
SOME PROPERTIES OP WREATH PRODUCTS 
AND THEIR GENERALISATION 

by . 

TERESA SCRUTON 

A thesis presented to the 
Australian National University 

for the degree of 
Master of Science 

in the Department of Mathematics. 

Canberra 1964 



PREFACE 

The work for this thesis was done while I held a 
research scholarship in the Department of Mathematics 
at the Institute of Advanced Studies of the Australian 
National University. 

I thank my supervisors, Professor B.H. Neumann F.A.A,, 
P.R.S., who suggested my research topic and supervised 
my work, and Professor Hanna Ne-umann, who supervised the 
preparation of this thesis. 

I am grateful to Dr M.P. Newman for suggesting that 
I work on the problems involved in Chapter 2, and for 
his assistance in that work. 



11 

IITOEX 

PREPACE i 
INDEX ii 

INTRODUCTION 1 
CHAPTER 1 

Introduction 4 
Notation 4 
Definition of a standard wreath product 5 
Some properties of standard wreath products 6 

CHAPTER 2 
Introduction 12 
A loy/er bound for the nilpotency class of A wr B 13 
An upper bound for the nilpotency class of A wr B 17 

CHAPTER 3 
Introduction 24 
The tensor product of groups 24 
The second nilpotent powers of a group 29 
Generalised wreath products 53 
The second nilpotent products defined by Gtolovin 
and Mo ran 41 

CHAPTER 4 
Introduction 49 
Some properties of generalised wreath products 49 
Nilpotency of A wr2 B 58 



- 1 -

IITTRODUCTION 

The wreath product of two groups A and B is 

a well known construction which is particularly useful 

in proving embedding theorems and which provides a 

source of counter examples. A precise definition of 

the standard wreath product will be given in Chapter 1, 

and a short explanation is sufficient here. 

Let B be a permutation group of a set Y and 

let A be an abstract group. Let H be the product 

(direct or cartesian) of IYI isomorphic copies of A . 

The group B is represented as a group of automorphisms 

of H and the splitting extension G of H by B is 

constructed. The group G is called the wreath product 

of A by B . When the set Y is B , which acts as 

a right regular representation of itself, then the 

resulting group is known as the standard wreath product. 

Several generalisations of this construction exist. 

The crown product is a wreath product with central 

amalgamations. The twisted wreath product [l2] is 

T 

the splitting extension of A by B , where T is 

a right transversal of a subgroup S of B , and 

where there is a homomorphism a from S into the 
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group of automorphisms of A . Special cases of 

the twisted wreath product include the standard wreath 

product of A by B and the splitting extensions of 

A by B , A further generalisation occurs in a 

paper by Smel'kin L H J in v/hich the direct or cartesian 

power of A is replaced by a soluble power. 

This thesis concerns the construction of another 

generalised wreath product in which the direct or 

cartesian power of A is replaced by a second nilpotent 

power of A . Certain properties of wreath products 

and their extension to this generalisation have been 

considered. 

In Chapter 1 a precise definition of a standard 

wreath product is given together with certain properties 

which will be needed for the work in this thesis. 

Baumslag has given a set of necessary and sufficient 

conditions for the nilpotency of a wreath product 

A wr B ; Liebeck has determined the exact nilpotency 

class when both A and B are abelian. In Chapter 2 

upper and lower bounds for the class of A wr B are 

determined. These bounds depend on the order of B , 

the class of A and the exponents of the terms of 

the lower central series of A , 
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In Chapter 5 the second nilpotent product K 
of a set (A^ ; b € B of isomorphic copies of A is 
constructed. The splitting extension of K by B 
is formed and the resulting group is the generalised 
wreath product A wrg B or A Wr2 B , depending on 
whether K is the restricted or unrestricted product. 

In Chapter 4 certain properties of generalised 
wreath products are considered. It is shown that for 
some of the results of Chapter 1 there are corresponding 
results in the case of generalised wreath products. 
A set of necessary and sufficient conditions for 
A wr2 B to be nilpotent are determined; in fact 
A wrg B is nilpotent if and only if A wr B is 
nilpotent. Finally the results of Chapter 2 are 
extended to provide bounds for the class of 
A wr2 B , and the exact class is determined when both 
A and B are cyclic groups of order p <, 
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CHAPTER 1 

Introduction. 

This chapter contains a brief summary of some 
known properties of wreath products, which will be 
of use in the work included in this thesis. The 
notation used here is the same as that used by the 
Neumanns in [13]. Most of the results of this 
chapter are stated without proof, but I have included 
a proof where I have been unable to find one published 
in the notation used here. 

Notation. 

Let gp ^X ; r] denote the group generated by the 
set X with the set of defining relations R . 

For any group G and x, y € G let 
.X, y] = x"''y~''xy ; 

and if X, Y < G , then 
LX, Y] = gp {Lx, y] ; X € X, y € Y 

Left normed commutators of weight n are defined 
inductively by the rule 

Lx^, Xg, x^J = LLX^, X2> •••> 
and if X2 = x^ = ... = x^ , this is written as 
ĉ  (, Xg 

J, ' 
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Definition of a standard wreath product. 

Let A and B be abstract groups. The cartesian -p 
power A of A is the set of functions f from B 
to A with componentwise multiplication 

(fg)(b) = f(b)g(b) for all b ^ B . 
The elements of A clearly form a group under this 
multiplication. 

The support cr(f) of an element f € A is 
defined by 

c^(f) = {b € B ; f(b) ̂  1 •g 
The elements f of A , which have finite support, 

(B) B 
form a subgroup A^ ' of A , and this is the direct 

DOwer of A . The group B is represented as a group of 
•D orphisms of A by putting 

f^(c) = f(cb~'') for all b, c € B . 
-p The splitting extension of A by B is the group 

"P 
of pairs bf , where b € B and f € A , with the 
following multiplication 

(bf)(cg) = (bc)(f°g) for all b, c € B and f, g € A® 
This group is the unrestricted standard wreath product 
of A by B , and is denoted by A Wr B . 

The direct power A^®^ of A admits B as cr(f) 
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and cr(f^) have the same cardinal, and thus the 
( B) 

splitting extension of, A^ ' by B is a subgroup 

of A Wr B and is the restricted standard wreath 

product of A by B , denoted by A wr B . 

For each b 6 B there is a component subgroup 

A^ = {f € A® ; cr(f) C {b}} ; 

this component subgroup is isomorphic to A . 

The set {f € A® ; f(b) = f(1) for each b € b J 
B B is a subgroup of A . It is called the diagonal of A 

and is isomorphic to A . If B is infinite, the 
( B) diagonal of A^ ' is trivial. 

Some properties of standard wreath products. 

Lemma 1.1 (Neumanns' [13] , Lemma 3.1) If A* < A , 

then A* wr B < A wr B and A* Wr B < A Wr B . 

Lemma 1.2 (Neumanns' [l3J , Lemma 3.2) Every 

epimorphism <p : A — > A/A* induces epimorphisms 

(4/ : A Wr B — > (A/A*)Wr B and M/^ ̂  : A wr B — > (A/A*)wr B 

such that ^ ̂  is the restriction of y to the 

restricted wreath product, and such that the restriction 

of V̂  to a component subgroup A^ is an epimorphism 

(P ̂  : A^ — > A^/ A* that corresponds naturally to cp . 
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In other words M̂  is defined by 

(bf)^' = b f 

where f 6 (A/A*) is given by 

f'(c) = f(c)vp . 

It is easily shown that the kernel, ker ^ , 

of M/ is (A*)® . For let b f € ker 'sp , then 

1 = (bf)v = b f 

and hence b = 1 , and for all c € B 

f'(c) = f(c)(p = 1 , 

so that f(c) <= A* and f € (A*)® . Similarly it 

is shown that ker = (A*)^®^ , so that 

(A/A*)wr B ^ (A wr , 

(A/A*)Wr B = (A Wr B)/(A*)® . 

Lemma 1.3 (Neiimanns' Li 3J , Lemma 3.4) If 

B* < B , then the standard wreath products A Wr B* 

and A wr B* are isomorphic to subgroups of the 

standard wreath products A Wr B and A wr B , 

respectively. 

Lemma 1 .4 (G-ruenberg L5J 9 Lemma 3.2) If A 

is Abelian and B is an abstract group, then any 

epimorphism <p : B — > B/ Z may be extended in a 

natural way to an epimorphism ^ : A wr B — > A v/r B/Z 
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Proof. Extend 'P to Vf/ by setting 

(bf)<4' = b f , 

where f : B/Z —> A is defined by 

f ' ( b ' Z ) = . 

