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- New approach for the analytical solution of agent-based models (named DSG-A). 

- DSG-A incorporates infinite horizon optimization in a complex economic system. 

- Identification of two types of equilibrium: rational and uncertainty equilibrium. 

- Applying DSGA a multi-sectoral agent-based model solved through a dynamical system. 

Highlights (for review)
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Abstract 

The paper proposes an innovative approach for the analytical solution of agent-based models.  

The approach is termed Dynamic Stochastic Generalized Aggregation (DSGA) and  is tested on a 

macroeconomic model articulated in a job and in a goods markets with a large number of 

heterogeneous and interacting agents (namely firms and workers).  

The agents heuristically adapt their expectations by interpreting the signals from the market and give 

rise to macroeconomic regularities.  

The model is analytically solved in two different scenarios.  

In the first, the emergent properties of the system are determined uniquely by the myopic behavior of 

the agents while, in the second, a social planner quantifies the optimal number of agents adopting a 

particular strategy. The integration of the DSGA approach with intertemporal optimal control allows the 

identification of multiple equilibria and their qualitative classification. 

 

Keywords: aggregation, uncertainty, opinion dynamics, master equation, optimal control. 
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1. Introduction

The standard assumption of perfect rationality rules out the possibility of agents
making mutually inconsistent decisions which might lead to situations of aggre-
gate disequilibrium, multiple equilibria or indeterminacy. These outcomes can
emerge in models that feature some sort of bounded rationality or heterogeneous
beliefs (not confined to a predefined distribution) and which allow for agents’
interaction and learning. Agent-based models (ABMs) represent a suitable and
well-known example of this modeling strategy. This approach has been proven
capable of replicating a wide range of stylized facts (see Delli Gatti et al., 2005;
Dosi et al., 2013; Lengnick, 2013, among many others) and providing original
policy indications (Journal of Economic Behavior & Organization, 2008).

Therefore Dynamic Stochastic General Equilibrium (DSGE) and ABM approaches
appear at odds with their conceptual pillars and the range of possible implica-
tions. While it is possible to find examples of DSGE models which incorporate
some of the insights and modeling strategies of ABMs1, to the best of our
knowledge the literature has not yet provided an original theoretical framework
sufficiently flexible to include the defining features of both approaches simulta-
neously.

Recent applications of statistical mechanics tools in macroeconomics can open
new perspectives for a closer integration of the two approaches.2 In this liter-
ature, the macroeconomic system is structured as a continuum of states, each
corresponding to a discrete value of a state quantity such as production or price
level. Microeconomic agents are classified in a grid of states (such as production
levels, leverage ratio, etc...), and can switch stochastically across them accord-
ing to probability laws defined by the transition rates. Each macroeconomic
state can be associated to different configurations at the micro-level. Since the
evolution of the aggregate quantities depends on how the agents are distributed
across micro-states, it is possible to quantify a probability for the macro-states.
This method is feasible with any amount of information on the possible microe-
conomic configurations.

This analytical representation has proved capable of replicating the results of
agent-based models with higher degrees of heterogeneity (Chiarella and Di Guilmi,
2011; Di Guilmi et al., 2012; Di Guilmi and Carvalho, 2017) but has not been
applied or extended to more comprehensive multi-sectoral frameworks to pro-
vide a general methodology comparable to that adopted by general equilibrium
models.

1See Gobbi and Grazzini (2015) and the papers reviewed by Dilaver et al. (2016). From
this perspective the works of Per Krusell and co-authors are also relevant (see in particular
Krusell et al., 2012).

2See Alfarano et al. (2008); Aoki (1996, 2002); Aoki and Yoshikawa (2006); Foley (1994);
Lux (1995, 1998); Smith and Foley (2008); Weidlich (2000, 2008). In this paper we will draw
in particular on the seminal contributions by Aoki (2002) and Aoki and Yoshikawa (2006) and
further developments by Di Guilmi (2008) and Landini and Uberti (2008).
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This paper is a first attempt in this direction and provides three main contribu-
tions. First, it introduces a general methodology for an aggregate representation
of ABMs by means of an original use of the master equation. This methodol-
ogy adopts a bottom-up modeling approach to build a representation of the
economy based on a dynamical system, as in standard DSGE models but with-
out reducing the complexity of the microeconomic interactions, and allowing
for out-of-equilibrium dynamics. The dynamics of the macroeconomic variables
depend on the evolution of the proportions of agents adopting the different
available strategies, which is modeled as a Markov process and quantified by
the master equation. The aggregate model preserves the behavioral assump-
tions of the ABM by embodying them in the transition rates. Consequently,
the aggregate system inherits the disequilibrium dynamics from the ABM. For
this reason, a side result is that our methodology can be regarded as an orig-
inal alternative to model dynamical disequilibrium. We define this innovative
approach as Dynamic Stochastic Generalized Aggregation (DSGA).

Second, this original use of the master equation is a relevant contribution to
the vast and growing literature on opinion dynamics (see Brock and Hommes,
1997; Lux, 2009, among many others) from a dual perspective: first, the model is
explicitly microfounded, and second, a closed form solution is identified, allowing
for a full analytical representation of the evolution of the macro-variables as
dependent on agents’ choices.

The third and perhaps most relevant contribution is the stochastic analysis of
a scenario in which a social planner identifies the optimal proportions of the
agents in the different groups in order to maximize the expected streams of
profit and utility. In that scenario, complexity and rationality coexist, and it is
possible to assess the role of uncertainty and interaction in determining macroe-
conomic outcomes. Indeed, the DSGA approach incorporates infinite horizon
optimization in a complex economic system, allowing for comparison with the
heuristic behavior of the standard ABM treatment. This allows us to model
and discriminate between: a) rational incentives driving microeconomic behav-
ior and via aggregation the macroeconomic dynamics, b) uncertainty arising
from irreducible complexity due to agents’ interactions. This representation in-
volves interaction at the microeconomic level, and it cannot be reproduced using
standard stochastic processes, nor included in a standard decision process un-
der uncertainty. This allows us not only to identify a multiple-equilibria system
but also to distinguish qualitatively different types of equilibria. Two kinds of
equilibria emerge: rational equilibrium in which the system is in a quasi-steady
state defined by rationality principles, and uncertainty equilibrium which is the
result of system complexity and agents’ interactions. In the rational equilib-
rium, agents receive signals which lead the macroeconomic system to stabilize
according to an optimization rule identified by a social planner. The uncer-
tainty equilibrium corresponds to a sub-optimal configuration determined by
the uncoordinated response of agents to changes in the economic environment.

Other techniques have been proposed with the aim of providing an analytical

2
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counterpart to ABMs. In particular Assenza and Delli Gatti (2013) and other
related works model the macroeconomic dynamics as depended on the moments
of the distribution of a particular microeconomic variable. The DSGA is dis-
tinguished from this approach by three main aspects. First, it focuses on the
(open-ended) state-space of the macroeconomy rather on the moments of the
distribution of a particular variable. Consequently its application does not de-
pend on the particular distribution of the micro-variable, which might raise
issues (for example, if the distribution is Pareto the second moment may not
be finite). Second, it preserves and embodies interaction as the source of the
emergent properties of the system. Third, it allows the joint analysis of multiple
state variables.

Anticipating some results, our analysis shows that full employment equilibria is
attainable only in a context with perfect rationality. In both the heuristic and
the optimizing treatments, the model exhibits structural imbalances that lead
to periodic crashes when agents are boundedly rational, or affect the long-run
trend in the optimizing case. Even in the case of perfect rationality, the economy
can be caught in an uncertainty trap (Aoki and Yoshikawa, 2006, chap. 4).

The remainder of the paper is structured as follows. Section 2 briefly presents
the ABM, which is an adaptation of Russo et al. (2007). Section 3 introduces
the aggregation method. Section 3.1 describes the specific application of the
master equation and its solution, comprising an ordinary differential equation
plus a stochastic component. Both solution components (the parameters of
the differential equation and the moments of the distribution of fluctuations)
depend on the transition rates. In turn, the transition rates are defined as the
product of the probability of transition and the probability to be in the state
from which the transition occurs. Sections 3.2 and 3.3 presents the functional
identification of the latter. Section 3.2 uses maximum entropy while 3.3 presents
the derivation in the equilibrium condition of the master equation. This second
derivation provides the two different treatments of the stochastic evolution of
the agents: the heuristic (or zero-intelligence) case, and the full rationality case.

Section 4 implements the methodology in the ABM described in section 2 by
configuring the analytical solution. Section 4.1 derives the equations for the rel-
evant macroeconomic variables (output, price, wage and consumption), which
are dependent on the share of agents in the different states. Section 4.2 de-
tails the procedure for the determining the transition probabilities according to
the model’s behavioral assumptions. It provides the calculation of the relevant
quantities for defining the probability of being in one of the states for, respec-
tively, the heuristic and perfect rationality treatments. Section 5 describes and
contrasts the results of the numerical simulations for the heuristic case (section
5.1), and contrasts them with the numerical solution of the ABM (section 5.2)
and with the full rationality case (section 5.3). Section 6 deepens the analysis
of the different types of equilibria by proposing an analytical criteria for classi-
fying them quantitatively and by identifying the transition paths between them
in section 6.1. Section 6.2 exploits these analytical results to conduct a simple

3
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policy experiment. Section 7 offers some concluding remarks.

2. The Agent-Based Model

The model on which we test the aggregation technique borrows heavily from
Russo et al. (2007). This model provides a suitable environment for testing the
DSGA because it includes different markets in a rather simple setting with basic
heuristic behavioral rules for agents.

Our model is composed of large and close populations of firms and workers,
and the economic system consists of a circular flow of goods and money. Firms
operate in a monopolistically competitive market: they produce goods that are
close substitutes but, as a result of market imperfections, can be sold at different
prices. Firms can be heterogeneous in their production and price levels. Workers
have identical skills but, given labor market frictions, they can be characterized
by different reservation wages. They also can have different levels of wealth.
Firms set the production quantity, the selling prices and the labor demand.
Information is incomplete and limited in the model, and agents adaptively revise
their expectations each period according to a set of simple rules. The timeline
of events is detailed in Appendix A.

At the beginning of each period, firms heuristically determine the quantity to
produce depending on whether they sold the whole of their production in the
previous unit of time, or have unsold goods in stock si. Namely, the ith firm
decides to adjust the desired produced quantity yi(t) based on a simple dichoto-
mous strategy:

yi(t) = yi(t− dt)×
{

(1 + δ) if si(t− dt) = 0
(1− δ) if si(t− dt) > 0,

(1)

where 0 < δ < 1 and dt is an arbitrarily small time interval. Firms adopt a
linear technology which employs only labor l with unitary labor productivity
constant across firm and through time, expressed by

yi(t) = li(t) (2)

which also quantifies the demand for labor.

