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Preface

Professor Hanna Neumann, in the preface to [10], suggested
that the theory of product varieties could be based on Smel'kin's
embedding theorem, and with this in mind suggested to me that the
use of Smel'kin's theorem in systematising the considerable but
scattered set of known results about groups non-trivially of the
form F/Z(R) would make an interesting research project. The
very first such result considered, that F/R' can not be an Engel
group except in trivial cases, proved so beguiling that it led to
the development of all the results reported in this thesis., The
properties of F/V(R) remain scattered.

I wish to record my sincere thanks to Professor Hanna
Neumann, my supervisor until August of this year, for her
sympathetic encouragement as results appeared and disappeared;
and to Dr M.F. Newman, who even before taking over as supervisor
in August acted as an invaluable guide to facts and references,
and since then has suggested generalisations and simplifications of
some results, which have led to the organisation of Chapter 1 in
its present form. Both supervisors have made many suggestions
which greatly improved the presentation of this work. With these
reservations the results shown, except where otherwise acknowledged,

are my own.
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Introduction

The main results reported in this thesis are bounds on the
Engel length and nilpotency class of certain group extensions, G,
in terms of parameters depending only on a normal subgroup H and
the quotient group G/H. Closely related to these are results
giving sufficient conditions on H and G/H for the group G to
have certain properties, ranging from being an Engel group (the
weakest) to being nilpotent (the strongest). There are also results
in the converse direction, giving corresponding necessary conditions
in some special cases of group extensions, one of which is the wreath

product.

0.1 Notation

Lower case letters of the Roman alphabet are generally reserved
for integers, thoeugh "S8".and '"F" occur for, particular integer-valued
functions. Upper case script C#,A[ etc.) is used for sets of
integers; in particular /Vﬁ is the set of all positive integers and
79 thelseits o fvalllt primeis, Group elements (except the identity, which
is everywhere '1'") are denoted by lower case letters of the Greek

alphabet. Upper case German script (here written U, Z,etc,) is

used for varieties; in particular Hc is the variety of all nilpotent

groupe of clags less than or equal to «c, B is the wariety of all

groups of exponent dividing v, A(=N g EheSvarilcty ot aill

»

abelian groups, and év = émgv.
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For any ‘group” G “and 'variety ¥V, “the corresponding verbal
subgroup (the intersection of all normal subgroups H of G such

that ' 'G/H € ¥ 1le%ritteén V(G); where V = A it is usually

writtern " 'G¥ “rafher ‘than ' A(G).

The usual notation is used for conjugates

B = (a_l)B), commutators ([a,B] = a-lB_laB = a—laﬁ,

(@B = B_laB, "

inductively [al,az, - i an_l,an] = [[al,az, So v an_l],an]),

divdSEngel] ‘coimutators = "([aink] = (0,6, .. Bl; LnSparticdlar

191
[a,08] = ).

Square brackets are also used for references, and to denote
the integer part of a real number ([r/s] is the greatest integer
n -such that n < r/s); no confuslon should arise,

If Hl and H2 are any two properties of groups, and the
group G has a normal subgroup H such that H has property Hl
and G/H has property HZ then G will be said to have the product
H1H2 of these properties. If for some II every group with property
Il gl se has property - I, them [l is*sdid to be idempotesrt:

The restricted and unrestricted direct products of the indexed
| 8 € &4 are denoted by H(X) A and II* A

S S BrR seA O
respectively, the free product (see 18.11 of [10] for definition) by

set of groups (A

*
II AS’ and the verbal product associated with the variety V
BeA =

V
(defined in 18.31 of [10]) by II= A_.
A BeA ©
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The restricted and unrestricted wreath products, A wr B and
A Wr B respectively, of the groups A and B are well-known
eonstructionss “.When:the base group; “K.= Bgéx> AGRJs or Bg; AB),
isireparded as a set of fumctions from B to A with multiplication
defined componentwise, the support of any element ¢ of the base
group ic defined to be (B e B | Bd.# 1). For any B ¢ B, the set
of elements of K whose support is contained in {B} is clearly a
subgroup isomorphic with A. It is denoted A(B) and called the
coordinate subgroup of W corresponding to PB; when B =1, it
will be called the first coordimate subgroup, A(1l). Under a
fixed isomorphism from A to A(B), the image of arbitrary element
@ € A will be written «(B). Note that when B 1is identified
with a complement of K in W, a(B) = a(l)B e alll B e B,

Similar notation will be employed for the verbal wreath
product A wry B,  corresponding to the variety ¥, of the groups
A and B wh;ch is defined in a similar way to the restricted

V
standard wreath product, except that EE A(B) replaces H(X)A(B)

B BeB

as the base group. Elements of the base group can now no longer

be regarded as functions; however, if an order, < say, is

defined on the elements of B, then 18.35 of [10] shows that every

element of the base group may be written uniquely in the form
R O

where Bl < 52 L e Bm, a; gl dor oo e m, and 4 ‘belofpgs

to the cartesian of the verbal product. Note that 7y depends on
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thecpartieulars ordering;t <, ' chosen;’ but the = doSne Hence
it is still possible to speak unambiguously of the support of an

element of the base group, and of coordinate subgroups.

0.2 Background

The bounds on Engel length and nilpotency class presented in Chap-
ters 3 and 4 do not involve the concept of varieties of groups, but
they arose from an enquiry directed toward the properties of product
varieties.

A group G 1is said to belong to the product variety Vi if
and only if it contains a normal subgroup N such that N € ¥ and
G/N ¢ W. As Smelkin has polnted out (in [12]), +the fact that
every variety can be uniquely represented as a product of
indecomposable varieties gives rise to an interest in knowing the
properties of a product variety in terms of the properties of its
factors. (A variety is said to have a property, applicable to
groups,if every group in the variety has that property.)

Some such results are trivial. For example, a product
wariety clearly is soluble if and only if all its factors are soluble,
and has finite exponent equal to the product of the exponents of its
factors 1f and only if they all have finite exponent. Several non-
trivial properties are proved by Smel'kin in the same paper. A

product VW of two non-trivial varieties V and W possess a

"root property' residually if and only if both ¥V and W do (3.4);
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it can never be nilpotent (4.2); 1its free groups of finite rank may
be presented with a finite number of relators if and only if V has
the same property and W is locally finite (5.4); and it is a
Cross variety (i.e., is generated by a finite group) if and only if
V is nilpotent, W is abelian, and V and W have finite coprime
exponents (6.3).

To this list we .add,; in .§l.6. of the present thesis, .that
if .Y and W .are both non-trivial, then. VW is locally nilpotent
if and only if V and W are both locally nilpotent, and both have
exponents equal to powers of one prime, p; and that for VW to be

an Engel variety, it is necessary that V and W both have p-power
exponent and both be Engel varieties, and is sufficient that both
have p-power exponent, V be locally nilpotent, and W be Engel.
Smel'kin's results about the free groups of product varieties
were obtained as special cases of results about groups of the form

F/V(R), where F 1is an absolutely free group, R < F, and ¥ 1=

a non-trivial variety. In the special case R = E(F), the group

F/V(W(F)) 1is free with the same rank as F in the variety VW.
A major tool used by Smel'kin was his "embedding theorem', stated

here in a form due to Kovécs [8]

0.2.1 Theorem (SMEL'KIN, [12], Theorem 2.1)

Let F be an absolutely free group on the generators

(@, | £ €A}, R a normal subgroup of F, and ¥ a variety. Then
i L



§0.2 0

the factor group F/!(R) may be embedded in F/V(F) wr F/R in
il

such a way that fi V(R) 1is mapped onto fiN : fiX(F)( ) where
fiN is*3n “the 'top group, and fiZ(F)(l) is the corresponding
generator in the first coordinate subgroup of the base group.

It was pointed out by Smel'kin - see also Kov4cs [8] and
Dunwoody [3] - that the ''Magnus embedding' is the special case
¥ Eih: CoF Smel'kin's embedding theorem. Bachmuth and Hughes [1]

have used the Magnus embedding to give simple proofs of the following

earlier results

@.70..2 Theorem (B.H. NEUMANN, K. GRUENBERG)

If F/R! s an Fngel group, then F = R.

OE2 3 Theorem (M. AUSLANDER and R.C. LYNDON)

The group F/R 19§ ftinite 1f and' only if F/R' 'has mon-trivial

centre,

0.2.4 Theorem (K. GRUENBERG)

LE F/Em(R).R' is an Engel group, then either F = R or
m  is 3l pewer of a prime  p, and_ P/R is a p-group,

Smel'kin has generalised the "if'" part of 0.2.3

0.2.5 Theorem (A.L. SMEL'KIN, [12], &4.1)

if F 'is & non-eyelic (absolutely) free group, YV is a

non-trivial variety, and F/R 1is infinite, then F/Y(R) has trivial

Centre.
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The "only if'" part of 0.2.3 can not be similarly generalised.
Though it remains true if V = Ec gr.esen. Jo= (e Hove. ool o)
ox if N c A, it is not hard to show that it is false if Vg daad
varile GuiiSstich s ézé, whose non-cyclic free groups have trivial
centre. Theorem 1.2,1 of this thesis generalises both 0.2.2 and
0.2.4, and 1.4.1 provides a partial converse.

Baumslag in §3 of [2] has found a necessary and sufficient
condition for a wreath product to be nilpotent; the sufficient
condition actually applies to group extensions in general (Lemma 3.8).
Liebeck [9] has found the exact nilpotency class of a nilpotent wreath
product A wr B in the special case where A and B are both
abelian. Scruton in [11] has obtained upper and lower bounds for
the nilpotency class of nilpotent wreath products in general, but
these bounds are of widely different magnitudes. In Chapter 4 of
this thesis, an upper bound for the nilpotency class of any group
extension satisfying Baumslag's sufficient condition is obtained.

It coincides with that of Liebeck for A wr B when A and B are
both abelian, and is in fact attained by the wreath product A wr B
when A and B have arbitrary nilpotency class. However it
suffers in depending on two rather complicated parameters of the

group B, whereas Scruton's bounds use simply the order of this

group.
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0.3 Note on weight of a commutator

In Chapters 3 and 4, ideas closely connected with the weight
of a commutator occur frequently. The weight of a particular given
commutator expression may be defined quite simply; however some
difficulty arises when it is not the expression as such but the
group element represented by the expression that is under
consideration,

In the introduction of [13], Ward gives a summary of the
"conventional theory of basic commutators'. Lf.a growps Gt is
generated by the set of elements Gl’ elements of G1 are considered
to be basic commutators of weight 1, and may be well-ordered in any
way. When ¢ > 1 and basic commutators of weight less than ¢
have been defined and ordered, the basic commutators of weight ¢
aresexpressions @f . the fogpm.: [E,nl . where E..and 75, are. basic
commutators of weights r and s respectively, r+s =c, & follows
Nt Lggthesordering.s and.df. . Ey= [gl,gz] then §2 preceds. n.

If the last two conditions (about ordering) are omitted, this
same process gives the weight of any commutator expression, not
necessarily basic.

One difficulty which arises in assigning a weight to a
commutator as a group element is the possibility that two commutator
expressions with different weights may be equal as group elements.
For example, if @,B,7;5,€ € Gl’ and e8] =i v.60L8] =& , shall

we say that £ as an element of G ' has weight two or three?
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Another difficulty is the choice of generating set. Clearly
it is possible for a group element to have widely differing weights
when expressed as a commutator in terms of different generating sets.

