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STATEMENT

Apart from a brief historical survey appearing in the
introduction, the work reported in this thesis is entirely

my own with no assistance from any other person.

In this, as in any mathematical text, certain elementary
and general facts are assumed in the very language used:
these are described in detail in Appendix IT. Apart from
these only two known results are used, and these are

acknowledged with references when they appear.
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CHAPTER O

INTRODUCTION



BACKGROUND *

The conventional theory of basic commutators may be considered to
be an investigation of the properties of the lower central series
YC(F) :¢c=1,2,... of an absolutely free group F , or alter-
natively of the properties of the corresponding factor groups,

which are the free nilpotent groups of various classes:

B S T

Suppose that G is a group generated by a subset {k . Then

a set of "formal expressions" may be constructed using the
elements of @y » the symbol 1 and the operations of inversion,
multiplication and commutation. Each of these formal expressions
will then represent a unique element of G in the obvious way.
Certain formal expressions, known as "basic commutators" of .

"weight c¢" are defined for positive integers c and well ordered

by recursion over c¢ as follows:

* Throughout this thesis certain symbols in more or less common
use will be employed without formal definition. For the reader's
convenience these are collected in Appendix II, together with all

terms and symbols defined in the text.



i) The basic commutators of weight 1 are the elements of

(
ﬂ;. They may be well-ordered in any way.

/

(ii) Assuming that ¢ 22 and the basic commutators of weight

< c¢ have been defined and ordered, the basic commutators of
weight c¢ are the expressions of the form [x,y] where x and

Y are basic commutators of weights r and s respectively,
r+s=c¢c, x>y and, if X = [X1,X2] then xo sy . The well-
order may be extended to the basic commutators of weight ¢ in

any way so that they follow the ones of smaller weight.

The following facts have been established.

(1) A "collecting process" is defined, by means of which a
formal expression for an element in F(Ec) » Where -é? is a free
generating set for this group, can be transformed into a particular

type of expression known as a '"basic product" of the form 1 or

BB B

- :
b1 b2 ...bk where b] s b2 P ""bk are basic commutators of
weight =c¢ , b] <b2 <o <bk and ,31 - 62 i 'Bk are

non=-zero integers. The basic product represents the same element

of the group as did the original expression.

(2) The representation of a particular element of F(Ec) in

this form is unique.

(3) ¥.(T) / A R r.(F(N,)) 1is a free Abelian group, for



which those elements represented by basic commutators of weight ¢

form a free basis.

(L) The upper and lower central series of F(Eé) coincide.

More specifically, provided the rank of F is >1 ,

6 (F(N)) =7,_ (F(L)) .

B

(5) The lower central series of the absolutely free group F
o

has trivial intersection: fﬁl Yi(F) = {1} . . In other words, 'F
i=]

is residually nilpotent.

(6) "Witt's formula". When the number + of generators is
finite, the number of basic commutators of weight ¢ is also finite,
and is the number 2: u(r) Tc/r , where u 1is the MSbius
function, defined foil;ny positive integer r : p(r) =0 if

there exists p > 1 such that ¥ | r, p(r) = (-1)° other-

wise, where s 1is the number of primes dividing r .

The results (1), (2) and (5) can be considered to constitute a tool
for investigating these groups and the results (3), (4) and (6)

as applications illustrating its power.

Parts of this theory have been applied to the study of p-groups.



The history of the subject can be covered briefly. The theory
was initiated in 1934 by P. Hall [4] in a paper concerned with
p-groups. Here the notion of "basic commutator" was introduced
and the collecting process investigated (Result (1)), however the
question of uniqueness was not treated in this paper. In 1957

E. Witt [10] showed that the whole problem could be translated into
an equivalent one concerning free Lie rings, and also produced the
Witt formula (Result (6)). At about the same time W. Magnus [6,7],
also working in terms of free Lie rings, introduced the so-called
"Magnus Ring" in terms of which the residual nilpotence of
absolutely free groups (Result (5)) was proven. Finally, thirteen
years later, Marshall Hall Jr. [3], using the results of all of
these papers, was able to prove the "basis theorem" (Results (2)

and (3)) thus rounding the theory off nicely.

Surveys of this theory may be found in P. Hall [5] and R. H. Bruck

FoE A

PREVIEW

The work reported in this thesis arose originally from the desire
to prove the results of Chapter 5 and more generally from the
feeling that it should be possible to modify the theory of basic

commutators as just described to permit the properties of free



polynilpotent groups to be studied in the same way.

The idea of "weight" of a commutator is well-known. This may be
extended to the idea of weight of an expression ( definition 1.3 )
and then the terms of the lower central series of a group may be
defined thus: an.element of ' G belongs to YC(G) if and only

if it may be written as an expression of weight =2 c¢ . This is
possibly not a familiar way of defining the lower central series,

and is made precise in definition 1.10 and lemma 1.6.

Here the idea of weight is generalized to that of "semiweight"
and "semiweight range". Then, for a given semiweight range W,
subgroups Wd(G) of a group G , consisting of all elements which
may be written as an expression of semiweight =2 o are defined.
It is in the generalization of "weight" to "semiweight" that the
crux of this thesis lies: for, just as the lower central series
may be defined in terms of weight and then the conventional theory
of basic commutators investigates the properties of this series,
so the subgroups Wa(G) are defined in terms of the semiveight
range W and the theory to be described here investigates the
properties of these subgroups. But the semiweight range W may

be chosen so that these subgroups contain a~ong them the verbal

subgroups corresponding to polynilpotent varieties.



While the semiweight range W may be chosen so that subgroups not
directly connected with polynilpotent groups may be investigated,
so that the early part of this thesis will be slightly more general
than its title suggests, the prime consideration throughout will
be the study of polynilpotent groups; in Chapters 3 and 4 it will
be seen that in fact I have been able to prove some important

results only for the polynilpotent case.

In Chapter 1 the idea of a semiweight range W with its associated
semiweight o¢ is introduced. In terms of this the W-basic
commutators are then defined. The most important part of this
Chapter consists of a proof that the number of W-basic commutators,
for a given finite number of generators, is independent of the

choice of W .

Chapter 2 develops the collecting process which together with the
mein result of Chapter 1 provides the basis theorem. inschils
chapter the forgoing theory is applied to Lie rings and, as might

be expected, the results are pleasingly straightforward.

In Chapter 3 the "polynilpotent" semiweights are defined. A
result analogous to the residual nilpotence of absolutely free
groups in the conventional theory, namely "partial collectability"

is proved for this case.



Chapter 4 investigates the upper and lower central series for
certain semiweights ( including the polynilpotent ones ). It
is shown that the complete inverse image of the centre of

Tl Wd(F) » where F is an absolutely free group, is W1 (F)

for a suitable and quite natural definition of a~1 .

By this stage results analogous to (1) = (6) of the previous

section have been stated and proved.

Chapter 5 contains the solution of a problem which uses some of
this theory. This chapter is in the nature of an excursion, but
is included for three reasons: firstly for its intrinsic interest,
secondly because it in fact caused me to embark upon this work

and thirdly because it is an application, albeit not a very

mysterious one, of the results of Chapters 1 - L,

FORMAL EXPRESSIONS

The conventional theory of basic commutators concerns itself much
of the time with formal expressions: not so much the elements

of a group themselves as the way they are written down on paper.
In the present theory it will be found that more and more emphasis

is placed on this aspect and that group-theoretic results, though



the primary object of this study, appear infrequently.

In order to avoid this essentially metamathematical approach in
this thesis I have replaced the idea of formal expressions for the
elements of a group by the elements of a free algebra. This
algebra is chosen so as to be anarchic enough that we may regard
(intuitively) the elements of the algebra to be in one-to-one
correspondence with the possible formal expressions for elements

in the group.
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CHAPTER 1

W-BASIC COMMUTATORS
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THE AIGEBRA OF EXPRESSIONS

Defintion Tl

let § = {%i}i<# be some set indexed by the ordinals less than

some ordinal T , the indexing being one-to-one. Form the

algebra (A, 92, ) generated freely by the set G with

o

operator domain Q@={ &, v, u , X} where
€ 1is a nullary operator ( the "unit element" ),
v 1is a unary operator ( "inversion" ),
u and X are binary operators ( '"multiplication" and
"commutation" respectively ) ,

the only law being that p 1is associative.

A more conventional notation will be used for the effect of the

operators on A , as follows:

e€=1
xv =% !
Xy = Xy ; for all X , ¥y €A

1
1
|
|
i

xx =[xy

Parentheses will be used in connection with the operations of
inversion and multiplication in accordance with the usual

conventions. A "left-normed" convention will be used in



e

connection with the operation of commutation, that is,

~

e sl a b ], ], andeo on.

The set G will be considered to be a subset of A 1in the
usual way. The elements of A will be called "expressions" and

N

A 1itself will be called the "algebra of expressions". el
It should be remarked that the operators & and Vv are not bona
fide unit and inversion operators with respect to M » 8ince the
associative law of multiplication is the only law of & 5. ror
instance x] # x and &.] ¥ 1.

We have at our disposal some well-known results concerning such

an algebra, which may be summarized as follows.

Lemma 1.1
(A) (1) 1'ed "and GcS A,
Cad) ae,v-_-;w']eé\v,

(iii) B b e Av—abe A and lasbled .

(B) If a € A then one and only one of the following five
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possibilities is true:

{4) a =

?..-l

(ii) a €

P{p}

(iii) There exists a unique x € A such that a = ){] ‘
(iv) There exists a unique pair x , y € A such that a = [x,y] .
(v) There exists a finite sequence X 0% 0 e 3 % of
elements of A ( k 22 ) such that a e X1 %pe++X, ,.and none of
the elements X; can be written as such a product themselves,

that is, each X, 1s subject to B (i), (ii), (iii) or (iv) of

this lemma, but not (v)).

{C) To each a € A there corresponds a uniquely determined
positive integer ht(a) , called the "height" of a , which is
defined by its properties:

(i) ht(]) =1 and g € ¢ 2 ht(%i) =1,

(1)  ht(a") =ht(a) +1 ,

(iii) ht(ab) = ht([a,b]) = ht(a) H UL + 10

Roughly speaking, the height of an expression is the number of
symbols required to write it in terms of the generators G and
the operators € , v , p , X using Zukasiewicz' notation. Should
the reader desire it, a brief but sufficient description of this

notation may be found in B.H.Neumann [8], p.26. <:>
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It will be useful to have a rather artificial definition of

powers of an element in A .

Definition 1.2

et 1 be an Integer and let x e & . Then §? is defined

recursively:

: o

(l) X =L s

(1) ;g‘] =% apndifia>ly )'sn=}£n-'l}£,

(d11) §f] is as described in definition 1.1 and if n > 1

§7n s §f(n-1)§7] : <i::>
Since §§f] #1 , none of the "index laws" hold good with this

notation.

Definition 1.3

Iet N denote the set of positive integers with an extra element
o adjoined. The usual addition and order on the positive integers

is extended to encompass o« Dby:

o+ n=n-+ow=om-4 0= hi
: for any positive integer n .
n <o )

The mapping wt : A > N  is defined recursively over the height

~

of expressions in é, as follows:



2

i D T e L e B
) =wt(x) ,

(iii) wt(xy) =min { wt(x) , wt(y) }

(iv)  wi(lx,x]) =wt(x) +wt(y) .

(11)  wi(x

For each expression x , wt(x) is called the "weight" of x .

-
-
S

S

Definition 1.4

A sequence ( gn )n;; of subsets of A 1is defined recursively by
(1) an>;, %:{[bﬂ:§egr,xe%,r+s=n]
The union C = (.7 C of this sequence is called the "set of

~ n:] ~n
commutators” of A . An element of C is called a commutator.

/\\\
\\,/"

The simplest properties of commutators may be summarized thus:

Lemma 1.2
(1) oo
E11) If ¢ceC then 1 swt(c) <o and ht(c) =2wi(e) -1,
& A € C' then either
(@) wilg) =1 end £€G , or

(B) wt(c) > 1 and there exist unique x,y ¢ A
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such that ¢ = [x,y] , wt(¢) =wt(x) + wt(y) and hence
vi(x) <wi(g) and wi(y) <wi(e) ,

. C . . .
(iv) o is the set of all commutators of weight n . <<l;>

It will be noticed that the weight of a commutator, as defined
here, corresponds with the usual definition, but that the idea
of weight is extended to arbitrary expressions. It may be felt
that the process of "formalization" is being carried to extremes
when commutators are defined to be expressions rather than group
elements; I am of the opinion that this definition leads to a
simpler treatment, especially when commutators of higher weight

are being considered.
The emphasis throughout this study will be on groups, however

some of the results will apply to more general algebras ( see

for instance theorem 2.5 ). These may be defined as follows:

Definition 1.5

A "describable algebra" ( G, @, e ) is an algebra with

operator domain  ( the same as in definition 1.1 ) in which

multiplication is associative.
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Groups will be written multiplicatively and then the operators of

Q@ will have the obvious effects : €=1, xv= X! , Xyp = Xy

//\

-1 =1
2l I =% 'y Xy . g =
The method by which the elements of A describe the elements of

such an algebra, and so supplant the notion of "formal expressions"

may now be made precise.

Definition 1.6

Iet G be any describable algebra ( or, more particularly, a
group ) and suppose G is generated by a set {A’ = {gi}i i
of generators indexed by the ordinals less than Tt . Let A be

as defined in definition 1.1 and let 5 iG> ij be the mapping

gP=8g (i<Tt).

Then p may be extended uniquely to an epimorphism p : A > G .
The mapping e is called a "description" of G ; further, if
G 1is a relatively free algebra and ‘% freely generates G ,

o is called a "free description" of G . e
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SEMIWEIGHTS

Definition 1.7

A set W 1is called a "semiweight range" if it has an order s
and addition + defined on it with the following properties:
(1) £ well-orders W . W has a least element 1 and a
greatest element o ,
(L) W 1s closed under addition and W -\ {o} is generated by
1 under addition.
(iii) Addition is commutative: & +p =B +a . However
addition is not necessarily associative; a left-normed convention
Will bewsedy @ £ B v =( a*p J £y 8nd so on.
(iv) Ha B gw s orBC e,

g e g2 @ <o+ B

Q+ o=
(v) o e Oé and g < o 4 +B < a, +B
(vi) Galaag o hrE B A0 = v RO FB 8 Bohaayig

5

Commutativity of addition together with (iv) and (v) yield many
similar results quite easily, for instance o s o and 51 s @2
= a] + 51 s Oé + 52 . These will be used without further

comment.



)

It will be noticed that at this stage the symbol <= has appeared
with two distinct meanings — the ordinary order on the integers
and the order just defined for a semiweight range. Before long
a third meaning will appear ( definition 1.12 ). Since these
different orders are defined on disjoint sets, no confusion should

occur.

Definition 1.8

Let A be an algebra of expressions and W a semiweight range.
A mapping o : A+ W is called the "semiweight on A
associated with W " if it has the properties

(1) gll=w 5 g e C = olg) =1 .

o) =

(dat) oy )= miim f-ola)usaoly) 3.

(i abfagl)o= olx) 4 olyg)ivn <

Clearly o is defined uniquely by W , this definition amounting

to a recursive specification of o(x) over the height of x .

Lemma 1.3

With the notation of definition 1.8, the mapping o : A>¥W is

~

onto, provided that the set G of generators of A 1is nonempty.
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Proof
This follows easily by transfinite induction over the elements of
W , using definition 1.7 (iv), definition 1.8 (iv) and the closure

of A under commutation. L
Lemma 1.4

With the notation of definition 1.3, N is a semiweight range

and wt : A+ N is the associated semiweight.

Proof

This follows immediately from a comparison of definitions 1.3,

1.7 and 1.8. <

As remarked in the introduction, the notion of "semiweight" is a
generalization of that of "weight". It will be seen throughout
this thesis that if the word "semiweight" is replaced by "weight"

the theorems will reduce to known ones or trivialities.

It might be worth remarking that N is the only possible
semiweight range ( up to isomorphism ) for which addition is

associative.
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Lemma 1.4 provides a simple example of a semiweight. For a more
interesting one we must wait until Chapter 4 when the "polynilpotent”

semiweights are defined.

VERBAL SUBGROUPS

Definition 1.9

Let A Dbe an algebra of expressions and let @ e b

a semiweight. Then for each @ € W , the subset yd of A

~

is defined to be the set of expressions of semiwveight 2z a ,

Wacome Lo g Aoy o(x) Bl ot <
Lemma 1.5
(2 Let 0 : A+ Wbe a semiweight and @ be any endo-

morphism of A . Then, for any x ¢ A, o(x9) 2 o(x) .
(ii) With the notation of definition 1.9, W is a fully-

invariant subalgebra of A .

Proof

(i) follows by an easy induction over the height of X , and

{41} is8 g eorollary of (1). <:::>
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Definition 1.10

Let G be a describable algebra ( or in particular a group ), let
P iid Gy be 'a degeription of G and let o §;+ W be a

semiweight. Then for each @ € W the subset Wa(G) is defined

O W(C) = Wb = (fp:xech, ox)z0]) . <:::>

Theorem 1.1

With the notation of the forgoing definition,

(4 Wd(G) is independent of the particular description of G
chosen to defime it; 4t depends only on -G, W and o .

{d1) Wa(G) is a verbal, and hence fully-invariant, subalgebra
oL ¢ g

(111) W, (@) =& and W, (G) = (1) .

(iv) asp = W/ (G cW/(G) .

p

Proof
Parts (i) and (ii) follow immediately from lemma 1.5 and

parts (iii) and (iv) follow easily from definitions 1.7, 1.8 and

Hio e
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Lemma 146

With the notation of lemma 1.4, ﬁ;(G) = Yb(G) for any group

G and positive integer c .

Brec
Suppose pis A¥ G i1s ahy deseription of "G - Then, for any
o R T T o YE(G) . This follows by an

easy induction over the height of x . Consequently, if

—

X € NC(G) then there exists x € A such that x =xp and

wt(x) 2 c and then x € v (G) . Thus N (G) £ v (C) . The

converse inclusion, YC(G) s ﬁ;(G) , 1s proved by induction over c.
Flrat Y](G) =G = ﬁ](G) « Now suppose ¢ >1 and the result
is true for all smaller values. Since YC(G) = [ 75-1(G) skl

any X € YC(G) may be written in the form
& % o
S [a],b]] [ae,be] ...[ak,bk] where k 1is a finite

integer and, for each 1, a, € Faaq B b, G and g = 2r 16

Then by the inductive hypothesis there exists a; € A such that

a, =a.p and wt(gi) 2 c-1 . There also exists Qi € A such

il gl & 52 E?k

: & ]
that bi = pip o4 Wrabe . X = [§4’Eh] [Qe,pg] '°'[§k’9k] .

It follows that x =xp and wt(x) Zc . Hence Xx e Nc(G)

=

and the result follows.
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As a consequence of theorem 1.1 the following definition may be

made.

Definidtioniiidil

Iet W be a semiweight range and let o e W . Then Za is the

iety of - 3
variety of all groups G for which Wa(G) % <:::>

It follows from lemma 1.6 that EC+ is the variety of groups

1
G for which Yc+](G) = {1} , that is, the variety of groups

= N .

which are nilpotent of class c . Thus N
=C+1 =

W-BASIC COMMUTATORS

In this section a well-ordering of the set C of commutators is
described. This order depends on two things: the order imposed
on the generators G by the ordinals indexing them and the semi-
weight o0 U Subsequently a subset of C , the set of
"W-basic commutators", is defined in terms of this. The group-
theoretic results arrived at later will not depend upon the
ordering of G , though they do depend very much upon W .

However the intermediate steps rely heavily on this well-ordering.
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The first task then is to define this well-ordering of the
commutators. This must be done fairly carefully: it is

defined first as a relation and subsequently proved to be a well-
order. Before embarking upon the definition it should be remarked
that, for any semiweight range W , the set of commutators of

semiweight 1 1is exactly G .

Definition 1.12

Let g : A>W Dbe a semiweight. The relation < on ¢

is defined recursively over the semiweight of commutators.

(1) &i<%j SN e ( for 54’%3‘":9) .

(ii) 0(39 =< O(X) e gt At SRR

It remains to define the relation on pairs of commutators of the
same semiweight > 1 . Suppose then that d(a) = olb) =& >1
and that the relation < has been defined on the set of all
commutators of semiweight < &€ . An intermediate definition
must be made: suppose 0(’.&) =& Then since & >1 we

may write x = [251 ,}52] « Then the "leading" and "trailing"

parte of X are defined

ld(x) = X it % <% or x, = %
= 352 otherwise, and
= 3 =
tr(x) % if x, <% or %, %

= ik otherwise.
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then g <'Q Ejief

(il o(a) =o(b) =& >1 and

(a) 1d(a) < 1d(1b) ,
(b) ld(a) = 1d(b) and tr(a) < tr(b)
or: (e) ld(a) = 1d(p) , tr(a) =tr(b) and b, <a,

( vhere a = [Qq,ge] and b = [EJ’EE] IR
The reversal of the relation in part (iiic) is not a misprint.
With regard to this part of the definition it will be noticed that
if 1d(a) =14(b) and tr(a) = tr(b) then either b=a or

~

b = [ge,ﬁq] where a = [gn,ﬁg] .

(iv) The usual notations are used:
e e s or g =
a>h > R<a
e e
The relation S is called the "W-ordering" of C . <:::>

Lemma 1.7

With the notation of the forgoing definition, = is a (full)

well ordering of ¢ .

