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Hels Lty od ugt e

Various characteristic conjugacy classes of subgroups having
covering/avoidance properties with respect to chief factors have
recently played a major role in the study of finite soluble groups.
Apart from the subgroups which are now called Hall subgroups, P. Hall
[18] also considered the system normalizers of finite soluble groups
and showed that these form a characteristic conjugacy class, cover the
central chief factors and avoid the rest., The system normalizers were
later shown by Carter and Hawkes [4] to be the simplest example of a
wealth of characteristic conjugacy classes of subgroups of finite
soluble groups which arise naturally as a consequence of the theory of
formations. They show that a finite soluble group has, corresponding
to each saturated formation X containing the class N of all finite
nilpotent groups, a characteristic conjugacy class of subgroups called
the X-normalizers which have properties closely analogous to the
system normalizers of P. Hall and coincide with the latter when
X =N . This part of the theory of formations has been extended by
Wright [38] for the case when a saturated formation does not

necessapd lyseontainms N

Dual to the concept of formations is the concept of Fitting
classes introduced by Fischer [7]. As Fischer, Gaschutz and Hartley
[9] have shown a finite soluble group has, corresponding to each
Fitting class Y , a characteristic conjugacy class of subgroups

called the Y-injectors.

On the other hand, Gaschutz [10] also considered what he called



the Prefrattini subgroups of finite soluble groups. In particular
these cover the Frattini chief factors and avoid the complemented ones.
Working in this direction, Hawkes [21], in turn, obtained further
characteristic conjugacy classes, one class in each group corresponding
to each saturated formation, of subgroups of finite soluble groups
which have propefties closely analogous to the Prefrattini subgroups
and which coincide with the latter in the case when the saturated
formation under consideration is the trivial one. Hawkes' subgroups
corresponding to a saturated formation X are called the
X-Prefrattini subgroups. Besides possessing an interesting
covering/avoidance property, an X-Prefrattini subgroup of a finite
soluble group can be expressed as a product of a Prefrattini subgroup

and an X-normalizer of the group.

This latter fact suggests the study in a finite soluble group of
the lattice L of subgroups generated by the Prefrattini subgroups of
the group, the E-normalizers of the group corresponding to a
saturated formation F , and the H-injectors of the group corresponding
to a Fitting class H . The idea is to find within- L further
characteristic conjugacy classes of subgroups with covering/avoidance

properties.

The work in the Chapters 3 and 4 of this thesis derives from our
attempt to study L . We had to restrict ourselves to H: being a
Fischer class since in this case more is known about the behaviour of
the Sylow subgroups of the H-injectors, and this information is vital
in our investigation. The results of our investigation may be

summarized as follows (see Theorem 4.0.1).

With a Sylow system in a finite soluble group, one can naturally



associate a Prefrattini subgroup, an [I-normalizer and an H-injector,
of the group and the sublattice L* generated by these three subgroups
(in the full subgroup lattice of the group) is distributive, the
conjugacy classes of its elements are characteristic, the elements of

L* are pairwise permutable, they all have interesting covering/avoidance
properties and the given Sylow system reduces into each of them. As an
exampleat the end of Chapter 4 shows, L* can be as large as the
preceding statement allows, namely it can have eighteen distinct

elements (in which case L% is a free distributive lattice of rank

3). Fourteen elements of L* then belong to distinct characteristic

conjugacy classes which have not been known to exist before.

The latter part of this thesis, namely, Chapters 5 and 6, deals
with a particular instance of the general problem of obtaining
information about the global structure of a group from the information

about the local structure. In particular, we consider the conjugacy
classes of E}-maximal subgroups of a finite soluble group fer k = 1.,

where g} is the class of all finite groups of nilpotent length at
most k , and investigate the restriction imposed by their number on a

particular invariant of the group, namely its Fitting length.

The case k = 1 1is investigated in Chapter 5 and a logarithmic
upper bound on the Fitting length of a finite soluble group in terms of
the number of conjugacy classes of maximal nilpotent subgroups of the
group is obtained (see Theorem 5.2.8). In certain special cases the

bound obtained is shown to be the best possible.

The case k = 2 1is investigated in Chapter 6, the last chapter of
this thesis, in a slightly more general set up. The bound on the Fitting

length of a finite soluble group in terms of the number of conjugacy



classes of gﬁ-maximal subgroups of the group which we obtain there is

a linear one.

We conclude here with a remark that the Fitting length of a finite
soluble group, on the other hand, imposes no restriction on the number
of conjugacy classes of maximal nilpotent subgroups of the group, as

has been shown by Rose [33] using wreath product constructions.



1.2 Notation and terminology

Throughout this thesis, the word "group" means "finite soluble

group', except when stat§7otherwise. 4
The letters p, @ and r always denote primes.

Given a set T of primes, 7' denotes the complement of T in
the set of all primes, and an integer n 1is called a T-number if each

of its prime divisors is an element of T .

We denote the trivial subgroup of a group by {1} and the
identity of a group by 1 . If G is a.group and H a subgroup of
G, we wpite H<G or HXG . If H is a proper subgroup of G , G YyH
+hat is, if . B '# G , then we write H < G . Similarly, we wahline 8 =) @
if H is a normal subgroup of G and we write H @ G 1if, moreover,

H<G . If H is a subnormal subgroup of. G , we write H ¥4 (G .

The order of a group G is denoted by |G| sholely, alsk o dal =(E
& H| denotes the index of H in G . For any subsets

Xy Xap, it iR of sl KR, X

12 %o 3 10 the § Xn) denotes the subgroup of G

2,
generated by these n subsets. The minimal number of generators of G

is denoted by d(G)

If K and H are any two subsets of G , then K\H denotes the
set of elements of K not contained in H , H n K is the intersection

af H with K and HK 4is the product set e | Bel ok e Kl

If g, h ¢ G, then the conjugate h—lgh gETE DY 1s genoted

by gh and g_lgh ig -denctad by «-Egs-hl-e  Himikawly ;i 4if  H-=:6 -and

#

g€ Q7 H® denotes the conjugatejof H in G . For any subgroups K g HQ



anps Pt Ratanasg K 48 e vkl ohde ok €Ky h € H)

The normal closure in G of a subgroup H of G ' is denoted by
G ! . :
He @and 1fa gere in- G- by CoreG(H) y CG(H) denotes the centralizer
of ® - in &6 and NG(H) denotes the normalizer of H in G . If

H =G , then CG(H) —R7 (@) thieNcentre of 6 .

If G has a unique minimal normal subgroup, then G is called a
monolithic group and its unique minimal normal subgroup is called its

monolith.

A-subgroup H of G 1is said to be-prenormal in G if any two

conjugates HX, H of H in G are conjugate by an element of

X

gar B ) Jfand it ds ssddotesbe gbliormalidn -G, if, g€ AH; H®) for

each g € G .

The Frattini subgroup of G , which is the intersection of all

maximal subgroups of G , is denoted by @(G)

Irf K, A =86 and K22 H , then - H/K is called a facter of G
1E  mEhaEoNAzI H and K are both normal subgroups of G , K < H and
H/K is a minimal normal subgroup of G/K , then H/K is called a
chief factor of G . Every chief factor of G 1is of order a power G
some prime. We will call a chief factor of G a p-chief factor, if
its order is a power of p . A series of normal subgroups

{1} = K K gk, < Kn =.@ -is called a chief series of -G -if

R 18 a"ehilef Tagtor of G fer each” 1= 1, 25 «¢«s5 1 &
il

A'subgreup LT 6f G ‘is sald to caver a factor H/K of' G 15

NN LK et s eid te aveid H/K IE Hon L = K.. If each



chief factor of G is either covered or avoided by a given subgroup of
G , then the subgroup is said to have a covering/avoidance property.

In general, a subgroup of G need not cover or avoid a chief factor

eof @ . It is easy to see that L covers (avoids) a p-chief facter

ef G if emd enly if a Sylow p-subgroup of L covers (avoids) it.

Aehiet facior H/K of G 18 Sald to be Frattini imn 6 4if
H/K = ®(G/K) and complemented otherwise, since then some maximal

subgroup of GéH/ complements ¥/H in G/H . K, AR

If A is a group of automorphisms of G and H a subgroup of G
which is mapped into itself by every element of A , then H 1is said
to be A-invariant in 6 . If A is the full automorphism group of
@ , then'an | A-invariant subgroup of G is called a characteristic
subgroup of- G . On the other hand, a family of subgroups of G is
said to be characteristic if the subgroups in the family are permuted

by the automorphisms of G

A representation of G of dimension n over a field K is a
(groﬁp) homomorphism from G into the general linear group GL(n, K)
of dimension n over K , that is, the group of all-eademorphisms of

an n-dimensional vector space over K .

G

Jrarg?

n
., G are groups, Gi denotes their direct
7 )
product. The standard wreath product of a group H by a greup K . is

denoted by H wr K . 6 For basic definition(and properites of wreath

products our main reference is Schenkman [34].

Throughout the thesis, the statement "X is a class of groups"

implies that X consists of finite soluble groups and contains all



isomorphic copies of its members.

Groups in a class X are called X-groups and those factors of a
group which are members of X are called X-factors. An X-subgroup
of a group which is not a proper subgroup of any X-subgroup of the

group is said to be X-maximal in the group.

A.class X of groups is said to be

B _s—closed if subgroups of X-groups are X-groups;

(ii) q-closed if homomorphic images of X-groups are X-groups;
Qi) R,-closed if subdirect products of X-groups are X-groups;

(iv) E,~closed if. @/RCE). € X. implies B¢ X ;

(v) Ep—closed if an extension of a p-group by an X-group is
an X-group;

(vi) sN-closed if normal subgroups of X-groups are X-groups; and

(vii) Ng-closed if the product of any two normal X-subgroups of

a group is an X-group.

Classes of groups and various other families and sets are denoted
by capital Roman letters with a double underline. Occassionally, we
also use capital Greek letters to denote sets. The empty class of a

set is, however, an exception and is denoted by ¢ .

The rest of the notation and terminology required in the course of

this thesis will be introduced as and when required.
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PRELIMINARIES

2.1 Sylow systems.and their reducibility

In this section, we introduce P. Hall's concept of Sylow systems
of a finite soluble group (see [17], for example) and discuss their
properties which will be required in the course of this thesis. 1In
order to explain the term 'Sylow system'" we need to make the following

definition.

(2.1.1) Definition. Let G L be a group and T a set of primes.
(i) 6 1is called a T-group if |G| is a m-number.

(ii) A subgroup H of G 1is called a Hall Tm-subgroup of G 1if

H is a Tm-subgroup of G and |G : H| is a m'-number.

We will denote a Hall Tm-subgroup of a group G by GTT Elofel  AliE

at any time more than one Hall T7-subgroup of G is considered, they

ofs
v

will be distinguished by superscripts such as

A non-soluble group may not necessarily possess Hall T-subgroups

corresponding to a set T of primes. But

(2.1.2) Theorem (P. Hall [15]). A soluble group G has Hall
T-subgroups corresponding to every set T of primes, and any two Hall
m-subgroups of G are conjugate in G . Moreover, every T-subgroup

of G s contained in some Hall Tm-subgroup of G . /]
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It is an immediate consequence of Theorem 2.1.2 that a soluble
group possesses a Hall p'-subgroup, that is, a Sylow p-complement,
corresponding to each p . In [16], P. Hall has shown that this

property, in fact, characterizes soluble groups.

(2.1.3) Definition. Let G be a group and {Gp,} a set

consisting of a Hall p'-subgroup of G , one for each p , that is, a
complete set of Sylow complements of G . Then the set consisting of

all the possible intersections of subgroups in the set {Gp'} 5

together with G , is called the Sylow system of G generated by

{c_,}
P

Clearly, a Sylow system L of a group G contains a unique Hall
T-subgroup of G corresponding to each set T of primes. We will

denote the Hall Tm-subgroup of G in I by Zﬂ ‘

Any two Sylow systems of a group are conjugate in the group in the

following sense.

(2.1.4) . Theorem (P, Hall [17]). Let {Gp,} and {Gg,} be any
two complete sets of Sylow complements of a group G . Then there 18
an element g of G such that Gg, = Gg, for.each p .« In
particular, if I and I%* are the Sylow systems of G generated by

{Gp,} and {Gg,} , respectively, then, for every set T of primes,

z%:z il

=

It is clear from Theorem 2.1.4 that the Sylow systems of a group



L

are transitively permuted by the inner automorphisms of the group.

Extensions and Reductions of Sylow systems of a group were first

considered systematically by Carter in his paper [2].

(2.1.5) Definition. Let L be a Sylow system of a group G and
HY='C . Them I 12 said to reduyce inte H' if the intersections of: H
with the subgroups in I form a Sylow system, denoted by Hn Z , of
H . On the other hand, a Sylow system I%* of H is said to extend to

e T

By a result of P. Hall [17], every Sylow system of a subgroup of a
group can be extended, though not necessarily uniquely, to a Sylow

system of the group; consequently, by Theorem 2.1.4,

(2.1.6) Lemma:+ If I 1s.a Sylow system of a group G and

H=<G, then I reduces into at least one conjugate of H . /1

Occasgionally, we will require the following result of Shamash

[36] on the reducibility of Sylow systems.
(2.1.7) Lemma (Shamash [36]). Let H and K be any two
subgroups of a group G and I a Sylow system of G . If L reduces

into both H and K , them I reduces into H n K. //

A Sylow system of a group may reduce into more than one conjugate

of a subgroup of the group. But for pronormal subgroups we have

(2.1.8) Lemma (Mann [30]). A Sylow system of a group reduces into
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precisely one conjugate of a pronormal subgroup of the group. //

2.2 TFormation theory and the Prefrattini subgroups

We begin this section by surveying briefly the theory of

formations which was orginated by Gaschutz [11].

(2v2 L) Derinrtion, A class of ‘proups is called a formation if it

is both q-closed and Rrg-closed.

A non-empty formation is called a saturated formation if it is, in

addition, E@—closed.

The empty class @ is clearly a formation. If X 1is a formationm,

we will denote by Gé the intersection of all normal subgroups N of

g grouy e Buch ehet- G/ € X « If no sueh N exists, that 1s, if

X = P , the empty class, we will put GQ = G . Clearly G/Gé e
unless ' X = @ , the empty class, and Gé is always characteristic in

@we o Bop the pavtisular case X = §m s the elass of all finite soluble

T-groups, which can be easily shown to be a saturated formation for any

S
a m =
set T of primes, we write O (G) to denote G

(2.2.2) Lemma (Barnes, Kegel [1]). Let X be a saturated
formation of characteristic m . Then every X-group 18 a T-group

and all nilpotent T-groups are X-groups.

Apart from the class é%_ that was mentioned above, other familiar
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examples of saturated formations include the class § of all finite
soluble groups (see Theorem 2.4.1 (i) - (iii) in [14])and the class N

of all finite nilpotent groups (see Satz III. 2.5 (a) and (c), and Satz

TrLe 3.7 38 126 ]).

IRE Eie - ape Satutated fermations, then, by Propesition 7.16

[13], XY is a saturated formation. Thus, in particular, g? is a

saturated formation for every non-negative integer n .

In [11], Gaschutz describes a method of constructing a wealth of

saturated formations:

Assign to each p a formation X(p) , which may possibly be

empty, and let , X Dbe the class of all groups G with the property:

I£..p || and H/K is a p-chief factor of G , then

G/C5(H/K) ¢ X(p)

It is shown in [11] that the class X' so defined is a saturated
formation. It is called the saturated formation defined locally by the

family {X(p)} of formations.

In fact, every saturated formation can be defined locally by some
suitable family of formations. This has been shown by Lubeseder [28]
(2ee sa 2 VL. 7.25 in L25], for example). In particular, it is easy to

gheck that, if X(p) = {1} for each p , then X is precisely X .

If X is a saturated formation defined locally by the family
{éﬂp)} of formations, then it can be easily verified that the

characteristic ef X is precisely the set of these p for which

X(p) # 9 .
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(2,2,8) DesEimiliicis . =i X bea satlurated formation defined

locally by a family {X(p)} of formations. Then

(i) the family {X(p)l. is sald to Béndwtegrated if X(p) = X
ecveel P, Endi it s 2aid to be Full if  X(p) is

Ep—closed ForNc D

Henceforth, assume that the family {X(p)} 1is integrated and full.
(ii) A chief factor H/K of a group: 6 1is called X-central if

G/CG(H/K) € X(p) ., where p is the prime which divides

|H/K| , and X-eccentric otherwise;

(iii) a maximal subgroup M of G is called X-normal if

M/CoreG(M) ¢ X(p) -, where p .is the prime which divides

|G : M| , and X-abnormal otherwise;

(iv) a maximal subgroup M of G is called X-critical if it is
X-abnormal and supplements in G the Fitting subgroup of

G

By a result of Carter, Fischer and Hawkes [5], every saturated
formation can be defined locally by a unique full, integrated family of

formations.

