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a b s t r a c t

Life expectancy is highly correlated over time among countries and between males and females. These
associations can be used to improve forecasts. Here we propose a method for forecasting female life
expectancy based on analysis of the gap between female life expectancy in a country compared with
the record level of female life expectancy in the world. Second, to forecast male life expectancy, the gap
betweenmale life expectancy and female life expectancy in a country is analysed.Wepresent these results
for various developed countries.We compare our results with forecasts based on the Lee–Carter approach
and the Cairns–Blake–Dowd strategy. We focus on forecasting life expectancy at age 0 and remaining life
expectancy at age 65.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The history of the evolution of life expectancy is of crucial
importance for demographers and actuaries who want to develop
more accurate forecasting models. Between 1840 and 2014 no
more than seven countries have been the record holders of female
life expectancy at birth; starting with Sweden and Norway in the
19th century and finishing with present day Japan. The competi-
tion among countries to reduce mortality levels resulted in a re-
markable linear rise as presented by Oeppen and Vaupel (2002), or
a segmented linear trend as suggested by Vallin andMeslé (2009).
In developed countries, the linear trend in period life expectancy
has proven itself to better fit trends in human mortality than
more complex mathematical models based on age-specific death
rates (White, 2002). The rate of change in age-specific death rates
have less regular patterns over time than life expectancy, which is
an age-aggregated measure. Thus, although life expectancy loses
specificity it compensates in terms of accuracy. Furthermore, data
highly aggregated by age give valuable information that can be
used to tackle the issue of mortality forecasting from a clearer
perspective.

Torri and Vaupel (2012) built on the idea that future human
longevity is given by a general life expectancy trend. Theirmodel at
first forecasts the world’s record life expectancy and then the gap
between the record and the current life expectancy of a particular
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population of interest assuming a tendency towards convergence
with the predicted record level. The Torri–Vaupel approach is
promising but has the drawback that populations that lag behind
record life expectancy cannot become the record holder; in addi-
tion the interdependence between the sexes is not recognized. Fur-
thermore, no population’s life expectancy can exceed the forecast
record.

Between 1950 and 2014 the record holder for life expectancy
at birth changed more than 15 times among 5 countries; and in
the same manner the record holder for life expectancy at age 65
changed more than 10 times among 6 countries. This indicates
that the record is not given by a single reference population. The
case of Japan shows that a country with a very low level of life
expectancy, which was the case immediately after World War II
in this country, can improve at a fast pace, catch up with the low
mortality populations and eventually become the record holder.
How long a population can maintain the status of record holder is
an open question. Amethod that can capture change in the record-
holder is highly relevant. We propose such a method by using the
trend-line of record life expectancy, instead of the actual record
values. The use of trend-line implies that the best-practice country
in a given year can be above the best-practice line. This fact was
shown by Oeppen and Vaupel (2002).

The majority of the forecasting models used by demographers
and actuaries tend to predict future longevity for specific countries
separately formales and females. One reason could be that females,
as a group, have a differentmortality age-pattern frommales. They
live longer and the death rates for females are lower than those for
males at all ages, even before birth and in almost every country
in the world (Austad, 2006). The most pronounced discrepancy
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can be observed in the very old, among centenarians and super-
centenarians (persons with an age of 110 and more) when women
outnumber men by more than nine to one (Perls and Fretts,
1998). The sex gap in life expectancy widened and then shrank
in the last half of the last century as the rate of improvement in
female life expectancy exceeded that for males. Thus, the available
evidence indicates the presence of behavioural aswell as biological
differences between the sexes, and social and psychological factors
all play important roles in differentiating themortality patterns for
females and males. To simplify analysis an assumption generally
made is that females and males are two different populations
independent of each other.

Li and Lee (2005) introduced a method for forecasting death
rates of different populations and for both sexes that are
not expected to diverge, using an augmented common factor
model. Hyndman et al. (2013) propose a method for coherent
forecasting of mortality rates in different subpopulations based
on functional principal components models of simple functions of
rates. The product-ratio functional forecasting method models the
geometric mean of subpopulation rates and the ratio of subpopu-
lation rates to product rates. Raftery et al. (2013) also discuss the
possibility of forecasting life expectancy using a two-sex model,
and develop this idea with the introduction of an elegant model
to obtain joint probabilistic projections of life expectancy for both
sexes (Raftery et al., 2014). First, female life expectancy is forecast
using a Bayesian hierarchical model and then the gap between
female and male is modelled, recognizing in a formal way the
correlation in mortality.

