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ABSTRACT 

For over thirty years it has been known that the semigroup, 

under composition, of all mappings of an arbitrary set into itself 

has the property that every automorphism is inner. K.D. Magill, Jr, 

in the past ten years has shown that this property is held by many 

semigroups of functions and relations, in particular for the semi-

group of all differentiable functions from the reals into the reals. 

The only new result given in the first chapter shows that the semi-

group of Borel measurable functions on any T^ topological space has 

the Magill property, namely the property that every automorphism is 

inner. 

Even more recently S. Yamamuro has written a number of papers 

directed towards generalising the above result of Magill to semi-

groups of differentiable mappings defined on certain classes of 

locally convex spaces. The object of this thesis has been to 

continue that study. That the semigroup of Frechet differentiable 

functions on an fA/-space has the Magill property is the essential 

content of chapter two. 

Showing that a semigroup of differentiable functions has the 

Magill property is closely related to showing that the algebraic 

structure of the semigroup characterises both topologically and 

algebraically the locally convex space on which the functions are 

defined. To show that the Magill property holds for subsemigroups of 

those considered above then becomes of interest. For this reason 

we consider in chapter three the semigroups of many times Frechet 

differentiable mappings on FM-spaces and show that they too possess 

the Magill property, by using the results of chapter two as the first 

step in an inductive argument. Many times continuously Frechet 
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differentiable functions are likewise treated. 

An alternative proof of the result for many times continuously 

differentiable maps on a finite dimensional Banach space is given in 

chapter four. In this case the problem is equivalent to showing the 

differentiability with respect to the parameter of a one-parameter 

group of differentiable mappings, and so the classical theorem of 

Bochner and Montgomery may be applied. Further attention is also 

given in chapter four to the characterisation problem mentioned 

above. Using the notion of 5-category due to Bonic and Frampton we 

are able to give two theorems in this direction. Under certain 

conditions it is also shown in chapter four that if every automorphism 

of the group of invertible elements (units) in a semigroup is inner, 

then the same property will hold for the semigroup. 

Admissibility of a class of spaces, a concept introduced by 

Magill, is extended in the final chapter to provide a framework in 

which to view the results. G.W. Mackey has shown that the group of 

continuous, linear, invertible mappings on a Hilbert space does 

characterise the space, but we are able to show that there exists an 

automorphism of this group which is not inner. The main theorem of 

the chapter then shows that for a large number of semigroups which 

contain this group, automorphisms which fix the group are inner. 

Certain ' cZ-automorphisms' of semigroups of differentiable functions 

are then shown to be inner. 
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CHAPTER ONE 

INTRODUCTION AND PRELIMINARIES 

1.0 Introduction 

The "elementary" algebraic properties of certain semigroups of 

mappings have been studied recently by a number of mathematicians. 

This thesis will survey and continue a portion of this work. We will 

be concerned largely with the nature of automorphisms of semigroups 

of differentiable functions defined on locally convex spaces. At all 

times the semigroup operation will be that of function composition. 

Unless it is stated to the contrary all topological spaces considered 

will be Hausdorff, and every vector space will be over the field of 

real numbers, R . We begin with a list of the basic notation and 

terminology which will be used throughout. 

1.1 Notation and Terminology 

The following lists are not intended to be exhaustive, but do 

contain the most frequently used items. Generally our usage agrees 

with Magill and Yamamuro. 

Notation 

N : the set of natural numbers 

R : the set of real numbers with the usual topology. 

Elements of R will be denoted by Greek letters. 

C : the set of complex numbers with the usual topology. 

TVS : the set of all real, Hausdorff, topological vector 

spaces. 

LCS : the set of all real, Hausdorff, locally convex spaces. 

E, F, G : elements of TVS . When denoting a Banach space, Montel 



space, etc., it will be made clear in the text. Elements 

of E will be denoted by Roman letters. 

E : the conjugate space of E with the topology of uniform 

convergence on bounded sets. 

E : E with the weak topology. W 

L{E, F) : the space of all continuous linear mappings of E into 

F with the topology of uniform convergence on bounded 

sets. L(.E, E) is abbreviated to l(.E) . 

U{E) : the group of continuous linear invertible elements in 

i{E) which have continuous inverses. 

M : the set of all scalar mappings of a vector space into 

itself. 

^^{E) : the set of all continuous mappings of E into itself. 

VJE) : the set of all Gateaux differentiable mappings of E Lr 

into itself. 

P̂ Cff) : the set of all Hadamard differentiable mappings of E 

into itself. 

V„(E) : the set of all Frechet differentiable mappings of E r 
into itself. 

V^{E) : the set of all k times Hadamard differentiable mappings a 
of E into itself. 

vliE) the set of all k times Frechet differentiable mappings r 
of E into itself. 

JC„{E) : the set of all Frechet differentiable selfmaps of E r 

with jointly continuous derivative. 

: the set of all k times continuously Hadamard n 
differentiable selfmaps of E . 

CpCfi") : the set of all k times continuously Frechet r 



different!able selfmaps of E . 

If the space E , or the type of differentiation is clear, the 

notation will be simplified, for example to V^ , or C (E) . 

CC(E) 

B(E) 

X, Y 

f, g, h 

AiX) 

Six) 

HiX) 

ZiS) 

m ) 

1 

o 
a 

la, Y) 

TiE) 

K) 

the set of all completely continuous selfmaps of E . 

the set of all bounded and continuous selfmaps of E . 

sets, or topological spaces, 

functions. 

a family of selfmaps of X equipped with some algebraic 

structure. 

a semigroup of selfmaps of X . 

the group of units in S(X) . 

the centre of the semigroup S . 

the set of all Borel measurable selfmaps of the 

topological space X . 

the identity mapping. 

the constant selfmap of X , whose single value is 

a € Z . 

the set of all constant mappings from X to Y . 

the set of all translation mappings on E : all maps 

of the form 1 + , a i E . 

the space of all real sequences 

lim e = 0 . 

the Banach space of sequences 

n such that 

3^} e C such that 

I 
n=l 

n < <=° . 

int V : the interior of the set V . 

cl V : the closure of the set V . 

(J) : an automorphism, generally of a semigroup. 



Terminology 

For y i E , a ^ E , (y, a) denotes the value of a at y . 

For X € F , a ^ E , the map a: ® a from to F is given 

by ix ®a)(y) = <y^ a)x , for y i E . 

When a i E , and a i E , a ® a € L(E) . Hence 

(a ® a) ® a ^ L[e, LiE)] which we write as a a . More generally, 

for m e N , we have the map a a in • • >>. ...] , which 
m 

we abbreviate to e] . 

When h € r/l(E) , the wth Frechet derivative of h at x € E b 

is denoted by , and is an element of , e] . If 

a € x) after m evaluations at a is an element of E 

denoted by . 

For f : E ^ F , a, x i E , and f differentiable in some 

sense at a ^ vie define the remainder, rlf, a, a:] , to be 

f(a+x) - fia) - f'(a)ix) . 

The sequence [a^, a^ , ...} will frequently be abbreviated to 

By f ^[Z] we mean the inverse image of the set X under 

f . If / € P̂ Cff) we define df = {fix) x ^ E] . 

A discussion of properties of topological vector spaces which 

are used,without reference may be found in either [17] or [48]. 

1.2 Preliminary definitions 

We shall be concerned with three forms of differentiation: 

Gateaux, Hadamard, and Frechet. In order to present their definitions 

in a unified manner we adopt the terminology in [2, p. 86] and 

consider differentiability with respect to a system of sets. Gil de 



Lamadrid (1955), Sebastiao e Silva (1956-1957), and Miroslav Sova 

(1964) all arrived independently at the following method of 

differentiation. 

Let E, F € TVS , and f : E ^ F . Then, 

(1) f is Gateaux differentiable at a ^ E if there exists a 

u € K f f , F) such that 

lim £ a, ex] = 0 , for each x ^ E , 
e-^0 

where r l f , a, exl = fia+ex) - f ( a ) - uiex) . 

(2) f is Hadamard differentiable at a i E if there exists a 

u € UE, F) such that 

lim a, ex] = 0 , 
e-K) 

uniformly for x in any sequentially compact subset of 

E . 

(3) f is Freohet differentiable at a € E if there exists a 

u € L(E, F) such that 

lim e ^rlf, a, ex] = 0 , 
e^O 

uniformly for x in any bounded subset of E . 

The Gateaux, Hadamard, and Frechet methods of differentiation 

may thus be considered as differentiation with respect to the system 

of all finite sets, all sequentially compact sets, and all bounded 

sets, respectively. For each type of differentiation, the continuous 

linear mapping u is uniquely determined, and is called the Gateaux, 

Hadamard, and Frechet derivative of / at a , respectively. We 

shall call it /'(a) . Note that for a^ € 1(E) , c^(x) = 0 for 

every x in , and if U € L(E) , y'(x) = v , for every x in 

E . 

If f : E ^ E is differentiable at every point of E we say f 



is differential)le on E and write f € ̂ Q^E) , f € P^CS) , or 

f € . Evidently P̂ (ff) c P̂ (ff) e P̂ Cff) and when ff = R all 

reduce to the usual definition of the derivative. When the 

derivative f : E L(E, F) is continuous we say f is continuously 

differentiable. If f : E ^ F , E, F ^ ICS , is continuously 

Gateaux differentiable it is known that f is Frechet differentiable. 

For such continuously differentiable mappings we thus need not name 

the type of differentiation being considered. 

When the mapping f : E i{E) between topological vector 

spaces is differentiable we say f is twice differentiable. It is 
k k then clear that inductively we have the families > ' 

P̂ (ff) , C^(^) , Ĉ (ff) , . We shall use f rather than 

(2) f for the second derivative of f . 

1.3 Background to the d i f ferent ia l calculus 

Averbukh and Smolyanov in [1] and [2] have investigated the 

properties of such families of differentiable functions, showing in 

certain cases that they do form a semigroup with respect to the 

operation of function composition. In particular they show that the 

chain rule holds in 'Oj^iE) and V^{E) , E ^ TVS if / and ^ 

are in V^i^E) , for example, then f o g i V^iE) and 

(/ o g)'{x) = f (^(a)) o g'(x) , for x ^ E . 

The composition of Gateaux differentiable functions is however not 

necessarily Gateaux differentiable, [2, p. 77]. Moreover they show 

that the Hadamard differentiation is the weakest for which the first 

order chain rule holds, [2, p. 74]. 



The higher order chain ru l e s , [ 1 , p. 234, Theorem 2 .5 ] hold in 

P^ ( f f ) and , E ^ TVS . For C^iE) the chain rule i s obeyed 

provided £ i s a Frechet space, [ 21 ] . In the l o c a l l y convex space 

k 

se t t ing a discussion of the chain rule in C (E) can be found in 

[46 ] or [ 21 ] . Although i t concerns us only s l i g h t l y , the d e f i n i t i ons 

given do have a shortcoming: no longer do we have d i f f e r e n t i a b i l i t y 

at a point implying cont inuity at that po int . Averbukh and Smolyanov 
00 

give an example of a C (E) funct ion which i s not continuous in [ 2 , 

p. 107]. 

I f £ € TVS , E i s termed sequential i f f o r any set A in E 

every l im i t point of A i s the l i m i t of a sequence o f points in A . 

Certainly every metr izable TVS i s sequent ia l , while Lloyd [ 2 2 ] , has 

shown that every sequential LCS i s borno log ica l . In [ 2 , p. 105] i t 

i s shown that any form of d i f f e r e n t i a b i l i t y with respect to a system 

of bounded sets that contain a l l convergent sequences implies 

continuity i f and only i f the f i r s t space i s sequent ia l . In par t i cu lar 

th is w i l l hold f o r both Hadamard and Frechet d i f f e r e n t i a t i o n . 

I t appears that f o r any d e f i n i t i o n of the de r i va t i v e in l o c a l l y 

convex spaces we can have e i the r the second order chain rule or the 

property that d i f f e r e n t i a b i l i t y implies cont inui ty . An indicat ion 

f o r th is i s the f o l l ow ing : the usual proof o f the f i r s t property 

r e l i e s upon the d i f f e r e n t i a b i l i t y of the canonical map from 

L(,E) X LiE) into LiE) , while i f the second property i s to hold 

then th is map w i l l be continuous. A resu l t of B la i r [ 4 ] , Maissen 

[ 4 0 ] , and Ke l l e r [ 1 4 ] , shows th is to be so i f and only i f E i s 

normed. 

For oxir purposes i t i s the chain rule which is of prime 

importance, and since the above de f i n i t i ons a f f o rd th i s property in 



the Hadamard and Frechet cases, while the latter reduces to the usual 

form in the normed case, we adopt them here. 

Let Six) denote a semigroup, under composition, of selfmaps of 

a set X . An automorphism of S(,X) is a one-to-one mapping of 

Six) onto itself which is multiplicative. That is, 

<t>(fg) = i>if)<t>ig) , for every g € SiX) . 

We say the automorphism cf) is inner if there is a bijection h 

of E such that h, € SiX) , and 

<^if) = hfh~^ , for every / € SiX) . 

