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Abstract

We study the Kuramoto model of identical oscillators on Erdős-Rényi (ER) and Barabasi-Alberts (BA) scale free
networks examining the dynamics when perturbed by a Lévy noise. Lévy noise exhibits heavier tails than Gaus-
sian while allowing for their tempering in a controlled manner. This allows us to understand how ‘shocks’ influ-
ence individual oscillator and collective system behaviour of a paradigmatic complex system. Skewed α-stable
Lévy noise, equivalent to fractional diffusion perturbations, are considered, but overlaid by exponential tem-
pering of rate λ. In an earlier paper we found that synchrony takes a variety of forms for identical Kuramoto
oscillators subject to stable Lévy noise, not seen for the Gaussian case, and changing with α: a noise-induced
drift, a smooth α dependence of the point of cross-over of synchronisation point of ER and BA networks, and a
severe loss of synchronisation at low values of α. In the presence of tempering we observe both analytically and
numerically a dramatic change to the α < 1 behaviour where synchronisation is sustained over a larger range
of values of the ’noise strength’ σ, improved compared to the α > 1 tempered cases. Analytically we study the
system close to the phase synchronised fixed point and solve the tempered fractional Fokker-Planck equation.
There we observe that densities show stronger support in the basin of attraction at low α for fixed coupling, σ
and tempering λ. We then perform numerical simulations for networks of size N = 1000 and average degree
d̄ = 10. There, we compute the order parameter r as a function ofσ for fixedα and λ and observe values of r ≈ 1
over larger ranges of σ for α < 1 and λ 6= 0. In addition we observe drift of both positive and negative slopes for
differentα and λwhen native frequencies are equal, and confirm a sustainment of synchronisation down to low
values of α. We propose a mechanism for this in terms of the basic shape of the tempered stable Lévy densities
for various α and how it feeds into Kuramoto oscillator dynamics and illustrate this with examples of specific
paths.

1. Introduction

The dynamical system of oscillators proposed by
Kuramoto [1] provides a way to understand some of
the complexities of spontaneous synchronisation in-
herent to some real-world complex systems of phys-
ical, biological, or social nature. The original model
captures structure and rhythmic behaviour. General-
ising the all-to-all case to non-complete networks [2,
3, 4, 5] and subjecting oscillators to noisy Gaussian
perturbations [2, 6, 7, 8] or heavier-tailed perturba-
tions [9] offers further applicability.

In this paper we examine the relationship between
synchronisation of oscillators and the speed of decay
in the tails of the noise distribution that seeks to dis-
rupt their collective behaviour. As such, we perturb
each oscillators by a Lévy process, a natural general-

isation of Brownian motion, that allows heavier tails
in the distribution of the process increments. More
precisely, we use a tempered stable process so that
we can control the rate of tail decay to demonstrate a
striking relationship between this rate and the onset
of synchronisation within the system.

The main motivation of this study lies in the viabil-
ity of a Lévy Kuramoto model as a representation of
social processes or distributed decision-making [10,
11, 12, 13]. Human cognitive processes are known
to be cyclic [14], noisy [15] and involve leaps of intu-
ition in complex problem solving [16] or recognition
of previously experienced patterns, known as ‘prim-
ing’ [17, 18]. Modelling these leaps by a Lévy pro-
cess enables quantification of these otherwise quali-
tative models. Additionally, recent results in the field
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of brain research show that heavy tails in the distri-
butions of alpha and beta rhythms [19] can be ob-
served which lends further weight to heavy-tailed dy-
namics proposed in this paper. Additional motiva-
tions are more practical. First, introducing leaps into
the Kuramoto model using a stable process (i.e., frac-
tional diffusion) makes most moments of the distri-
bution ill-defined so that matching to empirical data
is fraught. The addition of tempering softens this be-
haviour so that all moments of the process are finite,
while still generalising away from Gaussianity. Tem-
pered stable processes allow us to understand how
leaps influence synchronisation dynamics but in a
model that can be fitted to data from real-world sys-
tems where empirical moments will always be finite.
Second, by tuning the decay parameter we are able to
probe the basin of attraction of the Kuramoto system.

It is well understood that network topology plays
an important role in synchronisation [20, 21, 22, 23,
24, 25]. The key insight is that scale-free graphs, such
as that of Barabasi and Alberts (BA), have lower crit-
ical coupling than Erdös-Renyi (ER) graphs. How-
ever, comparing the topologies at a fixed size, the lat-
ter encourages faster synchronisation as the coupling
strength increases beyond the critical coupling value.
Therefore, for completeness, we also explore the dif-
ference in robustness of the dynamics under these
two topologies when tempered stable noise is intro-
duced.

2. The model

In the most general case, we consider a nonlinearly
coupled model perturbed by a Lévy process written
as the system of N stochastic differential equations
(SDEs) given for each i ∈ {1, . . . , N } by

dθi (t ) =ωi dt− K

N

N∑
j=1

Ai j H (θi (t )−θ j (t ))dt+dL i (t ),

(1)
with θi (0) = xi where θi is the time-dependent phase
angle at vertex vi ∈ V of the connected graph G =
(V , E ) of size N . The topology of the graph is encoded
in the adjacency matrix A where Ai j = 1 for j 6= i
when vertices vi and v j are connected, zero other-
wise, and Ai i = 0. The coupling function H : R →
R is differentiable and must satisfy H ′(0) > 0. Ex-
amples include H (x ) = sin(x ) for the stochastic Ku-
ramoto model and H (x ) = sin(x−ζ) for the stochastic
Kuramoto-Sakaguchi model [26]. For i = 1, . . . , N , the
ωi are constants modelling the natural frequency of

the i ’th oscillator at vertex vi . We consider identical
oscillators in this paper for which, through a shift to
the centre of mass, the ωi may be set to zero. How-
ever, in analytical considerations we take the natural
frequencies as non-zero to derive more general ex-
pressions, and only set them to zero in the final step.
In numerical simulations they will be set to zero.The
xi is the initial position of the i ’th oscillator at time
t = 0. The quantity K > 0 is a real-valued coupling
constant. We will absorb N into K from this point on-
wards and use the rescaled coupling constant κ := K

N .
The stochastic perturbations in the dynamical sys-

tem are given by a N -dimensional Lévy process L :=
(L1(t ), . . . , LN (t ))t≥0 where the i ’th component per-
turbs the i ’th vertex vi . The class of Lévy processes
can be characterised as follows (e.g., see [27]). If
L := (L (t ))t≥0, L (0) = 0, is a Lévy process defined on
the probability space (Ω,F, P), then the characteristic
function of L has the Lévy-Khintchine representation
Φ(k ) :=E[e i k L t ] = e tΨ(k ) with characteristic exponent

Ψ(k ) := i k T γ− 1

2
k T Q k

+

∫

R

(e i x T k −1− i x T k 1◦(x ))ν(dx ), (2)

for k ∈ RN and x T y =
∑N

i=1 xi yi with x , y ∈ RN .
Here, E denotes the expectation operator, defined as
E[X ] :=

∫
Ω

X d P, for X :Ω→RN a random variable on
the probability space (Ω,F, P) and 1◦ is the indicator
function such that 1◦(x ) = 1 if ‖x‖ ≤ 1 and 0 other-
wise. The N ×N matrix Q is symmetric nonnegative-
definite, γ ∈RN , and the measureν satisfiesν({0}) = 0
and

∫
RN min(‖x‖2, 1)ν(dx )<∞. Equivalently, we say

L has the canonical triplet (γ,Q ,ν) where ν is called
the Lévy measure. When N = 1 and (a , b ] ⊂ R, then
the Lévy measure has the interpretation that ν((a , b ])
is the rate at which the process takes jumps of size be-
tween a and b per unit of time. The class of Lévy pro-
cess is broad and includes, for example in the N = 1
case, processes such as the Brownian motion with
drift (γ,σ2, 0) and the Poisson process of rate λ with
canonical triple (0, 0,λδ1)where δ1 is the point mass
at 1. We give a more explicit example in Section 3.5.

