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Abstract

Model selection is central to all applied statistical work. Selecting the variables

for use in a regression model is one important example of model selection. This

thesis is a collection of essays on robust model selection procedures and model

averaging for linear regression models.

In the first essay, we propose robust Akaike information criteria (AIC) for MM-

estimation and an adjusted robust scale based AIC for M and MM-estimation.

Our proposed model selection criteria can maintain their robust properties in the

presence of a high proportion of outliers and the outliers in the covariates. We

compare our proposed criteria with other robust model selection criteria discussed

in previous literature. Our simulation studies demonstrate a significant outper-

formance of robust AIC based on MM-estimation in the presence of outliers in

the covariates. The real data example also shows a better performance of robust

AIC based on MM-estimation.

The second essay focuses on robust versions of the “Least Absolute Shrinkage

and Selection Operator” (lasso). The adaptive lasso is a method for performing

simultaneous parameter estimation and variable selection. The adaptive weights

used in its penalty term mean that the adaptive lasso achieves the oracle property.

In this essay, we propose an extension of the adaptive lasso named the Tukey-

lasso. By using Tukey’s biweight criterion, instead of squared loss, the Tukey-

lasso is resistant to outliers in both the response and covariates. Importantly,

we demonstrate that the Tukey-lasso also enjoys the oracle property. A fast

accelerated proximal gradient (APG) algorithm is proposed and implemented for
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computing the Tukey-lasso. Our extensive simulations show that the Tukey-lasso,

implemented with the APG algorithm, achieves very reliable results, including for

high-dimensional data where p > n. In the presence of outliers, the Tukey-lasso is

shown to offer substantial improvements in performance compared to the adaptive

lasso and other robust implementations of the lasso. Real data examples further

demonstrate the utility of the Tukey-lasso.

In many statistical analyses, a single model is used for statistical inference,

ignoring the process that leads to the model being selected. To account for this

model uncertainty, many model averaging procedures have been proposed. In

the last essay, we propose an extension of a bootstrap model averaging approach,

called bootstrap lasso averaging (BLA). BLA utilizes the lasso for model selec-

tion. This is in contrast to other forms of bootstrap model averaging that use AIC

or Bayesian information criteria (BIC). The use of the lasso improves the com-

putation speed and allows BLA to be applied even when the number of variables

p is larger than the sample size n. Extensive simulations confirm that BLA has

outstanding finite sample performance, in terms of both variable and prediction

accuracies, compared with traditional model selection and model averaging meth-

ods. Several real data examples further demonstrate an improved out-of-sample

predictive performance of BLA.
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Chapter 1

Introduction

Model selection is central to all applied statistical work. Selecting the variables for

use in a regression model is one important example. Over the past two decades, a

number of different model selection approaches have been rapidly developed and

there exists a substantial literature that addresses the issue of methods for model

selection.

Stepwise procedures (sequential testing), allowing variables to be added or

deleted at each step, have often been employed. However, such testing schemes

based on p values only compare two nested models and have been widely criti-

cized since hypothesis tests generally form a very poor basis for model selection

(Akaike, 1974). Cross-validation and its variations have been suggested and dis-

cussed as useful model selection methods (Mosteller and Tukey, 1968; Shao, 1993).

However, these methods are quite computer intensive and tend to be impracti-

cal if a large number of models need to be evaluated (Burnham and Anderson,

2004). The adjusted coefficient (Draper and Smith, 1981) and Mallow’s Cp statis-

tic (Mallows, 1973) are also widely used in least square regression and provide a

ranking of all candidate models.

The general approach that is the focus of the first essay is the model selection

methods that choose models by minimizing an expression (criterion) that can be

written as a loss term in addition to a penalty term. More specifically, these model

1



2 CHAPTER 1. INTRODUCTION

selection criteria, such as the Akaike information critera (AIC) (Akaike, 1974), the

Bayesian information criteria (BIC) (Hoeting et al., 1999) and their variations will

be considered. Most of these prevalent model selection criteria are based on the

squared loss, yet it is well known that the commonly used squared loss function

is very sensitive to outliers and other violations to the normality assumption for

error distribution. A growing body of literature is concerned with the model

selection procedures for linear models that are less sensitive to outliers: a robust

Cp (Ronchetti and Staudte, 1994), a robust version of cross-validation (Ronchetti

et al., 1997), and weighted versions of likelihood estimators (Agostinelli, 2002).

Ronchetti (1985) proposes a robust version of AIC for M-estimation by replacing

the squared loss with Huber’s function. However, Huber’s loss can only be robust

to outliers in the response values. Outliers in the covariates also appear frequently

and they generally have a greater effect on the accuracy of the regression estimates

than the outliers in the response. In the first essay, we propose to replace the

loss function by Tukey’s biweight criterion and develop a robust AIC based on

MM-estimation that copes with outliers in both the response and the covariates.

Selecting the best model using these model selection criteria eases the inter-

pretation of the model and generally improves the prediction accuracy. However,

results can be extremely variable as evaluation is a discrete process and more im-

portantly, it is computationally expensive and tends to be impractical if a large

number of models need to be evaluated. Another technique to improve prediction

accuracy is ridge regression. Hoerl and Kennard (1970) proposed ridge regression

by adding an L2 penalty, not only to sacrifice a little bias of the estimates, but to

simultaneously shrink those estimates and reduce their variance. However, with a

large number of predictors, data analysts would like to determine a smaller subset

of predictors that show the strongest effects. Ridge regression does not set any

coefficients to exactly zero and thus does not give an ‘easily interpretable’ model.

Consequently, Tibshirani (1996) proposed a new technique called the LASSO or

the ‘Least Absolute Shrinkage and Selection Operator’, which modifies the L2
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penalty into an L1 penalty. The lasso not only shrinks some coefficients, achiev-

ing a better prediction, but also sets others to zero and hence offers parsimonious

solutions to ease the interpretation.

Over the last few decades, the lasso has become a very popular technique for

simultaneous estimation and variable selection. A significant volume of literature

further investigated the properties of the lasso estimates and developed different

versions of the lasso. Zou (2006) stated that there exist certain scenarios where

the lasso is inconsistent for variable selection and therefore he suggests the adap-

tive lasso where adaptive weights are used for penalizing different coefficients in

the L1 penalty. The adaptive lasso enjoys the oracle properties as it performs as

well as the true underlying model asymptotically. However, as mentioned pre-

viously, datasets with outliers are commonly encountered in statistical analysis.

These outliers may appear in the response and/or the predictors. The lasso es-

timates, which utilize ordinary least squares (OLS), also suffer from the effect of

outliers. Some authors have considered robust versions of the lasso, generally uti-

lizing penalized versions of M-estimators, as in Owen (2007), Wang et al. (2007),

Li et al. (2011), and in Lambert-Lacroix and Zwald (2011). Wang et al. (2007)

proposed to overcome the presence of outliers by combining the least absolute

deviation (LAD) loss with the lasso penalty. Unfortunately, it is well known that

the LAD loss is not adaptable for small errors because it strongly penalizes small

residuals (Owen, 2007; Lambert-Lacroix and Zwald, 2011). In other words, the

LAD-Lasso has lower efficiency than OLS estimates when there are no outliers

in the response. Owen (2007) and Lambert-Lacroix and Zwald (2011) preferred

to replace the squared loss with Huber’s loss, a hybrid of the squared error and

absolute error loss functions.

Although the robust lasso with the Huber’s loss is resistant to outliers in the

response and achieves high asymptotic efficiency, it is not robust against high

leverage points or outliers in the covariates. In the second paper, we propose

replacing the squared loss in the lasso with Tukey’s biweight criterion, and name
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the method the Tukey-lasso for handling outliers in the response and covariates.

In our simulation study, we show that the Tukey-lasso outperforms the adaptive

lasso and other robust implementations of the lasso, particularly in the presence

of outliers in both the response and the predictors. We further propose an ac-

celerated proximal gradient (APG) algorithm to compute the Tukey-lasso. The

APG computes the lasso minimization problem and guarantees a global minimizer

for a convex objective function. Although the objective function for the robust

lasso with Tukey’s biweight is non-convex, the APG algorithm still achieves very

reliable results (a local minimizer) when the starting value of the algorithm is

carefully selected.

In the first two papers, the model selection approaches we discuss assume

that the identity and parameter values of that best model can be estimated, and

that, thereafter, inferences will be made from the data only according to the sole

and best model. However, for any given data set, the use of a different model

selection method may result in a different best model being selected. Conversely,

for any given model selection approach, a different best model would likely be

chosen if a replicate data set were analyzed. Often, several models fit the data

equally well, yet these models may include different explanatory variables and

lead to different predictions. This extra component of variation, is often termed

‘model uncertainty’. To account for model uncertainty, model averaging, which

makes inferences based on weighted support from several models instead of a

sole best model, has been proposed and developed. Apart from avoiding the

inference drawn from the single best model, model averaging has been shown to

improve predictive performance more accurately than reliance on a single model

(Raftery et al., 1997). An increasing amount of literature is concerned with the

implementation of model averaging including Bayesian model averaging (BMA)

(Hoeting et al., 1999; Clyde and George, 2004; Raftery et al., 1997) and frequentist

model averaging (FMA) (Rao and Tibshirani, 1997; Hjort and Claeskens, 2003;

Burnham and Anderson, 2003; Yuan and Yang, 2012; Claeskens et al., 2008).
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Among these papers contributing to model averaging, the most relevant work

for our third essay is bootstrap model averaging first proposed by Buckland et al.

(1997). Bootstrap model averaging in Buckland et al. (1997) utilizes the bootstrap

to generate resamples, applies the model selection criteria independently to each

resample and further computes the weights assigned to each model. However,

similar to the traditional model selection procedures by AIC or BIC, bootstrap

model averaging is computationally intensive with a large number of variables and

computationally infeasible with the number of variables greater than the sample

size. In this third paper, we modify bootstrap model averaging by utilizing the

lasso (Tibshirani, 1996) as a model selection tool, instead of the traditional AIC or

BIC, to improve the computation speed and realize the computational feasibility

even when the number of variables p is larger than the sample size n. We call

this modified version of bootstrap model averaging, ‘bootstrap lasso averaging’.

The rest of this thesis is structured as follows. In Chapter 2, we modify

the AIC by replacing the loss function with Tukey’s biweight criterion and we

develop a robust AIC based on MM-estimation that copes with outliers in both

the response and the covariates. In Chapter 3, we propose replacing the squared

loss in the lasso with Tukey’s biweight criterion, and name the method the Tukey-

lasso for handling outliers in the response and covariates. Additionally, we further

propose an APG algorithm to compute the Tukey-lasso. In Chapter 4, we modify

bootstrap model averaging by utilizing the lasso (Tibshirani, 1996) as a model

selection tool, instead of the traditional AIC or BIC; we call this ‘bootstrap lasso

averaging’. Finally, we present brief conclusions and future research directions in

Chapter 5.
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Chapter 2

A Comparison of Robust Model

Selection Criteria Based on M

and MM-estimators

2.1 Introduction

It is well known that the commonly used least square estimators in the linear re-

gression setting are very sensitive to outliers and other violations to the normality

assumption for error distribution. Various types of robust estimators have been

introduced and discussed, such as M-estimator, S-estimator, and MM-estimator

(Huber, 2011; Hampel, 1971; Yohai, 1987). However, the presence of outliers not

only affects these estimators, but also (and more severely) the model selection

procedures, especially these likelihood based criteria (AIC, BIC, and Mallow’s

Cp) (Ronchetti et al., 1997). An increasing volume of literature is concerned

with the model selection procedures for linear models that are less sensitive to

outliers: a robust Cp (Ronchetti and Staudte, 1994), a robust version of cross-

validation (Ronchetti et al., 1997), and weighted versions of likelihood estimators

(Agostinelli, 2002). Ronchetti (1985) proposed a robust version of AIC for M-

estimation by replacing the squared loss with a general function ρ (e.g. Huber’s

7
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function). However, M-estimation and Huber’s loss can only be robust for outliers

in the response values. Outliers in the covariates also appear frequently and they

generally have a greater effect on the accuracy of the regression estimates than

the outliers in the response. To be robust against outliers in both the covariates

and the response, the derivative of the loss function needs to be redescending

(Rousseeuw, 1984; Yohai, 1987). A commonly used loss function with this prop-

erty is Tukey’s biweight (Tukey, 1960). In this work, we propose to replace the

loss function by Tukey’s biweight criterion and develop a robust AIC based on

MM-estimation that copes with outliers both in the response and the covariates.

Some robust model selection criteria based on MM-estimation have been pro-

posed in previous literature. Tharmaratnam and Claeskens (2013) developed a

robust scale based AIC for M and MM-estimation and showed that it performed

well compared with the classical AIC in terms of the probability of selecting the

correct model. However, the trace term of their model selection criterion behaved

quite abnormally, especially when the number of covariates is large. Therefore,

we propose to adjust the trace term following Ronchetti (1985) and our simu-

lation study confirms a significant improvement using the adjusted trace term.

Müller and Welsh (2005) make use of stratified bootstrap and MM-estimation

to combine a robust penalized criterion with a robust conditional expected pre-

diction loss. They also find a consistently better selection probability of their

robust model selection criteria in comparison with the traditional criteria based

on squared error loss. However, the computation of their robust model selection

criteria is intensive as a consequence of the bootstrapping. The emphasis in pre-

vious papers has mostly been on the performance of selection probabilities for

robust model selection criteria in comparison with classical ones. We will further

investigate whether improvements in terms of prediction can be achieved when we

select models according to these robust model selection criteria. In this chapter,

we only focus on the case of n > p since the computation of these model selection

criteria is not feasible when n < p.
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The purpose of this chapter is to investigate and compare the selection proba-

bilities for several robust model selection criteria, and to ascertain, the prediction

ability of the best model selected by these criteria.

2.2 Robust estimation

2.2.1 Linear regression model

Linear regression is the most commonly used approach to model the relation-

ship between a dependent variable and one or more independent variables. We

consider the linear regression model,

yi = XT
i β + εi, i = 1, 2, . . . , n, (2.1)

where yi is the response variable on the ith observation, Xi = (1, xi1, xi2, . . . , xip)
T

are the values of the covariates for the ith observation, p is the number of covari-

ates, β = (β0, β1, β2, . . . , βp)
T are coefficient parameters, and εi, i = 1, 2, . . . , n,

is an independently normally distributed random variable with mean zero and

variance σ2.

The estimates of β are usually obtained by the method of ordinary least

squares (OLS). The OLS estimate is the solution to the problem:

β̂LS = argmin
n∑
i=1

(
yi −XT

i β
)2
. (2.2)

Unfortunately, the use of the OLS method would be inappropriate for use in

a problem containing outliers or extreme observations. When there are outliers

in the data, the summation part of the above minimization problem is dominated

by the residual squares of these extreme observations. In such a situation, the

OLS estimators often perform very poorly.

Robust regression methods are designed not to be overly affected by the pres-

ence of outliers or the violations of error assumptions. This method is an im-
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portant tool for analyzing data that are heavily affected by the outliers and it

provides results that are resistant to outliers. Some of the well-known robust

regression methods are M-estimation, S-estimation, and MM-estimation.

2.2.2 M-estimation

M-estimation is the most general method of robust regression, introduced by Hu-

ber et al. (1964). The letter ‘M’ indicates that it is an estimator of the maximum

likelihood type. If we still consider the linear model as described in (2.1), the

M-estimator minimizes the objective function,

β̂M = argmin
n∑
i=1

ρ

(
yi −XT

i β

σ

)
. (2.3)

Compared with the OLS method, the squared residual function is now replaced

by another function, which is a symmetric, non-decreasing in [0,+∞), and with

ρ(0) = 0. Moreover, to be more robust against outliers that result in large

residuals, this ρ function should increase less for large values of residuals than

the squared function in the OLS. An optimal choice of ρ is provided by Huber’s

family with a loss function,

ρc(u) =

 u2

2
if |u| ≤ c

c|u| − c2

2
otherwise,

(2.4)

where c is a tuning constant that controls the level of robustness and a stan-

dard choice of c is c = 1.345 for 95% asymptotic efficiency in standard normal

distribution.

To minimize the objective function as in (2.3), we differentiate it with respect

to the coefficients β, set the partial derivatives to 0, and obtain a system of

estimating equations for the coefficients,

n∑
i=1

ψc

(
yi −XT

i β

σ

)
XT
i = 0 (2.5)
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where ψc is the derivative of ρc. Further, σ could be estimated by the median

absolute deviation (MAD) of the residuals, MAD = 1.4826×Mediani=1,...,n(|ri|),

or by Huber’s proposal 2 (Huber, 2011).

Solving the estimation equations is a weighted least squares problem and in

most cases, the iteratively reweighted least squares (IRLS) algorithm could be

performed, which is typically the preferred method. In this work, we estimate

the regression parameters using the ‘rlm()’ function from the ‘MASS’ package in

R using method of ‘M’.

2.2.3 S-estimation

Although M-estimation could be resistant to outliers in response values and

achieve high asymptotic efficiency, M-estimators are not robust against high lever-

age points (outliers in covariates), and more importantly, have a disappointing

breakdown property. The breakdown point of an estimator is the proportion

of ‘bad’ data that can be arbitrarily large values without making the estimator

arbitrarily bad.

The first estimators with high breakdown points are the least median of

squares (LMS) and the least trimmed sum of squares (LTM). A more general class

of high breakdown estimators that likewise do not suffer from leverage points is

introduced by Rousseeuw and Yohai (1984), and is known as the class of scale-

type or S-estimators (Salibian-Barrera and Yohai, 2006).

The S-estimator is defined by β̂S = argmin σ̂(β) with a determining minimum

robust scale estimator and the scale function satisfies the equation,

1

n

n∑
i=1

ρ

(
yi −XT

i β

σ̂(β)

)
= K, where K =

∫
ρ(z)φ(z)dz. (2.6)

A commonly used family of loss functions ρ is given by the Tukey’s biweight,
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ρd(u) =


d2

6

{
1−

[
1−

(
u
d

)2]3}
if |u| ≤ d

d2

6
if |u| ≥ d

(2.7)

The solution to the S-estimator could also be found by using an IRLS method.

The choice of d = 1.548 yields K = 0.5, indicating that the S-estimator achieves

a 50% breakdown point. The S-estimator has much higher breakdown point than

the M-estimator when its ψ function redescends, where ψ is the derivative of

ρ. However, a high breakdown point generally results in a low efficiency. When

the S-estimator described above obtains a 50% breakdown point, it only achieves

28.7% efficiency at the core model with a standard normal distribution.

2.2.4 MM-estimation

It is possible to have both high breakdown point and high efficiency. This is

achieved by MM-estimation, a three-stage procedure introduced by Yohai (1987).

In the first stage, an initial regression estimate (e.g. LMS) is computed with high

breakdown point but is not necessarily efficient. In the second stage, an M-

estimation of the errors scale is calculated based on the initial estimate (the first

M). In the third stage, an M-estimate of regression coefficients is computed based

on the scale estimate obtained in the second stage (the second M). Briefly speak-

ing, the MM-estimator is computed as an M-estimator starting at the coefficients

provided by a high breakdown S-estimator and using the fixed scale afforded by

the S-estimator. As mentioned by one of the referees, another robust estimator,

τ -estimator (Yohai and Zamar, 1988), also combines good robustness and high

efficiency. However, we only focus on a more widely used MM-estimator in this

chapter.

If we define ρd0 to be the ρ function as in the S-estimation procedure and ρd1

to be the ρ function as in the M-estimation of the third stage, ρd1 should satisfy

ρd1(u) ≤ ρd0(u) for all u ∈ R and sup ρd1(u) = sup ρd0(u). MM-estimator is then

the solution of
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β̂MM = argmin
n∑
i=1

ρd1

(
yi −XT

i β

σ̂s

)
, (2.8)

where ρd1 is still the Tukey’s biweight function mentioned in S-estimation. How-

ever, a larger value of d is chosen and d = 4.685 is a typical choice for d. Further,

σ̂s is the S-scale estimator, which was derived in the S-estimation procedure by

using ρd0 as the ρ function.

Again, to solve the above equation, we could differentiate the objective func-

tion with respect to the coefficients β and set the partial derivatives to 0, obtain-

ing a system of estimating equations for the coefficients,

n∑
i=1

ψd1

(
yi −XT

i β

σ̂s

)
XT
i = 0 (2.9)

where ψd1 is the derivative of ρd1 and an IRLS algorithm could be applied to

find the solution to this equation. With d = 4.685, the MM-estimator achieves

95% efficiency at standard normal distribution and the 50% breakdown point.

Therefore, it is a superior estimator to either the M-estimator or the S-estimator,

in terms of breakdown point and efficiency. Here, we estimate the MM-regression

parameters using the ‘rlm()’ function from the ‘MASS’ package in R using method

of ‘MM’.

2.3 Robust model selection criteria

Model selection is a key component of all statistical work with data. Selecting

the variables for use in a regression model is one important example. Using all

variables in the model suffers from high variability in parameter estimation, and

thus, results in a very poor prediction accuracy. Over last few decades, various

model selection criteria have been rapidly developed. Among these model selec-

tion criteria, AIC (Akaike, 1974) is increasingly used for all statistical analysis.

However, likelihood based criteria, such as AIC, are highly sensitive to out-
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liers or to other departures from normality assumptions in the error distribution.

Therefore, model selection procedures require special care in the presence of out-

liers. A growing number of papers are concerned with model selection procedures

for linear models that are less sensitive to outliers: Ronchetti (1985); Ronchetti

and Staudte (1994); Ronchetti et al. (1997); Agostinelli (2002); Tharmaratnam

and Claeskens (2013); Müller and Welsh (2005). In this section, we will introduce

the six different types of model selection criteria considered in our analysis and

comparison.

