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ABSTRACT

For over thirty years it has been known that the semigroup,
under composition, of all mappings of an arbitrary set into itself
has the property that every automorphism is inner. K.D. Magill, Jr,
in the past ten years has shown that this property is held by many
semigroups of functions and relations, in particular for the semi-
group of all differentiable functions from the reals into the reals.
The only new result given in the first chapter shows that the semi-

group of Borel measurable functions on any Tl topological space has

the Magill property, namely the property that every automorphism is
inner.

Even more recently S. Yamamuro has written a number of papers
directed towards generalising the above result of Magill to semi-
groups of differentiable mappings defined on certain classes of
locally convex spaces. The object of this thesis has been to
continue that study. That the semigroup of Fréchet differentiable
functions on an FM-space has the Magill property is the essential
content of chapter two.

Showing that a semigroup of differentiable functions has the
Magill property is closely related to showing that the algebraic
structure of the semigroup characterises both topologically and
algebraically the locally convex space on which the functions are
defined. To show that the Magill property holds for subsemigroups of
those considered above then becomes of interest. For this reason
we consider in chapter three the semigroups of many times Fréchet
differentiable mappings on FM-spaces and show that they too possess
the Magill property, by using the results of chapter two as the first

step in an inductive argument. Many times continuously Fréchet
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differentiable functions are likewise treated.

An alternative proof of the result for many times continuously
differentiable maps on a finite dimensional Banach space is given in
chapter four. In this case the problem is equivalent to showing the
differentiability with respect to the parameter of a one-parameter
group of differentiable mappings, and so the classical theorem of
Bochner and Montgomery may be applied. Further attention is also
given in chapter four to the characterisation problem mentioned
above. Using the notion of  S-category due to Bonic and Frampton we
are able to give two theorems in this direction. Under certain
conditions it is also shown in chapter four that if every automorphism
of the group of invertible elements (units) in a semigroup is inner,
then the same property will hold for the semigroup.

Admissibility of a class of spaces, a concept introduced by
Magill, is extended in the final chapter to provide a framework in
which to view the results. G.W. Mackey has shown that the group of
continuous, linear, invertible mappings on a Hilbert space does
characterise the space, but we are able to show that there exists an
automorphism of this group which is not inner. The main theorem of
the chapter then shows that for a large number of semigroups which
contain this group, automorphisms which fix the group are inner.
Certain 'd-automorphisms' of semigroups of differentiable functions

are then shown to be inner.
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CHAPTER ONE

INTRODUCTION AND PRELIMINARIES

1.0 Introduction

The '"elementary'" algebraic properties of certain semigroups of
mappings have been studied recently by a number of mathematicianms.
This thesis will survey and continue a portion of this work. We will
be concerned largely with the nature of automorphisms of semigroups
of differentiable functions defined on locally convex spaces. At all
times the semigroup operation will be that of function composition.
Unless it is stated to the contrary all topological spaces considered
will be Hausdorff, and every vector space will be over the field of
real numbers, R . We begin with a list of the basic notation and

terminology which will be used throughout.

1.1 Notation and Terminology

The following lists are not intended to be exhaustive, but do
contain the most frequently used items. Generally our usage agrees

with Magill and Yamamuro.

Notation

N : the set of natural numbers

R : the set of real numbers with the usual topology.
Elements of R will be denoted by Greek letters.

¢ : the set of complex numbers with the usual topology.

Yillgs: : the set of all real, Hausdorff, topological vector
spaces.

LCS : the set of all real, Hausdorff, locally convex spaces.

Ea By G : elements of IVS . When denoting a Banach space, Montel
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L(E, F)

U(E)

%)

0.(E)
Dy(E)

D (E)
0% (E)
k(®)
30 (E)
ck(m)

[3
Co(E)

space, etc., it will be made clear in the text. Elements
of E will be denoted by Roman letters.

the conjugate space of E with the topology of uniform
convergence on bounded sets.

E with the weak topology.

the space of all continuous linear mappings of E into
F with the topology of uniform convergence on bounded
sets. L(E, E) 1is abbreviated to L(E)

the group of continuous linear invertible elements in
L(E) which have continuous inverses.

the set of all scalar mappings of a vector space into

itself.

the set of all continuous mappings of E into itself.
the set of all Gateaux differentiable mappings of E
inte itself.

the set of all Hadamard differentiable mappings of FE
inte  itself,

the set of all Fréchet differentiable mappings of E

inte sitself,

the set of all k times Hadamard differentiable mappings

ofs . Fanintesdtself.

the set of all k times Fréchet differentiable mappings
ef E . inte itself.
the set of all Fréchet differentiable selfmaps of £

with jointly continuous derivative.

the set of all k times continuously Hadamard

differentiable selfmaps of E .

the set of all k times. continuously Fréchet



If the space

differentiable selfmaps of F .

E , or the type of differentiation is clear, the

notation will be simplified, for example to DH ,y O Ck(E)

Cc(r)
B(E)
iy
fsgsh
A(X)

S(X)
H(X)
z(S)
M(X)

by i) ol o)

T(E)

ane U

cl \V

the set of all completely continuous selfmaps of E .
the set of all bounded and continuous selfmaps of E .
sets, or topological spaces.

functions.

a family of selfmaps of X equipped with some algebraic
structure.

a semigroup of selfmaps of X .

the group of units in S(X) .

the centre of the semigroup S .

the set of all Borel measurable selfmaps of the
topological space X .

the identity mapping.

the constant selfmap of X , whose single value is

R e d .

the set of all constant mappings from X to Y .

the set of all translation mappings on £ : all maps

of rthe form 1.+ g » (¥ E ol s,
the space of all real sequences {en} such that

1im g =0,
n—)oon

the Banach space of sequences {zn} c C such that

Izn| <o,

1o~ 8

the interior of the set V .
the closure of the set TV .

an automorphism, generally of a semigroup.



Terminology

For: Y €8 ., @ €E., .{ys q)- denotes the value.of & at ¥ .

ol

Pao, & 6F , a € , themap x®a from E to F is given
by (x®a)(y) ={y, a)x , for y € E .
When @ ¢ E ,and a€E, a®a € L(E) . Hence

(a®a) @ a ¢ L(E, L(E)) which we write as a 6? a . More generally,

for m € N , we have the map a & 2 in LLEL -, o £ BCE) ...) , whidh
m

we abbreviate to L[Em, £,
When & € Ug(E) , the mth Fréchet derivative of 7 at x € E

(m)

is denoted by A" “(x) , and is an element of L(Em, e

a€E-, h(m)(x) after m. evaluations at a 1is an element of E

denoted by h(m)(x)(a)m .

Fex f : E~+F , a, & € E., and f differentiable in seme
sense at a , we define the remainder, r[f; @y .2 oy ke be
flatz) - fla) - f'(a)(zx)

The sequence {al, Ay ...} will frequently be abbreviated to

{an} o) B f—l[X] we mean the inverse image of the set X under
F-. 3EirE DH(E) we define df = {f'(x) : £ ¢ E} -,
A discussion of properties of topological vector spaces which

are used without reference may be found in either [17] or [48].

1.2 Preliminary definitions

We shall be concerned with three forms of differentiation:
Gateaux, Hadamard, and Fréchet. In order to present their definitions
in a unified manner we adopt the terminology in [2, p. 86] and

consider differentiability with respect to a system of sets. Gil de



Lamadrid (1955), Sebastiao e Silva (1956-1957), and Miroslav Sova
(1964) all arri;ed independently at the following method of
differentiation.

et B, F £ 078 ,gnd f-: E>»F , Then,

(1) f is Gateaux differentiable at a € E if there exists a

u € L(E, F) such that

lim S_lr[f, B, Ex].= O , for.each % € E ,
>0

where =»[f, a, €x] = f(at+tex) - fla) - u(ex) .
(2) f is Hadamard differentiable at a € E if there exists a

u € L(E, F)Y "such that

lim e‘lr[f, a, ex] = 0 ;
€0

uniformly for & in any sequentially compact subset of
E .
(3) f is Fréchet differentiable at a € E if there exists a

u € L(F, F) such that

lim s_lr[f, & £2.5 0 .
€>0

uniformly for &« in any bounded subset of E .

The Gateaux, Hadamard, and Fréchet methods of differentiation
may thus be considered as differentiation with respect to the system
of all finite sets, all sequentially compact sets, and all bounded
sets, respectively. For each type of differentiation, the continuous
linear mapping % is uniquely determined, and is called the Gateaux,
Hadamard, and Fréchet derivative of f at a , respectively. We

shall call it: f'(aq) . .Nete that fer A € I(Z) , c&(m) =0 fer

every & inv E ., and if- v € L(&) , v'(2) =v , for every & in
B

If f : E~+E is differentiable at every point of E we say f



is differentiable on E and write f € DG(E) A DH(E) » Or
f € DF(E) . Evidently DF(E) E_DH(E) E_DG(E) and when E = R all

reduce to the usual definition of the derivative. When the
derivative - f' : E > L(E, F) is continuous we say f 1is continuocusly
differentiable.. If f : E+F , E, F € LCS , is .centinueusly
Gateaux differentiable it is known that f is Frechet differentiable.
For such continuously differentiable mappings we thus need not name
the type of differentiation being considered.

When the mapping f' : E > L(E) between topological vector
spaces is differentiable we say f 1is twice differentiable. It is

then clear that inductively we have the families DZ(E) 5 Dz(E) s

D?(E) ¥ Cg(E) g CZ(E) A C?(E) . We shall use f" vather than

f(2)

for the second derivative of f .

1.3 Background to the differential calculus

Averbukh and Smolyanov in [1] and [2] have investigated the
properties of such families of differentiable functions, showing in
certain cases that they do form a semigroup with respect to the
operation of function composition. In particular they show that the

chain rule holds in DH(E) and DF(E) ol @ T8 i85 Py g
are in DF(E) , for example, then f o g € DF(E) and

(fo @) (@) =7 (g(x) o g'x) , for z €E .
The composition of Gateaux differentiable functions is however not
necessarily Gateaux differentiable, [2, p. 77]. Moreover they show
that the Hadamard differentiation is the weakest for which the first

order chain rule holds, [2, p. 74].



The higher order chain rules, [1, p. 234, Theorem 2.5] hold in
Dk(E) k k § A
7 and DF(E) , E €TVS . For C"(E) the chain rule is obeyed
provided E 1is a Fréchet space, [21]. In the locally convex space

setting a discussion of the chain rule in Ck(E)' can be found in
[46] or [21]. Although it concerns us only slightly, the definitions
given do have a shortcoming: no longer do we have differentiability

at a point implying continuity at that point. Averbukh and Smolyanov

give an example of a Cw(E) function which is not continuous in [2,
p.-187]1.

If E € TVS , E 1is termed sequential if for any set A4 in E
every limit point of A  1is the limit of a sequence of peints in 4 .
Certainly every metrizable IVS is sequential, while Lloyd [22], has
shown that every sequential [L(S is bornological. In [2, p. 105] it
is shown that any form of differentiability with respect to a system
of bounded sets that contain all convergent sequences implies
continuity if and only if the first space is sequential. In particular
this will hold for both Hadamard and Fréchet differentiation.

It appears that for any definition of the derivative in locally
convex spaces we can have either the second order chain rule or the
property that differentiability implies continuity. An indication
for this is the following: the usual proof of the first property
relies upon the differentiability of the canonical map from
L(E) X L(E) into L(E) , while if the second property is to hold
then this map will be continuous. A result of Blair [4], Maissen
[(40], and Keller [14], shows this to be so if and only if E is
normed.

For our purposes it is the chain rule which is of prime

importance, and since the above definitions afford this property in



the Hadamard and Fréchet cases, while the latter reduces to the usual
form in the normed case, we adopt them here.
Let. S(X) denote a semigroup, under composition, of selfmaps of
a set X . An automorphism ¢ of S(X) is a one-to-one mapping of
S(X) onto itself which is multiplicative. That is,
¢(fg) = ¢(fle(g) , for every f, g € S(X)

We say the automorphism ¢ is inner if there is a bijection &
ot T wuch ihar R WL E &) ads

o(f) = hfhfl , for every f € S(X)

1.4 Preliminary results

We now present two preliminary lemmas which will be fundamental
to our work. Let X be a set, and I(X) be the semigroup of
constant selfmaps of X . With S(X) as before, evidently

fba = cf(a) and caf S far f € S(X) .

J. Schreier in 1937, [51], appears to have been the first to prove
the following lemma:

LEMMA- 1.1. Let X be a set, S(X) a semigroup of selfmaps of
X such that I(X)c S(X) , and ¢ an automorphism of S(X) . Then

there exists a bijection h of X such that

O(F) = hfh™L , for every F € S(X) . (1)
Proof. For any « € X we show ¢(cx) is again a constant
mapping. Take arbitrary Yy, 2 € X . Since ¢ is onto there is an

f € S(X) such that ¢(f) = cy « Then



"

¢(cx)(y) cb(cx)cy(z)

¢(e,)o()(2)

¢(cxf)(z)

¢(e,) (=) .

To show: h.. is one—

1
Q

Now define h(z) =y , where ¢(c ) =

to-one, assume A(x) = hA(y) . Then
¢(0x) = ch(x) = ch(y) = ¢)(cy) s
whence it follows that 8, = cy s O X =Y. . Te shew A is ente,

we take aft arbitrary y € X . Then.we:can find an f € S(X) such

that ¢(f) = Gy As before we may show f = ¢_l(cy) is a constant
map, se there is an. £ € X+ such that, f = & - Hence h(x) = y'.

To complete the lemma we take %, y € X , and f € S(X) . Then

¢(f)cx(y)

() ()

¢[fc 5 ](y)
h l(ac)

¢(c l(y)
A (x)

B g 4w
hfh . ()

hfh_l(x) 4

as required. /7

If we impose additional festrictions we have the following lemma
which is due essentially to Magill [26]. A demonstration of a
similar result in this convex space setting appears in [66].

