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introduction, the work reported in this thesis is entirely 

my own with no assistance from any other person. 

In this, as in any mathematical text, certain elementary 

and general facts are assumed in the very language used: 

these are described in detail in Appendix II. Apart fi-om 

these only two known results are used, and these are 

acknowledged with references when thê ^ appear. 
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CHAPTER 0 

INTRODUCTION 



EACKGROIMD -

The conventional theory of "basic commutators may be considered to 

he an investigation of the properties of the lower central series 

: c = 1,2,... of an absolutely free group F , or alter-

natively of the properties of the corresponding factor groups, 

which are the free nilpotent groups of various classes: 

F / = n^) ' 

Suppose that G is a group generated by a subset . Then 

a set of "formal expressions" may be constructed using the 

elements of ^ , the symbol 1 and the operations of inversion, 

multiplication and commutation. Each of these formal expressions 

will then represent a unique element of G in the obvious way. 

Certain formal expressions, known as "basic commutators" of , -

"weight c" are defined for positive integers c and well ordered 

by recurs ion over c as follows: 

Throughout this thesis certain symbols in more or less common 

use will be employed without formal definition. For the reader's 

convenience these are collected in Appendix II, together with all 

terms and symbols defined in the text. 



(i) The basic commutators of weight 1 are the elements of 

t^. They may "be well-ordered in any way. 

(ii) Assuming that c ^ 2 and the "basic commutators of weight 

< c have been defined and ordered, the basic commutators of 

weight c are the expressions of the form [x^y] where x and 

y are basic cormnutators of weights r and s respectively, 

r + s = c , x > y and, if x = [Xi^Xa] then Xs ^ y . The well-

order may be extended to the basic commutators of weight c in 

any way so that they follow the ones of smaller weight. 

The following facts have been established. 

(1) A "collecting process" is defined, by means of which a 

formal expression for an element in F(^) , where is a free 

generating set for this group, can be transformed into a particular 

type of expression known as a "basic product" of the form 1 or 

b̂  ̂ bg^.bj^ where b̂  ^ b^ , basic commutators of 

weight ^ c , b̂  < b^ < ... < bĵ  and ^ ' ''' '̂k ^^^ 

non-zero integers. The basic product represents the same element 

of the group as did the original expression. 

(2) The representation of a particular element of F(K ) in 

this form is unique. 

(5) r^(F) / = is a free Abelian group, for 



which those elements represented by hasic commutators of weight c 

form a free basis. 

(4) The upper and lower central series of F(N^) coincide 

More specifically, provided the rank of F is > 1 , 

^ (F(N )) = r (F(N )) . r =c c-r ^=c 

(5) The lower central series of the absolutely free group F 

has trivial intersection: C \ r.(F) = {1} . In other words, F 
i=l ^ 

is residually nilpotent. 

(6) "Witt's formula". When the number T of generators is 

finite, the number of basic commutators of weight c is also finite, 

and is the number Z! pL(r) , where p. is the Mobius 
r Ic 

function, defined for any positive integer r : |i(r) = 0 if 

there exists p > 1 such that p^ | r, |j(r) = (-1)® other-

wise, where s is the number of primes dividing r . 

The results (1), (2) and (5) can be considered to constitute a tool 

for investigating these groups and the results (3), and (6) 

as applications illustrating its power. 

Parts of this theory have been applied to the study of p-groups 



The history of the subject can be covered briefly. The theory 

was initiated in 193^ by P. Hall [4] in a paper concerned with 

p-groups. Here the notion of "basic commutator" was introduced 

and the collecting process investigated (Result (1)), however the 

question of uniqueness was not treated in this paper. In 1957 

E. Witt [10] showed that the whole problem could be translated into 

an equivalent one concerning free Lie rings, and also produced the 

Witt formula (Result (6)). At about the same time W. Magnus [6,7], 

also working in terms of free Lie rings, introduced the so-called 

"Magnus Ring" in terms of which the residual nilpotence of 

absolutely free groups (Result (5)) was proven. Finally, thirteen 

years later, Marshall Hall Jr. [3], using the results of all of 

these papers, was able to prove the "basis theorem" (Results (2) 

and (3)) thus rounding the theory off nicely. 

Surveys of this theory may be found in P, Hall [5] and R. H. Bruck 
[ 2 ] . 

PREVIEW 

The work reported in this thesis arose originally from the desire 

to prove the results of Chapter 5 and more generally from the 

feeling that it should be possible to modify the theory of basic 

commutators as just described to permit the properties of free 



polynilpotent groups to be studied in the same way. 

The idea of "weight" of a conmutator is well-known. This may be 

extended to the idea of weight of an expression ( definition 1 .3 ) 

and then the terms of the lower central series of a group may be 

defined thus: an .element of • G belongs to r (G) if and only 

if it may be written as an expression of weight g c . This is 

possibly not a familiar way of defining the lower central series, 

and is made precise in definition 1.10 and lemma 1.6. 

Here the idea of weight is generalized to that of "semiweight" 

and "semiweight range". Then, for a given semiwei^t range W, 

subgroups W^(G) of a group G , consisting of all elements which 

may be written as an expression of semiweight § a are defined. 

It is in the generalization of "weight" to "semiweight" that the 

crux of this thesis lies: for, just as the lower central series 

may be defined in terms of weight and then the conventional theory 

of basic commutators investigates the properties of this series, 

so the subgroups W (G) are defined in terms of the semiveight 

range W and the theory to be described here investigates the 

properties of these subgroups. But the semiweight range W may 

be chosen so that these subgroups contain â iong them the verbal 

subgroups corresponding to polynilpotent varieties. 



Wiile the semiweight range W m y be chosen so "that subgroups not 

directly connected with polynilpotent groups may be investigated, 

so that the early part of this thesis vill be sli^tly more general 

than its title suggests, the prime consideration throughout -will 

be the study of polynilpotent groups; in Chapters 5 and 4 it will 

be seen that in fact I have been able to prove some important 

results only for the polynilpotent case. 

In Chapter 1 the idea of a semiweight range W with its associated 

semiweight a is introduced. In terms of this the W-basic 

commutators are then defined. The most important part of this 

chapter consists of a proof that the number of W-basic commutators, 

for a given finite number of generators, is independent of the 

choice of W . 

Chapter 2 develops the collecting process which together with the 

main result of Chapter 1 provides the basis theorem. In this 

chapter the forgoing theory is applied to Lie rings and, as mi^t 

be expected, the results are pleasingly straightforward. 

In Chapter 5 the "polynilpotent" semiweights are defined. A 

result analogous to the residual nilpotence of absolutely free 

groups in the conventional theory, namely "partial collectability" 

is proved for this case. 
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Chapter 4 investigates the upper and lower central series for 

certain semiweights ( including the polynilpotent ones ). It 

is shown that the complete inverse image of the centre of 

F / ̂ cf^) } where F is an absolutely free group, is 

for a suitable and quite natural definition of o-l . 

By this stage results analogous to (1) - (6) of the previous 

section have been stated and proved. 

Chapter 5 contains the solution of a problem which vises some of 

this theory. This chapter is in the nature of an excursion, but 

is included for three reasons: firstly for its intrinsic interest, 

secondly becavise it in fact caused me to embark upon this work 

and thirdly because it is an application, albeit not a very 

mysterious one, of the results of Chapters 1 -

FORMAL EXPRESSIONS 

The conventional theory of basic commutators concerns itself much 

of the time with formal expressions: not so much the elements 

of a group themselves as the way they are written down on paper. 

In the present theory it will be fotmd that more and more emphasis 

is placed on this aspect and that group-theoretic results, though 



the primary object of this study, appear infrequently. 

In order to avoid this essentially metamathematical approach in 

this thesis I have replaced the idea of formal expressions for the 

elements of a group "by the elements of a free algebra. This 

algebra is chosen so as to be anarchic enough that we may regard 

(intuitively) the elements of the algebra to be in one-to-one 

correspondence with the possible formal expressions for elements 

in the group. 
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CHAPTER 1 

W-BASIC COMMUTATORS 



n 

THE ALGEBRA OF EXPRESSIONS 

Definition 1 .1 

Let 5 = some set indexed, "by the ordinals less than 

some ordinal T , the indexing being one-to-one. Form the 

algebra ( A , fi ̂  e ) generated freely by the set G with 

operator domain n = { e , v , i J . , X } where 

e is a nullary operator ( the "unit element" ), 

V is a unary operator ( "inversion" ), 

|a and X are binary operators ( "multiplication" and 

"commutation" respectively ) , 

the only law being that |J, is associative. 

A more conventional notation will be used for the effect of the 

operators on A , as follows: 

e = 1 

X V = X " ^ 

OT = > all X , jr e A . 
I 

^ ^ = J 
Parentheses will be used in connection with the operations of 

inversion and multiplication in accordance with the usual 

conventions. A "left-normed" convention will be used in 
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connection with the operation of commutation, that is, 

t a , h , c ] = [[ a , b ], c ] , and so on. 

The set G will be considered to be a subset of A in the 

usual way. The elements of A will be called "expressions" and 

A itself will be called the "algebra of expressions". 

It should be remarked that the operators e and v are not bona 

fide unit and inversion operators with respect to , since the 

associative law of multiplication is the only law of A j for 

instance xl ^ X and xx'"" ^ ^ , 

We have at our disposal some well-known results concerning such 

an algebra, which may be summarized as follows. 

Lemma 1.1 

(A) (i) 1 e A and G c A , 

(ii) a e A a"̂  e A , 

(iii) a , b € A r ^ a b e A and [a,b] e A 

(B) If a e A then one and only one of the following five 
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possibilities is true: 

( i) a = 1 . 

(ii) a e G . 

(iii) There exists a unique x e A such that a = x -1 

(iv) There exists a unique pair x , y e A such that a = [x.y] . 

(v) There exists a finite sequence x̂  , , ... , of 

elements of A ( k ^ 2 ) such that a e x^^...^ , .and jione of 

the elements ^ can be written as such a product themselves, 

that is, each x^ is subject to B (i), (ii), (iii) or (iv) of 

this lemma, but not (v)). 

(C) To each a e A there corresponds a xiniquely determined 

positive integer ht(^ , called the "height" of a , which is 

defined by its properties: 

(i) ht(lj =1 and g. e G ht(^.) = 1 , 

(ii) ht(a"^) = ht(a^ + 1 , 

(iii) ht(^) =ht([^b]) =ht(^ +ht(b) +1 . 

Rou^ly speaking, the height of an expression is the ntmober of 

symbols required to write it in terms of the generators G and 

the operators e , v , |a , X using Lukasiewicz' notation. Should 

the reader desire it, a brief but sufficient description of this 

notation may be found in B.H.Nevmiann [ 8 ] , p.26, 
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It wi l l "be useful to have a rather a r t i f i c i a l definition of 

powers of an element in A . 

Definition 1.2 

Let n be an integer and let x e A . Then x^ is defined 

recursively: 

( i ) X = L , 
( i i ) x̂  = X and i f n > 1 , x^ = , 

( i i i ) x'^ is as described in definition 1 .1 and i f n > 1 
-n -(n-1) -1 

Since 1 , none of the "index laws" hold good with this 

notation. 

Definition 1.3 

Let N denote the set of positive integers with an extra element 

00 adjoined. The usual addition and order on the positive integers 

is extended to encompass oo by: 

O0 + n = n + oo=:00+oo=:oo ^ 
for any positive integer n . 

n < 00 J 

The mapping wt : A ->- N is defined recursively over the height 

of expressions in A as follows: 
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( i ) V t ( l j = CO ; € G V t ( ^ ) = 1 , 

( i i ) w t ( x - ^ = w t ( ^ , 

( i i i ) = m i n ( , } , 

( i v ) w t ( [ x , 5 r ] ) = + . 

F o r e a c h e x p r e s s i o n x , ^ ( x ) i s c a l l e d t h e " w e i g h t " o f x . 

D e f i n i t i o n 1 A 

A s e q u e n c e ( ^ o f s u b s e t s o f A i s d e f i n e d r e c u r s i v e l y b y 
( i ) = G , 

( i i ) F o r n > 1 , C ^ = { [ x , ^ ] : x € C ^ , 5 r 6 ^ , r + s = n } . 

00 

T h e u n i o n C = I J C o f t h i s s e q u e n c e i s c a l l e d t h e " s e t o f 

c o m m u t a t o r s " o f A . A n e l e m e n t o f C i s c a l l e d a c o m m u t a t o r . 

T h e s i m p l e s t p r o p e r t i e s o f c o m m u t a t o r s m a y "be s u t m n a r i z e d t h u s : 

L e i m n a 1 . 2 

( . i ) G c c c A , 

( i i ) I f c e C t h e n 1 ^ w t ( c ) < » a n d h t ( ^ = 2 w t ( ^ - 1 

( i i i ) I f c 6 C t h e n e i t h e r 

( a ) w t ( ^ = 1 a n d c e G , o r 

( 3 ) w t ( c ) > 1 a n d t h e r e e x i s t \ a n i q u e ^ j r e A 



16 

such that c = [^jr] , wt(c) =wt(x) + wt(jr) and hence 
^(x) <-trt(c} and vt(ĵ  , 

(iv) C^ is the set of all commutators of weight n . 

It will be noticed that the weight of a commutator, as defined 
here, corresponds with the usual definition, but that the idea 
of weight is extended to arbitrary expressions. It may be felt 
that the process of "formalization" is being carried to extremes 
when commutators are defined to be expressions rather than group 
elements; I am of the opinion that this definition leads to a 
simpler treatment, especially when commutators of hi^er weight 
are being considered. 

The emphasis throughout this study will be on groups, however 
some of the results will apply to more general algebras ( see 
for instance theorem 2.3). These may be defined as follows: 

Definition 1.5 

A "describable algebra" ( G , fl , e ) is an algebra with 

operator domain Q ( the same as in definition 1.1 ) in which 

multiplication is associative. 
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Groups will be written multiplicatively and then the operators of 

Q will have the ohvious effects : e = 1 , xv = x'̂  , xy|j. = xy 

and xyX = x"V'^xy . 

The method "by which the elements of A describe the elements of 

such an algebra, and so supplant the notion of "formal expressions" 

may now be made precise. 

Definition 1.6 

Let G be any describable algebra ( or, more particularly, a 

group) and suppose G is generated by a set = 

of generators indexed by the ordinals less than T . Let A be 

as defined in definition 1.1 and let p : G->- ̂  be the mapping 

g^p = g^ ( i < T ) . 

Then p may be extended uniquely to an epimorphism p : A > G . 

The mapping p is called a "description" of G ; further, if 

G is a relatively free algebra and freely generates G , 

p is called a "free description" of G . 
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SEMIWEIGHTS 

Definition 1 . 7 

A set W is called a "semiweight range" i f i t has an order g 

and addition + defined on i t with the following properties: 

(i) ^ well-orders W . \J has a least element 1 and a 

greatest element «> . 

( i i ) W is closed \mder addition and W {oo} is generated by 

1 imder addition. 

( i i i ) Addition is commutative: a + 3 = p + a . However 

addition is not necessarily associative; a left-normed convention 

wil l be used: a + p + r = ( a + p ) + y and so on. 

(iv) a , 0 < c o ^ a + p<oo 

a < CO a < a + fi 

0! + 00 = 00 

(v) â  < and p < 00 â  + 0 < Ĉ  + 3 

(vi) a ^ g g y r + 3 + Q! = r + a + p ^ 3 + a + y . 

O 
Commutativity of addition together with (iv) and (v) yield many 

similar results quite easily, for instance ^ o^ and g ^̂  

- ' ^ i l l without further 

comment. 
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It will "be noticed that at this stage the symbol ^ has appeared 

with two distinct meanings - the ordinary order on the integers 

and the order just defined for a semiwelght range. Before long 

a third meaning will appear ( definition 1.12 ). Since these 

different orders are defined on disjoint sets, no confusion shoiild 

occur. 

Definition 1.8 

Let A "be an algebra of expressions and W a semiweight range. 

A mapping a ; A > W is called the "semiweight on A 

associated with W " if it has the properties 

(i) a(lj = CO ; € G a(g,.) = 1 . 
(ii) a(x"^) = a(x) . 

(iii) = min { , } . 

(iv) a([x,5r]) = + a(x) . O 

Clearly a is defined uniquely hy W , this definition amounting 

to a recursive specification of over the height of x . 

Lemma 1.3 

With the notation of definition 1 .8, the mapping a : A > ¥ is 

onto, provided that the set G of generators of A is nonempty. 



20 

Proof 

This follows easily by transfinite induction over the elements of 

W , using definition 1.7 (iv), definition 1.8 (iv) and the closure 

of A under commutation. 

Lemma 1.4 

With the notation of definition 1.3, N is a semiweight range 

and >rt : A > N is the associated semiweight. 

Proof 

This follows immediately from a comparison of definitions 1.3, 

1 .7 and 1 .8. 

As remarked in the introduction, the notion of "semiweight" is a 

generalization of that of 'Veight". It will he seen throughout 

this thesis that if the word "semiweight" is replaced by "weight" 

the theorems will reduce to known ones or trivialities. 

It might be worth remarking that N is the only possible 

semiweight range ( up to isomorphism ) for which addition is 

associative. 
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Lemma 1 .h provides a simple example of a semiweight. For a more 

interesting one we mxast wait until Chapter 4 when the "polynilpotent" 

semiweights are defined. 

VERBAL SUBGROUPS 

Definition 1 .9 

Let A be an algebra of expressions and let a : A > W be 

a semiweight. Then for each a e W , the subset W of A 

is defined to be the set of expressions of semiweight s a , 

^ = C ̂  : X e A , a(x) ^ a } . 

Lemma 1 

(i) Let a : A -V W be a semiweight and 0 be any endo-

morphism of A . Then, for any x e A , a(x0) ^ . 

(ii) With the notation of definition 1.9, W is a fully-

invariant subalgebra of A . 

Proof 

(i) follows by an easy induction over the height of x , and 

( ii) is a corollary of ( i) . 
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Definition 1.10 

Let G be a deacribable algebra ( or in particiilar a group ), let 

p : A G be a description of G and let a : A ̂  ¥ be a 

semiweight. Then for each a e W the subset W (G) is defined 

to be WJG) = ^ p = { ^ : X e A , ^ a } . 

Theorem 1 .1 

With the notation of the forgoing definition, 

(i) independent of the particular description of G 

chosen to define it; it depends only on G , W and a , 

( ii) ^ verbal, and hence fully-invariant, subalgebra 

of G . 

(iii) W^(G) = G and W (G) = (1 } . 
1 

(iv) a g 3 W^(G) c W^(G) . 

Proof 

Parts (i) and (ii) follow immediately from lemma 1.5 and 

parts (iii) and (iv) follow easily from definitions 1.7^ 1.8 and 

1.10. < C > 
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Lemma 1.6 

With the notation of lemma 1 N (G) = r (G) for any group c c 
G and positive integer c . 

Proof 
Suppose p : G is any description of G . Then, for any 
X € A , wt(x) ̂  c T^ xp e r^(G) . This follows "by an 
easy induction over the height of x . Consequently, if 
X € then there exists x € A such that x = xp and 

wt(:̂  ^ c and then x e r (G) . Thus N (G) ̂  y (G) . The C C O 
converse inclusion, ^ ̂ ĉ *̂ ^ ' ̂ ^ proved by induction over c, 
First r^(G) = G = N^(G) . Now suppose c > 1 and the result 
is true for all smaller values. Since T (G) = [ r T(G) , G ], C C • I 
any x e T (G) may be written in the form 
X = [â  ] [a^fh^] where k is a finite 
integer and, for each i , a . e y -.(G), b.eG and s, = . 1 C • I 1. X 
Then by the inductive hypothesis there exists a^ € A such that 
a. = a.p and wt(a.) § c-1 . There also exists b. e A such 
that = "b̂ P • Write x = [â  ] [a^,^] 
It follows that X = ̂  and ^ c . Hence x e 
and the result follows. 
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As a conseq.uence of theorem 1 .1 the following definition may be 

made. 

Definition 1 .11 

Let W be a semiweight range and let a e W . Then W is the 

variety of all groups G for which W^(G) = {1 } . 

It follows from lemma 1 .6 that is the variety of groups 

G for which r ,AG) = {1 } ̂  that is, the variety of groups c + l 
which are nilpotent of class c . Thus = • 

W~BASIC COMMUTATORS 

In this section a well-ordering of the set C of commutators is 

described. This order depends on two things: the order imposed 

on the generators G by the ordinals indexing them and the semi-

weight a ; A > W . Subsequently a subset of C , the set of 

"W-basic commutators", is defined in terms of this. The group-

theoretic results arrived at later will not depend upon the 

ordering of G , though they do depend very much upon W . 

However the intermediate steps rely heavily on this well-ordering. 
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The first task then is to define this well-ordering of the 

commutators. This must be done fairly carefully: it is 

defined first as a relation and subsequently proved to be a well-

order. Before embarking upon the definition it should be remarked 

that, for any semiweight range W , the set of commutators of 

semiweight 1 is exactly G . 

Definition 1.12 

Let G : A > W be a semiweight. The relation < on C 

is defined recursively over the semiweight of commutators. 

(i) g. if i < j ( for g. , 6 G ) . 

(ii) < a(jr) . 

