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ABSTRACT

Fitting formations, namely Fitting classes that are also formations,
made their first appearance in the work of Trevor Hawkes in connection
with skeletal classes of finite soluble groups and primitive saturated

formations.

In 1970 Hawkes showed that each metanilpotent Fitting formation
is saturated and can be characterised by a local definition consisting of
formations
A of nilpotent groups. However the situation in the general case seems

considerably more complex. We are motivated by the search for a

classification result.

Since Bryce and Cossey have shown that saturated Fitting formations
can be defined locally by Fitting formations it follows that the non-

saturated situations are of particular interest.
All groups in this thesis are finite and soluble.

We supply a general method for constructing Fitting formations by
examination of properties of chief factors. Let k be a field of
characteristic g . For each group G suppose M(G) is a given class

thot dhe family [M(a)]
of irreducible kG-modules Such , satisfies certain closure conditions.

Then, loosely speaking, the class of groups G where g-chief factors are

contained in M(G) is a Fitting formation.
Extensive use is made of this method.

In our first example we generalise the already known non-saturated
classes of Hawkes and Berger-Cossey. The class we define is called
i TT()_() where 7™ is an arbitrary set of primes and X any Fitting

=9
on
formation subject to a condition dependent b and q .
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When 7 = {q} , X =S we reduce to Hawkes' case; when w = {p},

X = Sp'gp we have the Berger-Cossey example.

Further we give criteria under which members of this family are
non-saturated. Our main theorem will be that Xqﬁ(g) is non-saturated

ItEStherefexaists  primes¥ir jist 'such' that & € w' , "= # q , 5 € m with

1L}

rgs < § . We have not been able to find exact conditions for non-

saturation.

In our second main example we define a new family of Fitting

m

formations Eq ZX)OpiSwath 1 and g as above and X € S S -

For each group G we let Hqﬂ(G) be the class of irreducibie
kG-modules V which on restriction to the mw-radical of G are
homogeneous and has G/ker V € é : The Fitting formation is then
defined by the general method described above. Non-saturation occurs in

similar situations as for Xqﬂ(g) -

Finally we investigate the possibility that all Fitting formations
can be constructed by our methods. We define a closure operation P',T
on the class of Fitting formations, F , where = is an arbitrary set
of prime;. We put PI>= P . Essentially P1T is defined locally at
each prime q € 7 . For X g 5, Pq(é) is the class of groups G such

that each g-chief factor of G extended by its automiser is contained

TN X

Since S

CaP ufX) sritisselear that. X. cannot be Pw—closed.
_— 'n’: =

,n.l

However, we conjecture X is P-closed. This proves to be a difficult

problem to decide in general although we shall show all saturated cases

are P-closed and all known non-saturated instances are also.
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CHAPTER 1

INTRODUCTION

Let G be a finite soluble group and m be a co-prime divisor of
IGI . Then an old theorem of Philip Hall [17] states that there exists
a subgroup of G of order m , and that all such subgroups, the Hall
subgroups, form a unique characteristic conjugacy class in G . In the

soluble case this provides a generalisation of the first Sylow theorem.

In 1961 R.W. Carter [7] showed that for each finite soluble group
there exists a self-normalising nilpotent subgroup, the Carter subgroup,
and that Carter subgroups form a unique characteristic conjugacy class of

subgroups in the full group.

These two facts prompted interest in developing a uniform account of

when and how characteristic conjugacy classes of subgroups arise.

In 1963 Wolfgang Gaschiitz [13] presented the first such description.
He introduced the seminal concept of a saturated formation, a class of
finite soluble groups (as are all groups in this thesis) closed under
taking quotients and subdirect products and saturated. Roughly speaking,
he showed that one class of conjugacy subgroups is obtained for each
saturated formation X ; the subgroups in the class being called e
covering subgroups (to use the notation of Carter and Hawkes [8]). For
example gﬂ-covering subgroups are exactly the Hall 7-subgroups (for m a
set of primes gﬂ is the class of m-groups) and the g-covering subgroups

are just the Carter subgroups (for N the class of nilpotent groups).

Following Gaschiitz, U. Lubeseder [28] showed that every saturated
formation arises via a local definition from a family of formations

(Chapter 2 §2.4). This showed that the theory of formations lay at the



heart of Gaschiitz's methods. Much of early formation theory was worked

out by Gaschiitz [13], Carter and Hawkes [8] and B. Huppert [23].

In 1967 Herman Schunck [32] was able to significantly generalise
Gaschiitz's work. He replaced Gaschiitz's saturated formations with a more
general class - the Schunck class - and showed that for each group G there
exist a set of subgroups, the X-projectors of G , which are conjugate

int NG L

Saturated formations are Schunck classes although the converse is
false. In the cases when X = gﬂ or N say, the é-projectors @iE &)
group coincide with the é—covering subgroups.

Meanwhile in 1966 B. Fischer [11] dualized the concept of a
formation to define the Fitting class - a class closed under subnormal
subgroups and products of normal subgroups. Fischer showed that if a
Fitting class X enjoys a certain weak closure property (similar to
subgroup closure) then each group G possesses a unique conjugacy class
of maximal X-subgroups containing the é—radical - the Fischer X-subgroups,

as Hartley [19] names them.