1.4 Preliminary results 

We now present two preliminary lemmas which will be fundamental 

to our work. Let X be a set, and liX) be the semigroup of 

constant selfmaps of X . With SiX) as before, evidently 

f'^a -- ''fia) ''c/ = ^a ' ^ ' ^^^^ ' 

J. Schreier in 1937, [51], appears to have been the first to prove 

the following lemma: 

LEMMA lolo Let X be a set^ SiX) a semigroup of selfmaps of 

X suah that liX) c SiX) , and (J) an automorphism of SiX) . Then 

there eodsts a bijeotion h of X suah that 

<^if) = hfh'^ ^ for every f € SiX) . (1) 

Proof. For any x ^ X we show ) is again a constant cc 

mapping. Take arbitrary y, z ^ X . Since <}> is onto there is an 

f e Six) such that ())(/) = c . Then 



= ̂ yj)^^) 

Now define h{x) = y , where = c . To show h is one-
X y 

to-one, assume Mx) = hiy) . Then 

^ K ) = %{x) %iy) = ' 

whence it follows that a = a , or x = y . To show h is onto, 
X y 

we take an arbitrary y (: X . Then we can find an / € S{X) such 

that cj)(/) = o . As before we may show / = ^ (<2 ) is a constant "y "y 
map, so there is an x ^ X such that f - o . Hence hix) = y . 

To complete the lemma we take x, y € Z , and f € S{X) . Then 

= (t>(f)a(y) 

= 

= cj) 

^ ^ - 1 

• fh ^(x) 

(y) 

(y) 

= ^ . (y) 
hfh ^ix) 

= hfh'^ix) , 

as required. // 

If we impose additional restrictions we have the following lemma 

which is due essentially to Magill [26]. A demonstration of a 

similar result in this convex space setting appears in [66]. 

LEMMA 1.2o Let ff € LCS , be an automorphism of the semi-

group SiE) , n C^ (E) c SiE) c c'^(E) ^ and h be as in Lemma 

1 . 1 . Then ^ h(x), a> is continuous in x , for every a i E . 
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Proofo To show continuity at a i E we take e > 0 and find 

an open neighbourhood U of a such that \{h{x)-h{a), a)\ < e , 

when X i V . Let 3 € C°°(R) be such that 

'O if |5| > £ , 
3 ( C ) = • 

1 if ? = 0 , 

and for b some non-zero element of E consider the mapping 

g : E ^ E defined by 

gix) = &[<x-h(.a), a)]b + h{a) . 

Evidently g ^ C°° n C^(E) c SiE) so there is an / € SiE) such that 

(p(f) = g , If f(a) = a we have 

h(a) = hfia) = ghia) = b + Ha) , or b = 0 . 

Thus fia) ^ a . Since f is continuous we may find an open 

neighbourhood U of a such that if x U , fix) i- a . But h 

is one-to-one so ghix) = hfix) ^ hia) , for x ^ U . By the 

definition of 3 we have 

<h(x)-h(a), a>| < e , for x i V . // 

We add three frequently used facts: 

(i) (f) imiquely determines the bijeotion h of Lemma 1.1. 

Suppose there exist bijections g, h such that (1) holds. For 

X ^ X , g o = , so gix) = hix) , or g = h . 

(ii) Any statement about h holds also for h ^ . 

Since (J) ^if) = h^fh , axid ^ ^ is an automorphism. 

(iii) We can assume /i(0) = 0 ^ for X € TVS . 

Suppose /z(0) = a 0 . Consider the automorphism (}> , given 

by 
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^Af) = [i^oV^Hnii+o] 
a a' 

1 - 1 

Then /2Q(0) = [l+Q y \ { Q ) = (l-cJ(a) =: 0 . Since the bijection a a 

Î I+ĉ J € C n C , any property we show of h^ will then hold for h 

Our starting point is a theorem of Magill which appeared in 

1967, [26], in which he considers the semigroup of all differentiable 

functions from R to R : 

THEOREM lol, Evevy automorphism of P(R) is inner. 

Proofo By applying the above lemmas we reach the point where 

there exists a homeomorphism of R such that 

({)(/) = hfh~^ , for every f ^ V(R) . 

Such a homeomorphism is strictly monotone and so by a result in [M-5, 

p. 211, Theorem 4] has finite derivative almost everywhere. If x 

is such a point and z/ an arbitrary real number, since 

e~hh(y+e)-h(y)J = J(x+£)-h(l+o ) (x)J 

= ]h(x+e)-(p{l+a ]h(x)' 
y-x y-x 

which converges to ]h\Ax) as e converges to zero, we 
y —X 

have h € P(R) . 11 

In the light of his result of 1937 [51], our Lemma 1.1, 

Schreier had suggested the truth of Theorem 1.1 together with parallel 

results for the semigroups of all continuous maps and all measurable 

maps from the reals into the reals. Lemma 1.2 clearly settles the 

former case. However, the result of the following section appears to be new. 
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1.5 The semigroup of Borel measurable functions 

In this section the inverse image of a set U under the map / 

will be denoted by . By M(Z) we shall mean the family of 

Borel measurable selfmaps of a topological space X . That is, if 

f € M(Z) and V is open in X , is Borel measurable. 

If M(X) , and U is open in Z , f~\u'\ is Borel 

measurable, and by [49, p. 13, Theorem 1.12 (b)], 

is Borel measurable, so M(Z) forms a semigroup. Then we have the 

following: 

THEOREM lo2o Let X be a T^ toipologioal space. Then every 

automorphism cj) of M(Z) is inner. 

Proof. 

1. There exists a bi;jeotion h of X suah that (j)(/) = hfh ^ ^ 

~^for every f € M(X) . 

Since the constant maps are Borel measurable, this is an application 

of Lemma 1,1. 

2. is Borel measurable. 

Take some fixed a i X and choose b ^ h ^(a) . Define X^ : X ^ X , 

for U open in X , as follows: 

b when x ^ U , 

h ^(a) when x ^ U . 

Then clearly Xjj ^ J SO ^ , for every such set U . 

Since X is T^ , Z\{a} is open, so 
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-1 CX\{a}] = h 

= h , (since is a bijection) 

= ) {.Ul is Borel measurable. 

Thus h ^ is Borel measurable. In a similar way we have h Borel 

measurable and the theorem follows. 11 

1.6 Historical remarks 

We now give a brief historical account of relevant investigations 

into the algebraic properties of families of functions. Although 

Schreier in 1937 [51], was the first to show that the semigroup of 

all selfmaps of an arbitrary set has the property that every 

automorphism is inner, Mal'cev [41] and Ljapin [18] each proved the 

result independently at a later date. 

Between 1940 and 194 8 there was considerable interest in families 

of continuous linear mappings. Since this topic is the subject 

matter of chapter five, we only sketch the results here for the sake 

of completeness. In 1940 Eidelheit [11] showed that every automorphism 

of the ring LCff) , E Banach, is inner. Further contributions to 

the ring case were made by Mackey in 1942 [24] and 1946 [23]. In the 

former paper he also considers the group 1}{E) , E a normed linear 

space, of continuous linear maps which have continuous inverses. 

Rickart [47] in 1948 was able to improve a result in Eidelheit's 

paper of 1940 to show that every automorphism of the semigroup /-(£') 

is inner, where is a Banach space with dimension greater than 

one. 

Almost two decades later Magill revived the subject and in a 

series of papers, [25] through to [39], has shown that the property 
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that every automorphism is inner is held by many semigroups of 

functions and relations on topological spaces. Following Yamamuro in 

[66] we say a semigroup has the Magill property if every automorphism 

is inner. Nadler and Hofer, in for example [42], [43] and [12], [13] 

have published papers directed along related lines. Since 1967, 

however, Yamamuro has contributed a number of papers to the field, 

most directed towards generalising the result of Magill (Theorem 1.1) 

to semigroups of differentiable functions defined on certain classes 

of locally convex spaces. 

In [62], Yamamuro has noted that no automorphism of the semigroup 

of constant selfmaps of a set is inner, and has shown that the same 

result is true of the semigroup of all completely continuous selfmaps 

of an infinite dimensional Banach space, CC{E) . However, for such 

a space E he has constructed both inner and outer automorphisms of 

the semigroup 1 + CC(ff) = {l+f : f ^ CC{E)} . That V(C) does not 

possess the Magill property was shown recently by Warren, [56]. To 
k k 

date, no semigroup of all V or C mappings of a real, Hausdorff, 

locally convex space has been found which does not have the Magill 

property. In [62], the Magill property was also shown to hold for 

BiE) , the semigroup of all continuous and bounded selfmaps of a 

Banach space, E „ 

In the event that the family A(E) of continuous selfmaps of a 

Banach space E forms a near-ring, Yamamuro in [61] has proved that 

if 1(E), L(E) d-AiE) , then every near-ring automorphism of A{E) 

is inner. Unfortunately not every semigroup automorphism is a near-

ring automorphism. 

Since the theory of Frechet differentiation in a Banach space E 

has been fully investigated, [8, Chapter 8], it was natural to 

attempt to show that V^iE) possessed the Magill property. By 
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imposing restrictions on the automorphism, cp , the following pair of 

results were obtained by Yamamuro in [62] and [65]: 

(i) Define (t) to be a cZ-automorphism of when 

d(t>(f) = {(p(f)'(s:) : X e F} = {(p[f'(x)] : X ( f} = (p(df) 

for each f 6 ^ p ( ^ ) - Then every <i-automorphism of ^ p ( F ) is 

inner. 

(ii) If (j) is such that given £ > 0 and {ot̂ } € (CQ) there 

is a 6 > 0 such that ||a:|| < 6 implies 

.-1, sup 
n>l 

5 e kc 

(p is said to be uniform. Then an automorphism of ĵ̂ (F) is inner 

if and only if it is uniform. 

lo7 Summary of chapter content 

We are in a position now to give an outline of the remaining 

content of this thesis. In Chapter two we consider the semigroup 

, E € LCS , and prove a general theorem which implies that 

the Magill property does hold when is a Frechet Montel space. 

k k Similarly, the subsemigroups '^p(E) and C (E) , fe € N , are treated 

in Chapter three. By arranging the problem in such a way that a 

classical theorem of Bochner and Montgomery concerning differentiability 

is applicable, we give a short proof in Chapter four to show that 

C (E) has the Magill property, for E a finite dimensional Banach 

space. 

There is an alternative interpretation of the problem. If the 

semigroups ^[E^) . E^ € LCS , i = 1, 2 , are known to 
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have the Magill property, and we consider instead the situation in 

which an isomorphism exists between and , then with 

only a notational change in oiir proofs we may find a bijection h 

from E^ onto E^ such that h is a fortiori Hadamard 

differentiable. Since 

[h(x)]h'(x) = h'(x) [h'^] ' [h{x)] = 1 , 

for every x ^ E^ , and h'{x) i /-(S"̂ , E^ , E^ and E^ are 

linearly homeomorphics In the remainder of Chapter four we give 

results showing that under certain conditions a semigroup of self-

maps will characterise the space on which the maps are defined. 

In Chapter five we extend the concept of the admissibility of a 

class of spaces, first introduced by Magill in [33]. A theorem is 

presented which extends both the near-ring result and the 

d-automorphism result mentioned earlier. 
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CHAPTER TWO 

SEMIGROUPS OF FRECHET DIFFERENTIABLE MAPPINGS 

2o0 Introduction 

In order to phrase the results of both this and the following 

chapter in as general a form as possible we introduce the following 

notion: for E € LCS , a map f : E E is said to be weakly-V^(E) 

if the map f : E E^ is Frechet differenriable, where E^ denotes 

the space E endowed with the weak topology, a(E, E) = Notice that 

this definition is more general than the definition -for weak 

differentiability given in [59] and [66], where the domain of f vias 

also given the weak topology. In the obvious way we also define 

weakly-P^Cff) , weakly-C^(ff) , etc, 

A space E € LCS will be said to have the property S if the 

dual of every separable subspace of E contains a countable total 

subseto Since the dual of a separable Frechet space is weakly 

sequentially separable [17, p^ 259, (5)] every Frechet space has the 

property S « 

The results in this chapter are essentially due to Yamamuro 

and appear in [50]o In that paper the results were phrased in 

Banach spaces with the property that weak sequential convergence 

implied strong convergence. The observations that Theorem 2.1 may be 

set in sequential LCS^s with the property 5 , and Corollary 2.1 in 

FA/-spaces, together with the generalisations in steps 3, 5, and 6 to 

arbitrary real numbers, necessary for Chapter three, are the author's 

sole claims to originality in the present chapter. 
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2.1 The main theorem 

We shall prove the following theorem: 

THEOREM 2„lo Let E he a sequential looally convex spaoe with 

the property S , Then i f (f) is an automorphism of 'O^iE) there is 

a bijeotion h of E such that h and are weakly-V^{E) and 

(()(/) = hfh~^ 3 for every f € i)^(E) . (1) 

Proofo 

1„ There exists a bijeotion h of E suoh that (1) holds. 

00 
Since a € C (ff) c VAE) , this is an application of Lemma 1.1. a r 

From this point the method of proof must differ from that 

employed by Magill in Theorem 1.1. For locally convex spaces of 

dimension greater than one it is now known that there exist 

homeomorphisms which are not even Gateaux differentiable at a single 

point. The following example of such a function is due to Dr S. 

Swierczkowski and Professor Jan Mycielski. 

Suppose E ^ LCS has dimension greater than one. Then we may 

find non-zero a € E , a iE such that (a, a> = 0 . Let 

a : R ^ R be a continuous function which is nowhere differentiable. 

Then the mapping 

f i x ) - X -T QL{{X, a))a 

is a homeomorphism of E which is not Gateaux differentiable at any 

point. 

In brief, the proof runs as follows. With {e^} ^ (c^] , a 

calculation similar to that in Rolle's theorem enables us to show 

that the sequence ^^n^ does not converge weakly to zero. 

