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;iv) 

Notations. 

Most of the notations used in the thesis are standard in the modern 

publications in Group Theory. However, for purposes of clarity and 

convenience we list these here. A and B shall denote groups unless 

stated otherwise. 

gP 

y J • • • J • • 

H e A 

C^(S) 

[x,y] 

[A,B] 

K = S X T X H 

A X B 

A = am(A,B; H) 

(A X B; H) 

(A * B; H) 

P(A; S,T) 

the group generated by ...; 
satisfying the relations i=l,2,... 

the set consisting of x^y, 
such that ... 

H is a subgroup of A. 

the centraliser of S in A. 

x y xy; x,y 6 A 

gp'[[a,b] ; a e A, b 6 B} 

(s,t,h); s e S , t e T , h e H ' 

the direct product of A,B. 

the amalgam of A and B amalgamating H 

the direct product of A. 

the free product of A. 

the permutational product of A 
using S and T as transversals. 



(v) 

CHAPTER 0 (Introduction) 

The concept of 'permutational products' of groups was introduced 

by B.H. Neumann [1]. This group theoretic construction is based on a 

method given by him in his famous essay i.3J for the embeddability of 

an amalgam v/ith a single group amalgamated, in a permutation group. 

Use of this construction was made to ansv/er various questions about the 

embedding theory of group amalgams (cf. [1], [3]). We begin by 

defining the notion of an amalgam^ and some related concepts. 

An 'amalgam' A of (for convenience only) tv;o groups A and B 

with a ccmmon subgroup H is an 'incomplete group' whose elements 

are those of A and B with the elements of H thought of as identified 

in the two groups. The product of two elements of A is defined if and 

only if they both belong to A or both belong to B, and its value 

is as in that group. If there is a group G containing A and B as 

subgroups such that in G the intersection of A and B is the prescribed 

group H, then we speak of an 'embedding' of the amalgam A = am(A,B; H) 

in G. A and B are called 'constituents' of A and H the 

'amalgamated subgroup'. 

1. This term was first introduced by Baer [15]. A deeper account of 

results concerning group amalgams and their embeddability can be found 

in [3], [4], [5] and [11]. 



(vi) 

By a 'transversal' of a subgroup H of a group A we shall 

mean a set S c A such that every element a of A is uniquely 

representable in the form 

a = sh s € S, h e H, 

We nov7 come to the definition of a permutational product (cf. [1]). 

Let A = am(A,B; H) be an amalgam of the groups A and B. We choose 

transversals S of H in A and T of H in B. Form the set 

product K = S X T X H. The elements of K are ordered triplets 

(s,t,h), s € S, t e T, h € H. For each a e A, we define a mapping 

p(a) : K — > K by 

whene s' e S, h' £ H are determined by the equation 

sha = s'h' 

Similarly for b in B we define a mapping p(b) : K — ^ K by 

= (s,t",h") 

where 

thb = t " h " . 

It is easy to verify that for a = b e H no ambiguity arises in the 

definition of p . Moreover, the mapping p : A — v p(A) is a homomorphism; 

for if a,a' are two elements of A, then 
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= (s",t,h") 

where sha = s'h', s'h'a' = s " h " so that shaa' = s " h " 

which means that 

= (s<St,h") . 

Thus p(a).p(a') = p(aa'). The proof for p(b)p(b') = p(bb') 

is similar. It follows, therefore, that p(A) = ipCa); a e Af 

and p(B) = {p(b); b e b} are groups. Hov/ever the homomorphism 

A —5> p(A) turns out to be an isomorphism, for if p(a) = i^, the identity 

mapping of K, then 

h) 

for all (s,t,h) € K means that sha = sh for all s £ S, h e H 

and therefore a = 1. 

The above remarks show that the mappings p(a), p(b); a e A, h = B 

are infact permutations of K. Furthermore, the intersection of p(A) 

and p(B) is p(H), because if p(a) e p(B) then p(a) leaves the 

first component of each triplet (s,t,h) fixed and so 

= (s,t,ha), 

therefore ha € H, that is a e H. 
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The permutation group P of K generated by p(A) and p(B) 

contains isomorphic copies of A and B with p(A) fl p(B) = p(H) 

isomorphic to H and, therefore, embeds the amalgam A. P is called 

a permutational product of A = am(A,B; H). We use here the indefinite 

article because P depends not only on A but also on the choice of 

transversals S,T of H in A,B respectively (for details see il]). 

By P(A; S,T) we shall denote the permutational product of A corres-

ponding to the transversals S,T of H in A and B respectively. 

M CL' Next we define the free product of groups as follows: Let 

be a family of groups indexed by a set I of finite or infinite 

cardinality. A group G, which x/e shall v/rite as n*G , is said 
ael 

to be the "ordinary free product" of its subgroups 

€ I) if CL 
(i) the subgroups G generate G, that is, if every element CL 

g =1= 1 of G is expressible as a product of a finite number 

of elements from the G : 

g = g^g2 ®i ^ ̂ a. ^ " l,2,...,n (A) 

where 

g. 4= 1, a. + a, for i + i + 1 ; and 1 ' 1 ' J J I _ 

(ii) The expression (A) is unique for every g =j= 1 in G. 

If the set I is finite, v/e shall use the notation 

G = G *G * ... *G . I z n 



(ix) 

The subgroups G of G are called the 'free factors' of G v̂ hile 

the expression (A) is called the 'normal form' of an element g of G. 

If each of the free factors G^ contains a subgroup H^^ isomorphic 

to a Hp^ of Gp, then let G* be the group obtained from the free 

product G by introducing all relations h^^ = h^^ a =j= identifying 

pairs of elements of H^p and H^^ which correspond under some fixed 

isomorphism between these two subgroups G^ and Gp respectively. 

This makes G* a homomorphic image of G in a natural way. If in G* 

the images of the subgroups G of G still are isomorphic to G for Ct OL 

each a and their intersections in pairs are precisely (the images of) 

the subgroups H^^ = H^^ then G* will be called 'the free product of 

G with amalgamated H _'. We shall vnrite G* as: a a(3 

G* = (n*G ; H „ = H e I, a + 3). a a|:5 Pa 

Let A be an amalgam of the groups G v/ith amalgamated H e I). ~ CC OC»p 
Let H be the group generated by all H € I, a fixed). The CL CCp 
amalgam A* formed by the groups H amalgamating H ^ is called the GC CCp 
'reduced amalgam' of the groups G . A necessary and sufficient GC 
condition for the embeddability of A is that the* reduced amalgam A' 

is embeddable (Hanna Neumann [4]). Apart from that no necessary and 

sufficient condition for the embeddability of an amalgam is known, not 

even in the case of an amalgam of three groups. 



(x) 

This thesis comprises of three chapters. Chapter I deals with 

a discussion on Permutational products and their properties. A 

generalisation of a theorem of B.H. Neumann concerning changes in the 

transversals of the amalgamated subgroup is given by Theorem 1.2.1. 

In Chapter II are given tv/o necessary and sufficient criteria 

for the existance of the generalised free product of the reduced amalgam 

of three groups. A special amalgam of more than three groups and its 

embeddability is discussed in this chapter. The result obtained here 

generalises Theorem 9.0 of [4]. 

A problem of B.H. Netimann and Hanna Neumann about the embeddability 

of an embeddable finite amalgam in a finite group is considered with 

particular reference to those amalgams whose embeddability has been proved 

in Chapter II. Theorem III.2.2 generalises some known results, 

(cf. Theorem 9.1. [4] and [14]). It is mentioned, however, that the 

question of embeddability in a finite group of a finite amalgam of type 

S is still open. 

Lastly a counter example is given to answer various questions 

about different embeddings of an amalgam of three groups. 



CHAPTER I 

PERMUTATIONAL PRODUCTS OF GROUPS. 

I.O Introduction; Let A = ain(A,B;H) be an amalgam of two groups A 

and B with the subgroup H amalgamated. Let P(A,S,T) be the 

permutatlonal product of the amalgam A using transversals S and T 

in A and B respectively. It has been shown by B.H. Neumann that 

a change in the transversals of H in the constituents greatly alters 

the nature and character of a permutational product. In I.l we 

study the effect of some special changes in the transversals of H 

which do not change the isomorphism type of the permutational product of 

A and B. 

B.H. Neumann has shown that if H is central in one of the constituents, 

say A, then the isomorphism type of the pennutational product is 

independent of the change of transversals in the other constituents, 

that is in B, (cf. Theorem 4.2 [1]). We prove (Theorem 1.2.1) 

that such is also the case under a less restrictive condition namely 

that the amalgamated subgroup possesses in one of the constituents a 

transversal which it centralises. It then follows that if H has, in 

both A and B, transversals that it centralises, then all permutational 

products of the amalgam formed with transversals of which at least one 

centralises H, are isomorphic. 



2. 
In 1.3, we examine the structure of a permutational 

product of an amalgam in which the amalgamated subgroup 

possesses in both the constituents transversals that 

it centralises, and show that for this kind of amalgam the permutational 

product corresponding to transversals centralised by the amalgamated subgroup 

belongsto the least 'variety'^ containing both the constituents. 

Some analogies between the generalised free product and permutational 

products of groups vrith an amalgamated subgroup are discussed in I.A. 

A result similar to theorem 1.1[3] is proved for permutational products. 

Following B.H. Neumann, let F* denote one of the following 

properties of groups: being locally finite (LF), of finite exponent 

(FE), or periodic (P). It is known that a soluble amalgam (that is, 

an amalgam of soluble groups) or an amalgftm of groups having the 

property F*, need not be embeddable in a soluble or F* group, 

respectively, (cf. [1], [2J). However, under some sufficient conditions 

on the constituents, B.H. Neumann has shown it to be possible. For 

the case of soluble amalgams, theorem 5,A of [1] is shown to hold under 

the weaker assumption that the amalgamated subgroup is contained in the 

centraliser of one of its transversals. Some other sufficient conditions 

for the embeddability of a soluble, nilpotent or F* group amalgam in a 

soluble, nilpotent or F* group respectively are also discussed. 

1. A 'variety' is a class of groups closed under the operations of 

taking subgroups, epimorphic images and cartesian products 

[cf. [12]. [15]). 



3. 

I.l. Some very special changes of the transversals are possible in any 

amalgam without changing the isomorphism type of the permutational 

product. In this paragraph, we make a study of these changes. Let S 

be a transversal of the amalgamalid subgroup in one of the constituents. 

By S* = Sh*, we shall denote the transversal of H obtained from S 

by multiplying on the right every element s of S by a fixed element 

h* € H. We now prove: 

1.1.1. The permutational products P = P(A;S,T) and P* = P*CA;S*,T*) 

of the groups A and B amalgamating H, corresponding to the transversals 

S,T and S*,T* respectively where S* = Sh*^ T* = Th*, h* e H, are 

isomorphic. 

Proof: Let K = S x T x H, K* = S* x T* x H. The permutation 

representations of A using K and K* will be denoted by p and p* 

respectively. Define a mapping cp : K — a s follows: For any 

(s,t,h) € K, s e Sj t e T, h € H, 

(s,t,h)^ = (sh*,th*,h^) 

with h = h*h^. Then cp is clearly one to one and so cp ^ exists. 

For any element a of A, 

-1 

= (s'h*,th*,hj) 

where sha = s'h' = s'h*h| (i) 



4. 

Also 

where. 

sh*h^a = sha = s " h * h " 

s'h*h| by (i) 

Consequently s'' = s', h'' therefore. 

cp ^p(a)cp = p*(a) for all a e A 

Similarly, 

cp'^p(b)cp = p*(b) for all b € B. 

so that 

(p'^Rp = P* 

Hence P and P* are isomorphic. 

In the following proposition, we show that conjugation of elements 

of both the transversals by a fixed element of the amalgamated subgroup 

does not alter the isomorphism type of the permutational product, that is 

we prove: 

1 . 1 . 2 If P = P ( A ; S , T ) and P ^ = P ^ C A J S * , ! * ) are permutational 

products of A = am(A,B; H) for transversals S,T and S*,T* 

respectively, where S* = h*Sh*, T* = h*Th*, then P and P* 

are isomorphic. 
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Proof: We denote by K and K* the set products S x T x H 

and S* X T* X H respectively and define a mapping cp : K —^K* 

such that, for (s,t,h) e K, 

(s,t,h)^ = (h*sh*,h*th*,hj^) 

with h = h^ € H. Then again, cp is one-one. Also for a e A, 

- 1 - 1 

= (h*s'h*,h*th*,hj) 

where sha = s'h' = s'h*h|; (i) 

and 

-1 -1 - . ^ -1 -1 

with 

- 1 

h*sh*h^a = h*"^s"h*hJS i.e. sha = s"h*h|' (ii) 

From (i) and (ii) we get 

s' = s h | ' = h| 

cp ^p(a)cp = p*(a) for all a € A. 

On account of the symmetrical nature of the transformation, we also have 

c p ' ^ p ( b ) c p = ^ ( b ) for all b e B. 



5. 

Since P and P* are generated by p(A),p(B) and p*(A), 

respectively, they are isomorphic as before. 

-1 
If we have transversals S,T and S**, T** such that S** = h*Sh** 

-1 -1 -1 
and T** = h*Th**, then writting these as S** = h*Sh*h*h** = S*h 

and T** = T*h'*^nd using first 1.1.2, then 1.1.1 we obtain 

1.1.3. Corollary; The permutational product P(A;S,T) and P**(A;S**,T**) 
- 1 - 1 

where S** = h*Sh**, T** = h*Th**, are isomorphic. 

We discuss now the changes in those transversals of H in A which 

consist of powers of one single element. The class of group amalgams 

such that one group possesses such a transversal, is, of course, very 

restricted. In such an amalgam, a particular transversal of H in 

one of the constituents, say A, is written as 

S = 0 1 m-ll 
S j S j ••• S J ^ 

m -s = 1 

Thus the first element of S is taken as the unit representative of H 

in A. S will be called a "cyclic transversal" of H and at least 

one of the constituents in A would be supposed to have one such 

transversal. 

By S.. , v/* we denote the transversal obtained from S by multiplying 

the ith element of S by h on the right. Then we prove: 

1.1.4. If one of the constituents in A, say A has a cyclic 

transversal and two other transversals S', S'' of H in A are choosen 

such that S' = Sq̂  , S " = S^^ moreover, there is a mapping 
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Cp from K ' = S ' x T x H to K " = S " x T x H , defined by 

and 

then for all h € H, cp ̂ p'(h)cp = p''(h), vzhere p' and p'' are 

permutation mapping of K' and K' ' respectively. 