2.3.1 Classical AIC

AIC (Akaike, 1974), a variant of the Kullback-Leibler divergence between the

true model and the approximating candidate model, has been widely used as a

model selection tool over the past decades. According to Ronchetti (1985), if

we consider a linear regression model in Section 2.2 and assume that the errors

follow some distribution with density g, a generalized AIC proposed by Bhansali

and Downham (1977) for a given fixed α is

AIC(p;α) = −2
n∑
i=1

log g

(
yi −XT

i β̂

σ̂

)
+ αp+K(n, σ̂), (2.10)

where K(n, σ̂) is a function of n and σ̂, σ̂ is an estimate of σ, and p is the number

of parameters in the linear regression model. When g is a standard normal

distribution and the choice of α is α = 2, AIC(p; 2) is reduced to the well-known

criterion, Mallows’Cp, proposed by Mallows (1973),

Cp =
n∑
i=1

(
yi −XT

i β̂

σ̂

)2

− n+ 2p. (2.11)

Further, when σ̂ is the maximum likelihood estimate of σ, this criterion re-

duces to the traditional AIC for linear regression,

AIC = 2n log σ̂ML + 2p (2.12)
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where σ̂ML is the maximum likelihood estimate of σ. Further, it is widely known

that Cp is asymptotically equivalent to the traditional AIC. However, it could

be noted that AIC and its variant, Cp are based on the normality assumption of

error distribution and they are sensitive to outlying observations. In the pres-

ence of outliers,
∑n

i=1

(
yi−XT

i β̂

σ̂

)2
is dominated by the residuals of these extreme

observations. In this situation, AIC or Cp performs poorly. Therefore, we search

for more robust alternatives.

2.3.2 Robust AIC for M-estimation

Ronchetti (1985) proposed a robust version of AIC for M-estimation by replacing

log g with a more general function ρ,

RAIC.M = 2
n∑
i=1

ρ

(
yi −XT

i β̂M
σ̂

)
+ αp, (2.13)

where in this case, β̂M is the M-estimator as in Section 2.2, σ̂ is a robust estimate

of σ and does not change from model to model. The model with the smallest

value of RAIC.M is selected as the best model. As discussed in Ronchetti (1985),

the extension of AIC to a more robust version of itself is the exact counterpart

of the maximum likelihood estimation for M-estimation.

Another issue we address here is the choice of parameter α. Following the

results of Stone (1977), the penalty term αp = 2 trace(M−1Q), where

M = −E
[
∂ψ

∂β

]
= E

[
ψ′xxT

]
, Q = E

[
ψψ2

]
= E

[
ψ2xxT

]
.

Here, ψ is the derivative of ρ with respect to coefficient parameters. Ronchetti

(1985) suggests that M = E
[
ψ′xxT

]
= E[ψ′] · E[xxT ] and Q = E

[
ψ2xxT

]
=

E[ψ2] · E[xxT ]. Thus, the penalty term is

αp = 2 trace(M−1Q) = 2
E[ψ2]

E[ψ′]
p. (2.14)
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Here, the choice of α is 2E[ψ2]
E[ψ′]

. This α is then fixed across all the possible models.

When the ρ function is simply a square function (as in the case of OLS), αp is

exactly equal to 2p and the selection criterion RAIC.M simply reduces to the

traditional AIC (or its variant, Cp).

Therefore, in this work, we compute robust version of AIC for M-estimation

suggested by Ronchetti (1985) as,

RAIC.M = 2
n∑
i=1

ρc

(
yi −XT

i β̂M
σ̂

)
+ 2

E[ψ2
c ]

E[ψ′c]
p (2.15)

where ρc is the Huber’s function, β̂M is the M-estimator, σ̂ is the median absolute

deviation (MAD) of the residuals from the full model, and E[ψ2
c ] and E[ψ′c] are

estimated respectively by the average of the empirical values of ψ2
c and ψ′c from

the full model.

2.3.3 Robust AIC for MM-estimation

It is widely known that M-estimators have a low breakdown point. Since the

robust version of AIC based on M-estimation applies the same ρ function (the

Huber function) as the M-estimators, it loses its robust property in the presence

of a high proportion of outliers. More importantly, in regression analysis, M-

estimation is only robust to the outliers in the response but not the outliers in

the covariates.

Yohai (1987) proposed an MM-estimation, that utilizes the S-scale estimator

in an M-estimation equation and is robust to outliers in both the response and

the covariates. A corresponding robust version of AIC could also be further

derived based on MM-estimation. Therefore, we propose a new robust version of

AIC based on MM-estimator, which obtains a higher breakdown point than the

M-estimator and copes with outliers in both the response and the covariates,

RAIC.MM = 2
n∑
i=1

ρd

(
yi −XT

i β̂MM

σ̂

)
+ 2

E[ψ2
d]

E[ψ′d]
p, (2.16)
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where ρd is the Tukey’s biweight function, and σ̂ is the MAD of the residuals

of the full model by MM-estimation. The structure of RAIC.MM is similar

to RAIC.M , as suggested by Ronchetti (1985). However, the loss function is

replaced by the Tukey’s biweight function (ρd) and high breakdown estimators,

MM-estimators (β̂MM) are used instead of M-estimators. In our simulation study,

we find that RAIC.MM performs significantly better than RAIC.M when the

proportion of outliers in the response reaches 20% or when outliers are present in

the covariates.

2.3.4 Robust AIC with a prediction loss part

Robust versions of AIC for both M-estimation and MM-estimation involve spec-

ifying estimators and computing the required model selection criteria based on

these estimators. Additionally, the ρ functions in robust versions of model selec-

tion criteria are in the same class as the ρ functions in the estimation procedure.

Müller and Welsh (2005) broaden the usual approach to robust model selection

by separating the ρ function during the estimation and the model selection. They

further state that a useful linear regression model should also be able to predict

independent new observations. Therefore, they propose to add a conditional

(given the sample) expected prediction loss part to the penalized loss function

(the traditional structure of a model selection criterion). The traditional way to

estimate the prediction loss part is to utilize the bootstrap method. To ensure

that outliers or observations in the extreme tails were present in each bootstrap

sample, Müller and Welsh (2005) used an m out of n stratified bootstrap (see

Müller and Welsh (2005)) when estimating the conditional expected prediction

loss. Hence, Müller and Welsh (2005) constructed the robust model selection

criteria as,

Mn =
n∑
i=1

ρ

(
yi −XT

i β̂c
σ̂c

)
+ 2p+ E∗

n∑
i=1

ρ

(
yi −XT

i β̂
m∗
c

σ̂c

)
, (2.17)
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where β̂c denotes an estimator of type c of β (e.g. OLS-type, M-type, MM-type),

σ̂c is the MAD of residuals from a full model by type c estimation, E∗ defines

expectation with respect to the bootstrap distribution and β̂m∗c are estimators of

β for m out of n stratified bootstrap samples, and ρ is a bounded function in the

form of

ρ(u) = min(u2, b2).

A reasonable choice of the constant b mentioned in Muller and Welsh (2005) is 2.

The penalized loss term in the above criterion is similar in conception to the

robust versions of AIC for M-estimation and MM-estimation. However, as dis-

cussed in Müller and Welsh (2005), the choice of the ρ function intentionally does

not correspond to any commonly used estimators, and thus, such a criterion could

be used to compare different estimators. Linking the criterion to any estimators

(using the same ρ function in the selection criterion and estimation) may exces-

sively favor the selected estimator (Müller and Welsh, 2005). However, such a

separation yields a different penalty term αp to those revealed in the traditional

information criteria (e.g. AIC or robust version of AIC). Müller and Welsh (2005)

simply chose a penalty term that does not depend on the choice of a ρ function

(e.g. log(n)p). To be more comparable with the robust version of AIC, we con-

sider 2p (the penalty term in AIC) as a penalty term for the selection criterion

here.

In our simulation study, we choose the bounded function ρ as in the form of

ρ(u) = min(u2, b2) mentioned in Müller and Welsh (2005), and where b = 2. We

consider Mn for both M-type and MM-type estimators, denoting them by Mn.M

and Mn.MM respectively.

2.3.5 Robust scale based AIC for M and MM-estimation

Tharmaratnam and Claeskens (2013) stated that in line with the application of

the AIC for use with maximum likelihood estimation, parameters are re-estimated

for each possible model, implying that both regression and scale estimators change
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from model to model. Therefore, in the same spirit as using AIC for regression,

they consider σ̂ not fixed and define the scale-based robust version of AIC for

M-estimation as,

RAICS.M = 2n log σ̂M + 2 trace(M−1Q), (2.18)

where σ̂M is the scale estimator from the M-estimation procedure and it changes

from model to model. Moreover, Tharmaratnam and Claeskens (2013) suggest a

different way to estimate the trace term (the penalty term). The whole empirical

information matrices are considered as the estimates of M and Q,

M = E[ψ′c · xxT ] ≈ 1

n

n∑
i=1

ρ′′c

(
yi −XT

i β̂M
σ̂M

)
xix

T
i

σ̂2
M

(2.19)

Q = E[ψ2
c · xxT ] ≈ 1

n

n∑
i=1

ρ′2c

(
yi −XT

i β̂M
σ̂M

)
xix

T
i

σ̂2
M

, (2.20)

where ρ′c and ρ′′c are the first and second derivatives of Huber’s ρ function respec-

tively. Then, the estimate of the trace term, which also varies from model to

model, is computed by 2 trace(M−1Q).

Robust scale based AIC for MM-estimation could be computed in a similar

way,

RAICS.MM = 2n log σ̂MM + 2 trace(M−1Q) (2.21)

where σ̂MM is the scale estimator from MM-estimation. Moreover, when cal-

culating the trace term for RAICS.MM , M-estimators should be replaced by

MM-estimators, and also, the Tukey’s biweight loss function should be used.

While previously mentioned robust model selection criteria are all based on

some types of ρ functions, RAICS.M and RAICS.MM are scale-based and ar-

ranged in the same spirit as the traditional AIC for regression. However, the

trace term trace(M−1Q) estimated in the equations (2.19) and (2.20) behaves

quite abnormally under our simulation settings, especially when the number of
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covariates is large. More of the simulation results and explanations are given in

Section 4. Therefore, we will now further consider the criteria in equation (2.18)

and (2.21) using an adjusted penalty term.

2.3.6 Robust scale based AIC for M and MM-estimation

with the trace term adjusted

We calculate the penalty term for the robust scale based AIC in a similar way as

the one suggested by Ronchetti (1985) and further denote these adjusted criteria

using RAIC ′S.M and RAIC ′S.MM for M and MM-estimation accordingly,

RAIC ′S.M = 2n log σ̂M + 2
E[ψ2

c ]

E[ψ′c]
p (2.22)

RAIC ′S.MM = 2n log σ̂MM + 2
E[ψ2

d]

E[ψ′d]
p, (2.23)

where ψc and ψd are Huber’s function and Tukey’s biweight respectively. In our

simulation study, we have clearly found that these adjusted criteria outperform

the original ones suggested by Tharmaratnam and Claeskens (2013), in terms of

selection probabilities at various contamination levels.

2.4 Simulation results

In this section, we first introduce our simulation settings and then carry out a

simulation study to compare the performances of different model selection criteria

with respect to model selection and prediction accuracies.

2.4.1 Simulation settings

We recall the following linear regression model,

yi = β0 +

p∑
j=1

βjxij + εi. (2.24)
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Therefore, we have p variables in total. In our simulation study, we investigate

two cases of p: p = 6 and p = 10, with n = 50.

In the case of p = 6, the first three variables (X1, X2, X3) are generated

independently from standard normal distribution N(0, 1). However, the other

three variables (X4, X5, X6) are considered correlated and we generate them

through the relationship displayed below,

X4 ∼ N(0, 1), X5 ∼ 0.7X4 +N(0, 1), X6 ∼ 0.7X5 +N(0, 1)

It is easy to show that the theoretical correlation betweenX4 andX5 is 0.7√
(1+0.72)

=

0.5735. Similarly, we have the theoretical correlation matrix for X4, X5, X6 as

follows, 
1 0.5735 0.3725

0.5735 1 0.6496

0.3725 0.6496 1


In addition, we define the true model by only using variables X2, X3, X4, and

X5,

yi = 1 + x2i + x3i + x4i + x5i + εi (2.25)

Hence, the true model is in the form of (2.24) but where β = (1, 0, 1, 1, 1, 1, 0)T .

To investigate the performance of robust model selection criteria against out-

liers, we consider different percentages of outliers (0%, 10%, 20%, 30%, 40%) from

N(10, 1) on the response value y. Therefore, we define the error εi distribution

to be a mixture of normal distribution,

(1− ε)N(0, 1) + εN(10, 1), (2.26)

where ε denotes the percentage of outliers, which varies from 0% to 40%. Ad-

ditionally, the design matrix X is fixed over all simulation samples to reduce

the simulation variability. Finally, 100 simulated samples are generated from the

equation (2.25).
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In the case of p = 10, we define the first six variables to be independent

and the last four variables to be correlated. X1, X2, and X3 are generated from

uniform distribution and X4, X5, X6, and X7 are generated from standard normal

distribution. Therefore, we have

X1, X2, X3 ∼ U(−1, 1), X4, X5, X6, X7 ∼ N(0, 1),

The other three variables are generated as follows,

X8 ∼ 0.7X7 +N(0, 1), X9 ∼ 0.7X8 +N(0, 1), X10 ∼ 0.7X9 +N(0, 1).

Similar to the case of p = 6, it is easy to find the theoretical correlation matrix

for X7, X8, X9 and X10, which is as follows,
1 0.5735 0.3725 0.2523

0.5735 1 0.6496 0.4400

0.3725 0.6496 1 0.6773

0.2523 0.4400 0.6773 1


For p = 10, we define the true model by using only variables X2, X3, X5, X6, X7

and X8,

yi = 1 + x2i + x3i + x5i + x6i + x7i + x8i + εi. (2.27)

Hence, the regression coefficients for p = 10 are β = (1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0)T .

Again, the design matrix for p = 10 is fixed and the error distribution is as in

(2.26).

For both cases of p = 6 and p = 10, we further consider scenarios with outliers

in covariates. We artificially add 10% of outliers to covariates from the N(10, 1)

distribution and denote the new design matrix by X∗. In this situation, we still

use the original design matrix X to generate the response y according to (2.26),

considering that we require ‘bad’ leverage points that have a larger effect on the
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regression estimation.

To compute the robust model selection criteria discussed in the above section,

we find M and MM-estimators by using the function ‘rlm’ from the R package

‘MASS’. While calculating Mn.M and Mn.MM , due to high computation cost,

20 bootstraps are used to find the expected conditional loss. In addition, we

find that increasing the number of bootstraps does not improve the performance

substantially.

The comparison is conducted by measuring model selection and prediction

accuracies. Model selection accuracy is measured by the selection probability.

The selection probability is the proportion of times that the selected best model

includes all significant variables and excludes all noise variables over 100 simu-

lations. Prediction accuracy is measured by the mean squared prediction error

(MSPE) n−1
∑n

i=1(ŷi − yi)
2, computed over a set of independent test samples

using the same sample size n as the training sample.

2.4.2 Simulation results

We now present the simulation results of various robust model selection criteria

in terms of both model selection and prediction accuracy for each simulation

scenario.

Table 2.1 displays detailed simulation results for the simulation settings of

p = 6 and n = 50 without any outliers in the covariates. We first investigated the

performance of the criteria based on loss function (using the first five methods).

As expected, classical AIC works well when there are no outliers presented in

the data. However, as the proportion of outliers in the response increases in the

dataset, classical AIC selects the true model less frequently. When the contam-

ination level reaches 20%, it rarely selects the true model. This indicates that

it is worth investigating the robust model selection criteria under the presence

of outliers in the dataset. The third and fifth columns confirm that the model

selection criteria based on M-estimation (Mn.M and RAIC.M) select a higher
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Table 2.1: Selection probabilities for p = 6

ε Based on loss function Based on scale estimator

% AIC Mn.M Mn.MM RAIC.M RAIC.MM RAICS .M RAICS .MMRAIC′
S .M RAIC′

S .MM

0 0.72 0.57 0.71 0.63 0.63 0.22 0.17 0.30 0.41

10 0.19 0.76 0.72 0.60 0.71 0.12 0.33 0.19 0.45

20 0.01 0.51 0.81 0.47 0.70 0.19 0.38 0.24 0.73

30 0.03 0.12 0.51 0.10 0.41 0.09 0.33 0.09 0.73

40 0.00 0.00 0.12 0.01 0.06 0.01 0.24 0.00 0.44

proportion of correct models than the classical AIC in the presence of outliers

in the response. However, then these two criteria break down when the contam-

ination level reaches 30%, as a consequence of the low breakdown point of the

M-estimators. This fact is also shown in Figure 2.1. Conversely, the fourth and

sixth columns suggest that when the contamination level is high, the robust model

selection criteria based on MM-estimation (Mn.MM and RAIC.MM) generally

outperform both the classical AIC and their counterparts based on M-estimation.
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Figure 2.1: Selection probabilities of various model selection criteria for p = 6

However, the criteria based on MM-estimation become less effective after the

contamination level reaches 30%, though the theoretical breakdown point of the
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Table 2.2: Bias of the robust scale estimators for the full model when p = 6

ε n=50 n=1000

% M MAD.M MM MAD.MM M MAD.M MM MAD.MM

0 -0.08 -0.10 -0.07 -0.10 0.00 0.00 0.00 0.00

5 -0.00 -0.01 0.03 -0.04 0.06 0.06 0.06 0.06

10 0.11 0.09 0.15 0.06 0.16 0.14 0.15 0.14

20 0.79 0.54 0.40 0.28 0.52 0.40 0.38 0.39

30 3.35 2.04 1.15 1.38 3.88 0.97 0.73 0.84

40 5.26 3.64 2.83 3.67 5.95 2.10 1.54 2.30

MM-estimator is at 50%. This could be explained by the bias of the robust

estimation of scale as discussed in Martin et al. (1993), who argued that the

maximal asymptotic bias is substantial for large ε even for the MAD, the scale

estimator that we proposed for our robust model selection criteria based on loss

function. We also generated 100 samples to find the average bias of the following

scale estimators under our simulation setting: scale estimator from M-estimation,

MAD of the residuals from M-regression, scale estimator from MM-estimation (S-

estimation), and MAD of the residuals from MM-regression. Table 2.2 suggests

that when the contamination level goes up, the bias of MAD increases and be-

comes quite significant when ε reaches 30% for MAD.M and 40% for MAD.MM .

Further, compared with the large sample case (n=1000), the bias of these scale

estimators is more notable in the small sample case (n=50) that we used in

our simulation setting. The loss function in the above criteria may behave less

effectively when the MAD is highly biased. Therefore, these robust model selec-

tion criteria do not perform as well as we expect when the contamination level

increases. Additionally, Müller and Welsh (2005) also recommend using their

model selection criterion only if σ is estimated to have a small expected bias.

We now concentrate on the last four columns in Table 2.1, which represent

the selection probabilities for those scale based robust model selection criteria.

Obviously, MM-type scale-based robust selection criteria outperform the M-type

criteria over all ranges of contamination levels, especially for higher ε. Impor-
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tantly, it is worth noting that for both of M-type and MM-type scale-based criteria

the one with trace term adjusted significantly performs better than the original

one suggested by Tharmaratnam and Claeskens (2013) considering various pro-

portions of outliers.
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Figure 2.2: Penalty terms in RAICS.M and RAICS.MM for each possible model
when p = 6, n = 50 and ε = 20%

Ideally, the trace term (the penalty term) should increase as the number of

variables included in the model goes up. However, in our simulation study, we

further find that this property of the penalty term could not be achieved by the

estimation procedure in Tharmaratnam and Claeskens (2013). Figure 2.2 repre-

sents the penalty terms in RAICS.M and RAICS.MM for each possible model in

one of the simulation samples where ε = 20%. As shown in Figure 2.2, when the

number of regression parameters included in the model rises, there are no clear

increasing trends for the penalty terms in either RAICS.M or RAICS.MM . The

penalty term for RAICS.MM even exhibits a slightly decreasing pattern, which

violates its usefulness. We consider this is due to the fact that Tharmaratnam and

Claeskens (2013) estimated the trace term by using the entire empirical informa-
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tion matrices, incorporating the covariance term of the covariates xix
T
i . However,

in Ronchetti’s computation method, the penalty term is evaluated by 2E[ψ2]
E[ψ′]

p , in

which the expected covariance term of the covariates has already been cancelled

out in the estimation procedure and the penalty term is linearly related to the

number of variables in the model. Therefore, the adjusted penalty term turns

out to be much more stable and it leads to a better performance of RAIC ′S.MM

than RAICS.MM . Though Tharmaratnam and Claeskens (2013) stated that the

effect of the outliers on the penalty element of robust selection criteria based on

scale estimators was seen to be non-influential, the finding under our simulation

setting shows a significant improvement in the adjusted penalty term for selection

probabilities. Because of the poor performance of RAICS.M and RAICS.MM ,

we exclude them from comparison for the rest of the simulation studies and only

account for RAIC ′S.MM as a model selection criterion based on a scale estimator.

Another remarkable finding is that the robust model selection criterion based

on the MM-type scale-based estimator selects a higher proportion of true models

as the contamination level increases up to 40 %, compared with those criteria

based on the loss function. This is explained in Claeskens and Tharmaratnam

(2011). When the contamination level is low (0% or 10%), the overfit model

obtains a smaller scale estimate than true models on average. In such cases, the

model selection criteria based on scale estimate will often select an overfit model,

as a small scale estimate is preferable since we are minimizing the criteria values.

