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INTRODUCTION

The wreath product of two groups A and B is
a well known construction which is particularly useful
in proving embedding theorems and which provides a
source of counter examples. A precise definition of
the standard wreath product will be given in Chapter 1,
and a short explanation is sufficient here.

Let B be a permutation group of a set Y and
et A" be 'an abstract group. Het ' H" be the" preoduet
(direct or cartesian) of Iyl isomorphic copies of A .
The group B 1is represented as a group of automorphisms
e N smd e splitting extension " 6~ of “H “by "D is
constructed. The group G 1is called the wreath product
g R "By E. When the set” 'Y 1is "B, which acts as
a right regular representation of itself, then the
resulting group is known as the standard wreath product.

Several generalisations of this construction exist.
The crown product is a wreath product with central
amalgamations. The twisted wreath product [12] is
the splitting extension of AT By "BY, "where . T is
a right transversal of a subgroup $ of B, and

where there is a homomorphism o from S into the



group of automorphisms of A . Special cases of

the twisted wreath product include the standard wreath
product of A by B and the splitting extensions of
A. by B A further generalisation occurs in a

paper by Smel'kin [14] in which the direct or cartesian
power of A 1is replaced by a soluble power.

This thesis concerns the construction of another
generalised wreath product in which the direct or
cartesian power of A 1is replaced by a second nilpotent
pomer of . A . Certain properties of wreath products
and their extension to this generalisation have been
considered.

In Chapter 1 a precise definition of a standard
wreath product is given together with certain properties
which will be needed for the work in this thesis.

Baumslag has given a set of necessary and sufficient
conditions for the nilpotency of a wreath product
A wr B ; Liebeck has determined the exact nilpotency
class when both A and B are abelian. In Chapter 2
upper and lower bounds for the class of A wr B are
determined. These bounds depend on the order of 3B,
the class of A and the exponents of the terms of

the lower central series of A .



In Chapter 3 the second nilpotent product K
of a set {Ab $ b € B} ef ilsomerphic copies of A is
constructed. The splitting extension of K by B
is formed and the resulting group is the generalised
wreath product A Wr's B, ar. A Wr2 B , depending on
whether K is the restricted or unrestricted product.
In Chapter 4 certain properties of generalised
wreath products are considered. It is shown that for
some of the results of Chapter 1 there are corresponding
results in the case of generalised wreath products.
A set of necessary and sufficient conditions for
A Wr', B* to be nilpotent are determined; in fact
A wrs B is nilpotent'if-and only-if- A wr B is
nilpotent. Finally the results of Chapter 2 are
extended to provide bounds for the class of
A wr, B , and the exact class is determined when both

RE &Rd AB ‘a¥e ocycli®igreups of order p .,



CHAPTER 1

Introduetion.

This chapter contains a brief summary of some
known properties of wreath products, which will be
of use in the work included in this thesis. The
notation used here is the same as that used by the
Neumanns in [15]. Most of the results of this
chapter are stated without proof, but I have included
a proof where I have been unable to find one published

in the notation used here.

Notation,

Let gp {X - R} denote the group generated by the
get X, _with the set of defining relations R .,

For any group G and x, y € G let

L3y g¥= 23y \xy

#ud it. . 3..1 < 6., then

SR TR TS PTIRTS GR W - ¢ T
Left normed commutators of weight n are defined
inductively by the rule

[x1, Xpy eees xn] = [[x1, Xpy ooy Xn—1]’ xn] ;
this is written as

gnd 4f X, = x3 iR o

n b
BN L



Definition of a standard wreath product.

Let A and B be abstract groups. The cartesian
power AB of ""A " 'is tThe set of functions f from B
to A with componentwise multiplication

(fg)(b) = £(b)g(b) for all b €B .
The elements of AB clearly form a group under this
multiplication.

The support o (f) of an element f € AB is
defined by

o(f)={p €B; £(bv) £ 1} .

The elements f of AB ,-which have finite support,

form a subgroup A(B) of 2’

yoand this is the direct
power of A .

The group B 1is represented as a group of
automorphisms of AB by putting

fb(c) = f(cb-1) for all b, e € B .

The splitting extension of AB by B is the group
of pairs bf , where b €B and f € AD , with the
following multiplication

(bf)(cg) = (be)(£%) for all b, c €EB and f, g € AP .
This group is the unrestricted standard wreath product

of A by B, and is denoted by A Wr B .

The direct power A(B) of A admite B asp e (f)



and cr(fb) have the same cardinal, and thus the
splitting extension of A(B) by B 1is a subgroup
of A Wr B and is the restricted standard wreath
product of A by B, denoted by A wr B .

Foreach b € B there is a component subgroup

a s {£Ea’; s(r)c{v}};
this component subgroup is isomorphic to A .

The set {f € AB ; £(b) = £f(1) for each b € Bz

B

is a subgreup of “A It is called the diagonal of AB

and is isomorphic to A . I B is 18fini®e,’ the

diagonal of A(B) is trivial.

Some properties of standard wreath products.

Lemma 1.1 (Neumanns' [13] , Lemma 3.1) If & =k

then “A* wr B< A wr B and A* Wr B< A Wr B.

Lemma 1.2 (Neumanns' [13] y Lemma 3.2) Every

epimorphism P : A —> A/A* induces epimorphisms

¢ ¢ A Wr B —> (A/A*)Wr B and \y() t Awr B —> (A/A*)wr B

such that q/()

is the restriction of  to the
restricted wreath product, and such that the restriction
of \ to a component subgroup Ab is an epimorphism

(pb : Ab —> Ab/Ag that corresponds naturally to ¢ .



In other words YW 1is defined by
(bf)y = bf!

where f' € (A/A*)B

Bl eeg (el

It is easily shown that the kernel, ker Yy ,

is given by

of W is (A*)P . TFor let b f € kery , then
1

(bf)y = .bf!
and henee. b =] , and for all. ¢ € B
filel. = f{ah® .o 1.,
so that f(c) € A* and f € (A*)® . Similarly it
is shown that ker‘+() = (A*)(B) , so that
(A/A*)wr B ¥ (4 wr B)/(a*)(B) |
(/A% )Wr B ¥ (4 wr B)/(A%)B .

Lemma 1.3 (Neumanns' [13] , Lemma 3.4) If
B*¥ < B, then the standard wreath products A Wr B*
and A wr B¥ are isomorphic to subgroups of the
standard wreath products A Wr B and A wr B ,

respectively.

Lemma 1.4 (Gruenberg (5] , Lemma 3.2) If A
is Abelian and B is an abstract group, then any

epimorphism ¢ : B —> B/Z may be extended in a

natural way to an epimorphism W : A wr B —> A wr B/2Z



Proof. Extend # to w Dby setting
Rl = bh @1,
where f' ¢ B/Z —> A is defined by

£1(b'2) = ZEZ £(b'z) .

Then  1is a homomorphism, for consider
(bfeg)w (bet®g)w

2 “(sejur*

where f* : B/Z —> A 1is defined by

PR “= ol (TR (V73)
- I £(b'ze” )e(b'z) .
Also
(bf)W (cg)wy = bPEf' cog'

where f', g' : B/Z —> A are defined by

£1(0'Z) = Z'ng f(b'z) and g'(b'Z) = zgz g(b'z) ;

then

bgec@ () Py
(be) @ g*

where g% : B/Z —> A is defined by

(b f')(cesg')

g*(0'Z) = £(0'Ze ' P )g'(0'2)
£'(b'e12)g' (b'2)

R £(b'c™Vz)e(b'z)

Il

w T M'E) .



Clearly 4 is an epimorphism, and this completes
the proof.