We follow the customary approach that the ini-
tial positions are taken to be randomly distributed
according to various probability distributions. In
our simulations, we take the frequencies to be zero
and the initial positions uniformly distributed over
(−π,π] and independent between themselves. We
take the network topology to be stochastic and inde-
pendent from all other sources of randomness. The
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frequencies, the initial positions, and the network
topology are all randomly sampled at time t = 0 and
then remain fixed for t > 0. This means that for t > 0,
the only source of randomness in the system is the
Lévy process L . The graph G will be randomly sam-
pled from two distributions: the classic ER and the
BA scale-free. The former is generated by consider-
ing N vertices and M edges so that any two vertices
are connected with uniform probability N /2M . The
latter is based on preferential attachment whereby
starting from m0 connected vertices, new vertices are
introduced connecting to m ≤ m0 vertices with a
probability proportional to the degree of the exist-
ing vertices, which is then iterated. This procedure
generates a power law degree distribution d −3, where
di :=

∑
j 6=i Ai j is the degree of a given node i . Such a

distribution for d leads to a ‘hub’ or core of the net-
work in contrast to the more heterogeneous structure
of the ER graph. We recall that for networks with de-
gree spectra d −ε with exponent 2 < ε < 3 there is no
synchronisation for the Kuramoto model for any size
network [21].

3. The dynamics close to synchronisation

3.1. Solution near synchronisation

Close to synchronisation, that is θi ≈ θ j for all
vi , v j ∈V , we are able to analytically approximate the
behaviour of our proposed dynamical system. We re-
call that the order parameter r (t ) is given by

r (t ) :=
1

N

�����
∑

j

e iθ j (t )

����� . (3)

This parameter enables measurement of the collec-
tive system behaviour. For example, for coupling K
greater than some critical value Kc and zero noise
(L i (t ) ≡ 0 for all 1 ≤ i ≤ N and t ≥ 0), the order
parameter r (t ) reaches a plateau close to 1 as t →
∞ when the phases at all the vertices synchronise.
The critical coupling Kc is usually defined as value
at which the order parameter, when averaged over
many instances and at t →∞ (or, alternately, time-
averaged), first deviates from zero after accounting
for finite-size scaling. This value marks the onset of
synchronisation. Note that a critical value of K oc-
curs even for the system of identical oscillators in the
absence of noise. For example, even such a simple
system may have frequency synchronised (in con-
trast to phase synchronised) fixed points that are un-
stable [28]. Naturally, the addition of noise further
impedes the achievement of r = 1.

We consider Eq.(1) and recall that we posed H to be
smooth function satisfying H ′(0) > 0. This holds for
the Kuramoto case H (x ) = sin(x ) and the Kuramoto-
Sakaguchi case H (x ) = sin(x − ζ) when ζ ∈ (−π2 , π2 ).
We take a first-order approximation of H around zero
H (x ) ≈ H (0) + x H ′(0) to obtain a SDE for the lin-
earised dynamics eθi (t ) of each θi (t ) given by

deθi (t ) =


 eωi −κH ′(0)

N∑
j=1

Li j
eθ j (t )


dt+dL i (t ), (4)

with eωi :=ωi +κH (0)di and di =
∑N

j=1 Ai j is the de-
gree of vertex vi . The N ×N matrix L is the graph
Laplacian (e.g., [29])

Li j :=Di j −Ai j , (5)

where D has all elements zero except for the diag-
onal whose elements are given by the degrees di of
the vertices. As the process eθ is now linear, by defin-
ing B := diagN (κH ′(0))L and posing the system in
terms of the moving frame of reference as eθ x (t ) :=
eωt +X x (t ), then the dynamics for X x (t ) ∈Rn can be
written compactly in vector-matrix form as the Lévy
Ornstein-Uhlenbeck (LOU) equation

�
dX x (t ) =−B X x (t )dt+dL (t ), t > 0,

X x (0) = x ∈RN ,
(6)

where L (t ) := (L1(t ), . . . , LN (t ))T and x := (x1, . . . , xN )T

is the initial position of the oscillator system. We as-
sume the N -dimensional Lévy process L := (L (t ))t≥0

has characteristic exponent Ψ given by Eq.(2). The
solution for (eθ x (t ))t≥0 follows by solving Eq.(6) and
is given by a shifted form of the Lévy Ornstein-
Uhlenbeck process

eθ x (t ) = eωt +e −t B x +

∫ t

0

e −(t−s )B d L (s ), t ∈R+. (7)

3.2. Transition probabilities

For any continuous function ϕ : Rd →R vanishing
at |x | →∞, the semigroup (Rt )t≥0 is given by

Rtϕ(x ) :=Eϕ(eθ x (t )) =

∫

RN

ϕ( eωt + y )ηt (x , dy )

=

∫

RN

ϕ( eωt + e −t B x + y )ηt (dy ),

where ηt (x , ·) is the transition probability of eθ x (t )
and for convenience we have written ηt (·) := ηt (0, ·).
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By standard results on LOU processes [27] and since
B is symmetric, the characteristic function of the
time-dependent process (7) has the explicit repre-
sentation for any z ∈Rn ,

bηt (x , z ) := E[e iθ x (t )T z ]

= exp

�
eωt z + i x T e −t B z +

∫ t

0

Ψ(e −s B z )ds

�
,

where Ψ is the characteristic exponent of L .

3.3. Invariant measure

When eω= 0 (which holds when entering the rotat-
ing frame θ (t ) 7→ θ (t ) + E[ eω]t ) and by the results of
[30], the process (7) has an invariant measure if

∫

|z |>1

log |z |ν(dz )<∞. (8)

If (8) holds, then it follows that when t →∞ the char-
acteristic function of the invariant measure η∞ for
z ∈Rn is

bη∞(z ) = exp

�∫ ∞

0

Ψ(e −s B z )ds

�
, (9)

where Ψ is the characteristic exponent of L .

