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Highlights: 
 

• Discrete time binary data may be modeled using state occupancy or transitions. 
• Dynamic binary response and multi-spell duration models are commonly used 

models. 
• There is a one-to-one correspondence between the representations required for each. 
• There is a one-to-one correspondence between the sets of conditional probabilities. 
• First and second-order DBR models are nested in simple MSD models. 
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1 Introduction

There are two distinct approaches to analyzing discrete-time two-state panel data in the

applied econometrics literature. One approach focuses on modeling the determinants

of state occupancy using autoregressive dynamic binary response models and low-order

Markov assumptions (e.g. Hyslop, 1999). The other approach focuses on modeling the

determinants of transition between states using multi-spell duration models and semi-

Markov assumptions (e.g. Stevens, 1999). Overwhelmingly, the applied literature prefers

to model occupancy rather than transition. With a few exceptions (e.g. Barmby, 1998;

Cappellari et al., 2007; Bhuller et al., 2016), there appears to be little awareness of the

connection between the two.

This note presents three equivalence results. First, the representations of the outcomes

in terms of state occupancy or transition between states are equivalent in the sense that

there is a one-to-one correspondence between them. Second, the unrestricted probability

distributions for the occupancy and transition outcomes are also equivalent. Third, models

of state occupancy with a first- or second-order Markov assumption are equivalent to

models of transition between states with a semi-Markov assumption and no duration

dependence after one or two periods.

Equivalence implies that, in principle, a data analyst may choose to model occupancy

probabilities and will be able to infer the corresponding transition probabilities, and vice

versa. Equivalence also implies that any differences between the approaches arise from

auxiliary assumptions such as parametric specifications. Importantly, equivalence means

that auxiliary assumptions about probabilities of state occupancy have implications for

transition probabilities, and vice versa. As we show in related research (see Gørgens and

Hyslop, 2016), the restrictions embodied in typical models of state occupancy can be

unacceptably unrealistic.
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2 Three equivalence results

Suppose time is divided into periods of equal length, an entity occupies one of two states

during each period, and transitions between states occur between periods. Entities are

indexed by i and times are indexed by t. Let Yit be the indicator of the state occupied

by entity i at time t, and let Cit be the indicator of whether or not the entity makes a

transition between times t− 1 and t, with Yit ∈ {0, 1} and Cit ∈ {0, 1} for t = 1, . . . , T .

To keep the note concise, we make several simplifications. First, we assume the process

begins at time 1 for all entities and lasts at least until period T . Second, we focus on the

outcomes experienced by the entities, whether observed or not. In practice, it is necessary

to distinguish between the underlying process and the observational scheme, and issues

of sampling and incomplete data are important. Third, we abstract from covariates. Our

results hold more generally, but the simple setup is sufficient for our purpose in this note.

For example, the results continue to hold if all probabilities concerning Yit and Cit are

conditional on a covariate vector, Xit.

The following theorem shows that there is a one-to-one correspondence between the

two outcome representations.

Theorem 1. The outcome representations {Yi1, Yi2, . . . , YiT} and {Yi1, Ci2, . . . , CiT} are

equivalent.

Proof. The conclusion follows from

Cit = 1(Yit−1 6= Yit), t = 2, . . . , T, (1)

and

Yit =

(
Yi1 +

t∑

k=2

Cik

)
mod 2, t = 2, . . . , T, (2)

where “x mod y” yields the remainder after dividing x by y.

The aim of most empirical studies is to understand the determinants of either proba-

bilities of state occupancy or probabilities of transition between states, and it is usually
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important to characterize the influence of the past. Let Hit denote an entity’s history at

time t. From the theorem above, we know the history has several equivalent representa-

tions. For concreteness, let Hit = {Yi1, . . . , Yit}. Let Ht = {0, 1}t denote the support of

Hit, and let ht denote a generic element of Ht.

In analyses that focus on state occupancy, the interest is in the conditional probability

distribution of Yit, the state occupied by an entity in period t, given the history prior to

that time. That is,

χ = P(Yi1 = 1),

ζ(ht−1) = P(Yit = 1|Hit−1 = ht−1), ht−1 ∈ Ht−1, t = 2, . . . , T.

(3)

There are 2t−1 elements in Ht−1, so the total number of probabilities in (3) is 2T − 1.

In analyses that focus on transition between states, the interest is in the conditional

probability distribution of Cit, the change in state by an entity between periods t − 1

and t, given the history prior to that time. Formally,

χ = P(Yi1 = 1),

ξ(ht−1) = P(Cit = 1|Hit−1 = ht−1), ht−1 ∈ Ht−1, t = 2, . . . , T.

(4)

Obviously, there are also 2T − 1 distinct probabilities in (4).

The following theorem shows that there is a one-to-one correspondence between the

set of conditional probabilities of state occupancy and the set of conditional probabilities

of transition between states.

Theorem 2. Given t ≥ 2 and ht−1 ∈ Ht−1, let y′ denote the state occupied in period t−1

according to ht−1. The probability distributions in (3) and (4) are equivalent in the sense

that ζ(ht−1) = 1− ξ(ht−1)y′(1− ξ(ht−1))1−y′ and ξ(ht−1) = 1− ζ(ht−1)y
′
(1− ζ(ht−1))1−y

′
.