0 ^ a ^ E , By exploiting the interplay between h and h ^ -we are 
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able to show the set i e ^h ^(e a w is bounded. From this we deduce [ n ^ n '' j 

the existence of a convergent subsequence, \e ^h ^ e a and use 
)) 

well known properties of the Dini derivatives to show the l i m i t , 

lim e ^h ^(ea) , ex i s ts . The Frechet d i f f e r e n t i a b i l i t y of hia ® a) 
e-»-0 

readily fol lows and the proof is completed by deducing the weak 

d i f f e r e n t i a b i l i t y of h . We divide the remainder of the proof into 

nine steps. 

2. Let X be a real-valued function of a veal variable. If 

(i) X(0) = 0 ^ 

(ii) \ is continuous, 

(Hi) there exists a sequence {e^} € [e^) such that 

->0 for any n € R ^ 

then X E 0 . 

For arbitrary ri , consider the function 

y ( ? ) = A(Cn) - a c n ) , 

which is continuous and for which y(0) = y ( l ) = 0 . Then we can 

f ind an € (0, 1) at which y takes a re lat ive maximum or 

minimum value. Supposing, without loss of general ity , i t i s the 

former, then f o r large values of n , y(£ i e ) 5 . Hence, \j r I U 

o r . 

Thus A E 0 . 

In steps 3, 5 and 6 we wi l l prove results valid f o r any real 

number ? , even though i t w i l l not be unt i l the next chapter that 
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the cases other than f o r 5 = 0 w i l l be needed. 

3. For any non-zero a E ^ any 5 ^ R ^ and {e^} i (c^) j the 

sequence • e^^ [/j ( 5 a + e ^ a ) | does not converge weakly 

to zero. 

We f i r s t show the result f o r 5 = 0 . Assume we can f ind a non-

zero a ^ E and n i (c ) such that lim a) , a;) = 0 , 

f o r every x i E . We shal l show that f o r Cj H ^ R j 

lim /z ( C a + e ^ n a ) , = 0 , f o r any x ^ E . 
n-^ 

(2) 

so 

With n i '^p(E) the l inear mapping a; na; , we define f € 

^Y f - + 11 • Then /(e^"^) = 5a: + , and / (O ) = 5a , 

- I r 

= ( f ) ( / ) ' (0 ) Ch[ea] n ^ n 

Since ({>(/)'(O) ^ L(E) i t fol lows that 

+ e n <P(f), 0, e n e a] n ^ n 

lim ( ( } ) ( / ) L x ) = 0 , 
n->«> 

f o r every x ^ E . Every weakly convergent sequence i s bounded, so 

j e ^^[e a] [ n ^ n \ 
then gives that 

i s bounded. Frechet d i f f e r e n t i a b i l i t y of (Ĵ C/) at zero 

lim 0 , h[e^a)] = 0 , 

which completes the proof of ( 2 ) . 
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The function X— : R R , defined by X-(C) = </^(^a), ic > , for 
cc cc 

5 € R , ^ ^ F 5 is continuous by Lemma 1.2 so evidently satisfies 

the three conditions of step 2. Thus X— is identically zero. 

CC 

Since x € F is arbitrary, = 0 for all ? ^ R . But h is 

one-to-one, so we reach a contradiction. Now suppose we can find an 5 6 R and a sequence n 

such that 

lira (e a ] - h { ^ a ) ] , a:) = 0 , for every x ^ E , 

Using a calculation similar to that above we may show 

a) = a ] - U O ) 
V) ^ V, J n ^ ^ n 

"-1 

n 

Again, 

lim {^{l-o^^' [U^a)] x^ = 0 

for every x ^ E . Further, the set 

bounded, so the limit of the second term is zero. Hence the sequence 

converges weakly to zero, a contradiction, so the 

statement follows. 

F o r any a i E and any { e ^ } 6 (c^) j the '0' s e q u e n c e 

a) 
\ n ^ n 

is b o u n d e d . 

Assume there is a non-zero a i E and n i (c ) such that 

the sequence is unbounded. For some a i E , and 

taking a subsequence of {e^} if necessary, we have. 
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lim a) = +00 . 

Since (a ® a) C V.p(E) , (^(a <d a) € V^iE) , and 

c})(a ® a)' (0)(a) = lim e t̂t)(a ® a) fe a) 
n-x" n n 

= lim 
-̂>00 > J \ J ^ w 

Thus if 6 = (/z'̂ fe a), a), {6 } C , so lim 6~h[6 a] = 0 . 
n-^ 

This contradicts step 3. 

5. Given 5 € R and non-zero a i E ^ there exists an x^ ^ E 

suah that (j) [a ® Xr] 1-0 (5a)(a) ^ 0 . 
h ^aa)-

Suppose there exists an C ^ R such that for all x i E , 

(a 0 x) - 1 (5a)(a) = 0 . 

Take a sequence {6^} € (cq) such that ^ 0 , any n , and let 

M be the set of all x i E such that the sequence 

h a;̂  • contains infinite non-zero members. If 

then the sequence ^ ^ ( C a ) , converges to X : M 

zero. If X ^ M we have 

0 = lim {a © x) 
n->oo " 

1-Q 

(3) 

where T = ^(Ca+6 ^(^a), x\ . Suppose the sequence 71 \ ri / 

does not converge to zero. Then there 
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is a subsequence n. and a :Y € R , y > 0 , such that 

f 
5a+6 a 

V I n^J 
rh' '^aa), x) 

Then by (3) the sequence T a n, ^ k 

> Y , every k . 

converges to zero, which 

contradicts step 3. So for any a; € F , the sequence 

converges to zero, again contradicting step 3. 

Note that if x satisfies 

(a 0 x) l-o (?a)(a) 0 , 

so too does i-x) . Since 

[a ® - 1 (Ca) 

= ct)(-i)' 4) 

(a © x) 

(a 0 x ) 

l-o 
^ h 

1-a 
h'^aa) 

4) (a 0 x) 1-a 
h'^i^a) 

(5a) 

(a 0 a;) - 1 

But c|)(-J)'(0) is a linear bijection, because 

4)(-i)'(0)(()(-I)'(0) = ct)(2)'(0) = 1 . 

6. For any u € E and {e } i (c ) there is a subsequenoe yx u 

n. such that the sequenoe -{e ̂ /j e a is convergent. 

We can assume a # 0 . For any 5 ^ R and the associated 

x^ ^ W it is evident from the equation 
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0 ^ (t> [a ® x^] l-o 
h 

= lim 6 H 

(5a)(a) 

that the function ^(^a), x ^ takes 

every zero-neighbourhood. If not cj) 

non-zero values in 

[a ® x^] 
- 1 

(5a)(a) 

- 1 has to be zero. Since h ix), a) is continuous in x , there is 

a sequence {6^} € (cq) such that 

So by taking a subsequence of {e } and replacing x^ by -x>. n c, c, 

if necessary, we can assume that 

(^h ^(^a), x^ = e^ , for every n . 

At the moment we need this only for 5 = 0 . In this case we have 

that 

0 <p[a e XQ] ' (0)(a) 

a] , a) . ^n-' 0/Jn ^ n 

By step H, the sequence , ̂ Q^ ' 

is a subsequence 

= lim 

is bounded, so there 

6 of {6 } such that the limit nj ^ n^ 

lim 6 \h ^ 6 a 
• k 

, aJQ / = a , exists. Certainly a is non-zero, 

since the sequence U-'h e a n, k 
is bounded, and 

cjila ® oTq) '(0)(a) # 0 , so the following limit exists: 

= ® x.]'{Q)ia) . lim £ \ £ a n, ' k 
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7. The limit lim e exists for any a E . 

With a i E non^zero and arbitrary a € E we will show that 

the function A : R R defined.by = a) is 

differentiable almost everywhere. By [50, p. 270] we must show that 

all of the Dini derivatives of X at arbitrary a € R are finite. 

Suppose the upper right hand Dini derivative is infinite at a € R . 

That is, 

-1 lim e X(a+e)-A(a) + = +0° . 

But for n 

e-̂ 0 

^ (c.) we have 

n n 

= (MO))] 

n 1 , 0, e e a] ^ aw' ^ ^ n n ^ n ^ 

Since ' (0) € LiE) and the set is bounded by 

step 4, the sequence formed by the first term is bo\inded. As 

^ ̂ p(^) "the same holds for the second term. So the set 

n n is bounded and hence so too is the set 

I X(a+e^)-A(a)11 whence the upper right derivate cannot be 

infinite. In a similar way the other Dini derivatives are shown to 

be finite. 

We now consider the existence of the limit lim e . In 
£->•0 

the light of the result of step 6, it will be sufficient to show that 

if {£ }, {6 } € and lim £ a] = a, , lim ^'^hU a] = a^ , ^ n' ^ n^ ^ n ^ n ^ 1 ' n ^ n ^ 2 ' 
-1, 
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then a^ = a^ . 

From step 4 it follows that h{^a) is continuous with respect 

to 5 at 5 = 0 . Using the translation map and the semigroup 

property we may transfer the continuity to an arbitrary point, show-

ing it to be a continuous mapping of the separable space R into 

E . The following argument is carried out in the smallest closed 

linear subspace, F , containing the set ihi^a) : 5 € R} and so is 

separable. 

Since E has the property S , F contains a countable total 

subset. That is, we can find enumerable a^ i F such that when 

{x, a".) = 0 for every i = 1, 2, 3, ... then x = Q . 

'X' 

Consider the following functions of C ^ R j 

X.(5) = <;z(?a), a. > , i = 1, 2, 3, ... . 
That each X^ is differentiable almost everywhere implies there 

exists an a ^ R at which all the A. are differentiable. That is, 'Z' 

the limit 

lim e~^[X.(ate)-X,(a)] , 

exists for every i . On the other hand we have, 

lim = ̂ l^+^oa^ ' (0) (^J > 
n-x" 

while 

lim = (j)(i+ĉ J ' (0) (a,) . n 

Thus 

a.) = <c})(2+cj'(0)[a2), a.) 

for every i , which implies 
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But = ^ so ^[l-o^^]' {0) = 1 , which 
oa oa^ 

means that ' (0) is injective. Hence a^ = a^ . We denote 

the limit, lim , by h^iQ){a) . 

e^O 

8 . For any a i E ^ a i E suah that < a , a > = 1 , 

h{a ® a) € V^{E) . 

For brevity we let M a ® a ) = h^ . We show h^ to be Gateaux 

differentiable at zero and that the Gateaux derivative is a Frechet 

derivative. Since a)a) it follows 

from step 7 that the limit as £ ^ 0 exists and equals 

<a;, a)h*iO){a) . This is certainly continuous and linear in x . 

For B a bounded set in E we must show that the remainder divided 

by £ , 

converges uniformly to zero on B . Clearly we need only consider 

X ^ B for which (ic, a> ^ 0 . Suppose the result false. Then we 

can find a zero-neighbourhood U , a sequence {a;^} c B and 

• £ } € (e^l such that 
^ n' ^ 0-' 

(X , a>rfe (a; , a)]~^h(e <x , ^a]-hHO)(a)] ^ U , 
n ^^ n n ^ ^ n n ^ 

for every n . But since the sequence i® bounded, 

a)} ^ (CQ] , so by step 7 we have a contradiction. 

We now show, for x € E , 

h'^ix) = a>cj/zj '(0) . 

With some calculation the expression. 
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may be shown to equal 

That <a, a> = 1 is used here, since only then do the maps {a ® a) 

and [l+<x, commute. But since h^ is Frechet d i f f e r en t i ab l e 

at zero and 4)(2+<a;, ^ the expression converges to zero 

with epsi lon, uniformly f o r y i B . Hence h^ € V^iE) . 

9. For any a i E ^ a i E such that < a , a > = 1 j 

(a ® a)h C V^iE) . 

f^lMa 0 a ) ] = h~\hia 0 = {a ® a)h € V^iE) . 

10. h is weakly-VpiE) . 

Since a Frechet d i f f e r en t i ab l e function is also Gateaux 

d i f f e r en t i ab l e and the der ivat ives coincide we have 

[ ( a ® a)hV(.0)ix) = lim e~\{a ® a)h(ex)2 
e-»-0 

= (a © a)hHO)ix) . 

Since f o r each a ^ 0 we can f ind an a ^ 0 such that <a, a> = 1 , 

i t fo l lows that h*iO) is l inear . Moreover any net 

convergent to zero in E is mapped by [ ( a © a ) ^ ] ' ( 0 ) to a net 

convergent to zero in E . Thus {^'^(O) (a;^] } converges weakly to 

zero, so h*iO) € L[e, E^] . We show h weakly Frechet d i f f e r en t i ab l e 

at zero. Since (a ® a)h € ^pi^) we have 

e~^[ia ®a)hiex)-[ia ®a)h]'{0)ix)] = { e~hh(ex)-hHO)ix)l, a)a 

uniformly convergent to zero f o r x in any bounded set in E . But 

this i s true f o r a l l a , a such that <a, a ) = 1 , so h i s weakly-

V„(E) . As before in step 8 we may move this point of weak d i f f e r e n t -
t 

i a b i l i t y to any other point and the theorem i s proved. // 
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The Montel spaces form a class of arbitrary dimensional locally 

convex spaces which are barrelled and have the property that every 

bounded set is relatively compact. Note that when such a space is 

also normed it is necessarily finite dimensional. A Montel space 

which is also a Frechet space is termed a Frechet Montel space, [17, 

p. 369]. We prove, 

C O R O L L A R Y 2 . 1 . If E is a Freahet Montel space, V^iE) has 

the Magill property. 