Gruenberg remarks in passing that the kernel of
the above epimorphism is easily seen to be the least normal
subgroup of G = A wr B , which contains 2% . This will
be denoted by NG(Z) . Certainly kerwy contains
N,(2) which is a'B) gigecteanes ‘it @Eeiryeo, then

beg Zorgndenf W= £ “where

tR(5'23 LA vEEN(bAz)' 2101,
so that
T -1
1 s !
783) S (4 ML Bi#(87s3)70..
et X = {bi - T |I\ = \B/Z“ be a transversal
e & Em B, For z €% define g, ¢ X —> A by
g (b)) = £(b2)",
and put
B = T

14zez 18502 -
Then for bi eEX,

(b)) = %, (g,(0;))

=1

- G ()

= £(p;) ,
and for 1 # z € Z and Bpe & X
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h(biz)

(g,)%(0;2)
g,(b;)
f(biz) 3

il

Henegpilf  L-€ ker.y
t = L le,pel € 1)
Note that if Z is finite then an epimorphism
Q: B —> B/Z can be extended in this way to an
epimorphism from A Wr B onto A Wr B/Z , so that
Awr B/Z Z (A wr B)/[A(B),Z]Z .
and. for a finite subgroup 72

AWr B2 = (AwrB)/[AB,2]Z .

The following theorem was first proved in its
present form by Krasner and Kaloujnine [7], but was
earlier proved by Frobenius as a theorem in monomial
representations. A proof in the notation used here

has been published by the Neumanns in [13].

Theorem 1.5 Let C Dbe an extension of a group

A by a group B. Then C can be embedded in the

standard wreath product A Wr B .

Lemma 1.6 The centre of A Wr B is the centre of

the diagonal subgroup of AP ., If B is infinite,



=P =

fhe eentre of A wr Biidis Geiwvial.

1l

Proof. Let G = A Wr B and let §(G) denote the

gentre of €. Let c g € §(G) , then for all b € B
fegsb] = 1 =-le,b]le,bselle,b] ;
theréfore % (B} amd Tor all b' €5,
sitlis= salb! ).
Let £ : B —>A be such that o (f) = {1}, then
el = 1 s g 5,
and if e + 1
e Wit ) = el
Hence the centre of G is the centre of the diagonal
subgroup.
If G = A wr B then clearly §(G) is the centre
of the diagonal subgroup, but if*'B 1is infinite, the

A(B)

diagonal subgroup of is trivial.
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CHAPTER 2

Introduction.

The lower central series of a group G is defined

as the following series of normal subgroups of G
G = Y1(G)_>_72(G)_>_...3Y1(G)3Y1+1(G)_>_--- ’

where, for 1 7 ,
v, (6) = [Yi(G),G] .

For convenience Y2(G) will sometimes be denoted by
S . A group G 1is said to be nilpotent if its lower
central series terminates in the unit subgroup 1 after
a finite number of terms, that is if Y£(G) ==l P
some Fimite integer 4 . If Yc+1(G) =1 and YC(G) e
then G is said to be nilpotent of class ¢ .

Baumslag [1] has shown that the restricted wreath
product of A by B is nilpotent if and only if A
is a nilpotent p-group of finite exponent and B is a
finite p-group, for the same prime p .

ILiebeck |9] has shown that if A is an abelian group
of exponent pn and B is a direct product of cyclic

B4 B

ETrOUDE WHNOSEe orders ATre€ P ,e..0,p g sy With

By 2 By 2 «vs = B, , then the class c* , say, of A wr B



Bl |

is given by
Py |
e*< = B (p "-1) + (n-1)(p-1)p i

He shows that if B1 is such that B1/B'1 is

isemorphie to thefgreup B definmed above, and if

g4% < igdnthe glags of A wr B, , then

1 m 3 1 =1

; B
01* o 121(;‘) 1—1) =+ (n—T)(p-1 )p 1 i e
These results are extended, and upper and lower
bounds are determined for the nilpotency class of

Awr B when A and B are non-abelian. It dis

shown that if A has exponent pn and class ¢ ,
n
it Yl(A) has exponent p 4

B has order pt o them the clnes e* , say, of A wr B

for 1 =1 s e , and

has the following bounds
a* = Cpt_1(np-n+1) when p > 2 ,
2t "2

¢ % nax (3H, ¥le when p = 2 3

e* > max ((&t+n£—1)(p-1) + %).
1<i=c

Thus a lower bound is given by the class when B is
elementary abelian; if p > 2 , the upper bound is

attained when B is a cycliec group.

A lower bound for the nilpotency class of A wr B .

The following preliminary lemma is required.

Lemma 2.1 Let B Dbe a group of order pt . There
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is a set of generators b1, «eey by of B such that,

for F=1%5.9,

(i) e {b1,...,bi} =8, 9B
$18) e €, SIEBY ) with B, = 1 ;
Ghis) Bk = 5.

Treaf, This is proved by induetion on i . A finite

p-group has a non-trivial centre, so b1 can be chosen

to be an element of order p in  §(B) . Now suppose
that the lemma is true for i <m. Take

b, B Lue Q(B/Bm_1) to be an element of order p,

so that bmp €B_ Now, for all b € B

Sy bl

e b, S
e v ams LIRS W

and thus Bm & B Also

BT Aedwo ity 1S T ATNRS
This completes the proof of the lemma.

Using this set of generators, a non-trivial
commutator of the required weight will be constructed.
First the following lemma and theorem of Liebeck |9 ]
are needed.

Let B[R] be the group ring of B over the integers;
let A,  be the coefficient of b® in (1-b)* , where

b is a fixed element of B .
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Lemma 2.2 Let f € AR with o (f) ={1}, and

let g = [£(p)F] .~ Then
|b|-1}

’

gle) € i f1iby=..30b

ath e Po(e) T2 156" g vaa
g(bi) =217 rl  jf r is even .
Shnowe s ir Iul = pf , inem, ™! aivides
1T Lk of + n(p—1)pP-1 : pn+1 does not divide
: o
A if 7 = pP + n(p=-1)p P

rs

t = 4T el i = -

Ttima 2.4 "IT T has order p
nilpotent p-group of exponent pn ; and. if o* is the
glass of A wr B", then

c* > (t+n-1)(p-1) + 1 .
Propl, Let b1""’bt
by Lemma 2.1, and let £ € A with o(£) = {1} and

be the generators of B given

£(1) of order p° . Consider

: -1 -1
go= 2L 0a0R5 (e dF " ),
Now every b € B can be expressed uniquely in the form
B 8 '
b = b1 1"'bt $ for O < B, = p-1 and "1 € 1 &%}

and it follows from Lemma 2.2 that for all b € B

')\.(p_,l)’o =1 4. BO that .
£(3) = (1) e
B
Tor el W @ (g) = by “s..bg "3 0By <

<p-l, 251284



L

define &y by

gb(b) = g(b)
g.(b*) = 1 forall®p £ b* € B,
1 2 k.

Then 0'(Lgb(,b1)ﬂ) = ib,bb1,bb1 ,...,bb1p 1} ;
B0 that, tlearly, for b # 8* and b, b* € o(g) ,
o (Ley, () 1IN (Leyx(,0,)T) = 8.

Hence Lg(,b1)r] . oy ir [g1(,b1)r] # 1. D%
I n

g1(1) = (1) and so has order p ; and thus by

Theorem 2.3 Lg(,b1)r] 1 8 % Simt)

This completes the construction of a non-trivial
commutator of weight

(t+n-1)(p=-1) + 1 &

Theorem 2.5 Let B have order pt s let A Dbe a

nilpotent p-group of class ¢ and let Yk(A) have
n
4

exponent p IPr” 1 ~ 4 €. 1T e° 18 the elass

of A w8, Then

c* > max ((Lt+n;-1)(p-1)+1) .
1=d=c

. B

B Br Tell,...el, 1et £,..,f €A

with 0'(fi) e {1} for 1 <i<4, and such that
[f1(1), coey f£(1)] 1.

It can be seen from the proof of Lemma 2.4 that an index

e = X 1 can be chosen so that the commutator (of weight
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s = t(4=1)(p=1)+4 )
e e e G g M 0L P T LR A
= Lf1,f2,...,f£]
and hence Y,(A) < Y_(A wr3B) . Tet g€ A® with
o(g) = {1} be such that g(1) is an element of
order pnﬁ in Y%(A) 5 Then g € YS(A wr B)

By Lemma 2.4

[abgR ol &0 B, o] 9 i

Il

n&(p-1)

and thus

e* = (Attny-1)(p-1) + 4 .