Then 41 is a homomorphism, for consider 

(bfcg)M^ = (bcf'^g)vv 

= (bc)cpf* 

where f* : B/Z —> A is defined by 

fMb'Z) = ( f^g) (b 'z ) 

= fCb 'zc -^gCb'z ) . 

Also 

(bf)'4' (cg)v4' = bcpf' c 4)g' 

where f , g' : B/Z —> A are defined by 

f ( b ' Z ) = and g ' (b 'Z ) = ^^^ g(b 'z ) ; 

then 

( b c p f ' ) ( c ^ g ' ) = b^ccpCfM^'^g' 

= (bc)(Pg* 

where g* : B/Z —> A is defined by 

g*(b'Z) = f•(b'Zc"'' ^ )g ' (b 'Z ) 

= f ' ( b ' c " ' ' z ) g ' ( b ' z ) 

= f (b ' c - ' ' z )g (b ' z ) 

= f*(b'Z) . 
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Clearly v+z is an epimorphism, and this completes 
the proof. 

Gruenberg remarks in passing that the kernel of 
the above epimorphism is easily seen to be the least normal 
subgroup of G = A wr B , which contains Z . This will 
be denoted by . Certainly ker contains 

which is . Let b f € ker , then 
b e Z and f vv = f' where 

f'(b'Z) = f(b'z) = 1 , 
so that 

Let X = ; i € I , III = 1 B/zl] be a transversal 
of Z in B . For z € Z define g„ : X — > A by z 

g^(b.) = f(b.z) , 
and put 

Then for b^ € X , 

= f(bi) , 
and for 1 z € Z and bĵ  € X 
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h(b.z) = (g^)^(b.z) 

= gz(^i) 
= f(b^z) . 

Hence if f € ker <4/ , 

Wz^Z LSz: 
Note that if Z is finite then an epimorphism 

: B — > B/Z can be extended in this way to an 
epimorphism from A Wr B onto A Wr B/Z , so that 

A wr B/Z = (A wr B)/LA^®\z]Z , 
and for a finite subgroup Z 

A Wr B/Z = (A Wr B)/LA®,ZjZ . 

The following theorem was first proved in its 
present form by Krasner and Kaloujnine [ 7 ] , but was 
earlier proved by Probenius as a theorem in monomial 
representations. A proof in the notation used here 
has been published by the Neumanns in [15]. 

Theorem 1,5 Let C be an extension of a group 
A by a group B . Then C can be embedded in the 
standard wreath product A Wr B . 

Lemma 1 .6 The centre of A V/r B is the centre of 
g the diagonal subgroup of A . If B is infinite, 
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the centre of A wr B is trivial. 

Proof. Let G = A Wr B and let JCg) denote the 

centre of G . Let c g € , then for all b € B 

Lcg,bJ = 1 = [c,b][c,b,gJLg,b] ; 

therefore c ^ ^(B) and for all b' € B , 

g(l) = g(b') . 

Let f : B —> A be such that <3"(f) = , then 

Lcg,f] = 1 = g ^f'^gf , 

and if c 4 ^ 

(g-''f-V)(l) = 1 = f(l) . 

Hence the centre of G is the centre of the diagonal 

subgroup. 

If G = A wr B then clearly ^(G^) i® centre 

of the diagonal subgroup, but if B is infinite, the 

diagonal subgroup of A (B) is trivial. 
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CHAPTER 2 

Introduction, 

The lower central series of a group G is defined 

as the following series of normal subgroups of G 

G = Y^(G) > > ... > Y^(G) > > ... , 

where, for i > 1 , 

For convenience T2(G) will sometimes be denoted by 

G' . A group G is said to be nilpotent if its lower 

central series terminates in the unit subgroup 1 after 

a finite number of terms, that is if = 1 for 

some finite integer I . If (G) = 1 and Y^(G) 1 , 

then G is said to be nilpotent of class c . 

Baumslag L i J has shown that the restricted wreath 

product of A by B is nilpotent if and only if A 

is a nilpotent p-group of finite exponent and B is a 

finite p-group, for the same prime p . 

Liebeck 1.9] has shown that if A is an abelian group 

of exponent p^ and B is a direct product of cyclic 

groups whose orders are p , . . . , p , with 

P-] > - • • * - ^m ' ^^^ class c* , say, of A wr B 
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is given by 
c* = ii/p + (n-l)(p-l)p + 1 . 

He shows that if B̂  is such that B^/B'^ is 
isomorphic to the group B defined above, and if 
c.* is the class of A wr B. , then 

> il^Cp -1) + (n-l)(p-l)p ' + 1 . 
These results are extended, and upper and lower 

bounds are determined for the nilpotency class of 
A wr B when A and B are non-abelian. It is 
shown that if A has exponent p^ and class c , 

no 
if ''''̂ (A) has exponent p for 1 < 't < c , and 
B has order p^ , then the class c* , say, of A wr B 
has the following bounds 

c* < cp̂ ""* (np-n+1 ) when p > 2 , 
c* < max (3n, when p = 2 
c* > max ((^t+no-1)(p-1) + 1}, 

Thus a lower bound is given by the class when B is 
elementary abelian; if p > 2 , the upper bound is 
attained when B is a cyclic group. 

A lower bound for the nilpotency class of A wr B . 

The following preliminary lemma is required. 

Lemma 2.1 Let B be a group of order p"̂  , There 
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is a set of generators b̂  , ..., b-̂  of B such that, 
for 1 < i < t , 
(i) gp {b^,...,b.j = B^ ^ B ; 
(ii) b. € , with B̂  = 1 
(iii) Ib̂ I = p-

Proof. This is proved by induction on i . A finite 
p-group has a non-trivial centre, so b̂  can be chosen 
to be an element of order p in . Now suppose 
that the lemma is true for i < m , Take 
b B^ . e C(B/B^ to be an element of order p, m m-1 ^ m-i ^' 
so that b^P € B^ , . m m-1 

m m 
and thus B ^ B m — 

Now, for all b 6 B 

'm-1 L b „ , b J 6 , m 
Also 

.m b 1 = I B / B ^ J | B ^ , = p̂  
m m m-T ' m-1 ^ 

This completes the proof of the lemma. 
Using this set of generators, a non-trivial 

conmiutator of the required weight will be constructed. 
First the following lemma and theorem of Liebeck 
are needed. 

Let BLR] be the group ring of B over the integers; 
let be the coefficient of b® in (l-b)^ , where 
b is a fixed element of B . 
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Lemma 2,2 Let f (= A® with <r(f) =il], and 

let g = L f ( , Then 

cr(g) c ; 

g(b^) = f(l) ^^^ if r is odd , 

g(b^) = f(l) ^^ if r is even . 

Theorem 2.3 If Ibl = p^ , then divides 

\ if r > p^ + n(p-1 ; p̂ "̂ "* does not divide 
i*s 

P P —1 
if r = p + n(p-1 )p - 1 . 

Lemma 2»4 If B has order p^ and A is a 

nilpotent p-group of exponent p^ , and if c* is the 

class of A wr B , then 

c* > (t+n-1)(p-1) + 1 . 

Proof. Let b.,...,b, be the generators of B given I X 

by Lemma 2.1, and let f € A® with a(f) = and 

f(l) of order p^ . Consider 

Now every b € B can be expressed uniquely in the form 
Pi Pt 

b = b^ ...b^ for 0 < < p-1 and 1 < i < t ; 

and it follows from Lemma 2.2 that for all b € B 
\p-l),o = T ' ^^^^ 

g(l) = f(l)-^ . 
Pp Pt 

For all b e cr(g) = } b2 ... b^ ' ; 0 < < p-1 , 2 < i < t J 
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define g^ by 

gb(b) = g(b) 
= 1 for all b b* € B . 

Then = | b, bb^ , bb^ ̂ ,..., bb^ P""" j ; 
so that, clearly, for b b* and b, b* € C"(g) , 

Hence ^ 1 if ^ ^ . But 
g^(l) = f ( l a n d so has order p^ ; and thus by 
Theorem 2.5 4 ^ if r = n(p-1) . 
This completes the construction of a non-trivial 
commutator of weight 

(t+n-1 )(p-1 ) + 1 . 

Theorem 2«5 Let B have order p^ ; let A be a 
nilpotent p-group of class c and let have 

nc 
exponent p for 1 < -t < c . If c* is the class 
of A wr B , then 

c* > max (('tt-t-nn-l )(p-1 . 
Proof. For I € , let ^ A® 
with cr(f^) = for 1 < i < -t , and such that 

Lf^d), ^ 1 . 
It can be seen from the proof of Lemma 2.4- that an index 
e = ± 1 can be chosen so that the commutator (of weight 
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s = t{l-^ )(p-i )+l ) 

— L f ̂ »f 2' * * *' ' 

and hence < Y^(A wr B) . Let g € A® with 

o-(g) = be such that g(l ) is an element of 
nn 

order p ^ in Y^(A) . Then g € Y^(A wr B) . 