It remains to define the relation on pairs of commutators of the 

same semiweight > 1 . Suppose then that = = i > ^ 

and that the relation < has been defined on the set of all 

commutators of semiweight < | . An intermediate definition 

must be made: suppose a(x) = i . Then since g > 1 we 

may write x = [x^,:^] . Then the "leading" and "trailing" 

parts of X are defined 

if ^ < x ^ or ^ = x ^ 

= ^ otherwise, and 

M x ) if ^ < x ^ or ^ 

= x- otherwise. 
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then a < b if 

(iii) = = | > 1 and 

(a) < , 

(b) ld(^ = ld(b) and tr(a) < tr(y 

or (c) ld(a) = , = tr(y and b^ < a^ 

( where a = [a^,^] and b = [b^,"^] ) . 

The reversal of the relation in part (iiic) is not a misprint. 

With regard to this part of the definition it will be noticed that 

if ld(a^ = ld(b) and tr(a^ = "tr(^ then either b = a or 

where a = . 

(iv) The usual notations are used: 

a ^ b a < b or a = b , 

a > b b < a , 

a ^ b b ^ a . 

The relation ^ is called the "¥-ordering" of C . 

Lemma 1.7 

With the notation of the forgoing definition, ^ is a (full) 

well ordering of C . 

Proof 

Notice first that 
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(a) a ^ b g , 

O ) % - S-j i ̂  j ̂  

(r) a g b and = g ld(y , 

(S) a ^ b , = and = -i.. tr(a; = tr(y , 

(e) a ^ b , = , = ItiCy and = tr(y 

( where a = [a^,^] and b = [b^,^] ) . 

Since it is not yet known that ^ is a partial order, these 

statements must be proved by checking all the various possibilities 

listed in the definition. It is now shown that g is indeed a 

partial order. 

(i) ^ is reflexive, by part (iv) of the definition. 

(ii) ^ is weakly antisymmetric. Suppose x ^ y and y ^ x , Vs., ^^ 

Then by (a), g and g a(x) and since the 

relation ^ on W is known to be an order, = "̂ (x) ~ ̂  

say. If 1 = 1 , then there exist ordinals i , j < t such 

that X = and jr = , and then i = j by O ) so x = jr . 

If I > 1 it may be supposed inductively that the relation is 

weakly antisymmetric on the set of all commutators of semiweight 

< I . Then, by (r), ld(^ = , so by (5), tr(x) = tr(5^ 

and finally by ( e), x̂  = jr̂  where x = [x̂  ] and 
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= tjr̂ .JIg] ) . Hence x = jr . 

(ill) ^ is transitive. Suppose x ^ jr g z . Then "by (a), 

'̂ (x) - ^ ^(z) • If o(x) < a(z) then x < z by part (ii) 

of the definition. Otherwise = a(^) = cf(z) = | say. 

From now on the proof follows the same pattern as that of weak 

antisymmetry, only now it may be assumed inductively that the 

relation is a partial order on the set of commutators of 

semiweight < | . 

(iv) ^ is a (full) well-ordering of C . Suppose X c C , 

X ^ 0 , It is shown that X has a least element. Let X̂  

be the set of commutators of least semiweight ( | say ) in X . 

This is nonempty, and if it has a least element so does X . If 

I = 1 then X̂  is a nonempty subset of G which is well-

ordered by part (i) of the definition, and so X, has a least 

element. Otherwise | > 1 and it may be assumed inductively that 

the set of commutators of semiweight < | is well-ordered by ^ . 

Then the set ^ of all commutators of least leading part 

( t say ) in X̂  is defined and non-empty and if it has a 

least element so does X . Further, the set X_ of all 

commutators of least trailing part ( t say ) in ^ is defined 

and non-empty and if it has a least element so does X . But 

^ ^ { } t̂if-̂l } and so has a least element since 



29 

Definition 1.13 

(A) Let a : A W te a semiweight. A particiOar type of 

commutator, called a "W-basic commutator", is defined recursively-

over its weight by 

(i) Every commutator of weight 1 ( that is, every member of 

G ) is a W-basic commutator. 

(ii) A commutator c = ["^a] of weight > 1 is W-basic if 

(a) a and b are both W-basic commutators, 

(b) a ^ ( lender the W-ordering of C ) , 

and (c) if b = [b^,b2] then ^ ^ a . 

(B) A "W-basic expression" is an expression of the form T̂  or 

b, b_ .. .b, where 

(i) k is a finite positive integer, 

(ii) each ^ is a W-basic commutator, 

( iii) b̂  < < ... < imder the W-ordering 

and (iv) each a^ is a non-zero integer ( positive or 

negative ) . 
W The set of all W-basic expressions is denoted B . 

For any a € W , the set of W-basic expressions of the form above 

in which fixrther 
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(v) a ( ^ ) < a ( i = 

IS denoted B . 

For any positive integer c , the set of W-"basic expressions of 

the form ahove in which further 

( v ) ' w t ( y ^ c ( i = 

is denoted B̂ ^̂  <> 
Notice that, i f u and v are two W-hasic expressions other than 

W 

L ^ u e ^ and cj(y} ^ a then w is also a W-basic expression, 

This fact wi l l he used without further comment. 

THE MJMBER OF W-BASIC COMMUTATORS 

This section is devoted to finding an expression for the niimher 

of W-hasic commutators of a given weight when the number T of 

generators is f in i t e . The argument given here is a modified 

version of Witt's original one [10]; his argument does not 

carry over exactly, since i t requires the order type of the set 

of "basic commutators to be u) . 

This section is included not only for the amusement value of 

proving Witt's formula: i t is essential to the proof given in 

Chapter 2 for the basis theorem which in turn is essential to the 
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rest of the thesis. 

Definition 1 

(A) An order ^ defined on the set C of commutators is a 

"B-order" if 

(i) ^ well-orders C -

(ii) a<[a,b] and b < [a,b] and 

(iii) % < [a,b] and i < j < . 

(B) If ^ is any B-order, then a -basic commutator" is 

defined recursively over its weight: 

(i) Every e G is a -basic commutator, 

(ii) is a -basic commutator if 

(a) Both a and b are -basic, 

(t) a < b 

if ^ ^ ^ • and 

(C) A B-order ^ is "good" if the order type of C under i 

is oj ( that is, if there exists an order isomorphism of the 

positive integers onto C ). 
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(D) Let and ^̂  be two B-orders. Then we write 

n " "2 (nil-c) 
if, for any two commutators x , jr of weight ^ c , 

Two immediate consequences of this definition are 

Lemma 1 .8 

(i) If a : A > W is a semiweight and ^ is the W-ordering 

of C , then ^ is a B-order and a commutator is -basic if and 

only if it is W-basic. 

(ii) If ^̂  and ^̂  are two B-orders and ^̂  ~ ̂  (nil-c) , 

then the set of -basic commutators of weight ^ c is the same 

as the set of (^g)-basic commutators of weight ^ c , and they are 

ordered in the same way. 

Lemma, 1 .9 

Let the number r of generators of A be finite and let c be 

any positive integer. Then the number of commutators of weight 

^ c is finite. 
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Proof 

By an easy induction over c 

Corollary 

<> 

Suppose T is finite and c is a positive integer. If g is 

any B-order, then there exists a good B-order such that 

^ ~ (nil-c) . 

Proof 
•K-

^ may be defined to "be identical with ^ on the set of commu-

tators of weight ^ c , and then extended to C in any way which 

preserves weight. 

Definition ^ 5 

Suppose we are dealing with a fixed B-order ^ . 

(i) A commutator c is ""b-compatible", where b is any 

-basic commutator, if [c,b] is (i)-basic. 

(ii) For each basic commutator b , write b"̂  for the successor 

of b under the restriction of ^ to the set of -basic 

commutators. 
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Definition 1. l6 

For any expressions a , "b e A and non-negative integer a , 

define [ a , axb ] reciarsively over a : 

( i ) [ a , Oxb ] = a , 

( i i ) [ a , axb ] = [[ a , (a-l)Xb ] , b ] (a^l) . 

This notation is just shorthand for Engel commutators of various 

lengths. It follows immediately that 

Lemma 1.10 
/ 

( i ) If a , b e C then wt( [a,axb]) = wt (^ + QWt(y . 

( i i ) I f "b is -basic and c is b-compatible, then 

[c,axb3 is basic and b-compatible for each a ^ 0 and 

b'^-compatible for each a ^ 1 . 

Lemma 1.11 

Suppose ^ is a good B-order and T is f i n i t e . Then we may 

may index the co l lect ion of -basic commutators by the positive 

integers ffe^lj^"^ so that i ^ j b^ ^ b^ and then, for 

each positive integer w , there exists an integer n such that 
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i ^ n^ wt(K) ^ w . 
w ' 

Definition 1 .1? 

With the conditions of lemma 1.11, define a sequence of 

subsets of A as follows: 

(i) XQ = G , and 

(ii) ^ is the set of all ^-compatible commutators (i^l) . 

O 

It should be remarked here that, as the indices have been defined. 

Lemma 1.12 

For each integer r ^ 1 , 

(i) X T N X = {b 3 and 

(ii) X \ X . = { [c,axb ] : c e X n X , and a ^ 1 } . 

Proof 
The argument is slightly different for the cases r = 1 and r > 1 
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r = 1 

( i ) = ^ • H e r e ^ = G , = ^ a n d X^ i s 

t h e s e t o f a l l g ^ - c o m p a t i b l e c o m m u t a t o r s . C l e a r l y e G a n d 

i s n o t g ^ - c o m p a t i " b l e . H e n c e {b^ ) c ^ v X^ . Now s u p p o s e 

^ Xq Xt • T h e n c e ^ = G s o t h e r e e x i s t s i < t s u c h 

t h a t c = . I f i ^ 1 , t h e n [ c , ^ ] = [ g , . , ^ ^ ] i s ( ^ ) - b a s i c 

a n d s o ^ e X^ , c o n t r a h y p . H e n c e c = . 

( i i ) ^ = { [c^Q^X^t ] : c e X^ n ^ a n d a ^ 1 } . 

I t i s s h o w n f i r s t t h a t c i s g ^ - c o m p a t i b l e i f a n d o n l y i f i t i s 

o f t h e f o r m [ g ^ ^ P ^ X g ^ ] f o r s o m e i ^ 1 a n d a ^ 0 . A c o m m u -

t a t o r o f t h i s f o r m i s g ^ - c o m p a t i h l e b y l e m m a 1 . 1 0 . Now s u p p o s e 

~ i s g ^ - c o m p a t i b l e . T h e a r g u m e n t p r o c e e d s b y i n d u c t i o n o v e r 

t h e w e i g h t o f c . I f w t ( c ) = 1 , t h e n c = f o r s o m e 

i < T a n d i s t h e n g ^ - c o m p a t i b l e o n l y i f i ^ 1 . T h u s 

= • Now s u p p o s e c = [ c ^ ^ c ^ ] . T h e n ^ ^ 

s o ~ ^ ^ ^ ^ ~1 ^^ c o m p a t i b l e a n d s o , b y t h e 

i n d u c t i v e h y p o t h e s i s , c^ = a n d t h e n c = ) x ^ ] , 

I t n o w f o l l o w s t h a t X^ n ^ = { : i ^ 1 , a § i } ^ 

a n d t h a t X^ n ^ = { : i ^ 1 } . T h e r e s u l t f o l l o w s 

i m m e d i a t e l y . 
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NT 

r > 1 

so that c^ • Hence ] is -basic, so 

^ e . But is not ^-compatible, so "b̂  e ^ v. X 

Conversely, suppose c £ X X . Then [c,b is (g)-

basic, but is not. Then one of the conditions of 

definition 1.14(B) must fail for [^b^] . But c is (g)-

basic since is, and if c = then 

Sg - < for the same reason. Thus the only condition 

that can fail is (b), that is, c ^ b^ . But again, since 

[c,b ] is (g)-basic, c > b ^ so c = b . Thus 

X , ̂  X = {b } . 

(ii) If c e X T n X and a ^ 1 , then [c.axb 1 e X by 

lemma l.lO(ii). But, since a § 1 , [c,Q!X^] = [ [^(a-l) x^],^] 

which is not b ^-compatible. Thus [c,axb ] e X v. X .. 

Conversely, suppose c e ̂  . The argument proceeds by 

induction over the weight of c . If •wt(c) = 1 , then % = ̂ ^ 

for some i < T c But c E ̂  so i® (G)-basic, which 

means that ^ = and r-1 < i . But then ] = 

= i® -basic, so e ̂  ^ contra hyp., and 

so c cannot be of weight 1 . Now write c = [CT,C^] . Then 

[c,"^] is (g)-basic but ] is not, so one of the conditions 

of definition 1.14(B) must fail for the latter commutator. Now 
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c is -"basic since [c^t^] is, and for the same reason 

c > "b > b 

-r 

~ • condition that can fail is (c)_, 

that is, Cg > ^ . But again, since is (^)-'basic, 

^ g b . Th\is o = h and c = [c^^b ] . Thus c^ is 

^-compatible. If it is also ^-compatible, the result is 

true with a = 1 . If c^ is not ^-compatible, then 

and by the inductive hypothesis c = [c',o;>^ ] 

with c' € X - n X , Then c = [c',(a+l)xb ] . 

It will be convenient from now on to be able to write a product 

^ where either x or ^ may be "empty", in the sense that 

possibly ^ = X or = ' This slight abuse of terminology 

will save much circximlocution. The same terminology may be 

applied to products of more than two expressions; on the other 

hand, the idea of a product in which all factors are empty is 

clearly meaninglessr 

Definition U l 8 

With the conditions of lemma 1.11 and the notation of that lemma 

and definition l.l?^ 

(A) For any integer r § 0 , write P^ for the set of 
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expressions of the form 

p = "b̂  "b̂  ,. ."b 

where each OL. is a non-negative integer, each c. e X and 

k ^ 0 , The possibilities r ^ 0 and k ^ 0 correspond to the 
^ ^ a 

possibilities that the products b̂  b^ ...b and CTC_...c, 

may be empty. Ihe symbol S(g) is defined 

= 05̂ wt(b̂ ) + ... + 

+ wt(c^) +wt(^) + ... . 

For each positive integer w , j^(^) is "the set 
y ^ ) = { B : £ e Er ' = w } . 

(B) a mapping 0 : P ^ P is defined for each r ^ 1 . 

Suppose g € P^ ̂  . Then it is of the form ^ = b̂  .. •] 

where u is a ( possibly empty ) product of commutators from 

^ ^ . Now u may or may not contain commutators of the fom 

as factors. In any case it may be written in the form 

/l Pm u = b a,b a^b ,, t,a d . 

where m ^ 0 , each ^ 0 and, by lemma l,12(i), each 

a. € X T n X . Then p0 is defined 
a Q! cc p 

p0 = b 'b̂  ...b b ° . ]... [a xb^] 

For 1 ̂  i ̂  m , [a.,p.xb ] e X by lemma 1.12(ii), and so 

p0 £ X as promised. 
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Lemma TJ5 

(x) 9 is a 1 :1 mapping of P . onto P 

(ii) If then =S(g) . 

Proof 

It is sufficient to exhibit a ftinction 9' : P -> P . such that ^ J 
is the identity on P^ and 0^0' is the identity on P̂ ^̂  

Suppose then that e P^ . Then it is of the form 
a a a 

= "b̂  V , where v is a ( possibly empty) product 

of commutators from ^ . By lemma 1.12(ii), v may be written 

in the form v = [â  x^] [a^^^gX"^]... [^^P^^xb^] , where each 

i3 ^ 0 and each a € X , D X . Then defining 

a-, 0̂2 '̂r-l '̂r ^m 

it follows that p0' € P , , and comparing this definition with 

that of e^ , = £ • Similarly, if g,' 6 , 

E ' V ' = • 

(ii) This follows by an easy calculation using the definition 

of S(;g) and lemma l.lO(i). O 



Corollary 

With the notation of def init ion 1.18, f o r r ^ 0 and w ^ 1 , 

Proof 

w = T 

By the lemma, the restr ict ion of 0 to P ^(w) is a 1 :1 

mapping of P^^^(w) onto , Thus | | = | Pq(w) 

But P (w) is the set of a l l products u of elements of X 

f o r which S(u) = w . But this is just the set of a l l 

expressions of the form where i^, i^, < t 
1 2 w 

I = . o Hence 

Lemma 1.14 

Suppose the conditions of lemma 1.11 hold. Then the nixmber m w 
of -basic commutators of weight w is given recursively by 

( i ) nLj = T , 

( i i ) m^ = T^ - ) ( w > l ) 

where the integer ( m ^ ) is the number of mappings f 

from the set K = { ( i , j ) ; 1 ^ i g k , 1 ^ j g m. } into 
r the non-negative integers satisfying Z-^ i f ( i , j ) = k + 1 
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Proof 

By induction over v . The result NLJ = T is already known. 

Now suppose the result is true for all weights up to w - 1 . 

^ lemma 1.11, there exists an integer W ( = n ^ ) such that 
W • I 

i s u wt(^) > w . Consider ^(w) . An element 

OL O' 

£ € ^( w ) is of the form £ = b^ ̂  u where u is 

a ( possibly empty ) product of elements of ^ . But u is 

in fact empty, for otherwise u = u ' ^ where ^ e ^ and then, 

since is (^)-hasic, h ^ N so that S(£) ^ S C ^ ) > w . 
ex. ou O' 

Thus each element of P„(w) is of the form p = b, b^ .. .K/ . 

Now all the -basic commutators of weight ^ w appear in the 

{b^ together possibly with some of higher weight 

(for, although the B-order ^ is good, it does not necessarily 

preserve wei^t ). However, since = w , any commutator 

^ ( 1 ^ i ^ N ) of weight > w must have power a^ = 0 in 

the given expression for . Thus £ is defined uniquely by 

the powers a^ of commutators of weight g w in that expression. 

Suppose that the -basic commutators of weight ^ w are 

re-indexed as follows: 



w 

where for each c ( 1 ̂  c ̂  v ), ^ 

is the set of commutators of weight c ( in any order) . Th\is 

set of -basic commutators of weight ^ w has "been indexed "by 

the set K defined in the statement of the lemma. The order in w 
which the commutators are written down in this array is not, of 

course, their order under the B-order ^ . 

Let VIS write for the set of all ^ e ̂ ^^^ ^^ which some 

commutator of weight w has non-zero index. Then, since 

= w , ^ is exactly the set of all (g)-basic commutators 

of weight w and so = m^ . 

But now, if to each g e % ^ function f from the set 

into the non-negative integers is defined by setting 

f (i,j) to be the power of . appearing in the expression 

for g , it follows that f is uniquely determined by ^ 
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and that if(i,j) = = w , and conversely 

that any such function uniquely defines an element of ^("w)^ Q • 

Thus w) ^ I = (m̂  ̂ m̂  ̂ ,., ^ ) and this, together 

with the fact just proved that |q| = m and the corollary to 

lemma 1.15 proves this lemma, 

Theorem 1.2 

Let a : A ¥ he any semiweight and suppose that the number 

T of generators of A is finite. Then the nmher m of 

W-basic commutators of weight w is given by Witt's formula: 

= 1 V , X v/r m = -- \i(r) r ' , 
r Iw 

where |i is the IvKbius function. 

Proof 

Let ^ be the W-ordering of C . Then by the corollary to 

lemma 1.9 there exists a good B-order ^ such that 

^ ~ ̂  (nil-w) . By lemma 1.8(ii) the number of W-basic 

commutators of weight w is the same as the number of )-

basic commutators of weight w , and so by lemma 1.14 this is 

given by the recursive formula m̂  = T , 

m = c = T^ - (m̂  ;... ^ > (1 < c ^ w) . But this formula 



depends only on r and w , not on the particular semiweight 

range chosen. Thus it applies equally well to the semiweight 

range N and so the number of W-"basic commutators of weight 

w is the same as the number of N-basic commutators of weight 

w ; but these are exactly the commutators which are basic in 

the conventional sense^ and so m is given by Witt's formula. 

O 
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CHAPTER 2 

THE COLLECTING PROCESSES 
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The collecting processes to be described in this chapter differ 

in two important respects from the process used in the conventional 

theory. Firstly,, the processes described here are defined in 

terms of a particular semiweight range W , the object being to 

convert an arbitrary expression into a W-basic one; in this 

sense these processes are more general than the conventional 

one. Secondly^ while the conventional process involves an 

initial expansion of the expression to be collected into a product 

of generators and their inverses — that is, into an expression of 

semiweight 1 — followed by a collection into products of basic 

commutators of successively hi^er weights, the processes 

described here involve no such initial expansion: they proceed 

through a sequence of expressions of non-decreasing semiweight, 

and so certain properties of commutators which may be expressed 

in terms of their semiweight are preserved. 

It is well-known that calculations performed in the "bottom" of 

a nilpotent group, that is in r (G) when G is nilpotent of c 
class c , usually have a particularly simple form. Accordingly 

it will be advantageous to describe first a collecting process 

which operates in the "bottom" of a group, however here the 

"bottom" may mean when G e . This is the "special" 

process. Following this a "general" process will be described 

which can operate either anywhere in W (G) when G e W under 
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certain restrictions on a and ,3 , or else anywhere in a 

nilpotent group. 

For the reminder of this chapter i t v i l l "be assumed that we 

are working with a fixed algebra A of expressions and a 

fixed semiweight a : A W in terms of which a l l definitions 

are made. 

