
Accepted Manuscript

Title: Changes in activities of both photosystems and the
regulatory effect of cyclic electron flow in field-grown cotton
(Gossypium hirsutum L) under water deficit

Authors: Xiao-Ping Yi, Ya-Li Zhang, He-Sheng Yao, Ji-Mei
Han, Wah Soon Chow, Da-Yong Fan, Wang-Feng Zhang

PII: S0176-1617(17)30273-0
DOI: https://doi.org/10.1016/j.jplph.2017.10.011
Reference: JPLPH 52678

To appear in:

Received date: 15-5-2017
Revised date: 28-9-2017
Accepted date: 29-10-2017

Please cite this article as: Yi Xiao-Ping, Zhang Ya-Li, Yao He-Sheng, Han Ji-
Mei, Chow Wah Soon, Fan Da-Yong, Zhang Wang-Feng.Changes in activities of
both photosystems and the regulatory effect of cyclic electron flow in field-grown
cotton (Gossypium hirsutum L) under water deficit.Journal of Plant Physiology
https://doi.org/10.1016/j.jplph.2017.10.011

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/10.1016/j.jplph.2017.10.011
https://doi.org/10.1016/j.jplph.2017.10.011


 

1 
 

Changes in activities of both photosystems and the regulatory effect 

of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) 

under water deficit 

 

Xiao-Ping Yia,1, Ya-Li Zhanga,1, He-Sheng Yaoa, Ji-Mei Hana, Wah Soon Chowb, Da-Yong 

Fanb and Wang-Feng Zhanga,* 

 

aThe Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, 

Shihezi University, Shihezi, 832003, P.R. China 

bDivision of Plant Sciences, Research School of Biology, College of Science, The Australian 

National University, ACTON, ACT 2601, Australia 

 

*Corresponding author: Emails: zhwf_agr@shzu.edu.cn; zwf_shzu@163.com 

1These authors contributed equally to this work, should be regarded as joint first authors 

 

Abstract 

To clarify the influence of water deficit on the functionality of the photosynthetic 

apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 

redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 

45. In addition, we measured changes in the P515 signal and analyzed the activity of 

ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water 

deficit, the net CO2 assimilation rate (AN) and stomatal conductance (gs) significantly 

decreased, but the maximum quantum efficiency of PSII photochemistry (Fv/Fm) did 
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not change. The photochemical activity of photosystem II (PSII) was reflected by the 

photochemical quenching coefficient (qP), quantum efficiency of photosystem II 

[Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of 

photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] 

and the electron transport rate through PSI [ETR(I)]. Both activities were maintained 

under mild water deficit, but were slightly decreased under moderate water deficit. 

Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed 

light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], 

and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. 

Our results suggest that the activities of both photosystems are stable under mild 

water deficit and decrease only slightly under moderate water deficit. Moderate water 

deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and 

PSII against photoinhibition. 

 

Abbreviations: ΔpH, trans-thylakoid proton gradient; Δψ, trans-thylakoid membrane 

potential difference; AN, net CO2 assimilation rate; Ci, intercellular carbon dioxide 

concentration; CEF, cyclic electron flow; ETR(II), electron transport flow through 

PSII; ETR(I), electron transport flow through PSI; Fm, maximal fluorescence in the 

dark-adapted state; Fm', maximal fluorescence in the light-adapted state; Fo, minimal 

fluorescence in the dark-adapted state; Fo′, minimal fluorescence in the light-adapted 

state; Fs, steady-state fluorescence in the light-adapted state; Fv/Fm, maximum 

quantum efficiency of PSII; Fv'/Fm', photochemical quantum yield of open PSII 

centers in the light-adapted state; gs, stomatal conductance; PSII, photosystem II; PSI, 

photosystem I; qP, photochemical quenching; Ψw, leaf water potential; Y(II), quantum 

efficiency of PSII; Y(I), quantum efficiency of PSI; Y(NA), the fraction of P700 that 

cannot be oxidized by a saturating pulse under a given set of conditions; Y(ND), the 

fraction of P700 oxidized under a given set of conditions; Y(NO), the fraction of 

absorbed light lost by either constitutive thermal dissipation or via fluorescence; 

Y(NPQ), the fraction of absorbed light dissipated thermally via ΔpH- and 

xanthophyll-regulated process; Z, zeaxanthin. 
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Introduction 

Water deficit is the most prominent environmental factor limiting plant growth 

and yield formation (Boyer, 1982; Flexas et al., 2006). It is well known that water 

deficit inhibits CO2 assimilation through stomatal limitation (Flexas et al., 2006; 

Chaves et al., 2009) and/or non-stomatal limitation (Lawlor and Cornic, 2002). Since 