Proof: cp is clearly one to one and so has an inverse. For an h € H, 

we have 

- (s°h*,t,h'h)^ 

= (s^h*,t,h'h) 

and 

while 

(11) 

Thus in both cases cp ̂ p'(h)cp = p"(h). 
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The above result holds also when H has cyclic transversals S,T 

in both A and B respectively and and T,'T'' are chosen such 

in such a case, one can show more, and we prove, by defining the mapping 

cp somewhat more carefully, the following 

1.1.5. Theorem. If H has cyclic transversals in both A,B 

and transversals S',S'' and T',T'' are chosen such that 

then P'(A;S',T') and P"tA;S",T") are isomorphic. 

Proof; The mapping cp : K' —> K'' is defined as 

(i) (sV,tV,h')^ = ( s W , t W , h ' ) 

(ii) (sV,t^h')^ = (s 

(iii) (s\tV,h')^ = (s^'^St V,h') 

(iv) (s^t^h.)^= 

Where are both nonzero such that 1 < k < m-1, 1 1 £ u-l . 

Again cp is one to one and cp ̂  exists. Also for a 6 A, 

= (s'^'.tV.h-)'' 

where s°h*h'a = i.e. s^h*h'a = (1) 
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and 

where 

Also 

1 k " k'+l s h*h'a = s h^ = s'' from (1) 

k'' = k'+l, = h^ and so cp ̂ p(a)cp = p'(a) in this case. 

= (s ̂  

k k+1 with s h'a = s "-ĥ  i.e. s h'a = s ^ h^ (1) 

and 
, k+1 i+1 i+1^,,. (s ,t ^ ' = (s ,hV) 

where 
k+1 s h'a - s h^' = s h^ from (1)< 

Therefore 

kĵ +1 = k^j h^ = h^' and consequently again 

cp'̂ p'(a)cp = p"(a) . 

Also for b 6 B, 



10. 

wnere 

and 

where 

t'^h'b = t'̂  h^ i.e. t'^^^h'b = t ^ h ^ (2) 

J + L , , J ' ' J ' + l ^ 
t h ' b = t 1 from (2) 

Moreover, 

-1 
i " = h^ ^ h^ and so cp p'(b)cp = p(b) 

-1 

(s , t 

with 

and 

where 

0 i' 1 i'+1 / 
t h*h'b = t h^ i.e. t V h ' b = t ^^hg (2)» 

/ k+1 1 (b) , k+1 i ' ' . 
(s ,t ^ = (s ,t 

1 ' ' i '+1 
t V h ' b = ^ h = t'̂  

4 J 
from (2') 

-1 
i'+1 = ^ h^ = h^ and again cp p'(b)cp = p " (b) . 

The other two cases for both a e A and b e B follow similarly, 

thus, once again, we have 

Cp'^p'(A)cp = p " ( A ) , q)"^p'(B)cp = p " ( B ) so that 

-1 
cp P'f= P'' and ?', P'' are isomorphic as before. 
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From the above result we see that if S is a cyclic transversal 

" " P{(A ;S',T) and p M ( A ; S " , T ) 

are isomorphic. Corresponding results for the changed transversals T' 

and T'' also hold. 

However, in all the above cases p ( A ; S , T ) is not, in general, 

isomorphic to p | ( A ; S ' , T ) as the following example shows: 

1.1.6. Example: Ws take A and B both isomorphic to the symmetric 

group of degree three, i.e. 

f 
A = gp\a,b; a = b = (ab)^ = 1 

B = gp 
3 2 2 

c,d; c = d = (cd) = 1 

and let 

H = 8P\ h; h = 1 , h = b = d 

2 2 

H possesses cyclic transversals S = (l,a,a ), T = (l,c,c ) in both 

A and B respectively. However, the permutational products 

P(A;S,T) and ^(A ; S',T) where S' = (h,a,a^) or P (A,S,T) and 2 

^(A;S,T') where T' = (h,c,c ) are not isomorphic because P is of 

order 18 and = 1,2) is of order 162. (cf. [1]. B.H. Neumann). 

But if A is a cyclic group of finite or infinite order, then we have 

a positive answer, namely, we have the following: 

1.1.7. Theorem: Let A be a cyclic group and H = gp h; h = s 
m 

V7here A is generated by s, then p(AjS,T) and ^^(AjS',!) are 

isomorphic. (S' = S ^ 
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k 1 Proof; Define a mapping cp : K K' such that for (s € K = S x T x H 

cp is one-one and therefore possesses an inverse. Also for a e A, 

we have, 

= (s-^^.t.hJ') 

and 

where in both cases 

. k+1 ^ , j,p'(a) , k " ^ , j'' 

-1 

s h a = 8 h = s h 

Hence 

k " = k'+l, j " = j' and therefore cp'''p(a)cp = p'(a) 

for all a e A. For b € B, 

' (s'^^.tSh.^') 
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So that c p " ^ p ( b ) c p = p'(b) for all b e B. Hence Cp'̂ Pcp = P' and the 

isomorphism of p and p' follows because cp is one-one.If 

S' = S,. S" = S,, . S^"^ = S,, „ where 

c _ , 0 1 m-1. , - - / Ou lu i-lu i S = (a , ...,a ), and S,, . ^ u\ h, ...,a h,a ,...,a ), 
ilfZ,..,,x,h) 

then we have, 

1.1.71. Corollary; The permutational products P(A,S,T), P|(A;S',T), 

P^^'^A^'S^^^T) are all isomorphic. 

We have discussed only some particular changes in the transversals 

of the amalgamated subgroup. General results of some kind or other in 

this direction seem to be very difficult to prove. It is known that 

if H is central in one of the constituents, the isomorphism type of the 

permutational product is independent of the change of transversals in 

the other constitutents. In the case of theorem 1.1.7; therefore, 

we need examine the changes in the transversals of H in A only where 

A is a cyclic group. It is true that amongst the permutational products 

obtained by changing the transversals of H in the cyclic constituent 

A, a large number are isomorphic but I have not been able to prove that 

they are all isomorphic to each other although this seems a possibility. 

1.2. It is known that given two groups A and B with an amalgamated 

subgroup H where H is central in one of the constituents say A, 

the isomorphism type of permutational products of A and B amalgamating 

H is independent of the change of transversal in the other constituent 

i.e. in B. (cf. [1]. Theorem 2). We generalise this result and 

prove that this is also true if the amalgamated subgroup possesses in one 

of the constituents a transversal which it centralises, that is, we show: 
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1.2.1. Theorem: Given two groups A and B with an amalgamated 

subgroup H, let S be a transversal of H in A which is centralised 

by H , then the isomorphism type of the permutational product ^CA; S,T) 

independent of the change of transversals T in the other constituent, i.e. 

in B. 

Proof; Let T and T ' be two distinct transversals of H in B and 

p(A;S,T), P'(A;S,T') permutational products of A,B corresponding to 

the transversals S,T and S,T' of H in A and B respectively. 

We define a one to one mapping cp from K = S x T x H to K ' = S x T ' x H 

in the following manners 

If (s,t,h) e K, then 

(s,t,h)^ = (s,t',h') 

where (s,t',h') e K' and th = t' h'. 

Let a 6 A , then, since cp ^ exists. 

= (Sj^^tSh^h^) 

where sha = s^h^^, th = t'h', tĥ ^ = t'h^h^^ (1) 

Also 

where 

sh'a = s^h^ (2) 
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-1 
Now f r o m t h = t ' h ' , we h a v e t ' = t h h i - a n d p u t t i n g i t i n t = t ' h ^ , 

we g e t 
- 1 

t = t h h ' h ^ 

- 1 
s o t h a t h h ' h ^ = 1 i . e . h ' = h ^ h . 

T h e r e f o r e 

s h ' a = s h 2 h a = h ^ s h a , b y t h e a s s u m p t i o n t h a t [ s , h 3 = 1 

f o r a l l h € H , s e S . 

= Sj^h^hj^ b y a s s u m p t i o n 

= f r o m ( 2 ) . 

T h e r e f o r e s^^ = s ^ , = h ^ , a n d cp ^ p ( a ) c p = p ' ( a ) f o r a l l a e A . 

F o r b € B , we h a v e 

a n d 

w h e r e i n t h e f i r s t c a s e 

t h b = t^hj^ = t | h i ^ 

a n d f r o m t h e s e c o n d e q u a t i o n . 

t ' h ' b = t ^ h ^ . 

S i n c e t h = t ' h ' , t h e r e f o r e . 

t h b = t ' h ' b = t | h | = t ^ h ^ . 
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Hence = hj = h^ so that cp"^p(b)cp = p'(b) for all b e B, 

i.e. cp p» and therefore P and p' ar'^ isomorphic. 

This gives us 

1.2.11. Corollary; If H is a direct factor in A , then the isomorphism 

type of the permutational product is independent of the change of 

transversals in B. 

Proof: This is immediate: choose a complementary direct factrir a s a 

transversal. 

1.2.12. Corollary. If H possesses in each, A and B, at least 

one transversal which it centralises, then all permutational products 

of the amalgam foraed with transversals of which at least one centralises 

H, are isomorphic. 

Proof; Let S^ and T^ be transversals of H in A and B respectively 

which are centralised by H , and S and T any arbitrary transversals. 

Then by theorem 2.1 

as required. 

One may, quite naturally expect that when the amalgamated subgroup 

has transversals which it centralises in both the constituents, there is 

only one isomorphism type of permutational product. However, the 

following example shows that this is hoping too much. 
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I'2.13. Example; The groups A and B are taken as isomorphic to 

the dihedral group of order 12 which can be considered as the direct 

product of the dihedral group of order 6 by a cyclic group of order 2. 

Thus 

A = gp{a,b,c; a^ = b^ = c^ = (ab)^ = [a,c] = [b,c] = 1 

B = gp{a',b«,d; a'^ = b'^ = = (a'b')^= [aSd] = [bjd] = l} 

We take H as 

H = gp1 3 2 2 ;,h; g = h = (gh) = 1 , g = a = a',h = b = b' 

The transversals S = (l,c), T = (l,d) are centralised by H. 

The permutational product p(A|S,T) is the direct product of the four 

group by a group isomorphic to H and so has order 24. However, if 

we choose the transversals as S' = (h,c), T'= (g,d), the permutational 

product p'(AJS',T') turns out to be of order 72. p and p' are 

obviously non-isomorphic. 

As already mentioned, when H is central in both A and B and 

so centralises all its transversals in the constituents, then the 

isomorphism type of the permutational product is unique. In fact it 

is then the generalised direct product of A and B amalgamating H 

(cf. [1]). The examples given by B.H. Neumann i[l] also show ho;̂  

drastic the effect of a change in the transversals can be if the amalgamated 

subgroup is not central in both the constituents. It may therefore be 

asked whether, in all other cases, excepting the one above (i.e. of H 

being central in both A and B) permutational products of A and B 
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always depend on the choice of transversals of the amalgamated subgroup. 

This, however, is not the case, as the following example constructed by 

B.H. Neumann in a different context (cf. [2]) shows: 

1.2.2. Example; Let H be the restricted direct product of an 

infinite number of cyclic groups of order 2, that is 

Let be the automorphismiof H defined by 

and 

We now extend H by cyclic groups C, = gpi^; a = 1 1 

C^ = gp\b; b 

• and 

corresponding to these automorphisms to get 

two groups A and B respectively. Thus 

2 , 2 A = gp'^a^H; a' = h^ = [h.,h^] = = 

2, 2. b b B = gp\b,H; b » h^ = = 1, 

^2i+2 ' ] 

Let .? be a permutational product of A and B amalgamating H, 

then in P, ab is an element of infinite order, because for any non-

zero integer n 

n-l , (ab)" _ ,ab.(ab)""^ ^ ,b(ab)'''^ ^(ab)' 
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If F is the free product of A and B amalgamating H then, by 

the definition of the free product, there is a homomorphism of F onto 

P. To show that F and P are isomorphic, it is, therefore, enough 

to prove that it is impossible to add &n additional relation in F 

different from those already implied by the relations of A and B, 

without making any of the groups collapse. 

Now it follows from the general theory of free products with one 

amalgamated subgroup that a general element of F can be written 

uniquely in the form 

r = ha bab ... ab 

e^ = 0 or 1 i = 1,2, and h € H. Hence a relation r = 1 gives 

h = b abab ... a 

If the right hand side is equal to 1, then this is a relation in H; 

hence we may assume it to be different from 1. Then e^ cannot 

simultaneously be 1 or 0, for the right hand side in such a situation 

becomes (ba)®^^ or (ab)™ for some integer m according as 

e^ = - 1 or ~ ~ Therefore, because ab and ba are of 

infinite order in any group embedding the amalgam, they are of infinite 

order in whereas h is of order 2. Thus either or e^ 

zero. Without any loss of generality, suppose that e^ = then ^ 

and 

h = ababa ... ba . 
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The right hand side has an odd number of factors, each of order 

hence it is a conjugate of the central factor, 'a' in our case, by a 

power of ba: 

h = 

is normal in each of the for some integer k. But H = gp\h^ 
-k 

constituents A and B, hence transforming h by (ba) gives 

a e H, which is impossible because this leads to the collapse of A. 

Therefore no proper homomorphic image of F embeds the amalgam of A 

and B. The kernel of this homomorphism being trivial, an isomorphism 

between F and P is established. As the free product of an amalgam 

is unique to within isomorphism, this amalgam possesses only one permutational 

product but for isomorphism^. 

Thus the case of the amalgamated subgroup being central in one 

of the constituents is, by no means, the only one for which we get a unique 

permutational product of an amalgam of tv70 groups. 

The above example also proves another interesting fact; that in some 

cases the free product of two groups with amalgamation? may coincide with 

their permutational product. 

However, the free product of two groups with trivial amalgamation 

can never coincide with their peirmutational product because the permutational 

product of such an amalgam degenei^ates into their direct product and 

since by a theorem of Baer and Levi [10], a group which is decomposable 

into the free product of its subgroups cannot be decomposed into their 
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direct product, we conclude that in such a case (amalgam with trivial 

amalgamation), the permutational product of A,B is always different 

from their free product. 

Finally we mention that there exist amalgams of two groups such 

that their permutational product is different from their free product, 

the amalgamated subgroup is central in none of the constituents and still 

we have only one isomorphism type of permutational product. This is 

shown by the following example. 