By Lemma 2.4 

Lg(,b2)?:l.(,b^)P-''(,b^)^] ^ 1 if r = n ^ ( p - l ) ; 

and thus 

c* > (^t+n^-1)(p-1) + ^ o 

But this is true for all I ..,,01 , 

so that 
c* > max { ( i t + n n - 1 ) ( p - 1 } . 

~ 1<t<c ^ 

An upper bound for the nilpotency class of A wr B . 

Before determining an upper bound for the nilpotency 

class of A wr B some preliminary lemmas are required. 

Suppose firstly that A is an abelian p-group of 

exponent p^ . 

The following lemma was stated and proved by 

Liebeck [9] for the case where A and B are abelian. 
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It is true, and the same proof applies when A is 
abelian and B is non-abelian. 

Lemma 2.6 Let G = A wr B with A abelian. 

(i) If f € A® and b € B , then 
Lb,f] = Lf"\bJ . 

(ii) If f,f' 6 A® and g € G , then 
Lf,gf'J = [f,g] and Lff',g] = Lf,gJLf',g] • 

(iii) If g^ = for 1 < i < s and h^ ^ B , fj_,f,f' € A® , 
then 

and 
Lff • ,... ,ggj = Lf ,... ,ggjLf' ,... ,gg] . 

The following lemma, which is stated without proof, 
follows trivially from Lemma 2.6 and from the fact that •g 
A is abelian and normal in A wr B . 

Lemma 2.7 If A is an abelian group, any 
commutator of A wr B can be written as a product of 
commutators of the form 

Lb. , . . . , b . ,f ,b . , . . . , b . J or [b. , . . . , b . . 
1 r r+1 n 1 n 

where f € A and the b̂ ^ are the generators of B 
D 

given by Lemma 2.1 . 

> 
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Note that if B has class k , a commutator of 
• Q 

weight less than k + 1 may lie outside A , but 
wr B) < A® . 

Corollary 2.8 If A is an abelian group of 
exponent p^ , B is a finite p-group and C is a 
cyclic group of order p^ , then the class of A wr B 
is equal to the class of C wr B . 
Proof. The class of A wr B is equal to the maximal 
weight of a non-trivial commutator in A wr B , which 
is of the form 

Lb. ,...,b. ,f,b ,...,b. ] . 
Jor a fixed group B and A abelian this depends only 
on the exponent of A . 

The main result will now be proved, firstly when 
A is abelian and secondly, by induction on the class of 
A , when A is a nilpotent p-group of finite exponent. 

Lemma 2.9 If C is a cyclic group of order p^ 
and B is a nilpotent p-group, and c*(n,t) is the 
class of C wr B , then 

c*(n,t) < p^~^(np-n+l) for p > 2 , 
c*(n,t) < max(4,3n)2''̂ "̂  for p = 2 . 
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Proof, This is proved firstly by induction on t 
when n = 1 , and secondly by induction on n . 
Suppose first that n = 1 and let B̂  < ^(B) be 
a subgroup of order p , and let the class of G wr B/B 1 
be Then by Lemma 1 .4 

wr B/[C®,B^]B^ ) Y^^^ (C wr B/B^ ) = 1 , 
and therefore 

wr B) ^ . 
.But, by Lemma 2.4, r > (t-l)(p-l) + 1 , which is 
greater than the class of B , and thus, by Lemma 2.7 

Then 
wr B) < LC®,B^ J . 

Now B̂  < ^(B) and A is abelian and therefore for 
all f <= C®, b̂  € B̂  and b 6 B 

and hence 
Lf,b^,bJ = Lf,b,b^j 

[C ,B^,bJ - LC^,B,B^] . 
Thus a simple induction argument on m shows that 

V + l ^ ^ wr B) < . 
But by Theorem 2.3 

LC®(,B^)Pj = 1 , 
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and thus 
wr B) = 1 . 

It will now be proved by induction on t that if B 
t+1 is non-cyclic of order p , then 

c*(l,t+l) < p^~''(2p-l). 
For t = 1 it is known that if D is an elementary 

2 
abelian group of order p , then C wr D has class 
2p-1 , and the result follows trivially by induction 
on t . 

Now suppose that B is non-cyclic of order p^ , 
and that for n < N 

c*(n,t) < np^"^(2p-1) . 
> T , ^ Let C have order p and consider (C/C^) wr B , 

N 
where Ĉ  is the subgroup of C generated by p th 
powers of elements of C , so that C/C^ is cyclic 
o| order p^ . By Lemma 1.2 

(C/C^ ) wr B C wr B/(C^ 
and so 

hence 

and 
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But Ĉ  wr B has class at most p (2p-1) so that 
c*(N+1,t) < c*(N,t) + < (N+1 )p'"^(2p-1 ). 

If C is a cyclic group of order p^ and B is 
a cyclic group of order p^ , then C wr B has class 
p^~^(np-n+l) . For p > 2 

p^-^(np-n+l) > np^-2(2p-l) , 
but for p = 2 

2'̂ "''(n+l) > if 2 > n , 
2"̂"'' (n+1 ) < if 2 < n . 

Therefore 
c*(n,t) < p"'̂  ''(np-n+1) if p > 2 , 
c*(n,t) < 2"'̂  ̂ max(4,3n) if p = 2 . 

Theorem 2.10 If A is nilpotent of class c 
and has exponent p^ and B has order p^ , and if 
A wr B has class c* , then 

c* < cp"'̂ "''(np-n+1 ) if p > 2 , 
c* < max(4,3n)c2''^"^ if p = 2 . 

Proof« This is proved by induction on c , By Corollary 
2.8 and Lemma 2,9 it is true when c = 1 . Suppose 
that it is true for c = d and let A have class 
d + 1 and (A/'Y^(A)) wr B have class ĉ  . Then 

t-1 C-, < dp^ ' (np-n+1 ) if p > 2 , 
ĉ  < max(4 J 3n)d2 t-2 if p = 2 . 
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Now by Lemma 1 .2 

1 = B) ^ wr B/(Y^(A))®) , 

and hence 

wr B) < (Y^(A))® . 

Then 

^c^+r+Z^ - L(Y^(A))^(,A wr B)^J . 

But 
sB ^ i'r.B 

and so 

By Lemma 1.1 

sgpl(Y^(A))®,B| = Y^(A) wr B 

and wr B has c l a s s d* , say , where 

d* < p '̂"* (np-n+1 ) fo r p > 2 , 

d* < max(4,5n)2'^"^ fo r p = 2 . 

Hence 

and so 
, t - 1 c* < (d+1 (np-n+1 ) fo r p > 2 , 

c* < (d+1 )max(4,3n)2'^~^ for p = 2 . 

This completes the proof of the theorem. 
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CHAPTER 3 

Introduction. 

Let B be an ordered index set and let 
D = {(b,b') ; b,b' ^ B, b > b'} . For an arbitrary 
group A the second nilpotent power of A is defined 
as a set of pairs of functions ft , where f is a 
function on B taking values in A and t is a 
function on D taking values in A ® A , this set 
having the appropriate multiplication defined on it. 
By this means both the restricted, K , and the 
unrestricted, K , second nilpotent powers can be 
defined. This definition differs from those of 
Golovin and of Moran but it is shown at the end of this 
chapter that the definitions are equivalent. 

The splitting extensions of K and K by B are 
the generalised wreath products A ^T^ B and A Wrg B 
respectively. 

Before defining the second nilpotent powers, it is 
necessary to define the tensor product of groups. 
Following Wiegold L 1 5 J this group is written multiplicatively, 

The tensor product of groups. 

Let M and N be arbitrary groups. The tensor 
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product M ® N of M and N is defined as the group 

of pairs m (gn , with m € M and n € F subject to 

the following relations 

mm' (2) n = ( m @ n ) ( m ' @ n) , 

m(^nn' = ( m ® n ) ( m Q s ! n ' ) , 

for all m,m' ^ M and n,n' € N . The unit element 

of M(2) N is 1 @ 1 , since 

( m ® n ) ( l (g: l) = (m(E)n)(l ®n)(l ® l ) = ( m ® n ) ( l ® n) 

= m ® n . 

Also 

— 1 1 ( m ® n ) ( m ' ® l) = (mm' 'm'® n)(m' (ĝ  l) = (mm'" n)(m' (g) n) 

= m ® n , 

and hence for all m € M and n € N , 

m < a i = 1 ® 1 = 1 ® n . 

The following are well known properties of tensor 

products. 