Workers set their satisficing wages w according to their previous occupation
status, which is modeled as a dichotomous variable occ equal to 1 if the worker
was employed and equal to 0 otherwise. Thus the satisficing wage of worker j
is equal to

wj(t) = wj(t− dt)×
{

(1 + δ) if occj(t− dt) = 1
(1− δ) if occj(t− dt) = 0.

(3)

As the labor market opens, firms set vacancies according to the difference be-
tween labor demand and their current stock of labor force. If the difference is

4
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positive new vacancies must be filled, otherwise labor is destroyed. Then the jth

worker sends applications to a subset hwji of randomly chosen firms, indicating
her satisficing wage. Firms collect the workers’ curricula, sort them according
to the satisficing wage, and hire the cheapest workers. As a consequence, a firm
may not receive enough applications to satisfy its demand for new labor, and
then the actual increase in output will be smaller than the planned δyi. In the
case of a firm reducing its output, the most expensive employees will be laid off.

We follow Russo et al. (2007) and assume workers to have complete market
power: a worker earns her satisficing wage if hired, otherwise she remains un-
employed. Accordingly, wages are never below the satificing levels and workers
are able to extract all the surplus in the labor market bargaining.

Once the quantity of labor is set and the wage costs are known, firms set the
goods prices p for the current period. Their decision is dependent on whether
they were able or not to sell all their production in the previous unit of time.
If a firm did not sell all its output and has accumulated stocks, it will revise
its price downward. It will make the opposite decision if its stocks are equal to
zero. Accordingly, the desired price p∗i (t) for firm i is

p∗i (t) =

{

pi(t− dt)(1 + δ) if si(t− dt) = 0
pi(t− dt)(1− δ) if si(t− dt) > 0.

(4)

A firm will actually apply the variation calculated as in (4) if the resulting price
is at least equal to the production costs. Let us define the average cost of the
subset hlij of employed workers as

p1i =

∑

j∈hl
ij
wj(t)

yi(t)
(5)

The actual price for the firm i at time t will be equal to

pi(t) =

{

p∗i (t) if p∗i (t) ≥ p1i (t)
p1i (t) if p∗i (t) < p1i (t).

(6)

The jth consumer wants to consume all her wealth zj . The consumer searches
for the cheapest goods by collecting a subset of the posted prices from hcji
randomly chosen firms. Then she sorts these prices and buys the maximum
quantity of goods allowed by her stock of wealth (given the prices) or by her
suppliers’ availability. As such, consumers can be supply-constrained, if the
suppliers’ availability is below the desired quantity, with the consequence that
cj < zj .

Worker’s wealth is increased in each period by the amount of labor income plus a
share of firms’ profits (equally allocated among all households) less consumption.
If the consumer is supply-constrained, the wealth in excess of consumption is
remunerated at the constant interest rate r in each period. Accordingly, the
nominal wealth z of each consumer j evolves according to

zj(t) = (1 + r)zj(t− dt) + occj(t)wj(t) +
Π(t)

Nc
− cj(t), (7)

5
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where Π is the total amount of profits, and Nc is the number of consumers.
Therefore when zj(t) > 0, the consumer is supply-constrained.

In the following period she will try again to spend all her wealth.

Finally, stocks for firm i are calculated as the difference between production and
the actual consumption of the consumers in its pool hyij

si(t) = yi(t)−
∑

hy

ij

cj(t)

pi(t)
. (8)

3. Methodology

Figure 1 provides a graphical representation of the structure of the DSGA ap-
proach. ABMs are represented as Markovian processes in which agents are
endowed with a particular interaction protocol and a set of behavioral rules and
strategies which represent the basis and starting point of our approach. Agents
may change their strategies as a consequence of the interaction, according to the
behavioral rules of the ABM. Consequently, the functional form of the transition
rates of the Markovian process can be identified from the explicit behavioral as-
sumptions of the ABM. It is worth noting that this functional representation
takes account of both the complex interactions among agents which drive the
agents’ choice of a particular strategy, and the macroeconomic conditions. The
transition rates are arguments of the master equation, which is employed to
describe the evolution of agents. The DSGA representation (the vertex of the
pyramid) exploits the solutions of the master equation to quantify, through a
dynamical system, the evolution of the aggregate variables as dependent on
the distribution of agents. In turn, the macroeconomic variables determine the
transition rates (the base of the pyramid) in a circular fashion. More precisely,
given the distribution function of the variable of interest at the agent level (for
example the levels of excess demand for each firm’s product), its aggregate value
(aggregate excess demand) will represent the reference point for calculating the
likelihood for the agents to change strategy (firms’ decision about increase or de-
crease in production). In a nutshell, both the algorithmic structure of the ABM
(strategies and interaction protocols) and the set of macroeconomic variables
determine the distribution of agents across states or strategies.

This section presents the main tools used in the DSGA approach. The master
equation is introduced in section 3.1 together with its solution and a discussion
of the particular application proposed in the present paper. The solution of
the master equation depends on the transition rates of the underlying Markov
process. The next two subsections illustrate the procedure for deriving the
transition rates. Section 3.2 introduces the concept of statistical entropy, which
is central to the stochastic aggregation process, and solves a maximum entropy
problem in order to derive the quantities to be used in the remainder of the
analysis, and in particular, for the definition of the transition rates. Section

6
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3.3 shows the functional definitions of the transition rates. It describes also
how the different degrees of rationality and uncertainty are incorporated in the
transition rates in order to determine the stochastic evolution of the system.

3.1. Master Equation and dynamics

Consider a population of i = [1, ..., Nk] agents, where k identifies the subgroup,
for example firms and workers. At any point in time, an agent is in a state sk =
[1, ..., Sk] and adopts the associated strategy fsk in order to set the evolution
of its control variables xk ∈ RMk , where Mk is the number of control variables
for each type of agent. Thus, the control variables of the individual i of type k
evolve according to ẋi,k = fsk(xi,k).

For the whole economy, it is possible to identify a S ×mk functional matrix F
and a mk-dimensional control variable vector ẋ such that

ẋ(t) = F (x(t)). (9)

considering dt→ 0 in a continuous time setting.

In order to reduce the dimensionality of the problem and aggregate the system,
we indicate the probability of an agent to be in state sk as P (sk). The resulting
dynamical system is:

Ẋk =
∑

sk

fsk(Xk)P (sk), (10)

where Xk is the aggregate control variable. The above system is the aggregate
stochastic macro-rule originating from the set of micro-rules (9).

Assuming that the stochastic process governing the switching of a specific j-type
agent is Markovian3 allows us to use the master equation to model the evolution
of the probabilities P (s). The master equation has been already applied in
macroeconomic models with a large state-space for a single agent-level state
variable (Di Guilmi et al., 2012). Here, we focus on the case of binary options
for agents, which provides a more immediate analytical representation of the
new methodology with multiple state variables and is appropriate for the ABM
described in section 2. Let us consider two states s = [1, 2] and use as a reference
the state s = 1, such that nk denotes the relative density of agents of type k in
state 1. Accordingly, the master equation for the density nk is given by

dP (nk, t)

dt
= λk(t)P (nk−1/Nk, t)+γk(t)P (nk+1/Nk, t)−[λk(t) + γk(t)]P (nk, t),

(11)

3It is worth noting that the transition rates of the process are time varying and, as a
consequence, the assumption of Markovianity does not imply the memory-less property at the
agent level. In fact, the probability of transition of an agent depends on its current endowment,
which is the result of its previous history, and its current micro-state, which is updated every
period. See Izquierdo et al. (2009) for a discussion on the use of Markov processes to represent
the dynamics of ABMs.

7
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where λk and γk are the respective transition rates in and out of state s = 1.
Equation (11) is a balance flow equation between the probability of observing
a density equal to nk starting from a different density, and the probability of
already having a proportion nk of agents in state s = 1 and observing any
transition.

The transition rates are given by

λk(t) =(1− ηk)ζk(t), (12)

γk(t) =ηkιk(t). (13)

where ηk is the probability to be in state s = 1, which is considered as exogenous
for the moment, while ζk and ιk are the probabilities of a single agent entering
and exiting state s = 1, respectively. The transition probabilities are dependent
on the model’s behavioral assumptions, and the agent’s condition at any given
time.4

In order to asymptotically solve (11), we apply the approximation method in-
troduced by Aoki (2002), which splits the fraction of agents in state sk into a

drift term mk and an additive spread term uk (divided by N
1/2
k to normalize

its standard deviation) as follows:

nk(t) = mk(t) + uk(t)N
−1/2
k . (14)

Di Guilmi (2008) derives a system of coupled equations for the generic terms m
and u:

dmk

dt
= λk(t)mk(t)− [λk(t) + γk(t)]mk(t)

2, (15)

duk = −a1(mk)ukdt+ a2(mk)dW, (16)

where dW is a Wiener process.5

Accordingly, equation (10) can be re-formulated as follows

Ẋk(t) =
∑

sk

fsk(Xk(t))nsk(t). (17)

Finally it is possible to build a dynamical system to describe the model. This
system is composed of two subsystems: the subsystem of macro-equations (17)
which is nothing more than a weighted average of the rules of the system at
the micro level, and the subsystem of the master equations’ solutions which

4The DSGA makes use of endogenous and microfounded transition rates as opposed to the
standard approach in DSGE with heterogeneous agents, where heterogeneity is modeled as
an idiosyncratic exogenous stochastic process.

5Di Guilmi (2008) derives a solution of the master equation (11) composed of equation

(15) and a Fokker-Planck equation whose stationary solution is P (uk) ∼ N (0, λkγk

(λk+γk)
2 ). As

demonstrated by Gardiner (2002) and van Kampen (1992), the stochastic process of the noise
can be expressed as the Ito stochastic differential equation (16).

8
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determine the number of agents in each state according to equations (14), (15)
and (16). The first subsystem uses the proportions of agents in each state to
describe the time evolution of the macroeconomic variables; the second subsys-
tem uses the transition rates, which are updated according to the response of
agents to changes in the macroeconomy, to provide the proportions of agents in
the different states.

3.2. Entropy and inference

In order to provide a functional specification of the transition rates according
to (12-13), we need to identify the transition probabilities ζ and ι and the prob-
ability η. The transition probabilities depend on the specific assumptions in
the underlying ABM and are derived in section 4.2. We present two possible
formulations for the probability η. The first is introduced in this section, and
makes use of the maximum entropy method, without involving the master equa-
tion. For our purposes, the main reason for using this method is to derive the
uncertainty variable, identified below as β, which will feature also in the second
formulation of η introduced in section 3.3

Maximization of the system entropy, which is known in information theory as
MaxEnt (Jaynes, 1957), provides the most likely probability function for the
number of agents following a particular behavioral rule s, subject to the nor-
malization constraint, and to additional constraints representing the available
information.

