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CHAPTER 1 

1.1 Introduction 

Various characteristic conjugacy classes of subgroups having 

covering/avoidance properties with respect to chief factors have 

recently played a major role in the study of finite soluble groups. 

Apart from the subgroups which are now called Hall subgroups, P. Hall 

[18] also considered the system normalizers of finite soluble groups 

and showed that these form a characteristic conjugacy class, cover the 

central chief factors and avoid the rest. The system normalizers were 

later shown by Carter and Hawkes [4] to be the simplest example of a 

wealth of characteristic conjugacy classes of subgroups of finite 

soluble groups which arise naturally as a consequence of the theory of 

formations. They show that a finite soluble group has, corresponding 

to each saturated formation X containing the class ^ of all finite 

nilpotent groups, a characteristic conjugacy class of subgroups called 

the ^-normalizers which have properties closely analogous to the 

system normalizers of P. Hall and coincide with the latter when 

^ = £ . This part of the theory of formations has been extended by 

Wright [38] for the case when a saturated formation does not 

necessarily contain N̂  . 

Dual to the concept of formations is the concept of Fitting 

classes introduced by Fischer [7]. As Fischer, Gaschutz and Hartley 

[9] have shown a finite soluble group has, corresponding to each 

Fitting class Ŷ  , a characteristic conjugacy class of subgroups 

called the ^-injectors. 

On the other hand, Gaschutz [10] also considered what he called 



the Prefrattini subgroups of finite soluble groups. In particular 

these cover the Frattini chief factors and avoid the complemented ones. 

Working in this direction, Hawkes [21], in turn, obtained further 

characteristic conjugacy classes, one class in each group corresponding 

to each saturated formation, of subgroups of finite soluble groups 

which have properties closely analogous to the Prefrattini subgroups 

and which coincide with the latter in the case when the saturated 

formation under consideration is the trivial one. Hawkes' subgroups 

corresponding to a saturated formation X are called the 

_X-Prefrattini subgroups. Besides possessing an interesting 

covering/avoidance property, an ^-Prefrattini subgroup of a finite 

soluble group can be expressed as a product of a Prefrattini subgroup 

and an ^-normalizer of the group. 

This latter fact suggests the study in a finite soluble group of 

the lattice ^ of subgroups generated by the Prefrattini subgroups of 

the group, the ^-normalizers of the group corresponding to a 

saturated formation £ , and the ^-injectors of the group corresponding 

to a Fitting class H . The idea is to find within ^ further 

characteristic conjugacy classes of subgroups with covering/avoidance 

properties. 

The work in the Chapters 3 and M- of this thesis derives from our 

attempt to study ^ . We had to restrict ourselves to H being a 

Fischer class since in this case more is known about the behaviour of 

the Sylow subgroups of the ^-injectors, and this information is vital 

in our investigation. The results of our investigation may be 

summarized as follows (see Theorem 4.0.1). 

With a Sylow system in a finite soluble group, one can naturally 



associate a Prefrattini subgroup, an £-normalizer and an ^-injectorj 

of the group and the sublattice generated by these three subgroups 

(in the full subgroup lattice of the group) is distributive, the 

conjugacy classes of its elements are characteristic, the elements of 

are pairwise permutable, they all have interesting covering/avoidance 

properties and the given Sylow system reduces into each of them. As an 

example at the end of Chapter 4 shows, can be as large as the 

preceding statement allows, namely it can have eighteen distinct 

elements (in which case is a free distributive lattice of rank 

3). Fourteen elements of then belong to distinct characteristic 

conjugacy classes which have not been known to exist before. 

The latter part of this thesis, namely. Chapters 5 and 6, deals 

with a particular instance of the general problem of obtaining 

information about the global structure of a group from the information 

about the local structure. In particular, we consider the conjugacy 

classes of N -maximal subgroups of a finite soluble group for k ^ 1 , 

where N is the class of all finite groups of nilpotent length at 

most k , and investigate the restriction imposed by their number on a 

particular invariant of the group, namely its Fitting length. 

The case k = 1 is investigated in Chapter 5 and a logarithmic 

upper bound on the Fitting length of a finite soluble group in terms of 

the number of conjugacy classes of maximal nilpotent subgroups of the 

group is obtained (see Theorem 5.2.8). In certain special cases the 

bound obtained is shown to be the best possible. 

The case k ± 2 is investigated in Chapter 6, the last chapter of 

this thesis, in a slightly more general set up. The bound on the Fitting 

length of a finite soluble group in terms of the number of conjugacy 



classes of N -maximal subgroups of the group which we obtain there is 

a linear one. 

We conclude here with a remark that the Fitting length of a finite 

soluble group, on the other hand, imposes no restriction on the number 

of conjugacy classes of maximal nilpotent subgroups of the group, as 

has been shown by Rose [33] using wreath product constructions. 



1.2 Notation and terminology 

Throughout this thesis, the word "group" means "finite soluble 

group", except when stat^otherwise. 

The letters p, q and r always denote primes. 

Given a set TT of primes, TT' denotes the complement of TT in 

the set of all primes, and an integer n is called a ir-number if each 

of its prime divisors is an element of IT . 

We denote the trivial subgroup of a group by {l} and the 

identity of a group by 1 . If G is a group and H a subgroup of 

G , we write H S G or Hj;<G . If H is a proper subgroup of G , 

that is, if H G , then we write H < G . Similarly, we write H 5 G 

if H is a normal subgroup of G and we write H G if, moreover, 

H < G . If H is a subnormal subgroup of G , we write H <I<1 G . 

The order of a group G is denoted by |G| and, if H 5 G , 

G : H| denotes the index of H in G . For any subsets 

X^, X^, ..., X^ of G , <X^, X^, denotes the subgroup of G 

generated by these n subsets. The minimal number of generators of G 

is denoted by d(G) . 

If K and H are any two subsets of G , then K\H denotes the 

set of elements of K not contained in H , H n K is the intersection 

of H with K and HK is the product set {hk | h ^ H, k f K} . 

If g, h e G , then the conjugate h ^gh of g by h is denoted 

by and is denoted by [g', h] . Similarly, if H < G and 

g e G , H® denotes the conjugate^'of H in G . For any subgroups K g^'H^ 



and H of G , [K, H] = < [k, h] | k e K, h 6 H> . 

The normal closure in G of a subgroup H of G is denoted by 

H and its core in G by CoregCH) . Cg(H) denotes the centralizer 

of H in G and N^(H) denotes the normalizer of H in G . If G 

H = G , then C„(H) = Z(G) , the centre of G . b 

If G has a unique minimal normal subgroup, then G is called a 

monolithic group and its unique minimal normal subgroup is called its 

monolith. 

A subgroup H of G is said to be pronormal in G if any two 

conjugates H^, H^ of H in G are conjugate by an element of 

, and it is said to be abnormal in G , if g ^ <H, for 

each -g f G . 

The Frattini subgroup of G , which is the intersection of all 

maximal subgroups of G , is denoted by $(G) . 

If K, H < G and K S H , then H/K is called a factor of G . 

If, moreover, H and K are both normal subgroups of G , K < H and 

H/K is a minimal normal subgroup of G/K , then H/K is called a 

chief factor of G . Every chief factor of G is of order a power of 

some prime. We will call a chief factor of G a p-chief factor, if 

its order is a power of p . A series of normal subgroups 

{1} = Kq < Kĵ  < . . . < K^ = G is called a chief series of G if 

K./K. , is a chief factor of G for each i = l , 2, ...,n. 
1 1 - 1 

A subgroup L of G is said to cover a factor H/K of G if 

(H n L)K = H and it is said to avoid H/K if H n L 5 K . If each 



chief factor of G is either covered or avoided by a given subgroup of 

G , then the subgroup is said to have a covering/avoidance property. 

In general, a subgroup of G need not cover or avoid a chief factor 

of G . It is easy to see that L covers (avoids) a p-chief factor 

of G if and only if a Sylow p-subgroup of L covers (avoids) it. 

A chief factor H/K of G is said to be Frattini in G if 

H/K 5 $(G/K) and complemented otherwise, since then some maximal 

subgroup of G ^ complements 'K/fl in G/H . VC ̂  K 

If A is a group of automorphisms of G and H a subgroup of G 

which is mapped into itself by every element of A , then H is said 

to be A-invariant in G . If A is the full automorphism group of 

G , then an A-invariant subgroup of G is called a characteristic 

subgroup of G . On the other hand, a family of subgroups of G is 

said to be characteristic if the subgroups in the family are permuted 

by the automorphisms of G . 

A representation of G of dimension n over a field K is a 

(group) homomorphism from G into the general linear group GL(n, K) 

of dimension n over K , that is, the group of all endemorphisms of a ^ 

an n-dimensional vector space over K . 

n 
If G^, G^, G^ are groups, ' ~ G^ denotes their direct 

product. The standard wreath product of a group H by a group K is 

denoted by H wr K . For basic definition^and proper:ites of wreath s ̂  il 

products our main reference is Schenkman [34]. 

Throughout the thesis, the statement "X is a class of groups" 

implies that X consists of finite soluble groups and contains all 



isomorphic copies of its members. 

Groups in a class X are called ^-groups and those factors of a 

group which are members of X are called ^-factors. An ^-subgroup 

of a group which is not a proper subgroup of any ^-subgroup of the 

group is said to be ^-maximal in the group. 

A class X of groups is said to be 

(i) s-closed if subgroups of ^-groups are ^-groups; 

(ii) q-closed if homomorphic images of ^-groups are ^-groups; 

(iii) R -closed if subdirect products of (̂-groups are ^-groups; 

(iv) E -closed if G/$(G) e X implies G f X ; (p = ^ = 

(v) Ep-closed if an extension of a p-group by an ^-group is 

an _X-group; 

(vi) s^-closed if normal subgroups of ^-groups are ^-groups; and 

(vii) No-closed if the product of any two normal ^-subgroups of 

a group is an ^-group. 

Classes of groups and various other families and sets are denoted 

by capital Roman letters with a double underline. Occassionally, we 

also use capital Greek letters to denote sets. The empty class of a 

set is, however, an exception and is denoted by ^ . 

The rest of the notation and terminology required in the course of 

this thesis will be introduced as and when required. 



CHAPTER 2 

PRELIMINARIES 

2.1 Sylow systems and their reducibility 

In this section, we introduce P. Hall's concept of Sylow systems 

of a finite soluble group (see [17], for example) and discuss their 

properties which will be required in the course of this thesis. In 

order to explain the term "Sylow system" we need to make the following 

definition. 

(2.1.1) Definition. Let G be a group and TT a set of primes, 

(i) G is called a T\-group if |G| is a 7T-number. 

(ii) A subgroup H of G is called a Hall Ti-subgroup of G if 

H is a TT-subgroup of G and |G : H| is a TT'-number. 

We will denote a Hall TT-subgroup of a group G by G^ and, if 

at any time more than one Hall TT-subgroup of G is considered, they 

will be distinguished by superscripts such as " . 

A non-soliible group may not necessarily possess Hall TT-subgroups 

corresponding to a set TT of primes. But 

(2.1.2) Theorem (P. Hall [15]). A soluble group G has Hall 

n-subgroups oorvesponding to every set TT of primes, and any tuo Hall 

ir-subgroups of G are conjugate in G . Moreover, every i\-suhgroup 

of G is contained in some Hall Ti-subgroup of G . // 
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It is an immediate consequence of Theorem 2.1.2 that a soluble 

group possesses a Hall p'-subgroup, that is, a Sylow p-complement. 

corresponding to each p . In [16], P. Hall has shown that this 

property, in fact, characterizes soluble groups. 

(2.1.3) Definition. Let G be a group and {2pr^ ^ set 

consisting of a Hall p'-subgroup of G , one for each p , that is, a 

complete set of Sylow complements of G . Then the set consisting of 

all the possible intersections of subgroups in the set ''•̂ p!̂  ' 

together with G , is called the Sylow system of G generated by 

Clearly, a Sylow system E of a group G contains a unique Hall 

T T - s u b g r o u p of G corresponding to each set TT of primes. We will 

denote the Hall T T - s u b g r o u p of G in E by . 

Any two Sylow systems of a group are conjugate in the group in the 

following sense. 

(2.1.4) Theorem (P. Hall [17]). Let {G^,} and {G^,} be any 

two complete sets of Sylow aomplements of a group G . Then there is 

an element g of G such that G®, = G^', for each p . In 

particular, if I and are the Sylow systems of G generated by 

{Gp,} and {G^',) j respectively, then, for every set TT of primes, 

= . 11 
TT TT 

It is clear from Theorem 2.1.4 that the Sylow systems of a group 
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are transitively permuted by the inner automorphisms of the group. 

Extensions and Reductions of Sylow systems of a group were first Y" 

considered systematically by Carter in his paper [2]. 

(2.1.5) Definition. Let E be a Sylow system of a group G and 

H S G . Then Z is said to reduoe into H if the intersections of H 

with the subgroups in E form a Sylow system, denoted by H n E , of 

H . On the other hand, a Sylow system of H is said to extend to 

E if E n H = E-'̂  . 

By a result of P. Hall [17], every Sylow system of a subgroup of a 

group can be extended, though not necessarily uniquely, to a Sylow 

system of the group; consequently, by Theorem 2.1.4, 

(2.1.6) Lemma. If E is a Sylow system of a group G and 

H £ G J then E reduces into at least one oon^ugate o/ H . // 

Occas^ionally, we will require the following result of Shamash 

[36] on the reducibility of Sylow systems. 

(2.1.7) Lemma (Shamash [36]). Let H and K be any tido 

subgroups of a group G and E a Sylow system of G . If I reduces 

into both H and K ^ then E reduces into H n K . // 

A Sylow system of a group may reduce into more than one conjugate 

of a subgroup of the group. But for pronormal subgroups we have 

(2.1.8) Lemma (Mann [30]). A Sylow system of a group reduces into 
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preoisely one aonjugate of a yvonovmal subgroup of the group. 11 

2.2 Formation theory and the Prefrattini subgroups 

We begin this section by surveying briefly the theory of 

formations which was oijginated by Gaschiitz [11]. 

(2.2.1) Definition. A class of groups is called a formation if it 

is both Q-closed and Ro-closed. 

A non-empty formation is called a saturated formation if it is, in 

addition, E -closed. 

The empty class is clearly a formation. If ^ is a formation, 

we will denote by G= the intersection of all normal subgroups N of 

a group G such that G/N ^ ̂  . If no such N exists, that is, if 

^ = , the empty class, we will put g'̂  = G . Clearly G/G^ ^ ^ 

unless ^ = , the empty class, and G= is always characteristic in 

G . For the particular case ^ = S^ , the class of all finite soluble 

7T-groups, which can be easily shown to be a saturated formation for any 

S 7T T̂T set 7T of primes, we write 0 (G) to denote G 

(2.2.2) Lemma (Barnes, Kegel [1]). Let X be a saturated 

formation of oharaateristia IT . Then every X-group is a u-group 

and all nilpotent Ti-groups are X-groups. 

Apart from the class ^ that was mentioned above, other familiar 
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examples of saturated formations include the class Ŝ  of all finite 

soluble groups (see Theorem 2.4.1 (i) - (iii) in [14]) and the class 

of all finite nilpotent groups (see Satz III. 2.5 (a) and (c), and Satz 

III. 3.7 in [25]). 

If X and Y^ are saturated formations, then, by Proposition 7.16 

[13], ^ is a saturated formation. Thus, in particular, ^^ is a 

saturated formation for every non-negative integer n . 

In [11], Gaschutz describes a method of constructing a wealth of 

saturated formations: 

Assign to each p a formation ^(p) , which may possibly be 

empty, and let )< be the class of all groups G with the property: 

If p G| and H/K is a p-chief factor of G , then 

G/Cg(H/K) f X(p) . 

It is shown in [11] that the class X so defined is a saturated 

formation. It is called the saturated formation defined loaally by the 

family {^(p)} of formations. 

In fact, every saturated formation can be defined locally by some 

suitable family of formations. This has been shown by Lubeseder [28] 

(see Satz VI. 7.25 in [25], for example). In particular, it is easy to 

check that, if X(p) = {l} for each p , then X is precisely N , 

If ^ is a saturated formation defined locally by the family 

{)((p)} of formations, then it can be easily verified that the 

characteristic of ^ is precisely the set of those p for which 

X(p) # . 
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(2.2.3) Definition. Let ^ be a saturated formation defined 

locally by a family {^(p)} of formations. Then 

(i) the family {^(p)} is said to be integrated if ^(p) - ^ 

for each p , and it is said to be full if ^(p) is 

E -closed for each p . 
P 

Henceforth, assume that the family {^(p)} is integrated and full. 