Proof. By the theorem we have a weakly-I?^(£') bijection h 

associated with an automorphism (j) of V„(E) such that 
r 

Hf) = hfh~^ , for every f € V^iE) . 

Since E is bornological L[e, eJ} = LiE, E) so the weak Frechet 

derivative at zero, h*{0) , is an element of L(E) . Now suppose 

e ^lhiex)-h'^(O)ix)^ does not converge to zero in E , uniformly for 

X in any bounded set. Then there is a zero-neighbourhood U in 

E , a bounded set B , a sequence {e^} € (CQ) and a sequence 

c B such that X 
n 

e ^r^fe X x ll U , for every n . 
n ^ ^ n n-' ^ n n'-^ ^ ' ^ 

But every weakly convergent sequence in a Montel space is strongly 

convergent to the same limit, which contradicts the theorem. The 

strong differentiability may be moved to any other point to complete 

the corollary. // 

Note that the properties of the Frechet Montel space E used 

were that 

(i) E has the property S ; 

(ii) E is bornological; 
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(iii) weak sequential convergence is equivalent to strong 

convergence. 

In particular the result holds for all finite dimensional Banach 

spaces and for the infinite dimensional Banach space Z^ . See [10, 

p. 295]. 

If we replace V^ by V^ the arguments of the theorem remain 

valid provided weak sequential convergence implies strong convergence 

(see step 3). Hence V^it^) also has the Magill property. 
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CHAPTER THREE 

SEMIGROUPS OF MANY TIMES FRECHET DIFFERENTIABLE MAPPINGS 

3.0 Introduction 

It was pointed out in Chapter one that to show every automorphism 

of a semigroup of differentiable functions is inner is tantamount to 

showing that the algebraic and topological properties of the under-

lying TVS are wholly determined by the algebraic structure of that 

semigroup of functions. In view of this it becomes of interest to 

find smaller semigroups of functions on FM-spaces which still retain 

the Magill property. Consequently we turn our attention now to the 

semigroups VpiE) , fe € N , E i LCS . 

In order to obtain a theorem for such semigroups parallel to 

that in the previous chapter we must restrict ourselves to Frechet 

spaces. With a little additional effort we shall find corresponding 
k 

results for the semigroups C {E) , /i € N . The contents of this 

chapter have been submitted for publication in [59]. Before 

proceeding to the main theorem (Theorem 3.1) we pause to obtain a 

certain property of the mth Frechet derivative. 

3.1 Preliminary results 

Let , F i LCS . By LJ(ff̂  x ... x ff^, F) we 

shall mean all jointly continuous m-linear maps from ••• ^ 

into F , while i-S [s^ x ... x E^, F] will refer to the correspond-

ing family of separately continuous maps. It is readily shown that 

the inclusions. 
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X ... X E^, F] c F] 

c X X E^, F] 

are valid at all times. For Theorem 3.1 we require to show that 

elements of JL are jointly sequentially continuous elements of LS . 

When Tn - 2 and Frechet spaces, Kothe has shown 

in [17, p. 172, (3)] that LS = LJ . This may be generalised to 

m-linear maps in a straightforward manner, so that the desired result 

follows in the special case when E^, ..., E^ are Frechet. Since it 

is hoped that the main result of this chapter may be capable of being 

generalised to a larger class of LCS^s we obtain the more general 

result. 

In the following natural way we may associate with every element 

u of the space i-̂ S"̂ , •••} . ... , E^, F € LCS , 

a map u in x ... x f) : we define 

for X. ^ E. , -i = 1, m . For simplicity we consider only the 
1' % 

case where m = 2 . 

RESULT 3.1. Let B^, B^ be bounded sets in E^ ves-peot-

ively, and u^ ^ u^ in L[e^, f]] . Then [u^-u^] [x^, x^] 0 

in F J uniformly for x^ B^ , x^ ^ B^ . 

Proof. Given a zero-neighbourhood U in F , let W^ ,, be 

the zero-neighbourhood in i-(£"2' given by 

• t ( L{e^, f] : t{B^} c uj . Then there is an € N such that 

n > n^ implies (M^-^Q) [b^] C , or 
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RESULT 3.2. If u 6 f ) ] then u : ^ F is 

seqvjentially oontinuous. 

Proof, Let x^ x^ in , y^ in . Then 

Every convergent sequence i s bounded so the expression converges to 

zero as n ->• °° , by the method of the previous result . / / 

RESULT 3.3. The evaluation mapping from 

F]] X (s^ X E^) 

into F is sequentially oontinvious. 

Proof. Let \ ^ \ in L (ff^, L [^2, , ^^ ^ 

and y^ ^ y^ in E^ . Then 

Convergence to zero of the f i r s t term follows from Result 3.1 and of 

the second term by Result 3.2. / / 

For arbitrary values of m an expansion corresponding to that 

used in the proof of Result 3.2 may be readily obtained by induction. 

COROLLARY 3.1. Let f € c'^(E) ^ E i LCS , m ^ W , and 

3.2 The main theorem 

We proceed to the proof of the fo l lowing: 
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THEOREM 3.1„ Let E be a Freohet spaoe. Then if (j) is an 

automorphism of V^iE) there is a bioeation h of E such that h 

- 1 k and h are weakly-V^{E) and 

Hf) = hfh~^ 3 for every f € V^^(E) . (1) 

Proof, 

1. There exists a bioeotion h of E such that (1) holds. 

This is again an application of Lemma 1.1. 

It was pointed out in Chapter two that the elegant method of 

Magill used to show h once d i f ferent iable i s no longer applicable 

when the space has dimension greater than one. A further d i f f i c u l t y 

is encountered in the present situation. Even in the case where 

= R , the derivative of the map h is everywhere f i n i t e , and 

[h^]'[h{x)]h'{x) = 1 , for a; € R , 

so that h'(x) # 0 f or any x . Hence h' is certainly not a 

b i j e c t i o n , with the result that the method cannot be used in 

advancing to derivatives of higher order. 

2. For any a W the funotion <h(x), a> of E into R is 

continuous with respeat to x i E . 

Since d i f f e r e n t i a b i l i t y implies continuity in a Frechet space, 

this is a consequence of Lemma 1.2. 

3. /2(a ® o^ € V^iE) for every a i E , a iE such that 

< a , a > = 1 . 

As before we let hia <S> a) = h^ , and also h~^{a <Si a) = h^ . 

The proof i s by induction. By noting that the constant map a^ , and 

— k the one-dimensional map ia ® a) , belong to 'OpiE) , the case k = 1 
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follows as in Chapter two, steps 2 to 8. Now we assume h^ € , 

1 5 m < /c , and show h^ € V^'^^iE) . 

This reduces in essence to showing that the limit 

£^0 L ̂  -L 

exists. For this we are led to consider the differentiability of the 

real-valued functions of a real variable, 

A ^ O = (af, x^ , for each x ^E . 

When m is odd we are able to show that for {e^} C (cq) the 

sequence e V n '"^(oa+e a]iaf-h\'"\aa-e a]iaf n ^ n 
is bounded, for 

a € R . Using a longstanding result of Khiiitchine [16] it is then 

shown relatively readily that the X — are differentiable almost 
cc 

everywhere. Yet in the even case pursuing a similar path with the 

sequence 
'n (oa+e^a] [oa-e^a] iar-2h[^\aa)(af 

, (m) 

and using a result of Zygmund [58] yields only the finiteness of the 

Dini derivatives of each X— on a dense set ih R . With more effort 
X 

differentiability almost everywhere does follow and the method of 

the odd case takes over. Regretfully the calculations are necessarily 

lengthy since we are constantly dealing with expansions of higher 

order derivatives of composition functions. Firstly, we show 

3.1. is aontinuous with respeot to C ^ R 

If {e^} € (c2Q) , is equal to the limit 
lim e - 1 

n 
m-1 , (m-1)^ sm-1 
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By a result of Banach, [3 , p. 397] such a l imit function is 

continuous on a dense set . Suppose that a is such a point of 

continuity and 5 i s an arbitrary real number. Then i f 

sTn (Catena) (a)" = ' J (aa«„a)J (a)" 

That <a, a> = 1 is used here, again to ensure the commutativity of 

the maps (a © a) and (-^"^^^-aa^ • Using the expression given in 

[1 , p. 234] f o r the expansion of a higher order derivative of a 

composition function, i t is evident that the last term converges to 

as e^ tends to zero. Hence is a continuous function 

of ? . 

As in the previous chapter we have the following pair of 

resul ts : 

3.2. Given a 0 in E , and {e^} e (c^) ^ the 

sequence does not oonveipge weakly to zevo. 

3.3. Given 5 ^ R ctnd non-zer>o a ^ E ^ there exists an 

x^ ^ E such that 4> [a 0 x^] l-o (?a)(a) ^ 0 . 

For f ixed ? ^ R we l e t 

= {n € R : (a ® arJ l-o 
h ^(na) 

(Tia)(a) # . 

We show ^(x^) is open. Suppose ri € '̂ '(ic^) , then 
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h^ [a ® x^] l - o 

h'^im) 

(na)(a) 

= (j) [a ® x^] l - o 
h ^(na) 

(ria)(a) , 

since (a ® a) (a ® x^} = (a ® x ^ . 

So < h'^(r\a)(a), ^ 0 , By 3.1 this is a continuous function 

of ri, showing ^(a;^] to be open. 

We are now in a position to show h , but must deal 

with the odd and*even cases separately. 

3 . M - . Case where m odd. 

We show for arbitrary x i E that the continuous map A— , 

cc 

defined at the beginning of step---three, has the property that 

- i R 
lim sup 
£->0 X X 

< 00 

f or every 5 ^ R « 

3 .4 .1 . For any sequence {e^} 6 (cq) ^ the set 

is bounded. 

With x^ the functional associated with 5 = 0 , as in 3 .3 , 

and arbitrary {6^} € (cq] , consider the expression 
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= lim 6 
n-Hio 

= lim 6 

0 

- 1 

'n 

- 1 

m 

I lo. 
l<q<m m 

(i ) 

r (ii) 
h^ " (0)(a) 

• [i ] i 
h^ ^ (0)(a) ̂  

The second summation is over all q-tuples of positive integers 

i^, ... , , such that ~ ' ̂ ^^ t̂n ^^ integer 

coefficient. We may now write down a similar expansion for 

(^[a ® x^a ® a 

(j)(-a ©x^ja® a , and show 

\ • 

= lim 6 
n-xo 

- 1 
n 

a,] 
t I I a^ ® h^ ^ (a) ̂  
lSq<m 

(i) i , 

I {i] 
k " ' 
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f, ̂ ^ J 
h^ ^ (0)(a) 

( O 
. (2) 

We wish to show that the sequences formed by the terms within 

the double summation are bounded. If q is odd the term becomes. 

5-1 
n 

(a 0 ) > (fĉ  ) - (a ® ) (-h^ ) 

2 ^ n 

-1 

(i ) i 

h (q) h (q) 

if ^ Q ^ - 0 J expression vanishes. By noting 

that converges, , ^ (cq) , i 

Frechet differentiable, and is continuous in ? , it 

is evident that the sequence converges. 

If q is even, by adding and subtracting a suitable term we 

have, 

since ij 

s-1 
n 

(h^ (a ® XQ] ) ̂ ^ ̂  [h^ iS^a]) t (a 0 ^Q) ] ̂ ^ ̂  {-h^ [S^a] ] 

h^ ^ (6^a)(a) ^ 

h^ " (0)(a) 
[ i ] i . 

h^ ^ (0)(a) ^ 

Convergence of the first term follows in a manner similar to the 
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case where q is odd, while the second and third terms may be 

rearranged as, 

n 
s-1 
n 

iO L ii) t 
h 1 (6 a} (a) (0)(a) 
2 ^ n ^ 

s-1 
n 

(6 a) ( a ) V l _ (OXa)''^-^!] 
2 n '' 2 . . W 

. s r nr ("^J ("̂ n) 

(i ) i ^ 
(0)(a) 

(^0 
Since < m , j = 1, q , ^^ Frechet different-

iable and so a fortiori Gateaux differentiable. Moreover, by Result 

3.2, 0 Xq]] ̂ '^^(O) ifl ̂  E is continuous, so convergence with 

n follows. This technique for showing convergence will be used 

frequently, but elsewhere we shall refrain from presenting these 

detailed calculations. 

The first term in (2) is 

- 1 

h 
(m) (a) 

m 

Recall that , * ^ and that given {e^} ^ (c^) 

there is a sequence {6. } € [c ) and a subsequence je f 
n 

such that 



41 

(h , ̂ Q) = , for- every k . 

Hence we can conclude that given n (i (CQ) there is a 

subsequence e > such that the set 

'n. h 
(m) e a -e a 

• "fe 
(a) m 

is boionded. Immediately we have 3.4.1o This property is now 

transferred to an arbitrary C ^ R • 

3.4-.2. For any sequenoe n € [CQ] J and ? ^ R , the set 

'n 

Consider 

m is bounded. 

n 
m Am) 

= e "n 
(m) 

= e - 1 

~n 1 1 

• [i] i 
\ ^ M ( a ) ^ 

• {i ] i 

In order to show the boundedness of the sequence formed by the 

term appearing when q = 1 we rewrite it as 

' ' (0)] M 
' '(0)] (a) .m 

m 
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We may assume k > 2 , so boundedness fol lows for the f i r s t pair 

of sequences since " (0 ) 6 L[E, L(E)] . From 3.4-.1 i t 

follows that the third sequence is bounded. Decomposing the term 

formed for 1 < q "S m < k in a similar way shows that i t too forms a 

bounded sequence. 