Further knowledge can be gained by integrating the idea of
the life expectancy correlation between sexes and also between
countries, into a single model. The main objective of this article is
to present such a model.

The remainder of the article is organized as follows. First, in
Section 2 the data used in fitting the model are presented. In
Section 3 a new life expectancy projection model is proposed.
In Section 4 a method to assess the performance of the model
is given. Section 5 shows simulation results and illustrations of
life expectancy in several countries by sex. The discussion and
conclusion are in Section 6.

2. Data description

The data source used in this article is the Human Mortality
Database (2017), which contains historical mortality data for 47
homogeneous populations in different countries and regions. HMD
constitutes a reliable data source because it includes high qual-
ity historical mortality data that was subject to a uniform set of
procedures, guaranteeing the cross-national comparability of the
information.

For the purpose of our analysis we have focused on a subset of
these data covering calendar years 1950–2014 and the 0–95 age
range in 38 countries and regions, giving 76 sex-specific popula-
tions. The selected populations must have sufficient size to allow
the fitting of a forecasting model and should be unique, meaning
that a person included in one population should not be included in
others. The selected countries are shown in Table 1 along with the
dates used to define the fitting periods.

3. The method

The objective is to construct a model for forecasting life ex-
pectancy of female and male life expectancy at any age. The model
is based on correlations existing among countries and between
sexes. The method combines separate forecasts to obtain joint
female and male life expectancies that are coherent with the best-
practice trend and correlated.

The model construction follows four steps:

1. Best-practice life expectancy is identified in order to get
a general sense of the direction and the rate of change in
human mortality.

2. The gap between female life expectancy and the best-
practice trend in theworld is forecast using a classic time se-
ries model, thus determining future female life expectancy.

3. The gap betweenmale and female life expectancy is forecast
with the help of a linearmodel to obtain the country specific
male life expectancy.

4. Prediction intervals are constructed from a multivariate
normal distribution with mean zero and covariance matrix
given by the residuals generated in the fitting of the three
time series in the previous steps.

The core of the proposed double-gapmodel can be summarized
by two equations: first future female life expectancy at age x, time
t and country k, efk,x,t , can be obtained as the difference between
future best-practice life expectancy at that age and time, ebpx,t , and a
predicted gap or distance, Dk,x,t , of the performance of the specific
lagging country or region,

efk,x,t = ebpx,t − Dk,x,t . (1)

Similarly future life expectancy for themale population is mod-
elled as the difference between future female life expectancy and
the sex gap, Gk,x,t , in life expectancy,

emk,x,t = efk,x,t − Gk,x,t . (2)

3.1. Step 1—the best-practice trend

The best-practice trend in life expectancy is defined as the
predicted value of a linear model based on the female record life
expectancy time series of the form

erecordx,t = αx0 + αx1t, +ϵ
(0)
x,t ,with t = 1, 2, 3... (3)

therefore,

ebpx,t = αx0 + αx1t, (4)

where erecordx,t denotes the record life expectancy at age x and time
t , ebpx,t is the best-practice trend, αxi represent the parameters of
the model fitted at age x, and the errors ϵ

(0)
x,t are independent and

identically distributed random variables normally distributedwith
mean zero and variance σ (0). To predict future best-practice levels
we will follow the past regularity observed in improvement in life
expectancy and extrapolate directly the future trend.

The Double-Gapmodel in Eqs. (1) and (2) are applied here to life
expectancies at birth and at age 65: Analysing the period between
1950 and 2014 we can observe that the record life expectancy at
birth increased at a rate of 2.1 years per decade from 73.5 to 86.8,
while at age 65 the improvement was on average 1.27 years per
decade, captured in the parameter αx1 in Eq. (3). These rates of
increase at age 65 imply a change from16.3 years in 1950 in Iceland
to 24.2 in 2014 in Japan. The linear fit is presented in Fig. 1.

3.2. Step 2—the gap to best-practice trend, Dk,x,t

One way to forecast the gap between the best-practice trend
and country specific female life expectancy is to use the classic
ARIMA model (Box and Jenkins, 1976). This is appropriate when
the data set is sufficiently long and exhibits a stable and consistent
pattern over time with few outliers.
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Table 1
Selected HMD countries and years with available data used for the illustration.
Source: Human Mortality Database (2017).
Available data Countries and regions

1950–2010 Bulgaria
1950–2011 Canada
1950–2012 Italy
1950–2013 Scotland, England &Wales, Iceland, New Zealand
1950–2014 Australia, Austria, Belgium, Czech Republic, Denmark, Finland,

France, Hungary, Ireland, Japan, Netherlands, Norway,
Portugal, Spain, Slovakia, Switzerland, Sweden, U.S.A.