THE SFECIAL PROCESS 

Definition 2.1 

(A) Let X , e A , Then we write d : x > ^ ^^ ^ 

and jr are of any of the following forms : 

( i ) X = ^ ^ JC = 

( i i ) Z = 

( i i i ) X = (a"'')"' ' , jr = a 

( iv) x = a a o r a a » y = i 

a (v) X = al or la , y = 

(vi) X = 5C = L 

(v i i ) X = [a,a] , jr = 

( v i i i ) x = [a,T^] or jr = 

( ix) x = [ a " \ b ] or ] , 5C = t^y""" 
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(x) 3C = ta ,c ] [b ,c ] or 

(xi) X = [a^b] , jr = [b,a]"'' provided a , b are 

coimnutators and a < b 

(x i i ) x = = provided a , b , c 

are commutators and a < b < c 

The notation is extended to larger expressions by recursion over 

their height: 

( x i i i ) If d : â  > ^ then d : a!]''' > â ^ and for any 

fe^ A, d : a ^ b > ^ b , d : te^ , 

(B) Write D : x > jr i f there exists a f in i te sequence 

- expressions such that ^ = x , ^ = y 

and d : > u. (1 g i g k) . 

The relation D : x > jr is clearly reflexive and transitive, 

that i s , i t is a quasi-order. It also follows from the definition 

that part ( x i i i ) holds just as well for D as for d . 
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Definition 2.2 

Suppose is any property that commutators may or may not have 

(such as "being W-hasic or of weight ^ c for instance). A 

product of commutators with the property 

of "length" -t 

is defined: 

(I) is a product of commutators with the property tP of 

length 1 , as are c and c'^ , where c is a commutator with 

the property 

c P . 

(II) If x^ and ^ are products of commutators with the 

property <P of lengths and respectively, then is a product of commutators with the property 

of length 

I, 
A "product of commutators" of length t is defined in the same 

way. O Definition 2.5 

A relation is defined on the set C of commutators by: 

a h if and only if 

(I) a(aj > , or 

(II) = and a ^ b . 

Clearly is a full order but not a well-order. The relation 

is defined in the obvious way. 
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Lemma 2,1 

If â  , a^ and b are comutators and a, < a^ , then 

and [^a^ ] < and [ b , ^ ] . 

Proof 

is only given that [a-j jh] < [a^^y • Proofs of the other 

three inequalities are similar. Since â  < ^ ^(^i) - cf(^) . 

If a ( a ^ ) < a ( ^ ) then a( [a^ ) < a( ) so that 

[a^ ,b] < [a^,b] . Otherwise a(a^) = a ( ^ ) so that 

a([a^,b3) = '^([a^^'b]) and there are two possibi l i t ies ; 

( i ) If b < ^ , then l d ( [ a ^ , y ) = â  or b < ^ , 

and then [a, ,b] < [a^.b] , 

( i i ) If b ^ a ^ , then ld( [a^ ) = b = ld( ) and 

= â  < a^ = t r ( [ ^ , b ] ) so again [a^ < . 

O 
Corollary 

If- % , or ^ are substituted for < in the lemma, i t 

is s t i l l true. 
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lemma 2.2 

( i) Let X be a product of commutators. Then there exists 

a product ^ of commutators such that D : x"̂  > jr . 

(ii) Let x̂  , be products of commutators. Then there 

exists a product ^ of commutators such that D : [ x ^ ] > ^ 

(iii) Let x be any expression. Then there exists a product 

^ of commutators such that D : x jr . 

Proof 

Parts (i) and (ii) follow by an easy induction over the lengths. 

Part (iii) then follows from (i) and (ii) by induction over the 

hei^t of X . 

I^rt (iii) of this lemma accomplishes the first main step in 

the special collecting process. The next step is to show that 

a product of commutators can be converted into a product of 

W-basic commutators. The crvix of this step is contained in the 

next lemma. 
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Leimna 2.$ 

Suppose a is a non-W-'basic commutator (that is, a commutator 

which is not a W-basic one). Then D : a > b , where b 

is of one of the forms: 

(a) b = 1 

(t) ^here c e C ; e = ± l ; c < ° a ; wt(c) = wt(^ 

(c) fe = Cg where ĉ  , ĉ  e C ; ê  , ̂  = +1 ; 

C-, . Cg cf" a ; wt(c^) = wt(^) = . 

Proof 

The argument proceeds by induction over the weight of a . If 

wt(a^ = 1 then a is W-basic and the lemma is vacuously true. 

Now suppose •wt(â  > 1 and the lemma is true for all smaller 

weights. Since a is non-W-basic, at least one of the 

conditions of definition 1.13(A) must fail. These are treated 

separately. Write a = [a^^a^] 

(i) a, is non-W-basic. Then by the inductive hypothesis, 

D ; a, > b̂  and so D : a > [ b ^ ] where b̂  has one of 

the forms given above. If b̂  = then D : a > by 

definition 2.1 (viii). If b̂  = c^ where ĉ  e C , E = ±1 , 

ĉ  ^ and wt(c^) =wt(a^) then D : a > [c^,^]^ and 
^ ~ ^ SL corollary to lemma 2.1 and 



^(tci'^^) . The 

argxunent when "b̂  = is similar. 

(II) a^ Is non-W-basic. The argument follows the same 

pattern as that for case (i). 

(III) â  g a^ . Then either â  = ̂  in which case D : a > 1 

hy definition 2.1 (vii) or else â  < a^ . But then D : a > 

and =a([ag,a^]) , ld(a^ = a^ =ld([^,a^]) , 

tr(^ = â  =tr([a^,a^]) and â  < ̂  . Thus, hy definition 

1.12(lilc), [a^,a^]<a and so ' ^ ^ • Clearly 

(Iv) â  = [a^^^a^g] and a^g ^ ̂  * By virtue of case (1) 

it may "be assumed that â ^ ^ ~12 ' 

definition 2.1(xll). 

Write ĉ  = ^ " ' 

By definition 1 .7(vl), CT(c^) ̂  a(a) . If a(c^) > then 

ĉ  a . Otherwise o(c^) = crCg;) and it must "be shown that 

ĉ  < a . Now â ^ < [a^i^a^g^ = ld(â  . Also ^ so 

that =ld(^. But ld(^ or 

[a^g^a^] and "both of these have just been shown to "be less than 

ld(aj , Hence Oj < a . 

Now â ^ >a^2 so that [a^^^a^] > a^^ . Thus Id(^) 

Similarly â  = [a^^.a^] > a^ so ld(a^ = â  . But a^g 
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so that [a^^a^g] > [a^^,^] , that is, >ld(^). Since 

= ^(Sg) ^y definition 1.7(vi), it follows that ^ < a and 
so <P a 

Again it is clear that wt(c^) = •wt(^) = wt(^ . 

Lemma 2.4 

For any positive integer w , the set of conrautators of weight ^ w 

is well-ordered by ^ . 

Proof 

Suppose, for any positive integer w , i® the set of all 

possible semiweights that a commutator of wei^t % w may have, 

that is, 2(w) = { : x € C , wt(^ ^ w } . It 

follows by an easy induction over w thafe" -i;(w) is finite. 

But for any a € W , the order ^ coincides with the W-

ordering ^ on the set of all commutators of semiweight a , 

and so is a well-ordering on that set. It follows that, as 

far as ^ is concerned, the set of all commutators of wei^t 

^ w is the union of a finite number of well-ordered sets. 

The lemma follows. 
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Lemma 2,3 

If D : X > jr then ^ and ^ (̂JC^ • 

Proof 

This follows easily from definition 2.1 hy checking its various 

parts separately. O 

The following theorem and its two corollaries are out of logical 

order in this thesis. They are placed here "because they 

summarize the properties of the special collecting process and 

provide the motivation for the definitions of this section. The 

proof requires the results of lemmas 2.6 and 2.7 of the next 

section, so that the theorem str ict ly should "be stated and proved 

inanediately following the latter lemma. 

Theorem 2.1 

For any expression x e A there exists ^ ^ such that 

( i ) is a W-hasic expression, 

( i i ) D : X > jr , 

( i i i ) wt(^ g wt(5r) and ^ a(y) and 

(iv) i f p : A > G is any description of a group G , then 

^ = (y}i)p where u is possibly empty, but i f i t exists, 

wt(^ ^ ^ ( x ) + 1 and ^ + 1 . 
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Proof 

By lemma 2.2(ili), there exists a product ẑ  of commutators 

such that D : X ̂  ZT . 

Since the length of ẑ  is necessarily finite, it follows that 

there exists an integer w such that z. is a product of 

commutators of weight ^ w . It is now shown that D : z. > ẑ  

where ^ is a product of W-basic commutators. If ^̂  is 

itself a product of W-"basic commutators then this is trivial. 

Otherwise, again since the length of ẑ  is finite, there exists 

a non-W-basic commutator a , which is maximum under the ordering 

, anong those factors of ẑ  which are non-W-basic. This 

commutator may appear more than once, but in any case z, may 

be written in the form z, = v aviav_...av, where k ^ 1 and 

each y^ is a (possibly empty) product of commutators which are 

either W-basic or a . But by lemma 2.5, D : a ->• b where 

b is a product of commutators a and of the same weight as 

a . Thus D : z. > V bv^bv_...bv, which is a product of 
o 

commutators of weight ^ w which are either W-basic or < a . 

Thus the maximum (iinder non-W-basic factor of ^̂  may be 

reduced. But then, by lemma 2.4, this can only be done a finite 

number of times and eventually D : ẑ  > ^ where ^ is a 

product of W-basic commutators. 
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But then D : Zg JC ' ̂ here jr is a W-taslc expression, follows 

immediately from definition 2.1 A (i), (iv) and (v). Parts (i) 

and (ii) of the theorem are thus proved. Part (iii) follows from 

lemma 2.5. 

For part (iv), lemmas 2.6 and 2.7 must be invoked. lemma 2.6 

E : X > j(u. where u is possibly empty, but if it exists, 

- ^(S) + and wt(^ ^ +1 , and then by lemma 2.7 

XP = (50i)P • 

Corollary 1 

Suppose G is a group e ̂ ^^ and x e W^(G) . If p : A > G 

is any description of G , then there exists x e A such that 

(i) X e ^^^ (see definition 1 .IJB) , 

(ii) aiiQ ^ a , and 

(iii) ^ = x . 

Proof 

Since x e WJG) , there exists x' e A such that x'p = x 

and a(x') ^ a . But then by the theorem D : x' > x" where 

x" e B , a(x") ^ a(x') and (x"^p = x where u is possibly 

empty, but if it exists, -o(x) +1 ^ a + l . Thus 

^ = 1 and x"p = X . 
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I f x " = 1 or a(x") ^ o; + 1 then x"p = 1 and the result is 

true with x = 1 . Otherwise x" is of the form 

a^ ag Oĵ  
x " = "b̂  where, f o r some 

a % a ( K ) < a + 1 (1 ^ i g , 

a + 1 g a(b. ) ( t + 1 ^ i g k) . 
ô  Q̂  a „ 

The result is then true with x = b̂  ^ • • * 

Corollary 2 

Suppose G is a group, nilpotent of class c , and x e Tĵ C )̂ 

I f p ; A > G is a description of G , then there exists 

X e A such that 

( i ) X 6 bY V , 

( i i ) w t ( ^ ^ c , and 

( i i i ) xp = X . 

Proof 

The argximent here is essent ia l ly the same as that f o r corol lary 1 
W 

As "before, there exists x " e B such that wt(x") ^ c and 

x"p = X . I f x " = 1 or wt(x") ^ c + 1 then the result is 
â  a 

true with x = 1 . Otherwise x " = "b̂  . . . b , and at least 

one of these commutators is of weight c , Then the lemma is 
a. a. a. 

true with x b^ ^ • • • "fe,̂  where i^ , i g , . . . i ^ 
1 2 ^ 
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is the subsequence of 1, 2, k for which the corresponding 

commutator is of weight c . 

Corollaries 1 and 2 mean, in effect, that the special collecting 

process works in the "bottom" of a group - whether the "bottom" 

is taken as when G 6 or as •r^(G) when G is 

nilpotent of class c . 

These two corollaries form a pair of similar results, the first 

purely in terms of the subgroups W (G) of a group G and the 
Co 

second in terms of the interaction between these subgroups and 

the lower central series. This situation is typical, and such 

pairs of results will appear from time to time in the sequel; 

each time they do it will be possible to trace the dichotomy 

back to that between these two corollaries. 

Since the lower central series of a group G is the series 

N^(G) of subgroups of G , it might be thought that corollary 2 

could be generalized so that some arbitrary semiweight W might 

take the place of N in it, and thus ultimately allow the invest-

igation of the interaction of arbitrary pairs of semiweights. 

However if the argument leading to the corollary 2 is followed 

with this in view it will be seen that the property 
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a ^ t g c ( u n d e r t h e W - o r d e r i n g ) w t ( [ c , b , a ] ) = w t ( [ c , a , b ] ) g 

w t ( [ " b ^ a ^ c ] ) i s e s s e n t i a l ; t h i s p r o p e r t y n e e d n o l o n g e r h o l d 

i f a n a r b i t r a r y s e a i w e i g l i t i s s u b s t i t u t e d f o r w e i g h t . 

THE GEM:RA.L PROCESS 

D e f i n i t i o n 2 . h 

( A ) L e t X . y € A . T h e n we w r i t e e : x > y i f x a n d 

jr a r e o f a n y o f t h e f o l l o w i n g f o r m s : 

( I ) X = ^ ^ 3C = 

( I I ) X = > 

( L I I ) X ( A ' ^ ' " " . ^ = A 

( i v ) x = a a o r a a » y = i 

( v ) x = a l o r l a . y = a 

( v i ) X = jr = 

( v i i ) X = [ ^ a ] , = L 

( v i i i ) X = [ ^ I J o r , ^ = l 

( i x ) X = [ a " \ b ] , 5 C = C a ^ y ' ^ b ^ ^ a " ] o r 

X = ] . - ] 

( x ) = [ b , c ] o r 

( x i ) X = [ a , b ] , X = p r o v i d e d a a n d b a r e 

c o m m u t a t o r s a n d a < b 
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(xil) x=[c,b,a], = ' provided 

a , "b , c are commutators and a < b < c , where 

X5 = [a^cjc,^a]] 
The notation is extended to larger expressions by recvirsion over 

their height: 

(xiii) If e : â  ^ then e : â"* > ^^ and for any 

fe ̂  A , e : a^b > ^ b , e : [â  > , 

e : > ^ and e : [b,â  ] > [b,^] . 

(B) Write E ; x •> jr if there exists a finite sequence 
. . 00 
% (k ^ 0) of expressions such that x = ̂  , ^ ~ 

and e : > u^ (1 ^ i ̂  k) . 

Again the relation E : x > is reflexive and transitive 

and part A(xiii) of the definition holds just as well for 

E as for e . 

Definition 2.5 

(i) An element X e W is a "limiting value" of W if 

i <\ : I + 1 < A, . 

(ii) If a , 3 € W then ",3 is much greater than 
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d e n o t e d a « ,3 , i f t h e r e e x i s t s a l i m i t i n g v a l u e X o f W 

s u c h t h a t a < X ^ 0 . 

W r i t e a < < p i f p i s n o t m u c h g r e a t e r t h a n a . 

( i i i ) F o r e a c h a e W a n d n o n - n e g a t i v e i n t e g e r n , t h e e l e m e n t 

a ( + 1 ) ^ i s d e f i n e d r e c u r s i v e l y o v e r n : a ( + 1 ) ° = a , a n d f o r 

n > 0 , a ( + 1 ) " ^ = a ( + 1 ) ^ " ' ' + 1 . O 

Lemma 2 . 6 

I f D : X t h e n t h e r e e x i s t s u e A ( p o s s i b l y e m p t y ) s u c h 

t h a t E : X ^ j m a n d i f u i s n o t e m p t y , 0 ( ^ - ^ + ^ 

a n d v t ( u ) ^ " w t C ^ + 1 . 

P r o o f 

B y c h e c k i n g t h e v a r i o u s p a r t s o f d e f i n i t i o n 2 . 1 s e p a r a t e l y . F o r 

p a r t s A ( i i ) , ( i i i ) , ( i v ) , ( v ) , ( v i ) , ( v i i ) , ( v i i i ) a n d ( x ^ , 

E : X > jr "by t h e c o r r e s p o n d i n g p a r t o f d e f i n i t i o n 2 . 4 , s o t h a t 

t h e l e m m a i s t r u e w i t h u e m p t y . 

F o r t h e r e m a i n i n g p a r t s : 

A ( i ) X = ^ , y , = fe • E : ^ ^ 5 0 i ^ ^ ^ r e 

u = [ ^ f e l » a n d a ( u ) ^ + 1 , w t ( u ) = w t ( ^ + 1 . 

A ( i x ) x = [ a " ^ b ] , T h e n E : x > 531 

w h e r e u = ] . B u t t h e n = a ( [ ^ a ] ) + ^ 

§ + 1 , a n d s i m i l a r l y w t ( u ^ 1 + 1 . T h e a r g i i m e n t 
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if X = [a.b"^] is similar . 

A(x) JC = Hien 

E : X > by definition 2.1iA(x), 

^ 301 

WllG 

by definition 2.4A(i). But 

then a(u) = [a,c,b]) ^ a( [^c]) + 1 ^ + 1 . Similarly 

w t ( ^ ^ ^ ( x ) + 1 . The argument if x = [a.bc] , y = [a,c][b,c] 

is similar but slightly easier. 

A(xii) x = [c^b,a], where a , b and c 

are commutators and a < b < c . Then with the notation of definition 2.4 A (xii), 

where u = v^ ^ZyZ^ \ y^ by several appli-

cations of definition 2 , i ) . Clearly wt(i^ = + 1 . 

to show that = a(x) + 1 it is sufficient to show that the 

semiweights of the seven commutators in the expressions for 

X-T f \ and y^ are all ^ + i . 

^ s and so 

[a,c,[c,b]]) = a( [c,a,[c,y ]) by commutativity of 

in W , 

^ fc^^a^c]) by definition 1 .7(vi), 

^ + 1 = a(x) + 1 . 
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(r) ^ ^ and so 

^ + 1 . 

(6) ^ a([a,c,b]) + 1 

= + 

( e ) § + 1 

(I) § and so a( [c,a]) 1 ^ . Hence 

(n) Sa{[c^b,a]) +1 immediately. 

A(xiii) The result follows in this case "by an easy induction 

over the height of x . 

(B) The result follows in this case by an easy induction 

over the length k of the sequenceusing lemma 2.5 • 
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Lemma 2.7 

Suppose E : X jr . Then 

(i) If p : A ->> G is any description of a group G , then 

^ = 5CP • 

(ii) ^ a(x) and wt(^ ^ . 

Proof 

(i) This follows easily from definition hy checking the 

various parts separately. All these parts correspond to well 

known group laws, except perhaps for A(xii) which can be checked 

"by expanding into a product of ajo , and ^ and their 

inverses and cancelling. 

(ii) This is a corollary of lemmas 2.5 and 2.6, 

Lemma 2.8 

Let a , 3 € W . Then a 0 if and only if there exists a 

non-negative integer n such that a (+1)^ ̂  P . 

Proof 

Suppose that there exists a non-negative integer n such that 

a (+1)^ ̂  p , then a 0 for otherwise there exists a limiting 

value X, of W such that a < X ̂  3 and a least integer m 
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such that a (+1)^ 5 \ . But then a (+1)^ <X and 

a (+1)^ = a (+1)̂ '"' + 1 5 X contradicting the definition of a 

limiting value (definition 2.5(i)). 

Suppose on the contrary that a (+1)̂  < 3 for all n . Since 

W is well-ordered, X = sup { cc (+1)̂  : n ̂  0 } is well 

defined, and a < X ̂  ̂  . Suppose | < X , Then there exists 

n such that a (+1)̂  > | . But then ^ + 1 < a ^ X . 

Thiis X is a limiting value of W and so a « ^ . 

Lemma 2,9 

Suppose a ^ and a(x) so;. Then E ; x j m (either 
W 

X; or u heing possibly empty) where jr e B̂  and ^ ̂  

(when they'exist). 

Proof 

By lemma 2.8, there exists a non-negative integer n such that 

a (+1)̂  ̂  p . Suppose that n is the least such. The argument 

proceeds "by induction over n . 

If n = 0 then a = a (+1) ° ̂  0 and so the result is true with 

X empty and u = x . 
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Now s u p p o s e n > 0 a n d t h e r e s u l t i s t r u e f o r s m a l l e r i n t e g e r s . 

tl 1 
W r i t e p ' = a ( + 1 ) " . T h e n , h y t h e c h o i c e o f n , < 3 . 

A l s o , b y t h e i n d u c t i v e h y p o t h e s i s , E : x > j r ' u ' ( e i t h e r 

W 
o r u ' p o s s i b l y e m p t y ) w h e r e e B ^ , a n d a ( u ' ) s . i f 

u ' i s e m p t y , t h e r e s u l t i s t r u e X, ~ l i e m p t y . I f u ' 

W 
i s n o n - e m p t y , t h e n b y t h e o r e m 2 . 1 , D : u ' > v w h e r e v e B 

a n d ^ 0 ( u ' ) ^ • B y l e m m a 2 . 6 t h e n , E : u ' > y ^ 

( z p o s s i b l y e m p t y ) w h e r e a ( z ) ^ a ( u ' ) + 1 + 1 ^ 0 . 