Still another question is that of extending the idea of weight
to arbitrary group elements, including those which cannot be expressed
as commutators. What will happen to an element which can be
expressed as a single commutator of weight two (but not higher weight)
or as a product of other commutators all of weight four?

A full discussion of these problems becomes very involved.

For the purposes of the present thesis, the second difficulty will

be met by choosing Gl = G, so that every element of every group is
considered to be a commutator of weight one. Let Gi be the set of
group elements which may be expressed as commutators of weight i in
terms of Gl' For some applications, we will be concerned simply
with the fact that an element belongs to Gi° One way (which will
not concern us in this thesis) of defining uniquely the weight of an
clemeEne B g He gey i £ hag wetgnie ol weem 56 Gi and

E £ G, for j>1. The weight of an element belonging to an
infinite number of the Gi (ln particular, the identity) could be
considered infinite.

Another possible approach, which can give a different answer

to the third question above, is to say that & has weight i if
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E ¢ sgp {Gj S = JiTamd g ¢ sgp {Gj st
The choice G, = G means that sgp (Gj i <§) = 51-1(G)‘

some applications this idea of weight also will be used.

10

In
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Chapter 1

Non-numerical results

Related to (i) being nilpotent, but progressively weaker, are
the group properties: (ii) being locally nilpotent, (iii) having all
k-generator subgroups nilpotent for some fixed k ezac and (iv) being
an Engel group. The class of all groups having any one of these
properties is not a variety.

However, corresponding to each, there is a bounded, varietal
property. These are: (i)' being nilpotent of class at most ¢
for fixed c e A, (ii)' having all k-generator subgroups nilpotent
of wclass at mest i . (k). foersall: k eu¢f where ¢ 1is a function from
N to N ; this we will call being boundedly locally nilpotent;
(iii)' having all k-generator subgroups nilpotent of class at most
¢ for fixed k, ¢ eN, and (iv)' satisfying an Engel condition.

Every nilpotent group is, of course, nilpotent of finite
class, so that each group having the property (i) also has (i)'.
However a group G may have one of the properties (ii), (iii), or
(iv) without having the corresponding bounded property. In this
case there are groups in the variety generated by G - for example,
the countably infinite Cartesian power of G - which do not have the
property. In a variety in which every group has one of the
properties (i) to (iv), every group has, in fact, the corresponding

bounded property. In particular, every group of an Engel variety
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sati=tics tlie ! th Engel condition for a fixed { ¢ ,Nfdepending
only on the variety, and every group of a locally nilpotent variety
is boundedly locally nilpotent, the function c : N - N determined
by the variety.

In order that an arbitrary group G with normal subgroup H
should have any one of these properties, the only necessary
condition on H and G/H is that both have the required property.
This is shown by the example in which H is a direct factor of G
and the given condition is sufficient. Besides being trivial,
this necessary condition is much weaker than a sufficient condition
in general cases, and for this reason necessary conditions are
considered only for two special types of group extensions.

In both of these types, one of splitting and one of non-
splitting extensions, gll elements outside the normal subgroup H
have a genuine effect on the normal subgroup, inducing non-trivial
automor phisms. They are, in §l.2, groups non-trivially of the
form F/Z(R), whose importance in the study of product varieties
has already been discussed, and in §l1.3 the restricted standard
wreath product A wr B of non-trivial groups.

It may illuminate the proofs of 1.2.1 and 1.3.1 to point out,
in very imprecise terms, some other common features of these two
types of groups which are not shared by group extensions in general.

It is possible to select an element of the normal subgroup (a free
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genera oo R F/Z(R); an element of one coordinate subgroup
in the wreath product) whose conjugates by distinct powers, modulo
the normal subgroup, of any element outside it satisfy two properties:
firstly, independence, in that no power of any one of them can be
expressed in terms of powers of the others, and secondly, the
possibility of a certain amount of commutativity for themselves and
their non-trivial powers. In the wreath product, they actually
commute, since they have trivially-intersecting support; and since
every variety contains an abelian subvariety with the same exponent,
R/V(R) has an abelian homomorphic image, R/(Zné>(R)’ in which the
powers remain non-trivial.

These properties are not satisfied in general extensions; for
example the 'commutativity'" can not be provided when the normal
subgroup is perfect.

In this chapter, §l.1 provides some preliminary information
about certain Engel commutators. In §l.4 sufficient conditions are
found for group extensions in general to have most of the properties
being discussed; these sufficient conditions are closely related to
the necessary conditions found for certain types of extensions in
§le2 and gl 3, Examples given in §l1.5 illuminate the distinction
between the bounded and unbounded conditions. The results of §l.2
and §l.4 are applied in §1.6 to find conditions for a product

variety to be Engel and locally nilpotent.
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. k.1 Lemma

14

If B and y are elements of the abelian normal subgroup A

of the group G, and 0 and T are commuting elements of G,

for bkl o s A6,

g (Bl =151 (1 <0)

[oB, n(Tr)]
Preof Proceed by imductionon mn.  When n =1,
(o8, ] = 8 Loy e lopy
3 B-lY—GBTY

_i(T=1)_(L=0)
When n >'1,

T A s e R e AL i

]

L Y-(T-l) (1-0).B_<T_1) Y—I'B(T-l)

Y(«r-l)”" (1-G)T.Y

B(T—l) Y(T-l) (1-0)

5

and the lemma is proved.

For the most part, only the special case 0 =1

-1
T

will be

required, and without further loss of generality Yy may also be

chosen to be trivial:

1;1.2 Corollary

If B 1is an element of the abelian normal subgroup A of

the group G, and 1 e G, then for all n e N

[Bsnth.s 85

then
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15200 Theorem

FE s s non-trivial' variety, R 1is a proper normal
subgroup of the non-cyclic (absolutely) free group F, and
F/Y(R) is an Engel group, then F/R 1is a p-group for some p ¢ zp,

and ¥V 1s an Engel variety with exponent equal to a power of p.

Proof Clearly V 1is an Engel variety, since the non-cyclic
free group R/Z(R) is an Engel group. »
Let @ e BxR, and L = sgp{R,n}. Now R L (since
ReeliF) O L/RW ds eyelie, and 'L - and R are both free groups. By
Lemma 43.42 of [1O°] we may, if n has finite order £ modulo

R.' choose 4 set of generators {o,B,...) of L sueh that
t-1
B
; )

{Bt,a,a sl is pgrt of g et of gemerators of R. TE

has infinite order modulo R, the same procedure gives {aﬁt\i
an integer} as part of a set of free generators of R. In each
case, let R* be the subgroup of R generated by the subset of
generators shown, and let L* = sgp {R*,B}. 1t follows from 12.62 of
[LO] “that Z(R*) = X(R)DR*. Cleariy 1* is a free group of ‘rank
tWo genevated by o and B, and R* gL”.

The next step is to show that the case in which 17, and
hence B, has infinite order medulo R* -can not occur. Since F/Z(R)
is an Engel group, there must be some £ ¢ A/ such that
e, 4B] & WARY;  amdpsince @ ¢ RE 00" and 0 c 17, this medns

that [a,lB8] e Z(R)OR* SR, However, for arbitrary [ ¢ /V:

Corollary 1.1.2 shows that modulo (Z é)R*,
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{4

Z 4= i
B T D (i)B
[C(';BB] = = O<i<£ QO

If B has infinite order modulo R¥*, the conjugates of o whose
powers occur in this product are distinct elements of a set of free
generators of R¥*, and one of the powers (corresponding to i = 0)
is equal to a,Aand is therefore non-trivial modulo the verbal
subgroup (Zné)(R*). Hence the Engel commutator [a,fB] is also
non-trivial modulo <¥né)(R*)’ andiafor tiloritisinot contained i
V(RY).

This shows that F/R is periodie, and B has finite order,
E- say, module R  gnd also module R*. The theorem will be proved
if we show that t and the exponent of V are powers of the same
prime.

T fNthey are not, ‘theretexi'st distimnct primes  p ‘and 'q such
that £t = ug for some  u € s and 4
and as before, for some /[ ex«f the Engel commutator [a,{B] in
the free generators of L* Sdsicontained in X(R)nR* and so in
ép(R*). Hence L*/ép(R*) is an Engel group; but it is finite,
ot crEde s WE pt+l, and so by the well-known result of Zorn and
Zassenhaus (reported without proof in [l4]) , is nilpotent. it
can easily be checked that « and Bup are, modulo ép(R*),
elements of orders p and q respectively which do not commute

i e % :

(simce @ ‘and @ are distinet free generators of R7). s

contradicts the nilpotency of L*/ép(R*), and hence contradicts the

hypothesis that the theorem is false.
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122 Gorollary

If V 1is a non-trivial variety, R 1is a proper normal
subgroup of the non-cyclic (absolutely) free group F, and F/Z(R)
satisfies the [ th Engel condition for some / e«4f, then F/R
satisfies the loth Engel condition with 20 < f, and has finite
p-power exponent for some p e]o; and V 1is an Engel variety with

finite p-power exponent.

Proof It is clear that F/R must satisfy the {_th Engel
condition with ﬁo < f; and from Theorem 1.2.1 it follows that for
some p e/, F/R is a p-group and ¥V is an Engel variety of
p-power exponent. We still need to show that there is an upper
bound on the order of elements of F/R; and in fact { is such a
bound.

To see this, repeat the working of the proof of Theorem 1.2.1
to show that modulo (Zné)(R*)’ for the given integer [/,

@ o Tt 1>l"'(li) g
-— CL 5§ e ’ a i 1
O<it

I "t " is the order"of "p" "module® R,  the“conjugates

[o, £PF]

i
{&B |O < i < t-1} are distinct modulo (Zﬁé)(R*); so for this

final product to be trivial modulo (Zné)(R*), it is necessary that

-l =p. or ot <1, ‘as elaimed,

il 283 s Gotolilany

if ol is asaop=triyial:wariety., R is = proper/subgroup of

the non-cyclic (absolutely) free group F, and for some k ¢ s
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k > 2, all k-generator subgroups of F/Z(R) are nilpotent
(nilpotent of class at most c¢), then F/R is a p-group (a p-group
of finite exponent ph =¥%c) P for %some 'p e 7% whose k-generator
subgroups are nilpotent; and V 1is a variety of p-power exponent
whose k'-generator groups are all nilpotent, where

k' = max (k, ph LS SR SE/R  has exponent ph; and v is

locally nilpotent if F/R does not have finite exponent.

Proof A group whose two-generator (and a fortiori, whose
k-generator, where k > 2) subgroups are nilpotent is necessarily
an Engel group, and if there is a bound on the class of two-generator
subgroups, the group satisfies an Engel condition. Thus all
conclusions except that concerning the k'-generator groups of v
ol llowisitom SIRV S I andRlis) 80 S Clearly k-generator groups of ¥V are
nilpotent.

et cishelianyeliemen tRofESw i Eh  order S taimodiilio S8R &= and
let L = sgp (R,a}. g abin 1L 20T g A a2 eiE - L)) to choose
a set of free generators of R of the form {nt,B,Bn,,..,Bntﬂ,a,o}
R e s it LS & et of free generators of 'L, and let
L* = sgp {B,n} and R* = sgp {nt,B,B”,ooo,B”tq}» By hypothesis,

LT Y RIV(RD) = L*/L*ng(R)), being a two-generator subgroup of

R

F/V(R), is nilpotent. Its subgroup R*.Y(R)/V(R) R*/X(R)HR*
is therefore milpotent; but from 12.62 of ' [10] S folilows N Ehat
y(R)mR* = V(R*), so that the free group R*/Z(R*) O Geeynle (Bl a1l

in the variety ¥ is nilpgotent. The required result now follows.