However in 1967 B. Fischer, W. Gaschiitz and B. Hartley [12] obtained
a simpler dualization of formation theory. They showed that there exists
a unique characteristic conjugacy class of subgroups, called X-injectors,
for each Fitting class X , without additional closure properties on X
being necessary. For example the gﬂ-injectors of a group G coincide
with the §1Fprojectors and are the Hall mw-subgroups of G . Indeed,
given a Fitting class which is also a Schunck class, X say, such that

X-injectors and X-projectors coincide for all soluble groups, hen " xt= s

for some set of primes T . The N-injectors of a group G are the

Fischer N-subgroups.



By the late 1960s attention had shifted to a more formal study of

the specific classes that give rise to conjugacy classes of subgroups.

One line of research has been to explore the interrelationship
of closure properties on a class. For instance it was recently proved
by R.A. Bryce and John Cossey [4] that subgroup closed Fitting classes are
formations. It seems to have been a contribution of Hartley in [19] and
[12] to express the standard closure properties as closure operations on a

class in the terminology introduced by P. Hall [18] in 1963.

The first important result of this new kind had in fact appeared
quite early. This was the Lubeseder result [28] on saturated formations
as mentioned above. It provides a characterisation of saturated formations
in terms of formations. Another early result was by Peter Neumann [30]

who showed that a formation of nilpotent groups is subgroup closed.

However it was work of Trevor Hawkes that gave direct encouragement
to these new sorts of questions. In [21] he pointed out that primitive
saturated formations are subgroup closed Fitting classes and suggested that
the converse might also be true. This question first attracted attention
to the study of Fitting classes that are also formations. Hawkes called

such classes, the subject of this thesis, Fitting formations.

In 1970 Hawkes [20] presented a classification of metanilpotent
Fitting formations showing that they are defined locally by nilpotent groups.
It follows that such classes are both saturated and subgroup closed.

However these results do not carry over to the case of nilpotent length 3 ;
Hawkes is able to construct an example which is neither saturated nor

subgroup closed. This seems to indicate, as he notes, that the classifica-
tion problem may be a difficult one in the general case. We describe this

important example in Chapter 2, §3.7.



Inspired by Hawkes' results Bryce and Cossey [3] showed that a
subgroup closed Fitting formation is saturated; with the converse failing
in general, however holding in the case of nilpotent length 3 . The
methods of [3] also enabled the authors to give an affirmative answer to
Hawkes' original question in [21]: Every subgroup closed Fitting formation
is a primitive saturated formation. This means that subgroup closed

Fitting formations are completely classifiable by local definitions.

This thesis is motivated by the problem of extending this class-

ification to the general case.

In [3] Bryce and Cossey showed that all saturated Fitting formations
can be defined locally by Fitting formations, so it seems likely that a
treatment of the non-saturated case will be a major step in the general

classification.

However, work on the non-saturated cases has been impeded by a lack
of examples. Indeed, apart from Hawkes' example mentioned above, no new
examples appeared until 1978 when Tom Berger and John Cossey [l1] were able
to construct an example using a variation of Hawkes' methods. We describe

this example in Chapter 2 §3.8.

Accordingly this thesis is a consideration of constructions for
Fitting formations. We place particular emphasis on the non-saturated
cases.

All examples under our examination have a common feature : they are
defined by collecting those groups whose chief factors are subject to certain
specified conditions. The thesis ends by considering whether all Fitting

formations are of this type.

The thesis is divided into six chapters. Chapter 1 is the

introduction. Chapter 2 settles preliminary questions of notation and



convention. We briefly summarise the elementary properties of a Fitting
formation and collect and arrange other results, particularly from

representation theory, which we will need.

In Chapter 3 we formalise the method of constructing a Fitting
formation used implicitly by Hawkes and Berger-Cossey in the construction
of their examples which we shall call gq and gqp respectively (where
P,d9 are primes). An axiomatic method emerges. Loosely speaking, choose
a set of irreducible modules M(G) for each group G for which certain
specified closure conditions hold. Let g be the characteristic of the
underlying field. Then a Fitting formation is defined by collecting those

groups which, loosely speaking, have all g-chief factors in M(G) .
We make extensive use of this method.
In Chapter 4 we show that Hawkes' class zq and Berger-Cossey's

Yp

. Flaer : s
class are members of one family of Fitting formations we call gq (§) 5
for m a set of primes and X a Fitting formation subject to certain

requirements.

In particular we have gq when v = 1ql = and Y when

= X =NS S EL
m {P} ’ = =P.=p
Vi 1T(X) is constructed using the method of Chapter 3. Accordingly,
=q =
for each G we select a set of irreducible modules called Yq"(G) subject

to a set of conditions, generalisations of those which appear in the Berger-

Cossey construction.

Next we give sufficient conditions on the choice of X subject to
i 5 i - t able to give necessa
m under which Xq (X) is non-saturated. We are no e g ry
and sufficient conditions. Finally we consider when two such classes may be

equal and remark on further elementary properties.