As demonstrated in Appendix B, in the two-state case s = [1, 2], the resulting
functional form for the share of agents nk in state s = 1 is given by

P (nk) = ηk =
exp(−βkV1)

exp(−βkV1) + exp(−βkV2)
, (18)

where V1, V2 are the returns associated to the two strategies. The quantity
βk is the intensity of switching, and measures the degree of uncertainty in the
system: for β → ∞ there is no uncertainty and all agents adopt the best-
performing strategy; for β → 0 the return plays no role and all the strategies
have an equal probability. This functional form has become extremely popular in
discrete choice models since the pioneering work by Brock and Hommes (1997).
Chiarella and Di Guilmi (2015) show that (18) can be endogenously derived
by maximizing the statistical entropy. In this approach, βk is the Lagrange
multiplier of the constraint to the entropy maximization concerning the returns
coming from the different states, rather than an exogenous parameter. As shown
in Appendix B, in the case of two available strategies 1 and 2, β can be expressed
as

βk = (V1 − V2)
−1log

(

nk
1− nk

)

. (19)

where nk is the proportion of agents in state 1 as above. It is easy to see that,
provided that V1 − V2 6= 0 and is finite, βk → ±∞ when nk goes to 0 or 1

9
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(minimum uncertainty: all agents adopt the same strategy), while βk ≈ 0 when
nk = 1/2 (maximum uncertainty: the two strategies are equally likely).

3.3. Stochastic equilibrium

In solving the model, we use a different formulation of the probability η, identify-
ing it as the stationary distribution of the Markovian process of agents’ switching
which is introduced in section 3.3.1. As shown in section 3.3.2, derivation of the
stationary distribution differs depending whether it is determined only by the
heuristic behavior of economic agents or is the result of an optimization process.

3.3.1. Equilibrium distribution

The master equation is in equilibrium if the probability inflows are equal to the
outflows. Given the dependence of macroeconomic variables on the proportions
of agents in the two states illustrated in section 3.1, the equilibrium condition
for the master equation will correspond to the statistical representation of a
deterministic economic steady state.

Following Aoki (2002, 46), in the case of two possible states s = [1, 2], under
this condition the probability function for the proportion of agents of type k
in state 1, indicated by n1, is of the Gibbs type with the following functional
form6

P (n1) = ηk =
exp[βkgk(n1)]

exp[βkgk(n1)] + exp[−βkgk(n2)]
. (20)

where βk is the same as in (19). This formulation for the stationary probability
allows us to incorporate additional information with respect to the result in
(18). In (20), economic behavior is not measured simply by the return of the
strategy but is modeled by g(ns), which is a function evaluating the difference
in the utility between the different strategies.

In the standard opinion formation literature, the function g(ns) in (20) repre-
sents an assumed fitness function which quantifies the returns associated to the
particular strategy s. Alternatively, the suitable functional form for g can be
identified endogenously using the economic potential (Smith and Foley, 2008).
The potential is a functional which quantifies the likelihood of a state of the
system as a consequence of the states of its parts. In this perspective, it pro-
vides a measure of uncertainty since it depends on how many combinations of
agents’ choices are compatible with a given macroeconomic state. In particular,
large values of the potential signal that a particular macroeconomic state can
be generated by a great number of different configurations at the micro-level,
therefore the degree of uncertainty in the system is large.7 Consequently, the

6This result stems from the Markov-Gibbs equivalence demonstrated by the Hammersley
and Clifford theorem (Clifford, 1990).

7In statistical physics, the minimum of the potential are the points where the free energy
of the system, and consequently the uncertainty, reaches a minimum. In an economy, this

10
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minima of the potential represent possible absorbing states where agents have
no incentive to change their strategy, and discontinuities may prevent the tran-
sition from one equilibrium to another. Following Aoki and Yoshikawa (2006)
and Di Guilmi (2008), for systems with two micro-states, the potential is defined
as

Uk = −2

∫ n1

0

gk(x)dx− H(n1)

βk
, (21)

where H is the statistical entropy, which in the Shannon formulation is given
by

H = −n1log(n1)− n2log(n2). (22)

As equation (21) shows, a negative relationship exists between the level of the
potential and the uncertainty, quantified by βk. When the uncertainty is at its
maximum (βk → 0) the potential is not defined, and tends to infinity.

3.3.2. Agents’ behavior and stochastic equilibrium

The g function plays a relevant role in our story. It factors the degree of ratio-
nality in the determination of the stochastic equilibrium. We distinguish two
cases. In the first scenario, the heuristic case, the aggregate properties are the
results of the uncoordinated choices of agents who behave like atoms. In the
second case, we identify the proportions of agents in each group that maximize
some measure of social welfare by applying standard maximization tools.

Derivation of g: the heuristic case.

To identify the minima of the potential, we must find the critical points of the
equation (21). Taking the derivative with respect n1, the first order condition
is given by

∂Uk

∂n1
= −2gk(n1)−

dH

dn1
β−1
k = 0. (23)

Considering that n2 = 1−n1 and substituting (19) and (22) into (23), we obtain

gk(n1) =
V1 − V2

2
. (24)

At the point of minimum uncertainty, gk is equal to the relative value of the
returns, with an equal probability for the two alternatives. In this situation the
probability functions (18) and (20) are identical, meaning that, in the absence
of any further specification about agents’ behavior being included in gk, the
inference process considers unsophisticated agents (as atoms) and the macroe-
conomic results are not impacted by their behaviors.

corresponds to a situation where incentives to take opposite actions offset one another and
the system reaches a statistical equilibrium.

11
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Substituting (19) and (24) into (20), we obtain

P (n1) =
exp[βkgk(n1)]

Z =
exp[V1−V2

2 log
(

n1

1−n1

)

(V1 − V2)
−1]

Z =
n1

1− n1

1

Z ,

where Z =
∑

s P (ns). Under the assumption of heuristic behavior, the prod-
uct of the uncertainty variable βk and the gk function vanishes: if economic
behavior is quasi-random, the economic incentives are indistinguishable due to
uncertainty.

Derivation of g: full rationality and optimization.

Rationality is introduced in the model to preserve the probabilistic nature of
the aggregation method, allowing for a comparison with the heuristic case. The
decision rules for agents are the same as in the heuristic setting but we assume
also that a social planner maximizes an objective function in which the argu-
ments are the fractions of agents adopting a particular rule, obtaining standard
Euler equations. In a treatment similar to Brock and Durlauf (2001), the social
decision maker optimizes an intertemporal objective function controlling for the
densities of agents in each group.8 In this perspective, the gk function becomes
the outcome of a dynamic intertemporal control problem specified as marginal
net utility from available alternatives. As a consequence, the transition rates
incorporate (through the gk function) non-trivial behavior: a coordination pro-
cess in which agents behave optimally in transitioning from one heuristic rule
to the other.

To the best of our knowledge, this is the first attempt to link the master equa-
tion approach to the standard dynamic optimization, following the suggestion
in Aoki and Yoshikawa (2006, 68): “The apparently very simple binary choice
model actually accommodates sophisticated dynamic optimization under uncer-
tainty”. Our approach differs from other works where the social planner’s op-
timization subject to a market clearing condition involves the distribution of
agents as in Nuño and Moll (2015), in order to compare the outcomes of cen-
tralized versus decentralized optimization processes. Specifically, we propose an
investigation of the outcomes of rational optimization in a complex system char-
acterized by random interactions among agents and not bounded by an imposed
market-clearing equilibrium.

The social planner considers equation (17) for the macro-state Y as the state
equation of a standard intertemporal control problem. The control instruments
are given by the fractions of agents choosing a particular strategy.

8This is a standard modeling strategy in macroeconomics, for example in the dynamic
programming applied to search and matching labor market (Trigari, 2006; Gertler and Trigari,
2009). In these models, the labor participation decision is modeled as the intertemporal
problem of a planner who chooses the optimal fraction of the household’s working members.
Optimality conditions provide dynamic labor supply equations which depends on the expected
net labor income. Similarly, we use the densities of agents in each group as control variables,
to be set by the social planner given some dynamic constraints, in order to maximize the
intertemporal utility/profits.
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Formally, the vector of the occupation numbers n quantifies the weights for a
collection of available strategies s = 1, ..., S which determine the macroeconomic
variable Y . The intertemporal optimization problem is defined by the following
infinite horizon return stream

gk (Y, ns) = max
n(t)

∫

∞

t0

exp(−θt)ψ(Y (t),n(t))dt, (25)

subject to the macroeconomic rule:

Ẏ (t) =
∑

s

fs(Y (t))ns, (26)

where ψ and θ respectively are the instant payoff function and the discount
factor. The steps required to obtain a closed form solution for the above problem
are:

1. to represent the optimization problem under the Hamilton-Jacobi-Belmann
equation which provides a dynamic forward looking ordinary differential
equation for the discounted payoff function (25);

2. to calculate the first order condition with respect to n, subject to the
dynamics of the state variable given by eq. (26);

3. finally, to find a closed form solution for gk, i.e. the solution in time for
the dynamics of the value function found in step 2.

In economic terms, the problem boils down to a decision about the fractions of
individuals playing each of the available strategies. If applied at the individual
level, such a model would describe an agent playing a mixed-strategy. From a
frequentist or aggregate perspective, the solution for the gk function is used to
describe a world where agents are guided by rationality principles while adopting
simple behavioral rules. This approach to rationality does not need a reduction
in the degree of system complexity, and it is able to describe rationality in a
context of disequilibrium.

4. Stochastic aggregate model

In this section we apply the aggregation method introduced in section 3 to the
model presented in section 2. Firms and workers are classified according to their
strategy or condition. The densities of agents in each condition determines the
evolution of the relevant macro-variables in our economy, namely production,
price, average wage and consumption. The dynamics of these densities are
identified by a set of four master equations.

Consequently, the dynamical system describing the model is composed of four
aggregate equations such as (17), and the solutions of the master equations,
given by (14), (15) and (16) for each of the macroeconomic variables. The
master equations’ solutions feature the transition rates. These rates are specified

13
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in accordance with the ABM’s behavioral rules, and therefore constitute the
link between the microeconomic level and the macroeconomy. The equations
comprising the analytical solution are summarized in Appendix C.

The steps required to perform the aggregation are:

1. identification of the states over the agents’ sub-groups. Namely, we have
k = {y, c, w, p} for, respectively, firms clustered according to production
change, consumers, workers and firms clustered according to price change.
Table 1 shows the states representing agents’ choices;

2. the definition of the equations for the agents’ state variables according to
equation (9);

3. specification of the transition rates. In order to define the transition rates
we need: first, to identify the transition probabilities and, second, to quan-
tify the generic probability η of an agent being in one the two states. This
latter requires us to specify the uncertainty variable β and the value func-
tions g for the heuristic case and the rational case respectively.

The remainder of this section presents the derivation of the results of steps 2
and 3.