/
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From Theorem 4.6 in Chapter 4, it will follow

that if ¢ 1is an upper bound for the class of two-generator
subgroups of F/V(R), and ph is the exponent of F/R, then
c/ph is an upper bound for the class of R*/Z(R*), and so of all
ph + l-generator groups of V.

Clearly we also have:

L.Z2.4 ' ' Corollary

LE ¥ is a non-trivial variety, R . is a proper normal
subgroup of the (absolutely) free group F of countably infinite
rank, and F/Z(R) is locally nilpotent (boundedly locally nilpotent),
then for some p ¢ 2, F/R is a locally nilpotent p-group (a
boundedly locally nilpotent group of p-power exponent), and V¥V is
a locally nilpotent variety of p-power exponent,

This result is of interest in that these necessary conditions
Eor F/Z(R) to be locally nilpotent are also sufficient (see 1.4.3

am s/

s Corollary

If .y -is & non-trivial variety, R 1s a proper normal
subgroup of the non-cyclic free group F, and F/V(R) is nilpotent,
then F/R is a finite p-group for some p ¢ P . and V has
p-power exponent. (Clearly also R/V(R) 1is nilpotent, so that if

F and hence R has infinite rank, then V¥V 1is also nilpotent).
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Proof Since a nilpotent group satisfies an Engel condition,
all the required conclusions except the finiteness of F/R follow
trom Corellary 'l1.2.2. However, Smel'kin has shown (Theorem 4.1
BE " L2, see 0.2.5 above) that under the given conditions if
F/R is infinite then F/V(R) has trivial centre, and so is not
nilpotent. This completes the proof.

Again, the necessary conditions for nilpotency of F/V(R)
aresglso sufficient, as is gshown in 1.4.5, due to Baumslag:

For the sake of completeness in making comparisons, the
results applicable to wreath products corresponaing to those of
§1.2 for groups of the form F/V(R) are also stated. Dr. J.Wiegold
has informed me that those labelled 1.3.1, 1.3.2, and 1.3.4 have
been proved by R.B.J.T. Allenby (M.Sc.Tech. thesis, University of
Manchester, 1963); and 1.3.5 is part of a well-known result of

Baumslag.

1L Sk Theorem

If A and B are non-trivial groups and W = A wr B 1is
an Engel group, then A and B and hence W are Engel p-groups

for some p € A

Proof A and B are clearly Engel groups. To show that both
are p-groups choose arbitrary elements B from A(l), the first

coordinate subgroup of W, and T from B, the top group, and
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apply a similar argument to that of 1.2.1 in the subgroup of W

generated by these elements.

159502 Corollary

If A and B are non-trivial and W = A wr B satisfies
therilvth (Engeleconditiion, then: ‘As:and ‘B -satisfy Engel :conditions

and have finite p-power exponents for some p ¢ P.

Proot As before, that' A" and B  satisfy Engel conditions is
obvious; that both are p-groups follows from 1.3.1. T oaven = 6/4:
there exists an element Bf) of A(l) whose order exceeds Zﬂ, then

in the expression

el
[t 42l w Aladrandiiboddl (1) |

it is clear that the power to which each of the conjugates of B(1
is raised is non-trivial. Hence A has finite exponent. The
proof that B has finite exponent is similar to the proof of the
corvespondingerestltifor 5, FIRS insli2, 2.

The bound given here for the exponent of A 1is of course
far too high; a much better bound may be obtained as a corollary

of Theorem 3.3.

8 88 S Conrolliliany,

If dA _asnd B, are non-trivial, and for some k € /V: s 25
all k-generator subgroups of W = A wr B are nilpotent (nilpotent

of class at most c¢) then A and B are both p-groups (groups of
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p-power exponent) for some p ¢ ]z whose k-generator subgroups are

nilpotent.

1.3.4 . Corollary

If A and B . are non-trivial and W = A wr B is locally
nilpotent (boundedly locally nilpotent), then A and B are both
locally nilpotent p-groups (boundedly locally nilpotent p-groups

of finite exponent) for some p ¢ .

a3t onet Corollary” (BAUMSLEAG )

It A and B ‘are mon-trivial, and W = A wr B 1s nilpotent,
then for some p € P A isa nilpotent group of finite p-power
exponent and B is a finite p-group.

This was proved by Baumslag in §3 of [2]; alternatively,

it folll ows Erom I St2NaboveNand Corolilary 3.2 o H[1 2]

Again the necessary conditions of 1.3.4 and 1.3.5 are shown

to be sufficient in 1.4.3, 1.4.4 and 1.4.5.

s Theorem

An extension of a locally nilpotent p-group, for some p € f ,
by an Engel p-group is an Engel (p-)group.

Proof Let H be a locally nilpotent p-group which is a normal
subgroup of the group G, such that G/H 1is an Engel p-group.
Let o,B be arbitrary elements of G. Since G/H 1is an Engel

group, there is a positive integer ﬂo suclh that 7 = [o, L8] < H.
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Let L & @ppv{yplisand det ‘#% " be'the nermal closure of “y 4in L.

Sinlce s g Iy ¢ it folllows that ' H* < H

1 Ly - and so. H* is a loecally

N

nilpotent p-group. Since B has finite p-power order, q say,

L

b b0 9% 4-1),14%

modulo H*, and H* is generated by the set (y
which is finite, H* is nilpotent and therefore finite.

Now L, being an extension of H* by a q-cycle is also a
finite p-group, and therefore nilpotent. Hence [y, ﬂlB] = 1 . fox
some £1 € /V: and  [la; 4B] = 18 where [ = 10 + ﬂl, Thus G is

an Engel group, as claimed.

Lo, 2 Corollary

A group satisfies an Engel condition if it is an extension of
a boundedly locally nilpotent group of p-power exponent for some
p 629 by a group also of p-power exponent satisfying an Engel

condition.

Proof Let H be a boundedly locally nilpotent group of exponent pk
which is normal in the group G, such that G/ satisfies the {4 &b
Engel condition and has exponent ph. et ¥ be the variety
generated by H and W the variety generated by G/H. Then ¥V

is a locally nilpotent variety of exponent pk, and W is an Engel
variety of exponent pha From 1.4.1, every group in the product
variety WW is an Engel group, and hence, by the remarks made in the
introduction to this chapter, every group in VW, and in particular

G, satisfies an Engel condition.
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A bound on the Engel length of groups satisfying the conditions
of thils werollavy. is given in-3:3:2.
The next two results are conveniently stated in terms of the

idea of product of properties of a group, described in §0.1.

o g Theorem

The property of being a locally nilpotent p-group for fixed

p € P is idempotent.

Proof Let H<JG be such that H and G/H are locally
nilpotent p-groups. If G* 1is a finitely generated subgroup of G,

~

then G*/HnG* = G*H/H < G/H 1is nilpotent and finite. Then HOG*
has finite index in the finitely-generated group G*, so is also
finitely generated, therefore nilpotent, and hence finite. This

means that G* 1is a finite p-group and is therefore nilpotent, and

the result follows.

1.4 * Coerollary

The property of being a boundedly locally nilpotent group

of p-power exponent, for fixed p ¢ 77, is idempotent.

Proof This follows from 1.4.3 in the same way that 1.4.2

follows from 1.4.1.

1.4.5 Theorem (BAUMSLAG, [2], Lemma 3.8)

An extension of a nilpotent group of p-power exponent, for

some p € 79 5 by a tlaite p-group is nilpotent.
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This was proved by Baumslag. It also follows from Theorem
4,6 of the present thesis, where an upper bound on the class of such

groups 1s obtained.

1.5 Examples

To illustrate the difference between the corresponding
theorems relating to bounded and unbounded properties, consider the

groups (i) F/V(R) where F/R = Z andedll = A 5  and

=p,

(ii) Cp wr me; for arbiitraryvip e %7. Each is an extension of

poo

an abelian group of exponent p by an abelian p-group. Both groups
are locally nilpotent, and hence Engel; but they do not satisfy any
Engel condition, and so also there is no bound on the class of two-

generator subgroups.

e G0 Theorem

The product VW of the non-trivial varieties V and W 1is

locally nilpotent if and only if both V and W are locally

nilpotent varieties with finite exponents equal to powers of one
piEliEE o oy
Proof Since F/V(W(F)) 1is relatively free with the same rank

48 T i inthe variety W ' (e.g,, by 21.12 of [10] ), the "1if"

part follows from 1.4.3. The "only if'" part of the theorem follows
from 1.2.4, but is more easily proved directly by noting that if

v and W do mot both have p-power exponent, there exist distinet
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pLame s dS RS uc hRERat Cq &l Cq' € W, and hence the

non-nilpotent group Cq wr C €

Nal
Il
1l

1672 Theorem

For the product of the non-trivial varieties V and W

to be an Engel variety, it is necessary that V and W be Engel
varieties whose exponents are both powers of one prime, p; and it
is sufficient that both have p-power exponent, V be locally
nilpotent, and W be an Engel variety.

The proof parallels that of 1.6.1, following from 1,2.2 and
1.4.2.

The results of this chapter raise or leave unanswered several
interesting questions. Firstly, is it true that every Engel variety
of prime power exponent is locally nilpotent? This is a restriction
of the well-known unsolved problem whether every Engel variety is
locally nilpotent. A footnote in [4 ], and a similar independent
result of M.F. Newman (unpublished) show the existence of finitely-
generated infinite Engel p-groups. These, however, neither satisfy
an Engel condition nor have finite exponent. I1f the answer to this
first question is in the affirmative, then the mnecessary and
sufficient conditions of Theorem 1.6.2 are equivalent; and 1.4.1
and 1.4.2 show that the necessary conditions of 1.2.1, 1.2.2, and

PS8 2 a et alisolisufificitents
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Seeondly, 1f H 1is ap Engel p-group and G/H is (to take
the simplest case) a p-cycle, does it follow that G is an Engel
group? Even more restricted forms of fhis question, where H
is made to satisfy an Engel condition or to have prime-power
exponent, appear very difficult; though an affirmative answer to
the first question above would solve one case at least.

Thirdly, does there exist an Engel group of finite (prime-
power) exponent which does not satisfy an Engel condition? This
question is raised by the observation that every extemsion G, of
a boundedly locally nilpotent p-group H by a boundedly Engel
p-group G/H is boundedly Engel unless it fails to have finite
exponent; and that among the examples of unboundedly Engel groups

considered, not one has had finite exponent.
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Chapter 2

Arithmetical preliminaries

dThe reruwlts ‘of this section are included in order to obtain
Theorenm 2.8, whieh 16 3 useful - in fact a basie - tool in
obtaining the bounds of Chapters 3 and 4. Essentially, Theorem
2.8 combines 2.4, due to Liebeck, with 2.7, used by Bachmuth and
Hughes. Apart from 2.8 the only result used later is Lemma 2.1,
which is in any case well -known.

In this section, we write paHn if pa is the highest

pewe tRo i pERdiviid ing S ne forNsome s pl € 73, n € /Wf

250 Lemma

For arbitrary p € %) and e /V: and for " reeand s

SUClIRETa ER R < ph gndis 0 <5 < b,
s h-s p
P e = 0 (7]

Proof Eorianyiantegern),

Z it
po | n! where a = Z— oo 1
: 7 k k+1
the sumgactually contains enly “k terms where p < n < p ;

Thus
o I (5) where b= 22 t1nh'] - 1) - TG ')

In' the presentscase sris= ph, r = pst with h.oe.f. [(t;p) = L.