3.4. Distilling the collective dynamics

Using the singular value decomposition we see the
role that the positivity of the spectrum of the graph
Laplacian [31] plays in the stability of the determin-
istic limit of the system. Some well-known analytic
results are given in [31] and we give in Fig.1 the his-
togram of eigenvalues for the BA and ER cases that we
use in our numerical study. Beyond such perturba-
tive arguments (see also [32, 33]), there is numerical
evidence for the Kuramoto model [34] that the Lapla-
cian remains an effective means of distilling the col-
lective dynamics even before the onset of phase syn-
chronisation.

The network G is connected and undirected so all
the N eigenvalues of L are real and can be ordered
0 = `0 ≤ · · · ≤ `N−1 with associated eigenvectors
u (0) . . . u (N−1) of L. Even though there are as many
eigenvalues as nodes of the network, we use the la-
bel m = 0, . . . , N −1 for eigenvalues to distinguish la-
bels i = 1, . . . , N for vertices of the network. We nor-
malise the eigenvectors {u (m )}N−1

m=0 so they form an or-
thonormal basis for RN . The eigenvector associated

with `0 = 0 is u (0) = 1. Following from the spectral
decomposition of L,

B =
N∑

m=1

κH ′(0)`m u (m )u (m )T . (10)

The process projected on the m ’th eigenvector is
given by Xm (t ) := u (m )T eθ x (t ). Later we use the pro-
jection of the vector of native frequencies on Lapla-
cian eigenvectors which we represent by

ω(m ) :=
N∑

i=1

ωi u (m )i . (11)

A key property of Laplacian eigenvectors that we will
use below is that the sum over the components of any
individual normal (m 6= 0) eigenvector is zero,

N∑
i=1

u (m ) = 0, (12)

a consequence of the orthonormality to the zero
eigenvector and that the latter has components all
identical to unity.

3.5. The influence of tail behaviour on synchronisa-
tion

As our aim is to understand how the tail behaviour
of the Lévy process L influences synchronisation in
the dynamical system, we focus on a particular case
of Lévy process: the tempered stable process. This
process provides analytical control on the rate of de-
cay of its tail through a parameter λ which will al-
low us to study how this affects synchronisation be-
haviour.

For simplicity, the processes considered in this sec-
tion will be of jump type, i.e., Q = 0, with the Lévy
measure of product form ν =

∏N
j=1ν j with ν j de-

scribing the jumps that apply to the j ’th oscillator θ j .
This allows us to consider the process L component-
wise through its j ’th component L j and decomposes

the characteristic exponent as Ψ(k ) =
∑N

j=1Ψ j (k j )
with k = (k1, . . . , kN )T ∈RN .

The tempered stable process is best understood by
starting with the definition of a stable process whose
transition probabilities are also known as fractional
diffusion [35]. The j ’th component L j of the Lévy
process L is called a (totally positively skewed) stable
process if the characteristic exponent Ψ j (k ) satisfies
for k ∈R the explicit expression

Ψ j (k ) = a Γ (−α)cos
�πα

2

�|k |α�1− i tan
�πα

2

�
sgn(k )

�
,

(13)
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Figure 1: Degree distributions (left) and frequency distribution f of Laplacian eigenvalues `m (right) for the Barabasi-Alberts ‘scale free’
and Erdős-Rényi random graphs with 1,000 vertices used in our numerical study; the spectra are averaged over 30 instances of graphs from
each class.

where a > 0 and α ∈ (0, 1) ∪ (1, 2). That is, we ex-
clude the Cauchy process (α = 1). The expression
given in Eq.(13) is obtained by considering

∫∞
0
(e i k x−

1) a
xα+1 dx for α ∈ (0, 1) and

∫∞
0
(e i k x − 1− i k x ) a

xα+1 dx
for α ∈ (1, 2). These two representations high-
light that the Lévy measure has the form ν j (dx ) =
a/x α+1 dx . Tempering the Lévy measure of the stable
process by introducing an exponential decay leads
to L becoming a (totally positively skewed) tempered
stable process. In other words, the characteristic ex-
ponent Ψ j for the j ’th component L j of L is given by

Ψ j (k ) =





∫ ∞

0

(e i k x −1)
a e −λx

x α+1
dx , α ∈ (0, 1),

∫ ∞

0

(e i k x −1− i k x )
a e −λx

x α+1
dx , α ∈ (1, 2),

with a > 0, α ∈ (0, 1)∪ (1, 2), and λ > 0. Let St be the
stable process at time t , then alternatively, this stable
process admits a density at any time t but cannot be
written down as a closed-form formula [27]. Without
loss of generality, we take t = 1. Then the tempered
stable density fTS(α,a ,λ) can be obtained by tempering
the stable density fS(α,a ) of S1 as

e −λx

E[e −λS1 ]
fS(α,a )(x ) = e −λx−a Γ (−α)λα fS(α,a )(x )

=: fTS(α,a ,λ)(x ),

which leads to

fTS(α,a ,λ)(x ) = e −λx−a (1−α)Γ (−α)λα fS(α,a )(x+Γ (1−α)aλα−1);

see [36] for more details. A two-sided tempered stable
process (Lβt )t≥0 of index α can be obtained from two
independent positively skewed tempered stable pro-

cesses (Tt )t≥0 and ( eTt )t≥0 as Lβt := (1+β )Tt − (1−β ) eTt

with −1 ≤ β ≤ 1. Then performing the integrals in
Eq. (14) gives the explicit form for the characteristic
exponent Ψ j (k ) for the two-sided case as

Ψ j (k ) =−a
�
(1+β )(λ+ i k )α+ (1−β )(λ− i k )α

−2λα−2i kαβλα−1Θ(α−1)
�

(14)

with Θ(x ) the heaviside step function: Θ(x ) := 1 for
x > 0 and zero otherwise; see [37].

If St is a stable process at time t , then the proba-
bility distribution of St only has moment m if m < α
which is restrictive in practice as α ∈ (0, 1) ∪ (1, 2).
However, if L t is a tempered stable process then ir-
respective of the value of α the first moment of L t ,
without loss of generality at t = 1 and N = 1, exists
and is given by

E[L1] =
1

i
Φ′(0) =

¨
a b α−1Γ (1−α), 0<α< 1,

0, 1<α< 2,
(15)

and the second moment is

E[L 2
1] =

1

i 2
Φ′′(0)

=

¨
a b α−2(a b αΓ (1−α)2+ Γ (2−α)), 0<α< 1,

a b α−2Γ (2−α), 1<α< 2,
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We take the parametrisation

a :=−1

2
σ2 1

Γ (−α)cos(πα/2)
, ã := a/Γ (−α) (16)

so that we have limα→2 E[L 2
1] = σ

2. In other words,
Ψi (k ) → − 1

2σ
2k 2 as α → 2 to recover the Brownian

motion in the limit. In other words, when α = 2, L
is a N -dimensional Brownian motion with canoni-
cal triple (0,Q , 0) with Q = diag(σ2

1, . . . ,σ2
N ) and we

choose σ = σ1 = . . . = σN . This parametrisation will
be used in our study to show how the dynamics of the
system change as α varies and converges to the clas-
sic ‘diffusion’ case whenα= 2 that other authors have
studied [7, 6, 8, 15]. Further, notice that tempering
has no effect on the decay of the tails in the Gaussian
case (α= 2).