4.1. Aggregate equations

In order to complete step 2, we need to exploit the law of motion of the variables
at the micro-level defined in the previous section, and aggregate by calculating
a suitable weighted average where the weights are given by the proportion of
agents in each the two states, determined by the master equation. The aim is to
apply the generic equation (17) to this model in order to obtain the dynamics of
the aggregate variables. To obtain an explicit functional relationship between
the number of agents in each state and the macroeconomic variable consistent
with the assumptions and the structure of the ABM requires analytical approx-
imations of agents’ behavior.9 While this solution process potentially could be
applied to any ABM, identification of the best specific approximation for each
model depends on its particular assumptions and structure. As we show below,
numerical simulations of the ABM can provide guidance for the identification of
a suitable analytical representation. The same remarks apply to the derivation
of the transition rates in section 4.2 below.

9Di Guilmi (2008) and subsequent papers adopt the mean-field approximation to reduce
the vector of observables within a cluster of agents to a single value to be used in the agents’
behavioral equations. Here we propose a different strategy using aggregate functions to ap-
proximate the random behaviors and matching of agents. Although the procedure adopted in
Di Guilmi (2008) has been proven to be able to replicate the numerical results of the ABM,
the alternative proposed here is more consistent with the general approach in the present
paper and the application in a more standard modeling technique.
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4.1.1. Output

The equation governing the dynamics of aggregate production is the weighted
mean of the variation in production for firms that reduce production and firms
that increase production to the extent allowed by the imperfect matching in the
labor market.

The symbols un(t) and yi(t)δ represent respectively the unemployed workers
and the new vacancies, and δ is the upward (downward) adjustment in output
targeted by firms in case of null (positive) inventories as specified in section
2. The imperfect matching generated by the random procedure of the ABM
can be approximated analytically by the matching function fl(un(t), yi(t)δ) =
un(t)

a(yi(t)δ)
b, with a, b as positive parameters, and the associated per-vacancy

matching probability q(t) = fl(t)
yi(t)δ

(Mortensen and Pissarides, 1994). Thus, for

the analytical treatment to consider the matching frictions, equation (1) must
be re-expressed as

yi(t) = yi(t− dt)×
{

(1 + fl(t)) if si(t− dt) = 0
(1− yi(t)δ) if si(t− dt) > 0.

(27)

According to the model’s assumptions, a fraction ny of firms revise their out-
put upwards by a fraction δ, while the rest of the firm population decreases
its output by the same factor. However, only a fraction q of the planned in-
crease in production can be realized due to matching frictions in the job market.
Consequently, the aggregate production evolves as

Ẏ (t) = Y (t) [ny(t)δq(t)− (1− ny(t))δ] = Y (t)δ [1 + q(t)]

[

ny(t)−
1

1 + q(t)

]

.

(28)

4.1.2. Price

With reference to the price determination, firms can be in two possible situ-
ations: a fraction of np firms decide according to the rule (4); the remaining
(1− np) firms are cost-constrained, and therefore adopt the price p1i , defined in
(5).

Considering that the sign of the price variation is the same as the variation in
production, we can approximate (4) as

ṗi(t) =







pi(t)δ if si(t) = 0

−pi(t)δ if si(t) > 0







= sign(ẏi)pi(t)δ. (29)

Further, we can write wi = p1i to denote the average wage paid by firm i.
Subtracting from both sides of (5) the expression −wi(t − dt) + 1 − pi(t − dt),
and rearranging we obtain

pi(t)− pi(t− dt)− wi(t− dt) = wi(t)− wi(t− dt)− pi(t− dt).

15
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Using the continuous time approximations ṗi(t) ≈ pi(t)− pi(t− dt) and ẇi(t) ≈
wi(t)− wi(t− dt), we can rewrite it as

ṗi(t) = ẇi(t) + wi(t)− pi(t). (30)

A fraction np of firms sets the price according to the rule (4); the remaining firms
are cost constrained and adopt the price p1i . Thus, in aggregate, the change in
price will be equal to

Ṗ (t) = np(t)
[

sign(Ẏ )P (t)δ + P (t)−W (t)− Ẇ (t)
]

+Ẇ (t)+W (t)−P (t). (31)

From (31), if np → 1 the price adjustment follows the same procedure as quan-
tity, if np → 0 the aggregate price grows as much as wages.

4.1.3. Wage

At each point in time, a single worker can be in one of the two states: “employed”
(occ(t) = 1) or “unemployed” (occ(t) = 0). We are interested in specifying the
jump-process transition probabilities of the worker for the state “employed”.
Workers set their satisficing wages ws

j according to their occupational status:

ẇs
j (t) =

{

ws
j (t)δ if occj(t) = 1

−ws
j (t)δ if occj(t) = 0

(32)

Given (32), the aggregate variation of wage is quantified by

Ẇ (t) =W (t)δ

(

nw(t)−
1

2

)

. (33)

where nw is the proportion of workers revising their satisficing wage upward.

4.1.4. Consumption

Finally, consumers can be classified into two states according to their demand
level: for a fraction nc of consumers, demand is set simply as the same level of
real wealth; for the remaining consumers their demand is equal to their firms’
supply because they are constrained. Accordingly, the aggregate equation is:

C(t) = nc(t)Z(t) + (1− nc(t))P (t)Y (t), (34)

where Z is the aggregate wealth and C is the aggregate consumption. Equation
(34) states that aggregate consumption is the weighted mean between aggre-
gate wealth and aggregate supply. If nc goes to zero we have a fully supply-
constrained market.

The model in aggregate is closed for the equation governing the evolution of
consumer wealth. Given that the productivity of labor is fixed at 1, the number
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of employed worker is equal to the output Y , and the number of unemployed is
quantified by Nw−Y (t), where Nw is the total number of workers. Accordingly
the law of motion of the aggregate wealth is

Ż(t) = [rZ(t) +W (t)− C(t)]Y (t) + [rZ(t)− C(t)] (Nw − Y (t)) . (35)

The first term in equation (35) is the change in wealth for employed workers:
interest on previous money deposits plus total wages less consumption. The
second term refers to unemployed workers, for whom wage earning is null.

4.2. Transition rates

The transition rates are needed to define the four master equations (one for each
alternative for firms, workers and consumers), according to (11). As discussed
in section 3 we are looking for a specification that can incorporate the algo-
rithm structure of the ABM, taking into consideration interaction and agents’
behavior.

From (12-13), the transition rates are the product of two factors: the transition
probability and the probability of being in the state from which the transition
occurs. The transition probabilities are developed according to the underlying
behavioral assumptions and the emergent properties produced by the numeri-
cal simulations of the ABM. For simplicity, in this first implementation of the
DSGA the transitions are considered independent among the different master
equations. In addition to allowing a neater presentation of the method, this is
justified by the fact that the analysis considers strategies at the meso-level of
aggregation and abstracts from the evolution of each single agent.

In order to find a functional form for the generic probability of being in a
given state ηk as per equation (20), we need to the determine the uncertainty
variable βk and the value function gk for the heuristic case, and for the rational
optimization case.

The transition probabilities and the coefficient βk are the same in both the
heuristic and the optimizing treatments, the distinctive feature being deter-
mination of the value function gk. Below, we present the derivation of the
transition rates and βk in the part devoted to the heuristic approach, while the
description of the rational approach focuses on the determination of gk in that
particular case.

4.2.1. Heuristic behavior

Here, we provide the derivation of the transition rates, βk and gk for each
macroeconomic variable in the model described in section 2. The quantity βk
is computed according to equation (19), while gk, in the heuristic treatment, is
formulated according to equation (24).
Output

Firms have two available strategies: increasing or decreasing output according
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to the rule (1). We know that a firm will increase output if (8) is equal to zero

which implies yi(t)pi(t)∑
h
y
ij

cj
= 1. At the level of the aggregate economy, we can define

Vy(t) =
Y (t)P (t)

C(t) as the aggregate excess supply ratio, and vy(t) =
y(t)p(t)

c(t) as the

corresponding quantity at the firm level.

When at aggregate level Vy < 1, individual firms are likely to sell all their output
and, consequently, to increase production in the following period jumping to
state 1. In the opposite case, firms are more likely to decrease ouput, as the
goods market experiences supply excess. As explained in section 3, we take the
aggregate value of the variable of interest as a likelihood measure for the single
agents, given the agent-level distribution as it emerges from the simulations.
Numerical simulations of the ABM reveal that vy is uniformly distributed within
the interval [0.75, 1.25] across firms. Accordingly, we can define the probability
respectively to enter and exit from the state 1, respectively, as

ζy(t) = P (vy ≤ Vy(t)) = F (Vy(t)) =
Vy(t)− 0.75

0.5
, (36)

and

ιy(t) = 1− F (Vy(t)) = 1− Vy(t)− 0.75

0.5
. (37)

We now need to derive βy, according to (19) and gy for the heuristic treatment,
according to (24). The returns for the alternatives V1 and V2 are, respectively,
V1 = uan(Y δ)

b in the case of the increasing strategy, and V2 = −δY for the de-
creasing strategy. The return V1 is simply represented by the matching function
since, given (2) and (27), the increase in production is bounded upward by the
number of workers that the firm can recruit in the job market. Accordingly

βy(t) = −[un(t)
a(Y (t)δ)b + Y (t)δ]−1log

(

ny(t)

1− ny(t)

)

, (38)

gy(t) =
1

2

[

un(t)
a(Y (t)δ)b + Y (t)δ

]

. (39)

Price

Let us define the variable Vp(t) = P (t) −W (t) as the difference between the
aggregate price index and the average wage in the economy and vp(t) = p(t)−
w(t) as the corresponding quantity at the firm level. The simulations reveal
that at the firm level vp ∼ N(0, 1) across firms. Let us use s = 1 to denote the
state in which firms can set the price according to (4) and s = 2 to denote the
state in which firms are cost-constrained, and consider s = 1 as the reference
state, such that np denotes the share of firms that can freely adjust the price.
As in the case of output, when aggregate price grows at a higher pace than the
wage, the likelihood that a single firm is able to freely set price without being
cost constrained is higher.