Now a term of the form ([(k+f)/m] - [k/m] - [£/m]) 1is zero

whenever m|k and mlﬂ. Hence the first s terms are zero. iLE
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Custhev iEetis ootnr, Chatfieyfif h > s, each of the h-s remaining

terms is of the form ([(k+)/m] - [k/m] - [£/m]} where k+f is
diviziblefby m, buty k' and. [ %are not; and each such term is
edualisto sl

Thus b = h-s, as claimed.

2o, Lemma

Eoe any s ipttc f’ and imbegers h and, r. satisfying h > 2

ph ph—l
rph~1 3 rph'2 modulo ph.

h
P z’jr h TT
h'].) = = i
Proof (rp 1dirph? (p 1+1)/1§i§rﬂv’ (i)

h-1
p
= (rph"z) < aib

! : h-1
where, if we set }f’ = {i | Bl € Tp

: no.
P) P*l}: ke ilg%(P -1)

and b = Il i , and the remaining terms in the two products give
ie

h-1
the binomial coefficient (rph'z)
Noitethat "for ‘each "dle }f
ph -i= -i (mod ph)
and hence a = (_1)r(p-1)ph_2b (mod ph)

= b (mod Ph) p)

except in the single case p e h =L 255 i= 1 In this case the

lemma may easily be verified directly. In all other cases, we now
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( h h-1
P P
have b rph'1 = a rph'z : therefore

(ph ph—l’ ph he1
e
b rph'l = b \rp?" Y mod ph, and so \rph-l/ = rph=2 / mod ph,

; : . . h
S inceR b silc opiaimeswiit h S Sip i

2,800 Definition

BoxEtarEbitaary s e/ and r such that 0 € T u-l

B(u,dsr) = 5 (_1)ui+r (u5+r)

<i<[L /u]
Thi s definition we extend to all integers .r by adopting
the convention that the third argument is to be taken modulo the

Eirsk: S thak e, lilie res aukb, 0= b= w-lj “then S(uf,r) = S(u,l b},

2.3.2 s Definitibn

For taEbiEraryasiniitic /V}

Bl ) = hbc. . (S(u,l.r) | 0 <¥ <1}

2o Lemma

Tif wadc /V: themn:

fa
S(u,l%a,r) = 0za (-1)1(i) Bl =i )
P f+a
N Z__ o x Y ( )
Proof SiEu A = O<i<] (F+a) ful (-1) Jutr

L o djute (?) (_ J _.)
L OSjS[fg;;)/u] ol Og;;; i) \jutr-i
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(where we set (£)=O e o @) o s )

i ?) jutr-i (, L ,)
O<i<a {1 (l 0<i<[ ({+a) /u] e I

g s (?) sl el H2E)

0<i<a

2t Lemma (LIEBECK, [9], Theorem 4.3)
h-1
P )

If t = ph A (s—l)(Ph 3

h

5 \ S(ph,ﬁ,r) fer 0 < 0 =pelye ot

Ehepti(1i) P

(i) ph f’S(ph,t-l,r) Forf i<ty & ph—lo
The proof is rather involved, and is omitted. A fairly

detailed discussion is given in [9].

20> Corollary

If £ € 44/ satisfies

h h h-1 h h h-1
Dl R el e B R - (G
then pS | F(ph,f).
S h h-1
Proof Ml fact that | Sip,lur) . for all v 0 e =P

and hence that pS | F(ph,ﬂ) follows immediately from Lemma 2.4(i).

s+1 h

LYl p | F(p
s+1
p

), it would follow by Lemma 2.3 that

| S(ph,ph+s(ph - ph-l) ~al, )4 which contradicts Lemma®2.4 (ii).

206 Lemma

Tf ks pteesil wWv, “then s Fi(v, )| F(u,?)
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Proof Let

<
Il

au. From the definitions, F(v,ﬂ)]S(v,ﬂ,r)

for all r, O (-1 s(v,L,rtiu)

IA
]
7AN

< v-1. Hence F(V’£>l0<i<a-1

timEe s RN e <l khat 1s, F(v,ﬁ)ls(u,f,r) for all %,

0 < < u-l. But this means that F(v,ﬂ)]F(u,ﬂ).

2.7 Lemma (BACHMUTH and HUGHES, [1])
defdion = ph, DEE %’, and if there is £ ¢ A such that

q|F(u,2), then q = p.

Proof et g be Mg PR hi oo E ol unitty s then

(1-8)ﬂ = 2? S(p,ﬂ,r)&r. Also on substituting x = 1 in the

osrgp-1
; ] : i
relation 2:' x = ]] (x-el), we obtain TT_(I—S ) = p.
0<Lgpt 1¢igpt 14c¢pt

Now q|F(u,{) => q[F(p,ﬂ) (Lemma 2.6)
=> q‘S(p,ﬁ,r) for all r©, 0 <71 < p-l
i
=> q|(1-€)
i
=> q|p

=> q = p, as required.

2.5 Theorem

h-1 h h-1 ; h
pk whieee k=1 -p “)/lp ~-p )] 1f n=p
F(u,l) =
IS TR s R datviils iibille Sb N tweNd iisiE iin e t S prime S,
Proof iheMtitectlpant i thie "easetiiln 'whilch fu " 15 a primelpower,

follows immediately from Corollary 2.5 and Lemma 2.7. Now suppose



EhatpMEand e arendilstinct primes, both diyviding u. By Lemma 2.6,
Blu, LB .10 and " F(u,0)|F(q,1). Lemma 2.7 shows that F(p,!)

and  Fl(g,I) are coprime, and so F(u,f) = 1, as required.
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Chapter 3

Upper bounds on the Engel length of certain group extensions

The main result of this chapter is the bound presented in Theorem
3.3; the crux of the proof is in Lemma 3.2, for which the definitions
and Lemmas of §3.1 provide useful tools. Following 3.3 some
applications to slightly more general situations are made; and then
in 3.4 the result is adapted to give a slightly improved bound for the
special case of a cyclic extension. The results of §3.5 show that
the results obtained are best possible for small nilpotency class.

Threoughout seetieomF3.L, p 1s a fixed but arbitrary prime.

S l. 1 Definition

Foit anbi tiraicy St e¢4/: an element o is a t-element of a group
H if and only if there exists an element k which can be expressed as
d leommutatortef wereht® yw Win “H Ssuch thatss o = KFF and*" w5 S t.

The weight of the t-element expressed in this way is defined
EoMbe ISR R I FheRwelilchitHofMthe® e orrelspondifng e ommuta EOE NS Because
of the possibility of a variety of expressions for a single element,
"weight'" of a t-element is not in general uniquely defined; what

concerns us is whether a group element can be expressed as a t-element

of a particular weight.

3.1.2 Lemma
If H "issa'ilormal “subgroup ‘of @'group ' G,''and ‘@ 1Ts a''t-element
of weight' "w 10 ‘H"™ithen“every ‘commutator im ‘G which has' ‘@ ‘as an

gl v lic''a product'of ‘t-elementsof weight * w “im = H.
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Proof Hor @ebitracy,. v € &5 [ax) = ) At [v,al =a T .a .
Clearly, by induction on the number of its entries, the given commutator
in G may be expressed as a product of conjugates in G of o and

@ =, each of which is a t-element of wELEhE W il il

Lhe following, lemma,is easily, proved by- induction omwmy it is

well-known in metabelian groups where each Hj or Vj g (et

SIS lienmma

I e vand S hdre arpltrary elements of a group' #, " then

(i)

[En:n] P T-T [E,,n,(i-l)ﬁ,] L [

lzicn 5
By ; (?)
[ ol = i<ien sl ) E[ v

where each Hj may be expressed as a commutator with at least two
entries, each'of whieh is"a"commutator of the form [&,n,(1-1)E] with
= % my  and*each Vj may be expressed as a commutator with at least
tweentries, edch of the form [E,in] with "1 < i < n,

Pttt cases) ML W BTl is momn-trivial, 1t cannot have
=R orNe achNe ER SN entrilels s osleach “j may be expressed (by

re-writing, if necessary) as a commutator with [&,n,E] as one entry,

and each Vj with e, ninle a8 one entry.

3.1.4 Lemma

If a and P are respectively t- and u-elements of weights
w and x in a group H which is nilpotent of class c¢ for some
c €J4/, then the commutator [a,B] is a product of (t+u)-elements of

weights at least wix in H. The wesult is independent of «.
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Proof Byadefifni tioni e = Kpr and B = %ps where e A nd A
are commutators of weights w and x respectively in H,
Gas e 0l U o, €J¢r, WAL et anfl seks's u, The proof
will proceed by induction on (r+s) within the general stage of a
reverse induction on (wtx) to show that [a,8] is a product of
(wtxtr+s) -elements of H, each having weight at least w+x., The
lemma will then follow.
ILE Wi > @,  Hhien, olnee e & gw_l(H) gl B @ EX_I(H), it
follows, thate [e,B] & EC(H) = {1}, and the lemma is trivially true.
SUppoOse. s WEbx = ¢, aﬁd the hypothesis proved for all pairs of

powers of commutators such that the sum of the weights of the

commutators is greater than wtx. When r = s = 0, the commutator

r 35
[a,B] = [Kp ,%p ] is simply [k,A] which is by definition a commutator
of weight wtx, and hence a (wtx)-element of weight w+x in H, as
required. When (r+s) > O, since the inverse of a t-element in H

is also a t-element in H, with the same weight, suppose without loss

of generality that r > O. ILEE gy = A so that o = np. Then,

by Lemma 3.1.3,
[a,B] = [qF,B]

P
= [n,eu-l)n](i) i

l<i<p * keA Mk
where each Hye s and also each commutator in the first product except
that in the term corresponding to i = O, may be expressed with

[7,B,n] as one of its entries.
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Consider now the commutator [n,B,n]. The inductive hypothesis

e rts shows that

DT R L B e

EniT

where each Vj is a (wtxtr+s-1)- element of weight at least (w+x) in H.
By repeated application of the Hall identities, [jgrvj, flv: wiis savpt Gduct
of commutators eéch containing an entry of the form [Vj, n] for some
EnRe From. the rewverse-induction hypothesis on wtx, this entry is
a product of (2wtx+2r+s-2)- elements of H, each of weight at least
Zwtoe;  amd  simee £l amd wi > 1, this is a fortiori a product
of (wtxtrts)- elements of H, each of weight at least « wtx. By Lemma
3eli2, each factor in the expansion of [jgr Vj, nl s a preduct of
(wtx+r+s) - elements of H, each of weight at least w+x; and hence,
again by 3.1.2, so is each commutator in the expression for [a,n] which

has - [n;Bsnlimastan entry.

OnlyNthevterms correspondimngute i =il % that® is; [q,B]p, in the

expression for™ [o;pjeeremainsutorbe considered. As before,
[n,B] = 'EF Vj where each Vj is a (wtxtr+s-1)- element of weight
J

zic lease WAk abm il Now

B . P _ p
LgB1E =t s "agen Yyoradadeos

where for each [ € A, Py is a commutator with at least two entries,
each from the set {vj\j € T s By the hypothesis on w+x and Lemma
3.1.2, each p£ is a product of 2(witxtr+s-1)- elements of weights at

les=t Z2(whx) "in "Wl so a fortiori is of the required form, Clearly
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Vjp is a (witxtr+s)- element of weight wt+x 1in Hy N soralisolof Ehe

required form.