For any continuous functionϕ : RN →R vanishing
at |x | →∞ the transition semigroup (Pt ) of L is given
by

Ptϕ(x ) = E[ϕ(x + L (t ))] =

∫

RN

ϕ(y )pt (x , dy ), (17)

where pt (x , ·) is the transition probability of L start-
ing at x . In other words, pt (x , B ) := P{x + L (t ) ∈ B }
for B ∈ B(RN ). Take N = 1 for simplicity, then as
the (two-sided) tempered stable process has a den-
sity, we write pt (x , dy ) =U(t , x−y )dy in Eq.(17). The
densitiesU(t , x ) satisfy the tempered space-fractional
diffusion equation given by

∂t U(t , x ) = (1−β )ã∂ α,λ
x U(t , x ) + (1+β )ã∂ α,λ

−x U(t , x ),
(18)

where ∂ α,λ
x := e −λx −∞D α

x e λx and ∂ α,λ
−x :=

e λx
x D α
∞e −λx are the λ-tempered fractional deriva-

tives of order αwhere the operators −∞D α
x and x D α

∞
are the Riemann-Liouville derivatives; see [37].

Again assuming N = 1, it follows from the fact that

∫

|x |>1

log |x | a

x 1+a
=

1

a
, (19)

that the tempered stable process has an invariant
measure when entering the rotating frame θ (t ) 7→
θ (t ) + E[ eω]t . Or, equivalently, we say that a steady-
state density for the tempered stable space-fractional
diffusion equation (18) exists.

We go over to the diffusion equation formulation
of the linearised stochastic Kuramoto model, where
we seek a time-dependent probability distribution of
the Laplacian eigenvector projected phases, Xm , that

is a product of densities for each m ,

P (t , X ) =
N−1∏
m=0

Pm (t , Xm ).

For simplicity we take β = −1, then each marginal
density satisfies the full tempered fractional Fokker-
Planck equation [37]

∂t Pm (t , Xm ) = 2ã∂ α,λ
Xk

Pm (t , Xm )

− ∂Xm

�
(ω(m )−κ`m Xm )Pk (t , Xm )

�
, (20)

which draws upon the tempered fractional derivative
introduced in Eq.(18).

In this work we focus on the steady-state solutions
of Eq.(20), ∂t P s

m (t , Xm ) = 0, where the superscript ‘s’
denotes steady-state. For example, taking α→ 2 we
obtain the steady-state density for the Gaussian case,
found in [38]:

P s
m (Xm ) =

√√κ`m

σ2
e
− κ`m
σ2

�
Xm− ω(m )κ`m

�2

. (21)

We observe here a Gaussian smearing about the de-

terministic solution X ∗m =
ω(m )

κ`m
. With ωi = 0, as in

our numerical simulations, the Gaussian is centred
at X = 0. For small σ, correspondingly large κ, the
Gaussian tail suppresses the probability that X 6= 0
prohibiting the system from ‘escaping’ the phase-
synchronised solution.

While the untempered case (λ = 0) can be solved
in closed form in terms of the Fox’s H-functions [35],
the steady state solution of Eq.(20) is best achieved
by Fourier transformation. The tempered fractional
derivative leads to the exponent of the characteristic
function of the underlying distribution from Eq.(14),
Ψ = lnΦ1(k |α,β ,λ) =σ2Ψ̂, where we make the depen-
dence on the noise constantσ explicit by this rescal-
ing. Imposing the steady state condition ∂t P s

m =
0 in Eq.(20) and taking the Fourier transform gives
the momentum space differential equation (see also
[37, 9])

κ`m km
d

d km
P̃ s

m =
�
σ2Ψ̂(km )− iω(m )km

�
P̃ s

m , (22)

where km is the conjugate to Xm . This is solved to
give, including the correct normalisation,

P s
m (Xm ) =

1

2π

∫ ∞

−∞
d k e i km (Xm− ω(m )κ`m

)

×exp

�
σ2

κ`m

∫ km

0

d k ′
Ψ̂(k ′)

k ′

�
. (23)
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Now setting the frequencies to zero the multi-
dimensional steady-state probability density func-
tion is

P s ( ~X ) =
1

(2π)N−1

∫ ∞

−∞
d N−1k e i k T X

×exp

�
σ2

κ`m

N−1∑
m=1

∫ km

0

d k ′m
Ψ̂(k ′m )

k ′m

�
.(24)

Finally, we need to re-express the exponent Ψ̂ of
the characteristic function of the Laplacian projected
process in terms of that for the original, namely of the
process d L i . To do this, first we recall the definition
in terms of the Fourier transform for any given com-
ponent:

Φ(t )(km ) :=

∫
d L (m )e i km L (m )p (t , L (m ))

(25)

and substitute p (t , L (m )) in Eq.(25) with its transfor-
mation on to the projected variables

p (t , L (m )) =

∫ N∏
i

d L iδ(L
(m )−

∑
j

u (m )j L j )p (t , L i ).

(26)

Interchanging the order of integration gives

Φ(t )(km ) =

∫ N∏
i

d L i

∫
d L (m )δ(L (m )−

∑
j

u (m )j L j )

×e i km L (m )p (t , L i ). (27)

We perform then the integral over L (m ), implement-
ing the delta function, to obtain

Φ(t )(km ) =

∫ N∏
i

d L i e i km

∑
j u (m )j L j p (t , L i )

=

∫ N∏
i

d L i e i km u (m )i L i p (t , L i ). (28)

Each factor in this expression is a characteristic func-
tion for a corresponding component, but with the
process L i replaced by u (m )i L i , so that the character-
istic exponent for each i is just Ψ with a rescaled mo-
mentum k . Thus overall the new exponent is the sum
of the individual ones but with rescaled arguments:

Φ(t )(km ) = exp

�
−t a

∑
i

Ψ(km u (m )i )

�
(29)

so that in Eq.(23) we insert

Ψ̂(k ) = a

�
(1+β )

∑
i

(λ+ i k u (m )i )
α+

(1−β )
∑

i

(λ− i k u (m )i )
α−2Nλα

�
(30)

using the vanishing of the sum over eigenvector com-
ponents, Eq.(12), in the Θ term of Eq.(14).

Unfortunately because of the λ dependence in
Eq.(30) it is not possible to cleanly separate out the
role of the Laplacian eigenvectors other than that
they individually re-weight the ‘momentum’ in the
characteristic exponent. This is in contrast to the sta-
ble case where such a separation is possible with de-
pendence shown in Fig.10 of our previous work [9].

With the σ2 dependence, we see in this result
again that for vanishing frequencies again the diffu-
sion constant and coupling combine into the univer-
sal coupling g = σ/

p
κ. Further analytic progress is

only possible for λ = 0, as shown in our earlier work
[9]. Thus two integrals must be computed numer-
ically for the tempered case. For smaller values of
α, because tails become fat, the Fourier transform
can be become numerically intensive and the inte-
grand as a function of k is well-behaved. We com-
pute Fourier integrals by approximating as a discrete
Fourier transform with periodic boundary condi-
tions for the real part (and associated zero mode) and
antisymmetric boundary conditions for the imagi-
nary part. For small αwe take a discrete momentum
step of∆k = 0.1 and sum up to 5×105 points.