1.2.3. Example; Let 
/ 3 2 2 A = gp"ta,b; a = b = (ab) = 1 

B = gp 

and 

c,d; c = d = (cd) = 1 

H = gpjh; h ^ = l , h = a = c 

All the permutational products of A and B are different from their 

free product (this is due to the fact that a permutational product of 

a proper amalgam of two finite groups being subgroups of the permutation 

feroup on a finite set K = S x T x H where S and T are coset 

representatives of H in A and B, is finite whereas their free 

product is always infinite.) Moreover, the amalgamated subgroup is 

central in noneof the constituents. But the only different looking 

permutational products of this amalgam corresponding to distinct transversals, 

are given by 

Pj = gp a,|3,r; = = (P7)^ = 1, (37)^ = a} 

= ; = = c'^ = (b'c')^ = (c'a')' 

= (a'b')^ = 1 
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Pĵ  can also be generated by P and 7 alone. The mapping 

P —> b'a', 7 — c ' 

is an isomorphism betx^een P^ and P^* 

1.3. We now examine the structure of the permutational product 

P(A;S,T) of A corresponding to the transversals S and T v/hich are 

centralised by H. It will be shown that this particular permutational 

product possesses the properties of the generalised direct product of 

groups. In fact, we shall prove that this permutational product is 

itself the generalised direct product of some groups isomorphic to 

subgroups of the constituents in A . 

Let us denote by C (S) the centraliser of S in A, then we have; 
A 

1.3.li. Lemma: Let H c C (S) n C (T), then in the permutational 
A J5 

product P(&5S,T) of A, p(S) and p(T) commutitee elementwise. 

Proof : Let e K = S x T x H , then for any s 6 S and t £ T , 

we have, 

where ŝ ĥ̂ ŝ = s^h^, ^^2^3 ^^^ 

Also 

where S j h ^ « s^hj, t^h^t = t^h^ (2) 
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From (1), and (2), we have, 

-1 -1 -1 -1 

and 

t^t = t^h/hj = 

-1 -1 

t^ = t^, h^ h^ = h^ h^ (4). 

-1 

From (3) and (4), h^ = ^3' Therefore p(s)p(t) = p(t)p(s). 

This being true for all € K, and a^e S, T, we have 

1.3.2. Theorem. Let H possess in A and B transversals S and T 

respectively which it centralises, then the permutational product 

P(AjS,T) of A = am(A,B; H) can be represented as the generalised 

direct product of any of the following three sets of groups, 

(i) The groups K, L, and p(H) v/here 

P(S)}, L = SP p(T) or K = gp 

(ii) p(A) and L; or 

(iii) p(B) and K. 

Proof: To prove (i) we first note that since p(S) and p(T) 

commute elementwise (lemma 3.4), so do also the groups K = gp|p(S) 

and L = gpjpCT)}. Let K 0 L = R, then R is central in K because 

R is a subgroup of L which centralises K; so also it is in L 

because then we consider it as a subgroup of K, and L and K commute 

elementwise. 
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Moreover, R being a subgroup of both K and L and so also of 

p(A) and p(B), R is contained in p(H). Furthermore, R is central 

in p(H) because it is a subgroup of K and L which are centralised 

by p(H). Since K,L and p(H) contain R as a central subgroup 

and P is generated by these groups it is their generalised direct 

product amalgamating R. 

We now proceed to the proof of (ii). The group P which is 

generated by p(S), p(T), p(H), can also be generated by p(A) and 

p(T) i.e. by p(A) and. L only, where L = gp|p(T)}. Let no\j 

p(A) n L = Rĵ : we show that R^ is central in L as well as in 

p(A). Since R̂ ^ is a subgroup of p(A) and L, R^ is contained in 

p(H) (the meet of A and B being only H.). As a subgroup of 

p(H), R^ and L commute elementwise because H centralises T and 

so also L. Also R^ is central in p(H) because R^ is in L. 

Since p(A) is generated by p(S) and p(H), and L centralises 

p(S), therefore R^ centralises p(S), that is R̂ ^ is central also 

in p(A). P being generated by p(A) and L with their meet central 

in both is their generalised direct product amalgamating R^. 

The proof of (iii) is exactly the same as that of (ii). 

The theorem is now completely proved. 

The following theorem gives the nature of subgroups generated by 

elements of A and B contained in the centraliser of H in A and B 

respectively, in a permutational product P of A and B amalgamating H. 
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1 . 3 . 3 . T h e o r e m . L e t { a ^ } a n d { b ^ } b e t w o s e t s , f i n i t e o r i n f i n i t e , 

o f e l e m e n t s o f A a n d B r e s p e c t i v e l y s u c h t h a t e a c h a , e C ( H ) 
1. A 

^ i ^ ^̂  a b e l i a n , t h e n i n a n y p e r m u t a t i o n a l p r o d u c t P o f 

A a n d B , A ^ = g p { p ( a p , p i ^ ^ ^ ) } , B ^ = g p { p ( b ^ ) , p C b ^ ) / 

g e n e r a t e t h e i r g e n e r a l i s e d d i r e c t p r o d u c t . 

P r o o f : L e t ( s , t , h ) € K = S x T x H , t h e n we h a v e t o s h o w t h a t 

p ( a ^ ) p ( b j = p ( b j p ( a ^ ) f o r i = l , 2 , . . . , m j = l , 2 , . . . , n . 

Now 

w h e r e 

A l s o 

w h e r e 

s h a ^ = s a ^ h = s ' h ' a n d t h ' b ^ = t b ^ h ' = t ' h " ( 1 ) 

p ( b . ) p ( a ) p ( a ) 

s h ^ a ^ = s a ^ h ^ = s ^ ^ h ^ , a n d t h b ^ = t b h = t^^h^ ( 2 ) 

F r o m ( 1 ) a n d ( 2 ) , we h a v e , 

- 1 - 1 - 1 - 1 

T h e r e f o r e - 1 - 1 - 1 - 1 

t h a t i s . 

s ^ = s ' , h ^ h ^ = h ' h , a n d t ^ = t ' , h ^ h = h " h ' 

- 1 - 1 
h ^ = h ' h h ^ = h ^ h h ' = h " ( b e c a u s e H i s a b e l l a n ) . 

T h u s 

p ( a ^ ) p ( b J = p ( b J p ( a ^ ) a n d c o n s e q u e n t l y 

g e n e r a t e t h e i r g e n e r a l i s e d d i r e c t p r o d u c t i n P . 

, A a n d B 
m n 
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Remark 1. If a. = s*h*, b. = t*h*, then for all h e H, 
1 1 1 J J J 

" t 
h* 

1 = [a^,h] = [s|h*,h] = [s|,h] = [s|,h] ^ 

gives. 

« [s*,hl = 1 

Therefore s* e C (H) for all i = l,2,...,m 
1 n 

similarly: t* e C (H) for all j = l,2,...,n. 
j o 

Thus if S* = s*;s* e C^(H) t*; t* € Cg(H)} , T* = 

then since [p(s*)f p(t*)] = 1 for all s* e S*, t* € T*, if 

K* = gp{p(S*) L* = gp '[p(T*)}, then K* and L* generate their direct 

product in any permutational product of A and B amalgamating an abelian 

subgroup H. 

Remark 2, The condition on H about its being abelian is necessary. 

ExampleX.2.13 would suffice to show this. 

1.4. Although the concept and nature of the generalised free product 

with amalgamations is entirely different from that of a permutational 

product of a given family of groups still there are some results which 

exhibit certain analogies in the behaviour of free products and permutational 

G cu 
and G' 

a products. For examplej it is knovm that if 

(a belonging to an index set I) are two families of groups each having 

a common subgroup H and H' respectively, and a system of homomorphisms 

CP of G onto Q ' where any two cp and cp„ agree on H, is given, 
â. a ct ct p 

and further if F and F' are the free products of G aJ 
and IG' 

0(r {c 
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amalgamating H and H' respectively then there exists a hcmomorphism 

Cp of F onto F' which extends all the The proof of the above 

theorem is due to Hanna Neumann (cf. for example [3] Theorem 1.1). 

We prove a corresponding result giving a relationship between the 

permutational products of two families of groups TG f and IG'f 
La-' a-* 

amalgamating H and H' respectively. We have, of course, to choose 

the transversals in a particular manner. It is sufficient to show 

this for the permutational products of only two groups because the 

proof for more than two groups is not at all different. 

Let A,B and be the given groups having common subgroups 

H and H' respectively. Let S and S' be coset representatives 

of H and H' in A and A' respectively. Let cp̂  be a homomorphism 

of A onto A'. If S' is the set of distinct ^Icmoafas. in the 

image S of S under this mapping, then we say that S and S' are 

"equivalent transversals" of H and H' in A and A ' respectively. 

We similarly choose a pair of equivalent transversals T and T' of 

H and H' in B and B' respectively corresponding to a homomorphism 

cp : B —i>B' which coincides with cp on H. 
O A 

We now prove the following: 

I.A.I. Theorem. Let cp̂  : A —^ A', cp̂  : B B' be homomorphisms 

of A onto A' and of B onto B' such that cp |H = "PRIh, and further 
A ij 

A = SH, B = TH. If a pair of transversals S', T' of H' in A',B' 

equivalent to S and T respectively, is chosen then there exists a 

\ tc 
homomorphism cp of the permutational product .P(A;S,T) of ^ - ciw ],'̂ J 
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// A' = am(A',B'; H'), which eXtends both cp. and cp . 
A B 

Proof: First we shov; that in the permutational products P (A;S,T) and 

P'(A;S',T'), the mappings 

p(a) — > p'(a') and p(b) — > p'(b') 

where a > a', b̂  b', a € A, b e B, a' eA', b' e B', are 

homomorphisms of p(A) onto p'(A') and of p(B) onto p'(B') 

respectively. 

Denote by p ^ the inverse of the isomorphic mapping a — ^ p(a) 

of A onto p(A) for a e A. Then if 

a ^ — > a-, a ^ - - ^ a-

we have 

and 

P(a^) P ' \ P' = P' = (a')p' = P'(a{) 

P(a2) p ' \ P' = P'(ap 

p(a^)p(a2) p'̂ cp̂  p' - pCa^a^) p'̂ cp̂ p' 

= (a|app' 

p'(a|ap 

p'(app<(ap . 
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Thus p(a) —^ p'(a') is a homomorphism of p(A) onto p'(A'), a e A, 

a' e A'. Similarly p(b) —>> p'(b) gives a homomorphism of p(B) onto 

p'(B'). 

To prove that P' is a homomorphic image of P, we have to shov? 

that any law which hold in P also holds in P'. Let 

(s,t,h) e jC = S X T X H and let w be a word in elements from p(A) 

and p(B), that is 

w = p(a^) V(b^) ... 

= p(a^^)p(b^) ... p(a^)p(b^^) 

where 6, and S„ are 0 or 1, and a. e A, b. € B. Then 
1 2 ' 1 ' J 

p(a b p ( b ) ... P(a )p(b 

p(a-) ... p(a )p(b 

n n n 

Here 

shaj^ = s^h^ and t h^^b^ = t^^h* 

s , h * , a = s h t , h b = t h * 
n-I n-1 n n n n-1 n n n n 
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Also if the elements s',t' of S',T' correspond to the elements 

s,t of S,T under the homomorphisms cp , cp respectively and 

P'(a'/)p«(b') ... p'(a')p'(b' 
(s',t',h') ^ ^ n n 

^ 5 
p'(a V)p'(b cpg) ... V p ' ( b V ) 

5 
P'(a cp )p'(b cp ) ... P'(a cp )p'(bV) 

= ( V a ^ W W 

because 

and 

Similarly 

and 

'I+IVI+i-PB • 

Thus if 

7(...,p(a),p(b),...) = 1 

is a relation in P(A^S,T), then 
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7(...,p'(a'),p'(b'),...) = 1 

is also a relation in P '(A'^S',T'). By vcm Dyck's theorem, there exists 

a homomorphism cp of P onto ? ' v;hich extends both 9. and cp . 
A B 

This completes the proof of the theorem. 

We shall make use of the above theorem in the special case when cp 
A 

and cpg are isomorphisms in a different context in Chapter III. 

B.H. Neumann, in his famous "Essay on the generalised free product 

of groups with amalgamations" has proved the following theorem, which 

deals with a very restricted class of subgroups of the generalised 

free product. 

1.4.2. Theorem of B.H. Neumann [3]. Let P be the generalised free 

product of two groups with an amalgamated subgroup H , that is A fl B = H. 

Let a set of elements t (where oL ranges over an index set I ) 
a 

be given with the following two properties: 

(i) Every t belongs to the normaliser of H in B, i.e. 
CO 

t € B and t H = Ht . 
a a a 

(ii) No two different elements t^, t^, a f p lie in the same 

left coset (or what amounts to the same thing because of (i), 

right coset) modulo H, i.e. 

t^H f t H for a -f P . 



Then the subgroup Q of P generated by the groups 

G = t'^At a a a 

is the generalised free product of these G with a 
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H = G n G„ (a + (3) a p 

amalgamated. 

We show by an example that in the corresponding situation, the 

subgroups G of a particular permutational product of A and B, cc 
generate in this permutational product a subgroup which is no permutational 

product of these G^. 

4.21. Example: 

Let 

and 

A = gp 

B = gp 

H = gp 

a; a"̂  = 1 

3 3 h; h =l,h=a =b 

B is a splitting extension of an elementary abelian group of order 9 

by a cyclic group of order 2. 

As H is central in A, the isomorphism type of permutational 

product of A and B is independent of the choice of transversals 

of H in B. Also since H has index 3 in A and since H and so 
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3 every coset of H has order 3 there are 3 = 27 choices of 

transversals of H in A, and consequently 27 permutational products 

of A and B. However, in all these permutational products the 

corresponding groups 

-1 -1 
A^ = p(c)p(A)p(c) and A^ = p(d)p(A)p(d) 

generate a nonabelian group. But as these groups are cyclic and hence 

abelian, the only permutational product obtainable from them is their 

generalised direct product which must be abelian, and therefore not 

isomorphic to the group generated by A and A in any of the c d 
corresponding permutational products of A and B amalgamating H: 

If vie are given an amalgam of two groups A and B amalgamating 

H and if 

A = A, x A „ x ... x A , B = B. x B x B 1 z n i z n 

in such a way that 

A n B = H = H , x H - X ... x H 1 1 n 

where \ \ ^ ^^^ ^ one will expect the 

permutational product of A and B to be the direct product of the 

permutational products of the amalgams am(A^,B^; H^) provided the 

transversals are chosen in the natural way. The following theorem for 

which we suppose the groups to have, without any loss of generality, 

only two factors, confirms this guess. 
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1.4.3. Theorem; Let P^C^ilSj^jT^) and P^CAjS^^T^) be permutational 

products of amalgamating H^ and of A^^B^ amalgamating H^. 