Lemma 3.1 The tensor product M ® N of M and N is 

abelian. 

Proof. Consider mm' (2> nn' ; 

mm' (g^nn' = (m(£>nn')(m'(2)nn') 

= ( m ® n ) ( m ® n ' ) ( m ' 0 n)(m' ® n') ; 

mm'CS' nn' = (ram'(2> n)(mm'(S)n') 

= (m (H)n)(m'® n)(m<» n')(m'<& n') , 
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and hence 
(m<g)n')(m'(g)n) = (m'(S)n)(m(2»n'). 

Lemma '̂ .2 For all groups M and N,M®'N=]V!/M'S'N/N' , 
Proof. Let (p' : M — > M/M' and cp * : N — > N/N' and 
define (p : M ® N — > W M ' (J) N/N' by 

(m n) (p = m cp' eg) n <p* = mM' ̂  nN' . 
Then cp is obviously a homomorphism and maps M ® N onto 
M/M' N/N' . Also (p is a monomorphism for suppose 
that 

(m n)(p = 1 , 
then, since 1 = m(g)n'=m'(g^n for all m € M, m' € M' , 

n € N and n' 6 N' , 
1 = M' (>? N' = mM' nN' 

and hence 
m ® n = 1 . 

Lemma 3,3 If M = ^ ^ M^ and N = N^ , then 

M N = \ ® ^^ » where ^ ^ G^ denotes the 
direct product of the set of groups ^G^ ; X € a]. > 

Proof Clearly IL® N^ n (î  ^^ = ^^ 
[M. ® N^ ; i e I 0 e J generates M® N. This completes the 
proof. 
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To determine the order of an element m n of 

M N , it is necessary to consider the order of MQ.^ N 

when M and N are cyclic groups. Suppose that 

M = gp {m ; m"*̂ ^ = 1 J and N = gp { n ; n"*̂ ® = 1 ) and let 

r and s be co-prime. Then 

(m (5<) n)"^^ = n = 1 , 

(m (g- n)"^® = m O ) n^^ = ^ . 

But M N is obviously a cyclic group generated by 

m n , and so its order must divide t . It v/ill be 

shown that the order of M ® N is exactlv t . A 

theorem of Curtis and Reiner ([2], page 6l) is required 

and is proved only in the special case needed here. The 

following two definitions are required. 

Let M and N be abelian groups and let R be an 

abelian group. A balanced map f of the product set 

M X N into R assigns to each pair (m,n) of M X N an 

element f(m,n) of R , such that 

f(mm',n) = f(m,n)f(m',n) , 

f(m,nn') = f(m,n)f(m,n') , 

for all m,m' € M and n,n' € N . 

Let f : M X N — > R and (p : M X N — > S be 

balanced maps of M X N into the abelian groups R and 

S respectively. Then f is said to be factored through 

S if there exists a homomorphism f* : S — > R such 
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that 
f = f * (p . 

Theorem 3»4 Let M and N be abelian groups, 
Then every balanced map of M x N into an arbitrary 
abelian group can be factored through M N . 

and let H Proof. Let P = gp ̂  (m,n) ; m € M, n € N 
be the subgroup of P generated by the formal products 

(mm',n)(m'(m,n)~^ , 
(m,nn')(m,n'(m,n)~ 

Then M N is the factor group P/H . Define a 
mapping <r : M N — > M N by 

(r(m,n) = (m,n)H . 
Let cp be any balanced map of M x N to R . The 
mapping defines a homomorphism ' : P — > R by 

But f is a balanced map so that (p '(H) = 1 , and 
thus Ĉ  induces a homomorphism f * : P/H — > R by 

(f *((m,n)E) = f{m,n) , 

or 
(p * <r (m,n) = cp (m,n) , 

and thus f has been factored through S , 

Corollary 3»5 Let M = gp [ m ; m^^ = l] and let 
. - i - g N = gp ^n ; n - ^ \ with r and s co-prime, then 
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M ® N = gp [m® n J (m<2> n ) ^ =l] , 

P r o o f . I t has been shown above t h a t t h e o r d e r of M @ N 

d i v i d e s t ( p . 2 7 ) . I t i s s x i f f i c i e n t t h e r e f o r e t o f i n d 

a b a l a n c e d map f rom M ®N onto a c y c l i c group of o r d e r t . 

Le t R = gp [X ; x^ = l ] . Def ine a map f : M x N —> R 

by 

fCnP, n®) = xP'̂  f o r 0 ^ Q, ^ t r and 0 ^ e ^ "ts. 

Then 

= f ( i iF , n3) f C n P ' , n S ) , 

and s i m i l a r l y 

f ( n F , = f ( n F , n^) f ( n F ' , n ^ ' ) . 

Thus f i s a ba l anced map and t h i s comple tes t h e p r o o f . 

The second nilpotent powers of a group 

The second n i l p o t e n t power of a group A w i l l now 

be d e f i n e d . Le t B be an ordeii(/set and l e t 
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D = '(b,b') ; b,b' e B, b > b'j . For a given group A , 
let f be a function on B taking values in A and let 
t be a function on D taking values in A A , 

Consider the set K of pairs ft with the following 
multiplication 

(ft)(gu) = f t ' 
where f : B — > A is given by 

f'(b) = f(b)g(b) , 
and t' : D — > A QP A is given by 

t'(b,b') = t(b,b')u(b,b')(f(b)<^ g(b')) . 

Note that for all f : B — > A and t : D — > A (g) A 
[t, f] = 1 . 

The multiplication defined above is associative. 
Proof, Let f, g, h : B — > A and t, u, v : D — > A S: A , 
then 

(ft)(gu) = f t ' 
where 

f(b) = f(b)g(b) , 
t'(b,b') = t(b,b')u(b,b')(f(b)® g(b')) ; 

also 
(f't')(hv) = f*t* 
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where 
f*(b) = f(b)h(b) = f(b)g(b)h(b) , 

t*(b,b') = f(b,b')v(b,b')(f'(b)^ h(b')) 
= t(b,b')u(b,b')(f(b)(S g(b'))v(b,b')(f(b)g(b)(Xh(b')). 

Also 
(gu)(hv) = g'u' 

where 
g'(b) = g(b)h(b) , 
u'(b,b') = u(b,b')v(b,b')(g(b)® h(b')) , 

and 
(ft)(g'u') = g*u* 

where 
g*(b) = f(b)g'(b) = f(b)g(b)h(b) = f*(b) , 

u*(b,b') = t(b,b')u'(b,b')(f(b)® g'(b')) 
= t(b,b')u(b,b')v(b,b')(g(b)(2)h(b'))(f(b)@ g(b')h(b')). 

It clearly follows from the defining relations of A A 
that t* = u* . 

The unit element 1 of K is that pair of functions 
which take the value 1 everywhere. 

The inverse of ft is f*t* , where 
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f*(b) = (f(b))-'' , 

t*(b,b') = (t(b,b'))-''(f(b)® f(b')) . 

Proof. Consider gu = (ft)(f*t*) , then 

g(b) = f(b)f*(b) = f(b)(f(b))-'' = 1 , 

u(b,b') = t(b,b')t*(b,b')(f(b) ® f*(b')) 

- t(b,b')(t(b,b'))-Vf(b)® f(b'))(f(b) (2)(f(b')r^) 

= 1 . 

Thus the elements of K v/ith this multiplication 

form a group, which is the unrestricted second nilpotent 

power of A . 

The supports o-(f) of f and <r(t) of t are 

defined as follows 

c r ( f ) = jb € B ; f(b) ^ 1 } , 

c r ( t ) = ^ D ; t(d) ^ l } . 

Clearly the set of elements of K which have finite 

support forms a subgroup K of K , and this group is 

the unrestricted second nilpotent power of A . 

The set T of functions t : D —> A ® A is clearly 

a noraial subgroup of K , and the set T of those t 6 T 

with finite support is a normal subgroup of K , 

For each b € B and (b,b') 6 D there exist 

component subgroups 
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A^ = gp {f : B — > A ; cr{f) £{h}j , 

A^, = gp |t : D — > A ® A ; cr( t) C ((b, b' ))] • 

Clearly A^ is isomorphic to A and ® is 
isomorphic to A A , 

The following notation will be used 

K = bS \ ^^^ K = b£ \ • 
Generalised wreath products. 

Suppose now that the index set B is a group, which 
need not be an ordered group. This group B will be 
represented as an automorphism group of K . 

Define a map a : A (So A —> A (k) A by 
(m (BJ n)a = (n <g>m) for all m, n € A . 

Then (m 0 nn' )a = (nn' m) 
= (n ® m)"^ (n' ® 
= (m (g n)a(m n' )a 

and 
(mm'(ĝ  n)a = (m ® n)a(m'(X n)a . 