In Chapter 5 we construct a new example of a non-saturated
Fitting formation, called Eqﬂ(é) where once again ¢ 1is a set of
primes and X a Fitting formation subject to specific conditions. The
construction is by the method of Chapter 3. Roughly speaking,for each
group we select those modules which are homogeneous under restriction to

the appropriate m-subgroup.

The conditions we provide under which gq“(g) is non-saturated

are similar to the case for zqﬂ(g) g

All Fitting formations dealt with to this point have been
constructed by the method of Chapter 3, via consideration of chief
FacEorsE In Chapter 6 we try to answer a very important question : Can

all Fitting formations be so constructed?

Although we cannot provide a definite answer to this question all

suggestions seem to indicate the answer might be affirmative.

We define a new closure operation P on the class of Fitting

formations, F . If X 1is any Fitting formation P(é) is constructed
by the method of Chapter 3. Basically P(X) is a class with the
property that certain well chosen primitive P(X)-groupsare in X. The

primitive groups under consideration occur naturally as suitable

extensions of chief factors. : .
Fitting formation 13
The important question is whether eac}\A P-closed or not. IE

not then P may prove useful in providing new examples of non-saturated
Fitting formations. If so then we will have an answer to a basic
question : Axe Fitting formations characterised by properties of

7

their chief factors!



All saturated Fitting formations are P-closed, as are all known
non-saturated cases, Xqﬂ(g) and Eq“(g) a The general case however

seems a difficult problem.

The chapter closes with a partially successful consideration of

how P behaves under products of classes.



CHAPTER 2

PRELIMINARIES

§1. Introduction

Most of the notation and terminology of this thesis can be found in
Wolfgang Gaschiitz's book [14]. The aim of this Chapter is to settle
remaining details of notation and convention. Foremost amongst these is
the following reaffirmation : All groups in this thesis, unless explicitly

stated otherwise, are both finite and soluble.
We assume familiarity with the following texts :

- For Fitting class and formation theory Gaschiitz [14] Chapters

(075 a0 WAL NAIRIE 5 10€ R hgYe LA
- For general group theory Gorenstein [15] Chapters 1, 2, 5.

- For representation theory Curtis and Reiner [10] Chapters

I, II, VII and Huppert [24] Chapter V.

Most of the preliminary results quoted in this chapter fall outside
these references; overlapping occurs for the sake of emphasis or re-

expression in a more suitable form.

In general those proofs which are either elementary or for which

an adequate reference exists have been omitted.
The material we present is divided into three sections.

Since no unified description of the basic properties of a
Fitting formation already exists in the literature, §2 1is devoted to that
aim. Our account ends with Hawkes' characterisation of all metanilpotent

examples. We will be careful to say for each result which of the closure

operations are involved.



In 83 our attention is focussed on modules with a group acting
on them. Indeed, such modules will be our main way of studying Fitting
formations. The fact which enables this is that a chief factor of a
finite soluble group may be viewed as an irreducible module for the
group itself over a field of prime order. We record several elementary
consequences and establish certain conventions and notations. The
section culminates with a description of the two classes that have
stimulated this thesis : Hawkes' Fitting formation and the Berger-Cossey

class.

The final section, 8§84 , is a brief review of the representation
theory we shall need. First we state the collection of results henceforth
referred to as Clifford's theorem. We then go on to examine a situation
not fully explored by this theorem : roughly when an irreducible module
restricted to a normal subgroup is rendered homogeneous. The section
concludes by providing conditions under which an irreducible module for
a normal subgroup can be expressed as the restriction of an irreducible
module for the full group. The application of these conditions will turn

Ut tolbelcrucialinsChapteraoe

§2. Fitting formations

Recall that a Fitting formation is a class of groups which is both

a Fitting class and a formation.
Let F be the class of all Fitting formations.

According to standard definitions a Fitting class is a class
subnormal subgroup closed (Sn—closed) and normal product closed (NO—
closed); and a formation is a class quotient group closed (Q-closed) and

subdirect product closed (Ro-closed).
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Since there are a number of equivalent ways of expressing

closure under these operations it is appropriate to state which version

we shall use.

Accordingly let X be a class. EhenEYaiN S

Q-closed whenever G ¢ § implies G/N € X for each N normal

siim - (@e

- Ro—closed whenever G/Ni X = N impiltiles

G/(NlﬂN2) € X . for each N, normal in € .

= Sn—closed whenever G € X implies all maximal normal subgroups

OF "G Tare ins. X o

- N _-closed whenever G

0 N1N2 and Ni are maximal normal

subgroups of G In X implies G € X .

In addition X is saturated (Eg-closed) whenever G/®(G) € X implies

G € X "for each G .
P is the set of all primes and m an arbitrary set of primes.