Let fur ther , A = A^ x A^, B = B̂ ^ x B^ such that H = H^ x H^. Then 

the permutational product^ P(A;S,T) of A and B amalgamating H i s 

the d i rect product of P^ and P^ i f S = S^ x S^ and T = T^ x T^. 

Proof: We f i r s t prove that i n P, the group P| generated by 

p ' ( A ) , p'(Bj^) i s a d i rect factor of P, For th i s we have to shov/ that 

P'(Aj^), P ' ( B2 ) and p 'CA^), p'(Bj^) commute elementwise. 

Since the t ransver sa l s of H i n A and B are taken as 

S = S^ X S^, T = T^ X T^, therefore, every ( s , t , h ) e K = S x T x H , 

can be wr i t ten a s : 

where' s^ e S^, t^ € T^, h^ € H^, i = 1,2. 

Let â ^ e A^, b^ e B^, then 

p ' ( a . ) p ' ( b ) _ P ' ( b2 ) 
(s^s. 

= ( s ^ s i . t ^ t . ^ h . h p 

where 

i . e . 

= s j h l 

and 

hence 
t^h^b^ = t^h^ 



Also if 

p(a®J) ... p(b^l) 

s & 
= P(aj2) ... pa^^) 

t 

then for any ^ ^^ have, 

e 5 
p(a [) p(b ) ... p(a ) p(b 

(s^s^, t^t^, h^h^) = (s^sj, t^tj, h^h') 

= (s^s^, t^t^, h^h^) 

then 

= (s's^, t^t^, h^h^) 

= 4 ^ 1 = = 4 4 

that is 

h'^h^ = h'h^^ e H^ n H^ 

and since ... 
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However, also 

Therefore, [p(a^)^pCb^)] = 1 and consequently in P 

P'(Aj^), P'(B^) commute elementwise. By symmetry P" (A^) and 

p* (Bj^) also commute elementwise. Hence if 

P| = gp\p(A^),p(B^)} and (P̂  = gp{p'(A2), p'(B2) 

then P| and P^ commute element by element. Also^since 

A^^A^; ^^^ intersect trivially therefore 

P{ n P^ = U Since P is generated by P| and P^ together. 

P| and so also P^ is a direct factor in P. Thus P = Pĵ  x P^. 

VJe now show that Pj = P^, where P^ is the permutational product 

of amalgamating H^ corresponding to the transversals 

of Hĵ  in A^ and B respectively. 

We take a word 

w = ... e A^^, b^. € B^, 

in P . Then if e K^ = S^ x T^ x H^, we have 

... P ( V p ( b , „ ) 
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where 

Also if (s^s^^t^tj^jh^h^) e K = S x T x H , then 

P'(a )p'(b ) . . . P ' U )p'(b ) 
fo s t t h h ^^ ^^ 

Therefore if w = 1 is a relation in P^, it is also a relation 

in but the converse also holds. Since the relation of P^ and 

are in one to one correspondence therefore thfey are isomorphic. 

Similarly " ^2' 

P s Pĵ  X P^ 

as required. 

That the choice of transversals of H in A and B in this 

particular way is necessary, is shown by the following example. 
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Example; Let A^ and B^ be symmetric groups of degree 

three, that is 

A. = gp ; a^ = c^ = (a.c.)^ » 1 

and 

B. = gp{b.,c. ; b^ = c^ = = i; 

A X iŜ  , B = B X B and H = H x H 
L L Z j. Z 

where H^ = gp Let P^ be the permutational product 

of amalgamating H^ corresponding to the transversals 

S. = 1 and T^ = Then each of the P.'s 1 
i = 1,2, has order 162 (cf. B.H. Neumann [1]) and therefore the 

order of P^ x P^ is 162 x 162 = 26244. However, the permutational 

product P of A and B corresponding to the transversals 

S = X and T = {l,b^,b^} x {l,b2,b2}, being an 

extension of an elementary abelian group of exponent 3 and order 81 

by the four group is of order 324. P is, therefore, not isomorphic 

to Pĵ  X P^. 

P(A,S,T) is, of course, isomorphic to Pj x P^ where 

PI = P'(A/,S!,T!) with S' = {l,a.,aj}, T] = {l,b ,bj 1 1 = 1 X 1 l ^ - l l ^ I ' - l l - ' 

1.5. Let P be a property satisfied by the groups of a certain 

amalgam A (e.g, the property of being finite, soluble, etc.). As is 

shown in [1] and [2], an amalgam with a property P may not always 

be embeddable in a group having the same property. Sufficient conditions 
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of one kind or another on the amalgam are, therefore essential. A 

condition which is fairly close to the hypothesis that the amalgamated 

subgroup be central in both the constituents is the existence of transversals, 

one in each of the constituents, which are centralised by the amalgamated 

subgroup. 

We have seen in theorem 1.3.2 that when the amalgamated subgroup H 

has, in the constituents A and B, transversals S and T respectively 

which it centralises, the permutational product P(AjS,T) of A and B 

amalgamating H is the generalised direct product of K,L and f(H) 

where K = gpjpCS)}, L = gp{p(T)}, amalgamating K n L = R. But then 

in such a case P(AJS,T) belongs to the least variety containing both 

A and B, so that if A and B are in a variety V, say, then so is 

also P in V, we have therefore: 

1.5.0. Theorem; Let A = am(A,B; H) be an amalgam of two groups 

belonging to a variety V, then A is embeddable in a group belonging 

to V provided that H possesses transversals $ $ and T which it 

centralises in both A and B. 

B.H. Neumann (cf. [1]) has shown that an amalgam of two soluble 

groups is embeddable in a soluble group if the amalgamated subgroup 

is central in one of the constituents. The above remark slightly varies 

this result. However, going further, we prove that, as suggested by theorem 

1.2.1, the condition that the amalgamated subgroup is central in 

one of the constituents can be replaced by the requirement that it posses!ii^5 
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in one of the constituents a transversal which it centralises. 

Some more results concerning the embeddability of a soluble amalgam 

(that isJ an amalgam of soluble groups.) in a soluble group using a 

different sufficient condition will also be obtained. 

We first repeat some of the definitions in [1]. Given two soluble 

groups A and B with a common subgroup H, by S and T we shall 

denote arbitrary but then fixed transversals of H in A and B 
•g 

respectively. By B , we mean the set of all functions on S with 

values in B. This is turned into a group by defining the multiplication 

S 
of any two functions f,g € B as 

fg(s) = f(s)g(s) for all s e S 

Definition; A mapping 7 of the set K of all triplets (s,t,h), 

s € S, t e T, h € H, into itself is a quasi-multiplication (or more 

precisely a quasi B-S multiplication) if there is a function f 

on S to B such that 

(s,t,h)^ = (s,t',h') 

with 

t'h' = thf(s). 

The mapping y associated with f is denoted by 7(f). The 

set of all such functions known to form a group £ isomorphic to B^ 

(cf. lemma 5.1 [1]). 
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To see that the results in [1] and [2] hold under this weaker 

condition, namely the existence of a transversal centralised by the 

amalgamated subgroup in one of the constituents, it is enough to show 

that the fundamental Lemma 5.2 [1] holds. 

We restate the lemma making use of the new hypothesis. 

1.5.10. Lemma (Compare with Lemma 5.2 [1]). Let H possess in one 

of the constituents, say A, a transversal S which it centralises. 

Then p(A) normalises T. More precisely, for a € A, 7 = 7(f) € f 

there is an element 7' = 7(f') of T such that 

p"^(a)7(f)p(a) = 7(f'), 

g 
for f e B , and p a permutation of K = S x T x H . 

Proof: The proof is essentially the same as in [1] except that here 

we just use the condition that H is contained in the centraliser of 

one of its transversals^say S, in a constituent A. 

We compute 

7' = p(a"S7(f)p(a) 

for a 6 A, 7(f) € I, f e B^. Let (s,t,h) 6 K = S x T x H , then 



41. 

p ( a ) 

w h e r e 

A l s o 

w i t h 

s ha "^ = s^h^, th^f (S j^) = t^^h^, s^h^a = s^h^ ( i ) 

t h f ' ( s ) = t ' h ' ( i i ) 

We h a v e t o show t h a t S2 = s , t ' = t̂ ,̂ h ' = h^ t o p r o v e t h a t 

7 ( f ' ) = p ( a " ^ ) 7 ( f ) p ( a ) . 

Now f r o m ( i ) we h a v e 

s h = Sj^hj^a = s^h^h^^s^^s^h^ = s^h^h^^h^ 

( ' . • = [ s ^ . h ^ h " ^ ] = 1 ) . T h e r e f o r e s = s^ and h = 

t h a t i s 

A l s o 

h3 = h^h-^h ( i ' ) 

t^h3 f r o m ( i ' ) 

= th j^ f ( s^)h^^h f r o m ( i ) 
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Thus tĵ ĥ  = the 

where 

c = (h^^h)f(s^)h'^h 

which depends only on ŝ^ and ĥ ^̂ h. If we write 

(sha ) = (sa) = s,, (sha) = h. 

we see that ŝ^ is independent of h. Also from sha ^ = 

that is, h Jhsa ^ = ŝ ,̂ we have, 

u-K -1 / -1 h^ h = sĵ as = (sa ) as 

which depends only on a and not on h. Thus if we define the 
S elements of B by 

(1) f^(s) = f(s^) = f(sa'S^ 

(2) g(s) = h"^h = 

then 

= (g(s))"^f^(s)g(s) 

for all s € S and we have 

and 

f = g'^f^g 

7' = 7(f') = 7(g"^f^g) 

S S where f̂^ e B , g e H . This completes the proof of the lemma. 
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This gives us 

1.5.11. Corollary (Compare with corollary 5.2 [1]). If H c C ^ ( S ) , 

then 

[p(A ) , r ] c r . 

Here [K,L] means the group generated by all commutators 

k e L, i e L. The proof of the above corollary follows from the fact 

that p(A) normalises f. 

1.5.12. Corollary (Compare with corollary 5.3 [1]). If H c C^(S), 

then 

[p (A) , r ' ] C r ' 

where f denotes the derived group of T. 

1.5.13. Corollary (Compare with corollary 5.3 [1]). If H c C ^ ( S ) , 

then 

[p(A),piB)] c r ' . 

Consequently, we have, 

1.5.2. Theorem (Compare with theorem 5.4 [1]). If, in one of the 

constituents, say A, the amalgamated subgroup H possesses a transversal 

S which is centralised by H, and if further, A and B are soluble 

of length i and m respectively, then the permutational product P(AjS,T) 

of A and B is soluble of length n where n satisfies the relation 

n < i + m - 1 . 
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We further remark, without going into the details that the results 

proved in [2] based on lemma 5.2 of [1] still hold under this 

weaker assumption. 

Let F* denote one of the following properties of a group; 

being locally finite (LF), of finite exponent (FE), or being 

periodic (P). We discuss here the enbeddability of a soluble or F* 

amalgam in a soluble or F* group respectively, making use of a 

sufficient condition of somewhat different nature. The following lemma 

plays a key role in the discussion that follows. 

1.5.3. Lemma; Let the groups A and B be extensions of a normal 

subgroup S of A by H and of a normal subgroup T of B by H 

respectively. Then S and T serve as transversals and the 

permutational product P(A; S,T) of the amalgam A = am(A,B; H) 

belongs to the least variety containing both A and B. 

Proof; We first shov? that in P, p(S) and p(T) commute elementwise. 

Let € K = S X T X H , then for s € S, t € T, we have 

and 

where 

in both cases. Therefore [p(s),p(t)] = 1 for all s 6 S, t € T. 



H. Also the groups A' = (sh,hcp); s € S, h e H and 

45. 

Before going into further details of the proof of the above lemma 

we remark that for a slightly more general situation when S fl T = Z =}= {l 

is central in both S and T and S^, T^, given by Sĵ Z = S, T^Z = T 

are taken as transversals, p(S) and p(T) still commute elementwise 

in the permutational product P(A; of the amalgam A = am(A,B : 

Since P is generated by p(S),p(T) and pi'(H) and moreover 

p (H) normalises both p (S) and p (T) and hence also p (S) xp(T), 

P is an extension of p(S) x p(T) by p(H), 

Next we look at the amalgam of the groups A and B rather 

differently. We regard these groups as generated by S,H and 

respectively and suppose that there is a fixed isomorphism cp between 

H and Ĥ ^ so that the amalgam of A and B consists of quintuplets 

(A,B,H,Hĵ ,cp; Hep = H^). We take the direct product G of A and B. 

Since A = SH, B = TH^ and S,T are normal subgroups of A and B 

respectively, S x T is normal in G. Take the 'diagonal' 

H' = |(h,h^) = (h,hcp); h € H, h^ e H^, h^ = hep/ 

of the direct product H x H^ in G. H' is clearly isomorphic to 

Z,H 

B' = {(h,thcp); h e H, t € T} are isomorphic to A and B respectively 

under the isomorphisms a = sh — ^ a' = (sh,hcp) b = thcp — ^ b' = (h,thcp) 

and since (sh,hcp) = (h',th'cp) implies sh = h', hep = th'cp which give 

s = 1 = t, h = h', the intersection of A' and B' is precisely H'. 
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The groups A' and B' can also be taken as generated by 

S« = {(s,l); s € s} = S and H' and by T' = {(l,t); t e t } S t 

by H' respectively. However, since 

- 1 - 1 - 1 

h's'h' = (h,hcp)(s,l)(h,hcp) 
= 

and 

h't'h' = 

h' e H ' , s' e S ' , t' e T ' 5 H ' induces the same automorphisms in S' 

and T' as H and Ĥ ^ do in S and T respectively. The group 

P' generated by S' x T' and H' in A x B, therefore, contains 

isomorphic copies A',B' of A and B, intersect in a common subgroup 

H' isomorphic to H and Ĥ ^ and is an extension of S' x T' by H' 

corresponding to the above automomorphisms. 

As shown above P also is an extension of 'p(S) x p(T) = S' x T' 

by p(H) s H'. Further, these two extensions correspond to the 'same' 

groups of automorphisms as induced by H in S and T and are, therefore, 

'equivalent'. (cf. Kurosh, [18]). 

Thus P' is isomorphic to P. Since P is a subgroup of A x B 

and belongs to the least variety containing both A and B, 

P(A; S,T) also has this property. This completes the proof of the lemma. 