CO2 assimilation is a major sink for absorbed light energy, a decrease in CO2 

assimilation could lead to excess absorbed light energy. Accumulation of excitation 

energy in closed PSII traps could generate excited triplet states of chlorophyll (3Chl*) 

and then excited singlet oxygen (1O2), causing photo-oxidative damage to PSII (Chow 

and Aro 2005). In addition, the excess light energy could result in the electron 

transport chain becoming highly reduced, and in electron transport to oxygen 

molecules at the acceptor side of PSI producing superoxide radicals (O2
-), which 

could give rise to the subsequent formation of hydrogen peroxide (H2O2). H2O2, in 

turn, can react with reduced iron-sulfur centers of PSI and generate hydroxyl radicals 

(HO), which can cause damage to PSI (Sonoike, 2011). PSII is often regarded as the 

primary and major site of photoinhibition (Anderson et al., 1998；Takahashi and 

Badger, 2011), including chronic and dynamic photoinhibition (Osmond, 1994). 

Chronic photoinhibition is assessed as a sustainable decrease in predawn maximum 

quantum efficiency of PSII photochemistry (Fv/Fm), whereas dynamic photoinhibition 

is determined from the fully reversible diurnal decline in Fv/Fm (Werner et al., 2002). 

PSI is insensitive to high light stress and has often been considered more stable than 

PSII (Scheller and Haldrup, 2005). In order to prevent and alleviate photodamage, 

plants have developed several photoprotective pathways, such as thermal dissipation 

(Demmig-Adams and Adams, 1996) and cyclic electron flow (CEF) (Heber and 

Walker, 1992; Wei et al., 2009; Huang et al., 2012; Kou et al., 2013). Huang et al. 

(2012) demonstrated that CEF is essential for protecting PSII against photoinhibition 
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due to CEF-dependent generation of a proton gradient across thylakoid membranes 

(ΔpH), with ΔpH helping the activation of thermal dissipation. Moreover, CEF can 

protect PSI from photoinhibition by alleviating the over-reduction of the PSI acceptor 

side (Munekage et al., 2002; Tikkanen et al., 2015). 

Cotton (Gossypium hirsutum L.) is a drought-tolerant crop (Turner et al., 1986; 

Kitao and Lei, 2007; Yi et al., 2016b). When it is exposed to water deficit conditions, 

the CO2 assimilation rate and stomatal conductance decrease significantly, but the 

functionality of PSII and the photosynthetic electron transport systems show a 

relatively high stability (Genty et al., 1987; Inamullah and Isoda, 2005; Massacci et 

al., 2008; Snider et al., 2014; Yi et al., 2016b). Zhang et al. (2010) reported that under 

severe water deficit (leaf water potential of about -4.0MPa) the activity of PSII is 

temporarily reduced during the daytime but can fully recover in the night. Snider et al. 

(2014) proposed that electron transport through PSII is not limited by a wide range of 

water-deficit conditions in field-grown cotton. This is mainly because cotton plants 

can dissipate excess absorbed light energy through other photoprotection pathways. 

For example, Björkman and Schäfer (1989) reported that about 56% of the absorbed 

light is dissipated as thermal energy in well-watered cotton plants, increasing up to 

70-82% under moderate and severe drought. Furthermore, photorespiration can also 

protect water-deficit cotton plants against photoinhibition (Massacci et al., 2008; 

Chastain et al., 2014; Yi et al., 2014, 2016a). Compared with the photoinhibition of 

PSII of cotton plants, much less is known about the activity of PSI under water deficit. 

Our previous study reported that water deficit increases the electron flux for the 

Mehler reaction (Yi et al., 2014); the reduction of O2 in this reaction may result in the 

formation of harmful reactive oxygen species (ROS) at the acceptor side of PSI. Will 

these ROS lead to the photoinhibition of PSI? Can CEF, as an important alternative 

electron sink, effectively dissipate excess electrons on the side of PSI? Singh et al. 

(2014) investigated the effect of short-term water deficit on CEF in cotton plants 

grown in a growth chamber; the results showed that the CEF/ETR(II) ratio gradually 

increased with increasing water deficit. It is difficult to extrapolate the results to field 

ACCEPTED M
ANUSCRIP

T



 

5 
 

conditions because water deficit is usually accompanied by other limiting factors, 

such as high temperature and irradiance under field conditions. Moreover, short-term 

water deficit cannot induce the phenomenon of acclimation, which is usually well 

developed in mature field-grown plants. 

In order to better elucidate the influence of water deficit on photosynthesis in 

field-grown cotton plants, gas-exchange parameters, chlorophyll a fluorescence, and 

the P700 redox state were measured to assess carbon assimilation and the 

functionality of both photosystems. In addition, P515 signal changes were 

simultaneously analyzed to evaluate the activity of ATP synthase and the generation 

of ΔpH in water-deficit cotton plants. 