Proof

Notice first that
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el S ola) s o(b) ),
(B) &g 58 —>» 154,

(v) a=h and o(a) =o(h) = 1ld(a) s 1d(Db) ,
(8) g=bh, ola) =o(h) and ld(a) = (b)) — tr(a) = tr(b) ,

a

o
1A

P

» ola) =o(b) , ld(a) = 1d(b) and tr(a) = tr(b)
e D RS e
( where a = [z’aq,a I%and 5 = [b.
Since it is not yet known that = is a partial order, these
statements must be proved by checking all the various possibilities
listed in the definition. It is now shown that = is indeed a

partial order.
(i) s 1is reflexive, by part (iv) of the definition.

(Fig) = 1is weakly antisymmetric. Suppose X = y and ¥ =t
Then by (@), o(x) = o(y) and a(y) s o(x) and since the
relation = on W is known to be an order, o(x) = oly) = ¢
say. If € =1 , then there exist ordinmals i , j <+ such
that X =g and x=gﬂ.,andthen L= by (2)eo X=y .
TEE ] SiL mevibe supposed inductively that the relation is
weakly antisymmetric on the set of all commutators of semiweight
e ey, by Ly, 1d(X) = 1d(y) ;" s0 by (8], tr(x) = tr(y)

and finally by (€), T where ' x = [)r&l ,352] and .
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x=[x],3(2]). Hepee x =y .

Gdid) £ is transitive. Suppose x sy =z . Then by (d),
o(x) s o(y) = gzl o Walf ofx) & ofz) then x <2z by part (ii)
of the definition. Otherwise o(x) = o(y) = o(z) = ¢ say.
From now on the proof follows the same pattern as that of weak
antisymmetry, only now it may be assumed inductively that the

relation is a partial order on the set of commutators of

gsemiveicht < & .,

(iv) £ is a (full) well-ordering of C . Suppose e

X # $ . It is shown that X has a least element. ILet 4

be the set of commutators of least semiweight ( & say ) ln }E’ .
This is nonempty, and if it has a least element so does Xow I

€ =1 then }’\(4 is a nonempty subset of G which is well-
ordered by part (i) of the definition, and so ;& has a least
element. Otherwise € > 1 and it may be assumed inductively that
the set of commutators of semiweight < €& is well-ordered by = .

Then the set )'EE of all commutators of least leading part

(o

~

say ) in )'*(J] is defined and non-empty and if it has a
least element so does X . Further, the set )% of all
commutators of least trailing part ( t say ) in & 15  del red
and non-empty and if it has a least element so does )’g . But

X < { [4,t] , [£t,4] } and so has a least element since [£ t1=(t,4].
= J

52,
=
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Definition 1.13

(A) fet s @ 0 A > W be a semiweight. A particular type of
commutator, called a "W-basic commutator", is defined recursively
over its weight by

{1} Every commutator of weight 1 ( that is, every member of

G ) is a W-basic commutator.

(1) A commutator ¢ = [b,al of weight >1 is W-basic if
(a) a and b are both W-basic commutators,
(b) a <b ( under the W-ordering of e
and (e) o e e [Q],Q2] then b, =a .
(B) A "W-basic expression" is an expression of the form 1 or
@4 (07 (6
e k
B ’pQ ceoly where
1y k 1is a finite positive integer,
(11) each b, is a W-basic commutator,

(iii) by <h, <...< ng under the W-ordering
and (iv) each @, 1s a non-zero integer ( positive or

negative ).

The set of all W-basic expressions is denoted ]'%W .

For any Q@ € W , the set of W-basic expressions of the form above

in which further
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(v) o(R,) <@ (1 =1,2,.005k)

Y W
is denoted ga .

For any positive integer c¢ , the set of W-basic expressions of
the form above in which further

fr) wt(gi) Ee (1 =1 ,85 k)
is denoted E?c) . <:::>

Notice that, if u and v are twec W-basic expressions other than
W
L, weB, and o(y) 2@ then uy is also a W-basic expression.

This fact will be used without further comment.

THE NUMBER OF W-BASIC COMMUTATORS

This section is devoted to finding an expression for the number
of W-basic commutators of a given weight when the number + of
generators is finite. The argument given here is a modified
version of Witt's original one [10]; his argument does not
carry over exactly, since it requires the order type of the set

of basic commutators to be w .

This section is included not only for the amusement value of
proving Witt's formula: it is essential to the proof given in

Chapter 2 for the basis theorem which in turn is essential to the
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rest of the thesis.

Definition 1.14

(A) An order = defined on the set C of commutators is a
"B-order" if

(1) = well-orders C ,

G e = e bl and b < [8,0)  apd

bl T G SR B g <8 -

(B) If = is any B-order, then a "(£)-basic commutator" is

defined recursively over its weight:

(1) Every g © G 1is a (s)-basic commutator,
(i) [b,al is a (S)-basic commutator if
(a) Both a and b are (s)-basic,
(b) g <t
i = = S
and (c) il o) [Eh,pe] then b, sa
(e A B-order = is "good" if the order type of C under

is w ( that is, if there exists an order isomorphism of the

positive integers onto C ).

=
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A

and s be two B-orders. Then we write

(D) Let = =5

s, ~5 (nil-c)

if, for any two commutators X5 Y of weight =e¢ ,

SR e <

Two immediate consequences of this definition are
Lemma 1.8

(i) If o :A+*W is a semiweight and S is the W-ordering
of ¢ , then = is a B-order and a commutator is (s)-basic if and
only if it is W-basic.

{31 If s and S, are two B-orders and (nil-c) ,

% % s
then the set of (él)-basic commutators of weight = ¢ 1is the same
as the set of (§2)-basic commutators of weight = c¢ , and they are
ordered in the same way. <:::>

Lemma 1.9
ist Ghe mumber 71 of generators of A be finite and let ¢ be

any positive integer. Then the number of commutators of weight

Shel s anidtel.
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Proof

By an easy induction over c . <:::>
Corollary

Suppose T 1is finite and c¢ 1is a positive integer. If s sstSlis
any B-order, then there exists a good B=-order é* such that

*,
S o),

Froof
X
= may be defined to be identical with = on the set of commu-

tators of weight = ¢ , and then extended to C 1in any way which

Preserves weight. <:j:>

Definition 1.15

Suppose we are dealing with a fixed B-order = .

&8 A commutator ¢ is "b-compatible", where b is any

(=) -basic commutator, if [c,b] is (=)-basic.

(i1} For each basic commutator b , write Ef for the successor
of b wunder the restriction of = to the set of (s)-basic

commutators. <i::>
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Definition 1.16

For any expressions & , b €A and non-negative integer o ,
define [ a , axb ] recursively over o :
(1) Beawieg 1= ca .,

(ii) [a,p] = [[a, (=1)%0], 1B ] (o=l =
<o >
This notation is Jjust shorthand for Engel commutators of various

lengths. It follows immediately that

Lemma 1.10
(i) If a , beC then wt(la,mxd]) =wt(a) + awt(d) .
(21) If b is (S)-basic and ¢ 1is b-compatible, then

[c,axb] is (S)basic and b-compatible for each o 2 0 and

-+
b -compatible for each o 21 . <

_I_.ggma.].'l]

Suppose = 1is a good B-order and T 1is finite. Then we may
may index the collection of (S£)-basic commutators by the positive
integers {’gi}i:] B8O that 1 = j o= bi = bj and then, for

each positive integer w , there exists an integer n such that
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(=
1%
223

| !
\§
s
lSO‘
i

=

Definition 1.17

With the conditions of lemma 1.11, define a sequence {gi}ifb of
subsets of A as follows:

(1) Xy =G, and

(dd) X; 1is the set of all b, -compatible commutators (izl) .

It should be remarked here that, as the indices have been defined,

Bty g =1, and so on.
Lemma 1.12

For each integer r 21 ,

(1) X ymdine (b)) 1. and
(ii) X, > Kr_] = [Q,GXQT] &S ol Ml .. ard, dizdall o
Proof

The argument is slightly different for the cases r =1 and r» >1 .
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r =1

i oK e o = :
(1) 2@0 4 {‘,Q]} v - Heve X\o G, g] g, and X, is
the set of all go-compatible commutators. Clearly g, € G and

is not go-compatible. Hence {134] = }So W X Now suppose

Aar

C e AT
Mo

£ e Then c € = " 80 there existe 1 < 1 ' Buch

)'go
that ¢ = g; £ I =11, . then [g,go] = [%i,gol is (s)=basic
and so g € }'*(fl » contra hyp. Hence ¢ = g, °

(ii) %1\%={[9a0‘>%]=%€5£1”3£0 afld e = Vol

It 1s shown first that c¢ is go-compatible if and only if it is

of the form [gi,anO] forsome 121 and 020. A commu=
tator of this form is go-compatible by lemma 1.710 . Now suppose

g s go-compatible. The argument proceeds by induction over

the weight of ¢ . If wit(c) =1 , then ¢ = g; for some

1'< 7. and is ‘then go-compatible o0 e e [ — A Thus

c = [g/i,0><5o] . Now suppose ¢ = [cN] ,9\2] « Then c, = &,

B0 05 = &, and then < is go-compatible and so, by the
inductive hypothesis, 8= [g/i,axgo] and then ¢ = [gi,(aﬂ)xgo] .
It now follows that X, ~ X == { [gi,axgo] o =y, e e el

1

and that X, n B i { g, ¢ 121 } « The result follows

immediately.
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ey |
i = . 1 i 1 =
! :Q'r ‘QT_] Further, if 2. [g],ge] 5 then S5 <Er
: ¢ e
so that ¢, £} , . Hence [‘QT,}?T_]] is (s)=basic, so
pr € ?‘(T--l . But ?r s ENeG ’QT-compatlble, SO ’Rr € )Er_]\ 25r .

Conversely, suppose ¢ € X

Ll s Then [2"]2«'-1] is (=)~

basic, but [g',p,r] is not. Then one of the conditions of
definition 1.14(B) must fail for [g,pr] Bt e s (S)e

basic since [gv,pr_]] is, and if ¢ = [2] ,92] then

e .=k < b for the same reason. Thus the only condition
5 ~r=1 i
that can fail is (b), that is, ¢ = Er . But again, since
% o . e )

[g,pr_.'] is (s)-basic, ¢ > b . %0 ¢=b, Thus
Yo~ X = () s

b -
(id) e X N XT aEd- @ = 1.,then [g)ax’gr] e X by

By : : A i
lepmn (1. 10011) o«  Buby gince a2 1 , [g,axpr] [[c,( ])X]Rr]’p\r]
which is not :Qr-'l -compatible. Thus [g,axgr] € )'Sfr\ }51'-1 . $
Conversely, suppose ¢ € }ST ~ 1%-1 . The argument proceeds by
induction over the weight of ¢ . If wt(¢c) =1 , then ¢ = g;
i 0 = b i s)=basic, which
for some i <T But ¢ e X o [%i’w] is (s)=-basic,
= - i ° b =
means that P'r & and r-1 <i But then [Sa'.’ﬂr-'l]
= i <\ -bagi -
[5'5.’%?-2] is also (=)=-basic, so g; € )ET_] contra hyp., and
so ¢ cannot be of weight 1 . Nov write ¢ = [EJI ,22] s« Then

[Q’b*r] is (=)=-basic but [g,pT_]] is not, so one of the conditions

of definition 1.14%(B) must fail for the latter commutator. Now
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¢ is (S)-basic since [Q,Qr] is, and for the same reason

e > pT > "Q'r-'l « Thus the only condition that can fail is (c),

that is, S >‘9T_] .

< = = i
9"2""0‘1" Thus S ’QT and ¢ [g’],pr]. Thus ¢, 1is

‘QT-compatlble. 1056ty i) R IR ’QT_

But again, since [g,,’QT] is (=)-basic,

]-compatible s the result is

Wb Takival - @ =03 10iE %] ALl Sarof QT_]-compatible, then

. 0 3 chUS l
g € }ir A Z{'r-l and by the inductive hypothesis e [e ,Cxxlgr]

with g’ ¢ },gr_] N }'Sr o Then e = [g",(aﬂ)x’p\/r] . <>
It will be convenient from now on to be able to write a product
xy vhere either x or y mey be "empty", in the sense that
poselbly Xy =X or Xy =y . This slight abuse of terminology
will save much circumlocution. The same terminology may be
applied to products of more than two expressions; on the other
hand, the idea of a product in which all factors are empty is

clearly meaningless.

Definition 1.18

With the conditions of lemms 1.11 and the notation of that lemma

and definition 1,17,

(A) For any integer r 2 O , write Bl for the set of
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expressions of the form

e
R = R‘l p‘2 .ﬂ.?i. CN]EQ...Cf\k

where each Oti is a non-negative integer, each ¢; € & oand

X205 The possibilities r 20 and k 2 O correspond to the

o s SRR
possibilities that the products 12,1 ’92 ’QT and 9»19294«:
may be empty. The symbol S(p) is defined

S(p) = a]wt(pv]) +oc2wt(“g2) e +arwt(gr) +

+w*t(g;') +wt(g2) + oo +wt(gk) .
For each positive integer w , ];’T(w) is the set

;ET(W) = {p: B Bow Blple=i s

(B) A mapping Gr : P > Er is defined for each r 21 .

1 =
A -
Suppose e P Thern 4t s ofi' the  fo = ba]bqa bar'-1 u

PP R A ] b m R o ~l ~2 ...NI‘-1 ~

where u is a ( possibly empty ) product of commutators from

}'Sr 7 Now u may or may not contain commutators of the form
}gT as factors, In any case it may be written in the form
BB B B

e 0 m
u .= Db g.qb 2ok e00d Db
z

Ap NlAap RRAp ° A Y
0

vhere m 2 0 , each ,Si and, by lemma 1,12(1i), each

& X Qe s Then po is defined
%1, e ~p i
0%, (67 o B
Lae r=l. "0 ‘
Ee1:' 7 bve "':D\r-l Rt [%1”31X'Qr][?~‘2"32xyr]"'[g'm’amxgr] i

= i= ez ed d so
For 1 £ism, [g.i,BixpT] €}'~{T by lemma (ii), and s

pf_ e X &8 promised. <>
2» e
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Lemma 1.13

(1) 6, is a 1:1 mapping of P , onto P .

(i1) If pel , then S(po) =5(p -

Proof

It is sufficient to exhibit a function o' : E'r - Rr 1 such that

g'g " 48 The ldentity on " P and 06 6' 1s the identity on P .
% e i Ape-

Suppose then that p € Er . Then it is of the form

oL O o
R= “,Q.11Q2 ...p,rr Y , where Yy 1is a ( possibly empty) product

of commutators from }%« « By lemma 1.12(ii), y may be written
in the form vy = [?"-1’51 XpT][%,BQX‘p\r]...[Qm,Bmxpvr] , Where each

g 20 andeach a. & X 2 s Then defining
ol o Y ~r

o o o Q B 5) B
. 2 r-1 5 1 2 m
1 —
Re = p'] EQ ...pT..] . E'r @"']ET ?\:2.9{‘ ooc%m?‘r ’
it follows that po' € Er a2 and comparing this definition with
that of Gr 5 RG'Gr =P . Similarly, if p' e Er-'l s
19 6% = pt
(1) This follows by an easy calculation using the definition

of S(p) and lemma 1.10(1). <
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Corollary

With the notation of definition 1,18, for r 20 and wz1 ,

el =,

Proof

By the lemma, the restriction of Qr o P ](w) 1T TR

mapping of P _.(w) onto P (w) . Thus Igr(w) | = |130(w) I

But ljo(w) is the set of all products u of elements of X
for which S(u) =w . But this is just the set of all

expressions of the form gi]gie...giw where i, i2, ceey 1 S

Hence l}\’o(w) | = S <>

ILemma 1,14

Suppose the conditions of lemma 1.11 hold. Then the number m

of (=)=-basic commutators of weight w is given recursively by

(1) oy Bl
(L) I e S i (m.l,ma,...,mw_]) (wreA)

where the integer (m.l PN ,...,mk) is the number of mappings f
from the set Kk S R s 0 8- SN | £jsm, ] into

the non-negative integers satisfying Z: 1ffdgd)aa="1 b 5

(i)j)eKk
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Proof
By induction over w . The result m =T is already known.

Now suppose the result is true for all weights up to w = 1 .

By lemma 1.11, there exists an integer N ( = oo ) such that

iz2N = wt(b,) >w . Consider P (w) . An element

N

Bl o

D€ le(w) is of the form p=1» seslo ol saere. W lE

b.
&
] A ~N

a ( possibly empty ) product of elements of Xy« But u is

in fact empty, for otherwise u=u' where 'Qh € 'YiN and then,

R
since [Qh,‘gN] is (s)-basic, h 2N so that S(p) = 5(by,) > .

T T
Thus each element of P = ‘94 ‘92 ...’53N 5

'\J\I(W) is of the form p

Now all the (=)-basic commutators of weight = w appear in the
{b] ,b2,...,bN} together possibly with some of higher weight

(for, although the B-order S is good, it does not necessarily
preserve weight ). However, since S(E) =W , any commutator
’,Q,i (1=1=N) of weight >w must have power oy =0 dn
the given expression for p . Thus p is defined uniquely by

the powers Ozi of commutators of weight = w in that expression.

Suppose that the (=)-basic commutators of weight = w are

re=indexed as follows:
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e
where for each ¢ (1 sScsw), E(c)]); Ekc’g): iy E(C’mc)

is the set of commutators of weight c¢ ( in any order) . Thus
set of (=)-basic commutators of weight s w has been indexed by
the set Kw defined in the statement of the lemma. The order in
which the commutators are written down in this array is not, of

course, their order under the B-order = .

let us write § for the set of all p € EN(W) in which some
commutator of weight w has non=zero index. Then, since
S(p) =w, Q 1is exactly the set of all (s£)-basic commutators

of weight w and so [Q] = m .

But now, if to each p € gﬁ(w)\\ Q a function fR from the set

K into the none-negative integers is defined by setting

We 1
£ i 1,7). te be the power of. . b, . . appearing in the expression
R S0y

for p , it follows that fR is uniquely determined by p
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and that Z 1f(i,jJ) = S(p) = w , and conversely
(1,9) GKW_]

that any such function uniquely defines an element of E’N(W) N Q.

Thus | gN(w)\ Q | = (m.l ,mz,...,mw_]) and this, together

with the fact just proved that || =m_ and the corollary to

lemms 1.13 proves this lemma., (>

Theorem 1.2

Let 0 : A> W Dbe any semiweight and suppose that the number
¥ of generators of A is finite. Then the number m of
W-basic commutators of weight w 1is given by Witt's formula:

:‘;’ Z w(r) TW/r P

riw

i

where p 1is the Mobius function.

Proof
Let = be the W-ordering of ¢ . Then by the corollary to
lemma 1.9 there exists a good B=-order <* such that

s ~s (nil-w) . By lemma 1.8(ii) the number of W-basic
commutators of weight w 1is the same as the number of (é*)-
basic commutators of weight W , and so by lemma 1.14 this is

given by the recursive formula =Ty

c !
= 4 = 0
m, T (m.I Sy e eesm R e ) But this formula
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depends only on T and Ww , not on the particular semiweight
range chosen. Thus it applies equally well to the semiweight
range N » and so the number of W-basic commutators of weight
w is the same as the number of N-basic commutators of weight

W ; but these are exactly the commutators which are basic in

the conventional sense, and so m, is given by Witt's formula.

=
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CHAPTER 2

THE COLLECTING PROCESSES



L7

The collecting processes to be described in this chapter differ
in two important respects from the process used in the conventional
theory. Firstly, the processes described here are defined in
terms of a particular semiweight range W , the object being to
convert an arbitrary expression into a W-basic one; in this

sense these processes are more general than the conventional

one. Secondly, while the conventional process involves an
initial expansion of the expression to be collected into a product
of generators and their inverses — that is, into an expression of
semiweight 1 = followed by a collection into products of basic
commutators of successively higher weights, the processes
described here involve no such initial expansion: they proceed
throush a sequence of expressions of non-decreasing semiweight,
and so certain properties of commutators which may be expressed

in terms of their semiweight are preserved.

It is well-known that calculations performed in the "bottom" of

a nilpotent group, that is in YC(G) when G is nilpotent of
class c¢ , usually have a particularly simple form. Accordingly
it will be advantageous to describe first a collecting process
which operates in the "bottom" of a group, however here the

"bottom" may mean W(G) vwhen G e W, ° This is the "special"

+1

process. Following this a "general" process will be described

which can operate either anywhere in Wd(G) when G € HB under
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certain restrictions on @ and 3 , or else anywhere in a

nilpotent group.

For the remainder of this chapter it will be assumed that we
are working with a fixed algebra A of expressions and a
fixed semiweight o :A>» W in terms of which all definitions

are made.