Thus a can be extended to a homomorphism which is 
clearly an automorphism of A® A . 

For c $ B put 
(ft)^ = ft' , 

where 
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f'(b) = f(bc-'') , 

t'(b,b') = t(bc"'', b'c""') if be"'' > b-c""*, 

t'(b,b') = (t(b'c"'' , be"'' )) a (f( b e""" ) f(b'e"'' )) 

if be"^ < b'e""" . 

The elements e of B aet as epimorphisms of K , 

Proof. Let f,g : B — > A and t,u : D — > A ® A ; then 

(ft)(gu) = hv 

where 

h(b) = f(b)g(b) , 

v(b,b') = t(b,b')u(b,b')(f(b)(^ g(b')) ; 

and 

(hv)^ = h'v' , 

where 

h'(b) = h(bc~'') = f(be"'')g(bc"'') , 

v'(b,b') = v(be"'', b'c"'') if be"'' > b'e""* , 

v'(b,b') = (v(b'e~'',be"'') )a(h(bc"'') ®h(b'c~'')) 

if be"'' < b'e"'' ; 

v'(b,b') = t(be"\b'e"'')u(bc"''jb-e""" )(f(be"'') ^ gCb'c"'')) 

if be"'' > b'e"'' , 

v'(b,b' ) = (t(b'c"'' ,be"'' ))a(u(b'e"'' ,be"'' ) )a(g(be"'' f (b ' e""" ))"'' 

(fCbe""" )g(be"'' ) f(b'c"'' )g(b'c-'' )) 

if be""" < b'e""' . 

Also 

(ft)^(gu)'' = (f't')(g'u') 
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where 

f'(b) = f(bc-^ ) , g'(b) = g(bc"'' ) , 

t'(b,b') = t ( b c " ' ' ) if be"'' > b'c""' , 

t'(b,b') = (t(b'c"'',bc"''))a(f(bc"'') fCb'c""" )) 

if bc"'^ < b'c"'' , 

u ' ( b , b ' ) = u(bc~''jb'c""') if be"'' >b'c"'', 

u ' ( b , b ' ) = (u(b'c"\be"''))a(g(be"'') ® gCb'e"'')) 

if be"'' < b'c"'' ; 

and 

(f't')(g'u') = , 

where 

h*(b) = f'(b)g'(b) = f(bc-'')g(bc"'') = h ' ( b ) , 

v * ( b , b ' ) = f ( b , b ' ) u ' ( b , b ' ) ( f ' ( b ) ® g'(b')) ; 

v * ( b , b ' ) = t(bc"'',b'c"'')u(bc"'',b'c"'')(f(bc"'') ® g(b'c~'')) 

if bo"'' > b'c"'' , 

= v ' (b,b' ) if be""" > b'c"'' , 

v * ( b , b ' ) = (t(b'c"\bc"''))a(u(b•c"^bc"''))a(f(bc"'')(gif(b'c"'')) 

g(b'c-^))(f(bc"'')® g(b'c"'')) 

if be"'' < b'c"'' , 

= v ' ( b , b ' ) if be""" < b'c"'' , 

and hence 

((ft)(gu))° = (ft)^(gu)^ . 

Clearly c maps K onto K and thus it acts as an 

epimorphism of K . 
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The elements c of B act as monomorphisms of K . 
Proof, Suppose that (ft)^ = 1 ; then 

(ft)° = ft' = 1 , 
where 

f'(b) = f(bc~'') = 1 for all b e B , 
and hence f = 1 ; 
also 

1 = t'(b,b') = t(bc~'',b'c~'') if be"'' >b'c"'' , 
1 = t'(b,b') = (t(b'c~'',bc"''))a if be"'' <b'c~^ . 

Since a is an automorphism of A ^ A it follows that 
t = 1 , and that c is an automorphism of K . 

For all c,c' ^ B and ft € K , ((ft)^)^' = (ft)^^' , 
Proof. Let ft € K , and let (ft)^^' = h'v' , then 

(ft)'' = g-u 
where 

g(b) = f(bc-'' ) , 
u(b,b') = t(bc"''jb'c""') if be"'' > b'c""' , 
u(b,b') = (t(b'c"'',bc"''))a(f(bc"'') f(b'c"'')) 

if be"'' < b'c""' ; 
then 

(gu)^' = hv 
where 



- 37 -

h(b) = g(bc' -'•) = f(bc'-VVh'(b) , 
v(b,b') = u(bc'"'' ,b'c'"'') if bc'~^ > b'c 

v(b,b') = (u(b'c' -^bc'-''))a(g(bc'-'')@) gCb'c'-'')) 

if bc'"^ < b'c .-1 . > 

v(b,b') = t(bc'~'' c""* ,b'c'"'' c"'' ) 

if bc'"^ > b'c'"'' and be' ""'c"'' > b'c'" 

v(b,b') = (t(b'c' -''c-^bc•-''c-''))a(f(bc'-'' c""' f(b'c'" c-1)) 

if bc'~'' > b'c'"^ and be' "''c"'' < b'c'" 

v(b,b') = (t(b'c' c-\bc'-''c-''))a(f(bc'-^ c"'' ) ®f(b'c'" 

if be'"'' < b'c'"'' and be' "''c"'' < b'c'" 

v(b,b') = t(bc'"'' e"'' , b 'c '"''c"'' )(f(bc'~''c"'' )(:^f(b'c'~''c" ))-' 
(f(bc'~ •''c"'')® f(b'e'"''c"'')) 

if be'""' < b'c'""' and be' "''c"'' > b'c'~ 

v(b,b') = t(bc'"'' c""" , b ' c ' •''c"'') if be'"'' c"'' > b'c'"''c -1 1 

v(b,b') = (t(b'c'" •^c-\bc'-''c-'' ))a(f(bc'"^c "'' )®f(b'c'"'' 

if be'""' c"'' < b'e'"''c -1 • > 

and hence v = v' , and 
((ft)^)^' = (ft) cc 

The following theorem ([6], Page 88) shows that the 

set of pairs (bk ; b € B , k € K | , with a certain 

multiplication defined on it, forms a group. 
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Theorem .̂ ,6 If G- and H are groups such that 
for every element h € H there is an automorphism 
g <—> g^ of G with (g^)^' = g^^' for all h,h' 5 H , 
then the pairs hg form a group under the product 

(hg)(h'g') = hh'g^'g' . 
This group is called the splitting extension of G- by H , 

Thus the splitting extension of K by B is a 
group P , the unrestricted generalised wreath product, 
which is denoted by A Y^T^ B , 

If bft , b'f't' € P then 
(bft)(b'f't') = b*f*t* 

v/here 
b* = bb' , 
f*(c) = f(cb'-'')f'(c) , 
t*(c,c') = t(cb'"\c'b'""')t'(c,c')(f(cb'"''f'(c')) 

if cb'"'' > c'b'""' , 
t*(c,c') = (t(c'b'-'' ,cb'-'' ))at'(c,c')(f(cb'-^ )(g)f'(c')f(c'b'-^)) 

if cb'"'' < c'b'""' . 
The unit element 1 of P is Ig ""B 

the unit element of B and is the unit element of K . 
The inverse of bft is b'f't' , where 
b' = b""" , 
f'(c) = (f(cb))-'' , 
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t'(c,c') = (t(cb,c'b))"''(f(cb) f(c'b)) if c b > c ' b , 

t'(c,c') = ((t(c'b,cb))a)"'' if cb < c'b , 

Proof, Let 

(bft)(b'f'f) = b*f*t* , 

then 

b* = bb' = bb""" = 1 , 

f*(c) = f(cb)f'(c) = 1 , 

t*(c,c') = t(cb,c'b)t'(c,c')(f(cb) (B" f(o'b))"'' if c b > c ' b 

= 1 , 

t*(c,c') = (t(c'b,cb))at'(c,c')(f(cb) f (c ' b)"''f (c ' b)) 

if cb < c'b 

= 1 . 

If o-'(f) and <r(t) are finite, then cr(f^) 

and O^(t^) are finite, for clearly Cr(t) and cr(t^) 

have the same cardinal; if cr(f) = , then 

(r(f^) c (b^b,...,b^bj i(bj_b,b.b); bj_b > b.b, 1 < < 

and so cr'(f̂ ) has finite order. Thus K admits the 

automorphjsms induced by the elements of B , and the 

splitting extension P of K by B is a subgroup of 

A Wr^ B . This group is the restricted generalised 

wreath product and is denoted by A wr^ B , 
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The generalised wreath products A Wr2 B and 

A wr^ B are independent of the order on the elements 

of B . 