Materials and methods 

Our study was conducted at an experimental field of Shihezi Agricultural College, 

Shihezi University, Xinjiang, China (45°19′N, 86°03′E). Cotton (Gossypium hirsutum 

L. cv. Xinluzao 45) seeds were sown on 25 April, 2016, in rows 12 cm apart at a plant 

density of 1.8 × 105 ha-1
. The experiment was constructed following a completely 

random block design (three replicates), and the plot area was 40.8 m2. The same three 

levels of irrigating water were used as in our previous research (Yi et al., 2016a): 

well-watered (CK, in which water was maintained at between 75% and 85% of soil 

water capacity), mild water deficit (Mild, in which the plots were irrigated to the 

extent of 60% of the well-watered plots), and moderate water deficit (Mod, in which 

the plots were irrigated to the extent of 20% of the well-watered plots). At 

approximately 55 d after sowing, plants were subjected to water-deficit treatments. 

The plot was drip-irrigated once a week, and all measurements were performed 

randomly on the topmost west-facing leaf on the main stem using four replicates 

during flowering and boll-setting stages. 

Water potential measurement  

Leaf water potential (Ψw) was measured with a pressure chamber (SKPM 1400; Skye 
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Instruments, Llandrindod Wells, UK) at pre-dawn as described by Yi et al. (2016a). 

Each fully expanded third (upper) leaf was excised from the cotton plant, and the leaf 

petiole was immediately sealed in a compression gasket with the cut surface of the 

petiole exposed. The leaf blade was sealed in the pressure chamber, which was 

subjected to increasing pressure from a compressed nitrogen cylinder until free sap 

was visible at the cut surface of the petiole. 

Measurement of gas exchange 

Instantaneous gas exchange was carried out between 11:00 and 13:00 h, using an open 

infrared gas-exchange analyzer system (Li-6400, Li-Cor Inc., Nebraska, USA). Leaf 

temperature was kept at ~30C via the temperature control device of the Li-6400. 

Illumination was provided by a LED source and was adjusted to 1,800 μmol m-2 s-1, 

while the CO2 concentration in the cuvette was 400 μmol CO2 mol-1 air. Net CO2 

assimilation rate (AN), stomatal conductance (gs), and intercellular CO2 concentration 

(Ci) were recorded.  

Measurement of chlorophyll a fluorescence and P700 redox state 

Chlorophyll a fluorescence and P700 redox state measurements were conducted 

simultaneously using a saturation-pulse Dual-PAM-100 (Heinz Walz, Effeltrich, 

Germany). Each leaf was dark-adapted for at least 30 min before the measurements of 

Fo, Fm, and Pm. Each leaf was light-adapted (1,033 μmol m2 s1) for 4-5 min before 

the measurement of rapid light response curves. Fs, Fm', and Pm' were recorded after 

20 s exposure to each light intensity (30, 119, 240, 555, 849, 1,052, 1,311, 1,618, and 

1,976 μmol m2 s1). Each light increment was followed by the measurement of Fs and 

by a saturating pulse for the measurement of Fm' and Pm'. In the present study, the 

intensity and the width of the saturating pulse were 10,000 μmol m-2 s-1 and 300 ms, 

respectively. A 627nm LED was used as an actinic light source. 

The maximum quantum efficiency of photosystem II (Fv/Fm) was measured at 

predawn where Fv is variable fluorescence, calculated as Fv = Fm – Fo (Krause and 
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Weis, 1991). Quantum efficiency of PSII Y(II) in the light was calculated as (Fm' – 

Fs)/Fm' (Genty et al., 1989). Photochemical quenching (qP) was calculated as (Fm' – 

Fs)/(Fm' – Fo') (Schreiber et al., 1995). The photochemical quantum yield of open PSII 

centers in the light-adapted state (Fv'/Fm') was calculated as (Fm' – Fo')/Fm' (Genty et 

al., 1989). Minimal fluorescence under light exposure (Fo′) was calculated according 

to Oxborough and Baker (1997) using the equation Fo′ = Fo/(Fv/Fm + Fo/Fm′). The 

fraction of absorbed light lost by either constitutive thermal dissipation or via 

fluorescence was calculated as Y(NO) = Fs/Fm, and the fraction of absorbed light 

dissipated thermally via ΔpH- and xanthophyll-regulated process was calculated as 

Y(NPQ) = (Fs/Fm') – (Fs/Fm) (Kramer et al., 2004).  