However, when the contamination level goes up to 20% or 30%, the true model

results in a smaller scale estimate on average than the overfit or wrong fit models.

Hence, the model selection criteria based on scale estimates will more often tend

to select the true model.

Moreover, as displayed in Figure 2.1, the pink line lies above each of the

blue and green dashed lines when ε reaches 30 %, indicating that the selec-

tion probability of the MM-type scale-based criterion with an adjusted penalty

term (RAIC ′S.M) is outstanding by comparison with all other criteria, includ-
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Table 2.3: Selection probabilities for p = 6 with x-outliers

ε % AIC Mn.M Mn.MM RAIC.M RAIC.MM RAIC′
S .MM

0 0.05 0.39 0.63 0.46 0.43 0.44

10 0.00 0.35 0.53 0.11 0.31 0.41

20 0.00 0.15 0.44 0.07 0.22 0.44

30 0.02 0.10 0.32 0.05 0.15 0.46

40 0.00 0.02 0.10 0.01 0.04 0.26

ing Mn.MM and RAIC.MM . Although the criteria based on loss function

tend to perform quite well when the proportion of outliers is below 20%, the

scale-based model selection criteria are preferable when the contamination level

is high. Therefore, we are further inspired to choose the appropriate robust model

selection criteria depending on the proportion of outliers.
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Figure 2.3: Selection probabilities of various model selection criteria for p = 6
with x-outliers

Table 2.3 and Figure 2.3 demonstrate the simulation results p = 6 and n =

50, but with 10% of outliers in the covariates (x-outliers) as discussed in the

simulation setting. It is quite obvious that AIC exhibits a poor performance

with any level of outliers in the response (y-outliers). It is also worth noting that
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Table 2.4: Selection probabilities for p = 10

ε % AIC Mn.M Mn.MM RAIC.M RAIC.MM RAICS .MM RAIC′
S .MM

0 0.31 0.25 0.46 0.30 0.27 0.02 0.09

10 0.04 0.38 0.42 0.35 0.28 0.06 0.10

20 0.00 0.30 0.47 0.13 0.31 0.09 0.32

30 0.00 0.04 0.18 0.01 0.12 0.01 0.36

40 0.00 0.00 0.06 0.00 0.00 0.06 0.20

Table 2.5: Selection probabilities for p = 10 with x-outliers

ε % AIC Mn.M Mn.MM RAIC.M RAIC.MM RAIC′
S .MM

0 0.00 0.28 0.40 0.11 0.22 0.10

10 0.00 0.16 0.37 0.09 0.24 0.12

20 0.00 0.05 0.27 0.01 0.09 0.23

30 0.00 0.03 0.07 0.00 0.03 0.15

40 0.00 0.00 0.01 0.00 0.00 0.14

in the presence of x-outliers, the model selection criteria based on MM-estimation

generally outperform those based on M-estimation even when the contamination

level of ε is low. This is also shown in Figure 2.3 as the selection probabilities

of the MM-type criteria reside above those of the M-type criteria. This strongly

indicates the usefulness of the model selection criteria based on MM-estimation

in the presence of both x- and y-outliers.

Figure 2.4 presents the mean squared predication errors for p = 6 and ε = 10%

with and without x-outliers. From the prediction point of view, we still see very

strong evidence that the robust model selection criteria outperform non-robust

traditional AIC in the presence of y-outliers. In the presence of both x- and y-

outliers, those based on MM-estimation achieve substantially lower MSPEs and

significantly outperform those based on M-estimation.

We further investigate the case of p = 10. The detailed simulation results

of p = 10 and n = 50 with and without outliers in the covariates are shown in

Tables 2.4 and 2.5, respectively.

Overall, the selection probabilities for each of the criteria we consider are



30 CHAPTER 2. ROBUST MODEL SELECTION

AIC Mn.M Mn.MM RAIC.M RAIC.MM RAICS'.MM

2
4

6
8

10

Model selection criteria

M
S

P
E

(a)

AIC Mn.M Mn.MM RAIC.M RAIC.MM RAICS'.MM

2
4

6
8

10

Model selection criteria

M
S

P
E

(b)

Figure 2.4: Mean squared predication errors for p = 6 and ε = 10%, (a) without
x-outliers, (b) with x-outliers

.



2.4. SIMULATION RESULTS 31

0.
0

0.
1

0.
2

0.
3

0.
4

Contamination Level of the response(%)

S
el

ec
tio

n 
P

ro
ba

bi
lit

y

0 10 20 30 40

AIC
Mn.M
Mn.MM
RAIC.M
RAIC.MM
RAICS'.MM

Figure 2.5: Selection probabilities of various model selection criteria for p = 10
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Figure 2.6: Selection probabilities of various model selection criteria for p = 10
with x-outliers
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Figure 2.7: Mean squared predication errors for p = 10, (a) without x-outliers,
(b) with x-outliers

.
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smaller in the case of p = 10, compared with the case of p = 6. This could

be expected as the selection difficulty increases when the number of variables

included in the model goes up. Figures 2.5 and 2.6 suggest that similar to the

case of p = 6, the criteria based on MM-estimation outperform those based on

M-estimation in the presence of x-outliers or a high proportion of y-outliers.

Moreover, as shown in Table 2.4 it is worth noting that the relative discrepancy

of selection probabilities between RAIC ′S.MM and RAICS.MM is much larger

in the case of p = 10 than in the case of p = 6. This further indicates that when

the number of variables in the model increases the original criteria as suggested

by Tharmaratnam and Claeskens (2013) perform more poorly as a result of the

increasing variability in the covariance term of the covariates xix
T
i . Therefore, we

could further conclude that the adjustment to the penalty term of the scale-based

criteria improves its performance on selection probability.

From the prediction point of view, it is quite obvious that those based on

MM-estimation still substantially outperform those based on M-estimation, as

illustrated in Figure 2.7.

2.5 Real data example

We now apply these robust model selection criteria to analyze the well-known

Boston housing data (available at http://lib.stat.cmu.edu/datasets/boston).

The data contain the following 14 variables: crim (per capita crime rate by town),

zn (proportion of residential land zoned for lots over 25,000 sq.ft), indus (propor-

tion of nonretail business acres per town), chas (Charles River dummy variable),

nox (nitrogen oxides concentration: parts per 10 million), rm (average number

of rooms per dwelling), age (proportion of owner-occupied units built prior to

1940), dis (weighted mean of distances to five Boston employment centres), rad

(index of accessibility to radial highways), tax (full-value property-tax rate per

$10,000), ptratio (pupil-teacher ratio by town), black (1000(Bk − 0.63)2), where

Bk is the proportion of African-American residents by town), lstat (lower status
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Table 2.6: Trimmed mean square prediction error (TMSPE) for Boston housing
data

Method Average TMSPE SD TMSPE

AIC 9.23 0.59

Mn.M 7.43 0.34

Mn.MM 7.38 0.73

RAIC.M 7.43 0.34

RAIC.MM 7.28 0.31

RAICS′.MM 7.30 0.33

of the population in percentages), and medv (median value of owner-occupied

homes in thousand dollars). There are 506 observations in the dataset. The re-

sponse variable is medv. Following Müller and Welsh (2005), we utilized m out

of n stratified bootstrap (see Müller and Welsh (2005)) to generate 100 bootstrap

resamples as testing samples to ensure that outliers are present in each. The

comparison was then measured by the average prediction loss of these 100 testing

samples (bootstrap resamples), namely, the conditional expected prediction loss.

To be robust, a good model should capture the pattern of the majority of data.

Therefore, we used the trimmed mean square prediction error (TMSPE), as a

more appropriate measure of the prediction loss for this dataset. We truncated

the largest 10 % of squared residuals and computed the TMSPE using the remain-

ing 90% of the squared residuals. TMSPE is a measure of prediction accuracy

for the majority of the data and is no longer dominated by extreme prediction

errors. Table 2.6 and Figure 2.8 present the TMSPE for Boston housing data

using different model selection criteria.

From Table 2.6, we can clearly see that the best model selected by AIC

obtains the highest TMSPE of 9.23, showing a very poor performance compared

with these robust model selection criteria and indicating a certain proportion

of outliers in the Boston housing data. These robust model selection criteria

demonstrate a comparable performance. Among them, RAIC.MM achieves the

lowest average TMSPE with the smallest standard error. This is also shown in
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Figure 2.8.
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Figure 2.8: Trimmed mean square prediction error (TMSPE) for Boston housing
data

2.6 Conclusion

In this thesis, we propose a robust AIC for MM-estimation and an adjusted

robust scale based AIC for M and MM-estimation. Our proposed model selection

criteria can maintain their robust properties in the presence of a high proportion

of outliers and the outliers in the covariates. We compare our proposed criteria

with other robust model selection criteria discussed in previous literature. Our

simulation studies demonstrate a significant outperformance of robust AIC based

on MM-estimation with outliers in the covariates and show a better performance

of the adjusted robust scale based AIC for MM-estimation when the proportion

of outliers in the response is relatively high. Real data examples also show a
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better performance of robust AIC based on MM-estimation. More robust model

selection criteria with different penalty terms (e.g. robust BIC) will require future

research. Overall, the traditional AIC is very sensitive to outliers, while the

robust versions of model selection criteria are resistant to outliers and should

receive more attention in model selection studies.



Chapter 3

Robust Lasso Regression Using

Tukey’s Biweight Criterion ∗

3.1 Introduction

In multiple linear regression models, the ordinary least squares (OLS) estimates

can give inaccurate predictions when there are a large number of predictors or

multicollinearity is present. One way to improve the predictions is to reduce the

number of variables in the model by model selection. Tibshirani (1996) proposed

a new technique for model selection termed the “LASSO” for “Least Absolute

Shrinkage and Selection Operator”, which incorporates an L1 penalty into the

OLS loss function. The lasso shrinks some coefficients to exactly zero. This

property of the lasso means that it provides parsimonious solutions that are easy

to interpret.

Over the past decade, the lasso has become a very popular technique for simul-

taneous estimation and variable selection. Many authors (Zou, 2006; Knight and

Fu, 2000; Zou et al., 2007; Zhao and Yu, 2006) have investigated the properties of

the lasso and developed different variants of the lasso. Zou (2006) demonstrated

∗The core contribution of Chapter 3 was submitted to Technometrics in April 2016 and
has been accepted for publication in February 2017. This chapter was presented at the CM-
Statistics Conference held in London, the UK in December 2015.
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that there exist certain scenarios where the lasso is inconsistent for variable se-

lection. Thus, he suggested the adaptive lasso, where adaptive weights are used

for penalizing coefficients differently in the L1 penalty. The adaptive lasso enjoys

the oracle property, that is, asymptotically it performs as well as if the true un-

derlying model were known. Moreover, the adaptive lasso can be computed using

the same efficient algorithms that are used to compute the lasso, for example,

least angle regression (LARS) of Efron et al. (2004). Zou and Hastie (2005) em-

phasized the inappropriateness of using the lasso as a variable selection method

if a group of variables are very highly correlated. In such a situation, the lasso

tends to select only one variable from the group and does not care which variable

is selected. To overcome this drawback of the lasso, Zou and Hastie (2005) de-

veloped the elastic net, a new regularization and variable selection method that

combines an L1 and L2 penalty. The elastic net performs variable selection, con-

tinuous shrinkage, and more importantly, it selects groups of strongly correlated

variables. Fan and Li (2001) argued that a good penalty function should have

the properties of sparsity and unbiasedness. They proposed a special non-concave

penalty function named the Smoothing Clipped Absolute Deviation (SCAD) that

can produce sparse solutions and unbiased estimates for large parameters.

Datasets with outliers are commonly encountered in statistical analysis. These

outliers may appear in the response and/or the predictors. It is well known

that OLS estimates in linear regression are very sensitive to outliers. The lasso

estimates, which utilize OLS, also suffer from the effect of outliers. Some authors

have considered robust versions of the lasso, generally utilizing penalized versions

of M-estimators, as in Owen (2007), Wang et al. (2007), Li et al. (2011), and

Lambert-Lacroix and Zwald (2011). Wang et al. (2007) proposed to overcome

the presence of outliers by combining the least absolute deviation (LAD) loss

and the lasso penalty. Unfortunately, it is well known that the LAD loss is

not adaptable for small errors because it penalizes strongly for small residuals

(Owen, 2007; Lambert-Lacroix and Zwald, 2011). That is, the LAD-Lasso has
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lower efficiency than OLS estimates when there are no outliers in the response.

Owen (2007) and Lambert-Lacroix and Zwald (2011) preferred to replace the

squared loss with Huber’s loss, a hybrid of the squared error and absolute error

loss functions. Extensive simulation studies in Lambert-Lacroix and Zwald (2011)

have demonstrated the superior performance of the lasso with Huber’s criterion

over the traditional lasso and the LAD-Lasso.

Although the robust lasso with the Huber’s loss is resistant to outliers in the

response and achieves high asymptotic efficiency, it is not robust against high

leverage points or outliers in the covariates. As discussed above, the literature on

the robust lasso (Owen, 2007; Wang et al., 2007; Li et al., 2011; Lambert-Lacroix

and Zwald, 2011) considers only outliers in the response. However, outliers in the

covariates also appear frequently and they generally have a greater effect on the

accuracy of the regression estimates than outliers in the response. Only a few

papers have considered robust methods with respect to contamination in the co-

variates. Maronna (2011) proposed S-Ridge and MM-Ridge regressions that add

an L2 penalty to traditional unpenalized S-regression and MM-regression. These

methods are shown to be robust against outliers in the covariates. However, simi-

lar to ridge regression, S-Ridge and MM-Ridge do not perform variable selection.

Khan et al. (2007) introduced a robust version of LARS (Efron et al., 2004),

named Rlars, by replacing the classical correlation in the LARS algorithm with

robust correlation estimates. Rlars orders the importance of variables robustly.

However, the Rlars procedure does not optimize a clearly defined objective func-

tion, which means its asymptotic properties cannot be explored theoretically.

Alfons et al. (2013) proposed another approach that is robust with respect to

high leverage points, by adding the L1 penalty to the well-known least trimmed

squares (LTS) criterion, naming this approach the Sparse-LTS. They derived the

breakdown point of this Sparse-LTS estimator and demonstrated that it can be

robust to outliers in both the covariates and the response. However, simulation

studies in Alfons et al. (2013) and in our work, find that Sparse-LTS loses effi-
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ciency when there are no outliers. Moreover, Alfons et al. (2013) do not provide

any asymptotic theory for their Sparse-LTS estimator.

To be robust against outliers in both covariates and the response, the deriva-

tive of the loss function needs to be redescending (Rousseeuw and Yohai, 1984;

Yohai, 1987). A commonly used loss function with this property is Tukey’s bi-

weight (Tukey, 1960). In this paper, we propose replacing the squared loss in the

lasso with Tukey’s biweight criterion, and name the method the Tukey-lasso, to

handle outliers in the response and covariates. Contemporary works based on a

similar idea can be found in Smucler and Yohai (2015, 2017). In our simulation

study, we show that the Tukey-lasso outperforms the adaptive lasso and other

robust implementations of the lasso, particularly in the presence of outliers in

both the response and the predictors.

We further propose an accelerated proximal gradient (APG) algorithm to

compute the Tukey-lasso. The APG computes the lasso minimization problem

and guarantees a global minimizer for a convex objective function. Although

the objective function for the robust lasso with Tukey’s biweight is non-convex,

the APG algorithm still achieves very reliable results (a local minimizer) when

the starting value of the algorithm is carefully selected. We further demonstrate

that the computation time for the Tukey-lasso through the APG algorithm is

substantially lower than that of its competitors, including Rlars and Sparse-LTS.

In Section 3.2, we describe the traditional lasso, other robust versions of the

lasso and introduce the robust lasso with Tukey’s biweight loss. In Section 3.3, we

introduce the accelerated proximal gradient algorithm and its implementations

to lasso problems. In Section 3.4, we discuss the method of selecting the tuning

parameter. In Section 3.5, we present our simulation settings, show our simulation

results and compare the prediction and variable selection accuracy of various

forms of the lasso. Computation times for these methods are also reported and

compared. We analyse three real examples in Section 3.6. Finally, we present

brief conclusions in Section 3.7.
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3.2 The lasso-type estimate

3.2.1 The traditional lasso

Consider a standard linear regression model,

yi = XT
i β + εi, i = 1, 2, . . . , n, (3.1)

where yi is the response variable on the i-th observation, Xi = (1, xi1, xi2, . . . , xip)
T

is a p + 1 vector of covariates on the i-th observation, β = (β0, β1, β2, . . . , βp)
T

is a p + 1 vector of regression parameters, and εi are independently distributed

random variables with expected value 0 and variance σ2.

Although OLS estimates are unbiased, they can result in highly variable pre-

dictions when no variable selection is performed. To improve prediction by shrink-

ing unnecessary coefficients to 0, Tibshirani (1996) proposed to add the L1 norm

of the estimates to the squared loss, leading to the lasso estimator. However, the

lasso is inconsistent for variable selection, so Zou (2006) suggested the adaptive

lasso in which adaptive weights are used to penalize the coefficients differently.

The adaptive lasso considers the following modified lasso criterion,

argmin
n∑
i=1

(
yi −XT

i β
)2

+ λ

p∑
j=1

ŵj|βj|, (3.2)

where λ is a tuning constant and ŵj = 1/|β̂j|, where β̂j is the OLS estimate for

the jth coefficient. When the adaptive weights ŵj = 1 for each j, the adaptive

lasso reduces to the lasso, as proposed in Tibshirani (1996). The adaptive lasso

can be implemented using the same algorithm that is used for the lasso. Zou

(2006) showed that the adaptive lasso enjoys the oracle property.
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3.2.2 Robust lasso

It is well known that squared loss used in the traditional lasso is very sensitive

to outliers. The goal of the robust lasso is to offer a more stable alternative that

is not sensitive to outliers. We propose combining robust M-estimation and the

adaptive lasso penalty, to obtain the generalized adaptive lasso,

argmin 2
n∑
i=1

ρ

(
yi −XT

i β

σ

)
+ λ

p∑
j=1

ŵj|βj|. (3.3)

When ρ is the squared loss and σ = 1, (3.3) is simply the adaptive lasso (3.2).

When ρ is the LAD loss, σ = 1 and the weights ŵj = 1/|β̂j|, where β̂j is the

unpenalized LAD estimate of the jth coefficient, (3.3) leads to the LAD-Lasso

proposed by Wang et al. (2007). Since the squared loss in (3.2) has been replaced

by the LAD criterion (L1 loss) in (3.3), the resulting estimator is expected to be

more robust to outliers. The LAD-Lasso estimator produces consistent variable

selection and extensive simulation studies in Wang et al. (2007) demonstrate the

satisfactory finite-sample performance of the LAD-Lasso.

It is worth noting that when there are no outliers in the response, the LAD-

Lasso achieves lower efficiency than the adaptive lasso. Another choice of ρ that

is robust against heavy-tailed errors or outliers is Huber’s loss function. Huber

et al. (1964) describes Huber’s loss function as

ρc(u) =

 u2

2
if |u| ≤ c

c|u| − c2

2
if |u| > c,

(3.4)

where c is a tuning constant that determines where the transition from quadratic

to linear occurs. For large values of c, Huber’s loss function acts like a least

squares function, while for small values of c, it is similar to the LAD loss (L1

norm), making it more robust against outliers but less efficient for normal errors.

That is, the tuning constant c controls the trade-off between robustness and

efficiency. A standard choice of c is c = 1.345 for 95% asymptotic efficiency for
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the standard normal distribution. Therefore, when ρ is Huber’s loss function

and ŵj = 1/|β̂Mj |, where β̂Mj denotes the unpenalized Huber estimate for the

jth coefficient, (3.3) leads to the robust adaptive lasso with Huber’s criterion,

discussed in Owen (2007) and Lambert-Lacroix and Zwald (2011). Lambert-

Lacroix and Zwald (2011) demonstrate that the lasso with Huber’s loss achieves

the oracle property. More details of the estimation of β and σ are given in

Lambert-Lacroix and Zwald (2011).

Although the estimates obtained from the LAD-Lasso and the lasso with

Huber’s loss are resistant to outliers in the response, they are not robust against

outliers in the covariates. Alfons et al. (2013) proposed Sparse-LTS by adding

the L1 penalty to the least trimmed squares (LTS) criterion. The Sparse-LTS

is robust with respect to high leverage points. Denote ri = yi − XT
i β, and

r21n ≤ . . . ≤ r2nn the order statistics of the squared residuals. Further define

I (r2i ≤ r2hn) the indicator function that equals 1 when the ith squared residual

r2i ≤ r2hn. Then, when ρ = 1
2
r2i I (r2i ≤ r2hn), σ = 1 and the weights ŵj = 1, (3.3)

reduces to the Sparse-LTS as introduced in Alfons et al. (2013). A standard

choice of h is h = b0.75(n+ 1)c. However, this truncation of the data may result

in a loss of statistical efficiency. To overcome this loss of efficiency, Alfons et al.

(2013) proposed a reweighting step to increase efficiency, Alfons et al. (2013) and

our simulation study show that the Sparse-LTS performs unsatisfactorily when

the data have no outliers.