T h u s E : X > j r ' y ^ . I f v i s e m p t y o r ^ 3 t h e 

r e s u l t i s t r u e w i t h y = y ' a n d u = v z . O t h e r w i s e 

TC = fe^ ^ ^ ^ ^ -

^ a ( K ) < 0 ( 1 ^ i ^ , 

3 g a ( b . ) ( t < i g k ) , 

a n d t h e r e s u l t i s t r u e w i t h jr = b . . a n d 

a < r > 

Lemma 2 . 1 0 

W 
L e t X , y ; e B^^^ a n d w t ( y ) ^ c ( s o t h a t i s a p r o d u c t o f 

c o m m u t a t o r s o f w e i ^ t c ) . T h e n E : ^ > z u ( u p o s s i b l y 

W 
e m p t y ) w h e r e z e B^^^ a n d w t ( u ) > c . 
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Proof 

By an easy induction over the length (as a product) of 

Lemma 2,11 

O 

Let X e A and c he any non-negative integer. Then E : x > 5m 
W 

(either ^ or u possibly empty) where jr e B̂ ^̂  and 

•wt(u) ̂  c + 1 (when they exist). 

Proof 

By induction over c . When c = 0 the result is true with ̂r 

empty and u = x , 

Now suppose c ̂  1 and the result is true for smaller values 

of c . Then E : x > jr'u' (either jr' or u' possibly 
W 

empty) where jr' e B̂ ^ ̂ ^ and wt(^ ^ c where they exist. 
W 

By theorem 2.1, D : u' > v̂  where v-j e B and wt(v̂ ) ̂  c . 

Then by lemma 2.6, E : u' > v̂ ẑ  (ẑ  possibly empty) where 

^ + 1 ̂  c + 1 . Thus E : x > ̂ r'v̂ ẑ  . Now 

y;j contains (possibly) some commutators of wei^t § c + 1 , 

but by definition 2.1 (i), D : v̂  > ̂ z^ (either or ẑ  
W 

possibly empty) where e B̂ ^̂  , ^ij^) ̂  c and wt(Zg) ̂  c + 1 

Thus E : v̂  > Kg^g^ possibly empty) where wt(ẑ ) ̂  c + 1 
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and so E : x > x'X̂ ggSjŜ T * lemma 2.10 may "be applied 

JC'Xg so that E : > where JC ̂  sĵ c) 
wt(^) ^ c + 1 . The result is then true with y as just 
defined and u = zĵ zgẑ ẑ  . < > 

The reader may wonder why I have taken such pains with this lemma, 

since it has been patently clear for some pages that any element 
W 

of a group G can he described by an element of B, . modulo 

r^(G) , The reason is that the important part of this lemma is 

not that such an expression exists, but that it can be arrived 

at by only those operations listed in definition 2,4. Group 

theoretic results will presently be deduced by observing what can 

happen to certain properties of an expression under these 

operations (see for instance lemma 3.11 of the next chapter). 

Theorem 2.2 The basis theorem 

(A) Let F be an absolutely free group of rank T on free 

generators 'u, = and let p : A > F be the corresponding 

free description. Then 

(i) For any a e W , WjF) / is a free Abelian 

group, freely generated by the set 

( ^ : b is W-basic, a ^ < a + 1 } modulo W ,(F) . 
• I 
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( i i ) The r e s t r i c t i o n of the mapping p t o t he s e t B^ of 

W-basic express ions i s one- to -one . 

( i i i ) Provided a ^ 3 , t he r e s t r i c t i o n of p t o n B^ 

( t h a t i s , t o the s e t of a l l W-hasic express ions involving 

comnratators of semiweights ^ a and < 3 ) i s one- to-one 

onto t he f a c t o r WjF) / W (F) , modulo W^(F) . (X p p 

(B) Let G be a group, f r e e with r e spec t t o being n i l p o t e n t 

of c l a s s c , of rank r and f r e e l y generated by = 

Let p : A > G be t he corresponding f r e e d e s c r i p t i o n of G . 

Then 

( i ) T (G) i s a f r e e Abelian group, f r e e l y generated by t he 

o 
s e t { ^ 5 fe i® W-basic , w t ( ^ = c } . 

W 

( i i ) The r e s t r i c t i o n of p t o B^^^ i s one-to-one onto G . 

( i i i ) WQ;(G) n r^(G) i s a f r e e Abelian group, f r e e l y generated 

by t he s e t { ^ ^ fe i® W-basic, •wt(b) = c and aC^ ^ a } . 

Proof 

The va r ious p a r t s of t he theorem a r e proved in a d i f f e r e n t order 

from t h a t i n which they were s t a t e d . 

(B) ( i ) I t i s c l e a r l y s i x f f i c i e n t t o prove t h i s s ta tement when 

T i s f i n i t e . Let x € r (G) . Then t h e r e e x i s t s x e A such 

t h a t ^ = X and w t ( ^ ^ c . By lemma 2 . 1 1 , E J x ^ 
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(u possilDly empty) where jr e B̂ ^̂  and ^ c + 1 , Then 

xp = yp "by lemma 2,7(1) . But ^{y;) § ^ c by lemma 
a, QL CL 

2 , 7 ( i i ) . Hence ^ = (h^p) ( ^ p ) . . . ( ^ p ) where the 

^ are W-basic commutators of weight c . Th-us the set 

{ ^ : b is W-basic, wt(y = c } generates r^(G) • But 

since, by theorem 1.2, the n-umber of W-basic commutators of weight 

c is the same as the number of N-basic commutators of weight c , 

and by the conventional theory these are mapped one-to-one into 

G by p and freely generate r (G) , i t follows that the W-basic 

commutators of wei^t c are mapped one-to-one into G by p 

and freely generate r (G) . This, by an easy induction over c , 

also proves part B( i i ) . 

(A)( i ) Let x̂  , X- e WjF) „ Then there exist x, , x_ e A 

such that x^p = x̂  , ^ p = x^ , a(x^) ^ a and a ( ^ ) ^ a . 

But then E : x^^ > and a( [x^ ,^] ) ^ a + 1 . 

Hence x^^ = ^x^ modulo . Thus V ^ ^ / V l ^ ^ ^ 

is Abelian. 

Now suppose X e W (F) . Then there exists x e A such that 

^ = X and a( ̂  ^ a , Then, by lemma 2.9, E : x > jm 

(u possibly empty) where jr e and a(u) ^ a + 1 . Hence 

xp = yp modiilo W^^ (̂F) . But a(y) § a(x) ^ a so jr is a 

product of W-basic commutators of semiweight < a + 1 and 1 a , 



75 

Thus { "bp : ^ is W-tasic, a g a C ^ < a + 1 } generates 

W^(F) modulo • That the set freely generates it follows 

from the next section of the proof. 

(A)(ii) Suppose that x = a ^ ^ and jr = "b̂  ^ 

are two W-hasic expressions and ^ = XP • Then there exists 

an integer c such that wt(a^) ^ c (1 ^ i ^ k) and 

W 

w t ( ^ ) ^ c (1 ^ i ^ -i) . Then x , jr e B^^^ , and 

= jrp modulo . Hence, "by part (B)(ii) of the theorem, 

already proved, x = . 

(A)(iii) Follows from (A)(ii) and lemma 2.9. 

(B)(iii) Suppose x e W J G ) H r (G) • Since x e W (G) , 
c ex 

there exists x e A such that ^ = x and ^ a . By 
W 

the proof of (B)(i), E : x > where jr e B^^^ and 

w t ( ^ ^ c + 1 . But then wt(j(^ ^ c and § a . The 

resxilt follows. 
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LIE RINGS 

The forgoing theory may "be applied to Lie rings instead of 

groups in a slightly simpler fonn. Since several different 

notations occur in the literature for the operations in Lie rings, 

a definition is given. 

Definition 2.6 

A Lie ring L is a descrihahle algebra in which the effects of 

the operators e , V , p. , X are written 

s = 0 

XV = -X I 

xyvi = X + y V for any x , y e L , 

xyX = xy J 

and with the following laws: 

(i) L is an Abelian group with respect to addition (n) , 

(ii) x(y + z) = xy + xz and (x + y)z = xz + yz , 

(iii) XX = 0 , 

(iv) (xy)z + (yz)x + (zx)y = 0 . 
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Immediate consequences of these laws are 

(v) xy = -yx , 

(vi) x(-y) = (-x)y = -(xy) , 

(vii) xO = Ox = 0 . 

Hence the special collecting process operates anywhere in a Lie 

ring, in the following sense. 

Lemma 2.12 

Let L be a Lie ring and p : A •> L a description of L 

(remembering to translate the notation for operators — that 

is, and [x,3r]p = ) . 

If D : X > jr , then ^ = jrp . 

Lemma 2.1? 

Let L be a Lie ring, W a semiweight range and a e W , 

Then W (L) is an ideal of L , 
\X 

Proof 

(i) Let X , y e L) . Then there exist x , ̂r e A 

such that 3(p=y, a(x)^a and ^ a . Then 

- ̂  and so x + y = ( ^ p e W^(L) . 
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(ii) Let X e L) and y e L . Then there exist x , ̂r e A 

such that xp = X , XP = y and a(x) ̂  a , Then a([x,5r]) § a 

and so xy = [x,jr]p e W^(L) . Similarly yx e W^(L) . C ^ ^ 

Since a Lie ring is defined in terms of laws, the idea of a free 

Lie ring is tenable. >fe,rshall Hall Jr. [3] has proved (restating 

his theorem 5.1 in the language of this thesis): 

If L is a free Lie ring, freely generated "by the set 

^ = ' ̂ ^^ P • L is corresponding free 
description of L , then the N-hasic commutators are mapped 
one-to-one into L and their images form a basis for L (that is, 
they generate L freely qua free Abelian group). 
This makes possible 

Theorem 2.3 The basis theorem for Lie rings 

Let L be a free Lie ring, p : A L a free description of 

L and W any semiweight range. Then 

(i) The restriction of the mapping p to B^ maps it 

one-to-one onto L and the images of all W-basic commutators 

constitute a basis for L . 

(ii) For any a e W the set { ̂  : b is W-basic , 0(b) s a } 

is a basis for W (L) . cz 
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(iii) For any non-negative integer c , the set 

{ : t is W-"basic, w t C ^ ^ c } is a "basis for L / 

modulo and the set { : ^ W-hasic, ^ c + 1 ) 

is a "basis for . 

Proof 

It is sufficient to prove the theorem when the number t of 

generators is finite. Let x e L , Then there exists x e A 

W 
such that X € xp . But D : x jr where ^̂  € B and then 

W 

3[p = X . Hence B p = L . Thus the set of all images of 

W-"basic commutators under p generates L qua Ahelian group. 

Similarly { tp : "b is W-"basic, wt(b) ^ c + 1 } generates 

L / r^^^(L) modulo r^^^(L) • But then, by theorem 1.2 and the 

theorem of Marshall Hall Jr. just quoted, this set freely generates 

that factor. Since is generated by the images of 

W-basic commutators of weight ^ c + 1 , it follows that 

00 
i r ,t(L) = {0} and hence that { bp : b is W-basic } freely 

Cr O 
generates L . The theorem follows. 
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PARTIAL COLLECTION 

The restriction a ^ appearing in lemma 2.9 and consequently 

in theorem 2.2 A(iii) is disquieting. It means that there is 

no guarantee that an arbitrary expression can "be collected at all. 

That this restriction is real^ and not just due to an inadequacy 

in the method of proof, is demonstrated in Appendix I, where it 

is shown that if a « and provided the nimiher T of generators 

is at least there exists an element in W (F ) which cannot 
UT T 

he described by a W-basic expression modulo W_(F ) at all. 
p T 

In default of this, a result which would be a good second-best 

would be: "If p : A > G is a description of a group G and if 

x e G , X ̂  1 , then there exists 5m e A (u possibly empty) 

W 

such that jr € B and a(u) > a(^) ". The strength of this 

property will be demonstrated in the next two chapters. 

It seems to me to be likely that this is true for all semiweight 

ranges W . On the other hand I have not as yet been able to 

prove the result in full generality, and so I must reduce it to 

the status of a desirable property that a semiweight range may 

(or may not) have. The situation is saved however by the proof 

in the next chapter that the polynilpotent semiweight ranges do 



79 

in fact have this property. 

Definition 2.7 

(i) A semiweight range W is "partially collectable mod a", 

where a e W , if for any description p : A •> G of a group G 

and any x e G ^ ̂ W^(G) there exists e A (u possibly 

empty) such that (3m)p = x , X, ̂  ^ ^ '̂ (X.) 

(so that ^ L î'iO ^ ) • 

(ii) A semiweight range W is "pfartially collectable" if it is 

partially collectable mod 00 . 

It will be shown in the next lemma that the "partially collected" 

expression j(u may be chosen so that is a product of W-basic 

commutators of the same semiweight which is less than and 

less than a , and then by the basis theorem jr is -uniquely 

determined by x (for a given description p). Herein lies the 

importance of the partial collection property, for this allows 

us to obtain information about elements of a group G which 

do not belong to some W ( G) . For instance, it follows • 

immediately that if W is partially collectable mod a , then 

the relatively free group F(W ) is torsion-free. Further 

instances are provided by the proofs of the next lemma, theorem 

4.1 and, in a slightly different context, lemma 5.17« 
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These remarks and especially part (iv) of the next lemma should, 

make clear the analogy claimed in the Introduction "between 

partial collectability in this theory and residual nilpotence 

of absolutely free groups in the conventional one. 

Lemma 2.^h 

Let W "be a scmiveight range^ a the associated semiweight and 

Q: e W , The following five propositions concerning a are 

equivalent. 

(i) W is partially collectahle mod a . 

(ii) If F is an absolutely free group and x ^ W (F) then 

there exists p < a such that x e W^(F) , where 

is the successor of P under the well-ordering ^ of W , 

(iii) If p : A F(^) is a free description and ^ 1 
W 

then E : X > yu where a(y) = 3 O < a) ^ € (so that 

y is a product of commutators of semiweight exactly p and is 

not T̂  ) and a(u) > ^ . 

(iv) For all p ^ a the relatively free group F(W^) is 

residmlly nilpotent. 

(v) For all ^ ^ a and any prime p the relatively free 

group F(W^) is residually a finite p-group. 
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Proof 

By virtue of the basis theorem, the equivalence of (i), (ii) 

and (iii) is obvious. 

(iii) rr^ (iv) . Let x e G = F(W^) , x ^L 1 . Let 

p : A > G "be a free description. Then there exists x e A 

such that ^ = X . But then E : x > jm where = i f 

e B|+ and and then (J0i)p = x . Thus jr is of 

the form jr = b ̂ ̂  .. where a(b^) = a(^) = ... = a(^) = | 

Since k is finite, there exists an integer c such that 
W wt(^) g c (1 ^ i ̂  k) so that jr e B^^^ . Collecting u 

modulo , E : u > u^^ where either û  or ^ may 
W 

be empty, but when they exist, û  ^ ̂ c) 1 c + 1 . 

But a(u^) ^ ^ so jm^ e ̂ ^^ and ^u ^ T̂  . Then 

X = (5[Ui)p modulo T̂ -̂j(G) so, by the basis theorem, 

(iv) (ii). Let F be an absolutely free group and 

X ^ W (F) . Let 3' be the smallest element of W such that (JC 

X / W^,(F) . Then 3' ̂  cc and it remains to show that there 

exists 3 e W such that = .i"*" • The factor group 

F / W^,(F) is residually nilpotent, so there exists an integer 
W 

c such that x / W^,(F) (F) . Then there exists x e B^^^ , 

X / , such that ^ = x modulo W^,(F) (F) . Write 
^ and 3 = a(b^) . Then 3 < and 
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xp i so yi i . Thus, by the choice of , 
= . 

(iv) ^ (v). To show that G = F(W^) is residually a 

finite p-group it is sufficient to show that it is residually 

a torsion-free nilpotent group. By assumption it is residually 

nilpotent so that it is sufficient to show that, for each positive 

integer c , G/r^(G) is torsion-free, and this follows immediately 

from the basis theorem. 

(v) rz^ (iv) is obvious. 

DISTINCTHESS OF THE SUBGROUPS W^(F) 

The question as to when the subgroups are non-trivial and 

when they are different from one another for an arbitrary group 

G is obviously a very complicated one, and one which depends very 

much on the special properties of G , However if F is an 
T 

absolutely free group of rank T ̂  5 the answer is very simple: 

they are all non-trivial and all different. This is proved in 

this section. 
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The proof "when the number of generators is 3 depends on the 
property of W that any a e W other than 1 or oo may he 
written in the form a = l + A^ + OL^ + ... + where k s o , 
1 = a^ ̂  ^ ... ̂  q:̂  and for each r (0 g r < k) , 
1 + a^ + â  + .., + a^ ̂  â ^̂  . The proof of this in turn 
involves something very much like a collecting process operating 
on such "formal svmis" in W . This appalling prospect may be 
circumvented however by considering the properties of commutators 
in A when the number T of generators is infinite. 

Definition 2.8 

For any commutator c and for any i < T , the "number of 
times c mentions ", written l-iĵ(c) , is defined recursively 
over the weight of c . 

(i) îi(gj) =1 if i = j 
= 0 if i ̂  j , 

(ii) = + Ui(fe) • 
is the sequence ( 
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Lemma 2.15 

Suppose c is a non-W-lDasic commutator which mentions each 

generator at most once (that is, = 0 or 1 for every 

i < T ) , Then there exists a commutator c' such that 

o(c') =a(c) , M(c') =M(c3 and c' < c . 

Proof 

The argument proceeds by induction over the weight of c . Since 

c is non-W-basic, at least one of the conditions of definition 

1.15(A) must fail for this commutator. 

Suppose c = [c^^cg] and ĉ  is non-W-hasic. Then clearly 

ĉ  mentions each generator at most once, and so there exists 

cj such that a(cj) =a(c^) , M(cp =M(c^) and cj < ĉ  . 

Then the result is true with c' = [c^',^] . The proof if ^ 

is non-W-basic is similar. 

Now suppose c = and ĉ  ^ ̂  . Then, since c mentions 

each generator at most once, ĉ  Cg so ĉ  < ^ . Then 

c' = [Cg,^^] is the req.uired commutator. 

Finally, suppose c = [ĉ  ̂  ,Cg ] and c^g ^ Sg • virtue 

of the first possibility considered, it may be assumed that 

is W-basic so that ĉ ^ > * 

c'= is the required commutator. 
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Corollary 

Let the numlDer T of generators of A be Infinite and let 

a € ¥ (a oo) , Then there exists a W-basic commutator of s 

semiweight a in A . 

Proof 

By an easy induction over a , there exists a commutator 

c € A which mentions each generator at most once for which 

a(c) = a . If c is non-W-basic, then c may be replaced by 

an earlier commutator with the same properties. Thus there 

exists a W-basic commutator with these properties since the set 

of a l l commutators is well-ordered by ^ . 

Lemma 2.16 

If a e W , a ^ l or oo, then i t may be written in the form 

a = 1 + a^ + â  + . . . + (k ^ 0) where 1 = a^ g ô  g . . . 

. . . g and for each r (0 ^ r < k) , 

1 + a +Q! H - , . . + a ^ a ^ , o 1 r r+1 

Proof 

Form an algebra A of expressions with an infinite number of 

generators. Olien by the corollary to lemma 2.15, there exists 
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a W-tasxc commutator b of semiveight a in A . But then "b 

may be written in the form b = ... (k ^ 0) 

where and, for 1 g r g k , 

. Writing a. = a(b.) (1 ^ i ̂  k), 

the result follows. 

Having obtained this result the three-generator case may be con-

sidered. 

Theorem 2 A 

Let W be a semiweight range and a € W (a ̂  oo) 

(I) If the number T of generators of A is at least 3 , 

then there exists a W-basic commutator of semiweight a in A . 

(ii) If A < 3 and the rank T of the absolutely free group 

F is at least 3 , then Wp(F) is a proper subgroup of . 

Proof 

First, notice that (ii) follows immediately from (i) by the basis 

theorem. It remains to prove (i) . When a = 1 the result 

is trivial — is the required commutator. 

Now suppose a > 1 . It is proved by induction over that 



87 

if ct rcay "be written in the form a = l + 

where OL ^ OL ( 0 ^ r < k ) , then 
r r+i o 1 r ^ ' 

there exists at least three W-basic commutators of the form 

Suppose then that a may be written in the above form. If 

k = 0 , then a = 1 + 1 and the required W-basic commutators are 

Now suppose k ^ 1 . Then ^ o ^ ^ l + ... + 

and there exist three W-basic commutators a = ,... ] , 

a' = and a" = ... ] where 

= a ( ^ ) = a ( ^ ) = a^ (0 ^ r < k) . But 

"̂ k 1 % ^ ^^^ three possibilities must 

be considered separately: 

If a^ ^ = a^ < 1 + a^ + a^ + ... + , then the required 

commutators are [a,^' ) ] and ] 

If a, , < o^ < 1 + a^ + a^ + .., + OL^^^ , let c be any one k-1 

of the three W-basic commutators of semiweight , and then 

} and [a",c] are the required commutators. 

Finally, if a^ ^ < a^ = 1 + + a^ + ... + , then since 

a , a' and a" are all different, it may be assumed that 

a < a' < a" . Then [a',a] , [a",a] and [a",a'] are the 

required commutators. ^ C ^ 
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As regards whether this is "best possible, clearly one generator 

is not good enough to do more than distinguish W^(F) from the 

rest. For some particular semiweight ranges, such as N , two 

generators are enough. An example for which two generators are 

not enough must use the language and results of the next chapter. 