This establishes the truth of the inductive hypothesis, and hence

that of the lemma.

Though they are not immediately required, the following corollaries

will be useful in chapter 4

3nliporsGorollasytoftthie proof

The p-th power of a product of t-elements of weight w in H
is a product of (t+l)-elements of weight w in H.
This was proved in the last stage of the proof of 3.1.4, when

(I v.)P was considered.
J<€lapl

SIS Gorolllllany,

The commutator of a product of t-elements of weight at least w
e itEhNaSp o duc ENo U= ellemenE sEofRwenlahiENa e aisiERNscN N H s o)

product of (t+u)-elements of weight at least wtx in H.

Proof ILiE ai is a t-element of weight at least w in H for
egch S T " and B, 18 a u-element of welght at least % in H for

each j € A (where T and A are both finite sets) then from the Hall
identities

[l

Lo
i ngBj] ke@ 'k

e

where each Tl contains an entry of the form [ai,Bj] wakEn - iloe

j € A, The result now follows from 3.1.4 and 3.1.2.
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S Lemma

If B 1is an element of a normal subgroup H of a group G, and
if an element T of G has order ph modulo H for some p eig

and h ¢4 then

. a(i)
T

where 1 € Hr for arbitrary r 644/, the element Gi may be

9

expressed as a commutator of weight LA oL el il B Gl for

Lo i %05 ~and 2dEly%= pv(l) wheFe* vi(1) —"0" "and
h h h-1
e @ LG ) s o

h-1 :
Proof For brevity, let a = ph and b = ph = 5 Since

pS|S(a,£,i) for O < i <@a-1 1f s =max (0, 1:+ [(L-a)/bl), .the
lemma will follow when it is proved by induction on ( that, with the
same hypotheses,

; J
v(r,ﬁ,3)q(r)x>°n

=TT
(R r (Ogjgg-l ic

where n € N_ (H), b is a commutator of weight W im . Hj
= ro

u
=W = ., q(E) = p T for some u € oLl e
=G
{ :
vlEale i) = (-1) S(a;f’(wr'l)a‘urb;.])

TS S (wr-l)a + urb (form (A))

%l

. _j iR (wr-l)a + urb

Tl i

G F o 87
(e (3)) ¢
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(Note that the third argument of v can be any integer and the value of

v depends only on the residue modulo a of this third argument.)

When (¢ =1 ,
(9] o B-lﬁT ! B-S(a,l,O)OB—S(a,l,l)T :

which is of form (A) with Wy = B ¥y & 1L u, = 0 «(since for Arbi trary

prime-power a, the definition of SE@il, Dk gniths 2 < i asls gilvels
simply (;} » Wwhich is interpreted as being zero).

When [( > 1, suppose the result proved for el @xprinG
[0 e =t IR P B il it yiienpetle. ora B 1B ai
collect conjugates of each commutator [ Resulting terms either

(i) are in collections of the form

T e el el e )i o "A(E)v(r,2-1,a-1)
D<=l iz e °

; q(r)v(r,f-1,a-1)7?
i

_TT L aov@eDY | a@v,elatl) )

O<j=a-18"ir I
wLEn A s (wr-l)a TP urb (These expressions follow from the definition
20301 and Sthe deage g = 1 "of Lemma 2.3. 3, The case in which
(-1 = (wr—l)a iE urb is simple, but requires separate checking; o may

be either one of the commutators K in the expression for [B,(£-1)T]
or the inversesof isueh'a commutater.);  or

(alt ) are of the form prq(r)

wikth (el < (wr-l)a + urb (in this
case [ is either the inverse or the T-conjugate of one of the

commutators Mr in the gexpression for [B,(L-1)T]); or
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((aatal ) are commutators, each of which has as an ERIEIEY, &)

commutator of the form

[urq<r>v<r,f-1,i>T‘ ’ qu<s>v<r,z—1,j>ﬂ]

whose entries are from the expansion for [B (2=l )] -

At this stage, note that if dr = max {0, 1+ [(f—l-wra)/b]}, then
each term of the form qu(r)v(r,ﬂ—l,j) g a (dr+wr)-element of
weight W in®™ H. Note“alisothat" if "o, “say, is a (dr+wr+1)—

element of weight at least L #7101 in" H," them o ecan be regarded as

S

having the form (B) required by the hypothesis, since o = P
where K is a commutator of weight w > e = 1 it H T and
wi s > dr o L t 1; “and henece
(w-1)a + sb = w_a + (w-wr—l)(a—b) + (w—wr+s-1)
= vha ap drb
> el (from the definition of dr)'
Hence (w-1)a + sb > [, as required.
Return now to the expansion of [B,{T]. For terms of type (i),

the first part of the product is clearly of the form (A) required by the

Hrq(r)v(r,ﬂ—l,a—l),Ta] rpE

hypothesis., The remaining factor, [
commutator of a (dr+wr)- element of weight v with a l-element of
weight ™y 1% in" H " thence by Lemma"3.1.4 1s a product of (dr+wr+1)-
elements of weights at least B e iin S H o and heneelby  theSpreceding

paragraph is a product of terms of the form (B) required by the hypothesis.
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Terms of type (ii) are clearly of the form (1)) Terms of type ((iidy)

are, by Lemmas 3.1.4 and 3.1.2, products of (dr+d +wr+w ) - elements of
s s

weights at least (wr+ws) in H and these, since dS >0 Jjand owe R

are (dr+wr+l)— elements  of Hy of weights at.least e +. 1, candisongre

@it EeEm (13)

355 Theorem

If H is a normal subgroup of a group G such that G/H satisfies
the 20 th Engel condition and has exponent ph for some p ¢ P and
h e«@f, HESsEnillipotentNofNclalss ros and for A < rée L, sicueny
element which can be expressed as a commutator of weight r in H has
kp

order dividing p for some kr e.A/, then G satisfies the { th

Engel condition where

h h h-1
= 4+ max + k - =
: ﬁo 1<?<ro (=2 ( 1 1) (p P )}

Proof Let @ and' ‘7 be arbitrary elements of G. Then
B = [a, EOT] € H, since G/H satisfies the {_ th Engel condition.
Let £, = 12%§r0 {rph o (kr-l)(ph 7 Ph-l)} so that

IS rph)/(ph - ph_l) Horss Il g e
andyEsiince kr ilsianNiintesenr?

kr sl ke [(fl = rPh)/(Ph = ph_l)] = say.

h
Since r "hasVorder idividing ph andy- 4 > L Lemma 3.2 shows that

[E5 £1T] is a product of commutators each raised to a power which is
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a multiplenof«its ordex, st icr (ﬁo i El)T] = [B, ﬂlT] =1, and
so G satisfies the { th Engel condition where ¢ = ¢ + ﬂl, as

0
required.

A simpler, though slightly cruder, bound may be obtained as an

immediate consequence of 3.3.

3i8ul1Cosollary

If H is a normal subgroup of the group G, with exponent pk
and sl bpotencyuclasgre, and G/H satisfies the ﬂo th Engel condition
h
and has exponent p , then G satisfies the { th Engel condition

el
P

winEEe [ = ﬁo + cph + (k—l)(ph - e

Corollary 3.3.1 may be applied in the more general situation of

1L ey

Jodad  Corollllery

STl N n o Al s UbgiRoupRe NG Wit thSexponent pk, such that
itene @bl 6l @ ¢4f, every d-generator subgroup of H is nilpotent of
cllage  @(@)  for Seone fupneiElen @ 5 /¢/—>.A/, and if €/H satisfies
the ﬂo th Engel condition and has exponent ph, then G satisfies

h h h h-1
the { th Engel condition where £ ={_ +c(p + 1.p + e=L)ip = ps e

Proof The proof proceeds as for Theorem 1.4.1. Since H* has

index dividing ph in the two-generator group L, it follows that H*
h

is ph + l-generator, and hence nilpotent of class at most c(p + 1).

The result follows on applying 3.2 to the group L.
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In the special case where F/R is cyclic, the preceding results

may be improved:

3.4 ' Corollary' "of the proefs of 3,2 and 3.3.

If 'G/H ¢ 1is eyelic of order ph for Wsome. pc P and h e /V.,

and H 1is nilpotent of elass e and ‘sueh that for 1< ¥« = ‘every
)

element which can be expressed as a commutator of weight r in H has

k
erder dividing p " for some kr ebAf, then - satisfies the m £h

Engel condition, where

fop” £ & -Die” - " )

(0]

SE e
Proof el Samd, e e arbitrary elementsiol HCL L the e rder
of -1 modulo H 4s less tham ph, then 3.2 and the proof ©of 3.3
already show that there is an integer n <« m such that [Ey nT] = 1.
Otherwise, TH generates the cyclic group G/H, and so £ = TZB

Wibth 20 = 'z ¢ ph-l and B € H. Now
0 = o, sl e e =R,

Hence for all n €J¢r, [E,inrli= B, snrtl,  and the required result

follows from 3.2 and the proof of 3.3,
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Alternatively, this result may be obtained as an immediate
consequence of 3.3 and 4.6. In fact this is analogous to the way
in which Liebeck ([ 9], Theorem 6.2) obtains the corresponding
result for the Engel length of A wr B when A 1is abelian and
Bl isiievelic: The preceding proof has been included because it is
independent of the involved arguments early in Chapter 4.

A group G satisfying the conditions of Theorem 3.3 or
Corollary 3.4 may of course satisfy an Engel condition for a much
smaller integer than that given by the corresponding result. The
simplest and most extreme example is the case in which H is a
direct factor of G. Nevertheless, the results even of Corollary
3.3.1 are best possible when H has small nilpotency class, in the
sense that for arbitrary p € 19 and “hi e e /V; and ) such
fshat s vl Eoo= p-1, there is a group satisfying the conditions of
3.3 (3.4) with kr =k dfor L ¥ <f but not satisfying the
£-1 th (m-1 th) Engel condition, respectively. Example 3.5.1
following is for ﬂo = 1 in Theorem 3.3; the same method should
serve to construct examples for arbitrary fo € /@f

The proofs of 3.5.1 and 3.5.2 follow Lemma 3.5.3, on which

they depend.

3o Example

Given p e # and h,k e A, and an integer c¢ such that

el letn o be the absolutely free group of rank two

o=t
l /\\
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generated by o« and B, and R the normal subgroup of F generated

P i
5TPE EFCBRdC® paiBTSY so that F/R = ¢ XiC Let

p’ ph

e Bl Now the group F/X(R) satisfies the conditions of

by «

n<
]
=

3.3 and 3.3.1, and contains a non-trivial Engel commutator
[, (£-1)B].Y(R) of length

h-1

R R

Sesin % Example

Given p e P and h,k € A/, and an integer c¢ such that

€< p=l; 1let "F _be the absolutely free group of rank two

H
IA

generated by a and B, and R the normal subgroup-of F generated
p! h
by o and Bl 9o that F/R is 3 p -eyele, - Now with

V = Nc n B jis the group F/X(R) contains a non-trivial Engel
. h h-1

h
commutater [a, (m—l)B]OZ(R) of length: m-1 = cp Fulk-1)pra=- p il

The proof of these examples depends on the following result

about .free proups in the wvariety YV = Ec 0 B
= S =

p

345.3 Lemma

IE 4 VS sSaresdi stinct el cmentS oL afset of“irte

generators of a relatively free group in the variety Ec n B y
2

2
$-1

where 1 <c¢ < p-1, then [€, (c-l)n]p T 1.