1956–2014 East Germany, West Germany
1958–2014 Poland, Russia
1959–2013 Estonia, Latvia, Lithuania, Ukraine
1959–2014 Belarus
1970–2014 Taiwan
1981–2013 Greece
1983–2014 Israel, Slovenia

Fig. 1. The trend of record female life expectancy at birth and at age 65 between 1950 and 2014.

In general notation, we have an ARIMA(p, d, q) model, where p
is the order of the autoregressive process, d indicates the order of
integration, namely the number of times that the series must be
differenced in order to make it stationary, and q is the order of
the moving average process. The general form of an ARIMA(p, d, q)
model for a stochastic process Dx,t is given by

▽dDk,x,t = µk,x
Drift

+

p∑
i=1

φi▽
dDk,x,t−i  

Regression

+ ϵ
(1)
k,x,t +

q∑
j=1

θjϵ
(1)
k,x,t−j  

Smoothed noise

(5)

where the response can be obtained from the linear regression
of previous gaps plus additional smoothed noise. We denote with
▽dDk,x,t the stationary (transformed) time series used to fit the
ARIMA model. The constant parameter µk,x is the drift, indicating
the average change in the series over time;φi are the parameters of
the auto-regressive part, and θj are the parameters of the moving
average part. Finally ϵ

(1)
k,x,t is a sequence of independent and iden-

tically distributed random variables with mean zero and variance
σ (1) (see Table 2).

For each country and period of time an appropriate model is
fitted so that it captures the information given by the past pattern
of the gap. We consider ARIMA(p, d, q) models where d is selected
based on successive KPSS unit-root tests (Kwiatkowski et al.,
1992). That is, we test the data for a unit root; if the test result

Table 2
Estimated parameters of the ARIMA model for the gap between best-practice and
country specific data at birth and at Age 65, 1950–2014.
Source: Authors’ calculations based on data described in Table 1.

Age Rank µ φ1 φ2 θ1

USA 0 (0, 1, 0) – – – –
65 (0, 1, 0) – – – –

France 0 (1, 1, 0) – −0.3519 – –
65 (1, 1, 1) – −0.3048 – −0.4533

Sweden 0 (2, 1, 1) 0.0283 −1.1521 −0.5065 0.9173
65 (0, 1, 1) 0.0175 −0.6694 – –

is significant, we test the differenced data for a unit root; and so
on until non-significant. Once the order of difference d is selected,
we proceed to select the values of p and q by minimizing the AIC.
Finally based on the historical trend we decide whether a drift
should be allowed in the model.

An analysis for the case of France over the 1950–2014 period
indicated that the ARIMA(1, 1, 0) for age 0 and ARIMA(1, 1, 1) for
age 65 are the most suitable models for describing the data. For
the USA the random walk with no drift is found to be the most
parsimonious model for both ages, but for Sweden, ARIMA models
with a higher rank degree are needed. Estimated future values of
the gap in 2050, together with 80% and 95% prediction intervals,
are plotted in Fig. 2.
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Fig. 2. The forecast gap between the best-practice trend and country-specific female life expectancy at birth and at age 65, with associated 80% and 95% prediction intervals,
1950–2050.

G∗

k,x,t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β0 + β1Gk,x,t−1 + β2Gk,x,t−2  
Autoregressive model

+ β3(e
f
k,x,t − τ )+  

Level associated with
life expectancy when the gap

starts narrowing

+ϵ
(2)
k,x,t if, efk,x,t ≤ A,

Gk,x,t−1 + ϵ
(3)
k,x,t  

Random walk

, otherwise.
(6)

Box I.

The forecast gaps for France show that the French female
population could surpass the best practice trend in the future.
This information is given by the lower side of the 80% and 95%
prediction limits which are below zero. The forecasts for Sweden
suggest a continuation of the historical trend where improvement
in life expectancy at birth and age 65 is lower than the pace
given by our selected benchmark, namely the best-practice trend.
However the speed of divergence is slow, approximately one year
of life expectancy in a 40 year forecasting horizon. For the USA, the
forecasts suggest little change.