The quantum efficiency of PSI was calculated as Y(I) = 1 – Y(ND) – Y(NA), 

where Y(ND) is the fraction of P700 oxidized under a given set of conditions, and 

Y(NA) is the fraction of P700 that cannot be oxidized by a saturating pulse under a 

given set of conditions. Y(ND) and Y(NA) were directly determined by the saturation 

pulse method: Y(ND) = P/Pm, where P is the P700+ signal under a given set of 

conditions, and Y(NA) = (Pm – Pm′)/Pm (Schreiber and Klughammer, 2008a). The 

electron transport rate through PSII ETR(II) and that through PSI ETR(I) were 

calculated according to the formula ETR(II) = Y(II) × incident PPFD × 0.84 × 0.5 and 

ETR(I) = Y(I) × incident PPFD × 0.84 × 0.5, respectively (where 0.84 is a usual leaf 

absorptance for C3 plants and 0.5 assumes equal distribution of excitation between the 

two photosystems) (Schreiber and Klughammer, 2008a). 

Measurement of P515 signal changes 

The dual beam 550-515 nm difference signal change was monitored 

simultaneously using the P515/535 module of the Dual-PAM-100 and the automated 

routines provided by the Dual-PAM software (Schreiber and Klughammer, 2008b). 

After 1 h of dark adaptation, P515 signal changes induced by a saturating single 

turnover flash were recorded to evaluate the integrity of the thylakoid membrane. 

After 10 min of pre-illumination at 1,000 μmol m-2 s-1 and 4 min of dark adaptation, 
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P515 signal changes induced by the flash were recorded to analyze the activity of ATP 

synthase. Slow dark-light-dark induction transients of the 550-515 nm signals reflect 

changes in both the membrane potential and the zeaxanthin (Z) content. These 

transients were measured after several hours of dark adaptation. Then the actinic light 

(1,000 μmol m2 s1) was turned on for 5 s and off after 10 min. Determination of Z 

content, transmembrane potential (Δψ), and ΔpH using the dark-light-dark induction 

transients was done as described previously by Schreiber and Klughammer (2008b). 

Statistical analysis 

Significant effects due to water-deficit treatments, species, and the interaction terms 

were tested with SPSS 16.0 for Windows (SPSS, Chicago, IL, USA) by one-way 

analysis of variance (ANOVA) of means of four replicates. The data are presented as 

the means ± standard error. The significance of differences between means was 

determined using the Duncan test at the p ≤ 0.05 level. 
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Results 

Effect of water deficit on leaf water potential (Ψw) and photosynthetic parameters  

Table 1 shows that, with increasing water deficit, Ψw in cotton leaves declined 

significantly, from -0.87 MPa in well-watered plants to -1.24 and -1.82 MPa in mild 

and moderate water-deficit plants, respectively. In addition, with increasing water 

deficit, net CO2 assimilation rate (AN), stomatal conductance (gs), and intercellular 

CO2 concentration (Ci) gradually decreased, and there was an obvious difference 

between well-watered and water-deficit plants. Compared with well-watered plants, 

AN decreased by 34% and 59%, gs decreased by 59% and 76%, and Ci decreased by 

21% and 26% for mild water deficit and moderate water deficit, respectively. 

Effect of water deficit on the functionality of PSII and PSI 

PSII function can be assessed by using Fv/Fm. As shown in Table 1, there was no 

difference in Fv/Fm between well-watered and water-deficit plants, indicating that 

water deficit had no effect on the activity of PSII. With increasing light intensity, the 

photochemical quantum yield of open PSII centers in the light-adapted state (Fv′/Fm′) 

and photochemical quenching (qP) gradually decreased. There was no difference in 

Fv′/Fm′ and qP between well-watered plants and plants under mild water deficit, but 

qP significantly decreased under moderate water deficit (Fig. 1). The quantum 

efficiency of PSII Y(II) significantly decreased under moderate water deficit; 

according to Y(II)= qP × Fv′/Fm′, the decrease in Y(II) was mostly due to the decrease 

in qP, not in Fv′/Fm′. In addition, we found that the decrease in Y(II) under moderate 

water deficit was compensated for by an increase in the fraction of absorbed light 

dissipated thermally via ΔpH- and xanthophyll-regulated process Y(NPQ) and in the 

fraction of absorbed light lost by either constitutive thermal dissipation and via 

fluorescence Y(NO) (Fig. 2A, C, E). 

With increasing light intensity, the quantum efficiency of PSI Y(I) gradually 

decreased, while the fraction of overall P700 oxidized under a given set of conditions 
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Y(ND) gradually increased. Under moderate water deficit, the decrease in Y(I) was 

compensated for by an increase in Y(ND), and the fraction of P700 that cannot be 

oxidized under a given set of conditions Y(NA) was lower than that of well-watered 

plants (Fig. 2B, D, F). 