Proof It is sufficient to construct a two-generator group of

exponent pS and class ¢ with an Engel commutator of length c-1
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whose order is ps, since this group must be a homomorphic image
of the free group described.,
Let A and B fbe eyelic groups of order ps generated by
O and T respectively, W=A wr B, and K the base group of
W. By-induetionion tr, . dthiis easilysshown that the subset
{O(Ti) | 0 <i<r} of elements of the natural basis of K is
emuivalent to whe sek [lg, i7] | 0 < i o vl and hence:that
(o, 1i] | et ps-l} g g PRy e 1Xs Tt i st alselealsy to
see that for ¢ ¢ /@C gC(W) lie genceated by ([0, iv] | el
IO = W/gc(W) is the required group. Clearly it has
class e, Every element of W may be expressed in the form
'8 with @*t XK and O = W pS-l° g o= Oy thilg g @leeielly

of order dividing p°, and if v # 0, then
S

P
S iy S ( )
(TVB)p = 1P Bp . 1S£SL‘1 I8y st L modulo gc(w)

o
However for 1 < i¥l < e < 'p-1, ‘the exponent Qﬂ) isi divisible
by ps, so this expression represents the identity element, and X

has exponent pso The Engel commutator [0, (c-1)T] is clearly

g s
displayed as one of the basis elements outside EC(W), witEh o e DR

Proof of J:3.1 For this example let ph = q. First obtain

a set of free generators of R by the Schreier-Reidemeister

abl

procedure, using {o B DiEwaiatag? O <rbiigig] ‘asta’Sehreier

transverisal ‘Eor R hin S E The generators are:



! asts
uq, a B a B ( ) (O 'a « -2, "'l £ b < gq-1),

-1_b -b 2
g B a B Clive Dgpa =1}, - Atd aaﬁqa & (0= vass g1,

2
Only q+2 of these q + 1 free generators of R will be needed,

namely
e | gt (o
v - gi-laa, (q )’ v, - et ) Gt o)
et o e
s and Wq+1 B

These, however, are now replaced by an equivalent set

obtained as follows:

Let ¢O = Ib'q+1 = Bq
L <=l
Sow g bieridi da = [a,B]
=1 =) (=)
e REAY R, Yo+ = douBl” o bsam <4q
- iy
Tatl = g R

Since the V{'s can be expressed also in terms of the ¢'s, the
two sets are equivalent, and {¢i | O < i< qbl) . dd part ‘of adet

of free generators for R.

From now on, work modulo V(R). From above, [a,B] = ¢1,
and for < < gel; ¢.B = ¢i+1° Hence an induction similar to
Ehat in Lemms 1.1.]1 shows that for 1 < ¥ < g,

_ At
(28] = LT 0 el o, 9

where the K, g ST the commutators of weights from 2 to ¢ whose
b

entries are from {¢i | 1 Sl T e in " parcreulsy, this 1s Erue
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when £ = q, and so, when [ = q+l:

q-i+ q )
= ; q
5 o % ’ I (-1) (1—1 B
[ )(q )B] 1SiSC1 d)i 5 Cbl o @
e ; , S(q)q)i_l) d) =L d) Bq
1<1<q e | 1 e “3,q+1
% Sig,ig,i=1)

Pt P (0 s0sd T;T “j,q+1 °
since Bq = ¢Oo HereNS oM TisNa product o commutaltors, The product
enEthelsecond e lines ; ] Kj ey 15 equal’to "¢ multiplied by

1 )

further commutators which are the result of moving ¢;1 to its new
position. Entries of a commutator Kj’£ when { > q may come
from the larger subset, {¢i I 0 =1 '<q},” of The™iree

generators of R, but note that of those «k's which have weight
two, none has an entry equal to ¢o; and as the process of
commutation by B 1is repeated, the only commutators of weight two
with ¢o as an entry are those arising from the factor [¢1,¢O]

in the expression for '[a,(q+l)B].

Nowwassume inductively:that for.seme 'r,s:l L axrece-2;, the
commutator [a,(rq+l)B] may be expressed as a product in which one
of thefactors is [¢1,r¢0], and that no other commutator factor
ofF welchkotl has r of its entries equal to ¢O; and a similar

procedure shows that the same is true for the integer r+l. Hence

ke okrne for all  r®<"c~l; “and “In particular fa; ((c=1Yg+l)E] may
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be expressed as a product in which one of the terms is
= [¢l, (c—l)¢o], and no other term has c¢-1 entries equal to b,
Now Lemma 3.5.3 shows, since ¢1 and ¢O belong to a set
Thaf / of free generators of R, aud [¢1,(c—1)¢0] has order pk

d =
modulo (EC n B k)(R)

|
n<

(R).

In addition, 7y . Y(R) Z(R/Z(R)) so Corollary 1.1.2  shows

that modulo V(R), for "j ¢ N,

o i jo <J) ‘
(v, 81 =y - Y S

0<i<j
Since Bq € Bopeandeall, con jugates of.gi.are in #Z(R)ssmwodule Y(R),

(aq+i) aq i i
YB = YB - B = YB modulo \__Z(R)

I Eeltllows S tEha t

[¥:984 = YS(q,j,i)Bl modulo V(R)
. O<i<g-1 =
B* pS
The elements Yy amdas Wi thS SO El-s =R c ansnojt
be equal, for then
Br—s
V=1 => [(bl, (C-].)(bo] = [¢r-S+1,(c-1)¢O] modulo \_Z(R)
-1
> [(b]. ¢r_s+1) (c—l)d)o] £ _\___I(R) 5

and Lemma 3.5.3 shows this to be impossible.

Thus the conjugates of Yy 1in the product

et
7 ) $(q,3,1)B are all distinct; and some of their powers
O<i<g-1
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: < k
remalin non-trivial as long as p does not divide o b But,
by Theorem 2.8, the smallest value of j for which pk il

X h h h-
e e

Hence [r, (p" + (k-1)(p" - p" 1)-118] & v(R);

hence [a, {cph ck (k-l)(Ph < Ph-l)}B] ¢ VR);

that is, [a, (£-1)B] ¢ V(R), as required.

IFE@OIE @it S D2 By Lemma 43.42 of [10], {¢i [ 0 < i< q)

is a set of free generators for R, where ¢o = 89 and

’ =1 =
b, = a =l e ] Now [o,B] = o of = 6, f - dys

and the proof that [a, (m-1)8] % V(R) exactly parallels the
corresponding proof in the previous example, with the length of

the Engel commutator in o and B reduced by 1 throughout,

When' e > p > 3, the results of this chapter are no longer
best possible, and may be improved by combining two results described
here in brief outline only. The proof that groups of exponent p
satisfy the p-1 th Engel congruence given in [6], Kapitel TIII,

Satz 5.9, is very easily adapted to show that in a group H of

k
exponent p ,

k-1
[a; (p—l)B]p e N (H) for all o,B ¢ H.
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When c¢ > 3, Lemma 3.2 may be refined to show that as the length

of an Engel commutator in G 1is increased, the last commutator
: ; B : k-1
effweight € in H to remain raised to the p th and not the
p th power is in fact an Engel commutator in H.
When p = 2, the arguments described in the previous
k
paragraph show that in a group H of exponent 2, every
k-1

commutator of weight w > 2 has 'in faet order dividing 2

modulo EW(H), By this methed, them, 3.3.1 but not 3.3 m&y be

improved.
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Chapter 4

An upper bound on the nilpotency class of certain group extensions

The main result of this chapter is the bound given in Theorem
4.6 for the class of those group extensions shown to be nilpotent by
Baumslag in Lemma 3.8 of [2], stated as 1.4.5 earlier in this thesis.
Lemmas 4.3 and 4.5 play parts in the proof of 4.6 similar to those
of 3.1 and 3.2 respectively in the proof of 3.3. The results of
§4.2 and 4.4 on rearrangement of commutators are needed mainly to
overcome difficulties caused by the fact that the quotient group
G/H is not abelian. Most of the calculations are carried out in
terms of the ordered basis for a finite p-group defined in §4.1.

In §4.7 it is shown that the wreath product always attains
the bound given by 4.6, and therefore that this result gives the
exact class of every nilpotent wreath product. Thiatssre sttt its
closely related to the lower bound on the class of a wreath product
found by Scruton in Theorem 3.5 of [11]; the improvement is made
possible by the use of the ordered basis defined in §4.1, in place

of the generating set described in Lemma 3.1 of [11].

Sl ol Definition and Notation

Suppose that G/H 1is a finite p-group with nilpotency class
¢, andithat for &l < e gi_l(G/H) / Ei(G/H) igwal direet
product of z(i) cyclic groups of orders p = | < % g 208" *rhere

IDAE & Ifar for wie o Bz(idd 1For, P i < ey “let
il =] =4



L= (T

i 1 <j<z(i)} be a set of elements of N. 1(G) which

ij ‘ =l_

form a basis for gi_l(G/H) modulo Ei(G/H)’ ordered in such a way
Elidt s “has omder p " modulo N, (G) .H. Ligie A = Lj s and
= =1 l=lee 3~
extend the orderings defined on each of the Ti separately to one,
which we denote "&' , on the whole of T, by adding the condition

EHaE

s il == T T

The ordered set T will be called an ordered basis for G
modulo H.,
The use of the term '"basis" may be justified by the following

result, which is stated without proof

L 2 Lemma

If H 4G, " and T={Tij Bl e b ik e e ) e o

ordered basis for G modulo H, as described in 4.1.1, then every

element of G may be expressed uniquely in the form

1 12 € z(c)
A
11 12 e z(e)

I
where 0 < € <p e eof, 1 S ic%ud sl o <m (i), and
i 8

4.2 Lemma

If B 1is an element in the centre of the normal subgroup
H of G, where G/H 1is a finite p-group and T is an ordered

basis for G modulo H, and if a, € N 1(G)‘\ B (6) for
L ey W,



1 <i <m, then the commutator [B,al, ik am] may be expressed
as a product of commutators of the form [B,@l, vy B4] Swhere
n
a) Gi € TV{ LA iRy Qe v, <¢;
b .
e e =g

C JeiniE bl < o a d oee Ty, Ehen Qi < Gi. » Wwhere

MY ls the ordering om T,

The proof depends on the following auxiliary lemma

e Dl Lemma

If B* is an element in the centre of the normal subgroup
H of G, where G/H 1is a finite p-group and T is an ordered
basis fer G module W (see 4.1.1), 1f Forall
it E‘Zf= 4 e,Af] 1-<8js<"L) | Chegelement Ty < 1 N A S

ug

the least integer in , such that T < T, for all - & Sand

it therevare pre cisellyiisa N te gefsufllc L such that ug = U,

then
*
[B 3 Tl’ o ety Tﬂ] o algf' na 9
*
where either (first form) o= [B ,Tk,el, o Qm&] or (second
* 3 3

form) 1 [B ,91, W Gma]; in either case, Qi € Tv; where
v, > Uy ftore kil ot GUMé = (] €¢4f| ik o e ma} and there are at
=

most x-1 integers f eMMé such that et gilis olat i has

the first form, then u + ig/“ Ve i%b u;, while if 1 has

pX pX
the second form,then ieﬁévi > ieZ’ui
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Brooif If k=1, the given commutator already satisfies all
conditions on 7, and the result is obvious. Suppose inductively

that the result is proved if k < r for some liniEeice RSN o ]