3.2.3 Robust lasso with Tukey’s biweight criterion

To be robust against outliers in both covariates and responses, the derivative of

the loss function needs to be redescending (Rousseeuw and Yohai, 1984; Yohai,

1987). A commonly used family of such loss functions is Tukey’s biweight,

ρd(u) =


d2

6

{
1−

[
1−

(
u
d

)2]3}
if |u| ≤ d

d2

6
if |u| ≥ d,

(3.5)
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where d is a tuning constant that, similar to c in Huber’s function, controls the

level of robustness. Tukey’s biweight function truncates the residuals that are

larger than d to the constant d2/6. Therefore, small values of d imply higher ro-

bustness while large values of d provide higher efficiency. To achieve 95% asymp-

totic efficiency at the standard normal distribution, the suggested choice of d is

4.685. We propose to replace ρ in (3.3) by Tukey’s biweight loss to deal with

the outliers in both of the covariates and the response, the Tukey-lasso solves the

following,

argmin 2
n∑
i=1

ρd

(
yi −XT

i β

σ̂

)
+ λ

p∑
j=1

ŵj|βj|, (3.6)

where ρd is Tukey’s biweight function and σ̂ is a robust estimate of σ. In our study,

σ is estimated by the median absolute deviation (MAD) (Rousseeuw and Croux,

1993) of the residuals from the full model fitted by S-estimation (Rousseeuw and

Yohai, 1984). Other robust scale estimates, such as S-scale estimates, are also

acceptable here. Overall, we find that the performance of the Tukey-lasso is not

sensitive to the choice of MAD or S-scale for estimating σ. The ŵj = 1/|β̂MM
j |

are weights based on the MM-estimates β̂MM
j (Yohai, 1987).

Without loss of generality, we assume the true model contains the first p0

variables such that A = {1, 2, · · · , p0}. Write

C =

 C11 C12

C21 C22

 ,
where C11 is a p0 × p0 positive definite matrix. To prove that the Tukey-lasso

achieves the oracle property, we make the following assumptions,

• A1: 1
n
XTX→ C;

• A2: max1≤i≤n‖Xi‖/
√
n→ 0 as n→∞

• A3: the εi have a symmetric distribution with mean 0 and variance σ2;
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• A4:
√
n(σ̂n − σ) is bounded in probability.

Theorem 1. Assume conditions A1 to A4, and further suppose that λn → ∞

such that λn/
√
n → 0. Then the adaptive robust lasso estimator with Tukey’s

biweight loss and preliminary scale σ̂n (i.e. the Tukey-lasso) satisfies the following:

1. Asymptotic normality:
√
n(β̂

(n)
A − βA)

d→ N (0, σ2 Eψ2
d

(Eψ′
d)

2C
−1
11 ), where Eψ2

d

and Eψ′d are the expected values of ψ2
d and ψ′d respectively.

2. Consistency in variable selection: limn P (An = A) = 1

Proof: The proof of Theorem 1 is provided in the Appendix A.

We use the MM-estimator to calculate the predetermined weights because

the MM-estimator achieves high efficiency and is robust against both response

and covariate outliers. MM-estimation is a three-stage procedure introduced by

Yohai (1987). In the first stage, we compute an initial regression estimate (e.g.

LMS, Rousseeuw (1984)) with a high breakdown point that is not necessarily

efficient. In the second stage, an M-estimate of scale is calculated based on the

initial estimator (first M). In the third stage, we compute an M-estimator of

regression coefficients based on the scale estimator obtained in the second stage

(second M). Briefly, the MM-estimator is computed as an M-estimator starting

at a high breakdown S-estimator and with a fixed scale given by the S-estimator.

For further details of MM-estimation, see Yohai (1987).

3.2.4 Robust lasso with Tukey’s biweight criterion when

p > n

In a high dimensional setting, traditional robust estimation methods, such as

MM-estimation, become computationally infeasible. One major advantage of the

Tukey-lasso, compared with unpenalized robust estimation, is that it is computa-

tionally efficient and produces both robust and sparse results in high dimensional

settings where p > n.
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The adaptive weights for the Tukey-lasso as in (3.6) are determined by un-

penalized MM-estimates β̂MM
j . To compute the adaptive weights when p > n,

we replace the MM-estimate with MM-Ridge, as introduced in Maronna (2011).

MM-Ridge is confirmed to be robust to both outliers in the covariates and the

response. Further, σ̂, the robust estimate of σ, is estimated by the MAD of the

residuals from the model fitted by MM-Ridge.

Simulations and real examples demonstrate that the Tukey-lasso with weights

computed by MM-Ridge estimates produces reliable results when p > n. Algo-

rithms for computing the Tukey-lasso are proposed in the following section. In

our simulation study for both p < n and p > n, we show that the Tukey-lasso

outperforms its competitors in prediction and variable selection accuracy.

3.3 Algorithms for numerical optimization

We apply an accelerated proximal gradient (APG) algorithm to compute the

Tukey-lasso estimators. When the starting values of the algorithm are carefully

chosen, the APG algorithm achieves very reliable results for the Tukey-lasso.

Generally, the APG algorithm is very fast and also suitable for solving lasso-type

problems with differentiable loss functions.

3.3.1 The traditional lasso

Consider the minimization problem,

argmin
x
{F (x) := f(x) + g(x)}, (3.7)

where f : Rn → R is a differentiable convex function and g : Rn → (−∞,∞] is

a proper, lower semi-continuous convex function. The lasso (Tibshirani, 1996) is
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exactly the minimization problem (3.7), with

f(β) = ‖y −Xβ‖2 and g(β) = λ‖β‖1.

Further note that ∇f(β) = XT (Xβ − y) and the proximal is given by

proxtg(β) = arg min
z

{
‖z‖1 +

1

2λt
‖z − β‖2

}
= Sλt(β), (3.8)

where Sλ denotes the soft thresholding function used by Donoho and Johnstone

(1994),

Sλ(v) =


v − λ if v > λ

0 if |v| ≤ λ

v + λ if v < λ.

(3.9)

Therefore, as discussed in Daubechies et al. (2004), the proximal gradient method

becomes

βk+1 = Sλtk
(
βk − tkXT (Xβk − y)

)
,

with a suitably chosen step size 0 < tk < 1/L, where L is the Lipschitz constant

of ∇f . This method is also known as the iterative soft thresholding algorithm

(ISTA). Daubechies et al. (2004) show that the rate of convergence for this method

is the same as for the classical gradient method, which is no worse than O(1/k).

For details of ISTA see Daubechies et al. (2004). To improve the rate of conver-

gence, Beck and Teboulle (2009) proposed the APG method which preserves the

computational simplicity of the proximal gradient method but achieves a global

rate of convergence O(1/k2). Beck and Teboulle (2009) further applied the APG

method to solve the lasso using the iterative method,

β̃k = βk +
k − 1

k + 2
(βk − βk−1)

βk+1 = Sλtk

(
β̃k − tkXT (Xβ̃k − y)

)
,

(3.10)
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with suitably chosen step size 0 < tk < 1/L, which is also called the fast iterative

soft thresholding algorithm (FISTA). According to Beck and Teboulle (2009), let

β∗ be any minimizer of F (β) over Rn, then,

0 ≤ F (βk)− F (β∗) ≤ ‖β0 − β∗‖2

t(k + 1)2
for k ≥ 1. (3.11)

That is, the rate of convergence of the APG method is shown to be O(1/k2).

Details of the proof of the convergence rate can be found in Beck and Teboulle

(2009). Due to its fast convergence, we adopt this APG method to solve the

Tukey-lasso.

3.3.2 Robust lasso with Tukey’s biweight criterion

To solve the robust lasso with Tukey’s biweight loss, note that f(β) and its

gradient are,

f(β) = ρd(y −Xβ) and ∇f(β) = − 1

σ
XTψd

(
y −XTβ

σ

)
,

where ρd is Tukey’s biweight and ψd is its derivative,

ψd(u) =

 u
[
1−

(
u
d

)2]2
if |u| ≤ d

0 if |u| > d.
(3.12)

Hence, the accelerated proximal gradient method leads to the following iterative

method,

β̃k = βk +
k − 1

k + 2
(βk − βk−1)

βk+1 = Sλtk

(
β̃k +

tk
σ
XTψd

(
y −XTβ

σ

))
.

(3.13)

Again, we estimate σ by the MAD of the residuals from the full model fitted

by S-estimation. By simply replacing ρd with ρc, the algorithm (3.13) can be
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used to solve the robust lasso with Huber’s loss. However, as previously noted,

Tukey’s biweight loss function leads to a non-convex objective function and only

a local minimizer can be achieved. In contrast to the traditional lasso and the

lasso with Huber’s loss (the convex cases), an appropriate choice of the initial

value is essential. We consider the MM-estimator when p < n and MM-Ridge

when p > n, as initial values. These methods are considered because they are

both efficient and robust. As such, the robust lasso with Tukey’s biweight can be

treated as a shrinkage operator for MM-estimation. Details of the computation

of MM-estimators and MM-Ridge are discussed in Yohai (1987) and Maronna

(2011), respectively.

3.3.3 Lasso-type problems with adaptive penalties

Now we consider algorithms for solving the adaptive lasso problems. Consider

the adaptive lasso,

min
β
‖y −Xβ‖2 + λ‖ŵ ∗ β‖1, (3.14)

where ŵ is the weight vector with jth component ŵj = 1/|β̂j|, with the choice of

β̂ discussed in Section 3.2. The computational details for minimizing (3.14) are

as follows,

• define a new design matrix X̃, where the jth column x̃j = xj/ŵj, j =

1, 2, · · · , p, for xj, the jth column of the original matrix X.

• solve the lasso problem for a given λ,

β∗ = argmin
β
‖y − X̃β‖2 + λ‖β‖1. (3.15)

• back-transform βj = β∗j /ŵj, j = 1, 2, · · · , p.

The quantity β∗ in (3.15) can be solved exactly by the APG method discussed

in Section 3.1. Further, to solve the adaptive robust lasso with either Huber’s

or Tukey’s biweight criterion (i.e. the Tukey-lasso), similar algorithms can be
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applied. The only adjustment that should be made is to the loss functions in

(3.15).

We find that the APG algorithm for solving the Tukey-lasso is significantly

faster than the CVX algorithm, a MATLAB package developed by Grant et al.

(2008). CVX is implemented in both Owen (2007) and Lambert-Lacroix and

Zwald (2011) for solving the robust lasso with Huber’s loss. We also find that the

APG algorithm is significantly faster than the sparseLTS() function and rlars()

function from the R package robustHD (Alfons, 2014) for solving Sparse-LTS and

Rlars respectively.

3.4 Choice of tuning parameters

We now consider how to select the optimal value of the tuning parameter in

lasso-type problems. In lasso problems, a typical method is to compute the

entire solution path for a sequence of values of λ and then select the λ value

that provides the smallest cross-validation (CV) error. As stated in Friedman

et al. (2010), the sequence begins with λmax = maxj |〈xj, y〉|/N , the smallest

value of λ for which the entire vector β̂ = 0. In our study, we follow the idea

of using bivariate winsorization as in Khan et al. (2007) and replace |〈xj, y〉| by

its truncated counterpart. We then apply a similar method to Friedman et al.

(2010) to select a grid of values for λ : select the maximum value of λ, λmax, set

a minimum value λmin = ελmax, and finally construct a sequence of K values of

λ increasing from λmin to λmax on the log scale.

Typical values are ε = 0.001 and K = 100. After a grid of values of λ

is chosen, the APG method is used to produce the entire solution path of the

lasso. However, instead of using the conventional CV criteria, we use the classical

BIC (Schwarz et al., 1978) and robust BIC criteria (Machado, 1993; Konishi and

Kitagawa, 1996) to determine the optimal λ. Given that we consider datasets

containing outliers, the traditional CV criteria are not recommended because

they are sensitive to outliers. Moreover, BIC criteria require less computation
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than the traditional CV. Hence, for the traditional lasso and the adaptive lasso,

we select the value of λ that minimizes the classical BIC,

BIC(λk) = log

[
n∑
i=1

{
yi −XT

i β̂(λk)
}2
]

+ log(n)pλk , (3.16)

where λk is the kth value of the λ in the sequence, β̂(λk) is the lasso estimates

solved by algorithm (3.10) when λ = λk, and pλk is the number of non-zero

coefficients in β̂(λk).

For the robust versions of the lasso, we select the value of λ that minimizes a

generalized robust BIC with the following structure,

RBIC(λk) = L(β̂(λk), σ̂) + log(n)pλk , (3.17)

where L(β̂(λk), σ̂) is a robust version of the loss. For the LAD-Lasso, we set

σ̂ equal to 1 and consider L(β̂(λk), σ̂) = 2n log
(∑n

i=1

∣∣∣yi −XT
i β̂(λk)

∣∣∣), where

β̂(λk) is the LAD-Lasso estimate at λ = λk. Following Ronchetti (1985), for

the robust lasso with Huber’s loss, we use L(β̂(λk), σ̂) = 2
∑n

i=1 ρc

(
yi−XT

i β̂(λk)

σ̂

)
,

where σ̂ is a robust estimate of σ and β̂(λk) here is the lasso estimator with

Huber’s loss at λ = λk. Similarly, for the robust lasso with Tukey’s biweight, we

consider L(β̂(λk), σ̂) = 2
∑n

i=1 ρd

(
yi−XT

i β̂(λk)

σ̂

)
, where β̂(λk) is the Tukey-lasso

estimator when λ = λk.

3.5 Simulation results

3.5.1 Simulations for p < n

Recall the linear regression model (3.1),

yi = XT
i β + εi, i = 1, 2, . . . , n.
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In our simulation study for p < n, we set p = 10, the first column of the design

matrix is a 1n vector and the next 10 columns are filled by covariates generated

from the multivariate normal distribution with mean 0 and

Cov(xij, xil) = ρ|j−l|, 1 ≤ j, l ≤ 10, (3.18)

where ρ = 0.5. In addition, we define the true model using the first five variables,

yi = xi1 + xi2 + xi3 + xi4 + xi5 + εi. (3.19)

Hence, the true model is in the form of equation (3.1) with

β = (0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0),

and εi ∼ N(0, 1). That is, the first five regression covariates are significant

variables and the rest are noise.

The purpose of our simulation study is to compare the finite sample perfor-

mance of the lasso estimators considered in Section 3.2 and to determine the

relative performance of the Tukey-lasso compared to the other lasso-type estima-

tors, namely, the lasso in Tibshirani (1996), the adaptive lasso in Zou (2006), the

LAD-Lasso in Wang et al. (2007), the robust lasso with Huber’s loss in Owen

(2007) and Lambert-Lacroix and Zwald (2011), the Sparse-LTS in Alfons et al.

(2013) and the Rlars in Khan et al. (2007). Therefore, datasets containing outliers

in the covariates (x-outliers) and/or the responses (y-outliers) need to be consid-

ered. In our simulations, we investigate the following three types of simulated

data:

• Scenario 1: Data without any outliers: the design matrix X is generated as

above, and the response y was generated from the true model (3.19).

• Scenario 2: Data with y-outliers only: again, the design matrix X is gen-

erated as above. However, when we generate the response y according to
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(3.19), the error (εi) distribution is taken to be a mixture of normal distri-

bution,

(1− ε)N(0, 1) + εN(10, 1), (3.20)

where ε denotes the percentage of outliers and we set ε = 10%.

• Scenario 3: Data with both x-outliers and y-outliers: the original design

matrix X is generated as described above. We artificially add 10% x-outliers

from the N(10, 1) distribution and denote the new design matrix by X∗.

We use the original design matrix X to generate the response y according

to (3.19), given that we require “bad” leverage points that have a larger

effect on the regression estimation. Further, the error (εi) distribution here

is the mixture of normal distributions as in (3.20).

For each type of the data, the design matrix is fixed over all simulations. Then,

100 samples of size n=100 and 200 are generated for each of the three scenarios.

Additionally, test samples of size n are simulated independently from the true

model (3.20), using the original design matrices for each training sample. That

is, the test samples do not contain any x-outliers or y-outliers, given that we focus

on the prediction errors for the majority of the data. For each of the training

samples, we compute the entire lasso solution path and choose the optimal λ

as discussed in Section 3.4. The performances in terms of prediction error and

variable selection accuracy are measured for the lasso estimators at their optimal

λ values. For Rlars, following Alfons et al. (2013), we fit robust MM-regression

(Yohai, 1987) for the sequenced variables. The optimal model is chosen according

to BIC implemented with a robust scale estimate as discussed in Alfons et al.

(2013).

Variable selection accuracy is measured by the number of correctly identified

significant variables (No. correct), the number of included noise variables (No.

incorrect) and the percentage of correctly fitted models (Correctly fitted). The

percentage of correctly fitted models is the proportion of times that the selected
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model includes all significant variables and excludes all noise variables over 100

simulations. Prediction accuracy is measured by the mean squared prediction

error (MSPE) n−1
∑n

i=1(ŷi−yi)2, computed over a set of independent test samples

with the same sample size n as the training sample. We conduct 100 repeated

simulations and compute the average, the median and the standard error of the

MSPEs.

Table 3.1 presents the detailed simulation results for the data generated by

Scenarios 1, 2, and 3, using p = 10, and n = 100, 200. In Scenario 1, from the

perspective of variable selection, all methods tend to identify the five significant

variables correctly; ad-Lasso (adaptive lasso), H-Lasso (robust lasso with Huber’s

criterion and lasso penalty) and T-Lasso (robust lasso with Tukey’s biweight

and lasso penalty, an abbreviation of Tukey-lasso) generally select fewer noise

variables and achieve higher selection probabilities than the other methods. When

the sample size is large (n = 200), as implied by the oracle property, the adaptive

penalty term works well, the methods with the adaptive penalty terms (ad-Lasso,

LAD-Lasso, H-Lasso and T-Lasso) include fewer insignificant variables, while S-

LTS (the Sparse-LTS) and Rlars are more likely to over-fit. From the prediction

point of view, as can be seen in the right-hand panel of Table 3.1 or in Figure 3.1,

all methods maintain satisfactory MSPE, while Lasso and S-LTS obtain slightly

higher average MSPEs due to the lack of adaptive weights.

From Scenario 2 in Table 3.1, it is clear that Lasso and ad-Lasso exhibit very

poor performance in terms of both variable selection and prediction accuracy.

This is due to the failure of quadratic loss in the presence of y-outliers. In

contrast, the remainder of the robust methods are confirmed to be robust to y-

outliers and, among them, Rlars and T-Lasso always achieve lower MSPEs with

smaller standard deviations. This is also shown in the middle panel of Figure

3.1. Again, when the sample size increases, the adaptive penalty term in T-Lasso

becomes more effective in variable selection and prediction accuracy.

Finally, the bottom panel in Table 3.1 reports simulation results for Scenario
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Table 3.1: Simulation results for the data generated by Scenarios 1, 2, and 3,
using p = 10, n = 100, 200

Scenario Method No.
correct

No. in-
correct

Correctly
fitted

Average
MSPE

Median
MSPE

SD
MSPE

1, n=100 Lasso 5.00 0.69 0.49 1.37 1.37 0.25
ad-Lasso 5.00 0.19 0.84 1.17 1.18 0.21

LAD-Lasso 5.00 0.54 0.63 1.19 1.21 0.24
H-Lasso 5.00 0.39 0.71 1.16 1.17 0.19

S-LTS 5.00 2.96 0.25 1.44 1.42 0.32
Rlars 5.00 0.87 0.59 1.13 1.13 0.19

T-Lasso 5.00 0.34 0.75 1.18 1.17 0.20

1, n=200 Lasso 5.00 0.58 0.61 1.10 1.09 0.15
ad-Lasso 5.00 0.11 0.91 0.97 0.97 0.13

LAD-Lasso 5.00 0.32 0.77 0.99 0.98 0.17
H-Lasso 5.00 0.13 0.90 0.96 0.97 0.13

S-LTS 5.00 2.31 0.49 1.19 1.22 0.24
Rlars 5.00 0.73 0.66 0.95 0.94 0.13

T-Lasso 5.00 0.09 0.94 0.96 0.95 0.14

2, n=100 Lasso 4.91 1.04 0.38 2.88 2.79 1.29
ad-Lasso 4.39 0.49 0.34 3.11 2.82 1.53

LAD-Lasso 5.00 0.16 0.85 1.26 1.24 0.32
H-Lasso 5.00 0.50 0.66 1.22 1.19 0.31

S-LTS 5.00 2.60 0.23 1.40 1.36 0.35
Rlars 4.98 0.62 0.67 1.12 1.06 0.25

T-Lasso 5.00 0.18 0.83 1.16 1.12 0.25

2, n=200 Lasso 5.00 1.59 0.14 2.60 2.53 0.71
ad-Lasso 4.79 0.46 0.49 2.72 2.71 0.87

LAD-Lasso 5.00 0.06 0.94 1.05 1.04 0.21
H-Lasso 5.00 0.19 0.84 1.05 1.05 0.18

S-LTS 5.00 1.45 0.49 1.19 1.17 0.22
Rlars 5.00 0.15 0.87 0.94 0.92 0.15

T-Lasso 5.00 0.08 0.92 0.97 0.95 0.15

3, n=100 Lasso 4.84 1.92 0.10 4.30 4.20 1.11
ad-Lasso 3.85 0.47 0.08 4.81 4.72 1.45

LAD-Lasso 4.80 0.35 0.62 2.23 2.02 0.88
H-Lasso 4.96 0.92 0.38 2.23 2.14 0.70

S-LTS 5.00 2.38 0.22 1.36 1.30 0.33
Rlars 5.00 0.45 0.75 1.12 1.09 0.23

T-Lasso 5.00 0.12 0.89 1.18 1.15 0.25

3, n=200 Lasso 4.98 2.37 0.07 4.73 4.65 0.73
ad-Lasso 4.51 0.44 0.34 5.00 4.85 0.84

LAD-Lasso 4.67 0.12 0.60 1.96 1.89 0.44
H-Lasso 4.72 0.28 0.56 2.19 2.16 0.40

S-LTS 5.00 1.24 0.44 1.19 1.17 0.19
Rlars 5.00 0.13 0.91 0.98 0.96 0.16

T-Lasso 4.95 0.04 0.91 1.06 1.00 0.24
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Figure 3.1: Mean squared predication errors for p = 10. (a) Scenario 1 with
n = 100, (b) Scenario 1 with n = 200, (c) Scenario 2 with n = 100, (d) Scenario
2 with n = 200, (e) Scenario 3 with n = 100, and (f) Scenario 3 with n = 200.
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3 (the Scenario with both x- and the y-outliers). Again, the performance of

Lasso and ad-Lasso suffers greatly from the outliers. When n = 100, T-Lasso

significantly outperforms all the other methods in variable selection accuracy

and achieves a desirable selection probability of 89 %. From the perspective of

prediction, it is worth noting that in the presence of x-outliers, LAD-Lasso and

H-Lasso have a far inferior performance than the other three robust methods. In

contrast, S-LTS, Rlars and T-Lasso maintain desirable MSPEs and are shown to

be resistant to both x-outliers and y-outliers, as expected. As evidenced in the

bottom panel of Figure 3.1, these three methods consistently dominate the others

by achieving much lower MSPEs. When n = 100, the average MSPE for T-Lasso

or Rlars is nearly half of that of LAD-Lasso and H-Lasso. This strongly illustrates

the usefulness of T-Lasso in the presence of both x-outliers and y-outliers.