-

But this is true for all £ €{1,...,c]
so that

¢ > max {(£t+n£—1)(p—1)+&}
1=d=c

An upper bound for the nilpotency class of A wr B .

Before determining an upper bound for the nilpotency
class of A wr B some preliminary lemmas are required.
Suppose firstly that A is an abelian p-group of
exponent pn .

The following lemma was stated and proved by

Liebeck |9] for the case where A and B are abelian.



B e

It is true, and the same proof applies when A is

abelian and B is non-abelian.

Yemma 2.6 Let G = A wr B with A abelian.

(7 3F FHL snd bGP, then
(9.0 = [,
(ii) If f£,£' € AP anda g € ¢, then

ot = (s amd [£2'.a] = [f,e][2Y,2] .
B . s e tar 1 <ise smd b, €B, f,,5,0" € AT
then
[f,g1,...,gs] = Lf,b1,...,bs]
and
Lff',g1,...,gsj = Lf,g1,...,gSJLf',g1,...,gs] "

The following lemma, which is stated without proof,
follows trivially from Lemma 2.6 and from the fact that

B

A is abelian and normal in A wr B .

Lemma 2.7 If A is an abelian group, any
commutator of A wr B can be written as a product of
commutators of the form

BN Liheib. o Th. et e L8 aeviahai)
11’ b lr’ ? lr.}.']’ b ln 119 b 1n ?

where f € AB and the b;  are the generators of B
J
given by Lemma 2.1 .
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Note that if B has class k , a commutator of

weight less than k + 1 may lie outside AB y but

B
Yk+1(A wPi Bl <t .

Corollary 2.8 If A is an abelian group of

exponent pn y B is & finite p-group and C is a
cyclic group of order pn y then the class of A wr B
is egual to the elass ef C wr B .
Proof. The class of A wr B is equal to the maximal
weight of a non-trivial commutator in A wr B , which
is of the form
[bi1,...,bir,f,bir+1,..,,bin] .
For a fixed group B and A abelian this depends only
on the exponent of A .
The main result will now be proved, firstly when
A 1is abelian and secondly, by induction on the class of
A, when A is a nilpotent p-group of finite exponent.
Lemma 2.9 If C is a cyclic group of order pn
and B is a nilpotent p-group, and c¢*(n,t) is the
class of C wr B, then
e*{n,4) < pt-1(np—n+1) for p> 2,

e*(8,t) < max(4,3n)2t-2 for p =2,
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Proofs This is proved firstly by induction on ¢
when n = 1 , and secondly by induction on n .

Suppose first that n =1 and let B, < C(B) ve

a subgroup of order p , and let the class of C wr B/B1
e r. Then by Lemma 1.4

nJ f . 4
r+1(c wr B/[c B, JB - B Yr+1(C wr B/B1) 5 1.

and therefore

& ~Eab 1
r+1(C welB )% obe ,B1_|B1 s

But, by Lemma 2.4, r > (t-1)(p-1) + 1 , which is
greater than the class of B , and thus, by Lemma 2.7

B ,
r+1(C we B) < |C ,B1J "

Then
6 @rwrB) LCB,B1(,C wr B){m=1)T]

[6F,36( , mptPekiB] g

IA

mr+1

Now B, < S(B) and A is abelian and therefore for
alfl .86 C°) b, €B, and b € B
L£,0,,0] = L[£,Db,b, ]
and hence
[ b : B
LC ’B1’BJ P2 LC 1B’B1]
Thus a simple induction argument on m shows that
Frpald m
Tars1(C wr B) < [C (,B1) ]
But by Theorem 2.3

L Ll ) = W



and thus

Ypr+1(C wr'B) = B .
I¥ will now be proved by induetion on + that if B
is non-cyclic of order pt+1 y Then

e*(1,t+1) < p*1(2p-1).
For t =1 it is known that if D is an elementary
abelian group of order p2 s then C.wr D has class
2p¥1 , and the result follows trivially by induction
en € .

Now suppose that B is non-cyclic of order pt y

and that for n < N

e* (8, %)< npt-2(2p—1) 3

N+1

Let C have order p and consider (C/C1) wr B,

where C1 is the subgroup of C generated by pNth
powers of elements of C , so that C/C1 is eyelie
of order pN . By Lemma 1.2

(0/¢. J.wx B = ¢ wr.BlfC. )°
1 1

and so
v {(c/cwr B) = 1 = ¥ (¢c wrB/C,°) ;
c* (I, t)+ 1 c*(N, t)+1 §
hence
Y (Cwr B) <C -
c*(N, t)+1 wve taid
and
; (C wr B) < [C B( ¢ wr B)Y]
c*(N, t)+r+1 5

= (¢, °(,3)7]

< Yr+1(C1 wr B) .
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But C, wr B has class at most pt—2(2p—1) so that
c*(F+1,t) < e*(W, 1) + p*2(2p-1) < (W+1)p""*(2p-1).
i € is & ¢yclie group of order pn aand B 1is
a eyclie group of order pt y them C wr B has class
pt-1(np—n+1) . Tex P > 8
p* ! (np-n+1) > np*2(2p-1) ,
but fer .p.='2

et 2 " ir 2 sn,

v

ghililey) 2 382%° ir 2<n.
Therefore

pt—1(np—n+1) 8% p > 2
-2

c*(n,t)

1A

i aet v 2" waxl4ace) if p =2,

Theorem 2.10 Ift A* is . ailpdtent of class e

and has exponent pn and B has order pt ; and 1%
A wr B Hhasctclass' rg*"] then
c* < op®M(np-n+1) if p > 2,
¢* < max(4,3n)02t_2 if p a2
Proof. This .is proved by induction on c . By Corollary
2.8 and Lemma 2.9 it is true whem ¢ =1 . Suppose
that it is true for ¢ =.d4d..and let, A .have class

d +1 and (A/Yd(A)) wr B have class ¢ Then

1 -
Baet e SMREY) wnelfr@Awd

2

e, = max(4,3n)d2t- 15 . pwg .
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Now by Lemma 1.2

1= T (A% (8))vr B) w e 41(h vT B/ (14(4))°)

and hence

Yc1+1(A wr B) < (Yd(A))B .

Then

Yc1+r+1(A wr B) < [(Yd(A))B(,A wr B)r] 5

(re(a))® < §(a°)
and so

o spe1 (4 W7 B) P CAIC,B) "]

By Lemma 1.1
B
sep{(¥,(a))5,B] = v (a) wr B
and Yd(A) wr B has class d4%* , say, where
d¥.g pt-1(np-n+1) fop B >.2.,
afi< max(4,5n)2t-2 far pom 2
Hence

X CA. wrB) =. .1

c1+d*+1

and so

e*'< (d+1)pt-1(np-n+1) forvwipiseg y

)zt-Z

c* < (d+1)max(4,3n for p =8 .

This completes the proof of the theorem.
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CHAPTER 3

Introduction.

Let B be an ordered index set and let
D = {(b,b') ; b,b' €B, b >Db'} . TFor an arbitrary
group A the second nilpotent power of A is defined
as a set of pairs of funetions ft , where f 1is a
funetion on B taking values in A and t is a
function on D +taking values in A® A , this set
having the appropriate multiplication defined on it.
By this means both the restricted, K , and the
unrestricted, X , second nilpotent powers can be
defined. This definition differs from those of
Golovin and of Moran but it is shown at the end of this
chapter that the definitions are equivalent.

The splitting extensions of K and K by B are

the generalised wreath products A wr, B and A VWr, B

2
respectively.
Before defining the second nilpotent powers, it is

necessary to define the tensor product of groups.

Following Wiegold L15] this group is written multiplicatively.

The tensor product of groups.

Let M and N be arbitrary groups. The tensor



produect M® N o
of pairs® m'®n’,

the following rel
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f M and N is defined as the group
with m €M and n € N subject to

ations

@0 n = (m@a)a'® n) ,

me® nn'

@ (p ®n)(nG n') ,

Ter all m.m' €M and »n,n' € § , The unit element

oE. By F a8 1G5 3} o siBce

(me@n)(1 & 1)

Also

(m ®n)(m'® 1) =

and hence for all

me 1

men)(1@en)(1®1) = (n®n)(1® n)

Bd n .