LEMMA 1.2. Let E € LCS , ¢ be an automorphism of the semi-

group S(E) , e” n CO(E) c S(E) c CO(E) s and h be as in Lemma

1.1. Then (h(xz), a) ie continuous in x , for every a € E'.
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Proof. To show continuity at a € £ we take € > 0 and find

an open neighbourhood U of a such that |[(h(x)-h(a), arl <e,.

when x U . Let B € Cw(R) be such that

g el e
B(E) =
B siBal =8 .

and for b some non-zero element of E consider the mapping
g : E>FE defined by

glz) = B({x-h(a), @))b + h(a) .
Evidently g € E a CO(E) Cc S(E) so there is an f € S(E) such that

¢(f) =g . If f(a) = a we have
hla) = hf(a) = ghla) = b .+ h(a) , or b = 0 .
Thus f(a) # a . Since f 1is continuous we may find an open
Heipbbaurheed U .ef g s=such that if =z €U, filxg) #a.. But. A
is one-to-one so gh(x) = hf(x) # h(a) , for a« € U . By the
definition of B we have
| ¢h(z)-hia), @ <€ , fer = € U . //
We add three frequently used facts:
(1) ¢ wniquely determines the bijection h of Lemma 1.1.

Suppose there exist bijections g, A such that (1) holds. For
z€X, goglt=heht, so glx)=hx) ,or g=h
. 9c,g S B R ,or g =h.
(ii) Any statement about h holds also for i
. =1 -1 al SORGLE .
Since: ¢ “(f) =.h “fh., and' ¢ is an automorphism.

(iii) We can assume h(0) =0 , for X € TVS .

Suppose A(0) = a # 0 . Consider the automorphism ¢ given

0 2

by
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6o ) = (142 ) H0(P) (242))

(1) o2 (zv2 )24

© gy
Then hO(O) = (l+ca)—lh(0) = (Z—Ca)(a) = 0 . Since the bijection

o
(1+ca) e, n e’ » any property we show of %, will then hold for # .

Our starting point is a theorem of Magill which appeared in
1967, [26], in which he considers the semigroup of all differentiable
functiens from R. te R :

THEOREM 1.1. Every automorphism of D(R) is inner.

Proof. By applying the above lemmas we reach the point where

there exists a homeomorphism % of R such that

o(f) = hfh_l , for every f € D(R) .
Such a homeomorphism is strictly monotone and so by a result in [45,
pP. 211, Theorem 4] has finite derivative almost everywhere. It =

is such a point and y an arbitrary real number, since

e nly+e)-n(y)1 = et (140, ) (@re)-h(ite, ) ()]

y-x

e‘l[¢(1+cy_x)h(x+e)—¢(1+cy_x)h(xi]

which converges to [¢(1+cy_x)ﬁ]'(x) as € converges to zero, we

have % € D(R) . &

In the light of his result of 1937 [51], our Lemma 1.1,
Schreier had suggested the truth of Theorem 1.1 together with parallel
results for the semigroups of all continuous maps and all measurable
maps from the reals into the reals. Lemma 1.2 clearly settles the
former case. However, the result of the following section appears to

be new.
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1.5 The semigroup of Borel measurable functions

In this section the inverse image of a set U under the map f

will be denoted by frl[U] . By M(X) we shall mean the family of

Borel measurable selfmaps of a topological space X . That is, if
FEMX) and U "is epen in X, frl[U] is Borel measurable.

It f.g €M(X) , and U. is epen in X , f_l[U] is Borel
measurable, and by [49, p. 13, Theorem 1.12 ()],

-lr~1 +1
g-~[r 7tu1] = (fg) Lol
is Borel measurable, so M(X) forms a semigroup. Then we have the
followiﬁg:

THEQREM 1.2. Let X be a T topological space. Then every

automorphism ¢ of M(X) s inner.

Proof.

1. There exists a bijection h of X such that ¢(f) = hfh_l ¥

~for every f € M(X) .
Since the constant maps are Borel measurable, this is an application
of Lemma 1.1.

9. w1 {ia Borel measuvable.

Take some fixed a € X and choose b # h-l(a) . Define XU T e a8

for . U open.in. X , as foellews:

b when 2 €U ,
Xy (&) = 3
h ~(a) when x § U .

Then clearly Xy € M(X) , so thh—l € M(X) , for every such set U .

Blfice ¥ is. T, , X\{a} 1is open, so
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=L
(hxl]fl] [x\{a}] = h[x;l[h‘ltx\{anﬂ
= h[?;lEX\{h—l(a)}]] » (since A 1is a bijection)

(h_l)_l[U] is Borel measurable.

Thus h_l is Borel measurable. In a similar way we have % Borel

measurable and the theorem follows. Vah

1.6 Historical remarks

We now give a brief historical account of relevant investigations
into the algebraic properties of families of functions. Although
Schreier in 1937 [51], was the first to show that the semigroup of
all selfmaps of an arbitrary set has the property that every
automorphism is inner, Mal'cev [41] and Ljapin [18] each proved the
result independently at a later date.

Between 1940 and 1948 there was considerable interest in families
of continuous linear mappings. Since this topic is the subject
matter of chapter five, we only sketch the results here for the sake
of completeness. In 1940 Eidelheit [11] showed that every automorphism
of the ring L(E) , E Banach, is inner. Further contributions to
the ring case were made by Mackey in 1942 [24] and 1946 [23]. In the
former paper he also considers the group U(F) , E a normed linear
space, of continuous linear maps which have continuous inverses.
Rickart [47] in 1948 was able to improve a result in Eidelheit's
paper of 1940 to show that every automorphism of the semigroup L(E)
is inner, where F 1is a Banach space with dimension greater than
one.

Almost two decades later Magill revived the subject and in a

series of papers, [25] through to [39], has shown that the property
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that every automorphism is inner is held by many semigroups of
functions and relations on topological spaces. Following Yamamuro in
[66] we say a semigroup has the Magill property if every automorphism
is inner. Nadler and Hofer, in for example [42], [43] and [12], [13]
have published papers directed along related lines. Since 1967,
however, Yamamuro has contributed a number of papers to the field,
most directed towards generalising the result of Magill (Theorem 1s 1)
to semigroups of differentiable functions defined on certain classes
of locally convex spaces.

In [62], Yamamuro has noted that no automorphism of the semigroup
of constant selfmaps of a set is inner, and has shown that the same
result is true of the semigroup of all completely continuous selfmaps
of an infinite dimensional Banach space, CC(E) . However, for such
a space E he has constructed both inner and outer automorphisms of
the semigroup 1 + CC(E) = {1+f : f € CC(E)} . That D(C) does not
possess the Magill property was shown recently by Warren, [56]. To
date, no semigroup of all Dk or Ck mappings of a real, Hausdorff,
locally convex space has been found which does not have the Magill
property. In [62], the Magill property was also shown to hold for
B(E) , the semigroup of all continuous and bounded selfmaps of a
Banach space, FE .

In the event that the family A(F) of continuous selfmaps of a
Banach space E forms a near-ring, Yamamuro in [61] has proved that
GE el ) C.Agg?’ , then every near-ring automorphism of A(E)
is inner. Unfortunately not every semigroup automorphism is a near-
ring automorphism.

Since the theory of Fréchet differentiation in a Banach space E
has been fully investigated, FB, Chapter 8], it was natural to

attempt to show that DF(E) possessed the Magill property. By
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imposing restrictions on the automorphism, ¢ , the following pair of
results were obtained by Yamamuro in [62] and [65]:

(i) Define ¢ to be a d-automorphism of DF(E) when

do(f) = {6(AN'(x) : =z € E} = {o(Ff'(x)) : = € E} = ¢(df)

for each f € DF(E) » Then every d-automorphism of DF(E) is

inner.

(i) If. & 1is such:that given €.>:0 and {Gh} € (co) there
is a, 6 > 0 such that |lz|l < 8§ implies

sup o0 (0,) @)-a] < ellal
=l

¢ 1is said to be uniform. Then an automorphism of DF(E) is inner

if and epnly if. it is uniferm.

1.7  Summary of chapter content

We are in a position now to give an outline of the remaining
content of this thesis. In Chapter two we consider the semigroup

DF(E) » E € LCS , and prove a general theorem which implies that
the Magill property does hold when E is a Fréchet Montel space.
oy . k k
Similarly, the subsemigroups UF(E) and C(E) , k € N, are treated

in Chapter three. By arranging the problem in such a way that a
classical theorem of Bochner and Montgomery concerning differentiability

is applicable, we give a short proof in Chapter four to show that

Ck(E) has the Magill property, for E a finite dimensional Banach
space.
There is an alternative interpretation of the problem. If the

semigroups S(Ei) = DH(Ei) 5 Eé € LCS, 1 =1, 2 , are known to
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have the Magill property, and we consider instead the situation in

which an isomorphism exists between S(El) and S(E2) » then with

only a notational change in our proofs we may find a bijection *&

from E, onto E, such that % is a fortiori Hadamard
differentiable. Since

EY r@)n @) = 2@ @Y () = 1,

for every z € E; , and h'(z) ¢ L(El, EQ} , E, and E, are

1
linearly homeomorphic., In the remainder of Chapter four we give
results showing that under certain conditions a semigroup of self-
maps will characterise the space on which the maps are defined.

In Chapter five we extend the concept of the admissibility of a
class of spaces, first introduced by Magill in [33]. A theorem is
presented which extends both the near-ring result and the

d-automorphism result mentioned earlier.
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CHAPTER TWO

SEMIGROUPS OF FRECHET DIFFERENTIABLE MAPPINGS

2.0 Introduction

In order to phrase the results of both this and the following
chapter in as general a form as possible we introduce the following

notien: fer E € LCS , amap f : E >~ E is said te be weakly—DF(E)
ifthe mep [ : E > Ew is Fréchet differentiable, where Ew denotes

the space E endowed with the weak topology, o(E, E) . Notice that
this definition is more general than the definition -for weak
differentiability given in [59] and [66], where the domain of f was

also given the weak topology. In the obvious way we also define

weakly—D?(E) 5 weakly—Ck(E) , etc.

A space E € LCS will be said to have the property S if the
dual of every separable subspace of E contains a countable total
subset. Since the dual of a separable Fréchet space 1is weakly
sequentially separable [17, p. 259, (5)] every Fréchet space has the
property S .

The results in this chapter are essentially due to Yamamuro
and appear inv[60]e In that paper the results were phrased in
Banach spaces with the property that weak sequential convergence
implied strong convergence. The observations that Theorem 2.1 may be
set in sequential ﬁCé's with the property S , and Corollary 2.1 in
FM-spaces, together with the generalisations in steps 3, 5, and 6 to
arbitrary real numbers, necessary for Chapter three, are the author's

sole claims to originality in the present chapter.
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2.1 The main theorem

We shall prove the following theorem:
THEOREM 2.1. Let E be a sequential locally convex space with

the property S . Then if ¢ <s an automorphism of DF(E) there is
abijeetion. h of E such . that. h and w1t ave weaka-DF(E) and

O(f) = hfh S, for every f ¢ Dy (1)

Proof.

1. There exists a bijection h of- E such that (1) holds.
Since e, ELHE)E DF(E) , this is an application of Lemma 1l.l.

From this point the method of proof must differ from that
employed by Magill in Theorem l.l. For locally convex spaces of
dimension greater than ome it is now known that there exist
homeomorphisms which are not even Gateaux differentiable at a single
point. The following example of such a function is due to Dr S.
Swierczkowski and Professor Jan Mycielski.

Suppose FE € LCS has dimension greater than one. Then we may
find nen-zere a € E., @4 € E such that {a, @) =6 . Let
o : R> R be a continuous function which is nowhere differentiable.
Then the mapping

flz) = & + al{x, a))a
is a homeomorphism of E which is not Gateaux differentiable at any
point.

In brief, the proof runs as follows. With {en} € (co) s &
calculation similar to that in Rolle's theorem enhables us to show
that the sequence {E;lh(ena}} does not converge weakly to zero,

0 # a € E . By exploiting the interplay between %4 and h_l we are
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able to show the set {E;lh_l(ena)} is bounded. From this we deduce
the existence of a convergent subsequence, {E;lh—l(en a}} and use
k

k

well known properties of the Dini derivatives to show the limit,

lim e_lh—l(Ea) , exists. The Fréchet differentiability of h(a ® a)
€>0

readily follows and the proof is completed by deducing the weak
differentiability of %4 . We divide the remainder of the proof into
nine steps.
2. Let A be a real-valued function of a real variable. If
(éd O M) =08,
(22) A 1is continuous,

(111) there exists a sequence {en} € (co) ‘such that

E;l[k(gienn}-k(g)j + 8. for any E; n EiR ,

O .

then A
For arbitrary n , consider the function
BlE) = alen) - EACH)
which is continuous and for which M(0) = u(l) = 0 . Then we can

find an E. € (0, 1) at which M takes a relative maximum er

0
minimum value. Supposing, without loss of generality, it is the

former, then for large values of 7 , u(Eoisn) = U(EO) . Hence,

A(g nze,n) - (Eoten)l(n) = A(E.n) - EA(M) ,

0

or,
e;l[X(£On+€nn)—K(€on)] = Mn) = -E;l[k(ion—enn)—A(EON)]

Thus A =9 ,
In steps 3, 5 and 6 we will prove results valid for any real

number & , even though it will not be until the next chapter that
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the cases other than for £ = 0 will be needed.
3. For any non-zero a € E , any & € R, and {En} € (co) . THE
sequence {e;lEh(£a+€na)-h(Eai]} does not converge weakly

to zero.

We first show the result for & = 0 . Assume-we can find a non-
zero a € E and {en} € (co) gueh that  1im <€;lh(€na), §> = .0,
n-)oo

for every x € E . We shall show that for &, n € R,

1im € (% (Eate na)-h(Ea), & = 0 , for any z € F . (2)

N>

With n € DF(E) the linear mapping & - nx , we define f € DF(E)

b, f = Eca 4+ nis . Then f(ena) = Eq + enna s and flO) = €4 s Ep

E;Ll[h (Eate na)-h(Ea)]

e;l [nf (sna) -hf(0)]

e [9(n (e, @) -6 (HR(0)]

e 1[0 (0) (1 (e,a)) +2(6(£), 0, n(e, a))]

1

) =1 b =1
o(f) (0)[% h(sna)] s, r[cb(f‘), 0, an(en h(ena)”
Simee. { ACAL (B)e e LLE) . it follews that
Lin <¢(f)'(o)(€;lh(ena)}, '5> e
for every x € E . Every weakly convergent sequence is bounded, so

{E;lh(ena)} is bounded. Fréchet differentiability of ¢(f) at zero

then gives that

Lim € "r(9(), 0, (e a)) = 0,

(s

which completes the proof of (2).
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The function AE-: R+ R , defined by AE(E) = {hika), =) , For

£Ee€R, x €F , is continuous by Lemma 1.2 so evidently satisfies

the three conditions of step 2. Thus AET is identically zero.