In Scenario 3, we set the contamination level for both the covariates and the

response to 10%. To illustrate the behavior of these robust methods at other

contamination levels, we present Figure 3.2, which shows the averaged MSPEs

for all methods at various contamination levels for both the covariates and the

response, when n = 100 and p = 10. As stated, Lasso and ad-Lasso are not

resistant to any percentage of outliers; the average MSPE increases dramatically

when the contamination level increases. The MSPEs for LAD-Lasso and H-

Lasso gradually increase after 5% contamination. Further, Rlars and T-Lasso

demonstrate consistent outperformance over all methods, their averaged MSPEs

are almost equal and maintain a satisfactory level even when the contamination

level for both the covariates and the response reaches 25%.

Overall, S-LTS, Rlars and T-Lasso generally outperform the other lasso-type

methods in terms of prediction accuracy, particularly in the presence of both

x-outliers and y outliers. However, from the perspective of variable selection,

T-Lasso is strongly preferred because it achieves very satisfactory selection prob-

abilities in all scenarios, as suggested by its oracle property. S-LTS in Alfons

et al. (2013) and Rlars in Khan et al. (2007) are not shown to enjoy the oracle
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Figure 3.2: Average mean squared predication errors at various contamination
levels for simulation Scenario 3 with n = 100 and p = 10.

property.

3.5.2 Simulations for p > n

This section reports simulations for a high dimensional case with p > n. The

simulation settings are almost identical to those of p < n. The only difference

is we now consider the covariate dimension p = 300 instead of p = 10. Ac-

cordingly, the true model is still in the form of equation (3.1), but now with

β = (0, 1, 1, 1, 1, 1, 0, . . . , 0). The first five are important variables and the rest

are noise. Note, similar to Alfons et al. (2013), we no longer include LAD-Lasso in

the simulations due to its expensive computation and poor performance. In this

case of p > n, we adopt non-robust ridge estimates to compute adaptive weights

for ad-Lasso. For T-Lasso and H-Lasso, we compute the adaptive weights by

MM-Ridge as noted in Section 3.2.

Table 3.2 contains the simulation results for the data generated under Scenario
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Table 3.2: Simulation results for the data generated by Scenarios 1, 2, and 3,
using p = 300, n = 100, 200

Scenario Method No.
correct

No. in-
correct

Correctly
fitted

Average
MSPE

Median
MSPE

SD
MSPE

1, n=100 Lasso 5.00 109.34 0.00 2.01 2.01 0.22
ad-Lasso 5.00 87.15 0.01 1.93 1.93 0.22
H-Lasso 5.00 0.04 0.96 1.32 1.31 0.23

S-LTS 5.00 68.59 0.00 3.03 2.99 0.56
Rlars 5.00 14.52 0.02 1.57 1.53 0.35

T-Lasso 5.00 0.02 0.98 1.32 1.31 0.23

1, n=200 Lasso 5.00 210.09 0.00 1.90 1.90 0.16
ad-Lasso 5.00 50.94 0.58 1.30 1.15 0.41
H-Lasso 5.00 0.31 0.80 1.03 1.01 0.15

S-LTS 5.00 143.35 0.00 2.72 2.67 0.47
Rlars 5.00 8.39 0.10 1.13 1.09 0.23

T-Lasso 5.00 0.23 0.83 1.03 1.02 0.15

2, n=100 Lasso 4.67 115.96 0.00 12.39 12.49 3.13
ad-Lasso 4.89 98.61 0.00 12.30 12.40 3.13
H-Lasso 4.93 1.13 0.61 2.06 1.92 1.03

S-LTS 4.87 68.79 0.00 3.88 3.01 2.10
Rlars 4.69 2.15 0.36 1.45 1.20 0.66

T-Lasso 4.98 0.04 0.94 1.50 1.47 0.34

2, n=200 Lasso 4.94 232.83 0.00 12.42 12.75 2.48
ad-Lasso 4.95 200.67 0.00 12.36 12.69 2.48
H-Lasso 5.00 0.35 0.75 1.39 1.36 0.30

S-LTS 4.99 143.41 0.00 3.42 2.95 1.22
Rlars 4.99 1.63 0.54 0.99 0.95 0.24

T-Lasso 5.00 0.04 0.96 1.18 1.16 0.19

3, n=100 Lasso 4.74 116.03 0.00 12.27 12.13 3.26
ad-Lasso 4.81 99.37 0.00 12.11 11.82 3.26
H-Lasso 4.82 1.82 0.31 2.51 2.40 0.78

S-LTS 4.63 69.09 0.00 4.97 3.83 3.03
Rlars 4.81 2.28 0.37 1.49 1.16 1.77

T-Lasso 4.90 0.10 0.81 1.78 1.65 0.58

3, n=200 Lasso 4.93 232.51 0.00 13.50 13.71 2.71
ad-Lasso 4.95 202.29 0.00 13.24 13.45 2.66
H-Lasso 5.00 0.84 0.54 1.63 1.54 0.42

S-LTS 4.98 143.47 0.00 4.08 3.61 1.57
Rlars 4.99 0.93 0.67 0.98 0.94 0.24

T-Lasso 5.00 0.03 0.97 1.29 1.25 0.27
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Figure 3.3: Mean squared predication errors for p = 300. (a) Scenario 1 with
n = 100, (b) Scenario 1 with n = 200, (c) Scenario 2 with n = 100, (d) Scenario
2 with n = 200, (e) Scenario 3 with n = 100, and (f) Scenario 3 with n = 200.
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1, 2, and 3, using p = 300, n = 100, 200. In Scenario 1, S-LTS obtains the highest

average MSPE because it suffers from efficiency problems when the data contain

no outliers. It is clear that H-Lasso and T-Lasso achieve outstanding performance

in variable selection and prediction accuracy, while all other methods have an over

fitting problem. In addition, Rlars, which we identified as the main competitor

of T-Lasso when p = 10, shows very poor performance in variable selection in

this scenario but obtains a slightly lower MSPE than T-Lasso. With vertical

outliers added in Scenario 2, it is clear that the prediction power of Lasso and ad-

Lasso breaks down. Similar to the case of p = 10, Rlars and T-Lasso in the high

dimensional case still maintain substantially lower MSPEs even when outliers in

the covariates are introduced in Scenario 3. This is also shown in Figure 3.3

To summarize, for both cases of p = 10 and p = 300, T-Lasso demonstrates

superior performance to the adaptive lasso and other robust methods in terms of

both variable selection and prediction accuracy.

3.5.3 Computation time

Another important advantage of the Tukey-lasso is its computational efficiency

via the APG method. Table 3.3 presents the computation times of Lasso, H-Lasso,

S-LTS, Rlars, and T-Lasso based on a simulated data with n = 200 and varying p.

The computations are performed on an Intel Xeon W3540. The lasso is computed

by the glmnet() function in the R package glmnet (Friedman et al., 2009) and

H-Lasso by the CVX package in MATLAB (Grant et al., 2008). Computations

for S-LTS and Rlars are performed using the sparseLTS() function and rlars()

function from the R package robustHD (Alfons, 2014), respectively. T-Lasso is

solved by the APG algorithm as noted in Section 3.3, implemented in MATLAB.

For these lasso type methods (e.g. Lasso, H-Lasso, S-LTS, and T-Lasso), the

reported times are averaged over a grid value of five values of λ. For Rlars, we

set the number of covariates to be sequenced as n/2 (the default setting in rlars),

which is 100 in this case. We feel that sequencing a larger number of covariates is
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not necessary because sparsity is usually assumed. All methods apply a tolerance

level for convergence at 10−6. This is also the tolerance level we used in the

simulation study. For T-Lasso, we set the maximum number of iterations to 104

to ensure convergence. According to (3.11), on average, using a tolerance of 10−6

requires 103 iterations to reach convergence, so 104 is considered to be a very

conservative choice.

Table 3.3: Computation times (in seconds) for simulated data with n = 200 and
varying covariate dimension p

p ad-Lasso H-Lasso S-LTS Rlars T-Lasso

100 0.002 1.915 1.594 80.060 0.122
500 0.002 3.193 32.068 81.090 0.219
1000 0.004 4.954 130.208 80.950 0.182
2000 0.006 8.622 519.780 85.180 1.026
3000 0.008 14.489 1180.594 85.470 2.604

Table 3.3 demonstrates that S-LTS is reasonably fast until p reaches 1000.

The computation time for H-Lasso slightly increases as p increases. For Rlars,

the computation time is relatively large, but fixed, for all p. However, if a full

sequence of covariates is required, instead of a fixed number n/2, the computation

time for Rlars will dramatically increase with p. In contrast, it is worth noting

that T-Lasso remains fast for increasing p, which is even comparable with the

non-robust Lasso fitted by glmnet.

To conclude, T-Lasso not only achieves outstanding performance in terms of

both variable selection and prediction accuracy, but it is also faster to compute.

3.6 Real data examples

3.6.1 Example 1: Earnings forecasting in Chinese stock

market

In this section we investigate an earnings forecast study using Chinese stock

market data from Wang et al. (2007) and Lambert-Lacroix and Zwald (2011).
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The dataset is derived from China Center for Economic Research (CCER) China

stock, which was developed by the CCER at Peking University. The dataset

contains a total of 2247 records, with each record corresponding to a one-yearly

observation of a company. Among these records, 1092 are from the year 2002

and we consider these records as the training data as in Wang et al. (2007) and

Lambert-Lacroix and Zwald (2011). The remaining 1155 observations come from

2003 and serve as the test data. The response variable is the return on equity

(ROE) (i.e. earnings divided by total equity) of the following year (denoted by

ROEt+1). Eight explanatory variables are all measured at year t; they include

the ROE of the current year (ROEt), asset turnover ratio (ATO), profit margin

(PM), debt-to-asset ratio or leverage (LEV ), sales growth rate (GROWTH),

price-to-book ratio (PB), account receivables/revenues (ARR), inventory/asset

(INV ), and the logarithm of total assets (ASSET ).

Various lasso-type methods, were used to select the best model from the train-

ing dataset from 2002. The prediction accuracy of these methods was evaluated

on the test data. Wang et al. (2007) and Lambert-Lacroix and Zwald (2011)

considered only the mean absolute prediction error (MAPE) as a measure of the

prediction accuracy. However, we observe that for all the methods considered,

there always exists several extremely large prediction errors in the test data after

the models are fitted. These residuals dominate the measure of the prediction

accuracy, even if MAPE is used. To be robust, a good model should capture the

pattern of the majority of data. Therefore, we used the trimmed mean square

prediction error (TMSPE), as a more appropriate measure of the prediction ac-

curacy for this dataset. We truncated the largest 10 % of squared residuals and

computed the TMSPE using the remaining 90% of the squared residuals. TMSPE

is a measure of prediction accuracy for the majority of the data and is no longer

dominated by extreme prediction errors. The estimation results are summarized

in Table 3.4. Note that for all the real data examples, we set the tolerance level for

convergence as 10−10 and correspondingly set the maximum number of iteration
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to 106 to ensure convergence.

Our results are similar to those in Wang et al. (2007) and Lambert-Lacroix and

Zwald (2011). As Table 3.4 demonstrates, the MAPE and TMSPE for ad-Lasso

are substantially worse than they are for the robust methods, which indicates

the superiority of the robust methods for this dataset. Among the three robust

methods, H-Lasso obtains the lowest MAPE of 0.12081. T-Lasso achieves the

best predictive performance with the lowest TMSPE of 0.00196. This means that

T-Lasso tends to produce the most accurate prediction for the majority of data.

For comparison purposes, in Table 3.5, we also present the estimation results

for the model selected by traditional robust model selection using BIC. For ex-

ample, RBIC.M indicates the model that minimizes robust BIC in (3.17) with

ρ function given by Huber’s loss. Table 3.5 demonstrates that the best models

selected by various versions of BIC perform equally well with their counterparts

in Table 3.4. It is also worth noting that the best model selected by RBIC.MM

coincides with the model selected by Rlars. However, traditional model selection

is computationally intensive when there are a large number of variables and com-

putationally infeasible when the number of variables is greater than the sample

size. Therefore, we strongly prefer robust lasso methods such as T-Lasso due to

their computational efficiency. Given that the traditional model selection proce-

dure and these lasso-type methods produce similar estimation results, we do not

present the results for the model selected by traditional robust model selection

in the following two examples.

3.6.2 Example 2: Boston housing data

We then applied robust lasso methods to analyze the well-known Boston housing

data, which is available on http://lib.stat.cmu.edu/datasets/boston. The

data have been described in Section 2.5. In our study, the first 300 observations

were treated as the training data and the remaining 206 observations were treated

as the test data. Given that we focused on prediction for the majority of the data,
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Table 3.4: Estimation results of the earnings forecast study

Variable ad-Lasso LAD-
Lasso

H-Lasso S-LTS Rlars T-Lasso

Intercept -2.05930 -0.28613 -0.42034 -0.13987 -0.18958 -0.17040
ROE -0.17733 0.20518 0.14324 0.75410 0.49672 0.50207
ATO 0.15991 0.05896 0.06589 0.01767 0.03141 0.03087
PM 0.18899 0.13878 0.15947 0.05893 0.07946 0.07730
LEV -0.24504 -0.01950 -0.02892 0.00120
GROWTH 0.03275 0.01624 0.01773 0.01896 0.01247 0.01210
PB 0.01837 0.00167 0.00121 0.00199 0.00174
ARR -0.00023 -0.00041 -0.00455 -0.00490 -0.00460
INV 0.34380 0.03065 0.00083
ASSET 0.09992 0.01302 0.01906 0.00533 0.00796 0.00712

MAPE 0.23242 0.12088 0.12081 0.14288 0.12783 0.12816
TMSPE 0.02432 0.00234 0.00256 0.00232 0.00199 0.00196

Table 3.5: Estimation results for traditional robust model selection using BIC

Variable BIC RBIC.LAD RBIC.M RBIC.MM

Intercept -2.08855 -0.31729 -0.43980 -0.18958
ROE -0.18088 0.20795 0.11701 0.49672
ATO 0.16127 0.05875 0.07471 0.03141
PM 0.19480 0.14038 0.17750 0.07946
LEV -0.24533 -0.02086 -0.03633
GROWTH 0.03312 0.01877 0.01972 0.01247
PB 0.01845 0.00199
ARR -0.00490
INV 0.35080 0.05531
ASSET 0.10116 0.01454 0.01997 0.00796

MAPE 0.23283 0.12143 0.12410 0.12783
TMSPE 0.02458 0.00239 0.00298 0.00199
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we measured the prediction accuracy by the TMSPE. We included the MAPE

for comparison with the previous example.

Table 3.6: Estimation results of study of Boston housing data

Variable ad-Lasso LAD-
Lasso

H-Lasso S-LTS Rlars T-Lasso

Intercept -12.598 -12.481 -15.543 -0.476 -16.067 -14.719
crim 0.749 0.199
zn 0.022
indus -0.014
chas 0.546
nox -6.315 -3.530
rm 9.286 8.815 9.262 6.443 9.145 9.414
age -0.048 -0.052 -0.053 -0.044 -0.054 -0.060
dis -0.874 -0.704 -0.660 -0.847 -0.675 -0.560
rad 0.254
tax -0.012 -0.009 -0.011 -0.012 -0.012 -0.011
ptratio -0.699 -0.666 -0.652 -0.481 -0.636 -0.624
black 0.014 0.008 0.008 0.012 0.012
lstat -0.094 -0.135 -0.069 -0.207 -0.077

MAPE 7.743 4.893 5.055 5.693 4.972 5.308
TMSPE 45.377 15.783 16.626 28.494 16.650 19.181

Table 3.6 compares the regression coefficients and prediction accuracy for all

the lasso methods and Rlars. Ad-Lasso has the largest MAPE and TMSPE,

clearly indicating the usefulness of the robust methods in the presence of out-

liers. Among the robust adaptive lasso methods, T-Lasso selected the simplest

model with five variables (rm, age, dis, tax, ptratio) and LAD-Lasso achieved

the lowest MAPE and TMSPE. Additionally, S-LTS did not perform a great

deal of shrinkage in this dataset. All other robust methods obtained satisfactory

prediction accuracy.

To investigate the influence of x-outliers on the robust lasso methods, we con-

taminated the data by adding 5 % outliers to the three significant variables (rm,

age, dis). Figure 3.4 presents the pairs plots for these three variables (rm, age

dis) before and after the contamination. Table 3.7 summarizes the results for the

Boston housing data with contaminated covariates. Clearly, the coefficients esti-
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contamination
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Table 3.7: Estimation results of study of Boston housing data with contamination
on variables (rm, age, dis)

Variable ad-Lasso LAD-
Lasso

H-Lasso S-LTS Rlars T-Lasso

Intercept 37.673 30.082 33.263 -3.476 -14.955 -14.446
crim 1.387 0.627 0.645 0.214
zn 0.056 0.081 0.068 0.022
indus -0.079 -0.073 -0.019
chas 0.375
nox -17.024 -10.735 -11.883 -2.565
rm 4.030 3.764 3.823 6.867 8.951 8.987
age -0.061 -0.050 -0.058 -0.046 -0.046 -0.048
dis -2.305 -2.127 -2.192 -0.885 -0.652 -0.579
rad 0.547 0.462 0.536 0.281
tax -0.023 -0.020 -0.022 -0.012 -0.012 -0.012
ptratio -0.822 -0.524 -0.653 -0.498 -0.647 -0.640
black 0.017 0.012 0.013 0.013 0.013 0.009
lstat -0.427 -0.383 -0.343 -0.177 -0.121 -0.089

MAPE 14.680 8.823 9.490 6.058 4.929 4.973
TMSPE 161.420 66.135 76.884 33.347 16.479 16.112

mated using the LAD loss (LAD-Lasso) and Huber’s loss (H-Lasso) were heavily

affected by the covariate outliers and the prediction properties of these methods

break down. In contrast, the Rlars and T-Lasso estimators barely changed and

T-Lasso still achieved the lowest TMSPE with the simplest model. Compared to

all the other robust lasso methods, T-Lasso is highly competitive.

3.6.3 Example 3: Glioblastoma gene expression data

For a further illustration of T-Lasso, we investigated a real dataset where p > n.

We analyze the glioblastoma gene expression data, which was originally studied by

Horvath et al. (2006), and further investigated in Wang et al. (2011). The glioblas-

toma data are from two independent sets of clinical tumor samples of n = 55

and n = 65 with expression values for p = 3600 genes, available from https:

//labs.genetics.ucla.edu/horvath/CoexpressionNetwork/ASPMgene/. De-

tails of these data can be found in Horvath et al. (2006). Similar to Wang et al.



3.7. CONCLUSION 69

(2011), before analyzing these data we exclude nine censored subjects, five from

the first set of 55 patients and four from the second set of 65 patients, and use

the logarithm of time to death as the response. Then, the first data set serves

as the training set with n = 50, p = 3600 and the second set as the test set with

n = 61, p = 3600.

Table 3.8 presents the glioblastoma gene expression data analysis and com-

pares the performance of T-Lasso with the other lasso methods. We still measure

the prediction accuracy by the TMSPE and the MAPE. The number of vari-

ables selected by each method is also reported. The lasso selects 50 variables

and achieves the highest MAPE and TMSPE. It seems that robust methods are

more favorable, excepting Rlars. Among the robust lasso methods, T-Lasso sig-

nificantly outperforms the other methods by achieving the lowest MAPE and

TMSPE, while identifying only a small number of variables in the model. Over-

all, T-Lasso has obvious advantages over other methods in the analysis of the

glioblastoma data.

Table 3.8: Glioblastoma gene expression data analysis

Method MAPE TMSPE Model
Size

Lasso 1.1225 1.2823 51
ad-Lasso 0.7319 0.5246 2
H-Lasso 0.6567 0.3864 10

S-LTS 0.6728 0.3896 37
Rlars 0.9612 0.8047 12

T-Lasso 0.6470 0.3794 6

3.7 Conclusion

In this paper, we propose the Tukey-lasso method, which combines Tukey’s bi-

weight loss and the adaptive lasso penalty. The Tukey-lasso is resistant to outliers

in both the response and the covariates. Importantly, it also enjoys the oracle

property as does the adaptive lasso. Using the APG method, the Tukey-lasso



70 CHAPTER 3. TUKEY LASSO REGRESSION

can be computed very efficiently and rapidly. Our simulation studies demon-

strate that the Tukey-lasso compares favorably with the adaptive lasso and other

robust implementations of the lasso. Real data examples also support the use of

the Tukey-lasso in variable selection and prediction problems.