(ii) A chief factor H/K of a group G is called X-aentral if 

G/CQ(H/K) ^(p) , where p is the prime which divides 

H/KI , and X-eaoentria otherwise; 

(iii) a maximal subgroup M of G is called '^normal if 

M/Core^CM) ^ ̂ (p) , where p is the prime which divides 

G : M| , and ^abnormal otherwise; 

(iv) a maximal subgroup M of G is called ^cvitioal if it is 

^-abnormal and supplements in G the Fitting subgroup of 

G . 

By a result of Carter, Fischer and Hawkes [5], every saturated 

formation can be defined locally by a unique full, integrated family of 

formations. 

Now, corresponding to each saturated formation X , every group 

has a characteristic conjugacy class of subgroups called the 

}{-normalizers of the group, which are defined as follows (see [38]). 

(2.2.4) Definition. Let G be a group and E a Sylow system of 

G , and let ^ be a saturated formation which is defined locally by 

the full, integrated family {X(p)} of formations. If TT is the 

characteristic of X , then the X-novmalizev of G aorvesponding to 
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2 is defined to be the subgroup 

Z n n N^ 
TT G peiT 

of G . 

Z , n G^^P) 
P' 

Since G^^P) is a characteristic subgroup of G for each p and 

since, by Theorem 2.1.4, the Sylow systems of G are transitively 

permuted by the inner automorphisms of G , the )<-normalizers of G 

indeed constitute a characteristic conjugacy class of subgroups of G . 

(2.2.5) Lemma (Wright [38]). A Sylow system of a group reduces 

into the corresponding X-normalizer of the group. II 

The following theorem describes the properties of the ^-abnormal 

maximal subgroups and the ^-normalizers of a group, which we will need 

in the lattfer chapters. Though the theorem has been proved by Carter 

and Hawkes [4] for the special case when ^ is a subclass of ^ , 

their proof holds in the general case. 

(2.2.6) Theorem (Carter and Hawkes [!+]). Let Q> be a group and 

1 a Sylow system of G . 

(i) A maximal subgroup of G is ^abnormal in G if and only 

if it complements an ^eccentric chief factor of G . 

(ii) A maximal subgroup of G contains an ^normalizer of G 

if and only if it is ^abnormal in G . 

(Hi) Let M be an ^abnormal maximal subgroup of G into 

which Z reduces and let D and D" be the )^-normalizers of G and 
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M Qorresponding to I and Z n M j respeotively. Then D 5 D" . 

(iv) An ^novmalizer of an '^aritioal maximal subgroup of G 

is an X-normatiser of G . 

(vj The X-normalizers of G are invariant under homomorphisms 

of G . 

(vij An X-normalizer of G covers the ^central ahief factors 

of G and avoids the rest. 11 

Besides the ^-normalizers. a group has, corresponding to any 

saturated formation ^ , a unique conjugacy class of subgroups called 

the ^-projectors of the group. These were first defined by Gaschiitz 

[11] as follows. 

(2.2.7) Definition. Let Y be a class of groups. A subgroup E 

of a group G is called a ^-projector of G if 

(i) E t Y ; 

(ii) H = KE whenever E 5 H 5 G and K 3 H such that 

H/K f Y . 

Apart from the saturated formations a group has ^-projectors 

corresponding to each Schunck class ^ (see [35], for example). 

A saturated formation is necessarily a Schunck class (see [13]) 

though the converse is not, to our knowledge, known to hold. 

If X is a saturated formation which contains the class ^ , then 

it has been shown by Gaschiitz [11] that the X-projectors of a group G 
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are abnormal subgroups of G . Consequently, by Lemma 2.1.8, a Sylow 

system of G reduces into precisely one conjugate of an ^-projector 

of G . 

The following two lemmas describe some of the properties of the 

^-projectors of a group corresponding to a o-closed class X . 

(2.2.8) Lemma (Gaschiitz [11], Schunck [35]). Let G be a group 

and E an X-projeator of G . 

(i) If E S H < G J then E is an X-projector of H . 

(iij If N ^ G ^ then NE/N is an X-projeator of G/N . 11 

(2.2.9) Lemma (Gaschiitz [11], Schunck [35]). Let G be a group 

and N ^ G . If E-^N is an X-projeator of G/N and E is an 

X-projeator of E" j then E is an X-projeator of G . // 

The following theorem describes a relation between the ^-projectors 

and the )(-normalizers of a group corresponding to a saturated formation 

^ which contains the class ^ . 

(2.2.10) Theorem (Carter and Hawkes [4], Hawkes [22]). Let G be 

a group and T. a Sylow system of G . Let E be the X-projeator of 

G into which Z reduaes and D the X-normaliser of G corresponding 

to l . Then 

(i) D < E . Consequentlyevery ^normalizer of G is 

contained in some ^projector of G and every X-porjeator of G 

contains an X-normalizer of G . 
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(ii) If G f M J D = E ; that is to say^ the X-normalizers 

and the ^projeatoi's of G coincide. 

Next, we define the Prefrattini subgroups of a group and their 

analogues. The Prefrattini subgroups of a group were first constructed 

by Gaschutz [10] who showed that these cover the Frattini chief factors 

of the group and avoid the complemented ones. In [21], Hawkes 

described a method of constructing a wealth of characteristic conjugacy 

classes of subgroups of a group, one class corresponding to each 

saturated formation, which have properties analogous to the 

Prefrattini subgroups of the group. 

In the special case when the saturated formation under consideration 

is the trivial formation {l} , the corresponding subgroups obtained by 

Hawkes are precisely the Prefrattini subgroups of the group. 

(2.2.11) Definition. Let X be a saturated formation, not 

necessarily containing the class ^ , let G be a group and let Z be 

a Sylow system of G . Then, the ^-Prefrattini subgroup of G 

corresponding to I is defined as the intersection of all those 

X-abnormal maximal subgroups of G into which Z reduces. 

Since, by Theorem 2.1.4, the Sylow systems of G are transitively 

permuted by the inner automorphisms of the group, its X-Prefrattini 

subgroups clearly constitute a characteristic conjugacy class of 

subgroups. Also, it is immediate from the definition and a repeated 

application of Lemma 2.1.7 that 

(2.2.12) Theorem. A Sylow system of a group reduces into the 

corresponding ^Prefrattini subgroup of the group. // 
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The following theorems describe some of the properties of the 

^-Prefrattini subgroups of a group. 

(2.2.13) Theorem (Hawkes [21]). Let G he a group, I a Sylow 

system of G and W the X-Prefrattini subgroup of G corresponding 

to 1 . Then 

(i) W avoids the ^eccentric, complemented chief factors of G 

and covers the rest ; 

(ii) the X-Prefrattini subgroups of G are invai'iant under the 

homomorphisms of G . // 

(2.2.14) Theorem (Hawkes [21]). Let G he a group, I a Sylow 

system of G and D,W" and W the X-normalizer of G ^ the 

Prefrattini subgroup of G and the X-Prefrattini subgroup of G , 

respectively, each corresponding to Z . Then 

ii) W = DW-'J ; 

Hi) D n W" covers the '^-central, Frattini chief factors of G 

and avoids the rest. Moreover, as I runs through the Sylow 

systems of G , (D n W-O's constitute a characteristic 

conjugacy class of subgroups of G . // 

2.3 Fitting classes and the Injectors 

The concept of Fitting classes was introduced by Fischer in [7] 

and is dual to that of formations. 

(2.3.1) Definition. A class X of groups is called a Fitting 
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class if it is both s -closed and M„-closed. 
N 0 

A Fitting class X is a Fisohev class if it has the following 

additional property: 

If G e X , N 2 G and N 5 H S G such that H/N f S for some 
= =P 

p , then H f X . 

By Lemma 6.1.1 and Theorem 2.3.3 (i) [14], the class N is an 

s-closed Fitting class. Consequently, by a repeated application of 

Theorem 8.2 [13], is an s-closed Fitting class for every 

non-negative integer n . Also by the remarks (iii) and (v) following 

Definition IV. l.b in [34], the class is an s-closed Fitting 

class. 

Clearly, corresponding to any M^j-closed class ^ of groups, a 

group G has a unique largest normal ^-subgroup which we will denote 

by G . G is certainly a characteristic subgroup of G and if X X 

X N , then by Theorem 6.1.3 [14], C^ (g^) 5 G^ . 

For X = ' ^^^ primes, we will 

denote G^ by 0 (G), 0 ,(G) and 0 (G) , respectively. Observe X IT TT TT 7T 

that S ,S is, by Theorem 8.2 [13], a Fitting class, and so 0 , (G) 

is well-defined. 

It is clear from the definition of a Fischer class that every 

s-closed Fitting class is a Fischer class, though the converse is not 

true as was pointed by Fischer in [7]. Thus, in particular, the class 

S for any set tt of primes and the class lî  for every non-negative 
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integer n are both Fischer classes. 

A recent work of Hawkes [23] shows that a meta-nilpotent Fitting 

formation, that is, a formation which is also a Fitting class and is 

contained in ^^ , is always s-closed. We show here that 

(2.3.2) Theorem. Every meta-nil-potent Fischer class is s-alosed. 

Proof. Assume the result is false and let ^ be a meta-nilpotent 

Fischer class which is not s-closed. Let G be a group of minimal 

order among those ^-groups which have subgroups not belonging to ^ . 

Choose among such subgroups of G one, say H , of maximal order. 

Then it is clear from our choice of G and H , that H is a maximal 

subgroup of G . Consequently, H n G^ <) G since H n <t H and 

H n G^ <3<J Gĵ  . Also, since G f N^ and H/H = ^^N^^N ' 

H/H n G^ 6 N , so that H/H n G^ is a direct product of its Sylow 

subgroups. In particular, H = H^H^ ... H^ , where, for each 

i = 1, 2, ..., n , H^ 5 H , H^ ± H n G^ and H^/H n G^ f S for 

some 

_ N 

p . But now, since H n G^ <f G f ̂  and ^ is a Fischer class. 

it follows that H^ f X for each i = l , 2, ...,n. Hence, finally, 

since X is N^^-closed and H^ H for each i = 1, 2, ..., n , 

H f X and we have a contradiction. With this contradiction the proof 

is complete. // 

Now, it has been shown by Fischer, Gaschiltz and Hartley [9] that 

corresp'onding to each Fitting class ^ , each group has a unique 

conjugacy class of subgroups called ^-injectors. These are defined as 

follows: 
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(2.3.3) Definition. A subgroup V of a group G is called an 

^in^eatov of G if 

(i) V f X ; 

(ii) V n N is ^-maximal in N whenever N G . 

The following theorem describes some of the properties of 

^-injectors of a group G . 

(2.3.4) Theorem (Fischer, Gaschiltz, Hartley [9], Hartley [20]). 

(i) All conjugates of an ^in^jeatov of G are ^-injectors of 

G and any tido X-injectors of G are conjugate in G . 

(ii) ^injectors of G are pronormal subgroups of G . 

(Hi) An • ̂ injector of G either covers or avoids a chief 

factor of G . 

(iv) An ^injector of G is an ^injector of every subgroup 

of G which contains it. 

In view of Theorem 2.3.4 (i) - (ii) and Lemma 2.1.8, a Sylow 

system of a group reduces into precisely one ^-injector of the group. 

Consequently, we have 

(2.3.5) Lemma. Let G be a group, I a Sylow system of G and 

V the ^injector of G into which I reduces. Let M be a subgroup 

of G which contains an ^injector of G . If T. reduces into M j 

then V 5 M . 
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Proof. By hypothesis, Z n M is a Sylow system of M . Let W 

tie an ^-injector of G which is contained in M . By Lemma 2.1.6, 

there is a conjugate U of W in M into which Z n M , and hence 

Z , reduces. Clearly, U is, by Theorem 2.3.4 ii) , an X-injector of 

G , and hence, by the same result, a conjugate of V . Thus, it follows 

from the remark preceding this lemma that U = V , and the lemma is 

proved. // 

(2.3.6) Definition. A factor of a group G is called ^aoveved 

if it is covered by an ^-injector of G and ^avoided if it is 

avoided by an ^-injector of G . 

By Theorem 2.3. M- (iii) , a chief factor of a group G is either 

^-covered or ^-avoided. 

We conclude this section by mentioning a result which will be used 

repeatedly in the course of this thesis. 

(2.3.7) Theorem (Fischer [7]). Let X be a Fischer class and V 

an X-injeotor of a group G . Then, for each p dividing ^ " ^p 

Q 
is a Sylow ^-subgroup of V^ . 

It is an immediate consequence of this theorem that 

(2.3.8) Corollary. A chief factor of G is ^covered if and 

only if it is covered by V^ . Consequently, the number of ^covered 

•p-chief factors of any given G-isomorphism type in a chief series of 

G is independent of the series. 
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2 . M- Generalized nilpotent length 

In this section, we discuss briefly a generalization of the 

concepts of the nilpotent length and the p-length of a group. Our 

general reference for this section is [8]. 

Let ^ be a saturated Fitting formation, that is, a saturated 

formation which is also a Fitting class, and let tt be the characteristic 

of X . 

(2.M-.1) Definition. An ascending series 1 = G^ < G^ < . . . < G^ = G of 

normal subgroups of a group G is called an ^series of G if for 

each i = 1, 2, ..., m , either f X or f . 

The upper X-series of G is the series of normal subgroups of 

G defined inductively as follows: Ro = {l} and, for i 2 1 , 

Similarly, the lower ^series of G is the series of normal 

subgroups of G defined inductively as follows: R'o = G and, for 

i ^ 1 , T^ = J and R^ = (t^^ . 

The }(-length of G is defined to be the smallest number of 

X-factors in any X-series of G and is written as . 

It is clear, in view of Lemma 2.2.2, that the factors R̂ /Tĵ  and 

T'VRV" are always non-trivial for i ^ 1 unless T. = G or T? = 1 , 1 1 

respectively. 
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We now state without proof the following elementary fact about the 

X-length of G . 

(2.4.2) Theorem. The invariant y of a group G is the 

nimber of X-faotors in both the upper and the lower Xrseries of G . // 

We end this section with a remark that, if ^ = ̂  , then TT is the 

whole prime set and the invariant hj^(G) ̂  of a group G is the 

familiar nilpotent length h(G), of G . On the other hand, if 

1 = S , then TT = {p} and h^(G) is the p-length I (G) of G . P A P 

2.5 Miscellaneous Results 

First of all, we show 

n 
(2.5.1) Lemma. Let G - || H. be the direot product of the 

i=l ^ 

groups H^, H^, • • • v let, for i = 1, 2, ..., n , TT̂  : G ^ H^ be 

the projection map of G onto H^ and : H^ G the injection 

map of H^ into G . Let K S G . Then 

n 
(i) Cg(K) = 

i = l ̂  1 

(ii) Ng(K) 2 Ng 
n 

KTT.y. 1 1 

(Hi) K is a Sylow ^-subgroup or a maximal nilpotent subgroup 
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n 
of G if and only if Y. - f Ktt.u. and^ for each 

i-1 

i = 2, ...,nj Ktt̂  is a Sylow ^-subgroup of H^ in 

the first case and a maximal nilpotent subgroup of H^ in 

the second ease. 

Proof. (i) An element g of G centralizes K if and only if 

, KttJ = {1} for all i = l,2, . . . , n , that is, if and only if 

gTT̂  ^ '̂ H ^^^ i = l, 2, . . . , n . Hence (i) holds. 

n 
(ii) Let g i N (K) . Since g = ] | gTT.y. and, for all j i , G i = l 1 1 

gTT̂ ŷ  centralizes KiT̂ ŷ  , we have that 

gTT.y. 
[KTT.y.jS = (KTT.y.) ^ ^ = (K^jTT.y. = Ku.y. 

Thus e normalizes each KTT.y. and so it normalizes their ^ 1 1 

product. 

(Hi) Suppose first that K is a maximal nilpotent subgroup of 

G . Then clearly Ktt̂  is a nilpotent subgroup of H^ for each 

i = 1, 2, ..., n . Let, for each i = 1, 2, ..., n , K? be a maximal 

nilpotent subgroup of H^ which contains KlT̂  . Then 

n n 
K 5 KTT.y. S K.y.=:L, 1 1 T 1 1 1=1 1=1 

Hence, since L is a nilpotent subgroup of G , it follows by the 

maximality of K that K = L , and, therefore, also Ktt̂  = K̂ " for 
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each i - 1, 2, n , as required. 

Suppose next that Ktt^ is a maximal nilpotent subgroup of H^ 

for each i = 1, 2, n , and that K = KTT.y. . Let K- be a 

1=1 

maximal nilpotent subgroup of G which contains K . Then from what 

has been just shown above, together with our assumptions, 

n n 
K''« = K''>7T.y. = KTT.y. = K , 

i=l ^ ^ i=l 1 1 

as required. 