Accordingly, the probability for a firm to access state s = 1 is given by

ζp(t) = F (vp < Vp(t)) =
1

2

[

1 + erf

(

Vp(t)√
2

)]

, (40)
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The probability of the opposite event is quantified simply by

ιp(t) = 1− ζp(t). (41)

Considering (6), the returns for the two conditions of price increasing and the
cost-constrained price are, respectively V1 = sign(Ẏ )Pδ and V2 = Ẇ +W − P .
Accordingly

βp(t) = −[sign(Ẏ (t))P (t)δ + P (t)−W (t)− Ẇ (t)]−1log

(

np(t)

1− np(t)

)

, (42)

gp(t) =
1

2

[

Ẇ (t) +W (t)− P (t)− sign(Ẏ (t))P (t)δ
]

. (43)

Wage

Workers have two possible strategies for setting their reservation wage: to revise
it upward if employed or revise it downward if unemployed. The probability
of being employed is conditioned on the probability of firms increasing their
production and hence their demand for labor. Accordingly, once a worker has
been matched with a firm the possible combined events are four: a) if the
firm adjusts upward and the worker is already employed the probability to be
employed in next period is 1; b) if the firm adjusts downward and the worker is
employed there is a positive probability to be fired; c) if the firm adjusts upward
and the worker is unemployed there is a positive probability to be hired; d) if
the firm adjusts downward and the worker is unemployed the probability is
zero. Recalling that the binary variable occ(t) is equal to 1 (0) if the worker is
employed (unemployed), the different four events are:

M1 = dY (t− dt) ≥ 0 ∩ occ(t− dt) = 1
M2 = dY (t− dt) < 0 ∩ occ(t− dt) = 1
M3 = dY (t− dt) ≥ 0 ∩ occ(t− dt) = 0
M4 = dY (t− dt) < 0 ∩ occ(t− dt) = 0

. (44)

We define P (occ(t) = 1) as the probability to access the “employed” state.
This probability can be quantified as the conditioned probability over the four
distinct events defined by (44):

P (occ(t) = 1) =

4
∑

h=1

P (occ(t) = 1|Mh)P (Mh). (45)

Let us define ws as a cut-off wage level. Specifically, if the economy is creating
(destroying) jobs, ws will be the wage of the most (least) expensive employee
that is hired (fired). We indicate with M(wj > ws) the probability that worker
j has a satisficing wage higher than the cutoff level. Using M(wj > ws) in
equation (45) and expanding, we have

P (occ(t) = 1) = P (dY (t− dt) ≥ 0)P (occ(t− dt) = 1)+
+(1−M(wj > ws))P (dY (t− dt) < 0)P (occ(t− dt) = 1)+
+(1−M(wj > ws))P (dY (t− dt) ≥ 0)P (occ(t− dt) = 0).

(46)
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Considering that P (occ(t−dt) = 0) = 1−P (occ(t−dt) = 1) and P (dY (t−dt) <
0) = 1− P (dY (t− dt) ≥ 0), equation (46) can be rewritten as

P (occ(t) = 1) = P (occ(t− dt) = 1)+
+M(wj > ws) [P (dY (t− dt) ≥ 0)− P (occ(t− dt) = 1)] .

(47)

Since we know that P (dY (t) > 0) = ηy(t), the only quantity left to be deter-
mined in (47) is M(wj > ws). An intuitive way to simplify the dynamics of the
ABM is to consider the employed marginal worker, that is the one with the high-
est wage among the employed workers. According to the ABM’s assumptions,
in case of a small decrease in production this worker will be the first to be laid
off, while in case of a small increase she will maintain her job. This situation can
be captured by using a cumulative probability F (x) = 1/2−1/2erf(x/

√
2) with

x = −α/(Ẏ /Y 100) and α as a small positive constant. Since ws is larger the big-
ger is the positive variation in production, we can writeM(wj > ws) = 1−F (x).
Consequently, using the approximation Ṗ (occ(t) = 1) ≈ P (occ(t) = 1) −
P (occ(t − dt) = 1) in (47) we can express the variation in probability to be
employed as

Ṗ (occ(t) = 1) = [ηy(t− dt)− P (occ(t− dt) = 1)] [1− F (x)] . (48)

Considering as a reference the state s = 1 in which the satisficing wage is
increased because the worker is employed, equation (48) can be used to define
the transition probabilities as

ζw(t) = P (occ(t) = 1), (49)

ιw(t) = 1− P (occ(t) = 1). (50)

According to (3), the returns associated to the wage-increasing and wage-decreasing
strategies are, respectively, V1 =Wδ and V2 = −Wδ.

βw(t) = −(2W (t)δ)−1log

(

nw(t)

1− nw(t)

)

, (51)

gw(t) =W (t)δ. (52)

Consumption

Consumers can be supply-constrained or not depending on whether they are
able to spend all their wealth on consumption. Let us define the two variables

Vc(t) = P (t)Y (t)
Z(t) − 1 and vc(t) = p(t)y(t)∑

h
y
ij

zj(t)
− 1 at aggregate level and general

firm level, respectively. The two variables are negative if consumers are supply-
constrained and positive if they are not. Accordingly, the larger is Vc(t) the
higher will be the probability for a consumer to be able to spend all her wealth
in consumption. We can use the fact that vc ∼ N(0, 1) across consumers, as
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shown by the simulations. Thus, considering s = 1 the state of non-constrained
consumers as a reference, the transition probabilities are

ζc(t) = F (vc < Vc(t)) =
1

2

[

1 + erf

(

Vc(t)√
2

)]

, (53)

ιc(t) = 1− ζc(t). (54)

For consumers who are not supply-constrained the return is given simply by the
consumption V1 = PY , while for those who accumulate involuntary savings the
return is given by the wealth: V2 = Z. It follows that

βc(t) = (P (t)Y (t)− Z(t))
−1
log

(

nc(t)

1− nc(t)

)

, (55)

gc(t) =
1

2
(P (t)Y (t)− Z(t)) . (56)

It is easy to see that βc tends to infinity (minimum uncertainty) when supply
and demand are in equilibrium, that is PY − Z = 0. As shown below, a
particularly interesting situation arises when, in a situation of goods market
equilibrium, nc ≈ 1/2 pushing βc to 0 (maximum uncertainty). In this case
numerical simulations are needed to determine what is the final effect on βc.

4.2.2. Rational optimization

Optimal control is adopted for the real variables (firms’ supply and households’
consumption decisions), while price and wage setting are determined by agents’
heuristic behavior. The choice to limit the optimization to the real variables
allows comparison between the different consequences of nominal frictions in the
two treatments and how they impact on the interactions among agents.

As mentioned above, transition probabilities and βks are the same in the two
cases while the determination of gk differs.

Since the stationary fraction of agents choosing one strategy is determined by
the stationary probability (20), the social planner must solve a suitable g(n1)
function in order to maximize the expected future streams of profits and utility.
The problem involves the allocation of agents over two different populations
(firms and workers). Consequently, the goal of the social planner is to maximize
the stream of firms’ expected profits and households’ expected life-time utility
subject to equation (28) and (35), respectively. In the firms’ problem, a propor-
tion ny of firms wants to increase their production, and as a consequence will
incur search costs, denoted κ. Recalling that we consider a unitary labor pro-

ductivity, 1 − W (t)
P (t) represents the unitary profit. Thus the remaining (1 − ny)

firms will suffer a profit loss, quantified by W (t)
P (t) − 1 due to the decrease in
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production. Considering (25) and using θ to indicate the household’s discount
parameter, the firms’ problem can be formulated as

gy = J(Y ) = max
ny

∫

∞

0

exp(−θt)
[

ny(t)(−κ) + (1− ny(t))

(

W (t)

P (t)
− 1

)]

dt,

(57)
s.t.

Ẏ (t) = Y (t)δ [1 + q(t)]

[

ny(t)−
1

1 + q(t)

]

. (28)

For the household problem, let us use u(Z) and u(Y ) respectively to denote the
current utility deriving from the available wealth and consumption of firms’ pro-
duction, respectively. Consumers who are not supply-constrained will enjoy the
utility generated by their total wealth Z, while supply-constrained consumers
will derive their utility only from the level of consumption they can actually
access. Accordingly, using (26) we can write the dynamic optimization problem
for the proportion of non-supply-constrained consumers as

gc = J(Z) = max
nc

∫

∞

0

exp(−θt) [nc(t)u(Z(t)) + (1− nc(t))u(Y (t))] dt, (58)

s.t.

Ż(t) = [rZ(t) +W (t)− C(t)]Y (t) + [rZ(t)− C(t)] (Nw − Y (t)) . (35)

We then apply dynamic programming to equations (57) and (58). The corre-
sponding Hamilton-Jacobi-Bellman equations are given by

−J(Y, t) = max
ny

exp(−θt)
[

ny(t)(−κ) + (1− ny(t))

(

W (t)

P (t)
− 1

)]

+Jy(Y, t)Ẏ (t),

(59)

− J(Z, t) = max
nc

exp(−θt) [nc(t)u(Z(t)) + (1− nc(t))u(Y (t))] + Jz(Z, t)Ż(t).

(60)

We guess the solutions J(Y, t) = exp(−θt)V (Y ) and J(Z, t) = exp(−θt)V (Z).
Observing that JY (Y, t) = VY (Y ) and JZ(Z, t) = VZ(Z), the conditions be-
come10

10To verify this result, consider the dynamic programming equation in discrete time

J(xt, t) = maxytU(xt, yt, t) + J(xt+1, t+ 1),

subject to
xt+1 = h(xt, yt, t),
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t−V (Y )exp(−θt)exp(−θt) = max

ny

[

ny(t)(−κ) + (1− ny(t))
(

W (t)
P (t) − 1

)]

+

+ Vy(Y )exp(θt)exp(−θt)Ẏ (t),
(61)

−V (Z)exp(θt)exp(−θt) = max
nc

exp(−θt) [ncu(Z(t)) + (1− nc)u(Y (t))] +

+ VZ(Z)exp(−θt)exp(−θt)Ż.
(62)

The result is an ordinary differential equation in the state variable. Substituting
the dynamical constraints (28) and (35) into respectively (61) and (62), and
taking the partial derivatives for ny and nc, the first order conditions can be
expressed as

[

1− W (t)

P (t)
− κ

]

+ JY (Y )Y (t)δ = 0, (63)

u(Z(t))− u(Y (t)) + JZ(Z(t)− Y (t)) = 0. (64)

Substituting equations (63) and (64) into (59) and (60) for JY and JZ , and
assuming u(X) = X, we get two ordinary differential equations in the macro
variables Y and Z. Applying the standard solution method, we get the closed
form solutions:

gy = V (Y ) = π(t)
q(t)

1 + q(t)
, (65)

gc = V (Z) =
θZ(t)
P (t) − Y (t)(W (t)

P (t) − 2nc(t))

θ(θ + 2(nc(t)− 1−r
2 ))

. (66)

where π(t) = 1 − W (t)
P (t) − κ denotes the unitary profits as labor productivity is

equal to 1. The probability q(t) = (1 − Y (t))a(Y (t)δ)b−1 is equivalent to the
matching probability in the labor market, introduced in section 4.1. Equations
(65) and (66) are the solutions to the intertemporal Euler equation for firms
and households.

While in the zero intelligent behavior the product of βk and gk function van-
ishes, in case of rational behavior, the equilibrium depends on both the gk

given x0. The expansion of the value function in ∆t gives

J(xt, t) = maxytU(xt, yt, t)δt+ J(xt, t) +
∂J(xt, t)

∂xt

xt+∆t − xt

∆t
∆t+

∂J(xt, t)

∂t
∆t+ o(∆t).