(' 'm' @ n)(m' ® 1) = (mm' '@ n)(m'& n)

m&®n,

mEM and n €N ,

The following are well known properties of tensor

products.

Lenlma 3.1
abelian.
Broof. ..Consider

mn' @ nn' =

m' @ nn'

The tensor product M® N of M and N

mm'® nn' ;

(m @nn')(m' ® nn')

(m® n)(m® n')(n'® n)(m' ®n') ;
(m'® n)(mm' ® n')

(m®n)(m® n)(m@ n')(m'® n') ,

is
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and hence

g @' aean)l = (@A'@n)(ne@n') .

Lemma 3.2 TFor all groups M and N, M@®@NZ WM'Q® N/N' .%
Proof. Let @' : M —> M/M'  and ¢* ¢+t N —> N/N' and |
define @ : M®N —> WMN'® N/N' by

(m®n)<{>=mcp'®n<p*=mM'®nN'. ]
Then ¢ is obviously a homomorphism and maps M ® N onto 1
WM ® N/N* . Also @ is a monomorphism for suppose
that

(m@u)p =1,
e, Bifice 1 = AN =m'@e n' forall m€ N, BN
e Fand n' € 'S
T =H"Q@F = nl"® 1N’

and hence

m®n = e,

WG SElE s
Lemma 3,3 If M = €T Mi and N = 36d Nj , then

8
i€I, j€7

M®N =

i1
Mi® Nj , where .o G, denotes the

. -

[li® Hj $de T md 3g J} generates M® N. This completes the

proof. ‘
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To determine the order of an element m&n of
M®N , it is necessary to consider the order of M& N

when M and N are cyclic groups. Suppose that

M= gp {m H mtr = 1} and N = gp {n 3 nts = 1} and let
* and 8 be co-prime. Then

(m @)n)tr . mtr® =1

(m Q‘g\n)JCS = m® nt® - T

But M&® N is obviously a cyclic group generated by
m&®n, and so its order must divide +t . It will be
shown that the order of M ®N is exactly + . A
theorem of Curtis and Reiner ([ 2], page 61) is required
and is proved only in the special case needed here. The
following two definitions are required.

Let M and N be abelian groups ané het Re be . an
abelian group. A balanced map f of the product set
MX N into R assigns to each pair (m,n) of M X N an
element f(m,n) of R , such that

f(mm',n) f{m,n)f(m";m) ,

1l

fium.on') = f(mn)fim,nt) ,
for all m,n' N _and n,n' €N ..
Let .t M X E —> B _ and ¢ : M XN —> S be
balanced maps of M.x N into the abelian groups R and
S respectively. Then f 1is said to be factored through

S if there exists a homomorphism f¥*¥ : S —> R such
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that
f = f*cpo

Theorem 3.4 TLet M and N be abelian groups.

Then every balanced map of M X N into an arbitrary
abelian group can be factored through M&® N ,
Proaf. et P = gp%_(m,n) s mEM, n € N’} and let H
'be the subgroup of F generated by the formal products
(mn',n)(m',n)~" (m,n)~"
(m,nn') (m,n")~ " (m,n)~" .
Then M ®N is the factor group ¥/ H . Define a
mapping ¢ ¢t M x N —> M ® N by
d{m,n) = (m,pn)H,
Let P be any balanced map of MX . e - T The
mapping ¢ defines a homomorphism @ '+ F —> R by
q)'ﬂ(mi,nj)r(i’j) =TT ( q?(mi,nj))r(i’j) i
But ¢ is a balanced map so that @ *'(H) = {1 , and
thus ¢ induces a homomorphism @ * : F/H —> R by
¢ *((myn)d) = ¢@(m,n) ,
or
?*G(m,n) = @ (m,n) ,
and thus @ has been factored through S .

Corollary 5.5 Let M = gpi'm 5 mtr = 1} and let

N = gp gn H ntS = 1} with r and s co-prime, then
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M@N =gp {men; (n® n)t =lz.
Proof. It has been shown above that the order of M@ N
divides t (p. 27). It is sufficient therefore to find
a balanced map from M @ N onto a cyclic group of order t.
Let R = gp {x ; xt = 1?. Define amap f : MxN— R
by
£(x®, oP) = for0<y<tr amd 0<p < ts.
Then

(', o) = lote')s

BB

]

£, o) £(uf , nb),

and similerly

o(ef, B8') = 2(af, 0B) £ , B').

Thus £ is a balanced map and this completes the proof.

The second nilpotent powers of a group

The second nilpotent power of a group A will now

be defined. Let B be an orderdset and let
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D = {(b,b') § byb' € B, b > b'} " For a given group A ,
let I b€ a function en B AHaking values in A and let
t be a functionm on D taking values in A® A .
Consider the set K of pairs ft with the following
multiplication

fthitgn) = f£%!
where f' : B —> A is given by

E%R) = flblgld) ,

and t' : D —> A® A is given by
EN0.0") = B0, " Julbp ) {F(B)® z(b')) .

Bete that for all £ 2B —>= 4 and. t + B —> A® A
T N T

The multiplication defined above is associative.

Teont, Set f, g, Bt B =>4 apd T, u, vi: D= A® j

then
S )len) = T'%
where
£8y) c=» Tlb)el(b) 5
' {B0') = B(0,0" )u(d,m )(2(B)®@ g(p')) 3
also

(£2% (v} = £
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where

£*(b) = £'(0)h(b) = £(b)g(b)n(Db) ,

t*(b,b') = t'(b,b")v(b,b')(£'(b)® h(b'))
= (0, b")ulb,b')(£(b)® &(b'))v(b,b')(£(b)g(b)@h(b")).
Also
(gu)(hv) = g'u!
where
g'(b) = g(b)n(v) ,
85 (b, ) w u(b,b' )v(b, " ){g( VY@ U BEYF,
and
gEvl(giat) = g*u*
where

Y = 2(B)g'(b) = £(b)g(b)hu(b) = £*(b) ,
u* (b, 0¥ &= (b, 5" )u(b,b' (B} D g'(b'))

= t(b,b"Julb,b')v(b,b')(g(b)® h(b'))(£(b)® g(b' )n(b')).

It clearly follows from the defining relations of A®X A

that &* = n* .

The unit element 1 of K is that pair of functions

which take the value 1 everywhere.

The inverse of ft is f£*t* , where
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£%(b) = (£(p))!
£*(b,b') = (t(b,b')) "1 (£(b) ® £(b")) .

Prapf. Consider gu = (ft)(£*t*) , then

g(b) = £(b)£*(b) = £(b)(£(b))™ =1 ,
u(b,b') = t(b,b")t*(b,b")(£(b) ® £*(b'))
(0,5 ) (£(b, b)) (£(b) @ £(b'))(£(b) B (E(b' )
= 1 -

Il

Thus the elements of K with this multiplication
form a group, which is the unrestricted second nilpotent
power of A .

The supports o(f) of £ amd o(t) of t are
defined as follows

o(f)

]

foes; £b) 1} ,
{a €D ; t(a) #1} .

Clearly the set of elements of K which have finite

o(t)

support forms a subgroup K of XK , and this group is
the unrestricted second nilpotent power of A .

The set T of functions t : D —> A® A is clearly
a normal subgroup of K , and the set T of those t € T
with finite support is a normal subgroup of K .

For each b € B and (b,b') € D there exist

component subgroups
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Ay gp{f:B—>A; O’(f)E{b}} )

A, @A, =g {t:D—>4@4; o(t) c{(v,00}} .

]

Clearly Ab is isomorphic to A and Ab® Ab' is
isomorphic to AQ® A ,

The following notation will be used
2

(2)
T} O P 1 PR ¢
K = bEB Ab and-+ K = bEB Ab .

Generalised wreath products.

Suppose now that the index set B 1is a group, which
need not be an ordered group. This group B will be
represented as an automorphism group of L

Define amap a ¢ A®A — A®A by

(m ® n)a = (n ®m)_1 for all m B € A .