In the following we illustrate particular cases of this
solution forσ= 3,κ= 1 and λ= 0.01, 0.2, 1, to give re-
sults comparable to the stable cases in [9]. The crit-
ical insight we seek to gain from the shape of these
distributions is where their support lies in relation to
the region −1 < Xm < 1 describing, based on the de-
composition of the deterministic system, the basin of
attraction for phase synchronisation. To gain a pic-
ture of the multi-dimensional solution to the Fokker-
Planck P s ( ~X ) we consider a subset of modes m that
correspond to key regions in the Laplacian spectra
for the two types of networks as shown in Fig.1. To
that end, and as in [9], we choose seven values m as
shown in Table 1 to visualise, on the one hand, the
higher multiplicity of modes with eigenvalue of or-
der one in the BA case (m = 399 is still at value 5.8
for BA, but for ER it is 8.2), and, on the other hand,
the long tail of eigenvalues for the BA case (the last
mode m = 999 has eigenvalue 122.8 whereas ER is
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23.8). Each value of m identifies a direction or di-
mension in the multi-dimensional space of the prob-
ability distribution. Furthermore, for the eigenvec-
tors in Eq.(30) we use the average 〈u (m )i 〉 over an en-
semble of 30 graphs for each of the BA and ER types.

These plots are indeed visually indistinguishable
from those in Fig.8 of [9] for purely stable noise close
to the Gaussian limit; tempering effects are negligible
here. We include these plots here in order to reiterate
the mechanism given in our previous work [9] for the
cross-over between BA and ER graphs near the Gaus-
sian limit for the order parameter dependence as a
function of noise strengthσ. In this case we examine
the behaviour for small λ = 0.001. We plot in Fig.2
the solutions to the Fokker-Planck equation for vari-
ousσ atα= 1.99,λ= 0.001, in the top row for BA net-
works, and the bottom row for ER networks. Different
modes m are superimposed on the same curve for a
given value ofσ,α and λ so that the shape of the dis-
tribution in different dimensions may be visualised.

We observe at low σ = 0.5 the narrowness of
the Fokker-Planck distributions around the origin,
consistent with the Kuramoto system with vanish-
ing natural frequencies showing high synchronisa-
tion when subject to low noise strength. At higher
noise strength,σ= 1−2 (second plots from the left of
Fig.2 top and bottom) we see broadening of the distri-
butions, however for the BA case the tails remain still
somewhat suppressed beyond X = ±1 for small m .
Iin comparison the ER case shows all modes broad-
ening. At σ = 3 (right-most plots in Fig.2 top and
bottom), the ER case is very broad including its high-
est modes while the BA case has its highest modes
still quite narrow. Overall, with increasing σ the ER
graph is the first to show directions where its distribu-
tion develops tails outside the basin of attraction in
more directions than for the BA graph. As explained
in [9], these effects are a consequence of the tail of
its Laplacian spectrum driving the Gaussian broad-
ening of the distribution. Thus, the BA graph loses
synchrony more ‘gracefully’ than the ER graph.

Given the result in Fig.2 that densities narrow as
one goes higher in the Laplacian spectrum, we now
study tempering on the lowest Laplacian mode m =
1, the broadest and therefore the most prone to es-
cape the basin of attraction under broadening of the
Fokker-Planck distribution. In Fig.3 we show results
for a range of tempering, λ= 0.01 (top), λ= 0.2 (mid-
dle) and λ = 1 (bottom). On the left we show the re-
sults for the tempered fractional Fokker-Planck den-
sities for the BA graph case and on the right for the

ER case. We compare for fixedσ the densities for de-
creasing α below α = 1.5. On the top row, with very
small tempering, we observe a result similar to that
already shown in Fig.2: as α decreases the densities
broaden and tails of Fokker-Planck densities become
heavier. Again, the ER densities (right) are slightly
broader than those for the BA graph. On the sec-
ond row, with ‘slight’ tempering at λ = 0.2, we see
the expected effect for α ∈ (0.5, 1.5) the broadening
of the distributions as α decreases. However, with
further decrease below α= 0.5 the distributions nar-
row again; the ER case is again broader than BA but
shows the same effect. Finally, with λ = 1 the ten-
dency of the top row is reversed: densities narrow
with decreasingα across the entire rangeα ∈ (0, 2). In
other words, synchronisation would be expected to
improve with decreasingα in the presence of temper-
ing because of an increased probability of remaining
in the basin of attraction.

Thus the analytic solution based on linearising
around the phase synchronised fixed point predicts
an improvement in synchronisation at fixedσ and λ
for decreasing α below α = 1. We now examine the
behaviour of simulations to test this prediction.

4. Dynamics away from synchronisation

In this section we study the system numerically
away from synchronisation in the tempered sta-
ble case. For identical frequencies in the Ku-
ramoto model the noise strength and coupling can
be brought together into a single coupling constant
g = σ/

p
κ, for both Brownian [7] and stable Lévy

noise [9]. We extend the argument here to tempered
noise. First, we go to a frame of reference whereωi =
0, so that the equation of motion Eq.(1) may be re-
cast with time rescaled as τ= κt . The noise then be-
comes (1/κ)L i (τ/κ), where for each i we use the same
α, a ,β ,µ,λ. Using the dependence of the character-
istic functionΦt (k )on time via the prefactor t a in the
exponential, Eq.(14), with a ∝ σ2 as in Eq.(16), we
see that in the rescaled system this dependence is as
τσ2/κ = τg 2. For this reason, in the following simu-
lations we fix the coupling to κ= 1 and vary the noise
strengthσ.

4.1. Simulation approach

In simulating the Kuramoto model subject to
noise, we also generated 30 examples of graphs in
each of the classes, BA and ER, using the Random-
Graph function of Wolfram’s Mathematica 10. In
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Table 1: Laplacian eigenvalue choices for Barabasi-Alberts and Erdős-Rényi graphs of N = 1000, d̄ = 10 and averaging over 30 instances

Graph m=1 m=9 m=59 m=399 m=699 m=989 m=999
BA 2.88482 3.06324 3.53206 5.85223 9.74233 62.9679 122.802
ER 1.28646 2.5929 3.93219 8.19271 12.3496 20.456 23.8308

Colour Black Dark Grey Grey Blue Purple Brown Red
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Figure 2: Solutions to the steady-state fractional Fokker-Planck equation for α = 1.99,λ = 0.001 and different eigenvalues: top row Scale
Free, bottom row Erdős-Renyi, from the leftσ= 0.5, 1, 2, 3, with eigenmodes m = 1 in black, m = 9 in dark grey, m = 59 in light grey, m = 399
in blue, m = 699 in purple, m = 989 in brown, and m = 999 in red.