Effect of water deficit on the electron transport rate of PSII and PSI  

Fig. 3 presents the light response curves of the electron transport rate through PSII,  

ETR(II), and that through PSI, ETR(I). With increasing light intensity, ETR(II) and 

ETR(I) gradually increased. There was no difference in ETR(II) and ETR(I) between 

well-watered and mild-water-deficit plants, but moderate water deficit induced an 

obvious decrease in ETR(II) and ETR(I). However, ETR(II) and ETR(I) began to 

decrease under the PPFDs of 240 and 850 μmol m-2 s-1, with ETR(II) decreasing more 

than ETR(I). Would this lead to an increase in CEF? As shown in Fig. 4, the 

ETR(I)/ETR(II) ratio and CEF were significantly elevated under moderate water 

deficit compared with well-watered conditions and mild water deficit. ETR(I)/ETR(II) 

increased from 1.8 in well-watered plants to 3.3 in moderate-water-deficit plants at 

1,300 μmol m-2 s-1 PPFD. CEF was activated at 240 μmol m-2 s-1 PPFD. This result 

indicated that moderate water deficit activated the activity of CEF in cotton plants. 

Single turnover saturating flash induced P515 signal change under water deficit 

Fig. 6 presents P515 signal changes induced by a saturating single turnover flash in 

cotton leaves. The changes of P515 signal reflect the membrane potential difference 

across the thylakoid membrane (Schreiber and Klughammer, 2008b). After 1 h of dark 

adaptation, the flash induced a rapid rise phase, followed by a slow rise phase, and 

then by a slow decline phase (Bailleul et al., 2010). The rapid rise phase reflects 

transmembrane charge separation in PSII and PSI reaction centers, the slow rise phase 

indicates the transmembrane electron transport in Cyt b6f, and the slow decline phase 

reflects the integrity of the thylakoid membrane (Bailleul et al., 2010), but also 

depends on the activation state of the ATP synthase. As shown in Fig. 6, the changes 
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in the P515 signal were similar in all treatments after 1 h dark adaptation. After 10 

min illumination at 1,000 μmol m-2 s-1 actinic light and 4 min dark adaptation, the 

flash also induced a rapid rise phase, followed by a faster decline phase compared 

with that after 1 h dark adaptation, while the slow rise phase seemingly disappeared. 

The initial rate in the fast decline phase reflects the H+ conductivity of the membrane. 

The stronger H+ conductivity is associated with the stronger ATP synthase activity 

(Bailleul et al., 2010). As shown in Fig. 6, with increasing water deficit the initial rate 

in the fast decline phase gradually decreased, indicating that the activity of ATP 

synthase decreased under water deficit, especially under moderate water deficit. 

Slow dark-light-dark induction transients of the 550-515 nm signal under water 

deficit  

Fig. 7 shows the recording of dark-light and light-dark induced changes in the 

550-515 nm signal in cotton leaves. The light-induced P515 signal changes not only 

reflect the proton motive force, but also the Z formation (Schreiber and Klughammer, 

2008b). The relative extent of Z formation can be judged from the increase of the 

“dark baseline” apparent after light-off. Due to the high stability of the 550-515 nm 

difference signals, the observed slow changes in the "dark baseline" can be reliably 

evaluated in terms of reversible changes of Z content. Fig. 7 shows that the “dark 

baseline” gradually decreased with increasing water deficit, suggesting that Z 

formation gradually decreased under water deficit. The rapid light-off response 

reflects H+ efflux from the lumen to the stroma of chloroplasts via the thylakoid ATP 

synthase. The rapid signal decline is followed by a biphasic signal increase to an 

apparent “dark baseline”. According to Schreiber and Klughammer (2008b), the 

relative amplitudes of Δψ and ΔpH can be estimated from the characteristic levels 

observed during the light-off response. The difference between the steady-state signal 

and the "dark baseline" reflects a substantial Δψ during steady-state illumination. The 

"undershoot" below the "dark baseline" is considered a measure for the steady-state 

ΔpH, which sets the transient maximum H+ diffusion potential difference across the 

thylakoid membrane on cessation of illumination. As indicated in Fig. 7, with 
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increasing water deficit ΔpH gradually increased, especially under the moderate water 

deficit condition. 

Discussion 

PSII activity of cotton leaves under water deficit 

Our results show that water deficit significantly decreased AN, and the decrease in AN 

was mainly due to a decrease in gs and Ci (Table 1). Compared with CO2 assimilation, 

electron transport through PSII was relatively stable under mild water deficit, because 

there was no change in ETR(II) (Fig. 3A). This result is supported by Snider et al. 