Now, corresponding to each saturated formation X , every group
has a characteristic conjugacy class of subgroups called the

X-normalizers of the group, which are defined as follows (see [38]).

(2.2.4) Definition. Let G be a group and L. a Sylow system of
G , and let X be a saturated formation which is defined locally by
the full, integrated family {éﬂp)} of Formatiems. If 1w is the

characteristic of X , then the X-normalizer of G corresponding to



1’5

X 1s defined to be the subgroup

Baiter 0 N (Z SR Gé(p)J
™ Clp
pEm

of G

Since Gé(p)

is a characteristic subgroup of G for each p and
since, by Theorem 2.1.4, the Sylow systems of G are transitively

permuted by ‘the dinner automorphisms of G , the X-normalizers of G

indeed constitute a characteristic conjugacy class of subgroups of G .

(2.2.5) Lemma (Wright [38]). 4 Sylow system of a group reduces

into the corresponding X-normalizer of the group. 1y

The following theorem describes the properties of the X-abnormal
maximal subgroups and the X-normalizers of a group, which we will need
in the lapfer chapters. Though the theorem has been proved by Carter
and Hawkes [4] for the special case when N is a subclass of X ,

their proof holds in the general case.

(2.2.6) Theorem (Carter and Hawkes [4]). Let G be a group and

L a Sylow system of G .

(1) A maximal subgroup of G is X-abnormal in G <if and only

if it complements an X-eccentric chief factor of G .

(12) A maximal subgroup of G contains an X-normalizer of G

if and only if it is X-abnormal in G .

(ii2) Let M be an X-abnormal maximal subgroup of G into

which L reduces and let D and D* be the X-normalizers of G and
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M corresponding to L Gl 0 S respectively. Then . Di=:DE .,

(iv) An X-normalizer of an X-critical maximal subgroup of G

18 an - X-normalizer of G .

(v) The ZX-normalizers of G are invariant under homomorphisms

O G

(vi) An X-normalizer of G covers the X-central chief factors

of G and avoids the rest. i

Besides the X-normalizers. a group has, corresponding to any
saturated formation X , a unique conjugacy class of subgroups called
Ehe. X prejectors of the group. These were first defined by Gaschutz

L] &5 felilows.

k22, 7) Defini@ion. Let Y be g class of groups.. A subgroup E
of a group G is-called a Y-progector of G if

T
(i) H = KE whenever E =H- =6 and K = H such- that
H/K € Y .

Apart from the saturated formations a group has Y-prejecters

corresponding to each Schunck class Y (see [35], for example).

A saturated formation is necessarily a Schunck class (see [13])

though the converse is not, to our knowledge, known to hold.

If X 1is a saturated formation which contains the class e, SEheT

it has been shown by Gaschutz [11] that the X-projectors of a group G



L7

are abnormal subgroups of G . Consequently, by Lemma 2.1.8, a Sylow

system of G reduces into precisely one conjugate of an X-projector

of G

The following two lemmas describe some of the properties of the

X-projectors of a group corresponding to a gq-closed class X .

(2.2.8) Lemma (Gaschutz [11], Schunck [35]). Let G be a group

and E an X-projector of G .
(2d fhfesEi=nll =nCoy then pEeidsian: M=projectoriofigd .

(Ze ) IFH-=NG S then (HE/N. 8 an  X-projector of @ G/N . o

(2524 9) sl enpamlCaschiitz \[11 1 e Schunek: [851)s sletriCrebetaugteoup
auavell 256 prel faeEl/Nhnisvanrdzprojectorief: G/N i androEp 18 an

X-projector of E%* , then- E s an X-projector of G . /

The following theorem describes a relation between the X-projectors
and the X-normalizers of a group corresponding to a saturated formation

Keewhichnaencains theielassinlg.

(2,2, 10) Theerem (Cavter and Hawkes [4], Hawkes.[22]). Let G be
a groupnand bE TawSylew sysvemief $Claw Let .Es be the  X-projectiorvef
G into which I reduces and D the X-normalizer of G corresponding

e h oo - e

(). D =E. . Consequently, every X-normaliger of .G <is
contained in some X-projector of G and every X-porjector of G

contains an X-normalizer of G .
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(e JES T ENe TG D: =Ev g I 'that is to say, the X-normalizers

and the X-projectors of G coincide.

Next, we define the Prefrattini subgroups of a group and their
analogues. The Prefrattini subgroups of a group were first constructed
by Gaschutz [10] who showed that these cover the Frattini chief factors
of the group and avoid the complemented ones. In [21], Hawkes
described a method of constructing a wealth of characteristic conjugacy
classes of subgroups of a group, one class corresponding to each
saturated formation, which have properties analogous to the

Prefrattini subgroups of the group.

In the special case when the saturated formation under consideration
is the trivial formation {1} , the corresponding subgroups obtained by

Hawkes are precisely the Prefrattini subgroups of the group.

(2-2.11) Berfinition.  Let X be 2 saturated fermation, net
necessarily containing the class N , let G be a group and let L be
@ Sylew =ystem of G . Them, the X-Prefrattini subgreup ef: G
corresponding to I 1s defined as the intersection of all those

X-abnormal maximal subgroups of G inte whiech . 2 reduces.

Since, by Theorem 2.1.4, the Sylow systems of G are transitively
permuted by the inner automorphisms of the group, its 2 Fucfoa bl
subgroups clearly constitute a characteristic conjugacy class of
subgroups. Also, it is immediate from the definition and a repeated

application of Lemma 2.1.7 that

(2.2.12) Theorem. A Sylow system of a group reduces into the

corresponding X-Prefrattini subgroup of the group. i
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The following theorems describe some of the properties of the

X-Prefrattini subgreoups of a group.

(2.2.13) Theorem (Hawkes [21]). Let G be a group, I a Sylow
system of G and W the X-Prefrattini subgroup of G corresponding

wo B oo e

(1) W auoids the X-eccentric, complemented chief factors of G

and covers the rest ;

(12) the X-Prefrattini subgroups of G are invariant under the

homomorphisms of G . B/

(2.2.14) Theorem (Hawkes [21]). Let G be a group, L a Sylow
system of G and D,W* and W the X-normalizer of G , the
Prefrattini subgroup of G and the X-Prefrattini subgroup of G ,

respectively, each corresponding to L . Then
@) W = i s

(¢2) D n W* covers the ZX-central, Frattini chief factore of G
and avoids the rest. Moreover, as L runs through the Sylow
systems of G , (D n W%)'s constitute a characteristic

conjugacy class of subgroups of G . .

2.3 Fitting classes and the Injectors

The concept of Fitting classes was introduced by Fischer in [7]

andeisiduaillitolthatef ‘formations.

(Zo8. 1) leffinibien. A class X of groups is called a Fitting
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clboss 7 1t is bodn sN—closed and No-closed.

B Biteinguelass: X . is.al Pischer clagss:if it has the following

additional property:

dEERRERER N I 6 andt N = H = € such that /N G ép for some

Py then o H € X .

By Lemma 6.1.1 and Theorem 2.3.3 (i) [14], the class N is an

s-closed Fitting class. Consequently, by a repeated application of

Theorem 8.2 [13], :ﬁn isiams—cllesed N Eitting ‘elass forlcveny
non-negative integer n . Also by the remarks (iii) and (v) following

Deinistion e b in I8N Ehele lasis §T g g seellesEel Fiissilng

classy

Clearly, corresponding to any No—closed elass: X  eof groups, a

group G has a unique largest normal X-subgroup which we will denote

by GX : GX is certainly a characteristic subgroup of G and if
X =z N, then by Theorem 6.1.3 [14], Cg(6,) =6,
Fer Xy= éﬂ, émJ, é%”ém" whepe T is .amy set of primes; we Hill

denote G, by Oﬂ(G), Oﬂ,(G) and OW,H(G) , respectively. Observe

that émqé%r is, by Theorem 8.2 [13], a Fitting class, and so OW,H(G)

is well-defined.

It is clear from the definition of a Fischer class that every
s-closed Fitting class is a Fischer class, though the converse is not

trie as was pointed by Fischer in [7]. Thus, in particular, the class

; n a
§ﬂ For ey et W e B pnimes and the class N for every nen-negative
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integer n are both Fischer classes.

A recent work of Hawkes [23] shows that a meta-nilpotent Fitting
formatien, thatyis, a formatien which is alse a Fitting class and is

contained in ﬁf , is always s-closed. We show here that

(2.3.2) Theorem. Every meta-nilpotent Fischer class is s-closed.

Preed . Asbume “the wesult is false and let X be a meta-nilpetent
Fischer class which is not s-closed. Let G be a group of minimal
order among those X-groups which have subgroups not belonging to X
Choose ameng such subgroups of 'G one, say H , of maximal order.

Then it is clear from our choice of G and H , that H is a maximal

subgroup et NGNS Ceonsequen iyl HHn GN JGsinece H M GN SEHE Snd

H n Gﬁ a4 Gi . Alse, sipce 6.6 N° amd H/H n Gi = HGi/G_E_ ]

L/IEL ) gﬁ £l s that IHL/IEL (7 9& is a direct product of its Sylow
subgroups. In particular, H = HlHQ e Hn , where, for each

=l e T Hi =1 Hi = I om %ﬁ and Hi/H N 9& € ép for
seme’ 'pl | But news sinee - H @ G£=Q G € X and X is-a Fischer class,
di St eilllloTr =Mt aff Hi B2K . cFepteach ‘1= 1,2] «is; n-.° Heneey finally,
gigee, X I8 No—closed and Hi SIS Eeontioaeh il =R R

H € X and we have a contradiction. With this contradiction the proof

is cempliete. a4

Now, it has been shown by Fischer, Gaschutz and Hartley [9] that
correspemndingifencaeh Bitting class X , each group has a unique

conjugacy class of subgroups called X-injectors. These are defined as

follows:
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(2:803) efimition: A sibgroup V. of @ groeup G 1is called an

X-injector of G if
(1) el
Eeeeg Ny 26 Xewmaximaliin «Noewhenever ‘N 94.G .
The following theorem describes some of the properties of
S=lnjecters et & greup G
(2.3.4) Theorem (Fischer, Gaschutz, Hartley [9], Hartley [20]).

(1) ALL conjugatee ef an ZX-injector of G are ZK-injeetors of

G , and any two X-injectors of G are conjugate in G .
(11) X-ingectors of G are pronormal subgroups of G .

(1i1) An - X-injector of G either covers or avoids a chief

Jaccer-ef G.

(iv) An X-injector of G is an X-injector of every subgroup

of G which contains tt.

In view of Theorem 2.3.4 (7) - (72) and Lemma 2.1.8, a Sylow
system of a group reduces into precisely one X-injector of the group.

Consequently, we have

(oiglsiiionn ot @ be @ group, I ga Sylew system of G and
V the ZX-injector of G <into which ¥ reduces. Let M be a subgroup
of © uhich consatne an  X-injector ef G.. If I reduces into M,

Ehe =
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Ehoos il iweiieciis, W) @M 1s a Sylow system of M . Let W
be an L ecEcRe e liiigh s eemtained In M . By Lemma 2.1.6,
Fheresls saeenmsase U of . W din. M. dnteo which ' nM , and: hence
Ly meduces, yiClegnly, U is, by Theerem 2.8.4% (1), an X-injector of
Gy @nd hemce, by the same wvesult; a cenjugate of V . Thus, it fellows
from the remark preceding this lemma that U = V , and the lemma is

proved. e

(2.3.6) Definition. A factor of a group G is called X-covered
if it is eovered by am X-injector of G and X-quoided if dt:is

avelded by an X~ 1mjecter af G

By Theorem 2.3.4 (72i27), a chief factor of a group G 1is either

A-cevered ey X-aveided.

We conclude this section by mentioning a result which will be used

repeatedly in the ;course of this thesis.

(2.3.7) Theorem (Fischer [7]). Let X be a Fischer class and V
an X-injector of a group G . Then, for each p dividing I Vp

18 a Sylow p-subgroup of Vg

It is an immediate consequence of this theorem that

(2.3.8) Corollary. A p-chief factor of G 1is X-covered if and
sl G
only if it is covered by Vp . Consequently, the number of X-covered

p-chief factors of any given G-isomorphism type in a chief series of

G ie independent of the series.
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2.4 Generalized nilpotent length

In this section, we discuss briefly a generalization of the
concepts of the nilpotent length and the p-length of a group. Our

general reference for this section is [8].

B abesc sairoved Pittine fermation, that is, a saturated
formation which is also a Fitting class, and let T be the characteristic

of A

(2.4.1) Definition. An ascending series 1 = G0 < Gl s Gm =G

normal subgroups of a group G is called an X-series of G 1if for

Sl I =R R T e i e e (@R /G =X @ 6, /6, €5 .
el = i’ 7i- =i

1 1
The upper X-series of G is the series of normal subgroups of
G defined inductively as follows: Rgo = L) v and g Feped i =00

BB =0 MEEs | and” R/T. = (G/Ti}é:.

Similarly, the lower X-series of G 1is the series of normal

subgroups of G defined inductively as follows: Br - E aud, her

H o )
and R} st

ole

i)

[I><

= b Oﬂ'(R

The X-length of G is defined to be the smallest number of

X-factors in any X-series of G and is written as hX(G)

It ds dlear, in view: of Lemma. 2.2.2, that the factors Ri/Ti and

T?/R? are always non-trivial for i = 1 unless Ti = G or T; =l
1

respectively.
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We now state without proof the following elementary fact about the

- length o

(2.4.2) Theorem. The invariant hX(G) 2 of @ greup - G- is-the

nunmber of X-factors in both the upper and the lower X-series of G . Ll

e etld ithis section with & remark that, i1f X = N , then 1w dis the

whole prime set and the invariant hN(G) Jg & agroup G ds the

familiar milpetemt length h(G). of € . On the other hand, if

= = 1 = @
X ép coten o = dpk and ?é(G) is the p-length Zp(G) of

2.5 Miscellaneous Results

First of all, we show

I
(2.5.1) Lemma. Let G = H, be the direct product of the
i=1

groups Hl’ HQ, e Hn Do e o o S - I N RPN, S meo G Hi be

the projection map of G onto Hi and My o Hi » G the ingjection

map of H, dnte. Guy Let K =26 .. Then

1
() ) = ] (CH.(Kﬂi)JUi 5
1=1 al
n
(it) N (K) = NG[I:I KﬂiuiJ ;

(i2i) K is a Sylow p-subgroup or a maximal nilpotent subgroup
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10
o 6. thvandienlyif o = Kﬂiui and, for each

i=1
T S T K, 18 a Sylow p-subgroup of Hi g
the first case and a maximal nilpotent subgroup of H, H

the second case.

Freef. " (2) " An element g of G centralizes K if and enly if

[gﬂi, Kﬁi] =R s L, thiet e ds . 1F onidenily it

gm. € CH (Kﬂi) Tep G L EgE = s i . Henee (7) heldss
b

n
(L))" ek g € NG(K) . "Sinee g.= gm.u. and,  Ferl Al o A
i=1

gﬁjuj centralizes Kﬂiui , we have that

g U,
(kmug)® = Gengp ) 5% = (Cmpwg = vy

Thus g normalizes each Kﬂiui and so it normalizes their

Products.

(1272) Suppose first that K 1s a maximal nilpotent subgroup of

€ o Whem elezely Kﬂi is-a nilpotent subgroup of Hi ForNeceh
SRR S et e each- L = 1, 25 .5 T s K? be a maximal
nilpetent subgreup of Hi which contains Kﬂi . Then
n n n
K= g T Kgul — i
i=1 i=1

Henee, sinee " lWis a nilpetent subgroup of - G , it fellews by the

o

maximality of K that K = L , and, therefore, also Kﬂi = K; for
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Sesh, - 1Bt M0 . L, Esgreguired.