THE SPECIAL PROCESS

Definition 2.1

Plal

(A) RN i e oAby Thenwe yrite . d :x»y  AFf
and y are of any of the following forms:

(1) z=saby ¥y=h

(iv) A= ae oRsiat Y = ]
(v) % =iakiionale jui 5%

(ol =il ] or 18] 5 y=1
() il % ,bl ar [Q,,',Q-]] e [?;;R]-]
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(x) x = [ab,e] , x = [a,cllb,e] or

b
il

la,be] , yx=I[a,clla,b]
! -1
(xi) x = [a,b] , y = I[b,al provided a , b are
commutators and a <b

(Cdgyivizxes besbunl 50 = [b,z'avc]-][c,z’aug] provided & , b, c

~o ~ ~' ~

are commutators and a Zalol = e -

~ ~

The notation is extended to larger expressions by recursion over

their height:

filn s i b s a7 asT  and for any

- + .
k€A, d :ab 2R » d : ba, > ba, ,
a : [gy,b] > [a,,b] , d : [byay] > [bya,] o
(B) Write D : x>y if there exists a finite sequence
k
= il — nos
(gfi)i=o (k 2 0) of expressions such that u =x, u =Yy
—
Sy
and d w Ty, (L& 41 %) \>

The relation D : x> y is clearly reflexive and transitive,
that is, it is a quasi-order. It also follows from the definition

that part (xiii) holds just as well for D as for 4 .
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Definition 2.2

Suppose P is any property that commutators may or may not have
(such as being W-basic or of weight £ ¢ for instance). A
"product of commutators with the property ¢ " of "length" 4
is defined:

(i) 1 is a product of commutators with the property P of

length 1 , as are ¢ and 9:1 » where c¢ 1is a commutator with

the property o -

{11} If x, eand x, are products of commutators with the
property JP of lengths «&] and «(’,2 respectively, then X %,
is a product of commutators with the property R of length

&] + &2 .

A "product of commutators" of length 4 is defined in the same

vay. <

Definition 2.3

A relation =° is defined on the set C of commutators by:

£ B Af and only 1f

(1) gfa) > a(b). ,  or

(14} o(a) =o(b) and a =b . <>

Clearly <®° is a full order but not a well-order. The relation

by

< is defined in the obvious way .
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Lemma 2.1
L 3 2 1 % and b are commutators and 8 <& » then
[2;,2] and [b,a;] < [gysb] and [bya,] .

Proof
is only given that ["2:] spl} < [?‘\Q’E] . Proofs of the other

three inequalities are similar. Since a; < g » 0(2;) = o(ay) .
1 o(g.']) 5 0('3\'2) then of [z,a.v] »b1) < of [q,e,‘g]) so that

[?\‘q ;b < [Q,Q,Q] . Otherwise o(g;) = o(a,) so that

o [Q] s01) = of [g.e,g]) and there are two possibilities:

(i) 1w h< , then ld([%],g]) =g, or b <a, =1d([a,.b]) ,

2 ]

and then [g;,b] < [a,,b] .

(4Ll o meal

tr( [Q';l )b,‘,]) i < o tr( [?;2:2,]) so again [?;;I )E] < [?;2).9,] .

<5

» then 1d([g;,b]) =1b = 14([a,,b]) and

Corollary

e < or =° are substituted for < in the lemma, it

1e shlll tirue. <>
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Iemma 2.2

(1) Iet x be a product of commutators. Then there exists
a product y of commutators such that D : §f]‘+ -

(ii) Let X; » %X, be products of commutators. Then there

~2
exists a product y of commutators such that D : [§4’§2]'+ Ng
(iii) Let x be any expression. Then there exists a product

¥ of commutators such that D : x>y .

Proof

Parts (i) and (ii) follow by an easy induction over the lengths.

Part (iii) then follows from (i) and (ii) by induction over the

height of x . =

Part (1iii) of this lemma accomplishes the first main step in
the special collecting process. The next step is to show that
a product of commutators can be converted into a product of
W=-basic commutators. The crux of this step is contained in the

next lemma.
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Lemma 2.3

Suppose & 1is a non-W-basic commutator (that is, a commutator

which is not a W-basic one). Then D :a>b , where b

~ ~

is of one of the forms:

(a) L
(b) b~=g8 were ce 3 =113 c < a3 W(g)=wt(§) -
i
L =+
(e) b=¢g & vhere g\:a,geeg,sl,sa__],
o
ey 5 S < a5 wb(gy) =wb(g,) =vt(a) .

Proof

The argument proceeds by induction over the weight of a . Ik
wt(a) =1 then a is W-basic and the lemma is vacuously true.
Now suppose wt(a) > 1 and the lemma is true for all smaller
weights. Since a is non-W-basic, at least one of the

conditions of definition 1.13(A) must fail. These are treated

separately. Write a = [%1 ’ig] .
(1) a, is non-W-basic. Then by the inductive hypothesis,
D¢ 2 > “,Q] gud 8o ' D ¢ a* [R],Qe] where g] has one of

then D :a > ] by

~ ~

the forms given above. fihie =

definttien 2 0(vidd)y.  If b=

€
¢ - 2, and wt(g.l) —wt(%) then D : a> [9»]"2‘2] and

e, e lienl . fe o] <L a by the corollary to lemma 2.1 and

where ¢; € C, e=1,
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wt( [g, ,§2]) = wt(gy) + wi(g,

)
argument when ’94 = g.? 1 '282 is similar.

=W't(§;l) +wt(§2) =wt(a) . The

(ii) g, is non-W-basic. The argument follows the same

pattern as that for case (1i).

~

L i : € . 1 3
(iii) 8 S8 - Then either a, =38 in which case D : a +1
-1

~2

by definition 2.1(vii) or else 8, <& . But then D : a > [a "'?q]

~2
and ofa).= 0([%2,%]) 5 lals) - 1d([ay,241) »

tr(a) = 8 = tr( [Q’Q’Q‘J]) apd 8. 8. . ‘Thus, by definition

~] ~2
1218044408 , [g.J »2 ] <& and so [g.e,gq] & a » Clearly
Wt([ )a ]) o Wt( 'lfﬁ_e]) = (,\) -

(iv) a; = la;;,2,,] and &, >a, . By virtue of case (i)

it may be assumed that 811 > CIPE

Then D : g [a12’~2’aﬂ] [a11’~2’a12] by definition 2.1(xii).
Write g = [2p0%,8y9] 808 g = (83708 0%,] -

By definition 1.7(vi), of g]) 2 o(a) « If o(g:q) > o(a) then

~

o a « Otherwise of 94) = o(a) and it must be shown that

&
that [a,5,8,] < [2;7,8,] =1d(g). But 1d(g) =gy or

[2;,58,] and both of these have just been shown to be less than

<g. DNow g, < [%]],%2] = ld(a) . Also &, <g;; 80

ld(a) . Hence ¢ <a .
Now &;, >a,, o that [a”,a ] >8,, « Thus ld(cy) = [?\2]]’?‘\2]‘

similarly a, = [a,,,8,] >a, so 1d(a) =g . But a, >a,
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so that [gn],QJQ] 5 [§q1’§2] , that is, 1ld(a) > 1d(¢,).  Since
ola) = G(ge) by definition 1.7(vi), it follows that ¢, <2 and
so ¢, . 8

Again it is clear that wt(g;) = wt(g,) = wt(a) . Q

Lemma 2.4

For any positive integer w , the set of commutators of weight = w

is well-ordered by 3

Proof
Suppose, for any positive integer w , Z(w) 1is the set of all
possible semiweights that a commutator of weight = w may have,
that dgy (Z(w) ‘= io(x) + ey wb(x) 2w} . Tt
follows by an easy induction over 'w that UZ(w) is finite.

But for any @ € W , the order <® coincides with the W~
ordering = on the set of all commutators of semiweight « ,
and so is a well-ordering on that set. It follows that, as
far as = is concerned, the set of all commutators of weight

= w d1s the union of a finite number of well-ordered sets.

The lemma follows. < >
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Temma 2.5

If D:x+>y then o(x) S o(y) and wt(x) = wt(y) .

Proof

This follows easily from definition 2.1 by checking its various

parts separately. <>

The following theorem and its two corollaries are out of logical
order in this thesis. They are placed here because they
summarize the properties of the special collecting process and
provide the motivation for the definitions of this section. The
proof requires the results of lemmas 2.6 and 2.7 of the next
section, so that the theorem strictly should be stated and proved

immediately following the latter lemma.

Theorem 2.1

For any expression X € A there exists Yy € é‘./ such that

(1) Y 1s a W-basic expression,

(43) e D 2y 0

(111) wt(x) s wt(y) and o(x) = o(y) and

(iv) if p :A>G 1is any description of a group G , then

xXp = (yu)p where u is possibly empty, but if it exists,

wt(u) 2 wt(x) +1 and o(w 2 o(x) +1 .
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Proof

By lemma 2,.,2(iii), there exists a product z, ©of commutators
such that ' D2 x+ Z -

Since the length of =z is necessarily finite, it follows that

~]
there exists an integer w such that Z; is a product of
commutators of weight =w . It is now shown that D : ga-+ EE
where %2 is a product of W=-basic commutators. Tt éq is
itself a product of W-basic commutators then this is trivial.
Otherwise, again since the length of Z; is finite, there exists
a non-W-basic commutator a , which is maximum under the ordering
27 » among those factors of z; which are non-W=basic. This
commutator may appear more than once, but in any case §J may

be written in the form Z) = YAV 8Vp e -2V, vhere k =21 and
each Y isa (possibly empty) product of commutators which are
either W-basic or <" a . But by lemma 2.3, D:a>Db where
b is a product of commutators <9 a and of the same weight as

Sl Thus D:z >vbv.bv, ...by, which is a product of

o ~ gyl gl k
o
comutators of weight = w which are either W-basic or < a .
Thus the maximum (under éo) non-W-basic factor of z, may be
reduced. But then, by lemma 2.4, this can only be done a finite

number of times ‘and eventually D : §q'+ Z5 where Z5 is a

product of W-basic commutators.
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But then i) ?~2

immediately from definition 2.1 A (i), (iv) and (v). Parts (i)

+ y , vhere y is a W-basic expression, follows

and (ii) of the theorem are thus proved. Part (iii) follows from

lemma 2.5.

For part (iv), lemmas 2.6 and 2.7 must be invoked. By lemma 2.6
E :x>yu where u is possibly empty, but if it exists,

o(w 2 o(x) +1 and wt(u) = wt(x) +1 , and then by lemma 2.7

x = (e . <>

Corollary 1

Suppose G 1is a group €

~

W4 and xewa(G) il el S

is any description of G , then there exists x € A such that

(1) X e ljgﬂ (see definition 1.13B) ,
(d1) ox) za , and

(118} Fp = .

Proof

Since x € W (G) , there exists x' e A such that x'p =X

and o(x') Z2a . But then by the theorem D : x' > x" where
W
x"eB , ofx") 2 o(x') and (x"wp =x vwhere u is possibly

~ ~

empty, but if it exists, o(u) 2 o(x) +1 2o +1 . Thus

yo =1 and x'p =i o
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If 2" =1 or ofx") 2a +1 then x"p =1 and the result is

true with x =1 . Otherwise ;g" is of the form

e ik AR

x" = | TR where, for some 4 21 ,
aéc(hi)<a+1 (1=1=4 ,
a+1 35 9(b,) (L +1 51 sk)
o @,
The result is then tr e GRS bOLl bO‘2 b u
ue wi X =D by ..l . <>
Corollary 2

Suppose G 1is a group, nilpotent of class c¢ , and X € rc(G) .
ir p: A > G 18 & degeription of G ;3 then there exlets

X € A such that

i X £ B

e

(11) wt(x) 2c¢ , and

e TR e

Proof

The argument here is essentially the same as that for corollary 1,
W
As before, there exists x" € B such that wt(x") Zc and

Bie S e b o T e wt(x") 2 e then the result is

L
true with 'x'=1 .3 @ Otherwige x" = b, By ...b, " and at least

one of these commutators is of weight c . Then the lemma is
Oti o, Q
1 2

true with B & by b, ees Db,
T i

i
where 115 155 ees 1,
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is the subsequence of 1, 2, ..., k for which the corresponding

commutator is of weight c¢ . <iff>
=

Corollaries 1 and 2 mean, in effect, that the special collecting
process works in the "bottom" of a group — whether the "bottom"

is taken as Wd(G) when G e W

Wys OF as YC(G) when G is

nilpotent of class ¢

These two corollaries form a pair of similar results, the first
purely in terms of the subgroups Wd(G) of a group G and the
second in terms of the interaction between these subgroups and
the lower central series. This situation is typical, and such
pairs of results will appear from time to time in the sequel;
each time they do it will be possible to trace the dichotomy

back to that between these two corollaries.

Since the lower central series of a group G 1is the series

ﬁ;(G) of subgroups of G , it might be thought that corollary 2
could be generalized so that some arbitrary semiweight W' might
take the place of ¥ . in it, and thus ultimately allow the invest-
igation of the interaction of arbitrary pairs of semiweights.

However if the argument leading to the corollary 2 is followed

with this in view it will be seen that the property
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a b = ¢ (under the W-ordering) => wt([c¢,b,a]) = wt([c,a,b]) =
wt([b,a,c]) 1is essential; this property need no longer hold

if an arbitrary semiweight is substituted for weight.

THE GENERAL PROCESS

Definition 2.4

(4) Bty & wiedl ., . Then We write ey x> 3 1f X and

y are of any of the following forms:

B xi=latl) | e
(iv) x = e b e ot g %=l
sy sl e I T

(vi1) x=la8) , x=1
Evliiiioee = la l) or [1.al 5 x =1
el = b)) e ) or
x=1la,b'], yx=I[a,b0] [bab ]
(x) = lebiel . v =la,z]la,e,b][b,e] or
x = lake) , ¥ = [a,¢lla,bllz,b,c]
(xi) = 8.8l = [1;3,,~::1.,]"-I provided a and b are

NG
commutators and a </b
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(xii) = [C)R:a]) et [R:%}i]-]xe[g’%:g]% s bprovided

8 , b, ¢ are commutators and a <b <c , where
4 (o [?,;,Q;[CN:R]] [2;2}[?}?\99\,1]

=1
b,a:[%:gyh]] [ayﬁ;[g;%)g] ]

~T NS S

f—

Yo = [eb,(R.al]
W = (e, la,ell la,e,le,ball
The notation is extended to larger expressions by recursion over

their height:

-1 -1
then e : 2 +-§2 and for any

E] = [?-Q:E] s

and e : [Ezﬁq]'* [p,aa] v

P B a; > &

ot I s :lay,

T
-
o

(1)
o

g

R

i

(B) Write E : x*y 1f there exists a finite sequence
(k 2 0) of expressions such that x = Uy =Y

. > < 9
and et 1Ty [T= g =R <:::>
Again the relation E : x* y 1is reflexive and transitive
and part A(xiii) of the definition holds just as well for

Biagiion el

Definition 2.5

g An element A € W is a "limiting value" of W if
Bl X :ﬁ; Bl <N

f1ad) If o, 8 eW then "3 is much grester than ao,
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denoted @ << 3 , if there exists a limiting value )\ of W

sueh that (<N S5y

Write « §< B 4i1f P 1is not much greater than @ .

(111) For each @ ¢ W and non-negative integer n , the element

a (+1)n is defined recursively over n : « (+1)o =qa , and for

)n-1 L EL <>

a2b ot A = m e
Lemma 2.6

e Bogk*.%, then there exists 'y e i (possibly empty) such
that E : x+ yu , and if u is not empty, o(w 2z o(x) +1

and wt(u) = wt(x) +1 .

Proof
By checking the various parts of definition 2.1 separately. For
paptee a1 o 1), Liv) vl (vd), (vil), {viil) and (x3 ,

E : x>y Dby the corresponding part of definition 2,4, so that
the lemma is true with u empty.

For the remaining parts:

A(d) x=8b, y=ba. Then E : x> jyu where

u = [a,b]l , and o(w) 2 o(x) +1 , wt(w) =wt(x) +1 .
A(ix) X = [Q'] bl , ¥ = [{3\,&]"1 sl el TS I
where u = [Q,%,%-]] .  But then o(uw) = o([b,a]) + o(a) 2

z o(x) +1 , and similarly wt(w) 2 wt(x) +1 . The argument
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A(x) x = [ab,e] , y =I[a,cllb,c]l. Then

vhere u = [a,c,blla,c,b,[b,c]] by definition 2.4A(i). But
then o(w) = o([a,g,b]) 2 o([a,c]) +1 2 0(x) +1 . Similarly
wt(u) = wt(x) +1 . The argument if x = [a,bc] , y= [a,c]lDb,c]
is similar but slightly easier.
A(xii)  x=lgbal , x=(bael [gap] where g, and ¢
are commutators and a <b <c . Then with the notation of
definition 2.4 A (xii),

E:x?>y [E:ml']zg[s,:aw:mx; LR e
where u = Y [‘L] ] % [YQ’[E,’?:}E]] Y3 by several appli-
cations of definition 2.4(i). Clearly wt(u) =wt(x) +1 .
to show that o(w) = o(x) +1 it is sufficient to show that the

semiweights of the seven commutators in the expressions for

Yy » ¥, and Y3 Sretall (X)) £ 1 .
() o([c,b)) 2 o(c) 2 o(a) and so

o( la,c,lg,bl]) = o(lc,a,lc,b]]) Dby commutativity of

<k e
z o([e,bya,c]) by definition 1.7(vi),
2 o(lgsbeal) +1 = ofx) +1 .
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(P) o([c,b,[bsa,c1]) 2 o([bsase]) +1
z o([g,b,al) + 7
(v) o([c,bl) 2 o(b) 2 o(a) and so

o( [e,b,[b,a]]) = o([b,a,[c,bl])

2 o([g,b,a,5B])
z o([g,k,2]) +1
(8)  o(ln,a,la,c,bll) 2 o(la,c,bl) +1

= o([g,2,2]) +1
(e)  ollase,le,amll) 2 o(lg,a,R]) +1

(€) o(c) 2 o(b) and so o(l[c,al) 2 a(h) 2 o(a) Hence
o( [b,a,lc,all) 2 o(lc,a,b,al)
z o([c,a,b]) +1

+ immediately.

v
Q
—~
| ngrn |

g
o’
-
)
[ -

(m) of [a,c,[c,b,2]])

A(xiii) The result follows in this case by an easy induction

over the height of x .

(B) The result follows in this case by an easy induction

over the length k of the sequence, using lemma T e <:::>
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Lemma 2.1

euppese.. B s X > ¥ .. Then

~

5B If p :A+>» G 1is any description of a group G , then

(24} o(x) = o(y and wt(x) = wt(y) .

(1) This follows easily from definition 2.4 by checking the
various parts separately. All these parts correspond to well
known group laws, except perhaps for A(xii) which can be checked
by expanding into a product of ap , bp , and cp and their

inverses and cancelling.

(ii) This is a corollary of lemmas 2.5 and 2.6. <:i:>
Lemma 2.8

let @ ,BeW. Then Q<K p if and only if there exists a

non-negative integer n such that «o (+])n 2B .

Proof

Suppose that there exists a non-negative integer n such that
@ (+1)® 2B, then @ <& B for otherwise there exists a limiting

value A of W such that a <)\ = 3 and a least integer m



67

iy
such that o (+1)® =X . But then a (+1) <) and

a (1) =a (+])m"]

+ 1 2 A contradicting the definition of a
limiting value (definition 2.5(1i)).

Suppose on the contrary that «o (+])n <IRERPor gl an Sy Since
)n

W d4s well-ordered, A = sup { o (+ p g &g deewell

defined, and @ <A =8 . Suppose &€ <A . Then there exists
T L R SR R R R L e

Thus M ie a limiting value of W and so o <<B . <:::>
Lemma 2.9

Suppose @ <K B and o(x) 2. Then E : x> yu (either
Y ©or u being possibly empty) where X e gg and o(g) 2B

(when they exist).

Proof
By lemma 2.8, there exists a non-negative integer n such that
(o7 (+'l)n 28, Suppose that n is the least such. The argument

proceeds by induction over n .

If n=0 then =0« (+1)o 2 B8 and so the result is true with

Y empty and u=x.
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Now suppose n > 0 and the result is true for smaller integers.
Write =g (+'l)n-] s Then. by the choiee 'of n , pB' <8 .
Also, by the inductive hypothesis, E : x + x'g' (either X'
or u' possibly empty) where Yy' e ]gg, snd gfu') =p' 1T
u' is empty, the result is true y =y' and u empty. gl
is non-empty, then by theorem 2.1, DAt Ny - whele v ¢ QW

and o(y) 2 o(u') 2p' . By lema 2.6 then, E :u'>vyz

(z possibly empty) where o(z) Z o(u') +1 28'+128.

R D o o If y is empty or o(y) 2 B the

result is true with y = x' and u = VZ . Otherwise

0/ o
o U R e R R
Y‘_:Q-l -QE :Q'tp‘%-] p&+2 ooopk (&é]) WheI'e
‘35“3/1)<5 (s 1 & &),
B s o(k,) (il =1
. . P den. 0y
and the result is true with y = x'b ’g ...13& and
o
_ . 4t o B
%_p‘t"‘] h&_*_g ooo;bikz'vo Q

Lemma 2,10

W :
Iet % , 3 € ]§<c) and wt(y) 2 c (so that y is a product of
commutators of weight c) . Then E : xy > 2u (u possibly

W
empty) where z € ]é(c) and wt(u) >c .
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By an easy induction over the length (as a product) of o

L

Lemma 2,11

Iet x € A and c be any non-negative integer. Then B i X >3yu
(either y or u possibly empty) where y e ]}IJC) and

wt(u) 2 ¢ + 1 (when they exist).

Proof

By induction over ¢ . When c¢ =0 the result is true with

&<

empty and u =X .

Now suppose ¢ =1 and the result is true for smaller values

g Sl 1 R e T Y (either y' or u' possibly

.
empty) where y' € Bw and wt(u) = ¢ where they exist.

X M c~1) e
By theorem 2.1, D :u' > Y where v, € ]EW and w-t(x.’) ZC .