Then (m @ nn')a = (nn'® m)-1

(nemn) '(n'e m)

Il

(m @ n)a(m ® n')a
and
(mm'® n)a = (n® n)a(mn'® n)a .
Thus o can be extended to a homomorphism which is
clearly an automorphism of A® A ,
For o €8 put
(£8)" « '

where



t'(b,b!)
t'(b,b')

The

Proof.

where

and

where

v {b,b')
*'(b,b")

v'ib,0')

k')

Also
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FHB) = o(pet ),

1
’

= (t(b'e”!, ve 1)) a(f( b e Ve £(be™h))

1 < b'c_1 2

$(pe"1, ‘bte ) if be”! > b'e”

2B “pet

elements ¢ of B act as epimorphisms of K .,

let f,2 ¢ B—> A and t,u ¢ D —> A® A ; then

(ft)(gu) = hv

h(b) = £(b)glb) ,
v(b,b') = $(b,b")ulb,b")(£(b)® g(b')) ;

(hv)€¢ = n'v!

KHB) = Blhe T} = floe Jelve '}

— v(bc—1, ple”!) if be™! > pre”! :
= (v(b'e™ Y, be™ 1 ))a(n(be™!) @h(ble™"))
i be ' < b'g ' :

$(be~1,b'e"Huloe™,bre™ 1) (£(be™!) ® g(b'e™t))

1 e kel
(t(b'c™ T, e ) )a(u(bre™,be™ ))al(g(be™ )@ £(bre™ 1))
(£(be™Nglve™ )@ £(b'c™ )g(b'e™))

1

Il

-1

if be " < Ble "

(££)%(gu)® = (£'t')(g'u')
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where
£1(b) = £(bc™1) , g'(b) = g(be™!)
£'(b,b') = t(be1,0'e™) it BT s,
£'(0,b') = (t(b'e” T, e 1))al(f(be™!) @ £(b'e™ 1))
e bl Thpiel!
®A bbbty = u(bc—1,b'c-1) it be~! > b'c—1,
u'(b,b') = (u(b'e™,be™))algloe™) ® glbre™))
14 pei¥ opie :
and
(2! 80) b hah) cpat st ¥
where

n*(b) = £'(b)g'(b) = £(be™)glbe™ ) = n'(b) ,

LR, B?) = t'(byb la" (b, 0 )(£'(b) @ gi(d")) «
¥*(b,b') = t(ve~1,b'e Nulve,p'e ) (£(ve™!) ® glv'ec™))
ed Tl g E L
= v'(b,b") T R
v*(b,b') = (t(b'ec™ 1,01 ))a(ulbre™,be™ ) )a(£(be™ )@ £(b'c™))

(g(be™") ® g(b'e™))(£(be™ ) ® g(b'e™))
1 1

i he o Be
= v'(b,b") 12 he e Rl
and hence
(3] )™ =  (£8)%(gu)" .

Clearly ¢ maps K onto K and thus it acts as an

=i

epimorphism of

°
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The elements ¢ of B act as monomorphisms of .

Proof. Suppose that (£t)¢ = 1 ; then

(¢}
GEEP e " AT el

where

i) tae Wwe L e for 411 H € B ,

gnd henee T =75F

also

Since

t =1

1 = ' (EfM' s i P Pleil) bl we et o
) = (BT o =, et Dad i " 'of | et e
a is an automorphism of A&® A it follows that

, and that ¢ is an automorphism of ¥

— 1 1
Bor all c.c' €D, amd FEEY , (251, = (FET

i 1
Proof. Let ft €KX , and let (£t)°® = h'v' , then

where

bt} a gm

g(b) = £(bec™') ,

u(b,b') = t(be~t,bre™1) if be”! > b'e
u(b,b') = (t(b'e™?,be”1))a(£(ve™) ® £(b'e™1))
if be™l < b'e
then
(gu)c' =" hv

where



h(b) = g(be'™") = £(be' e H=n'(b) ,

1 1 1

v(b,b') = u(be' ', bre!™H) e L

v(b,b0') = (u(b'e’™ 1, 0e'™ 1 ))alglbe™ M) ® glo'e'™))

-1 1

if be! s hte¥ %
wib. b’} = slber el nier ety

T St R G ey L T T g e R e g

#(n,5') = (slbret Vet pe e a(2(ve Ve )@ 2(Btet Te ) ))

SEPALITNR LT (e Bt e & pret~1e™ :

¥ib,b') = (t(b'c'-1c-1,bc'-1c-1))a(f(bc'-1c—1)(?f(b'c'-1c-1))

W Pt Tl i bver e lix b'c'_1c-1,

v(b,0') = 'l:(bc'-1<:-",b‘c'-1c-1)(1“(‘00'-10“1)Q’af‘(b‘c"'1<:-1))_1

(£lhet 1) @ £(bte? le 1))

1 1 $ 32

and be' ‘& ' > bie' e}

BRI e prer ey g we T At et

P ‘Rt ol Btats

v(b;b') = &(b'c'-1c-1,bc'-10_1))a(f(bc'—1c-1)@)f(b'c'-1c-1))
17 CperTIeT LY e ;
and hence v = v' , and

TE I R €2 b

The following theorem ([ 6], Page 88) shows that the
set of pairs {bk & B LK E'f} , with a certain

multiplication defined on it, forms a group.
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Theorem 5.6 If G and H are groups such that

for every element h € H there is an automorphism

1 1
g <—> o8 of ¢ with (2B = g™ for all h,h' €H,
then the pairs hg form a group under the product
1
(hg)(n'g') = hu'gg' .

This group is called the splitting extension of G by H .

Thus the splitting extension of E % B is e
group P , the unrestricted generalised wreath product,
which is denoted by A Wr2 B s

¥ bft , B'C'E’ €7 then

(RIS B'E R} = I
where

¥ =060,

£*(c) = £(eb'")E () ,

% cye!) = t(cb'_1,c'b'—1)f(c,c')(f(cb'—1)69 £'(ec'))

if cb'" V> etp'”!
t*(c,e') = (t(e®™ 1, ebr™ Natt (e et ) (£(eb T )@E (e )E(c ')

1 pie: c'b'-1 b

defn Lo bt
The unit element 1 of P is 1B 1? where 1B is
the unit element of B and 1 is the unit element of j 5
The inverse of bft dis b'f't' , where
ey,

£1(c) = (£(eb))™! ,
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t'(e,e') = (t(cb,c'd) 1 (£(cb) ® £(c'b)) if cb > c'b ,
$'(c,e') = ((t(c'b,eb))a)” if cb < c'b
Proof. Let
(bFE)(D'£1E!) = b*E*t*
then
ge Seipgninncdygel el
TPR0) = I(@h)fV(e)"tE =gt
t*(c,c') = t(eb,e'd)t'(c,c')(£(eb) @ £(e'd))™1 if cb > c'b
=] .
t*(c,e') = (t(c'b,eb))at' (e e’ )(£(ecb) ® £(c'b)1£(c'b))

5 A il

If o (f) and o (t) are finite, then o (£P)
and O“’(tb) are finite, for clearly o (t) and O'(tb)
have the same cardinal; if & (£) = {b,,...,b;} , then
(%) < {b1b,...,bmb} {(bib,bjb); b;b > bib, 151§ < m} ,
and so0 cr(fb) has finite order. Thus K admits the
automorphisms induced by the elements of B , and the
splitting extension P of K by B 1is a subgroup of

A B B . This group is the restricted generalised

2
wreath product and is denoted by A wr, B
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The generalised wreath products A Wr2 B and
A WT, B are independent of the order on the elements
of B .
Troaf. Let <4 and <5 be different orders of the

elements of B . Let B1 and B2

elements are ordered by <4 and <5 respectively .