Suppose next that Kﬂi is a maximal nilpotent subgroup of Hi

n

meptceeh iRl D0 00 T . end that - K = Kﬂiui . Let K* be a
i=1

maximal nilpotent subgroup of G which contains K . Then from what

has been just shown above, together with our assumptions,

n n
K% = KET. U, = Km.p, = X,
i=1 i=1
as required.
The other half of (277) can be proved similarly. i

Next we show

0.5, Ll enma % e o Hovand K. be any twe groups, ket 6 = H g K
aid \let. . B . he the base group ef G . [Let, for each k € K,

Dt Byyt B be the projection map of B onto H and Moo & HomB the

the Thjeciion map of, B imte B . If {1} #L =B and

L = Lm Wy then CG(L) = CB(L) . Also, if S . is a Sylow subgroup
keK

eF LY, “Chen 78 = Sﬂkuk :
keK

Proof. By hypothesis, LT My =l iFer seme e K o et

k

Sevia B aRlelRENTo 8 S PGB o Be an element of CG(L) . We show that

let b b
et = 1 o Cleaiely (Lﬂkuk) b - [Lﬂkukk,) = (Hukk') = Jalul 5 Taes

(Lﬂkuk}g = Hukk, 5 e o LS (LW u )g = 1L

=
e uk = Huk .  Hence

k
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(Lﬂkuk)g = Huk n Hukk' , and se, since Lﬁkuk Fo L it el lows"tht

o= et S hene = ic i =] and g € B, as required. The final

statement of the lemma now follows from 2.5.1 (Z77). T/

The following result of Huppert [26], which we quote here without
proof, will prove very useful in establishing the main result of the

Fipst .part eof this thesis,

(2.5.3) Lemma (Huppert [26]). Let A, B and C be any three
subgroups of a group G . Them A n BC = (A n B)(An C) <Zf.and only

tf AB n AC = A(B n C) . 1
Finally, we have

(2.5.4) Lemma. Let A and B be any two permutable subgroups of
a group G such that each of A and B either covers or avoids each
ehier facior ef <G . Then A n B covers all those chief faetors of G
which are covered simultaneously by A and B <if and only if AB
avoids all those chief factors of G which are avoided simultaneously

by Hicang B

Bheet, ‘Let® i be a ehief series of G , 0. the preduct of the
orders of those chief factors of G in n which are covered by both
L =md B, B the preduect of orders of those chief factors.in T
which are covered by A but avoided by B and Yy the product of the
orders of those chief factors in n which are avoided by A but
covered by B . Then it is easy to check that ‘Al = @8 el
|B| = ay . Alse |A n B| = a since every chief factor of G which

is not aveided by« L@ B 1is covered by beth,L A and B .
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Slppes MBSl it A Gl Bicovers sall those chief factors of G
which are covered by both A and B . Then from what has been just
said |A meBle=os and ses |&B| = |a||B|/|a® B| = ofy:. Consequently
AB avoids all those chief factors of G in n which are avoided by

IDonEl A smmEl B

On the other hand, if AB. aveids all those chief factors of G
which are avoided simultaneously by A and B , then, since AB covers
all those chief factors of G which are covered either by A or B ,
afy = [AB| . whemee |A n B| =@ , that is, A n B covers all these
chief factors of G in n which are covered simultaneously by A and

B

Since mn was an arbiteary chief series of G , the lemma is

finally proved. s
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CHABNERES

INJECTORS AND ANALOGUES OF THE PREFRATTINI SUBGROUPS

Thzeushoutthic chapten and theynext, « B¢ will denote a saturated
Sonmatdeni s Higm Bischer dclass b G e sgroupy,: . 2 @ Sylew system of G
anids . Waehes =i e cterntief W6 siinite whilehi » Zireduces. | Mereover, + D ,
Womeamsy | 18 v winlilnd eneite, the wE-normal izer ©Ff . @i, the | E-Prefrattini
subgroup of G and the Prefrattini subgroup of G , respectively, all

three corresponding to the same Sylow system I

Gur main =im in.this cliapter is to shew that W and V , and
hence, W#* and V , are permutable subgroups of G , and that WV ,
W&V , WnNnV and W% n V each have a covering/avoidance property
with respect te thie chief factors of G . This oeccupies the whole of

Seetilcm 88

The first two sections of this chapter are preliminaries to
Section 3.3. In Section 3.1, we consider those H-avoided,
complemented chief factors of G at least one of whose complements in
€ Centarnsfan® I Tnjegtor of G .° In Sectien 3.2, we establish a
relation between the F-eccentric, H-avoided, complemented chief
factors of G which are covered by WV and the FE-eccentric,

H-cevered, Frattini chief Facters of G which are avoided by W a V .

The Corollaries 3.3.3 and 3.3.7 have been published in my paper
[29], where my approach in proving these results was different from
the present one. The alternative approach taken here relies on the

main resulticfiEection 3.2, namely Theorem 8.2.2.
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St Paptialily W conplemented chief factors

In [20], B. Hartley calls a complemented factor H/K of G an
H-complemented factor if every complement of H/K in G contains
Slenles i=an jecitereoit. (G . Wl -cemplemented  ehief Facteors of « G I are aneng
those chief factors of G which are of particular interest to us in
the last section. In fact we will need to consider a slightly more

general situation which necessitates the following definition.

(8. 1.1 ) BDefinition, . A complemented. facter H/K of G gis said te
be partially H-complemented in G if at least one of its complements

ImeNChaesmiteins. dn W-injecton of L G

Clearly, an H-complemented factor of G 1is partially
H-complemented in G , though the converse is not true as the following

example shows.

(3.1.2) Example. Let

5 2 =l =1
G =Xk, ¥, Z XQ:yZZZl=ZyZ:y R e

a dihedral ‘greuplef order 20°, and let tH. =Ny thieMeilldssh ol
Finkte nilpetentipreups. © In" & .5 (x; y) iswthe H=linjeeitommet . 6
and it complements the chief factor (y, z)/{y}> of G . But Sz
is also a complement for the latter in G , and clearly

Gy, mzluz G ag) o WThus, «dy, 20/ is a partially H-complemented

factor of G which is met . H-complemented in. G

It is also not true that an k H-avoided, complemented factor of G

is necessarily partially H-complemented in G as the following
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example ishewsy itlioughita partially H-complemented factor of G is

obviously H-avoided and complemented.

(3.1.3) Example. Let G be the semidirect product of a cyclic
greup . (z) of order 5 by the direct preduct H. of a cyclic group
(X) of order 2 amd a cyclic group ¢y} of order U4 , with the

detieon of ‘FHen {2z} given by: x zx = z—l and y_lzy = 22 o e

= N ohhtiewslass fef gl Finite milpeotent groups. In G, xy2 acts
Epavially en' 'z ; and seo . ola) % <xy2> is a nilpotent subgroup of G
Tniteer i e iomne - infecter of & .  Comsider the ehief fattenm
(7w (2} eof B . It is eertainly aveided by (z) X (Xy2> and
gemplemented dm 6 by {z, By’ and {(z, y! , which abe all its
eemplenents 1N G . BUL Beither, Az, Xy) mner (z, y! contdins

(xy2> S Thag s S ) z) | Tsian - H-evieided . cemplemented chief raeter

ekt 6" which welnetgpartially ‘H-cemplemented in G .

The following theorem gives a necessary and sufficient condition
Forafceomplemerit "oFf (an’ l-aveided, cemplemented chief facter of G o

gentain an  H-injecter of G .

(3.1.4) Theorem. Let H/K be a complemented p-chief factor of

G and M a complement for H/K in G . Then M contains an

H-ingjector of G <if and only if it contains Vg

Proof. Let B = CoreG(M) and let A/B be the unique minimal

normal subgroup of G/B . As is well known (see for instance Theorem
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Heoms SneimGliat M teentains ane Heinjector of 6.. Then

eleabdly bEthaNliKecEndsA/B fare - ll-aveided in. G , and, therefore, by

Corollary 2.3.8, they are avoided by Vi o s
G

[ﬁ, V‘] =Ee VG =K n VG = Ky andse VG =0 (H/K)re Avy Bt then
P P P P G

V=RV AS = RV AR BE = RERSEME S A s Y nequiined .

Conversely, if M = Vg , then clearly A/B 1is avoided by V; 5

Ellid, tnereters, 1o Hiaveided “in "6 . Sinece it is alsel self-centralbizing
in p@/BLalliit fellews, by Lemma 4 of Hartley [20], that M contains an

- injecter of & , as pequived. i

As immediate consequences of Theorem 3.1.4, we have:

(3.1.5) Corollary. A complemented p-chief factor of G <is

partially H-complemented in G <if and only if at least one of its

: ; G
complements in G contains Vp . i

(3.1.6) Corollary. If H/K <is a complemented p-chief factor of

@& such that K 2 VS , then H/K <is H-complemented in G . //

Another simple consequence of Theorem 3.1.4 is the following

corollary.

(3.1.7) Corollary. A complemented p-chief factor H/K of G is
; o 5 : G G
partially E:complemented i@l difizand enly if HVP/KVp s

non-trivial and complemented in G .
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REco eSS liE et sl | oHl/ K, a8 partislly . H-cemplemented in G
and let M be a complement for H/K in- G which contains an

H=injectop of © . Ther, by Theorem 3.1.k, M = VS 5 Enel sel U= KVE

G :
Bjuig 1 i HVp Silmes N i S e lience 1 comp lements HVE/KVS

; € S - R I :
Conversely, if HVP/KVp 1S nen-=trivial and complemented in: G ,
then, by Corollary 3.1.6, it is - H-complemented -in G . Thus, since a
0T I :
complement for HVP/KVp 15 -alse a complement foer H/K in G , H/K
is partially H-complemented in G , as required. Al

The next result gives a necessary and sufficient condition for G

56 have & partially H-complememted chief factor.

(3.1.8) Theorem. G has a partially H-complemented p-chief

factor if and only if some p-chief factor of G is H-aveided im G .

Puset. " fssume Fipst that. € heas ap H-aveided. p-chiel Facter

and consider G ,VG H TR R(E ,VG = G , then G/VG sisEa Pl —orelupliand
Bl Bagil p

so VS centains asyllew  p-subgroup oft G . But then' by Theeorem
2o S0l g Vp is a Sylow p-subgroup of G , whence every p-chief factor
of G is H-covered in G , contrary to our assumption. Thus,

@ . ¥ <G . HNew, 1f M is a maximal subgreup ef € which contains

VGG s sili= ST eeRem #8Ll. L, Ehe unique minimal nermal - subgroup of

G/CoreG(M) is partially H-complemented in G

The converse of this theorem is, on the other hand, obvious, since
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d partialipSiiEcciiplemented cliief factor of ‘6 1s necessarily

H-avoided. //

We end this section with a result which describes a relation
between the partially H-complemented chief factors of G in any two

chief series of G

(3.1.9) Theorem. Given any two chief series of G , there is a
one-one correspondence between partially H-complemented chief factors
of G 1in one and those in the other, corresponding chief factors being

G -isomorphic.

Proof. Let ni1 and nz be any two chief series of G . Consider

the chief series uY; and WY, of G which are obtained by multiplying
; G 2 G
cach member of i « and M2 s respectively, by Vp and refining Vp

By Corollary 3.1.7, there is one-one correspondence between partially

T-cempiemetted Np=chiict Fadtorsl ot G ‘An n. and the complemented
: - G ;
p-clitie® ‘Factews of @ (G in ui above Vp > terveaech =T D N

corresponding chief factors being G-isomorphic. But, by Lemma 2.6 of

Carter, Fischer and Hawkes [5], the complemented p-chief factors of G
2 G . ;
in U and (- -abeve. V are in one-one correspondence, corresponding

chief factors being G-isomorphic. Hence, the result clearly holds
for partially H-complemented p-chief facters of 6 in . My end Nz
Since p was an arbitrary prime, the result holds for all partially

H-complemented chief factors. T
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3.2 Relatien between ﬁ;chief factors and Qﬁ—chief factors

In order to formulate the main result of this section we require

the follewing definition.

(8,2.1) Definitien. (i) A p-chief factor H/K of @6 is said
e ok g . : G Gy
tavbe s Helradetpe yiny @ JiF 0t iz H-covered amd H n VP/K n Vp 1

IBaslicEamal s @

(ii) A chief facter of G is called an i}chief Tactong 1t 1t is
H-avoided, complemented but not partially H-complemented in G , and a
OH-chief factor if it is H-covered, Frattini but not H=Beaftind iin

G
Our main result of this section is:

(3.2.2) Theorem. Given any chief series of G , there is a
one-one correspondence between the ﬁ;chief factors and the QH-chief

factors in the series, corresponding chief factors being G-isomorphic.

Proof. [Let

hemechiicifNseniicsNeNEN T dNllc = /W he e set of &ll chicf ‘faetors of

G in n which are G-isomorphic to Gi/Gi—l for seme 1

1 =1i=m. Let a be the number of H-covered, complemented chief
Fagers of NERRE L ithe munber of QH-chief factors in A , ¥

the number of =§—chief factors in A , and § the number of partially
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H-complemented chief factors of G in A . Clearly, the number of
complemented chief factors of G in n which are G-isomorphic to

Gi/Gi—l SsNe s 0 in view of Theorem 2.3.4 (417) and Corollary

Consider the chief series

IA
A
()
=
=
I
=
I

e A= G Vg = @ n

, and

of G threugh VE , where p 1is the prime dividing \Gi/Gi_ll

let H/K € A . If H/K is either an H-covered, complemented chief

: G Ciuss.
fgetor ef. & epr.a- OH-chief facter, then H.N Vp/K N Vp s
non-trivial and complemented in G since in the first case a complement

ef H/K is also a complement eof H n VE/K N VE and in the second case
G Gho : el
Hn VP/K n Vp is. complemented in. G , by definitien. On the other

: G Cra s,
hand, if H/K is partially H-complemented in G , then HVP/KVp TS,

by Corollary 3.1.7, non-trivial and complemented in G

G

p G G &
Thue, simeess H/K' 15  G-deemerphic to H N VP/K N Vp aLsE Vp

. GG : ’
covers., H/K and. H/K. is G-isemorphic te va/Kvp otherwise It

follows, in view of Theorem 2.3.4 (4727) and Coreollary 2.3.8, that the
number of complemented chief factors of G in n' which are

G-1isomerphic fe Gi/Gi—l T 0E B+ 0 . Censequently, by Satz H.l eof

@aschutz [10], a+ B + 6 =0a + Y + & , whence B =Y
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Since Gi/Gi— was an arbitrary chief factor in n , the theorem

AL

is finally proved. il

(3.2.8) Corollary. Given any chief series ef G , there is-a
one-one correspondence between the E-eccentric g;chief‘factors and
the I-eccentric OH-chief factors in the series, corresponding chief

factors being G-isomorphic. L
3.3 [FIH®-subgroups

In this section, we establish the permutability in G of V and
W , and hence that of V and W* , and describe the covering/avoidance

Drepexities of VW , VW% . VnW and V.n W, respectively.

First of all, we show:

(3.3.1) Theorem. W n V covers the H-Frattini chief factors and

the H-covered, F-central chief factors of G , and avoids the rest.
In order to prove Theorem 3.3.1, we need the following lemma.

(3.3.2) Lemma. WnVn Zp 18 a Sylow p-subgroup of both W nV

G
ana N W
p

Proef. ¥8inee 2 peduces inte W accerding te Theerem 2.2.12 and
inte 'V acesording te eurMassumptioen, it follews, by Lemma 2.1.7, that

Y~ reduces inte V n W . Consequently; Wn V n Zp is a Sylow

p-subgroup of V n W , as required. Moreover, since I also reduces
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SLinHEo) Vi , we have, by the same lemma, that Z vreduces into W n VE 3
G . G
whence W N Vp n Zp is a Sylow p-subgroup of W n Vp . But, by eur
assumption and by Theorem 2.3.7, VE n Zp = V@ % v Bhuse Finally,
p

WnVn Zp = Wn VE N Zp is a Sylow p-subgroup of VS n e Eavel ageE

lemma is proved. iy

We can now proceed with the proof of Theorem 3.3.1.

Breof of Theepem 3.38.1. Let H/K be a p-chief facter of &  for

Sefic P Suppose Firc b et /K 1s either HH-covered, E-contral er
H-Beareini ih B . Then, einee, ‘H/K- is l-cevered - in either case,
G e et
H oA VP/K N Vp Gistol by Ceonelilanpys 28 8 nen—traiviia il Thus
G Gy : . ; L
H n VP/K N Vp N covenede by siincelin st he SipSitEca s i s

F-central in G , being G-isomorphic to H/K , and, in the second case,

il s ERa s in N GEER D v deifini Elonte ConseEquenitly:,

& alfasesic ) G 1 :
H=KHnV :KKOVPJHHVPHWJ=KHOVPHWJ,andso H/K 1is
p

covered by VG @ W . By Lemma 8.3.2, 1t.is then eavered by W o Vi as
P
required.

Suppose next that H/K is an F-eccentric @H-chief factor of

@ . Then, sinee H/K is H-covered in.particular, once again
Hn VG/K n VG is, by Cerellary 2.3.8, nen-tpivial. But this time
P p

HEG VG/K N VG ¥ Svoided by W =since, in the fiprst place, it is, by
P p
definition, complemented in G and, moreover, it is F-eccentric in

G ;
G , being GC-lsemewphic te H/K'. Thus W N Vp avoids H/K and
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hence, by Lemma 8.3.2, W V. aveids H/K , as required.