Then by lemms 2,6, E :n' > %2 (,Z\,] possibly empty) where

W(ZN])EW(Q')+1%C+1. et " B : 29 ¥° Now

&<

Yol

v. contains (possibly) some commutators of weight zc +1 ,

a4
bt by detinition 2:1(1), D': Y > VoZp (either Vo, Oor Z,

W
possibly empty) where ¥ € B(c) p Wt(Yg) 2 c and wt(ge) zc + 1,

+ 1

1\
0

Tous, B ¥, * YpZoZ3 (§5 possibly empty) where wt(ga)
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and ‘so0 'Bgixice Z. .+ But now lemma 2.10 may be applied

: Xf22'+ Xﬁh where y € g?c) and

wt(gh) £c+1 . The result is then true with y as just

to x'ye so that
defined and u = 2)Zp25%; - <i::>

The reader may wonder why I have taken such pains with this lemma,
since it has been patently clear for some pages that any element
of a group G can be described by an element of g?c) modulo
YC(G) » The reason is that the important part of this lemma is
not that such an expression exists, but that it can be arrived

at by only those operations listed in definition 2.4. Group
theoretic results will presently be deduced by observing what can
happen to certain properties of an expression under these

operations (see for instance lemma 3.11 of the next chapter) .

Theorem 2.2 The basis theorem

(4) Iet F be an absolutely free group of yank + on free
generators &$ = {gi}i<# and let p :A>F De the corresponding
free description. Then
(1) For eny 0 eW , W(F) 7 WN+](F) is a free Abelian

1
group, freely gemerated by the set

{p : b is W-basic, @ s o(b) <a +1 } modulo Wa+J(F) g
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(41) The restriction of the mapping p to the set gw of

W-basic expressions is one=to-one.

(iii) ©Provided « <K B , the restriction of p to W, n Jgg
(that is, to the set of all W-basic expressions involving
commutators of semiweights 2 @ and < 3 ) is one=-to=-one

onto the factor Wd(F) b WB(F) L1y mbfiulo WS(F) .

(B) Iet G be a group, free with respect to being nilpotent

of class ¢ , of rank T and freely generated by €; = {ﬁi}i<k

Iet p : A> G be the corresponding free description of G .

Then

(i) Yé(G) is a free Abelian group, freely generated by the

set { bp : b is W-basic , wt(b) =c } .

(41) The restriction of p to E?c) is one-to-one onto G .

{141) Wd(G) n YC(G) is a free Abelian group, freely generated
by the set { bp : D is W-basic, wt(b) =c and ob) 2a}.

~S

Proof
The various parts of the theorem are proved in a different order

from that in which they were stated.

(B)(i) It is clearly sufficient to prove this statement when
1 48 Hinlbe, i let X% ¢ yé(G) . Then there exists X e A such

fhat ¥n — % @&nd  wi(x) =c . By lemma 2,11, E :x+yu
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} \
(w possibly empty) where Y € ]AB-(c) and wt(u) 2c +1 . Then
XP =yp by lemma 2,7(1i). But wt(y) 2 wt(x) 2 c by lemma
: 6 % i -
2.7(11)., - Henece xp = (Q.‘p) (bpp) ~ eee (ByP) where the

hi are W-basic commutators of weight ¢ . Thus the set

{ Bp : b is W-basic, wt(b) =c } generates Y,(G) . But
since, by theorem 1.2, the number of W-basic commutators of weight
c 1is the same as the number of N-basic commutators of weight c ,
and by the conventional theory these are mapped one-to-one into

G by p and freely generate yé(G) s it follows that the W-basic
commutators of weight c¢ are mapped one-to-one into G by o)

and freely generate Yé(G) o This, by an easy induction over c¢ ,

also proves part B(ii).

(A)(1) Iet X, 5 %, € Woz(F) » Then there exist Xy s

g AR 0(}'51) 2o and o

But then E :§]§2+§2§] [2&]”52] and 0([251’352]) s I T

% = 5% modulo woz+'l(F) ¥ . hus Wa(F) /Wa+](F)

is Abelian.

0
2

such that ;5.'0 =X &%

X5)
Hence J,g]

Now suppose X € wa(F) . Then there exists X € A such that
xp =x and o(x) 2a . Then, by lemma 2.9, E :x+yu

4 W
(u possibly empty) where y € }éaﬂ and o(u) 2o +1 . Hence
xp = yp modulo Woz+](F) # Bab o(y) 2o(x) 20 so y iz s

product of We-basic commutators of semiweight <o +1 and 2o .,
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Thus [ bp : b is W-basic, @ =od(b) <o +1 } generates
Wa( F) modulo waﬂ(F) . That the set freely generates it follows
from the next section of the proof.
Q, 07

o e ik TR e .?
(A)(id) Suppose that x =a; a, ooy and y = b, by eeeby
are two W-basic expressions and Xxp = . Then there exists
an integer c¢ such that vrt(g./i) 2ec (1 81 3k) snd

y W

m(pi)éc (i sd s Then gg‘,xe]é(c),and
Xp = yp modulo YC(F) . Hence, by part (B)(ii) of the theorem,

already proved, X =Y .
(A)(iii) Follows from (A)(ii) and lemma 2.9,

(B)(4iii) Suppose X € Wa(G) N YC(G) o Sinec: X'e wa(c,) -
there exists x € A such that xp =x and o(x) 2a. By
khe proef af (Bi(d), B> yu vwhere y ¢ ]—?fc) and

wt(u) 2c +1 . But then wt(y) 2c and of(y) 2a . The

result follows. Q



LIE RINGS

The forgoing theory may be applied to Lie rings instead of
groups in a slightly simpler form. Since several different
notations occur in the literature for the operations in Lie rings,

a definition is given.

Definition 2.6

A Lie ring L 1is a describable algebra in which the effects of

the operators € , v , p , X are written

€=0

XV = =X 1

Xyp =X + ¥y % forany x ,yel,
|

XyX = Xy )

and with the following laws:

(1) L is an Abelian group with respect to addition (u) ,
(44) Xy b8 =y +x3 gpd (% +¥)z =x2 +¥E ,
(i11) xx=0 ,

(iv)  (x)z + (y2)x + (zx)y = 0 . <
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Immediate consequences of these laws are

(v) by = —ye g

(vd) i w(~y) ==}y = -(xy) ,

tddy o w0 = 0% =0

Hence the special collecting process operates anywhere in a Lie

ring, in the following sense.

Lemma 2,12

Iet L bealieringand p ¢t A> L a description of L

(remembering to translate the notation for operators = that
is, (ke =xp +yp and [x,yle = (xp)(xp) ) -
I Dir >y s then Xpr'syp <>

lemma 2,13

Iet L be a Lie ring, W a semiweight range and o e W .

Then Woz( 1)¢ dman 18eal of L .

Proof

(1) leti % , ¥y & Wa(L) « Then there exist x , y ¢ A
such that xp =x , yp =y , o(x) 20 and o(y) 2 . Then

o(xy) 2@ and so x+y=(>,g()pewa(L) .
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(ii) Iet x € Wd(L) and y € L . Then there exist x , y ¢ 4
such that xp =x , yp =y end o(x) 2a. Then o([x,y]) 20

and so xy = [x,ylp € W(L) « Similarly yx e W(L) . <:::>

Since a Lie ring is defined in terms of laws, the idea of a free
Lie ring is tenable. Marshall Hall Jr. [3] has proved (restating

his theorem 3.1 in the language of this thesis):

If L is a free Lie ring, freely generated by the set

{;, = {gi}i<ﬁ sand p : A+> L is the corresponding free
description of L , then the N-basic commutators are ma,pped
one-to-one into L and their images form a basis for L (that is,
they generate L freely qua free Abelian group) «

This makes possible

Theorem 2.3 The basis theorem for Lie rings

Iet L bDe a free Lie ring, p:A>L a free description of

L and W any semiweight range. Then

(i) The restriction of the mapping p to QV maps it
one~to-one onto L and the images of all W-basic commutators
constitute a basis for L .

{11} For any & e W the set { bp : b is W-basic , o(b) 2z a )}

is a basis for Wd(L) .
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(iii) For any non-negative integer c¢ , the set
{'Bp & b la Wepemic, wt(b) s c )} is a basis for L/ Ve (D)
modulo Yc+1(L) and the set { bp : b is W-basic, wt(b) 2c +1 }

is a basis for Yc+1(L) .

Proof
It is sufficient to prove the theorem when the number 1 of
generators is finite. let x e L. Then there exists §'e.§
suchi that X € Xp s But B gl Vg where J € gw and then

Ip &= X.w o Hence gvp =L . Thus the set of all images of
W-basic commutators under p generates L qua Abelian group.
Similarly { bp : b is W-basic, wt(b) =c +1 } generates

L YC+](L) modulo rc+](L) . But then, by theorem 1.2 and the
theorem of Marshall Hall Jr. just quoted, this set freely generates

that factor. Since yc+](L) is generated by the images of

W-basic commutators of weight =2 c¢ + 1 , it follows that

=

s rc+](L) = {0} and hence that { bp : b is W-basic } freely
C=0

generates L . The theorem follows. <:::>
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PARTIAL COLLECTION

The restriction o ¢k P appearing in lemma 2,9 and consequently
in theorem 2.2 A(iii) is disquieting. It means that there is

no guarantee that an arbitrary expression can be collected at all.
That this restriction is real, and not just due to an inadequacy
in the method of proof, is demonstrated in Appendix I, where it

is shown that if & << 3 and provided the number T of generators
is at least 3, there exists an element in Wa(FT) which cannot

be described by a W-basic expression modulo WB(FT) at all.

In default of this, a result which would be a good second=-best
would“be:"'If "p 't A> G is g description of & group G and if
el e L » then there exists yu e A (u possibly empty)
such that y € QW and o(u) > o(y) ". The strength of this

property will be demonstrated in the next two chapters.

It seems to me to be likely that this is true for all semiweight
ranges W . On the other hand I have not as yet been able to
prove the result in full generality, and so I must reduce it to
the status of a desirable property that a semiweight range may
(or may not) have. The situation is saved however by the proof

in the next chapter that the polynilpotent semiweight ranges do
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in fact have this property.

Definition 2.7

(1) A semiweight range W is "partially collectable mod ",
where O e W , if for any description p :A> G of a group G
apd @y % 6.0 “\Wd(G) there exists yu e A (u possibly
empty) such that (yup =x , Yy ¢ QW and o(u) > o(y)

(ee theti .y #1 &and ofy) <o ) .

(11) A semiweight range W is "partially collectable" if it is

partially collectable mod « ., <:::>

It will be shown in the next lemma that the "partially collected"
expression yu may be chosen so that y is a product of W-basic
comnmutators of the same semiweight which is less than o(u) and
less than @ , and then by the basis theorem y is uniquely
determined by x (for a given description p). Herein lies the
importance of the partial collection property, for this allows

us to obtain information about elements of a group G which

do not belong to some W&(G) « For instance, it follows -
immediately that if W is partially collectable mod « , then
the relatively free group F(Ed) is torsion-free. Further
instances are provided by the proofs of the next lemma, theorem

4,1 and, in a slightly different context, lemma 3.17.
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These remarks and especially part (iv) of the next lemma should
make clear the analogy claimed in the introduction between
partial collectability in this theory and residual nilpotence

of absolutely free groups in the conventional one.

Lemma 2.14

Let W be a scmiweight range, o the associated semiweight and

aeW. The following five propositions concerning « are
equivalent.
(i) W is partially collectable mod & .

(ii) If F is an absolutely free group and x ¢ W (F) then
there exists B <& such that x e Wﬁ(F)‘\‘W5+(F) , where Bt

is the successor of B under the well-ordering = of W .

(L Ve ) p il F(Ea) is a free description and xp # 1
then’ E ¢z > yu  where ‘o(y) =B (BP<Q) , Y ¢ §g+ (so that
Yy 1is a product of commutators of semiveight exactly B and is

not *17%) and » o(uMy*> 8 .

(iv) For all P S a the relatively free group F(EB) is
residually nilpotent.
(v) For all B £ and any prime p the relatively free

group F(Wﬁ) is residually a finite p-group.
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Proof

By virtue of the basis theorem, the equivalence of (i), (1i)
and (iii) is obvious.
Gaasl =l Let xeG:F(EB), Tl T eael

P : 4> G Dbe a free description. Then there exists x € A

~

such that 'xpi='x . JsBut then B ; x> yu where o(y) =§£ ,

W
¥ € §§+ and o(u) 2 ¢* and then (yu)p = %' o¢ "Thus ~y - i8 of

Y-l Y2 Yk

Since k 1is finite, there exists an integer c¢ such that
W
< =1 =
Wt(pi) = (15 1=k st ¥ c B{c) »  Collecting u
modulo Y, +1(G) > B :uwu>uwwu, vhere either u or u, may

W
: = ;
be empty, but when they exist, u, € ]§<c> and wt(ge) z2c + 1

7. W
But O(]'J'V'l) zo(w 267 so yu € E’(c) snd yu#1 . 'Then
X = (m])p modulo yc+.l(G) so, by the basis theorem,
)

(dwh ESididd). Iet F be an absolutely free group and

i 9'! YcH
X # WG(F) . Iet 3' be the smallest element of W such that
x § Wy,(F) « Then 3' =0 and it remains to show that there
exists B e W such that 8' =3t . The factor group

F /Wa,(F) is residually nilpotent, so there exists an integer

2 W
¢ such that x ¢ WB,(F) .YC_H(F) s Then there existe X ¢ 13((:) ’

%~ 1 0 suoh that 3p = x modulo W‘S,(F) 'Yc+'l(F) e - Wpdte
T3 s Tk
— S = )
X =B By eeely and B c(pv]) s Iben: B < 3! and
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xp ¢ WB+(F)’YC+1(F) UL WS+(F) + Thus, by the choice of pg' ,
Bl =Bl

(s =l s To show that G = F(W

=ﬁ) is residually a

finite p-group it is sufficient to show that it is residually

a torsion-free nilpotent group. By assumption it is residually
nilpotent so that it is sufficient to show that, for each positive
integer c , G/YC(G) is torsion-free, and this follows immediately

from the basis theorenm.

() gosldy) i 48 sbvious. </i:>

Yo

DISTINCTNESS OF THE SUBGROUES Wd(F)

The question as to when the subgroups Wd(G) are non-trivial and
when they are different from one another for an arbitrary group

G 1is obviously a very complicated one, and one which depends very
much on the special properties of G . However if FT is an
absolutely free group of rank T 2 3 the answer is very simple:
they are all non-trivial and all different. This is proved in

this section.
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The proof when the number of generators is 3 depends on the
property of W that any @ e W other than 1 or « may be
written in the form o =1 + ao T Ot oeee + QO where k 20 ,
Bl 8 O Sy B o and ‘for egeli’ * (02 r <k},

e} i

VA o a1 U, Sonkre VB g . The proof of this in turn
o o

r+1
involves something very much like a collecting process operating
on such "formsl sums" in W . This appalling prospect may be

circumvented however by considering the properties of commutators

in A when the number T of generators is infinite.

Definition 2.8

For any commutator ¢ and for any i <t , the "number of

times ¢ mentions g, ", written ui(g) , is defined recursively

over the weight of ¢ .

() ui(aj)=1 o
=0 Iromdly 5
(4d) b (lask]) = wui(g) + ui(p) .

M(¢c) is the sequence ( ui(g) )i<h <:::>
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Temma 2.15

Suppose ¢ 1is a non-W-basic commutator which mentions each
generator at most once (that is, ui(g) =0 or 1 Zfor every
i<7T) . Then there exists a commutator c¢' such that

olell=ielal 5 Mia') =Me) ond ¢' <c ',

The argument proceeds by induction over the weight of ¢ . Since
¢ 1is non-W-basic, at least one of the conditions of definition
1.13(A) must fail for this commutator.

Suppose ¢ = [Q,] ,92] and 3 is non-W-basic. Then clearly

c

¢; mentions each generator at most once, and so there exists

1
(]
&

such that o(cl) = o(g]) » Mlgy) =M(g;) and ey <¢y .
Then the result is true with ¢' = jetoe )., The proof if S

is non=W-basic is similar.

Now suppose ¢ = [’cv_',g\e] and < < o o Then, since ¢ mentions
each generator at most once, 2 # Cs 80 &y <G, Then

¢' = [gy,gy] 1s the required commutator.

Finally, suppose ¢ = [%”,CN]Q,QQ] and ¢,, > S By virtue

of the first possibility considered, it may be assumed that

is W=basic so that 1 = S0 * Then

L ’ g

gf= [%11’%2’942] is the required commutator. (>

(2172812

~
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Corollary

Let the number T of generators of A be infinite and let
@eW (x#® ., Then there exists a W-basic commutator of s

semiweight « in A .

Proof
By an easy induction over « , there exists a commutator

¢ € A which mentions each generator at most once for which
o(¢) =& . If ¢ is non-W-basic, then ¢ wmay be replaced by
an earlier commutator with the same properties. Thus there
exists a W-basic Qommutator with these properties since the set

of all commutators is well-ordered by = . <:::>
Lemma 2.16

If aeW, a1 or = » then it may be written in the form

Cig=ile + S N e (k 20) where 1 = Q) =0 S ..

ons E O apd for each r (0 s r <k) ,

k
ar <=0 vias 2 .
! Ob 1 i i O} ar+1
Proof

Form an algebra A of expressions with an infinite number of

generators. Then by the corollary to lemma 2.15, there exists
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a W-basic commutator b of semiweight <« in A . But then b
may be written in the form b = {gi,%j,gq,ge,...,gk] (k 2 0)
where &; 2 %j s pq s pe S eee S pk gndocter o1 = r sk,
[g,i,gj,’g] ,pe,...pk] > ¢ VWriting o, =o(b) (1 51 sk),
the result follows. <:::>

Having obtained this result the three-generator case may be con-

sidered.

Theorem 2.4

Iet W be a semiweight range and a e W (0 # o) .

(i) If the number T of generators of A is at least 5 ,
then there exists a W-basic commutator of semiweight o in A .
£141) If @ <3 and the rank T of the absolutely free group

F is at least 5 , then WB(F) is a proper subgroup of Wa(F) .
Proof

First, notice that (ii) follows immediately from (i) by the basis
theorem. It remains to prove (i). When o =1 the result

s trivial’ — & is the required commutator.

Now suppose O >1 . It is proved by induction over k +that
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if O may be written in the form « =1 +ozo+a] toeee O,

where O S Q =t B e T o AR SRR N ; (b =r < k) , then
T T+l @ r

there exists at least three W=basic commutators of the form

ks (0's @ k)

~

a=[%i’§'~o’§"1""?~'k] in A vhere 0(?‘%

Suppose then that & may be written in the above form. It

k=0, then @ =1 +1 and the required W-basic commutators are

[%],E'O] 5l [%2;50] and [%)%}] 4

> = A
Now suppose k =21 ., Then ak_]_ak§1+ozo.a]+...+ozk_]
and there exist three W-basic commutators a = [%i,a ,Q],...,ak_]] -
gv' - [E']!_’?'\O',?“'{,...,a"l'{-]] and g—l\.l [% ,a ,a.l,oo-, "_-l] Where
(B rak o  Bab

a < oy
1 1 + ozo + oz] + + ock and so three possibilities must

be considered separately:

b o ak-] = ozk < 1 + ao e T onk_] , then the required

commutators are [ | VN -, ’8e_ ,] and [Q",Q&'{'_]] .

2581
a L

e k_]<ozk<]+ozo+oz.’+ AL e let ¢ Dbe any one
of the three W-basic commutators of semiweight Q. and then
la,c] , [a',c] and [a",c] are the required commutators.

Finally, if Ot < ozk 1 + Oto + Qp + oo + ock_1 s then since
a , a' and a" are all different, it may be assumed that
g oot e dked (at.a] ; [a";a] and [a",a'] are the

~

required commutators. <>
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As regards whether this is best possible, clearly one generator
is not good enough to do more than distinguish w](F) from the
rest. For some particular semiweight ranges, such as N , two
generators are enough. An example for which two generators are
not enough must use the language and results of the next chapter.

If K=(k;);; is the sequence k, =2 (all 1) , then

K 2 K = A
Qg (FE) =8 (Fe) and Qg ,,(F,) =& (F,) N YS(FE) s . But 3t dd

2 2
well known that for a two-generator group these subgroups are

the same.
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CHAPTER 3

POLYNILPOTENT SEMIWEIGHTS



S0

THE SEMIWEIGHT

Definition 3.1

Iet K= (ki)iza be an infinite sequence of integers, each =2 .
For each non-negative integer r , let K} be the finite sequence
Ki = (ki)iil ; in particular KB is the "empty" sequence. For
any group G and each K} the subgroup PK (G) 1is defined

¥
recursively over r by

PRGN =6

(0

PK (G) = L£% (PK (G)) {re-1) 5
7 Pl

The resulting series of subgroups of G is called the "poly-

nilpotent series" of G of "type K ".

A group G is "polynilpotent of type Ki s & 2 PK (G) =1} »
T
The class of all such groups is a variety, the "polynilpotent

" 1" n
variety" of "type K_ ", denoted gKr ' e T

For each sequence K a semiweight range QK will be defined
which will have the property that all the varieties EK will
:

K
be among the varieties ga .
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Definition 3.2 5

let K= (ki)i:; be a sequence of integers, each 22 . Then

(A) let QK be the set of all functions ¢ : w> w
satisfying
(1) oJ-1) = k 9(3) )

J for all P21,
(1)  o3-1) =k, D oy =

(111) @O) & 1y
together with an extra element called o ., The function 1 ¢ QK
latdefined: MO = Vo () =0 (2 1) .
It follows from (i) and (ii), since each kj =2
that for each function ¢ there exists an integer
Jp such that o(J) £0 & ngcp A
(B) Addition is defined on QK as follows: if ¢ , V are

functions (that is, # « ), then

(1) If o 2 (=7 say) and @(J) + ¥(J) 2 k_
then
(@ +¥)(3) = o(J) + ¥(J) () T Wi
= 1] (= d £ 0 0
{41) Otherwise (@ + ¥)(J) = @(J) + v(J) (for all j) .