Some elementary examples of Fitting formations are :

the class consisting of only <1 >

i

the class of all finite soluble groups

1

§1T the class of all finite soluble w-groups

N the class of all nilpotent groups
Hn thelcllasshioEialiE nillpetent i T=groupse

Amongst the non-elementary examples there are two of particular

interest to us. These are Hawkes' class, gq , defined in [20] and the
D defined In
Berger-Cossey class gq [N S where p,q are primes. The notation we
A
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use for Hawkes' class brings it into line with Berger-Cossey, and
foreshadows the chief result of Chapter 4 which shows that these
examples belong to a single family of Fitting formations. A description

o Zq and Eqp is best reserved till §3

Let X be a formation and G a group. The  X=residual .of G ,
X
writtem G ,  is the intersection of all normal subgroups of G whose
X
factor group belongs to X . Since - Xy s Ro—closed G is the

uniquely determined smallest normal subgroup of G whose factor group is

in

1<

If ¢ 1is an epimorphism of G then

(Galsehiitzr [ SRS 3

Now let X be a Fitting class. The X-radical of G , written

GX s is the produet jof all normal subgroups of . G which belong to X

Since ‘X is No—closed GX is the uniquely determined largest normal

subgroup of G in X .

If H is subnormal in G then

HNG

jas
11>

Il
11>

(Galschiitz N EIAxI= 3 d)

If X and Y are both Fitting formations then the formation class

preducEToENEXasan d g , hamely

=<

e | &Fe «

11>
——t
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determines the same class as the Fitting class product

e G/Gge Yla

Thus the expression XY is unambiguous and is just the usual class
productiof X and Y . Eor"alproof of ‘thisiiscel Gaschitz [14] X.6 .
It is an elementary result that XY is again a Fitting formation. To

see this combine Gaschiitz [14] VII.6 and X.7.

Furthermore it is easy to see that both X and Y are contained

ARSI

Now suppose we wish to show X C Y where X,Y are Fitting
formations. Typically we take a counter example of minimal order, G
say, and refine the structure of G leading to a contradiction. The

first step of this refinement can be completed in general.

2.1 LEMMA Let X and Y be Fitting formations and G a group of
minimal order in X but not in Y . Then G has a unique maximal

normal subgroup and a unique minimal normal subgroup.

The proof of this result is simple combining the minimality of G

with the RO,NO—closure (o)t i

By the characteristic of a group G , written vy(G) , we shall

mean the set of primes which divide the order of G .

Likewise by the characteristic of a class of groups X , written

y(X) , we shall mean the set of primes which divide the order of some

Ut (e e
Geé

group in X dpe.  y(X)

The following is a well known result.
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2.2 LEMMA Let X be a Fitting class. Then

ﬂ =
- 1E—Y():()

11>

The proof of this is an immediate consequence of Gaschiitz [14] X.4c.
Loosely speaking Lemma 2.2 shows that a Fitting class is amply supplied

with nilpotent groups.

The following is a similar kind of result.

Let N Dbe a normal subgroup of G . Then G acts on N by
Mg G and
conjugation. In particular ifA M E_CG(N) then G/M acts on N . Now

under this action form the semidirect product N.G/M . The following
lemma shows that a formation is rich enough to contain all extensions of

this kind when G € X .

2.3 LEMMA Let X be a formation, G a group in X , N a normal
subgroup of G and M be a normal subgroup of G contained in C. (W)

Then
N.G/M € X

This is proved by Bryant, Bryce, Hartley [2] Lemma 1.8.

Let X be a formation. Suppose there exists a formation X (p)

feorlecachiipitc Y(é) such that

11>

e s e
RG] =

Then we say X is locally defined by X(p) .

The following is a well known result of Gaschiitz and Lubeseder.
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2.4 THEOREM A formation has a local definition if and only if it

1s a saturated formation. (Huppert [24] VI Hauptsatz 7.5 and

Satzago25).

Next we quote Hawkes' characterisation of metanilpotent Fitting

formations, Theorem 1 of [20].

2.5 THEOREM Let X be a Fitting formation contained in NZ L RO

P € Y(X) take

TDY= L € ix) o] rue Y(G/Op,p(G)) for some G € x}
and put

TE D))

=

N otherwise
=T (p)

Then X 1is defined locally by X(p) , that is

X =1{G € G/, @) € X(p) for each p € yi(X}} .

= (X) |

If G and H are groups let G wr H denote the standard wreath

G

pProducEroRCERand HE SR andy et GH be the base group, h

Il
h€H
X=radical of

(cf Neumann [29] §2). The next result interrelates the

G we H ‘with that of G . X 1is assumed to be a Fitting formation.

2.6 LEMMA  In terms of the above when G § X then

(G wr H), = (GX)H
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Originally Cossey expressed this result for X a Lockett class

(Lemma 2.2 [9]) however as is well known (Lockett [27] Theorem 2.2(d))

a2 O-elesed Fitting class, in particular a Fitting formation is a

Lockett class.

To close this section we quote a purely group theoretic result
concerning properties of the Fitting and Frattini subgroups, denoted F (G)

and ¢(G) respectively. These properties are culled from Huppert.

2.7 LEMMA For a group G tf ¢(G) =1 then F(G) <8 complemented

in G.. Moreover F(G) 1is the direct product of minimal normal
subgroups of G , say Mi wa =il hm s, and CR(G) CG(Mi) .
Proof All references are to Huppert [24] III.

The complement for F(G) is assured by Hilfssatz 4.4, and the
direct product property by Satz 4.5. The centralising property is

contained in Satz 4.2e, as required.
Herceforth  all  classes of groups are assumed +to be non- trivial.