Fig.1 we present for ER and BA graphs of 1000 vertices
and average degree d̄ = 10 the distribution of degrees
di and the spectrum of the graph Laplacian

Li j :=Di j −Ai j , (31)

where D has all elements zero except for the diago-
nal whose elements are given by the degrees of the
vertices. This construct turns out to be useful for un-
derstanding the behaviour of the system close to syn-
chrony. The eigenvalues shown in Fig.1 represent an
average over 30 instances of the graph of each class
for every discrete mode number labelled by m ; in our
convention m = 0, . . . , 999, where m = 0 corresponds
to an exactly vanishing eigenvalue.

To simulate the Kuramoto dynamics with Lévy
noise, we use an Euler scheme on the N -dimensional
stochastic differential equation given by (1). We
choose the number of mesh points M > 0 so that
the time increment ∆t := T /M , then the true N -
dimensional dynamics θ (t ) := (θi (t ))Ni=1 are approxi-
mated by θM (t ) := (θM

i (t ))
N
i=1 obtained as follows. We

start by sampling the initial values θM
i (0) = xi from

the uniform distribution on the interval [−π,π) and
then simulate each N -dimensional path t 7→ θM (t )at
the time points∆t , 2∆t , . . . , M∆t = T through a Eu-

ler scheme. Denoting θM
i [s ] := θ

M
i (s∆t ), the scheme

is given componentwise for 1≤ i ≤ n by

θM
i [s+1] = θM

i [s ]+Ai j sin(θM
i [s ]−θM

j [s ])∆t+ξi [s ]
(32)

for integers 0 ≤ s < M − 1 and 0 ≤ i , j ≤ N with i 6=
j . The random variables ξi [s ] are distributed like an
increment of the Lévy process d L (t )∼ L∆t for 1≤ i ≤
N and 0 ≤ r ≤ M − 1. The computational difficulty
lies in the simulation of the random variables ξi [s ]
with distribution L∆t .

To simulate L∆t in the tempered stable case re-
quires two different algorithms: one for the case 0 <
α < 1 and another for the case 1 < α < 2. We fol-
low [39, 36] whereby for the case 0 < α < 1 we use
an acceptance-rejection method that simulates the
exact distribution. Unfortunately, for the case 1 <
α < 2, no exact simulation methods are known and
one must resort to an approximation; see [36] and the
references therein. We use the acceptance-rejection
algorithm that approximately simulates the distribu-
tion but depends on a parameter c . The parameter
c truncates the real line R to the domain where the
exponential tempering e −b z is performed. In [39] it
is shown that as c → ∞ the probability density of
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the sampled distribution converges in an L 1(R)-sense
to the density of the true tempered stable distribu-
tion that we would like to draw samples from. Un-
fortunately, as c increases, the computational effort
required by the algorithm increases as well. There-
fore it is important to choose a finite c so that these
concerns are balanced. As we are interested in under-
standing the behaviour of the Kuramoto model un-
der a wide range of parameter choices, we resorted
to the following approach to numerically find a good
c given a , b and α.

Let Q (p ), 0 < p < 1, be the quantile function of
the tempered stable distribution TS(α, a ,λ), i.e., if F
is the distribution function of TS(α, a ,λ) then Q (p ) :=
inf{x ∈ R : p ≤ F (x )}. We can obtain the distribution
function F through numerical Fourier inversion of Φ
using a trapezoidal quadrature rule to approximate
the integral

F (x ) =
2

π

∫ ∞

0

sin(z x )
z

ℜΦ(z )d z ,

where ℜ(x + i y ) := x for x , y ∈ R. Given a mesh size
of h , the integral is approximated as

F (x ) =
h x

π
+

2

π

N∑
j=1

sin(h j x )
j

ℜΦ(h j )− εh − εN (33)

where εh is the discretization error associated with
the choice of mesh size h and εN is the truncation
error caused by taking N < ∞. To approximate
F (x ) with good accuracy we set h = 2π/(x + |m1| +
q |
Æ

m2−m 2
1 |) where m1 = E[T1] and m2 = E[T 2

1 ]
are obtained explicitly through closed-form formu-
las and q ∈N is chosen sufficiently large (e.g., q = 5).
The upper bound of the summation is chosen to sat-
isfy |Φ(hN )|/N < πε/2 where ε is the desired trunca-
tion error (which we set to the smallest ε such that
1+ε 6= 1 on our machine). Thus, given our numerical
approximation F h ,N of the distribution function F
we apply a root finding procedure to identify the ap-
proximate quantile function Q h ,N (p ) of F h ,N which
usually converges in three to four iterations. Finally,
for a given choice of α, a , b we choose c such that
c =−Q h ,N (p )−∆t a Γ (1−α)a b α−1 with p = 0.05.

In presenting results of simulations we show a
quantile plot, otherwise known as a Q-Q plot, of the
tempered stable distribution TS(α, a ,λ)against a nor-
mal distribution. That is if F is the cumulative dis-
tribution function (CDF) of TS(α, a ,λ), G the CDF of
a standard normal distribution, and QF and QG are
the associated quantile functions, the Q-Q plot draws

the q -th quantile of F against the q -th quantile of G
for a range of values of q . Thus, the Q-Q plot is a
parametric curve ranging over q ∈ [0, 1] with values
in the real plane R2. We also follow the standard con-
vention to draw a (dashed) line through the points
(QG (0.25),QF (0.25)) and (QG (0.75),QF (0.75)).

4.2. Simulation results

To compare directly with the results of [7] and our
previous work [9], we consider ER and BA graphs of
size N = 1000 and average degree d̄ = 10. We com-
pute the order parameter as a function of time av-
eraged over 128 paths (varying initial conditions and
noise instance) for each time step and over 30 graphs,
either BA or ER as specified. After checking that
steady-state has been reached we extract the value of
the order parameter at t = 60 as representative of r∞.
In Fig.4 we show the resulting values of r∞ againstσ
for similar ranges of α and λ as used for the Fokker-
Planck solutions, comparing ER and BA graphs.

Examining any one of the curves shows that the ba-
sic cross-over between BA and ER curves seen from
the stable case [9] is ubiquitous. We see that for the
stable noise case our results from [9] reproduced: for
increasing σ the order parameter drops off sharply
as a consequence of increasing probability of noise
destroying the synchronisation; as α increases the
range of σ over which the the order parameter re-
mains close to unity also increases; and the loss of
synchronisation of the BA graph is more graceful
than the ER case. Next, for λ = 0.1 we clearly see the
above behaviour is reversed: increasing α ∈ (0, 1) di-
minishes the range in σ over which synchronisation
is maintained. For increasing α ∈ (1, 2) there is min-
imal change in the range of σ over which synchro-
nisation is high. A slight increasing in λ to 0.2 fur-
ther enhances this effect. Finally, at λ = 1 the range
of σ giving high synchronisation decreases mono-
tonically with increasing α, with the most dramatic
changes in the range α ∈ (0, 1).

These results confirm the insight based on the an-
alytical results using linearisation around the phase
synchronised fixed point. Moreover, they generalise
this behaviour for regimes far from perfect phase syn-
chrony: even for values r ≈ 0.5, for which lineari-
sation no longer applies, at fixed α and σ increased
tempering improves the synchronisation.