The other half of (HiJ can be proved similarly. // 

Next we show 

(2.5.2) Lemma. Let H and K be any two groups^ let G = H wr K 

and let B he the base group of G . Let^ for eaoh k f K ̂  

TT̂  : B H be the projeotion map of B onto H and y^ : H >> B the 

the injection map of H into B . If {l} L < B and 

L = T T L̂ n R . -then CAh) = C„(L) . Also, if S is a Sylow subgroup 
1 ,, K K G D keK 

of L ^ then S = Stt y . 
keK ^ ^ 

Proof. By hypothesis, Ltt y / {l} for some k f K . Let K K 

g = k'b , k' f K , b f B , be an element of C ^ C D . We show that 

k' = 1 . Clearly, ( L V k ) " ' " = ^ K k ' ^ " ^ ' ' 

[LTTĵ yĵ )̂  ^ Hy^^, . But, also (b^j^yj^)^ = Lu^y^ 5 Hy^^ . Hence 
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( L I T U , ] ® S Hy, n Hy, , , , and so, since LIT y t {l} , it follows that K K K KK K K 

k = kk' , whence k' = 1 and g f B , as required. The final 

statement of the lemma now follows from 2.5.1 (iii). // 

The following result of Huppert [26], which we quote here without 

proof, will prove very useful in establishing the main result of the 

first part of this thesis. 

(2.5.3) Lemma (Huppert [26]). Let A, B and C be any three 

subgroups of a group G . Then A n BC = (A n B)(A n C) if and only 

if AB n AC = A(B n C) . // 

Finally, we have 

(2.5.4) Lemma. Let A and B be any two permutable subgroups of 

a group G such that each of A and B either covers or avoids each 

chief factor of G . Then A n B covers all those chief factors of G 

which are covered simultaneously by A and B if and only if AB 

avoids all those chief factors of G which are avoided simultaneously 

by A and B . 

Proof. Let ri be a chief series of G , a the product of the 

orders of those chief factors of G in n which are covered by both 

A and B , 3 the product of orders of those chief factors in X] 

which are covered by A but avoided by B and y the product of the 

orders of those chief factors in RI which are avoided by A but 

covered by B . Then it is easy to check that |A| = a3 and 

B| = ay . Also |A n B| 5 a since every chief factor of G which 

is not avoided by A N B is covered by both A and B . 
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Suppose first that A n B covers all those chief factors of G 

which are covered by both A and B . Then from what has been just 

said |A n B| = a and so | A B | = | A | | B | / | A N B | = agy . Consequently 

AB avoids all those chief factors of G in n which are avoided by 

both A and B . 

On the other h a n d , if AB avoids all those chief factors of G 

which are avoided simultaneously by A and B , t h e n , since AB covers 

all those chief factors of G which are covered either by A or B , 

A3Y = |AB| , whence |A n B| = a , that i s , A n B covers all those 

chief factors of G in n which are covered simultaneously by A and 

B . 

Since ri was an arbitrary chief series of G , the lemma is 

finally p r o v e d . // 



30 

CHAPTER 3 

INJECTORS AND ANALOGUES OF THE PREFRATTINI SUBGROUPS 

Throughout this chapter and the next, ^ will denote a saturated 

formation, E a Fischer class, G a group, Z a Sylow system of G 

and V the ^-injector of G into which Z reduces. Moreover, D , 

W and W" will denote the ^-normalizer of G , the £-Prefrattini 

subgroup of G and the Prefrattini subgroup of G , respectively, all 

three corresponding to the same Sylow system Z . 

Our main aim in this chapter is to show that W and V , and 

hence, W" and V , are permutable subgroups of G , and that WV , 

W"V , W n V and W" n V each have a covering/avoidance property 

with respect to the chief factors of G . This occupies the whole of 

Section 3.3. 

The first two sections of this chapter are preliminaries to 

Section 3.3. In Section 3.1, we consider those ^-avoided, 

complemented chief factors of G at least one of whose complements in 

G contains an ^-injector of G . In Section 3.2, we establish a 

relation between the ^-eccentric, ^-avoided, complemented chief 

factors of G which are covered by WV and the ^-eccentric, 

H-covered, Frattini chief factors of G which are avoided by W n V . 

The Corollaries 3.3.3 and 3.3.7 have been published in my paper 

[29], where my approach in proving these results was different from 

the present one. The alternative approach taken here relies on the 

main result of Section 3.2, namely Theorem 3.2.2. 
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3.1 Partially H.-complemented chief factors 

In [20], B. Hartley calls a complemented factor H/K of G an 

^-complemented factor if every complement of H/K in G contains 

some ^-injector of G . ^-complemented chief factors of G are among 

those chief factors of G which are of particular interest to us in 

the last section. In fact we will need to consider a slightly more 

general situation which necessitates the following definition. 

(3.1.1) Definition. A complemented factor H/K of G is said to 

be partially ^oom-plemented in G if at least one of its complements 

in G contains an ^-injector of G . 

Clearly, an ^-complemented factor of G is partially 

H-complemented in G , though the converse is not true as the following 

example shows. 

(3.1.2) Example. Let 

G = <x, y, z x^ y^ = z^ = 1, z ^yz = y xy = yx, xz = zx) , 

a dihedral group of order 20 , and let H = N , the class of all 

finite nilpotent groups. In G , (x, y> is the H-injector of G 

and it complements the chief factor <y, z>/<y> of G . But (y, xz) 

is also a complement for the latter in G , and clearly 

<y, xz> ^ <x, y) . Thus, <y, z>/<y> is a partially H-complemented 

factor of G which is not ^-complemented in G . 

It is also not true that an ^-avoided, complemented factor of G 

is necessarily partially ^-complemented in G as the following 
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example shows, though a partially H-complemented factor of G is 

obviously ^-avoided and complemented. 

(3.1.3) Example. Let G be the semidirect product of a cyclic 

group <z) of order 5 by the direct product H of a cyclic group 

<x> of order 2 and a cyclic group <y) of order 4 , with the 

- 1 - 1 - 1 2 action of H on <z) given by: x zx = z and y zy = z . Let 

H = N , the class of all finite nilpotent groups. In G , xy^ acts 

trivially on z , and so <z) x <xy^) is a nilpotent subgroup of G . 

In fact, it is the ^-injector of G . Consider the chief factor 

<z, x)/(z) of G . It is certainly avoided by (z) x and 

complemented in G by <z, xy> and (z, y> , which are all its 

complements in G . But neither <z, xy> nor <z, y) contains 

(xy ) . Thus, <z, x>/<z) is an ^-avoided, complemented chief factor 

of G which is not partially ^-complemented in G . 

The following theorem gives a necessary and sufficient condition 

for a complement of an ^-avoided, complemented chief factor of G to 

contain an ^-injector of G . 

(3.1.4) Theorem. Let H/K be a complemented p-ahief factor of 

G and M a complement for H/K in G . Then M contains an 

Q 
^in^eotor of G if and only if it contains V^ . 

Proof. Let B = Core^(M) and let A/B be the unique minimal 

b 

normal subgroup of G/B . As is well known (see for instance Theorem 

3.1 of [10]), A - Cg(H/K) . 
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Assume first that M contains an ^-injector of G . Then 

clearly both H/K and A/B are H-avoided in G , and, therefore, by 
Q 

Corollary 2.3.8, they are avoided by V^ . Thus 

H, V^ 
PJ 

5 H n v ' ^ = K n V ^ 5 K , and so V^ < C^(H/K) == A . But then P P P G 

V^ = V^ n A = V^ n B 5 B S M , as required. P P P 

G G Conversely, if M f: V^ , then clearly A/B is avoided by V^ , 

and, therefore, is ^-avoided in G . Since it is also self-centralizing 

in G/B , it follows, by Lemma 4 of Hartley [20], that M contains an 

^-injector of G , as required. // 

As immediate consequences of Theorem 3.1.4, we have: 

(3.1.5) Corollary. A aom-plemented p-ahief factor of G is 

partially ^oom-plemented in G if and only if at least one of its 

Q 
oom-plements in G contains V^ . // 

(3.1.6) Corollary. If H/K is a oomplemented p-chief factor of 

G such that K ^ V^ ^ then H/K is H-oomplemented in G . 11 

Another simple consequence of Theorem 3.1.4 is the following 

corollary. 

(3.1.7) Corollary. A complemented p-chief factor H/K of G is 

G G 

partially ^complemented in G if and only if HV^/KV^ is 

non-trivial and complemented in G . 



34 

Proof. Assume first that H/K is partially ^-complemented in G 

and let M be a complement for H/K in G which contains an 

G r H-injector of G . Then, by Theorem 3.1.4, M S V^ , and so M i KV^ . 

J G 0 0 But M f: HV since M i H , and hence M complements HV /KV . 
P P P 

G G Conversely, if HV^/KV^ is non-trivial and complemented in G , 

then, by Corollary 3.1.6, it is ^-complemented in G . Thus, since a 

G G 

complement for HV^/KV^ is also a complement for H/K in G , H/K 

is partially ^-complemented in G , as required. // 
The next result gives a necessary and sufficient condition for G 

to have a partially ^-complemented chief factor. 

(3.1.8) Theorem. G has a partially ^complemented p-ahief 

factor if and only if some p-chief factor of G is H-avoided in G . 

Proof. Assume first that G has an ^-avoided p-chief factor 

G G G and consider G ,V . If G ,V = G , then G/V is a p'-group, and p' p P' P P 
Q 

SO V^ contains a Sylow p-subgroup of G . But then, by Theorem 

2.3.7, V is a Sylow p-subgroup of G , whence every p-chief factor 

of G is ^-covered in G , contrary to our assumption. Thus, 

G < G . Now, if M is a maximal subgroup of G which contains 
Q 

V Gp, , then, by Theorem 3.1.M-, the unique minimal normal subgroup of 

G/Core^(M) is partially 11-complemented in G . b — 

The converse of this theorem is, on the other hand, obvious, since 
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a partially ^-complemented chief factor of G is necessarily 

H-avoided. // 

We end this section with a result which describes a relation 

between the partially ^-complemented chief factors of G in any two 

chief series of G . 

(3.1.9) Theorem. Given any two ahief series of G ^ there is a 

one-one aorres-pondenoe between partially ^complemented chief factors 

of G in one and those in the other^ corresponding chief factors being 

G -isomorphic. 

Proof. Let r) i and ri2 be any two chief series of G . Consider 

the chief series yi and Ua of G which are obtained by multiplying 

G G each member of ri i and Tl2 , respectively, by V^ and refining V^ . 

By Corollary 3.1.7, there is one-one correspondence between partially 

^-complemented p-chief factors of G in n^ and the complemented 
Q 

p-chief factors of G in y^ above V^ , for each i - 1, 2 , 

corresponding chief factors being G-isomorphic. But, by Lemma 2.6 of 

Carter, Fischer and Hawkes [5], the complemented p-chief factors of G 

G in yi and y2 above V are in one-one correspondence, corresponding 

chief factors being G-isomorphic. Hence, the result clearly holds 

for partially H-complemented p-chief factors of G in m and ri2 • 

Since p was an arbitrary prime, the result holds for all partially 

ti-complemented chief factors. // 
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•N 

3• 2 Relation between tj-chief factors and ^jj-chief factors 

In order to formulate the main result of this section we require 

the following definition. 

(3-2.1) Definition. (i) A p-chief factor H/K of G is said 

to be n-Frattini in G if it is H-covered and H n v'̂ /K n V*̂  is 
P P 

Frattini in G . 

(ii) A chief factor of G is called an ti-ahief factor if it is 

H-avoided, complemented but not partially H-complemented in G , and a 

^U-ahief factor if it is H-covered, Frattini but not H-Frattini in 

G . 

Our main result of this section is: 

(3.2.2) Theorem. Given any chief series of G ^ there is a 

one-one correspondence between the H~chief factors and the 'iE-ahief 

factors in the series, corresponding chief factors being G-isomorphio. 

Proof. Let 

ri:l = G „ < G < . . . < G = G 0 1 m 

be a chief series of G and let A be the set of all chief factors of 

G in n which are G-isomorphic to ^^/G^ ^ for some i , 

1 < i 5 m . Let a be the number of ^-covered, complemented chief 

factors of G in A , 3 the number of chief factors in A , y 

the number of chief factors in A , and 6 the number of partially 
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^-complemented chief factors of G in A . Clearly, the number of 

complemented chief factors of G in f] which are G-isomorphic to 

is a + Y + 5 in view of Theorem 2.3.4 (iii) and Corollary 

2.3.8. 

Consider the chief series 

n' : 1 = G^ n V^ 5 G n V^ 5 ... 5 G n V^ = V^ = 0 p 1 p I" P P 

5 V^G < ... 5 V^G = G p 0 p i p m 

Q 
of G through V^ , where p is the prime dividing I'̂ î '̂ i-il ' 

let H/K f A . If H/K is either an ^-covered, complemented chief 

G G factor of G or a $H-chief factor, then H n V /K n V is P P 

non-trivial and complemented in G since in the first case a complement 

G G 

of H/K is also a complement of H n V^/K n V^ and in the second case 

G G H n V^/K n V is complemented in G , by definition. On the other 
G G 

hand, if H/K is partially ^-complemented in G , then ^^p/^'^p » 

by Corollary 3.1.7, non-trivial and complemented in G . 
G G G 

Thus, since H/K is G-isomorphic to H n V^/K V^ if V^ 

G G covers H/K and H/K is G-isomorphic to HV^/KV^ otherwise, it 

follows, in view of Theorem 2.3.4 (iii) and Corollary 2.3.8, that the 

number of complemented chief factors of G in ri' which are 

G-isomorphic to is a + 3 + 6 • Consequently, by Satz 4.1 of 

Gaschiitz [10], a t 3 + 6 = a + Y + <S , whence 3 = Y • 
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Since was an arbitrary chief factor in n , the theorem 

is finally proved. // 

(3.2.3) Corollary. Given any chief series of G ^ there is a 

one-one correspondence between the ^-eccentric E-chief factors and 

the ^eccentric m-chief factors in the series^ corresponding chief 

factors being G-isomorphic. // 

3.3 _FH$-sub groups 

In this section, we establish the permutability in G of V and 

W , and hence that of V and W" , and describe the covering/avoidance 

properties of VW , VW- , V n W and V n W- , respectively. 

First of all, we show: 

(3.3.1) Theorem. W n V covers the ti-Frattini chief factors and 

the H-coveredj ^central chief factors of G and avoids the rest. 

In order to prove Theorem 3.3.1, we need the following lemma. 

(3.3.2) Lemma. W n V n is a Sylow p-subgroup of both W n V 

Q 
and V n W . 

P 

Proof. Since Z reduces into W according to Theorem 2.2.12 and 

into V according to our assumption, it follows, by Lemma 2.1.7, that 

Z reduces into V n W . Consequently, W n V n E is a Sylow 

p-subgroup of V n W , as required. Moreover, since Z also reduces 
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G G into V , we have, by the same lemma, that E reduces into W n V , P P 

G G whence ^ ^p ^p is ^ Sylow p-subgroup of W n V^ . But, by our 

Q 
assumption and by Theorem 2.3.7, V n Z = V n E . Thus, finally, 

P P P 

G G W n V n Zp = W n V^ n is a Sylow p-subgroup of V^ n W , and the 

lemma is proved. // 

We can now proceed with the proof of Theorem 3.3.1. 

Proof of Theorem 3.3.1. Let H/K be a p-chief factor of G for 

some p . Suppose first that H/K is either ^-covered, ^-central or 

^-Frattini in G . Then, since H/K is ^-covered in either case, 

G G 

H n V^/K n V^ is, by Corollary 2.3.8, non-trivial. Thus 

G G 
H n V /K n V is covered by W since, in the first case, it is 

P P 

^-central in G , being G-isomorphic to H/K , and, in the second case, 

it is Frattini in G , by definition. Consequently, H = K H n V^ f Ĝ  G ^ G H n V^ = K K n V^ H n V n W = K H n V n W 
I P. Pj I P J P 

, and so H/K is 

n 

covered by V^ n W . By Lemma 3.3.2, it is then covered by W n V , as 

required. 

Suppose next that H/K is an F-eccentric $H-chief factor of 

G . Then, since H/K is H-covered in particular, once again 

H n V^/K n V*̂  is, by Corollary 2.3.8, non-trivial. But this time 
P P 

H n V^/K n V^ is avoided by W since, in the first place, it is, by 
P P 

definition, complemented in G and, moreover, it is ^-eccentric in 
Q 

G , being G-isomorphic to H/K . Thus W n V^ avoids H/K and 
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hence, by Lemma 3.3.2, W o V avoids H/K , as required. 