(2014), who suggested that electron flow through PSII in cotton is insensitive to a 

wide range of water-deficit conditions. However, under moderate water deficit ETR(II) 

decreased significantly (Fig. 3A). The decreased capacity for CO2 assimilation and 

the diminished electron transport may result in increased excitation pressure in PSII 

under moderate water deficit. Our results show that Y(NO) under moderate water 

deficit was slightly higher than that of well-watered and mild-water-deficit cotton 

plants, indicating that the PSII super-complex may have been damaged and/or the 

turnover of D1 may have been disturbed under moderate water deficit. Fortunately, 

our results indicated that water deficit did not induce chronic photoinhibition of PSII 

in cotton plants (Table 1). This result is in accordance with previous reports that PSII 

is insensitive to water deficit (Genty et al., 1987; Kitao and Lei, 2007; Massacci et al., 

2008; Zhang et al., 2010; Chastain et al., 2014; Snider et al., 2015; Yi et al., 2014, 

2016a, 2016b). Therefore, we infer that cotton plants have developed multiple 

photoprotective mechanisms to maintain the stability of PSII. Our previous study 

found that the Mehler-peroxidation reaction, photorespiration, and nitrate reduction 

are efficient electron sinks under water deficit (Yi et al., 2014, 2016). 

Our present results show that Y(NPQ) significantly increased under moderate 

water deficit (Fig. 2E), suggesting that thermal energy dissipation was activated in 

order to dissipate excess light energy, thereby avoiding ROS generation and 
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maintaining the balance between the absorption and consumption of light energy 

under moderate water deficit. Kornyeyev et al. (2005) and Massacci et al. (2008) 

reported that non-photochemical energy dissipation serves as the major 

photoprotective mechanism when light energy absorption becomes excessive in 

cotton plants. However, Takahashi et al. (2009) considered that thermal dissipation is 

not the main mechanism to protect PSII from photodamage, and that CEF is a more 

important photoprotection pathway than thermal dissipation. The main reason is that 

the stimulation of thermal dissipation is dependent on ΔpH, and CEF can stimulate the 

generation of ΔpH (Heber and Walker, 1992). A few studies have indicated that 

CEF-dependent generation of ΔpH is necessary for the activation of thermal 

dissipation (Munekage et al., 2002, 2004; Nandha et al., 2007; Takahashi et al., 2009). 

Golding and Johnson (2003) reported that when LEF-dependent generation of ΔpH 

was limited under drought stress, CEF was stimulated to help the formation of ΔpH 

and thus to help the activation of thermal dissipation. Our results show that with 

increasing water deficit, ΔpH gradually increased, especially under the moderate 

water deficit condition (Fig. 7). Therefore, we can infer that the higher ΔpH is 

associated with the higher CEF and lower ATP synthase activity under moderate water 

deficit (Figs. 4B, 6C, 7). Miyake et al. (2004) reported that the activation of CEF is 

accompanied by higher thermal dissipation in tobacco leaf under high light. Our 

results show that there was an approximate linear correlation between Y(NPQ) and 

CEF (Fig. 5A), demonstrating that the activation of thermal dissipation was positively 

correlated with that of CEF. 

The xanthophyll-cycle-dependent thermal dissipation is considered to be the 

major mechanism for dissipating excess energy (Demmig-Adams and Adams, 1996; 

Niyogi, 1999). Demmig et al. (1987) found a correlation between NPQ and Z: under 

low light, violaxanthin (V) was present and no NPQ was observed, whereas under 

high light, V was converted to Z, in parallel with the development of NPQ. However, 

in the present study, we found that the Z content significantly decreased under water 

deficit (Fig. 7), suggesting that xanthophyll-cycle-dependent thermal dissipation in 
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water-deficit cotton plants was impaired. This conclusion is supported by Inamullah 

and Isoda (2005), who reported that there is no significant change in the 

photochemical reflectance index (PRI) (which is correlated with the epoxidation state 

of the xanthophyll cycle) in cotton under water deficit. Therefore, our results suggest 

that the activation of thermal dissipation is related to ΔpH which is stimulated by 

CEF. 

PSI activity of cotton leaves under water deficit 

As described above, water deficit induced stomatal closure and then decreased AN 

(Table 1). The reduced capacity for CO2 assimilation may result in the over 

accumulation of NADPH, which can enhance the formation of HO, resulting in 

damage to PSI (Mi et al., 2000). However, we found that the activity of PSI shows a 

similar or only slightly lower value under moderate water deficit and high light 

conditions (Fig. 2F), indicating that the PSI complex in cotton leaf has strong 

resistance to water deficit. In addition, the decrease in Y(NA) showed that PSI was 

not affected substantially under moderate water deficit. This result is in accordance 

with our previous reports that PSI of cotton leaf is insensitive to water deficit (Yi et al., 

2016b). 