Addition is extended to encompass « by

® 4 = QF0 = +@ = o (for all o € QK) .



(C) The functions are ordered lexicographically from the right:
if ¢ , ¥ are functions ( # o) , then ¢ <y if and only if
there exists jo € w such that w(jo) < w(jo) and

339 = w )= ol e

The ordering is extended to encompass o by: if ¢ 1is a function

then ¢ < o ,

(D) Subject to the proof in the next few lemmas that QK >
with the definition of addition and ordering just given, is
indeed a semiweight range, it is called the "polynilpotent"

semiweight range of "type K". The associated semiweight is

denoted xK . <:::>

Lemma 3.1
e L
Q is closed under addition.

Proof

This follows easily from a comparison of parts (A) and (B) of the

definition. <
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For use in the following lemmas, some simple properties of the
ordering = of the functions should be remarked:
2o dd) s forall §, then ¢ 545

ek T then @ <Y

) v
Conversely, if ¢ = ¢ then Jcp s Jw .
lemma 3.2

QK is well-ordered by = . The least element is the function

1 and the greatest, the element « ,

Proof
A non-empty subset X of QK either consists of the element
alone, in which case it has a least element trivially, or else

it contains a function ¢ # » . But then the set of all functions
=@ in X consists of functions whose support is a subset of

the (finite) support of ¢ . Since the order is lexicographic

the result follows. <:::>’

Notice that, as a consequence of the definition of the ordering

£ of QK » the successor o of any function « e QK is a+1.
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y : K
If @ , 0, , B are functions ( # ) in Q and @ <, , then
@i+ p Ray +p
Proof

Sineell 6t < &

ARt
G R

o4 (3) <o(3,) and §>3 D o) =oy(s) . Four

and there exists ‘jo € w such that

possibilities must be considered separately.

(1) Suppose J, =J, =J ( =Jeay) « Then 3o =7 .

R

Now (a] TRENRE T =0 "y 1. and (012 +B)(JT +1) =0 or 1,

. But

and if (Ot.' # BT 4 1)i=1 Yhen OL](J) + B(J) ngH

2d, s a.](J) 5052(J) » Thus OQ(J) +pB(J) 2k and

‘]o J+1

then (@, +B)(J +1) =1 also, and so in any case,
(a1 + BI(J +1) = (cz2 4+ Bi(d + 1) & Thus

>3, = (o +8)(J) s(a, +p)(J) and, since J 57,
(2Bl ) =ealBleinlg ) < au(dy) +B(J,)0= (o * BIJ,)

This means that Ot] + B < Ot2 (B

{11) Suppose  J, #Jd, =4 (=Jsay) . Again j sJ.

| it
Then 4 = J_ (o +B)(J) = (J) + B(J) =0,(J) +B(J) =

= (o, +8)(3) and
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(@ +B)3) =a(d) +B8(3) <o) +B(3,) = (0 +B8)(J,)
which means that Ot] + B < a2 R

{311y Evppore J. =d. <Jd v fet ' d=d.=4d_. . Then

Lia - Bl
'jo=JoL2 AR L S et T SR (OA] + B)(J) =0 and
(0‘2 +B)(J) = 2(j) =0 ; also (o:] + BiJI +1) =0 ot 4
(oc2 = 8Y0 3. 1] =O£2(J+'l) - R T
b 5= 0 N El e (o +B)(J) = (a9, +B)(J) « But a4 (J) <kg,
and Ota(J) 2k i 8O (a] +B)(J) < (o +B)(J) , and thus
o +p<a +8.

(iv) Finally, suppose Jg # $. <0, ¢ n

g e 5
333, => (o +B)(9) = o(3) +B(I) = o(d) +B(I) = (g +BI)
and (o +8)(3) = (3) *B(3) <opdy) +B(I) = (% +B)(J,) -

-

Lemma 3.4

Ify '@ § 8 Ly are Mutickions ( el in QK and =88 7T),

thon Tor a1l Ye wiy (r+ B + () =(r +ta+p)(J) s (P +ta+y)(d)s



Proof
Again four possibilities must be considered separately, according

to whether Jd =d or not and whether J_. = JY Or not.

B B

(il Suppose JCZ=JB = JY ( =J say). Then there are two
subcases :

(a) Bl ¢ Mﬂ+5U)+ﬂ®<kH]tMnmerj

(v +B+a)(3) = (r+a+p)(3) =(B+a+1)(d) =ad) +6(J) +1(J)e
(b) If o(Jd) +B(J) +7(J) = kJ+] then

Mk Bit @6y =(r + @ £8)(d) = (B + @ #v){I) = oJ) £6(T) + )
(for J #£ J+ 1)
=

(for J§ =JF+1) .

4 Sl i Rl e 3 SN
(4d) Suppose J, JB JY & 5

Then Jy #J,. so (v +B)(J) =B(3) +v(J) forall jJ.

L]

Then JY+B = JY £ J, S° fywig + () =ofd) + B(J) + vl

for all: .Jis Similarly
(et 2@ Al = algl 2p(d)s + r(3) for &ll J .

= = = o In either case
Now Jd JB J 8O J3+a Joor

(B+0a)(J) 2a(j) +p(J) forall j.

i = IR it is possible that
Again g 40ty Ji o, o ( p
JE+a 0 i e JY) . In any case

(B+a+1)(3) 2(p+a)(J) +v(3) 2oJ) +B(J) +¥(J) forall].
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(iii)  Suppose s J13 = JY ( =J say) . There are two

subcases depending on the value of B(J) + yv(J) .

(a) T Bla s 703 2 ky ., » then
ke ey = B3 +v(d) (3£ +71),
= 1 (J =J+1)
and so JY+B=J+]=JCt° Thus
(B Ao(]) = ofJ) +B(J) + v (3#£3+1) ,
=1 (§=d+1)
Now JY#Ja, so (r+a)(J) =aJ) +v(J) (forall j).

=g = J . But then S O3 e= J so that
e (r +@)(J) = v(J)

(y +@)(J) +B(J) 2k s 'Thus

J+1
(r @ raigl = (F+o)(d) + 82 e @FETs1),
= =
that i1s, (v +a +BJ(J3) =(r + B +a)(J) forall. 3.
Bimilarly (B +a + v)(J) ={(r +8 +a)(J) forall J .
(b) If B(J) +v(J) <ky, » then (v +8)(J) =8(J) +r(J)

garall 'y S Then JY =J ;é J so that

+H3
(v +B +)(J) =J) +8(3) + v(J) for all J .
Now JT=J74JO[ Be thadt 1T Foild) =a()) + vld) FTorall gis

Thus J=J‘3. But

i
(v +@)(J) +B(J) =71(J) +p(J) <kj, ,so that
(r +a+B)(J) =c3) +B(5) +v(3) =(r+8 +)(J) for all j .

Similarly (B +a + 7)(J) =(r +B + &)(J) forall Jo.
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(iv) Finally, suppose J, < J‘3 < JY 3

ien” Ty BJL0) ="BLY) + 1v()) for all j , and then
g = I, F 3y sothat (v +8 +a)(J) =o(d) +BJI) + ()
gor gl ) .

Similarly (v +a +B)(J) = (B +a +7)(J) = (v + B + &) (J)

Por ail J . <:::>

Definition 3.3

With the notation of definition 3.2, for each non-negative integer

G b aRblalemaie) ol 65 € QK is defined by

r
K, . :
Sr(J) = i [ ki ar 1 <¥,
i=j+]

= 1 for o —7

= 0 vy R, g R <:::>

Iemma 3.5
(i) Sf(j) may be defined by its properties
K. e e :
S e TR ), (3 <7) ,
= 1 (J =1) >

(ii) S e G
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Proof

(1) follows immediately from the definition and (ii) from (i).

=
Lemma 3.6

QK \ {»} is generated by the function 1 wunder addition.

Proof

By virtue of lemmas 3.2 and 3.3, it is sufficient to show that
for each o € QK other than 1 or o , there exist ¥y s Wé € QK
such that ¢ = W] + wé . Three cases must be considered,
depending on the values of @(J - 1) and ¢(J) where J = Jcp .
(i) Suppose that @(J) 22 . Let ¥y = 8§ and define ,

by ¥, (J) =o(J) - ¥,(§) forall j . Then forall j,

3 =1) =03 = 1) = %3 =1) 2k0(J) - k¥ (3) =k55,(9) 5

U(J-1) 2k, > §=J (since 9J) <k;,;) =2 ¥(J) 21

J
and wé(O) 2 1 trivially.
Hence V. € QK A Bativiow J =dJd. =4 .  and
2 ¢2 \II.‘

() + () =9() <kpy  so (¥ +)(5) = ¥(d) +p(d) =
=¢(j) forall j .

1) Suppose that @(J) =1 and ¢@(J-1) > kJ v . Wrike

K : e : 9
W] = 6J_] and define V, by WQ(J) =(J) - w](g) for a3l 43

the argument goes as before.
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(1ii) Suppose that @(J) =1 and @(J =- 1) = kJ . Writing
\lf.l = BJ_] and defining \Lre by we(,]) =@(J) - \jf](J) for g1l
It T . \!fe(J) =0 , the argument goes as before. <>
Lemma 5.7

With the notation of definition 3.2, QK is a semiweight range.

Proof

The various parts of definition 1.7 are checked separately.

(1) = well-orders QK s 1 1is the least element and « the
greatest by lemma 3.2.

EER QK is closed under addition by lemma 3.1 and QK {0}

is generated by 1 under addition by lemma 3.6.

(1ii) Addition is commutative by definition 3,2(B),

(iv) Suppose a,BeQK, <o and B< o, Then

@ and P are functions and then so is @ + B by definition 3.2(B),
Now suppose Oﬁ,ﬁeQK and Q< o, If B = o then
G<o=w+fB=a0+p, Otherwise « and B are both functions
sad (et Bl e ad ). forall j. But (o+BM0) 2a0) +1 .
Hence -0 <O + B ..«

O + © = o by definition 3.2(B).
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(v) Suppose Ot],ae,BeQ.K, % <a, and B < e,

If Ctz:oo then a.l<oo 80 oz]+B<oo=a2+[3. Otherwise
they are all functions and a + 8 < o +B by lemme 3.3.
(vi) Suppose @ , B, 1 € QK and ¢a=3sy., If any one
of these is ® then Yy +B+a=7v+a+B=p8+0a + ¥ =0,

Otherwise they are all functions and

Y+B+a=y+Q0+BS3+0Q+71 by lemma 3.4, <>
Lemma 3.8

The limiting values of QK are
(i) The elements 1 and o« and
(1) the functions ¢ € QK such that @(0) =k,9(1) and

il =2 .

Proof
The elements 1 and « are limiting values trivially. Now
suppose @ 1is a function in QK for which ¢(0) =k.lq>(1) and
P(1) =22 , and suppose E <o . If J§=O then (& +1)(1)y= 1
R EE e lI(d) — 0 for 3 >1, Hemee £t +1<q. If

Je =1 Hien (Einee E(1) = ¢(1) = £(0) = ¢(0) ) L=
where 'jo is the integer such that g(jo) < o( jo) and

>3, = &3 =9(J) . But then (& +1)(J) = &(J) for all

B e e el foral)l j=1 ,80 E+l <.
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Thus ¢ is a limiting value.

Suppose conversely that ¢ 1is none of these elements. Then
@15 'a ‘fupetion and @(0) =22 . If Jcp = 0 , then define ¢
By RO n0y = T andE(j] =0 for J=1: Then E<9
gad TE '] =9 g0 @ 18 not a limiting value.

It may now be assumed that Jcp =2 1 and that one of the conditions
of (ii) break down for ¢ .

Suppose first that o(0) > k]m(l) v - Definine €& By

LB =00 = 15083 =93 Tor jz1 , 1t follows that
e TSN RS, R

Now suppose that @(1) =1 . It may be assumed that ¢(0) = k,
by virtue of the forgoing case. Defining & by: £(O) =:k] e B

By =0 "For "3 =%l 5 1t Tollows again that € ¢ QK i & =D

and £ +1 =0, <i::>
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PARTTAL COLLECTABILITY

Suppose W and W' are two arbitrary semiweight ranges. Then

for any O € W the set Wa (definition 1.9) is a subalgebra

of A and hence a describable algebra. Consequently, for any
1 1

B € W' the set WB(Wa

this is a fully invariant subalgebra of A and defines a product

) 1s defined (definition 1.10). Further,

variety of groups, since for any description p : A > G - oi'a

group G, (W(W))e =W3(W (G)) .

ILemma 3.9

oo

§i is any sequence of integers, each =2 and

Suppose K = (ki)

K' = (k!),7, is defined by ki =k, (all 1i21). GWrite

i’i= +1

!
Q = QK and Q' = QK « Then for any function ¢ € Q@ with the
property ¢(0) = k,@(1) and any group G, Qcp(G) = Q&),(YR-I(G)) ’
where @' is the function defined by o'(Jj) =¢(j +1) for

ail g %

Proof

First it is necessary to observe that ¢' € Q' so that Q(’P,(G)

has meaning. let p :A>G be any description off v GEand
K K!

WrElte # = o, n'a=FMa . Foriany .0 e Q such that Jagl,

defines ol byl of(§) =aolj+ 1), forall J , and a closure
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g e N Por 1) J 2T, al0) =k ofl) .
Clearly o' € Q' and T 8§ . The following properties are

easily verified:

o =0
dsd
a' + B! =(e+B)!' . QA+B=0C+p
deicr e Tigeg
gEae —pass &2 ae gy
1) Qcp( G) = Q',(Yk (G)) « The argument proceeds by
1
proving that =n(x) 2 (Jaé1) ;\{peQ&,(yk](G)) by

induction over the height of x . If ht(x) =1 then either

X =1 in which case xp =1 chI)'(Yk (G)) or else X =g, in

~ ~ -l

which case =(x) =1 so that Iy <1 and the result is

vacuously true.

Now suppose that ht(x) >1 and the result is true for all

smaller heights. Then there are the usual three possibilities.

-1

SR = or X the result follows immediately from the

%
fact that Q’,(Yk (G)) 1is a subgroup. Now suppose X = [J’g] ,3'52] .
1

Write =n(x) =V (so that Vv za), n(%;) =V, eand (%) =V .

Then V¥ = \if] e 1!/2 . Several subcases must now be treated

separately.

(a) g =R e B(1) =1 since Y >a and J_ =21,
‘J/] 1I/2 a

and so V' =1 and V(0) 2k, . Thus wt(x) = ¥(0) 2 k, and
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50 %p € Yk](G) = (7, (G)) =Q&1(Yk](G)) .

.
(b) JW] =0 JW =1 . Then V= ﬁé and s0
2

i Eé =V 20=0, Thus, by the inductive hypothesis,

%P € Q&’(Yk (G)) ; but this is a normal subgroup of G , so
1

? 1
is the set of all expressions of weight =2 k1 . It has Jjust

been remarked that it is a describable algebra, so there exists

(c) JW = Ty iy =20 The argument in this case is
1 L
similar to that for case (D).
(d) Jowz 1oy 2 = 1.s . iThen 4} .snd. 1} -exist and by
¥ Vo 1 2
. . . ’ ,
the inductive hypothesis X0 € QW{(Yk](G)) and %,p € QWé(Yk](G)) .
! — 1 1
But then 39 € Qy 11y (6)) = Qi1 (6)) = Al (6)) -
(a1} $'(Yk1(G)) £Q(G) + By definitions 1.3 and 1.9, N

a deseription p' : A' > ﬁ%] » Wwhere A' 1is some algebra of
expressions: A' may be the same as A provided the latter has
enough generators. Here two free algebras of expressions are
involved so a little care must be taken with the definitions of
QQ and Qé, (see definition 1.9, where it was assumed that only
one algebra of expressions was involved). It will be assumed

» S A or, more precisely,

and

g8
v
<

Then Q (3) =Q o and Q! (rk el =0 p'p » It ds Dow
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sufficient to show that % ol = gcp - This is proved by showing

L g RGBS Py 0 'Q . by induction over x' .
X ~ 2 X
If ht(x') =1 then either x' =1' (the unit element of A'),

in which case x'p' =1 € % 5 or else %! = g}i (one of the

generators of A' ) in which case ='(x') =1 , so that ¢(0) = k,
and 1 = Thus = N d Pt th! = N =
®(1) u Q{p lﬂk] 2nd gu ot e At lyk.] 9\({) -

Now suppose ht(x') >1 and the result is true for all smaller

-1

heights. £ % = or xJx! the result follows lmmediately

~] R

b=t

from the fact that is a subalgebra. If x' = [X"’,Eg'] >

% 5

write =n'(x') =¥' (so that V' z2¢' ), xn'(x]) =q/.l' and

(et =\1f2’ e Then V' = \Lr.l' +Vy) . Define Yy eQ by

W(J) =¥'(J-1) forall j=z1 and ¥(0) =k (1) , and define

\i!.l 2 \112 similarly . Then by the inductive hypothesis

b0l i a xl!p!' TS O e e
%P Q’\V] and x5p' € Q'llf2 so that x'p [}'&lp %3P e 9%1 +h
= 1~1 e
and V=V, +V¥, so x'p eQ”\leQ‘CP' <>
Corollary
= !
With the notation of the lemma, Q@ =Qu:-Ny _ <

)

The next theorem involves the notion of "partial collectability
mod & " (definition 2.7). It has been seen (lemma 2.1L4) that

this property can be expressed in terms of residual nilpotence,
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and for later use (lemma 3.13) it will be convenient to prove

the theorem in these terms.

Theorem 3.1

Any polynilpotent semiweight range is partially collectable.

Pract
The proof will proceed by a rather strange double induction and
perhaps it is advisable to describe this precisely before

proceeding.

For any sequence K = (ki)i:; of integers, each =2 , any non-
negative integer n and any function ¢ e g ( £ @) such

that Jcp =n , let S(K,n,p) be the proposition, "the group

FT(gg) of any rank T 1is residually nilpotent". Iet us write
GEpmslihsifiom,0) i (o) meimeior #(b) " K = L and § <@
(notice that K =L is necessary for ¥ < ¢ to have meaning).
Clearly this is a (partial) well-ordering of these triplets.

The truth of the proposition for any K , n and ¢ 1s established

by the inductive step: S(L,m,¥y) is true for all (L,m,V¥) < (K,n,o)

o 8K n 0 e brue.,
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Suppose then that o € QK % q$ =n and the inductive hypothesis

is true. There are two possibilities.

(L) Suppose that ¢ is not a limiting value of QK + ' Then
there exists V ¢ QK such that @ =y +1 . Then, by the

inductive hypothesis, Fﬂ(QK is residually nilpotent. Suppose
[}

K .
% : K
Chat “imeiges FT(QQ) PRk gl Théliveithiarsx g QW(G) or

2

K K . K K
e Q‘]I(G) s U P o QW(G) then, since G / Qw(G) FT(%V)
is residually nilpotent, there exists an integer ¢ such that
x ¢ v,(6).Q (G) and then x ¢ v (G) » If on the other hand
S5 € Q (G) then, since @ =V + 1 , there exists an expression

X vwhich is Q -ba31c, #1 , is a product of commutators of

semiweight exactly ¥ and such that Xp =X . Thus X may be

10‘201{

written in the form X = ?q o ..obk and then there exists an
integer c such that wt(h,) sc (1 s1sk) . Then

K

Q

x<€B,) end x=x so0 x # v,,,(G) by part B(1ii) of the
Basis theorem. Thus G is residuvally nilpotent and S(K,n,q)

g Erue.

b Suppose ¢ 1is a limiting value of QK, By lemma 3.8,

gither ¢ =1 or = or else @(0) = k]@(l) oo dE e = ke

result is trivial since FT(gg) = (1} end if © = » ‘the result

is known, since FT(QE> is an absolutely free group. s

PEOY = k]@(1) the corollary to lemms 3.9 is used. With the

K!
notation of that lemma, F(@g> = F(@¢’°Ek]-l) .



109

- A . f e
But J@' = J(P - 1 80, by the inductive hypothesis F(%w,) is

residually nilpotent and then, by lemma 2.14, residually a finite

p-group. But g0 is F( and therefore, by a theorem of

§k1-1>
; K
Gilbert Baumslag ([1], Theorem 3), F(g¢) is residually a

finite p-group and hence residually nilpotent.

This completes the inductive step. The theorem now follows

immediately by lemma 2.1k, =

THE SUBGROUDS Qg

First the result promised at the beginning of this chapter, that
the varieties gg contain among them the varieties EK y 18
proved. The remainder of this section is devoted to finding an
expression for all the subgroups Qg(F) of an absolutely free

group F in group theoretical terms. The argument used to this

end is outlined following definition 3.k4.

Theorem 3.2
let K= (ki)i—l be a sequence of integers, each 22 , and let
Br = 55 be the function given in definition 3.3. Then
) For any group G and non-negative integer r ,
K
T r
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(14) For any non-negative integer r , P = @K :

o S
Proof
&LD By JAnduetion over ..r .. The result is trivial when

T2 = 01 ) epw Suppose r 22 and the result is true for all

smaller values. Then Br(O) = k]6r(]) so by the corollary to

lemma 3.9 and using the notation of that lemma,
i< Kt K!