Proof. Let and <2 be different orders of the 

elements of B . Let B^ and B^ be the sets whose 

elements are ordered by and <2 respectively . 

As groups, B^ and B2 are identical. Let K^ and 

K^ be defined by 
2 2 

= b ® , \ Kg = Aj, , 

and let P^ be the splitting extension of K^ by B, 

and P2 be the splitting extension of K2 by B2. 

Consider a map 0 : P^ — > P2 given by 

(bf^t^)0 = bf2t2 

where fg : B2 — > A is given by 

f2(c) = f^(c) 

and t2 : ̂  (c, c ' ) ; c ' <2 c , c, c ' t: B j — > A ® A 

is given by 

t2(c,c') = t^(c,c') if c' c' , 

t2(c,c') = (t^(c',c ))a(f(c)(g) f(c')) if c c' 

It is easily proved that 0 is an isomorphism and hence 

the generalised wreath products are independent of the 

ordering of the elements of B . 



- 41 -

The second nilpotent products defined by Golovin and Moran. 

The definition and notation for the second nilpotent 

powers of A , which have been given in this chapter, are 

not the same as those found in the work of Golovin and 

Moran. 

Let P denote the free product of a set (J^; or e nJ of groups. 

Then the free cartesian [A ] of the A is defined to be the subgroup 
or a 

SP 

GoloTin {5'J, L'4] defines th'e restricted secoTid 

nilpotent product K„ of the A by vT CX 

K^^ = W L P , LA J ] . 

Moran LIOJ defines the restricted second nilpotent 

product Kj^ of the A^ by 

where lA denotes the normal closure of [A^] in P . 

V/iegold LI 5] remarks that 

P 
YjCP) n LA^] = LF,LAJJ , 

so that Kj^ = K^ . 

Clearly the cartesian of the A^ in K ^ is 

LA^]^/LF,lA^j] = LA^]LF,LA^j]/[P,LA^]] , 

and this is denoted by [A^]^ . Wiegold LI 5] proves 
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that 

the correspondence 

generates an isomorphism. Golovin [4] proves that 

Hence it follows that 

[A 1 T C A A^ . 

Now suppose that K^ is the second nilpotent 

product of the set ; b € B^ of isomorphic copies 

of A . Then 

By Golovin L4], every element k € K^ has a unique 

expression of the form 

k = (a ), ... (a^)^ u 
1 m 

where < " * ^m ' ^^'i^b ^ '̂ b corresponds to 

a. € A , and where u 6 [A, . Consider the following X D Z 

map G : K ^ —> K given by 

( ( a ^ . . . (a^)^ u)0 = ft , 
m 

and where f : B —> A with o-(f) 

f(bj_) = â ^ for 1 < i < m ; 

if the component of u in is 

L (a. ), , (a.), , ] for some index sets I and J , 
1 tl, 3 cJ I D J D 
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then 

This map 0 i s a homomorphism from K^ onto K , 
Proof . Consider 

k = (a^ ) . . .•(a^)^ u, k- = (a^ ' )^ . . . ( a ^ ' ) ^ u ' , 
I m 1 m 

and l e t k© = f t , k'O = f t ' and f t f ' t ' = gv . 

Then 

and 

(kk')© = g*v* 

where 

g* (b . ) = a . a . ' = f ( b . ) f ' ( b . ) = g ( b . ) , 

v* (b^ ,b . ) = u©(bj_,b.)u'G(bj_,b.)(a. 0 a ' . ) 

= t ( b ^ , b p t ' ( b j ^ , b . ) ( f ( b ^ ) 0 f ' ( b j ) ) 

= v (b^ ,b . ) . 

Clearly 6 maps K^ onto K . 

0 i s a monomorphism. 

Proof . Let 

1 = k9 = ((a^)^ •••^^m^b " ^^ ' 
then 

f(bj_) = â ^ = 1 f o r a l l 1 < i < m , 
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and 
u© = 1 , 

but LA^J^ = T and 0 maps lA Ĵ̂ , onto T so that 
clearly 

u = 1 . 

Hence 0 is an isomorphism and K^ K . 

Golovin [4] shows that v/hen each A is such that 
cl 

its factor group by its derived group is a direct product 
of cyclic groups, then it is possible to construct the 
second nilpotent product of the A and to "know" its GL structure. This means that the cartesian can CL Z 

be determined, not as an abstract group, but as a group 
generated by commutators. In deriving certain of the 
properties of A wr2 B in the following chapter, it will 
be assumed that A/A' is a direct product of cyclic 
groups. 

Before defining the unrestricted second nilpotent 
product of Moran [11 ] it is necessary to define the 
inverse limit of a set of groups. The following 
definition is from Kurosh ([8], page 227). 



- 45 -

Let {g^-, a€N} be a partially ordered set of 

groups, and let N be directed. Suppose that for all 

G , G with a < (3 there is a homomorTDhism cp_ , a p • ' pa 
which maps G onto G , such that for all a < p < Y 

P CI 
and all gy € G^ , 

A thread is a set of elements |gQ_| such that for all 

a € N , € G^ , and for all a, i3 ^ N with a < .3 CL CI 
the elements g^ and g_ are related by U» ID 

Sa = gp ^pa • 

The product of two threads and the inverse of a thread 

are defined by 

I s J [g'al = i^Sg'^a g a 

Thus the set of threads becomes a group, which is the 

inverse limit of the set with the homomorphisms 

Moran [11J defines the unrestricted second nilpotent 

product of groups as an inverse limit. Let B be an 

index set and let 12> be the set of all finite subsets 

of B . For p $ ^ let 

K - ^ - be3 ^b * 

If 3 < 3' then there exists a natural homomorphism 
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of K., onto K_ . This homomort)hism is simply P P P P 
the projection mapping. Under these homomorphisms the 
groups Kp form an inverse system whose inverse limit 
I LQ-(Kp) is the unrestricted second nilpotent product 
of the set of groups {a^ ; b $ b] . 

It remains to be shown that this inverse limit is 
isomorphic to the group K defined in this chapter. Since 
the restricted second nilpotent product is unambiguously 
defined, let the elements of I LQ-(Kp) be threads 
(f^tY} , where f^ : B — > A and t^ : D — > A (g> A . 
Consider the following map <4/ from I L o-(Kp) to K 
given by 

= ft , 
where 

f(b) = f^Cb) for all Y with b € Y , 
t(b,b') = tY,(b,b') for all Y' with b,b' € Y ' . 

This map is a homomorphism. 

Proof. Consider threads [f^t^^ and jgYUYJ ^^^ 

If^tYjq. = ft , (gY^rlM^ = ^ • 
I^y^Y} (SY^YI = I V Y I ' 

where 
h^Cb) = f./b)gY(b) , 
VY(b,b') = tY(b,b')uY(b,b')(fY(b) ̂  gY(b')) ; 
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and 

where 

h(b) = h^Cb) for all Y with b € Y 

= f,^(b)gY(b) 

= f(b)g(b) , 
v(b,b') = v„̂ .,(b,b') for all Y' with b,b' € Y« 

= tY,(b,b')uY,(b,b')(fY,(b) gy.Cb')) 
= t(b,b')u(b,b')(f(b) ® g(b')) ; 

and hence 

iVYKlgY^ 
Clearly H' maps I LJJ-CK^) monomorphically and 

epimorphically onto K so that 
1 Lo-(Kp) K . 

IJote that Moran does not require that the index 
set B be ordered. When B is non-ordered the elements 
of the unrestricted second nilpotent product can be 
uniquely expressed as threads. However in order to 
obtain a regular representation for an element of 
1 LQ-(Kp) he requires that the index set B be ordered. 
In this case every element of the unrestricted second 
nilpotent product of the ; a € bJ has a unique 



- 48 -

representation of the form 

U a W ' 
where g € G for all a € B , and u belongs to the CL Ou 

unrestricted cartesian subgroup. This unrestricted 
cartesian is the inverse limit of the restricted 
cartesians and is proved to be the unrestricted product 

bSb' ^-^b'^'^ ° 
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CHAPTER 4 

Introduction. 

In this chapter certain properties of the generalised 
wreath products A wr^ B and A ^T^ B are considered and 
it is shown that some (but not all) of the properties of 
wreath products stated in Chapter 1 do carry over to 
generalised wreath products. It is shown first of all 
that the standard wreath product is a factor group of the 
generalised wreath product= 

Finally conditions for the nilpotency of A v/r2 B are 
determined and the results of Chapter 2 are extended to 
provide bounds for the nilpotency class of A wrg B , If 
A wr B has class c* and A/A' wr B has class c' and 
if d is the class of A viv̂  B , then 

c* < d < c* + c' . 
Examples are given of groups A and B which are such 
that c* = d , and others which are such that d = c* + c' . 
The exact class of A wrg B is determined when both A 
and B are cyclic groups of order p , 

Some properties of g:eneralised wreath products. 