Proof. The conditioning event is the same in each set of probability distributions given in

(3) and (4). The conclusion therefore follows from the facts that Yit = 1 happens if and

only if either (Yit−1 = 1, Cit = 0) or (Yit−1 = 0, Cit = 1), and that Cit = 1 happens if and

only if either (Yit−1 = 1, Yit = 0) or (Yit−1 = 0, Yit = 1).
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Data analysts who focus on state occupancy typically impose a Markov assumption

of order r, where r is quite low, either one or two. If the conditional probabilities depend

on history only through the r most recent previous periods, then

P(Yit = 1|Hit−1 = ht−1) = P(Yit = 1|Yit−r = y′−r, . . . , Yit−1 = y′−1),

ht−1 ∈ Ht−1, t = r + 1, . . . , T, (5)

where y′−r, . . . , y
′
−1 are the most recent r elements of ht−1. For simplicity, we suppress the

dependence and do not write e.g. y′−r(ht−1).

The set of distinct probabilities of interest under the Markov assumption can be rep-

resented by those at the beginning of the process (i.e. the first r + 1 periods), namely

χ = P(Yi1 = 1),

ζ(ht−1) = P(Yit = 1|Hit−1 = ht−1), ht−1 ∈ Ht−1, t = 2, . . . , r,

ζM(y−r, . . . , y−1) = P(Yir+1 = 1|Yi1 = y−r, . . . , Yir = y−1),

(y−r, . . . , y−1) ∈ {0, 1}r,

(6)

where ζ(hr) in (3) is recast as ζM(y′−r, . . . , y
′
−1) for hr ∈ Hr. The total number of proba-

bilities in (6) is 2r+1 − 1, which is usually small compared to the 2T − 1 probabilities in

(3).

Data analysts who focus on transition between states are usually interested in how the

transition probabilities depend on elapsed time in the ongoing spell, and therefore often

work with a semi-Markov assumption. Let Dit denote the elapsed time in the ongoing

spell by the end of period t. If the history prior to entering the ongoing spell does not

influence the conditional probabilities, then

P(Cit = 1|Hit−1 = ht−1) = P(Cit = 1|Yit−1 = y′, Dit−1 = d′)

ht−1 ∈ Ht−1, t = 2, . . . , T, (7)

where y′ and d′ are constructed from ht−1 by letting y′ be the most recent element and
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letting d′ be the elapsed time in the most recent spell.

The set of distinct probabilities of interest under the semi-Markov assumption can

also be represented by those at the beginning of the process (i.e. the first spells in the two

states); that is,

χ = P(Yi1 = 1),

ξS(y, d) = P(Cid+1 = 1|Yid = y,Did = d), (y, d) ∈ {0, 1} × {1, 2, . . . , T − 1},
(8)

where ξ(ht−1) in (4) is replaced by ξS(y′, d′) for ht−1 ∈ Ht−1. There are 1 +T (T −1) total

probabilities in (8). This is usually much smaller than the 2T − 1 probabilities in (4).

The following theorem shows that the widely used first- and second-order autoregres-

sive dynamic binary response models are equivalent to particularly simple multi-spell

duration models, where the transition probabilities are constant after one or two peri-

ods. Given r ≤ 2, define the indicator Git = 1(Dit−1 ≥ r), then restrictive semi-Markov

assumption is

P(Cit = 1|Hit−1 = ht−1) = P(Cit = 1|Yit−1 = y′, Git−1 = g′)

ht−1 ∈ Ht−1, t = 2, . . . , T, (9)

where g′ is also constructed from ht−1 by letting g′ = 1 if the elapsed time in the most

recent spell is at least r (i.e. d′ ≥ r) and g′ = 0 otherwise.

Theorem 3. Suppose r ≤ 2. Then the Markov property, (5), holds if and only if the

restrictive semi-Markov property, (9), holds.

Proof. First, by previous results Yit and Cit can be inferred from each other given Hit−1 =

ht−1. Therefore, (5) implies

P(Cit = 1|Hit−1 = ht−1) = P(Cit = 1|Yit−r = y′−r, . . . , Yit−1 = y′−1),

ht−1 ∈ Ht−1, t = r + 1, . . . , T. (10)

We begin with the “only if” part of the theorem. If r = 1, then (10) implies that
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the history affects the transition probability only through Yit−1, and it follows that (9)

holds and that Git−1 does not matter. If r = 2, note that Yit−2 can be inferred from

(Yit−1, Git−1). If Git−1 = 0, then Dit−1 = 1 which means there was a transition at

time t − 1, so Yit−2 = 1 − Yit−1. If Git−1 = 1, then Dit−1 ≥ 2 which means there was no

transition at time t − 1, so Yit−2 = Yit−1. Consequently, conditioning on (Yit−1, Git−1) is

the same as conditioning on (Yit−2, Yit−1, Git−1), so (9) is equivalent to

P(Cit = 1|Hit−1 = ht−1) = P(Cit = 1|Yit−2 = y′−2, Yit−1 = y′−1, Git−1 = g′),

ht−1 ∈ Ht−1, t = 2, . . . , T. (11)

Therefore, if r = 2, then (10) implies that the history affects the transition probability

only through (Yit−2, Yit−1), and it follows that (11), and hence (9), hold and that Git−1

does not matter.

We next show the “if” part. If r = 1, then Git−1 = 1 always, so conditioning on Git−1 =

g′ is redundant, and hence (11) implies (10). If r = 2, note that Yit−2 6= Yit−1 implies

Dit−1 = 1 andGit−1 = 0, and Yit−2 = Yit−1 impliesDit−1 ≥ 2 andGit−1 = 1. Consequently,

conditioning on (Yit−2, Yit−1, Git−1) is the same as conditioning on (Yit−2, Yit−1), so (11)

implies (10).

3 Concluding remarks

In related work (see Gørgens and Hyslop, 2016), we compare parametric specifications of

these models, including both observed and unobserved heterogeneity. In that context, we

also find that prototypical Markov models are special cases of prototypical semi-Markov

models. In an empirical case study, we find that the Markov assumption is strongly

rejected.
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