§3. G-modules and Fitting formations

Our first remarks in this section concern the situations in which
we may change the group which acts on a given module. Frequent use will
be made of such changes. Our practice will be to leave it to the

context to settle how the modules are being considered.

Let V be a G-module for a group G . TE N dsinormal “and
contained in kerG V then under the appropriate action V may be

considered a G/N-module.

Further, if ¢ is a homomorphism of a group X into G , then
V may be considered an X-module under the obvious action for x € X ,

Vi & Vi
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Xv = ¢(X)v .

In this case we say that V is an X-module given by inflation from G .

It will be usual to leave the exact homomorphism understood.

If U,V are isomorphic as G-modules we write U EG VG

signify module isomorphism with respect to the group G .

If V is a G-module then there is an implied homomorphism of G
e Aee Voo Under this homomorphism we are able to construct a
semidirect product, always written V.G . Note that U gG V implies

U.G =2 V.G but the converse fails.

Moreover if V 1is an irreducible G-module then G/kerG Vo acks
faithfully and irreducibly on V . In line with Bryce, Cossey [6] we
shall call G/kerG ¥ the automiser of ¥V . The following semidirect

product will be of great significance in Chapter 6.

'C\-n;'te
3.1 DEEINITION If Vv 1is any .G-module then we put

P(V,G) = V.G/kerG Vi

3.2 THEOREM For Vv an irreducible G-module P(V,G) s a primitive

group and V 18 a unique minimal normal subgroup.

Proof. For convenience put P = P(V,G) . Then because V is
irreducible under G it follows V 1is a minimal normal subgroup of P .
Moreover because G/kerG Vil o c s Faitth EuliliySeonisaVas tlE ot owsithait
CP(V) =V .

Thus Theorem I.8 of Gaschiitz [24] applies showing that P is
primitive. Uniqueness follows immediately from I.4 of Gaschiitz again.

This completes the proof.
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Now in a finite soluble group chief factors are elementary abelian
g-groups, q a prime, and so can be regarded as vector spaces over Z .
Moreover if H/K is a g-chief factor of G then G acts on H/K by
conjugation in the usual way. Under this action H/K becomes an

irreducible :ZqG—module. The kernel of H/K under this action is

the centraliser of H/K in G and is denoted by CG(H/K) 5

Further, if N is normal in G then we say H/K is above N if

KRN and i be TowNE i RN CN.

Note in passing that if ¢ : G > H is an epimorphism and U is
a‘chief" faetor of H * then there exists a chief factor of G, V say,

such that Vi EG Ui

Choose a definite chief series for G and let {Ui}i_l be the
set of all g-chief factors contained in it. Then by Huppert [24] III

4.3 we have

n
(3<3) OussdlE) = il € ) .
q'q Gt Gl
ShieE s @) = Ml © (G) it follows that F(G) is just the intersection

1
gep 219

of centralisers belonging to the chief factors of chief series for G .

A useful corollary is that when V is any g-chief factor and

N is normal in G and N € gq'gq then

(3. 4] N CC (V) .

We can now extend Lemma 2.3 to a consideration of chief factors.

The following is a most useful result relevant to Chapter 6.
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3.5 LEMMA Let V be any chief factor of G and let G € X where

X T8 a'fermation. Then

P(V,G) € X .

Proof Suppose V = H/K .

That P(V,G)

1R

P(V,G/K) 1is elementary.
But then (2.3) applies, yielding the required result.

Now let k be an arbitrary field of characteristic g . We know
that any g-chief factor, V say, may be extended to a kG-module of the

Rorm ks ®z: Vo Composition factors of chief factors extended in this
a

way constitute the basic material for the several constructions of Fitting

formations we consider in this thesis.

3.6 DEFINITION Eet .k "bevany field of .characteristic q and let G

be a group.

Denote by Fk(G) the class of irreducible kG-modules which
appear as composition factors of kG-modules of the form k ®z: V , where

q
W is a  g-chief factor of G .

We are now in a position to describe Hawkes' class zq , and the

Berger-Cossey class Eqp .

3.7 EXAMPLE (Hawkes)

Let k be an algebraically closed field of characteristic g .
Define the absolute arithmetic g-rank of a group G to be the least

common multiple of the k-dimensions of the modules in Fk(G) 5



I

Then the class of groups which have absolute arithmetic g-rank

a qg'-number is a Fitting formation. Hawkes [20] Theorem 2.

3.8 EXAMPLE (Berger-Cossey)

Let k be an algebraically closed field of characteristic qai,
and p be a prime. For each group G define qu(G) to be the class
of irreducible kG-modules V which satisfy the following conditions

BCl p does not divide the dimension of V .

BC2 If 6 is the representation of G afforded by V , then

tor! gu€:Gl ; rdet(0i{g)) «lies.in. the pl-roots of unity in* k.

BC3 G/kercv is p-nilpotent.

Then the class of groups
B & P
Y {G [ I] (G) Y ~(G)}

=q

is a non-saturated Fitting formation. Berger-Cossey [1] Theorem 3.1.

