̂  and having at 

most x-1 entries which are elements of T U(-
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Proof of 4.2 Consider the given commutator .. a ]. 
1 m 

Since a^ £ N^^ . i ( G ) \ N^^ (G) for 1 < i < m, the expansion for 

a^ given by 4.1.2 has e^^ = 0 when i < w^. By repeated 

appli cations of the Hall commutator identities (quoted in the proof 

of 4.2.1 above) and the expansions for a^^ the given commutator 

may^, since 3 e Z(H)j be expressed as a product of commutators of 

the form [P, T^, t^] where t^ e for 1 < i and 

where at least one of the later entries T. in each commutator 
1 1 

comes from the expansion of each of the a , 1 < k < m^ so that 

As in 4.2.1, let = [j e yT] 1 < j < and let k be 

the least integer in c ^ such that T ^ T. for all i e . The 
K 1 

result will now be proved by reverse induction on u^ (remember 

that T- e T ) . k Ufe 

If u > [c/2] + I , so that u. > [c/2] + 1 for all 
K. 1 

i £ J/^, and hence [ T . , T . ] E H for all i , j then for 

arbitrary | e Z(H), it follows that 

- T , -TJ T, TJ 

[ | . T . , T . ] = i I I I = [ | . T . , T . ] . 

Hence^ by interchange of adjacent elements, if Jt is a permutation 

, then on 

In particular, if n is such a permutation that 



l < i < i ' < i -> T^^ ^ T^, then the lemma is proved for 

u^ > [c/2] + 1. 

Now suppose the lemma proved when > s for some fixed 

s, 1 < s < [c/2], and let k = [p, t^, _ . , t^] be a commutator 

satisfying the same conditions as before, in which u = s and 
K. 

there are precisely x integers f e such that u, = u, = s. 
f k 

By X repeated applications of Lemma 4,2.1, K may be expressed 

as a product of commutators of the form 

[P, V , r; , E^, .... e j 

in which 0 < y < x, the entries T'. satisfy T.' e T for 
- - ^ X 1 s 

1 < i < y and T^ < T^, wherever 1 < i < i' < y , and the 

entries Q. satisfy 0. e T where s+1 < v. < c for 1 < i < m, 

such that : 

sy + 1 v. > u. l < i ^ 1 - ie»C 1 

Now let (3 = [ (3, T^ , . . . , T^ ] ; and from the inductive 

hypothesis applied to each commutator of the form [P ,9^, 

this commutator may be expressed as a product of other commutators, 

each with P* as its first entry, which when expanded to show P 

as their first entry satisfy all the conditions required in the 

statement of the lemma. 

4.3 Lemma 

If P is an element in the centre of the normal subgroup 

H of G, such that G/H is a finite p-group of class c, and 
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for 1 < i < c N._^(G/H) / N.(G/H) is a direct product of z(i) 

h;; 
cyclic groups of orders p , 1 < j < z(i), where h., > h. 

- - il - ij 

for 1 < j < z(i); if G has ordered basis T modulo H, if 

^ = ^ ^ ii<c (i i<jfz(i) (p'' - D ) - d 

H hM -1 
b = [i (p ' - p ' )}, if for 1 < i < m . 

i ^ - l ^ ^ ^ ^ S w ^^^' ^^ ® is a positive or zero integer 
a 
i 

such that 

iJ^jn ^ = ^ > ^ + ( s - D b , 

then the commutator [p^ a^^ a^] may be expressed as a 

g 
product of p th powers of conjugates of P in G. 