: *
consider a commutator [B , T i TIZ] such that £ < Ty for
11 i = b = %
a s E,Z, and SdteTra== Tr = Td. Let g* [one Tl’ 5 Tr-2]
and E = [g*) Tr—l’ Tr]v Now
- -T, T il
A, L
=T =Ty Tr Tra =Ty Trat T Tra [Tr-r »Tr ]
Trﬂnf
= [J*J TrJ Tr_l] [g* 5 [Tr_l) Tr]]
and eventually, after more computation of the same sort,
g = [E*: Tr) Tr_1]°[§*3 Tr: [Tr_lp Tr]]-[g*: Tr_lﬁ[Tr_lgTr]]e
[ v e o Ll
From the fact that [Tr_l, Tr] =X e Xy where for < i-< d,

Mool el s amd the Hall identities
i (@py Eaup)

(2Bl = [o,y] [G')Y:B][B;Y]
and [G/;BY] = [G,,Y][CL,B][G,,B,Y] )
it st ollillowssthat

S R

where for each b € A, Cb either is equal to
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(1) [g*’Tr’Tr—I] = [B JT1)° e’Tr-Z’Tr’TI‘—l]
or is of one of the forms

Clil ) MEEN oF Rk s & SBD = (8"

*’ r) 1.1 J S ly] [B )T1)°°°)Tr_2)Tr)xi1 J"‘)Xi‘y]

. *

(iii) [g*’Tr’Tr—l’Xi, ;H-iny] = [iE >T1;°-°:Tr_237r97r_1)xj_1 5 :Xiy
: *

(iv) [E’*’Tr-l’xi, ;-°°;Xiy] =B ’Tl’eoojTr-Z’Tr-l’Xi, gic ’Xi_y]

: *

OI‘(V) [é*,xi.".u.’xiy] = [B ,lenu-’Tr_Z)xi'} ')Xi‘y]
with ™ 1™ "1 *ig“each case. The commutator first given now takes
the form

B I
[ )T1)°°‘JT£] 2 [g’Tr+1""’Tﬂ] = beA [Cb’Tr'Fl"“’Tﬂ]

since § ¢ Z(H) for all b e A. It is easily checked that when
each commutator of the last product above is written out in full
as a left-normed commutator with B* as its first entry and the
i th of the remaining (n, say) entries from Tw 5o Gl S~ Ly

L

5
1<5zn Vi 2 iee i ¢

then
Hom cachl et /A cuchsthat Cb Has ferm " (i), “(tEf)"or (iid)s
the inductive hypothesis shows that the corresponding commutator in
the product may itself be expressed as a product of commutators of
the required form. For the other b e A, Cb has form (iy) or
(v), and the corresponding expanded commutator already satisfies the

required conditions, taking the second form o N, and having at

most x-1 entries which are elements of Tu
r



Broof of £4. 2 Consider the given commutator [B,al, ey ol
m

Since @, € Ewk-l(G>\\ EW‘(G) for 1 <i <m, the expansion for

By repeated

ak given by, 4.1.2 has eij =0 when i < W .

applications of the Hall commutator identities (quoted in the proof

of 4.2.1 above) and the expansions for « the given commutator

k)

may, since P e Z(H), be expressed as a product of commutators of

the form . .[B; . % 3 whereo it € & for gl .<ab <.l a0d

L4pyead ﬂ] i u;

where at least one of the later entries Ti in each commutator

comes from the expansion of each of the «

P =

sl i 2 15 "k

1 1= ei< m,« g0 iEhat

As in 4.2.1, let &L = {(j e N| 1 <j<!} and let k be

the least integer in o such that T < in for all i e . The

result will now be proved by reverse induction on u (remember

that T € Tuk).

EE [e¢/2] +1, so that u; > [e/2] +1 for all

i evﬁﬁ, and hence [Ti,Tj] el Feorcall e /V, then for

drbitiary E ¢ Z(H), 1t follows that

= TL =y Tc T

L5 rafe L= gy sabk emtly, wacltaln’y]

Hence, by interchange of adjacent elements, if = 1s a permutation

on ;f, then
S R T R

In particular, if =x is such a permutation that
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o PR AT e 55 then the lemma is proved for

u, > [c/2] + 1.

Now suppose the lemma proved when u, > s for some fixed

k
S, 1 €5 € [c/l], dud lets c =i[i3, Tys +++s T,] be a commutator
satisfying the same conditions as before, in which =8 and
there are precisely x integers f ¢ =5 such that U = U =rs.

By =x repeated applications of Lemma 4.2.1, « may be expressed

as a product of commutators of the form

fn-which “0's vy '< %, ‘Che @itries T£ satisfy T{ € TS for

P sy and T{ < T{, wherewers e S =i e w “and the

egntries 6O, isatdsfy @ 63cedd whese sisthls <smesefor § e -4 <o,
i i 2 = e == =
such that
W 1 e ety
Now let B* = [B, Ti e o T W) i and $fgem ithe Sinduekive
%
hypothesis applied to each commutator of the form [B ,91, ekt Gm],

this commutator may be expressed as a product of other commutators,
* °

each with B as its first entry, which when expanded to show B

g% thelr first entry satishysall ‘the conditions required in the

statement of the lemma.

4.3 Lemma

If B is an element in the centre of the normal subgroup

H of G, such that ®G/H 1s a finite p-group of class ¢, and
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for: 1

IN

Sl Ei—l(G/H) 7 gi(G/H) is a direct product of 2z(i)

h;;
> J

cyclic groups of orders p s L g w(l), where hil = hi'
e
H,

for 1 < j< z(i); if G has ordered basis T modulo iE

s
w Gl 4

a3y = e § =
e e 1€icz(i) (p 1)) and
i P by ol
o= 1‘2?% i dp - p b2 SRR For Sledn i = im,,

i B =W,

.. € N _1(G)\\ Ew (G, .and if s  ds= e positiye or zero integer
¢ {

such that

s> @ (=)D,

then the commutator [B, al, Aoy wees am] may be expressed as a

product of pS thS powerstof fconjugates ot Bl uintNEH

Proof Lemma 4.2 shows that the given commutator [B,al,...,am]

may be expressed as a product of commutators, each of the form

T ) e
15%c (i Peeleh uij) = i W, S FoE 1 < i<,
e ali) . et sij be the least non-negative integer such that
h;; A
. 7] ‘J Y
+ - i
(1) = B s;3 (P p =l
hy; hy  hy -1
and hence either p * + (sij = ) (p 5D Y < uij or sij = 0,
In either case, (from Lemma 3.1 in the first case) the
o

commutator [B, U Tll] i5 Sexpressible as'a product of p th

powers of conjugates of g, and if tij is defined by
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i aeat gl

B Z Z S ) + 5'__; S
<i'<

B e ) i) g
(where of course an empty sum is taken to be zero) then by

induction following the ordering on T, it folleows that
t;;

LE, Upg Trpe oo uij Tij] s a product of @ p B powers of

conjugates of B,

The lemma will be proved when it is shown that tcz(c) = s,

Multiply each of the inequalities labelled (i) above for 1 < B Eich

1 < j £2z(i) by the appropriate i, and add the resulting

inequalities, to obtain :
hq-
) - 1))

1<i<c <'Ll._<£j§;z(i) Y 5 = l<i<c (llgjgz(i) (p

+ (i ( ! . ))
FEE e e eIl

Z = Z Wy Dat(s=ldb, and

From earlier, (llgjgz(i) uij) S

1<i<c

so this reduces to

e
a + (s-1)b < (a-1) +11§i§p (llgjgz(i) Sij(p - p )
whence
| 3 e T by by '1))
I 3s-1)b < 1<i<c (lgjgz(i) sijol° p p
- e
= (1§i§p (1§j§z(i) le))
T Jibira -1 < : i both
Thus  (s-1)b \‘tcz(c)°b’ and so s-1 < tcz(c) Since bo

sides of the last inequality are integers, it follows that s < tcz(c)’

as required.
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4.4 Lemma

If the group G splits over its normal subgroup H, the
quotient G/H 1is nilpotent of class c, and for an integer w

SaEistyimp pwe>ie, and each i, O i <w, "o ¢ Ghemthemithe
i

commutator [o , «

g 1’ o aw] may be expressed as a product of

commutators of the form [B, 81, . Qﬂ] where B € H,

6 N G :

i € =VL'1(G) for 1< i <. _dnd 154 v, 2 W

Proof Let J. be a complement of H in €, =so-that J = ¢/l

is nilpotent of class ¢, and every element of G may be
expressed uniquely in the form o = Bt where P e H, T € J. In
particular, let . = Biri for- O.c i <. W. The proof proceeds
by induction on w  to shaew that for w > 1, every left-normed
commutator of the given form is a product of a left-normed

commutator of weight 14w in J with commutators of the required

form. Since J. has class. e, .the truth of the lemma will follow

When w = 1, a routine expansion shows that

=1 =1
LN S e N

. 4 L By T,
’To‘T1]"[60’51‘1]"[50’61”1’70 =ik

confirming the inductive hypothesis for this case.

Suppose that for w > 2,

s i R

[Bofo’ BlTl’ Cg Bw—l Tw—l o I foy

w—l]”agAyﬁ

where each s is of the required form with w-1 replacing w.
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Further application of the Hall identities now shows that
[BOTO, BlTl’ Y Bw Tw] can be expressed as a product of
commutators of the forms
¢i) by, #Bersls (11) [y sB T se0]
Gidih) [TO,QOQ,TW_I,BWTW], gnd & (iv) [T seeesT 1oB T 5T 500]
The first two of these are clearly of the required form. ihess

is only one commutator of form (iii), and on expansion, it is
equal to
B m B T i etosuti

i 5 w] ( w:[ o’ > w-1

=1L

I Gt R B

w o w-1
in which the first factor is the particular commutator of weight w
in J required by the inductive hypothesis; and the second and
third are of the required form. Commutators of the form (iv) may
be expressed as a product of commutators of the required form using
the expression already obtained for form (iii); the only term

requiring special checking is

-1
[TO’Tl’aa"Tw’Yi] o [Yi)[To:~°°:Tw]]
-1
= [Yi’[TO"OGJTW]’[TO’ODB’TW] ]
-1
T A R e

and the last expression is clearly of the required form. The

inductive hypothesis is thus confirmed, and the truth of the lemma

follows.
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a4nrb Lemma

If the group G splits over its normal Slb/EIEON PREES 1EES T
axeomplenent ofs Hiuin @, .isa.finite p=group of class c such

ehatefor vl i @, gi_l(J) I H. (J)% lea’diredt product of (i)

eyclicigroups of orders p ¢, 1 < § <2(1),  where hil > hij

Fopuel ign ihapo (gt sif

&5

hy By =L

ax i =
e P T

O
]
|=a

1I<i<e

and b

1l

if" wi>,ra. for some wr cv¥ ., andiif @, € Gl i eEhien

=T 9
[ , @ sardedis= e o

i w I<k<sy 'k

where 1 € Er(H) amd for ="k ="y ol Smayibe expressed A5 8

Vi

commutator of weight Wy LR R U Wy = e nd i =P where

2ie 1+ [(w - wka)/b],

*
Proof The proof exactly parallels that of Lemma 3.2, proceeding

*
This statement referred to an earlier lacunary proof of Lemma

3,2, which has now been replaced. The proof of 4.5 now no longer
parallels that of 3.2. A new proof (using different preliminary
lemmas in place of §84.2 and 4.3 preceding) has been constructed,

and will appear in the published version.
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In the case r =1, Lemma 4.4 shows that the initial

segment [a ] of the given commutator may be

Q5000
o ling e >“a+(s-1)b
expressed as a product of commutators of the form [B,di,b,g,ué]