. a5
36 = %5! . Ek -1 where Sr = 6r s
7 T 1
= EK' . Hk 1 by the inductive hypothesis,
=X! -
g S
r
(1) is an immediate consequence of (1i). <:::>

For the remainder of the chapter it will be assumed that we are
K
working with a fixed polynilpotent semiweight range Q =Q and

. g Gk K
its associated semiweight =« =x .

Definition 3.4

(A) A new partial order =X is defined on Q by
Pt Olg) =00 3) Topealle 4 i dF p. and i are
functions, and @ X for all ¢ ¢ Qq .

e

This partial order is clearly a lattice order.



13

(B) The "meet" @ A ¥ of two functions is defined accordingly:
GRS = ol (o0d) s W) 3. forall.y 12 ¢ and y
are functions, and @ N o =oo ~@ =¢ for all ®eQ . Clearly

if 9. and e Q ;80 Hoes Wl A

(e) A mapping T : A+ Q (not a semiweight) is defined

recursively:

For each @ € Q let Q@ be the set

:A>G , let Q(G) be the set Q(P(G) =§<pp . Subject

to the proof in the next lemma that QQ is a fully invariant

(D)
Q¢ x €A, %x)> ¢} and, for any description
o

subalgebra of A , let §¢ be the corresponding variety of

groups . <:i>>

This definition deserves some explanation. In definition 1.7(1)
it was postulated that the order = defined on an arbitrary
semiweight W should be a well-order, and this property appears
first in the proof of Witt's formula in Chapter 1 and second in
the proof that the special collecting process can convert an

arbitrary expression into a W-basic one in Chapter 2.
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But there is another important consequence of the postulates of
definition 1.7 and that is that the semiweight of an arbitrary
expression does not become smaller under either collecting
process (lemmas 2.5 and 2.7), and this fact does not require the

pProperty that = is a well-order.

In lemma 3.11 it will be shown that the new partial order =< on
Q satisfies properties (iv), (v) and (vi) of definition 1.7, and
so this partial order is preserved by the collecting process in
the same way. Thus the mapping 7 : A > Q Dbecomes quite
closely analogous to a semiweight and many lemmas previously
proved for = can now be proved for < with no more than a
word-for-word translation, reading = for =, ffor n or o,
QQ(G) for Q¢(G) or W@(G) and so on. Some of these lemmas

will be needed in translation, and a reference to the forgoing

untranslated version will be given in each case.

It is also not difficult to prove that =$ is in fact the

coarsest partial order which satisfies parts (iv), (v) and (vi)

of definition 1.7; this fact however is not necessary to the
argument to be used in this section and is not proved here.
However this means, roughly speaking, that the subalgebras §¢
are just about the smallest ones to be closed under the collecting
processes, and so it might be expected that the corresponding

subgroups §¢(G) are more "natural" than the subgroups Qw(G) %
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This turns out to be true, in the sense that they are more
simply expressed in group-theoretical terms and that it is
more easily proved that this expression is correct. Once this

has been done it is a fairly easy matter to express a subgroup

P

is used here and occupies the remainder of this section.

Q. (G) as a product of subgroups §¢(G) . This approach

Lemma 3,10

With the notation of the forgoing definition, is a fully

f\{p
invariant subalgebra of A and consequently @@(G) is a verbal
subgroup of G for any group G and is independant of the

particular description p : A+> G chosen to define it.

Proof

Translate lemma 1.5 . <:::>

Lemma 35.11

(1) The order < satisfies the properties
ad,p<e =D a+p<w
@ oo, B0 0 KO+ B
a, <@, and 3<o = a +p<q +p

e sl 8D TR ETA=7T +0 +PgP +O+ 7
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(i1) If D:x>y or E:x*>y then x) LAy .
(i11) If D : x>y then there exists u (possibly

empty such that E :x>yu and R(w > Rx) +1 .

Proof
(1) The first three of these properties follow immediately
from the definitions and the last from lemma 3.k4.

L6l Translate lemmas 2.5 and 2.7.

(1ii) Translate lemma 2.6. <>
Lemma 3.12

Iet G=F(N ) be a group, free with respect to being nilpotent

N
=
of clase ¢ ., Then, for any @ € Q , §¢<G) n YC(G) is a
free Abelian group. Further, if p :A+> G 1is a free
description of G , then the set

{ Bp : b is a Q-basic commutator, wt(b) =c and #%(b) > ¢ }

is a free basis for QCP(G) N YC(G) .

Proof
By virtue of the basis theorem, it is sufficient to show that
the Q-basic commutators of weight c and semiweight > ¢

generate écp( G) N YC(G) . But this follows immediately from

e o104y, =
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It will be noticed that this lemma amounts to a small part of the
basis theorem for the subgroups §¢<G) o+ The rest of the basis
theorem can be proved in this context, but it will not be

required here.

Iemma 3,13

The following two propositions are equivalent for any ¢ € Q .
(1) F(éw) is residually nilpotent.

(ii) F(§¢) is residually a finite p-group.

Proof

Translate the appropriate part of lemma 2,14, <i::>
Partial collectability can be proved for Q subgroups. This

is expressed most conveniently in terms of residual nilpotence,
using the forgoing lemma.

Lemma 3.14

The relatively free group F(g¢) = Q@(F) is residually

nilpotent.
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Proof

Translate lemma 3.9 and theorem 3.1. <:::>

It follows immediately from definition 3.4 that the order = 1is
coarser than the order = , that is, that o <Xv = o s vy .
Another immediate consequence is that, for any expression X
M(x) X 7(x) and thus #(x) S n(x) . There exist expressions
for which this order relation is strict. On the other hand, the
opposite relation can be established in a weakened form as the

next lemma shows.

Ilemma 3.15

Iet x be an expression. Then there exist expressions
. + e 00

gq # M smpi s Ek such that E :x U, Uy Ek and

?t(gi) Eala ol s dsk) .

Proof

This follows by an easy induction over the height of x . <i::>
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Lemma 3.16

For any group G and Q¢ q ,

V=g
Proof
Suppose x € QW 5 V2¢ . Then there exists x ¢ A such that
xp =x and #(x) ZV . Then n(x) 2 R(x) 2V 2¢ s0
X € Q¢(G) . Conversely, suppose X € Q@(G) « ".Then, by

lemma 3.15, x 1is a product of elements each of which belongs to

some QW(G) y kz0 . <:::>

This lemma establishes the promised connection between the Q(p
and the @Q subgroups, and in the next lemma a group theoretic
expression for the @@ subgroups is established. It will be
noticed that the property of partial collectability, given by
lemma, 3.14, plays an essential part in the proof; this provides

the first demonstration of the usefulness of this notion.
Iemma 3.17

Let F be an absolutely free group and let ¢ e Q (# o) ,
J

then o
QCP(F) = gi YCP(j) ( PKJ(F) ) c
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Proof

(1) It is shown first that Q o(F) 1s contained in the
intersection displayed above. This is proved by showing that

if #lx] ¥ @ then, for 0= j = J(P i &P e Y(P(J')( PKj(F) 5

by induction over the height of x . If ht(x) =1 the result
ig trivial. Now suppose that ht()g) > 1 and the result is true
for all smaller heights: there are the usual three cases., If

X = y;] g w.E. he result Ja tewe edpee vl P (R) ]
b e

~]~p

is a subgroup. If x = [J,g,.l ,}'52] , define @, = A(}’E‘.l) and

®, = ?{(}'52) - Then xp ¢ ch.'(j)( PKJ(F) ) and

’ P (s that : ; F .
%P € To () KJ.( Ve TR e N E) S
But cp](j) + cpg(j) = @(j) so that the result is true unless

'j=J<P’ J¢]=J¢2=j-1 and cp](j-])+cp2(j-])gkj.
But in this case xp € : ; P F =
P YCP](J"])"{PQ(J'])( Kj_]( ) )
=0 e [P (= ® (T and @l]) =1 #0 the result 1B
ek 0.
J J=1 J
still true.
(i) In order to establish the reverse inclusion it must

first be proved that if x € rc( Pr (F) ) then there exists
o

x € A such that xp =x and ¢(r) zc where ¢ = R(X) .

This is done by double induction over r and c . The result
i8 trivial when ¢ =1 and r =20, Now the result is proved
for any r and c¢ on the inductive assumption that it is true

for the same r and smaller c¢ and also for smaller r and
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any ¢ s suppoge Tirset that ¢ > 1 . Then, since

Tl B ) = [ ( Be(B)), B ()1, x mayde

o 2

; : %
written in the form x = [a.l ,b.‘] [ag,bg] ...[ak,bk] where,

tor eaen 1, a, € Yc-1( PKr(F) i bi € PoAF)" and g = .

Then there exist 8 s ’Q’l € A such that a;p =8, , b.p =0,

HN

Oli(r) 2c=-1 and Bi(r) 21 where o = #(a.,) and

L

B, = alb.) . Then 7i( [%‘J.’Rl]) =ai +B

i Ry ; and (ozi + Bi)(r) e

s % %
Thus, writing x = [%—l ’?"l] [?;2 ’t\’g] cee [%k,Ek] ’
¥ =x and ¢(r) 2c where @ = RH(x) . Now suppose that
e =t land T 207" How "X e r]( PKr(F) = Ykr( PKI- ](F) )
so by the inductive assumption there exists X e 'ﬁ‘, such that
=% and @r=-1) 2 k  vhere ¢ = f(x) . But then

®(r) 21 by definition 3.2.

It is now possible to prove the converse inclusion. Suppose

: s e
x ’{Q‘cp(F) and x € gl Y(P(j)( PKJ(F) ) « Then by lemma 3.14
there exists an integer c such that x ¢ Q\cp(F) . YC(F) .

But then, by the basis theorem, there exists Xx € }}(Qc) such

that xp = x modulo YC(F) , and then, still by the basis
theorem, #(x) is not P ¢ ; that is, there exists an integer
r such that V¥(r) < @(r) where V¥ = R(x) . Clearly then
r & J_ so that X € Yo )( PK(F) } & But 1t bag gt been

P or
T
proved that in this case there exists x' € A such that
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¥'p =% apd 9Nr) E g(r) where o' = f(x!) . But then
E tx'*yu vhere xe}g‘?c) and wt(u) 2c +1 s Then
by lemma 3.12, x =y so that #(y) =V . Put by lemma 3.11(ii),
¥ o=a(y) =) > Ax') =o' so that Y(r) = ¢'(r) = ¢(r) .
But this 1s a contradiction: both Vy(r) z ¢(r) and y(r) < o(r)
have been deduced. This completes the proof of the lemms.

-
The last two lemmas contain between them a group theoretic

description of the subgroups Qcp( Bl This can be made a little

simpler by the following lemma..
Lemma 3.18

Suppose, for any function ¢ € Q and any integer n (-1 sn=sJ )

the function cp(n) € Q 1is defined by ;
n
Ppy(d) = wmn+1>ig%1% (3 <m),
Soup) v (J =m) ,
= 9(J) (el T O
= &7 (i:if‘j=Jq)+1,n=Jcp

= 0 (otherwise) .
(Clearly Pp) €@+ Notice that gl 7 ey 0 Lok

Then V 2 ¢ 1if and only if \Lr?.cp(n) for gome 6. (=1 =5 = Jcp) i
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Proof

Suppose that ¥ 2 @ . Then either ¢ = @ , in which case
VZ e = (P( BT or V> @ , in which case there exists an
integer n 2 0 (hitherto called 3o ) such that ¢(n) < y(n)

and  J>n =2 oj) =v(3) . Buppose first that n > JCP .

Then V(J) 2 kJ s 1j/(J(p -1) 2 L ok and so on. But
¢ cP J

o Jcp) & chpﬂ s0 V> CP(Jcp) . Now suppose nsJ . By the

same argument, V > cp(n) .

Conversly, if V¥ > q)( ) for some n then V 2 cp(n) and

clearly cp(n) ZQ .

All this may now be summed up in a theorem.

Theorem 3.5

Iet Q = QK be a polynilpotent semiweight range and let F be

an absolutely free group. Writing Pt = PK (F) for the various
n

terms of the polynilpotent series of type K ,

and

dJ
A & r
QCP(F) = l;i Y(P( I‘)(P )
J



where

1ce
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CHAPTER L

THE UPPER CENTRAL SERIES OF

FREE EQTGROUES
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Definition 4.1

Suppose W 1is an arbitrary semiweight range and o the

associated semiweight. Then
(1) For each O € W the element a -1 of W is defined
Gumihet min ("€ 2 B e W , B+l 2@ ). This is well

defined since W is well-ordered.
(g For each @ € W and each non-negative integer n the
element « (-])n is defined recursively by « (-1)O = and

n n-1 o
(] =q (= - 1 =405 =

(=1) (=1) For n «

Clearly o (-1)n could just as well be defined
G e e Ee W, E(A) ew ] . Notiee thst,

if & 15 & laomiting valuce"of Wy A =1 =X »

The principel result of this chapter is, if W is partially

collectable mod @ and G = F(Ed) is of rank at least 2 , then

Q(G) o Wa_](G) o
Lemma 4.1

K
Suppose QK is a polynilpotent semiweight range and ¢ € Q .

Then ¢ - 1 may be described as follows:
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) I gt =Alesep e lor dg oftvthe 'form @(0) = kio(1) ,
Pl =t2 USdhentigi= 1 = ¢ .

Cai) If ¢(0) =k, and (1) =1 then (¢ - 1)(0) = Ty il
sl =D ey 5 =20,

o R L e Gl k]@(1) then (¢ - 1)(0) = ¢(0) -1 and

o= Gl =) ¢ for Ja1 . -

For the remainder of this chapter it will be assumed that we are
working with a fixed semiweight range W and its associated

semiweight o . All definitions will be made in terms of these.

Definition 4.2

Let b be a commutator > g (that is, other than &, e, | The

%
commutator b is defined recursively over its weight.

G e = lp e,

s Tl *
(11) [bv] )?2] iy [-,Q'] )p,g:l i e

)

/
\

Suppose that x 1is an element of some group G which can be

: . : &
described by a W-basic expression X = pJ b eeeby (other than
1 ) modulo Wd(G) , and suppose pT is the factor of x maximum

under the order =5 (defipition 2.5}« « Then it will be proved

that [x,go] can be described by a W-basic expression modulo

W

a+](G) which contains Q; as a factor and which is thus not 1 .
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This proof occupies most of the chapter and then the main result

follows immediately.

Some simple properties of the commutator ’9;* are given in the

next lemma.,

Lemma 4.2

=
H
2

and b are W-basic commutators > 8y 2 then

(1) og") = o(la,g)) =o(a) +1>o(a) ,

(ii) a <a" and z;g,J>6 < &l

(iv) a” 1is W=basic,

(v) a'=% = a=1.

Proof

(1) o( [%’50]) =g(a) + 1 > o(a) 18 brivial, It ie shown

that o(gj) = d(a) + 1 by induction over the weight of a .

If a 1is of weight 1 the result is again trivial. Otherwise
a = [%],%2] sl 8 = [e,a.v._;e,z’a\,e] so, by the inductive hypothesis,
G(g\,j*) = 0’(%]) & 1 a(g@) . But, since a is W=basic,

o(a,) = d(a,) 21 so gldr) = o(a;) +o(ay) +1 =oa) +1 .

(ii) follows immediately from (i).



127

(i1i) It is shown that a <b =) a“ <b* by induction over

~

o(b) « If o(b) =1 then o(a) =1 and the result is trivial.

%(.

If o(b) > o(a) then o(b") = Bl e ala) '+ 17="e(2"] B0

' >a" . It remains to prove the result when o(a) =ao(b) >1 .
i £ = s =

Write a [Q] ,%2] and Db = [b, »b,] so that a’ =[a,a,] and
- [’Q:{',pe] + Since g and b are W-basic, 1d(a) =a; and

1d(R) =%y . Therefore either a, <D

* ¥
1 g.:] <Q.l then Q] <12'] - But 'aq > a’aq >a2

1d(2) =g . Similarly 14(}") =}, and hence &  <b” .

N-l ~

= T
-‘94 and %2 <p2 then ?Cl _Q] and

or aq=’94 and qe<“92.

SO

If, on the other hand, Eo

. * %
g\,2<}\342 so again a <b .

Now suppose & e b . Then either c(g) > c(h) in which case

o(g’) > o(R") so that g* < p" or else o(a) = o(k) and

a <b in which case 0(%*) = U(Q*) and %* < ”Q* and again
%-;:- <O he: )
(iv) a* 1is W=basic, by induction over the weight of a . 15

wt(a) =1 the result is trivial. Now suppose a = [%I’?CE]

and a, 1is W-basic. Then a" = [, sa5] , @y and a, are
W-basic and gj‘ >ga, . Since wi(z;) >1, write af = [g;,%] ;

it remains to prove that S = &/ e W‘t(?\.;]) =1 hhen

rg)m

o < 8, and ‘if vt(gq) Sl i ting a; = [%]1’%12] -
= & = 8 since a = [?:,]] ,a~12,§2] is W-basic.
(v) follows immediately from (1iii). = i
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Lemma 4.3

Suppose Xx is a product of commutators, all <O some commutator
a , and b 1is any commutator. Then D : [x,b] +y vhere

~o

¥ 1is a product of commutators, all . (a,b] .

Proof

By induction over the length £ of x . If £ =1 then either
x =1 , in which case the result is true with y =1, or

X = gi] where ¢ is a commutator s & , in which case

Datial o1 [g,}g]'ﬂ and [c,b] <L [a,b] by the corollary to
lemma 2.1, Now suppose 4 >1 and the result is true for
shorter products. Then x = %% where X and 352 are
products of commutators = a and so D : [35,1 ,“Q] > g and

g [’ég ,:Q] = 3(2 where x] and 3(2 are products of commutators

L lasbl s - Hemee D 3 %+ ¥ which is of the required
form. <>

Lemma 4.4

Suppose ¢ 1is a W-basic commutator > s Then
ik [g,go] - gf:g, where u is a (possibly empty) product of

commutators oo e
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Proof
The argument proceeds by induction over ¢ under the W-ordering
£ of the commutators. Suppose wt(c) =1 . Then g* = [(i’%o]
already. Now suppose that wt(c) >1 and the result is true
for all commtators <¢ . Write ¢ = [c Cys r~2} Then
[Q;go] = [CN] ,ge,go] . It e - PR then, since ¢ 1is W-basic,
<5 is go-compatible (definition 1.15) and so is of the form
[g,i,oz><5o] for some generator g, and @20 (lemm 1.12).
Thus [g,go} = [g,i,(aﬂ)x%O] =c" . Otherwise S >go . Then
since ¢ 1is W=-basic, &, < o 1 Sy . Hence

-1
bi.: [g,go] > [ge,go,g]] [g],go,gg] . But then, by the
inductive hypothesis, D : [g] ,50] > g:vi"iﬁl4 , Where u, isa

O % =

product of commutators < ¢ and D : [ge,go] > s where

#

» o)
B, isa product of commutators < S e Thus
% = it -1, x

[erg ) > [eouyrey ) [eguynge] > [uye ] (54 ]

It is now shown that ~2’° ] o [c],f\2 o Eivat

0([%,9\4]) = c(ge) +1 + cr(g.l) » But ¢ is W-basic, so
S <g] and so 1 = o(ge) < c(gj) ; thus
o(lgg,gy]) 2 alg) +1 + o(g) = G e I

o([c ,c I > oalle ],,\2]) then [25:9,] = [93:"9@) immediately.
- A, =
Otherwise c([ge,g]]) = ([N], I huk ¢ > 80 ¢ >%
and thus 1d([gy,e.]) =g - But 1d([cl,gy]) is either ¢j

or ¢, and both of these are < ¢; » Hence [95’9.1] o [c
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By lemma 4.3, since Y is a product of commutators < %5 ’
] -1 0
15 [92’94] > ¥p » @ product of commutators < [55’941
* ; & o .
and so XQ[QQ’QJ] is a product of commutators < [g},gg] .
Again. D & [EJ’EE] *¥; vhere y, 1is a similar product.

G e Xl 1% > syl ly, vl

is of the required form. <:::>
Lemma, 4.5

5 o)
Suppose u 1is a product of commutators <  some commutator c

and ) Sl e Then 80 1is. ¥ .
Proof
This follows immediately by checking the various parts of

definiCion 251 ~

Theorem 4,1

Suppose W is a semiweight range, ¢ e W , W is partially
collectable mod @ and F is an absolutely free group of rank
22

& Iet G = F(Ea) . Then £(G) = Wa%](G) s

(ii) Iet ¢ be a positive integer and G = F(Ea N EC) -

mEg e =l LE Ay () .
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Proof
Let prgd 0 S be a8 free deseription of #16 & Then the number

T .of generators of A is at least 2 . Clearly the result is
true vhen ¢ =1 or 1 +1 , for then Wa(G) =G or B(G)

respectively. It may now be assumed that o >1 +1 .

(1) First it is proved that W  ,(G) = {(G) . Suppose
z € Wa_](G) and x € G . Then there exist 2 , X ¢ A7 such

that zp =z , xp =x and o(z) 2a -1 . Hence o([2,x]) 20

and so [zZ,x] =1+ Bubt x 1is an arbitrary element of G ,

so z € t(G) .

Next the converse inclusion ((G) = Wa_.‘(G) is proved.
Suppose x € G but x ¢ W, 1(G) . Then, since W is partially
collectable, there exists £ € W such that x ¢ WE(G) = W§+(G)

and &t =@ -1 . By the basis theorem there exists a W-basic

] = T
expression X b] 132 "'b'k (other than 1 ) such that k 21 ,

xp = x modulo W§+(G) . O(R'l) = c(pg) = = o(pk} =t and

o 0 o}
as usual Q]<pe<...<pk (so that E]<’92< ...<“gk)
and none of the fji are zZero. But then, writing

B B p
x! = pkk b k]-] coe ’9;]] » X'p =x modulo W§+(G) also.