If K = is the sequence k^ = 2 (all i) , then 

Q^^CFg) = b^iF^) and Qg^^^CFg) = e^CF^) 0 j^iF^) . But it is 

well known that for a two-generator group these subgroups are 

the same. 
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CHAPTER 3 

POLYNILPOTEn: SE^OVJEIGHTS 
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THE SEMIWEIGHT 

Definition 3.1 

Let K = i^l ^^ infinite sequence of integers, each ^ 2 . 

For each non-negative integer r , let K^ be the finite sequence 

K^ = i in particular K^ is the "empty" sequence. For 

any group G and each K^ the subgroup P^ (G) is defined 
r 

recursively over r "by 

(G) = G 
o 

PK (g) = rĵ  (PK (G)) ^ ••) • 

r r r-1 
The resulting series of subgroups of G is called the "poly-

nilpotent series" of G of "type K ". 

A group G is "polynilpotent of type K^ " if Pĵ  (G) = {1 ) . 
r 

The class of all such groups is a variety, the "polynilpotent 

variety" of "type K^ ", denoted P̂ ^ . 
r 

For each sequence K a semiweight range Q will be defined 

which will have the property that all the varieties P„ will 

K r 
be among the varieties Q . 
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D e f i n i t i o n 3 . 2 

Let K = (k^)j^Z^ l̂ e ^ sequence of integers , each ^ 2 . 

(A) Let Q be the set of a l l functions cp : w > w 

s a t i s f y i n g 

Then 

( i ) cp(j - 1) ^ k cp(j) ^ 
vl ^ V for a l l J ^ 1 . 

( i i ) (p(j - 1) ^ k , (p(j) ^ 1 J 

( i i i ) cp(0) , 

together with an extra element c a l l e d oo . The function 1 e Q 

i s defined 1(0) = 1 , 1 (d) = 0 ( j ^ 1) . 

I t follows from ( i ) and ( i i ) , s ince each k . , 
t) 

that for each function cp there ex ists an integer 

J^ such that cp( j ) ^ 0 j i J^ . 

(B) Addit ion i s defined on Q as fo l lows: i f cp , t are 

fxinctions (that i s , if' °° ) f then 

( i ) I f J(p = J^ ( = J say) and cp(J) + ^(J) 1 

then 

(cp + ^|/)(j) = cp(j) + ^ ( j ) ( j ^ J + 1) , 

= 1 ( j = J + 1) , 

( i i ) Otherwise (cp + t ) ( J ) = 9(J) +ilA(j) ( for a l l j ) . 

Addit ion i s extended to encompass «> by 

00 + 00 = cp + 00 = 00 + cp = 00 ( for a l l (p e Q ) . 
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(C) The functions are ordered lexicogra^iically from the right: 

if cp , are functions ( » ) , then cp < \|/ if and only if 

there exists JQ ^ such that cp( j^) < \lf( j^) and 

j > Oq J) . 

The ordering is extended to encompass «> "by: if q) is a function 

then cp < 00 , 

(D) Subject to the proof in the next few lemmas that Q , 

with the definition of addition and ordering just given, is 

indeed a semiweight range, it is called the "polynilpotent" 

semiweight range of "type K". The associated semiweight is 

denoted -K . O 

Lemma 3.1 

Q is closed under addition. 

Proof 

This follows easily from a comparison of parts (A) and (B) of the 

definition. O 
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For use in the following lenanas, some simple properties of the 

ordering S of the functions should "be remarked: 

If cp( j) g ̂if{ j) for all j , then cp ̂  ̂  , 

If J^ < J^ then cp < , 

Conversely, if cp ̂  \|; then J^ ̂  J^ . 

LeTmna. 3*2 

Q is well-ordered by ^ . The least element is the function 

1 and the greatest, the element «> . 

Proof 

A non-empty subset X of Q either consists of the element » 

alone, in which case it has a least element trivially, or else 

it contains a fvinction (p ̂  co , But then the set of all fmctions 

^ cp in X consists of fimctions whose support is a subset of 

the (finite) support of cp . Since the order is lexicographic 

the result follows. 

Notice that, as a consequence of the definition of the ordering 
K + K ^ of Q , the successor a of any function a e Q is a + 1. 



Lemma 3.3 

TT If f ' ̂  functions ( « ) in Q and Oj < c^ , then 
â  + p < a^ + p . 

Proof 

Since â  < , "̂ ô  " "̂ ĉ  there exists e w such that 

^^^ j ^ . Four 

possibilities must he considered separately. 

(i) Suppose Ĵ ^ = = ( = J say) . Then ^ J . 

Now (â  + J + 1) = 0 or 1 and (c^ + p) (J + 1) = 0 or 1, 

and if (â  +P)(J + 1) =1 then a^(J) + p(J) ^ k^^^ . But 

^ J , so a^(J) ^ . Thus c^(J) + i and 

then (Qg + p)(J + 1) =1 also, and so in any case, 

(â  + P)(J + 1) ^ (a^ + + 1) . Thus 

J > JQ (â  + P)(j) ^ (QJg + P)(j) and, since J^ ^ J , 

(Q:-, •'^(jo^ +P)(jo) • 
This means that â  + p < a^ + 3 . 

(ii) Suppose Jp = J-^ ( = J say) . Again ^ J . 

Then 3 > (â  + p)(j) = (^(J) + p(j) = + p(j) = 
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which means t h a t a^ + p < a^ + p . 

( i i i ) S u p p o s e J ^ = J ^ < J • L e t J = J = J . T h e n 
p OL OU p CKj 

^ o " \ ' F o r j > J + 1 , ( a ^ + 0) = 0 a n d 

(0^2 "" = ^ 0 ; a l s o (a^ + p ) ( J + 1 ) = 0 o r 1 

(CCg + J + 1 ) = O'g^'^ ^^ ^ • ^ ^ 

j ^ J + 1 (0!^ + g (Qg + . B u t a ^ ( J ) 

and a^CJ) ^ kj^-, so (a^ + 3 ) ( J ) < ( 0 ^ + 3 ) ( J ) ^ and thus 

a^ + p < a^ + 3 . 

( i v ) F i n a l l y , s u p p o s e J ^ Jq, ^ '^q^ * 

J > Oq - - > (a^ + j ) = a^CJ) + j ) = + 3 ( j ) ^ + 

and (a^ + = ( ^ ^̂ -̂ ô  = ^ ^ ^ ^ ^ ^ * 

o 
Lemma 

I f a , ^ , r a r e f u n c t i o n s ( ^ » ) i n Q a n d a ^ 3 ^ r > 

t h e n f o r a l l j e w , ( r + P + « ) ( J ) = ( r + a + j ) ^ ( p + a + r ) ( j ) 



96 

Proof 

Again four possibi l i t ies must be considered separately, according 

to whether J = J„ or not and whether J^ = J or not. o- ^ 0 r 

( i ) Suppose J^ = J^ = ( = j say). Then there are two 

subcases; 

(a) I f a( j ) + 3(J) + r(J) < k j^ i ^̂ ên for a l l J 

( r + P + a)(o) = ( r + a + = O + a + r)( j ) = Q:(j) + + r ( j ) ' 

(b) I f a( j ) + P(J) + r (J ) ^ k j^ i ^̂ hen 

( r + 3 + a)( j ) = ( r + a + j ) = (f3 + a + r)( j ) = + f3( j ) + r( J) 

(for j J+ 1) 

= 1 

(for 0 = J-+1) . 

( i i ) Suppose J^ = < J^ . I^ t J = J^ = J^ . 

Then Jp J^ so ( r + P) ( j ) = j ) + r( j ) for a l l j . 

Then J^^^ = ^ so ( r + 3 + a) (J) = j ) + J) + r( j ) 

for a l l j . Similarly 

( r + a + P)( j ) = Q!(J) + j ) + r( j ) for a l l j . 

Now J = J„ = J so J . ,^ = J or J + 1 . In either case OL p p-rCt 
o + a) ( j) ^ 0!( j ) + j ) for a l l j . 

Again = J^ or J^ + 1 ( i t is possible that 

Jp+o; = J + 1 = J^} . In any case 

O + a + r)( j ) § O + a)(J) + r( j ) ^ j ) + j ) + r( J) for a l l j . 
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( i i i ) S u p p o s e J < J = J ( = J s a y ) . T h e r e a r e t w o 
u p y 

s u b c a s e s d e p e n d i n g o n t h e v a l u e o f p ( J ) + t ( J ) • 

( a ) I f 3 ( J ) + r ( J ) ^ , t h e n 

( r + P ) ( j ) = + r ( j ) ( j ^ J + 1 ) , 

= 1 ( j = J + 1 ) 

a n d s o J , • = J + ^ = J ^ / • y+p u 

( r + P + a ) ( j ) = Q;( j ) + + r ( j ) + . 

= 1 ( 0 = J + 1 ) . 

N o w , s o ( r + Q : ) ( j ) = Q ; ( j ) + r ( j ) ( f o r a l l j ) . 

T h u s J = J = J . B u t t h e n ( r + ( J ) = r ( J ) s o t h a t y+a y 

( r + a ) ( J ) + J ) ^ k j ^ i . l l i u s 

( r + a + p ) ( j ) = ( r + a ) ( j ) + 3 ( 0 ) + 

= 1 ( j = J + 1 ) ; 

t h a t i s , ( r + a + P ) ( o ) = ( r + P + c t ) ( j ) f o r a l l j . 

S i m i l a r l y ( P + a + r ) ( J ) = ( r + P + a ) ( j ) f o r a l l j . 

( b ) I f P ( J ) + r ( j ) f " t h e n ( r + P ) ( J ) = ^ ( j ) + r ( j ) 

f o r a l l 0 . T h e n J ^ ^ = J ^ J s o t h a t 

( r + p + q ; ) ( j ) = a ( j ) + p ( j ) + r ( o ) f o r a l l j . 

N o w J = J ^ J s o t h a t ( r + a ) ( j ) = + r ( o ) f o r a l l j . 
I GS 

J r - K ^ = " • 

( r + Q ! ) ( J ) + P ( J ) = r ( J ) + J ) < k j ^ T ^ s o t h a t 

( r + a + j ) = a ( o ) + j ) + r ( j ) = ( r + P + « ) ( j ) f o r a n j . 

S i m i l a r l y O + a + r ) ( j ) = ( r + 3 + o^) ( J ) f o r a l l j . 
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(Iv) Finally, suppose J < J < J . a fj y 

Then (r + P)(o) = P(o) + r( j) for all j , and then 

V P " '̂r ̂  ^^^^ (r + P + Q;)( j) = j) + + r(o) 
for all j . 

Similarly (r + a + j) = (3 + ct + r)( j) = (r + P + a)(j) 
for all j . 

Definition 3.3 

With the notation of definition 3.2, for each non-negative integer 
K K 

r a function e Q is defined "by 

.K 
5 (j) = " ~ k for j < r , 

= 1 for j = r 

= 0 for j > r . 

Lemma 3.5 

j) may he defined by its properties 

- T) = kj (0 <r) , 

= 1 (0 = r) , 

= 0 (j > r) . 

(ii) € . 
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Proof 

(1) follows iimnediately from the definit ion and ( i i ) from ( i ) . 

Lemma 3.6 

Q \ {oo} is generated by the function 1 under addition. 

Proof 

By virtue of lemmas 5.2 and i t is suf f ic ient to show that 
K K 

f o r e a c h cp e Q o t h e r t h a n 1 o r » , t h e r e e x i s t , ij/̂  e Q 

such that <p = + tg • Three cases must be considered, 

depending on the values of cp( J - 1) and cp( J) where J = J^ . 

( i ) Suppose that cp( J) . Let = 5 j and define 

ty - ^-[(j) f or a l l j . Then for a l l j , 

= ^ ( j - - - •>) ^ ^j^( j ) - ' 

and ^2(0) t r i v i a l l y . 

Hence ^^ ^ Q • But now J = J = J and 

i'^iJ) =cp(J) so =^i(<i) + t 2 ( j ) = 

= cp( j ) f o r a l l j . 

(11) Suppose that 9( J) =1 and cp( J - 1) > k j . Write 

ijf̂  = and define by =qp(j) - f or a l l j ; 

the argument goes as before. 
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(iii) Suppose that cp(j) = 1 and cp(J - 1) . Writing 
<J 

" V l and defining ^^ by ^^(j) =(p(j) for all 

j J ^ ~ ' argument goes as before. 

Lemma 3.7 

With the notation of definition 5.2, Q is a semiweight range. 

Proof 

The various parts of definition 1.7 are checked separately. 

(i) ^ well-orders Q , 1 is the least element and oo the 

greatest by lemma 5.2. 
K K 

(ii) Q is closed under addition by lemma 5.1 and Q {oo} 

is generated by 1 under addition by lemma 5.6. 

(iii) Addition is commutative by definition 5.2(B), 

(iv) Suppose a ^ p e Q , a<oo and p < oo . Then 

o. and 3 are functions and then so is a + 3 by definition 5..2(B) 

Nov suppose a , 0 6 Q and a < co ̂  if p = oo then 

a<oo = oo + p = a + p . Otherwise a and p are both functions 

and (Q; + 3)( j) ^a(j) for all j . But (a + ̂ )(0) ^ a(0) +1 . 

Hence a < a + ̂  . 

a + 00 = 00 by definition 5.2(B). 
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(v) Suppose , â  , 3 e Q^ , Q̂  < Q̂  and g < « . 

I f â  = CO then a^<oo so = otherwise 

they are a l l ftinctions and â  + p < q̂  + p by lemma 3.3. 

(vi) Suppose a , 3 , r e and cc ^ 3 g r . I f any one 

of these is « then r + P + Q! = r + ci; + p = 0 + a + r = '». 

Otherwise they are a l l functions and 

r + p + a = r + Q! + P ^ i 3 + a + r hy lemma 

Lemma 3.8 

The limiting values of Q are 

(i) The elements 1 and oo and 

( i i ) the functions cp € Q such that cp(0) =k^cp(l) and 

9(1) § 2 . 

Proof 

The elements 1 and « are limiting values t r i v i a l l y . Now 

suppose cp is a function in Q for which cp(0) =k^cp(l) and 

cp(l) , and suppose I < <p . I f J^ = 0 then ( | + 1)(1) , 

and ( I + 1) ( j) = 0 for J > 1 . Hence | + 1 < cp . I f 

Jg ^ 1 , then (since 5(1) = cp(l) =r> |(0) ^ 9(0) ) § 1 , 

where is the integer such that l( OQ) < cp( J^) and 

j > JQ => J) = q>(j) - But then ( I + l ) ( j ) = §(j) for a l l 

j ^ 1 , so ( I + 1) (j) = e( j) for a l l 0 ^ 1 , so | + 1 < cp . 
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Thus cp i s a l i m i t i n g va lue . 

Suppose conversely t h a t cp i s none of these elements. Then 

cp i s a f unc t i on and cp(0) ^ 2 . I f J^ = 0 , then def ine | 

"by: 1(0) = cp(0) - 1 and | ( j ) = 0 f o r j ^ 1 . Then i < cp 

and I + 1 = cp so cp i s not a l i m i t i n g va lue . 

I t may now be assumed t h a t J^ ^ 1 and t h a t one of the condit ions 

of ( i i ) break doim f o r cp . 

Suppose f i r s t t h a t cp(0) >k^cp(l) . Defining | by: 

1(0) = cp(0) - 1 , j ) = cp( j) f o r j ^ 1 , i t follows t h a t 

5 € Q , I < cp and | + 1 = cp . 

Now suppose t h a t cp( 1) = 1 . I t may be assvmied t h a t cp(0) = k^ 

by v i r t u e of the forgoing case . Defining | by: | (0 ) =k^ - 1 , 

j ) = 0 f o r j ^ 1 , i t follovrs again t h a t ^ £ Q , g < cp 

and 1 + 1 = cp . O 
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PARTIAL COLLECTABILITY 

Suppose W and W are two arbitrary semlweight ranges. Then 

for any a € ¥ the set W (definition 1.9) is a subalgebra 

of A and hence a descrihable algebra. Consequently, for any 

P € W the set W ^ ( ^ ) is defined (definition 1.10). Further, 

this is a fully invariant subalgebra of A and defines a product 

variety of groups, since for any description p : A > G of a 

group G , (W^(^))p = W^(W^(G)) . 

Lemma 3«9 

Suppose K = (î ĵ ) is any sequence of integers, each ^ 2 and 

K' = is defined by k^ = k . ( a l l i ^ 1 ). Write 

K K' 

Q = Q and Q' = Q . Then for any fvinction cp € Q with the 

property cp(0) =k^cp(l) and any group G , Q^(G) = Q^, Cj;:̂  ) ' 

where cp' is the function defined by cp'( j) = cp( j + 1 ) for 

all 0 . 

Proof 

First it is necessary to observe that cp' e Q' so that Q^t(G) 

has meaning. Let p : A > G be any description of G and 

K K' 

write jr = TC , t:' = n . For any O! e Q such that J^ ^ 1 , 

define cc' by Q!'( J) = 0!( j + 1) for all j , and a closure 
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^ "OV Q!(d) =Q!(j) for a l l J , a(0) =k^a(1) . 

Clearly a' e Q' and a e Q . The following properties are 

easily ver i f ied : 

a = a 

a g a 

a ' + p' = (a + p) ' a + p = a + p 

a < ^ a' < ^ a < (3 

a g 0 a ^ 3 a' g . 

( i ) Q (̂G) ^ (G)) . The argument proceeds by 

proving that ^ a (J^ ^ 1) ^ e by 

induction over the height of x . If ht(x) = 1 then either 

X = in which case ^ = 1 € (G)) or else x = in 

which case = 1 so that J^ < 1 and the result is 

vacuously true. 

Now suppose that h t ( ^ > 1 and the result is true for a l l 

smaller heights. Then there are the usual three possibil it ies. 

If X = u""' or x-x^ the result follows immediately from the 

fact that Q ĵCTĵ  (G)) is a subgroup. Wow suppose x = [x^,:^] . 

Write = (so that \|f ^ a ) ̂  ^Cxt) = = tg • 

Then = + iF'g . Several subcases must now be treated 

separately. 

(a) J^ = J^ = 0 . Then t C ) =1 since > a and J^ ^ 1 , 

and so t ' = 1 and \1;(0) ^ k̂  . Thus wt(:5^ = ilr(0) ^ and 
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so ^ e r^ (G) (G)) (g)) . 

(b) J. = 0 , J, ^ 1 . Then ? = and so 

- \ = ̂  - ̂  = ̂  ' by the inductive hypothesis, 

€ ' is ̂  normal subgroup of G , so 

(c) J ^ 1 , JI = 0 . The argument in this case is V"! Vg 
similar to that for case (b)̂  

(d) J^ ^ 1 J^ ^ 1 . Then \i/-]' and exist and by 

the inductive hypothesis x^p e and ^ p e 

But then ^ = (G)) ̂  Q^, ( T̂,̂  (G)) . 

(ii) ^ Q^(G) . By definitions 1 .5 and 1 .9, 

is the set of all expressions of weight § . It has just 

been remarked that it is a describable algebra, so there exists 

a description p' : A' > ^ , where A' is some algebra of 

expressions : A' may be the same as A provided the latter has 

enou^ generators. Here two free algebras of expressions are 

involved so a little care must be taken with the definitions of 

^ and (see definition 1.9, where it was assumed that only 

one algebra of expressions was involved), It will be assumed 

that ^ A and ^r 'E A' or, more precisely, 

^ = ( X : X e 4 ^ ̂ (x) ̂  9 } and 

= { X' : X' € A' , ^ cp' } ̂  

Then = ̂ p and Q.̂j,,(Tĵ^ (G)) = • It is now 
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sxifficlent to show that ^ • This is proved "by showing 

that x ' e Q' , x ' p ' £ Q "by induction over x ' . 

If h t (x ' ) = 1 then either x ' = (the imit element of A ' ) , 

in which case x ' p ' = 1 e Q , or else x ' = gl (one of the 

generators of A' ) in which case = "I ) so that q)(0) = k̂  

and 9(1) =1 , Thus Q = N, and so x ' p ' e A'p' = N, =Q 

Now suppose ht (x ' ) > 1 and the result is true for a l l smaller 

heights. If x ' = u ^ or x^'^ the result follows immediately 

from the fact that ^ is a subalgehra. If x ' = [ x ^ ' ] , 

write : t ' (x ' ) = \1/' (so that t ' ^ cp' ) , and 

Jt ' (^) = ^̂  . Then \|f' = + . Define t e Q ^y 

j ) = j - 1) for a l l j ^ 1 and \|f(0) =k^\|/(l) , and define 

t-j , similarly . Then by the inductive hypothesis 

x^'p' e ^ ^ and ^ p ' € ^^^ so that x ' p ' = [x^ 'pS^p ' ] € ^^ ^̂ ^ 

and 11/ = + l̂/g so x ' p ' e ^^ <= ̂  . 

Corollary 

With the notation of the leimna, ^ = ^ f ^ .I 

The next theorem involves the notion of "partial co l lectabi l i ty 

mod a " (def init ion 2 . 7 ) . It has been seen (lemma 2.14) that 

this property can be expressed in terms of residual nilpotence, 
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and for later \ise (lemma 3.13) it will be convenient to prove 

the theorem in these terms. 

Theorem 3»1 

Any polynilpotent semiwei^t range is partially collectable. 

Proof 

The proof will proceed by a rather strange double induction and 

perhaps it is advisable to describe this precisely before 

proceeding. 