A large number of studies have demonstrated that CEF plays an important role in 

protecting PSI against drought (Huang et al., 2012, 2013), high light (Munekage et al., 

2002, 2004), and low temperatures (Zhang et al., 2014). CEF could alleviate the 

reduction of the PSI acceptor side by oxidizing the acceptor-side components of PSI 

by recycling the electrons from PSI to the PQ pool and Cyt b6f (Munekage et al., 2002; 

Sonoike, 2011; Tikkanen et al., 2015). Our results showed that the value of Y(ND) 

was maintained at a high level while the value of Y(NA) was maintained at a low 

level under moderate water deficit (Fig. 2F). The relationship between Y(ND) and 

CEF showed approximate linearity in all treatments, and water deficit showed a 

higher CEF with a higher Y(ND) (Fig. 5B); this means that the activation of CEF 

increased the value of Y(ND). In addition, the higher Y(ND) was also due to the 

inhibition of ETR(II) (Fig. 3A), which decreased the electron transport from PSII to 
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PSI: a large number of P700+ entities do not receive electrons, resulting in the P700 

population being in a more oxidized state. Moreover, the Mehler reaction could also 

alleviate the reduction of the PSI acceptor side by dissipating excessive electrons 

through the photoreduction of O2 in PSI (Radmer and Kok, 1976). The greater 

abundance of P700+, a quencher of excitation energy (Karapetyan, 2008), helps to 

dissipate excess light energy harmlessly as heat, while the lower level of Y(NA) 

avoids the oxidation-reduction reaction between reduced P700 and hydroxyl radicals 

(Nuijs et al., 1986). Therefore, the activation of CEF effectively alleviated 

photoinhibition of PSI under moderate water deficit. 

In higher plants, there are two pathways of cyclic electron flow, one dependent 

on the proton gradient regulation 5 protein (PGR5) and the PGR5-like protein 1 

(PGRL1) and the other pathway dependent on the nicotinamide adenine dinucleotide 

dehydrogenase-like complex (NDH). The PRG5 and PGRL1 genes could have been 

up-regulated in cotton under water-deficit-conditions, as has been reported for 

Arabidopsis thaliana by Lehtimäki et al. (2010). Wei et al. (2009) reported that the 

effect of cell water amount on photosynthetic yield in the cyanobacterium is related to 

NDH-1-mediated cyclic electron transport. While, in higher plants, the former 

pathway is more important, the NDH-mediated pathway of CEF seems less important, 

and NDH may actually aid the operation of the antimycin A-sensitive, 

PGR5-dependent pathway (Kou et al., 2015).  

P515 signals of cotton leaves under water deficit 

By analyzing the light-off kinetics of the P515 signal, we can obtain the two 

components of the proton motive force (pmf), Δψ and ΔpH, which play an important 

role in regulating photosynthesis and plant growth in higher plants (Zhang et al., 2014; 

Yamori et al., 2011; Yamori and Shikanai, 2016). First, both Δψ and ΔpH drive ATP 

generation and balance the ATP/NADPH energy budget (Walker et al., 2014). 

Especially under environmental stress conditions, the demand of ATP for 

photosynthetic CO2 assimilation would be increased because environmental stresses 

cause stomatal closure, which decreases CO2 availability in the mesophyll, resulting 
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in enhanced photorespiration (Flexas et al., 2002; Yi et al., 2014, 2016a). Second, 

ΔpH helps to down-regulate the light harvesting efficiency of photosynthetic antennae 

via the energy-dependent quenching (qE) mechanism (Ioannidis et al., 2012). Under 

normal conditions the lumen is maintained at a moderate pH and low qE, while under 

environmental stress conditions stomatal closure causes the ratio of CO2/O2 to 

decrease, so that the proton motive force is predominantly in the form of ΔpH, 

maximizing lumen acidification (Ioannidis et al., 2014). Ioannidis et al. (2014) 

suggested that acidification of the lumen controls photosynthetic electron transport by 

slowing the rate of plastoquinone (PQ) oxidation at the Cyt b6f. Our results show that 

with increasing water deficit, ΔpH gradually increased, especially under the moderate 

water deficit condition (Fig. 7), indicating that the lumen maintained a lower pH and 

preventing the accumulation of highly reducing species on the acceptor side of PSI. 

ΔpH can drive ATP generation catalyzed by the ATP synthase (Yamori and Shikanai, 

2016). Did the increased ΔpH under moderate water deficit enhance the formation of 

ATP? Our results showed that the activity of ATP synthase appeared to decrease under 

moderate water deficit (Fig. 6C). However, it is difficult to assess whether the ATP 

content increased or decreased, because we did not measure the ATP content. 

Therefore, the relationship between ΔpH and ATP generation requires further study. 