Chapter 4

Bootstrap Lasso Averaging

4.1 Introduction

Model selection is central to all applied statistical work. Selecting the variables for

use in a regression model is one important example of model selection. Over the

past two decades, a number of different model selection approaches have been

rapidly developed, ranging from the widely recognized AIC and BIC to more

recent methods such as the lasso, elastic net, and SCAD (Tibshirani, 1996; Zou

and Hastie, 2005; Fan and Li, 2001). These traditional approaches assume that

the parameter values of the best model can be estimated, and that, thereafter

we will make inferences from the data only according to that sole best model.

However, for any given data set, the use of a different model selection method may

result in a different best model being selected. Conversely, for any given model

selection approach, a different best model will likely be chosen if a new data set

is analyzed. Often several models fit the data equally well, yet these models may

include different explanatory variables and lead to different predictions. This

extra component of variation, is often termed as ‘model uncertainty’.

To account for model uncertainty, model averaging, which makes inferences

based on weighted support from several models instead of a sole best model, has

been proposed and developed. Apart from avoiding the inference drawn from the

71
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single best model, model averaging exhibits more accurate predictive performance

than reliance on a single model (Raftery et al., 1997).

Inspired by Bayesian considerations, significant work incorporating model un-

certainty has been conducted using a Bayesian Model Averaging (BMA) frame-

work. BMA considers that quantities of interest, such as predicted values, can

often be expressed as a weighted average of model specific quantities, where the

weights depending on how much the data support each model can be measured

by the posterior probabilities on the models. Numerous papers have discussed

the implementation of BMA including the choice of prior distribution and com-

putational issues (Hoeting et al., 1999; Clyde and George, 2004; Raftery et al.,

1997). Most of this literature shows that BMA procedures provide significantly

better predictive performances than any single model that might reasonably have

been chosen.

Although the development of BMA has been substantial over the past decade,

it remains problematic for setting up prior probabilities. As argued in Hjort and

Claeskens (2003), the typical application of BMA also involves mixing together

many conflicting prior opinions regarding interest parameters. An alternative to

BMA is non-Bayesian model averaging, or Frequentist Model Averaging (FMA)

(Buckland et al., 1997; Rao and Tibshirani, 1997; Hjort and Claeskens, 2003;

Burnham and Anderson, 2003; Yuan and Yang, 2012; Claeskens et al., 2008).

The fundamental difference between BMA and FMA is that the weights assigned

to each candidate model in FMA are completely determined by the data, while

the posterior probabilities in BMA depend on the prior probabilities set up by

the user.

Among these papers contributing to model averaging, the most relevant work

for our purposes is bootstrap model averaging first proposed by Buckland et al.

(1997). Bootstrap model averaging in Buckland et al. (1997) utilizes the boot-

strap to generate resamples, applies the model selection criteria independently to

each resample and further computes the weights assigned to each model. More
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specifically, Buckland et al. (1997) proposed a bootstrap weighting scheme based

on either AIC or BIC that involves four steps: (1) apply model selection to the

original data to identify the ‘best’ model; (2) use the parametric bootstrap based

on the model selected in (1) to generate resamples of the original data; (3) for

each resample repeat the model selection process of (1); and (4) assign weight

to each model equal to the proportion of times that it was selected in (3). An-

other similar machine learning ensemble technique is called bagging, short for

‘bootstrap aggregating’ as proposed by Breiman (1996). Under a linear regres-

sion framework, Breiman (1996) utilized forward variable selection to identify the

best model for each bootstrap resample. However, similar to the traditional model

selection procedures by AIC or BIC, bootstrap model averaging (or bagging) is

computationally intensive with a large number of variables and computationally

infeasible with the number of variables greater than the sample size. For exam-

ple, when a model is constructed from 20 variables, 220 model combinations are

taken into consideration and bootstrapping further exaggerates the computation

cost. Augustin et al. (2005) and Buchholz et al. (2008) proposed to include a

variable screening step prior to bootstrap model averaging to eliminate variables

with negligible effect on the response. This variable screening step results in a

much smaller set of candidate models to be considered in the bootstrap step.

More variable screening methods can be found in Fan and Lv (2008) and Wang

(2009).

In this work, we modify bootstrap model averaging by utilizing the lasso

(Tibshirani, 1996) as a model selection tool, instead of the traditional AIC or

BIC, to improve the computation speed and realize computational feasibility

even when the number of variables p is larger than the sample size n. The

lasso for ‘Least Absolute Shrinkage and Selection Operator’, first proposed by

Tibshirani (1996), incorporates a L1 penalty into the OLS loss function. The lasso

shrinks some coefficients to exactly zero and hence gives parsimonious solutions

that are easy to interpret. Many authors (Zou, 2006; Knight and Fu, 2000; Zou
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et al., 2007; Zhao and Yu, 2006) have investigated the properties of the lasso

and developed different variants of it. Zou (2006) showed that there exist certain

scenarios where the lasso is inconsistent for variable selection. He suggested

the adaptive lasso, where adaptive weights are used for penalizing coefficients

differently in the L1 penalty. The adaptive lasso enjoys the oracle property, that

is, asymptotically it performs as well as if we knew the true underlying model.

Moreover, both the lasso and adaptive lasso can be solved efficiently and fast by

the coordinate descent algorithm proposed in Friedman et al. (2010). A number

of studies considered the implementation of bootstrap resamples for improving

the lasso estimates. Bach (2008) proposed the Bolasso, which intersects with the

supports of the lasso bootstrap estimates, to achieve consistent model selection.

Hall et al. (2009) suggested using the m-out-of-n bootstrap, to choose the optimal

regularization parameter for the adaptive lasso setup. Wang et al. (2011) used

a set of randomly selected variables in each bootstrap resample and applied the

lasso to remove highly correlated variables altogether or to select them all and

called it ‘random lasso’. The asymptotic properties of the residual bootstrap for

lasso estimators are also discussed in Knight and Fu (2000), Chatterjee and Lahiri

(2010), and Chatterjee and Lahiri (2011). However, none of them attempted the

model averaging to account for model uncertainty.

Therefore, we propose to apply the lasso to identify the ‘best’ model in step (1)

of bootstrap model averaging as in Buckland et al. (1997). Replacing the model

selection criteria of AIC or BIC with the lasso not only improves the computation

speed, but also screens the number of variables up to the sample size. This

modified Step (1) can be viewed as a variable screening step and further allows for

the implementation of the adaptive lasso in Step (3). Although the adaptive lasso

is selection consistent under general design conditions, it requires the sample size

to be larger than the predictor dimension since the adaptive weights generally rely

on a consistent unpenalized estimator, which is generally infeasible for computing

in a high dimensional case. Thereafter, we utilize the adaptive lasso to repeat the
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model selection process in Step (3) to further achieve the selection consistency. We

call this modified bootstrap model averaging, ‘bootstrap lasso averaging’ (BLA).

More details of the algorithms will be provided in Section 4.2. In this work, we

mainly focus on the comparison of the predictive performances of the method

we propose and the other traditional model averaging methods. Outstanding

finite sample predictive performance by BLA is confirmed by extensive simulation

studies.

The rest of this paper is organized as follows. In Section 4.2, we introduce

three different algorithms to perform BLA. In Section 4.3, we present our simula-

tion settings, show our simulation results and compare the prediction and variable

selection accuracy of various procedures of model averaging. We analyse several

real examples in Section 4.4. Finally, we present brief conclusions in Section 4.5.

4.2 Bootstrap lasso averaging

Consider a standard linear regression model,

y = Xβ∗ + ε, (4.1)

where X is an n × (p + 1) design matrix with the first column of 1, β∗ =

(β∗0 , β
∗
1 , . . . , β

∗
p)
T is a p + 1 vector of regression parameters, some of which are

zero, and ε = (ε1, ε2, . . . , εn)T is an n× 1 vector with n independently distributed

random variables whose expected value is zero and whose variance is σ2. Define

the ith row of X by xi, i = 1, . . . , n. Further define the response vector by

y = (y1, . . . , yn). If the intercept (i.e. β0) is assumed to be included in each

candidate model, there are K = 2p candidate models (denoted by M1, . . . ,MK)

that can be constructed by using subsets of the full set of p variables. The

sub design matrix X(k) and sub vector β∗(k) denote the partitions of X and β∗

that consist of the variables included in the candidate model Mk, k = 1, . . . , K,

respectively. Define u(k) = X(k)β
∗
(k), K = (M1, . . . ,MK) as the whole set of
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candidate models; p(k) as the number of variables included in model Mk; and

β̂(k) and σ̂(k) as the OLS coefficients and standard error obtained from fitting the

model Mk to the data under consideration, respectively.

Drawing inference based on a single best model ignores model uncertainty.

Model averaging has been proposed to account for model uncertainty. Using

model averaging, quantities of interest are obtained as a weighted average over

a set of models (M1, . . . ,MK), rather than from one selected single model. The

choice of weights w(k) associated with each candidate model Mk, with
∑
w(k) =

1, is essential for performing model averaging. BMA uses the posterior model

probabilities as weights, while bootstrap model averaging proposed by Buckland

et al. (1997) utilizes the frequencies to choose the weights. Then, we are interested

in the model averaging estimator of predicted value,

ũ =
K∑
k=1

û(k)ŵ(k), (4.2)

where û(k) is the OLS estimator of u(k) for model Mk using data (y,X(k)) and

the model weight ŵ(k) is an estimate of w(k), the probability that model Mk is

the true model. ŵ(k) is subject to the constraint
∑K

k=1 ŵ(k) = 1. In this work,

we treat the lasso as a model selection tool and consider a modified bootstrap

model averaging, called ‘bootstrap lasso averaging’ (BLA). BLA is described in

the following algorithm,

Algorithm 1. [BLA1]

Step 1: Implement the lasso on the original data (y,X) and denote the best

model selected by the lasso Ml.

Step 2: Fit a least square regression using the data (y,X(l)) and simulate

B response vectors {y1, . . . ,yB} from this regression model; that is: yb =

X(l)β̂(l) +N
(

0, Iσ̂2
(l)

)
.

Step 3: For b = 1, . . . , B, fit the adaptive lasso to each bootstrap sample

(yb,X(l)) and record the best model selected by the adaptive lasso.
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Step 4: Define the weight vector (ŵ1, . . . , ŵK) using the observed frequency

under which Mk, k = 1, . . . , K, was selected as the best model over the B

simulated resamples in Step 3 and assign the weights to each model.

Step 5: Define û(k) as the estimate of quantity (i.e. prediction) derived

from the least square regression using the data (y,X(k)) and compute the

model averaging estimator according to formula (4.2).

More specifically, in Step 1, we implement the lasso using the original data

and define l as the indices of nonzero elements in the lasso estimator, and X(l)

(an n × p′ matrix) and β∗(l) (a p′ × 1 vector) as the partitions of X and β∗ that

consist of the variables selected by the lasso. In Step 2, bootstrap resamples are

then generated from the model,

yb = X(l)β̂(l) +N
(
0, Iσ̂2

(l)

)
, b = 1, . . . , B,

where β̂(l) and σ̂(l) are the OLS coefficients and standard error obtained by fitting

model Ml to the original data, respectively. In Step 3, we consider the adaptive

lasso estimator β̂
(b)
AL for the bth bootstrap sample (yb,X(l)) as the solution to the

following minimization problem,

β̂
(b)
AL = argmin

β
Qn(β) = argmin

β

{
‖yb −X(l)β‖2 + λn

p′∑
j=1

v̂j|βj|

}
,

where λn is the tuning parameter, and v̂j is the adaptive weight for jth variable.

A standard choice of v̂j is |β̂j|−1, where β̂j is the OLS estimate for the jth variable.

The R package ‘glmnet ’ (Friedman et al., 2009) is used for fitting the lasso and the

adaptive lasso and the five folds cross-validation is performed to find the optimal

value of tuning parameter λ in this paper. We further define Mk′ , k
′ = 1, . . . ,M ′

as the candidate models that include the variables selected by the lasso, and K′ =

(M1, . . . ,Mk′) as the set of candidate models in the adaptive lasso step. Since

the variables excluded from the lasso step (Step 1) will no longer be considered
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in the adaptive lasso step (Step 3). Therefore, in Step 4, we define the estimated

model weights by

ŵ(k) =


1
B

∑B
l=1 I

(
β̂

(b)
AL(k) 6= 0, β̂

(b)
AL(k)c = 0

)
if Mk ∈ K′

0 if Mk /∈ K′,

where β̂
(b)
AL(k) defines the partition of β̂

(b)
AL that consists of coefficients for variables

included in the model Mk. Finally, we compute our BLA estimator ũ according

to (4.2).

Compared with bootstrap model averaging in Buckland et al. (1997), BLA as

described in Algorithm 1 reduces the computation cost and allows model averag-

ing in high dimensional cases. Step 1 in Algorithm 1 not only provides a model for

generating bootstrap resamples, but also reduces the dimension of the variables

to be taken into account in the adaptive lasso step (Step 3). Without the ‘irrep-

resentable condition’ (Zhao and Yu, 2006; Zou, 2006), the lasso is inconsistent in

variable selection. However, according to Propositions 1 and 2 in Bach (2008),

under some mild conditions, the lasso selects all significant variables with prob-

ability tending to one exponentially fast, although it also includes insignificant

variables with certain probabilities. Therefore, we consider this modified Step

1 as a valid variable screening step. It also reduces the dimension of covariates

to smaller than the sample size, which further allows the implementation of the

adaptive lasso in Step 3, since the adaptive weights generally rely on a consis-

tent unpenalized estimator, which is generally infeasible for computing in a high

dimensional case where p > n. In the last step, we derive the model averaging

estimator based on the OLS post-model selection estimator computed by using

the original sample. That is, we are not trying to combine the adaptive lasso esti-

mators from each bootstrap resample, but only to utilize the bootstrap resamples

to estimate the model weights. There are several reasons why we separate the

model selection from the parameter estimation. Conceptually, the model averag-

ing approach targets the discovery of an appropriate weight for each candidate
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model. Therefore, we prefer to perform the estimation using the original data

instead of the bootstrap resamples. In addition, Belloni et al. (2013) showed that

the OLS post-lasso estimator performs at least as well as the lasso in terms of the

convergence rate and has the advantage of a smaller bias. More details of OLS

post various forms of lasso estimator can be found in Belloni et al. (2013).

As stated in Efron (1992), considering the fixed design matrix X, resampling

for regression problems should be from the residuals so that analysis remains

conditional on the covariate values. Alternatively, for a random design matrix,

we could consider another bootstrap scheme that generates the resamples from

the sampling units; that is, bootstrapping the response along with the associated

covariates. In a similar way to Algorithm 1, we implement the lasso to construct

a model averaging procedure for random design as follows,

Algorithm 2. [BLA2]

Step 1: Draw B bootstrap samples from the sampling units with replace-

ment from the original (y,X). Implement the lasso on each B bootstrap

sample and denote the best model selected by the lasso Mlb, b = 1, . . . , B.

Step 2: Fit a least square regression using the data (y,X(lb)) and simulate

a response vector yb from this regression model; that is: yb = X(lb)β̂(lb) +

N
(

0, Iσ̂2
(lb)

)
. Repeat this for b = 1, . . . , B.

Step 3: For b = 1, . . . , B, fit the adaptive lasso to each bootstrap sample

(yb,X(lb)) and record the best model selected by the adaptive lasso.

Step 4 - Step 5: These are identical to Steps 4 and 5 in Algorithm 1.

The major difference between Algorithm 1 and Algorithm 2 is that Algorithm

2 involves an extra layer of bootstrapping from the sampling units. Hence, dif-

ferent variables may be screened by the lasso in each of the B resamples. In

many well-studied variable screening methods, such as sure independence screen-

ing (SIS) (Fan and Lv, 2008) and forward regression (FR) screening (Wang, 2009),
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once the variables have been excluded from the screening step, they will not be

reconsidered for further variable selection methods. Although both Fan and Lv

(2008) and Wang (2009) have shown the asymptotic screening consistency of their

methods: that is, all relevant variables are discovered as sample size n → ∞, it

is still highly likely that important variables are eliminated by variable screening

in a small sample case, where the model uncertainty is substantial. Algorithm 1

suffers the same problem, while in Algorithm 2, variables excluded by the lasso

in one bootstrap sample can still be selected in the other. Therefore, Algorithm

2 tends to be more conservative in variable screening than Algorithm 1. This is

numerically confirmed in our simulation studies and real example analysis, where

we show the significant outperformance of Algorithm 2.

Knight and Fu (2000) and Chatterjee and Lahiri (2010) considered the non-

parametric residual bootstrap for the lasso estimator and stated that the boot-

strap lasso estimator is inconsistent whenever there are one or more zero com-

ponents of the parameter vector β. Thereafter, Chatterjee and Lahiri (2011)

proposed a non-parametric residual bootstrap method for the adaptive lasso and

further asserted its strong consistency in variable selection under some mild reg-

ularity assumptions. Both Algorithm 1 and Algorithm 2 we propose utilize a

parametric residual bootstrap to generate resamples from the presumed para-

metric model (e.g. normal distribution), while the parametric model can be

sometimes mis-specified. Therefore, for comparison purposes, we further propose

a nonparametric BLA based on Chatterjee and Lahiri (2011) and describe it in

the following algorithm,

Algorithm 3. [BLA3]

Step 1: Implement the lasso on the original data (y,X) and denote the best

model selected by the lasso Ml. Let β̂las denote the lasso estimator of β

and define the residuals

ei = yi −XT
i β̂las, i = 1, . . . , n.
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Step 2: Define the set of centered residuals e using e∗ = (e∗1, . . . , e
∗
n). Draw

B bootstrap resamples of e∗ with replacement, define them by {e∗1, . . . , e∗B}

and formulate B response vectors {y1, . . . ,yB}; that is: yb = Xβ̂las + e∗b .

Step 3: For b = 1, . . . , B, fit the adaptive lasso to each bootstrap sample

(yb,X(l)) and record the best model selected by the adaptive lasso.

Step 4 - Step 5: These are identical to Steps 4 and 5 in Algorithm 1.

The only difference between Algorithm 1 and Algorithm 3 is that Algorithm 3

applies the nonparametric bootstrap. Chatterjee and Lahiri (2011) consider the

simple residual bootstrap, which is shown to consistently estimate the distribution

and provide variance estimates for the adaptive lasso. The adaptive weights in

their residual bootstrap estimator is based on the OLS estimator, which cannot

feasibly be computed when p > n. Unlike the work of Chatterjee and Lahiri

(2011), our work includes a variable screening procedure in the lasso step (Step 1)

so that the OLS estimator can still be used to compute the adaptive weights when

p > n. Moreover, as mentioned in Algorithm 1, our work focuses on the model

averaging estimator based on the OLS post-model selection estimator computed

by using the original sample, which is different from the adaptive lasso based

residual bootstrap estimator of Chatterjee and Lahiri (2011).

In our simulation study, we will compare these three algorithms for BLA

with other model averaging methods in terms of prediction and variable selection

accuracy under different simulation settings.

4.3 Simulation studies

In this section, we conduct simulation studies to investigate the finite sample

performance of three proposed algorithms for BLA, compared with other widely

used model averaging methods. The comparison is conducted by measuring the

variable selection and prediction accuracies. A brief description of other model
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averaging procedures is listed as follows ∗.

• BootAIC : This procedure is the bootstrap model averaging proposed by

Buckland et al. (1997) with a weighting scheme based on AIC. The weight

assigned to each model is equal in proportion to the number of times that

the model is selected in each bootstrap resample according to AIC. Details

of the procedure have been discussed in Section 4.1.

• BootBIC : This procedure is identical to BootAIC but with a weighting

scheme based on BIC instead of AIC.

• S-AIC : This procedure assigns weight or approximate posterior probability

to each candidate model Mk in the form:

exp (−0.5AICk)∑K
i=1 exp (−0.5AICi)

, (4.3)

where AICi is the value of AIC for model Mi. It has been shown that

with suitable prior model probabilities , S-AIC can be framed in a Bayesian

context (Burnham and Anderson, 2003, 2004; Clyde et al., 2000).

• S-BIC : This procedure is identical to S-AIC but with BICi replacing AICi

in equation (4.3). Assuming equal prior model probabilities, such that

P (Mi) = 1/K, it can be shown that S-BIC provides approximate posterior

model probabilities (Raftery, 1995). In many studies the use of S-BIC for

assigning weights or posterior probabilities is referred to as Bayesian model

averaging (BMA) (Burnham and Anderson, 2003; Claeskens et al., 2008;

Clyde et al., 2000).

• BMA-MC3 : This procedure moves stochastically through model space us-

ing an Markov chain Monte Carlo approach (Raftery et al., 1997). Models

∗Part of this description is based on an unpublished work “Iterative Frequentist Model
Averaging” by Bala Rajaratnm and Steven Roberts
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are visited using an Metroplis-Hastings algorithm on the integrated like-

lihood. Posterior model probabilities are then computed for each model

visited. MC3 is implemented using the function ‘MC3.REG’ available in

the R-package ‘BMA’. We implement MC3.REG using 100,000 iterations

of the Markov chain sampler and the default hyperparmeter values.

• BMA-OCC : As for S-BIC, this approach uses equation (4.3) with BICi

replacing AICi to assign approximate posterior probabilities to each candi-

date model. The difference compared with S-BIC is that OCC uses Occam’s

window to exclude models that are far less likely than the most likely model

(Raftery, 1995). Our implementation of OCC excludes models that are 20

times less likely than the most likely model. OCC is implemented using the

function ‘bicreg’ available in the R-package ‘BMA’.

4.3.1 The simulation models

Recall the following linear regression model,

y = Xβ∗ + ε,

We consider three different examples in our simulation study. Details of these

three examples are as follows.