For any sequence K = integers, each ^ 2 , any non-

negative integer n and any function cp € Q ( ^ oo ) such 

that J^ = n , let S(K,n,cp) be the proposition, "the group 

F^(^) OF a-ny rank T is residually nilpotent". Let us write 

(L,m,\!/) < (K,n,cp) if (a) m < n or (b) K = L and < cp 

(notice that K = L is necessary for < cp to have meaning). 

Clearly this is a (partial) well-ordering of these triplets. 

The truth of the proposition for any K , n and cp is established 

by the inductive step: S(L,m,\|/) is true for all (L,m,\!;) < (K,n,cp) 

S(K,n,cp) is true. 
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IC 
Suppose then that cp e Q , J^ = n and the inductive hypothesis 

is true. There are two possibilities. 

(i) Suppose that cp is not a limiting value of Q^ . Then 

there exists ijr e Q such that cp = + 1 , Then^ by the 

inductive hypothesis^ ^^ residually nilpotent. Suppose 
K TT that X e G = F^(^) ^ x ^ 1 , Then either x / Q^(G) or 

X e Q^(G) , If X / Q^(G) then, since G / Q^(G) = 

is residually nilpotent, there exists an integer c such that 

X i r^(G).Q^(G) and then x ^ r̂ ĈG) , If on the other hand 

X e Q^/G) then, since cp = \]/ + 1 , there exists an expression 

X which is Q -basic, ^ ^ , is a product of commutators of 

semiweight exactly t and such that = x . Thus x may be 
â  QL 

written in the form x = b. b„ ..,b, and then there exists an 

integer c such that wt(b.) ^ c (1 ^ i < k) . Then 

~ ^ S(c) and X = xp so x ^c+l^^^ ^^ B(iii) of the 

Basis theorem. Thus G is residually nilpotent and S(K,n,cp) 

is true. 

K 
(ii) Suppose cp is a limiting value of Q , By lemma '^.Q, 

either cp = 1 or <» or else cp(0) = k̂ cp(l) . If cp = 1 the 

result is trivial since = C } and if cp = <» the result IC is known, since ^̂ .(̂ (J i® an absolutely free group. If 

cp(0) = k̂ cp(l) the corollary to lemma 3»9 is used. With the 
K K notation of that lemm.a, F(Q ) = F(Q t) . —cp —Cp —-iĈ  I 
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K' 

But Jq)t = Jq) " ^ so, "by the Inductive hypothesis ^ ( ^ i ) is 

res idml ly nilpotent and then, "by lemma 2.14, residually a f in i te 

p-group. But so is F(K , ) and therefore, "by a theorem of K 
Gilbert Baumslag ( [ 1 ] , Theorem 5)^ ^^^^ residually a 

f i n i t e p-group and hence residually nilpotent. 
This completes the inductive step. The theorem now follows 

immediately by lemma 2.14. < > 

THE SUBGROUPS 

First the result promised at the beginning of this chapter, that 

the varieties contain among them the varieties ^ , is 

proved. The remainder of this section is devoted to finding an 

expression for a l l the subgroups Q̂ ĈF) of an absolutely free 

group F in group theoretical terms. The argument used to this 

end is outlined following def init ion 3 A . 

Theorem 3»2 

Let K = (^i)!^-] "be a sequence of integers, each ^ 2 , and let 

6 = 5 ^ be the function given in definit ion 3 .5 . Ilien r r 
( i ) For any group G and non-negative integer r , 

Pĵ  (G) = Q^ (G) , 
r r 



no 

( i i ) For any non-negative integer r , P̂ . = Q^ 
=K =5 r r 

Proof 

( i l ) By induction over r . The result is t r i v i a l when 

r = 0 or 1 . Suppose r ^ 2 and the result is true for a l l 

smaller values. Then 0) = k̂  1) so hy the corollary to 

lemma 3.9 and using the notation of that lemma, 

r r 1 

= • Iv ."i ^y "this inductive hypothesis, 
r 1 ~ 

= EK • r 

( i ) is an immediate consequence of ( i ) . 

For the remainder of the chapter i t w i l l he assvimed that we are 

working with a fixed polynilpotent semiwei^t range Q = Q and 

its associated semiweight jt = ir 

Definition 

(A) A new jArt ia l order is defined on Q hy 

cp ^ \|/ <-> cp( j ) ^ j ) f o r a l l j , i f cp and \|/ are 

functions, and cp » f o r a l l cp e Q . 

This partial order is clearly a la t t i ce order. 
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(B) The "meet" cp a of two functions is defined accordingly; 

(cpA ii/)(o) = min { cp(j) , iif(j) } for all j if cp and 

are f\inctions, and cp ̂  00=00 / cp = cp for all cp e Q . Clearly 

if cp and e Q so does cp /\ „ 

(C) A mapping tc : A Q (not a semiweight) is defined 
recursively: 

(i) = . % e G =1 . 
(ii) 

(iii) = ^̂ (x) A 

(iv) = + . 

(D) For each cp e Q let Q he the set 

% = f x - and, for any description 

P : A > G , let Q^(G) he the set Q^(G) = . Subject 

to the proof in the next lemma that ^ is a fully invariant 

suhalgehra of A , let he the corresponding variety of 
groups O 

This definition deserves some explanation. In definition 1.7(i) 

it was postulated that the order ^ defined on an arbitrary 

semiweight W should he a well-order^ and this property appears 

first in the proof of Witt's formula in Chapter 1 and second in 

the proof thai the special collecting process can convert an 

arbitrary expression into a W-basic one in Chapter 2, 
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But there is another important consequence of the postulates of 

definition 1 .J and that is that the semiweight of an arbitrary 

expression does not become smaller under either collecting 

process (leminas 2.5 and 2.7), and this fact does not require the 

property that ^ is a well-order. 

In lemma 5.11 it will be shown that the new partial order on 

Q satisfies properties (iv), (v) and (vi) of definition 1.7, and 

so this partial order is preserved by the collecting process in 

the same way. Thus the mapping « : A > Q becomes quite 

closely analogoiis to a semiweight and many lemmas previoxisly 

proved for ^ can now be proved for ^ with no more than a 

word-for-word translation, reading for ^ , jc for jt or a ̂  
/s 

for Q^(G) or and so on. Some of these lemmas 

will be needed in translation, and a reference to the forgoing 

\intranslated version will be given in each case. 

It is also not difficult to prove that is in fact the 

coarsest partial order which satisfies parts (iv), (v) and (vi) 

of definition 1.7j this fact however is not necessary to the 

argument to be used in this section and is not proved here. 

However this means, roughly speaking, that the subalgebras ^ 

are just about the smallest ones to be closed under the collecting 

processes, and so it might be expected that the corresponding 

subgroups are more "natural" than the subgroups Qjp(G) • 
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This turns out to "be true, in the sense that they are more 

simply expressed in group-theoretical terms and that it is 

more easily proved that this expression is correct. Once this 

has "been done it is a fairly easy matter to express a suhgroup 

Q^(G) as a product of subgroups Qqj(G) . This approach 

is used here and occupies the remainder of this section. 

Lemma 3«10 

With the notation of the forgoing definition, is a fully 

invariant suhalgehra of A and consequently is a verbal 

subgroup of G for any group G and is independant of the 

particular description p : A > G chosen to define it. 

Proof 

Translate lemma 1.5 . ^ ^ 

Lemma $.11 

(i) The order satisfies the properties 

a , 0 -<00 a + p -<00 

and 

a ^ ^ ^ r r + = r + + + r 
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( i i ) If D : x > 5 r or E : x > jr then . 

( i i i ) If D : X > jr then there exists u (possibly 

empty such that E : x > jm and ^ + 1 . 

Proof 

( i ) The f i r s t three of these properties follow immediately 

from the definitions and the last from lemma 3.4. 

( i i ) Translate lemmas 2.5 and 2.7. 

( i i i ) Translate lemma 2.6 . 

Lemma 3«12 

Let G = F(N ) "be a group, free with respect to being nilpotent 

of class c . Then, for any cp e Q , Q (̂G) n rj,(G) is a 

free Abelian group. Further, i f p : A > G is a free 

description of G , then the set 

{ : b is a Q-basic commutator, wtC^ = c and jtC^ ^ cp } 

is a free basis for Q (̂G) n r^(G) . 

Proof 

?y virtue of the basis theorem, i t is sufficient to show that 

the Q-basic commutators of weight c and semiweight ^ cp 

generate Q (̂G) H ^^(G) . But this follows immediately from 

lemma 5.11 ( i i ) . 
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It will "be noticed that this lemma amounts to a small part of the 
/s 

"basis theorem for the subgroups • The rest of the basis 

theorem can be proved in this context, but it will not be 

req.uired here. 

liemma 

The following two propositions are equivalent for any cp € Q . 

(i) ^̂ icp) residually nilpotent, 
(ii) is residually a finite p-group. 

Proof 

Translate the appropriate part of lemma 2.14, 

Partial collectability can be proved for Q subgroups. This 

is expressed most conveniently in terms of residual nilpotence, 

using the forgoing lemma. 

Lemma 

The relatively free group F(g^) = F / is residually 

nilpotent. 
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Proof 

Translate lemma 3.9 and theorem 5.1 . 

It follows immediately from definition 3.4 that the order is 

coarser than the order ^ , that is, that cp t cp i . 

Another immediate consequence is that, for any expression x , 

a-nd thus ^ . There exist expressions 

for which this order relation is strict. On the other hand, the 

opposite relation can be established in a weakened form as the 

next lemma shows. 

Lemma 3.1^ 

Let X he an expression. Then there exist expressions 

f \ ^ f \ such that E : and 

^ (1 g i g k) . 

Proof 

This follows by an easy induction over the height of x . 
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Lemma 3 .16 

For any group G and cp e Q , 

Q, .(G) = n v ^ ) 

Proof 

Suppose X e Q^ , xjr ^ cp . Then the re e x i s t s x e A such t h a t 

^ = X and e Then ^ ^ \|/ ^ cp so 

X e . Conversely, suppose x e . Then, hy 

lemma 3 . 1 x i s a product of elements each of vhich belongs t o 

some Q^(G) , t ^ cp . 

This lemma e s t a b l i s h e s t he promised connection between the Q 
cp 

and the Q^ subgroups, and in the next lemma a group t h e o r e t i c 
yN 

express ion f o r the Q^ subgroups i s e s t a b l i s h e d . I t w i l l be 

no t iced t h a t the proper ty of p a r t i a l c o l l e c t a b i l i t y , given by 

lemma 3 . 1 p l a y s an e s s e n t i a l pa r t in the proof ; t h i s provides 

t h e f i r s t demonstrat ion of the use fu lness of t h i s no t ion . 

Lemma 3 .17 

Let F be an abso lu t e ly f r e e group and l e t cp € Q ( «> ) ^ 

then ^ ^ 
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Proof 

( i ) I t i s shown f i r s t t ha t i s contained in the 

i n t e r s ec t i on displayed above. This i s proved hy showing tha t 

i f ^ cp then, f o r 0 ^ j ^ J^ , ^ e ) , 
<3 

hy induction over the height of x . I f h t ( :^ = 1 the resi i l t 

i s t r i v i a l . Now suppose t h a t h t ( ^ > 1 and the r e su l t is t rue 

f o r a l l smaller he igh t s : there are the usual three cases. If 

X = u""" or x ^ ^ the r e su l t is t rue since ) 

i s a subgroup. If x = , def ine q)̂  = Jt(x^) and 

cpg = J t (^) . Ihen x^p e \ ) and 

'P-j(j) + = ^ ( j ) so "that the r e su l t is t rue unless 

But in t h i s case 

~ ^k ^ ^K ^^^ ^ ^ ^K ^^^ ^ ^ r e su l t i s 
j j - l 0 

s t i l l t r u e . 

( i i ) In order t o e s t ab l i sh the reverse inclusion i t must 

f i r s t be proved t h a t i f x e Pĵ  (F) ) then there Exists 
r 

X e A such tha t ^ = x and cp(r) ^ c where cp = . 

This i s done by double induction over r and c . The r e su l t 

i s t r i v i a l when c = 1 and r = 0 . Now the r e su l t i s proved 

f o r any r and c on the inductive assumption t ha t i t i s t rue 

f o r the same r and smaller c and a l so f o r smaller r and 
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any c . Suppose first that c > 1 . Then, since 

r^i Pk ̂ ^̂  ^ = t ^K ) . PK ̂ ^̂  ^ ' ^ 

written in the form x = [â  ] [a^^bg] ...[aĵ ĥ̂ ]̂ where, 

for each i , a. € ( P̂ ^ (F) ) , h. e P^ (F) and e. = ±1 

Then there exist a. , h. € A such that a.p=a. , b.p=b. , 

a^(r) S c - 1 and ^ 1 where a^ = rt(a^) and 

= Jt(^) . Then [a^,^]) = + and (a. + ^ c , 

Thus, writing x = . » , 

^ = X and q)(r) ̂  c where cp = . Now suppose that 

c = 1 and r > 0 . Now x e r̂  ( Pĵ  (F) ) = Tj, ( Pĵ  ) 
r r r-1 

so by the inductive asstunption there exists x e A such that 

= X and cp(r - 1) - where cp = . But then 

cp(r) by definition 5.2. 

It is now possible to prove the converse inclusion. Suppose 

X / Q (F) and x e f} r , .)( Pĵ  (F) ) • Then by leinma 5.1^ 
I ^ 

there exists an integer c such that x j. Q^(F) . r^(F) . 

But then, by the basis theorem, there exists x e ̂ ^^ such 

that ^ = X modulo r^(F) , and then, still by the basis 

theorem, is not ^ cp j that is, there exists an integer 

r such that ^(r) < cp(r) where ^ = . Clearly then 

r S J^ so that x e Pĵ  (F) ) . But it has just been 

proved that in this case there exists x' e A such that 
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x'p = X and cp'(r) ̂  cp(r) where cp' = n(x') . But then 

® = JDi where jr e ̂ ^^ and ^ c + 1 . Then 

hy lemma 3.12, x = jr so that = . Eut by lemma 5.11 (ii), 

t = 't(y) jT(yu) ^ Jt{x') = cp' so that ^Kr) ^ cp'(r) ̂  cp(r) . 

But this is a contradiction: both )|r(r) ̂  9(r) and \|/(r) < (p(r) 

have been deduced. This completes the proof of the lemma. 

O 
The last two lemmas contain between them a group theoretic 

description of the subgroups . This can be made a little 

simpler by the following lemma. 

Lemma 3.18 

Suppose J for any f\mction cp e Q and any integer n (-1 g n ^ J ) 

the function e Q is defined by 

n 
= (cp(n) + 1) n k (j <n) , 

= cp(n) +1 (j = n) , 

= (0 > n , j ̂  J^ + 1) / 

= 1 (if j = J + 1 , n = J ' cp ' cp 

and cp(n) = - 1 ) , 

= 0 (otherwise) 

(Clearly e Q . Notice that 9̂  ^̂  = 9 and = 9 + 1 ) , 

Then ^ 9 if and only if for some n (-1 ̂  n g J^) . 
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Proof 

Suppose that \|/ ̂  cp . Then either = cp , in which case 

= or \l/"^cp,in which case there exists an 

integer n ^ 0 (hitherto called ) such that cp(n) < \lf(n) 

and j > n <P( j) = '̂ K j) • Suppose first that n > J^ . 

Then \!/(J) ^ ^t +1 ' ^̂ '̂ cd " "" ̂  ~ ^ J +1 ^^^ 
ĉp ^ cp cp 

cp( J j < k_ so cp, ̂  V . Now suppose n ^ J . By the 

same argument, ^^'^(n) ' 

Conversly, if some n then ^ cp̂ ^̂  and 

clearly cp, v ^ cp . 
(n) ^ 

All this may now he suinmed up in a theorem. 

Theorem 

Let Q = be a polynilpotent semiweight range and let F he 

an absolutely free group. Writing P^ = P̂ ^ (F) for the various 
n 

terms of the polynilpotent series of type K , 

J 

and 
r=0 

J.. 

v^) = n 
^ n=-l ^ n ) 
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where 

Q (F) = Q (F) as alDove, and CP(.T) 9 ^ 

for 0 ^ n ̂  J^ . O 
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CHAPTER h 

THE UPPER CENTRAL SERIES OF 

FREE W -GROUPS 
^sJC 



Definition 4.1 

Suppose ¥ is an arbitrary semiweight range and a the 

associated semiweight. Then 

(i) For each a e W the element a - 1 of W is defined 

o; - 1 = min This is well 

defined since W is well-ordered, 

(ii) For each a e W and each non-negative integer n the 
element a (-1)^ is defined recursively by a (-1)° = a and 
a (-1)^ = a (-1)̂ "'' - 1 for n > 0 . 

Clearly a (-!)"• could just as well be defined 

a (-1)^ = min { I : I e W , | (+1)^ § a } . Notice that, 

if X is a limiting value of W , x, - 1 = x , 

The principal result of this chapter is, if W is partially 

collectable mod a and G = F(W ) is of rank at least 2 , then 

^(G) = W^^(G) . 

Lemma 4.1 

K K Suppose Q is a polynilpotent semiweight range and cp e Q . 

Then cp - 1 may be described as follows : 
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(i) If cp = 1 or 00 or is of the form q)(0) = k^cp(l) , 

cp( 1) then cp - 1 = cp . 

(II) If cp(0) = k^ and cp(l) = 1 then (cp - 1)(0) = k^ - 1 

and (cp _ 1) (j) = 0 for j ^ 1 . 

(III) If cp(0) >k^cp(l) then (cp - 1) (0) = cp( 0) - 1 and 

(cp - 1)( j) = cp( j) for j ^ 1 . C ; ^ 

For the remainder of this chapter it will "be assvimed that we are 

working with a fixed semiweight range W and its associated 

semlweight a . All definitions will "be made in terms of these. 

Definition 4.2 

Let h "be a commutator > (that is, other than ). The 
* 

commutator b is defined recursively over its weight.. 
"X' 

(i) = ' 

(11) [b^,^]" = . o 

Suppose that x Is an element of some group G which can be 

described by a W-baslc expression x = b^ ^ ' * ( o t h e r than 

T̂̂  ) modulo WQ,(G) ^ and suppose is the factor of x maximum 

xinder the order (definition 2,5). Then it will be proved 

that C^^SQ] ^^^ ^^ described by a W-basic expression modulo 

which contains as a factor and which is thus not 1 
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This proof occupies most o f the chapter and then the main r e s u l t 

f o l l o w s immediately. 

Some simple propert ies o f the commutator b are given in the 

next lemma. 

Lemma h,2 

I f a and "b are W-basic commutators > , then 

( i ) a(a^) = a ( [ a , g ^ ] ) = + 1 > , 

( i i ) a < a • and a* a . 

( i i i ) a < "b a* < and a <° b a* b^ . 

( i v ) a^ i s W-basic , 

(v ) a"̂  = b " a = b . 

Proof 

( i ) = + 1 > a(a) i s t r i v i a l . I t i s shown 

that cr(a*) = a{a) + 1 by induction over the weight o f a . 

I f a i s o f weight 1 the r e s u l t i s again t r i v i a l . Otherwise 

a = [a^^a^] and a'" = s o , by the inductive hypothes is , 

a(aj') = "^(a^) + 1 + * s ince a i s W-basic , 

^(a-,) ^ a(a^) ^ 1 so a(a*) = a(a^) + a ( ^ ) + 1 = + 1 . 

( i i ) f o l l o w s immediately from ( i ) . 
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( i i i ) It is shown that a < h a"' < by induction over 

. I f = 1 then a(a) = 1 and the result is t r i v i a l . 

I f > then a(v ' ) = + 1 > + 1 = so 

> . It remains to prove the result when = ^ • 

Write and so that = and 

h" = [•bj,]^^] . Since a and b are W-basic, = â  and 

= b^ . Therefore either â  < b̂  or â  = b̂  and ^ < . 

I f â  < b^ then a^ < b" . But af > â  > a^ so 

Id(aJ') = aj . Similarly ld(b*) = b̂  and hence a* < b̂ ' 

I f , on the other hand, a, = b, and a^ < b^ then af = b* and 

^ < feg so again a * < b * . 

Now suppose a b . Then either > in which case 

a(a") > cT(b*) so that a* <P b" or else = ^^^ 

a < b in which case ĉ Ca*) = a(b*) and a* < b* and again 

â ^ b̂ ' . 

( iv ) a-̂ ' is W-basic, by induction over the weight of a . If 

wt(a^ = 1 the result is t r i v i a l . Now suppose a = [a^^a^] 

and â ' is W-basic. Then a"'' = [a^ ^a^ ] , and ^ are 

W-basic and ^^ > ^ , Since wt(ap > 1 , write a* = [ c ^ ; ^ ] ; 

i t remains to prove that Cg g a^ . I f wt(a^) = 1 then 

% = go - ^ and i f wt(a^) > 1 , writing â  = , 

Sg = - ^ ~ " W-basic. 

(v) follows immediately from ( i i i ) o 
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Leinnia 

Suppose X is a product of commutators, all <° some commutator 

a , and b is any commutator. Then D : [x^b] > where 

jr is a product of commutators, all [a,b] . 