I8, Wand

H
IA

h- 1 < 1
where [ e H, @ € EWL_l(G) ol B

15 We 2 at(s-1)b, Since, modulo El(H)’ Z(H) = H, the

induction hypothesis simply restates Lemma 4.3.
For ¥ > 2, let k be the commitator [ao’ql’°"°’qra+(s—l)b]’

and k' the left-normed commutator whose entries are the first

Xt(r-1)a eutries of Kk, so that -« may be written

"

o aa+(s—l)b]° The proof follows as in Lemma 3.2,

el il S Re e
wi Ehe s and sl re pllacing SS@ands 2" and oither i commuEaEors

altered accordingly, using Lemma 4.3 wherever the proof of 3.2

wsesy 80l

4,6 Theorem

If H 1s alnormal subgroup of the group € such that G/H
15 a finite p-group of-class e ;and for 1 < 1 < e,

N, 1(G/H) [/ B, (G/H) iv a direct product of 2z(i) cyelic groups

N.
=i
by : ; S
of orders p e o= w(l), . where hi1 Sl Rer o= =it

i)
Inig
e . J
1 o= 1 i -1 d
$£6. 1a =00 feic (i 1t (p D). - am
h;, h;, -1 i
= max (i = diiESH S siiniipotenthof class

sueh that . foe 1 € r. < £ Srany element which can be expressed



§4.6 i

# - e . - S
4s a commutator of weight r in H has order dividing P r} then
Glgis nilpotentsof elass:at most

: o ok
lggir {ra (sr 1)b}

= =0

Proof By the embedding theorem of Krasner and Kaloujnine
(see, e.g., 22.21 of [10], G may be embedded in the wreath
product W =HWr G/H (= H wr G/H, since G/H is finite). The
base group K of this wreath product is a direct power of H, so
satisfies the conditions on H in this theorem. Since W 1is a
splitting extension of K, Lemma 4.5 shows that every left-normed

commutator of weight 14w = 12?§I Bl en (sr-l)b} may, since

=50
3 q‘.
W >r a, be expressed in the form ],] 0, where: for wles i < v,
= 2O Tewey = - =
&/
91 is a commutator of weight W, iligy sk clne) g =0 where

s [(w - wia)/b]. Since w > w.a +(sw =190 for 1 i =g
g J i

it follows that v = - for 1 = i“= %, ‘and hence ‘Lhat Lhe
Lt
given commutator is trivial, and W is nilpotent of elass at

most w. However G 1is isomorphic to a subgroup of W; and the

theorem is proved.

H.0.1 Corollary

If G/H satisfies the same conditions as in Theorem 4.6, and
H has exponent pk and is nilpotent of class T then G 1is

nilpotent of class at most roaf+ (k-1)b.
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Liebeck, in Theorem 5.1 of [9], found the exact nilpotency
class of Awr B when A 1is an abelian group of prime-power
exponent and B is a finite abelian p-group for the same pLEime =pi
His result gives an upper bound for the class of any abelian-by-
finite-abelian group of p-power exponent, as the embedding theorem
of Krasner and Kaloujnine shows. This bound coincides with the
special case ¢ =r =1 of the bound found in Theorem 4.6 above.

O

Thus the result of Theorem 4.6 is best possible, and gives

Ttea= A%

the exaet class of the wreath product, in the special case ¢ =

Example 4.7 shows that in fact the result of Theorem 4.6 is best
possible for arbitrary T , and that it gives the exact
nilpotency class of every nilpotent wreath product, since every
nilpotent wreath product must (by 1.3.5 above) satisfy the

conditions of 4.6.

4,7 Example

EESNARS oS n I | poitent Yorouptlof te lasis Iy such that for

< i < every element which can be expressed as a commutator
0 £
Of weipht ¥ im A ‘has order dividing p (and at least one
S

"
has order exactly p ) for some fixed »p e P S and B SN
finite p-group of class ¢ such that for 1 <1 < ¢, Ei—l(B)/Ei(B)

is 4 direct product of 2(1) eyelie groups of orders phﬁ for

I ] < z(i), where hil > hij ok dlee i < 2 (1), wWith



I
AR T ¥ atins
: 15w @ 1d5y) D)
Bire thppesl
and b = 15, [ B = p )},

then W = A wr B is nilpotent of class exactly

= i G b e
n 1@?§?b [ Ea (sr 1)b}

Notation Letd x| berancdnteger;; 1< $5€ v idevanieh =that
5 e e e (©)

Xa + (sX ~D)br= = smax weleact (sr-l)b}9 and let [al,&z,oo.,a ]

1<,
S
be a commutator of weight x in A whose order is p = Eety

be an idtegety skedny <iej , suchithat

( by &, iy ‘1) ; ey gl
= = = TIL -
y (p P e T P )} .
Lok Ve = 0 ) Eor si=jc and gl o« oj < 2(1),  aud deneteiby

X  the sequence of elements of the ordered basis T of B in which

entries are all 3

the  first the next U, are Ty, and

L ¥l

so on through the ordering on T. Denote by . the same sequence

with the u entries equal to Tyl deleted from their place in

yl
the order, and by Xf the sequence X, followed by
T 1l hyl hyl x i e i ted at
uyl (sx =& 1) (p - p ) entries equal to Tyl inserted a
the end.

Theorem 4.6 shows that W is nilpotent of class at most n.
The example will be proved by showing that the commutator
*
K= [@1(1); X, @2(1), B o, @x(l), X ] may be expressed as

a product of commutators of weight n in W, and is non-trivial.
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Hence at least one commutator of weight n in W is non-trivial,
and so the exact class of W is determined.

The first part of this programme is quite easily carried out.
EEER R (S SENNERT I N a1, ythe entiry Tij in the commutator
K may be expressed as a product of commutators in B of weight
i and more; and on expansion using the Hall identities and the
fidec e Ella e fcommitators to f welght "greater than n in’ W are trivial,

K is expressed as a product of commutators of weight n.

Fer YtheNsecond 'part, to show that k  1s non-triviagl, let

%V = [ocl(l), ouz(l), ATl (’Lv(l)] and
e, = 1o )y % a0, (1) % wees X, a (1)] for 1<v<x. Clearly
Xl S ul(l)o Assume inductively that for some v, 2 <v < X,

; i =l ;
either kv-l =k, OF xv-l = Kv—l modulo I;Iv_l(K)° With the
former case (adaptation necessary for the la%er is obvious) Lemma

B2 o ltve's

k phﬂ
u,‘ k
& C3e i | (-1)" k T
T TREIGY T e " modulo N, (K),

since A and hence i Lain the scenttesof .. K smedulo

=L v-1’°

N l(K), Clearly the element of K on the right-hand side of this
=V—
k

congruence has support ({7, | 40 ik

IA

ull}’ and since the order

of Tll is Uy e component iiin dthe Wi st coordinate

Uy
subgroup A(l) of this element is A E_l) Similarly, by a

v-1
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finite induction following the ordering of T,

[Kv-l’ U171 oo uijTij] is equal modulo N

=v-1

67

the commutator

{(K)w Eowan

element of K with support consisting of the elements of B which

can be expressed in the form 7T S B r S with
5 | TS T A
= = % 5 BoGael ivgic; o) £, 15 .2(i)ss whieh . has component
in A(l) equal to either %V-l or %V:ie in.partieular, -the
same is true of [Kv-l’ Xl ; iwand s
e [Kv—l’ i av(l)]
= e @ dulo N_(K)
= N av( ] modulo =V(
+
=\ 1
v

+
By induction then, modulo N (K), « = A ol
=x X X

The same argument shows that [<X, X*]

to an element of K whose component in A(l)

1

is equal, modulo QX(K),

is either XX or

A 7, and whose support is the set of all elements of B which,

X

when expressed in their standard form given by

Lemma 4.1.2, have

€ = 0. Such elements of B, except the identity, when

yl

.multiplied on the right by any power of Tyl remain outside the

(cyclic) subgroup of B generated by Tyl° Thus, modulo gX(K),

the component in A(Tyi) e O Ligin of

*
[KX’ Kehos [Kx; X*) (uyl 5 i (Sx‘l)b) Tyl]

is congruent with that of
h hy, hﬂ -1

[7\;1, (p s (sx-l)(p — Y=y

Tyl]
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which, 'as 'the proof of Lemma 3.1 shows, is for some t a mon-trivial
-

power of %X (since %x has order p - ). The given commutator
is therefore non-trivial modulo EX(K) and so non-trivial; and the
example is verified.

The tools used in this thesis have some interesting
applications to the more detailed study of some group extensions
which are p-groups. Two simple applications are described briefly.

The iterated wreath product of p -cycles is defined by

@ = 1) and fer - mn>1l, & = G wr C
o o n n-1 p

An induction using Lemma 3.1 shows quite easily that the maximum

order of a commutator of weight w in Gn’ where pl'1 <w < pl,

is pn-i for O0'=1 <n-1 (or even 1 = n), and hence that Gn
has nilpotency class pn—l. This confirms the result of Kapitel I
satz 15, 3(e). 0f. {61 The same method may be applied to an iterated
wreath product of ph-cycles, though the detailed results are much
more complicated.

The basis for the base group of the wreath product Cp5 WE G o
used in the proof of Lemma 3.5.3 is readily adapted to a detailed
investigation of the lower central series of W=C, wr C, for

aE
Fuelol szl glie 1@ /V: which reveals a rather surprising increase in
the order of factor groups gi_l(W)/Qi(W) in this series from p

h h-1 Ll
o pk s-1

h
when 1.= predes(P I i k20 to when

h-1
"L=ph+s(ph-p Y e i,
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Appendix

Since most of this thesis was typed, Dr. L.G. Kovics has
brought to my attention a preprint of a paper entitled '"Bounds for
the class of nilpotent wreath products" by L.J. Morley. In the
present thesis, the exact class of a nilpotent wreath product is
gilven anm @84.7  in the form

max ira + (s =1)b}
l<rar :

where a and b are parameters depending on the top group, and

Se

commutators of weight r in the bottom group have maximum order p

The lower bounds of Scruton [11l], Morley, and the present
thesis are obtained by essentially the same principle, using a
standard form for elements of the top group in terms of generators
of the factor groups in a central series of the top group. Instead
of the extremely fine central series (with every factor of order p)
used by Scruton, Morley uses an arbitrary central series, and so
improves Scruton's lower bound to one of the form

max [eal + (s -1)bl}). The specific use of the lower central
lgrgro G

series in the present thesis makes it possible, roughly speaking,
to multiply each term connected with the i th step of the series

in the sums forming a' and b' by i, and so to obtain the sums

FoEmitn oS o d Sl
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When the bottom group is abelian, Morley's upper bound takes
EheEorm g ek (sl—l)b”, wineize, et ek e ekl dEEenn - el el
b' in having each summand connected with the i th step of the
series multiplied by the product of the exponents of the 1i-1
higher steps (instead of simply by 1), The adaptation of this
result to a nilpotent base group in general is of the form

xr al +'1£§;r (sr-l)b“, instead of

max {xa + (s =1)b}.
o <F<r xEe g

Iceer