As was pointed out in Chapter two, step seven, no loss of 

generality is suffered i f at this stage we assume E to be separable. 

A result in [17, p. 259] then gives that E is weakly sequentially 

separable, which means that every element of E is the weak l imit of 

a subsequence of a f ixed sequence, { a . } of elements of E . Notice 

ly 

that such a set i s also t o t a l . We now show 

3.4-.3. For some a € R the limit 
im ( e - ^ lim 

£->0 

existsj for every i = 1, 2, . . . . 

Recall that each X. = X— is continuous, while from 3.4-.2 i t 

follows that 

lim sup 
e-̂ 0 

- 1 < 00 

f or every ^ € R . An early result of Khintchine [16, p. 217] shows 

that this i s s u f f i c i e n t for each X̂  to be d i f ferent iab le almost 

everywhere. We deduce the existence of an a ^ R at which each of 

the fimctions X. is d i f f erent iab le . Coupled with the fo l lowing. 

this enables us to show that the l imit 

- 1 lim e 

ex is ts . 

3 .4 .4 . Given n i (cJQ) there is a suhsequjenae | such 
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lira e a , .m 7 im), .m (a) -h^ (0)(a) J exists -̂>00 _ 1 that the limitj lira e -̂>00 r 

Although the inductive assumption was that h^ € V'^(E) we may 

also assume h ^ T^iE) , since any property true of h can also be 

Z r 

shown for h . In .fact we have continuous in 5 . 

With XQ as before, and ^ € R , we examine the expression 

4) L V. 
(a ® a)(a ® a; ] l-o 

h'^i^a) 
(a ® a) 

(m+1) 
(?a)(a) m+1 

For {6^} ^ (gq) , this is the limit of the sequence with nth term 

(m) 

n l-o 
h 

m 

im) 1 
l-o 

im) 1 

Z 4 -

which with some computation may be shown to equal. 

5-1 n h im) [<h'^aa){a), x^ya]"" 

+ 6 

-h 

-1 

n 

(m) 

h (m) 

+ 6 - 1 
"n 

(f _ 

^l<q<m 
2-c 

h 

(i ) i . 
h^ ^ (a) ^ 

h^[a 0 Xq] 1-a 
(q) , 

[h^iKa)] h^ ^ (?a)(a) 

( [i ] IV 
h^ (5a)(a) "̂ Jl 

I' ^ 



(a) . 

Firstly, assume m > 1 . When suitable terms are added to and 

subtracted from the general term of the second sequence, the scalar 

coefficients taken out, and the continuity result of step 3.1 

applied to the remainder, the second sequence may be shown to converge. 

By fixing q in the third sequence, again adding and subtracting 

suitable terms, and observing that i . < m , j = 1, ... , so that 
J 

h^ is Frechet differentiable, we are able to use the fact that 

differentiability implies continuity when the first space is 

sequential to show that the third sequence converges. Thus the three 

central terms form convergent sequences, as does the final term for 

all £ 

in a set of full measure A , by the iresults of S.M-.S. 

Choosing 5 ^ '̂ '(̂ n) ^ we are then able to tind a subsequence 

n. of {f n for which the limit 

-1 .im) lim e. n. K e a (a) m 
k-*o° k L 

exists, since i , x^) ^ 0 . Note that when m = 1 only the 

final pair of sequences remain and the proof goes through as before. 

-1 3.4.5. The limitJ lim e 
e-̂ 0 

m 
exists. 

In view of the conclusion of 3.M-.M- we must show that if 

[<5 J e n-* ^ [cq) and 

lim e 
„->oo 

- 1 

'n 
m ,im), - a 1 ' 
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lim 6 
n-

- 1 

n 
m Am), 

= a, 2 ' 

then a^ = a^ . Now with a as in 3 .4 .3 , 

'n 

+ J ' ' (0)] M 
r ( [i] i 

+ I fe a ] ) K (e a ) (a ) ^ 

[ i ) i 1 
\ " (v) ' 

' [i ] i 
h^ (0 ) (a ) 

All but the f i r s t term on the right hand side converge to a 

value independent of the sequence {e^} € ((3 )̂ . Hence, by 3 .4 .3 , 

a.> = a.) , 

for every i = 1, 2 Since {a^} is to ta l and 

is one-to-one, we have ~ ^2 " 

3.5. Case where m even. 

Due to the fact that 

[h^.-i]^^^ {za) ia )^ , for m even. 

-[h^.-l]^'^^ { z a ) { a f , f o r m odd, 

we are led in the even case to examine a second order di f ference 

quot ient. 

3 .5 .1 . For {e^} € [cq) j the set 

'n 
,(m) 
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is bounded. 

As in the odd case we calculate 

and ^[-a ® a ® a ^^^ find that their sum is. 

for {6^} € (cj , 

h 
im) 

- 1 

(a) 
m 

+ 26 
- 1 

'n 

f, (-l) + I I a ( ^ ^ ^ J J ^ ' ^ ^ k ^ ^ S a) K 
^ m n ^ ^ ^ n 2 ^n^ 

l<q<m V ^ V 

iO t 1 

\ J \ . 

h^ " (0)(a) 

• [i] i 

h^ (0)(a) 

Since m is even, h]^ is Frechet differentiable so the middle 

sequence converges. The term within the double summation is 

identical to that in S.H.I where it was shown to give rise to a 

bounded sequence. Again, x^) 0 , allowing us to 

conclude that given {e } € [c^) there is a subsequence •<£ such 
n u n^j 

that the set 

'n. 
h 
(m) 

e a -e a 
V 1/ J 

is bounded. Then 3.5.1 follows. 
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3.5.2. For {e^} € (cq) , coad ^ ^ R ^ the set 

a) (Ca-e a] iaf-2h\'"\ia)(af fl -L Tfr X n 

is boimded. 

Using the translation map, [l+c^^) , and the technique of 

3.4.2 we can show the above expression is 

(m)r ^/ ^m 
'n 

m 

+ e - 1 

~n 

X 4 

h^ ^ (0)(a) h^ (D)(a) 

r ( O ^ ̂  

1 

Boundedness of the sequence formed by the first term in this 

expression follows since we may rewrite the term as 

^-1 
"n _ 1 ^ n ^ 1 ^ n 1 

+ e 

n 

- 1 

n 
.m 

' ' (0)] (-e^a] (a) 

We use 3.5.1 and the fact that c|)(i+c^J"(0) € L(E, L(E)] . 

Twofold application of the procedure of 3.4.2 shows boundedness for 

the sequence of terms within the double summation. 

In the terminology of Zygmund, [68], the continuous functions 

A. , i = l , 2 , . . . have tke property A on R . That is, "Xf 

A.(5+e) + X.(?-£) - 2X.(5) = 0(e) , ? € R . % % 
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As indicated in [68, p. 55] this is insufficient to ensure the 

differentiability of A. at even a single point. However, it does 

mean that the set of points at which all four Dini derivatives of 

are finite is everywhere dense. 

3.5.3. Given {e^} i (cq) , the set 

is bounded. 

The calculations of 3.4,4 suffice to show that if {6^} i [ĝ ] , 

and the set s-i n is bounded 

in R , then so too is the set 

- 1 

« ' * 

K (a) m 

in E . Choosing 5 to be in the dense set in which all four Dini 

derivatives of A— are finite, as well as in the open set ) , we 

deduce the existence of a subsequence } of e • n' 

set <e - - 1 'n. 
U . ) e a _ 1 L n^ 

for which the 

is bounded. Immediately we 

have 3.5,3. 

3.5.4, Given n ^ [cq] 3 ^ ^ R , the set 

is bounded. 

Since the above expression is equal to 
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n<m L. V 2<qsm 

h^ " (0 ) (a ) 

[i] i . 

h^ (0 ) (a ) 

the result follows from 3 .5 .3 , atid standard niethods. 

3 .5 .5 . For any i = 1, 2 , ... j X. is diffeventiable almost I' 

everywhere. 

If {e^} ^ (c?Q) we have that the set 

is bounded, any ? € R , any i = 1, 2, . . . . Thus a l l four Dini 

derivatives of A. are f i n i t e at every point in R , so by [50, ly 

p. 270], A. i s d i f ferent iable almost everywhere. Following the 

argument of the odd case from here leads to the existence, in the 

even case a l so , of the l imit 

- 1 lim e 
£->•0 

We ca l l this h (m) 

h^ '{za){a) -h^ (0 ) (a ) 

3 .6. h^^^ is Freahet differentiable. 

We begin by showing 

h im) 

which is certainly an element of L fg, . . . , 1(g) . . . ) which we 
m+1 

abbreviate to e] . Thus w i l l equal 
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(x, a) h 
(m) 

We have to show that for each bounded set B in E 

- 1 
- ( X, ^ h 

(m) 

is uniformly convergent to zero for x ^ B . Since 

the expression is zero if <j:, a> = 0 . So we need consider only 

those X for which (x, a) # 0 . Suppose the result is false. Then 

< X, a) 

h 
im) 

does not converge to zero uniformly for x ^ B . Hence we can find a 

zero-neighbourhood U xti E , 

1 I m 

n 
C [a A , [x ] c. B . and bounded V. o-* ' I n.-* 

sequences X 
n 

, ... , -{xy , such that 

a\ ... (x"", a^x , a) [e<x , <x , a)a](af 
\n / \n' / n' / n n ^ [ 1 ^ n n' ^ 

h 
im) I U , 

for every n . But the sets '̂ /l bounded, i = 1, m , 

h im) and {e <x , a)] € [o^] so from the definition of 
^ n n ' ^ 0-' 

we have a contradiction. We now show 

which certainly exists in 
e] , since we have shown h i 

Frechet differentiable at zero. Given a bounded set B in we 

must show 
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-1 h^^^ ix+ey)^ic)- [cj) (l+, a>c J/z J ' (0) (ey) 

- 1 

1 (m+l), 

= e 

converges to zero uniformly for y in B . As before it is evident 

we need consider only those y in S for which ( y, a) ^ 0 . But 

the above expression is 

<2/, a) (e<2/, , a)a) 

which converges uniformly to zero for y in B . Hence 

h^ ^ Vp'^^iE) , so by induction, h^ € V^iE) . 

4. ,(a ® a)h e V^iE) , fov all a, a suoh that <a, a> = 1 . 

Since h{a ® a) € it follows that 

f \ U a ® a)] = h ~ \ U a ® a m = (a ® € V^iE) . 

5. is weakly-VpiE) . 

The proof is by induction. The case k = 1 was treated in 

Chapter two. Now assume h is weakly-P^Cff) , some m , I < m < k . 

Unless otherwise stated L(a ® and will 
(m) refer in this section to strong mth Frechet derivatives, while h 

will denote the weak mth Frechet derivative of h . Note that since 

LiE) and /-(ff, E^] are equal as sets, strong differentiability 

implies weak differentiability and the derivatives coincide. 

5.1. h^^^ is Gateaux differentidble at zero. 
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(w+1), With a, a as before, h^ (0)(a) exists and equals 

lim e 
e->-0 

- 1 iO) , an element of ^ e] . But this is 

lim , an element of 

l[E, E^) ...) = if/', E^ ' 
m 

since the topology on -̂(£"5 E^ is weaker than the topology on 

1{E) . We denote this limit by [/ẑ "'̂ } *(0)(a) . 

5.2. (/^^'"VCO) ^ ^W \ V 
It is readily shown that if {5 } is a net in lW, E. Ct \ zo then 

S^ converges to zero in L e!", E if and only if (a <8) a)5 w 

converges to zero in L bT, E W , for every a, a such that 

< a, a > = 1 . Now 

[(a ® = lim ® a)h] ® a)h] 
£->0 

in e] 

e^O 

in w 

= (a ® , 

using the 'only if of the above result. Since for non-zero a we 

can find non-zero a such that <a, a> = 1 , it follows that 

(0) is linear. Any net convergent to zero is mapped by 

[(a ® iO) into a net convergent to zero, so using the 'if 
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direct ion of the result gives € L E^ 

5.3. h^^^ is weakly Freohet differentidble. 

We show this property at zero. Let 

0, y-] = - h^'^ho) - [h^^^^iO)iy) . 

We require that e h}"^^, 0, zy_ should converge to zero in 

ET, E w uniformly for y in any bounded subset of E . Suppose 

this i s f a l s e . Then there exists a sequence {e^} € [CQ) , bounded 

sequences 'n [y^] i 'ii/j^f) i = 1, ... i rn , and a i E , such that 

\ n h^^'K 0, e y 
l ' m 

• • • 

S. > CI 

does not converge to zero with n . But [ ( a 0 is Frechet 

d i f ferent iab le at zero, so for any bounded sets B, B. , 

i = 1, ..., m in E , 

converges to zero in E , uniformly for y ^ B ^ y € B. , 

i = 1 , . . . , m . That i s , 

0, . . . ( / ) , a ) 

'V converges to zero uniformly f o r y ^ B ^ y , i = m ̂  

a contradiction. We may use a method similar to that in 3.6 to move 

this point o f weak d i f f e r e n t i a b i l i t y to any other point , so completing 

the proof of the theorem. / / 

Corresponding to the corol lary of Chapter two we have: 

COROLLARY 3 . 2 . If E is a Freahet Montel spaoe, V^(E) has 

the Magill property. 