Prom the following lemma it is proved that the 

standard wreath product is a factor group of the generalised 

wreath product. 
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Leinina 4^1 Let G be a splitting extension of a 

group X by a group Y and let : X —> X ' be a 

homo mo r phi sm such that the kernel R of ' is normal 

in G . Then (p' can be extended to a homomorphism 

cp : G —> G' , where G' is a splitting extension of 

X ' by Y . The kernel of f is isomorphic to R . 

Proo f, Every g 6 G can be expressed uniquely in the 

form 

g = xy for X € X and y € Y » 

Define >P by setting 

(xy)(p = X y for all x 6 X , y € Y . 

Then (p is a homomorphism, for consider 

((xy)(x'y'))<V = 

= (xx'^"'')(p 'yy' 

= X (p •(x'^""' ) (f 'yy' . 

Since R is normal in G it follows that 

(x'-"'"'' = (x' 

and so 

((xy)(x'y'))i^ = x(p'(x' tf 

= X (ft 'yx' (|) 'y' 

= (xy) (x'y' 

Clearly tp maps G onto G' and its kernel contains R 

Let x*y* c ker (j) , then 

= 1 = X* (p'y* 
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and so 

X* f = 1 , y* = 1 , 

Corollary 4.2 For all groups A and B 

A Wr2 B/T = A Wr B , A wrg B/T = A wr B . 

Proof. The proof follows, by direct application of 

Lemma 4 . 1 , f rom the f a c t s t h a t 

A® % 1/T and T 3 A Wr^ B , 

^ ( B ) = K/ T and T ^ A wrg B . 

The f o l l o w i n g two lemmas cor respond to Lemmas 1.3 

and 1 .4 o f Chapter 1 . 

Lemma 4.3 I f B* < B , then 

A Wr^ B* < A Wr2 B and A wr2 B* < A wr2 B . 

P r o o f . L e t D* = { ( c , c ' ) € D ; c , c ' € B*] . For 

b* ^ B* , f * : B* — > A and t* : D* — > A (g) A d e f i n e 

bj;- s e t t i n g 

(b*f*t*)^ i = b * f t , 

where f : B — > A i s g i v e n by 

f ( b ) = f * ( b ) i f b e B* , 

f ( b ) = 1 i f b <1 B* , 

and t : D — > k ^ A i s g i v e n by 

t ( d ) = t * ( d ) i f d 6 D* , 

t ( d ) = 1 i f d I D* . 

Then |j. i s a homomorphism f o r c o n s i d e r 

f 
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((b*f*t*)(c*g*u*))M, = (b*c*h*v*)^ 
where 

if be*"'' > b'c*""' , 
v*(b,b' ) = (t*(b'c*"'' ,bc*"'' ))au*(b,b' )(f*(bc*"'' )®g*(b' )f*(b'c*"̂ )) 

if be*"'' < b'e*"'' , 

and 
(b*c*h*v*)iJ. = b*c*hv 

where 
h(b) = f*(be*"'')g*(b) if b € B* , 
h(b) = 1 if b t B* ; 

v(b,b') = t*(be*"^b'e*"'')u*(b,b')(f*(be*"'')® g*(b')) 
if be*""* > b'e*"'' and (b,b') € D* , 

v(b,b') = (t*(b'c*-^bc*-''))au*(b,b•)(f*(be*-•^)®g*(b•)f*(b•c*-'')) 
if be*""" < b'e*""' and (b,b') € D* , 

v(b,b') = 1 if (b,b') 'I D* . 
In other words if ft = (f*t*)iJ. and gu = (g*u*)M. , then 

h(b) = f(be*-'')g(b) , 
v(b,b') = t(bc*•^b'e*"'')u(b,b')(f(be*"'') ® g(b')) 

if be*"'' > b'e*"'' , 

v(b,b') = (t(b'e*-\bc*-''))au(b,b')(f(bc*-'')@g(b')f(b'e*-M) 
if be*"'' < b-e*""* , 
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and hence 

(b*ft)(c*gu) = ((b*f*t*)(c*g*u*))M. 

= (b*f*t*)M-(c*g*u*)M. . 

Clearly |J, is a monomorphism. The restriction of 

L̂ to the restricted product embeds A wr2 B* in A wr2 B 

Lemma 4 «4 let V be a homomorphism from B onto 

B/Z and let A be an abelian group. Then V can be 

extended to a homomorphism (p from A f̂ir̂  B onto 

A wrg B/Z . 

Proof. Let B be ordered in such a way that if b > b' 

and bZ 4 b'Z , then bz > b'z' for all z,z' € Z . 

Then the order on B can be extended to an order of the 

elements of B/Z by putting bZ > b'Z if bZ b'Z and 

b > b' . 

Extend in the natural way to a homomorphism <P 

of A wrg B by putting 

(cft)^) = cH^f't' , 

where f : B/Z — > A is given by 

f'(bz) = ^^^^^ ' 

and t' : Z* = I (bZ, b'Z) ; bZ > b'Z ̂  — > A ® A is 

given by 

t'(bZ, b'Z) = • 

Then tp is a homomorphism of A wr2 B for let 

c,c' B, f, g : B — > A and t, u : D — > A ^ A and let 
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(cft)f^ = civf't' , (c'gu)(p = c'Vg'u' . Consider 
((cft)(c'gu))(|) = (cc'hv)(p 

where 
h(b) = f(bc'-'' )g(b) , 

v(b,b') = t(bc'"'',b'c'"'')u(b,b')(f(bc'~'') ® g(b')) 
if bc'"^ > b'c'"^ , 

v(b,b') = (t(b'c'"''jbc'""" ))au(b,b')(f(bc'"'')^g(b')f(b'c'"'')) 
if be'""' < b'c'""" ; 

and 
(cc'hv)«^ = (cc')f h'v' = civc'i^/h'v' 

where 
h'(bZ) = = f(bc'"^2)g(bz) 

= f'(bc'"''z)g'(bz) , 

v'(bZ, b'Z) v(bz, b'z'); 
v'(bZ, b'Z) = t'(bc'"''z, b'c'"''z)u'(bz, b'Z)(f'(bc'"''z)®g'(b'z)) 

if bc'"''z > b'c'"''z , 
v'(bZ,b'Z) = (t'(b'c'"''z,bc'"''z))au'(bz,b'z) 

(f'(bc'"''z) ̂  g(b'Z)f'(b'c'"''z)) 
if bc'~''z < b'c'"''z . 

Hence 
(cft)9 (c'gu)(p = ((cft)(c'gu))(p 

and q) is a homo mo r phi sm. Clearly maps A wr2 B 
onto A wrg B/ Z . 
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Note that if Z is finite, this epimorphism 

B —> B/Z can be extended to an epimorphism 

(p* : A Wr^ B —> A Wr2 B/Z . 

Let T* = (t € T ; crCt) S {(b,b') € D ; bZ = b'z}} , 

Then since A is abelian , T*cp = 1 , and hence 

ker(^ = T^Z {ft ; ^ ^ f(bZ) = 1 = t(bz,b'z')] 

As in Lemma 1.4, it follows that if f € ker^ then 

f 6 LKJZJ , and certainly 

LK,ZjT*Z < kercp . 

There are no analogues of Lemmas 1<,1 and 1.2 for 

generalised wreath products. The following theorem of 

Golovin ( L 3 J, Theorem 6 , 1 ) proves this, as do a number 

of counter examples. 

Theorem 4.5 If K = and if A* < A 
—^ a€M a a — a 

for all a € M , then the subgroup G* = gp{A* ; a € M j 

CL 

is isomorphic to a factor group of Q̂ Q̂ ^ * 

Tf * 

Golovin proves, in fact, that if P* = ^ ^ A* , 

T = gp\La^,apJ ; a^ € A^ , a^ e Ap , a, p € M, a p } , 

T^ = gp{LaJ,a*] ; aj € AJ, a* € A*, a, p € M, a ^ p } 

and V = (P*n LF,T])/LF*,T*] , then LSI 

Suppose for example that A is an arbitrary non-abelian 
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group. Then 

sgp { A'^ ; b 6 B } = and sgp { ; b ^ B} A' wr B . 

Similarly, let A = M >< N where M is abelian and 

N = N' = A/M = A' . Then 

sgp |(A/M)^, B ; b $ B | ^ N w r B . 

Let the diagonal of the second nilpotent power K of 

A be 

gp[ft ; f(b) = f(l ) for each b 6 B, t = FO^ some u € T). 