Sines T € & is prhatmary, KlEa) =0 fer all E € R . But 4 is
one-to-one, so we reach a contradiction.

Now suppose we can find an & € R and a sequence {en} & [co)
such that

lim <€;l[h(£a+€na)-h(5a)], §> =@ , for every % €E .,

(v

Using a calculation similar to that above we may show

s;lh(ena] & E;l[h(ena)—h(O)J
- o(1-0,)" (1(5a)) [e;l ((Ease, a) —h(ga))]
+ e;lpEé(l—cEa), h(Ea), en(g;l(h(ga+ena)-h(&a))]}
Again,

Lim (9(1-¢; )" (1) |&7* (1 (Eare, @) -(ED) |, 55> =

g Ea n n
for every x € E . Further, the set {E;lﬂh(£a+€na)—h(£a)]} is
bounded, so the limit of the second term is zero. Hence the sequence

{eglh(ena)} converges weakly to zero, a contradiction, so the

statement follows.

4, For any a € E and any {En} € (co) , the sequence
{e_lh—l(s a)} ig bounded.
n n
Assume there is a non-zero a € E and {En} € (co) such that

the sequence {E;lh—l(ena)} is unbounded. For some a € E , and

taking a subsequence of {en} if necessary, we have,
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lim <e_lh_l(s a), Z> = oo,
n n

W0
Since (2 ® @) € Uy(E) , $(a®a) € Dy(E) , and

$(a®@)'(0)(a) = lim € d(a ® @) (e, a)

—>00

= (€;l<h_l(ena), a>][<h‘l(ena), E>]—lh[<h_l[sna), 5>uJ

N>

|l
o

mus if 8 = (nl(ea), @), {8} ¢ (o) . so lim 67h(5,a)

n
n—>xo

This contradicts step 3.

8]
&

5. Given & € R and non-zero a € E , there exists an £ €

such that cb[(a ® Eg) [l—c H’(Ea)(a) 20,

n L (Eq)

Suppose there exists an & € R such that for all rEen ,

¢[(a@5)[1—c H'(Ea)(a) =0 .

"t (Ea)
Take a sequence {Gn} € (co) such that 671 #0 , any n , and let
M be the set of all x € E such that the sequence

{(h_l (€a+6na) -h—l(Ea), 50_>} contains infinite non-zero members. If

x ¢ M then the sequence {G;J(h—l (Ea+6na) —h—l(&'a), x>} converges to

zero. If x € M we have

o
1

H (Ea+ena) :

lim 5;l¢[(a ® x) (l—c

o 1 nt(Ea)
- 1im S Ears o) -nE), B MR q) (3)

where B <h—l(€a+(3na) -h—l(Ea), E> . Suppose the sequence

{G;l<h_l (£a+5na) _h_l(Ea), §>} does not converge to zero. Then there
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is a subsequence {Gn } and’'a«y“€.-R ,° Y >i0%, lgéych that
k .

=i%%, coveny R,

Gk oy =i i
’6nk<h (£a+6nkq]eh (Ea). x>

Then by (3) the sequence._{T;lh(Tn a } converges to zero, which
k K

contradicts step 3. So for any % € E , the sequence
{a”l<h‘l (Ea+s_a) -n"*(Ea), 5)}
n 7 :
converges to zero, again coﬁtradicting step 3.

Note that if x satisfies

d{(a @5){1—0 M'(Ea)(a) 28

n L (Eq)

so too does (-2) . Since

Cb[(a ® (-E))(z-c £ H'(Ea)
> AWRLER)
]}b(-—l)‘b[(a ® &) (l—c 45 ]:H '(£a)
B “(Ea)

¢(-1)'[¢[(a®5)(1—c 0 ”(Ea)%((a@f)[l—c 1 ”'(Ea)
h ~(&a) h ~(&a)

”’(Ea) .

¢(~1)'<o)¢[<a ® ) (l—c 4
kT (Ea)

But ¢(-1)'(0) is a linear bijection, because

$(-2)"'(0)9(-1)'(0) = ¢(1)'(0) = 1 .
6. For any a € E and {en} € (co) there is a subsequence

{e } such that the sequence {e_lh(e a]} 18 convergent.
"k o

We can assume a # 0 . For any & € R and the associated

xE € E it is evident from the equation



0 # d{(a ® 7,) (l—c H (Ea)a)

nt(Ea)

= 1lim G_lh(<h—l(5a+6a)—h_l(€a), E'>a]

50 : 2
. -1 -1 —
that the function <h (&atda)-h ~(&a), x5> takes non-zero values
!
every zero-neighbourhood. If not ¢[(a @)Eé)(]—c o ]] (Ea)(a)
hi~(Ea)

has to be zero. Since (h_l(x), a) is continuous in & , there is

a sequence {Gn} - (co) such that

<h_l(Ea+6na)—h_l(Ea), §E> S E e

So by taking a subsequence of {en} and replacing Eé by —Eé
if necessary, we can assume that
g el e
<h [Ea+6na)—h (Ea), xg> = €. u Tor oNeey. A

At the moment we need this only for &€ = 0 . In this case we have
that
0 # ¢(a®z,)'(0)(a)
= Bt -1/, -1 — -1
3 b (5n (75 a). x0>] e (e, a) .
n—>0

By step 4, the sequence {6;l<h-l(6na), xo>} is bounded, so there

is a subsequence {Gn } of {Gn} such that the limit
k
: =1/,-1 == . . =
lim 8 {4 |8 a|, @, )= & , exists:. Certainly © is .nen-zere,
23 n 0

K-3c0 k

since the sequence {E—lh(e a]} is bounded, and
&

¢(a 6)56)'(0)(a) # 0 , so the foellewing limit exists:

iii’l e;ih[enka] = o ® EO)'(o)(a> g

24

in
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79, Tholimid lim e_lh(sa) exiats for-any. a € E. .
E20

With a € E non-zero and arbitrary a € E; we will show that
the functien, A : R+ R, defined by A(E) = (h(Ea), a’ is
differentiable almost everywhere. By [50, p. 270] we must show that-
all of the Dini derivatives of A at arbitrary o € R are finite.
Suppose the upper right hand Dini derivative is infinite at o € R .

Tha kB s,

1im e_l|>\(a+€)—}\(o¢)| = oo

+
>0

But .for {en} € (co) we have

e;l[h (0a+ena) -h(oa)]

S;l [(2+e, )n (e, a)-0(21e,,) ((0))]

¢ (1+coca) '(0) [S;lh (sna)] - e;zlr |:d> (l+cda) 0, [s;zlh (ena)ﬂ
Since ¢(1+caa)'(0) € L(E) and the set {E;lh(ena)} is bounded by

step 4, the sequence formed by the first term is bounded. As

¢(1+caa) € DF(E) the same holds for the second term. So the set
—db : -
{en [h(ua+€na)—h(ua)]} is bounded and hence so too is the set

{e;llk(a+€n)—k(a)|} whence the upper right derivate cannot be

infinite. In a similar way the other Dini derivatives are shown to
be finite.

We now consider the existence of the limit 1im e_lh(ea) T
e>0

the light of the result of step 6, it will be sufficient to show that

: e it S 5
i {en}, {6n} € (co) and lim € h(ena) =a; , lm Sn h(éna) = a,

nZ= >0
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then al = a2 :

From step 4 it follows that #h(&a) is continuous with respect
to & at & = 0 . Using the translation map and the semigroup
property we may transfer the continuity to an arbitrary point, show-
ing it to be a continuous mapping of the separable space R into
E . The following argument is carried out in the smallest closed
linear subspace, F , containing the set {A(Za) : & € R} and so is
separable.

Since, E has the property S , F contains a countable total

subset. That is, we can find enumerable 5% € F such that when
{ o, E;) # 0 Sepeyary %= 1,2, 8, i then #=0.,

Consider the following functions of & € R ,

A; () = (h(Ea), 5;> A S GEE L R N
That each Xi is differentiable almost everywhere implies there

exists an o € R at which all the Ai are differentiable. . That. is,

the limit
Lim e M [ (are)-2 ()]
€0
exists for every < . On the other hand we have,
” -1
lim € [#(cate a)-hloa)] = ¢(1te )" (0)(a)) ,
N>
while
: =1
lim 8 [h(aa+5na)—h(aa)] = ¢(1+cua]'(0)(a2) :
 Vasd
Thus

(¢{1+cqa)'(0)(al), a) = (¢(1+caa)’(0)(a2), a,)
for every < , which implies

d(14e,,) ' (0)(ay) = ¢(24e ) (0)(a,) .
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But (Z—CGa)(1+c =il 8w ¢(1—caa)'(h(ua))¢(1+caa)'(0) = 1 , which

53

means that ¢(1+caa)'(0) is injective., Hence a; =a, - We denote

£HE 1inde 2 nin e (ERY], B mACETEa)
£+0

8. For oy a € H, acl euwh that {a, a)=1,

hia ® a) € DF(E) .

For brevity we let h(a ® a) = h, . We show h, to be Gateaux

ik
differentiable at zero and that the Gateaux derivative is a Fréchet

derivative. Since E_l[hl(ex)—hl(O)J = €_lh(€(x, a)a) it follows

from step 7 that the limit as € > 0 exists and equals
(x, ah*(0)(a) . This is certainly continuous and linear in & .

For B a bounded set in E we must show that the remainder divided

by €,

e [k, (e2)-h ()< @, DAA(0)(a)]
converges uniformly to zero on B . Clearly we need only consider
2z € B for which (x, a)# 0 . Suppose the result false. Then we

can find a zero-neighbourhood U , a sequence {xn} c B and

{en} € (co) such that

st S i e
(z , a)[(en(xn, a)) h(€n<xn, 2a)-h*(0)(a)] €U ,
for every n . But since the sequence {(xn, 53} is bounded,
{€n<xn, al}l e (co) , S0 by step 7 we have a contradiction.

We new shew, for x € E

n(@) = [9(1+ ¢, @e )h.]'(0)
With some calculation the expression,

E—lEhl(x+€y)_hl(x)_[¢(1+(x, EWca)hl]'(O)(y)] -
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may be shown to equal
e Mo (24 ¢z, E>ca)hl(é:y)-¢(z+<x, are ), (0)-[o(1+ (@, a_>ca)hl] '(0)(y)]
That (a, @) = 1 is used here, since only then do the maps (a ® a)
and (1+(x, Zz-)ca) commute. But since hl is Fréchet differentiable
at zero and ¢{I1+(x, 3>ca) € DF(E) the expression converges to zero
with epsilon, uniformly for y € B . Hence hl € DF(E) '

8, Ferany a €FE., @ € E such that (a, a)=1,
(a ® a)h € DF(E) ;

3 @ ® D1 = A HR@® DTn = (@ ® @)k € D(E) .

W b oe weaka-DF(E’)

Since a Fréchet differentiable function is also Gateaux

differentiable and the derivatives coincide we have

lim € (@ ® Dh(ex)]
>0

[(a ® a)h]' (0)(x)

(a ® a)h*(0)(x) .
Since for each @ # 0 we can find an a # 0 such that (a, a) = 1.,

it follows that A*(0) is linear. Moreover any net {xa}

convergent to zero in E is mapped by [(a ® a)h]'(0) to a net

convergent to zero in E . Thus {h*(O)(xOL)} converges weakly to
zero, so h*(0) € L(&, E’w) . We show % weakly Fréchet differentiable
at zero. Since (a® a)h € Dp(E) we have

e [(a ® Dhex)-((a ® D) (0)(x)] = (e [A(ex)-R*(0)(x)], Dda
uniformly convergent to zero for & in any bounded set in E . But

this is true for all a, @ such that (a, a’=1, se  h is weakly-

DF(E’) . As before in step 8 we may move this point of weak different-

iability to any other point and the theorem is proved. //



29

The Montel spaces form a class of arbitrary dimensional locally
convex spaces which are barrelled and have the property that every
bounded set is relatively compact. Note that when such a space is
also normed it is necessarily finite dimensional. A Montel space
which is also a Fréchet space is termed a Fréchet Montel space, [17,

p. 369]. We prove,

COROLLARY 2.1. If E <s a Fréechet Montel space, Do(E) has

the Magill property.

Proof. By the theorem we have a weakly-DF(E) bijection &
associated with an automorphism ¢ of DF(E) sueh EhaE
O(F) = hfh™t , for every f . D(E) .
Since FE 1is bornological L(E, Ew) = L(E, E) se the weak Fréchet
derivative at zero, h*(0), is an element of L(EF) . Now suppose

e_l[h(ax)—h*(o)(x)] does not converge to zero in FE , uniformly for
£ 1in any bounded set, Then there is a zero-neighbourhood U in

E , a bounded set B., a sequence {Sn} £ (co) and a sequence

{xn} C B such that

Eh(e x, J-h*(0)( €, ] £ U, for every n .

But every weakly convergent sequence in a Montel space is strongly
convergent to the same limit, which contradicts the theorem. The
strong differentiability may be moved to any other point to complete
the corollary. L
Note that the properties of the Fréchet Montel space E used
were that
(i) E has the property S ;

(ii) - E 1is bornological;
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(iii) weak sequential convergence is equivalent to strong
convergence.
In particular the result holds for all finite dimensional Banach
spaces and for the infinite dimensional Banach space Zl s See [10;
p. 298].

If we replace DF by DH the arguments of the theorem remain

valid provided weak sequential convergence implies strong convergence

(see step 3). Hence DH(Zl) also has the Magill property.
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CHAPTER THREE

SEMIGROUPS OF MANY TIMES FRECHET DIFFERENTIABLE MAPPINGS

3.0 Introduction

It was pointed out in Chapter one that to show every automorphism
of a semigroup of differentiable functions is inner is tantamount to
showing that the algebraic and topological properties of the under-
lying ZIVS are wholly determined by the algebraic structure of that
semigroup of functions. In view of this it becomes of interest to
find smaller semigroups of functions on FM-spaces which still retain

the Magill property. Consequently we turn our attention now to the

semigroups U;(E) STmee T B L0S

In order to obtain a theorem for such semigroups parallel to
that in the previous chapter we must restrict ourselves to Fréchet
spaces. With a little additional effort we shall find corresponding

b k -

results for the semigroups C (E) , k € N . The contents of this
chapter have been submitted for publication in [59]. Before
proceeding to the main theorem (Theorem 3.1) we pause to obtain a

certain property of the mth Fréchet derivative.