Proof Lemma 4.2 shows that the given commutator [(3.a . ...,a ] 
1 m 

may be expressed as a product of commutators^, each of the form 

[P, u^^ T^^, ^ z ( c ) "cz(c)^ 

lf<c l<i'z(i) ^ j ) ^ l i i n ^ = 1 < i < 

1 < j < z(i)^ let s _ be the least non-negative integer such that 

he. 
(i) < p + s^^ (p - p ) -1; 

hi/ hij h.̂ . -1 
and hence either p + (s^^ - l)(p - P ^ ^ "ij ®ij " 

In either case^ (from Lemma 3.1 in the first case) the 
S// 

commutator [P^ û ^̂ ^ t^^^] is expressible as a product of p th 

powers of conjugates of and if t^^ is defined by 



t .. = , ( ^ s \ + s XJ l<i'<i-l 4<j'<z(i) Ijl 

(where of course an empty sum is taken to be zero) then by 

induction following the ordering on T, it follows that 

[Pj, û ĵ  T^^, u _ T^^] is a product of p '' th powers of 

conjugates of 

The lemma will be proved when it is shown that t , , •> So 
cz(c) -

Multiply each of the inequalities labelled (i) above for 1 < i < c, 

^ < j <z(i-)by the appropriate i, and add the resulting 

inequalities;, to obtain s 

i S c ^ j ) ^ like -

r r j-

From earlier, (h<jiz(i) "i ^ ^nd 

so this reduces to t 

^ (s-i)b< (a-i) - p )) 

whence 
y y hi "1 

1 + (s-l>b < s. .,1. (p - p )) 

Thus (s-l)b < t . ..b, and so s-1 < t , .. Since both cz(c) cz(c; 

sides of the last Inequality are integers, it follows that s < 

as required. 
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4 o4 Lemma 

If the group G splits over its normal subgroup H, the 

quotient G/H is nllpotent of class c, and for an integer w 

satisfying w > c, and each i^ 0 < i < w, a^ e G, then the 

commutrator [a^, a^, a^] may be expressed as a product of 

commutators of the form [P, G^, . . . 0^] where P e H^ 

^ 1 < 1 < and ^ ^ ^ V. > w„ 

Proof Let J be a complement of H in G^ so that J = G/H 

is nilpotent of class c^ and every element of G may be 

expressed uniquely in the form a = Pt where P e H, t e J. In 

particular, let a^ = for 0 < i < w. The proof proceeds 

by induction on w to show that for w > every left-normed 

commutator of the given form is a product of a left-normed 

commutator of weight 1+w in J with commutators of the required 

form. Since J has class c, the truth of the lemma will follow 

for w > c. 

When w = Ij a routine expansion shows that 

confirming the inductive hypothesis for this case. 

Suppose that for w > 2, 

t V o ^ ^"l^ - - = ^ ^ - - ^w-l^ 'aSA^a 

where each r is of the required form with w-1 replacing w. a 
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Further application of the Hall identities now shows that 

'•'̂ ô o' ° ° °'^w ^w^ expressed as a product of 

commutators of the forms 

(iii) and (iv) = = • 

The first two of these are clearly of the required form. There 

is only one commutator of form (iii)^ and on expansion, it is 

equal to 

in which the first factor is the particular commutator of weight w 

in J required by the inductive hypothesis, and the second and 

third are of the required form. Commutators of the form (iv) may 

be expressed as a product of commutators of the required form using 

the expression already obtained for form (iii) ; the only term 

requiring special checking is 

- 1 

and the last expression is clearly of the required form. The 

inductive hypothesis is thus confirmed, and the truth of the lemma 

follows. 



4.5 Lemma 

If the group G splits over its normal subgroup H^ if J, 

a complement of H in G^ is a finite p-group of class c such 

that for 1 < i < c, / N^(J) is a direct product of z(i) 
h.j ^ 

cyclic groups of orders p ^ 1 < j < z(i)^ where h^^ > h^^ 

for 1 < j < z(i), if 

^ = ' ^ ii-<c liiz(i) 
hi, hi, -1 

and b = {i (p - p )}, 

if w > ra for some r e JV, and if a^ e G^ 1 < i < then 

"i^ - - = i J X 0 ° ^ 

where t̂  e N (H) and for 1 < k < y^ may be expressed as a 

commutator of weight ŵ ^ in H, ^ < < r, and q^ = p where 

v^ = 1 + [ (w - w^a)/b] , 

Proof The proof exactly parallels that of Lemma 3,2^ proceeding 

This statement referred to an earlier lacunary proof of Lemma 

3o2, which has now been replaced. The proof of 4.5 now no longer 

parallels that of 3.2. A new proof (using different preliminary 

lemmas in place of §§4.2 and 4.3 preceding) has been constructed, 

and will appear in the published version. 