As a consequence of the above remarks, we have; 

1.5.4. Corollary; A soluble or nilpotent amalgam of two groups A and B 

which are extensions of their narmal subgroups S and T respectively by a 

group H, is embeddable in a soluble or nilpotent group. 
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Corollary; If the groups A and B of lenuna 1.5.3 have the 

property F*, then their amalgam is embeddable in an F* group. 

1.5.6. Corollary; If the groups A and B of lemma 1.5.3 are p-groups for 

the same p, that is, every element has order a power of p, then their 

amalgam is embeddable in a p-group. 

H 
In the case^finite groups this is a very special case of a result 

of Graham Higman [17j. 
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CHAPTER II 
E 

EXISTENCE THEOREMS FOR GENERALISED FREE PRODUCTS OF GROUPS. 

II.0 Introduction; Since, by a theorem of Hanna Neumann (cf. [4] 

theorem 5.0) the question of embeddability of an amalgam of an arbitrary 

collections of groups with amalgamations is reduced to that of their 

reduced amalgam, in this chapter, therefore, we shall consider only the 

reduced amalgams of groups as regards their embeddability. While any 

amalgam of two groups, by Schreiers theorem, is embeddable in a group 

F, the 'generalised free product of the amalgam', a corresponding 

statement for an amalgam of more than two groups does not hold in general. 

Even for an amalgam of three groups, not much is known about its 

embeddability. Some sufficient conditions for the existitnce of the 

generalised free product of amalgams of three groups are given in [4]. 

We establish here ( II.1) two necessary and sufficient criteria for 

the embeddability of such amalgams. 

We also prove the existence of the generalised free product of an 

amalgam of three dihedral groups represented in a special form. 

In II.2 we consider an amalgam of n groups having a 'limited' 

number of intersections, briefly called 'an amalgam of type S'. We 

show that while for n = 3 some kind of additional restriction is 

essential, for n > 3 no further condition is required for embeddability. 
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II.1. We start by stating, without proof, some of the known facts 

about the existence of the generalised free product of a given family of 

groups G^ amalgamating H^^, (a,^ belong to an index set I). 

It is known that the generalised free product of arbitrarily given 

groups with amalgamations need not exist at all. Some, fairly obvious, 

necessary conditions have, therefore, to be satisfied. The follovjing 

theorem (due to Hanna Neumann [4]) gives some necessary conditions for 

the existence of the generalised free product of groups G amalgamating H cc ocp 

II.1.10. Theorem; For the existence of the generalised free product 

of the groups G amalgamating H it is necessary that for any three OC CLp 
different suffixes a , t h e three groups 

H „ n H = H „ aP ay aP/ 

^ V = 

H n H „ = H . 7a 73 7a3 

are isomorphic and moreover, the isomorphisms I^^,!^ of 

H ,H onto H ,H „,H respectively are such that for each ap 37 TO- Pco 7|3' a7 ^ 

p^VP a37 ya,^ a^y' 

However the above conditions for the existence of the generalised 

free product of G^ are, by no means, sufficient, because there are 

amalgams for which the conditions of the above theorem are satisfied x̂ hile 

their generalised free products do not exist, (cf. [3], [4]). 
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Let G ^ be the given groups with H^^ amalgamated (a,3 € I) a =|= p . 

Denote by H the group generated by all H (a,p e I, a fixed). 
(x ap 

The groups H then form an amalgam (called the reduced amalgam of the 

amalgam of G ), with the same amalgamations. A necessary and sufficient OL 

condition for the existence of the generalised free product of G in 
cc 

terms of that of H is given by the following theorem, first proved by 
OJ 

Hanna Neumann [4], (cf. also [13]). 

II,1.11 Theorem; The generalised free product G of the groups G 

amalgamating H^^ exists if and only if the generalised free product 

H of H amalgamating H „ exists. a ap 

The above theorem allows us to consider only the reduced amalgams. 

In the subsequent paragraphs, therefore, we shall consider, without 

mentioning, only the reduced amalgams of groups. 

We shall also need the following concept. Let G be the generalised 

free product of G v;ith amalgamated H Following Hanna Neumann, 

we call a normal subgroup N of G 'tidy' if it has the following 

two properties: 

(i) G n N = 1 for all a 
cc 

(ii) N does not contain any element of the form g^g^ where g^, g^ 

are non-trivial elements of G and G. respectively, (a =1= P). 
a P 

Thus if N is a normal subgroup of G and is tidy with respect to G^, 

then the factor group G/N contains groups G^, G^ isomorphic to G ^ and G^ 
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respectively with their intersection in G/N isomorphic to H^^.G/N, 

therefore, also embeds the amalgam of G^. 

VJe shall also require the follov/ing theorem in the proof of some of 

the results in this chapter. 

II.1.12 Theorem (Hanna Neumann [4].). Let P be the free product 

of groups G (a( e I) with one amalgamated subgroup H. In every G , Gu GC 
let there be given a subgroup A which intersects H in a fixed subgroup CO 
B, 

A e G, A n H = B. a - ' a 

Then the subgroup Q of P generated by the A is their generalised a 
free product with amalgamated subgroup B. If, in particular, the 

subgroups A have trivial intersection vrith H, then they generate their OO 
ordinary free product. 

With these preliminaries in mind, we shall now examine the following 

problem: 

"Given a reduced amalgam of groups G with amalgamated subgroups 
CL 

H under what conditions does their generalised free product exist?". ap 
We shall consider this problem for some special cases only. 

We begin with the consideration of an amalgam of three groups. 

Some of the examples of non-embeddable amalgams mentioned in [3], 

consist of only three groups which is the least possible number since by 

Schreiers' theorem [9] an amalgam of two groups is always embeddable. 



52. 

Even in this case no necessary and sufficient conditions are known, 

only some sufficient ones (cf. [4], Hanna Neumann). We prove here a 

different sufficient condition. Since we need take only the reduced 

amalgam, we write these groups as: 

gP K,Lf, B = gp _K,M}, C = gp{L,M}. 

The intersections K D L ; L O M ; MflK are assumed to be all isomorphic, 

inview of the theorem II. 1,10. TJe nov7 prove: 

such that II.1.2. Theorem: Let A = K x L, B = gp|K,M/, C = gp' 

K and L are normal subgroups of B and C respectively. Then the 

generalised free product of A,B,C exists. 

Proof: We have only to shov; that there is a group embedding the amalgam 

of A,B,C, Since K is normal in B, L is normal in C, by Lemma 

1.5.3 K and L serve as transversals of M in these groups, and in 

the permutational product P(A;K,L) of the amalgam A = am(B,C; M), 

p(K) and p(L) centralise each other and so generate a group 

isomorphic to A, P, therefore, embeds A also and hence the amalgam. 

Thus the generalised free product of A,B,C exists. 

However, we can show a little more, namely, that the permutational 

product P(A>K,L) is isomorphic to the generalised free product F 

of A,B,C. Since F is .frcoly generated by K,L,M, and M normalises 

both K and L the group generated by these, that is the group A is 

normal in F. The factor group F/A must then be isomorphic to M. 
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Thus F is an extension of A by M. Since P also is an extension 

of p (A) by p(II) and a homorphic image of F of the same order as F, 

P is isomorphic to F. Since a permutational product of two finite 

groups is always finitej F itself is finite. We have, as a consequence, 

the following: 

( l/^L-lc-i 

satisfying the assumptions of theorem II.1.2 is finite. 

II.1.21 Corollary; The generalised free product of any three/groups 

The conditions of theorem II.1.2 can be relaxed a little: The 

t 

intersections K f l L , L f l M , M f l K need not be trivial for the existence 

of the generalised free product of A,B,C. Thus it suffices to assume 

that A is the generalised direct product of K and L amalgamating 

a central subgroup Z. The meet of L,M and K,M must then also, 

by theorem II. 1.10, be Z. Moreover Z is a normal subgroup of M 

because if z e Z, then since z € K, z" = z' e K and since z e L, 

= z' e L for any m e M. Thus z' e K fl L = Z. By the remark in 

the proof of lemma 1.5.3 we have, because of the centralising property 

of p (K) and p (L): 

II.1.22 Corollary; If A is the generalised direct product of K and L 

f \ 

amalgamating a central subgroup Z and in B = gp'^K,M; K D M = Z|', 

C = gp{ L,M; L n M = z } , K and L are respectively normal, then the 

generalised free product of A , B , C exists. 
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That it is not sufficient by itself that K and L ace normalised 

by M in B and C is shown by the follovdngJ. 

II.1.23 Example. We take K and L as the elementary abelian groups 

of order 4 and M as a cyclic group of order 3. A,B,C are then 

taken as splitting extensions of L by K; K by M and L by M 

respectively, so that 

2 . 2 2 .2 , . ,2 , ,,2 , a , ̂ a \ A = gplajb^Cjd; a =b =c =d =(ab) =(cd) = 1 c =d. 

B = gpl 

C = gp 

If 

b b c =d,d = c 
2 2 2 3 f f a,b,f; a =b =(ab) =f =l,a =ab,b =a 
2 2 3 2 f f 1 c,d,f; c =d =f =(cd) =l,c =cd,d fccj" 

f 
F = gpia,b,c,d,f; R^ U R^ U R^ 

where Rĵ , R2^ R3 are the sets of relations of A,B and C respectively, 

and the amalgam is embeddable, then this group, being the group freely 

generated by it, must embed it. But in F, \<ie have, 

Therefore, 

c^ = d or acad = 1 

1 = (acad) = a c a d 

However^ 

= ab.cd.ab.c 

a , ,a , b , ,b c =d, d =c and c =d, d =c gives 

(cd) = (c d ) = (dc) = d c = cd 
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Therefore, 

2 
1 = (ab) .cd.c = d 

From d^ = c, we have c = so that in F the group C 

has collapsed., and consequently, F does not embed the amalgam, that 

is, the generalised free product does not exist. 

Similarly if, instead of K and L being normal in B and C 

respectively, v/e have M normal in both B and C while A remains 

the direct product of K and L, then, in general, the free product 

of A,B,C does not exist, as the following example shov7s 

II.1.2A Example. M here is taken as the elementary abelian 2-group 

of order 8 and K and L cyclic groups each of order 3. Then 

A = gp' 

B = gp 

3 3 \ 
a,b; a =b =[a,b]=lj 

C = gp{b,h.; b W = [ h . , h . ] = l , hJ=h^h2,h2=hj^,h3=h^h3 • 

B and C are split extensions of M by K and of M by L respectively. 

Let G be any group embedding the amalgam of A,B,C: Then in G, we 

have, 

= ^ - ^ = hhS = - h -

Thus ~ then, from the relations 

hi = h3, h3 = h^h3 
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we also get h^ = ĥ ^ = 1, so that in G, B and C have collapsed, 

and G consists of just the group A, and therefore does not embed the 

amalgam, that is, the generalised free product of A,B,C does not exist. 

However, if we add the requirement that the automorphisms induced 

by B and C in M respectively commute, then we obtain a necessary 

, and sufficient criterion for the existance of the generalised free 

product of this special type of amalgam. 

II.1.3 Theorem: Let A be the direct product of K and L and 

B = gp K,M/, C = gpi ' L,m} with M normal in both B and C. Let 

K' and L' be the groups generated by the automorphisms induced by 

K and L in M respectively. The generalised free product of A,B,C 

exists if and only if K' and L' commute elementwise. 

Proof; Since M is normal in both B and C and K fl M = L H M = |l 

we can regard B and C as split extensions of M by K and of M 

by L respectively, so that there exist homomorphisms cp : K —^ K' 

and ^ : L L'. We first show that the condition is necessary, 

that is if the generalised free product exists then [k',je'] = 1 for all 

k' e K', i' £ L'. 

Since M is normalised by K and L and F is generated by 

K,L and M , M is normal in F. Moreover, the factor group F/M 

is isomorphic to the group generated by K and L, that is, to A. 

We can, therefore, regard F as an extension of M by A. Let A' 

be the group generated by the automorphisms induced by A in M , then 
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= 8PIK',L'J' and there is a homomorphism cp* : A —> A' which 

coincides with cp on K and with ^ on L. Since in k, [k^i] = 1, 

therefore, 

{k̂ jejcp = [kcp,icp] = = 1 for all k'€ K', i' e L'. 

so that K' and L' commute elementwise. 

Next we prove the sufficiency of the condition. For this we first 

observe that since every embedding of the amalgam A,B,C automatically 

embeds the amalgam of B and C, the desired group - if it exists 

must be isomorphic to a factor group of F^ where F^ is the generalised 

free product of B and C, using the maximality of the free embedding. 

In this factor group say, K and L must become elementwise 

permutable. Now in F^, K and L generate their free product F^ 

by II.1.12. If N is the normal closure of the set of all commutators 

[kjjg], k € K, je € L in , then F^/N = A. Therefore N* must 

contain N and if N* is the least normal subgroup of F^ containing 

N then F^ /N* will be the free embedding of the given amalgam provided 

that it is an embedding at all. Thus the free product of the amalgam 

exists if and only if 

(i) N* N = N so that ?Sj*/N* s i^/i^ n N* s P^/N s a, 
A 

(ii) N* is tidy with respect to K and L in F . 

(iii) N* contains no element of the form fb or fc, b =|= 1 € B, 

c f 1 e C, f f 1 € F^, so that in F^/N* the image A of F^ 

has the correct intersection with B and with C. 



58. 

Let m be an element of M, since N is generated by 

k e k, £ e L and normal in F^ (by Golovin [6]), the elements 

m generate lip̂. We show that these are elements of N. 

Let be the automorphisms induced by k ^ and ^ on M^ 

that is, for all m e M, 

and 

ma = kmk ^ e M iC 

mp^ = € M. 

Then m"^[k,i]m = 

= a x K 
= m'^mP.a 6 a )[k,Jl] 

^ jg k 

But 3 = ^ -1 " ^ ^ ^ therefore m"^(k,je]m = [k,j2] e N 
Jl Ic 

and so N* = N proving (i). 

To prove (ii) we note that each element of B is uniquely of 

the form km, k e K, m e M, since M is normal in B and K fl M = 

Similarly each element of C is uniquely of the form Im, I € L, m e M. 

Now assume N* contains an element of the fom be = km^im^ = kim^m^. 

As N* c F^, be € ki € hence mjm^ e F^. But as K and L 

both intersect M trivially, it follows by II.1.12 that K*L = F^ 

also intersects M trivially; hence mjm^ = 1 and so 

be = ki e N* = N. But N is tidy in F^ being the kernel of the 

mapping F^ = K*L —^ K x L. Hence k = i = 1, that is, be = 1. 