3.1 Preliminary results

st ,ogeed B o F CLIERL. By LJ(ElX...XEm, F) we

shall mean all jointly continuous m-linear maps from El X e Eﬁ

inge F ., while LS(El K Loy % Eﬁ, FJ will refer to the correspond-

ing family of separately continuous maps. It is readily shown that

the inclusions,
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are valid at all times. For Theorem 3.1 we require to show that
elements of L are jointly sequentially continuous elements of LS .

are Fréchet spaces, Kothe has shown

When m 2 and El’ E

2
in [17, B, 172, (3)] that LS = L) . This may be generalised te
m-linear maps in a straightforward manner, so that the desired result

follows in the special case when El’ e Eﬁ are Fréchet. Since it

is hoped that the main result of this chapter may be capable of being
generalised to a larger class of LCS's we obtain the more general
result.

In the following natural way we may associate with every element

4 of the space L(E ool F o€ Bl

Eln A oyl el i 2

amap u in LS[El X ... XE , F) : we define

[ )16 e )]

for X, €F. .. 1:=0l, v..5 B . Fop gimplicity we censider enly.the

=
—
1]

case where m = 2 .

RESULT 3¢l °Leb:=B., B," be bounded sets~in El, E

10 5 respect-

2

ively, and #, > iy in L(El, L(g,. F)) . mhen (un-uo)ﬂxl, x2) + 0

0

in F , wiformly for. Ly € Bl s %, € 32 :

Proof. Given a zero-neighbourhood U in F , let WB U be
2’
the zero-neighbourhood in L(E2, F) given by

{t eLl(s,, 7) : 4(B,) cU} . Then there is an =y, € N such that

n=zn, implies (ﬁn—ﬁo)(Bl) CWp yosor
2,
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(w,-u,) (81> B,) = [(@,-%,) (8,)1(8,) <v . //
RESULT 3.2. If # €L(B, L(E,, F)) then w : B XE,+F is

sequentially continuous.

Preof, Let g0 it N R

0 1 * Y im. B, «- Then

n 2

u(xn3 yn) T u(xo’ yo) T u(xo9 yn_yo) i u(xn'x(), yo)

+ u(xn—xo, yn—yo)
Every convergent sequence is bounded so the expréssion converges to
zero as 7 + ® , by the method of the previous result. £
RESULT 3.3. The evaluation mapping from
L(z, L(&,, Fl % (&, * &,)
into F 1s sequentially continuous.

Proof. Let ﬁn > Uy, in L(El, L(Ez, B & > & in. E ,

and . "y in E2 . Then

u, (5, 4, - uglegs ¥ = (w-u) (s w,) + Dugloy, s v,) -, (=g, wo)]
Convergence to zero of the first term follows from Result 3.1 and of
the second term by Result 3.2. i

For arbitrary values of m an expansion corresponding to that

used in the proof of Result 3.2 may be readily obtained by inductiocn.
COROLLARY:  3.1. Let f eC (Y, B €IS, mel, aud

B T By s y; = y$ e Ly iaws e Ther

£ () (v

T iR il R S R RS

3.2 The main theorem

We proceed to the proof of the following:
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THEOREM 3.1. Let E be a Fréchet space. Then if ¢ 1is an

automorphism of D;(E) there is a bijection h of E such that h
-1 k
and h are weakly—DF(E) and

o(f) = hfh—l s for every f € D?(E) : (1)

Proof,

1. There exists a bijection h of E such that (1) holds.

This is again an application of Lemma 1.1.

It was pointed out in Chapter two that the elegant method of
Magill used to show % once differentiable is no longer applicable
when the space has dimension greater than one. A further difficulty
is -encountered in the present situation. Even in the case where

E = R, the derivative of the map % is everywhere finite, and

(W) (r@))h'(z) =1, for z € R,
sp that A'(m) # @ fer any 2 . . Hence %' 1is certainly.net a
bijection, with the result that the method cannot be used in
advancing to derivatives of higher order.
2. For any a € E the funetion (h(xz), a) of E 1into R is
econtinuous with respeet to x € E .
Since differentiability implies continuity in a Fréchet space,

this i1s a consequence of Lemma, l.2.
3. Wla®a)e D;(E) for every a € E, a € E such that
ta, m = 1 .

, and also h—l(a ®a) =.h, .

As before we let h(a® a) = h 5

it

The proof is by induction. By notihg that the constant map 8, » and

the one-dimensional map (a ® a) , belong to D?(E) ,» the case k = 1
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follows as in Chapter two, steps 2 to 8. Now we assume hl € D;(E) >

1=m=<k. , and shew hl € Dg+l(E) .

This reduces in essence to showing that the limit

L e’l[hj(_m)(Ea)(a)m—him)(o)(a)m]
>0

exists. For this we are led to consider the differentiability of the

real-valued functions of a real variable,
A58 = (1" (Ba)(@)", ) , for each T ¢ F .

When m 1is odd we are able to show that for {En} € (co] the

sequence {e;l[him)(aa+ena)(a)m—him)(ua—ena)(a)m]} is bounded, for

o € R . Using a longstanding result of Khintchine [16] it is then

shown relatively readily that the AE- are differentiable almost

everywhere. Yet in the even case pursuing a similar Path with the

sequence

{S,;l[hi )(Ota+€ a)(a) +h(m(aa g a)(a) -Qh(m)(oa)(a)mJ}

and using a result of Zygmund [68] yields only the finiteness of the

Dini derivatives of each KE- on a dense set ih R . With mere effort

differentiability almost everywhere does follow and the method of

the odd case takes over. Regretfully the calculations are necessarily
lengthy since we are constantly dealing with expansions of higher
order derivatives of composition functions. Firstly, we show

Bal. (m)(Ea)(a) 18 continuous with respect to & € R

If {En} € (co] 5 him)(ga)(a)m is equal to the limit

lim e;l[h(m'l)(iaﬂ: a) ()™ o (m l)(E M) l}

3
>0
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By a result of Banach, [3, p. 397] such a limit function is
continuous on a dense set. Suppose that o is such a point of

continuity and & 1is an arbitrary real number. Then if

1 e lm) s

him) (£a+€na) ()™ = him)[(lwia—oca) (oca+ena):| ta)?

(¢ (14¢ )hl] S (oate, a) (a)" .

‘Ea-0a
That (a, a) = 1 is used here, again to ensure the commutativity of

the maps (a ® a) and (l_cia—aa) . Using the expression given in

[1, p. 234] for the expansion of a higher order derivative of a
composition function, it is evident that the last term converges to

(m)

m
1 (Ea)(a)

[¢(z+c5a_w)hl] " (oa) (@)™ = 1

as o & tends to zero. Hence

(m)
n hl

" 3 .
(Ea)(a) is a continuous function

aF € .
As in the previous chapter we have the following pair of
results:

g2, "Givan TUER, 920 win B pedd e | € (co) , the

sequence {e;ll [ [Eaﬂ:na) -h(Ea)]} does not converge weakly to zero.

3.3. Given & € R and non-zero a € E , there exists an

g € E such that ¢[[a®55) [l—c H’(Ea)(a) * 0.

nl(Ea)

Feor fixed & € R we let

S(EE) = {n ER d{(a ®EE) (z-eh_l(na)]]’(na)(a) 4 o} .

We show Sﬁrg) is open. Suppese n € S(Eg) , then
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(h)(na)(a), Zy Yy (0)(a) hi(o)(a ® a?g)hé(na)(a)

h (a@a?){]—c ]h:|'(na)(a)
[l 2 ntna)! 2

¢[(a(8 Eé)(l-c a ]}'(na)(a) :
h "(na)

since (a® a)(a ® Eg) = (a® EE)

So (hé(na)(a), §é> # 0 . By 3.1 this is a centinuous functien

of n, showing S(Eé) to be open.

We are now in a position to show hl € D;+1(E) , but must deal

with the odd and-even cases separately.
3.4. Case where m odd.

We show for arbitrary &« € E that the continuous map AE-,

defined at the beginning of Etepnfthree, has the property that

(o)

2% 2
€ I:AE( E+€)-A~{E-€)]

lim sup
e>0

for every & € R .

3.4,1. For any sequence {en} € (ao) , the set

(P 6@ e )
is bounded.

With 56 the functienal asseciated with &€ = 0 , as in 3.8,

and arbitrary {Gn} € (co) , consider the expression
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[b(a ®Z) @& D] ™ 0) (@™

lim 5;1[(711 (a ®z)n,) Gl (6,a)(@)"- (1, (a ® Z )1,) “’”(o)(a)”j

n—>e

vin 672 (4, (@ ©7,)) ™ (1, (6,8 (1] (5,0) (@)

7>

=\ (m) ' m
-(r (@ ®=)) 7 (0) (R (0) (@)

(Z,) i
—11(q)
+ 1chI<m . Om[(hl(a @xo)) q (h2 (éna)}(hz 1 (Gna}(a) 1]

: [hz(iq) (8,9) <a)iq]

> () i () i
-(n, (a ®x0})(q)(0)(h2 Y 0)(a) ll (hQ 1 (0)(a) qm .
The second summation is over all g-tuples of positive integers

’Z:l’ .ll’

iq , such that il Foses T =0, Ane o is an integer

coefficient. We may now write down a similar expansion for

[¢(—a 8)Eb)a(3 aj(m+l)(0)(a)m+l , and show

[¢a®7))a®3] D 0)(@™? + [¢(-a @5 )a ® 5] S D TR LA

- 1im 672 [ () (@ © F)) ™ (17 (5,0) |-

N>

(r, a © 7)™ (57 6,2)]| (6,0 @)
(¢))

+ 1sg<m ) Gm[(hl(a i Eo})(q)(% (€,%)) (hQ : (8,2) (@) l]

" (hQ(’bq) (Sna) (a)iq]

(2,)

D0y e 02 D (1, D) 1, (5,90

5 (hz(tq) (Gna) (a)iq}
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7))

%
- ((=-1)7) (hl(a@ac‘o))(q)(m[ (0)(a) l]

(
2
(

: [ lq)(O)(a) qm . £2)

We wish to show that the sequences formed by the terms within

the double summation are bounded. If g is odd the term becomes,

. (a8 7)) D1, (5,0))- (4, (a 7))@ (-1, (8,4))|

n

(hQ(il) (6,4) (a)il [h (t,) (Gna](a)iq]

(e, BN 6D, 5,)
[[hi‘l ) (<hl (8,4, 5;“0 >a] - (o)]- [hiq ) [<hl (6,a), Eo>a1 10 )ﬂ
[<h2(il) (6na)(a)il, z, ] (h,fiq) (c‘ina)(a)iq, 50>a] ,
since if <h_l(6na), a?o> = 0 , the expression vanishes. By noting

that {G;lh_l[ﬁna)} I:fgverges, {<h—l(6na)’ 56>} s (co) - hiq) e

(q)

Fréchet differentiable, and h (2a)(a)? is continuous in & , it

is evident that the sequence converges.
If q is even, by adding and subtracting a suitable term we

have,

a‘l[[(hl (2 ® 5)) 9 (1, (5,0))+ (1, (a © 7)) D (-1, (5 a)

S

-2(h, (a ®50))<q)<o>:| (hQ 5 (6na)(a)ill ( 2(7"1) (8,4) (@) ql

(2,)

+2(h (a® a?o))(")(o)[h2 : (sna)<a)il] ( z(lq) (8,a) (a) q]

—Q(hl(a@Ec'o))(q)(O)(hz(il)(o)(a)il] (hQ(iq)(O)(a)iq]:l .

Convergence of the first term follows in a manner similar to the
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case where ¢ is odd, while the second and third terms may be

rearranged as,

2[(hl(a ® a?o))(q)(o)

(hiiq‘l) (6,4) (a)iq'l] (5;1@%) (8 4) (a)iq—hyq) (O)(a)iqn

(q)

+ [hl[a ® 50)) (0)

e S [ e i (2,) i
[Gnl[hQ Y (8 a) (@) Thn, T (0) (@) q‘lmhz 4" (0)(a) q]

(2,)

7
) (a) l]]

(hfq) (0) (a)qu

- (%) i
s (hl(a®x0)(q)(0)(6nl(h2 (8 a)(a) *-n,

(2.)

Simce 1ot B a1 v B s h2 J is Fréchet different-
iable and so a fortiori Gateaux differentiable. Moreover, by Result
3.2, [hl(a 8)5%)](q)(0) : 1 + E is continuous, so convergence with

n follows. This technique for showing convergence will be used
frequently, but elsewhere we shall refrain from presenting these

detailed calculations.

The Ffirst term in (2) is
R oy 4
(¢ry(8,8) @, 7)) [(Sn h, (8 a) xo)]<h (6,4, xo>

[hi’”)[@‘l(sna), Eo>a} —him)(—<h_l (6,4), Eo>a}:|(a)’” :

Recall that <hé(0)(a), 56) # 0 and that given {en} € (co)

=1

there is a sequence {Gk} € (co) and a subsequence {Enk}‘ of {en}

such that
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<h_l(6ka), 56> = enk , for every k .

Hence we can conclude that given {en} € (co) there is a

subsequence {Sn } such ‘that the set
k

' ) e alla) -h -€_al(a)
{ " i ny il "

is bounded. Immediately we have 3.4.1l. This broperty is now
transferred to an arbitrary & € R .

3.4.2. For any sequence {en} € [co) y. and E € R., $he vey

{s_l [h(m) (Ea+€na] (a)m—hj(_m) (Ea—ena) (a)m]} is bounded.

n r
Consider
e;l[i [£a+e a) (a) —h(m)(ia—ena) (a)m:i
B [[¢(1+c€ )h:](m) (e a)(a) [¢(1+c h](m) ena)(a)m]
(z.) i
— () :
- [ Lonotareg ) Pl @]

o (hl(ﬂq) (ena) (a)iql

-6(1+e,,) ‘DO (n(-e a)) [hf;l) (~¢,9) (a)ill

[ @]

In order to show the boundedness of the sequence formed by the

term apﬁearing when g = 1 we rewrite it as
[ (treg,) ' (n(e,@)-0(treg) 03] (1 (6, 0) (@)
e [0(1rep,) ' (h(-e,a)) -0 (2ve;,) (o)][ g sna)(a)m]

+9(14eg,) " (0) [e;zl (hi’") (¢, ) (a)m-him) (¢ a) (a)”’]] .,
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We may assume Kk = 2 , so boundedness follows for the first pair

of sequences since ¢(1+c€a)"(0) €Lig, LE)) . Frem.8:.5.1 it

follows that the third sequence is bounded. Decomposing the term
formed for 1 < q =m <k in a similar way shows that it too forms a
bounded sequence.