As groups, B1 and B2 are identical. Let f1 and

K2 be defined by
- 172
£ v 3 &, A, and

be the sets whose

2
e ow P AT
K, = bEB, Ay

and let ?1 be the splitting extension of K, by B,

and FQ be the splitting extension of 'K2 by B

Consider a map © :'f1 —> P, given by

(bf1t1)9 = bf2t2
where f2 : 32 —> A 1is given by
fo(e) = £,(e)

[
and %, : hie,el)l a8 fia 82881516 B} —> A® A

is given by

Il

tz(c,c')
t2(c,c')

t1(c,c') iT et = of,

(t1(c§c‘))a(f(c)60 TEer)) if e < oY

It is easily proved that © 1is an isomorphism and hence
the generalised wreath products are independent of the

ordering of the elements of B .
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The second nilpotent products defined by Golovin and Moran.

The definition and notation for the second nilpotent
powers of A , which have been given in this chapter, are
not the same as those found in the work of Golovin and

g

WMoran. : PR e R R

Let F denote the free product of a set’{ﬁ&; W e Ni of groups.
Then the free cartesien [A ] of the A is defined to be the subgroup
o o

aSh Ie g, s . & £al.
L LS K A R L Tl N —
P U o s St e o PR RTINS PO T g

LR S kit o Y 1
.l

nilpotent product KG of the Aa by

Ko = /P, LAa]] d

Moran [10] defines the restricted second nilpotent
product KM of the Aa by
, ; F
Ky = F/YB(F)n LAa] ;
where LAa]F denotes the normal closure of [Aa] in B

Wiegold L15] remarks that

5 i &
Y5(F) n (4,17 = [P, (A1),
so that KM = KG °
Clearly the cartesian of the Aa in K, 1is
(4,077, (8,11 = '[a,](R, (4017, (8,11 ,

and this is denoted by [Aa]z . Wiegold [15] proves
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that

[ ~

LACL’AB]Z = ACL® AB )
the correspondence

Laa,aB] <—>a @a

B

generates an isomorphism. Golovin [4] proves that
LAa]z = JIBLAQ’ABJZ ;

Hence it follows that

3 =
LAa]z o @T%Aa® AB

Now suppose that KG is the second nilpotent
product of the set {Ab b E B} of isomorphic copies
of A Then

hede 2. Db G k., & 2,
By Golovin (4], every element k € K, has a unique
expression of the form

k = (a1)b s (am)bmu

1

where b, < by, < ..e < Db, (ai)bi € Abi corresponds to
a; €A , and where u € [Ab]z . Consider the following

map © @ KG —> K given by

((a1)b1 - (am)bmu)O = ft,
where f : B —> A with o(f) €{b,,...,b } and

f(bi) . A T xigwg

if the component of u in LAb,Ab,] is

T .
i€l, j€J L(ai)b,(aj)b,] for some index sets I and J ,



then

& i1
hgpan'), = ier,jer (81 ® 25) -

This map © is a homomorphism from KG onto K .

Proof.  Consider

k = (a1)b1...(am)bmu, k' = (a1')b1...(am')bmu' :

and letuckl & fip k'O =20 and nftf L' %oy .

Then
b 1 1 1 1 TT 3 F
kk!' = (a1a1 )b ...(ama m)b uu 15j<i<mL(ai)b.,(a'-) L
1 m rer 3 J bj
and
(kk')e = s
where

g*(b;) = a;a;' = £(by)f'(b;) = &lby) ,

v*(bi,b.) = ue(bi,bj)u'g(bi,bj)(ai<p a'j)
t(bi,bj)t'(bi,bj)(f(bi) @af'(bj))

v(bi,bj) i

Clearly © maps KG onto K .

© 1is a monomorphism.

Proof. Let

ok
]

k6 = ((a1)b1...(am)bmu)9 = £t ,
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and
ug = 1 )
but LAbJZ ¥ T and © maps LAsz onto T so that

elearly

Hence © 1is an isomorphism and KG‘Z K.s

Golovin [4] shows that when each A, is such that
its factor group by its derived group is a direct product
of cyclic groups, then it is possible to construct the
second nilpotent product of the Aa and to "know" its
structure. This means that the cartesian LAa]Z can
be determined, not as an abstract group, but as a group
generated by commutators. In deriving certain of the
properties of A WT, B in the following chapter, it will
be assumed that A/A' is a direct product of cyclic

ZToupS.

Before defining the unrestricted second nilpotent
product of Moran L11] it is necessary to define the
inverse limit of a set of groups. The following

definition is from Kurosh (L8], page 227).
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Let {Ga; uEN} be a partially ordered set of
groups, and let N be directéd. Suppose that for all

G, G, with o < B there is a homomorphism QB& ’

g
which maps GB onto Gu sosueh: that’ for allcra grpincY
and all g, € Gy
8 Pvo = & ®Pyg Pgq -
A thread is a set of elements {ga} such that for all

e ¥y &4, € G and for:allniapip el withwa £8

a ?
the elements 8y and gq are related by
gCL = gB (PBQ' w

The product of two threads and the inverse of a thread

aredefined by

TR MR IT M Tt gt TP &

Thus the set of threads becomes a group, which is the
inverse limit of the set {Ga} with the homomorphisms
Psa -

Moran [11) defines the unrestricted second nilpotent
product of groups as an inverse limit. Let B Dbe an
index set and let ® be the set of all finite subsets

of B. For pEB 1let

s FELE
e Yy

If B < B' then there exists a natural homomorphism



- 40 -

§r K onto K This homomorphism is simply

ol B B! g
the projection mapping. Under these homomorphisms the
groups KB form an inverse system whose inverse limit

5 LO'(KB) is the unrestricted second nilpotent product

of the set of groups -{Ab } b & B} .

It remains to be shown that this inverse limit is
isomorphic to the group K defined in this chapter. Since
the restricted second nilpotent product is unambiguously
defined, let the elements of I L(T(KB) be threads
{fYtY} y where f, t B—> A and t : D—>AQRA,.
Consider the following map Wy from I L G(KB) to K
given by

EMMUTE
where

2(b) = £.() for all Y with B €Y ,

#lh,8) = 4, (0B} fer all T' with B0 £ ¥

This map  1is a homomorphism.
Proof. Consider threads {fYtY} and {gYqu and let
{fYtY}q, L . {gYuY}q, = gu . Then
eyt {eyue} = tngvyd
where
hy(b) = £,(b)gy(b) ,
vy(0,b') = t,(b,b" Ju (b, b!)(£,(b) ® gy(b')) ;
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and
{thY}QJ =y B0y
where
h(b) = hY(b) fFall“ P wighi "9 EeT
= £,.(b)g(b)
= £(b)gl(b) ,
¥(b,b') & vijlhin') for all Y' with b,b' € T!

= tya(byb Juy, (00" )(£y,(b) ® gyy(b'))
= t(b,b')ul(b,b')(£(b) ® g(b')) ;

and hence

{fYtY}q’{gYuY}q’ = ({fvtv} {gvuqu’ .

Clearly Y maps T Lcr(KB) monomorphically and
epimorphically onto X so that

ILou(KB) =i

Note that Moran does not require that the index
set B be ordered. VYhen B is nonéordered the elements
of the unrestricted second nilpotent product can be
uniquely expressed as threads. However in order to
obtain a regular representation for an element of
T L‘T(KB) he requires that the index set B be ordered.
In this case every element of the unrestricted second

nilpotent product of the {Ga § o € B} has a unique
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representation of the form

{gak sde
where 8q € Ga for all o € B, and u belongs to the
unrestricted cartesian subgroup. This unrestricted
cartesian is the inverse limit of the restricted

cartesians and is proved to be the unrestricted product

bsz' LAbyAbl] °
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CHAPTER 4

Introduction.

In this chapter certain properties of the generalised
wreath products A wr, B and A Wr2 B are considered and
it is shown that some (but not all) of the properties of
wreath products stated in Chapter 1 do carry over to
generalised wreath products. It is shown first of all
that the standard wreath product is a factor group of the
generalised wreath product.,

Finally conditions for the nilpotency of A WY, B are
determined and the results of Chapter 2 are extended to
provide bounds for the nilpotency class of A Wro, B . 5 2
A wr B has class c¢* and A/A' wr B has class c¢' and
i g s the elass of A wr, B , then

e* < d = e+ @ %
Examples are given of groups A and B which are such
that e* =44 , an® other® wWhich are sueh that 4 = e* + ot ;

The exact class of A wr2 B is determined when both A

and B are oyclic groupe orSoradery p .