Since p was an arbitrary prime dividing |GI s andisinge WiV
avoids the H-avoided chief factors of G and, in view of Theorem
2.2.13 (i), also the F-eccentric, complemented chief factors of G ,

the theorem is finally proved. /[

L papticular, when Fis the trivial saturated formation il
W = W® Dby Theorem 2.2.14 (7Z), and all chief factors of G are

E-eccentric. Thus, putting E = {1} in Theorem 3.3.1, we have

(3.8.8) Corollary. W* nV covers the H-Frattini chief factors

of G and avoids the rest.

With the help of Theorems 3.2.2 and 3.3.1 we can now calculate

|VW| as follows:

Ler @ besthie preduct of - the wrders ef the F-eceentric, Frattin.
chief factors of G 1in a chief series n of G , and B the product
P e orders eiithe  Frcehbpal chief facters of G ldn 1) .  ‘Then, by
Theorem 2.2.13 (%) and the order argument, |W| = af . Similarly, if
iy 18 ithe preduct of the opders of fhe F-eccentrie, H-Frattini chies
facters of G iIin n and ¢ the preduct of the orders of the
H-tevercdy F centrdl chief factors of . G in 1n , then, by Theorem
3.3.1 and the order argument, |V N Wl = 0y » Eunthermewe, 1IF¢ NEis
the product of the orders of the [F-eccentric, H-avoided, Frattini
chieflfactole lolil & i1n emnuyrandsy, Vwsthepreduet of thecordersyef:the
Breocentpic L I EehicE Fahtore of 6. .in 7 , then O/y = My . Thuas,
IVW[ = ]V|.|W|/|V1ﬁ W] = v|.BAU/é . But B/8 is the product of the

priere BNl e enEne | L aveided chief facteps of G im n , and,
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EyGenGllamy @2 5. Ul .is that of the F-eccentric, g;chief factens ol

G . Hence, clearly, we have shown

(3.8.4) Lemma. |VW| <s the product of the orders of those chief
factors in a chief series of G which are not F-eccentric, partially

H-complemented in G . /

(3.3.5) Definition. The FH®-subgroup (HO-subgroup) of G
corresponding ke Xofisidefined to-be thesinterseetien of all these

F-abnormal maximal (maximal) subgroups of G each of which contains an

B-injecter of € and inte each of which I reduces.
We now show

(3.3.6) Theorem. If Z is the FEH®-subgroup of G corresponding
%0 L, then Z = WW'. In pariieular, V and W permyte in €. and
VW avoids the FE-eccentric, partially H-complemented chief factors of

G and covers the rest.

Proof. From the definitions of Z and W , we have that W = 7Z
Also, from the definition of Z and Lemma 2.3.5 we have that V =72 .
Thus, it will be sufficient to show that Z avoids the E-eeecentria,
partially H-complemented chief factors of G sinee then, in view of

Lemma 3.3.4, ’Z| = |vwl .. amd, themefepre, 7 = VW

Let, H/W ‘Beian FE -eccentric, partially H-complemented p-chief
G [
factor of G for some p . By Corollary 3.1.7, va/KVp s

non-trivial and complemented in G . Let M be a complement of
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HVE/KVE in G inte whieh J “reduees: By Theorem 2.2.6 (i), M 1is

e bt )
F-abnormal in G since HVS/KVp is: E-eccentpic in G , being

G-isemorphie te H/K . Alse, by Corellary 3.1.5 and Lemma 2.3.5,
L=l s R byt el d e BinittiionNe W ZE (e 70 = S M0 Bu s then " sinee’ M
complements H/K also, Z avoids H/K , as required. From the
arbiltrariness of pi and H/K , it folleows thus that- Z avoids the
E~eccemtric, pantially wi-cemplemented chief facters of G' and henge

Z =.VW . The vest.of thgfkemma-now follows, by Lemma 3.3.4. L/

In the special case when F = {1} , the trivial saturated
formation, the FH®-subgroups of G coincide with the H®-subgroups of
G and W* = W , by Theorem 2.2.14 (7). Moreover, all chief factors of

BN ‘ames Ereceentrie.  Thus, putiing E = {1} in Theorem 3.3.6, we have

(3.3.7) Corollary. W%V <s the H®-subgroup of G corresponding
to L . In pariioular, W* and V- periute inn G and VW®. apoids
the partially H-complemented chief factors of G and covers the

rest. //
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CHAPTER 4

SoNE PROPERTIES OF THE LATTICE L(D, W%, V)

LSO Eredue Flon

In this chapter, wé€ prove ouf main result of the first part of L ey

ouf thesis. This can be stated as follows. Let L(D, W*, V) be the

lattice of subgroups of G generated by D, W* and V

(4.0.1) Theorem. (Z) The lattice L(D, W¥, V) <s distributive.

(ii) Any two subgroups of G in L(D, W%, V) are permutable

T G

(ii1) Each subgroup of G in L(D, W%, V) has a covering/avoidance

property with respect to the chief factors of G .
(iv) I reduces into each subgroup of G in L(D, W¥*, V)

(w) If A ie- g subgreup of € im LE(D, W*, V) , then the

fami ly {Au | @ <s an automorphism of G} of subgroups constitutes a

characteristic conjugacy class of subgroups of G .

At the end of Section 4.2 we give an example of G in which

L(D, W%, V) is a free distributive lattice on the three generators.

Throughout this chapter, Vp = Zp e Wty Dp = Zp n D and

B We "Eepr edch” D . Sinee - L peducestinte; V , -V is a

W
P P P

Sylow p-subgroup of V . Also, by Lemma 2.2.5 and by Theerem 2.2.12
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with the trivial saturated formation {1} in the role of X in the

theorem, Dp and WS are Sylow p-subgroups of D and W%

respectively., fer each p

4.1 The sublattice generated by D and V

In this section, we establish Theorem 4.0.1 for the sublattice of
L(D, W%, V) generated by D and V , except for part (v) which will
be dealt with in a single general step in the next section. Note that
every 2-generator lattice is distributive, so we need not do anything
about () at this stage.

The first four lemmas concern the subgroup (Vp, Dp) of "G fer

Delelal « B

(il 1) Lemmes . o B ) = WD
o~ P P PP

Proof. By Theorem 2.3.7, Vp is a Sylow p-subgroup of a normal
subgroup of G . - Thus; by -1l.1 of Rese [32], Vp is -prenermal in. € .,
and hence, by 1.2 of Rose (3821, alse in Zp S Sinee Vp is, moreover,
b

subnormal in Zp ~i it Eeliewsi by 1.5 of Rese. [32]; that Vp =)

i D =B s WD) as required. o
Hence, finally, e pD ek

(4.1.2) Lemma.: Let Vp be a Sylow p-subgroup of a normal

subgroup N ef € . Then Vpr is a Sylow p-subgroup of ND .

i £ Blnee N D E & Va D dee | p-subgpoup of: ND . Let
e oHi e
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P be a Sylow p-subgroup of ND which contains VPDP 5 Cllesmlly

NDP/N NP/N . Thus, by the modular law, P = DP(N @2 ) ... But
NPz Vp and Vp is .2 Sylew :  p-subgroup of . N . Hence N Nn P = Vp

and so Vpr = P, as required. //

(4.1.3) Lemma. Vpr covers all those p-chief factors of G

which are not simultaneously E-eccentric and H-avoided and avoids

the rest. Consequently, VP N DP covers the FE-central, H-covered

p-chief factors of G and avoids the rest.

Eroe i Clicarity Vpr covers the H-covered p-chief factors of
G since; by Definitien 2.3.6, VP does so. Also, by Theorem 2.2.6 (vi),
Dp , and hence Vpr covers -the F-central: p-chief faectors of G
Let H/K be an- H-avoided, F-eccentric p-chief factor of G . By
G : GGl o
Conmelilaryy 2,858 Vp aveids - H/K:. Thus va/Kvp Ishiat nen= Ervatal

p-chief factor ef G; and hence F-eccentric in G , being

G-isomorphic to H/K which is F-eccentric in G . By Theorem 2.2.6 (v)
; . G G G G .
and fve), 1t fellows noew that VPDP N VpH = VPDP N VPK . Egquivalently,

VG[H N VED } = VE{K N VEDp] , using the modular law. Thus, since,
p

moreover,

and

Egmeyab = Kon VGD 3
P P
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we have that H n VGD = Kn VGD . Therefore, VGD , and hence
PP PP PP

VPDp » avoids H/K . Since H/K was an arbitrary H-avoided,
F-eccentric p-chief facter of G ,.we have shown that Vpr has the

required covering/avoidance property.

A simple order argument now shows that Vp n Dp is the product

g thie erderstey “the  [-eentral, I-covered p-chief facters ef G inm
any chief series of G . Since, in view of Theorems 2.2.6 (vi/) and

Z2.9.0 (1) amd Dekinition 2.3.6 Vp N Dp avoids all those chief

feetors of G whiah are net simultanecusly F-central and H-covered,

it felleows finally that Vp n Dp » tee, has the required

covering/avoidance property and we are done. T

(4.1.4) Lemma. Vpr 18 a Sylow p-subgroup of (V, D) = A,

: A G G
Proof. We proceed by induction on |G| . Let J/Vp = Op,[G/VpJ
G G :
andi LAV =@ [G/V } 5 By Wacoram 20867, W is a Sylow p-subgroup
P PP b P
el VG anathencer thateh U EeohMASSUme " Fimst ol gl that eviery
P

p-chief factor of G/VS g Freenitnal in- & . Then .clearly

E/i € Flp) = Eigimiere {E(p)} 1is the integrated and full family of
formations which defines F locally. ‘In Perticulap, G/ € F . 50
that @ = JD™ by Theerem 2.2.6 (vz). But new it follows, by Lemma

il Tl 2 elnele VPDP is a Sylow p-subgroup of G and hence certainly

that of A , as required.



b7

Thus, assume next that not every p-chief factor of G/VS is

F-central in G/VG and let T/VE be the infersectien of.all maximal

%

subgroups of G/VS of -index a power of p . Clearly, T/VE istla

characteristic subgroup of G/VE » and, by Theorem 2.5 of Carter and

Hawkes [4], some minimal normal p-subgroup S/T of G/T is an

B ecceniric chiet Faoter ef G . $Since T/J 4is the Frattini subgreup
of G/J (cf. last sentence on page 179 in Carter and Hawkes [4]),

S/T 1is also complemented in G . Let M be a complement of S/T in
G into which I reduces and let D* be the F-normalizer of M
correspending to ‘L n M . By Theorem 2.2.6 (i), M is an F-abnermal
maximal subgroup of G , and so; by Theorem 2.2.6 (ZZZ), D =< D%
Mereover, singe »pde. supplements the Fitting subpreup I/J of: G/J ,
M/J 15, by definitien, an E-critiecal maximal subgroup of - G/J .

Hence, by Theorems 2.2.6 (Zv) and (v), DJ = D&J

Now, let D® =% n D% = (Z n M) @By B odg, by Lemma 2.2:54
P p p P

ofe
w

a Sylow p-subgroup of D#* . Also, Dp = Zp Al E Zp n D¥® = Dp e B

itheNeitherhand by Cerellldrys 8L 106N and Lemma 2.8.5, V = M{"sSe that
Wiey by lheerem 2.3.4 (72p), an - H-injecter of M . Hence, by the
induction hypothesis, ngp is a Sylew p-subgroup of -(D¥*, V) -. - But
DRV = Dpr since, by Lemma 4.1.2, Dpr is a-Sylow- p-subgroup of

= D= DEV. = B V.. Thus; finall BV 18 e
DJ D#*J , and, moreover, . - : Yis DD

Sylewl rpesubgreupkess (D=, W) , and 'hence ecertainly that:ef A , as

required. i

Since p was an arbitrary prime dividing ‘Gl in the preceding

four lemmas, it follows from Lemma 4.l.4 that
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{neiinlae ol =ilvl.|p
| T emy TTlPPI ||||/'|—T|VP0DPI

p||G] p||G]

But \Vp N Dpl =l D)p| since, by Lemma 4.1.3, le N Dp is the

product o of the orders of the i -ecentural.  lH-cevered p-chief
factors in any givem chief series of G, while on account of the

avoidance properties of V and D , |(V n D)p| = @ . Henee,

G SN 8 0 A R 6 3 D)p[ — R

p||G|

and we have shown that

(4.1.5) Theorem. DV = VD .

It follows now from Lemmas 4.1.3 and 4.1.4 that

(4.1.6) Theorem. DV avoids the F-eccentric, H-avoided chief
factors of G and covers the rest, while V n D covers the
F-central, H-covered chief factors of G and avoids the rest. /

Finally, we show

(sl hiiheerem. 2 rediuces tmto. DN and inte D n ¥V .

Proof. By Lemma 4.l.4, Zp m DV is sa-Sylow p-subgroup of - DV

far each p@ "Let 1 be®any set of primes. Clearly

@Dy | P& = Zﬂ A DV gl S Zn AR DVAESSE G HaN S —subgreup of
P

DV . It remains to note that I reduces into D n V because of Lemma 2.1.7.
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4.2/ DisEgibdcivtTee . LD, Wig V)

We begin this section by describing the covering/avoidance

preperty .af +=Vomilsin D .

(4.2.1) Theerem. V n W* n D covers the [F-central, H-Frattini

chief factors of G and avaids the rest.
We need the following lemma in order to prove this result.

(i2 2)ilemma. 2 Yeduces itnte both N a WE @ D. and

V_n W& n D, Moreover, Zp N (VnWtnD) is a Sylow p-subgroup of

Y- A H* n'D g8 well as that of Vn Wen D, for each p .

Lo (D) wol (@

Proof. By Theorem 2.2.12 with {1} , the trivial saturated
formation, in the rele of X 1in the theorem, I reduces into Wk

and, by Lemma 2.2.5, Z prveduces into D . Also, by our assumption, I

: : G . G !
reduces into V , and, since Vp @, I reduces inte Vp Are NS 5 At s
follows, by a repeated application of Lemma 2.1.7, that I reduces into both

is a

G ;
VnNnWeEnD VAR SN Consequenit i Vo@D WS
an p q Yo D D D

Sylow p-subgroup of V n W# n D and [Zp N VEJ N wg N Dé is a Sylow
p-subgroup of Vg G Dn W, for each p . But, by Theorem 2.3.7,

Y. nV =V : hence the result. 7
P P P

We can now prove Theorem 4.2.1 as follows.
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Proof of Theorem 4.2.1. In view of Theorems 2.2.6 (@) 282,13 ()
and Jusni(zit) W0 W= n D clearly avoids the complemented, the
H-avoided and the [F-eccentric chief factors of G . Let H/K be a
Tegttini. ¢ H-movened,  F-centnal p—chief. facter of s G fomiseme. Pp

diwiding |@|.  and assume first that- H/K s -H-Fpattini in G .
Then, by our assumption and Defimitien 3.2.1 (i), Hn VE/K N VE is
a non-trivial Frattini p-chief faetor of G . Moreover,

G € : ; : :
H n VP/K N Vp is E-central in G , being G-isomorphic to H/K -,
which is F-central in G . Thus, by Theorem 2.2.1h (42} v WE DD

covers H n VE/K N Vg . But:new

HNE VG n We N DJK = [H n VG n W& N DJ[K N VG}K = (H n VG}K = H
P p P P

since H/K is H-covered in G and hence, by Corollary 2.0%8. 1=
G G 5 d
covered by Vp o Henee Vp A W% n-D ecovers: H/K . By Lemma 4.2.2, 1t

follows then that V' n W® n D , too, covers H/K .

Assume next that H/K is-a ©@H-chief factor ot G e Rt by

Dafinition 8.2:1 (ii), Hn VE/K N Vi is complemented in G . Thus,
(ER : o
by Theorem 2.2.1% (2i)y H n VE/K N Vp is avoided by - W& @ Do "In

particular, VS o W D avends - R/ o BEnee omeE again by Lemma

. 3.2, i/ gbis javended by (V 0 W& G- DYs The jpreoof is cemplete. e/

Having proved Theorem 4.2.1, we proceed to show
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(W.298) Lemma W q'WeD & (¥ nWe)(V'n'D) . and

VB VW = V(D ' W)

Proof. By Theorem 2.2.14 (Z), W#D = W . Thus, by Theorems

8.8, Hl.6 and H.2,1, and: Cerellary 3,3.3,
VAws| = |[Vawt|VaD|/|[VaWsaD| = [(Vn W D) .

Mepeover, (V0 W&, ¥V n D) = ¥ o WD . Thus, the first of the twe
distributive equalities of the theorem clearly holds. The second

distributive equality of the theorem is now a consequence of Lemma

208580 A

The following theorem describes the covering/avoidance property ;{?