As was pointed out in Chapter two, step seven, ne loss of
generality is suffered if at this stage we assume £ to be separable.
A vresult in [17, p. 259] then gives that E is weakly sequentially
separable, which means that every element of E is the weak limit of

a subsequence of a fixed sequence, {5%} of elements of E . Notice

that such a set is also total. We now show

3.4.3. Fopr.come 6 € R the limit

S <e_l[him)(oua+€a)(a)m—him)(ota)(a)m} ; a‘->

0 3
emible, for ovary 1= 1, 2, e

Recall that each Ai = XE- is continuous, while from 3.4.2 it
-

follows that

lim sup S0

€0

ik
e [}, (Ere)-A, (E-e)]

for every & € R . An early result of Khintchine [16, p. 217] shows

that this is sufficient fer each Ai to be differentiable almost

everywhere. We deduce the existence of an o € R at which each of

the functions Ai is differentiable. Coupled with the following,
this enables us to show that the limit

lim e'l[%EM)(ea)(a)m—him)(O)(a)”ﬂ
€0 -

exists.

3.4.4. Given {en} € (co) there is a subsequence {en } such
/3
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that the limit, - lim e;ll[him){en a] (a)m—hJ(_m)(O)(a)m:[ S 'epista.
W e k

Although the inductive assumption was that hl € D;(E) we may
also assume h2 € D;(E) » Since any property true of % can also be

shown for h_l . In fact we have hém)(ga)(a)m continueus in & .

With 56 as before, and & € R , we examine the expression

= = ) L) m+1l
hka@w@®x&bw }%a@aﬁ (Eaital. " .

nt(Ea)

Fer {Gn} € (co) , this is the limit of the sequence with nth term

[l )| ARCER
a®x l-c ato _aj(a

- (m) i
—(hl[a Rz ) ]hzl (Ea)(a) ] >

(1—@
b e
which with some computation may be shown to equal,

6_1[?§m)[<h—l(5a+6na)-h—l(Ea), Eb>al—h§m)(0{}((hé(Ea)(a), z)a)"

n

+ 5;l[h§m)(<h-l (€a+6na) -h‘l(Ea), 50>a] (« hé (€a+5na)(a), Eo)a)m

_him)(<h_l[5a+6na)—h_l(5a), 56>a1((hé(£a)(a), Eb)a)”ﬂ

+ G-l[
B oL

§<m ’ om{(hl(a(g 55)(Z'Ch‘l(aa>ll(Q)[h_l(ga+6na)]

[h (tq) (£a+6na) (a)iq]

(,) T
(hz . (Ea+6na)(a) ll T

]](q)(h'l<aa>)(hgil)<£a>(a>ill

; (héiq)(za><a)iq]}]

-
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+61;l[hi[<h_l (£a+6na)_h‘l(ga), 50>al —hi(O)J (<hém)(€a)(a)m, 50_0>a]
s, (hém) (ga+s a) (a)"-n™ (Ea) (a)m] 5

hi [<h_l (£a+6na) -h_l(Ea) ; o?o>a] (a) .

Firstly, assume m > 1 . When suitable terms are added to and
subtracted from the general term of the second sequence, the scalar
coefficients taken out, and the continuity result of step 3.1
applied to the remainder, the second sequence may be skown té converge.
By fixing g in the third sequence, again adding and subtracting

suitable terms, and observing that ij S0y g alifsitala B o

(2.)

hl J is Fréchet differentiable, we are able to use the fact that

differentiability implies continuity when the first space is
sequential to show that the third sequence converges. Thus the three
central terms form convergent sequences, as does the final term for
all & in a set of full measure A4 , by the results of 3.4.3.

Choosing £ € S(Eb) N A we are then able to find a subsequence

{e } of {e } for which the limit
o n
lim erzll:hj(_m)[e a]—him)(O)J(a)m
ko Tk "
exists, since (hé(ga)(a), 56) # 0 . Note that when m = 1 only the

final pair of sequences remain and the proof goes through as before.

SR e it 1n e'll:him)(ea)(a)m—him)(0)(a)m] ok,
>0

In view of the conclusion of 3.4.4 we must show that if

8.1l e o) mn

iifl e;l[hi’”)(ena) (a)’”—hi’”’(oxa)m} =a ,
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. -1
Lin 6§ [hi’”)(ana)<a)’”-h§’”)<o><a>ﬂ i

n>reo

then a, = a, . Now with & as in 3.4.3,

e;l[%im)[ua+ena)(a)m—him)(da)(a)nj

= 9(1re, )" (0)[6;1 [hi’”) (€, ) (a)m-hi’")m)(a)ﬂ]

e [o(zre,)! (1 (e, a)) -0 (1+c,) " (0)) [h ™ (e ) (a) ]
(<,)
3

- % Zome;;l[ﬂiwaa)(q)( (e an(h g (ena)(a)i]

2=q=m
(iq) iq
: (hl (ena)(a) ]

(Z,) i () i
- ¢(z4c “”(o)[hl Yo 1] (hl T (0)(a) qﬂ :

=
All but the first term on the right hand side converge to a

value independent of the sequence {en} € (co) . Henmge, by 3:4:3,
(¢(1+cw)'(0)(al), a,) = (¢[1+cw)’(0)(a2), a) ,
for every ¢ =.1, 2, .+. . Since {E%} is total and ¢(1+caa)'(0)

is one-to-one, we have a, = a

L ="

3.5. Case where m even.

Due to the fact that
(

—1)(m)(ea)(a)m , Ter m ‘even,

™ (ea) (@)™ =

L—(hl.—l)(m)(Sa)(a)m » for m odd,

we are led in the even case to examine a second order difference
quotient.

3.5.1,. For {en} € (co) , the set

{sgl[him)(sna)(a)m+him)(—ena)(a)m—2h§m)(0)(a)é]}
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18 bounded.

As in the odd case we calculate [cb(a ® ZEO.) a_@aj(mﬂ)(o)(a)mﬂ

and [&(—a @)55) a @>aj(m+l)(0)(a)m+l and find that their sum is,

for {8} € (o) »
sin (006,80 @, 70" (55 0,0, 707 6. 7,
K07 60, B (76,0, B2
+ 26,1 (0 (0 © 7)) ™ 0) (3 (6,0) (@)™ (1 (2 © 7)) €0 (1303 (@)
r I 1ot 8z )6, (Y (6,010
: [hf' )(6na)(a)iq1

2 ] (hz(tl) (Gna) (a)il]

—+
~
I
—
Nt
Q
=
>
'_l
—
Q
®
8|
o
—
~—
P
Q
N
¢ PR
3“'
‘_l
—
(o2]
Q
S

s (hiiq)(éna)(a)iq]

(¢

(1+(-1)9) (e ®z,)) (q)(O)[hz

) i (z ) i
iy ll i {hQ T (0)(a) q]] :

Since m 1is even, hé is Fréchet differentiable so the middle

sequence converges. The term within the double summation is
identical to that in 3.4.1 where it was shown to give rise to a

bounded sequence. Again, (hé(O)(a), Eb) #0 , allewing us te
conclude that given {en} € (co) there is a subsequence {En } such
k

that the set

{e;i [h im ) (snka] (a)’”+hi’") (—Enkal (a)m—zhim )(O)(a)m] }

1s beunded. Then.3.5.1 felloews.
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3a5i8:: For: {g ]ee (co} , and & € R, the set

{e_l l:him) (Eate a) (a)m+him) (Ea—f—:na) (a)m—2h§m) (Ea) (a)mJ }

n
18 bounded.

Using the translation map, (1+c€a) , and the technique of

3.4.2 we can show the above expression is
e o(z4e, ) (e a)) (5™ (e.a) (@] +
n Ea n 1 n

¢(1+c€a) ' (n (—ena)) (him) (-ena) (a)m] * 2¢(1+c£a) (o) [him)(o)(a)m]]
()

e 3 Om[¢(1+°ga)(q)(h (ena)) [hl %

il
(e_a)(a) ]
<q=m ”

: (hf; )(sna) (a)iq]

1

ga)(q)m)( 4 )(O)(a). ] (h tq)(o)(co qm

Boundedness of the sequence formed by the first term in this

- ¢(1+c€a](q)(h (—ena)) (h (il B a) (a)il] ; [ 7/ gna)(a)iQ]
( y
- 2¢[1+c s

expression follows since we may rewrite the term as

¢(1+cga)'(O)(e;ll:hj(_m)(&:na)(a) +h(m)[—€ a) (a) —2h(m)(0)(a)m]1
T slarey)’ (rle )0 (1reg) 03] (1 (e 0} @)

e, [8(2te,,)" (e, a))-0(2ve,) (o)]( ALl ena)(a)m] :
We use 3.5.1 and the fact that ¢(1+c€a)"(0) e s Lim)) -

Twofold application of the procedure of 3.4.2 shows boundedness for
the sequence of terms within the double summation.
In the terminology of Zygmund, [68], the continuous functions

}\i Lo t= 1. 7. .,  have tbe property. & o R . That is,

A (E+€) + A (E-€) - 2A,(E) = O(e) , E €R.
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As indicated in [68, p. 55] this is insufficient to ensure the

differentiability of Ai at even a single point. However, it does
mean that the set of points at which all four Dini derivatives of Ai

are finite is everywhere dense.

3.5.3, Given {en} € (co} s the set

{e;zl[hi’") (¢, a) (@)"-1{™ (O)(a)”i ’}

18 bounded.

The calculations of 3.4.4 suffice to show that if {Gn} € (co) .

and the set {<6;l[é;m)(5a+8na)(a)m—hém)(ga)(a)ﬁl, 56>} is bounded

in R , then so too is the set
3 1 A,
{<h (£ars a) -2~ (Ea), xo>

[hi’“ Khl (ga+s @) - (Ea), 50>a] 1™ (0 )} (a)m}

in E . Choosing &£ to be in the dense set in which all four Dini

derivatives of AE- are finite, as well as in the open set S(Eb), we
0

deduce the existence of a subsequence {en } of {en} for which the
k

set '{e_l[%(m)[e a](a)m—h(m)(o)(a)”j}- is bounded. Immediately we
nk i " Iz

have 3.5,3.

858,48 Givew {en} € (co) peitiRa, the set:

n

{s—l[him) (Eaﬁ:na} (a)m—hj(_M) (€a) (a)m]}

18 bounded.

Since the above expression is equal to
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e;l[§(1+c£a)'(h(€ a))[him)(gna)(a)m]—¢(1+c€a)'(0)[hiM)(O)(a)m]J

n

i Ome;l[¢(1+cga)(q)(h(Ena))(hfil)(Ena)(a)il}

2=q<m

[hiiq)(ena)(a)iq]

(2

- ¢(14e )(q)(o)(hl

%, : (iq) i
B (0)(a) ] A [hl (0)(a) =
the result follows from 3.5.3, and standard methods.

S dmR o, A=l 2, ey Ai 18 differentiable almost

everywhere.

1f {sn} € (co) we have that the set

{<e;l[h§m)(£a+ena)(a)m-him)<£a)(a)fﬂ, 7}

is bounded, any € € R, any 7 =1, 2, .+« « Thus-all feur Bini

derivatives of Ai are finite at every point in R , so by [50,
P.-2701, Ai is differentiable almost everywhere. Following the

argument of the odd case from here leads to the existence, in the

even case also, of the limit

i e‘l{ﬁim)<ea><a)m-h§m)(o>(a)"ﬂ
>0

We call this (him)]*(O)(a)m+l :

3.6. him) is Fréchet differentiable.

We begin by showing

gy o [him)]*(o)(a)m+l g 7

which is certainly an element of L(E, T nes ...) which we
m+1

abbreviate to L(EM+1, E) . Thus him+l)(0)(x) will equal
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&z, a‘>[h§’")]*(o)(a)’"+l " a

We have to show that for each bounded set B in FE
[ n™ (ex) h(m)(o)] L _3[him)1*(o)(a)m+l " a
is uniformly convergent to zero for & € B, Since
B (@) = Mz, Da)@)" & @

the expression is zero if (x, a) = 0 . So we need consider only

those x for which (x, @) # 0 . Suppose the result is false. Then

(x, a)[(e(x a) [ (m)(€<x a)(a)" " & h(m)(O)(a) @W J

__(h(m)} *(O)(a)mﬂ' & aj

A
does not converge to zero uniformly for &« € B . Hence we can find a

zero-neighbourhood U in F , {en} € (co) s {xn} c B , and bounded

sequences {xi}, ds ws {x:} s such that
i o i SRR g
xi, a> <x:, a>(xn, a)[(sn(xn, a)) (him)(en@n’ aa) ()"
—him)(o)(a)ml—(him)]*(O)(a)m+{] kv,

for every »n . But the sets {<x;, 5>} dre bevnded, € 5 1. veug i ,

e *
and {En(xn, a} e (co) so from the definition of (him)] (0)(a)m+l

we have a contradiction. We now show

B (@) = [p(2x¢2, De Yn] T 0)

s

(m)
hl

; k i :
which certainly exists in L(Em l, E) ,» since we have shown

Fréchet differentiable at zero. Given a bounded set B in E we

must show
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—l[him)(acwy )-him) (©)-[¢(1+ ¢z, Z)ca)hl] (m+l)(0)(€y ):|
= e [Omﬂx,jwmw,amyhyﬂﬂx,aa)

= [¢(1+(x, a_)aa)hl:l (m+l)(0)(€y )}

converges to zero uniformly for y in B . As before it is evident
we need consider only those y in B for which (y, a) # 0 . But

the above expression is

(y, E)[(é(y, E))_l[(d)(ﬂ(x, ale ) )(m)(e(y, ala)

- (olzrz, @e)n) ™ (0)]-(6(1+ (e, a.)ca)hl)(mﬂ)(o)(a)J
which converges uniformly to zero for y in B . Hence

=4 D§+1(E) , so by inductien, hl € D;(E) ;

4., (a®a) € D;(E) , for all -a, @ such that. (a, a) =
Since h(a ® a) ¢ D;(E) it follows that
| e . 8 — — k
o [h(a®a)]l =h [ha®a)lh = (a® a)h € DF(E) ?