Some properties of ceneralised wreath products.

From the following lemma it is proved that the
standard wreath product is a factor group of the generalised

wreath product.
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Lemma 4.1 Let G be a splitting extension of a
group X by a group Y and let g¢' : X —> X' bea
homomorphism such that the kernel R of Q' is normeal
el 2 Then ¢' can be extended to a homomorphism

Q : G—> G' , where G' is a splitting extension of
Ehooby £ .Y .. The kernel of @ is isomorphic to R .
Proof. Every g € G can be expressed uniquely in the
form

g = xy fer x €X and ¥y & 1 .
Define @ by setting
(xy)l} = x Q' v forall x€X s 78T .
Then ¢@ 1is a homomorphism, for consider
((r)x'y'))e = (xxTlyy')
= W Thig S
= X(p'(X'y—1)LP'5’y'
Since R is normal in G it follows that
Simal R o

and so

1]

((xy)(x'y'))Q =x@'(x' )7 yy®
= X(Plyxl (?lyt
(xy) 9 (x'y')g

Clearly @ maps G onto G' and its kernel contains

Il

Let x*y* € ker ¢ , then

£ gl MRS C 8 o U
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and so

Corollary 4.2 For,all greups A and B

AWﬁ]%T!AWrB,Aw%JyTgAer.
Proof. The proof follows, by direct application of

Lemma 4.1, from the facts that

AB

A(B

T and TadWr, B,
EE: and T sk wr, B .

p—

k)
e =l

The following two lemmas correspond to Lemmas 1.3
and 1.4 of Chapter 1 .
Temma 4.3 If B* < B , then

A Wr, B* < AVWr, B and A wr, B¥* <A wr, B.

2
Beapr. let D* = {(o,c') €D ; &je' € B*g . WOF
PRE B, T% 1 BY >l and $F 2 DF A @ P rlelfine
B by setting

(b*2*4%)u = L0 5
where f : B —> A 1is given by

Mok : tAlE) it b € B* ,

) =R 43 2 RN
and t : D —-—> A®A is given by

GNP W) A A E DN,

$ld) = 1 ig &4 P <

Then | 1is a homomorphism for consider



CABEC* % ) (e®g®a®) ju = (bR eh%vE )y
where
n*(b) = £*(be*™1)g*(b) ,
*™(b,b!) = t*(bc*-1,b‘c*—1)u*(b,b')(f*(bc*-1)'838*(b'))
12, het~! = prgtt
v*(b,b') = (£%(b'e* 1 be*™1 ) Jau* (b, ) (£*(be* ™ pg* (b )E*(b'c* 1))

1 DRI ee

and
LRV L = VARV

where
n(b) = £*(bc*™1)g*(Db) i* e,
E(b) = 1 if b § B® ;

v(b,b') = t*(bc* 1, bre* N )u*(b, b ) (£%(be*™1) ® g*(b'))

if be* ! > p'e* ! ana (b,b') € D* ,

v(b,b') = (+*(b'c* ™!, be* ™) )au*(b,b') (£*(be* ™1 ) @g* (b )EXbe* ™))
i7" be* 1 <Jp1e*V and ' (b,0Y) € D* ,
v(b,b') = 1 it (b)Y D .

In other words if ft = (£f*t*)u and gu = (g¥u*)u , then
h(b) = £(be* 1)g(b) ,

v(b,b') = t(be*1,b1e* N u(b,b' ) (£(be*™) @ g(b'))
it be* ! > pre*l
v(b,b') = ($(b'c*1,0e* 1) )aulb,b* ) (£(be* @ (B)£(b'e* ™))

1. we%El wrprenst! |
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and hence

(p*ft)fatgu) = ((v%2*t* ) (c¥g*und) Ju
L (b*f*t*)u(c*g*u*)u s
Clearly p is a monomorphism. The restriction of

b to the restricted product embeds A W, BE Ans A wr, B .

Lemma 4.4 Let Y Dbe a homomorphism from B onto
B/Z and let A be an abelian group. Then ¥ can be
extended to a homomorphism P from A wr, B onto
A wr, B/Z .
Proof. Let B be ordered in such a way that if b > b'
884 bZ # b'Z , them bz > b'z' for all =,2' € 2 .
Then the order on B can be extended to an order of the
elements of B/Z by putting bZ > b'Z if bZ # b'Z and
b >"ht .

Extend W in the natural way to a homomorphism ¢
of A wr, B by putting

(eft)d = cyf't!

where f' : B/Z —> A 1is given by

£1(bz) = ;g% £(oz) ,

aad &7 1 3" = i(bZ, B'Z) ;: B2 > b'Zg —> A @A is
given by

£'(bZ, b'3) = t(bz, b'z') .

"
z,2'€Z
Then ¢ is a homomorphism of A wr, B for let

c,c' €B, f, gt B—>A and t, u :D—> A QA and let
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(eft)@ = cwe't' , (c'gu)@ ='c'Pgu'', Consider
((eft)(c'gu))@ = (cc'hv)@
where
n(b) = £(be' N )g(n) ,
¥(b,b') = t(be' 1 ,b'e Nulb,b' ) (£(be'™ V) @ 2(b'))
122 her T o piRas! 4
v(b,0') = (t(b'c' !, be'™ ) )aulb,b' ) (£(be' 1 )@e(b!)£(b'e' 1))
if - ) o Rigi?! :
and

(cc'hv)@ = (cc')qfh'v' = cye'yh'v'

where
h'(bz) = T n(bz) = T £(bc'™ 2)g(bz)
= £'(be' '2)g'(b2) ,

v'(bZ, b'Z) (i v(bz, b'zYs

A
v'(bZ, b'Z) = t'(be'"1Z, b'e*™12)u'(vZ, b'Z)(£'(be' ™' 2)®e'(d'2))

1Z ;

il

if be'"1Z > ple'T
v (b2,'2) = G (v'c"12,¢'"12) )au" (v2,b'2)
(£'(be'™12) ® b'2)2'(b'e'™12))

|-1

ir e <Ry,

Hénee
(c£t)@ (c'gu)@ = ((cft)(c'gu))®
and @ is a homomorphism. Clearly @ maps A wr, B

onto A wr2 BE
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Note that if Z is finite, this epimorphism
: B —> B/Z can be extended to an epimorphism
£ .
Q* : A"Wr, Bi—>"A Wr,"B/Z",
Let 0% = {t € T 70W) < {(b,b') €D ; 8l = b'Z}} o

Then since A is abelian, T*@ = 1 , and hence

kerq = ™2 {rt ; T £(bz2) = 1 = T, (bz,b'z")§ .

48 in lLemma 1.4, it follows that if f € ker? then
f € |X,Z] , and certainly
[X,Z2]T*2 < kerg@ .

There are no analogues of Lemmas 1.1 and 1.2 for
generalised wreath products. The following theorem of
Golovin ([ 3], Theorem 6.1) proves this, as do a number
of counter examples.

a FE2) if A%
Theorem 4.5 If K = o &l A and if A7 < A

Qa

for all o € M , then the subgroup G* = gp{A; ; 4 € M}

MR ; ri2),a
is isomorphic to a factor group of o EM Aa . k
Golovin proves, in fact, that if F* = a& i,

Is= gp{taa,aB] 8, €Ay, 83 €Ay, a, B EM, a# B} »
. gp{iag,ag] ; ay € AX, af €A%, o, B €M, o # 8 }
and V= (F*O[F1])/[F*;7*] , then

¥ =(Q€VI(2)A()/V X

Suppose for example that A 1is an arbitrary non-abelian
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group. Then

sep{A', ; b € B} = pA', and sgp{A',,B; b €B} YA wr B .
Similarly, let A= M X N where M is abelian and

BBl AN =.AL ; Then

sep {(4/M),, B ; b € B}Y N wr B .

Let the diagonal of the second nilpotent power K of

&* be

: . A -
gp{ft ; £(b) = £(1) for each b € B, t = b’ for some u € T}.
Then the following lemmas prove that the centre of A Wr2 B

is contained in the diagonal of X s and if B is infinite

fhen. -A wr2 B has trivial ceentre.