VD n VW#

(4.2.4) Theorem. VD n VW* covers (i) the H-covered, (ii) the
F-central, Frattini and (iii) the F-central ﬁ;chief factors of G ,

and avoids the rest.

Proof. By Theorems 4.1.5 and 2.2.14 (7), we have
(VD) (VW#*) = V(DW#*) = VW .

Thus, by Theerem 3.8.6, (VD)(VW*) avoids the F-eccentric, partially
H-complemented chief factors of G . In particular, in view of Theorem
1,6 and Cepelizry §.8.7. it avelds 4ll chief facteors of G which

are avoided simultaneously by VD and VW#* . Hence, by Lemma 2.5.4,
VD n VW* covers all those chief factors of G which are covered
simultaneously by VD and VW#* , and avoids the rest. The former are,

according to Theorem 4.1.8 and Corollary 3.3.7, precisely the chief
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factors (%), (11) and (2%%) mentioned in the theorem. The proof is

complete. o/

The next theorem describes the covering/avoidance property of

D N W=V .

(4.2.5) Theorem. D n WV covers (i) the E-central, H-covered,
(ii) the FE-central, Frattini and (iii) the E-central, ﬁ;chief

factors of G , and avoids the rest.

Proof. By Theorem 2.2.14 (%), D(W*V) = WV . Thus, by Theorem
3.3.6, D(W*V) avoids the [F-eccentric, partially H-complemented
chief factors of G . These are, in view of Theorem 2.2.6 (vi) and
Corollary 3.3.7, precisely those chief factors of G which are avoided
simultaneously by D and W%V . Hence, by Lemma 2.5.4, it follows
now that D n W%V covers all those chief factors of G which are
covered simultaneously by D and W#V , and avoids the rest. It is
easy to see that the former are, according to Theorem 2.2.6 (vi) and
Corollary 3.3.7, precisely the chief factors (i), (e ‘and (Zit)

mentioned in the theorem. This remark completes the proof. i

As an easy consequence, we have

(4.2.6) Lemma, D n VW® = (D n V)(D n W*) and

DV n DW® = D(V n W*)

Proof. Let o be the product of the orders of the F-central
ﬁfchief factors of G in a chief series n of G and let R be the
product of the orders of the F-central, H-covered, Frattini chief

factors of G in n . Then, by Theorems 2.2.14 (i%), 4.1.6 and 4.2.5,
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D n VW¥| = (a/B).|D n V|.|D n W¥]|

But, by Iheement sofl2 0« @ is the preduct of the orders eof the
I centoal WENEchich hagters of, 6 in 7] . Thus, by Theerem 4.2.1,

@i = 1/ Wn WE e o), and se,  |D @ ViEE

e ey M Sien WA
Since, moreover, (D NV, Dn W*) =D n VW* , the first distributive
equality of the theorem is proved. The second distributive equality

of the theorem is now a consequence of Lemma 2.5.3. [/

The following theorem describes the covering/avoidance property

oF 2 DIV m W)

(4.2.7) Theorem. D(V n W*) covers (i) the FE-central and (ii) the

H-Frattini chief factors of G and avoids the rest.

Proof. In view of Theorems 2.2.6 (vi) and 4.2.1, and Corollary
8.8.85. Do (Vo) .esoversiall those chief facters-of G which:are
covered simultaneously by D and V n W®* . Thus, by Lemma 2.5.4, and
Theorems 2.2.6 (vZ) and 4.2.1, D(V n W%) has the required

covering/avoidance property. 0

We now show

(4.2.8) Lemma. W¥* n DV = (W% n D)(W* n V) and

WHD N WHV = W*(D n V)

Proof. Let o be the product of the orders of the [F-central,
H-avoided, Frattini chief factors of G in a chief series n of G ,
8. sthe preduct efiithesorders:eof:the F-eccentric: H-chief faectors of G

ife Mest.Y Tthe ppeductiefsthe orders of the H-cevered, Frattini chief
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faetor: OF I il St o nthespreduct "ofithe orders of the - E-central,
B covered MErcsiinascliilef Facters ef 6 'im n and Y :the product of
tile erdepdef fticy Fecontpal woll-chief facters ef .6 im n . =By

iheepeny 202 01N W=Dy =W ¥ Thus , by Theeorem 3.3.6,
|w* n DV| = ay/B .

ButembisCerellanyi8.2.8,0 B  is the preduet of the erders of the
B ecoentri ol O -chief Facters ef G in 1N , se that; by Cereollary

2 - 1
Y/B = Y. Wk n V|

Also, by Theorem 2.2.14 (¢2), o = |W* n D|/8 and, by Theorem 4.2.1,

Wigee Lf|Wea Din V| . Hence, finally,
[w# a DV| = |(WE A DY(WE A V)|,

and so, the first distributive equality of the theorem holds. The
second distributive equality of the theorem is now a consequence of

emman2e 5.8 Vi

The following two theorems describe the covering/avoidance

properties of W% n DV and W#*D n W#V , respectively.

(4.2.9) Theorem. W% n DV covers (i) the E-central, Frattini and

(i) the H-Frattini chief factors of G , and avoids the rest.

Proof. By Theorem 2.2.14 (¢Z), W* n D covers the E-central,
Frattini chief factors of G and avoids the rest, while, by Corollary
8,848y WE NV geovers the) H-Frattini chief factors of G and avoids

the rest. Thus, by Theorem 4.2.1, W% n DNV covers all those chief
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factors of G which are covered simultaneously by W#* n D and
W% nV , It follows now, by Lemmas 2.5.4 and 4.2.8, that
(W% n D)(W" n V) = W& n DV has the required covering/avoidance

property and the proof is complete. 7

(L0 10) Theopem. WEDwe WSV  eovers (i) the Frattiniy (11) the
F-central, H-covered and (iit) the [F-central é}chief factonseer BE

and avoids the rest.

Broet. By Cewvesllary 3.8.7, WHV _.avoids the partially
H-complemented chief factors of G and covers the rest. On the other
hand, by Theorem 2.2.13 (Z), W#*D avoids the [F-eccentric, complemented
chief factors of G and covers the rest. But, by Theorem 2.2.14 (),
(W*D)(W*V) = W*DV = WV , so that, by Theorem 3.3.6, (W#D)(W#*V)
avoids the F-eccentric, partially H-complemented chief factors of G
which are precisely those chief factors of G which are avoided
simultaneously by W%D and W#V . Thus, by Lemma 2.5.4, it follows
now that W#*D n W#V covers all those chief factors of G which are
covered simultaneously by W*D and W%V , and avoids the rest. Since
the former are precisely the chief factors (%), (%) and (iii) of the

lemma, the theorem is clearly proved. /.

Next we show

(4.2.11) Theerem. DV n DW#* n VWw* = (D n VYD n WE)(V N W)
covers (i) the I-central, H-covered, (ii) the E-central, Frattint,
(1i1) the E-central ﬁ;chief factors and (iv) the H-Frattini chief

factors of G and avoids the rest.



Proof. By Lemma 4.2.6 and the modular law,

DV n DW® n VW® = D(V n WH) n VW=

56

(D n VW%)(V N WH)

(D n V)(D n W&)(V n W#)

Now, in view of Corollary 3.3.3 and Theorems 4.2.5 and 4.2.1,

(VN WE) n (DN VWE) = V.n WE N D

which are covered simultaneously by V n W#

Lemma 2.5.4, DV n DW* n VW%

property. The proof is complete.

covers all those chief factors of G

and D n VW#® .

Thus, by

has the required covering/avoidance

v/

In order to complete the proof of Theorem 4.0.1 we need to refer

to the following elementary and probably well-known result which was

brought to ouf attention by L.G. Kovacs and which w€ quote here

without proof.

Ginolup ) Theeren (L. Gt Kevdes),

by three elements x, y and z
(x vy
(y v 2)
(2w .2z)
(x ny)
Ky hatz)
(. 2z)

all

n

]

(U e, B .uVz) o8 (relia)

hold, then L is distributive.

Ifinta lattice

L generated

the seven relations

= (=
:(y
= s
= e
= (y
=

=z

It is an easy consequence of Theorem

)
m) sy
Y
Y =)
U 52))

uy)n

nyy n z)(x n z)

4.2.12

(y n z)
(z n %)
(ziory)
(y u 2)
(=00 %)
(eausgd

that

2] ,“d ; 1
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(4.2.13) Corollary. (%) BEvery element of L can be expressed as
the meet of suitable elements of the join-semilattice generated by

S0 VL el .

(i) Every element of L can be expressed as the join of

suitable elements of the meet-semilattice generated by x,y and z .

(ii2) L has at most eighteen elements.

In view of Lemmas 4.2.3, 4.2.6 and 4.2.8 and Theorem 4.2.11,
Theorem 4.0.1 (Z) now follows from Theorem 4.2.12. On the other hand,
gince, by Theorems 2.2.14 (<) and 4.1.5, Lemmas 4.2.3, 4.2.6 and 4.2.8
and Corollary 3.3.7, the elements of the meet-semilattice generated by
D, W* and V are pairwise permutable, Theorem 4.0.1 (Z%) follows from

Gereliery 4.2.138 (il

Similarly, part (Zv) of Theorem 4.0.1 follows from Corollary
o 18 (i) and Lemma 2.1.7, since, by Lemma 2:2.5, Theorems 2.2.12 and
4.1,7 énd our assumption cencerning Z and V , I reduces into
D, W®, DW*, DV and V , respectively, and also, by Definition 3.3.5,
Theerem . 3.3.6, Coprellary 3.3.7 and Lemma 2.1.7, I reduces inte

VW = VDW* and into VW#®

Next, we deduce part (ZiZ) of Theorem 4.0.1 from the preceding
information. In view of Corollary 4.2.13, the following list of the
subgroups in L(D, W¥, V) is complete (although some subgroups may
occur repeatedly). We set against each subgroup in L(D, W%, V) the
reference number of the result which establishes (and specifies) its

covering/avoidance property.
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D Theorem 2.2.6 (vi).

W Theorem 2.2.13 (Z) with X = {1} , the trivial
saturated formation in the theorem.

v Theorem 2.3.4 (771).

D n W# Theorem 2.2.14 (Z1).

DR Theorem 4.1.6.

W n Vv Corellary 3.3.3.

Do Wy Theorem 4.2.1.

DW Theorem 2.2.13 (7).

DV Theorem 4.1.6.

Vi Cerallamy 8.8, 7.

DW#*V Theorem 3.3.6.

D N W&V Theorem 4.2.5.

W% n DV Theorem 4.2.9.

V n DW# Theorem 3.3.1.

DW#® n DV Theorem 4.2.7.

VW® N DW# Theorem 4.2.10.

DV n VW# Theorem 4.2.L4.

DW* n DV n VW# Theorem 4.2.11.

Eipally, sinec dhe skabiilizer "B ‘ef | 2 in the greup A of
alitemerphisms of @ alse stabiliges cach of D, W+ and V , B
Stabilizes every element iin Ehe lattice [(D, W#, V) . MNereever, in
view of Theorem 2.1.4, B supplements in A the group of inner

Utonewphismse of 6 . Hemee the statement of part. (v) of Theorem 4.0.1

is proved. 1

We conclude this section with an example G in which L(D, W¥*, V)

has eighteen distinct elements and includes neither {1} nor G
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Let H be the semidirect product of a cyclic group <(a) of order
25 by & eyelie greup (b)) of order U4 , with the actien of (b) on

(a? given by G

Now, let K = H wr (e} , where (¢) is a cyclic group of order 5
and let G = (@) X K , the direct product of K and a cyclic group

{d) of erder L

il eEE e el iy eliat s fer T BY == H" " the Llattice (B W)
corresponding to G has eighteen distinct elements and so is a free

distributive lattice on the three generators.
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CHARHERES

THE FLITTING LENGTH OF A GROUP AND THE NUMBER OF

CONJUGACY CIHASSESH OF " ITS MAXIMAL A NILPOTENT SUBGROUPS

In this chapter we continue the investigation begun in [27] of a
relation between the Fitting length of a group and the number of
conjugacy classes of its maximal nilpotent subgroups. The main result
of [27],which is due to H. Lausch, shows that the Fitting length h(G)
of a group G of odd order is bounded above in terms of the number
V(G) of conjugacy classes of its maximal nilpotent subgroups. In
Section 5.2 we establish this result without the restriction on the
group order and with a much better bound than that obtained in [27].
The precise form of the bound we obtain (though not its order of
magnitude) relies on an unpublished result of M.F. Newman (see Theorem
5.2.6). Another unpublished result of his- (see Theorem 5.3.18) is
essential for our purposes in Section 5.3, where we obtain the best

possible bounds.on the Fitting length of a group G with V(G) small.

In Section 5.1 we prove two preparatory results the first one of
which provides a basis for induction argument throughout the rest of
the thesis, and in the last section we obtain a lower estimate for a

general upper bound.

Throughout this Chapter and the next,for a group G and a

saturated fermation E , vF(G) denotes the number of conjugacy

™

classes of F-maximal subgroups of G , and V(G) = vN(G)
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5.1 Two preliminary results

The following lemma is a straightforward generalization of Lemma

e o7 e dilen FohH . Lausch.

(5.1.1) Lemma. Let [E be a saturated formation, G any group
and N 2 G . Then every F-maximal subgroup of G/N 1is the image in

G/N of a suitable F-maximal subgroup of G . In particular,

YE(G/N) < YE(G) . Moreover, if YL(G/N) = %E(G) then the image in

G/N of every E-maximal subgroup of G <is an E-maximal subgroup

oF G¢N .

Proof. Let W/N be an F-maximal subgroup of G/N . Since F
is a saturated fermatién, W "has an E-projecter: V', say (see Section
2.2). Also, since W/N €¢ ', W =VN . Let V% be-an F-maximal
subgroup of G which contains V . Clearly W/N = NV/N = i/l € E .
Thus, since W/N is [F-maximal in G/N , it follows that NV¥%/N = W/N .

In particular, sinee V is F-maximal dp iy V= Vel el e Sl e

the lemma now follows easily. Tl

Next, we give a slight extension of Lemma 6 of "[27] which was due

te H. Lausech.

(5.1.2) Lemma. Let G be a monolithic group with its Fitting
subgroup as its monolith. If h(G) > 1, there is a normal subgroup S
of - Blealichthgt hle/s) = hic) - 1 and the Fitting subgroup R/S of
G/S 1is the monolith of G/S . Moreover, if V 18 a maximal nilpotent

subgroup of G such that VF 2 GN2 v then . N5/8'Z= R/8 s
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Braefn Jlici % B be 'theclass of Fall: greups of Fitting length
Zie uleslie | (@) = 2 ' BEi= G£ enGL e e e hile FE o torter 6 - Since E
is a saturated formation, H/K is clearly complemented in G . Let

be a cemplement .of H/K in G , R-= CG(H/K) amd 5 = Ren M. < By a

well known result (see for example Satz 3.1 of Gaschutz [10]),

R = CG(R/S) 2 hiug, cleaply R/S 1s the monelith of G6/S . By Lemma
2.2 of Carter, Fischer and Hawkes [5], it follows now that R/S is
alse the Fitting subgreup of G6/5'. Alsoe h(G/S) < h(G) - 1 would
medn et R(E/SHE="h(E) =2 and se. h(G/H:n 'S) = h(G) - 2 .. Simce

HnS =K , it would then follow that h(G/K) = h(G) - 2 , contrary to

H o= G5 s Hemes BE/8) = @) = Il

Next, let V be a maximal nilpotent subgroup of G such that

ViE= GN2 . Sinee- F is the moenolith and H # F , we have that
B = Sl = GN2 S andiise  VeEellle apliyScoveps  H/ Ko Thius’, as K =HSET
VS = (VK)S = HS = R , as required. il

5.2 The Main Result

In this section we will prove (as Theorem 5.2.8) the main result

of this chapter. We begin with the following elementary lemma.

(5.2.1) Lemma. Let G be a group whose Fitting subgroup F <s a
p-group and let Q be a q-subgroup of G, q# D . Then there is a

maximal nilpotent subgroup W of G such that CF(Q) R e

Morveover, ¢f WE 11}, then Wn F < F.

Proof. Let W be a maximal nilpotent subgroup of G which
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contains CF(Q) Xt B glearly: Wen F o= CF(Q) . Also, since CG(F) =

B T R e W B < P iF @ #£ {1}, and so we 'are

done. i
Next we proeve a lemma.
(5207 Tenms. . Eet B, be a group whose Fitting subgroup, E 1s

an elementary abelian p-group, let Q be a non-trivial q-subgroup of

G ., g %Py ondtet Q be a maximal element in the set

L

e e e A < calet)]

which 1s ordered by inclusion. Then CQ(CF(GSJ = Q and, moreover,

72(Q/Q) 1is eyclie.