• Example 1. This example is adapted from Zou (2006). There are p = 8

variables. The covariates are generated from multivariate normal distribu-

tion with a mean zero and

Cov(xij, xil) = ρ|j−l|, 1 ≤ j, l ≤ 10, (4.4)

where ρ = 0.5. In other words, the pairwise correlation between the jth and

the lth variable is set to be ρ|j−l|. In addition, we define the true model as
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follows,

yi = 3xi1 + 1.5xi2 + 2xi5 + εi, i = 1, . . . , n. (4.5)

Hence, the true model is of the form of equation (4.1), where

β∗ = (0, 3, 1.5, 0, 0, 2, 0, 0, 0)T .

Further, εi ∼ N(0, 1). In other words, only three regression covariates are

significant variables and the rest is noise. In this example, we generate

training samples as the above setting with four levels of sample size n=20,

30, 50, and 100.

• Example 2. We use the same model as in Example 1 but with p = 18.

The true model still follows (4.5) but an additional 10 noise variables are

included in the design matrix X. In this example, we consider the sample

sizes n=30, 50, 80, and 100.

• Example 3. There are p = 500 variables. The first six coefficients are

nonzero. The covariates are generated from the standard normal distribu-

tion independently. The true model is also of the form of equation (4.1) ,

where β∗ = (0, 3, 3, 1.5, 1.5, 1, 1, 0, . . . , 0) and εi ∼ N(0, 1). We consider four

different levels of sample size n=50, 100, 150, and 200. In this example, the

covariates dimension p is larger than n. In this situation, the computations

of other model averaging methods are infeasible. Therefore, we compare

the BLA with the other two classical variable screening methods instead,

namely, SIS (Fan and Lv, 2008) and FR screening (Wang, 2009). We use

the notations SIS-Alasso and FR-Alasso to represent the model further se-

lected by the adaptive lasso after a variable screening step by using SIS

and FR, respectively. The performances of SIS-Alasso and FR-Alasso are

examined for comparison purposes.

We generate 100 simulations for each of the above simulation examples and
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investigate the model selection and prediction accuracy of each procedure. Model

selection accuracy is measured by a 95 % model confidence set, the coverage rate

and the percentage of correctly fitted. For these model averaging procedures,

the 95% model confidence set is defined as the smallest set of models required

to capture at least 95 % of the posterior model probability or assigned weight.

The coverage rate is the proportion of times that the true model fails in the 95%

model confidence set over 100 simulations. The percentage of correctly fitted is

the proportion of times that the model receiving maximum weight is the true

model (for the model averaging procedure) or the selected best model is the

true model (for the single best model selection procedure) over 100 simulations.

Prediction accuracy is measured by the mean squared prediction error (MSPE)

n−1
∑n

i=1(ŷi − yi)
2, computed over a set of independent test samples with the

same sample size n as the training sample. We have conducted 100 repeated

simulations and have computed the average of the MSPEs and their standard

errors.

4.3.2 Simulation results

The simulation results for Example 1 are summarized in Table 4.1 and Figure

4.1. As we can see from Table 4.1, most of the model averaging methods achieve

satisfactory coverage rates. Compared with other model averaging procedures,

BLA using all three algorithms (BLA1, BLA2, and BLA3) obtains consistently

higher percentages of correctly fitted, but exhibits much smaller sizes of confi-

dence sets. Even when the sample size is only 20, bootstrap lasso averaging by

using algorithms 2 and 3 (BLA2 and BLA3) can achieve a desirable percentage of

correctly fitted at 90%. When the sample size is large, the lasso and AIC-based

model selection procedures show an inconsistency in model selection as supported

by previous studies (Zou, 2006; Bach, 2008; Zhao and Yu, 2006; Burnham and

Anderson, 2004; Claeskens et al., 2008); while the simulation results have nu-

merically confirmed a strong consistency of BLA since both the percentage of
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correctly fitted and the size of the confidence set converge to 1. The only com-

parable method among other model averaging procedures is BMA-MC3, which

requires extremely expensive computation. From the prediction point of view,

model averaging procedures generally outperform a single best model, indicating

a substantial model uncertainty within the simulated data. Among these model

averaging methods, BLA demonstrates a competitive performance. When the

sample size is 20, BLA2 clearly dominates all other model averaging methods,

achieving the lowest average MSPE with the smallest standard error. When the

sample size goes large, BLA with all three algorithms still performs no worse than

others, which is also shown in Figure 4.1. These simulation results strongly favor

the use of BLA.
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Figure 4.1: Mean squared predication error for Example 1 with (a) n = 20, (b)
n = 30, (c) n = 50, and (d) n = 100. Note the scales are different in four plots.
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Table 4.1: Simulation results for Example 1 (p = 8 and n = 20, 30, 50, 100)

n Method Coverage
rate

Confidence
set

Correctly
fitted

Average
MSPE

Std.error
MSPE

20 AIC 1.98 0.53
BIC 1.89 0.50
LASSO 0.27 1.78 0.44
BLA1 0.99 2.98 0.79 1.66 0.30
BLA2 0.99 9.14 0.90 1.63 0.26
BLA3 0.99 3.18 0.90 1.66 0.34
BootAIC 0.80 19.16 0.28 1.87 0.43
BootBIC 0.94 15.63 0.46 1.80 0.40
S-AIC 0.78 22.92 0.24 1.87 0.43
S-BIC 0.89 20.63 0.41 1.82 0.40
BMA-MC3 0.99 6.68 0.86 1.66 0.29
BMA-OCC 0.82 15.27 0.41 1.83 0.42

30 AIC 0.86 0.27
BIC 0.81 0.24
LASSO 0.41 0.90 0.23
BLA1 1.00 1.94 0.93 0.77 0.19
BLA2 1.00 3.66 0.96 0.76 0.18
BLA3 1.00 1.87 0.98 0.77 0.18
BootAIC 0.95 18.32 0.36 0.81 0.23
BootBIC 1.00 10.58 0.69 0.78 0.20
S-AIC 0.95 24.95 0.33 0.82 0.24
S-BIC 0.98 19.16 0.63 0.79 0.22
BMA-MC3 1.00 5.11 0.97 0.76 0.18
BMA-OCC 0.97 12.06 0.63 0.79 0.22

50 AIC 1.36 0.23
BIC 1.31 0.17
LASSO 0.36 1.76 0.41
BLA1 1.00 1.72 0.99 1.27 0.12
BLA2 1.00 2.61 1.00 1.27 0.12
BLA3 1.00 1.35 1.00 1.28 0.12
BootAIC 0.96 15.72 0.34 1.32 0.18
BootBIC 1.00 6.89 0.69 1.28 0.13
S-AIC 0.93 24.59 0.31 1.33 0.19
S-BIC 1.00 16.61 0.68 1.29 0.15
BMA-MC3 1.00 4.29 0.99 1.26 0.11
BMA-OCC 0.99 9.78 0.68 1.29 0.15

100 AIC 1.11 0.07
BIC 1.09 0.05
LASSO 0.62 1.21 0.10
BLA1 1.00 1.36 0.99 1.08 0.03
BLA2 1.00 1.36 1.00 1.08 0.03
BLA3 1.00 1.00 1.00 1.08 0.03
BootAIC 0.99 14.36 0.46 1.10 0.05
BootBIC 1.00 4.58 0.85 1.08 0.04
S-AIC 0.96 24.64 0.42 1.11 0.05
S-BIC 0.99 12.47 0.83 1.09 0.04
BMA-MC3 1.00 3.17 0.99 1.08 0.03
BMA-OCC 0.99 6.99 0.83 1.09 0.04

Note: Coverage rate and Confidence set are only reported for model averaging methods.
The percentages of correctly fitted for AIC and BIC are the same with those of S-AIC
and S-BIC, respectively.



88 CHAPTER 4. BOOTSTRAP LASSO AVERAGING

Table 4.2: Simulation results for Example 2 (p = 18 and n = 20, 30, 50, 100)

n Method Coverage
rate

Confidence
set

Correctly
fitted

Average
MSPE

Std.error
MSPE

30 AIC 2.65 1.29
BIC 2.20 1.01
LASSO 0.20 1.91 0.42
BLA1 0.99 4.93 0.87 1.63 0.29
BLA2 1.00 18.80 0.95 1.58 0.21
BLA3 1.00 3.60 0.97 1.57 0.18
BootAIC 0.13 91.02 0.05 2.27 0.95
BootBIC 0.69 74.88 0.28 1.92 0.63
S-AIC 0.70 13228.22 0.02 2.22 0.86
S-BIC 0.96 6966.42 0.22 1.93 0.53
BMA-MC3 1.00 90.13 0.89 1.59 0.25
BMA-OCC 0.69 77.23 0.22 2.01 0.68

50 AIC 1.77 0.51
BIC 1.56 0.39
LASSO 0.41 1.73 0.25
BLA1 0.99 3.87 0.89 1.41 0.21
BLA2 1.00 11.48 0.97 1.40 0.17
BLA3 1.00 1.98 0.99 1.38 0.13
BootAIC 0.33 88.63 0.15 1.62 0.39
BootBIC 0.95 46.12 0.51 1.47 0.27
S-AIC 0.89 15945.75 0.07 1.64 0.41
S-BIC 1.00 4171.48 0.45 1.52 0.30
BMA-MC3 1.00 36.14 0.88 1.39 0.16
BMA-OCC 0.85 53.48 0.45 1.52 0.33

80 AIC 1.54 0.16
BIC 1.46 0.13
LASSO 0.53 1.68 0.16
BLA1 1.00 3.49 0.96 1.40 0.08
BLA2 1.00 8.98 0.98 1.40 0.08
BLA3 1.00 1.29 1.00 1.39 0.08
BootAIC 0.35 85.71 0.13 1.47 0.12
BootBIC 0.96 31.00 0.48 1.42 0.09
S-AIC 0.88 16255.69 0.06 1.49 0.13
S-BIC 1.00 2669.95 0.45 1.43 0.10
BMA-MC3 1.00 26.84 0.92 1.40 0.08
BMA-OCC 0.89 42.16 0.44 1.44 0.11

100 AIC 0.98 0.13
BIC 0.90 0.10
LASSO 0.61 1.28 0.21
BLA1 1.00 1.77 0.98 0.87 0.08
BLA2 1.00 5.27 0.99 0.87 0.08
BLA3 1.00 1.04 1.00 0.87 0.08
BootAIC 0.48 84.45 0.13 0.93 0.11
BootBIC 0.98 24.41 0.66 0.88 0.09
S-AIC 0.91 16970.26 0.06 0.95 0.11
S-BIC 1.00 1917.03 0.61 0.90 0.10
BMA-MC3 1.00 19.77 0.94 0.87 0.08
BMA-OCC 0.93 34.18 0.61 0.90 0.10

Note: Coverage rate and Confidence set are only reported for model averaging methods.
The percentages of correctly fitted for AIC and BIC are the same with those of S-AIC
and S-BIC, respectively.
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Table 4.3: Simulation results for Example 3 (p = 500 and n = 50, 100, 150, 200)

n Method Coverage
rate

Confidence
set

Correctly
fitted

Average
MSPE

Std.error
MSPE

50 LASSO 0.18 1.66 0.40
SIS-Alasso 0.61 1.21 0.30
FR-Alasso 0.06 1.53 0.61
BLA1 0.96 11.01 0.67 1.09 0.27
BLA2 1.00 47.39 0.96 1.00 0.13
BLA3 1.00 6.76 0.76 1.04 0.18

100 LASSO 0.47 1.58 0.20
SIS-Alasso 0.97 1.27 0.16
FR-Alasso 0.27 1.37 0.22
BLA1 1.00 8.30 0.96 1.08 0.12
BLA2 1.00 51.53 1.00 1.09 0.10
BLA3 1.00 2.04 0.96 1.11 0.15

150 LASSO 0.57 1.54 0.15
SIS-Alasso 0.99 1.31 0.08
FR-Alasso 0.69 1.33 0.12
BLA1 1.00 3.67 0.99 1.17 0.04
BLA2 1.00 26.65 0.99 1.18 0.04
BLA3 1.00 1.34 0.99 1.19 0.06

200 LASSO 0.65 1.27 0.10
SIS-Alasso 1.00 1.15 0.06
FR-Alasso 0.96 1.14 0.06
BLA1 1.00 1.75 1.00 1.08 0.03
BLA2 1.00 6.22 1.00 1.08 0.03
BLA3 1.00 1.02 1.00 1.08 0.03

Note: Coverage rate and Confidence set are only reported for model averaging methods.
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Figure 4.2: Mean squared predication error for Example 2 with (a) n = 30, (b)
n = 50, (c) n = 80, and (d) n = 100. Note the scales are different in four plots.
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Figure 4.3: Mean squared predication error for Example 3 with (a) n = 50, (b)
n = 100, (c) n = 150, and (d) n = 200. Note the scales are different in four plots.
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The advantage of using BLA is more evident when the predictor dimension

becomes large. Table 4.2 and Figure 4.2 present the simulation results for Ex-

ample 2, where p increases to 18. In this example, it is quite obvious that other

model averaging methods generally result in a much larger size of confidence set

as a consequence of severe model uncertainly in higher predictor dimensions. For

example, the sizes of the confidence sets for S-AIC and S-BIC increase dramat-

ically to thousands, indicating the clear inappropriateness of using traditional

smooth AIC and BIC when p is large. Conversely, BLA still demonstrates satis-

factory sizes for confidence sets and percentages of the correctly fitted in various

sample sizes. When the sample size is small, BLA significantly outperforms the

other methods, in terms of both variable selection and prediction accuracies, as

shown in Table 4.2 and Figure 4.2. In addition, it is worth noticing that when

the sample size increases the percentage of correctly fitted for BLA converges to

1 much faster than in other model selection procedures. All these facts indicate

that BLA tends to be a more stable model selection procedure than the other

traditional ones.

We finally investigate the simulation results for Example 3, which are dis-

played in Table 4.3 and Figure 4.3. Since the predictor dimension p is larger than

the sample size n, we only present the results of SIS-Alasso and FR-Alasso for

comparison purposes as discussed previously. Table 4.3 shows that even when the

sample size is only 50, BLA2 achieves a very satisfactory percentage of correctly

fitted at 96%, significantly outperforming other methods. As discussed in Section

4.2, this could be explained by the fact that BLA2 tends to be more conservative

in variable screening, while the variables excluded from other screening methods

(e.g. SIS and FR) will not be reconsidered in further variable selection steps.

All three algorithms for BLA perform well as the sample size increases. Among

them, BLA3 tends to obtain a smaller confidence set. In addition, FR-Alasso

shows a relatively slower convergence rate of model selection consistency as the

sample size increases. In terms of prediction accuracy, we notice that all three
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algorithms for BLA consistently outperform the lasso, SIS-Alasso and FR-Alasso:

they achieve much lower average MSPEs with smaller standard errors than other

methods. This is also shown in Figure 4.3.

4.4 Real data examples

For further illustration, we analyze four real data examples by using the proposed

BLA and comparing it with the other traditional model selection and model

averaging procedures. Since S-AIC and S-BIC consistently perform poorly under

all simulation settings, as well as the real data sets we analyze below, we have

removed these two methods from the comparisons in this section.

4.4.1 Crime data analysis

The first data set we investigate comprises crime data (p = 15; n = 47), contain-

ing information from 47 states of the United States on crime rates from 1959 to

1960 (y) and 15 socio-economic and demographic variables: percentage of males

aged 14-24 (M); indicator variable for southern state (So); mean years of school-

ing (Ed); police expenditure in 1960 (Po1); police expenditure in 1959 (Po2);

Labor force participation rate (LF ); number of males per 1,000 females (M.F );

state population (Pop); number of nonwhites per 1,000 people (NW ); unemploy-

ment rate of urban males aged 14-24 (U1); unemployment rate of urban males

aged 35-39 (U2); wealth (GDP ); income inequality (Ineq); probability of im-

prisonment (Prob); and average time served in state prisons (Time). Following

Raftery et al. (1997), all the data were transformed logarithmically before anal-

yses. The crime data are available in R-package ‘MASS’, named by ‘UScrime’.

Table 4.4 shows the analysis results of the crime data. The upper panel

presents the proportion of times that the variable is included in the model that

receives the maximum weight, computed over 100 randomly selected training sets

with sample size 20, for each of the variables respectively. It is quite obvious that
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each variable has a certain chance of being included in the best model selected

by these model selection procedures. This strongly implies the existence of a

great amount of model uncertainty within this data set. Among these variables,

Po1, M.F , Ineq, and Prob generally have larger frequencies included in the best

model than other variables for most of procedures. In addition, AIC-based model

selection procedures tend to select more variables, while BLA, especially BLA2,

selects substantially fewer variables and identifies Po1 as the most outstanding

significant variable. As a result of its parsimonious explanation, we may prefer

BLA to other model selection or averaging procedures in real data analysis.

The lower panel demonstrates the comparison of predictive performance for

various model selection and model averaging procedures at different sizes of train-

ing sample (No.train). The remaining data of the size (n − No.train) is treated

as test data. The predictive performance is measured by the averaged MSPE,

calculated over 100 randomly selected training/test sets of data. As we can see

from Table 4.4, when n is only 20, model averaging procedures generally achieve

lower average MSPEs than single best model selection methods as a result of

great model uncertainty when the size of the training sample is small as previ-

ously mentioned. BLA2 obtains the lowest average MSPE with only 0.099, at

about half of the averages for AIC and BIC. When the size of the training sample

increases, both model selection and model averaging procedures perform compa-

rably well.

4.4.2 Diabetes data analysis

We further investigate a larger data set, the diabetes data (p = 10; n = 442),

described in Efron et al. (2004), containing information on a quantitative measure

of disease progression (y) and ten baseline variables: age (AGE); sex (SEX);

body mass index (BMI); average blood pressure (BP ); and six blood serum

measurements (S1, ..., S6). The data can be obtained from http://www-stat.
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Table 4.4: Analysis of the crime data

Variable/
No.train

AIC BIC LASSO BLA1 BLA2 BLA3 Boot
AIC

Boot
BIC

BMA-
mc3

BMA-
occ

M 0.34 0.31 0.00 0.15 0.88 0.61 0.21 0.65
So 0.20 0.10 0.00 0.06 0.76 0.43 0.07 0.42
Ed 0.33 0.32 0.02 0.15 0.92 0.79 0.39 0.83
Po1 0.69 0.59 0.40 0.39 0.85 0.64 0.55 0.66
Po2 0.33 0.23 0.09 0.20 0.84 0.59 0.30 0.55
LF 0.34 0.21 0.00 0.14 0.86 0.48 0.08 0.46
M.F 0.43 0.38 0.08 0.25 0.84 0.53 0.11 0.47
Pop 0.20 0.03 0.00 0.03 0.86 0.54 0.10 0.51
NW 0.72 0.39 0.10 0.23 0.94 0.65 0.35 0.67
U1 0.26 0.14 0.00 0.07 0.76 0.49 0.06 0.45
U2 0.35 0.26 0.03 0.14 0.88 0.65 0.16 0.62
GDP 0.14 0.08 0.00 0.04 0.82 0.53 0.23 0.52
Ineq 0.34 0.32 0.04 0.19 0.93 0.83 0.60 0.80
Prob 0.54 0.30 0.03 0.20 0.95 0.69 0.30 0.71
Time 0.24 0.18 0.00 0.10 0.86 0.56 0.12 0.55

20 0.203 0.189 0.118 0.125 0.099 0.128 0.174 0.163 0.102 0.175
30 0.088 0.092 0.091 0.095 0.075 0.100 0.082 0.084 0.078 0.086
40 0.066 0.068 0.079 0.079 0.067 0.088 0.062 0.066 0.068 0.063
2/3 0.086 0.093 0.084 0.094 0.075 0.097 0.079 0.084 0.080 0.081

Note: The upper panel presents the proportion of times that the variable is included
in the model that receives the maximum weight, computed over 100 randomly selected
training sets with sample size 20. The lower panel shows the averaged MSPE, calcu-
lated over 100 randomly selected training/test sets of data. ‘2/3’ corresponds to the case
where No.train is equal to two-thirds of the data.
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stanford.edu/~hastie/Papers/LARS/diabetes.data.

Analytic results of diabetes data are summarized in Table 4.5. We can clearly

see that, as in the crime data, when No.train = 20, model uncertainty still exists.

However, it is apparent that compared with other traditional methods, BLA still

tends to include significant fewer variables in the best model and recognizes BMI

and S5 as two of the most important variables. This was, also demonstrated in

the previous LARS analysis of the diabetes study by Efron et al. (2004). Because

of a large sample size with 442 observations in this data, one might be interested

in the behavior of these model selection methods when the size of the training

sample is large. Table 4.6 demonstrates the frequency of variables selected in

the best model when No.train is equal to two-thirds of the data. From Table

4.6, we can see that model uncertainty becomes less obvious since more variables

obtain the frequency of selection in the best model, which is close to either 1 or

0. Again, compared with other traditional methods, BLA performs the best in

terms of selecting the most parsimonious model. Both BLA2 and BLA3 identify

BMI and S5 as the only two important variables and the rest as noise variables.

In terms of prediction accuracy, we can see from the lower panel of Table

4.5 that when the size of the training sample is small, model averaging shows

an obvious advantage and BLA2 substantially achieves a lower MSPE but with

a more parsimonious best model than other traditional methods. As the train-

ing sample size increases, the discrepancy between the average MSPE of model

averaging and best model selection declines. This is expected because model

uncertainty becomes less severe when the sample size is large as we concluded

previously. However, even when the training sample size is large, BLA returns

a more parsimonious best model but maintains satisfactory prediction accuracy.