Since p was an arbitrary prime dividing |g| , and since W n V 

avoids the ^-avoided chief factors of G and, in view of Theorem 

2.2.13 ii) , also the ^-eccentric, complemented chief factors of G , 

the theorem is finally proved. // 

In particular, when ^ is the trivial saturated formation {l} , 

W = W" by Theorem 2.2.14 ii) , and all chief factors of G are 

^-eccentric. Thus, putting £ = {l} in Theorem 3.3.1, we have 

(3.3.3) Corollary. W" n V Qovevs the ^Frattini chief factors 

of G and avoids the vest. 

With the help of Theorems 3.2.2 and 3.3.1 we can now calculate 

VW as follows: 

Let a be the product of the orders of the ^-eccentric, Frattini 

chief factors of G in a chief series r] of G , and 3 the product 

of the orders of the ^-central chief factors of G in ri . Then, by 

Theorem 2.2.13 (i) and the order argument, |w| = a3 • Similarly, if 

Y is the product of the orders of the ^-eccentric, ^-Frattini chief 

factors of G in n and 6 the product of the orders of the 

H-covered, central chief factors of G in r) , then, by Theorem 

3.3.1 and the order argument, |v n w| = Sy . Furthermore, if A is 

the product of the orders of the ^-eccentric, ^-avoided, Frattini 

chief factors of G in n , and ijj the product of the orders of the 

£-eccentric, $^-chief factors of G in n , then a/y = X\p . Thus, 

vw| = |v|.|w|/|vnw| = |v|.3AiiJ/6 . But 3/6 is the product of the 

orders of the X~central, Ji-avoided chief factors of G in n ? and. 
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by Corollary 3.2.3, ip is that of the ^-eccentric, ^-chief factors of 

G . Hence, clearly, we have shown 

(3.3.4) Lemma. |vw| is the product of the orders of those ahief 

factors in a chief series of G which are not ^eccentria^ -partially 

^complemented in G . 11 

(3.3.5) Definition. The FH$-subgroup (H$-subgroup) of G 

corresponding to Z is defined to be the intersection of all those 

^-abnormal maximal (maximal) subgroups of G each of which contains an 

^-injector of G and into each of which E reduces. 

We now show 

(3.3.6) Theorem. If Z is the T^-subgroup of G corresponding 

to Z J then Z = VW . In particular^ V and W permute in G and 

VW avoids the ^-eccentric, partially ^complemented chief factors of 

G and covers the rest. 

Proof. From the definitions of Z and W , we have that W < Z . 

Also, from the definition of Z and Lemma 2.3.5 we have that V S Z . 

Thus, it will be sufficient to show that Z avoids the F-eccentric, 

partially H-complemented chief factors of G since then, in view of 

Lemma 3.3.4, |z| 2 |vw| , and, therefore, Z = VW . 

Let H/K be an ^-eccentric, partially H-complemented p-chief 

G G 

factor of G for some p . By Corollary 3.1.7, HV^/KV^ is 

non-trivial and complemented in G . Let M be a complement of 
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G P HV /KV in G into which Z reduces. By Theorem 2.2.^ (i), M is 
P P 

G G Z-abnormal in G since HV /KV is F-eccentric in G , being 
- P P = 

G-isomorphic to H/K . Also, by Corollary 3.1.5 and Lemma 2.3.5, 

M ^ V . Thus, by the definition of Z , Z < M . But then, since M 

complements H/K also, Z avoids H/K , as required. From the 

arbitrariness of p and H/K , it follows thus that Z avoids the 

^-eccentric, partially ^-complemented chief factors of G and hence 

Z = VW . The rest of thê /̂iejama-now follows, by Lemma 3.3.4. // - -rc-n 

In the special case when £ = {l} , the trivial saturated 

formation, the ^0-subgroups of G coincide with the M-subgroups of 

G and W" = W , by Theorem 2.2.14 (i). Moreover, all chief factors of 

G are ^-eccentric. Thus, putting ^ = {l} in Theorem 3.3.6, we have 

(3.3.7) Corollary. W"V is the M-subgroup of G corresponding 

to E . In particular^ W" and V permute in G and VW>'« avoids 

the partially ^complemented chief factors of G and covers the 

rest. II 
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CHAPTER 4 

SOME PROPERTIES OF THE LATTICE ^ ( D , V) 

4 .0 Introduction 

In this chapter, vi-4 prove pur main result of the first part of 

our thesis. This can be stated as follows. Let ^ ( D , V) be the >v\y 

lattice of subgroups of G generated by D, W" and V . 

(M-.O.l) Theorem. (i) The lattice ^ ( D , W's V) is distributive. 

(ii) Any two subgroups of G in ^ ( D , W-, V) are ipermutahle 

in G . 

(Hi) Each subgroup of G in ^ ( D , W " , V) has a covering/avoidance 

property with respect to the chief factors of G . 

(iv) l reduces into each subgroup of G in ^ ( D , W^, V) . 

(v) If A is a subgroup of G in ^ ( D , W'-, V) ^ then the 

family | a is an automorphism of G} of subgroups constitutes a 

characteristic conjugacy class of subgroups of G . 

At the end of Section 4 . 2 we give an example of G in which 

K D , W " , V) is a free distributive lattice on the three generators. 

Throughout this chapter, V = E n V , D - Z n D and 

M:'; = Z n W" for each p . Since E reduces into V , V is a 
P P P 

Sylow p-subgroup of V . Also, by Lemma 2 . 2 . 5 and by Theorem 2 . 2 . 1 2 



w ith the trivial saturated formation {l} in the role of X in the 

theorem, D^ and are Sylow p-subgroups of D and W" , 

respectively, for each p . 

4.1 The sublattice generated by D and V 

In this section, we establish Theorem 4.0.1 for the sublattice of 

^(D, W", V) generated by D and V , except for part (v) which will 

be dealt with in a single general step in the next section. Note that 

every 2-generator lattice is distributive, so we need not do anything 

about (i) at this stage. 

The first four lemmas concern the subgroup ^V^, D^) of G for 

each p . 

(4.1.1) Lemma. (V , D > = V D . P P P P 

Proof. By Theorem 2.3.7, V^ is a Sylow p-subgroup of a normal 

subgroup of G . Thus, by 1.1 of Rose [32], V^ is pronormal in G , 

and hence, by 1.2 of Rose [32], also in Z^ . Since V^ is, moreover, 

subnormal in , it follows by 1.5 of Rose [32], that ^^ - ^p • 

Hence, finally, V D = D V = <V , D ) , as required. // p p p p P P 

(4.1.2) Lemma. Let V^ be a Sylow p-subgroup of a normal 

subgroup N of G . Then V^D^ is a Sylow p-subgroup of ND . 

Proof. Since V D 5 Z , V D is a p-subgroup of ND . Let 
P P P P P 
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P be a Sylow p-subgroup of ND which contains ^p^p • Clearly 

NDp/N = NP/N . Thus, by the modular law, P = D^CN n P) . But 

N n P > Vp and V^ is a Sylow p-subgroup of N , Hence N n P = V̂  

and so ^p^p = P » as required. // 

(4.1.3) Lemma, ^p^p covers all those p-ahief factors of G 

which are not simultaneously ^eoaentria and ^avoided and avoids 

the rest. Consequently, V^ n D^ covers the Trcentralj E-covered 

p-chief factors of G and avoids the rest. 

Proof. Clearly V^D^ covers the ^-covered p-chief factors of 

G since, by Definition 2.3.6, V^ does so. Also, by Theorem 2.2.6 (vi) , 

D , and hence V D covers the F-central p-chief factors of G . 
P P P 

Let H/K be an H-avoided, ^-eccentric p-chief factor of G . By 

r G G Corollary 2.3.8, V avoids H/K . Thus HV /KV is a non-trivial ' p P P 

p-chief factor of G , and hence ^-eccentric in G , being 

G-isomorphic to H/K which is ^-eccentric in G . By Theorem 2.2.5 (v) 

and (vi) , it follows now that v S ^ n v S = v S ^ n V^K . Equivalently, 

H n V^D - K n V^D 
p P PJ P P Pj 

moreover. 

G r 
V n H n V D -

P P Pj 

, using the modular law. Thus, since, 

P P P 
K n v S 

P P, 

and 

H n V^D ^ K n V^D , P P P P 
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G G G we have that H n V D = K n V D . Therefore, V D , and hence 
P P P P P P 

VpD^ , avoids H/K . Since H/K was an arbitrary H-avoided, 

F.-eccentric p-chief factor of G , we have shown that V D has the - p p 

required covering/avoidance property. 

A simple order argument now shows that n D^] is the product 

of the orders of the central, ^-covered p-chief factors of G in 

any chief series of G . Since, in view of Theorems 2.2.6 (vi) and 

2.3.4 ( H i ) and Definition 2.3.6, V n D avoids all those chief 
P P 

factors of G which are not simultaneously ^-central and ^-covered, 

it follows finally that V^ n D^ , too, has the required 

covering/avoidance property and we are done. // 

(4.1.4) Lemma. V^D^ is a Sylow p-subgroup of (V, D) = A . 

Q 
Proof. We proceed by induction on G . Let ^/^p ~ "̂ pi P, 

and = 0 , 
P P'P 

G/V^ P 
By Theorem 2.3.7, V^ is a Sylow p-subgroup 

Q 
of V and hence that of J too. Assume first of all that every 

P 
Q 

p-chief factor of G/V is F-central in G . Then clearly ^ p = 

G/I ^ £(p) - £ , where {£(p)} is the integrated and full family of 

formations which defines £ locally. In particular, G/J f £ , so 

that G = JD by Theorem 2.2.6 (vi). But now it follows, by Lemma 

4.1.2, that ^p^p ^ Sylow p-subgroup of G and hence certainly 

that of A , as required. 
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Q 

Thus 5 assume next that not every p-chief factor of G/V^ is 

G G _F-central in G/V and let T/V be the intersection of all maximal P P 
subgroups of G/Vp of index a power of p . Clearly, T/V^ is a 

Q 
characteristic subgroup of G/V^ , and, by Theorem 2.5 of Carter and 

Hawkes [4], some minimal normal p-subgroup S/T of G/T is an 

^-eccentric chief factor of G . Since T/J is the Frattini subgroup 

of G/J icf. last sentence on page 179 in Carter and Hawkes [4]), 

S/T is also complemented in G . Let M be a complement of S/T in 

G into which E reduces and let D" be the X~normalizer of M 

corresponding to Z n M . By Theorem 2.2.6 (ij , M is an ^-abnormal 

maximal subgroup of G , and so, by Theorem 2.2.6 (iii) , D 5 D" . 

Moreover, since M/J supplements the Fitting subgroup I/J of G/J , 

M/J is, by definition, an ^-critical maximal subgroup of G/J . 

Hence, by Theorems 2.2.6 (iv) and (v), DJ = D"J . 

Now, let D" = Z n D" = FZ n M] n D" . D" is, by Lemma 2.2.5, 
P P ^ P ^ P 

a Sylow p-subgroup of D- . Also, D^ = n D 5 n D- = D̂ ' . On 

the other hand, by Corollary 3.1.6 and Lemma 2.3.5, V 5 M , so that 

V is, by Theorem 2.3.4 (iv) , an ^-injector of M . Hence, by the 

induction hypothesis, ^p^p ^ Sylow p-subgroup of (D", V> . But 

D-'V = D V since, by Lemma 4.1.2, D V is a Sylow p-subgroup of p p p p ' p p 

DJ = D"J , and, moreover, D^V^ ± D^V^ . Thus, finally, D^V^ is a 

Sylow p-subgroup of (D-S V) , and hence certainly that of A , as 

required. // 

Since p was an arbitrary prime dividing G| in the preceding 

four lemmas, it follows from Lemma 4.1.4 that 
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(V, D> V D = V . D / P P V n D P P 

But V n D = (V n D) since, by Lemma 4.1.3, V n D is the P P P P P 

product a of the orders of the ^-central, ^-covered p-chief 

factors in any given chief series of G , while on account of the 

avoidance properties of V and D , |(V n D)^! S a . Hence, 

<V, D> 5 V . D / (V n D) VD 

and we have shown that 

(4.1.5) Theorem. DV = VD . 

It follows now from Lemmas 4.1.3 and 4.1.4 that 

(4.1.6) Theorem. DV avoids the ^eooentrio, ^avoided ohief 

factors of G and covers the restj while V n D covers the 

'^centralj ̂ covered ohief factors of G and avoids the rest. // 

Finally, we show 

(4.1.7) Theorem. E reduces into DV and into D n V . 

Proof. By Lemma 4.1.4, n DV is a Sylow p-subgroup of DV 

for each p . Let TT be any set of primes. Clearly 

<Z n DV p C TR> 5 2 n DV , and so Z n DV is a Hall 7T-subgroup of 

p TT TT 

DV . It remains to note that E reduces into D n V because of Lemma 2.1.7, 
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4.2 Distributivity of ^ ( D , W'S V) 

We begin this section by describing the covering/avoidance 

property of V n W" n D . 

(4.2.1) Theorem. V n W" D covers the ^-aentfalj H-Frattini 

chief factors of G and avoids the vest. 

We need the following lemma in order to prove this result. 

(4.2.2) Lemma. Z reduces into both V n W" n D and 

Q 
Vp n W" n D . Moreover^ n (V n n D) is a Sylow p-subgroup of 

Q 
V^ n n D as well as that of Y n W" n D j for each p . 

Proof. By Theorem 2.2.12 with {l} , the trivial saturated 

formation, in the role of X in the theorem, E reduces into W''« , 

and, by Lemma 2.2.5, E reduces into D . Also, by our assumption, E 

G G 
reduces into V , and, since V^ 3 G , E reduces into V^ . Thus, it 

follows, by a repeated application of Lemma 2.1.7, that E reduces into both 

G t 
V n W" n D and V n S- n D . Consequently, V n D n W« is a 

p P P P 

E n V 
P Pj 

n W'« n D is a Sylow 
P P 

Sylow p-subgroup of V n W" n D and 

p-subgroup of Vp n D n W-'̂  , for each p . But, by Theorem 2.3.7, 

p 

E n V = V ; hence the result. // 
P P P 

We can now prove Theorem 4.2.1 as follows. 
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Proof of Theorem 4.2.1. In view of Theorems 2.2.6 (vi) ^ 2.2.13 (i) 

and 2.3.4 (iii) , V n W" n D clearly avoids the complemented, the 

H-avoided and the ^-eccentric chief factors of G . Let H/K be a 

Frattini, Ji-covered, ^-central p-chief factor of G for some p 

dividing |g| and assume first that H/K is ^-Frattini in G . 

G G 
Then, by our assumption and Definition 3.2.1 (i), H n V^/K n V^ is 

a non-trivial Frattini p-chief factor of G . Moreover, 

c c 
H n V /K n V is F-central in G , being G-isomorphic to H/K , p p -

which is F-central in G . Thus, by Theorem 2.2.14 (ii) , n D 

G G 
covers H n V /K n V . But now 

P P 

Q 
H n V n W" n D 

P 
K = 

P 

G 
n D K n V^ K = H n V 

PJ P. 
K = H 

since H/K is H-covered in G and hence, by Corollary 2.3.8, is 

P G 
covered bv V . Hence V n W" n D covers H/K . By Lemma 4.2.2, it 

p p 

follows then that V ri W- n D , too, covers H/K . 

Assume next that H/K is a $H-chief factor of G . Then, by 

G G 

Definition 3.2.1 (ii), H n V^/K n V^ is complemented in G . Thus» 

by Theorem 2.2.14 (ii) > H n V^/K r. V^ is avoided by Ŵ ^ n D . In 

particular, V^ ii Ŵ'- ri D avoids H/K . Hence, once again by Lemma 

4.2.2, H/K is avoided by V n D . The proof is complete. 

Having proved Theorem 4.2.1, we proceed to show 

// 
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(4.2.3) Lemma. V n W'D = (V n W='0(V n D) and 

VD n VW'*' = V(D n W-'O . 

Proof. By Theorem 2.2.14 ( i ) ^ W-D = W . Thus, by Theorems 

3.3.1, 4.1.6 and 4.2.1, and Corollary 3.3.3, 

V n = |V N W-'̂ L |V n D ] / | V n n D| = | (V n W " ) ( V n D ) | . 

Moreover, <V n , V n D) 5 V n W-D . Thus, the first of the two 

distributive equalities of the theorem clearly holds. The second 

distributive equality of the theorem is now a consequence of Lemma 

2.5.3. // 

The following theorem describes the covering/avoidance property of W' 
VD n VW5'- . 

(4.2.4) Theorem. VD n VW" oovers ( i ) the ^aovered^ ( i i ) the 

^oentval, Frattini and ( i i i ) the ^-oentval U-ahief factors of G ^ 

and avoids the vest. 

Proof. By Theorems 4.1.5 and 2.2.14 ( i ) , we have 

(VD)(VW>'0 = V(DW") = VW . 