§4.5 62 

In the case r = L, Lemma 4.4 shows that the initial 

segment ' ° ° ' given commutator may be 

expressed as a product of commutators of the form rB,a' LI-'} ' ' ^ } ^ J 

where P e H, a| e N^ for 1 < i < and 
J- ^ -

Kil'i ^i - Since, modulo Z(H) = H, the 

induction hypothesis simply restates Lemma 4.3„ 
For r > 2, let K be the commutator [a .a^,„.„,a 1, — 0-' ^ ra+(s-l)b^ 

and K' the left-normed commutator whose entries are the first 

f/ \+(r-l)a entries of K, SO that K may be written 

K = 7 'o., '̂ ĝ î g l)b^ ° proof follows as in Lemma 3.2, 

with K and <' replacing y and y' and other commutators 

altered accordingly, using Lemma 4.3 wherever the proof of 3.2 

uses 3„l„ 

4.6 Theorem 

If H is a normal subgroup of the group G such that G/H 

is a finite p-group of class c and for 1 < i < 

N. J^(G/H) / N^(G/H) is a direct product of z(i) cyclic groups 

of orders p , I < j < z(i), where h > h for I < j < z(i), U . J 

l^<c l<i<z(L) 
T~ y "'J if a = 1 + (i , ^ (P - D ) and 

h;, ĥ , -I 
b = (P " P ^^^ ^^ ^ nilpotent of class 

r such that for 1 < r < r every element which can be expressed 
o' — o 
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as a commutator of weight r in H has order dividing p̂ '', then 

G is nilpotent of class at most 

max [ra + (s -l)b] 

By the embedding theorem of Krasner and Kaloujnine 

(see, e.g., 22„21 of [10], G may be embedded in the wreath 

product W = H Wr G/H (= H wr G/H, since G/H is finite). The 

base group K of this wreath product is a direct power of H, so 

satisfies the conditions on H in this theorem. Since W is a 

splitting extension of K, Lemma 4.5 shows that every left-normed 

commutator of weight 1+w = max [1 + ra + (s -l)bl may, since V J. -

T T ^ 
w > r a, be expressed in the form ' 0. where for 1 < i < y, — o l<i<y 1 

G is a commutator of weight w. in H and q. = p where 1 ° 1 ^ 

V. = 1 + [ (w - w.a) /b] . Since w > w . a + (s -l)b for 1 < 1 < y, 1 :i — 1 Wj — — ^ ' 

it follows that v. > s for 1 < i < y, and hence that the 1 — w^ — — 

given commutator is trivial, and W is nilpotent of class at 

most w. However G is Isomorphic to a subgroup of W; and the 

theorem is proved. 

4.6.1 Corollary 

If G/H satisfies the same conditions as in Theorem 4.6, and 

H has exponent p and is nilpotent of class r^, then G is 

ni ilpotent of class at most r a + (k-l)b. 



Liebeck, in Theorem 5.1 of [9], found the exact nilpotency 

class of A wr B when A is an abelian group of prime-power 

exponent and B is a finite abelian p-group for the same prime, p. 

His result gives an upper bound for the class of any abelian-by-

finite-abelian group of p-power exponent^ as the embedding theorem 

of Krasner and Kaloujnine shows. This bound coincides with the 

special case c = r = 1 of the bound found in Theorem 4.6 above. o 
Thus the result of Theorem 4,6 is best possible, and gives 

the exact class of the wreath product, in the special case c = r = 1, 
o 

Example 4.7 shows that in fact the result of Theorem 4.6 is best 

possible for arbitrary e J^, and that it gives the exact 

nilpotency class of every nilpotent wreath product, since every 

nilpotent wreath product must (by 1,3.5 above) satisfy the 

conditions of 4,6. 