This proves (ii). 
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To see that (iii) holds^ assume n = bf for some n e N*. 

b 6 B, f € i^, then since n and f are both in r , b also lies 

in F^ that is b e K. Similarly n = cf, c e C, f e F^ implies 

that c e L, so that no element of N* can be written in the above 

form. This completes the proof of the theorem. 

We mention, without proof, that the above result still holds under 

the weaker assumption: when the intersection of K,L; L,M; M,K is 

a non trivial fixed group Z so that in this case A becomes the 

generalised direct product of K and L amalgamating the central 

subgroup Z. 

Furthermore, if the groups A,B,C of theorem II.1.3 are finite, 

then their generalised free product is also finite. 

However, there exist embeddable amalgams of three groups of the 

form described in theorem II.1.3 but with a different (seemingly weaker) 

restriction on A, namely we suppose that, instead of A being the 

direct product of K and L, there is a homomorphism of A onto 

the group generated by the automorphisms induced by K and L in M. 

It is interesting to note that this condition again turns out to be 

both necessary and sufficient for the existance of the generalised 

free product of such groups. Thus we prove: 

II.1.^. Theorem. Let A = gp{K,L}, B = gp{K,M}, C gP L,M 

with M normal in both B and C. The generalised free product of 

A,B,C exists if, and only if, there is a homomorphism cp of A onto the 

group generated by the automorphisms induced by K and L in M. 
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Proof; Let be the groups generated by the automorphisms induced 

by K and L in M respectively. Then there exist homomorphisms 

9 : K K' and cp̂  : fj—^ L'. Let cp be the given homomorphism 

of A onto A* = gp|K',L' ' which coincides with cp̂^ on K and with 

Cp̂  on L. 

We form the extension G of M by A determined by the homomorphism 

cp i.e., the group of pairs (a,m), a e A, m e M where 

^ ^ show that this group embeds the amalgam. 

Since cp|K = cp̂ ,̂ cp|L = cp̂ , in G the groups Bĵ Ĉ̂ ^ consisting of the 

pairs (k^m), k e K, m e M and of S. € L, m e M are isomorphic 

to B and C and intersect precisely in the group of pairs (l,m), m e M 

isomorphic to M. That these groups have the right intersection also 

with the group A^ consisting of the pairs (a,l), a e A, isomorphic 

to A is obvious. Thus G embeds the amalgam of A,B,C. 

Conversely, suppose the generalised free product F of A, B and C 

exists. Since M is normalised by K and L and F is generated 

by K, L and M, therefore M is normal in F and moreover 

F/M = gp{K,L} = A so that F is an extension of M by A. Hence there 

is a homomorphism of A onto the group generated by the automorphisms 

induced by K and L in M. The proof of the theorem is now complete. 
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It is worth mentioning that here again, the generalised free product of 

groups obeying conditions as those in the above theorem is finite if the 

groups themselves are finite. 

We now turn to investigate the embeddability of an amalgam of 

three groups of a different kind. This amalgam consists of three 

dihedral groups of order m, 2m, and 2n respectively and taken 

in the special form as: 

>|a,b; a = b = (ab) = 1 

b,c; b^ = c^ = (be)™ = 1 (1) 
2 2 , .n . C = gp\c,a; c = a = (ca) = 1 

The amalgam A formed by these groups is their reduced amalgam. 

If any two of the j2,m,n are equal to 2 then this amalgam falls 

under the category of those considered in theorem II.1.4. The following 

theorem shov;s that the above amalgam is embeddable for all values of j2,m,n: 

II 1.5. Theorem: The generalised free product of the amalgam A of 

groups of type A,B,C in (1) exists. 

Proof: In view of the above remark, we need discuss the existance of 

the generalised free product for m and n not both equal to 2. 

Following the scheme of proof of theorem II.1.3, we first take the 

generalised free product of B and C and knowing that the 

subgroup F^ of F^, generated by K and L, and in this case by 

a and b, is their free product, we take the noraal closure N of the 

group generated by the left hand sides of the relations of A and their 
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conjugates. If N* is the normal closure of N in F and satisfies 

the conditions (i), (ii) and (iii) in the proof of theorem II.1.3, 

the factor group 

will then be isomorphic to the generalised 

free product of A,B,C. Thus the problem of existence of the 

generalised free product of A reduces to that of showing that N* 

possesses the properties (i), (ii), and (iii) mentioned above. 
The generalised free product of B and C is 

T,̂  / V 2 2 ,m , ,n , F = gp1a,b,c; a =b =c =(bc) =(ca) =1 

If we put be = g, ca = h, then F has an alternative representation 

A F = gp , m , n , , .i 2 2 2 , g,h,c; g =h =(gh) =c =(gc) =(ch) =1 

as the free products of B' = gp|g,c; g™=c^=(gc)^=l| = B and 

C = gp{h,c; h"=c^=(bc)^=l ' = C amalgamating { c I n F^, a and b 

generate their free product which is the infinite dihedral group and 

has, as its homomorphic images, all the finite dihedral groups. In 

particular, since, 

a ^baa = ab = (ba) b ^bab = ab = (ba) ̂  

the group generated by (ba)^, i > 2 is a normal subgroup of F^. 

Taking this as N we have F^/N = A. Let N* be the normal closure 
A S i of N in F^. N* is then generated by (ba) and c(ba) c. We first 

show that N* is a free group of rank 2. Writting ba = gh, c(ba)c = c(gh)c 
-1 -1 -1 S. -£. = g h = (hg) , we see that N* is generated by (gh) and (hg) 

These two are independent generators of N*, for if 
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(gh)^ = (hg)"P^ 

(c ^c) 

for some p > 1, (p + 1 because c j ^ a ^ = c(gh)^c = ^ (gh)^). 

Then 

(gh)' - (hg)-i'^ = = = 

2 
i.e. g(gh^g"^ = Hence g^(gh/g"^ = (gh)^ ^ ' 

Continuing in this way, we have, 

g (gh) g = (gh) = (gh)^ ^ 

^ , - V m m , 

i.e. (gh)^^" P " = 1 . Since p this relation implies that 

gh is of finite order, a contradiction. 

Further, in the second representation 

of F^, {g} and {h} 

generate their free product. A word w of the form 
- 0 ^ B s je 6 jg 

... (gh) " (hg) " 

cannot reduce to identity because in w there are no cancellations 

but only amalgamations of the form g.g, h.h, g ^.g h ^.h ^ and 

since not both m and n are equal to 2, these amalgamations cannot 

reduce the above word to identity. Thus there is no non trivial 

relation of the form w = 1. The group N* generated by (gh) 
£ 

and c(gh) c is, therefore, free of rank 2. 

Now 

c(gh)^c = c(ba)^c 

^ . .... . _A does not belong to and moreover, N* fl F as a subgroup of a free 
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group, is free, by Schreier's theorem; as a subgroup of the infinite 

dihedral group F^ it can be free only if it is an infinite cycle; 

as it contains N, this cycle must be generated by (gh) with 

I 

But the free group with free generator (gh) contains no proper 

root of this. Hence S.̂  - H ^ and N* fl F^ = n, so that condition 

(i) is satisfied. 

Also N* is tidy with respect to B and C, for every element 

of N* is of the form 

e ^ 6J. e n S i 

n* = (gh) (hg) ^ ... (gh) " (hg) . 

In n*, c occurs an even number of times and since every element of 

k k 
B is of the form eg , k = 0,1, ..., m-1, n* =j= eg because then n* 

like cg^ will be of finite order. Similarly n C = 

proves (ii). 

This 

Also no element of N* can be written in the form f e F^, b* € B, 

because any element f of F^ is of the form 

f = a^bab ... ab^ 

k 

and every b* € B has a representation as b* = c(bc) , k = 0,1,2, m-1 

and in fb*, between no two conse^ive c the element a € A occurs 

whereas in any n* it does. Similarly n* f fc*, c* e C. This 

proves (iii) and also completes the proof of the theorem. 

The discussion of this particular amalgam has been inserted at this 

point because the argument is close to the earlier arguments in this paragraph. 

It arose out of my endeavour to show that the group 
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0 0 0 0 m n 1 
F = gpi 

, 2 ,2 2 , , .i >m . .n 
a,b,c; a =»b =c =(ab) ""(be) =(ca) =1/ 

described in Coxeter and Moser (c£. [8], p.37/39) as the group of 

reflections in the sides of a spherical triangle with angles n/Jl, Tt/m, it/n 

does in fact embed the amalgam of three dihedral groups and therefore 

1 . i + i 
m n 

is its free product. F is known to be finite if 

and otherwise infinite. If we write F as 

F = gp{g,h,c; g°^=h'^=(gh)'^=c^=(gc)^=(ch)^=l} 

then it is easy to see that F is a split extension of 

P = P(m,n,i) = gp{g,h; g®»h"=(gh)^ = l} 

by a cyclic group of order 2. P belongs to the well known family 

of groups called the 'polyhedral groups'. It possesses, among its 

factor groups, many of the known finite simple groups. (cf; [7].) 

These remarks are wanted in the last chapter when we use these and 

other groups given by Coxeter and Moser to give examples of the range 

of different embeddings an amalgara may possess. 

II.2. Let A be the reduced amalgam of three groups U^j H^, H^ 

such that H^ n Hj = H^^ = H^^ for all = 1,2,3, i f j. We 

can take these groups as 

H^ = gP 



66. 

It is known that the amalgam A is embeddable in a group if any one 

of the H^'s, H^ say, is the generalised free product of H ^ , i = 1,2, 

(cf. Hanna Neumann Theorem 9.0 [4]). Hanna Neumann has also shown 

that, in general, this theorem cannot be generalised to the case of 

more than three groups. The examples she has constructed deal with 

the most general type of group amalgams. However, if we have an 

amalgam of more than three groups with a 'limited' number of 

intersections, then the Theorem 9.0 [4] of Hanna Neumann can be 

generalised. 

The kind of amalgam we consider involve n groups G^, 

where for every i = 1,2, ..., n and with G ,. = G,, we have 
n+1 1 

^i ^ ^i+1 " "i G. n G^ = H for j f i + 1. 

For n = 3 this is the same as the amalgam considered above. Any 

amalgam of the above form shall be called 'of a special type' or 

more briefly 'of type S'. While for n = 3 such an amalgam may not 

be embeddable without one or other additional restriction, we show 

that for n 3, no further condition is required. 

Theorem; Let n given groups ^n' 7 3 form an 

amalgam A of type S. Then A is embeddable in a group, that is, 

the generalised free product of ^n 

Proof; Since we need consider only the reduced amalgam, it can be supposed 

that the amalgam A formed by G_,G-, ..., G is already reduced. In 
- 1 / n 
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that event each is generated by its subgroups i = 1,2, n 

where we assume again that G . = G,, H , = H,. We arrange these 
nT*! i n+i 1 

groups in pairs as follows: 

When n is even, n = 2in, as: 

and when n = 2m+l, as: 

together v/ith the triplet (G ,G ,, ,G ,„). Then the free product of 

m m+l m""Z 
each pair exists by Schreier's theorem; we postpone consideration of 
the triplet (G ,G ,G ,„). 

m m+1 m+2 

In the case of (1) the free products F^ of i+1^ 

amalgamating H for i = 2,3, ..,,m-l and H . or H for i = 1 or m 
zm m 

respectively, are such that in each of these: 

(a) two conse^tive groups H^, generate the group and 

(b) any pair H,, F^; j i 1 generate their free product 

amalgamating H. 

To substantiate this claim, it is sufficient to prove it for F̂ ^ 

only. Since F̂ ^ is the generalised free product of 

G^ = gp I 2m-l' 2mJ 
, G^^ = gp'jH^^^ (a) is obviously satisfied. 

Also by the properties of the free product, as H^ e G^, ^2m-l 

and H^ n e G^ 0 G^^ = H^^, we have 
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n H = H, n Ĥ  n H = (h, n h, ) n (h, o h ) ^ 2m-l 1 2m 2m-l 2m ^ 2m 2m-l 

= H n H = H 

Hence by II.1.12 H , H , generate their free product amalgamating 
1 2m-l 

H, so that Fĵ  has (b) also. 

We now take the first tv70 of the free products F^, (i = 1,2, ...,m): 

Fĵ  = gp 

The groups H, and H_ , are contained in F, and F_ and generate i zm-l 1 2. 

in both their free products amalgamating H. The free product F^^^ 

{«1 * '>20,-1 can, therefore, be formed. of Fĵ  and F^ amalgamating 

In since Ĥ ^̂  c G^^, H^ c G^ and H2 H H^^ ̂  G^ H G^^ = H, we have. 

«2 ^ "2m = «2 ^ « ^ «2m 
(E^ n K) n (H n h^^) 

= H 

Similarly, H^ o ^ H^ = H. Thus for F^^^ also the conditions ' 2m-2 /m 
(a) and (b) are satisfied. Je then form the generalised free 

.(2) .(1) and F^ amalgamating product F ^ " ' of F 

and continuing in this way, lastly, the free product F̂ '̂ "'̂ ^ of F̂ "̂ "̂ ^ 

and F , amalgamating "(h _ * E Hr. As it has already been m-1 m-^ 
shown that F^^^ satisfies the requirements (a) and (b), we have 

a basis for induction. Suppose that we have already proved that 

F^™'^^ has the properties (a) and (b). Then, since {h * H . , ; H m-1 m+i 
H* 
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is contained in both and F , the free product F̂ "̂ "̂ ^ of m 
the amalgam A' = H*) may be formed. Now for i f m, 

m-1, or m+1, 

H. n H c F̂ *""̂ ^ O F = H* 1 m m 

However, by assumption, H. H H , = H. 0 H ,, = H; and also in F , 1 m-i 1 m+1 m 
H riH = H n H . = H , therefore, H. 0 H* = H* fl H = H. Thus m m-1 m m+1 i m 
H^ n H = H. n H* n H = (H, n H*) n (H* n H ) = H n H = H. Hence 1 m X m l m 

F^" ^^ also satisfies the conditions (a) and (b). But then F̂ '̂  ̂ ^ 
contains all the G^'s with their precise intersections and therefore 

embeds their amalgam. 