Proof. We regard F as a vector space over GF(p) , the field with

p elements. Then, it follows from Theorem 2.6.1 and Lemma 20 B o2l

Gorenstein [14], that CF(G) is Q-invariant, whence H = CQ(CF(G)) <O ¢

However, H = Q and also CF(H) = CF(65 > CF(Q) . Thus @ - H sinece

Q is a maximal element in T , and so CQ(CF(G)) =0, ds rediireds

In order to show that 2(Q/Q) is cyclic, we proceed as follows.

SaineEs CF(G) is Q-invariant, we observe first that, by Theorem B2
in Gorenstein [14], CF(G) = CF(Q) XoLs ,owhere " L i3 O dinvaEicmts
Clearly: L # {l} ; sinee CF(GU > CF(Q) .. Next, let . L% be-a

non-trivial Q-invariant subgroup of L of minimal order and let

K CQ(L*) . @lmes LR dm  O=dmvemiemic g K SO G liehaSionashay

= ¢ L*CF(Q)) In spartteulary CF(K) > CP(Q) coibloever, K =@ .

&5
A

Q(
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Heneejiisamic e "oi@sti iatmaximel ielement vef Ty K== 5', and so Q/Gﬁ is
represénted faithfully and:irreducibly on L* . By Theorem 3.2.2 in
Gorenstein [14], it follows then that Z(Q/Q) ‘isscyelid, and thesproof

is complete. Tk

Part (7) of our next result occured as Lemma 3 in [27] and was due

EeR R Laus chls

(Bh2:8) lenmii, het G, F @il O be as in Lemma-5.2.2 and let - L

be the largest integer for which there exists a chain .of subgroups

B =
(5.2.4) L0l = iR < Yoo, QES i SV 0 FSE

where Ve ie a maximal willpotent subgroup of 6 fer L = ly 2, 4.44 £

and VK > CF(Q) X @ .

L) I 0 istabelian, dlQ) =& .

(ie) If 0/ 7(0) de clepentary abelian, | 4(Q) = Wl

Proof. We proceed by induction on ]QI b ek SRu be v maximail
element in the set T of Lemma 5.2.2. Then, by the same lemma,
7(Q/R) = Z/R is cyclic. Also, by hypothesis, a chain of subgroups of

the type (5.2.4) which joins CF(R) te. F has length.at mest:. £ — 1

since CF(R) > CF(Q) and, by Lemma 5.2.1, there is a maximal nilpotent

subpreup Jigicf 6 such that W n F = CF(R)

Suppose first of all that Q is abelian. Then clearly G o
and'=sey O/R  isuoyelie. Mereover, by the induectien hypothesis,

dip =l e and hence (7)) is proved.
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Suppese mextithat Q/Z(Q) is elementary abelian. If Q = T
then eneefagain @/R ' is cyclie, and, moreover, by induetien,
d(R) = 2(£-1) , whence d(Q) = 2£ - 1 = 2£ and we are done. Hence
Essume’ Z.+ @ . In particular, Q/R is non-abelian. Let A/R Dbe a
maximal abelian normal subgroup of Q/R . Since ' Q/Z(Q) , and therefore
G, il elementary abelian, it follows from Satz III. 13.7 in Huppert
[25] that there is a maximal abelian normal subgroup B/R of Q/R
el B A B = T and D(A/Z) = d(B/Z) ; consequently,

d(Q/R) = 2d(A/R) . It remains now to show that d(A/R) = £ and that

a chain of subgroups of the type (5.2.4) which joins CF(R) o F hEs

length at most £ - d(A/R) , for, then, by the inductive hypothesis,
B =20 — 5d(A /) = 20 - d(0/R) and henee d(Q) = d(R) + d(Q/R) = 2L .

We show this as follows.

Let A = AO Sy Fer d-= 1l 25 v 5 Mdefine Ai to be a maximal

element in the set

—~

o
IA
>

'_l

O
[V
s}

= LR (O S (O

R .. Let -G. be the semidirect product

For some integer n = 1 , An

efL X = CF(R) by. Y.=A/R.. .Sinee; by Lemma 5.2.2, CY(X) e

is clearly the Fitting subgroup of G . Thus, by the same lemma and

the fact that A/R .is abelian, it follows now that Ai—l/Ai is eyelic

For ol i Ty particuler, d(A/R) =a . On the other hand,

by Lemma 5.2.1, there exist maximal nilpotent subgroups Wo, Wl’ oy

o B suchitiaik



66

Henee, byMhiypotiiesie, d(A/R) =n =L . Alse, the chain of subgroups

of the. type (5.2.4) joining CF(R) te F- has- length certainly at most

L ~n =8 - d(A/R).. This completes the proef. Il

EBs) Remark. Nin emmiae5. 2. 8wme chave -have £=v(6) =.1 . since
each member of at least one conjugacy class of maximal nilpotent
subpuetp=s ief 6 veentains F-, and, trivially, if V' amd W, are
gen ugate maximal nilpeotent subgroups of 6., neither V n F <W n F

T @ N N @ A RV R

It has been well known for some time that the Fitting length of a
soluble linear group is bounded in terms of its degree. The best
possible bound has been obtained in recent unpublished work of M.F.

Newman :

(5.2.6) Theorem (M.F. Newman). Let G be a soluble linear group

ofdegrvez B =1 ... Then

il S e T
e B ey e )

<
WGEHE oM e 5.3% < n = uls";
o il T Gl T
. =1
iy pariienlor,) h(G) = 2 lTog { > J : //

3

We will deduce the main result of this section from the following

lemma.

(5.2.7) Lemma. Let G be a group whose Fitting subgroup F 18

an elementary abelian p-group. If H/K s a a-chief faetor of G,
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where: sg #upy,ithen

l8v(G)—19]

il /e G/} = 2 lgg ( :

Prook.""Let'“@ "De 'a Sylow q-subgroup of. H and N = NG(Q)

Then, by the Frattini argument, G = NH , and hence

~

G/CG(H/K) = N/CN(H/K) = N/CN(Q/Q M K) -+ Thuss clearly.it willsbe

sufficient to show that h(N/CN(Q/Q Bk = 2 dep Fgédg)_ng
3

Let C* Dbe a characteristic subgroup of Q given by Lemma 8.2 of
Feit and Thompson [6]. Then, by the same lemma, C¥* has, among

others, the following two properties of interest to us:
(i) c*®/z(C*) 1is elementary abelian;

(ii) every non-trivial q'-automorphism of Q induces a
non-trivial automorphism of C%* .
In particular, by (ii), CN(C*)/CN(Q) is a g-group. Also, since

C* 1is characteristic subgroup of Q 2 N , we have C¥* , and hence

CN(C*) cni's acnermalssubgreup ef: N... New; by Theerem' 8~l.3uin
Gorenstein [141], G/CG(H/K) , and hence N/CN(Q/Q ), hEs e

non-trivial normal q-subgroups. Thus, since the normal subgroup

CN(C*)CN(Q/Q N K)/CN(Q/Q m ) o N/CN(Q/Q n K) is isemerphic te
CN(C*)/CN(C*) N CN(Q/Q m ‘K) < which is a factor group of ;the g-group
CN(C*)/CN(Q) 5 1t must be trivial, and seo CN(C*) = CN(Q/Q GINLE) o

similar reasons, CN(C*/®(C*)} = CN(Q/Q ARG S ince S by 2 resulit o f
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Burnside (see Theorem 5.1.4 in Gorenstein [14], for example),

CN(C*/é(C*)}/CN(c*) is a q-group, and moreover, CN(C*/®(C*)) 2N

as &@(C*) 9 N , being a characteristic subgroup of C¥* 4 N .

Thusy, it suffiees te shoew-that -h N/CN(C*/®(C*)}J is below the
upper bound claimed. -However, N/CN(C*/®(C*)) is a soluble linear

group of degree at most the dimension of C#*/®(C*) , regarded as a
vector space over GF(q) , and the latter is, in view of (Z), Lemma
S 2.3l land IRemarlk i5 2.5 )1 ait mes 2(V(G)—l) . Thus, by the preceding

result of M.F. Newman, namely Theorem 5.2.6,

h N/CN(C*/Q(C*))J W2 Hsp

[le(G)—lg
3

5 J , and so the proof is complete. o
We now prove the main result of this chapter.

£(5.2.8) Theerem. For any group G ,

1L ,7:]0 VlE) = 1

= 2{1 + log [EEES%Q:EEJ} L e 1
3

Proof. Since each Sylow subgroup of G is contained in some
maximal nilpotent subgroup of G , it is immediate that h(G) = 1 when
Vile) =1 . Fer & pweef by centradictien let 6 be:a counterexample of
minimal order. Then V(G) > 1 , and in view of Lemma 5.1.1 and the

Eaict thal g} s naere o= 2{1 + log [2@2&%2:&2}} s 1is 1d saturdted

3
formation, G is'a monolithic group with its Fitting subgroup F as
it monolith. In particular, F 1is an elementary abelian p-group for

sieme ¥, HiSinee (@)% is thelintersectien of the ,centralizers of

Je vt
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the q-chief factors of G , Lemma 5.2.7 gives that

l8V(G)—19} il o

I VA A e (G)J = 2 leg {
5 2

q#p

As 0. (EG) is g-nilpotent for every. q other than p , it is an
q#p qQ'q
extension of a p-group by a nilpotent group. Thus h(G) =k and G

is not a counterexample after all. This contradiction completes the

PO 7

We conclude this section with the remark that the bound of Theorem
5.2.8 iz, at least for certain values of WV(G) , not the best possible
as will be clear from the following section. However, it is certainly

an improvement of the bound obtained in [27] for groups of odd order.

5.3 Some special cases

Here, in this section, we will obtain sharp bounds on the Fitting
length of a group G for V(G) = 2, 3 respectively. The bound in the
case when V(@) = 2 (see the following proposition) is due to

H. Lausch.

(5e2.0) Brepas wbieny JFow. a(8) = 2 . WG) = 3.

Proof. We proceed by induction on [G[ . Thus, in view of Lemma
5.1.1 with F = N in the lemma, Theorem 5.2.8 and the fact that N°

is a saturated formation, we can assume that G is monolithic with

its Fitting subgroup F as its monolith and V(G/F) = 2

Let |F| SLpOeY e 108uitTHen § ssince CG(F) S Fof a Sylow
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is clearly a maximal nilpotent subgroup of G

p-subgroup P

CHRNE
I EAEN = G ), 1t ifollows , by Lemma s5olely “thatsthe
On the

Moreover, since
are maximal nilpotent subgroups of G/F

conjugates of P/F
other hand, it is clear that GNZ/F is a p'-group.
Now, in view of Lemma 5.2.3 (Z), Remark 5.2.5 and our hypothesis,

is eyelie. Thevefere, if

every abelian p'-subgroup of G
2 |GN2/F| o Dol e eSS GNz/F has a unique element of order 2 ,
G/E . This contradicts the fact
G z/F iS

and this element must be central in
Thus, N

is a maximal nilpotent subgroup of G/F

it e /AE
a nilpotent group of odd order with all its abelian subgroups cyclic.

Hence, it follows that all Sylow subgroups of GNz/F are cyclic (see

for instance Theorem 5.4.10 (ii) of Gorenstein [14]), whence GNz/P
itself is cyclic. Finally, the facts that Gg2 = CG[GNZ/F) and that
the automorphism groups of cyclic groups are abelian (see for instance

Theorem 1.3.10 (i) of Gorenstein [14]) imply that G/GNZ is abelian,

L

h(G) = 83 , as required.

and so

The bound obtained in Proposition 5.3.1 is certainly the best
on four letters provides an example

possible. The symmetric group Su
of groups in which the number of conjugacy classes of maximal nilpotent

subgroups is two and whose Fitting length is three.
and show that

Next, we consider the case when vilE) = 8

e )= 8 RG] =8

(5.8.2) Prepesition.

Suppose the result is false and let G be a minimal

Proof.
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counter-example. Then, in view of Lemma 5.1.1 with F = N in the
Lemmay EBrepoesition 5.8.1 and:the fact that ﬁﬁ is a saturated formation,

1t rellows ek

(553, 3) & i memelliithile palidn s Bl Subrtoty B 5 SEl . EE

its menelith,  V(E/F) = .8 = WE) and h(E) .= 5

. O >0 . Then, as in the proof of Prepesitien
5.8.1, a Sylow p-subgroup P of G 1is a maximal nilpotent subgroup
of G . Let V and W be representatives of the remaining two
eonjugacy classes of maximal nilpotent subgroups of G , respectively,

and assume without loss of generality that VF = GN2 - Then, Sines

G o/E isa  p'-gnoup and CG(GNz/FJ = GN2 S e feliliows S thiait

(Bg8l) VE/E  d8 a pl=geoupc
Censequeni=iliys
(5v9.5]) R

Fer, assume ‘to the cemtvary that V.o F 2 {1} . Sinee, F | is an
abelian p-group (see (5.3.3)) amd W/ Rt E st e ip =sreup (see

(5.3.4)), Von E = Z(GNZ) , 50 that by our assumptiom, Z[GNZJ >Lchildha

But Z(GNZ) < G , being a characteristic subgroup of a normal subgroup,

name ly GN2 \lef € . "Therefore, since "F is the menelith of G (see

(5.3.3)), Z(GNz) > F . However, since CG(F) = B, this eccn ooy

happen if F = G . Thus, since h(G) = 5 (see (5.3.3)}, we must have

Vo B o=dlle.

Now, since G is monolithic with its Fitting subgroup as dlEs
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monolith and h(G) > 1 (see (5.3.3)}, G has, by Lemma 5.1.2, a

normal subgroup S such that h(G/S) = h(G) - 1 and the Fitting subgroup
BIGRSEE SE/E8si o tlieimonolLthi e fi "C/S . 9Clearly h(G/S) > 3y since
otherwise h(G) .= h(G/S) + X = 4 , contrary to G being a minimal

counter-example, Thus, it follews from (5.3.3) -that
(5:38.6) h(G/R) = 3 and h(G/S) = & .,

In particular,

(5-3.7) V(G/S) = v(G) = 3

Fers if VEE/(S). £ V(B)y,. then, by Lemma 5.1.1, V(G/S) =.2 and hence,

by Propesitien 5:3.1, h(G6/S) = 3 , contrary te (5.8.6).

Letre{r/sfo= qB facpor of, Ssingel Btlenia®Spl.2 ¢ ¥S/Se=kRiS

e Eollillcwst Froms (Oesth) that

(Bb-3.8) q £ P s

Alse,

(B:2.8) Quizi 2

For, suppose to the contrary that q = 2 . Then, the proof of Lemma

5.2.7 shows that G/C,(R/S) = G/R is a factor of GL(4, GF(2)} . Since

[GL(M, GF(Q))I = 2% 32 5§ 9 _ it fellews, therefere, that G/R. 1is a
soluble group of order dividing gh sy Thus, iny vibey] of
Theorem 1.3.10 (ii) of Gorenstein [14], the group of automorphisms
indueed by« & "en¥a 5-chief facter er & 7-chief facter of G/R is
cyclic, and clearly that induced on a 3-chief factor of G/R 1is a

2-group. In particular, the group of automorphisms induced by G on
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each odd-ordered chief factor of G/R 1is nilpotent. But then, since
N is a formation and, by Theorem 3.1.3 of Gorenstein [14], G/R has

no non-trivial normal 2-subgroups so that (G/R)N is the intersection

of the centralizers of the odd-ordered chief factors of G/R (see
proof of Theorem 5.2.8), we have G/R ¢ iz . However, this is
impossible because of (5.3.6), and so we conclude that q cannot

Blel "2

Bl dniew e (5 5.3, Lemna 5.2.3 (1) and Remarlk 5.2.5,

(5.3.10) G has no elementary abelian r-subgroups of order i

for each » # p ,

so that, by a result of Thompson, namely Lemma 5.24 in [37], every
odd-ordered r-chief factor of G , for each r # p , is of rank at
most 2 . Thus, since G/R is represented faithfully and irreducibly
o R/ e lE/R) = @ (see (5.3.6)), we have, by Theorem 3.2.5 of

Gorenstein [14], that

(51 8Ll ) IR/SI = g2 ; consequently, G/R is isomorphic to a

subgroup of GL(Q, GF(q))
It follows then that

053, 12) Qe

~

For, otherwise, G/R = GL(2, GF(B)) since every proper subgroup of
GL(Q, GF(3)) has Fitting length at most, while h(G/R) = 3 (see
(5.3.6)). But then, contrary to (5.8.7), Ww(G/S) =z & , the Sylow
2-subgroups, the Sylow 3-subgroups and the two distinct conjugacy
classes of 6-cycles of G/S constituting four distinct. conjugacy

o= deof meamal nlpotent subgroups of G/S . Henee, ¢q cannot
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be 3

In what follows, we need the following consequence, which we state
without proof, of a deep result (unpublished) of M.F. Newman on the

structure of soluble .subgroups of GL(2, K) , where K is an arbitrary

field.