Proof. We use induction. The case k = 1 fol lows as in the 
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previous chapter. Assume h € V ^ i E ) , some m , 1 < m < k , and 

ClTl^ 
suppose h""^ , the strong mth derivative, does not have Frechet 

derivative at zero given by . This is the weak Frechet 

derivative at zero of the strong mth derivative of h . Then there 

exists a neighbourhood U of zero, bounded sets B , ..., B^ , a 

sequence {e } € (<3 ] and sequetioes {i/ } B » \ ^ » 
Yl ^ Yl \ Yl J ly 

• v j y ••• k ) * " • i = 1 , . . . , m such that e^r 

every n . Using once again the fact that every weakly convergent 

sequence in a Montel space is strongly convergent to the same limit, 

we contradict Theorem 3.1. // 

3.3 The semigroup C 

We now show that parallel results hold for the semigroups of 

many times continuously Frechet differentiable maps. 

THEOREM 3.2„ Let E he a Fvedhet spaae. I f (j) is an 

automorphism of there is a bijeation h of E such that h 

- 1 k and h are weakly^C (£") and 

= hfh~^ , for every f e C^iE) . (3) 

Proof, As usual, there exists a bijection h such that (3) 

holds. Moreover, for a pair a, a , < a , a > = l , w e have 

— k 

h^ = h(a © a) ^ • We now show 

1. h^ € C^(E) . 

Suppose 
, e] is not continuous at x i E . 

(k) r ^ ik) 
Then we can find a sequence x x such that h^ [a ] —^ h^ (x) n 1 ^ n*̂  1 
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That i s , there exist bounded sequences 

E , and a zero-neighbourhood U in E such that 

X n , each in 

X n X n X n i u , 

for each n , or 

a)] . . . 5")] a>a)(a)^ \ U , 

(k) k for every n € N . By step 3,1 of Theorem 3 .1 , h^ (^a)(a) is 

continuous in 5 j and since the sequence bounded, 

i = 1, k , we reach a contradiction. 

2. (a ® a)h = f\h(a ® a)l € C^(E) . 

// 

As before we can show h is weakly-P^CE) . To complete the 

proof we show 
rC 3. h is weakly-C (E) . 

(k) Suppose H^ : E L E w is discontinuous at x i E . 

Then there is a sequence x^ ^ x , bounded sequences 

in E , and an a ^ E such that 
> " 

k 
X n 

• • • • • • 

1 n. n 
> y 

n x 

IS does not converge to zero. But [(a 0 a : E - E] 

continuousi a contradiction. / / 

COROLLARY 3.3. If E is an FM-spaae^ every automorphism cj) 

•h 
of C (£•) is inner. 

k ik) Proof. As before, we have h € 'O-piE) . Suppose h is 

discontinuous at x ^ E . With x^ ^ x , n I n as above 
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we have the sequence 

ik) K) • • • 

f > 

f ^ X - ^ ( " U ) • • • 
n \ J 

- ^ ( " U ) 
n, 

X 
n 

not convergent to zero . But by the theorem th is sequence i s weakly, 

and there fore s t rong ly , convergent to zero s ince we are in Montel 

space. / / 
00 

Note that a s imi lar treatment of the semigroups > and 

oo ^ 

C {E) , of i n d e f i n i t e l y Frechet d i f f e r e n t i a b l e and i n d e f i n i t e l y 

continuously Frechet d i f f e r e n t i a b l e selfmaps o f Frechet Montel space 

r e s p e c t i v e l y , reveals that each of t h e i r autottorphisms i s inner. 
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CHAPTER FOUR 

A SPECIALISATION, CHARACTERISATION, AND REDUCTION 

4.0 Introduction 

This chapter is divided into four se c t i ons . In the f i r s t we 

give an a l ternat ive and far shorter proof that the semigroup 

has the Magill property. Whereas in the previous chapter th i s was 

achieved by elementary methods we show here that the problem may be 

arranged in such a way that a c l a s s i c a l theorem concerning 

d i f f e r e n t i a b i l i t y is appl i cable . The second sect ion i s devoted to a 

re interpretat ion of the automorphism problem in terms o f the 

S-categor ies o f Bonic and Frampton [ 6 ] , and a number of resu l t s in 

this d i rec t ion are given. We include a sect ion mentioning a number 

of unsolved problems, and conclude with a reduction of the semigroup 

automorphism problem to the group automorphism problem. 

4.1 The semigroup , again 

We present a d i f f e r e n t and b r i e f proof o f the fo l lowing r e s u l t , 

which i s to appear in [ 5 8 ] : 

THEOREM 4.1. If E is a finite dimensional Banaah space^ 

every automorphism <J) of C (E) is inner. 

Proof. 

1. As before we have a b i j e c t i o n h of E such that 

- 1 k <P(f) = hfh , f o r every f i C (E) . Since the weak and strong 

topologies in E co incide i t f o l l ows from Lemma 1.2 that h i s 

continuous. In order to show h C (.E) we rearrange the problem in 

the manner below. 
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Definit ion, A family : ? 6 R) of selfmaps of E i s 

said to be a one-parameter group i f 

= , fo r any n ^ R . 

Chernoff and Marsden in 1970, [7 , p. 1044, Theorem 1] , showed 

that i f E is a metric l inear space and ip(^)(x) is separately 

continuous on R x , then i t is j o in t l y continuous. In view of 

this the result of Bochner and Montgomery, 1945, [5 , p. 691, Theorem 

4 ] , can be stated as fo l lows: i f E is f i n i t e dimensional, 

a one-parameter group with separately continuous, and 

e C^(E) for each ? € R , then Ĵ : R x E E . is j o in t l y k 

times continuously d i f f e rent iab le . 

We define a one-parameter group of C selfmaps of E , 

, by = <l>ie ]̂ , ? € R . Continuity with respect to the 

parameter fol lows readily from the continuity of h(^a) with respect 

to 5 . We show that the k times continuous d i f f e r en t i ab i l i t y with 

respect to the parameter suf f i ces to give h in C (E) , by proving: 

/ 2. For a € R a > 0 ^ and x i E , —^ hiax) exists and is 
da 

continuous in a . 

Tedious d i f f e rent ia t ion shows that i f a = , y ^ E ^ and 

??? € N , then 

^ M ^ S ) = I a l e ^ ^ l ^ H o y ) (1 ) 

dr '̂=1 da 

providing we assume that these derivatives ex is t . The coe f f i c i en ts 

c ^ C N , r = m are given inductively by = = 1 while 
cT^ = + for 1 < r < m . The result is obtained using the 

r r r-1 

above and complete induction. 

When k = 1 , since is continuously d i f f e rent iable 

with respect to ? , we have the existence of 
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- e^ Hay) , 
where y - h (̂a;) , a = ,. Hence for a > o , exists. 

Since ^ is continuous in C , ~ ^ ^^^^^^ 

also continuous in C . Theorems 8 and 9 of [!15, p. 95] ensure the 

continuity in a . 

Assuming now that the result holds for all Natural numbers less 
! 

than some w € N , m < ?c , we may use (1) an4 the existence and 

a £ continuity in 5 of h[e y] to give the existence and continuity 
df 

(f in a of h(oy) for all a > 0 in an entirely parallel manner. 
doT 

If we let [e .} be the standard basis for £ = if̂  , 

[{e .} , {e .}] be a biorthogonal pair, and h. = h[e . <Si s .] , we may 

use an argument almost identical to that in the previous chapter to 

fe k show that h. € C (E) , i = .1, ... , n , and thus that h i C {E) . // "Xf 

Note that when k = 1 this result is included in [64]. Here it 

is shown that for the seniigroUp of C^ maps with bounded derivative 

on an arbitrary real Banach space every continuous automorphism is 

inner. When the space is finite dimensional every automorphism 

becomes continuous. 

4.2 The characterisation problem 

In Chapters two and three we gave proofs which showed that 

certain semigroups of selfmaps S(E) of a locally convex space E 

have the Magill property. These may be rewritten in a straightforward 

fashion to show that if cj) is an isomorphism between S{E) and 
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S{F) , then (f) may be represented as conjugation by some invertible 

element of S(E, F) , the "5-type" maps from E into F . If all 

maps are Hadamard differentiable then as outlined in Chapter one, the 

semigroup S(E) affords a topological and algebraic characterisation 

of the space E . This notion will be dealt with formally at the 

beginning of the next chapter. At present we devote ourselves to 

this more general problem of finding conditions under which a semi-

group of selfmaps will characterise the underlying topological vector 

space. If a topological characterisation only is required the 

question has a ready answer, (Theorem U.2) but for a topological and 

algebraic characterisation the problem is more difficult (Theorem 

4.4). 

We let liE) denote the set of all constant mappings from E 
f 

into itself, and T(E) the corresponding set of all translation 

mappings. We introduce the following idea, due essentially to Bonic 

and Frampton [6], but generalised by Lloyd in [20] to TVS's : 

Definition. An 5-category is a category S whose objects 

comprise all open subsets of all topological vector spaces. For any 

pair of objects U and V , the morphisms S(U, V) are functions 

from U into V with the usual composition as their product. We 

require that the following conditions be satisfied: 

SI: S{U, V) c C°(i/, V) for every U, Y ; i"(£), T{E) cz S{E, E) 

and 1{E, F) c S{E, F) for every S, F € TVS ; 

S2: if / € Sill, V) and W is an open subset of V containing 

f(U) , then f ̂  SiU, W) ; 

S3: if / € C°(i/, 7) and for each x ^ U there is an open set 

W with X € W cz U such that S(f/, V) , then 

f ^ S(U, V) ; 
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S4: if f^ € V^] and f^ ^ V^] then 

X e . 

Examples of 5-categories in topological vector spaces are 

C°, n C° , and n , € N , and C^ , fe € N in sequential 

locally convex spaces. Since the composition of Gateaux differentiable 

maps is not necessarily Gateaux differentiable, and j /c € N 

are not S-categories. Let supp f denote the support of the real-

valued function f . 

Definition. Let E € TVS and S be an S-category. E is 

said to be -S-smooth if given a ^ E and a neighbourhood F of a , 

there exists an / € S{E, R) such that f(a) > 0 , fix) > 0 for 

X ^ E , and supp f a V . 

For results on the smoothness of certain spaces, see [6] and 

[20]. For an S-category S we call the semigroup SiE, E), S(E) . 

In the terminology of Magill [33], an isomorphism (ji from S(E) 

onto S(F) is said to be induced by a homeomorphism h from E 

onto F if (j)(f) = hfh~^ , for every / € S(F) . Clearly if every 

isomorphism is induced by a homeomorphism then the semigroup does 

topologically characterise the space. We now prove: 

THEOREM 4o2. Let E and F be S-smooth to-pologioal vector 

spaces. Then every isomorphism (j) from S(E) onto SiF) is 

induced by a homeomorphism. 

Proof. With only a change in notation we may show there exists 

a bijection h : E F such that (j)(/) = hfh~'^ , for each 

f € S{E) , as in the proof of Lemma 1.1. We show the continuity of 

h at arbitrary a € E . Since F is /S-smooth, given a neighbour-

hood V of hia) we may find a 3 € SiF, R) such that 
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^ [ H a ) ] - 1 , eCcc) > 0 for a; € 7 , and supp 3 c F , Take some 

b ^ F , h hia) , and define g € S{F) by 

g{x) = ^{x)[b-Ma)] + Ha) , f o r x ^ F . 

Following the method of Lemma 1.2 from here gives the continuity of 

h . 11 

COROLLARY 4.1. Let E, F i TVS . Then every isomorphism from 

onto ) is induced by a homeomorphism. Conversely^ if 

E and F are homeomorphia^ C^ (.E) and c'^(P) are isomorphia. 

Proof.' E and F are completely regular [17, p. 14-7] and so 

C^-smooth. On the other hand, if h is a homeomorphism from E 

onto F then (j) given by cj)(/') = hfh~^ for each f € C^(E) is an 

isomorphism from onto c'^(F) . // 

I t fol lows that C^CS) , E ^ TVS , has "the Magill property. 

Corollary U.l is not new. In [33] Magill defined a class of 

topological spaces, E , to be ^-admissible i f every isomorphism 

from d^iE) onto C^{F) , where E, F ^ € , is induced by a 

homeomorphism. In a later paper [25] , he defines an S'^-space as 

fo l lows: 

Definit ion, A topological space Z is ah S'^-space i f i t is 

T^ and for each closed subset F of Z and each point p in X\F 

there exists a function f in c'^(Z) and a point y in X such 

that fix) = y for each a; in F and /(p) y . 

The main theorem of this paper shows the class of S'̂ ^-spaces to 

be S'-admissible. We are able to deduce that every TVS is an S^-

space, and hence Corollary 4.1, from Theorem 3 of the same paper, 

which states: every completely regular Hausdorff space containing at 

least two dist inct points which are connected by an arc is an -S'^-space, 
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It is of interest to note that in an earlier paper on the 

subject [32], Magill defined a further 5-admissible class of 

spaces, 5-spaces, in the following way: 

Definition. Let Z be a topological space and a; be a point 

of Z . An open set G containing x is an ^-neighbourhood of x 

if it consists of x alone or if there exists a continuous function 

f mapping cl G into X such that fix) ^ x , but fiy) = y for 

each 1/ € cl G\G . 

Definition J A topological space is an S'-space if it is 

Hausdorff and every point has a basis of S'-neighbourhoods. 

In [25] it is pointed out that there are S'̂ -spaces which are 

not iS-spaces, but it is not known whether every S-space is an S'--

space. however, we are able to show: 

THEOREM 4o3. Every real Hausdorff topologiaal vector space E 

is an S-space. 