3.3. Step 3—the sex gap model, Gk,x,t

To predict the gap in life expectancy between females and
males, Gk,x,t , at a given age x for specified country k at time t we
apply a method that consists of a linear model and a random walk
process with no drift.

The linear model takes into account the gap in the previous two
years and an additional term that relates to female life expectancy.

This term is given by (efk,x,t − τ )+ where τ is the level of life
expectancy at the time when the sex gap is expected to stop
widening and start narrowing. The notation (z)+ represents the
maximumvalue between zero and z. The linearmodel is fitted over
all ages lower than the level of female life expectancy, A. The levels
of τ and A are determined from historical data by maximizing the
resulting maximum likelihoods of our linear model over integer
values of τ and A. In the statistical software R the linear model can
be fitted using the crch package (Messner and Zeileis, 2015).

Because there is little evidence to make any assumptions about
future pattern of the female–male gap at advanced ages (Raftery
et al., 2014) the random walk model will be used to further fit and
predict the evolving gap if life expectancy surpasses the obtained
limit A, Eq. (6) is given in Box I.

As a further check we ensure that the modelled gap will always
be between the observed historical minimum and maximum val-
ues of the female–male gap,

Gk,x,t = min{max{G∗

k,x,t , L},U}, (7)
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Table 3
Estimated parameters for sex-gap forecast models for life expectancy at birth and
Age 65.
Source: Authors’ calculations based on data described in Table 1
Parameters Estimate Estimate Pr(> |t|)

Age 0 Age 65 for both Ages

β0 0.21257 0.14052 <2e−16
β1 0.82184 0.64807 <2e−16
β2 0.15971 0.32943 <2e−16
β3 −0.02690 −0.01442 <2e−16
τ 75 15
A 86 24
L 0.99 0.33
U 13.68 5.24

where L and U are the minimum and maximum observed gaps,
respectively. The errors ϵ

(2)
k,x,t and ϵ

(3)
k,x,t are independent and identi-

cally distributed randomvariables normally distributedwithmean
zero and variance σ (2) and σ (3), respectively.

The presented method is similar with the linear model used
by Raftery et al. (2014). In order to obtain joint probabilistic fore-
casts of life expectancies for female and male populations, Raftery
et al. modelled the relation between the two by projecting the sex-
gap using a linear regression with different levels of female life
expectancy as covariates. Themodel is applied toWorld Population
Prospects 2008 set of quinquennial data starting in 1950 (United
Nations, 2009).

We chose to adopt a modified version of the Raftery model
because several covariates in the original model, which was con-
structed for projecting 5 years intervals, were not statistically
significant for a 1-year step projectionmodel. Also, we decided not
to impose any dependency of an initial life expectancy in ourmodel
as in the original Rafterymodel. This decisionwas taken because an
important number of time series in the HumanMortality Database
start after 1950 as shown in Table 1.

Themodel is fitted using the data from all the countries in order
to obtain the coefficient values and then it is used to forecast the
gap for each country separately, using country specific female life
expectancy.

Estimates of the model parameters are provided in Table 3 for
the models fitted at age 0 and age 65, respectively. The parameter
β0 denotes the intercept level, which could be interpreted as a
biological gap between the sexes; β1 and β2 represent the effect
of the previous two gaps at time t − 1 and t − 2, influencing the
range of possible values for the new gap. Together the first three
parameters,β0,β1 andβ2 explain themajority of the gap trend. The
negativeβ3 parameter gives the speed of the convergence between
the female andmale life expectancies. As shown in Table 3, the life
expectancies at birth are converging faster than those at age 65.

The forecast values of the sex gap in the USA, together with 80%
and 95% prediction intervals based on the 1950–2014 data, can
be observed in Fig. 3. In all three countries, and indeed in many
other developed countries, the sex gap increased between 1950
and about 1980, and then decreased to 2014. The models for age 0
suggest a continuation of the descending trend until the beginning
of 2030 where the gap will remain approximately constant.

The transition from a decreasing gap to stagnation coincides
with the shift from the linear model to the random walk model
described in Eq. (6). For instance in France, where currently life
expectancy is higher than in the USA, the period of time needed to
reach a value of life expectancy of 86 years for female population
is shorter i.e. resulting in a projection with a shorter period of time
with a decreasing sex-gap. In USA and Sweden the forecast gap
in 2050 is approximately 3 years but in France it is 6 years for
life expectancy at birth. For life expectancy at age 65 the models
forecast very little change. Also, even if it is not impossible, the
models suggest that it is highly unlikely that the sex-gap would
become negative and a higher life expectancy for males would be
experienced in any of the three countries either at age 0 or 65.