5. h 48 weaka-DZ;.(E) :

The proof is by induction. The case k = 1 was treated in

Chapter two. Now assume 7% is weakly—D?(E) eeme M, l1L=m%k.

Unless otherwise stated [(a® E)h](m) and [h(a® 53](m) will

refer in this section to strong mth Fréchet derivatives, while h(m)
will denote the weak mth Fréchet derivative of % . Note that since

L(E) and L(E, Eb) are equal as sets, strong differentiability

implies weak differentiability and the derivatives coincide.

Bils h(.m) is Gateawx differentiable at zero.
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With a, a' as before, him+l)(0)(a) exists and equals

lim E-l[ﬁim)(sa)—him)(oi] , an element of L(Em, E) s But thds is
€>0

lim S_l[h(m)(ea)—h(m)(o)] , an element of
e>0

L{g,7.o., LBy B oi)= L(Em’ Ew] ’

= — w
m

since the topology on L(E, Ew) is weaker than the topology on

L(E) . We denote this limit by (h(m)}*(O)(a) .

5.2, BT YD) ¢ L[E, L[E’", Ew]]

It is readily shown that if {Sa} is a net in L[Em, Eb] then
S, converges to zero in L(Em, Eb] if and ‘enly-if. (a @)Z)Sa
converges to zero in L(Em, Eb] , for every a, a such that

(e, o) =1 . Now

1im € [ ((a ® @)1) ™ (ey)-((a ® D1) ™ (0]
>0

[(a ® DRI (0)(y)

in L(Em, E)

linm (a ® De [ (ey)-n™ (0]
£*>0

in L(Em, Ew]

i *
@D ™) o) ,
using the 'only if' of the &bove result. Since for non-zero a we

can find non-zero a such that (a, a) = 1 , it follows that
*
(h(m)) (0) 1is linear. Any net convergent to zero is mapped by

[(a @)a)h](m+l)(0) into a net convergent to zero, so using the 'if'
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*
direction of the result gives (h(m)) (0) € L[E’n+l, E'w] -

(m)

5.3. h is weakly Fréchet differentiable.

We show this property at zero. Let

1ﬂ[h(m)’ 0, y] . h(m)(y) : h(m)(o) . (h(m))*(o)(y) -
(m)

We require that e_lr[h e Ey] should converge to zero in
L(Em, Ew] uniformly for y in any bounded subset of E . Suppose

this is false. Then there exists a sequence {en} € (co) » bounded

sequences {yn}, {y;} Seten The moems Shk T Ret E » - such¥that

<e;zlr[h(m), 5 enyn} [yij [y;j] )

does not converge to zero with 7 . But [(a® c?)h](m) is Fréchet

differentiable at zero, so for any bounded sets B, B’zl >
€ =3, cuss b 38 .E:,

-1 =y, (m) 1 m

e ullta® ) " 0, a]lun) i BT

converges to zero in E , uniformly for y € B , y7' 5.7,

1
et L e o TRk e
-1 r, (m) i m =
(e r[h () ey](y) (y),a)
converges to zero uniformly for y € B , y7’ el i 1= 0 aie o e

%
a contradiction. We may use a method similar to that in 3.6 to move
this point of weak differentiability to any other point, so completing
the proof of the theorem. Ll

Corresponding to the coreollary of Chapter two we have:
COROLLARY 3.2. If E s a Fréchet Montel space, DZ;(E) has

the Magill property.

Proof., We use induction. The case Kk =1 follews as in the
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previous chapter. Assume #A € Dg(E) s sems M., . lm < kegrarid

h(m)

suppose , the strong mth derivative, does not have Fréchet

h(m+l)(0) . This is the weak Fréchet

derivative at zero given by
derivative at zero of the strong mth derivative of % . Then there

By oo

exists g neighbourhood U of zero, bounded sets B, Bl’ cees B

sequence {En} & (co) and sequehces {yn} B 3 {yi} @ Bi :

l] it {y:] # -, fop

g -1_1|, (m)
£ =0 s.is sdeh that = rEh =0 enyn}[yn
every n . Using once again the fact that every weakly convergent

sequence in a Montel space is strongly convergent to the same limit,

we contradict Theorem 3.1. L/

3.3 The semigroup Ck

We now show that parallel results hold for the semigroups of

many times continuously Fréchet differentiable maps.

THEOREM 3.2. Let E be a Fréchet space. If ¢ is an
automorphism of Ck(E) there 18 a bijection h of E such that h
-1 k
and h are weakly-C (E) and

O(f) = hfh™t , for every f ¢ ) | (3)
Proof, As usual, there exists a bijection % such that (3)

holds. Moreover, for a pair a, a , {(a, a) = 1 , we have

hy =ha®a) ¢ v’;(m e

k
E> hl € C(E) .

(

lk) € BB L(Ek, E) is not continuous at z € E .

Suppose &

Then we can find a sequence &z = & such that hik)(xn) - hik)(x)
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That is, there exist bounded sequences {a:i}, {xﬁ} , each in.
E , and a zero-neighbourhecod U in Z such that
nF () [x}z] (xfj n (@ )[ ] (xﬁl b=
for each 7n:, or
Kxi, Z>] (<xﬁ, E>] [hik)((xn, a_)a)(a)k-hik)((x, a_)a)(a)k] t 7

for every n € N . By step 3,1 of Theorem 3.1, (k)(Ea)(a) is

continuous in & , and since the sequence {<x;, 5>} is bounded,
2 =1, +s.5 K 5 we reach a centradictien.,
- -1 — k

2, (@a®a)h =¢ [ha®@a)l € C°(B) .

As before we can show %4 is weakly—D?(E) . To complete the
proof we show

: k
3. h 1is weakly-C (E) .
Suppose h(k) B> L(Ekg Ew] is discontinuous at & € E .
: : k

Then there is a sequence z, > & , bounded sequences B Py eves \L°

f

in E , and an a € B - such that

6OEIE . [(Hr Ol .. (], 3

does not converge to zero. But [(a® 53h](k) = L(Ek, E) is
continuousj a contradictiocn. /)

COROLLARY 3.3. If E s an FM-space, every automorphism ¢

of. Ck(E) 18 inner.

Proof. As before, we have h € U;(E) . Suppose h(k) is

diseentinueus at & € E . With z, o {xi}, s {xﬁ} as above
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we -have the sequence

h(k)(xn)[xi] G (xﬁ] o h(k)(x;{xé] .-.Lxﬁ]

not convergent to zero. But by the theorem this sequence is weakly,
and therefore strongly, convergent to zero sifice we are in Montel

space. Vi

. (5<]
Note tHat a similar treatment of the semigroups DF(E) , and

CN(E) , of indefinitely Fréchet differentiable and indefinitely
continuously Fréchet differentiable selfmaps of Fréchet Montel space

respectively, reveals that each of their automorphisms is inner.
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CHAPTER FOUR

A SPECIALISATION, CHARACTERISATION, AND REDUCTION

4.0 Introduction

This chapter is divided into four sections. In the first we
give an alternative and far shorter proof that the semigroup Ck(Rn)
has the Magill property. Whereas in the previous chapter this was
achieved by elementary methods we show here that the problem may be
arranged in such a way that a classical theorem concerning
differentiability is applicable. The second section is devoted to a
reinterpretation of the automorphism problem in terms of the
S-categories of Bonic and Frampton [6], and a number of results in
this direction are given. We include a section mentioning a number
of unsolved problems, and conclude with a reduction of the semigroup

automorphism problem to the group automorphism problem.

4.1 The semigroup Ck(R") , again

We present a different and brief proof of the following result,
which 1s to appear in [58]:

THEOREM 4.1. If E 1is a finite dimensional Banach space,

every automorphism ¢ of Ck(E) 18 1innmer.
Proof.

1. As before we have a bijection % of FE such that:

o(f) = hfh—l , for every f € Ck(E) . Since the weak and strong
topologies in E coincide it follows from Lemma 1.2 that A is

k

continuous. In order to show % € C (E) we rearrange the problem in

the manner below.
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Pefinjtien. A family  {W(E) : £ ¢ R} of selfmaps of F is

said to be a one-parameter group if
WEEIN ) "= "YlE W) ™, Ferany " £, N 7€ R,

Chernoff and Marsden in 1970, [7, p. 1044, Theorem 1], showed
that if E 1is a metric linear space and VY(£)(x) 1is separately
continuous on R X F , then it is jointly continuous. In view of
this the result of Bochner and Montgomery, 1945, [5, p. 691, Theorem
4], can be stated as follows: if E' is finite dimensional, {Y(&)}

a one-parameter group with Y(&)(x) separately continuous, and

Y(E) € Ck(E) for €ch', & €B.{'then ™ ¢ RX F>'g "1 Jeintly &

times continuously differentiable.
We define a one-parameter group of Ck selfmaps of E-,

{YCE) } oy by 1 WEN = ¢(e£) 5o &€:Rsc: Continuity with respect.te the
parameter follows readily from the continuity of A(&a) with respect

to & . We show that the Xk times continuous differentiability with

respect to the parameter suffices to give % in Ck(E) , by proving:

&

2. Few. 0.€ER, 4> 68, md = €E, ——z-h(ax) exists and is
do.

eontinuous in . o .

g

Tedious differentiatien shews that if a=e? , y € F , and
m € N , then

m

o £ m vt d
2_nle*y) = )} e e > =—h(oy) (1)
dEm ey do¥

providing we assume that these derivatives exist. The coefficients

. s - m .
CZ EN, =121y oo, M are given inductively by e = OZ = 1 while
cz = ch'l + cz:i for 1 <2r <m . The result is obtained using the

above and complete induction.
When k = 1 , since Y(&)(x) is continuously differentiable

with respect to & , we have the existence of
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j%-hegh—l(x) = eE é%-h(ay) 5

where y = h_l(x) gL S eE,. Hence for o > 0 , é%-h(dy) exists.

2 é%—h(egy] is

Since é%-h(egy) is centipueys im & , é%—h(ay) =@
also continuous in & . Theorems 8 and 9 of [lS, p. 95] ensure the
gentinuity in & ..

Assuming now that the result holds for all hatural numbers less

than some m € N, m =k , we may use (1) and the existence and

centinuity in: & of ——E-h(egy) to give the existence and continuity

dg

in, & of gZT;{h(Oty) for all o > 0 in an entirely parallel manner.
do.

If we let {ei} be the standard basis for E = R’ -

({ei}, {E%}) be a biorthogeonal pair, and hi = h(ei 6)ei) » We may

use an argument almost identical to that in the previous chapter to
k G k
show that hi EONEY - 4 b e, B oa.End this fhat - h e ColE) o5 o

Note that when k = 1 this result is ihcluded in [64]. Here it
is shown that for the semigroup of Cl maps‘with bounded derivative
on an arbitrary real Banach space every continuous automorphism is
inner. When the space is finite dimensional every automorphism

becomes continuous.

4.2 The characterisation problem

In Chapters two and three we gave proofs which showed that
certain semigroups of selfmaps S(E) of a locally convex space E
have the Magill property. These may be rewritten in a straightforward

fashion to show that if ¢ 1is an isomorphism between S(E) and
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S(F) , then ¢ may be represented as conjugation by some invertible
element of S(E, F) , the "S-type" maps from E into F . If all
maps are Hadamard differentiable then as outlined in Chapter one, the
semigroup S(E) affords a topological and algebraic characterisation
of the space F . This notion will be dealt with formally at the
beginning of the next chapter. At present we devote ourselves to
this more general problem of finding conditions under which a semi-
group of selfmaps will characterise the underlying topological vector
space. If a topological characterisation only is required the
question has a ready answer, (Theorem 4.2) but for a topological and
algebraic characterisation the problem is more difficult (Theorem
G.ob).

We let I(E) denote the set of all constant mappings from E
into itself, and TI(E) the corresponding set’of all translation
mappings. We introduce the following idea, due essentially to Bonic
and Frampton [6], but generalised by Lloyd in [20] to TVS's

Definition. An S-category is a category S whose objects
comprise all open subsets of all topological vector spaces. For any
pair of objects U and V , the morphisms S(U, V) are functions
from U into V with the usual composition as their product. We

require that the following conditions be satisfied:

s1: S, V) < C%u, V) for every U, V 3 I(E), T(E) < S(E, E)
and L(E; F) c S(E, F) for every E, F € TVS ;
s2: if f € S(U, V) and W is an open subset of V containing

LU ; then F.€ 800, W) 3

B IF TE CO(U, V) and for each « € U there is an open set

W with « € W< U such that f|W € S(W, V) , then

Bee SCly Vies
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e B Alea(m, wd wl V5, e (v, V,}  then
il s S(UlXU2, Vl><V2)

Examples of S-categories in topological vector spaces are

, and D; n C° v & €N , and Ck , k € N in sequential

locally convex spaces. Since the composition of Gateaux differentiable

maps is not necessarily Gateaux differentiable, DZ and Cg w. KE-N

are not S-categories. Let supp f denote the support of the real-
valued function f .

Definition. Let E € TVS, and S8 be.an. S-category. E .is
said to be S-smooth if given a € F and a neighbourhocod V of a ,
there exists an. f € S(E, R) such that fla) >0 , flz) =20 fer
g £ 4, and supp f V.,

For results on the smoothness of certain spaces, see [6] and
[20]. For an S-category S we call the semigroup S(E, E), S(E)
In the terminology of Magill [33], an isomorphism ¢ from S(E)

onto S(F) 1is said to be induced by a homeomorphism %4 from F

snte o Fotifn p(f) = hfh—l s for every f.€ S(E) . Clearly if every
isomorphism is induced by a homeomorphism then the semigroup does
topologically characterise the space. We now prove:

THEOREM 4.2. Let E and F be S-smooth topologiecal vector
spaces. Then every isomorphism ¢ from S(E) onto S(F) 1is
induced by a homeomorphism.

Proof. With only a change in notation we may show there exists
a hijection -h : E »F auch that ¢(f) = hfh_l , for each
f € S(E) , as in the proof of Lemma l.1l. We show the centinuity of
h at arbitrary a € E.. Since F is GS-smooth, given a neighbour-

heed V of h(a)  we may find a B € S(F, R) such that
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B(h(a)) =1, B(e) =20 for « €V, and supp BV . Take some
beF , b#h(a), and define g € S(F) by

g(x) = B(x) (b-h(a)) + hla) , for = € F .
Following the method of Lemma 1.2 from here gives the continuity of

ho. //

COROLLARY 4.1. Let E, F € TVS . Then every isomorphism from
CO(E) onto CO(F) 18 induced by a homeomorphism. Conversely, if

E and F are homeomorphic, %@ and O are isomorphic.