Then the following lemmas prove that the centre of A Wrg B 

is contained in the diagonal of K , and if B is infinite 

then A wrg B has trivial centre. 

Lemma 4.6 If A is such that A/A' is a direct 

product of cyclic groups, then 

^(K) = (5(A)nA')® T and ^(K) = (^(A)nA')^®^ T . 

Proof. Clearly ( J ( A ) n A ' ) ® T < f (K) . Let f € f(K) , 

then for all g : B —> A 

f*t* = [f,g] = 1 , 

where 

f*(b) = Lf(b), g(b)] = 1 

and hence f(b) € ^{k) . Let <r(g) and let 
X . 

A/A' = .''X A. where A. = gp[a. ; a ^ = l} , and some 

^ ^ - rr '̂i 
of the r̂ ^ may be zero. Let f(b) - mod A' and 
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let g(l ) = â  , then 

1 = f(b) (2) g(l ) = (â  â  â  ,.. . 
â  a. 

By Lemma 5.3 it follows that 
a. ap 

(â  ® â  ) = 1 = (a^ (?> â  ) ... , 
and hence r̂  divides â  . Similarly it is shown that 
r̂  divides a^ for all i € I and that f €(A')® . 
This completes the proof. 

Lemma 4<.7 The centre of P = A Wrg B is the 
diagonal subgroup of the centre of K . 
Proof. Clearly the diagonal of ^(K) is central in P . 
Let eft € f(P) and let g : B — > A be such that 

= {l} , then 
Lcft,g] = f ""g'̂ f̂g = hv = 1 

and if c 1 
1 = h(l) = f(l)-''f(l)g(l) ; 

but g(l) 1 and so f(P) < K and hence {(P) < j (K) . 
Also 

Lft,b'] = f f ^' t"''t̂ ' = h'v' = 1 for all b' ^ B 
and 

1 = h'(b) = f(b)"^f(bb' ) 
so that 

f(b) = f(l) for all b e B ; 
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also 
1 = v'(d) = t(d)"n^(d) for all d € D , b € B . 

Hence ^(P) is the diagonal of ^(K) and ^(P) is the 
diagonal of {"(K) ; if B is infinite = ^ • 

The following result will be needed later and is 
stated here without proof. 

Theorem 4.8 (Golovin [ 4 ] , Theorem 6.6). Let 
K = ) and let each group A^ be nilpotent of class 
not greater than I . Then K is nilpotent. If at 
least one A has class exactly 1 and i > 1 , then K 
has class -t ; if i = 1 , then the class of K is either 
1 or 2 . 

Nilpotency of A wr2 B . 

The following lemma provides a set of necessary and 
sufficient conditions for A wr2 B to be a nilpotent group. 

Lemma 4,9 A wrg B is nilpotent if and only if A 
is a nilpotent p-group of finite exponent and B is a 
finite p-group for the same prime p . 
Proof. By Corollary 4.2, (A wr2 B)/T ̂  A wr B and so a 
necessary condition for the nilpotency of A wr2 B is 
that A wr B be nilpotent, in other words that A be a 
nilpotent p-group of finite exponent and B be a finite 
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p-group, 

Now suppose that these conditions are satisfied. 

By Lemma 4.8, K = nilpotent. By a theorem 

of Golovin ( [ 4 ] , Theorem 2.2)5 ^ has finite exponent. 

A lemma of Baumslag [l] states that an extension of a 

nilpotent p-group of finite exponent by a finite p-group 

is nilpotent. Hence A wr^ B is nilpotent. 

An upper bound for the nilpotency class of A wr2 B 

is given by the following theorem. 

Theorem 4«1Q Let A/A' wr B have class c' and 

let A wr B have class c* . If d is the class of 

P = A wr2 B , then 

d < c* + c" . 

Proof. By Corollary 4.2 

wrj, B/T) ~ wr B) = 1 

and hence 

wrg B) < T » 

But T < S(K) so that 

[T,P] = LT,B] and [T(,P)^] = [T(,B)^] , 

By Theorem 1,5 

gp { T , b ' ] < T wr B 

and hence 

LT(,B)^] < wr B) . 
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But T is abelian and its exponent is not greater than 
the exponent of A/A' so that, by Corollary 2.8 

1 = wr B) > wr^ B) . 
Let A have exponent p^ and class o and let B 

have order p^ , then 

d < (c+1 (np-n+1 ) if p > 2 , 
d < max(3n,4)2^"^(o+1 ) if p = 2 . 

Clearly the class of A wrg B is not less than the 
class of A wr B . There are groups A and B for which 
the classes d of A wr2 B and c* of A wr B are equal. 

Let B = gp jb ; b^ = 11 and let 
A = gp [ x,y ; x^ = y^ = 1 = [x,y,x] = [x,y,y]^ . 
Then it can easily be shovm that c* = d = 6 . However 
A wr B is a proper homomorphic image of A v/r2 B as 
the second nilpotent power of A does not degenerate to 
the direct power. 

There are groups A and B for which 
d = (c+1 (np-n+1 ) . 

Let A = gp j x,y ; x^ = y^ = 1 = Lx,yJ] 
B = gp { b ; b^ = 1 j . Let f,g ; B — > A be defined by 

f(l ) = X , g(l ) = y , 
f(b^) = 1 = g(b^) for i = 1 ,2 . 

and 
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Then Lf>b?b,g ,b ,b] ^ 1 and so A B has c lass 

exactly 6 , 

Finally the exact c lass of A wpg B i s determined 

when A and B are c y c l i c groups of order p c 

Lemma 4»11 I f A and B are cy c l i c groups of 

order p , then the class of A f̂iv̂  B i s 2p-1 . 

Proof , Let A = gp | a ; a^ = 1 J and B = gp { b ; b^ = l ) 

and l e t P = A wr^ B . Let f , g ; B —> A be such that 

O-(f) = , (r(g) = Ib^) and f ( l ) = a = gCb"") . Put 

x^ = , f o r 0 < m < 2p-1 and 

^2p-1 = Lf ( ,b )2P-1] . By Theorem 4.10, Y^p^/P) = 1 

and hence 

Y2p(P) = gP { x ^ ; 0 < m < 2p-1 ^ . 

I t i s necessary to show that every generator x^ of 

Y^pCP) i s t r i v i a l . 

I f 0 < m < p-1 , then f o r some t € T 

x^ = Lt( ,b)2P-2-^] ^ < Tp^ /T wr B) = 1 . 

I f m = p-1 , then without l oss of generality put 

g = f and 
V l = Lf ( ,b )P-1 , f ( , b ) P - 1 ] 

By Lemma 2.2 

p-1 o<i<p^ ' 
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H e n c e x ^ ( b ^ ) = ( a (g> a ) ' ' 

w h e r e 

i+k 

= ( - I ) P - ^ ( - 1 ) ^ / p - n - / p - 1 

\ V k ; V k + i , 

= ( - D P - i + ^ p - i ) : f _ i 

\ k . ' ( p - i - k ) : . ' ( p - 1 - i - k ) : 

= 
p - 1 + k 

i + k ) • ( p - 1 - k ) : 
( p - 1 ) : ( ( k + i ) ( k + 2 ) . . . ( k + i ) - ( - i ) ^ ( p - ( k + i ) ) . , 

o . . ( p - ( k + i ) ) ) , 

a n d h e n c e p d i v i d e s a a n d ^ * 

I f p - 1 < m < 2 p - 1 , t h e n 

x ^ € L K ( , B ) P , K ] < [ T , K j = 1 . 

F i n a l l y w h e n m = 2 p - 1 , t h e n 

- 2 P - 1 = . 

Now 

m o d T 

a n d h e n c e 

L f ( , b ) 2 P - ' > J = L f f ^ . . f ^ ^ ' ^ b ( , b ) P - ' ' J m o d L T ( , B ) P ] , 

s o t h a t 

X 
2 p - 1 

f ( , b ) p 
- 1 

B u t i t h a s a l r e a d y b e e n s h o w n t h a t 
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l<l<P 

SO that 

= 1 
It must now be shown that there is a non-trivial 

commutator of weight 2p-1 . Suppose that p > 2 and 

consider 

[f(,b)2p-2] = LTT,f^\f](,b)P-2j = u ; 

then 

u ( b P - \ l ) = ( a ® a)""" ^ 1 

and hence 

u 1 . 

V/hen p = 2 then 

;f,b,b] = [f"^,f] ^ 1 

and hence for all p , the class of C wrg C is 2p-1 

By comparison the class of G^ wr C^ is p . The 

order of wr C^ is p̂ "̂ "* , so that C^ wr C^ has 

maximal class, but the order of C^ wrg C^ is 
2 

P , and so the class is not maximal for p > 2 . 
P 
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