3.4. Step 4—dealing with correlated prediction intervals

Our approach to forecasting combines different models that
generate separate predictions. Because our aim is to obtain coher-
ent results we construct prediction intervals from a multivariate
normal distribution with mean zero and covariance matrix given
by the residuals generated in the fitting of the three time series in
the previous steps.

The multivariate normal distribution of the three-dimensional
random vector of residuals ξ = [ϵ

(0)
x,t , ϵ

(1)
k,x,t , ϵ

(2,3)
k,x,t ] can be written,

ξ ∼ N3(µ, Σ), (8)

with the mean vector,

µ =

[
E(ϵ(0)

x,t ) = 0, E(ϵ(1)
k,x,t ) = 0, E(ϵ(2,3)

k,x,t ) = 0
]
,

and 3×3 covariance matrix,

Σ =

[
Cov(ϵ(0)

x,t , ϵ
(1)
k,x,t , ϵ

(2,3)
k,x,t )

]
.

The time series of errors obtained by fitting the random walk
model in the Raftery model, ϵ(3)

k,x,t (see Eq. (6)), is usually of a very
short length over the 1950 and 2014 period. This is because in
most countries the level of life expectancy at age x is below the
determined level A, during the entire period of time. Therefore,
in practice the random walk model is used only for forecasting in
most of the countries. The assumption adopted in order to keep
the model simple is that variance σ of ϵ

(3)
k,x,t equals the variance

observed in ϵ
(2)
k,x,t .

The distributions of future values of country-specific life ex-
pectancies at age x are estimated by combining simulated future
paths of the two gaps and the best-practice level through Monte-
Carlo simulation.

4. Accuracy of forecasting prediction

To assess the performance of our model we look at differences
between observed and forecast life expectancy and summarize the
forecast accuracy. We carry out a back testing exercise in the spirit
of Booth et al. (2006), Jarner and Kryger (2011) and Haberman
et al. (2014). Four historical periods used for fitting are considered
in our data set: 1950–1985,1 1950–1990, 1950–1995 and 1950–
2000; and using the rest of the years until 2014 as the window of
evaluation.

Let ek,x,t denote the observed remaining life expectancy at age
x, time t and country k and êk,x,t denote the forecast of ek,x,t . Then
we define the forecast error as follows:

ωk,x,t = ek,x,t − êk,x,t . (9)

Twomeasures are considered:mean error (ME) andmean abso-
lute percentage error (MAPE). Themean error is a scale-dependent
measure that is useful when comparing different methods applied
to the same data set. Calculating the mean error of a forecast is
straightforward as it indicates the degree of ‘‘optimism’’ or ‘‘pes-
simism’’ of the predicted values. However, any scale-dependent
measure is sensitive to outliers. Most recommended in the scien-
tific literature is MAPE (Hanke et al., 2001; Bowerman et al., 2004)
which is scale-independent and can therefore be used to compare
forecast performance across different sets of data.

ME = mean
(
ωk,x,t

)
,

MAPE = mean
(
|100 ×

ωk,x,t

ek,x,t
|

)
,

(10)

where the notation mean(z) denotes the sample mean of {z} over
the period of interest.

1 Greece, Israel and Slovenia were not evaluated on the 1950–1985 interval
because of insufficient data, but were considered in the other three scenarios.



Please cite this article in press as: Pascariu M.D., et al., The double-gap life expectancy forecasting model. Insurance: Mathematics and Economics (2017),
https://doi.org/10.1016/j.insmatheco.2017.09.011.

6 M.D. Pascariu et al. / Insurance: Mathematics and Economics ( ) –

Fig. 3. The forecast gap between female and male life expectancy at birth and at age 65, with associated 80% and 95% prediction intervals, 1950–2050.

5. Results and illustrations

We estimate the distribution values of country specific life
expectancies at birth and at age 65 by combining simulated future
paths of the gaps and the best-practice trend. The forecast future
life expectancies for the three selected countries with different
patterns in the two gaps observed in the last 60 years, along with
corresponding 80% and 95% prediction intervals, are shown in
Table 4.