Proof 

By induction over the length -t of x , If -t = 1 then either 

X = 1 , in which case the result is true with y = 1 , or 

X = c""* where c is a commutator a , in which case 
+•] Q 

D : [^b] [c^b]~ and [c,b] < [a,b] by the corollary to 

lemma 2.1 . Now suppose t > 1 and the result is true for 

shorter products. Then x = x̂  ̂  where x̂  and are 

products of comm.utators 

a and so D : [x̂  ,b] ->- ̂ ^ and 

D : > yg where jr̂  and ̂  are products of commutators 

[a^b] . Hence D : x > jr̂jjg which is of the required 

form. 
Lemma 

Suppose c is a W-basic commutator > . Then 

D : > c u where u is a (possibly empty) product of 

commutators 
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Proof 

The argument proceeds by induction over c under the W-ordering 

^ of the commutators. Suppose =1 . Then c* = 

already. Now suppose that wt(^ >1 and the result is true 

for all commutators < c . Write c = [c-,c„] . Then 

C^So^ " ki^Sg^g^] • ^^ Sg = So ^ ~ w - b a s i c , 
ĉ  is g^-compatible (definition 1.15) and so is of the form 

fo^ some generator and a ^ 0 (lemma 1.12). 
Thiis = = c . Otherwise ^ > ' 

Hence since c is W-basic, < Cg < ĉ  . 

inductive hypothesis, D : > ciĵ'û  , where û  is a 

product of commutators 

and D : ->- ^ ^ where 

is a product of commutators <° ̂  . Thus 

It is now shown that [ĉ ĉ̂  ] ' ^^^st 

= a(Cg) + 1 + a(c^) , But c is W-basic, so 

^ < ĉ  and so 1 ̂  a(Cg) ̂  a(c^) ; thus 

> Cg]) then <° [c^^Sg] ^mediately. 

Otherwise =a([c*,cg]) . But ĉ  > ̂  so c* > ^ 

and thus ld([c*,cg]) = c . But is either ^ 

or ĉ  and both of these are < ĉ  . Hence [̂ ĉ-j ] • 
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By lemma since is a product of commutators ^ , 

D : [-i^^c^ J""* > , a product of commutators [^^c^ ] 

and so is a product of coinnutators <° [ c * , ^ ] . 

Again D : [u^_,C2] > jr̂  where jr̂  is a similar product, 

D : > jr̂  [cg^c^ > which 

is of the required form. 

Lemma 

Suppose u is a product of commutators <° some commutator c 

and D : u v . Then so is v . 

Proof 

This follows immediately by checking the various parts of 

definit ion 2.1 . 

Theorem 4,1 

Suppose ¥ i s a semiweight range^ a e W W is part ia l ly 

col lec table mod a and F is an absolutely free group of rank 

s 2 . 

( i ) Ifit G = F ( ^ ) . Then ^(G) , 

( i i ) Let c be a positive integer and G = F(W fl N ) . 

Then ^(G) = V l ^ ^ ^ - ' ^ c ^ ^ ) ' 
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P r o o f 

L e t p : A > G b e a f r e e d e s c r i p t i o n o f G . T h e n t h e n u m b e r 

T o f g e n e r a t o r s o f A i s a t l e a s t 2 . C l e a r l y t h e r e s u l t i s 

t r u e w h e n a = 1 o r 1 + 1 ^ f o r t h e n = G o r 6 ( G ) 

r e s p e c t i v e l y . I t m a y n o w b e a s s u m e d t h a t a > 1 + 1 . 

( i ) F i r s t i t i s p r o v e d t h a t ^ ^ ( G ) . S u p p o s e 

z e W^ , ( G ) a n d x e G . T h e n t h e r e e x i s t z , x e A s u c h 
cn-1 ^ ' ~ ' ~ ^ 

t h a t ^ = z , = x a n d a ( z ) ^ a - 1 . H e n c e a ( [ z ^ x ] ) ^ a 

a n d s o [ z , x ] = 1 . B u t x i s a n a r b i t r a r y e l e m e n t o f G , 

s o z € ^ ( G ) . 

N e x t t h e c o n v e r s e i n c l u s i o n ^ ( G ) ^ ^ q j - I ^ ^ ) p r o v e d . 

S u p p o s e X 6 G b u t x i . T h e n , s i n c e W i s p a r t i a l l y 

c o l l e c t a b l e , t h e r e e x i s t s | e W s u c h t h a t x e W ^ ( G ) x W ^ + ( G ) 

a n d I"*" ^ a - 1 , B y t h e b a s i s t h e o r e m t h e r e e x i s t s a W - b a s i c 

e x p r e s s i o n x b^ ^ " ( o t h e r t h a n 1 ) s u c h t h a t k ^ 1 , 

^ = X m o d u l o W ^ + ( G ) , a ( b ^ ) = a ( ^ ) = , . . = a ( ^ ) = 1 a n d 

a s u s u a l b^ < ^ < . . , < ^ ( s o t h a t b^ < ° ^ < ° . . . ^ ) 

a n d n o n e o f t h e a r e z e r o . B u t t h e n , w r i t i n g 

x ' = b , b , r . . . b , , x ' p = x m o d u l o W + ( G ) a l s o . 

Now D : > t ^ ^ S o ^ 

a n d t h e n b y l e m m a k - . k , f o r e a c h i ( 1 ^ i ^ k ) , 

D • f b .K ] > b ' u w h e r e u . i s a p r o d u c t o f c o m m u t a t o r s < ° b 
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= say 
D and v̂  is a product of coumiutators < , Then 

r-, rg r^ 
^ • X] ^ ^ Sg • •'Sn ' ̂  W-basic expression and by 

lemma 4.5 each ^ - Now a(^) = | + 1 , and so each 

c^ is of semiweight at least | + 1 . Thus there exists m 

(O ̂  m ^ n) so that a(c^) = | +1 for 1 ̂  i ̂  m and 

> ^ +1 for m < i ̂  n . Then 
D • [x' ff 1 > J'^J^ J ^ D . > ĉ  Cg ...c^ . 
But = ^ + 1 so 

Sg •••c^ )P = [x^g^] modulo . 

Now, since a(c ) = 1 + 1 = a(bf) and c bf so that 

may be empty, 
certainly is not. Hence, by the basis theorem again, 

[x,g^] / , But I < a - 1 so 5 + 1 < a and 

and so + 1) + ̂  a . Thus [x,g ] / W (G) = (1 } and so 

(ii) The modifications req.ired to the forgoing argument for 

this case follow the by now familiar form. 

^m c, ĉ  .. .c 

r̂  Tg ^m CT Ĉ  • • .c 



135 

Corollary 

With the conditions of the theorem. 

(i) Let G = F(W ) . Then the upper central series of G 

is given hy ^ G ) = (n ̂  0) . The upper 

central series terminates, that is, there exists an integer N 

such that = ĵ̂ (G) and then a (-1)^ is a limiting value 

of W , in fact, the greatest limiting value ^ a . 

(ii) Let G = F(V/ n N ) . Then the upper central series =QI =C 
Of G is given by ^^(G) = % )n(G) .^(G) • < > 



CHAPTER 5 

M APPLICATION 
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It is a well-known fact (see for instance Hanna Neumann [9], 

section A.2.5) that if a group is nilpotent and torsion-free, 

then its central factor group is also torsion-free. 

The following problem, which was posed by Gilbert Baumslag and 

L. G. Kovacs and communicated to me by the latter, could be 

regarded as a weakened converse: if a group G is nilpotent, 

relatively free and has a torsion-free central factor group, 

does it follow that G itself is torsion-free? 

In this chapter the question will be answered, and the answer 

will depend upon the soluble length of G . If G has the 

properties listed above and is also exactly metabelian (that is, 

metabelian but not Abelian or, in other words, G € Sg ̂  Ŝ  ) 

then G is torsion-free; in fact G is a free group of the 

variety |g ^ for some c . On the other hand, counter-

examples are given for any other soluble length; for each 

t ^ 2. a group is described which is soluble of length exactly 

t , relatively free, nilpotent and has a torsion-free central 

factor group but which is not itself torsion-free. 

It is a fairly well-known fact that if G is a free metabelian 

group, then r^(G) / is a free Abelian group, freely 

generated by the left-normed basic commutators of wei^t c 

modulo . It might be desirable to state this fact and 
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prove it in terms of the present theory^ from which it emerges 

as an easy special case. 

The derived series S^(G) of a group G is defined recursively 

by 6°(G)=G and G) = 6( G)) = G) G) ] for n ^ 0. 

Consequently, with the notation of definition if the 

sequence K = is defined by = 2 for all i , then 

Pĵ  = for all n . Throughout this chapter it will be 
n 

assumed that the corresponding semiweight range Q = Q is 

being used. The corresponding varieties ^ are S for all 
r 

r ^ 0 » The functions € Q (definition 3.5) are given by 

V o ) (J ^ r) and = 0 (j > r ) . Then 

= gg and for any group G , Q^ (G) = 6^(G) . 
r r 

Definition $.1 

(i) A "left-normed" commutator is one of the form 

(ii) A "left-normed basic commutator" is a commutator of the 

form where i^ > i^ ^ i^ ^ ... ^ î ^ . < > 

Clearly, for any semiweight range W , a left-normed commutator 

is a W-basic commutator if and only if it is a "left-normed basic 

commutator". This justifies the terminology. 
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Lemma 

(i) Defining a f\mction X e Q for each positive integer c 

by = 1 , = + 1 , the left-normed basic commutators 

of weight c are exactly the Q-basic commutators of semiweight 

X . Further, for c ^ 2 , X is the function X (0) = c , c c c 
x^(l) = 1 and = 0 (J ^ 2) . 

(ii) Suppose G = 0 N ) . Then r (G) is a free —̂  —-C c 
Abelian group, freely generated by the left-normed basic 

commutators of wei^t c . 

Proof 

(i) is all obvious and then (ii) is the basis theorem for these 

semiwei^ts. 

leTtima 5 <2 

Suppose i < T and c is a commutator. Let Q be the 

endomorphism of A defined: = ĝ^ (j ̂  i) , ^^Q = ̂ ^ . 

Then D : c0 c where |i = |j.̂ (c) as defined in definition 

2.8. 
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Proof 

By induction over the weight of c . If •wt(^ = 1 the resiilt 
oUt 

is trivial. If c = [c^,cg] and D : c ̂ 0 c ^ , 

D : Cg0 > Cg^^ where = n.(c^) and = ' 

then D : c0 > [ĉ  ] > hy an easy 

induction over and iĵ  and i-i = + iĵ  . 

Lemma 

Suppose G = F ( | g n N ^ ) , V is a fully-invariant subgroup of 

G and p : A > G is any free description of G . Let 

(V^)^^^ be any sequence of integers, and suppose 

li = b̂  ^ .. is a product of commutators of weight c 

such that € V . 
a a a 

Then, writing v = b "̂i b ... t where 

p̂  p^ , .. o , p^ is the subseq.uence of the integers 

i = 1 , 2 , ... , k for which M(^) = (definition 2.8) 

or V = ^ if there are no such i , there exists a non-zero 

integer t such that v^p € V . 

Proof 

By induction over the number of integers r for which 

M( ^ (V^)^^^ . If there are no such integers, then the 
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result is immediately true with v = u and t = 1 . 

Now suppose there is some integer r for which MCb^) ̂  • 

Then there exists some n < T such that u (b ) ̂  v . Let 

9 be the endomorphism of A defined: = ̂  , = g^ 

( i n). Then by lemma 5.2, 

D : u0 > b / ' ̂  ^ ... ̂  ^ ̂  , where p. = 2 ^ ^ . 
But up 6 V and V is verbal. Hence uSp e V , that is , 

^2^2 V k (b̂  ^ ••• "fek )P e V .. Then, writing b^p = b^ ; 
Vk 

b̂  bg **• \ € V , Then, since the commutators 
are all of wei^t c and G is nilpotent of class c , 

the elements b^ of G all commute. Thus 
(up) ~ ^2 " * ̂ k e V and then 
h k̂ 

b, ...b, € V where r. = a.O. - 3 ) , and thus, since I JC ic X X 1 r T̂-l r̂+l r̂-tP k̂ r is zero, (b/b„ ...b 'b b lo •••̂ i )p e V . But now 
the inductive hypothesis applies and 

T T r t' 
...^P^) p € V (f ^0) , 

^ ^ ^̂ n(̂ r) But r, = a o - 3 ) = a (2 " - 2 ^ M = 
V ^ (b ) 

= . Hence 
Pi 
a a a t v ji (b ) 

(b Pi b ...b p € V where t = t'(2 ̂  - 2 ̂  ) ; 

but H (b ) ^ V and t' 0 , so t ̂  0 . O 
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Definition 

( i ) The notation of definition 1.16 is extended as follows: 

1 > > ^ > > \ are expressions and n̂  , n̂  , . . . , n̂ ^ 

non-negative integers, then [jr̂  n-j xx̂  . . . n̂̂ x̂ô ] is the 

expression n-j times n̂  tjjges n̂^ times 

A str icter definition, by recursion, is 

iZ^OXK^ ] = Z 

i f r ^ = 0 , 

i f n̂^ > 0 . 

I f any of the n^ are 1 they may be omitted. 

( i i ) For any sequence (x^) of expressions indexed by 
n 

integers, the expression T~T x. is defined recursively for 
m n n-1 

m ^ n by: f 7 ^ = ^ and, for n > m , H = ( I T ' 
i=3ii 1=40. i=m 

The same notations wi l l be used in the obvioiis way for l e f t -

normed commutators and products of elements of an arbitrary 

group G . 



Some simple properties of commutators in the "bottom" of a nilpotent 

group are: 

Lemma 

Suppose G e Jg n N^ . Then 

(i) If u € [z,y^x] e y-̂ (G) then u = [ŷ x̂ z]""" [z,x,y] . 

(il) If u e r (G) is of the form c 
U = { 1 ^ 2 , k ^ 0) 

then u = . 

(iii) If u e r^(G) is of the form u = [x̂  ̂ x̂ ŷ̂  ̂ ŷ ,...̂ ŷ ]̂ 

and jt is any permutation of the integers 1 ,2 , ... , k , then 

(iv) If u € r^(G) is of the form 

u = ^ 0 , k ^ 0) then 

~ t̂ l ^ • • • ̂x̂ ŝ-̂ y-j * * • ' * *' * * *'̂ k̂  * 
(v) If u e r (G) is of the form 0 

A - ^r) 
then u = [x̂  , 

r=0 
where is the usual binomial coefficient. 

Proof 

(i) follows immediately from Jacobi's identity. 

(ii) follows from (i) by induction over k . 
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(iii) is a corollary of ( ii) . 

(iv) "by induction over k . 

(v) is a corollary of (iii) and (iv) . 

Theorem 5.1 

Let G be a nilpotent, relatively free group which is exactly 

metabelian (that is, G e ̂  \ S^) and has a torsion-free central 

factor group. Then G is isomorphic with one of the groups 

'̂is "ic)-

Proof 

This theorem must be proved in two stages : first when the rank t 

of G is infinite and second when it is finite. 

(A) Suppose T is infinite. Let c be the smallest integer 

such that G e S,̂  n N , Since G is not Abelian, c ^ 2 . 

Let F - F (S^ n N ) , Then there exists a fully-invariant 

subgroup V of F such that G = F/V , It may be assumed that 

G = F/V . Let M. be the natural epimorphism : F > G , and 

let Z be the complete inverse image of ^(G) : that is, 

z € Z z|i e ^(G) . Then F/Z = G/^(G) and so is torsion-

free. Also z € Z if and only if [z,x] e V for all x e F . 
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Let p : A > F be a free description of F defined in terms of 

a free generating set ^ = Is^}^^^ of F . 

If V = (1 } then G = F (S_ n N ) and the theorem is true. 
T =id =C 

Otherwise V is non-trivial and thus it has a non-trivial inter-

section with the centre of F . But, "by the results of the previous 

chapter, = , so V n r (F) {1 } . Thus there exists 

c c 

a Q-hasic expression u = b, .. .b, e A such that u 1 , 

e V and n(b^) = jt(^) = = n ( ^ ) = , that is, 

fe-] ̂  feg f ••• > left-normed basic commutators of weight c . But then, by lemma 5.3, it may be assumed that 

M(b^) = M ( ^ ) = ... = M ( ^ ) . 

Firstly suppose c = 2 . Then, since the ^ are Q-basic and 

of weight 2 and M(b ) = M ( ^ ) = ... = M ( ^ ) it follows that 

k = 1 so that UQ = b^ (Q:̂  ̂  0) . Writing b^ = 

it follows that [g^^gj^] e V . But then, since 

= [gj ^g^] ^ [gj ^g^] e V . Now let x be any 

element of F and let be the endomorphism of F defined 

" ' " ^ ' ^ ®r ^ • ^^ possible 

cc 0> 
since ± ^ j . Then [g^i ,x] = e V . But x is an 

cc 

arbitrary element of F , so g^i e Z . But Ol^ ^ 0 and F/Z is 

torsion-free, so g^ e Z and thus e V . But V is 

verbal, so 6(F) ^ V : that is, G is Abelian which contradicts 



the choice of c . 

Now suppose c ^ 5 . The argument in t h i s case i s merely a more 

s o p h i s t i c a t e d v e r s i o n of the one j u s t g iven. Since b̂  i s of 

weight c , i t may be wr i t ten in the form K = [g , g 1 

where p̂  > p^ ^ p, ^ . . . ^ p . I f b i s one of the others 1 2 3 c rr 

(2 ^ r ^ k ) , w r i t i n g b = [s ,] , again 

pj > p^ ^ p^ ^ . . . g p^ . I t fo l lows from these ineq.\aalities and 

the f a c t that M(b^) = M(^) that pj ^ p̂  and Pg = Pg • 

Let be the endomorphism of F defined g^ ~ ' 

" ®o ( i ^ P ] ) • Then b^pQg = [g^,(c-1)xg^] and 

( 2 ^ r ^ k ) . Hence = ^ 

and so , s ince V i s f u l l y - i n v a r i a n t . 

Now l e t be the endomorphism of F defined g^Q^ = g ^ ^ , 

g.03 =gj_ ( i ^0), Then û  = [g^,(c-1) xg^^ Ĵ î = [g^ , ( c - l 

i s an element of V . But then, by lemma 5 . 4 , 

a 

c r i 
[ g i , ( r + l ) x g , ( c - 2 - r ) x ^ ] 



Now apply lemma 5.3 to IL, with V = c-2 , v, = v̂  = 1 , I o 1 2 
V. = 0 ( i > 2 ) . Then u e V where 

Now let be the endomorphism of F defined = g^ , 

= ^ ĝ Q^ = gj_ ( i^^l^S) . Then 

Hence u^ = ) (UgĜ )̂ = [g^,(c-2) xg^^g^ e V , 

where p = (c-l)^a^ - a^ ^ 0 since c ^ 5 . Now let x "be an 

arbitrary element of F , Let d̂  be the endomorphism of F 

defined = x ^ g^e^ = g^ ( i 5^2). Then 

arbitrary element of F so [ g ^ c - 2 ) e Z . But then, 

since P 0 and F/Z is torsion-free, [ g ^ c - 2 ) e Z 

and thus [ g ^ c - 2 ) ] e V . 

It wi l l now be proved that, for each r (1 ^ r ^ c -2 ) , 

^r ^ e V by induction over 

r . This fact has just been proved for r = 1 . Now suppose 

that e V . Let be the endomorphism of F defined by 

= So^c-r-l ' = Si ( i ^ 0) , Then 
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S i n c e r g c - 3 , a n d s o c - r - 1 1 2 , t h i s m a y "be w i t t e n i n t h e 

f o r m = 

= w^wg , w h e r e = ^ ^ o ' ^ X S o S c - r - l ' S c - r ^ W l — - ^ c - l ^ 

a n d = . I h u s 

c - r . 2 

a n d 
c - r - 2 

T h e n , a p p l y i n g l e m m a 5 . 3 t o w^w^ w i t h v ^ = c - r - 2 , V^ = 1 

( 1 ^ i ^ c - 1 ) a n d V^ = 0 ( i ^ c ) , s i n c e e V , 

w ^ v ^ € V w h e r e 

^ ^ = [ g ^ , ( c - r - 2 ) x g ^ , , a n d 

B u t c - r - 1 ^ 1 , s o 

- 1 
• t S c - r - l X S o ^ S i . g ^ r ^ g c - r + l ' ' ' ' ' ^ c - l ^ 

a n d t h u s 

• t g c - r - 1 ' ^ c - r - 2 ) ^ S c - r ^ ^ c - r + l - ' ' 

W r i t e 0 j f o r t h e e n d o m o i - p h i s m o f F d e f i n e d g ^ O j = > 

® c - r - 1 ^ 7 "" ' " ^ ^ ^ ^ > c - r - 1 ) : t h i s i s p o s s i b l e 

s i n c e r ^ c - 3 a n d s o c - r - 1 ^ 2 . T h e n 
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•where d = (c-r-1)^ - ^ ^ 0 , In other words e V . 

Nov let X "be an arbitrary element of G and let 0g be the 

endomorphism of F defined 0q = x , g^Og = g^ (i ̂  c-1). 

Then = e V 

and, since x is an arbitrary element of F , 

e Z . But d 0 and 

F/Z is torsion free so [ g ^ c - r - 2 ) . , . ] e Z . 

Thus v^^^ = e V . This 

completes the induction. Thus, in the jarticular case r = c - 2 , 

tgî gô Ŝ ĝĵ Sl+̂ '-'̂ Sc-l ̂  ̂  ̂  ^ verbal, 
Y^(F) ̂  V which contradicts the choice of c . This completes 
the proof of the theorem when the rank of G is infinite. 