(5.3.13) Theorem (M.F. Newman). Let K be an arbitrary field.
If H <s a soluble subgroup of GL(2, K) of Fitting length greater

than- 2, then D/AGN =54 and 2 dividest |Z(H)|T.

Now, let Z/R be the centre of G/R . Since G/R is isomorphic
to a subgroup of GL[Q, GF(q)) ef Fitting length three (see (5.8.6)

and (5.3.11)), it follows from Theorem 5.3.13 that

(5.2.10) Clz =gy ‘and 2 \divides ©|2/R| . Meveever, if K V.G isuch
that 'K =R ‘and @/K is isemenphiec te a subgroup of

GL[Q, GF(q)J y ithen W Z/K .is the ecentre of , G/K

Consequently, in view of (5.3.9), (5.3.12) and the fact that G/R has
no non-trivial normal gq-subgroups (see for instance Theorem 3.1.3 of

Gorenstein [14]), we have

(5186 )Y g * IG/R| , and so R/S is a maximal nilpotent subgroup of

G/S
Bitkt=s
(5.3.16) V contains a Sylow gq-subgroup of G .

For, otherwise, W contains one, since a Sylow g-subgroup of G is

contained in some maximal nilpotent subgroup of G . Since, by Lemma
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SENIC2RRmNC /IS AR /8y itl Felllows thensthat a RS =sWS/S M. VS/8 « uThus;,

since S(R/S) = R/S , both WS/S and VS/S are g-groups, and so

CG/

V(G /S = 20 contrary. to. (5.3.7).

Nerar, dee I = Oq‘(G) » N/L a minimal normal q-subgroup of G/L
and C = CG(N/L) . Since CG/S(R/S) S RS ghel L egeids RS L whie

latten because, R/5  1s .8 g-pgroup, we have L = 8§ . ©On the other
hand, since V contains a Sylow g-subgroup of G (see (5.3.16)}, and
since the Fitting subgroup of G/L 1is a q-group and contains its own

centralizer in G/L , it is clear that
(5.8 )" WL/l " is '@ Sylew = ¢-subgreup of. G/L .

Thus, as G/Z. 1s a q'-group [see (8.38.8), (5.3.17) ‘end (5.3.14)}, St

follows that
5.3 518) Vilie=7

Suppese first that - WL =N .+ Then clearly (WL/L)q, = @/l and
se Wc/C is.a gq-group.-  Hence, since, in wview of (5.3.17), VC/C is
a Sylow gq-subgroup of G/C , WE/C = véc/c  for some P Lok EL Bt

now, since V = 7 (see (5.3.18)), we may conclude that W = vec = zc ‘
whenee, by Lemma 5.l.1, G/ZC has only one. class of maximal nilpotent
subgroups, namely, that of PCZ/CZ . Thus, EY/ZCHN s NP = RO

Sitcet ©/2 — 5L (see (5.3.14)), 7C/7Z must, therefore, contain a
subgroup isomorphic to the alternating group As on 4 letters. In
particular, the Hall gq'-subgroups of ZC/% - enel hence HhiosE ©o8F

€/Z @ and N @ALN eannot be nilpotent, But: then the nilpotent

q'-subgroup (WL/L)q, ol @ /I \cannet be a . Hall q'-subgroup; . that is,
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for somerey ((£iq) i, (WL/L)q, cannot contain any Sylow r-subgroup
(C/L)r of C/L . However, (C/L)r X N/L is a non-primary nilpotent
subgroup of G/L » 8Since VL/L and PL/L are primary, (C/L)r X N/L

must, therefore, be contained in some conjugate of WL/L . But now,

some conjugate of (C/L)r Lt (WL/L)q, , and we have a contradiction.

Hence, WL i N . We claim that C/L 1is then a q-group. Suppose
this is not so, and let T/L be a non-trivial Sylow r-subgroup of
C/L wfertsome ‘v #.q «¢ Then (N/L) X*(T/L) - is a non-primary nilpetent
subgroup of G/L , which, as before, must be contained in some

conjugate of WL/L . But then N/L = WL/L , contrary to WL i W o

Thusysittfedlons that Gr=:R (for, G/R is a q'-group (see
(5.3.15)) and L. = R), and so |N/L| z q® , since the alternative
|N/L| =g Jimplies that G/C , and hence G/R. 18 eyeliec (see Theorem

14 83 00w¢dl) dn Goreristedn [A4]), contrary tor(5.8.6):

Next we show that |N/L| = q® and WL N N>L . Let Q bea
Sylow g-subgroup of N/L ; Q is then elementary abelian, and so,
from what has been just shown and (5.3.10), |Q| = |N/L]| = q?
Moreover, as the proof of Lemma 5.2.3 (Z) shows, Q has a non-trivial

subgroup Q% such that CF(Q*) > CF(Q) =l Sinee W isag

p'-group (see (5.3.4) and (5.3.5)), it follows then that some conjugate

of CF(Q*) X Q% is contained in W , whence WL N N > L .

Now, since |N/L] = q2 s we have that G/C 1is isemorphic to a
subgroup of GL(Q, GF(q)) e, einee C = R 1t follows frem

(5.8, 10y chat s 2/C  ie the centve-of  G/C-. But Oq(G/C) = 41} (see

Theorem 3.1.3 in Gorenstein [14]). Therefore, Z/C 1is a q'-group.
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Henced SEpon (Shdadg  (503012) and (5.8.14), we get that G/C is a
q'-group, and so in view of (5.3.17), V= C . Thus, the maximal

nilpotent subgroups of G/C are just the conjugates of PC/C and
WE Ce e et WE/C = Z/C . Since: Z/C- is.a q'-group, in fact,

Wq,C/C =G e L Wq,C Hees i vaalily en . (WL o N)/L.o; 86 Z

too, must act trivially on WL n N/L . Consequently,

{1} < (WL v N)/Li-= CN/L(Z/L) @ G/L', and hence CN/L(Z/L) = N/L:- as

N/ LsWarchief facten. It fellews thus that Z aects trivially en
theswhele of N/L , whence Z = C and g fortiori Z = R , contrary te

(543,14).  The proof of Preoposition 5.3.2 is now complete; e

Let H be the binary octahedral group, that is, the group defined

on the generators a, b, ¢ by the relations
ah=b° =¢ 5iabn

As is well-known, H has just one element 2z of order 2 , the centre
7 of H 4is generated by =z and H/Z = Sy . Let M be.a vector

space over GF(3) which affords the representation of H induced from
a non-trivial one-dimensional representation of Z , and let N Dbe any
non-zero H-invariant subspace of M . It is easy to see that, for the
Split extension G of N, by H , V(G) =3 and hE@) = -, (I £aet
N can be chosen to be of order ch P ihat . @ s ot order o e i

Thus, the bound obtained in Proposition 5.3.1 is the best possible.

5.4 A range for the best possible bound

Our main aim in this section is to find as small as possible a
range in which the best possible bound on the Eltting length of a group

6. in teoms ef @ V(E) dies. First of all, we show
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B

(5.4.1) Theorem. Let H be a group of order paq s Where

o, B>0, and let C = (c | P = 1) be a eyclic group of order p .
Let G =Hwr C. If the Sylow subgroups of H are maximal nilpotent
subgroups of H , then the Sylow subgroups of G are maximal nilpotent

subgroups of G , and

(&) = {v(H)P+(2p-1)v(H)-p}/p

The hard part is, of course, to perform the required count of
classes of maximal nilpotent subgroups of G ; we shall not interrupt
that count to observe, as can be easily done, that the claim relating

to the Sylow subgroups of G is verified.

For convenience we break up the proof of the theorem into a series

of lemmas, but first we fix some notation.

For any integer n , let n denote the residue class of n

medile p ." The base group B. of € 18 a direct proeduct of p copies
of H : let the corresponding canonical projections be denoted by
T it B > H and let the corresponding ingertions be denoted by -

e e B sy fer gach B In. B

dnd, few edeh' b in  H

e e ey

1 , otherwise.

The automorphism ef B iInduced by ¢ 1is then described by
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fer all b in B ; econsequently,

C_
(hui) B

Fersall o din B . let D deneote. the "diagenal subgroup"

=1
{ by, | h e H} of B . Notice that D = Cy(e) . Finally, let V
i=0 =

denote a maximal nilpotent subgroup of G . As before, Vp’ Vq will

denote the Sylow p- and the Sylow g-subgroups of V , respectively.

To begin with, we show

=0
(5002 eliemmas.  (Lfeely V=B . them | ¥V = VHiui , Where, for
i=0 i

cgen 1=y Ly sves PRl v, is a maximal nilpotent subgroup of H

and not all the vm.  are Sylow p-subgroups of H . Conversely, if,

for each i =0, 1, ..., p-1, V. 1s a maximal nilpotent subgroup of

Pl
H ‘and not all the V. are Sylow p-subgroups of H , then Vid,
=

18 a maximal nilpotent subgroup of G which is contained in B .

(11) Let W be some other maximal nilpotent subgroup of G

contained in B . Then V and W are conjugate in B <if and only
e jere e = 0L, vy DL Wi, and vm.  are conjugate tn
=k
Proot. That V = Vm.u. , where, for each
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1= ON= Ry Sep=il Vﬂi is a maximal nilpotent subgroup of H , is a

direct consequence of Lemma 2.5.1 (Z77). Since V is a maximal

nilpotent subgroup of G and since IG : BI =.p s tiot allsthe Vﬂi

gials  jpEEblbemobps) ©is Rl g
Next, let U be a maximal nilpotent subgroup of G which

contains 1 V.u. and consider the Sylow g-subgroup Q of the

=l
latter. By Lemma 2.5.1 (¢22/), Q = Qﬂiui , and therefore, by
ey =2

Lemma 2.5.2, CG(Q) CB(Q) i 1n paptieular, UP =B ,andge U=8B .

Alls et For fcalehs Was= 0l i D= 10 Uﬂi = Vi , and hence, by the
maximality of Vi o Ul =V Thus, finally, in view of the first
o= 1 o= 1
part, U = ] Uﬂiul = Vlui and (Z) is proved.
=0, W= =) ==

(62) It Y & Wb for some. b € B, them, by (1),

=1 D= bﬂiui bTri

o o = (Wﬂiui] ==, and so Vm, = e — om

iz0 == i=0 == -t =

B Ly seny Pl Couyerselyy if there exist elements
h

h, h s e e s )

O’ l) GNP RINY P__l 9_ 9- 9

hl hp—l
Vﬂl = (w’”-];) ) s Vﬂp"l = (WTT —l) s Chen Vo= W with
o1
b= h.u //

Next we show
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(5.4,8) Lemma, Assume V =B and let C be the class of conjugates

of L ¥ i B arid :é the  elase of eongugates of V. in @,. Then
(% for each W ¢ é:, there 1s a positive integer L < p such
CZ
that W* is eonjugate in B to V- ;
(Ll & - L i and enly 4f - Vi VI s vees Vﬂp_l are pairwise
conjugate in H .
ki 3 g:c:é » then é is the (disjoint) union ef the p classes of
c =i
conligairesio F VIV s Lespeeave iy B

Eroef () Teivial,

(i2) Assume first of all that ¢ ==é and consider V°© . By our
: Cow Vb
assumption, V = For seme b€ BEO" Then
b bm
c - =
Wi e = (v )n—_— (Vﬂ—) =

fer caeh 1 = 04 L1y weey P-1 5 end henece Vﬂo, 5000 Vﬂp—l are
pairwise conjugate in H , as required.

Assume next that VT o Vi are pairwise conjugate in H

O’

o=

and consider V& for gy Ee € G  Clearly S = cJb for some b € B

and some

9 with ©=43.=p-1. Thus, by Lemma 5.4.2 (2),

J p=1 b
ve = N Jo [ Vﬂiui+j . “NOw " view ©f our’ essumption, theve
=0 —

exist elements h h

h

i hp-l such that Vm, = (Vﬂj} Y
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hl hp 1 o=
VT, = : & = LA =
1 [Vﬂl+j} : S [pr+j_l) Let d In BiHi s s 80
that dﬂi+ = hi Then, clearly
. {p—l b p-1 { hi b
Ve = Vi . = [ [ vm ) ]u. =
st Liifd LT i+ L
e \b
[ [Vd}ﬂi+‘“i+‘ S
i=0 e
Semes, sty @, 4. pups frem 8- fe  p=l o odt]s runs From 10 )

Bl amand
Voo Bines dy € &
thus that é = C 5, and so

secondly, Lemma 5.4.2 (7) applies also to

VC-l in place of

and g was an arbitrary element of G , it follows

(11) is proved.

/0 k
Finally, assume that C € C and consider v¢  and Vv°© , Where
£ Ck
gr=fsy ks p-il o amd L #£ k We have to show that V© and V
c£ ckb
are not conjugate in B Suppose to the contrary that V =V

for some b € B Then, by Lemma 5.4.2 (),

Bl p=d b

Ly (V”i“i+k)J »

e e o =

bﬂj

and so Vﬂj—ﬂ = (Vﬂ —k) = for each j = 0, 1, so PElL o Taug, Sinee
£ # Kk oLt Follews that VWO, 5605 Vﬂp—l are pairwise conjugate in
H , and henee by (i2), C = é , contrary to our assumption. With this

contradiction the proof of

An application of the

//

the lemma is now complete.

preceding lemma yields
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(5.4.4) Lemma. The number of conjugacy classes of maximal

nilpotent subgroups of G which are contained in B 1is

{v()P+u(H) (p-1)-p}/p

Proof. By Lemma 5.4.2 and the hypothesis of Theorem 5.4.l1, the

maximal nilpotent subgroups of G contained in B constitute
\)(H)p - 1 conjugacy classes of maximal nilpotent subgroups of B , and

(v(m)P-1)- (v()-1)
P

hence, by Lemma 5.4.3, they constitute e =

conjugacy classes of maximal nilpotent subgroups of G , as required. vl

It now remains to show that the number of conjugacy classes of

maximal nilpotent subgroups V of G which are not contained in B

is V(H) . Throughout the rest of this section we assume that VP $ B .
o=t
(5.4.5) lemma. V. mB = (V. 0Bl
=T, 1% Ll P AT
1i=0 - —
Bl
Proof. Let P = | (Vp N B)ﬂiui . Since, by Lemma 2.5.1 (%),
1=0 =
P
CB(Vq) = Ll [CH[Vqﬁ;}}Hi , and Since Vp nB =< CB(Vq) , we conclude

: & W AW 18 ¢
idiehs - 2 2 CB(Vq) 3 -and hemce - gy P} = CG(Vq) where g p\ . N
However, by Lemma 2.5.1-(¢t/), g ¢ NG(P) since, g ¢ NG(VP N B} , and
so. f(gy P) ds-a -p-greup. Alse, Vp <. Ag, P) -« Sineey by the
maximaliity of « ¥, VP is a Sylow p-subgroup of CG[Vq) s 1t follows

fFinally that  Ka, B) = Vp , and therefore Vp NnB =P , as required. [ [
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(5.4.6) Lemma, Vp contains a complement of B in G .