We compare our results with the values generated by the Lee–
Carter model (Lee and Carter, 1992) and the Cairns–Blake–Dowd
model (Cairns et al., 2006). The Lee–Carter model (LC) is the first
stochastic extrapolative model to be developed and can be used
to predict the central mortality rates mx,t , for all ages. The Cairns–
Blake–Dowd (CBD) is a stochastic model designed for modelling
mortality at higher ages and builds on the observation that log
death rates are approximately linear at ages above 40. Both ap-
proaches are well-established methods in mortality forecasting
and can be easily implemented in R statistical software using the
StMoMo package (Villegas et al., 2015). Comparison with the CBD
model is performed only at age 65. The Lee–Carter model is fitted
to ages 0–95 and 65–95, and the CBD is fitted over the 65–95 age
range. Both models generate a matrix of forecast death rates. The
forecast life expectancies are computed using standard life table
calculations.

In order to obtain a complete series of death rates for all the ages
up to 110 and to be able to accurately compute the life expectancies
the Kannisto old agemortalitymodel is used (Thatcher et al., 1998)
which uses a logistic function fitted for death rates at ages above
80. However, if the predicted death rate at the highest age, in our

case 95, is sufficiently large (≥ 0.4) a constant force of mortality
could be assumed. The difference in life expectancies between the
two methods is insignificant.

In 2050, US forecast female life expectancy at birth is
88.93 years and 25.44 years at age 65 according to the Double-Gap
model (henceforth DG). The Lee–Carter (LC) model predicts more
pessimistic results, namely 85.88 years expectation of life at birth
and 23.9 years at age 65. Using the DG we estimate an increase in
life expectancy at birth of 7.46 years for females and 9.27 years
for males, and an improvement in life expectancy at age 65 of
4.59 years for females and 5 years formales. Therefore, USmale life
expectancy forecast increases faster in the following 40 years than
female life expectancy. In general DG model is more optimistic
than the LC model, the forecast results for French, Swedish, and
US populations over this horizon of time are higher than the LC
forecasts.

The sex-gap forecast given by the DG model is narrower in all
the three countries than the predicted values of the LC and CBD
model. The DG model has the advantage of modelling the female
and male population together taking into account the coherence
and correlation between the two, while for LC and CBD separate
projections are needed resulting in trajectories with a divergent
trend between female and male life expectancy. At age 65 the sex-
gaps forecast by the LC and CBD model are similar.

A visual representation of the results already presented in Table
4 is given in Fig. 4 in connection with the historical female record
life expectancy and the extension of the best-practice trend. In the
long term the DG forecast trajectories of life expectancy follow the
trend given by the best-practice line. On the other hand the LC and
CBD projected trajectories tend to diverge for all three countries
and sexes.
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Fig. 4. Actual and forecast life expectancy at birth and at age 65 generated by the DG, LC and CBDmodels for females and males, 1950–2050. Prediction intervals at 80% and
95% levels are shown only for the DG model.
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Table 4
Forecasts of life expectancy in 2050 produced by the Double-Gap (DG) Lee–Carter (LC) and Cairns–Blake–Dowd (CBD) models, with 80% and 95% prediction intervals. The
models were evaluated on data from the period 1950–2014.
Source: Authors’ calculations based on data described in Table 1

Model Age 0 Age 65

Females Males Sex gap Females Males Sex gap

USA

DG
êx,2050 88.93 85.94 2.99 25.44 23.26 2.19
80% PI (87.41-90.46) (83.93-87.83) (1.10-5.00) (24.36-26.53) (21.46-24.97) (0.47-3.98)
95% PI (86.64-91.18) (82.94-88.94) (0.01-5.99) (23.81-27.14) (20.63-25.94) (−0.49-4.81)

LC
êx,2050 85.88 81.57 4.31 23.90 21.19 2.71
80% PI (84.72-86.85) (80.52-82.52) – (22.93-24.84) (20.27-22.07) –
95% PI (84.26-87.27) (79.97-83.05) – (22.45-25.36) (19.80-22.48) –

CBD
êx,2050 – – – 24.01 21.34 2.67
80% PI – – – (22.73-25.40) (20.13-22.58) –
95% PI – – – (22.16-26.12) (19.55-23.32) –

ex,2014 81.47 76.67 4.80 20.85 18.26 2.59

France

DG
êx,2050 92.82 87.15 5.67 27.79 24.14 3.65
80% PI (90.60-95.12) (85.18-89.08) (3.74-7.64) (26.18-29.3) (22.36-25.91) (1.88-5.43)
95% PI (89.43-96.27) (84.19-90.07) (2.75-8.63) (25.38-30.14) (21.40-26.73) (1.06-6.39)