For the odd case n = 2m+l, we show that the generalised free 

product of the triplet (G ,G ,, ,G .„) exists provided that n 3, m m+i ciTi 
i.e., m ^ 1. For this, we have, in view of II.1.11 only to show that 

the reduced amalgam of G , G , G , „ is embeddable. But since m m+1 m+2 
G n G _ = H , G ^ , n G . „ = H .,, G . ̂  n G = H because m > 1, m m+1 m m+1 m+2 m+l' m+2 m 
the reduced amalgam of these groups consists of just the group G^^^ 

and hence is embeddable, so that F exists. In fact if m 
X = G * G ,, ; H then F = V l and in F the m m m+1' m-* m 
group H , and H generate their free product by II.1.12. 
° m-l m+i 
That the free product of f^""^^ and F amalgamating m 

and so also of G,, G., ..., G exists follows in 1 2 n 
exactly the same way as above. This completes the proof of the theorem. 
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CilAPTER III. 

EMEEDDABILITY IN A FINITE GROUP OF M EI^DDABU] 

t'lMITE AIvfALGÂ g 

§111.0 

Inti-oduction. 

In this chapter \-Te cllscu.ss a problem of B.H. Neumann and Hanna Neiunann 

about the embcrloabili.ty in a finite group of a finite amlgam of three or 

more groups. ijost of the aroalgams consi.derpd here are those Xirhose enibeddability 

has ali.X:;icJy been shown in the preceedxug chapter. In the case oi some 

amalgamr. of three groups, a permutatjonal product of some tvo of the groups of an 

analgani tui-ns out to be isomorphic to the generalised free product of the 

amalgam. Hoi/ever, not for all ainalgams of three groups does this situation 

OCCiU^ . 

Theorem III.2.1 mentions a sufficient condition for embedding of 

a finite amalgam of - n groups of type S in a finite group. Since 

embeddability of an amalgam and the existence of its generalised free product 

are synonymous terms, this result generalises theorem of [4], Theorem 

III.2.2 g.i.ves a different set of sufficient conditions for such an amalgam 

to have a finite embeddj.ng. Jin theorem III.2.5 •̂'"e mal^e use of a known 

property of per^ft'itational products to give a sufficient criterion for finit 

embeddability of an amalgam of groups. We also mention that the question 

of embeddability of a finite ajiialgam of type S in a finite group is still open. 

lastly ''e give an example to answer some cp.estions regarding non-free 
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embeddings of an amlgam. 

§111.I. 

B.Ii". Neumarm and Ilanna Neumann in their well Juaown paper^ "A contribution 

to the embedding theory of group amalgams", (cf [11]) mention the following 

problem: 

If a finite amalgam, that is, an amalgam of a finite number of finite 

groups is embeddable in a group, is it also embeddable in a finite group ? 

The answer to this question is not known in general, not even In the 

case of an amalgam of only three groups. For a finite amalgam with one 

amalgamated subgroup, this is, however, always possible because in such a 

situation a permutational product of these groups embeds the amalgam and 

bcinji a subgroup of thp; permutation group of a certain finite set, is itself 

finite (cf. [1], [3]). In particolar, 

III.l.1 An amalgam of two finite groups is embeddable in a finite group. 

Let A be an amalgam of groups with amalgamated subgroups 

H.. . i, j = 1 ,2,.. .,n and let A' be their reduced amalgam, that is, the 
"•"J 

amalgam formed by the groups H^ generated by all the H^^ , j ̂ î , i fixed. 

It is known that the generalised free product of A exists if and only 

if that of A' does (cf. Theorem 5.0 [13]). We prove here a similar 

'reduction theorem' for the existence of a finite embedding of a finite amalgam. 

III. 1.2. Theorem. A finite amalgam F of the groups ., 

amalgamating H^^ is embeddable in a finite group if and only if their reduced 
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amalgam F' is so embeddable. 

Proof: Thf necess««ity of the condition is immediate. To prove .,v 

sufficiency, let II be a finite embedding of the reduced amalgam F' . Then 

for any integer i , i = the groups G^ and H both contain a 

subgroup IL generated by all H^^ , j ^ i ^ i fixe(^ and their amalgan is 

embeddable in a finite group K^ say, by III.l .1 . Each of the groups K^ 

so obtained contaimas a subgroup the finite group H . We, therefore have 

a finite amalgam of finite groups amalgajimting a single group PI . 

A permutational product of these groups amalgamating 11 embeds the amalgam 

and is finite, as req[uired. 

In view of the above theorem, we need, therefore, examine the embeddability 

of only the reduced amalgam in a finite group. A finite embedding of the 

reduced amalgam will ensure that of the whole amlgam as well. 

We first consider amalgams of only three groups. To my knowledge, 

little is as regards the finite embeddings of such amalgams. Because 

of the difficulties involved in loio^iing whether such an amo.lgam is embeddable 

or not, the problem of finding a finite embedding becomes even more complicated. 

However, we have been able to find a te\T results concerning the embeddability 

in a finite group for some special classes of such group amalgams. 

The reduced axaalgaiH of three groups A , B , C , consists of the 

groups K , L and M which in pairs K , L ; K , H j and L , M say, 

generate these groups respectively. We have already shotm in Chapter II 

that such kind of amalgams need not even be embeddable, hence the imposition 
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of sufficient conditions of some form or other is essential to making the 

embedding possible. Theorems II.1.2, II.1.3 and II.1 .4 of the previous 

chapter give sufficient conditions for the existence of the generalised free 

products of such group amalgams and hence aiso for their embeddability. We 

have also seen that in the above three cases there is a unique finite embedding 

namely their generalised free product. 

It is, however, sometimes possible that in a permutational product of 

some tvo of the groups of the amalgam, B and C , say, the groups K and 

L generate a subgroup isomorphic to A , thus making a finite embedding sure. 

That this is not true in general is shown by the following example. 

III. 1.3 Example; V/e take K , L and M as cyclic groups of order 3 , 

3 and 2 respectively and put 

A = gp{a,b:a=̂  = b® = (ab)2 =1} = Â ^ 

B = gp(a,c;a^ = c^ = (ac)̂  = 1} ^ S^ 

C = gp{b,c^b^ = c^ = (bc)2 =1} ^ S^ . 

B.n. Neumann [1 ] has shoim that there are only three permutational 

products of B and C namely of order l8 , 102 and 91 . However, the 

only group embedding the amalgam of A,B,C is their free product, 

F = gp{a,b,c;a^ 133 ̂  ^ ^ = (ac)2 = 1} 

F is an extension of Â ^ by M and is obviously different from all the 

permutational products of B and C . 
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Let us have three f i n i t e groups 

A = gp(K,L} , B = gp{K,M}, C gp{L,M} ; 

K n L = L n M = M 11 K = {1 } 

with K and L normal in B and C r e s p e c t i v e l y . An amalgam of three 

such groups need not be emheddable as was shorn "by example I I . l . 2 5 . But 

whenever such an amalgam i s emheddable, i t i s a l s o embeddable in a f i n i t e 

group. This i s sho\m by the fo l lowing theorem: 

I I I . l .h . Theorem; I f A , B , C are three groups generated by K , L ; 

K , M ; and L , M r e s p e c t i v e l y such that K i s normal in B , L i s 

normal in C and the aiiia3.gam i s embeddable in a gror.p G s a y , then G i s 

f i n i t e . 

P roo f ; S ince the amalgam of A,B,C i s embeddable in a group G , we 

can take G as generated by K , L and M . In G , the groups K and 

L must generate A and s ince K and L are normalised by M , A i s a 

normal subgroup of G . The f a c t o r group G/A i s then isomorphic to M , 

so that G i s an extension of A by M . Since A and M are f i n i t e , 

G i s a l s o f i n i t e , as required . 

§ 1 1 1 . 2 . 

Let A be an amalgam of type S (see p . Cfc ) of n groups 

• Since we need consider only the reduced amalgam, we can take 

each G^ as generated by and IL , the i n t e r s e c t i o n of these groups 

being a f i x e d group H . That the amalgam A of , n 5 
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i s embeddatle in a group vas proved in the theorem of § 2 Chapter.II. 

I t i s not knoim whether, :in g e n e r a l , such an amalgam has a l s o a f i n i t e 

embedding. In the case o f n = 3 some s u f f i c i e n t cond i t i ons f o r the 

embeddabi l i ty in a f i n i t e group o f t h i s f i n i t e amalgam were given by theorene 

I I . 1 . 5 , I I . 1 I I . 1 .5 axid I I I . 1 . 5 - Here ire f i n d some s u f f i c i e n t 

c o n d i t i o n s f o r such a f i n i t e amalgam of more than three groups t o have a 

f i n i t e embedding. We prove : 

I I I . 2 . 1 Theorem: Let A be ana2ialgam o f n groups o f t j ^ e S . I f 

f o r even n , n /2 and f o r odd n , (n+1) / 2 o f the groups G^ , 

^ m + 1 ' " ^ n where m = [ n / 2 ] , have the property that in each G. , 

H. , and H. permute elementwise and f u r t h e r li. f'i H. = H i s c e n t r a l in 
1 - 1 1 1 0 

G. , G. f o r a l l ± , j = ; then A i s embeddable in a f i n i t e group. 1 J — 

P r o o f : When n i s even, we take the n groups in pa irs as f o l l o w s : 

when n i s odd, n = 2m+1 , we cons ider only the pa irs 

and then the t r i p l e t 

m' m+l m+2 I 

VJlien n - 2m , we form the genera l i sed d i r e c t products o f Ĝ  

and , I', o f G. and G^^^.^^ , f o r i = 2 , 5 , . . . ,m-1 and F^ 

o f G . 1 1 , , amalgamating E in a l l these c a s e s . Each of the F . ' s m m+1 1 

e x i s t s because H i s c e n t r a l in a l l the G^'s i = : . l , 2 , . . . , n . Now in 

' ^2m 1 ^^^ commute element by element and t h e r e f o r e generate a 
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group isomorphic to Gg^ . Similarly in F^ , H^ and generate 

G ,, . Since m+1 

Ft = gP^'V^m-F^W 

and in both, H^ , H^ ^ commute elementwise and generate their generalised 

direct product (ll̂  x ilgm-l -Since F̂  , Fg are finite groups, ire 

can take a finite embedding F̂ ^ ̂  of F̂  and F^ am.lgamating (Ê  X ^ ;Il) 

Then F^^^ contains the groups G, , G^ , G , , G^ . Also since 
I I tiiu 

= and both ^^^ ̂  and F^ contain 0'2 " i ^ m - a ' 

there is a finite embedding 'A^^ of F^^^ and F^ amalgamating 

(Hp X Iiĝ  . Continuing in this way we obtain a finite embedding 

of and F̂ ^ amalgamating . 

VJhen n = 2m+l ,. \Je follov the same procedure except that in this case 

F^ is the generalised direct product of G^ and Ĝ ^̂ g amalgamating H . 

F^ automatically contains because in F^ , il̂  and generate 

their generalised direct product and hcnce the group . 

That the finite group ^ so constructed contains 

is obvious. That in F^^"^^ these groups have their right intersections 

follows by reasoning exactly the same î ay as in the theorem of §11.2; 

using the direct product with one amalgamation in place of the free product 

with one aiiialgamation. This completes the proof of the theorem. 

Ilanna Neumann has shovm (cf. [4]pp. 623) that in the case of the most 
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general type of an acialgaia of n groups, n > 3 if n - 1 of the groups 

G^ have the property that their subgroups IL^ (i fixed) commute elementwise, 

the generalised free product of this amalgam may not exist. However for 

this particular amalgam of type S which reduces to that in Theorem [4] for n = 5 

such a result and even a slightly more general version of it is seen to be 

true. 

Also it is known (cf [1^]) that if each of the groups G^ has the 

property that IL ^ and H^ generate in G^ their generalised direct 

product then a finite embedding of the amalgam is possible. In such a case 

even a permutational product type construction can be made, as was shown by 

R.A. Bryce in [1^]. The above theorem generalises his result in the sense 

that here we assume only n/2 or (nH-l)/2 of the groups to have that property, 

according as n is even or odd. 

Another sufficient condition for the embeddability of an amalgam of 

type S in a finite group is given by the folloL'ing theore;?.: 

Ill.2.5 Theorem: Let the finite groups form a reduced amalgam 

A of type S . Let further Ĥ  and be normal subgroups of Ĝ  

and G respectively and K = G. fl G. j i ± 1 central in each G , Xl 1 J 
i = l,2,...,n . Then A is embeddable in a finite group if in the even 

case n = 2m , and are normal in G^ and Ĝ ^̂  respectively 

and in the odd case n = 2m + 1 , Ĝ ^̂  is such that its subgroups H^ 
and II are permutable element by element, m-i-1 
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Proof: To "begin vith we note that for n = 3 the generalised free product 

of the amalgam exists and is finite hy Theorem II. 1.2. Therefore ve have only 

to prove that A has a finite embedding even for n > 5 provided that 

the conditions in the theoreja are satisfied. iibr this we, once again follow, 

the procedixre in the proof of theorem of §2 Chapter II, and \rrLte 

in pairs as ) or according as 

n = 2m or n = 2m + 1 , leaving ^ alone in the second case. 

We consider first the case when n = 2m . Here fl^ is normal in 

Ĝ  and normal in G^ , and Ĝ  , G^ are generated by H^ , Ĥ  

and , H^ . The remark in the proof of Lemma 1.5.3 shows that the 

permutational product P̂  of Ĝ  , G^ amalgamating H^ (formed with 

transversals Hj , where Ĥ 'H = PÎ  , Ĥ .-jH = ) is such that the 

groups Ĥ  = p(H^) and H^ ̂  = P (Ĥ  in P̂  generate their genei'alised 

direct jroduct amalgamating a central subgroup H . Similarly, because of the 

normality of H , in G and of H ,, in G ,, , the permutational m-i m mHi m+i 
product P (A jH' J of A = am(G ,G , ) with H' .1-1 = 11 . , ^ m ^ m-1' m+i =m m' m̂ l m m-1 m-1 
H' ,H = II , is such that in it, the groups H ^ and H ,, generate m+1 m+1 o x -
their generalised direct product amalgamating H . Moreover, S'uce H is 

central in every G^ and G^ li Gg^ = H ^ the generalised direct 

product P^ of G^ , Ggm-i+l amalgamating H (which is also their 

permutational product, (cf [1]) exists for every 1 = . Each 

P^ is then finite and has the following property: 

IThenever IL and belong to such a permutational product. 
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then they generate in it a group isomorphic to ^ and whenever 

H , H with j ^ i i ^ belong to such a permutational product^ then they 
^ J 

generate in it their generalised direct product amlgamating H . 