4.3. Mechanism for improved synchronisation: path-
wise dynamics

An intuitive picture to understand this improve-
ment in synchronisation for decreasingαunder tem-
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pering follows from the basic shape of the underlying
probability density for the continuous time random
walk. In the stable noise case, as α decreases more
mass from the centre of the density, where it finds
its support, is pushed out to the tails leading to the
power-law asymptotic behaviour. For α < 1 this be-
comes so extreme that densities narrow around the
mode of the distribution forming a cusp, with very
long tails; essentially the noise favours either very
small or very large values and excludes ‘intermedi-
ate’ scales. Tempering now imposes a smooth cut-
off at asymptotic values so that for α < 1 in partic-
ular, the distribution only favours very small values
for the choice of the random jump. In the context of
synchronisation such a profile for the jumps means
that for fixed coupling, the size of additive jumps on
oscillator motions decreases for decreasing α under
tempering.

This mechanism leads us to anticipate otherwise
counter-intuitive behaviour away from the pure syn-
chronised regime. In [9] we observed in simula-
tions of individual paths of oscillator dynamics an in-
duced drift under skewed stable noise in spite of the
frequencies being equal, a drift not completely ex-
plained by the skew of the noise distribution. Specif-
ically, for α > 1 the induced drift was in the opposite
direction to the skew and for α < 1 in the same di-
rection as the skew. We recall that the skew deter-
mines the degree of one-sidedness of the heavy tail
(maximal in our case with β = 1) and that for α < 1
the stable distribution ceases to have even a finite
first moment. Therefore, for α > 1 the mode of the
skewed stable distribution is in the opposite direc-
tion to the skew such that a zero mean is fulfilled:
the mass around the mode ‘balances’ the heavy tail
in the other direction, so to speak. For α < 1 there
is no such constraint, so mode and heavy tail lie in
the same direction. For the oscillator system these
properties mean that for α> 1 there is a large cluster
of oscillators that do not experience a large (positive)
jump but the empirical mean of the average phase of
this cluster will not vanish but follow the mode of the
underlying noise. A negative drift, for positive skew,
follows. For α< 1 the mode reverses sign, so positive
drift is induced.

Under tempering, the balance between the mass
of the distribution and the tail is much more variable,
with a finite non-zero mean forα< 1. We expect then
a much more subtle picture for the direction of the in-
duced drift of the oscillators. In particular, because
the heaviness of the tails is now suppressed, the cor-
responding shift of the mode is diminished so that

the direction of the induced drift is not strictly deter-
mined by the skew.

We present here examples of individual oscillator
paths for different values ofα andλ to illustrate these
different possibilities for the drift. These have been
selected in a manner consistent with our previous
work [9]where, after investigating a range of paths for
various parameter settings, we identify that synchro-
nisation begins to degrade at σ = 2. We then fix the
random seed (fixing the network and oscillator initial
conditions), vary across α and λ with β = 1 always.
The examples here are for the ER graph, but qualita-
tively similar behaviours are seen for the BA topology.
These results should be compared with those seen for
the stable Lévy case in [9] where the same random
seed was used.

Firstly, we mention that in the absence of noise and
with (ωi )Ni=1 = 0, the θi (t ) all converge to horizon-
tal lines at zero; this represents driftless synchronisa-
tion. With α = 2, Gaussian noise, paths also rapidly
converge to a single horizontal trajectory but with
small jitters around this line. Next, from Fig.3 in [9]
we know for λ= 0 and α= 1.95 that larger jumps ap-
pear amongst the jitters over the still horizontal tra-
jectories that are 2π apart describing oscillators that
have suffered jumps out of the synchronised cluster
but that return after wrapping around the circle; as
shown there the motion is still driftless.

In Fig.5 we show now in the left hand panel the re-
sult for selected θi (t ) for tempered noise, λ= 0.2 and
α = 1.95. In the top right panel we show the den-
sity for the noise driving the system and in the lower
right hand panel we show the Q-Q plot, as described
in Sect. 4.1. Here we observe the appearance of slight
positive drift whereas for purely stable noise [9] such
drift was negative, and appeared at lower values of
the Lévy index, for example α = 1.5. Note that the
density for the noise is barely distinguishable from
the Gaussian case; it is only in the Q-Q plot, compar-
ing the tempered stable noise to Gaussian noise, that
the tail shows signs of weak deviation from the Gaus-
sian. However, the deviation here is less than that vis-
ible in the corresponding plot in Fig.3 of [9], a conse-
quence of tempering.

Decreasing the Lévy parameter down to α = 1.5
we obtain the result shown in Fig.6 which exhibits a
lower but still positive slope. This contrasts with a
negative slope at this value of α for the purely stable
noise (Fig.4 of [9]). Moreover in this tempered case
we observe many more ‘larger jumps’ in the trajec-
tories compared to α= 1.95, however many trajecto-
ries seem to show a jump of less than π only to re-
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turn down to the cluster. Noticeable in this sense is
the orange coloured path in the left hand panel which
nearly jumps 3π but then returns to the cluster at 2π
shifted with respect to the lower group that have seen
no jumps out of the basin at all. The density for the
noise here is visibly different from the Gaussian with
a stronger signal in the Q-Q plot showing the heavy
tail in the positive direction.

In order to see how the drift is influenced by the
tempering parameter we stay withα= 1.5 and plot in
Fig.7 the case of λ = 0.1 We observe clearly that the
drift is now negative, not positive, with many more
jumps close to but not exceeding π compared to the
λ = 0.2 result. In addition, some (for example, the
orange path in the left hand panel of Fig.6) jumps that
forλ= 0.2 fell back into the basin are seen at the lower
value ofλ to finally succeed to jump out and rejoin 2π
later (the light purple trajectory in the left hand panel
of Fig.6).

We return to λ = 0.2 and decrease α down to α =
1.1, as shown in Fig.8, and the paths also exhibit a
negative drift. Remarkably, the densities for the noise
for α= 1.5 and 1.1 are qualitatively similar, as are the
Q-Q plots. Thus there is no obvious correlation be-
tween the sign of the slope of the trajectories and the
shape of the noise density. Other than the slope, a
significant difference between these two cases is the
proliferation of jumps close to but not exceeding π
for the lower value of α, to which we shall return. We
emphasise that this aligns with the property that in
the associated Q-Q plots the the tempered stable dis-
tribution is close to the Gaussian around the value
zero describing small jitters around zero in contrast
to large jumps.

We now decrease below α = 1 to α = 0.7 in Fig.9
and the drift is strongly positive. The sign of the slope
here is consistent with that for the stable case (Fig.5 in
[9], however the tempered case shows far more syn-
chronisation - fewer large jumps beyondπ, and those
that do jump outside the basin of attraction are fewer
in between. Note that in the stable case, Fig.5 of [9],
the density is shifted to the right with the mode of the
distribution on the positive side of the vertical axis
which goes hand-in-hand with the mean of the distri-
bution in that case being divergent (due to the heavy
tail). Here, tempering - because of softening of the
positive tail to give a finite mean - causes the density
to be closer to the centre, with the mode on the neg-
ative side now.