Taking the limit ∆t → 0 gives equations (59) and (60)
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function which embodies the rational behavior, and the uncertainty variable βk.
Thus, uncertainty and the state of the macroeconomy affect the macroeconomic
equilibrium and simultaneously determine the behavior of the economic agents.
Therefore we can identify two types of equilibrium solutions of the dynamical
system, depending on whether the effects of gk and βk offset each other or not.
In the first case, since gk vanishes, agents’ incentives do not affect the resulting
equilibrium which can be defined as uncertainty equilibrium. This equilibrium
always arises in the bounded rationality setting but occurs only if β ≈ 0 under
the full-rationality assumption. Under this equilibrium, the system may be lock
in an uncertainty trap (Aoki and Yoshikawa, 2006) as shown by the simulations
below.

In the second case, the product βg does not vanish in (20): rational incentives
affect the distribution of firms across states. This equilibrium corresponds to
the optimal situation in which no further arbitrage would be profitable. This
situation is consistent with a perfectly rational behavior, in which all the profit
opportunities are exhausted and full employment is achieved: therefore it can
be qualified as rational equilibrium.

Looking at the firms’ decision about production levels, equation (65) states that
the macroeconomy reaches the equilibrium (gy = 0) in two cases: null profits
or, more interestingly, full employment. The latter condition is represented an-
alytically by the no-match situation q(t) = 0, not considering the uninteresting
no-match case in which no worker supplies labor.

For households the result is more complex. Households’ behavior is in equilib-
rium if equation (66) is null. This leads to the macroeconomic condition:

Z(t)

P (t)
= θ−1Y (t)

(

W (t)

P (t)
− 2nc(t)

)

, (67)

which can be interpreted as the demand function in terms of real wealth for
each level of nc. More precisely, demand depends negatively on nc since when
nc > 0 part of the wealth in the system is not spent on consumption.

When consumers are fully supply-constrained (nc = 0), the equilibrium condi-

tion becomes Z(t)
P (t) = θ−1Y (t)W (t)

P (t) . This condition implies the general equilib-

rium since all labor income Y (t)W (t)
P (t) is consumed, there is no accumulation of

wealth and the circular flow in the goods market is fully closed.

Interestingly, if nc = 1/2 and the real wage is equal to productivity (W/P = 1),
the (67) becomes Z/P = 0: if consumers are wealth-constrained and supply-
constrained in the same proportion, there are no savings at the macroeconomic
level.

5. Simulations

We run different series of simulations in order to study the dynamical system,
to compare the outcomes of the agent based model and the stochastic dynamic
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aggregate model, and to contrast the heuristic scenario with the optimizing
case.11

Simulation codes are written for Matlab and are available upon request. The pa-
rameter setting in the benchmark scenario is shown in table 3. For the stochastic
dynamic aggregation, the complete simulated system is composed of equations
(28) for production setting behavior, (31) for price setting behavior, (33) for
wage, (34) and (35) for consumers. The system is completed by (14) and the
coupled equations (15) and (16) for each of the agents’ densities nw, ny, np, nc.

The properties of the system are investigated in the baseline simulation pre-
sented in section 5.1. Then the stochastic aggregation is tested by comparing
the outcomes of the aggregate model with the ABM’s results in section 5.2 which
presents the results of a Monte Carlo experiment in the form of impulse/response
functions, represented as deviations from the baseline simulation. Section 5.3
presents the results when gk is optimally set.

The initial conditions for the aggregate system are set close to the macroeco-
nomic equilibrium with the real variables (consumption, real wages and produc-
tion) equal to 1 (see Table 2). The initial condition for the stochastic spread
is set to 0. For the ABM, wages and prices are set equal to 1, and the initial
worker allocation for each firm is a uniform distribution over a population of
100 firms and 500 workers.

5.1. Heuristic behavior

Figures 2-3 show the outcome of a single simulation including in the same charts
production, consumption and wealth for the aggregate system (figure 2) and the
dynamics of occupation numbers for each sub-sector (figure 3).

Fluctuations and crises are due to the fact that the labor and goods mar-
kets incorporate search frictions at the micro-level. Note that the macroeco-
nomic effects of these real frictions originate from the interaction between firms
and workers. Labor market frictions determine a real wage above productivity
(which is constant and equal to 1). Since the real wage is always above 1, the
circular flow of the system is not in equilibrium, and periodic macroeconomic
crises are needed in order to re-balance the real-valued resources.

11In order to approximate continuous time, we apply the Euler-Maruyama procedure in the
interval t ∈ (T0, Tmax). Given the number of steps Nstep we can determine numerically the
solution with the discretization of time

h =
(T0 − Tmax)

Nstep

. (68)

Thus for example, we can approximate equation (28) in the following way:

y(i+ 1) = y(i) + h

[

y(i)δ [1 + q(i)]

(

ny(i)−
1

1 + q(i)

)]

. (69)

We generate the Wiener process with dW =
√

(h)u where u is distributed as a standardized
Gaussian distribution.
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The dynamics of real variables display the quasi-stable disequilibrium in fig-
ure 2: the aggregate production level stabilizes close to the full employment
equilibrium but without reaching it. Agents over-save because the average real
wealth is higher than 1. Moreover, real consumption always lies between supply
and aggregate wealth. This is due simply to the fact that consumption is a
weighted mean of supply (production) and demand (wealth). The system os-
cillates around the equilibrium displaying endogenous crises, heterogeneous in
duration and depth.

Three different phases can be detected in the system dynamics. The first phase
(first box on the left in figure 2) is characterized by a deep recession in which
consumption, wealth and production display a sudden drop, causing a fall in em-
ployment. The recession could be prolonged since the fall in employment leads
to a reduction in wealth. The second phase (second box from left) is the sub-
sequent recovery when aggregate production, consumption, and wealth grow to
an almost full-employment equilibrium. The real quantities grow steadily main-
taining consumption below production levels. This means that consumers are
not supply-constrained and, at the same time, they have excess income to re-
build their stock of wealth. When quasi-full-employment equilibrium is reached,
the economy enters the third phase (third box from left): wealth, consumption,
and production oscillate just below the full-employment equilibrium. When con-
sumers accumulate enough wealth, aggregate demand increases, pushing firms
to increase prices. Higher inflation leads to wealth devaluation followed by a fall
in consumption level. This phase cannot be characterized as a recession since
the fall stops when consumption and wealth hit the production level, which
seems to act as a floor.

Figure 3 displays the dynamics of the occupation numbers in order to assess
their evolution during the different phases. The shaded areas mark phases in
which the production level is less than 95% of the full-employment equilibrium
level. During these phases, a growing proportion of firms reduces production.
The lower aggregate supply in the goods market leads to an increase in the pro-
portion of supply-constrained consumers nc. Finally, due to the accumulation
of inventories, more firms decrease prices causing an increase in the proportion
of firms that are cost-constrained np.

5.2. Monte Carlo experiments

In order to compare the outcomes of the ABM and the stochastic aggregation,
and in particular to contrast the different responses to shocks in the parameters,
we perform Monte Carlo simulations.

We follow a different approach from existing works (such as for example Chiarella and Di Guilmi,
2011), comparing the results of the two solutions by testing their reaction to
an exogenous shock. This approach is consistent with the fact that we run two
different sets of simulations for the ABM and the aggregate model, and as a
consequence the results of single simulations are not directly comparable.
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Shocks are imposed on the initial conditions defined in table 2 for: a) the
aggregate production level Y (0) (−1%), b) the aggregate price level p(0) (+1%),
c) labor productivity (+1%), and d) the interest rate r (+1%). The plotted data
are obtained by subtracting the series generated in the baseline scenario to the
series with the shock in the parameters.12

In all experiments but more clearly in the case of experiments a) and b) (figures
4-5), the aggregate model correctly predicts the sign of the reaction to the shock,
while the magnitude of the reaction and the speed of adjustment in some cases
are different. In particular, in the case of the shock on price the ABM displays
slower convergence.13 In order to verify the similarity of the series generated by
the two simulations, we run an Engle-Granger test with the null hypothesis of
no cointegration. For all the experiments, the null hypothesis is rejected at the
95% level of confidence.

Figure 4 reports the results for experiment a). When the initial condition for
employment is below the full employment level, the aggregate production and
consumption also start below their equilibrium level and converge to it in the
long run in both sets of simulations. When unemployment increases, workers
adjust the nominal wage while the real wage remain approximately constant.
This is because firms lower their prices due to the accumulation of inventories.

Figure 5 refers to experiment b). If the initial price is above its equilibrium
level, in both simulations the aggregate production drops due to a decrease in
real aggregate demand. The drop in real wages leads to a larger fall in all the
variables in the ABM case, which for wealth prevents the adjustment to the
equilibrium level within the time-frame of the simulation.

In the case of a shock to the structural parameters (technology and interest
rate) the change in the ABM is introduced at a later stage and not at time 0 in
order to better visualize the response of the system. In the case of a technology
shock in experiment c) (figure 6), the ABM and the DSGA display comparable
dynamics. Production raises as expected, while real wage and wealth decrease
due to an increase in prices and a decrease in the number of employed workers.
This result is in line with the New-Keynesian DSGE literature where a negative
impact on employment due to a technology shock is generated by price rigidities
in goods or labor markets (see Liu and Phaneuf, 2013, for a survey). Aggregate
consumption increases in both systems because a fraction nc of consumers are
constrained and the increase in supply allows for a partial relaxation of the
market constraint.

Finally, figure 7 shows that the monetary shock has a positive impact on the
economy due mainly to the implicit adaptive expectations included in this model

12The different time scale accounts for the conversion from continuous to discrete time as
specified in footnote 11.

13The difference in the speed of convergence can be reduced by a formal calibration of the
parameters aimed to achieve a perfect match between the results of the two treatments. Given
the scope and the length of the present paper, this aspect is left to future research.
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and the fact that, in the absence of financial liabilities, monetary frictions create
a positive wealth effect leading to an increase in the aggregate available income.

5.3. Rational optimization

This subsection presents the results for the model introduced in section 2 and
4, using equations (65) and (66). The initial conditions are the same as in table
2.

Figure 8 provides a zoom of a limited time span within the simulation while fig-
ure 9 shows a longer time span. Figure 10 visualizes the dynamics of gc and βc
while figure 11 reports the evolution of the proportion nc of households who are
not supply constrained. Examining of all the figures 8-11 shows that the system
can generate two possible equilibria. Figure 8 shows that, after the phasing-in
period (until around period 90), the system is in a rational equilibrium condition
until around period 650. In fact, over this time-span gc is equal to 0, implying
that there is no relevant difference between the returns of the two consumption
strategies, and bc 6= 0 (figure 10) which indicates a low degree of uncertainty
in the system. The economic interpretation is straightforward: the economic
system is in a quasi-stable equilibrium with low uncertainty and maximized
consumers’ utility and firms’ profits. Thus, when the system is in the rational-
equilibrium, the βc variable, following the dynamics of the macro-variables, is as
expected far from zero. The rational equilibrium is associated with two emer-
gent facts: there is full employment as production reaches the maximum level
where employment is equal to Nc = 500 and 1 units of consumption per capita,
and real wealth is near to production (figure 8). However, the endowment of
real wealth is higher than unity due to goods market frictions, allowing for a
level of consumption higher than aggregate production. In relation to house-
holds’ behavior, nc (the proportion of wealth-constrained households) fluctuates
around 0.5 during the same period (figure 11). The stability of this quantity
(net of stochastic noise) is due to there being no incentives for agents to change
their strategy.