Proof.. E and F are completely regular [17, p. 147] and so
Co—smooth. On the other hand, if % 1is a homeomorphism from E
ente F: then. ¢. given by ¢(Ff) = hfh—l for each f ¢ CO(E) istan
: ; 0 0
isomorphism from C (E) onto C (F) . i/

It follows that CO(E) , E € TVS , has the Magill property.
Corollary 4.1 is not new. In [33] Magill defined a class of

topological spaces, E , to be GS-admissible if every isomorphism

from CO(E) onto CO(F) , where E, F € E , is induced by a
homeomorphism. In a later paper [25], he defines an S*-space as
follows:

Definition. A topological space X is an S*-space if it is

Tl and for each closed subset F of X and each point p in X\F

there exists a function f  in CO(X) gnd a peint ¥y  1h X " slch
that - [le) = y " for egell- 2 1 F:and J(p)F 4 .

The main theorem of this paper shows the class of S*-spaces to
be GS-admissible. We are able to deduce that every TVS is an S*-
space, and hence Corollary 4.l, from Theorem 3 Sf the same paper,
which states: every completely regular Hausdorff space containing at

least two distinct points which are connected by an arc is an S*-space.
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It is of interest to note that in an earlier paper on the
subject [32], Magill defined a further S-admissible class of
spaces, OS-spaces, in the following way:

Definition. Let X be a topological space and & be a point
of X . An open set G containing &« is an S-neighbourhood of
if it consists of & alone or if there exists a continuous function
T napping cl G. inte. X wsuch . that, f(z) #2 , but f(y) =y fer
each y € cl G\G .

Definition: A topological space is an GS-space if it is
Hausdorff and every point has a basis of S-neighbourhoods.

In [25] it is pointed out that there are S*-spaces which are
not S-spaces, but it is not known whether every S-space is an S*-
space. However, we are able to show:

THEOREM 4.3. Every real Hausdorff topological vector space E
i8 an S-space.

Proof. Let &% be in Z . Given a neighbourhoced U of x we
must ‘find an. S-neighbeurheed of ®, V , inside, U-. But & is
regular so we may take an open set V containing & such that
cl V< U . Furthermore, E is completely regular, so there exist
continuous functions from E into R which separate disjoint closed
sets. Now E\V 1is closed and & § E\V so there is a continuous map
g). 3¢B.2 [0; 11 isueh thabisgle) silass gy) =0 for y € EVV .
Choose non-zero w € E and define f : ¢l V> E , a continuous map,
by  fla) = 2"+ glalw ; Tery'a ‘€ €1V ( nThen Fld)"# 2', and
fly) =y , y €cl V\V , se E is an S-space. £

Admissibility will be discussed further in Chapter five. We now
turn to the more difficult characterisation problem mentioned
previously.

Let JCF(E) be the set of Fréchet differentiable selfmaps of E
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with jointly continuous derivative. In sequential locally convex

spaces JCF forms an S-category. We prove:

THEOREM 4.4, Let S be an S-category such that

8(G) ¢ JC,(G) for every Fréchet space G , and E and F be S-

smooth Fréchet spaces. Then if S(E) and S(F) are isomorphic, E
and F are linearly homeomorphic.

Proof. The proof is in eight steps. Let ¢ be the isomorphism
EHems. SC(EIN ente™ S (F) .

1. There exists a homeomorphism h : E > F such that

o(f) = hﬂz_l s Jor.every f € S(E) .

This follows as in Theorem 4.2.

2. The limit, 1lim € “[h(ztey)-h(z)] exists, for every
£>0

£ 4 EE .

The proof when & = 0 is as in Chapter two, steps 2 to 7.
Using the translation map this limit may be moved to non-zero &
values. Let h#*(x)(y) denote the above limit. Then,

3. W (x)(y) 78 econtimuoue tn &« , for.fixed Y.

Tor arbitvary v, z, Y, & € &F-, and {en} € (co) , We may use

standard techniques to show

1im e;lﬁhﬁx+z+€ny)—h(x+zj]

nr>ee

h*(xt+z)(y)

S {¢(1+cx_w)’(h(w+z))[e;l(h(w+z+eny)-h(w+z))}

n—>eo
=l —1
te r[¢(1+cx_w], h(w+z), En[en (h(w+z+eny)—h(w+z))]}}.
=4l :
The sequence {En [h@u+z+€ny)—h(w+zi]} is convergent, so forms a
compact set. Since ¢(1+cx_w) € DH(F) the second term has limit

zero. Thus
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h*(x+z2)(y) = ¢(1+cx_w]'[h(w+z)) (m*w+z)(y)) .

By the result of Banach, [3], used earlier, h*(x)(y) for fixed Yy
is continuous in & on a dense set in E . Suppose ® is such a

point, and let 2, *> 0 . Then for arbitrary =z € F ,

lim h*(a+z, ) (y) = lim ¢(1+cx_w) '(n(wrs,)) (h*(w+zn) (¥))

N> N>

¢(zve, )" (rw) (R* @) ()
since % is continuous and ¢(1+cx_w) € JCF(F) « . But this is juset

Rtlz)(y) .

4, h*(x)(y) <& linear in y. , for each =z .

It will suffice te shew h*(x) is additive, for each = € E .
We shall prove the following:

RESULT 4.1. ILet E,F eILCS , f : E>F be sush that

lim e'l[f‘(x+ey)—f(x)] = fX(x)(y) , exists for each x,y € E . Then
€>0

if f*(x)(y) ie continuous in x- for.fized y , f*(x) s additi‘ve,
for each x € E .

Proof. We generalise the method given in the Banach space case
in [55, p. 38-39]. Let the topology of F be determined by the set

€ of (continuous) seminorms. Take p € @ , x, Y1 Yy €E , and

€.>0 . There exists a 6 > 0 such that if |t} < 6 , then

F£*(x) (yl) = %‘-[f[xﬂ‘:yl) —f‘(ac)] tag,
@) (g,) = Fflerty)-r@] + a, ,
@) (yyty,) = Hrlorty +ty,)-r@)] + a,

where p(ai) £ % 31,7 @ 1ia2vofel aiflepee
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P (@) (yy +y,) -1 @) () -4 (y,)]

n ﬁpL-f(x‘“tyl*t%)‘f(‘”*tyz)'f(x*tyl) @] + . @

B nad t., |[t] <8 , we cen Find an @ € F , by [17, p. 191,

(8)1,, shch, that
flortyrty,)-F(erty,)-Flerey, )15 (), @)
= plflerey,tty ) -flarty,)-F(wrty,) +f(z)]
and
I(z, 57| S Bld) o hop elly @ -,

Using the Mean Value Theorem for functionals [19, Theorem 1l.4], we

5. 5 eEeT

10 T (G S o Eibleln qelaizhe

can, find T 1% ‘g
CFlatty, 1ty ) -florty,) s @ = s (arey N (y,) s @
and
(f‘(x-q-tyl) —flz), a) = t(f*(x+T2tyl) (yl) N

Hence

p [f(x+ty2+tyl) ~f (wtty ) -f (@rty ) +£ ()]

t(F* ety 1y ty,) () -7 (wrrytyy) (0,) > @

IA

| tlp[F* ety e ey, ) ) -FHerr,ty ) ()] - (@)
But f*(x)(y) is continuous at & so for suitably small & we

have
p [t (wrty+1 ey ) ) -F* (err,yty ) )] =< & (3)
Combining (1), (2), and (3) gives
p [fH) (y ty,) -2 ) [y )-FH @) )] = € -
Since € was arbitrary, the left hand side is zero. By a result in

E57, pe 216, (vii)l, @ 1s tetal and se since p, 6 was arbitrary,

F*(x). is additive.
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5. h 1is Gateawx differentiable.

It suffices te-shew' h*(x)(y) is continueus in y., for fixed
X . We use the result of Banach, as before,and the linearity of
RE(s) .

6. h*(x)(y) 1is jointly continuous.

The proof is based on the following result [9, p. 256, Problem
2Ed: Let E be a Baire space and F, G metric spaces. Let
f : EXF > G be a map which is separately continuous. Then for
each point y € F there is a dense set Ay e B sugh thaty f . ds
jointly continuous at (w, y) for every w € 4 .

If (x, y) 1is an arbitrary point in E X E we can thus find a

(wy y) € EXE at which: h* is jeintly centinueus.. Foer x, T,
B * Yy we have

1im h*(xn) (yn) = Glidam h*[(x—w)+(w+xn—x)] (yn)

Y >0 n—xb

lim ¢(1+cx_w)'[h@u+xn—x)][h*(w+xn—x)(yn)]

n—>o0

¢(z+e__ ) ' [R@)IIR* @) (Y)] , since ¢(Ite, ) € IC(B) ,

RrLElItd) .

7. h 18 Hadamard differentiable.

This is a consequence of the following unpublished result of
Yamamuro: |

RESULT: 4.2.. Let E, F € LCS., and. f. : E~ F._be Gategux
differentiable. If f*(x)(y) is jointly continuous at (a, y) , for
all y € E , then f +is Hadamard differentiable at a € E .

Proof. Suppose f is not Hadamard differentiable at a € E .

Then there is a continuous seminorm p , {En} € (00) » and Yot Uy

such that
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p[e;l (Flatey ) —f<a>)—f'<a>(yn)] —+ 0 as nrw,
A consequence of [19, Theorems 1.4 and 1.5] is the following Mean
Value Theerem: Let f : E~F , E, F € LCS ; be Gateaux different-
iable. Then for each € >0 , a, ¥y € E , and continuous seminorm

P, .there exists a T'€ (@, 1) such that

p[e_l(f(a+ey)—f(a)]-f'(a)(y)] < p[f’(a+T€y)(y)—f’(a)(yi] :

Thus for each n € N we can find a et (8. L) =uch that

p|et (Plare,,)7@) 7 @) <ol (@t e,,) ()7 @ ()]

which by the assumption goes to zero as #n tends to infinity, a
contradiction.

8. E and F are linearly homeomorphic.

For x € E, h'(x) is now a linear homeomorphism from E onto
F , as shown in Chapter one, Section seven.

An immediate consequence of [54, p. 178, Corollary 4] is that
every reflexive Banach space is ¢l-smooth. Thus for example,
Theorem 4.4 then shows that the semigroup Cl(E) characterises the

topological and algebraic structure of a reflexive Banach space, F .

4,3 Comments and unsolved problems.

Since the Fréchet and Hadamard derivatives coincide on Fréchet
Montel spaces it is of interest to note that with the exception of

the semigroup DF(Zl) , all semigroups of differentiable functions

shown to possess the Magill property involve the Hadamard different-
iability. The importance of this form of differentiation has been
growing in recent years following the work of Miroslav Sova [52] and
[53], who first observed that it was equivalent to the quasi-

differentiability of Dieudonné [8, p. 151, Problem 4]. Moreover,
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Lloyd in [20] has shown that every separable locally convex space is

DH-smooth. Both the Magill property and smoothness being measures of

the compatibility of the space with the functions defined on it, it
remains an open question whether E € LCS being S-smooth implies
that the semigroup S(EF) has the Magill property. The converse is

false since Zl is not UF—smooth [6. p. B82].

Beyond sequential spaces the proof of Lemma 1.2 breaks down for
semigroups of differentiable functions, since no longer does
differentiability imply continuity. Despite smoothness properties of
the space this loss of topological link between the semigroup of
functions and the space would appear to make it less likely that the
Magill property would hold.

As mentioned in Chapter one, a great deal is known about Fréchet
differentiation in a Banach space E , so doubtless the most

interesting semigroup remaining is DF(E) . The semigroups DZ(E)

and Ck(E) , E a Fréechet space, k € N , would seem possible
contenders for the Magill property.

It would be of interest to know whether the Magill property is
hereditary. For example, given that F 1is a subspace of F , and
S(E) a semigroup of selfmaps with the Magill property, can we show
that S(F) has the Magill property? The problem would seem
difficult for two reasons. Firstly, the lack of relevant extension
theorems for functions means that S(E) and S(F) are only tenuously
related, and secondly, there is no general link between automorphisms
of a semigroup and those of a subsemigroup, should this fortuitously
be the relationship between S(E) and S(F) . For similar reasons,
products, quotients, and conjugates also defy this approach.

However, we do have the result of the following section.



4.4 Reduction to the group of units

Every automorphism ¢ of a semigroup S(E) of selfmaps of
E ¢ TVS , when restricted to the group of invertible elements,
H(E) , becomes a group automorphism. Let us suppose that
I. L, T8 . It weuld be ef ifiterest te know‘when every group
automorphism of H(E) is inner, since S(E) will then have the
Magill property, as we show below.

As usual we have a bijection A4 , A(0) = 0 , such that

o(f) = hfh_l , for every f € S(E) .

Suppose further that there exists a k € H(E) such that

o(f) = kfk_l 5. fon.eveny » f.€ HIE) .

Then
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knf = ;M for every f € H(E) . (1)

For o € R, the associated map o belongs to H(E) , so

B (0) > HoATECD) = 67

= r F A =7

1]

ktah) = k(Bb) = 0 , for ¢, B €.R ,
but since k is‘a bijectien, b =-0 .

Now 1+cx € H(E) , so using (1) we have

-1 % -1
kK "h(14e ) (0) = (2+a )& "ht0) .,
or

K =z,
so kK = h , since « was arbitrary. That is, % € H(E) and S(E)
has the Magill property. Note that if %(0) = a # 0 , we may show

(see p. 10, (iii)) that ho € H(E) , as before, and hence

ho= (1+ca)ho EEGEY
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CHAPTER FIVE

ADMISSIBILITY AND FAMILIES OF CONTINUOUS LINEAR MAPPINGS

5.0 Admissibility

We begin this final chapter by introducing three notions which
will allow us to view our results in a clearer light.