LC
êx,2050 91.14 85.38 5.76 27.55 23.28 4.27
80% PI (89.62-92.8) (83.78-86.80) – (25.75-29.17) (21.39-24.85) –
95% PI (88.53-93.53) (83.02-87.46) – (24.67-30.00) (20.23-25.84) –

CBD
êx,2050 – – – 27.58 23.49 4.09
80% PI – – – (24.77-30.67) (20.93-26.46) –
95% PI – – – (23.54-32.68) (19.83-28.26) –

ex,2014 85.40 79.26 6.14 23.29 19.32 3.97

Sweden

DG
êx,2050 90.41 87.84 2.57 25.37 23.22 2.15
80% PI (89.03-91.79) (85.84-89.92) (0.49-4.58) (24.24-26.50) (21.48-24.94) (0.42-3.88)
95% PI (88.25-92.51) (84.81-90.95) (−0.53-5.61) (23.63-27.13) (20.50-25.84) (−0.48-4.86)

LC
êx,2050 88.58 84.50 4.08 25.02 21.57 3.45
80% PI (87.37-89.69) (83.32-85.45) – (23.90-26.03) (20.45-22.57) –
95% PI (86.69-90.15) (82.69-85.90) – (23.13-26.44) (19.90-23.19) –

CBD
êx,2050 – – – 25.27 21.79 3.48
80% PI – – – (23.67-27.06) (20.27-23.54) –
95% PI – – – (22.92-28.23) (19.58-24.57) –

ex,2014 84.05 80.35 3.70 21.47 18.85 2.62

Note: The uncertainty in the sex-gap in the case of forecasts generated by the LC and CBD is not available. Sex-specific LC and CBD models are fitted and used to forecast
female and male life expectancy.

Prediction intervals given by the DG model indicate that the
female French population has the highest probability, among the
three countries, of surpassing the best-practice trend and becom-
ing the new world record holder for life expectancy at birth or at
age 65.

In-sample forecasts are performed using the DG, LC and CDB
models in order to test the performance of the three models. Four
forecasting horizons are selected starting with 1985 until 2014.
The forecast values are compared with the historical values of life
expectancy. Table 5 offers an overall performance of the forecast in
the USA, France and Sweden but also over the 38 HumanMortality
Database (HMD) countries and regions. DG performs better than
both LC or CBD in terms of mean errors (ME) and mean absolute
percentage errors (MAPE) when all the countries are considered.
However at age 65 the difference between the models is minor
especially in the male population.

Table 6 presents an in-depth overviewof the accuracymeasures
for both sexes. DG is consistently less biased than LC for male life
expectancy at birth in the three selected countries, but not for
females. The CBD model is found to be more accurate than the
LC model for age 65 in the male populations. However, there is
no model that consistently performs better over all forecasting
windows and populations in the study. Some models exhibit a
particularly good or bad behaviour for certain historical trends due
to the specific constraints of these models. These results show that
the DG is capable of generating comparable predictive power with
the two most commonly used forecasting models.

More visual results for 18 countries are presented in Figs. 5 and
6 in Appendix.

Table 5
Accuracy measures for the forecast life expectancy at birth and at age 65. Four
evaluation periods are considered: 1985–2014, 1990–2014, 1995–2014 and 2000–
2014. The results are averaged over the four periods.

Countries Model Age 0 Age 65

ME MAPE ME MAPE

38 HMD Countries
DG −0.198 1.728 0.632 4.745
LC 1.099 1.907 0.748 5.294
CBD – – 0.725 5.264

USA, France & Sweden
DG −0.285 0.619 0.414 3.433
LC 0.540 1.032 0.449 3.611
CBD – – 0.421 3.518

6. Discussion

Our approach to forecast life expectancy combines separate
forecasts to obtain joint male and female life expectancies that
are coherent with the best-practice trend. The trend proposed
in the current article is based on the record level of female life
expectancy; this trend was used due to its remarkable linear reg-
ularity at age 0. The current model is not restricted to the usage of
this particular benchmark, and countries or regionsmight decide to
use a different trend depending on the best performing model for
each case based on their past evaluation. In some cases, if the data
allow other trends can be adopted, for example a super-population
composed from Scandinavian countries if the goal is to forecast
the life expectancy in one of these populations. Or the model can
be applied to the USA in order to forecast life expectancy in each
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Table 6
Accuracymeasures for the forecast life expectancy at birth and at age 65, by sex. Four evaluation periods are considered:
1985–2014, 1990–2014, 1995–2014 and 2000–2014. The results are averaged over the four periods.