4.7 Example 

If A is a nilpotent group of class r^, such that for 

1 < r < r every element which can be expressed as a commutator — — o 

of weight r in A has order dividing p (and at least one 

has order exactly p ) for some fixed -per, and B is a 

finite p-group of class c such that for 1 < i < c, N^ ^(B)/N^(B) 

is a direct product of z(i) cyclic groups of orders for 

1 < j < z(l), where ĥ ĵ  > h^^ for 1 < j < ^(i)^ with 
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hi; h^, -1 
b = ^max^ {i (p - p 

then W = A wr B is nilpotent of class exactly 

n = iinax {ra + (s -l)b] 

Notation Let x be an integer^ 1 < x < r , such that — — o 
xa + (s^ -l)b = n = ^ma^ {ra + (s^-l)b}, and let [a^.a^, o o . 

ŝ  

be a commutator of weight x in A whose order is p . Let y 

be an integer, 1 < y < c^ such that 
hyi ĥ ,, -1 h.j hjj -1 

y(p - P ) = b = ^m^x^ [i (p - p )}„ 
h,. 

Let u. . = p '' -1 for 1 < i < c and 1 < j < z{i), and denote by 
^ J 

X the sequence of elements of the ordered basis T of B in which 

the first û ĵ̂  entries are all the next u^^ 

so on through the ordering on T. Denote by x^ the same sequence 

with the u , entries equal to T , deleted from their place in yi yi 
the order, and by x the sequence x^ followed by 

û ĵ  + (s^ - l)(p - p ) entries equal to t^^ inserted at 

the end. 

Theorem 4.6 shows that W is nilpotent of class at most n. 

The example will be proved by showing that the commutator 

< = [tt (1), X, a (1), X, X, a (1), X ] may be expressed as -L Z X 
a product of commutators of weight n in W, and is non-trivial. 
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Hence at least one commutator of weight n in W is non-trivial^ 

and so the exact class of W is determined. 

The first part of this programme is quite easily carried out. 

For 1 < i < c^ 1 < j < the entry T^ ̂  in the commutator 

K may be expressed as a product of commutators in B of weight 

i and more; and on expansion using the Hall identities and the 

fact that commutators of weight greater than n in W are trivial, 

< is expressed as a product of commutators of weight n. 

For the second part, to show that k is non-trivial, let 

= [a^d), a^Cl), a^(l)] and 

K V = [a^^CD, X, cc^il), X, .o., X, co^(l)] for 1 < v < x. Clearly 

= K^ = a^(l)o Assume inductively that for some v, 2 < v < x, 

either A . E k , o r A ^ = K modulo N ,(K), With the v-1 v-1 v-1 v-1 =v-l 

former case (adaptation necessary for the la^er is obvious) Lemma 

I0I.2 gives : 
p 

since and hence is in the centre of K modulo 

N ,(K). Clearly the element of K on the right-hand side of this =v-l 

congruence has support ^ ^ < since the order 

of Tĵ j is û ĵ  + 1, the component in the first coordinate 

(-1)"" subgroup A(l) of this element is ^ . Similarly, by a 
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finite induction following the ordering of 1., the conimutator 

[k ^ , u,,T.,. o... u..T..] is equal modulo N ,(K) to an v-1^ 1111-^ ^ ijij =v-l 
element of K with support consisting of the elements of B which 

can be expressed in the form t , t . t, with 11 12 ij 

0 < < for l < i < C j z(i), which has component 

in A(l) equal to either ^^ ^ \ 1° particular^ the 

same is true of [ x] ; and so 

% = f^-l' 