Thus, by Theorem 3.3.6, (VD)(VW'0 avoids the £-eccentric, partially 

^-complemented chief factors of G . In particular, in view of Theorem 

4.1.5 and Corollary 3.3.7, it avoids all chief factors of G which 

are avoided simultaneously by VD and VW" . Hence, by Lemma 2.5.4, 

VD n VW" covers all those chief factors of G which are covered 

simultaneously by VD and VW" , and avoids the rest. The former are, 

according to Theorem 4.1.6 and Corollary 3.3.7, precisely the chief 
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factors i i ) , i i i ) and ( H i ) mentioned in the theorem. The proof is 

complete. // 

The next theorem describes the covering/avoidance property of 

D n W"V . 

(4.2.5) Theorem. D n W-V covevs (i) the Yroentval^ ^covered:, 

( i i ) the T-oentral, Fvattini and ( i i i ) the ^-oentval, U-ohief 
s=: 

factors of G J and avoids the rest. 

Proof. By Theorem 2.2.14 ( i ) , DCWW) = WV . Thus, by Theorem 

3.3.6, D(W"V) avoids the ^-eccentric, partially H-complemented 

chief factors of G , These are, in view of Theorem 2.2.6 (vi) and 

Corollary 3.3.7, precisely those chief factors of G which are avoided 

simultaneously by D and W"V . Hence, by Lemma 2.5.4, it follows 

now that D n W"V covers all those chief factors of G which are 

covered simultaneously by D and W>'>V , and avoids the rest. It is 

easy to see that the former are, according to Theorem 2.2.6 (vi) and 

Corollary 3,3.7, precisely the chief factors fiJ, ( i i ) and ( i i i ) 

mentioned in the theorem. This remark completes the proof. // 

As an easy consequence, we have 

(4.2.6) Lemma. D n VW' = (D n V)(D n W'O and 

DV n DW" = D(V n W") . 

Proof. Let a be the product of the orders of the F^-central 

H-chief factors of G in a chief series n of G and let 3 be the 

product of the orders of the F-central, H-covered, Frattini chief 

factors of G in Ti . Then, by Theorems 2.2.14 ( i i ) , 4.1.6 and 4.2.5, 
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D n VW'̂ I = (a/3). |D n V . |D n 

But, by Theorem 3.2.2, a is the product of the orders of the 

^-central $H-chief factors of G in n • Thus, by Theorem 4.2.1, 

a/3 = 1/|V N W'> N D| , and so, |D n | = |(D n V)(D n Ŵ 'O | • 

Since, moreover, (D n V, D n W-'O 5 D n VW" , the first distributive 

equality of the theorem is proved. The second distributive equality 

of the theorem is now a consequence of Lemma 2.5.3. // 

The following theorem describes the covering/avoidance property 

of D(V n W-'O . 

(4.2.7) Theorem. D(V n W-'O covers (i) the YrGentval and (ii) the 

n-Frattini chief factors of G and avoids the rest. 

Proof. In view of Theorems 2.2.6 (vi) and 4.2.1, and Corollary 

3.3.3, D n (V n W") covers all those chief factors of G which are 

covered simultaneously by D and V n W" . Thus, by Lemma 2.5.4, and 

Theorems 2.2.6 (vi) and 4.2.1, D(V n W") has the required 

covering/avoidance property. // 

We now show 

(4.2.8) Lemma. W- n DV = (W''> n D)(W>'« n V) and 

W-'>D n W'V = W'HD n V) . 

Proof. Let a be the product of the orders of the F^-central, 

H-avoided, Frattini chief factors of G in a chief series n of G , 

3 the product of the orders of the ^-eccentric H-chief factors of G 

J Y the product of the orders of the H-covered, Frattini chief 
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factors of G in ri , 6 the product of the orders of the F^-central, 

^-covered, Frattini chief factors of G in n and ifj the product of 

the orders of the ^-central 0^-chief factors of G in n • By 

Theorem 2.2.14 (i), W"D = W . Thus, by Theorem 3.3.6, 

n DV = aY/3 . 

But, by Corollary 3.2.3, 3 is the product of the orders of the 

^-eccentric, chief factors of G in ri , so that, by Corollary 

3.3.3, 

y/3 = ij;. IW" n v| . 

Also, by Theorem 2.2.14 (ii) , A = n D|/6 and, by Theorem 4.2.1, 

ijj/6 1/IW" n D n VI . Hence, finally, 

n DV| = |(W" n D)(W>'« n V) , 

and so, the first distributive equality of the theorem holds. The 

second distributive equality of the theorem is now a consequence of 

Lemma 2.5.3. // 

The following two theorems describe the covering/avoidance 

properties of W- n DV and W-D n W"V , respectively. 

(4.2.9) Theorem. W-'- n DV covers (i) the Traentral, Frattini and 

(ii) the ^-Frattini chief factors of G ^ and avoids the vest. 

Proof. By Theorem 2.2.14 (ii) , n D covers the ^-central, 

Frattini chief factors of G and avoids the rest, while, by Corollary 

3.3.3, W" n V covers the H-Frattini chief factors of G and avoids 

the rest. Thus, by Theorem 4.2.1, W- n D n V covers all those chief 
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factors of G which are covered simultaneously by W" n D and 

W" n V , It follows now, by Lemmas 2.5.4 and 4.2.8, that 

(W" n D)(W" n V) = n DV has the required covering/avoidance 

property and the proof is complete. // 

(4.2.10) Theorem. W-D n W-V covers (i) the Frattini^ (ii) the 

^central, ^oovered and (iii) the ^central ti-chief faators of G ̂  

and avoids the vest. 

Proof. By Corollary 3.3.7, W"V avoids the partially 

^-complemented chief factors of G and covers the rest. On the other 

hand, by Theorem 2.2.13 (i) , W-'-D avoids the ^-eccentric, complemented 

chief factors of G and covers the rest. But, by Theorem 2.2.14 (i), 

(W''>D)(W='>V) = W''«DV = WV , so that, by Theorem 3.3.6, 

avoids the £-eccentric, partially ^-complemented chief factors of G 

which are precisely those chief factors of G which are avoided 

simultaneously by W-D and W-V . Thus, by Lemma 2.5.4, it follows 

now that W"D r̂  W"V covers all those chief factors of G which are 

covered simultaneously by W"D and W"V , and avoids the rest. Since 

the former are precisely the chief factors (i), (ii) and (iii) of the 

lemma, the theorem is clearly proved. // 

Next we show 

(4.2.11) Theorem. DV n DW-'> n VW-'- = (D n V)(D n W='0(V n W-'O 

covers (i) the ^-central, ^-covered, (ii) the Yrcentral, Frattini, 

(iii) the Yrcentral chief faators and (iv) the ^-Frattini chief 

factors of G and avoids the rest. 
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Proof. By Lemma 4 . 2 . 6 and the modular law, 

DV n DW-'> n W-'- = D(V n W '̂O n = (D n VW''0(V n W'O 

= (D n V)(D n W-'0(V n W'O . 

Now, in view of Corollary 3 . 3 . 3 and Theorems 4 . 2 . 5 and 4 . 2 . 1 , 

(V n W-0 n (D n VW") = V n W" n D covers all those chief factors of G 

which are covered simultaneously by V n W" and D n VW" . Thus, by 

Lemma 2 . 5 . 4 , DV fi DW" n VW" has the required covering/avoidance 

property. The proof is complete. / / 

In order to complete the proof of Theorem 4 . 0 . 1 we need to refer 

to the following elementary and probably well-known result which was 

brought to jomr attention by L.G. Kovacs and which quote here ^ 1 

without proof. 

( 4 . 2 . 1 2 ) Theorem (L .G. Kovacs). If in a lattice ^ generated 

by three elements x , y and z all the seven relations 

(x u y) n z = (x n z) u (y n z) 

(y u z) n X = (y n x) u (z n x) 

( x u z ) n y = ( x n y ) u ( z n y ) 

(x n y) u z = (x u z) n (y u z) 

(y n z) u X = (y u x) n (z u x) 

(x n z) u y = ( x u y ) n (z u y ) 

(x iJ y) n (y u z) n (x u z) = (x n y)<y n z ) (x n z) U^ 0 

hold J then ^ distributive. 

It is an easy consequence of Theorem 4 .2 .12 that 
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(4.2.13) Corollary. (i) Every element of ^ can be e3:pi'essed as 

the meet of suitable elements of the join-semilattioe generated by 

X , y and z . 

(ii) Every element of ^ can be expressed as the join of 

suitable elements of the meet-semilattiae generated by x , y and z . 

( H i ) ^ has at most eighteen elements. 

In view of Lemmas 4.2.3, 4.2.6 and 4.2.8 and Theorem 4.2.11, 

Theorem 4.0.1 (i) now follows from Theorem 4.2.12. On the other hand, 

since, by Theorems 2.2.14 (i) and 4.1.5, Lemmas 4.2.3, 4.2.6 and 4.2.8 

and Corollary 3.3.7, the elements of the meet-semllattice generated by 

D, W" and V are pairwise permutable, Theorem 4.0.1 iii) follows from 

Corollary 4.2.13 iii). 

Similarly, part iiv) of Theorem 4.0.1 follows from Corollary 

4.2.13 ii) and Lemma 2.1.7, since, by Lemma 2.2.5, Theorems 2.2.12 and 

4.1,7 and our assumption concerning Z and V , E reduces into 

D , W'% DW-, DV and V , respectively, and also, by Definition 3.3.5, 

Theorem 3.3.6, Corollary 3.3.7 and Lemma 2.1.7, Z reduces into 

VW = VDW-'- and into VW-'- . 

N e x t , we deduce part i i i i ) of Theorem 4.0.1 from the preceding 

information. In view of Corollary 4.2.13, the following list of the 

subgroups in ^ ( D , W-'S V) is complete (although some subgroups may 

occur repeatedly). We set against each subgroup in ^ ^ D , W'% V) the 

reference number of the result which establishes (and specifies) its 

covering/avoidance property. 
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D 

V 

D n W" 

D n V 

W" n V 

D n n V 

DŴ 'J 

DV 

DW'^V 

D n 

W-'- n DV 

V n DWi'> 

DW-- n DV 

VW" n DW" 

DV n 

DW''> n DV n VW-' 

Theorem 2.2.6 fyij. 

Theorem 2.2.13 ft J with X = {l} , the trivial 

saturated formation in the theorem. 

Theorem 2.3.4 (t-iij . 

Theorem 2.2.14 (iij. 

Theorem 4.1.6. 

Corollary 3.3.3. 

Theorem 4.2.1. 

Theorem 2.2.13 (ij. 

Theorem 4.1.6. 

Corollary 3.3.7. 

Theorem 3.3.6. 

Theorem 4.2.5. 

Theorem 4.2.9. 

Theorem 3.3.1. 

Theorem 4.2.7. 

Theorem 4.2.10. 

Theorem 4.2.4. 

Theorem 4.2.11. 

Finally, since the stabilizer B of Z in the group A of 

automorphisms of G also stabilizes each of D, W" and V , B 

stabilizes every element in the lattice ^ ( D , W-'^ V) . Moreover, in 

view of Theorem 2.1.4, B supplements in A the group of inner 

automorphisms of G . Hence the statement of part fvj of Theorem 4.0.1 

is proved. // 

We conclude this section with an example G in which ^ ( D , W " , V) 

has eighteen distinct elements and includes neither {l} nor G . 
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Let H be the semidirect product of a cyclic group (a) of order 

25 by a cyclic group (b> of order 4 , with the action of <b) on 

\a/ given by a = a . 

Now, let K = H wr (c) , where <c) is a cyclic group of order 5 

and let G = <d) x K , the direct product of K and a cyclic group 

<d) of order 4 . 

It is easy to verify that for £ = N = H , the lattice ^(D, W-, V) 

corresponding to G has eighteen distinct elements and so is a free 

distributive lattice on the three generators. 
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CHAPTER 5 

THE FITTING LENGTH OF A GROUP AND THE NUMBER OF 

CONJUGACY CLASSES OF ITS MAXIMAL NILPOTENT SUBGROUPS 

In this chapter we continue the investigation begun in [27] of a 

relation between the Fitting length of a group and the number of 

conjugacy classes of its maximal nilpotent subgroups. The main result 

of [27],which is due to H. Lausch^shows that the Fitting length h(G) 

of a group G of odd order is bounded above in terms of the number 

v(G) of conjugacy classes of its maximal nilpotent subgroups. In 

Section 5.2 we establish this result without the restriction on the 

group order and with a much better bound than that obtained in [27]. 

The precise form of the bound we obtain (though not its order of 

magnitude) relies on an unpublished result of M.F. Newman (see Theorem 

5.2.6). Another unpublished result of his (see Theorem 5.3.13) is 

essential for our purposes in Section 5.3, where we obtain the best 

possible bounds on the Fitting length of a group G with v(G) small. 

In Section 5.1 we prove two preparatory results the first one of 

which provides a basis for induction argument throughout the rest of 

the thesis, and in the last section we obtain a lower estimate for a 

general upper bound. 

Throughout this Chapter and the next,for a group G and a 

saturated formation £ , Vp(G) denotes the number of conjugacy 

classes of ^-maximal subgroups of G , and v(G) ' 
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5.1 Two preliminary results 

The following lemma is a straightforward generalization of Lemma 

1 of C27] due to H. Lausch-

(5.1.1) Lemma. Let ^ be a saturated formation, G any group 

and N ^ G . Then every ^maximal subgroup of G/N is the image i 

G/N of a suitable ^maximal subgroup of G . In pavtioular, 

Vp(G/N) 5 Vp(G) . Moreover^, if Vp(G/N) = v^CG) then the image in 

G/N of every g-maximal subgroup of G is an F-maximal subgroup 

of G/N . 

tn 

Proof. Let W/N be an ^-maximal subgroup of G/N . Since £ 

is a saturated formation, W has an ^-projector V , say (see Section 

2.2). Also, since "W/N f F , W = VN . Let be an F-maximal 

subgroup of G which contains V . Clearly W/N = NV/N < NV^VN f F . 

Thus, since W/N is F-maximal in G/N , it follows that NV-VN = W/N . 

In particular, since V is ^-maximal in W , = V . The rest of 

the lemma now follows easily. // 

Next, we give a slight extension of Lemma 6 of [27] which was due 

to H. Lausch. 

(5.1.2) Lemma. Let Q be a monolithic group with its Fitting 

subgroup as its monolith. If h(G) > 1 , t^ere is a normal subgroup S 

of G such that h(G/S) = h(G) - 1 and the Fitting subgroup R/S of 

G/S is the monolith of G/S . Moreover, if V is a maximal nilpotent 

subgroup of G such that VF > G^a ^ then VS/S f: R/S . 
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Proof. Let Z be the class of all groups of Fitting length 
P 

at most h(G) - 2 , H = G= and H/K a chief factor of G . Since £ 

is a saturated formation, H/K is clearly complemented in G . Let M 

be a complement of H/K in G , R = C^(H/K) and S = R n M . By a 

b 

well known result (see for example Satz 3.1 of Gaschiitz [10]), 

R = Cg(R/S) . Thus, clearly R/S is the monolith of G/S . By Lemma 

2.2 of Carter, Fischer and Hawkes [5], it follows now that R/S is 

also the Fitting subgroup of G/S . Also h(G/S) < h(G) - 1 would 

mean that h(G/S) 5 h(G) - 2 , and so h(G/H n S) 5 h(G) - 2 . Since 

H n S = K , it would then follow that h(G/K) 5 h(G) - 2 , contrary to H = G^ . Hence h(G/S) = h(G) - 1 . 

Next, let V be a maximal nilpotent subgroup of G such that 

VF ^ G^2 • Since F is the monolith and H F , we have that 

F < K < H 5 , and so V clearly covers H/K . Thus, as K < S , 

VS = (VK)S 5: HS = R , as required. // 

5.2 The Main Result 

In this section we will prove (as Theorem 5.2.8) the main result 

of this chapter. We begin with the following elementary lemma. 

(5.2.1) Lemma. Let G be a group whose Fitting subgroup T is a 

p-group and let Q be a q-subgroup of G ^ q ^ P • Then there is a 

maximal nilpotent subgroup of G such that Cp(Q) = W n F . 

Moreover, if Cl t {l} ^ then W n F < F . 

Proof. Let W be a maximal nilpotent subgroup of G which 



63 

contains C^(Q) x Q . Clearly W n F = C^CQ) . Also, since Cg(F) 5 F , 

F ^ W unless Q = {1} . Thus W n F < F if Q {1} , and so we are 

done. // 

Next we prove a lemma. 

(5.2.2) Lemma. Let Q be a group whose Fitting subgroup F is 

an elementary abelian p-group^ let Q, be a non-trivial q-subgroup of 

G ^ q ^ P J and let Q be a maximal element in the set 

T = o Q I Cp(Q) < 

which is ordered by inclusion. Then CQ(Cp(Q)) = Q and, moreover, 

Z(Q/Q) is cyclic. 