Proof. Let x be in E . Given a neighbourhood U of x vie 

must find an ^-neighbourhood of x, 7 , inside U . But E is 

regular so we may take an open set V containing x such that 

cl V cz U . Furthermore, E is completely regular, so there exist 

continuous functions from E into R which separate disjoint closed 

sets. Now ffXF is closed and x ^ E\V so there is a continuous map 

g : S" [0, 1] such that g{x) = 1 , g{y) = 0 for y ^ EW . 

Choose non-zero W i E and define f : cl V E , a continuous map, 

by f{z) = 3 + g{z)w , for 3 € cl y . Then fix) ^ x , and 

fiy) - y , € cl V\V , so E is an 5-space. // 

Admissibility will be discussed further in Chapter five. We now 

turn to the more difficult characterisation problem mentioned 

previously. 

Let JC^iE) be the set of Frechet differentiable selfmaps of E r 
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with jointly continuous derivative. In sequential locally convex 

spaces JCp forms an S-category. We prove: 

THEOREM 4,4. Let S be an S-aategory suah that 

SiG) c JCpiG) for every Freohet spaoe G ^ and E and F be S-

smooth Freohet spaces. Then if S{E) and S(F) are isomorphio^ E 

and F are linearly homeomorphia. 

Proof. The proof is in eight steps. Let (j> be the isomorphism 

from S(E) onto S{F) . 

1. There eccists a homeomorphism h : E ^ F suah that 

<|)(/) = hfh~^ , for every f € S{E) . 

This follows as in Theorem U.2. 

2. The limits lim z~\h{x+zy)-h{x)'\ exists^ for every 

e-»-0 

X, y € E . 

The proof when x = 0 is as in Chapter two, steps 2 to 7. 

Using the translation map this limit may be moved to non-zero x 

values. Let h*ix)(.y) denote the above limit. Then, 

3. h^{x){y) is continuous in x ^ for fixed y . 

For arbitrary w , £C, J/, 3 € , and {e^} ^ (OQ] , we may use 

standard techniques to show 

-In h*{x+z){y) = lim e^ [h[x+z+e^y]-hix+3)_ 

= lim U(:Z+c ,,)' {h(w+z)] £~^[h[w+z+ey]-h(w+2)] 

The sequence h[w+2+e^y]-h{w+z)\^ is convergent, so forms a 

compact set. Since ^ second term has limit 

zero. Thus 
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By the result of Banach, [3], used earlier, for fixed y 

is continuous in x on a dense set in E . Suppose w is such a 

point, and let 0 . Then for arbitrary x ^ E , 

lim = lim ^[l^o ]{y)] 

since h is continuous and ^ JC^(F) . But this is just 

hHx){y) . 

4. h*(.x)(y) is linear in y , for eaoh x . 

It will suffice to show h.*{x) is additive, for each x i E . 

We shall prove the following: 

RESULT 4.1. Let E, F ^ LCS , f : E ^ F be suoh that 

lim e~^Lfix+ey)-fix)l = f'^(x)(y) , exists for eaoh x, y ^ E . Then 
£->•0 

i f f*{x){y) is continuous in x for fixed y , f*(x) is additive^ 

for eaoh x ^ E , 

Proof. We generalise the method given in the Banach space case 

in [55, p. 38-39]. Let the topology of F be determined by the set 

Q of (continuous) seminorms. Take p i Q , x ^ y ^ ^ y ^ i E , and 

e > 0 . There exists a 6 > 0 such that if |t| < 6 , then 

12J 

Ir. = jlf[x+ty^+ty^]-f(x)] + ttg , 

where p(a.) 5 ^ , i = 1, 2, 3 . Hence 
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^ —p[f[x+ty^+ty^]-f[x+ty^]-f[x+ty^]+f(x)] + ^ . (1) 

For f ixed t , |t| < 6 , we can f ind an a ^ F , t y [17, p. 191, 

( 8 ) ] , such that 

= P { f W t y ^ ^ t y ^ - f [ x^ ty^ ] - f [ x H y ^ + f i x i 

and 

<3, a>| S p (3 ) , f o r a l l z ^ F . 

Using the Mean Value Theorem fo r functionals t l 9 . Theorem 1 .4 ] , we 

can f ind '̂ 2 ' 0 < T^, T^ < t , such that 

< f{x+ty^+ty^]-f[x+ty^] , a) = t { f ' ' [ x + t y ^ [y^ , a) 

and 

{f[x^ty^-f{x), a) = tifix+T^ty^ijy^ , a) . 

Hence 

5 \t\p[ f * [x+ty^+T^ty^] [y^ ] -r [x+T^ty^] [y^ ) ' ] . (2 ) 

But f'^(x)(.y) i s continuous at x so f o r suitably small 6 we 

have 

(z/J] < | . (3 ) 

Combining ( 1 ) , ( 2 ) , and (3) gives 

Since e was arbi t rary , the l e f t hand side is zero. By a result in 

[57, p. 216, ( v i i ) ] , Q is t o ta l and so since p was arb i t rary , 

f ^ i x ) is addit ive. 
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5. h is Gateaux differentiable. 

It suffices to show h*(.x)(y) is continuous in y , for fixed 

X . We use the result of Banach, as before, and the linearity of 

hHx) . 

6. h'^(x)iy) is jointly continuous. 

The proof is based on the following result [9, p. 256, Problem 

11]: Let be a Baire space and F, G metric spaces. Let 

f : E X F ->• G be a map which is separately continuous. Then for 

each point y ^ F there is a dense set A a E such that f is 
y 

jointly continuous at (.w, y) for every w ^ A . 
Ij 

If (x, y) is an arbitrary point in E x E we can thus find a 

(w, y) ^ E x E at which h* is jointly continuous. For x^ ^ x , 

y^ ^ y we have 

lim h*[xj [ y j = lim [ i j j 'n' 

= , since ^ ' 

= hHx){y) . 

7. h is Hadamard differentidble. 

This is a consequence of the following unpublished result of 

Yamamuro: 

RESULT 4.2, Let E, F i LCS , and f : E F be Gateaux 

differentiable. I f f*ix)(y) is jointly continuous at (a, y) ^ for 

all y i E , then f is Hadamard differentiable at a i E . 

Proof. Suppose f is not Hadamard differentiable at a ^ E . 

Then there is a continuous seminorm p , {E^} € (CQ) , and y^ ^ y^ 

such that 
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0 as n ->• °° . 

A consequence of [19, Theorems 1.4 and 1.5] is the following Mean 

Value Theorem: Let f : E ^ F , E, F ^ LCS , be Gateaux different-

iable. Then for each e > 0 , a, y E , and continuous seminorm 

p , there exists a T € (0, 1) such that 

p[e~^[fia+ey)-f(a)]-f' ia)iy)] S p[/" ( a + r e y ( a ) (2/)] . 

Thus for each n € N we can find a T^ € (0, 1) such that 

V n ^ ^^^ - V n ^ ^^^ 

which by the assumption goes to zero as n tends to infinity, a 

contradiction. 

8. E and F are linearly homeomorphia. 

For X E , h'(x) is now a linear homeomorphism from E onto 

F , as shown in Chapter one. Section seven. 

An immediate consequence of [54, p. 178, Corollary 4] is that 

every reflexive Banach space is -smooth. Thus for example. 

Theorem 4.4 then shows that the semigroup C^iE) characterises the 

topological and algebraic structure of a reflexive Banach space, E . 

4.3 Comments and unsolved problems. 

Since the Frechet and Hadamard derivatives coincide on Frechet 

,Montel spaces it is of interest to note that with the exception of 

the semigroup V^il^) , all semigroups of differentiable functions 

shown to possess the Magill property involve the Hadamard different-

iability. The importance of this form of differentiation has been 

growing in recent years following the work of Miroslav Sova [52] and 

[53], who first observed that it was equivalent to the quasi-

differentiability of Dieudonne [8, p. 151, Problem 4]. Moreover, 



59 

Lloyd in [20] has shown that every separable locally convex space is 

P^-smooth. Both the Magill property and smoothness being measures of 

the compatibility of the space with the functions defined on it, it 

remains an open question whether E 6 LCS being -S-smooth implies 

that the semigroup SiE) has the Magill property. The converse is 

false since is not P^-smooth [6, p. 882]. 

Beyond sequential spaces the proof of Letnma 1.2 breaks down for 

semigroups of differentiable functions, since no longer does 

differentiability imply continuity. Despite smoothness properties of 

the space this loss of topological link between the semigroup of 

functions and the space would appear to make it less likely that the 

Magill property would hold. 

As mentioned in Chapter one, a great deal is known about Frechet 

differentiation in a Banach space E , so doubtless the most 

interesting semigroup remaining is V^iE) . The semigroups V̂ îE) 

and C^(E) , E a Frechet space, /c € N , would seem possible 

contenders for the Magill property. 

It would be of interest to know whether the Magill property is 

hereditary. For example, given that F is a subspace of E , and 

SiE) a semigroup of selfmaps with the Magill property, can we show 

that SiF) has the Magill property? The problem would seem 

difficult for two reasons. Firstly, the lack of relevant extension 

theorems for functions means that SiE) and SiF) are only tenuously 

related, and secondly, there is no general link between automorphisms 

of a semigroup and those of a subsemigroup, should this fortuitously 

be the relationship between SiE) and SiF) . For similar reasons, 

products, quotients, and conjugates also defy this approach. 

However, we do have the result of the following section. 
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4.4 Reduction to the group of units 

Every automorphism <j) of a semigroup S(E) of selfmaps of 

E € TVS , when restricted to the group of invertible elements, 

HiE) , becomes a group automorphism. Let us suppose that 

I , L, T cz S . It would be of interest to know when every group 
I 

automorphism of HiE) is inner, since SiE) will then have the 

Magill property, as we show below. 

As usual we have a bijection h , h(0) = 0 , such that 

= hfh~^ , for every / € SiE) . 

Suppose further that there exists a k H{E) such that 

(p(f) = kfk~^ , for every 6 HiE) . 

Then 

k~hf = fk~h , for every f ^ HiE} . (1) 

For a € R , the associated map a belongs to H{E) , so 

kak'^(O) = hah'^iO) = 0 . 

Thus if k'^iO) = b , 

kiab) = km) = 0 , for a , B € R , 

but since k is a bijection, b = 0 . 

Now 1+a € H(E) , so using (1) we have cc 

- I f f . . 

or 

k ^hix) = X , 

so k = h , since x was arbitrary. That is, /z € H(E) and S(,E) 

has the Magill property. Note that if / z ( 0 ) = a ^ 0 , w e may show 

(see p. 1 0 , (iii)) that h^ € H{E) , as before, and hence 

h = [l+o € HiE) . 
^ a' 0 
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CHAPTER FIVE 

ADMISSIBILITY AND FAMILIES OF CONTINUOUS LINEAR MAPPINGS 

5.0 Admissibility 

We begin this f ina l chapter by introducing three notions which 

wi l l allow us to view our results in a clearer l ight . 

Let E be a c lass of l o ca l ly convex spaces. For each pair 

E, F ^ E l e t A(E, F) be a family of mappings from E into F in 

which an operation of addition is defined pointwise, and such that 

the family {/!(£;) : £ " € £ } , where A(E) = A(E, E) is equipped with 

an operation of multiplication given by function composition, 

comprises only one of the following algebraic structures: 

semigroups, groups, near-rings, r ings. Then E is said to be: 

i ) C^-admissible i f when E^ F i E are such that A{E) i s 

isomorphic to A(,F) , then E is l inearly hottieomorphic to F . That 

i s , A(,E) characterises the space E . 

i i ) M^-admissible i f f o r every £ € E , every automorphism t)) 

of i4(£') is inner. That i s , there exists an invert ible h in A{E) 

such that € A(,E) and ^{f) = hfh''^ , f o r every / € A{E) . 

i i i ) Rj^-admissible i f every isomorphism from A{E) onto A{F) , 

F € E , can be represented as conjugation by an invert ible element 

of A{E^ F) whose inverse l i e s in A{.F, E) . That i s , following the 

terminology of Hofer in [12] , every isomorphism is representable. 

It i s to be understood that a l l isomorphisms are with respect to 

the i n i t i a l l y chosen algebraic structure. We note the following 

simple fa c t s : 

1) Every Radmissible class is M^-admissible. 
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2)- If AiE, F) ^V^iE, F) , for every F € E ̂  then every 

R^-admissible class is Cj^-admissibte. 

Since there exists an invertible element h in 

AiE^ F) F) , h'(x) , x € ff , is a linear homeomorphism from 

E onto F . 

It is not known whether every Aif̂ -admissible class is R^-

admissible. Unless it is stated otherwise, the algebraic structure 

in the sequel is assumed to be a semigroup. 

Although the result of Chapter two indicates only that the 

class of FA/-spaces is Afp -admissible it is evident that the proof 
F 

also shows them to be Rg -admissible. In Chapter three it is shown 
F 

that they are R y , ^ v ^ oo » ^ ^-admissible. The class 
PJ C^ Vp C 

of all TVS's is shown in Corollary 4.1 to be R .-admissible. Note 

that the S'-admissibility of Magill [33] corresponds to our R Q-
c 

admissibility. For an S-category in which S{E) a JC^(E) for each 

E , Theorem 4.4 can be rephrased to give that the class of such 

S-smooth Frechet spaces is C^-admissible. We also note here that 

the method of Chapter two together with that in [67] suffices to show 

that the class of sequential LCS's with the separability property 

S is Cp -admissible. 
F 

5.1 An automorphism which is not inner 

In this section we firstly give an example of a class of 

spaces which is "C-admissible" but not "Af-admissible", for some 
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system of selfmaps. We shall be involved with the group V{E) of 

all linear homeomorphisms (units) of a locally convex space E . By 

way of introduction we give a brief survey of existing results 

concerning the characterisation of topological and algebraic 

properties of a locally convex space by means of families of 

continuous linear selfmaps defined on the space. 