Now the groups P^ = SPCH^ , ̂ H^^} and P^ = gpCHJ^H^^^^^Pi^^^^ ) 

have a common subgroup (H^ X . There exists a finite embedding 

P^^^ say of p^ and P^ amalgamating this subgroup, P^'^ then contains 

the groups G^ , Gg , G^^^^ , Gg^ . Since P^ = S P H ^ / ^ ^ ^ c o n t a l a s 

the group (Pî  x Hg^ giH) and this is also a subgro\ip of Pg and hence of 

P^^^ a finite embedding P^^^ of P^^^ and P^ amalgamating (iJg 

can be found. Continuing in this vray we see that there is a finite embedding 

P(m-2) ^^ P(ri-3) ^^^ P amalgamating (H „ X H ,O;H) . In P , the 
m - 1 xa-ci m.+d 

groups H , and H ,, commute elementi/ise because they do so in P , . 
m-1 m+1 m-1 

liowever, in P^ also, these groups are elementwise pernutable as shorn 

above, therefore a permutational product p(m-l) ^^ p(m-2) p 

amalgariiating (li ^ X H ;H) embeds the amalgam of p^^"^^ and P . 
m~I m+I m 

P^ obviously contains the 

groups G-j ,. •., & • 

J^lYv^ 
\Jhen n = 2ii + 1 , then the generalised direct products P^ of G^ , 

Gg^ i+2 ^'^Iga-^'ting a central subgroup II , i = and also the 

permutational product P^ of G^ , Ĝ ^ amalgamating H^ using the transversals 

Ĥ ' and ir ^ where and HJH = iî  . In P^ the groups H^ 
and H , generate their generalised direct product amalgamating H . 

n-1 
We now constr^ict similarly, step by step, a finite group p^^ ^^ which 

is an embedding of the finite groups and P ams-lgamating m 



I f t h e r e e x i s t i s o m o r p h i s m s cp o f G ^ o n t o G^^ a n d i f o f G ^ 

o n t o G ^ s u c h t h a t cp i s i d e n t i t y o n H ^ = G ^ f l G ^ a n d ijr i s 

i d e n t i t y o n H ^ = G ^ f l G ^ a n d f u r t h e r c p | H ^ = w i t h H ^ c p = H ^ t = H ^ , 

t h e n A . . . 
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only I in common and P^ is the generalised direct product of G^ , 

amalgamating 11 . Hence the group = x jll) is 

contained in P^ and so also in p "̂̂ "̂ ^ . Tlius in this case again, 

P^^"^^ contains al l the G^'s i . That they have their 

right intersections in p^^"^^ follows hy an argument similar to that in the 

theorem of §2 Chapter II . 

The proof of the theorem is now complete. 

This is as far as one could hope to go in the general case. Things 

look more ohscure x/hen \Te do not have any restriction on the constituents. 

Even for the case of four groups we have not "been able to prove a general 

result without any restrictions on the groups forming the amalgam. However 

tte following theorem gives a sufficient condition in this case. 

III .2 .3 Theorem; Let the groups Ĝ  * ' S ^^ amalgam 

A of type S ' . — — a n d ~ u^ —are-xsomor-phic •amdr-aSo Ĥ  

fsm^iĵ iLiu' Lo , then A is embeddable in a finite group. 

Proof: It has already "been shoma that the generalised free product of 

G^'s exist. In the free products of Ĝ  , Ĝĵ  cad Ĝ  , Ĝ  , the groups 

n̂  J Ĥ  generate their free products amalgamating H . Therefore, if there 

exist two finite groups embedding the a-aalgams of Ĝ  , Ĝ^ and of Ĝ  , Ĝ  

such that the group generated by Ĥ  , il̂  in both is the same then we can 

take a permutational product of these txro groups amlgamating the group generated 
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by Ĥ  and E^ , and ge t a f i n i t e embedding of the amalgam of Ĝ  , 

Gg J ^ • ^fe show t h a t t h i s i s p o s s i b l e provided t h a t the cond i t ions 

in t he theorem a re s a t i s f i e d . 

We here use t he no t ion of ' equ iva l en t t r a n s v e r s a l s ' as de f ined in t he 

paragraph p reced ing theorem of Chapter I . Since Ĝ  aad Gg a re 

isomorphic and i s a common subgroup of both G, and Ĝ  , i f ep 

i s an isomorphism of Ĝ  onto Gg and S a t r a n s v e r s a l of jî  i n Ĝ  , 

t hen s ince ^^cp = (SH^ )cp = ScpiL.cp = ScpĤ  = Ĝ  we tal^e Sep = S ' as a 

t r a n s v e r s a l of 11̂  in Gp . S i m i l a r l y a t r a n s v e r s a l T' of H^ in G^ , 

T ' = TiV where G ît — t i s chosen corresponding to a t r a n s v e r s a l T 

of fl^ in G^ . Since = H^ , the isomorphisms cp and i' of G-j 

on to Gg and of G^ onto G^ a re such t h a t cp|pl2̂  = . We now have 

t h e groups Ĝ  , Gĵ  and Gg , G^ with amalgamated subgroups ii';̂  and H^ 

r e s p e c t i v e l y and the isomorphisms cp and v of G.̂  onto Gg and of Ĝĵ  

onto Gj r e s p e c t i v e l y . Therefore by Theorem Chapter I , t h e r e i s an 

isomorphism X of "Uae pe rmuta t iona l product P(S,T;H2^) onto P ' ( S ' , T ' , I ^ ) 

which extends both cp and M . In P and P' , t he group Ĥ  , H^ genera te 

isomorphic subgroups and in f a c t the same groups . Any permuta t iona l product 

of P and P ' amalgamating t h e group generated by Ĥ  , H^ w i l l then 

embed the amalgam A of Ĝ  , Gg , G^ and Ĝ^̂  and be f i n i t e . 

Thais completes the proof of the theorem. 

The above r e s u l t s g ive only a p a r t i a l answer t o the ques t ion of f i n i t e 

embeddabi l i ty of an amalgam of type S . Whether every such amalgam 

i s embeddable in a f i n i t e group i s s t i l l an open q u e s t i o n . 
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§111.5 

In th^'Section -sre construct an example to answer the following questions 

(i) Is there an infinite embedding of three finite groups A , B , C other 

than the free one? If so, is there also a finite embedding of A , B , C ? 

(ii) Let P and P' be two finite embeddings of the groups A , B and C 

such that the order of P is larger than that of P' . Does there always 

exist a homomorphism of P onto P' ? 

(iii) Is there always a unique minimal embedding of an amalgam of three 

finite groups ? 

teny of these questions may be answered by interpreting groups 

described by Coxeter and Moser as generalised free products. 

III.5.1 Example: Let (-t^m^n;?) denote the group generated by S and T 

having the defining relations 

S'̂  = = (ST)" = = 1 . 

Ti/hen n = 2 , so that 

we have 

ST = (ST)'̂  = , 

ST"^S"^T = SSTT = S^T® 

Hence is also defined by 

S'̂  = T^ = (ST)2 = (S^T^jP = 1 
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If ^ = 5 J = 5 > V ~ ^ f then the growp (5,5^2 "5) has a representation 

as 

S^ = T^ = (ST)2 = (S^T^)® = 1 

The infiniteness of (5^5/2,3) follows by Coxeter [7] Ptige 93-

The amalgam we construct is s.ich that its generalised free product 

shall have as a proper homomorphic image a group containing a sulagi-oup 

isomorphic to (5,5,2 ;3) . The three groups we take are the dihedral groups 

of orders '4 , 10 and i 0 such that the amalgamated subgroup of each 

pair is a cyclic group of order 2 . Thus 

A = gp{a,b;a2 = b^ = (ab)^ = 1 } 

B = gp{b,c-b2 = c^ = (b c)^ = 1} 

C = gp{c,a;c2 = a^ = (ca)^ = 1} 

The free product of A , B , C is 

F = i-.p(a,b,c;a2 ^ ^ ^ (^c)^ = (ca)^ = (ab)^ = 1} 

which can, following Coxeter and Moser [8], also be considered as a group 

generated by reflections 'a' , 'b' , 'c' in the sides of a spherical triangle 

with angles it/5 , n/5 and •n/2 respectively. F can aD^o be represented as 

F = = h^ = (gh)2 = (gc)2 = (ch)2 = c^ = 1 ) 

where be = g , ca = h so that ba = gh . Since 
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and 

the subgroup 

g^ = c (bc)c = 013= (be)" ' = g" ' 

h'̂  = c (ca)c = ac = (ca)'^ = h"^ , 

Ĝ  = gp(g,h;gS = h^ = (gti)2 = 1 } (1 ) 

of F is norraal in F . Moreover, since Ĝ  n {c} = (1} , F is a spl i t 

extension of Ĝ  by a cyc l i c group of order 2 . Further, Ĝ  is an inf inite 

group by Coxeter [8] p. • 

Let N be the normal closure of ( (g^h^)®} in Ĝ  , we show that 

the normal closure N of N in F coincides with N . For this v/e have 

only to prove that 
- 1 / :P, 2 \ 3 , 

is an element of N . Now, 

and since, 

belongs to N , therefore c""̂  (g^h^)^c being the inverse of (h^g^)® 

is also in N , showing that N is also norrnal in F . If we denote the 

factor group F/N by F̂  then F̂  = gp{g ' ,h ' ,c ' = h = (g 'h ' 

= (g'^h'^)^ = ( g ' C ) ^ = ( c 'h ' )^ = c '2 = 1} or, on ioenti f icat ion of g ' , 

h ' , C with g , h , c respectively. 
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= = h^ = (gh)2 = (S^h^)^ = (gc)2 = (ch)2 = c^ = 1 } . 

liOwever, the group 

G2 = = h^ = = (gSh^)^ = 1} (2) 

is a normal subgroup of F̂  and since Gg n { c } = 1 , F̂  is a sp l i t t ing 

extension of Ĝ  "by a two-cycle . Ĝ  being the same as the group 

(5>5^2jJ)) is i n f i n i t e and so a lso is^ therefore , F-j . In terms of 

a , b , c , F̂  has the representation 

F̂  = gp{a ,b ,c ;a^ = b^ = c^ = (bc)^ = (ca)^ = (ab)^ = (bca )®=l } . 

Since every element of B and C is of the form 

and 

respect ive ly , k ,k ' = 0 , 1 , and f o r no values of k and k ' , the 

re lat ion (bc/S = 

(ca) c or is implied by the additional 

re lat ion (bca)® = 1 , therefore there are no additional amalgamations 

of B and C and s imilar ly not of C and A or of A and B . The 

groups A , 13 , C have, therefore , their precise intersect.lOns in F̂  

and F̂  consequently embeds their amalgam. 

Hoxj-ever, F̂  is d i f f e rent from the free embedding F of the amalgam 

of A , B , C and moreover, is i n f i n i t e , answering the f i r s t part of 

question ( i ) . 
¥e now show that there is a l so a f i n i t e embedding of the amalgam of A , B , C 
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Consider the group 

G3 = gp{gSg';g'^ = h'5 = (g'h')2 = = U (3) 

G^ is isomorphic to the smallest non-ahelian sLaple group A^ of even 

permutations on five letters (cf Coxeter, [?]). However, a factor group 

of Ĝ  determined by the normal closure N' of {(g'^h)®} in Ĝ  is also 

isomorphic to G^ . IJe prove that n' is a normal subgroup of i" . 

Since g = be h = ca , and 

a ^h)a = acbcaa = acbc = h ^g = 

therefore a'^ (g"^h)®a = (g'^h)'^ € N' 

I\irther, since 

b"^g'^hb = bcbcab = = 

hence. 

Also 

Thus 

= g^h g.h g.h g.g 

c 'g ^hc = ccbcac = bc.ac = gh ̂  
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c (g h j c = gh gh gh = g .h gh gh g .g 

= € K' 

showing t h a t K' i s a normal subgroup of F . Therefore 

F/N' = gp{G^/NSc '} = gp{G^,c ') = Fg say . 

Again i d e n t i f y i n g g ' , h ' , c ' with g , h , c r e s p e c t i v e l y we have 

F2 = = h= = (gh)2 = = (gc)2 (ch)2 = c2= 1} 

and in terms of a , b , c ^ 

Fg = g p ( a , b , c ; a ^ = b- = c^ = (bc)^ = (ca)^ = (ab)^ = (cbca)^=: 1 } 

JJy a reavsoning s i m i l a r t o t h a t above, we see t h a t a l s o in Fg , 

A , B , C have t h e i r p r e c i s e i n t e r s e c t i o n s . F^ , t h e r e f o r e , embeds 

the amalgam of A , B , C . The f i n i t e n e s s of F^ fol lo i rs f.vom the f a c t 

t h a t i t i s an ex tens ion of a f i n i t e group G^ by a cyc l i c group of order 2 . 

This completes t he •••jnswer t o the f i r s t Cj_uestion. 

iJe now show t h a t t h e r e e x i s t two f i n i t e e.uibeddings vrith t he proper ty 

t h a t t he smal le r embedding i s not a homomorphic image of the l a r g e r one. 

we cons ider t he group 

Gi|. = gp{g" ,h" ;g"^ = = (g"h")2 = = 1} 

which i s isomorphic t o the simple group A^ of even permutat ions on s i x 
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l e t t e r s (Coxeter, [7] p. 79) ^ and is a homomorphic image of Ĝ  where Ĝ  

is the same as in (1) . The kernel N" of this homomorphism is the normal 

closure of in Ĝ  . We show again that N" is a normal 

subgroup of F . I t i s enough to show that the transforms of by 

a , "b , c are in N" . Now 

a g ha = (g h} 

(g"li)b = ^h '^g ' 

c(g'^h)c = gh"^ 

and therefore, s ince, as before, a(g'^h)^a = , b(g"^h)\ = ĝ  (g'^h)"^'g"^ 

and c(g'''h)'^c = are elements of N" , U" is a normal 

subgroup of F and the factor group 

F^ = F/N" = gp{Gi,,c") 

being a s p l i t extension of Ĝ  by {c} , is f i n i t e . 

In terms of a , b , c , F̂  is given by 

P. = gp{a,b,c ;a2 = b^ = c^ = (bc)^ = (ca)^ = (ab)^ = (cbca)" = 1} 

That F^ embeds the amalgam of A , B and C follows as before. 

However, considering 

F j = gp{Gi^,c"} and F^ = gp{G^,c'} , 

one sees that F^ cannot be a homomorphic image of F̂  , because of the 

simplicity of Ĝ  and Ĝ̂^ , answering ( i i ) . 
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Moreover F^ and F^ are minimal finite embeddings of A , B , C 

in the sense that there are no proper factor groups of and F^ which 

embed the amalgam of A , B , C giving a negative answer to question (iii). 
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