B B _ 3
k[.,Qk_-l ;EO] = ”'[-94 ’60] : )

and then by lemma 4.4, for each i (1 =i =k),

Now D : [;5‘,50] > [Qk,go]

: o
- i ommutators < b, .
D¢ [’,Q,i,go] > Ru, where u. 1is a product of commu r by
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B B 5 B By B
SR e | G k-1 k=1 1 1
. 1 A S
Thup "B 2 [x ,go] el (pk) W (pk_]) W q e (’QJ) Y,
3
%y K
(B) "y say
and Y, is a product of commutators <& ?ﬁ . Then
N 7 L #5
DXy T Yo =% S S, » & W-basic expression and by
lemma 4.5 each S o Qﬁ « Now o(gg) =& +1 , and so each

g is of semiweight at least & + 1 ., Thus there exists m

O=m=n) so that o(gd)=§+1 For- 159 8 m. ayd

-

c(gi)>§+1 for.m <1 8n , Then

e T B T i 15
1.8 m,.% kK _'mit] m+2 n

1
D:x'hg ] > g g oot (Bl e, oo e
But o x',go] SO

j T, B

;i m o, % K
(g.l C eeeC (pk) o = [x,g.] modulo W(§+])+( GY s
Now, since o(c ) =& + 1 = o(b*) and S <O so that

: 1 a7 Y.

. 1 72 Mo *31{ W
Em‘<p’k » it follows that € Sp eeeC (‘Qk) € :E(E_H)-q. .
But, alth th L G empt (b*)Bk

» although e produc Qo Bo weel N pty, Die

certainly is not. Hence, by the basis theorem again,
[x,go] ¢ W(§+])+(G) S BaE sk e Sl B B % 1 £ g tand
el Re B TS e Thub [x,g,] {Wa((}) = {1} and so

x ¢ t@) .

(21 The modifications reqired to the forgoing argument for

this case follow the by now familiar form. A
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Corollary

With the conditions of the theorem,

Pii i R F(W/=Ja) . Then the upper central series of G

is given by §n( Gy = Wa(_])n( G) (n=20) < The uprer
central series terminates, that is, there exists an integer N
such that {..(G) = ¢ (G) and then « (-1)Y is a limiting value

of W, in fact, the greatest limiting value =0 .

(41} let G=FW, N gc) . Then the upper central series

of & 1 given by ((G) = Wa(_])n(G)-Yc_,_]_n(G) . \//\‘/



134

CHAPTER 5

AN APPLICATION
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It 1s a well-known fact (see for instance Hanna Neumann [9],
section A.2.5) that if a group is nilpotent and torsion-free,

then its central factor group is also torsion-free.

The following problem, which was posed by Gilbert Baumslag and
L. G. Kovacs and communicated to me by the latter, could be
regarded as a weakened converse: if a group G is nilpotent,
relatively free and has a torsion-free central factor group,

does it follow that G itself is torsion-free?

In this chapter the question will be answered, and the answer
will depend upon the soluble length of G . If G has the
properties listed above and is also exactly metabelian (that is,
metabelian but not Abelian or, in other words, G ¢ EQ\\ Eﬂ )
then G is torsionefree; in fact G is a free group of the
variety §2 n Ec for some c . On the other hand, counter=-
examples are given for any other soluble length; for each

2 # 2 a group is described which is soluble of length exactly

4 , relatively free, nilpotent and has a torsion-free central

factor group but which is not itself torsion-free.

It is a fairly well-known fact that if G 1is a free metabelian
group, then TC(G) g Yc+1(G) is a free Abelian group, freely
generated by the left-normed basic commutators of weight c

modulo Yc+1(G) . It might be desirable to state this fact and
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prove it in terms of the present theory, from which it emerges

as an easy special case.

The derived series Bn(G) of a group G 1is defined recursively

]

by 8°(G) =G and 8" () = 5(8%(@)) = [8%(G),5%G)] for n = O.

Consequently, with the notation of definition 3.1, if the

sequence K = (k.).°°

ox 18 deflined by k =2  forall 1 , theh
i%i=l i

PK = Sn(G) for all n . Throughout this chapter it will be
n

assumed that the corresponding semiweight range Q = QK is

being used. The corresponding varieties EK are gr for all
-

r 20, The functions Sr € Q (definition 3.3) are given by
8.(3) = grd (j=r) and Sr(j) =8 (] > x) < Then
=Qy and for any group G , Q6 (B) = &°(G) »

S o I

Definition 5.1

{1} A "left-normed" commutator is one of the form

[ ) s ey . ] .

%i] g12 g’J'k

§icq A "left-normed basic commutator" is a commutator of the

i S i s s e e é i .
form [gi],giz,...gik] where i, >1, 5 iy s 1, <:::>

Clearly, for any semiweight range W , a left-normed commutator
is a W-basic commutator if and only if it is a "left-normed basic

commtator". This justifies the terminology.
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Lemma 5.1

(a) Defining a function Xc € Q@ for each positive integer ¢

by x] = A

of weight c¢ are exactly the Q-basic commutators of semiweight

i xc + 1 , the left-normed basic commutators
Xc «  Murther, for e¢ 22 , xc is the function XC(O) =Gy

A (1) =1 and A (J) =0 (Jz22).

L1t Suppose G = F<§2 n gc) . Then YE(G) is a free
Abelian group, freely generated by the left-normed basic

commutators of weight c .

Proof

(i) is all obvious and then (ii) is the basis theorem for these

semiweights. <:::>

Lemms, 5.2

Suppose 1 < T and ¢ 1s a commutator. Iet 6 ©be the

; oy 2
endomorphism of %h defined: g0 = g, (3#1) , g06=g -
fhen 'D 5oed > g? where pu = pi(g) as defined in definition

2.8,
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Proof
By induction over the weight of ¢ . If wt(c) =1 the result

is trivial. If e .= [94’22] and D3 949 +-g4 -
e
P g S where u, = pi(gq) and p, = “i(Ee) 5

Hq Mo Hq +l—‘2
2 =2 s [e ]2

then 10D &t el [9\:, 2% ¢ 2%

by an easy

induction over ky and by s and U = By o+l o <:::>
Lemma 5.3

Suppose G = F(g2 n Ec) » V 1is a fully-invariant subgroup of

G and gAY G is any free description of G . Iet

(vi)i<k be any sequence of integers, and suppose
i o
= hq B ...Qk is a product of commutators of weight ¢

such that UEYV

a Q o
b P1p P2 .. p P4, vhere
s T
Py » B 5 eoc 5 By is the subsequence of the integers

Then, writing vy =
~

e i o B RO which o M(D,) = () (definition 2.8)

o g
gr 3 =) 1if there are no such 'l , there exists a non-zéro

integer t such that x?p €evV.

Proof
By induction over the number of integers r for which

NKQT) # (vi)i<k . If there are no such integers, then the
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result is immediately true with y =u and t =1,
Now suppose there is some integer r for which M(‘pvr) £ (v

Then there exists some n < such that p (D,) # W T

6 be the endomorphism of & defined: gne = 5112 ’ Qie =g

(i #n). Then by lemma 5.2,

o s 3 %Py Hn(By)
Dl ge > "Q‘] :Qe oee ‘Qk s Where Bi =& .

But wp eV and V is verbal., Hence ubp € V , that is ,
s s b i %Py b %Py
i e > Ealal .
L T %Py
K €

)o € V.. Then, writing ‘Qip = bi ’

b'l b2 Gaa D

1«”1 are all of weight ¢ and G is nilpotent of class c ,

V . Then, since the commutators

the elements bi of G all commute, Thus

- R b T T
(up) = b, b, vee by € V and then
L i e
b] b2 "'bk € V  vwhere Y ozi( Bi - pr) » and thus, since
i Y Y i 1 Y
A f Bl Tl . PR k
v, 1is zero, (‘94 by "'Er-l [ bvr+2 ”‘Ek Jo € V. But now

the inductive hypothesis applies and
-tt

T if Y
(ppp1pppz ...ypp’c) 5 CEv L)
1 2 7

e ) p (B )
But v, =o (B -sr)=ozp(2n"pl G SN A
P; Py i
\J w (D)
Eoo toml kLl T ) 8 s Henes
Py
o o} o t v u (b )
T B s e where £ o= Y2 T -p 5D
o R e 13

i)i<‘r :

but un(p,r)yévn S L W SRR T S A o <>
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Definition 5.3

8 The notation of definition 1.16 is extended as follows :
L o, X1 0 % 2 o0 s X, are expressions and Dy 5 Ty 5 eee 5 Iy
non=negative integers, then [x' 1 X’i] 2T XXy ,...,nkxggk] is the

SApress Loy n. times tims ti
n, times n, times

y 5

o, la

-~ Al f—-—"“"h—ﬁ
[x)§1,§],...,>£],252,352,...,;(\2, ’}flc’esk"“}fk] .

A stricter definition, by recursion, is

[3(.,0&5]] -
[30om g o1 ) 5 0 0 omp T = [0 008, 505300 5 00 eomy 130y ]
it <06 g
= [[bn]m&l )DQ%;---:(DR"!)%{]:?;{]
if n >0

If any of the n, are 1 they may be omitted.

(ii) For any sequence (}'Svi) of expressions indexed by

n
integérs, the expression ’ I X4 is defined recursively for
1=m

m n n-1
m=2n by: llz,g,l:;gm and, Tor n >m, _IiJi;'L:(.H’ii)’in'
i=m i=m i=m

The same notations will be used in the obvious way for left=-

normed commutators and products of elements of an arbitrary

group G . <>
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Some simple properties of commutators in the "bottom" of a nilpotent

group are:
Lemma 5.4

Suppose G ¢ __8_2

) -1
(1) I me [2;7,%] ¢ YC(G) then  u = [yx,2] |[z.%:5]

(RN Then
=C

fad) i S | BT YC(G) is of the form

u = [x],xg,...,x&,a,b,y],y2,...,yk] (. & Esy=d)

then u = [x] ,xe,...,x&,b,a,y],y2,...,yk] .

s L8R p S - YC(G) is of the form u = [x1 %55 ¥ ,y2,..,.,yk]
and = 1s any permutation of the Integers 1 , 2 , +ss , k , then
R [x] ’Xe’yn(U’yn(z)""’yn(k)] .

(iv) Ife noe YC(G) is of the form

u = [x],xe,...,x*/,ab,y],ye,...,yk] (L 205k =0) then

u = [x] X5 e 03Xy 58,5, ,y2,...,yk][x] P TRRPE IFLD 2 Wpseees¥ ] o
(v) Tfpee YC(G) is of the form

u = [X],xg,...,XL,nmb,y],y2,...,yk] (Lagigkz0 ;020

n
then u = H [X.] ,Xz,...,X&,rm,(n-r)Xb,y] ,yg,ooo_,yk] .
r=0

where (?) is the usual binomial coefficient.

Proof

(i) follows immediately from Jacobi's identity.

(d4) follows from (i) by induction over k .
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(443} | “ig & eorollaryofr(ii)
(iv) by induction over k .

(v) is a corollary of (iii) and (iv) .

/
N

Theorem 5.1

Iet G be a nilpotent, relatively free group which is exactly
metabelian (that is, G € S, N §]> and has a torsion-free central

factor group. Then G 1is isomorphic with one of the groups

VN )s

=, B,
Proof

This theorem must be proved in two stages: first when the rank -~

of G is infinite and second when it is finite.

(A) Suppose T 1is infinite. Iet ¢ Dbe the smallest integer

such that G e §2 n Ec o Since G is not Abelian, c 22 .

let F = FT(ge N Eé) . Then there exists a fully-invariant
subgroup V of F such that G =F/V ., It may be assumed that
G = F/V o Iet p Dbe the natural epimorphism i S NG R A
et 2. Dbe the com;lete inverse image of ¢{(G) : that is,

z € Z &y zuet(G . Then F/Z=aG/t(G) and so is torsion-

g0 e el e T 0E and ondly If [z,x] eV forall x eF o
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Let P :A>F Dbe a free description of F defined in terms of

a free generating set g} = {gi)i<k of B ..

If V={1} then G=F (S, NN ) and the theorem is true.
= =
Otherwise V 1is non-trivial and thus it has a non-trivial inter-

section with the centre of F . But, by the results of the previous

chapter, ¢((F) = YC(F) » 80 VN y (F) £ (1) « Thus there exists
¢ ae ak
a Q=basic expression 2 Bo "'Ek € A such that u £ 1.4
= n(pk

»we eV and n(gq) = n(ge) =g e 3 A, » that is,

hh ’ pe y EAe ) pk are left-normed basic commutators of weight ¢ .

But then, by lemma 5.3, it may be assumed that

M(b

~

]) = M(Qe) = 400 = M(pk) .

Firstly suppose c¢c =2 , Then, since the Ed are Q=basic and

of weight 2 and M(g&i = M(pa) e M(gk) it follows that
k=1 sothat u =bh ( £0) « Writing b, = [gd,gi]
g
it follows that [gj,gi] € V. But then, since
Oﬁ.l Oi] oz1
[gj,gi] = [gj &0 [gj 8,1 € V. Towlet x be any

element of F and let 6] be the endomorphism of F defined
B = 1) This is ssible
» 8,0, =x, g6 =g, (r#i,)) is is po
a 0/ s
since i £ J . Then [go1,x] = [gJT,gi]e eV But x g dn
Q :
arbitrary element of F , so gl eZ . But #0 and F/Z is
torsion-free, so g, € Z and thus [g],go] e .«  Bubo X dg

verbal, so O(F) =V : that is, G is Abelian which contradicts
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the choice of ¢ .

Now suppose c &3 . The argument in this case is merely a more
sophisticated version of the one just given. Since ‘Q] is of

weight c¢ , it may be written in the form 13,] = [5@] ,%pe’“.’%@c]

where ) > 12 = p5 S ... = N 4 4 :Q'r is one of the others

A

(8o S Wl B = g 9B yesesElil ) BgRin
N M) Al 1 RS fgl

1
p; >py £p; =...=p. . Tt follows from these inequalities and

== 1 R
the fact that M(p,) = M(pr ) . that P] # p, and B} =D, .
Iet 62 be the endomorphism of F defined gp 92 =8
1
gieg i (i # p]) - Then b,06, = [g.l,(c-’l)xgo] agd

1
p’rp% =] (2 s r = k). Hence 1,%0092 = [8-,;(0'])><80]

and so, since V is fully-invariant, [g.l,(c-'l)><go]a1 eV .

Now let 6, be the endomorphism of F defined g063 =88 »

3
8:05 = &; (i1 £#0). Then u, = [g],(c-1)><gog2]a1 = [gl,(c-i)@o]a‘%

is an element of V . But then, by lemma 5.k,
o

u, = [g;,8.8,,(c-2)xe &, ] ]
a

= [g;,8,,(c-2) % 8] ][g]:gg,(c-Eggogz]

c=2 (cr )ot]
= g [g],(r+])Xgo,(c-2-r)Xga] .
r C-f2 (C;Q)a]

. g [g] :%)SXSO:(C'Q“S)XEE] .
S



Now apply lemma 5.3 to u, with vo =en2 v = Vy = Jiss

Vi =0 $1 >2),.,  Then u, € V. where
c=2 c=2

30
w = lg;,(c2)xe 8] ©7 gy ,e,,(c2)e ] O
)Od] [g],ga,(c-2)><go]a1

c-2)a

)

. [g1,(c-2)><go,g2](°'2
= [g],(c-2)><go,g2]< 1[g, 58,,8,5(c-3)xg 1%
5 le),8,5855(c-3) xgolal (858,58 (c=3) g 171

o [g.l,(c-E)Xgo,gE](c_])O:T [g2,(c-2)xgo,g_l]-al .

i [g'l ,(C-E)Xgo,ge](c-e

Now let Qh be the endomorphism of F defined g]eh =8

gé@u =g gieh =8, (L eds )  Than

](c-l)a

u0), = lgy,(c-2)xg e, g, ,(c-2)xg ,8,] 1 € V .

Hence ug = (u2

where B = (c—])zoﬁ

arbitrary element of F . Iet 65 be the endomorphism of F

(1 £%2), ~ Then

c=1

Wuy8y) = [, (e2) 81" ¢ 7,

- a £0 gince c 23, Nowlet x be an

defined g295 =X, gies =8

[[81:(0'2)X€0]3,X] = [g](c--2)><'g0,}C]‘3 = u365 eV - ghd %iida &0

arbitrary element of F so [g],(c-2)><'go]i3 e Z 5 Bubithen;
since B #0 and F/Z is torsion-free, [g],(c-E)xgo] € &

and thus [gT,(c-2)xgo,gc_]] R

Tt will now be proved that, for each r (1 = r s c=2),

by induction over

g +-‘,nen,gc-]] €V

Ceiz

P [8] s(e=1-r) ><g0:€c_r)

o
Tl This fact has just been proved for r =1 . Now suppose

that Yon# Vi Iet 96 be the endomorphism of F defined by

g066 = 8 8lpny 2 8% =8y (1 #£0). Then
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Vr96 = [€]:(C'r'])xgogc_r_])gc_r)gc_r+]:--°:gc_]] e Vi

Since r =c¢c =3 , and so c-r-1 22 , this may be written in the

(c-r-2)xg g

form vr96 Gl [g1’gogc-r-1’ (o) c-r-]’gc-r’gc-r+1""’gc-]] i

SR RS B R el 1B el O TR DGR B o8y 7B ]

Nl oy [gl’gc-r—l’(c-r-e)Xgogc-rn1’gc-r’gc-r+1""’gc-1] L

Cor=2 (C'i'e)
ok s {:g [31:gothgoJ(C'r't'Q)XEC_r_]:8c_r)8c_r+]:'°°:gc_]]
and

cmr-2 (C-E-E)
L e %=g [81;8c_r_1)tXEO:(C‘r‘t'2)ch_r_];gc_r)'-~:8c_]] .

Then, applying lemma 5.3 to Wy ¥ with ¥ cC=r-2 , Vo= 1

n

(1 £1isc=-1) and v; =0 (izc), since ww, eV,

wlw! € V vwhere

172
Pl s C=r=-2

vy = lg),(c-r2)xg e, . 178, 18 1] and
L —— s |

wh = lgy,8,_ . 1s(crR)%g ,8,_ 28, . 17 8,q] -

But c-r-1 21 , so

W2' e [g]’(c-r-E)Xgo,gc_r_-] ;8C_r,...,gc_]] .

-1
. [gc-r-1’(c-r-g)xgo’g1’gc-r’gc-r+1""’gc-l]
and thus
C=r=]
e e e L e | ST :
-1
. [gc_r_] s(c-r-2) xgo)g] 180 or?Boys1 22801 ]
Write 97 for the endomorphism of F defined g]97 =,

= = i e . . . ib
gc-r-'|97 & > 8197 g; (1 #£1 , e-r=1) this is possible

gince T =S'c =9 '‘and so ec=r=1 =2 . Then

c

-r=1 i 8
(wpud) ST (W) 0 = [y (e-r-R)XE, 8, . 138, preeesBeq] €V
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vhere d = (c-r-1)®2 =1 £0 . 1In other words v g eV

r+l
Now let x ©be an arbitrary element of G and let 98 be the
endomorphism of F defined g _,0g =% , g0 =g (1 £ c-1).
d

98€V

d
Then [[g],(C-r-E?)Xgo,gc_r_] ’gc-r"”’gC-E] x] = Vi

and, since x 1is an arbitrary element of F ,

d
[g,s(c-r-2)%g s8,_ . 1:8,_ .7°++s8,p) €Z . But d#0 and
a2 i =

/Z 1is torsion free so [gs(c-r 2) X8 98, p] 18oup?***98ep) €2 o

Thus v_,, = lg,,(c-r-2)%e g,

r ];gc_r;---;gc_]] eV This

-r-
completes the induction. Thus, in the particular case r =c =2 ,
Vi e [g]’go’gé’gj’gh’°"’gc-]] €V and since V is verbal,
YC(F) £ V which contradicts the choice of ¢ . This completes

the proof of the theorem when the rank of G 1is infinite.

(B) Proof when the rank is finite.  Suppose Gn is a
relatively free group of finite rank n , nilpotent, exactly
metabelian and has a torsin-free central factor group. It ida-n

proved that Gn is one of the groups Fn(§2 N Ec) .

Iet F = Fw be an absolutely free group on free generators
(gi}i<w and let Fn be the subgroup of F generated by
{go,g],...,gn_]} ~— an absolutely free group of rank n .

Iet V be the variety generated by Gn s let V be the corresponding
verbal subgroup of F and let Vn = Fn eV o Then it may be

assumed that G = Fn/Vn ’
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let G =F/V. Then clearly G is relatively free, nilpotent,
exactly metabelian and of infinite rank. It is now shown that

G has a torsion=-free central factor group.

First a property of V should be remarked: suppose an element
u of F has the property that for any homomorphism 6 : F +-Fn >
ué € Vn 5 then it follows that u eV (for then u is a law

of Gn and consequently of G ).

To prove that G has a torsion-free central factor group, it is
sufficient to prove the following: if r 1is a non-zero integer
and u € F has the property that for any x ¢ F , [ur,x] eV i

then, for any ¢ ¥, [u,yl eV,

Suppose then that r 1is a none-zero integer and u has the
property that for any x € F , [ur,x] € V and suppose that

yeF.