Proof. We regard F as a vector space over GF(p) , the field with 

p elements. Then, it follows from Theorem 2.6.1 and Lemma 2.6.2 in 

Gorenstein [14], that C^C'Q) is Q-invariant, whence H = 0^(0^(0)) o Q . 

However, H ^ Q and also C^(H) ^ C^CQ) > C^CQ) . Thus Q = H since 

Q is a maximal element in T , and so CQ(CP(Q)) = Q , as required. 

In order to show that Z(Q/Q) is cyclic, we proceed as follows. 

Since C^CQ) is Q-invariant, we observe first that, by Theorem 3.3.2 

in Gorenstein [14], C^CQ) - C^CQ) x L , where L is Q-invariant. 

Clearly L ^ {l} , since C^CQ) > C^CQ) . Next, let L''- be a 

non-trivial Q-invariant subgroup of L of minimal order and let 

K = CQ(L'0 . Since L'> is Q-invariant, K < Q . Moreover, 

K ^ CQ(L"C^(Q)) . In particular, C^CK) > C^(Q) . However, K ^ Q . 
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Hence, since 'q is a maximal element of ^ , K = Q , and so Q/Q is 

represented faithfully and irreducibly on L" . By Theorem 3.2.2 in 

Gorenstein [14], it follows then that Z(Q/Q) is cyclic, and the proof 

is complete. // 

Part (i) of our next result occured as Lemma 3 in [27] and was due 

to H. Lausch. 

(5.2.3) Lemma. Let G, F and Q be as in Lemma 5.2.2 and let I 

be the largest integer for which there exists a chain of subgroups 

(5.2.4) Cp(Q) = V^ n F < n F < ... < V ^ n F < F , 

where V^ is a maximal nil-potent subgroup of G for i - 1, 2, ..., t 

and > CP(Q) X Q . 

(ij If Q is abelian, d(Q) 5 £ . 

(ii) If Q/Z(Q) is elementary abelian, d(Q) S 2l . 

Proof. We proceed by induction on |Q| • Let R be a maximal 

element in the set X Lemma 5.2.2. Then, by the same lemma, 

Z(Q/R) = Z/R is cyclic. Also, by hypothesis, a chain of subgroups of 

the type (5.2.4) which joins Cp(R) to F has length at most 1 - 1 

since Cp(R) > Cp(Q) and, by Lemma 5.2.1, there is a maximal nilpotent 

subgroup W of G such that W n F = Cp(R) . 

Suppose first of all that Q is abelian. Then clearly Z = Q , 

and so Q/R is cyclic. Moreover, by the induction hypothesis, 

d(R) ± I - 1 . Thus d(Q) < I and hence (i) is proved. 
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Suppose next that Q/Z(Q) is elementary abelian. If Q = Z , 

then once again Q/R is cyclic, and, moreover, by induction, 

dCR) 5 2U-1) , whence d(Q) < 2£ - 1 5 and we are done. Hence 

assume Z t Q • In particular, Q/R is non-abelian. Let A/R be a 

maximal abelian normal subgroup of Q/R . Since Q/Z(Q) , and therefore 

Q/'Z , is elementary abelian, it follows from Satz III. 13.7 in Huppert 

[25] that there is a maximal abelian normal subgroup B/R of Q/R 

such that AB = Q , A n B = Z and D(A/Z) = d(B/'Z) ; consequently, 

d(Q/R) 5 2d(A/R) . It remains now to show that d(A/R) 5 I and that 

a chain of subgroups of the type (5.2.4) which joins CP(R) to F has 

length at most I - d(A/R) , for, then, by the inductive hypothesis, 

d(R) 5 2£ - 2d(A/R) S 2l - d(Q/R) and hence d(Q) < d(R) + d(Q/R) 5 2l . 

We show this as follows. 

Let A = AQ and, for i = 1, 2, ... , define A^ to be a maximal 

element in the set 

5 I - R and < Ĉ CQ̂ '')} . 

For some integer n ^ 1 , A^ = R . Let G be the semidirect product 

of X = Cp(R) by Y = A/R . Since, by Lemma 5.2.2, C^CX) = {l} , X 

is clearly the Fitting subgroup of G . Thus, by the same lemma and 

the fact that A/R is abelian, it follows now that is cyclic 

for i = 1, ..., n . In particular, d(A/R) 5 n . On the other hand, 

by Lemma 5.2.1, there exist maximal nilpotent subgroups W^, W^, ..., W^ 

of G such that 

C^(A^) . WQ n F < = W^ n F < ... < C^(AJ = C^(R) = W^ N F . 
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Hence, by hypothesis, d (A /R ) < n 5 £ . Also, the chain of subgroups 

of the.type ( 5 . 2 . 4 ) joining C^CR) to F has length certainly at most 

I - n S I - d (A /R ) . This completes the proof. / / 

( 5 . 2 . 5 ) Remark. In lemma 5 . 2 . 3 we have have I 5 v(G) - 1 , since 

each member of at least one conjugacy class of maximal nilpotent 

subgroups of G contains F , and, t r iv ia l ly , i f V and W are 

conjugate maximal nilpotent subgroups of G , neither V n F < W n F 

nor W n F < V n F . 

It has been well known for some time that the Fitting length of a 

soluble linear group is bounded in terms of its degree. The best 

possible bound has been obtained in recent unpublished work of M.F. 

Newman: 

( 5 . 2 . 6 ) Theorem (M.F. Newman). Let Q be a soluble Unear group 

of degree n ^ 1 . Then 

1 ^ i / n = 1 ; 

3 , if n ^ 2 , 

h(G) < 
2s+4 , if 2.3® < n < 4.3® ; 

2s+5 , if 4.3® < n £ 2.3®^^ 

In -partioular, h (G ) 5 2 log 
3 

9n-l 

2 // 

We w i l l deduce the main result of this section from the following 

lemma. 

( 5 . 2 . 7 ) Lemma. Let G be a group whose Fitting subgroup F is 

an elementary abelian p-group. If H/K is a q-chief factor of G , 
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where q p ^ then 

18V(G)-19 h(G/Cg(H/K)) S 2 log 
3 

Proof. Let Q be a Sylow q-subgroup of H and N = N„(Q) . 

b 

Then, by the Frattini argument, G = NH , and hence 

G/CQ(H/K) = N/Cj^(H/K) = N/C^(Q/Q n K) . Thus, clearly it will be 
'18V(G)-19 sufficient to show that h(N/Cj^(Q/Q n K)] S 2 log 

3 

Let C" be a characteristic subgroup of Q given by Lemma 8.2 of 

Feit and Thompson [6]. Then, by the same lemma, C" has, among 

others, the following two properties of interest to us: 

(i) C'VZ(C'0 is elementary abelian; 

(ii) every non-trivial q'-automorphism of Q induces a 

non-trivial automorphism of C" . 

In particular, by (ii), C^(C'0/Cj^(Q) is a q-group. Also, since 

C" is characteristic subgroup of Q 5 N , we have C" , and hence 

C^CC'O , is a normal subgroup of N . Now, by Theorem 3.1.3 in 

Gorenstein [14], G/Cg(H/K) , and hence N/Cj^(Q/Q n K) , has no 

non-trivial normal q-subgroups. Thus, since the normal subgroup 

C (C'OC,,(Q/Q n K)/nXQ/Q n K) of N/C.,(Q/Q n K) is isomorphic to N N N iN 

C (C")/C,,(C") n C,,(Q/Q n K) which is a factor group of the q-group N N N 

, it must be trivial, and so C^^CC") 2 ^ K) . For 

similar reasons, C^ (c-V^CC-'O) < C^(Q/Q ^ K) since, by a result of 
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Burnside (see Theorem S.l.M- in Gorenstein [14], for example), 

is a q-group, and moreover, C^^(C^V^CC")} 3 N 

as $(C") o N , being a characteristic subgroup of C" <i N . 

is below the Thus, it suffices to show that h 

upper bound claimed. However, N/C^^ [C"/$(C'0) is a soluble linear 

group of degree at most the dimension of C-'V$(C") , regarded as a 

vector space over GF(q) , and the latter is, in view of (i), Lemma 

5.2.3 and Remark 5.2,5, at most 2(v(G)-l) . Thus, by the preceding 

result of M.F. Newman, namely Theorem 5.2.6, 

5 2 log '18V(G)-19' 5 2 log 2 3 2 , and so the proof is complete. // 

We now prove the main result of this chapter. 

(5.2.8) Theorem. For any group G ^ 

h(G) 5 2^1+ log 
3 

18V(G)-19 
, if V(G) = 1 , 

, if v(G) > 1 . 

Proof. Since each Sylow subgroup of G is contained in some 

maximal nilpotent subgroup of G , it is immediate that h(G) 5 1 when 

v(G) = 1 . For a proof by contradiction let G be a counterexample of 

minimal order. Then v(G) > 1 , and in view of Lemma 5.1.1 and the 

fact that N , where k = 2^1 + log 
3 

18V(G)-19 , is a saturated 

formation, G is a monolithic group with its Fitting subgroup F as 

it monolith. In particular, F is an elementary abelian p-group for 

some p . Since 0 ^ (G) is the intersection of the centralizers of / 
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the q-chief factors of G , Lemma 5.2.7 gives that 

'18V(G)-19 
G/ n 0 , (G) < 2 log 

3 

= k - 2 

As n 0 , (G) is q-nilpotent for every q other than p , it is an 
q^p 'I 'I 

extension of a p-group by a nilpotent group. Thus h(G) 5 k and G 

is not a counterexample after all. This contradiction completes the 

proof. // 

We conclude this section with the remark that the bound of Theorem 

5.2.8 is, at least for certain values of v(G) , not the best possible 

as will be clear from the following section. However, it is certainly 

an improvement of the bound obtained in [27] for groups of odd order. 

5.3 Some special cases 

Here, in this section, we will obtain sharp bounds on the Fitting 

length of a group G for v(G) = 2, 3 respectively. The bound in the 

case when v(G) = 2 (see the following proposition) is due to 

H. Lausch. 

(5.3.1) Proposition. For v(G) = 2 ^ h(G) 5 3 . 

Proof. We proceed by induction on |G| . Thus, in view of Lemma 

5.1.1 with 1 = N in the lemma. Theorem 5.2.8 and the fact that N' 

is a saturated formation, we can assume that G is monolithic with 

its Fitting subgroup F as its monolith and v(G/F) = 2 . 

T3 

Let F = p" , a > 0 . Then, since C (F) = F , a Sylow 
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p-siibgroup P of G is clearly a maximal nilpotent subgroup of G . 

Moreover, since v(G/F) = V(G) , it follows, by Lemma 5.1.1, tkat the 

conjugates of P/F are maximal nilpotent subgroups of G/F . On the 

other hand, it is clear that ^^2/F is a p'-group. 

Now, in view of Lemma 5.2.3 ii) ^ Remark 5.2.5 and our hypothesis, 

every ahelian p'-subgroup of G is cyclic. Therefore, if 

G^2/f| , then p 2 , G^^z/F has a unique element of order 2 , 

and this element must be central in G/F . This contradicts the fact 

that P/F is a maximal nilpotent subgroup of G/F . Thus, G^z/F is 

a nilpotent group of odd order with all its abelian subgroups cyclic. 

Hence, it follows that all Sylow subgroups of G^2/F are cyclic (see 

for instance Theorem 5.4.1Q (ii) of Gorenstein [14]), whence G^^z/F 

itself is cyclic. Finally, the facts that G^2 ^ CQ(GJ^2/F) and that 

the automorphism groups of cyclic groups are abelian (see for instance 

Theorem 1.3.10 (i) of Gorenstein [14]) imply that G/G^^a is abelian, 

and so h(G) < 3 , as required. // 

The bound obtained in Proposition 5.3.1 is certainly the best 

possible. The symmetric group S4 on four letters provides an example 

of groups in which the number of conjugacy classes of maximal nilpotent 

subgroups is two and whose Fitting length is three. 

Next, we consider the case when v(G) = 3 and show that 

(5.3.2) Proposition. Fov v(G) = 3 , h(G) 5 4 . 

Proof. Suppose the result is false and let G be a minimal 
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counter-example. Then, in view of Lemma 5.1.1 with F - N in the 

lemma. Proposition 5.3.1 and the fact that is a saturated formation, 

it follows that 

(5.3.3) G is monolithic with its Fitting subgroup F , say, as 

its monolith, v(G/F) = 3 = v(G) and h(G) = 5 . 

Let |f| = p̂ ' , a > 0 . Then, as in the proof of Proposition 

5.3.1, a Sylow p-subgroup P of G is a maximal nilpotent subgroup 

of G . Let V and W be representatives of the remaining two 

-eonjugacy classes of maximal nilpotent subgroups of G , respectively, 

and assume without loss of generality that VF ^ • Then, since 

GJ^2/F is a p'-group and Cg(Gj^2/F] £ G^2 > it follows that 

(5.3.4) VF/F is a p'-group. 

Consequently, 

(5.3.5) V n F = {1} . 

For, assume to the contrary that V n F > {l} . Since F is an 

abelian p-group (see (5.3.3)] and V/V n F is a p'-group (see 

(5.3.4)], V n F < Z(G^2] , so that by our assumption, Z(G^2] > (l) • 

But Z(G 2] ^ G , being a characteristic subgroup of a normal subgroup, 
s= 

namely G 2 , of G . Therefore, since F is the monolith of G (see = 

(5.3.3)], Z(GJ^2] ^ F . However, since Cg(F) = F , this can only 

happen if F = G . Thus, since h(G) = 5 (see (5.3.3)], we must have 

V n F = {1} . 

Now, since G is monolithic with its Fitting subgroup as its 
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monolith and h(G) > 1 (see (5.3.3)], G has, by Lemma 5.1.2, a 

normal subgroup S such that h(G/S) = h(G) - 1 and the Fitting subgroup 

R/S of G/S is the monolith of G/S . Clearly hCG/S) > 3 , since 

otherwise h ( G ) 5 h ( G / S ) + l 5 4 , contrary to G being a minimal 

counter-example. Thus, it follows from (5.3,3) that 

(5.3.6) h(G/R) = 3 and h(G/S) = 4 . 

In particular, 

(5.3.7) v(G/S) = v(G) = 3 . 

For, if V(G/S) ^ V(G) , then, by Lemma 5.1.1, v(G/S) 5 2 and hence, 

by Proposition 5.3.1, h(G/S) 5 3 , contrary to (5.3.6). 

Let IR/SI = q^ , 6 > 0 . Since, by Lemma 5.1.2, VS/S ^ R/S , 

it follows from (5.3.4) that 

(5.3.8) q P • 

Also, 

(5.3.9) q 2 . 

For, suppose to the contrary that q = 2 . Then, the proof of Lemma 

5.2.7 shows that G/C^(R/S) = G/R is a factor of GL[4, GF(2)) . Since 

GL(4, GF(2)]| = 2®. 3^. 5. 7 , it follows, therefore, that G/R is a 

soluble group of order dividing 2^. 3^. 5. 7 . Thus, in view of 

Theorem 1.3.10 (ii) of Gorenstein [14], the group of automorphisms 

induced by G on a 5-chief factor or a 7-chief factor of G/R is 

cyclic, and clearly that induced on a 3-chief factor of G/R is a 

2-group. In particular, the group of automorphisms induced by G on 
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each odd-ordered chief factor of G/R is nilpotent. But then, since 

^ is a formation and, by Theorem 3.1.3 of Gorenstein [14-], G/R has 

no non-trivial normal 2-subgroups so that (G/R)^^ is the intersection 

of the centralizers of the odd-ordered chief factors of G/R (see 

proof of Theorem 5.2.8), we have G/R ^ ̂ ^ . However, this is 

impossible because of (5.3.6), and so we conclude that q cannot 

be 2 . 

But, in view of (5.3.3), Lemma 5.2.3 (i) and Remark 5.2.5, 

(5.3.10) G has no elementary abelian r-subgroups of order r^ , 

for each r p , 

so that, by a result of Thompson, namely Lemma 5.24 in [37], every 

odd-ordered r-chief factor of G , for each r p , is of rank at 

most 2 . Thus, since G/R is represented faithfully and irreducibly 

on R/S and h(G/R) = 3 [see (5.3.6)), we have, by Theorem 3.2.5 of 

Gorenstein [14], that 

(5.3.11) I R/S I == q^ ; consequently, G/R is isomorphic to a 

subgroup of GL(2, GF(q)) . 

It follows then that 

(5.3.12) q ^ 3 . 