Proof., - Since VPB = G and since G/B 1is of prime order and is
generated by c¢B , we must have Vp meBiEags et g Vp Nl iels L

Ihen g& cb fepr,seme b: in B . Now

(p=1Jk Cp=~2)
gp = n® G SR o Galehi s ¢ Vp D

and hence

Gor eden i =0 pE G e g, ~ g[g—pﬂougj G Wil opat Eleicfeibhahs

of gp € Vp n B and Lemma 5.4.5, g, € VP 0 Bl g, = cd where

= b[g’PwOUQJ € B. Thus

m

(p-1), (p-2)
P o (o) +C AP CrnArtehl
o - (2 :

dﬂp_ldﬂo

— — S— —

i
fa¥
3
a9
3

N

LS b

i
EF
3
33
3

i
=
-

since
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p-i
&
EneLiENechcr Handis 0 < 1 < p 4 then [g?} = agl‘ia-l s Where
p-i-1 p-i-2 ;
) qr P
a =d T e ERBN ST Ehat
P P et p_=1 1
=3 = =2 = p \_
g [ o e - oglindon

p

Pr =1 Therefore, 2 e L Binee g, ¢ VP\VP mBly e

since glﬂg_—

lemma is clearly proved. T

Since, by a result of C.H. Houghton (see the proof of Theorem 3.3
of Houghton [24], and also Theorem 10.1 of Neumann [31]) any two
complements of B in G are conjugate in G , it follows, in view of

Lemma 5.4.6, that
(Bilia7)cLemma.s Some conjugate of V .im G contains ¢ . i

Now, for a maximal nilpotent subgroup W of G which contains

c , define Wk = (W nB)T) . Note that Wk = (wp n Bjm, and

W = W.m
q q 0
(5.4.8) Lemma. If W <s a maximal nilpotent subgroup of G
o=l
which eontainse ¢ , then W n B = W&,
& i=g P =
Proof. Clearly Wp n B 4 wp s Thiey Fel sagh 4 = .05 ly owesy Prlcs

(W_ n B}c 8 Won B, and soe
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p=iy
W._nB)m, = |(W_nB)C d = Wk .
(7, n )y [(Pn) Jng = (8, 0 B)my = ws
An application of Lemma 5.4.5 then completes the proof. s

(5.4.9) Lemma. Let W be a maximal nilpotent subgroup of G

. p_l
Whieh covitaine ¢ « Ther W: =D n Wy,
= iso 12
ci
Praciopsy JLE sy (& Wq W Elen s e oINE clenEt =B O SR G S = o
=i p-l
and so bm, = b . =ihr_ esW® { Thus eledvrly. W =D n Wy,
il 0 0 q q AT @) 7t
= = = 1=0 &=
p=il
On the other hand, it follows from Lemma 5.4.8, that D n | Wéui
i=0 =

centralizes (Wp N B] , and hence also (c, Wp AINBYEE= wP oo T Jogy

o=
the maximality of W , wq =Dn Wgui , as required. e
i=0 -
Since Wp = (W Wp Nn B) , it is now immediate from Lemmas 5.4.8

and 5.4.9 that

(5.4.10) Lemma. If W is a maximal nilpotent subgroup of G and

c €W
pal Pl
W= (C, W*].l. 5 e l W*]J.) . £l
=g P = e

(5.4,11) Lemma. Let U be a maximal nilpotent subgroup of H .
Then U = W% for some maximal nilpotent subgroup W of G which

contains . ¢ .
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p=1 =1
Proet Let P = 1T i el (O R [ ) W, o Elsiendlhy e
fmpuk & i=0 %=

nermalizes, P 4 so that (e, P) is a  p=subgroup of G . On the other
handy 1t is clear that (e, P) ecentralizes @ , soc that (o, P, Q) is

a nilpotent subgroup of G .

Now, by the maximality of U , Up is a Sylow p-subgroup of
CH(Uq} s Jibiue, by Lemma 2,B.1-(2) and (472%2/)s P - is & Sylow
p-subgroup of CB(Q) . Hence, if W is a maximal nilpotent subgroup
e F G el don tainsit (e, Ry Ty N thier, Tsiince P = Vp M BE= CB(Q) ’
P=V nB . Since, moreover W /W _n B| = |WB/B| = and

p 5 > | p’"'p | I D | P
c € WP\P , it follows then that Wp g APy m) s

o=

Next, consider B Uqui . By Lemm& 2751 (7)) and (21) it 1s
i= -

clearly a Sylow q-subgroup of CB(P) « Thuse e inte Wq centralizes

o=l b
I e T { Uquij Fer seme b € B NSaice Wq also centralizes
q i
i=0

¢ , we have, moreover, that Wq =D-= CB(c) el S

jor= 1k b 3 o
We = DR [ UquiJ L Buie, EE DS R chall ﬂo HISHen ey Lt st ellean

4 i=0 2
et
p-1 b p-1 b b1,
oo (T o) | = o o (0 v ol = Joa ™) = 1ol -
gl
‘D N I:I'Uqui_ = g

Heneely sance  ON= wq s Lt Folliows new that Wq = Q , whence
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(c, P, Q) = W is a maximal nilpotent subgroup of G which contains

c . Since, as it can be easily checked, W® = U , we are finally

done, I

(5.4.12) Lemma. If W <& a maximal nilpotent subgroup of G

which contains c , then W% <s a maximal nilpotent subgroup of H .

Proeotr. Let U be a maximal nilpotent subgroup of H which

contains W® . By Lemma 5.4.11, there is a maximal nilpotent subgroup
X o R EENhTehNcontainct e and Feonswhaahe =X s S iinc oMot X
and W contain ¢ , and since WX =U = X¥ and Wi =U = X% , it

P p P q q q

follows, by Lemma 5.4.10, that

= pail
W = <c, W¥u., D n Wy >
i:o P -J-'- 1=0 q —

IA
e
<
e
s
(=
=
|,
=
.:"'U
I
i
&
=
.

I
<

Hence W = X , and so W* = X* = U , as required. 1

Finally, we show

(5.4.13) Lemma. Let U and W be two maximal nilpotent
subgroups of G both of which contain c . Then U and W are
conjugate in G if and only if U* and W% are conjugate T

\/ *, h
Proof. Suppose first that U* = (W¥) for some h € H and let

d = hy, . Clearly d ¢ D = CB(c) » Thus, using Lemma 5.4.10,
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we have

Sl =l
Uh= <c, U*ul’ D n Uy >
i=0 B ok =0 i
p-1 p=1
d Sl
(B o =0 o)
i=0 — =0 o -
p=l =1 d
s <C, w:’:ul’ D N w:':p >
i=0 P — n=0 ! el
= wd

Conversely, if U = W& for some g €& G , then, since g = cIb

for some b € B and some j with 0 = j = p-1 , and since ¢ € W ,

we have U = Wb s and so

b =atl By, = (B n wb)ﬂo ((B n W)b)ﬂo

u
N

ot

b
p—
.

The proof is complete. el

The remaining claim towards the proof of Theorem 5.4.1, namely,
that the number of conjugacy classes of maximal nilpotent subgroups of
G which are not contained in B is V(H) , follows now from Lemmas

5ol 7y SEGLI B vl 12 and Sethe 18, L/

Having established Theorem 5.4.1, we proceed to construct groups

¢ fer witich h(G) 'z leg [log V(G)J
3 3

Let G; = S3 , the symmetric group on 3 letters, and, for
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i: = -
L2 tts vl et G2i G2i—l WD C3 and G2i+l G2i W C2 , Where

C3 and C2 a@rcsevelic sreups ef erder 3 - and- 2, respectively:
Then, as it can be easily checked, the groups Gj S T

satisfy the hypotheses of Theorem 5.U4.1. Hence, by the same theorem,

Henica e =D

W(6y) = Moy y)® + 9(ey ) - 310

and

o ey B [\)(G2iJ2 theicn 1 2]/2

In particular, since v(Gl) = 2 and the above expressions for

v(GQi) and v(G are monotone in the relevant range, it is easy to see that

2i+l)

v(e,.} = v(e

3
2i) s 2i—l)

and
V[G ) = v[G }2
Dl NS 24l

Therefore,
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log (log v(GQi)J = g [61_1 log 5]

il 6+ leog {log SJ
3 3

3 3 3

IA

2l et gk [log SJ :
3 3

In particular,

: il
i = log |log v(G .} = loz|log 3 .
2 251
3 3 3 3

But 2i + 1 = h(G

h(G SJ b1 = g [1og V(GQi)} s

3 8

"
'_l
O
(e}
(e
'_J
©]
(Ue]
<
—
()
N
e
N——
NS
|
=
O
(s}
=
—
(©]
0Q

21)

for each i = 1] 2,

It is now clear in view of the preceding examples and Theorem
5.2.8 that, if G is a group in which the best possible upper bound Eits
attained, then

Tevdey=iol

log {log v(G)J = h(g) = 2{1 + lpg >

3 3 3
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CHABTERES

THE FITTING LENGTH OF A GROUP AND THE NUMBER OF CONJUGACY CLASSES

OF ITS MAXIMAL METANILPOTENT SUBGROUPS

In this brief chapter we show that an upper bound on the Fitting
length of a group can be obtained in terms of the number of conjugacy
classes of its maximal metanilpotent subgroups. In fact, our result is
rather more general. Let [ be any saturated formation of characteristic

T , say, which is also a Fischer class, and let iwr: éq*£=’ the class
of all finite soluble groups G with a normal Hall T'-subgroup Gﬂ‘

SliehSEhE e G/Gﬁ' €-EF . IE. X denotes the class gi , where k > 1 ,

then we show that

(6.1) Theorem. The E-length, hF(G) , of a group G s at most

YK(G) + k= 1.

We will deduce Theorem 6.1 from a series of lemmas.

(6.2) Lemma. Let I be a Sylow system of a group H ¢ B let
D be the gﬂ—normalizer of H corresponding to L and let V be the

Eﬂ-injector of H into which -I vreduces. If H = DV and V' s an

Eﬂ—projector of every proper subgroup of H which contains V , then

2
EIREG i%

Ereeof. Let {i%(p)} be the full, integrated family of formations
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which defines E. locally, and let, for each q dividing i
H H H H
J e [H/V ] = el o R N e O b i =
g ' q' g q/ : g / = Since H = DV , every

cliteffVEacter 'of ‘HY 1s, by Theorem W4.1.6, either - F —central in H or

£ﬂ~covered in H or both. Thus, in particular, every gq-chief factor
£ G/VH § ¥3 . H : A
o I= e —eemibral tin 'G/% ", ‘and henece, sinee . I /V is the
q =l q q - q

intersection of the centralizers of the q-chief factors of G/VH 5
q
H/Iq € ;ﬂ(q) .. In fact, since the family {Eﬂ(q)} is full and

int it E = -
integrated, H/Jq Em(q) = iﬂ

New, let K= " J. 4. Since H/Jq € £ﬂ for each q dividing
q||H]
|H| and since i% is ‘a feormatien, [H/K € gﬂ . iz, it remsinsitelhe
K'=% . In erder to shew

shown that K ¢ i% L HhiEe 8 B SN o EiEhs

this, we observe that by our hypothesis, Theorem 2.3.7 and the definition

of Jq 5 Zq @ Visis: a Sylew . g-subgroup of Jq . Therefore, since
KE=liEAsIanc L 1@ = Jq - Zq mE Meles is a2 Syleow 'g-subgreup ef* K © FSince

this holds for each q dividing IH] S itielicarily Belilewsibhat K = W

and the lemma is proved. i

As a consequence of Lemma 6.2, we have

(6.3) Lemma. Let H be a group and V an E -injector of H .

. 2 2 : : ;
If- ¥ s ;%—maxzmal oy L then . W is also an ;%fprogector ol

Proof. The result is trivially true if V = H . Hence we assume
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Haee V£ H 4 fdhait ds o 8elyy dhete |k 4 £T , and proceed by induction

on |Hl Semen it s e lear that V. is an gm—projector i KK

Wihenever V= NIGI<NEHIE S Eonpl BV ils Seemtalin 1y iﬁ—maximal i K el
by Theorem 2.3.4 (Zv), it is also an Em—injector ef’ K , S0 that, by

the induction hypotheses, V 1is an i%fprojector @i

Let X be a Sylow system of H which reduces into V and let D

be the £ﬂ—normalizer et 'l @chrespoending te L . By Theerem il o
DR/ = VDR -

Suppose that DV = H . Then, from what has been observed above
and Lemma 6.2, H € F2 . But thepn "V = H sinee V is; by hypothesis

2 ; : i o
F -maximal in H and we have a contradiction.

Hence DV # H . Let M be a maximal subgroup of H which contains

DM =nd let I be = Sylow system-of H which reduces inte M . By

Theorem 2.1.4, 3¢ = %, for some- g€ G . Thus, Z reduces into M®

o)

and hence, since M8 contains an szinjector e I\ o neEmely vE 5

v = M by liemms 268.8¢ Leti M =l and let D be the gﬂ—normalizer
of M corresponding to L n M . Since D& < M , it follows, by Theorem
2.2 46 WS that "M~ is zm—abnormal in H . Thus, by Theorem 2.2.6

(bid) B D =2 B, =M .esBut ithen, simcen, V tis,: bys the induction hypothesis,

il gﬂ—projector of M and since, by our assumption, Zom M-S peduces

inte W' we heve, by Theorem 2.2.10 (7/), that b= D and sl =
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17
Now, let ﬁ=ﬂ/K be a chief factor of H . Since £ﬂ has

characteristic the whole prime set, it follows, by Lemma 2.2.2, that

17
N —ilj :
5l = s Lueniang s H == < L Moteover, Since H 4.5 s

E
=n' y
H # {1t . Alse, by Theorem 2.2.6 (vi), D , and hence V , covers

F
. . .
H/H »  Clegbly VK #'H., since otherwise H/K-= V/V n K € iﬂ s Whence
E L
=

H = K , a contradiction. Thus VK complements H=T/K abigy - Jal ¢
Hence, since VK/K = DK/K , it follows by Theorems 2.2.6 (v) and

2v2.18 (22), that YK/K: is an Em—projector ef  H/K.. Buty by the

induction hypothesis, V 1is an gﬂ—projector ef VK< H . Henae,
finally, by Lemma 2.2.9, V is an g%rprojector of H , and the proof

is complete. //

Throughout the rest of this chapter Y will denote the class

(6.4) Lemma. If V s an X-injector of G , then Gi =Ny i

moreover, V/GY i8 an ;ﬂ-injector e G/GY .

Presf., Cleavly X = }\QA _X__)\é_.”()\)'L)\ » where =—>S>\ =L =

and EA = F, for each A ¢ A . Thus, the first part of the lemma,

namely, GY = VY , is a consequence of Lemma 10 of Hartley [20].

Next, let (N/GY) g (G/GY) and consider N N V/GY o SLHEE Y
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is ol s neerer oG, (M0 V  ds.am  X-injector of N , and so, by

the fivat part, <(N-n V)Y = NY | Ihusy since. Noa ¥ #s: X-maximal in

in N , it fellows that: (N-n V)/NY is gm—maximal in N/NY o Biude Al

can be easily checked that NY = GY S Henee i NE @ V/QX is gﬂ—maximal

in N/QZ . Since N/QX was an arbitrary subnermal subgroup of G/GY s

this shows that V/GY has the defining properties of £%—injectors,

and so V/Ql is an iﬁ—injector of G/GX.’ as required. Il

(6.5) Lemma. Let V be as in Lemma 6.4 If V/G, s X-maximal
=T

in G/G:E’TT , then V/qé 18 an Em-projector of G/gé .

Proof. Consider V/GY . By Lemma 6.4, it is gm—injector of

G/GY . Moreover, since hP [GY/GF } =k = 2 4 At sellows by ©ue
= =\ = =7

assumption, that V/GY e zﬁ—maximal in G/GY . Thus, by Lemma 6.3,

V/GY is an ;%fprojector of G/GY . - Simce, by Lemma.2.2.8 (@i,

Eﬂ—projectors of G are homomorphism invariant, we have finally that

V/GX is an g%fprojector of G/qé , as required. Ll

We will now prove the main result of this chapter, namely, Theorem

Proof of Theorem 6.1. We proceed by induction on |G| . Thus we

can assume that \)X[G/GF J = vX(G) . Also we can assume that hF(G) > e
== =TT — ==

since otherwise the result is trivially true. Now let V be an



97

I inleeteret G . Then, since \)X{G/GF ] = vX(G) , V/G 1S oy

£, L

Lemma 5.1.1, X-maximal in G/GF . Henee, by Lemma 6.5, V/GX is an
=~ﬂ- —

gﬂ—projector of G/G_K e llexr " let W/GF Pefan™ X -injeecter of G/GF
= — i =

Then, since V i G T V/G and W/GF belong to two distinect
E

£ i
=-'n' —‘n—
conjugacy classes of X-maximal subgroups of G/GF . Hence, W/GF2
=ﬂ' :ﬂ'

is not X-maximal in G/GFz For otherwise, by Lemma 6.5, W/G is
=TT =

=<

an gw-projectof of G/GX and hence conjugate to V/GX S aBuE thensay

and W are conjugate in G and we have a contradiction. Thus we have

shown that %é{G/qzéJ < YX(G) sarlnthacts YL[G/GE;] = Yé(G) =8 285 since

2 . :
V/GF2 VG k+l/GF2 € X o Hemece, by inductiens

=T B —iJf
==y

hF{G/GFz} =ltg (v ledg) - .1,  Since h [G ZJ = 2., it Fellews mew
— =ﬂ' _— =

tEhnizhe hF(G) <k + VX(G) - 1 and we are dene. I

We end this chapter with a remark that the above result is no

more true for k = 1 as the case when E = N , the class o alilEiniite

nilpotent groups, and VF(G) = lle) =2 =hews (=cec the remanl

following the proof of Proposition 5.3.1).
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