Lemma 4.6 17 A 1is such that A/A' 1E a direct

product of cyclic groups, then
£®) = (((1)na)PT ana §(x) = ga)nan(® o,
Proof. Clearly (f(A)nA')Bﬁg FRY . ev ot € RN
then for all g ¢: B —> A

it = (F.g] B0,
where

£*(b) = [£(b), g(b)] = 1

and hence f(b) € §(A) . Tet ¢(g) ={1} and let

r.

1 a4 x N s
A/A' = Ser Ai where Ai = gpiai P oay 1%.’ and some
of the r, may be zero. Let f£(b) = iE&ai * mod A' and



- P

let: g(1) = a then

3+
- »g
1=f®)®gﬁ)=(aﬂ@%) QQ@aH Slaate o
By Lemma 3.3 it follows that
a, @
(a1®a1) =1=(a2®a1) ot
and hence T, divides Ay - Similarly it is shown that
r, divides a, for all i €I and that £ €(A')" .

This completes the proof.

Lemma 4.7 The centre of P = A Wr, B is the
diagonal subgroup of the centre of K .
Proof. Clearly the diagonal of §(§) is central in P .
Let cft € f(?) and let g : B —> A Dbe such that
oFlg) = {1} , then

1e™Cfg = v = 1

letiigl = T
and if c¢ # 1
1.=n(1) = £01)7 e(1)gl1) 3
but g(1) # 1 and so f(?) < X and hence {(P) < §(XK) .
Also ‘
fre il = 2 2P 4% sl =1 Sl 5 G B
and
1 = h'(b) = £(b) T£(bb' ™)
so that

£(b) = £(1) for all b € B ;
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also
fom wala)e= $0a) " VeP(a) o vtesiall sa€spt) BiEiB .
Hence {(P) is the diagonal of §(X) and g(P) is the

diagonal of §(X) ; if B is infinite §(P) =1 .

The following result will be needed later and is
stated here without proof.

Theorem 4.8 (Golovin [4], Theorem 6.6). Let
£ . mte

S Aa , and let each group Aa be nilpotent of class

not greater than { . Then K is nilpotent. If at
least one A ~ has class exactly i Safid 3% § theéa* K
has class 4 ;3 if 4 =1 , then the class of K is either

T SrA2%g

Nilpotency of A wro, B .

The following lemma provides a set of necessary and

sufficient conditions for A Wro B to be a2 nilpotent group.

Lemma 4.9 A wr, B is nilpotent if and only if A
is a nilpotent p-group of finite exponent and B 1is a
finite p-group for the same prime p .
Proof. By Corollary 4.2, (A wr, B)/ T2 Awr B and so a
necessary condition for the nilpotency of A Wr, B is
that A wr B be nilpotent, in other words that A be a

nilpotent p-group of finite exponent and B be a finite
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pP=group.
Now suppose that these conditions are satisfied.
By Lemma 4,8, K = bEB(Q) b is nilpotent. By a theorem
of Golovin ([4], Theorem 2.2), X has finite exponent.
A lemma of Baumslag [1] states that an extension of a

nilpotent p-group of finite exponent by a finite p-group

is nilpotent. Hence A W, B is mi¥peteni.

An upper bound for the nilpotency class of A wr, B
is given by the following theorem.

Theorem 4,10 Let A/A' wr B have class c¢' and

let A wr B have class c¥* ., I8 @&+ is the elass of
P = A wr, B 4 then

§ e ol 4
Progefs. By Corcllary 4.2

c*+1(A wr, BLB) 2 YC*+1(A wr B) =

and hence

(A wr, B) < T,

Toxs 2
But T < §(K) so that
el - (s aan L2(,7)7] = [2(,B)7] .
By Theorem 1.5
gp-{T,B} = T wr B
and hence
(2GR0 = 1

r+1(T wr B)
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But T is abelian and its exponent is not greater than
the exponent of A/A' so that, by Corollary 2.8

1 (2 wr B) 2 ¥ (A wr, B)

= Yotiy e*4e '+

Let A have exponent pn and class c¢ and let B
have order pt s then

d = (e+1)p" " (np-n+1) ife Bl

t-2(

¢ & max(dn,4)2 c+1) if +p =2 o

Clearly the class of A wr, B is not less than the

2
class of A wr B . There are groups A and B for which
the classes d of A wr, B and c¢* of A wr B are equal.
Let B=gp{b ; ¥ 1} and let
A=gp{xy ; x’ =y° =1 =[5, = [&7,71} .
d =6

Then it can easily be shown that c* =

= . However
A wr B is a proper homomorphic image of A wr, B as
the second nilpotent power of A does not degenerate to

the direct power,

There are groups A and B for which

fo?
Il

(c+1)p" ! (np-n+1)

Let. A = gpi " L y3 = 1 = Lx,y]} and
B=gp{b;b =1} . Let f,8; B —>A be defined by
1) 3= e wld ) = P

#wl) =1 = gld*) for 1 e 1,2,
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Then |f,b,b,g,b,b] # 1 and so A wr, B has class

exactly 6 .

Finally the exact class of A WI's B is determined

when A and B are cycliec groups of order p%

Lemma 4.11 If A and B are cyclic groups of

order p ;-then the,elass of A Wr, B ~18-12P=1 »
Propf. lLet A = gp{~a ; af = 1} and B = gp {b ; bY = 1}

and lete P.='A wr, B. Let f,g 3 B —> A be such that

2
c(2) =11, e(g) ={b*} ana 2(1)
Bga= Lf(,b)m ; g(,b)Zp_Q_m] for O <m < 2p-1 and

TY.lp-{In3

]
)
Il
0
~~
o

By I8 Lf(,b)zp-1] . By Theorem 4.10, ¥

and hence
sz(P) = &p {Xm 4 Opsin, S 2p-1} .
It is necessary to show that every generator X, of
Yep(P) is trivial.
If @)="m < p<y , théen for some -t €T
r 2p=-2-m s 1 =
myoe [(,0)P"*™] € [2(,3)°] s ¥ (FwrB) =1,

If m = p-1 , then without loss of generality put

SRNGTE (7 it {3 )
= [ odf [ 521¢4m)P 5100

<i<p
By Lemma 2.2

X S 4 Lfb

itk (kg A
p-1 ~ o=i<p ;

£ ] p-1 9k
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Hence xp_1(bi+k,bk) = (a ®a)®
where
e (-1)p_1kp—1,k '("1)p-1hp-1,i+k
w100 o 6 VB oY - el SE e )
((  (rg1) - GOME (i
o L PR s T g -t
3 1_ET(p-1-k)! i+k) ! (p-1-i-k)!
= (PTG  ) (Cet ) (+2) 0 . o (et d )= (=1 ) E (p=(c#1)) . .
(i+k)!(p-1-k)! .
°..(p—(k+l))),
and hence p divides.a and x_ ., =1 .

43y p~1 < mu< 2p~-1 , then
= & IR BPLE) < [2X]E ¥
Finally when m = 2p-1 , then

2o 2p-1

Now
pP=1

[£(,0)P"1] = ££P...7 nol 1

and hence

-1
[2(,2)2~1] = [2£2...28% ', b(, )P~ Jmoal2(,B)P] ,

so that § :
. el p- s
x T LT R e P
2p=1 .
i %
: o p-11

But it has already been shown that
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L1<£2; 1Lf ’f]( b)p-1j i

so that

sz_1 j

It must now be shown that there is a non-trivial
commutator of weight 2p-1 . Suppose that p > 2 and
consider

) e e € britemee] - o
1<i<p-l

then

e~ ) 2 (2% a1
and hence

u ¥ T e
When p = 2 then
Be, 58] 202 ([F 2] I

and hence for all p , the class of Cp wr, Cp is 2p-1 .

By comparison the class of Cp wr C i P < The

P
order of Cp wr Cp is pp+1 , so that Cp wr Cp has
maximal class, but the order of Cp wr, Cp is
2+ 2
E—jf—— , and so the class is not maximal for p > 2 .
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