Since we introduce rationality only in production and consumption decisions,
prices and wages are still set sub-optimally. This setting, together with the
interaction in the goods and labor market, allows for real inefficiencies: the
average real salary is always higher than productivity. This affects the long run
behavior of the economy but in a different way to the heuristic case. Figures 8
and 9 show that around period 650 the rational equilibrium no longer holds due
to dynamic inefficiencies in the labor and goods markets. Instead of periodic
crises, the system is caught in what we can describe as an uncertainty trap
(Aoki and Yoshikawa, 2006): a scenario in which increasing uncertainty locks
the macroeconomy out from the optimal equilibrium.14

14In a different treatment, Fajgelbaum et al. (2014) define uncertainty traps “as the coex-

istence of multiple stationary points in the dynamics of uncertainty and economic activity”.
Fajgelbaum et al. (2014) in their paper refer to the uncertainty that agents face in their opti-
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Figures 8 and 9 show that households reduce their consumption and increase
their saving. This creates a growing gap between wealth and the other variables.
Soon after period 650, wealth increases rapidly, diverging from the rational equi-
librium level. As the dynamics of gc and βc demonstrates, the system transi-
tions to the uncertainty equilibrium in which economic behavior is not rational
(gc 6= 0), uncertainty is high, as shown by βc → 0 (figure 10) and consumers
become fully supply-rationed (nc → 0). The inefficiencies determine growing
uncertainty, as βc approaches 0 until period 650 when it peaks because a large
fraction of consumers switch to the supply-constrained state. This determines a
discontinuity in gc (capped at 100 in the simulations), which subsequently takes
high negative values due to the negative denominator when nc → 0 in equation
(66). From around period 700, βc remains at 0 signaling high uncertainty.

With reference to equation (55), the simulations demonstrate that the effects
of the (dis)equilibrium in the goods market dominates the effects of agents’
choices. In fact, in the rational equilibrium β 6= 0 even when nc ≈ 1/2 because
P (t)Y (t) ≈ Z(t), while we have an uncertainty equilibrium even with nc = 0
due to the disequilibrium in the goods market.

In the heuristic treatment, since the behavior of agents is quasi-zero intelligent,
small idiosyncratic shocks can trigger feedback effects at agent level which pro-
duce the cyclical crises. In the optimization case, the accumulation of wealth is
self-sustaining as shown in equation (66): the perceived relative pay-offs from
consumption behaviors change, and in the absence of re-equilibrating mecha-
nisms for the nominal variables, this leads to a permanent difference between
wealth and consumption.

Further insights are provided by the phase diagram in figure 12. Since the model
is multidimensional, a complete geometric representation of the equilibria is
impossible but exploration of the consumption-wealth plane (C,Z) is sufficient
to represent the dynamics of adjustment towards the two equilibria.

We tested a wide range of initial values (only a few of them are shown in the
graph to ensure readability) and in almost all cases the model converges to a
sink: a local rational equilibrium C ∼= Z in the point (1.02, 1.05). The exceptions
are given by the starting points located in the high-wealth region (Z ≫ 1) from
which the system is attracted to the uncertainty equilibrium in point (1, 1.4).
In this case, consistently with figures 8 and 9, the system is in a situation which
we define as uncertainty trap, which is characterized by an over-accumulation
of wealth.

In order to obtain further insights into the transition between different equilibria,
in the next section this standard phase-space investigation is enriched from a
combinatorial perspective by the analysis of the potential.

mization process, and rule out the existence of multiple equilibria, while Aoki and Yoshikawa
(2006) consider the uncertainty generated by the complex interaction of agents, regardless of
their objective functions and behavioral rules, which generate possible multiple equilibria.

29



Page 32 of 53

Acc
ep

te
d 

M
an

us
cr

ip
t

6. Analytical identification of the equilibria

This section proposes an analytical criterion to identify quantitatively the dif-
ferent equilibria. In particular, we determine the critical levels of the proportion
of supply-constrained consumers which determine the transition from one equi-
librium to another.15

The depiction in figure 11 is completed by the analysis of the potential, in-
troduced in section 3. in addition to identifying the critical points, this study
defines the possible transition paths between different attractors, and the con-
ditions under which our artificial economy becomes locked into the uncertainty
trap. We focus on the households subsystem since it allows us to study the
evolution of wealth and consumption demand at the same time.

6.1. Identification of the equilibrium type and transitions

The potential function (21) for the number of not-rationed consumers is

U = −2

∫ nc

0

gc(t)dZ − H(nc, t)

β(nc, t)
, (70)

with gc defined by (66). The critical points of (70) are the equilibria for the
occupation number nc, and therefore for aggregate wealth.

Considering equation (19) and (70), the first order condition is

∂U

∂nc
= −2gc(t)−

H
′

(nc(t))

β(nc(t))
+
β

′

(nc(t))

β(nc(t))2
= 0. (71)

With respect to the formula (23) presented in section 3.2, equation (71) intro-

duces the term β
′

(nc)
β(nc)2 . This term is not present in the heuristic treatment, and

represents the additional knowledge available to the social planner which is not
usable by boundedly rational agents.

Since a closed form solution cannot be derived analytically, we evaluate it nu-
merically. Figures 13-15 display the results of the numerical analysis. Due to
the discontinuity around nc = 0.001, in order to make critical points and dis-
continuities visible we need to split the plot in tree sub-regions: one near nc = 0
and two around nc = 0.5. Figure 13 plots the whole function with zoom on
the areas around the critical points for an overall assessment. Figure 14 plots
the neighborhoods of the critical points. The potential has two local minima at
nc,1 = 0 and nc,2 = 0.48, and the two points are separated by a discontinuity.
Consequently, transition between the two equilibria is not possible. The first
panel in figure 14 also shows a local maximum which splits the region on the

15The relevance for ABMs of the “tipping points” where phase transitions occur is stressed
by Gualdi et al. (2015), in particular with reference to the parameter space.
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left. In the local minimum nc,1 = 0, the simulations allow us to verify that
βc = 0 and gc 6= 0 (figures 10 and 11): uncertainty is maximal and the equilib-
rium is not rational. The middle panel in figure 14 shows the neighborhood of
nc,2 = 0.48, which is associated with g(nc) = 0 (figures 10 and 11) and therefore
can be identified as a rational equilibrium. Also, since limnc→nc,2

β(nc) = −∞,
as the economy approaches the social optimum, uncertainty reduces. Thus,
in the absence of nominal frictions, the rational equilibrium is stable. The
macroeconomic signal received by agents drives them not to change their be-
havior. Finally, we have a third extreme point located in nc = 0.51 which is a
maximum and therefore represents an unstable equilibrium. The critical points
are shown clearly in figure 15 where the log(U

′

) is displayed.

6.2. Policy Implications

The model presented above is parsimonious and serves the purpose of introduc-
ing and applying the aggregation method. Nevertheless, it is possible to run a
simple policy experiment to assess how the policy maker can influence the type
of equilibrium that the system can achieve. Within the present framework, the
policy maker’s task is to prevent the system from being locked into the un-
certainty equilibrium or at least to reduce the likelihood of its occurrence. In
fact, in the uncertainty equilibrium agents can have contrasting incentives and
this coordination failure can jeopardize the success of the policy measures. The
following analysis focuses on the impact of interest rate changes on the equilib-
rium condition in the household sector since the interest rate is the only policy
variable in the model.

The goal is to investigate the effect of a zero lower bound on the number and
the characteristics of the equilibria and to assess whether the rational and un-
certainty equilibria are affected by the level of the interest rate.

We run three different simulations of the potential function for r = {−0.005, 0, 0.005}.
The respective equilibrium values for per-capita production and real wage are
equal to 1 and 1.005 as obtained in the simulations, while δ = 0.005. Figure
16 replicates figure 15 for the different values of the interest rate, which in the
baseline scenario is set to 0.001. Clearly, the number and the type of equilibria
change as r moves from positive to negative values. In the case of a positive
interest rate the results do not differ substantially from the baseline simulations:
the two possible outcomes are a rational and an uncertainty equilibrium. For
r = −0.005 the system can avoid the uncertainty equilibrium and the only at-
tractors are the two rational equilibria in the neighborhood of nc = 0.5. Also the
discontinuity near the uncertainty equilibrium disappears, allowing the system
to adjust to the rational equilibrium in the long run. This is possible because
the negative interest rate prevents the accumulation of wealth in the long run.
The uncertainty equilibrium disappears also in the case of a zero interest rate
but indeterminacy arises since no critical point can be identified.

To conclude, the zero lower bound can be a source of indeterminacy and can
lead the economy into the uncertainty trap. If the real factors of instability
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originating from the interactions of agents are not eliminated, negative nominal
interest rates may be needed to curb the effects of uncertainty. While this
result is well known in macroeconomic theory, the DSGA approach reveals the
conditions under which such a situation occurs, and determine the structure of
the equilibria through analysis of the potential.

7. Conclusions

The paper introduces and tests the Dynamic Stochastic Generalized Aggrega-
tion approach (DSGA) as an original methodology for analytical aggregation of
ABMs which considers different levels of rationality while taking account also
of the complexity arising from agents’ interactions. We apply the DSGA ap-
proach to a medium-scale ABM, providing three main contributions. First, we
estimate a set of macro equations starting from the micro behaviors of different
sets of agents (namely firms, workers and consumers) to represent analytically
the ABM. Building on simple micro-behavioral rules, we elaborate a macro-
model that is able to qualitatively replicate the results of the ABM. This kind
of methodology could be helpful for evaluating analytically the properties of
complex models by obtaining reduced forms to validate and estimate ABMs.

Second, the application of the method to different sets of strategies provides an
alternative way to link opinion dynamics and microeconomic behavioral rules.

The third contribution is that, by assuming that the proportions of agents adopt-
ing one or the other strategy are set optimally, it is possible to isolate the effects
of rational incentives and uncertainty. In particular, the numerical and analyt-
ical treatments identify two types of equilibria: the rational equilibrium where
all the opportunities for a welfare increase are exhausted, and the uncertainty
equilibrium, in which the complex chain of interactions and feedback among
agents generates a suboptimal outcome.

To summarize the results, in the presence of market inefficiencies, the accumula-
tion of wealth determines over-saving and over-consumption leading to periodic
crises in the heuristic setting, and to the uncertainty trap in the optimizing
setting. The analytical investigation and the simulations show that, in the opti-
mizing case for consumption, the system has two attractors which are associated
respectively to an uncertainty equilibrium and a rational equilibrium. The anal-
ysis of the potential function is also applied in a simple policy exercise. In a
world where agents are rational but interact in a complex economy, multiple
equilibria are possible and monetary policy can affect their number and quality.
In particular, the zero lower bound limits the capacity of the policy maker to
avoid the uncertainty trap.