= [ A a (1)] modulo N (K) v-1 V =v 

V 
By induction then, modulo N (K) , < = A =x ^ X X 

The same argument shows that [< , x ] is equal^ modulo N (K)^ X * —X 
to an element of K whose component in A(l) is either 7\ or X 
A and whose support is the set of all elements of B which, X. 
when expressed in their standard form given by Lemma 4.1.2, have 

e^^ = 0. Such elements of B, except the identity, when 

multiplied on the right by any power of t^^ remain outside the 

(cyclic) subgroup of B generated by "'"y]̂  • Thus, modulo N^(K), 

the component in A(t S for 0 < t < u , of yl - - yl 

[K,, '<*) - X,, (U^i + (S^-I)b) T^^l 

is congruent with that of 

+1 h h , hyi -1 
. (P + (s^-l)(p - P ) - 1) Ty^] 
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which^ as the proof of Lemma 3.1 shows^ is for some t a non-trivial 

power of A (since A has order p ). The given commutator X X 
is therefore non-trivial modulo N (K) and so non-trivial; and the 

example is verified. 

The tools used in this thesis have some interesting 

applications to the more detailed study of some group extensions 

which are p-groups. Two simple applications are described briefly. 

The iterated wreath product of p -cycles is defined by 

G = fl} and for n > l , G = G , w r C o - ^ n n-1 p 

An induction using Lemma 3.1 shows quite easily that the maximum 

order of a commutator of weight w in G^^ where p^ ^ < w < p^^ 

is p'̂  ̂  for 0 < i < n-1 (or even i = n)^ and hence that G^ 

has nilpotency class p'̂  This confirms the result of Kapitel I 

Satz 15.3(e) of [6]. The same method may be applied to an iterated 

wreath product of p'^-cyclesj though the detailed results are much 

more complicated. 

The basis for the base group of the wreath product C , wr C , 
P P' 

used in the proof of Lemma 3.5.3 is readily adapted to a detailed 

investigation of the lower central series of W = C i, wr C ^ for 
P P** 

arbitrary h^k e which reveals a rather surprising increase in 

the order of factor groups N^(W)/N^(W) in this series from p 
h , h 1 = p + s(p 

h , / h h-1. 
when i = p'̂  + s(p'̂  -p'^^)^ 0 < s < k-2, to p^ ® ^ when 

1 = p + s(p - p ) + 1. 
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Appendix 

Since most of this thesis was typed^ Dro L„G, Kovacs has 

brought to my attention a preprint of a paper entitled "Bounds for 

the class of nilpotent wreath products" by LoJ, Morley,, In the 

present thesis, the exact class of a nilpotent wreath product is 

given in §4o7 in the form 

max (ra + (s -l)b} , 
l<r<r ^ o 

where a and b are parameters depending on the top group, and 

commutators of weight r in the bottom group have maximum order p 

The lower bounds of Scruton [11], Morley, and the present 

thesis are obtained by essentially the same principle, using a 

standard form for elements of the top group in terms of generators 

of the factor groups in a central series of the top group. Instead 

of the extremely fine central series (with every factor of order p) 

used by Scruton, Morley uses an arbitrary central series, and so 

improves Scruton's lower bound to one of the form 

,max fra' + (s -l)b']o The specific use of the lower central l<r<r r o 

series in the present thesis makes it possible, roughly speaking, 

to multiply each term connected with the i th step of the series 

in the sums forming a' and b' by i, and so to obtain the sums 

forming a and b,, 
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When the bottom group is abelian^ Morley's upper bound takes 

the form a" + (s^-l)b", where a" and b" differ from a' and 

b' in having each summand connected with the i th step of the 

series multiplied by the product of the exponents of the i-1 

higher steps (instead of simply by i). The adaptation of this 

result to a nilpotent base group in general is of the form 

r a" + . Z T (s -1 )b", instead of max fra + (s -l)b], o l<r<r r l<r<r r — — o — — o 