For, otherwise, G/R = GL(2, GF(3)) since every proper subgroup of 

GL(2, GF(3)) has Fitting length at most, while h(G/R) = 3 (see 

(5.3.6)). But then, contrary to (5.3.7), v(G/S) i 4 , the Sylow 

2-subgroups, the Sylow 3-subgroups and the two distinct conjugacy 

classes of 6-cycles of G/S constituting four distinct conjugacy 

classes of maximal nilpotent subgroups of G/S . Hence, q cannot 
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be 3 . 

In what follows, we need the following consequence, which we state 

without p r o o f , of a deep result (unpublished) of M.F. Newman on the 

structure of soluble subgroups of GL(2, K) , where K is an arbitrary-

field. 

(5.3.13) Theorem (M.F. Newman). Let K he an arbitrary field. 

If H is a soluble subgroup of GL(2, K) of Fitting length greater 

than 2 then H/Z(H) = S^ and 2 divides |z(H)| . 

N o w , let Z/R be the centre of G/R . Since G/R is isomorphic 

to a subgroup of GL (2, GF(q)) of Fitting length three (see (5.3.6) 

and (5.3.11)), it follows from Theorem 5.3.13 that 

(5.3.14) G /Z = Sn and 2 divides |Z/R| . Moreover, if K <1 G such 

that K S R and G/K is isomorphic to a subgroup of 

G l ( 2 , GF(q)) , then Z/K is the centre of G/K . 

Consequently, in view of (5.3.9), (5.3.12) and the fact that G/R has 

no non-trivial normal q-subgroups (see for instance Theorem 3.1.3 of 

Gorenstein [14]), we have 

(5.3.15) q I IG/RI , and so R/S is a maximal nilpotent subgroup of 

G/S . 

B u t , 

(5.3.16) V contains a Sylow q-subgroup of G . 

For, otherwise, W contains one, since a Sylow q-subgroup of G is 

contained in some maximal nilpotent subgroup of G . Since, by Lemma 
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5.1.2, VS/S i R/S , it follows then that R/S < WS/S n VS/S . Thus, 

since CQ^^CR/S) = R/S , both WS/S and VS/S are q-groups, and so 

vCG/S) 5 2 , contrary to (5.3.7). 

Next, let L = 0^,(G) , N/L a minimal normal q-subgroup of G/L 

and C = Cg(N/L) . Since Cg^g(R/S) = R/S and L avoids R/S , the 

latter because R/S is a q-group, we have L 5 S . On the other 

hand, since V contains a Sylow q-subgroup of G [see (5.3.16)), and 

since the Fitting subgroup of G/L is a q-group and contains its own 

centralizer in G/L , it is clear that 

(5.3.17) VL/L is a Sylow q-subgroup of G/L . 

Thus, as G/Z is a q'-group [see (5.3.9), (5.3.12) and (5.3.14)}, it 

follows that 

(5.3.18) VL 5 Z . 

Suppose first that WL N . Then clearly (WL/L)^, 5 C/L , and 

so WC/C is a q-group. Hence, since, in view of (5.3.17), VC/C is 

a Sylow q-subgroup of G/C , WC/C < V^C/C for some g in G . But 

now, since V 5 Z [see (5.3.18)], we may conclude that W 5 V^C 5 ZC , 

whence, by Lemma 5.1.1, G/ZC has only one class of maximal nilpotent 

subgroups, namely, that of PCZ/CZ . Thus, G/ZC is a p-group. 

Since G/Z = S^ [see (5.3.14)], ZC/Z must, therefore, contain a 

subgroup isomorphic to the alternating group A^ on 4 letters. In 

particular, the Hall q'-subgroups of ZC/Z , and hence those of 

C/Z n C and C/L , cannot be nilpotent. But then the nilpotent 

q'-subgroup (WL/L)^, of C/L cannot be a Hall q'-subgroup; that is, 
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for some r q) ^ (WL/L)^, cannot contain any Sylow r-subgroup 

(C/L)^ of C/L . However, (C/L)^ x N/L is a non-primary nilpotent 

subgroup of G/L . Since VL/L and PL/L are primary, (C/L)^ X n/L 

m u s t , therefore, be contained in some conjugate of WL/L . But n o w , 

some conjugate of (C/L)^ is in (WL/L)^, , and we have a contradiction. 

H e n c e , WL N . We claim that C/L is then a q-group. Suppose 

this is not s o , and let T/L be a non-trivial Sylow r-subgroup of 

C/L for some r ^ q . Then (N/L) x (T/L) is a non-primary nilpotent 

subgroup of G/L , which, as before, must be contained in some 

conjugate of WL/L . But then N/L 5 WL/L , contrary to WL ^ N . 

Thus , it follows that C < R (for, G/R is a q'-group (see 

(5.3.15)) and L 5 R] , and so |N/L| F; q^ , since the alternative 

N/LI = q implies that G/C , and hence G/R is cyclic (see Theorem 

1.3.10 (ii) in Gorenstein [14]], contrary to (5.3.6). 

Next we show that |N/L| = q^ and WL n N > L . Let Q be a 

Sylow q-subgroup of N/L ; Q is then elementary abelian, and s o , 

from what has been just shown and (5.3.10), |Q| = |N/L| = q^ . 

Moreover, as the proof of Lemma 5.2.3 (i) shows, Q has a non-trivial 

subgroup Q" such that Cp(Q") > Cp(Q) ^ {l} . Since V is a 

p'-group (see (5.3.4) and (5.3.5)), it follows then that some conjugate 

of Cp(Q'0 X Q5': is contained in W , whence WL n N > L . 

N o w , since |N/L| = q^ , we have that G/C is isomorphic to a 

subgroup of GL(2, GF(q)) . Thus, since C < R , it follows from 

(5.3.14) that Z / C is the centre of G / C . But 0 ^ ( G / C ) = {l} (see 

Theorem 3.1.3 in Gorenstein [14]). Therefore, Z/C is a q'-group. 
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Hence, from (5.3.9), (5.3.12) and (5.3.114), we get that G/C is a 

q'-group, and so in view of (5.3.17), V 5 C . Thus, the maximal 

nilpotent subgroups of G/C are just the conjugates of PC/C and 

WC/C , so that WC/C ^ Z/C . Since Z/C is a q'-group, in fact, 

W^,C/C ^ Z/C . But W^,C acts trivially on (WL n N)/L ; so Z , 

too, must act trivially on WL n N/L . Consequently, 

{1} < (WL n N)/L < C^^^(Z/L) <» G/L , and hence C^^^(Z/L) = N/L as 

N/L is a chief factor. It follows thus that Z acts trivially on 

the whole of N/L , whence Z = C and a fortiori Z = R , contrary to 

(5.3.14). The proof of Proposition 5.3.2 is now complete. // 

Let H be the binary octahedral group, that is, the group defined 

on the generators a, b, c by the relations 

a^ = b^ = c'* = abc . 

As is well-known, H has just one element z of order 2 , the centre 

Z of H is generated by z and H/Z = S4 • Let M be a vector 

space over GF(3) which affords the representation of H induced from 

a non-trivial one-dimensional representation of Z , and let N be any 

non-zero H-invariant subspace of M . It is easy to see that, for the 

split extension G of N by H , v(G) = 3 and h(G) = 4 . (In fact 

N can be chosen to be of order 3** , so that G is of order 2**. 3^ .) 

Thus, the bound obtained in Proposition 5.3.1 is the best possible. 

5.14 A range for the best possible bound 

Our main aim in this section is to find as small as possible a 

range in which the best possible bound on the Fitting length of a group 

G in terms of v(G) lies. First of all, we show 
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ct B 
( 5 . 4 . 1 ) Theorem. Let Yi be a group of order p q ^ where 

otj 3 > 0 and let C = <c ] c^ = 1> be a ayolia group of order p . 

Let G = H wr C . If the Sylow subgroups of H are maximal nilpotent 

subgroups of R , then the Sylow subgroups of G are maximal nilpotent 

subgroups of G j and 

v(G) = {v(H)P+(2p-l)v(H)-p}/p . 

The hard part i s , of course, to perform the required count of 

classes of maximal nilpotent subgroups of G ; we shall not interrupt 

that count to observe, as can be easily done, that the claim relating 

to the Sylow subgroups of G is verified, 

For convenience we break up the proof of the theorem into a series 

of lemmas, but first we fix some notation. 

For any integer n , let n denote the residue class of n 

modulo p . The base group B of G is a direct product of p copies 

of H : let the corresponding canonical projections be denoted by 

TT̂  : B H and let the corresponding insertions be denoted by j ^ c 

: H B ; thus, for each b in B , 

P l i 
b = biT.ii. 

x=0 i i 

and, for each h in H , 

hy.TT. = 
1 D 

'h , i f i = i ; 

, otherwise. 

The automorphism of B induced by c is then described by 
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b S . = biT. ̂  
1 1 - 1 

for all b in B ; consequently, 

( h y j ^ = hy. 
_ i l l 

for all h in H . Let D denote the "diagonal subgroup" 

{ " N hu I h f h I of B . Notice that D = C„(c) . Finally, let V 
^i=0 - J ® 

denote a maximal nilpotent subgroup of G . As before, V , V will 
P q 

denote the Sylow p- and the Sylow q-subgroups of V , respectively. 

To begin with, we show 

p-1 
(5.4.2) Lemma. (i) If V < B ^ then V = J | VTT.y. , where, for 

i=0 - -

each i = 0, 1, ..., p-1 , Vtt^ is a maximal nil-potent subgroup of H 

and not all the Vtt̂  are Sylow -p-subgroups of H . Conversely, if, 

for each i = 0, 1, ..., p-1 j V^ is a maximal nilpotent subgroup of 

H and not all the V^ are Sylow p-subgroups of H , then f V^y^ 

is a maximal nilpotent subgroup of G which is contained in B . 

(ii) Let W be some other maximal nilpotent subgroup of G 

contained in B , Then V and W are conjugate in B if and only 

if, for each i = 0, 1, ..., p-1 ^ Wtt^ and Vrr̂  are con;iugate in H 

p-1 
Proof. That V = Vir.y. , where, for each 

i=0 - -
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i = 0 , 1 , p-1 , Vtt̂  is a maximal nilpotent subgroup of H , is a 

direct consequence of Lemma 2 . 5 . 1 (iii). Since V is a maximal 

nilpotent subgroup of G and since |G : b| = p , not all the Vu^ 

are p-subgroups of H . 

Next, let U be a maximal nilpotent subgroup of G which 

P l i 
contains V.y. and consider the Sylow q-subgroup Q of the 

i = 0 — — 

Pli 
latter. By Lemma 2 . 5 . 1 (iii) , Q = | f Qtt^U^ , and therefore, by 

i=0 

Lemma 2 . 5 . 2 , C^(Q) = C^(Q) . In particular, U < B , and so U 5 B 
b B P 

Also, for each i = 0 , 1, . . . , p-1 , Utt̂  > V^ , and hence, by the 

maximality of V^ , Utt̂  = V^ . Thus, finally, in view of the first 

p-1 p-1 
part, U = ] T UTT.y. = ] \ V.y. and (i) is proved. 

i = 0 — - i=0 — -

(ii) If V = W^ for some b f B , then, by fiJ , 

p-1 p-1 biT u. bTT̂  

T T v ^ . y . T T ( W t t . U . ) - - , a n d s o Vtt = [ W ^ . j - f o r 

• - 0 — — 1 = 0 — — — — 

i = 0 , 1 , . . . , p-1 • Conversely, if there exist elements 

h ^ , h ^ , o f H such that VtTQ = (wtTQ) ° , 

•1 

3-1 

v^. = (wu^} \ . . . . VTT = ( W Y i ) . then V = W with 

b = 1 r . / / 
i = 0 — 

Next we show 
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(5.4-. 3) Lemma. Assume V 5 B and let C be the class of conjugates 

of N in and £ the class of conjugates of V in G . Then 

(i) for each W f £ j there is a -positive integer £ s p such 

I 
• c 

that W is conjvigate in 'B to V ; 

(ii) £ = £ if and only if VfT^, Vtt^, are pairwise 

conjugate in H . 

I f , then £ is the (disjoint) union of the p classes of 

p-1 
c c 

conjugates of V, V , . . . , V , respectively, in B . 

Proof. (i) Trivial . c 

(ii) Assume first of all that £ = £ and consider V . By our 

assumption, V*̂  = V^ for some b f B . Then 

bTT. 

= [ V ^ ^ , = (V^]^ , = [VTT.] i 

for each i = 0 , 1 , . . . , p-1 , and hence VTr^, ViT are 
^ ^ 11 I IIP 

pairwise conjugate in H , as required. 

Assume next that Vtt̂  , . . . , are pairwise conjugate in H 

and consider V® for any g ^ G . Clearly g = c^b for some b f B 

and some j with 0 5 j < p-1 . Thus, by Lemma 5 . 4 . 2 (i) ^ 

V^ = V ^ ^ = 
P l i 

VTT. U . . 
i=0 i i l l 

Now, in view of our assumption, there 

exist elements h^ , h^ , . . . , such that VTr̂^ = (VTTj) > 
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= K t / ' = • ^^^ = f l V u i • i=0 

that = h^ . Then, clearly 

V® = 
p-1 cp-l 

VTT . u . . 
i=0 i i l ^ i=0 

h. 
[VlT. .] ^ 

•p-1 

i=0 ^ i+D i+J = V db 

since, firstly, as i runs from 0 to p-1 , i+j runs from to 

p-1 , and, secondly. Lemma 5.4.2 (ij applies also to V*̂  in place of 

V . Since db f B and g was an arbitrary element of G , it follows 

thus that ^ = ̂  , and so (itj is proved. 

I k ^ c c Finally, assume that £ £ and consider V and V , where 

I k 
0 5 £ , k 5 p-1 and £ k . We have to show that v'̂  and V^ 

C C D 
are not conjugate in B . Suppose to the contrary that V = V 

for some b e e . Then, by Lemma 5.4.2 (ij , 

p-1 
V T T . Y . „ 

i=0 ™ 
Pli 
i=0 -

fViT.ii. J 

bTT. 
and so V T T . _ „ = ( V T R . _ J ^ for each j = 0, 1, ..., p-1 . Thus, since 

J J 

I k , it follows that VtTQ , ..., are pairwise conjugate in 

H , and hence, by dij, £ = £ > contrary to our assumption. With this 

contradiction the proof of the lemma is now complete. // 

An application of the preceding lemma yields 
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(5.1+.'+) Lemma. The mmhei- of aonjugaoy classes of maximal 

nil^otent subgroups of G which are contained in B is 

{v(H)P+v(H)(p-l)-p}/p . 

Proof. By Lemma 5.U.2 and the hypothesis of Theorem 5 . 4 . 1 , the 

maximal nilpotent subgroups of G contained in B constitute 

V(H)^ - 1 conjugacy classes of maximal nilpotent subgroups of B , and 

hence, by Lemma 5 . 4 . 3 , they constitute (v(H) -l)-[v(H)-l) __ ^ 
P 

conjugacy classes of maximal nilpotent subgroups of G , as required. / / 

It now remains to show that the number of conjugacy classes of 

maximal nilpotent subgroups V of G which are not contained in B 

is V(H) . Throughout the rest of this section we assume that V^ ^ B . 

p-1 

( 5 . 4 . 5 ) Lemma. V^ n B = J T n b)tt.u^ . 
i = 0 

P-1 
Proof. Let P = ] f n Bjir.y. . Since, by Lemma 2 . 5 . 1 (i) ̂  

i = 0 ^ - -

p-1 

i=0 

y. , and since V n B 5 C ( v ] , we conclude 
_i p B ̂  q 

that P 5 Cglv^} , and hence <g, P> < Cg(v^) where g t V^W^ n B . 

However, by Lemma 2 . 5 . 1 (ii) y g ^ ^ /̂G(P) since g ^ W^LV^ RI B] , and 

so (g, P> is a p-group. Also, V^ < <g, P> . Since, by the 

maximality of V , V^ is a Sylow p-subgroup of Cg(v^) , it follows 

finally that (g, P) = V^ , and therefore V^ n B = P , as required. / / 
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(5.4.5) Lemma. V^ contains a aom-plement of B in G . 

Proof. Since V^B = G and since G/B is of prime order and is 

generated by cB , we must have V^ n cB 0 . Let g f V^ n cB . 