Country Model Female population Male population

Age 0 Age 65 Age 0 Age 65

ME MAPE ME MAPE ME MAPE ME MAPE

38 HMD
DG −0.309 1.400 0.450 3.616 −0.088 2.056 0.814 5.874
LC 0.510 1.082 0.482 3.629 1.689 2.732 1.014 6.960
CBD – – 0.469 3.660 – – 0.981 6.869

USA
DG −0.912 1.135 −0.278 1.955 −0.061 0.369 0.848 4.894
LC −0.414 0.666 −0.255 2.394 0.926 1.240 0.904 5.195
CBD – – −0.272 2.388 – – 0.871 5.007

France
DG 0.139 0.349 0.664 3.099 0.112 0.509 0.951 5.344
LC 0.031 0.304 0.305 1.640 1.305 1.692 0.892 4.969
CBD – – 0.314 1.672 – – 0.840 4.680

Sweden
DG −0.688 0.834 −0.340 1.664 −0.298 0.517 0.641 3.639
LC −0.196 0.276 −0.245 1.272 1.586 2.016 1.096 6.193
CBD – – −0.279 1.420 – – 1.052 5.944

Fig. 5. Comparison of actual life expectancy at birth in 1990–2014 with forecasts generated by the Double-Gap and Lee–Carter models for 18 countries and regions.

American states and jurisdictions with the record US total female
population as ‘‘best-practice’’ (Whelpton et al., 1948).

No forecasting model is meant to be used in prediction into an
indefinite future. The rate of increase in life expectancy may vary
depending on the selected historical period. Therefore, the choice
of the historical frame to be fitted is as important as the choice
of the model. For example, predicting life expectancy at age 65
based on a trend starting in the 19th century would underestimate
the future improvements in human mortality. Also one might
ponder the suitableness of the use of a linear trend at age 65. The
fluctuations in the relative rate of improvement experienced after
age 65 in the last decades (as seen in Fig. 1) suggest the current
model can benefit from further research in this direction.

Starting with 1850, not only a rapid improvement in life ex-
pectancy has been taking place but also a compression ofmortality

experience or in other terms a ‘‘globalization’’ of improvements
in mortality. After 1950 cross-sectional convergence in life ex-
pectancy between different countries is noticeable, with the main
contribution being made by countries with a higher level of mor-
tality (Oeppen, 2006). This is because of the increasing ‘‘com-
munication’’ between the countries and continents and a much
faster transfer of technology and innovations that help increase
life expectancy in all countries. Our proposed method models the
gapwhether there is convergence or not and even allows countries
with a higher level of mortality to become the record holder in
terms of longevity at some point in the future.

Life expectancy is an age-aggregated measure but deeper
knowledge can be obtained by converting the obtained life ex-
pectancy level into age-schedules of death rates and actuarial life
tables by exploiting the regularities of age patterns of mortality. In
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Fig. 6. Comparison of actual life expectancy at age 65 in 1990–2014 with forecasts generated by the Double-Gap, Lee–Carter and CBD models for 18 countries and regions.

Fig. 7. Forecast life expectancy at birth in 2014–2050 for 18 countries and regions.
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Fig. 8. Forecast life expectancy at age 65 in 2014–2050 for 18 countries and regions.

actuarial science the use of life tables, and other models reflecting
life contingencies, ismotivated by the need to determine insurance
and pension risks, net premiums, and benefits. Although beyond
the current project scope, a further step in our research is to trans-
form forecast life expectancy into deaths rates and probabilities
using indirect estimation techniques (Brass et al., 1971; Wilmoth
et al., 2012) or by reconstruction of the empirical distribution
of deaths from its statistical moments following the maximum
entropy approach (Mead and Papanicolaou, 1984).

Having simple methods to predict future mortality levels is
of high importance because of the growing significance this field
is acquiring in society. Justified by the accuracy and simplicity
demonstrated in the present article, the Double-Gap model rep-
resents an addition to the existing family of forecasting models.
Today when so many models exist the researcher should probably
not work simply with one model or approach to modelling the
future, but with a combination of them. Thus, the Double-Gap
model should be considered as a promising available forecasting
tool.
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Appendix

A.1. In-sample forecasts for 18 countries and regions

See Figs. 5 and 6.

A.2. Out-of-sample forecasts for 18 countries and regions

See Figs. 7 and 8.
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