The paper aims to provide a general methodology for the analytical treatment
of ABMs and the inclusion of standard optimization processes in a complex
system structure. The procedure for constructing the dynamical system can
be applied to any ABM, although the specific approximation for the functional
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identification of the transition probabilities will be different for and specific to
each model. Admittedly, the aggregation procedure presented here suffers from
two limitations. The first is that it restricts the choices of agents to a binary
option. As we mention in the paper, although the solution for the master equa-
tion for a number of states larger than two is already available, it is not used
here since a two-state master equation is appropriate for the application to this
specific ABM, and we want to keep the analytical complexity to a minimum.
In any case, the two-state limit is still at the moment binding for the analytical
tractability of the optimization case. The second limitation is that for simplicity
the transition rates are derived under the assumption of independence among
the different master equations. This can be overcome either by a multivariate
master equation, or a derivation of the transition probabilities conditioned on
other firm-level variables. Both procedures involve further analytical complica-
tions which we prefer to avoid for this first implementation of the aggregation
technique.

This promising methodology could be employed to build more general analyt-
ical models including in principle standard structural macroeconomic models
(DSGE) as special cases. A full exploration of this possibility is the next item
of our research agenda. Comparison with DSGE models could also involve the
treatment of the transition rates. The method presented here endogenously gen-
erates the transition rates and could be used for a comparison with the empiri-
cally estimated rates presented in DSGE with Markov switching. The approach
could be extended also by estimating the actual probability of the uncertainty
trap in a real economy using a model calibrated with empirical data.

Appendix A. Timeline of events

1. At time t, firms determine the output to produce for the current period
based on the level of stocks according to (1) and, consequently, quantify
the number of workers to hire;

2. Workers update their satisficing wage on the basis of their occupational
status according to (3);

3. The labor market opens. All workers send applications to a random sample
of hwji firms. Each firm collects the applications, sorts them in ascending
order of wj and hires the cheapest workers until either its demand for labor
is satisfied or the list of applications is exhausted. Given that hyij ≪ N , at
the end of this process some workers can be unemployed, and some firms
can have unfilled vacancies;

4. Production takes place;

5. The market for consumption goods opens. Each consumer has access
to a random sample of hcji suppliers. The consumer sorts the prices in
ascending order and purchases goods from the cheapest firms until either
her wealth is entirely spent, or the supplying firms in her sample run out
of goods. Given that hcji ≪ N , at the end of this process some consumers
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can be supply-constrained and accumulate positive savings while some
firms can be left with unsold goods which are stocked as inventories;

6. Firms’ profits are determined as the difference between revenue and the
wage bill and distributed to households.

Appendix B. Entropy maximization

This appendix presents the solution of the system (20). The goal is to maximize
Entropy:

H = −n1log(n1)− n2log(n2), (B.1)

subject to the constraints
{

n1 + n2 = 1,

V1n1 + V2n2 = Ẏ .
(B.2)

The first constraint is a simple normalization constraint, while the second can
be considered an accounting identity. For example, if V1 and V2 are the change
in production for the firms of respectively, type 1 and type 2, the variation in
total output must be equal to ẏ. The Lagrangian for this problem is

− n1log(n1)− n2log(n2) + δ1(n1 + n2 − 1) + δ2(V1n1 + V2n2 − Ẏ ). (B.3)

The first order conditions are given by

dL

dn1
⇒ −log(n1)− 1 + δ1 + δ2V1 = 0, (B.4)

dL

dn2
⇒ −log(n2)− 1 + δ1 + δ2f2 = 0, (B.5)

dL

dδ1
⇒ n1 + n2 = 1, (B.6)

dL

dδ2
⇒ Ẏ = V1n1 + V2n2. (B.7)

Imposing the following identities

δ1 = 1− α,
δ2 = −β, (B.8)

the first two equations in (B.7) become

n1 =exp[−(α+ βV1)], (B.9)

n2 =exp[−(α+ βV2)]. (B.10)

Substituting the above equations into the third in (B.7) we obtain

exp(−α) = 1

exp(−βV1) + exp(−βV2)
, (B.11)
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which, substituted in the last of (B.7) gives

(V1 − Ẏ )exp(−βV1) + (V2 − Ẏ )exp(−βV2) = 0. (B.12)

Rearranging we obtain an expression for β

β = (V2 − V1)
−1log

(

n1
1− n1

)

, (B.13)

Since

n1 =exp[−α(t)]e−β(t)V1(t), (B.14)

n2 =exp[−α(t)]e−β(t)V2(t). (B.15)

Then

p1 =
exp[−β(t)V1(t)]

Z
, (B.16)

p2 =
exp[−β(t)]V2(t)

Z
, (B.17)

where Z represents the partition function:

Z = exp[−V1(t)β(t)] + exp[−V2(t)β(t)].

Appendix C. Full dynamical system

To help the reader this appendix summarizes the different equations included
in the dynamical system for each macroeconomic variable, and the functional
links among them.

The dynamical system is given by

Ẋk(t) =
∑

sk

fsk(Xk(t))nsk(t) (17)

nk(t) = mk(t) + uk(t)N
−1/2
k , (14)

dmk

dt
= λk(t)mk(t)− [λk(t) + γk(t)]mk(t)

2, (15)

duk = −a1(mk)ukdt+ a2(mk)dW, (16)

with P (u) ∼ N (0, λkγk

(λk+γk)2
). Equation (17) expresses the macro-variables Xk

as a function of the proportion of agents in each state nsk . The evolution of
this proportion is determined by the solution of the master equation in (15-16)
and depends on the two transition rates, which are defined as

λk(t) =(1− ηk)ζk(t), , (12)

γk(t) =ηkιk(t). (13)
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The transition probabilities ζ, ι depend on the behavioral assumptions of the
model and require the further specifications and approximations presented in
section 4.2. The probability η is defined as

P (n1) = ηk =
exp[βkgk(n1)]

exp[βkgk(n1)] + exp[−βkgk(n2)]
, (20)

with

βk = (V1 − V2)
−1log

(

nk
1− nk

)

. (19)

The definition of gk differs between the heuristic and the full rationality cases.
In the former it is defined as

gk(n1) =
V1 − V2

2
. (24)

In the full rationality case gk is obtained from an intertemporal optimization
problem depending on the returns of the different strategies

g (Y, ns) = max
n(t)

∫

∞

t0

e−θtψ(Y (t),n(t))dt. (25)
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Tables and figures

Agent States Fraction Description

Firms’ quantity
y1
y0

ny
1− ny

Upward adjustment

Downward adjustment

Firms’ price
p1
p0

np
1− np

Free adjustment

Unitary cost constrained

Workers’ wage w
occ = 1
occ = 0

nw
1− nw

Upward adjustment

Downward adjustment

Workers’ consumption
c1
c0

nc
1− nc

Not rationed

Rationed

Table 1: Agents and States

Variable and initial value Description
y = 480 Aggregate Production
p = 1 Price
w = 1 Wage
c = 1 Consumption
z = 1 Wealth
my = 0.5 Drift for production
sy = 0 Spread for production
mp = 0.5 Drift for price
sp = 0 Spread for price
mw = 0.5 Drift for wage
sw = 0.1 Spread for wage
mc = 0.01 Drift for supply constrained consumers
sc = 0 Spread for supply constrained consumers

Table 2: Initial conditions.
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Parameter and value Description
δ = 0.01 Price and wage adjustment rate
r = 0.1% Interest rate
a = 0.5 Matching function parameter
b = 0.5 Matching function parameter
hwji = hcji = 3 Subset of firms for each workers/consumers in labor

and goods market
κ = 0 Searching cost in goods market
Ny = 100 Number of firms
Nc = 500 Number of consumers

Table 3: Parameters

DSGA

Master Equations

Transition Rates

strategies and interaction protocols

agent based models

Figure 1: Conceptual representation of the methodology.
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Figure 2: Simulation of the system for the aggregate model. Black line: per-capita production,
light gray line: per-capita wealth, dark gray line: per-capita consumption.

Figure 3: Simulation of the system for the aggregate model: occupation numbers. Light gray
line: increasing-production firms (ny), dark gray line: not-rationed consumers (nc), black
line: not cost-constrained firms (np). Shaded areas: periods in which the production level is
less than 95% of the full-employment equilibrium level.
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Figure 4: Shock in Production (−1%). Monte Carlo simulation with 1000 replications. Per-
centage deviation from baseline simulation and confidence intervals. Left panels: DSGA
system; right panels: ABM.
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Figure 5: Shock in Prices (+1%). Monte Carlo simulation with 1000 replications. Percentage
deviation from baseline simulation and confidence intervals. Left panels: DSGA system; right
panels: ABM.
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Figure 6: Shock in labor productivity (+1%). Monte Carlo simulation with 1000 replications.
Percentage deviation from baseline simulation and confidence intervals. Left panels: DSGA
system; right panels: ABM.
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Figure 7: Shock in interest rate (+1%). Monte Carlo simulation with 1000 replications.
Percentage deviation from baseline simulation and confidence intervals. Left panels: DSGA
system; right panels: ABM.
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Figure 8: Simulation of the system for the aggregate model with optimization: per-capita real
variables (zoom on periods 0-700).
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Figure 9: Simulation of the system for the aggregate model with optimization: per-capita real
variables (burn-in period 0-100 omitted).
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Figure 10: Simulation of the system for the aggregate model with optimization: value function
gc (upper panel) and uncertainty index βc (bottom panel) for supply-constrained consumers
(burn-in period 0-100 omitted).

Figure 11: Simulation of the system for the aggregate model with optimization: proportion
of households not supply constrained. Dashed line for nc = 0.48.

45



Page 48 of 53

Acc
ep

te
d 

M
an

us
cr

ip
t

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 12: Numerical Exploration of system phase-space. Consumption vs Wealth for different
initial conditions.
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Figure 13: Simulation of the system for the aggregate model with optimization: potential
function U (vertical axis) vs. nc (horizontal axis) with zoom around the critical points.
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Figure 14: Simulation of the system for the aggregate model with optimization: potential
function U (vertical axis) vs. nc (horizontal axis). Detail around the critical points.
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Figure 15: Simulation of the system for the aggregate model with optimization: logarithm of
the potential function U (vertical axis) vs. logarithm of nc (horizontal axis). Detail around
the critical points.
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Figure 16: Simulation of the system for the aggregate model with optimization: logarithm of
the potential function U (vertical axis) vs. logarithm of nc (horizontal axis). Detail around
the critical points for different interest rates. Red line: r = −0.5 per cent, black line r = 0.5
per cent, blue line r = 0 per cent.
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