Finally, at λ = 0.2, we decrease to α = 0.5 in Fig.10.
This suggests reasonable levels of synchronisation
but at lower drift than for α = 0.7. We note that for

the stable case at α = 0.5 there was no semblance of
order with a proliferation of large jumps (and thus we
did not show a plot in [9] for this value). Tempering
evidently has improved synchronisation at lower val-
ues of α, as already shown using the Fokker-Planck
approach and in measuring the order parameter.

These last two cases bring into relief the mecha-
nism we are proposing for improved synchronisation
at low α. Observe in the Q-Q plots of Figs.9 and 10
that the tempered stable noise is close to the Gaus-
sian around the origin, while it is locally depleted
(the curve dips either below the dashed line or drops
back to it) for intermediate negative values. These
should be contrasted with the Q-Q plot in Fig.5 of
[9] which shows the stable noise strongly heavy in
the tails and depleted around the origin. This mani-
fests our statement that for α < 1 tempering softens
the tails while depleting intermediate regions of the
probability density so that the noise is dominated by
very small fluctuations. The value of the tempering
constant λ thus influences the slope of the induced
drift whereby now those oscillators that may under-
take a large jump, of the order ofπ, may still not leave
the basin of attraction. Tempering thus introduces
a third class of oscillators, over and above the sep-
aration discussed in [9] of ‘large’ and ‘non-jumpers’,
namely those undergoing intermediate scale jumps
to the boundary, but not beyond, of the basin of at-
traction. The proportion of these change with vary-
ingα and λ such that the slope of the drift changes in
order to respect the overall finite mean overall for the
noise.

5. Conclusions

We have examined the dynamics of identical
Kuramoto oscillators under tempered stable Lévy
noise, further generalising numerous studies of the
stochastic model from Brownian white noise models.
Some of the results were entirely predictable: tem-
pering with constant λ > 0 leads to improved syn-
chronisation compared to the behaviour under noise
for the same values of coupling κ, noise strength σ
and Lévy index α. Also, the Barabasi-Alberts scale
free graph degrades more gracefully in synchroni-
sation under increased noise strength compared to
the Erdos-Renyi random graph; the hub in scale-free
graphs provides robustness to oscillator dynamics
across a wide variety of noise models. Some results
were surprising: for fixed coupling, noise strength
and tempering constant the collective synchronisa-
tion improved with decreasing α. Also, the direc-
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tion of the induced drift of oscillators was depen-
dent on the values of α,σ,β and λ in a more compli-
cated manner than might have been expected from
the stable case. These behaviours could be analyt-
ically computed by solving the tempered fractional
Fokker-Planck equation for probability distributions
of Laplacian modes after linearising close to syn-
chrony. And, finally, a simple intuition for these be-
haviours could be built once the specifics of changes
in the probability densities of tempered stable noise
were appreciated, specifically the narrowing of den-
sities around the mode for α< 1.
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Figure 3: Solutions to the steady-state fractional Fokker-Planck equation for differentα, comparingλ= 0.01 (top), λ= 0.2 (middle) andλ= 1
(bottom) for the m = 1 mode atσ= 3. Left hand column is for the BA graph and right hand column the ER graph.
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Figure 4: Plots of the asymptotic value of the order parameter, r∞ (averaged over 30 graphs and 128 paths) versus σ for the BA (solid line)
and ER (dashed line) graphs at variousα andλ. Here we select specific values ofα between 0 and 2 going from left to right and top to bottom,
with different values of λ indicated in shades of cyan running from light (λ= 0) to black (λ= 1).
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Figure 5: Simulation of one path of N = 1000 Kuramotoωi = 0 oscillators in Eq.(1) at K =N on an ER network subject to tempered stable
Lévy noise with α= 1.95,λ= 0.05,σ= 2, plotting 30 individual θi as functions of t . The probability density functions of this choice of noise
(purple curve) and the Gaussian noise (black curve) are shown top right. The Q-Q plot (bottom right) compares the tempered stable Lévy
noise against the Gaussian noise. We note that this figure looks similar to the result in [9] as with small λ and α = 1.95, the result is nearly
indistinguishable from the stable case.
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Figure 6: Simulation of one path of N = 1000 Kuramotoωi = 0 oscillators in Eq.(1) at K =N on an ER network subject to tempered stable
Lévy noise with α = 1.5,λ = 0.2,σ = 2, plotting 30 individual θi as functions of t . The probability density functions of this choice of noise
(purple curve) and the Gaussian noise (black curve) are shown top right. The Q-Q plot (bottom right) compares the tempered stable Lévy
noise against the Gaussian noise.
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Figure 7: Simulation of one path of N = 1000 Kuramotoωi = 0 oscillators in Eq.(1) at K =N on an ER network subject to tempered stable
Lévy noise with α = 1.5,λ = 0.1,σ = 2, plotting 30 individual θi as functions of t . The probability density functions of this choice of noise
(purple curve) and the Gaussian noise (black curve) are shown top right. The Q-Q plot (bottom right) compares the tempered stable Lévy
noise against the Gaussian noise.
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Figure 8: Simulation of one path of N = 1000 Kuramotoωi = 0 oscillators in Eq.(1) at K =N on an ER network subject to tempered stable
Lévy noise with α = 1.1,λ = 0.2,σ = 2, plotting 30 individual θi as functions of t . The probability density functions of this choice of noise
(purple curve) and the Gaussian noise (black curve) are shown top right. The Q-Q plot (bottom right) compares the tempered stable Lévy
noise against the Gaussian noise.
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Figure 9: Simulation of one path of N = 1000 Kuramotoωi = 0 oscillators in Eq.(1) at K =N on an ER network subject to tempered stable
Lévy noise with α = 0.7,λ = 0.2,σ = 2, plotting 30 individual θi as functions of t . The probability density functions of this choice of noise
(purple curve) and the Gaussian noise (black curve) are shown top right. The Q-Q plot (bottom right) compares the tempered stable Lévy
noise against the Gaussian noise.
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Figure 10: Simulation of one path of N = 1000 Kuramotoωi = 0 oscillators in Eq.(1) at K =N on an ER network subject to tempered stable
Lévy noise with α = 0.5,λ = 0.2,σ = 2, plotting 30 individual θi as functions of t . The probability density functions of this choice of noise
(purple curve) and the Gaussian noise (black curve) are shown top right. The Q-Q plot (bottom right) compares the tempered stable Lévy
noise against the Gaussian noise.
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Highlights

1. We apply tempered stable Levy noise to the Kuramoto model of equal frequency oscillators.

2. Barabasi-Alberts and Erdos-Renyi random network cases of 1000 nodes are compared.

3. Differences in synchronisation for the two cases generalise beyond Gaussian noise.

4. New types of synchrony are seen showing drift depending on noise parameters.

5. The results are analytically explained with the fractional Fokker-Planck equation.