§4. Representation theory

In this section we collect the representation theory needed.
First we state what we shall mean by Cliffords Theorem (cf [31]
Theorem 2.23).
4.1 THEOREM Let k be an arbitrary field, and G be a group with N
a normal subgroup of G . If V 1is an irreducible kG-module then

) is completely reducible with all irreducible components

conjugate under G .
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(2) Let W be an homogeneous component of vy and s the

stabilieer of W in G . Then N €CsScG and W is an

irreducible kS-module with Vv = wC .

14

G
(3) The dimensions of the homogeneous components are all the

same, and there are exactly |G:s| of them.

The next theorem also due to Clifford is co-extensive with the
last. The most valuable feature of Theorem 4.1 is that we are able to
write V as being induced from an irreducible module of smaller dimension
(ElanS At However this only applies in the case ]G:SI #o 1o When
|G:S| = 1 (4.1) reveals nothing about the structure of V as a G-module.
It is this case, when VN is homogeneous, that the following result

covers.

4.2 THEOREM Let G and N be as before, however this time take k
o \be anw alyebraically clesed field. @ Let W be an trredieible kc-
module and Ve homogeneous. Let D be the representation of G
afforded by V and let R be the representation afforded by an
irreducible constituent of Vs Suppose the niliciplicitipoft B in

s T

Then there exist irreducible projective representations ([101,

E5l) ey E By and P, say, such that

(1) D(g) = P, (9) 3 P (9) flor g€ G

) B e () = Rig) for g €M) iand

(3) ) las degree -t and has ' N in its kernel.
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. . . *
Furthermore if there exists am ordinary representation R of

*
€Y such that RS R then we may take P, =R and in this case By will

also be an ordinary representation.

For a proof of this result see Curtis and Reiner [10] Theorem

ST

Note that when there exists a kG-module W with the property

Wy = U we say that U extends or lifts to G .

As a corollary we have the following

4.3 THEOREM Let G,N,k and V be as in Theorem 4.2.  Suppose

|G:N| = q, where q s any prime. Then Ve is irreducible.

Proof Let U be an irreducible component of V

N C Applying Theorem

4.2 and using the same terms we have

V=R®S,

where R affords an irreducible projective representation for G and

S one for G/N .

But G/N is cyclic andSsomEdamisE =1l MRS
because by Huppert [24] V 25.3 the Schur multiplier of G/N is trivial
and se the factor set of S is trivial. Thus S is really an ordinary
irreducible, and for this we know dim S =1 .

Thus dim V = dim R .

But by Theorem 4.2 (2) dim R = dim U and so dim V = dim U .

Hence VN is irreducible, as required.

Theorems 4.2 and 4.3 are used in Chapters 4 and 5.
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The most useful version of 4.2 is when U 1ifts so that V

can be written as a tensor product of ordinary irreducibles.

The following results which provide sufficient conditions for

such lifting are therefore of considerable value.

4.4 THEOREM Let k be an arbitrary field and N a normal Hall

subgroup in a group G with complement K . Let V be an irreducible
kN-module such that Vv is imvariant in G <i.e. module isomorphic with
1ts G-conjugates. Moreover let © be the N-representation afforded

by 'v. Then

(1) v Llifts to a kG-module, v say. =

I'F o) additicn k s c’dse,br'aicollxj closed +then

@2y may be chosen so that the G-representation afforded by

*

¥, 8@y 8 has the preperty

il CJINENKE
*
det 6 (g) =
det 6(g) 3 eEN
Proof For (1) we have Isaacs [26] Theorem A.

For (2) we know that such a complement K exists by the Schur-
Zassenhaus Theorem, now apply Hawkes [22] (2.6). This completes the
JONE(GIONE o

In the situation where N 1is no longer a Hall subgroup Isaacs [26]

(4.5) has the following.
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4.5 THEOREM Lo LN o arbivrary. field. et ' G be @ group
with N a normal subgroup. Let V be an irreducible kN-module
BUEh Chae Y s indariant tn G . If for each Sylow subgroup P/N

g eSS el s ehae T W Lifts to B, then VU lifistto ¢ .
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CHAPTER 3

A GENERAL CONSTRUCTION VIA CHIEF FACTORS

§1. Introduction

In 1970 Hawkes [20] took the first step towards characterising
Fitting formations by showing that all examples of nilpotent length 2 can
be defined locally by nilpotent groups (Theorem 2.5) . At the same time
however, as we have noted, he constructed an example of nilpotent length 3

which is neither saturated nor subgroup closed (essentially Example 3.7).

Later, in 1978, Tom Berger and John Cossey [l] were able to construct
further cases of non-saturated Fitting formations by applying a variation

of Hawkes' technique.
Since then no new such classes have appeared.