We deal with the ring L(E) initially. Eidelheit [11], in 

19M-0 showed that the class of Banach spaces was i?jĵ -admissible. The 

finite dimensional version of this result had been given by Nagumo in 

1933, [44]. By dropping the completeness assumption, Mackey in 1942 

[24], showed that the class of normed linear spaces was C^-admissible. 

Four years later [23] he further generalised this result to show that 

the class of all LCS^s equipped with the Mackey topology is 

admissible. For a discussion of the Mackey topology, see [48, 

p. 62]. The same result holds if the Mackey topology is replaced by 

the weak topology. It is interesting to note at this stage that the 

result of Chapter two could be reinterpreted to give that the class 

of LCS^s equipped with both the weak topology and the separability 

property S , is R -admissible. However it is the Mackey 

topology (Banach space) case which would be oi' greater interest. 

When L(E) is regarded as a semigroup, Eidelheit showed in the 

paper of 1940 that every continuous automorphism of LiE) , E 

Banach with dimension > 2 , is inner. Rickart [47] in 1948 showed 

that the continuity was unnecessary. A different proof of this was 

given by Yamamuro in [63]. 

In the case of the group of continuous linear selfmaps of 

E ^ LCS , U(E) , with continuous inverses, the situation is more 
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intriguing. In his paper of 1942, [24], Mackey showed that for 

Banach spaces E and F , U{E) is isomorphic to U{F) if and 

only if either 

i) E is linearly homeomorphic to F , or 

ii) E and F are mutually conjugate. 

Since a Hilbert space is self-conjugate it is evident that the class 

of Hilbert spaces is C^^-admissible. However, we are able to show 

RESULT 5.1. The olass of HilbeTt spaaes is not M^-aSmissible. 

Proof. We show that the automorphism (}) of IJ{E) , H a 
, -l-V * 

Hilbert space, given by ^{u) = [u } , u € U(H) , is not inner. 

Here u* is the adjoint of m , as discussed in [57, p. 98]. Note 

that if (j) is inner then <{> fixes a non-identity element of U(H) . 

The inner product of x^ y ^ H will be denoted by i x , y) . Firstly 

we show 

1) cfiCw) - u if and only if u is an isometvy. 

r * Suppose u = [u ) . Then if x H , 

iux, ux) = ( x , u*ux) = <x, u ^ux) = <x, x) . 

That is, \\ux\\ = ||a;|| , for each x ^ H ^ so u is an isometry. 

Conversely, suppose u is an isometry. Since u is onto u 

-1 r -I'l * is unitary, so uu'^ = 1 = u*u . Thus u'^ = u or ^iu) = [u } = u 

We complete the proof by showing 

2) (J) oannot be Qonjugation by some isometry^ v . 

- 1 r -l^ 

Suppose y is an isometry and vuv = \u ] , for all 

u € U{H) . Then 

since ||y|| = = 1 , V being an isometry. Again 

Hull = llu'̂ll = llyu'V^II < ||y||||u-̂ ||||y-̂ || = llu-̂ ll , 
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so ||u|| = \\u 1̂1 , for every u ^ U , a contradiction. // 

In the penultimate paragraph of [24], Mackey raises the question 

of the extent to which isomorphisms between the groups U(E) and 

UiF) , E, F ^ LCS , are representable. It is clear than when E 

and F are mutually conjugate yet not linearly homeomorphic, an 

isomorphism between U^E) and U{F) cannot be representable. 

However, even when E and F are both mutually conjugate and 

linearly homeomorphic we may use a different itlethod of proof to 

generalise the above result to the following: 

RESULT 5.2. Given mutually oon^ugatej linearly homeomorphia 

Banaah spaaes^ E and F ^ there exists an isomorphism from U(E) 

onto U(F) which is not representable. 

Proof. Suppose the isomorphism <|) : U{E) ll(E) - U(F) , given 

by 4)iu) = (u J , is representable. Then for some linear 

homeomorphism v from E onto E , 

r -li * - 1 

{u ) = VUV , for every u i U{E) . (1) 

Select u = 1 + a <8)a in UiE) , where <a, a> = 1 . Then 

= 1 - %(a ® a) , u* = 1 + a ^a , (u"^) * = 1 - %(a ® a) , 

where a ® a : E ^ E is given by 

a ® aix) = <a, x)a , for each x i E . 

From (1) we have, 

v{Ua®a){x) = [l-h(a ® a)]v{a) , 

or 

<x, a)v{a) = vix))a , for all x ^ E . (2) 

Since y is a function, 

oix, a) = <a, v(.x)) , for all x € E , 

and some c? ̂  R . 

Thus <a, via)) = a ia, a) = a . But from (2), letting x = a 
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and evaluating at a we have, <a, v{a) ) = -%<a, y(a)> , so 

< a , y(a)> = c = 0 . 

Again from (2) we have y (a ) = 0 , a contradic t ion since 

a t 0 . 11 

When i s a r e f l e x i v e Banach space, the d i rec t sum of E with 

i t s conjugate space , © , has conjugate ind icat ing 

that Result 5.2 i s in fac t a s t r i c t general isat ion o f Result 5 .1 . 

5.2 The main theorem 

Although not every automorphism of 11 (M) i s inner , f o r E a 

Hilbert space, i f we form the semigroup U u by adjoining the 

constant mappings we have immediately from Lemma 1 .1 that every 

automorphism i s given as conjugation by some b i j e c t i o n . This leads 

us t o prove the theorem below. 

THEOREM 5.1. Let E be a locally convex s-paoe of dimension 

greater than two, equi'pped with either the weak topology or the Maokey 

topology. Let S be a semigroup of selfmaps of E such that I c S , 

U c S J and <j) be an automorphism of S . Then if (()(i/) = i/ ^ (}) is 

inner and h ^ U . 

Proof . The proof i s in seven stages , as f o l l o w s : 

1. There exists a biceotion h such that ^if) = hfh ^ j for 

all f i S . This i s an appl icat ion of Lemma 1 .1 . Since (p f i x e s 

U , h f i x e s ze ro , so we need not assume th i s f a c t in the way that 

we have previous ly . By ZiU) we shal l mean the centre o f the group 

U . The sca lar mapping denoted by ? , and 

the set o f a l l such maps, M . 

2. ZiU) = M . 

Evidently M c Z{U) , so i t remains t o show Z(i/) c M . Suppose 

u € Z{U) . Since 1 + a ^ a ^ U i f and only i f < a, a) ^ -1 , we 
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have 

u(I+a®a)(a;) = {l^a®a)u{x) , 

or 

(a, a)u{a) = <u(a:), a>a, 

f o r every a, a, x such that <a, a> ^ -1 . I f <a, a> = -1 we may-

use -a to show the above re lat ion s t i l l holds. Since u is a fun-

ction there exists an 5 € R , 5 # 0 , such that 

a) = < u(£c), a) , f o r every a, a; . 

Thus = ^x , or u i M . 

Now (}> w i l l be an automorphism of the group V , so preserves 

the centre of U . Thus, since <))(0) = 0 j there exists a rea l -

valued function of the real variable 5 , such that 

HOix) = , f o r a l l x ^ E , ? e R . 

We need some properties of X . 

2.1. X is one-to-one and onto. 

This fol lows immediately from the corresponding properties of 

4) . 

2.2. X fixes +1, -1 J and 0 . 

Certainly X ( l ) = ^{.1) = 1 , while since 

[ X ( - l ) ] ^ = = <P(1) = 1 , 

and (I>(-1) t , X ( - l ) = -1 . Moreover X(0) = (|)(0) = 0 . 

3. Given a, b € £ , there exists y , p € R suoh that 

h'^ia^b) = Mh^ia) + 9h~^{b) . 

With <£C, x) -1 , <^(.l+x ® x)iy) is l inear in y , so 

hlh~^{a+b) + <h'^(a+b), = h\h~^ia)+<h~^(a), x)x 

+ h\h~^(b)+<h~^(b), (3 ) 

f o r arbitrary a, b E . When both x) = 0 and 
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<h x) = 0 , we have from (3), 

+ (h'^ia^b), x)x = , 

so ih ^(a+b), a; > = 0 , since x may be chosen to be non-zero. This 

means h lies in the subspace spanned by h ^(a) and 

, so the result follows. 

4. Wien and h'^ib) are linearly indeipendentj then 

y = P . 

Choose X such that <h ^(a), x) = X > . Then with 

X = -h~^(a) - h~^(b) , equation (3) becomes 

= -ia+b) , since A(-l) = -1 . 

h 

Thus 

h-^ia+b) = ^ 

= Uh'^ia) + ph'^ib) . 

Since h (a) and h'-ib) are linearly independent, = y , or 

p = y . Note that y cannot be zero. 

5. h preserves linearly independent sets of elements. 

Suppose a) and h^ib) are linearly independent, and 

aa + 32? = 0 , for some a, g € R . Then 

0 = 

= , since and If^i^b) 

are linearly independent. 

Thus = = 0 , s o a = 3 = 0 . 
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In a similar way we may show this result for any finite set of 

linearly independent elements. 

6. h is linear. 

In [24, p. 245, Lemma A], Mackey has generalised a theorem of 

projective geometry to show that if E and F are linear spaces 

with dimension greater than two, then any mapping of E onto F 

which affords a one-to-one correspondence between one-dimensional 

subspaces and preserves linear independence is necessarily linear. 

7. h is Qontinuous. 

For this we need the conditions on the topology of E . 

1) E has the weak topology. 

Suppose the net {a^} converges weakly to zero. For 

x) -1 , 

= h x)x 

converges weakly, with a , to zero. Thus , converges 

to zero, and since x may be arbitrarily chosen, h ^ is continuous 

with respect to the weak topology at zero, hence everywhere. We may 

show the same result for h . 

2) E has the Maokey topology. 

Since 1{E) c L[e^] [48, p.'39, Proposition 13], we may use the 

method above and [48, p. 62, Proposition 14] to obtain the result. // 

REMARKS. 

1. Theorem 5.1 holds when is a Frechet space, dim E > 2 . 

2. If A is a semigroup of continuous selfmaps of a Banach 
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space E , dim > 2 , such t h a t I , L <= A and 4> i s an 

automorphism of A , t hen t h e f o l l o w i n g s t a t e m e n t s a r e e q u i v a l e n t : 

a) (p f i x e s L , 

b) (j) i s a d d i t i v e , 

c) (j) i s a d d i t i v e on t h e one -d imens iona l maps. 

That b ) i m p l i e s c) i s immediate . The method of [61] may be used 

t o show c) i m p l i e s a ) , whi le b) f o l l o w s from a) as in Theorem 5 . 1 . 

Theorem 5 . 1 i s t h u s a g e n e r a l i s a t i o n of t h e n e a r - r i n g r e s u l t [ 6 1 ] , 

mentioned in Chapter one . Sec t i on s i x . 

3. For a H i l b e r t space H , dim H > 2 , U u 1(H) has t h e 

Magi l l p r o p e r t y (Theorem 5 . 1 ) , wh i l e U(H) has n o t ( R e s u l t 5 . 1 ) . 

5 . 3 d-automorphisms 

In t h e r e m a i n d e r , E € LCS i s as in t h e p r e v i o u s s e c t i o n and S 

i s a semigroup of s e l f m a p s of E such t h a t I , U a S c. V^ . We 

H. 

g e n e r a l i s e t h e d e f i n i t i o n of a d-automorphism of S [ 6 2 ] , a s 

f o l l o w s : (J) i s a d-automorphism i f 

d W = {())(/)'(a:) X ^ E} = {<}>(/'(a;)) = , 

f o r every i n v e r t i b l e f S f o r which 6 S . Then, 

THEOREM 5.2„ Every d-automorphism of S i s inner. 

Proo f . By t h e p r e v i o u s theorem we need only show (piU) = U . 

U c (j)([/) : Let u ^ U . Then t h e r e e x i s t s an i n v e r t i b l e f ^ S 

such t h a t <t)(f) = u . Now 

{ u } = W Y i x ) X ^ E} = { ^ [ f ' i x ) ] : X ^ Et , 

so / ' (x) i s c o n s t a n t wi th r e s p e c t t o a; . By t h e Mean Value 

Theorem f o r f u n c t i o n a l s [ 1 9 ] , s i n c e f(0) = 0 , f ^ L . F u r t h e r , 

ii ^ = <(>(/) = ( / J so s i m i l a r l y . 
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[u = {(('(/^j'U) : X € £} = '(ic)] : X ^ E} , 

so ^ L . Thus f i U . 

cp(U) c U : If / € cf)(i/) , / is invertible and there exists a 

u (i U such that <})(u) = f . Now 

df = {c))(u)'(a;) = {4)(u)} , 

so (piu) L . Similarly, 

= '(a;) : a; ̂  ff} = 

so € L . Thus f i U . 11 

Since this result does not require mappings in the semigroup to 

be continuous, it gives for instance that every d-automorphism of 

V^iE), V^iE) , and C^iE) , /c € N , is inner, for E with the Mackey n r 

or weak topology. 
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