Then g = cb for some b in B . Now 

and hence 

p-l ^ 

for each i = 0, 1, p-l . Let = g Then, on account 

of e^ ^ V n B and Lemma 5.4.5, g, ^ V ; also, g, - cd where p 1 P 

d = b f B . Thus 

Sn Tr„ = 
.^P-^Vc^P-^V.-.+ctll IT, 

dTT̂ dTT̂  . . . dir^d^Q 

= bTT̂ bTT̂  . . . (bTT̂ bTT̂  • • • ^^pj^^^ 
- 1 

since 

= 1 , 

dir. = 1 

bir̂  , if i ^ » 

bTT, gP IT, 
-1 

, if i = 0 
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p-i 

a = d̂  

On the other hand, if 0 < i < p ^ then 

^p-i-1 p-i-2_ 

= ag^a ^ , where 

+...+C+1 f B , so that 

.P-i 
§1 = p -1 ag^a IT, = Si'o 

= 1 

since ĝ TT̂  = 1 . Therefore, g^ = 1 . Since g^ n B , the 

lemma is clearly proved. // 

Since, by a result of C.H. Houghton (see the proof of Theorem 3.3 

of Houghton [2̂ +], and also Theorem 10,1 of Neumann [31]) any two 

complements of B in G are conjugate in G , it follows, in view of 

Lemma 5,4.6, that 

(5.4.7) Lemma. Some conjugate of N in G contains c . // 

Now, for a maximal nilpotent subgroup W of G which contains 

c , define W" = (W n B)7T . Note that M'- = [w n BJTT and 

q q 0 

(5.4.8) Lemma. If W is a maximal niVpotent subgroup of G 

p-1 
which contains c j then W n B = | | W"ia. . 

P i=0 P -

Proof. Clearly W^ n B <s W^ . Thus, for each i = 0, 1, p-1 , 

fw n b}^ = W n B , and sc 
^ P P 
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(W n b)^. = (Wp n B) 
. P - I l = fw n = W-' 0 ^ p ^ 0 p 

An a p p l i c a t i o n o f Lemma 5 . 4 . 5 then completes the p r o o f . 11 

(5.M-.9) Lemma. Let M be a maximal nilpotent subgroup of G 

P l i 
which contains c . Then W = D n "1 T W»'«u. . 

i=0 ^ i 

P r o o f . I f b 6 Ŵ  , t h e n , f o r each i = 0 , 1 , . . . , p - 1 , b = b , 

k - i p - 1 
and so bir. = b tt„ = bir^ W-'' . Thus c l e a r l y W S D o W«ii. . 

On t he o t h e r hand, i t f o l l o w s f rom Lemma 5 . 4 . 8 , t h a t D n 
i=0 ^ — 

c e n t r a l i z e s fw n B] , and hence a l s o <c, W n B> = W . Thus, by p ^ ' p p 

p - 1 
the m a x i m a l i t y o f W , W = D n | | , as r e q u i r e d . 

i=0 ^ — 
// 

Since W = <c, W n B) , i t i s now immediate f rom Lemmas 5 . 4 . P P 
and 5 . 4 . 9 t h a t 

( 5 . 4 . 1 0 ) Lemma. If V is a maximal nilpotent subgroup of G and 

c e W 

= ( c . I T Wjy^, D n T T W^Pi) . w 11 

( 5 . 4 . 1 1 ) Lemma. Let U be a maximal nilpotent subgroup of H 
Then U = W " for some maximal nilpotent subgroup V of G which 

contains c . 
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p-1 p-1 
Proof. Let P = U y. and Q = D n U y. . Clearly c 

1=0 P i .=0 

normalizes P , so that <c, P> is a p-subgroup of G . On the other 

hand, it is clear that <c, P> centralizes Q , so that <c, P, Q> is 

a nilpotent subgroup of G . 

Now, by the maximality of U , U^ is a Sylow p-subgroup of 

Cj^(u^) . Thus, by Lemma 2.5.1 (i) and (Hi) ^ P is a Sylow 

p-subgroup of C^(Q) . Hence, if W is a maximal nilpotent subgroup 

of G which contains <c, P, Q> , then, since P < V n B < C_(Q) » P ^ 

P = V n B . Since, moreover, W /W n B = W B/B = p and 
P P P P 

c f W \P , it follows then that W = (P, c> . P P 

Next, consider 
p-1 

i=0 
U y. . By Lemma 2.5.1 (i) and (Hi) it is 
q 1 

clearly a Sylow q-subgroup of C^CP) . Thus, since W^ centralizes 

P , W < 
p-1 

i = 0 
U y. for some b B . Since W also centralizes 

q 

c , we have, moreover, that W^ 5 D = Cg(c) , and so 

W 5 D n 
q ffr 

i = 0 
U y. 

b 
. But, as D = H and tt is onto, it is clear 

that 

D n 
Pli 
i=0 

U y. 
q i 

D n 
fP-1 
T T u y . 
i=0 liJ q 

p-1 
D n U y. 

i=0 

Hence, since Q £ W , it follows now that W = Q > whence Q. ^ 
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<c, P , Q> = W is a maximal nilpotent subgroup of G which contains 

c . Since, as it can be easily checked, = U , we are finally 

done. / / 

( 5 . 4 . 1 2 ) Lemma. If W is a maximal nil-potent subgroup of G 

which contains c j then W" is a maximal nilpotent subgroup of H . 

Proof. Let U be a maximal nilpotent subgroup of H which 

contains W" . By Lemma 5 . 4 . 1 1 , there is a maximal nilpotent subgroup 

X of G which contains c and for which U = X" . Since both X 

and W contain c , and since W- < U = and W'J < U = , it 
p P p q q q 

follows, by Lemma 5 . 4 . 1 0 , that 

w - ( . . T T w ^ ^ v D n r r w . - , , ) 

/ ^ ¥ 4 \ 
. ( c . T T B n T T u ^ . , ) 

= X . 

Hence W = X , and so W- = X- = U , as required. / / 

Finally , we show 

( 5 . 4 . 1 3 ) Lemma. Let U and W be two maximal nilpotent 

subgroups of G both of which contain c . Then U and W are 

conjugate in G if and only if U- and are conjugate in H . 

Proof. Suppose f irst that U" = for some h f H and let 

p-1 

d = T T h y . . Clearly d 6 D = C^(c) . Thus, using Lemma 5 . 4 . 1 0 , 
. - 1 -D 
1=0 -



we have 

p-1 
U = 

= (c', T T [(WJ) 

Pli 

p^l _ 
' ' " y-> D n 

i=0 r J 1 i=0 

- 1 ^d 

I q^ j 1-

= (c, f r Ŵ -u. , D n f r W ^ . ) 
1 = 0 — 1=0 ^ — 

= W^ . 
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Conversely, if U = W^ for some g G , then, since g = c^b 

for some b B and some j with 0 5 j 5 p-1 , and since c € W , 

have U = Vr̂  , and so we 

= (U n B)7TQ = (B n W^jlT^ = ((B n W)^)7TQ 

bTT 
= [(B n W)Tr ) -

^^0 = - . 

The proof is complete. // 

The remaining claim towards the proof of Theorem 5.4.1, namely, 

that the number of conjugacy classes of maximal nilpotent subgroups of 

G which are not contained in B is V(H) , follows now from Lemmas 

5.4.7, 5.4.11, 5.4.12 and 5.4.13. // 

Having established Theorem 5.4.1, we proceed to construct groups 

G for which h(G) log 
3 

log V(G) 
3 

Let Gi = S3 , the symmetric group on 3 letters, and, for 
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i = 1. 2 let G^. = wr C3 and = G^. wr 02 , where 

C3 and C^ are cyclic groups of order 3 and 2 , respectively. 

Then, as it can be easily checked, the groups- , j = 1, 2, . 

satisfy the hypotheses of Theorem 5.4.1. Hence, by the same theorem, 

for each i = 1, 2, ... , 

/3 

and 

/2 . 

In particular, since v(Gj^) = 2 and the above expressions for 

[G2^} and ^^^ monotone in the relevant range, it is easy to see that 

and 

Therefore, 

V (Si) ^ ^ ••• ̂ -tS)' 
gi-1 gi 

But = 5 . Thus, v(G2.} S 5 5 5 , and so 
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log 
3 3 

s log 
3 

log 5 i log 6 + log 
3 3 

log 5 
3 

2i + log 
3 

log 5 
3 

In particular, 

i . |{log log } 
3 

- log 
3 

log 5 
3 

But 2i + 1 = . Hence, 

h(G2.} - log log v(G2.) - log 
3 

log 5 
3 

+ 1 2 log 
3 

log 
3 

for each i = 1, 2, ... . 

It is now clear in view of the preceding examples and Theorem 

5.2,8 that, if G is a group in which the best possible upper bound is 

attained, then 

log 
3 

log V(G) 
3 

5 h(G) rS 2 1 + log 
18V(G)-19 
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CHAPTER 6 

THE FITTING LENGTH OF A GROUP AND THE NUMBER OF CONJUGACY CLASSES 

OF ITS MAXIMAL METANILPOTENT SUBGROUPS 

In this brief chapter we show that an upper bound on the Fitting 

length of a group can be obtained in terms of the number of conjugacy 

classes of its maximal metanilpotent subgroups. In fact, our result is 

rather more general. Let £ be any saturated formation of characteristic 

IT , say, which is also a Fischer class, and let = , the class 

of all finite soluble groups G with a normal Hall IT'-subgroup G^, 

such that G/G , t F . If X denotes the class F , where k > 1 , TT' = — ^ 

then we show that 

(6.1) Theorem. The ^-length, h^CG) , of a group G is at most 

V^(G) + k - 1 . 

We will deduce Theorem 6.1 from a series of lemmas. 

(6.2) Lemma. Let I he a Sylow system of a group H ^ ^ , let 

D ^-normalizer of H corresponding to I and let V t/ie 

F -ingeotor of H into which I reduces. If H = DV and V is an 

F -projector of every proper subgroup of H which contains V ^ then 

Proof. Let {F (p)} be the full, integrated family of formations 
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which defines F locally , and l e t , for each q dividing H , 

J / v " = 0 , q q q' H / v " q and I /V^ = 0 , 
q q q q 

H /v " q. since H = DV , every 

chief factor of H i s , by Theorem 4 . 1 . 5 , either F -central in H or 

covered in H or both. Thus, in particular , every q-chief factor 

H H H 
of G/V is F -central in G/V , and hence, since I /V is the 

q =TT q ' q q 

intersection of the centralizers of the q-chief factors of G/V^ , 

H / I ^ 6 ^TT*"'̂ ^ ' fact , since the family ^I^Cq)} is full and 

integrated, H /J^ t - " 

Now, let K = n J^ . Since H/J^ ^ ^ for each q dividing 

q |H| 

h| and since ^ is a formation, H/K e . Thus, it remains to be 

shown that K f F , that is to say, that K 5 V . In order to show 
=n" 

t h i s , we observe that by our hypothesis. Theorem 2 . 3 . 7 and the definition 

of J^ , Z n V is a Sylow q-subgroup of J^ . Therefore, since 

K ^ G and K 5 J , Z n V n K is a Sylow q-subgroup of K . Since 
q q 

this holds for each q dividing |h| , it clearly follows that K 5 V , 

and the lemma is proved. / / 

As a consequence of Lemma 6 . 2 , we have 

( 6 . 3 ) Lemma. Let Vi he a group and V an ^-injector of H . 

J^f ^ ^-maximal in H ^ then V is also an ^-projector of H . 

Proof. The result is trivially true i f V = H . Hence we assume 
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that V < H , that is to say, that H ^ ̂  , and proceed by induction 

on |h| . Then it is clear that V is an ^-projector of K 

2 

whenever V S K < H ; for, V is certainly ^-maximal in K and, 

by Theorem 2.3.4- (iv)^ it is also an ^-injector of K , so that, by 

the induction hypotheses, V is an ^-projector of K . 

Let Z be a Sylow system of H which reduces into V and let D 

be the ^-normalizer of H corresponding to Z . By Theorem 4.1.5, 

DV = VD . 

Suppose that DV = H . Then, from what has been observed above 

2 

and Lemma 6.2, H f F^ . But then V = H since V is, by hypothesis 

2 F -maximal in H and we have a contradiction. 

Hence DV H . Let M be a maximal subgroup of H which contains 

DV and let "Z be a Sylow system of H which reduces into M . By 

Theorem 2.1.4, Z® = Z , for some g ^ G . Thus, Z reduces into M® , 
g 

and hence, since M® contains an ^-injector of H , namely V , 

V 5 M® by Lemma 2.3.5. Let M = M® and let D be the ^-normalizer 

of M corresponding to Z n M . Since D® 5 M , it follows, by Theorem 

2.2.6 ( i i ) , that M is abnormal in H . Thus, by Theorem 2.2.6 

(Hi) , D 5 D 5 M . But then, since V is, by the induction hypothesis, 

an £^-projector of M and since, by our assumption, Z n M reduces 

into V , we have, by Theorem 2.2.10 ( i ) , that D < V , and so D S V . 
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Now, let H /K be a chief factor of H . Since ^ has 

characteristic the whole prime set, it follows, by Lemma 2.2.2, that 

, N N 
H/H= f F^ , and so H 2 H= < H . Moreover, since H f F^ , 

H {l} . Also, by Theorem 2.2.6 (vi) , D , and hence V , covers 

F 

H / H ^ . Clearly VK H , since otherwise H/K = V/V n K t , whence 

F F 
=]J =]ri' 

H 5 K , a contradiction. Thus VK complements H /K in H . 

Hence, since VK/K = DK/K , it follows by Theorems 2.2.5 (v) and 

2.2.10 (ii) , that VK/K is an F^-projector of H/K . But, by the induction hypothesis, V is an ^ - p r o j e c t o r of VK < H . Hence, 

finally, by Lemma 2.2.9, V is an £^-projector of H , and the proof 

is complete. // 

Throughout the rest of this chapter Y will denote the class 

=TT 

(6.1+) Lemma. If V is an X-injeator of G ^ then G^ = V^ j 
— — ~ = =s 

moreover, V/G is an ^-injector of G/G^ . 

Proof. Clearly X = H , where % = I » tt(X) = ^ 
XeA 

and I;^ = F , for each A e A . Thus, the first part of the lemma, 

namely, G^ = V^ , is a consequence of Lemma 10 of Hartley [20]. 

Next, let (N/G ) <?<! (G/G ) and consider N n V/G^ . Since V 
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is an X-injector of G , N n V is an X-injector of N , and so, by 

the first part, (N n V)^ = N^ • Thus, since N n V is X-maximal in 

in N , it follows that (N n V)/Ny is ^-maximal in N/N^ . But it 
—rrr 

can be easily checked that N^ = G^ . Hence, N n V/G^ is F^-maximal 

in N/Gy . Since N/G^ was an arbitrary subnormal subgroup of G/G^ , 

this shows that V/G^ has the defining properties of F^-injectors, 

and so V/G^ is an ^-injector of G/G^ , as required. // 

(6.5) Lemma. Let V be as in Lemma 6.4. If V/G^ is ^maximal 
=Tr 

in G/Gp J then V/G^ is an ^-projector of G/G^ , 

Proof. Consider V/G^ • By Lemma 6.4, it is F^-injector of 

G/G^ . Moreover, since h^ 
= 

< k - 2 , it follows by our 

2 

assumption, that V/G^ is ^-maximal in G/G^ • Thus, by Lemma 6.3, 

V/G^ is an F^-projector of G/G^ • Since, by Lemma 2.2.8 (ii), 

F -projectors of G are homomorphism invariant, we have finally that 
V/G is an F -projector of G/G , as required. // X ^̂ir 

We will now prove the main result of this chapter, namely. Theorem 

6.1. 

Proof of Theorem 6.1. We proceed by induction on |G . Thus we 

= V (G) . Also we can assume that h^CG) > k ^ = can assume that V 
X 

G/G^ 

since otherwise the result is trivially true. Now let V be an 
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^-injector of G . Then, since v^ G/G, = V^(G) , V/Gp is, by 

Lemma 5.1.1, X-maximal in G/G . Hence, by Lemma 6.5, V/G is an 

F -projector of G/G . Next, let W/G be an X-injector of G/G„ . 

Then, since V ^ G , V/G and W/G belong to two distinct 
F =7T =TT =TT 

conjugacy classes of X-maximal subgroups of G/G^ . Hence, W/G^a 
=Tr 

is not ^-maximal in G/G 2 • For otherwise, by Lemma 6.5, W/G is F A 

an F -projectof of G/G and hence conjugate to V/G . But then V 

and W are conjugate in G and we have a contradiction. Thus we have 

shown t h a t V X G/Gp2 < V^(G) . In fact, v^ G/Gp2 5 V (G) - 2 , since 
X 

V/G 2 < VG T/G_2 ^ X . Hence, by induction, F —k+1 F =7T F ==IT 

G/Gp2 S k + (v (G)-2} - 1 . Since h 

that h„(G) 5 k + V„(G) - 1 and we are done. F A 

= 2 , it follows now 

// 

We end this chapter with a remark that the above result is no 

more true for k = 1 as the case when £ = N , the class of all finite 

nilpotent groups, and V^(G) = v(G) = 2 shows (see the remark 

following the proof of Proposition 5.3.1). 
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