Nevertheless the methods of Hawkes, Berger and Cossey seem to
contain fruitful ideas about how new examples might arise. Foremost with
both sets of authors is the central role chief factors are given in the

CenSsEruCction,

Now it is a well known fact that the chief factors of a soluble
group may be considered as irreducible modules for the group over a
suitable field of prime order. The approach Hawkes, Berger and Cossey
take is to define their Fitting formations by collecting those groups for
which certain modules, essentially the chief factors, are restricted in
some way. Specifically, for a field k of characteristic q and a
group G , restrictions are placed on the modules in .Fk(G) , the class

of composition factors of the g-chief factors of G extended to k , as

defined 1n" 25356
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In this chapter our aim is to systematise the procedure of

placing restrictions on Fk(G) 2

In later chapters we shall see how this method enables the

construction of new examples and also facilitates a more systematic study

ofNolldNeonesh

For instance, in Chapter 4 we show that Hawkes' class Y and

Berger-Cossey's class N p belong to one family of examples and in
Chapter 5 we construct a new family of Fitting formations for which some
members are of non-saturated type. Finally in Chapter 6 we review the
question of whether it is possible to characterise all Fitting formations

as occurring in this way, by a construction through properties of chief

factors.

§2. The General Construction

By way of introducing our result we point out that Hawkes and
Berger-Cossey proceed in two stages : Step 1 and Step 2. It will be
our aim to emphasise that the substantial work is done in Step I ; whereas

Step 2 may be replaced once and for all by a general argument.

For Hawkes and Berger-Cossey then we have the following format

Step 1

over a field k
For each group there is specified a class of irreducible modules ,
+he -rom'\lj of
and  these classes .is shown to satisfy certain closure properties.

Step 2

G
The Fitting formation is defined as the class of groups,for which

I (G) is contained in the class of modules specified in Step 1.
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Closure on this class of groups now follows from the closure

properties on the classes of modules determined in Step 1.

Note that in the case of gqp otep 1 is fairly explicit. In
particular Berger-Cossey define a class of irreducible kG-modules,
p . . e
Yq (G) , over an algebraically closed field of characteristic q (Example

2.3.8) and then establish two closure results, Theorem 2.1 (i) and (ii)

[

Further, note that chief factors only enter the construction in

Step 2 where Fk(G) comes under consideration.
Our construction is modelled on this format.

We begin by ascertaining the closure properties, denoted Ml to
M5 , which are satisfied (perhaps implicitly) by the modules in Step I.
For instance M4 and M5 are suggested by Berger-Cossey [1l] Theorem
2.0 ((GL)) ereel ((alil) Now we suppose that M(G) 1is a class of irreducible
kG-modules (for k an arbitrary field of characteristic gq) which
satisfies this list. This completes the equivalent of Step 1 in our

general construction.

The equivalent of Step 2 is now satisfied by Theorem 2.1 below.
This result states (in the terms we have just set up) that the class of

groups G which satisfy the relation
=
r, (6) < M(G)

defines a Fitting formation. In this way Step 2 is permanently replaced
and therefore constructions of this kind are reduced to a one step

process.
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2.1 THEOREM . lLet. k be a field of characteristic q not necessarily
algebraically closed.  Suppose for each soluble group G we have a
class of irreducible kG-modules denoted by M(G) . Suppose further

that for each G , M(G) satisfies the following closure conditions.

M1 The trivial irreducible kG-module s in M(G)

Mz ST IR YNerM(G) and N E_kerG(V) Where N 28 normal in G,

then Vv € M(G/N)

M3 If VvV € M(N) and there is an epimorphism ¢ : G > N , then

V € M(G)

Md If VvV € M(G) and N is a maximal normal subgroup of G and

U <8 a composition factor of Vil then U € M(N)

M5 If VvV is an irreducible kG-module where G = NN, for

N. ,N

1 maximal normal subgroups of G and if each composition

2

faetor of Vg 18 in M(N,) for i =1,2 , then ¥V € M(E)
i

Then the class of groups

(2 0 M=1{c|Tr( cue?l

i8 a Fitting formation.

For an explanation of how we are thinking of the modules in M2
and M3 see Chapter 2, 3.
Proof First we must establish that M is isomorphism closed.

Let "G , I be groups with G =H , G €M and F ¢ RJH) say.

our aim is to show F € M(H) , for then H € M, as required.

But using the isomorphism it follows that F ¢ ﬂﬁG) and so then

by M3 we have F € M(H) , as desired.
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Fox 10-clesure let, G & M, and.. N .be/normal in G . We must

show R}G/N) < M(G/N) .

Let F ¢ ﬂjG/N) , and let U Dbe the g-chief factor of G/N

associated with F i.e. F is taken to be a composition factor of k ® U .

Now by inflation F is an irreducible kG-module with N C kerG(F) ]
It is easy to see that F must now be in T'(G) and so by hypothesis in

M(G) .
Thus M2 applies. Hence F € M(G/N) , as required.

For Ro—closure Loty GANKE My foredd =i1;2 4and Ny N N5 iz

We must show L(G) caM(G) .
et Fac R(G) and U be the associated g-chief factor of G .

It is an elementary result (Bryce-Cossey [6] Remark (iii) §2.5)
that U is isomorphic as a G-module to a chief factor of G/Ni for

st = LS o h o e Say i=1.

o lllows ir € ﬂJG/Nl) and so, by hypothesis, F ¢ M(G/Nl) "

M3 now applies to F . Hence F € M(G) , as required.