Iet 6 be any homomorphism F - Fn and let x' be an arbitrary
element of Fn . Then, since F 18 of infinite rank, there
exists a homomorphism &' : F - Fn and an integer k such that
u6 =ud' and x' =g6' . Thus [(ue)F,x'] = [ur,gk]e' eV,

by the assumed property of u . But x' is an arbitrary element
of Fn and Gn haé a torsion-free central factor group. Thus

for any y!' € Fn s gyl e Vn . Thus [ugle e Vn . Bnt



149

® 1is an arbitrary homomorphism and so [u,y] e V . This
completes the proof that G has a torsion-free central factor

group.

Applying part (A) of this proof, there exists an integer c¢ such

that G = Fw(g2 N Nc) and so Gn 5= Fn(ge n Ec) . <:::>

The construction of counter-examples for the other soluble lengths

is an easier task.

Theorem 5.2

For each 4 % 2 there exists a group G of soluble length
exactly 4 (that is, G € E&f\ Ex.1 ) with the properties:
G 1is relatively free, nilpotent, G/{(G) is torsion-free but

G itself is not torsion-free.

Proof

The cyclic group of order 2 1is a group with the required

properties for the case 4 =1 .

Now suppose 4 >2 , It will be convenient to write h =4 =1

hs2 .
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et F=F(N) vhere c¢=2". Then 8Y(F) = r (F) but

c
8&(F) 1e not trivial: Thus 6&(F) is a fully-invariant
subgroup of F and is free Abelian. Iet V be the subgroup
Pe iRy xe 6£(F) } « Then V is also a fully-invariant
subgroup and, writing G =F/V , G is nilpotent of class c ,
soluble of length exactly £ , relatively free but not torsion=-
free. It remains to show that G/({(G) is torsion-free, and this
is accomplished by showing that ((G) = ré(G) « Now
Sh(F) 2V 2 vc+](F) = (1} so the centre of F is contained in
the complete inverse image of {(G) = {(F/V) which in turn is
contained in the complete inverse image of the centre of F/Sh(F) .

homy
But F/8°(F) = Fm(gh N gc) » and so by the results of the previous

chapter, the centre of this group is Yé(F/ah(F)) . The result

follows. <:::>
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APPENDIX I

NON-COLIECTABILITY



b

In this appendix the fact mentioned in Chapter 2 (page 78) is
established: that if «a , B are elements of a semiweight range
W, << and provided the rank T of the absolutely free
group FT is large enough, there exists an element x in
Wa(FT) which cannot be described by a W-basic expression modulo

WB( FT) gt 8ll.

The proviso that T be "large enough" here will be seen to be that
T 1is large enough to ensure the existence of a basic commutator
of semiweight at least «& Dut much less than p . But this is not
a strong condition on T at all, as can be seen from theorem 2.k

which tells us that if T 2 3 +then it is large enough.

Definition I.1

(A) For any W-basic commutator ¢ other than &, and any non=-

negative integer n , the commutator (c,n) is defined recursively

gyer. o 3

(4 (¢;,0) =¢ ,

{41) (e,n) = (¢,n=1) (n > 0) (see definition 4.2) .

(B) For any W-basic commutator ¢ other than %o the expression

c® 1is defined recursively over the weight of C .

O—‘-

(1) &; e L
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e G O :
(11)  [gg,e1" = [g;,g,] if o £g,
-1
=[9v1’9-2’go ] LE Y
(e) For any W-basic commutator other than & and any non-

negative integer n , the expression (¢/n) is defined

(g/n) = (&,m)° = (,m) . =

It follows immediately (see lemma 4.2(1i)) that o({e,n)) = o(g)(+1)n 5
U(QP) ='ote) + 1 ‘snld to((g/n)) = 0(9}(+J)n+] « . 4lso notiece that ,
if [g,go] is W-basic, then there exists integers i 20 and k =1
such that ¢ = [gi,kxgo] , and then

([Q;go],n) = [gi,(k+n)xgo] = (gi,k+n) .

[Q,&O]O = [gi,ngo,go-]] and
([g,gol/n) = [gi,(k+n)xgo,go-1] o (gi/k+n) :

It now becomes necessary to make a rather peculiar generalization

of definition 2.8 to encompass arbitrary expressions.

Definition I.2

Let us write (fvafbr the sel of sequences N = (Vi)i<& of non-
negative integers, and define a pre-order = on this set by

< 1 s 8 s 2 - ?
(vi)i<T_ (vi = e a0 1 (] =15 .7), Ve S0 .

Notice that the values of vo , vé are not relevant to the pre-order.
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The corresponding strict relation < is given by

)

(v < (vi) €% fEeall 400142 1), v; £ v; and there

I 1<
existe r (1 = r < 1) such that Ve v__;. .

Addition is defined: if N = (v.)

R 1
i and N' = (Vi)i<—r s then

el ~aleg & Vi

To each expression Xx a subset c/%(}g) of (A/’ is defined recursively

over the height of X .

(43 J%(l) =¢,J&(&j) =[(vi)i<_r] where vjzl, vi=0(i;éj) .
(11)  Mix™) =M

(i11) Mz =d(x) UMy -

(iv) M(lxy)) =(M+N: Medix) , Nedy I .

A sequence N is a "lower bound" for a subset Mo of ‘/V) i

NSM forall Medb; it is a "strict lower bound" if N <M

for a1l M e . @

Lemmsa I.l

Easy properties of uV’ .

) If ¢ is a commutator then :M;( c) contains one and only
one sequence, namely M(c) (definition 2.8).
(41 If ¢ is a W-basic commutator other than & and n 1is

a non-negative integer, then M(c) .s a lower bound for

()6(9\) P) U‘{J((Q,’n)) andd%((f{/n)) .
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(iii) M is a lower bound for U{{,(}ilg\ce) if and only if it is
a lower bound for both ’/{{’(251) and J{,(}fce) a - Simtlariy M35
a strict lower bound for ‘/‘(,(;5]352) if and only if is a strict
lower bound for both U%(Z‘q) and d@(:ge) i

(iv) If M, , M, are lower bounds for ‘/%(}’3]) » ‘/%(352)
respectively, then M1 + M, is a lower tound for (/r{,( [J’g'], 1) s

+ M2 .
P

'{)N

If either M.l or M2 are strict lower bounds then so is

/\ =

Iemma I.2

Suppose ¢ is a W~basic commutator other than & and n is g
non=-negative integer. Iet p : A+ G Dbe any description of
a group G » Then there exists a (possibly empty) expression z
such that (¢/n)p = ( (g/n+'!)-](gv,n+1)']§' )o where M(c) is a

strict lower bound for (/{;(g) .

Breoil

The proof uses the following easily checked group identity: if
1.=1

-1 B -1
a and b are elements of a group, then [a,b ] = [a,b,db ] [a,b] .
i1 e= [gi ,l,g] for some non-negative integer k , then

(¢/n) = [(g,n),go-]] and so, using the group identity Jjust

mentioned,

-1

(¢/n)p = ( [(g,,n),go,go']] [(g,n):go]'] )p
o7

= ( (¢/nt)) (e,n1)™! o
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and the result is true with 3z empty.

The proof may now proceed by induction over the weight of c ,
assuming ¢ = [g],ge] y S 74 g5 and the result is true for cy -
Thus (c¢/n) = [(g]/n),ge] and so

{g/mlp = - (g1/n+1)'](g],n+1)']a] s % Ip

where M( ,cq) is a strict lower bound for c/%('zv]) s  But now

(g/n)p = ([ (g/n41) ™ (gun#))™ , g5 1 2500

where z, = [ (g:v.]/n+1)"1(c~.l,n+1)'] » S 2% Mz 501,

But M(g]) is a strict lower bound for J‘(,('zv.l) so M(c) =M(¢;) + M(c,)
Mic) = M( g;I) + M(ge) is a strict lower bound for [gv.l,'c\e] and hence
for Zy o Thus

(¢/mbo = ( [(gy/n41) 7 4eolz5llgy )™ eplz, ) 0

where gz = [(%]/nJ’])-]’EQ’(%] ,n+1)-]] . bt V%(%) contains

only the sequence N = ( where Vv = 2“0(9;1) +u(e) +2n +3

¥y g
R & : TR P
gad Tey 1 21 <1, vy Eui(g]) + pi(ga) But ¢ 1is basic,

i e Wanmi
80 ¢ >9~2 and hence ) 7450 But ¢, 1is itself asic,

so there exists r (1 = r <T1) such that pr(g:q) >0 ., Then,
since M(¢) 1is the sequence (pi(g]) + “1(92))3'.<'r s Mcy <N
and so M(¢) is a strict lower bound for M(rz@) .

men (g/n)e = ( [(g/04),8)  mz5l(e,m¥)s6] 252, ) o

1

where 4= [92,(g]/n+1),(gv1/n+1)' 1. and

7 = [gg,(g1,n+1),(gv],r1+1)']] and again M(c) 1is a strict lower

1\5
bound for (ﬁﬂz_h} and ./%Q%) . Thus
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(¢/n)p = ( [(g;/n41),e,17 [(g,041),,] 26 ) 0

= (g/n+1)'](g)n+1) 25 ) P
where z, = = 225 [wﬂa,[(c],nﬂ) ] %% and again M(c) is
a strict lower bound for J’(a( §6) « This proves the lemma.

= =

TLemma T.5

If N is a strict lower bound for J{;(;g) and E :x+>y then

N is a strict lower bound for (/l{,(x) .

Proof

This follows immediately by checking the various parts of definition

2.k, <>

Lemma I.4

Let ¢ be a W-basic commutator other than g, and let
P :A> G Dbe any description of a group G . Then to each

non-negative integer n there exists an expression

o (-1)" : ;
s (¢/n) X, » either u or vy possibly empty, such

that
o
(1) X P =<P,
(1%) u, is empty, and if n 21, w is of the form
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B, B B
ARG k W n+l
B =B By eeed € B 2 where k 2 n and a = o(c)(+1) .

CAELY - IF Y, 1s nonempty, then o(y,) 2@ and M) is

a strict lower bound for Mn) .

Proof

By induction over n . If n=0, (¢/n) =(cf0) =¢°

and the lemma is true with both U and 2 empty.

Now suppose the result is true as stated for n . The corresponding
result is proved for n +1 . By lemma I.2, there exists an

expression z (possibly empty) such that

%
-1 -1
(¢/n)p = ((¢/n+1) " (¢,n+) z;)p and M(¢) 1is a strict lower

bound for L/"‘L(g;l) . Hence gop = x'p where

n
- =l,g.n((g/n+1)'](g,n+])']g'])(-]) T

. -1 -]
Suppose n is even. Then X' = gﬂ(g/nﬂ) (gonH)" 2,7,
-] -]
. 1
and E : x' > gﬁ(fq’,nﬂ) (c,n+l) 262,%, where

-1 -1 :
Zp = [(¢/n+1) ,(c,n+1) '] and so M(c) is a strict lower bound

for ﬂ,(ge) and o(ge) ganﬂ i Shus

=1
Q]\Ln(g/nﬂ) Z3 where

=1
E :;g'*’g.n(g,,nﬂ) Zs
-] .
-t [(¢/n+1) ,geglyn] and so M(c) 1s a strict lower bound
for ﬂ,.(%) and o(%) = an+1 . But now, since o(gggv]xn) = % s

B e geg]yn Ter WZ), where either w or z) may be empty, but when
W
they are not, W<€ B, ., , o(w) = a and o(’z\h) 2Q 4 -
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Further, M(¢) is a strict lower bound for y\v) and for

z,,/i{,(%l}) - Thus B :x'>u(g,nH) m(JnH '5

: | 2
It is now shown that E : x' + pan'fzdjﬁ(g/nﬂ) zz  where

~

yyeBw

'~an+'l but w' # lig slwt)er o and z_ may be empty,

~5
but when it is not c(§5) P2 g 4 1 and M(c) is a strict lower

bound for 6/%(;5) . If w is empty or 1 this is true with

w' = (Q)n+1)-] and = empty. Otherwise, suppose
W=y 8 ooy o Foreash':d. (¥ st s h) M(gi) ey%(y)

and so M(c) < M q’i) « Thus for each i there exists an integer
r (1 = r <T) such that p(g) <u(§,-) s A Bag

ur((g,n+1)) = ur(g) and so (c,n+l) #a . Thus (c,n+l)

is not the same as any of the commutators & (1 =1 =h).

But (c,n+l) is W-basic (see definition I.1(A) and lemma 4.2(iv)).

Thus there exists an integer t (O =t = h) such that

L g I " V. Y
- t =l "t41 "t42 h s ;
= i - .
w ?.V] zg,g "'?"t (g,nﬂ) %t ] %t D seedy is a W=basic expression
W : < e
But w e B, ,, soeach a, is a commutator of semiweight
= n+l ; BW
<O:n selitios Adso. o (c.n4l)) =1alg) ()} = @reoRat” & nan+1 .

But w' 74 1 since it contains the non-trivial factor (%,n+]) .

is of semiweight =z ¢ and

il o] 2 Q
Again, o(w) g0 each "

a,
~t
-1
o((g,n+1)) =i 8o o(y}') 20 . fhen - E : (c.a#l). ¥+ VL’%E
where O'(Z ) 2 o((g,n+1)” y) + 1 za + 1 and, since Zg is

a product of commutators of (¢ ,n+])—] with other W-basic

commutators, M(¢) is a strict lower bound for f_/‘f’g(%) .



160

. Ml =1
— T =
Finally, writing u A N B and Vv e §5z! [%z!,(gjn+1) ]Ea 5
-1
. ! >
B x gnﬂ(g/nﬂ) Yo @end u . and v . @re of the

required form.

The argument when n 1is odd is similar but slightly simpler.

Theorem I.l

Suppose W 1is a semiweight range, ¢ and Be W, ao<<p and
there exists a W-basic commutator ¢ € A such that

@=o(c) <<Pp. Then, if p : A>F 1is any free description
of the absolutely free group F , the element gop € Wa(F)

cannot be described by a W~basic expression modulo WB<F) at all.

Proof

Suppose on the contrary that gop can be described by a W=basic
Y, Y @
gt M -

expression W = 2 & ! Then, by lemma I.k, there exists

o=l)

ee el
~n
n+l
Yn 4 such that

is a basic expression of the form

L = o
an expressicn %, gnﬂ(g/n 1)

p=c¢cp vhere u

}'En+'l ~n+1
Py B 5
Ve k n+42
= = 1 .
P By By ek (k2n +1) apd ofv +]) 2 o(c)(+)

n+2
Also o(¢/ntl) 2 o(c)(+1) SO X 4P =Y modulo WE(F) Y

where & = o(g)(+1)n+2 . But ‘ofg) << B, 80 EEB. DNow

there exists h (O =h = n) such that
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' = aY] i ' € Bw and cr(r::.Yth.lz—J.Yh+2 aYn
2 % By C g %h4 %nee %

! = O — 1 W
P=ge =Y 4P modulo Wg(F) and both w' and L e B

=

} 28 o Then

=

Thus, by the basis theorem, w' = LA and'go. h =k .  Bub
it has already been seen that h =n and k =zn +1 : this is a

contradiction. <>
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APPENDIX II

TERMS AND SYMBOILS

USED IN THE TEXT
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SYMBOLS IN MORE OR LESS COMMON USE

Logi

= logical implication.

<> logical equivalence.

Set theog

For any property J° that the elements of a set A may have,
fois e kA, JD(x) } is the set of all elements of A for
which g}>tx) is true. When the set A 1is clear from the

context, | x ¢ ch(x) } may be written.

AUB and AN B are the union and intersection respectively

of the sets A and B . The union of a family of sets is

00

eltten UJ Ry s 3 - P U 4, ete., and the union
i=l i<t ieTl

of a set 74 of sets is written .L)zQ. The symbol lfl is used

in a similar fashion for intersections.

a € A meepe " & 18 a member of A ", Occasionally a , b e A

is used as shorthand for "a e A and b € A " when no confusion

can arise. a¢A means "a is not a member of A ",
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{a} is the set whose only member is a , {a,b} is the set

whose only members are a and b , and so on.
@ 1is the empty set.
AS B means " A is a subset of B " .

AN B 1is the complement of B in A, the set

S e S

0]

n
Jim 0 (%)

) y (X

] n o ;
sequences; [Xi}i=ﬂ p {Xi]i=] P {Xi]i<& are the corresponding

) etc. are finite and transfinite

(x i<t

o al h g

sets.

® : A> B indicates that ¢ is a function mapping the set A

into the set B . Exceptions are the notations GLg > S
ey s e ¥¥ vy "and E'rx¥ y  vhich'are given‘specisl
definitions in Chapter 2. Functions are variously written as
right or left operators: the image of x wunder ¢ may be
written x¢ or ¢(x) ; the notation used for a particular
function will be made clear in the text. It X 15 a subset of

the domain of ¢ , then its image under ¢ 1is written X¢ or

P(X)

|o| is the (cardinal) number of members of A .



Arithmetic

W 1is the set of non-negative integers and the first infinite

ordinal.

n "

m I n , for integers m and n , means m divides n '«

e g iy Rena el L ainl
(r) is the usual binomial coefficient: () = EEaY

Group theory

With the exception of the underlying group of a Lie ring, groups

are written multiplicatively. The unit is denoted 1 .

[x,y] is the element x-]y-]xy ,

A=3B means " A is a subgroupof B " ., If A is a normal

subgroup of B the factor group is denoted B/A .
A=B means " A is isomorphic with B ".

AB 1s the subgroup generated by the normal subgroups A and B .

The subgroup generated by a family of normal subgroups is denoted

ﬁAi, 1 el T s

4= i<r 1el

[A,B] is the subgroup generated by all commutators [a,b] where

arevAinand iih el B,
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YC(G) » for positive integers c¢ , are terms of the lower central
series of the group G , defined by Y](G) =G and

Y .AGL =iy

i c_](G),G] Fop e =1

n
57(G) , for non-negative integers n , are terms of the derived
series of the group G , defined by 6O(G) =G and

n=1

B e s e e s eyl 2or. w00

Cn(G) , for non-negative integers n , are terms of the upper
central series of the group G , defined by §O(G) = (1} and
En(G) is the complete inverse image of the centre of

G/Qn_](G) POEE - TR N

Varieties

— L S—T—

The language and notation concerned with this topic will follow

Hanna Neumann [9]. In particular,

F,r , for some cardinal T , is an absolutely free group of rank

F wusually denotes an absolutely free group of arbitrary rank.

Varieties themselves are distinguished by double underlining,
V , S, and so on, to indicate German script. If V is a variety
the corresponding verbal subgroup of the absolutely free group F

s el Gih ST



o7

F_(¥) is the free group of rank T of the variety V (a

_f . == / q
V-free group FT(X) FT/V

Particular varieties: Ec is the variety of groups which are
nilpotent of elasp ¢ and E& is the variety of groups which
are soluble of length 4 . The notation associated with

polynilpotent varieties is defined precisely in definition 5.1%
Algebras
The word "algebra" in this thesis is to be construed in the sense

of "universal algebra", as in B. H. Neumann [8] . Language and

notation concerned with algebras follows this work.
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SYMBOIS DEFINED IN THE TEXT

References, unless otherwise stated, are to definition numbers.

A 1ii PKr(G) 3 E‘Kr 1.18
Sl T
R 2R3 R0 %13 L
@) 3.
g . c 1.4 SR
hi N
a > 0.1 3 Q 5 th
2SI Q@ ’ 2 2 Q'(p(G) 3
g ix*y 23l S(p) 1210
E & BTy o .h tr 1412
pox¥ b 2.k Wt 1.3
G = (g,)c s /9 K W i
it lemma 1.1 W{l 1.9
T 9, 3.2 W () 1.10
K, Kr 5.1 Yga Tl
1d 1.12 X o i
m lemma 1.14 5K 5.9
W i
M(¢) 5.8 = i
M(e) I.1 0. TG

N 1.3 " 1
i following defn. 1.11 ui(g) 2
N I.1 v i
B

(w) s T 3.2



x 3.4 00
5 1.6 @ (41"
g %8 s A
Q B
S W 1k B b
S 2.3 p°
T ot 2.5 (gyn)
< 3.4 (¢/n)
§1 ~ &, (nil o) 1.1k P AV
-) 107} 5.2 B
[T x
1=m

TERMS DEFINED IN THE TEXT

Algebra of expressions
Basis theorem

Basis theorem for Lie rings
B-order

Commutation

Commutator

Compatible

Describable algebra

.105 F) 1.7, 302

2.5

BT 4,1

ete.

1.16, 5.3
145
4,2
T4l
b4
;b

3.4

53

gl
theorem 2.2
theorem 2.4
1.14
1.1
1.4
1515

15
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Description

Empty expression

Expression

Free description

Good B-order

Height

Inversion

Ieading part

Left-normed commutator,
left-normed basic commutator

Iength

Lie ring

Limiting value

Iower bound

Mobius function

Much greater than

Multiplication

Number of times ¢ mentions =9

Partially collectable

rage

lemma

bage

Polynilpotent series, groups and varieties

Polynilpotent semiweight (range)
Product of commutators
Semiweight, semiweight range

Strict lower bound

1.7,

1.6
38

I
].6
To1k
144(e)
Vel

1.12

5.1
2
20
245

I.1

2o
1l
2.8
2.7
3.1
3.4
2 o2
1.8

I.1
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Trailing part ele
Type 31, 50
Unit 1l
W-basic commutator, expression a3
Weight 1.3
W-ordering et

(=) -basic commutator 1.14
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