All of the evidence shows a clear advantage to considering BLA in real data anal-

ysis, especially in the case of a small sample size, where great model uncertainty

exists.
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Table 4.5: Analysis of the diabetes data

Variable/
No.train

AIC BIC LASSO BLA1 BLA2 BLA3 Boot
AIC

Boot
BIC

BMA-
mc3

BMA-
occ

AGE 0.08 0.02 0.00 0.00 0.29 0.19 0.05 0.21
SEX 0.07 0.06 0.01 0.00 0.33 0.17 0.11 0.18
BMI 0.48 0.38 0.28 0.17 0.55 0.50 0.48 0.54
BP 0.27 0.06 0.02 0.03 0.41 0.24 0.21 0.27
S1 0.04 0.01 0.00 0.00 0.32 0.18 0.07 0.22
S2 0.08 0.01 0.00 0.00 0.40 0.21 0.11 0.27
S3 0.20 0.07 0.01 0.01 0.36 0.25 0.11 0.24
S4 0.17 0.08 0.07 0.01 0.48 0.32 0.17 0.34
S5 0.43 0.44 0.31 0.19 0.54 0.42 0.40 0.46
S6 0.12 0.02 0.00 0.02 0.35 0.19 0.09 0.20

20 8.01 6.32 5.00 4.96 4.40 5.23 6.62 5.41 4.52 5.67
50 3.82 3.87 3.95 3.71 3.66 4.22 3.68 3.74 3.66 3.67
100 3.30 3.40 3.55 3.34 3.33 3.63 3.28 3.37 3.32 3.30
2/3 3.08 3.10 3.28 3.22 3.20 3.29 3.07 3.11 3.12 3.09

Note: The upper panel presents the proportion of times that the variable is included
in the model that receives the maximum weight, computed over 100 randomly selected
training sets with sample size 20. The lower panel shows the averaged MSPE, calcu-
lated over 100 randomly selected training/test sets of data. ‘2/3’ corresponds to the case
where No.train is equal to two-thirds of the data.

Table 4.6: Frequency of variable selected in the best model when No.train = 2
3
n

Variable LASSO BLA1 BLA2 BLA3 Boot
AIC

Boot
BIC

BMA-
mc3

BMA-
occ

AGE 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00
SEX 0.31 0.32 0.12 0.00 1.00 0.87 0.64 0.89
BMI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BP 0.99 0.23 0.13 0.01 1.00 0.99 0.93 0.99
S1 0.02 0.00 0.00 0.00 0.82 0.30 0.32 0.39
S2 0.06 0.00 0.00 0.00 0.62 0.13 0.09 0.19
S3 0.96 0.17 0.08 0.00 0.20 0.69 0.57 0.61
S4 0.01 0.00 0.00 0.00 0.23 0.04 0.03 0.07
S5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S6 0.26 0.00 0.00 0.00 0.20 0.00 0.00 0.00
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4.4.3 Glioblastoma gene expression data analysis

Compared with other traditional model averaging methods, one main advantage

of BLA is its computational feasibility in a high dimensional case where p > n. For

a better illustration of the use of BLA proposed in this paper, we now investigate

real datasets where p > n. We analyze the glioblastoma gene expression data

originally studied by Horvath et al. (2006), and further investigated in Wang

et al. (2011) and Roberts and Nowak (2014). The glioblastoma data from two

independent sets of clinical tumor samples of n = 55 and n = 65 with expression

values of p = 3600 genes are available from https://labs.genetics.ucla.edu/

horvath/CoexpressionNetwork/ASPMgene/. Details on these data can be found

in Horvath et al. (2006). Following Wang et al. (2011), before analyzing these

data we excluded nine censored subjects, five from the first set of 55 patients and

four from the second set, and used the logarithm of time to death as the response.

As suggested by Roberts and Nowak (2014), we further removed patient 29 from

the first set, which was identified as an outlier since he or she had a much smaller

survival time than other patients. Then, the first data set was served as the

training set where n = 49, p = 3600 and the second set was designated as the test

set where n = 61, p = 3600.

Following Wang et al. (2011), we assessed each of the 3600 genes by running

simple linear regression on the training set and select 1000 genes with the smallest

p-values. Starting with these 1000 genes, Table 4.7 presents the glioblastoma gene

expression data analysis and compares the performance of BLA with the lasso

and other variable screening methods. The lasso selects 30 variables and achieves

a MSPE of 1.54, while BLA2 selects a more parsimonious model with a lower

MSPE of 1.16. We can see that BLA2 clearly outperforms all other methods for

this dataset. Table 4.8 further shows the estimated coefficients of the best model

selected by BLA2. However, similar to the findings of Roberts and Nowak (2014),

we also found that the results for the glioblastoma data displayed in Table 4.7 are

extremely volatile because of the random fold assignment of cross-validation when
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we determined the tuning parameter for the lasso problems. Therefore, the results

presented in Table 4.7 are contingent on the particular fold assignment. To take

into account this instability, we have performed the lasso, SIS-Alasso, FR-Alasso,

and three versions of BLA 100 times on the glioblastoma data and we present

the results in Table 4.9. It is worth noting that BLA2 significantly outperforms

other methods. It achieves the lowest average MSPE with a small standard error,

while identifying the least number of variables in the best model. This implies

that BLA2 has potential to be less sensitive to random fold assignments in cross-

validation. Overall, BLA2 has obvious advantages over the other methods in the

analysis of the glioblastoma data.

Table 4.7: Glioblastoma gene expression data analysis

Method Size of the
best model

MSPE

LASSO 30 1.54
SIS-Alasso 23 1.42
FR-Alasso 22 2.23

BLA1 27 2.03
BLA2 19 1.16
BLA3 17 1.76

Table 4.8: Estimated coefficients of the best model selected by BLA2 for Glioblas-
toma gene expression data

Gene.Symbol Coefficient Gene.Symbol Coefficient

UROD 0.44 HSD17B4 0.35
FBL 1.50 IGHG1 0.03

CSN3 -0.18 GTSE1 -1.09
WTAP 0.28 DNASE1L1 -1.15

ANKRD25 0.45 NBL1 -0.77
CA9 0.13 GEMIN6 0.47

TCF20 -0.01 LYPLA1 -1.61
CORO1A 0.22 FLJ14281 0.35

ELTD1 0.42 TRPM2 1.54
OSTF1 -1.38
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Table 4.9: Glioblastoma gene expression data analysis averaged over 100 runs

Method Average size of
the best model

Average
MSPE

Std.error
MSPE

LASSO 29.31 1.45 0.17
SIS-Alasso 15.83 1.30 0.16
FR-Alasso 22.27 2.24 0.02

BLA1 22.13 1.84 0.24
BLA2 11.25 1.13 0.03
BLA3 18.34 1.69 0.21

4.4.4 Near-Infrared (NIR) spectroscopy of biscuit doughs

data

To further illustrate the performance of BLA in a high dimensional case, we now

analyze the Near-Infrared (NIR) spectroscopy of biscuit doughs data as discussed

in Brown et al. (2001). This data set contains measurements from quantitative

NIR spectroscopy. For more details, see Brown et al. (2001). Briefly, two similar

sample sets were made up, with the standard recipe varied to provide a large

range for each of the four constituents under investigation: fat, sucrose, dry

flour, and water, which are presented as percentages in the dataset. The spectral

data consist of 700 points measured from 1100 to 2498 nanometers (nm) in steps

of 2 nm. In our work, we have limited our investigation to the part of the spectral

data that is most important for predicting one of the four constituents, fat. There

are 40 samples in the original training set but with sample 23 identified as an

outlier; there are a further 32 samples in the validation set with example 21

considered an outlier. Following Brown et al. (2001), we have removed these two

outliers to consider a training set where n = 39, p = 700 and a test set where

n = 31, p = 700.

Table 4.10 displays the performances of various methods for addressing bis-

cuit doughs data. It shows that all three algorithms for BLA outperform the

lasso by achieving lower MSPEs and selecting more parsimonious models but

without missing important variables (as shown in Table 4.11). Among them,
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BLA2 performs best with the lowest MSPE of 0.052. Conversely, SIS-Alasso and

FR-Alasso demonstrate very unsatisfactory predictive performance in terms of

biscuit doughs data. As we can see from Table 4.11, the variables (spectrum)

selected by SIS-Alasso and FR-Alasso are quite different from those of the lasso

and BLA. It implies that the screening methods of SIS and FR may have ex-

cluded some important variables and produced inaccurate predictions. However,

the three different versions of BLA tend to discard unnecessary details and select

similar ranges of spectrum as having predictive potential.

Table 4.10: Near-Infrared (NIR) spectroscopy of biscuit doughs data

Method Size of the
best model

MSPE

LASSO 14 0.082
SIS-Alasso 1 1.932
FR-Alasso 5 0.416

BLA1 4 0.070
BLA2 3 0.052
BLA3 5 0.070

4.5 Conclusion

To conclude, we propose the extension of a bootstrap model averaging approach,

called BLA. The simulation results and real data examples demonstrate the fol-

lowing advantages of BLA: (i) compared with traditional model averaging pro-

cedures, BLA shows a comparable performance but at far less computational

cost. When n is small and p is large, BLA strongly outperforms most of other

model averaging methods; (ii) BLA shows a superior performance in terms of

both variable selection and prediction accuracies. If we treat BLA as a single

model selection method (e.g. for selecting the model that receives the maximum

weight), it can be viewed as a more stabilized version of the lasso; (iii) in con-

trast to classical variable screening procedures like SIS and FR, BLA tends to

accurately identify most significant variables with fewer restrictions on the size



102 CHAPTER 4. BOOTSTRAP LASSO AVERAGING

Table 4.11: Estimated coefficients of the best model selected for biscuit doughs
data

Method Variable Coefficient

LASSO 54 215.73
55 -160.28

206 290.23
207 490.33
208 -833.03
209 23.43
247 217.96
252 -337.91
253 35.79
312 -515.04
313 596.46
486 -150.17
487 140.35
685 -0.66

Method Variable Coefficient

BLA1 55 45.27
208 -52.01
252 -59.76
313 83.80

BLA2 259 -97.39
312 101.94
488 -17.13

BLA3 55 27.93
207 -48.63
252 -56.44
313 91.62
486 -6.11

SIS-Alasso 241 -20.92

FR-Alasso 57 218.42
108 -114.07
245 1248.31
246 -1324.13
632 6.19
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of the sample and finally achieves a better prediction. Our numerical simulations

and real data examples suggest that BLA should receive more attention in the

application of the model averaging or the lasso to prediction problems.
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Chapter 5

Conclusion and Future Work

The three independent essays contained in this thesis analyse various topics in

model selection, robust statistics and model averaging. In Chapter 2, we propose

a robust AIC for MM-estimation and an adjusted robust scale based AIC for

M and MM-estimation. We compare our proposed criteria with other robust

model selection criteria discussed in previous literature. Our simulation studies

demonstrate a significant outperformance of robust AIC based on MM-estimation

in the presence of outliers in the covariates and show a better performance by

the adjusted robust scale based AIC for MM-estimation when the proportion of

outliers in the response is relatively high. Real data examples also show a better

performance of robust AIC based on MM-estimation. In Chapter 3, we propose

the Tukey-lasso method, which combines Tukey’s biweight loss and the adaptive

lasso penalty. Using the APG method, the Tukey-lasso can be computed very

efficiently and rapidly. Our simulation studies demonstrate that the Tukey-lasso

compares favorably with the adaptive lasso and other robust implementations of

the lasso. Real data examples also support the use of the Tukey-lasso in variable

selection and prediction problems. In Chapter 4, we propose an extension of a

bootstrap model averaging approach, called BLA. Our numerical simulations and

real data examples show a superior performance of the BLA and suggest that the

BLA should receive more attention in the application of the model averaging or
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the lasso to prediction problems.

The work presented in this thesis leaves several directions open for future re-

search. First, we consider only the AIC penalty in Chapter 2, while more robust

model selection criteria with different penalty terms (e.g. robust BIC) can be

further investigated. Second, we have not examined and discussed the inference

based on the model selected by the Tukey-lasso. Asymptotic standard errors

can be obtained from Theorem 1. Conversely, finite sample standard errors for

the Tukey-lasso could be estimated by ensuring that the local quadratic approx-

imation (LQA) referred to Fan and Li (2001) and Zou (2006) is more robust,

or by further developing the bootstrapping adaptive lasso estimators discussed in

Chatterjee and Lahiri (2011). Such examinations may be included in future work.

Finally, we implement the traditional lasso and the adaptive lasso to perform vari-

able selection in BLA. However, these methods are not robust for outliers. To

cope with outliers, we can utilize a robust version of the lasso (e.g. the Tukey-

lasso as proposed in Chapter 3) to perform the bootstrap model averaging in

future work. Additionally, we only provide some asymptotic properties of the

bootstrap model averaging estimators for fixed covariate dimension p in Chapter

4). In future work, we can extend these asymptotic properties in situations where

the number of parameters p diverges with the sample size n.



Appendix A

Proof of Theorem 1:

To prove asymptotic normality, we let β̂ = β+ u√
n

and σ̂ = σ+ δ√
n
, where β and

σ are the true location and scale parameters respectively, and define,

Ψn(u, δ) =2
n∑
i=1

ρd

yi −XT
i

(
β + u√

n

)
σ + δ√

n

+ λn

p∑
j=1

ŵj|βj +
uj√
n
|.

Let û(n) = arg min Ψn(u, δ). Then, β̂(n) = β + û(n)
√
n

, or equivalently, û(n) =
√
n(β̂(n)−β). Therefore, we prove the asymptotic normality of û(n). Further let

Ψn(u, δ)−Ψn(0, δ) = V (n)(u, δ), where

V (n)(u, δ) =2
n∑
i=1

ρd
yi −XT

i

(
β + u√

n

)
σ + δ√

n

− ρd(yi −XT
i β

σ + δ√
n

)
+
λn√
n

p∑
j=1

ŵj
√
n

(
|βj +

uj√
n
| − |βj|

)
=A(n)(u, δ) +B(n)(u, δ)

We defined the first summation term by A(n)(u, δ) and the second summation

term by B(n)(u, δ). Note that ri = yi −XT
i β has mean 0 and variance σ2. By a
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Taylor expansion of degree 2, we have

n∑
i=1

ρd

yi −XT
i

(
β + u√

n

)
σ + δ√

n

 =
n∑
i=1

{
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(ri
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− 1

σ
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σ

) XT
i u√
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) δ√
n

+
1
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i u√
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)) XT
i uδ
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1

2

(
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σ3
ψd
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+
r2i
σ4
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(ri
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))( δ√
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)2

+ ∆

(
XT
i u√
n
,
δ√
n

)}

with ∆(
XT

i u√
n
, δ√

n
)/‖X

T
i u√
n
, δ√

n
‖2 → 0, and,

n∑
i=1

ρd

(
yi −XT

i β

σ + δ√
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)
=

n∑
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(ri
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)
− ri
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(ri
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(ri
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(
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with ∆( δ√
n
)/( δ√

n
)2 → 0. Therefore, after taking the difference, we can write

A(n)(u, δ) as,

A(n)(u, δ) = − 2

σ

√
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(
1

n
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i=1

ψd

(ri
σ

)
XT
i

)
u +

1

σ2
uT

(
1

n

n∑
i=1

ψ′d

(ri
σ

)
XiX

T
i

)
u

+
2

σ2

(
1

n

n∑
i=1

ψd

(ri
σ

)
XT
i +

1

n

n∑
i=1

ri
σ
ψ′d

(ri
σ

)
XT
i

)
uδ

+ 2
n∑
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∆

(
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i u√
n
,
δ√
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− 2
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(
δ√
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We now analyse the asymptotic behaviour of each term in A(n)(u, δ). Since Eψd =

0 and V ar (ψd) = Eψ2
d, the multidimensional central limit theorem yields,

√
n

(
1

n

n∑
i=1

ψd

(ri
σ

)
XT
i

)
d→ K = N (0,

Eψ2
d

n
XTX)→ N (0, Eψ2

dC).

Since V ar (ψ′d) is finite, by assumption A2, V ar
(
1
n

∑n
i=1 ψ

′
d

(
ri
σ

)
XiX

T
i

)
→ 0.

Thus, by law of large numbers, we have

1

n
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i=1

ψ′d

(ri
σ

)
XiX

T
i

p→ Eψ′dC

Again, since Eψd = 0 and V ar (ψd) is finite, V ar
(
1
n

∑n
i=1 ψd

(
ri
σ

)
XT
i

)
→ 0 and

we have,

1

n

n∑
i=1

ψd

(ri
σ

)
XT
i

p→ 0.

It is easy to show that ψ′d is an even function so E
[
ri
σ
ψ′d
(
ri
σ

)]
= 0 and

V ar
(ri
σ
ψ′d

(ri
σ
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= E

(
r2i
σ2
ψ′2d

(ri
σ

))
≤M,

where M is a finite number since ψ′d is bounded. Therefore, we have

V ar

(
1

n

n∑
i=1

ri
σ
ψ′d

(ri
σ

)
XT
i

)
→ 0

and,

1

n

n∑
i=1

ri
σ
ψ′d

(ri
σ

)
XT
i

p→ E
[ri
σ
ψ′d

(ri
σ

)] ∑n
i=1X

T
i

n
= 0

In other words, the interaction term with uδ goes to 0 in probability as n→∞.

Now we consider the remainder terms. Recall that ∆(
XT

i u√
n
, δ√

n
)/‖X

T
i u√
n
, δ√

n
‖2 → 0.
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Gathering this property with assumption A2, we have ∀ξ > 0, ∃Nξ, ∀n ≥ Nξ,

n∑
i=1

∣∣∣∣∆(XT
i u√
n
,
δ√
n

)∣∣∣∣ ≤ n∑
i=1
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)
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i=1

(
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i u√
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)2
is bounded, it ensures that
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(
XT

i u√
n
, δ√

n

)
tends to 0 as

n→∞. Similar proof applies to
∑n

i=1 ∆
(

δ√
n

)
.

Therefore, to conclude, the asymptotic behaviour of A(n)(u, δ) is,

A(n)(u, δ)
d→ − 2

σ
uTK +

Eψ′d
σ2

uTCu

Now we consider the limiting behaviour of B(n)(u, δ); the argument is similar to

that in Zou(2006). Recall that B(n)(u, δ) = λn√
n

∑p
j=1 ŵj

√
n
(
|βj +

uj√
n
| − |βj|

)
. If

βj 6= 0 then, ŵj = 1/|β̂MM
j | p→ 1/|βj|, due to the consistency of MM-estimates as

discussed in Yohai (1987). Futher,
√
n
(
|βj +

uj√
n
| − |βj|

)
→ ujsign(βj). There-

fore, by Slutsky’s theorem and the assumption that λn/
√
n→ 0, when βj 6= 0,

λn√
n
ŵj
√
n

(
|βj +

uj√
n
| − |βj|

)
p→ 0

If βj = 0, then
√
n
(
|βj +

uj√
n
| − |βj|

)
= |uj| and hence,

λn√
n
ŵj
√
n

(
|βj +

uj√
n
| − |βj|

)
= λn(

√
nβ̂MM

j )−1|uj|
p→∞

since
√
nβ̂MM

j = Op(1) and λn →∞. Combining these results with the result for

A(n)(u, δ), we have V (n)(u, δ)
d→ V (u) for every u, where

V (u) =

 − 2
σ
uTAKA +

Eψ′
d

σ2 uTAC11uA if uj = 0 ∀j /∈ A

∞ otherwise.
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Further note that V (n)(u, δ) is convex and the unique minimum of V (u) is

(
σ

Eψ′d
C−111 KA, 0

)T
.

Therefore, as mentioned in Zou (2006), from the epi-convergence results of Geyer

(1994) and Knight and Fu (2000), we obtain,

û
(n)
A

d→ σ

Eψ′d
C−111 KA =

σ

Eψ′d
C−111N (0, Eψ2

dC11)

=N (0, σ2 Eψ2
d

(Eψ′d)
2
C−111 ) and û

(n)
Ac

d→ 0.

Thus we have proved the asymptotic normality of the adaptive robust lasso es-

timates with Tukey’s biweight loss. It is worth noticing that when the tuning

constant in the Tukey’s biweight d = 4.685 and the underlying distribution is

normal, we have
Eψ2

d

(Eψ′
d)

2 = 1/0.95. In other words, this adaptive robust lasso

estimates achieve 95 % asymptotic efficiency.

Finally, we prove the consistency in variable selection. For all j ∈ A, we

see that β̂(n) p→ β from the asymptotic normality established above. Therefore,

P (j ∈ An) → 1. If we can show that for all j′ /∈ A, P (j′ ∈ An) → 0, then

consistency in variable selection holds. Consider the event ∀j′ ∈ An. By the

KKT optimality conditions, we know that

1

σ̂n

n∑
i=1

ψd

(
yi −XT

i β̂
(n)

σ̂n

)
xij′ = λnŵj′

where the left hand side is the derivative of the loss function with respect to β.

Dividing both sides by
√
n and now note that the right hand side becomes

λnŵj′√
n

= λn(
√
nβ̂MM

j′ )
p→∞.
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The left hand side is
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by a first-order Taylor expansion. Further note that
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(n)xij′ converges in distribution to a normal distribution

with bounded variance as û(n) =
√
n(β̂(n)−β). Moreover, similarly to the proof of

asymptotic normality, 1
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σ
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i û(n)

√
n
, δ̂

(n)
√
n

)
→ 0.

Therefore, we conclude that

P (j′ ∈ An) ≤ P

(
1
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n∑
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ψd

(
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i β̂
(n)
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→ 0

and hence the adaptive robust lasso estimates with Tukey’s biweight are variable

selection consistent.
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