Let € be a class of locally convex spaces. For each pair
E,F ¢E let A(E, F) be a family of mappings from E into F in
which an operation of addition is defined pointwise, and such that
the family {A(E) : E € E} , where A(E) = A(E, E) is equipped with
an operation of multiplication given by function composition,
comprises only one of the following algebraic structures:
semigroups, groups, near-rings, rings. Then E is said to be:

i3 CA-admissine if when E, F € E are such that A(E) is

isomorphic to A(F) , then FE is linearly hommeomorphic to F . That
is, A(F) characterises the space E .

i1) Mz—admissible if for every E € E , every automorphism ¢
of A(E) 1is inner. That is, there exists an invertible % in A(E)

such that h—l € A(E) and ¢(f) = hfh_l , for every f € A(E)

iii) RA-admissine if every isomorphism from A(E) onto A(F) ,

E, F € E , can be represented as conjugation by an invertible element
of A(E, F) whose inverse lies in A(F, E) . That is, following the
terminology of Hofer in [12], every isomorphism is representable,

It is to be understood that all isomorphisms are with respect to
the initially chosen algebraic structure. We note the following
simple facts:

1) Every Rh-admissible class is MA—admissine.
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2) If AR, F) EiDH(E, F) , for every E, F € E , then every

RA-adMissine elass 18 CA-admissine.

Since there exists an invertible element # in

AlE P) SiDH(E, F) , h'(x) , 2 € E , is a linear homecmorphism frem

E ente F .

It is not known whether every MA—admissible class is RA—

admissible. Unless it is stated otherwise, the algebraic structure
in the sequel is assumed to be a semigroup.
Although the result of Chapter two indicates only that the

class of FM-spaces is MD -admissible it is evident that the proof

F
also shows them to be RD -admissible. In Chapter three it is shown
Ik
that they are R % .3 R 2 B , 8nd R _-sdmissible. The class
DF g DF W

of all TVS's is sheown in Cerellary 4,1l te be R O-admissible. Note
C

that the S-admissibility of Magill [33] corresponds to our R 8
&

admissibility. For an S-category in which S(E) c JCF(E) for each

E , Theorem 4.4 can be rephrased to give that the class of such

S-smooth Fréchet spaces is CS—admissible. We also note here that

the method of Chapter two together with that in [67] suffices to show
that the class of sequential LCS's with the separability property

5 s CD -admissible.
F

5.1 An automorphism which is not inner

In this section we firstly give an example of a class of

spaces which is '"(C-admissible" but not '"M-admissible'", for some



73

system of selfmaps. We shall be involved with the group U(E) of
all linear homeomorphisms (units) of a locally convex space E . By
way of introduction we give a brief survey of existing results
concerning the characterisation of topological and algebraic
properties of a locally convex space by means of families of
continuous linear selfmaps defined on the space.

We deal with the ring L(E) initially. Eidelheit [11], in

1940 showed that the class of Banach spaces was RL—admissible. The

finite dimensional version of this result had been given by Nagumo in
1933, [44]. By dropping the completeness assumption, Mackey in 1942

[24], showed that the class of normed linear spaces was CL—admissible.

Four years later [23] he further generalised this result to show that
the class of all LCS's equipped with the Mackey topology is

CL—admissible. For a discussion of the Mackey topology, see [48,

p. 62]. The same result holds if the Mackey topology is replaced by
the weak topology. It is interesting to note at this stage that the
result of Chapter two could be reinterpreted to give that the class
of LCS's equipped with both the weak topology and the separability

property S , is R -admissible. However it is the Mackey

anco

topology (Banach space) case which would be of greater interest.
When L(E) is regarded as a semigroup, Eidelheit showed in the
paper of 1940 that every continuous automorphism of L(Z) , E
Banach with dimension = 2 , is inmer. Rickart [47] in 1948 showed
that the continuity was unnecessary. A different proof of this was
given by Yamamuro in [63].
In the case of the group of continuous linear selfmaps of

E € LS , U(E) , with continuous inverses, the situation is more
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intriguing. In his paper of 1942, [24], Mackey showed that for
Banach spaces E and F , U(E) 1is isomorphic to U(F) if and
only if either

i) E 1is linearly homeomorphic to F , or

ii) E and F are mutually conjugate.
Since a Hilbert space is self-conjugate it is evident that the class

of Hilbert spaces is CU—admissible. However, we are able to show

RESULT 5.1. The class of Hilbert spaces ‘is not MU-acﬁnissine.

Proof. We show that the automorphism ¢ of U(H) , H a

Hilbert space, given by ¢(u) = (u_l)* s -u & UCH) , is net lanen.
Here u* is the adjeint of u , as discussed in [57, p. 98]. Nete
that if ¢ is inner then ¢ fixes a non-identity element of U(H) .
The inner product of %, ¥y € H will be denoted by (x, y) . Firstly
we show

1) ¢u) = u. if and enly i1f u. is an isometry.
-1\ * 8
Suppose U = (u ) R (= o B e R <

(ux, uz) = (&, utux) = (z, i S (x, x
That is, Jlugll = |lzll o for each- z.€ H ,'se u  is an isemetry.

Conversely, suppose u is an isometry. Since u is onto u

is unitary, se wu* = 1 =u*w.. Thus. w* = u—l or ¢(u) = (u_l) = u .
We complete the proof by showing

2) ¢ canmnot be conjugation by some isometry, v .

& S
Suppose v 1is an isometry and vuv o (u l) s for all

W E UCH) ... Then
el S1y* =1 5l
™l = 1@ ) I = low ™| < ollllllo™ 0 = llul ,
since |lv| = Hv_lH =1, v being an isometry. Again

-1 -1 o O -1
lull = llutll = llow v 7 = [lelille e =l = e =0,
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e |ull = Hu—lH , for every u € U , a contradiction. P

In the penultimate paragraph of [24], Mackey raises the question
of the extent to which isomorphisms between the groups U(E) and
U(F) , E, F € LCS , are representable. It is clear than when FE
and F are mutually conjugate yet not linearly homeomorphic, an
isomorphism between U(E) and U(F) canrot be representable.
However, even when £ and F are both mutually conjugate and
linearly homeomorphic we may use a different method of proof to
generalise the above result to the following:

RESULT  5.2. Given mutually conjugate, linearly homeomorphic
Banach spaces, E and F , there exists an isomorphism from U(E)
onto U(F) which is not representable.

Proof. Suppose the isemorphism ¢ : U(E) = U(E) = U(F) , given

=0
by ¢(u) = (u l) s 1s representable. Then for some linear

homeomorphism v from E onto E ,

~14 # =
(u l) = vuv ’ s Tor every wu € UHE) .. 1)

Stteet "2 =  rgBae In UCF) ,where (@, @)= 1 . Then

3l *

B o=l -de@g . =1 +ra®a (u_l)

1

1 -4a®a) .

+.¥. ia given by

&

where a ® a :

Q a(x) = (a, x)a , for each x € F .

K|

From (1) we have,
v(I+ta ® @) (x) = (1-%¥(a ® &))v(a) ,
or
(2, a)vig) = ~%la, vie)a , for 81l =z € E . (2)
Sigmge. v 1s a functien,
iz, g =lq, vla)) , for all # €0
and some ¢ € R .

Thus - {a@; v(a)) = ef@, @)= o.. But frem (2), letting & =.a
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and evaluating at @& we have, (@&, v(a)) = -%{a, v(a)) , so
Gawilali=c = 0 =

Again from (2) we have v(a) = 0 , a contradiction since
0l S0 Jil

When FE 1is a reflexive Banach space, the direct sum of £ with

its conjugate space E , E ®E , has conjugate E ® E , indicating

that Result 5.2 is in fact a strict generalisation of Result 5.1.

5.2 The main theorem

Although not every automorphism of U(#) is inner, for H a
Hilbert space, if we form the semigroup U u I(H) by adjoining the
constant mappings we have immediately from Lemma 1.1 that every
automorphism is given as conjugation by some bijectien. This leads
us to prove the theorem below.

THEOREM 5.1. Let E be a locally convex space of dimension
greater than two, equipped with either the weak topology or the Mackey
topology. Let S be a semigroup of selfmaps of E such that I < S ,
Uc S , and ¢ be an aytomerphiem of S . Then 2f (W) =U, ¢ 18
inner and h € U-.

Proof. The proof is in seven stages, as follows:

1. There exists a bijection h such that o¢(f) = hfh_l » fer
gll f €5 . This is an applicatien of‘Lemma 1.1, Since. 9 Fixes
U, h fixes zero, so we need not assume this fact in the way that
we have previously. By Z(U) we shall mean the centre of the group
U.. The scalar mepping @« + £, 0 # E € R , is deneted by £ , and
the set of all such maps; M .

2: 80 = ¥..

Evidently M < Z(U) , so it remains te show Z(U) € M . Suppose

B f . Binee 1 +g®atyU ifandenly if (e, a)# -1 . we
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have
u(lta ® a)(x) = (I+ta ® a)ulzx) ,
or
(x, aula) = (u(z), ala,
fomvevedy (asia; &i-such thatoda@, @2 # =k . If (a,/@) =1 we may

use -a to show the above relation still holds, Since u is a fun-
etien there ezists an £ € R, & # 0 , such that

Elx, a) = {ulx), a) , for every a, & .
Thus » ule) = 8p- onw M .

Now ¢ will be an automorphism of the group U , so preserves
the centre of U . Thus, since. ¢(0) = 0 ; there exists a real-
valued function of the real variable €& , such that

BLEM =) = XME)(e) ', for alt z.€c B, E €R.,
We need some properties of A .
2.1. A 1is one-to-one and onto.

This follows immediately from the corresponding properties of

2.2+3 A Tipea %Y. <1 , and. B .

Certainly A(l) = ¢(I1) =.1 , while since

[A-1)1% = (-1)6(-1) = ¢(1) = 1 ,
and @¢(=1) # ¢(1) , A(-1) = =1.. Moreever A(0) = ¢(6) = 0 .

3., Given a, b € E , there exiete U, p € R sauch that

Wt lash) =T ) Y

With (xz, 2)># -1, ¢(I+x ®x)(y) is linear in y , so
n[hab) e asb), D) = wET N+ @), 7]
s ET e+ TIG), Da]  (3)

for arbitrary a, b € E . When both <h_l(a), z) =0 and
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th

(), ) = 0 , we have frem (3),

nLatb) + (W (ab), Bz = hl(ash)
so (h_l(a+b), x)=0 , since & may be chosen to be non-zero. This
means- hT>(ath)  lies in the subspace spanned by " (a) and

h_l(b) , so the result follows.

4. When K S(a) and K Y(b) arve linearly independent, thenm

B=.p .
Choose &« such that (h-l(a), S= T o <h_l(b), z) . Then with

THE) hal BB , equation (3) becomes

) =
[ arb)-(ue) (R @+ )] = w7 )] + nhTN@)]
= -(ath) , since A(-1) = -1.
Thus
nHap) = B2 (@ @)
s ik (e %0k 0 .
Since h_l(a) and h_l(b) are linearly independent, E%E-= U, ep

p = . Neote that - cannet be zZero.

5. h preserves linearly independent sets of elements.

Suppose 7" (@) and h_l(b) are linearly independent, and

0z + B = 0 , for seme @, B € R, Then

o
1

7 (aa+Bh)

[ (oa)+h L (8b)] , since AM(ca) and KTH(BB)

are linearly independent,

uptn t@a Tt @n @) .

e TR TR S R ETE 2
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In a similar way we may show this result for any finite set of
linearly independent elements.

6. h. is linear.

In [24, p. 245, Lemma A], Mackey has generalised a theorem of
projective geometry to show that if E and F are linear spaces
with dimension greater than two, then any mapping of E onto F
which affords a one-to-one correspondence between one-dimensional
subspaces and preserves linear independence is necessarily linear.

7. h 1is continuous.

For this we need the conditions on the topology of E .

1) E has the weak topology.

Suppose the net {xa} converges weakly to zero. For

(e, &) # -1 ,

R (14 ® D0 (2 )

h[h_l(xa] Kn ™ z,), EH

zy +{n 7t (e,), E)h(x)

o(1+z ® x) (xa)

converges weakly, with o , to zero. Thus <h—l{xa}, 5> converges

to zero, and since &« may be arbitrarily chosen, & is continuous
with respect to the weak topology at zero, hence everywhere. We may
show the same result for % .

2) E has the Mackey topology.

Bince L{E) L(Eb) (48, p.*39, Proposition 13], we may use the

method above and [48, p. 62, Proposition 14] to obtain the result. £

REMARKS .
1. Theorem 5.1 holds when E 1is a Fréchet space, dim E > 2 .,

2., If A 1is a semigroup of continuous selfmaps of a Banach
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space B pidim £ 249, Buch that I, Lo d-and & is an
automorphism of A , then the following statements are equivalent:

gl oo Tiseas Lo

b) ¢ is additive,

c) ¢ is additive on the one-dimensional maps.

That b) implies c) is immediate. The method of [61] may be used
to show c) implies a), while b) follows from a) as in Theorem 5.1.
Theorem 5.1 is thus a generalisation of the near-ring result [61],
mentioned in Chapter one, Section six.

3iioPer @ Hilbert spacge ~H ,jJedim H 22 U U I(H)  has the

Magill property (Theorem 5.1), while U(H) hds not (Result 5.1).

5.3 d-automorphisms

In the remainder, E € LCS 1is as in the previous section and S

is a semigroup of selfmaps of E such that I, Uc Sc DH . We

generalise the definition of a d-automorphism of S [62], as
follows: ¢ 1is a d-automorphism if

o) = L0 (=) : = € BY = [6(F' =) : = € B} = o(df) ,

for every invertible f € S for which f_l € & Then,
THEOREM 5.2. BEvery d-automorphism of S 18 inner.
Proof. By the previous theorem we need only show ¢(U) = U .
Uc ¢(U) : Let. u € U ,. Then there exists an invertible f € S
such that, ¢(f) = u . New
{u} = {0V ) 2 €8 = lo@)] : =€ B},
so f'(x) 1is constant with respect to & . By the Mean Value

Theerem for functionals [19], since f(0) =0 ; f € L . Further,

u_l = q)(f)—l = ¢(f—l) , so similarly,
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{u'l = {¢(f'l)'(x) £ @k Bf = {¢[(f"l)’(x)] <z € B,

il

sebf Vg LAyerge PP,

() cl ¢+ If F€¢W) , f is invertible and there exists a
# € U such that ¢(u) ="Ff:. New
gf = (ola)' () : =z € Bt = {9Cw)} ,

se ¢(u) € L'. Similarly,
d&f; = [l ) ) iz € B} E (80N,

so <1>(u)'l €l . Thas. F €U .. //
Since this result does not require mappings in the semigroup to

be continuous, it gives for instance that every d-automorphism of
o(m), 0% B iag for E with the Mack
7(E)s F( ) , and LR, € N, is inner, for with the Mackey

or weak topology.
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