In conclusion, water deficit decreased CO2 assimilation capacity but did not 

induce photoinhibition of both photosystems in field-grown cotton plants. CEF served 

as an efficient sink for excess electrons and maintained the stability of both 

photosystems by alleviating the over-reduction of the accepter side of PSI and 

promoting thermal dissipation of excitation energy in PSII. 
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Fig.1. Light response curves of photochemical quantum yield of open PSII centers in the 

light-adapted state (Fv'/Fm') (A), and photochemical quenching coefficient (qP) (B). Leaves of 

Xinluzao 45 plants, grown under well-watered (CK, closed circles), mild water deficit (Mild, 

open circles), and moderate water deficit (Mod, closed triangles) conditions, were illuminated 

at varying PPFD. Vertical bars indicate standard errors of the means. 
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Fig.2. Light response changes in quantum efficiency of PSII, the fraction of absorbed light 

dissipated thermally via ΔpH- and xanthophyll-regulated process Y(NPQ), the fraction of 

absorbed light lost by either constitutive thermal dissipation and via fluorescence Y(NO), and 

quantum efficiency of PSI Y(I), the fraction of P700 oxidized in a given state Y(ND), and the 

fraction of P700 that cannot be oxidized by a saturating pulse in a given state Y(NA). Leaves 

of Xinluzao 45 plants, grown under well-watered (CK, A and B), mild water deficit (Mild, C 

and D), and moderate water deficit (Mod, E and F) conditions, were illuminated at varying 

PPFD. Vertical bars indicate standard errors of the means. 
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Fig.3. Light response curves of electron transport rate through PSII, ETR(II) (A), and PSI 

ETR(I) (B). Leaves of Xinluzao 45 plants, grown under well-watered (CK, closed circles), 

mild water deficit (Mild, open circles), and moderate water deficit (Mod, closed triangles) 

conditions, were illuminated at varying PPFD. Vertical bars indicate standard errors of the 

means. 
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Fig.4. Light response changes in the ratio of electron transport flow through PSI, ETR (I), to 

electron transport flow through PSII, ETR (II) (A), and cyclic electron flow (CEF) (B). 

Leaves of Xinluzao 45 plants, grown under well-watered (CK, closed circles), mild water 

deficit (Mild, open circles), and moderate water deficit (Mod, closed triangles) conditions, 

were illuminated at varying PPFD. Vertical bars indicate standard errors of the means. 
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Fig.5. Relationship between cyclic electron flow (CEF) and the fraction of absorbed light 

dissipated thermally via ΔpH- and xanthophyll-regulated process Y(NPQ) (A) and the fraction 

of P700 oxidized in a given state Y(ND) (B). Leaves of Xinluzao 45 plants which grown under 

well-watered (CK, green triangles down), mild water deficit (Mild, red circles), and moderate 

water deficit (Mod, pink triangles up) conditions. Vertical and horizontal bars indicate standard 

errors of the means. 
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Fig.6. The saturating single turnover flash-induced change in the 550–515 nm difference 

signal before and after 10 min of actinic light (1,000 μmol m-2 s-1) in leaves of Xinluzao 45 

plants grown under well-watered (CK) (A), mild water deficit (Mild) (B), and moderate water 

deficit (Mod) (C) conditions. A single turnover saturation flash (10,000 μmol m-2 s-1) was 

applied at time 0 ms. 
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Fig.7. Slow dark-light-dark induction transients of the 550–515 nm difference signal in leaves 

of Xinluzao 45 plants grown under well-watered (CK), mild water deficit (Mild), and 

moderate water deficit (Mod) conditions. Actinic light (AL, 1,000 μmol m-2 s-1) was turned on 

at 5 s and off after 10 min. 
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Table 1. Effects of water deficit on the leaf water potential (Ψw, MPa), maximal 

photochemistry of PSII (Fv/Fm), net CO2 assimilation rate (AN, μmol CO2 m-2 s-1), stomatal 

conductance (gs, mol H2O m-2 s-1), and intercellular carbon dioxide concentration (Ci, μmol 

CO2 mol-1). Photosynthetic gas exchange was measured under a PPFD of 1,800 μmol m-2 s-1 

and at a temperature of about 30 C. Values are the means ± SE. Values followed by different 

letters are significantly different at p ≤ 0.05. 

 

Treatments Ψw(MPa) 
AN 

(μmol CO2 m-2s-1) 
Fv/Fm 

gs 

(mol H2O m-2s-1 ) 

Ci 

(μmol CO2 mol-1 ) 

CK -0.87 ± 0.02a 34.9 ± 1.83a 0.84 ± 0.004a 0.58 ± 0.09a 235.8 ± 13.8a 

Mild water 

deficit 
-1.24 ± 0.07b 23.1 ± 2.25b 0.85 ± 0.01a 0.24 ± 0.06b 186.6 ± 22.2b 

Moderate water 

deficit 
-1.82 ± 0.15c 14.2 ± 0.83c 0.83 ± 0.02a 0.13 ± 0.02c 174.2 ± 19.1b 
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