(B) Proof when the rank is finite. Suppose G^ is a 

relatively free group of finite rank n , nilpotent, exactly 

metabelian and has a tors in-free central factor group. It is •• 

proved that G is one of the groups F (Ŝ^ n N ) . n n =c 

Let F = F be an absolutely free group on free generators U) 
^n ^^ subgroup of F generated by 

(gQ̂ Sl 1 ̂  ~ ^^ absolutely free group of rank n . 

Let ^ be the variety generated by G^ , let V be the corresponding 

verbal subgroup of F and let = ̂ ^ ̂  • ^ y 

assumed that G^ = F^/V^ , 
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Let G = F/V . Then clearly G is relatively free^ nilpotent, 

exactly metabelian and of infinite rank. It is now shown that 

G has a torsion-free central factor group. 

First a property of V should "be remarked: suppose an element 

u of F has the property that for any homomorphism 9 : F -> F^ , 

u0 e V^ ; then it follows that u e V (for then u is a law 

of G^ and consequently of G ). 

To prove that G has a torsion-free central factor group, it is 

sufficient to prove the following: if r is a non-zero integer 

and u € F has the property that for any x e F , [u^^x] e V , 

then, for any y e F , [u,y] € V , 

Suppose then that r is a non-zero integer and u has the 

property that for any x e F , [u ,x] e V and suppose that 

y e F . 

Let 9 he any homomorphism F F^ and let x' be an arbitrary 

element of F . Then, since F is of infinite rank, there n 
exists a homomorphism 0' : F F^ and an integer k such that 

u0 =u0' and x' = gĵ ©' • Thus [(u0)^,x'] = € V^ 

by the assmed property of u . But x' is an arbitrary element 
of F and G has a torsion-free central factor group. Thus n n 
for any y' ^ F^ , [u0,y'] e V^ . Thus [u,y]0 € V^ . But 
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6 is an arbitrary homomorphism and so [u,y] e V . This 

completes the proof that G has a torsion-free central factor 

group. 

Applying part (A) of this proof, there exists an integer c such 

that G = F J ^ n N )̂ and so Ĝ  = 0 N )̂ . 

The construction of counter-examples for the other soluble lengths 

is an easier task. 

Theorem 

For each ^ ^ 2 there exists a group G of soluble length 

exactly I (that i s , ^ ) ^^^ properties: 

G is relatively free , nilpotent, G/^(G) is torsion-free "but 

G i t se l f is not torsion-free. 

Proof 

The cycl ic group of order 2 is a group with the req.uired 

properties for the case t̂ = 1 , 

Now suppose -t > 2 , It wi l l "be convenient to write h = 't - 1 

h ^ 2 . 
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Let F = F j l ^ ) where c = . Then g r (F) but 
-t -t 8 (F) is not t r iv ia l . Thus 5 (F) is a fully-invariant 

subgroup of F and is free Abelian. Let V be the subgroup 

V = { x ^ : x e 5 ( F ) } . Then V is also a f\illy-invariant 

subgroup and, writing G = F/V , G is nilpotent of class c , 

soluble of length exactly I , relatively free but not torsion-

free. It remains to show that G/^(G) is torsion-free, and this 

is accomplished by showing that ^(G) = . Now 

5^(F) ^ V ^ ' ^̂  ^ so the centre of F is contained in 

the complete inverse image of ^(G) = C(F/V) which in turn is 

contained in the complete inverse image of the centre of F/5^(F) . 

But F/6^(F) = FjSj^ n , and so by the results of the previous 

chapter, the centre of this group is (F)) . The result 

follows. O 
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APPENDIX I 

NON-COLIECTABILITY 
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In this appendix the fact mentioned in Chapter 2 (page Jd) is 

established: that if O! , 0 are elements of a semiweight range 

W f a « p and provided the rank T of the absolutely free 

group F^ is large enou^, there exists an element x in 

W j F ) which cannot he described by a W-basic expression modulo ct x 
W^(F^) at all. 

The proviso that T be "large enough" here will be seen to be that 

T is large enough to ensure the existence of a basic commutator 

of semiweight at least a but much less than ^ . But this is not 

a strong condition on T at all, as can be seen from theorem 2.4 

which tells us that if T ^ 3 then it is large enough. 

Definition 1.1 

(A) For any W-basic commutator c other than ^ and any non-

negative integer n , the commutator (^n) is defined reciirsively 

over n : 

(i) = c , 

(ii) (c,n) =(c^n-l) (n > 0) (see definition 4.2) . 

(B) For any W-basic commutator c other than the expression 

c° is defined recursively over the weight of c . 

(i) = ' 
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( i i ) [c^^cg]® = [c° ,cg] i f C g ^ g ^ 
-1 

(C) For any W-basic commutator other than and any non-

negative integer n , the expression (^n) is defined 

(c/n) = ( c^n ) ° = ( c V ) . O 

It follows immediately (see lemma ^.2( i ) ) that a ( (^n) ) = , 

= a(c) + 1 and a((c/n)) = a( ̂  (+1) . Also notice that , 

i f ^̂  W-hasic, then there exists integers i ^ 0 and k ^ 1 

such that c = ^ and then 

= and 

It now "becomes necessary to make a rather peciiliar generalization 

of definition 2,8 to encompass arbitrary expressions. 

Definition 1.2 

Let us write •rA'̂ for the set of sequences N = of non-

negative integers, and define a pre-order ^ on this set by 

- ^ for a l l i ( l ^ i ^ T ) , V. g v ^ . 

Notice that the values of v^ , v^ are not relevant to the pre-order. 
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The corresponding strict relation < is given by 

^ ̂ i^ i<T ^ i<T ^^ for all i (1 ^ i < T) , V^ ^ V^ and there 

exists r (1 ^ r < T) such that v < v' . \ / r r 
Addition is defined: if W = and N' = ^ 

(N + N') = (V. + vp.^^ . 

To each expression x a subset of JP is defined recursively-

over the height of x . 

(1) O^TJ = 0 . = where v. = 1, v. = 0 (i ^ j) 

(ii) Jfex-^ . 

(iii) u ^ x ) . 
(iv) = { M + N : M e J U ^ . N } . 

A seq̂ uence N is a "lover hound" for a subset A of cî  if 

N ^ M for all M e ,/(>; it is a "strict lower hound" if N < M 

for all M fe cA. 

Lemma I.l 

Easy properties of J P . 

(i) If c is a commutator then (Mo{ c) contains one and only 

one sequence^ namely (definition 2,8). 

(ii) If c is a ¥-hasic commutator other than and n is 

a non-negative Integer, then M(c) ^s a lower ho\md for 

, t^((c,n)) and Miz/n)) . 
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( i i i ) M is a lower "boimd for ^ x ^ ^ ) i f and only i f i t is 

a lower bound for both M i ^ j ) and • Similarly M is 

a s tr ic t lower "bound for i f and only i f is a strict 

lower bound for both and . 

( iv) If R, ^ are lower bounds for (A(x^) ^ 

respectively, then M̂  + is a lower bound for ( / ^ ( [ x ^ , ^ ] ) . 

If either M̂  or IV̂  are str ict lower bounds then so is M̂  + 

Lemma I»2 

Suppose c is a ¥-basic commutator other than and n is a 

non-negative integer. Let p ; G be any description of 

a group G , Then there exists a (possibly empty) expression z 

such that (c/n)p = ( ( c / n + 1 ) ( c , n + l ) z )p where M(c) is a 

s tr ic t lower boimd for (zj , 

Proof 

The proof uses the following easily checked group identity: i f 

a and b are elements of a group, then [a,b'^ ] = [a,b,b~'']""'[a,b]"'' 

If c = [g^^k] for some non-negative integer k , then 

(c/n) = [(c,n) ] and so, using the group identity just 

mentioned, 

(c/n)p = ( )p 

= ( (cyn+l)"^c,n+l)- ' ' )p 
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and the restilt i s true with z empty. 

The proof may now proceed by induction over the weight of c , 

assuming c = [c^^c^] , Sg SQ res-ult i s true for 

Thus (c/n) = [(c^/n),cg] and so 

(^n )p = [ (c^/n+l)"''(c^,n+l)"''z^ , ^ ]p 

where M( c^) i s a s t r i c t lower bound for cMg (z-j) . But now 

(c/n)p = ( [ , ^ ] Z2)p 

where z^ = [ (a ,/n+1)(c^ , n + l ) , c^ , ẑ  ] [ ẑ  , ^ ] . 

But M(c^) i s a s t r i c t lower bovuid for ^^(z^) so =M(c^) + M(^) 

= M(c^) + M(Cg) i s a s t r i c t lower "bound for [ z ^ , ^ ] and hence 

for z^ . Thus 

(c/n)p = ( ) p 

where ^ = [ ( c ^ / n + 1 ) c ^ , n + l ) ] . But contains 

only the sequence N = where v^ + (̂ QC )̂ + 2n + 3 

and for 1 ^ i < t . V. = 2|a.(cJ + la.(c^) . But c i s W-basic, 

so ĉ  > Cg and hence ĉ  . But ĉ  i s i t s e l f W-basic, 

so there exists r (1 ^ r < t ) such that l^^(c^) >0 • Then, 

since i s the sequence ( ) + Sg))i<T. ^ < N 

and so M(c) i s a s t r i c t lower bound for M(z^) . 

Then (c/n)p = ( [(c^/n+1) ,n+l) ^^I'^^Zg ) p 

where z^ = [c^.C c^/n+1),(c^/n+1)" ] and 

Ẑ  = [cg,(c^ ,n+l) ,n+l ] and again i s a s t r i c t lower 

bound for (Mki)' and M ^ ^ • 
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(c /n)p = ( ) p 

= ( ) p 

where = ^ z ^ [ z ^ z ^ , [(c^ ,n+l) and again i s 

a s t r i c t lower •boutid f o r . This proves the Icjrima, 

O 
Lemma 1,3 

If N i s a s t r i c t lower hound f o r and E : x r̂ then 

N is a s t r i c t lower hovind f o r c/Ci^) 

Proof 

This follows immediately by checking the various par t s of d e f i n i t i o n 

2 . 4 . O 

Leimtia 1.4 

Let c he a W-hasic commutator other than and l e t 

p : A > G he any descr ip t ion of a group G . Then to each 

non-negative in teger n there ex i s t s an expression 

^ Xn ' e i t h e r "JCq Possihly empty, such 

t h a t 

( i ) V " ^ 

( i i ) u^ i s empty, and i f n S 1 , i s of the form 
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^k W 1 
^ e where k ^ n and a = 

n 
(Hi) If v^ is nonempty, then cr(v̂ ) ̂  a^ and is 

a strict lower hound for cAfc^] 

Proof 

By induction over n . If n = 0 , ( = (^0) = c° 

and the lemma is true with hoth u and v empty. 

Now suppose the result is true as stated for n . The corresponding 

result is proved for n + 1 . By lemma 1.2, there exists an 

expression ẑ  (possibly empty) such that 

(c/n)p = ((^n+1 )p and is a strict lower 

bound for Ji{z^) . Hence c°p = x'p where 

Suppose n is even. Then x' = •^(c/n+1 

and E : X' > ^(c,n+l)"''(^n+l)"''zgz^^ where 

Zg = [(c/n+1) \(c,n+l)"''] and so M(cj is a strict lower hound 

for A i ^ ) and a(Zg) ^ â ^̂  . Ihus 

^ = )^SgS.iy!^^ ^ strict lower hoimd 

for JiA"^) and ^ . But now, since y^) ^ a^ , 

E : ZgZ^v^ > where either w or Zĵ  may "be empty, hut when 

they are not, w € ̂  ^̂  , a(>̂  ^ a^ and a(^) ^ . 
n 
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Further, M(c) is a strict lower bound for and for 

.A(z^) . Thus E : X' . 

It is now shown that E : x' > -^^'^^(^n+l where 

H:' ̂  ̂  +1 ^ut w' a(w') ̂  q: and z may he empty, 
n ^ 

hut when it is not o(z^) ̂  + 1 and M(c) is a strict lower 
hound for . If w is empty or T̂  this is true with 

w' = (ĉ n+l)'"' and ^ empty. Otherwise, suppose 
Y" y y 

X = . For each i (1 g i g h) , M(a.) e 

and so M(c) < M(aĵ ) . Thtis for each i there exists an integer 

r (1 ^ r < T) such that < • 

( ) ) = c) and so (^n+1) ^ ^ . Thus (c,n+l) 

is not the same as any of the commutators a^ (1 ^ i ̂  h). 

But (c^n+1) is W-basic (see definition 1.1(A) and lemma 4.2(iv)). 

Thxis there exists an integer t (0 ̂  t ^ h) such that 
^t -1 ̂ t+1 ^h w' = â  a^ §:t 1 ̂  2 ^ W-hasic expression. 

W But w € B^ so each ^ is a commutator of semiweight 

<q;^ + 1 . Also a((^n+l)) = a(c)(+1)= a^ so ^ tc +\ ' 
n 

But w' ̂  1 since it contains the non-trivial factor (c,n+l) . 

Again, a(w) - Q!̂  so each ^ is of semiweight ^ o^ and 

a((c^n+l)) = a^ so a(w') ̂  a^ . Then E : (c,n+l > w'^ 

where cr(ẑ ) ̂  a( ( c ^ n + 1 ) + 1 ^ a^ + 1 and, since ^ is 

a product of commutators of (c,n+l)~'' with other W-hasic 

commutators, is a strict lower hound for • 
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Finally, writing ^^^ = ̂ w' and = ) " ' ' , 

required fonn. 

The argument when n is odd is similar "but slightly simpler. 

O 
Theorem I.l 

Suppose W is a semiweight range, a and p e W , a « 0 and 

there exists a W-hasic commutator c € A such that 

a ^ a( c) « p . Then, if p : A F is any free description 

of the absolutely free group F , the element c°p e W (F) O/ 
cannot "be described by a W-basic expression modu2.o ^^(F) at all 

Proof 

Suppose on the contrary that c°p can be described by a W-basic 
^n expression w =a^ a^ ...a^ . Then, by lemma I.^, there exists 

an expression = (c/n+1) ̂  ^^^ such that 

= c°p where is a basic expression of the form 

^ •••V (k ^ n + 1) and ^ . 

Also ai^n+1) so modulo W^(F) , 
n4P 

where 5 = a(^(+1) . But « ? , so E ̂  3 . Now 

there exists h (0 ̂  h ^ n) such that 
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^h W ĥ+1 n. 
^ e and ) ^ I . ^ e n 

o ¥ w'p = c p = u ,,p modvilo W.(F) and "both w' and u ^ € B, . 

Thus, "by the "basis theorem, w' = and so h = k . But 

i t has already been seen that h ^ n and k ^ n + 1 : this is a 

contradiction. 
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APPENDIX II 

TERMS AND SYMBOIS 

USED IN THE TEXT 
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SYMBOIE IN MORE OR LESS COMMON USE 

Logic 

logical implication, 

logical equivalence. 

Set theory 

For any property that the elements of a set A may have, 

{ X : X e A , cP(x) } is the set of all elements of A for 

which fr^(x) is true. When the set A is clear from the 

context, { X : c^(x) } may "be written. 

A U B and A fl B are the union and intersection respectively 

of the sets A and B . The union of a family of sets is 
00 

written U A. , U A. , U A etc., and the vinion 
i=l ^ i<T iel 

of a set /} of sets is written 
U The symbol i i is used 

in a similar fashion for intersections. 

a € A means "a is a member of A ". Occasionally a , b € A 

is used as shorthand for " a e A and b e A " when no confusion 

can arise. a / A means " a is not a member of A 
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(a) is the set whose only member is a , {a,"b} is the set 

whose only members are a and b , and so on. 

0 is the empty set, 

A ̂  B means "A is a subset of B " . 

A N B is the complement of B in A, the set 

( x : X e A , x/b}. 

(x^)^^^ , ' ^^^ finite and transfinite 

sequences; ^ ' corresponding 

sets» 

cp : A > B indicates that 9 is a function mapping the set A 

into the set B . Exceptions are the notations d : x > jr , 

f ® • X "Which are given special 

definitions in Chapter 2, Functions are variously written as 

right or left operators; the image of x under cp may be 

written x9 or cp(x) ; the notation used for a particular 

function will be made clear in the text. If X is a subset of 

the domain of cp then its image under cp is written Xcp or 

cp(X) . 

AI is the (cardinal) nvimber of members of A , 
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Arithmetic 

w is the set of non-negative integers and the first infinite 
ordinal. 

m I n , for integers m and n , means " m divides n 

is the usual binomial coefficient; = r — , , r r̂̂  (n-r)Irl 

Group theory 

With the exception of the \mderlying group of a Lie ring, groups 

are written raultiplicatively. The unit is denoted 1 . 

[x,y] is the element . 

A ^ B means "A is a subgroup of B " , If A is a normal 

subgroup of B the factor group is denoted B/A . 

A = B means " A is isomorphic with B 

AB is the subgroup generated by the normal subgroups A and B 

The subgroup generated by a family of normal subgroups is denoted 

n \ > n A,, n A, 
i=l 1<T l€l 

etc. 

[A,b3 is the subgroup generated by all commutators [a,b] where 
a € A and b e B . 
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T^(G) , for positive integers c , are terms of the lower central 

series of the group G , defined "by r-](G) = G and 

= for c > 1 , 

5^(G) , for non-negative integers n , are terms of the derived 

series of the group G , defined "by 5°(G) = G and 

6^(G) = 6(8̂ "''(G)) = for n > 0 . 

^^(g) , for non-negative integers n , are terms of the upper 

central series of tlie group G , defined by ^^(G) = {T } and 

^^(G) is the complete inverse image of the centre of 

, for n > 0 . 

Varieties 

The language and notation concerned with this topic will follow 

Hanna Neumnn [9]» In particuQ^r, 

F^ , for some cardinal t , is an absolutely free group of rank t . 

F usually denotes an absolutely free group of arbitrary rank. 

Varieties themselves are distinguished by double underlining, 

V , and so on, to indicate German script. If V is a variety 

the corresponding verbal subgroup of the absolutely free group F 

is written V » 
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is the free group of rank r of the variety V (a 

V-free group . F^(V) = F^/V . 

Particular varieties: ^ is the variety of groups which are 

nilpotent of class c and ^ is the variety of groups which 

are soluble of length I . The notation associated with 

polynilpotent varieties is defined precisely in definition 5.1. 

Algebras 

The word "algebra" in this thesis is to be construed in the sense 

of "universal algebra"^ as in B, H. Neumann [8] . Language and 

notation concerned with algebras follows this work. 
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SYMBOIS DEFINED IN THE TEXT 

References, unless otherwise stated, are to definition nimbers 

4 1.1 Pĵ  (G) , ^ 1.18 
w _w _w . _ ^ ^ 

£ ^ % ^ g/cl ' • K K K K 

d : X ^ JC ^ 
D : X > y 
e : X ^ X 
E : X > jr 

ht lem 

J ' J<p 

K , K̂  

Id 

m lem w 
M(c) 

cA(c ) 

N 

N following def] 

Jf 
p. ' 

2.1 
/N 

^ ' icp ' V G ) 3.4 

2.1 1 .18 

2.4 tr 1.12 

2.4 wt 1.3 

1 .1 W 1.7 

1 .1 W 1.9 

3.2 1.10 

5.1 Sa 1.11 

1 .12 1.17 

I . l 4 r 3.3 

2.8 e 1.1 

l . l 0 r 1.18 

1.3 1.1 

1.11 2.8 

1.1 V 1.1 

1.18 jr 3.2 
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/s 
Jt 3.4 00 1.3 , 1 . 7 , 3.2 

p 1.6 a (+1)'^ 2.5 
a 1.8 a - ^ , a ( - l ) ' ^ 4.1 

T 1.1 [^axb] e t c . 1.16, 5.3 

Q 1.1 b+ 1.T5 

g 1 .7 , 1.12, I . l 4 , 3.2 b" ^ 4.2 

2.3 I . l 

2.5 I . l 

3 .4 (s /n) I . l 

1.14 9. A ^ 3.4 

1 .7 , 3.2 n 

1=01 
X. 5.3 

TERMS DEFINED IN THE TEXT 

Algebra of expressions 

Basis theorem 

Basis theorem f o r Lie rings 

B-order 

Commutation 

Commutator 

Compatible 

Describable algebra 

1 .1 

theorem 2,2 

theorem 2 .4 

1.14 

1.1 

1.4 

1.15 

1.5 
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Description 1.6 

Empty expression page 58 

Expression 1.1 

Free description 1.6 

Good B-order 

Height lemma 1.1(C) 

Inversion 1 

Leading part 1.12 

Left-normed commutator, 

left-nomed basic commutator 5.1 

Length 2.2 

Lie ring 2.6 

Limiting value 2.5 

Lower "bound 

Mobius function page 4 

Much greater than 2.5 

Multiplication 1 'I 

Nvmiber of times c mentions g. 2.8 

Partially collectable 2.7 

Polynilpotent series, groups and varieties 3.1 

Polynilpotent semiweight (range) 

Product of commutators 2.2 

Semiweight, semiweight range 1.7^ 1.8 

Strict lower bound I.l 
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Trailing part 1 
5.1, 

1.1 
Type 

Unit 

W-basic commutator, expression 1.15 

Weight 
1 IP 

W-ordering ' * 

(-basic commutator ^ 
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