For S -closure take G € M and let N be a maximal normal
n =

subgroup of G . We must show RJN) C M(N) .

As usual let F € qu) and U be a chief factor associated

3
follows .

Wakieley g2 bj the Jordan- Holder dhecrem  we con assume U s chosen as

Now take a chief series of G passing through N and refine
it to a chief series for N . Let V be the chief factor of G which
contains U . U is an irreducible constituent of VN S andisiis
therefore, by Clifford's theorem, (module) isomorphic to a direct summand

of VN A F 1is thus a composition factor of (k®V)N s
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*
Now let F be the composition factor of k ® V which has F
*
as an irreducible constituent of FN s Since G € M , we have

*
E € M(G) . .

Condition M4 now applies giving F € M(N) , as required.

Finally, for No—closure let G N.N where Ni are maximal

12

normal subgroups of G and N EMufor i =il 26, We must show

RJG) c M(G) .
Let F € RJG) and U the associated chief factor of F .

The argument divides into two cases depending on whether U is

above N1 N N2 or below.

Suppose first U is above Ny n N, .

Then by maximality of N N2 it follows that U is (isomorphic

1 7
to) either G/Nl or G/N2 .

Lf U = G/Nl then as a G-module U is trivial as well as being

irreducible. Thus F =k ® U . It follows that FN SESE s St TGl
i

frEre ducibilic e 18— i o S Thus by M1 FN € M(Ni) and hence by M5
il

F € M(G) , as we require in this case.

In the case U = G/N2 a similar argument, making only the necessary

changes of notation, applies.

In the final case suppose U 1is below Nl N N2 s

By Clifford's theorem we have that
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where the Wij are irreducible kNi—modules iefa AL SN ) S B R e

Hence

Thus each composition factor of FN is also one for k ® Wij for some j .
il

But note that the Wij are module isomorphic to chief factors of

It follows that each composition factor of F must, by hypothesis,

N,
i

be in M(Ni) s
M5 now applies and gives F € M(G) , in this case as well.

Combining the parts it follows that F € M(G) in each case, as

required for No—closure.
This completes the proof of the theorem.

Following this theorem we are now in possession of the following
technique for constructing a Fitting formation via consideration of chief

factors :

2.3 CONSTRUCTION Take a field k of characteristic q and choose a

set of irreducible modules M(G) for each group G for which M1 to

M5 are all satisfied. Then the class
M= {G | I, (6) ¢ M(G)}

forms a Fitting formation.

We mention two trivial examples.



S

s
IBEIES forteachiN G we have M(G) =T then it follows

1\="'l T éq'é%

(given: Eha€ the characteristic of k is q).

2N Forlledchi e Gl M(G) 1is all irreducible kG-modules then

=

=§.

It is worth neting that if ¢ € gq,githen because the characteristic
offlidlc o TS g I"k(G) equdle 1.-' Hence §q'§'15 ?:_!, and so Fitting
formations determined in this way exhibit a very rich structure.

It would be interesting to know what are the exact conditions which
must hold on M(G) in order to produce a Fitting formation in the way
Theorem 2.1 has described. Indeed there seems to be no reason to expect
that the conditions Ml to M5 are at all necessary. Moreover, we
have been unable to find criteria useful for the selection of suitable
conditions.

*
T consists of e +rivial kG - madule alore |
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CHAPTER 4

A GENERALISATION OF Y  AND qu

§1. Introduction

The purpose of this chapter is to extend knowledge of the non-

saturated Fitting formations already known : Hawkes' class, Xq (Example

p

2.3.7) and Berger-Cossey's class, Xq (Example 2.3.8).

In 82 we show that these classes are members of a more general

family of Fitting formations we shall call Xqﬁ(x) - Here 1w 1is a set of
primes and X any Fitting formation contained in §ﬂ,§ﬂ 5o EEIE

0
o Nalgl .

Throughout this chapter g is the characteristic of an underlying

algebraically closed field, k .

gqﬂ(é) reduces to Eq wheny a.— {als and X =5 ; and rcduces to
qu when @ = {p} and X = gp'gp .

In §3 we give sufficient conditions for this new family to be non-
saturated. Typically these conditions will be on the choice of X

Eelatieon ol ndR g Unfortunately we are not able to provide

ip ™
necessary and sufficient conditions for Xq (X)) S tofbetnon=saturated:

A number of the key results in this section are used again to

determine non-saturation in the example of Chapter 5.

Finally, in §4 elementary properties of gqﬂ(é) are discussed.
Most importantly we provide necessary and sufficient conditions for two
specified classes Xqﬁ(g) and qu(g) say to be equal, and discuss

further results of a similar kind.
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§2. The Construction of Y "(X)

q

The generalisation we propose to construct in this section is

motivated by a number of quite simple observations.

l. Suppose G is a group for which Fk(G) satisfies BCl, then
using Hawkes' terms (as in Example 2.3.7) this is equivalent
to saying that the absolute arithmetic g-rank of G is a

P'—number.

2. FEor Eqp when p =g , BC2 holds automatically. This is
because of the elementary fact that in a field of characteristic

q there are no elements of order a power of q .

| w

Berger-Cossey make only one substantive use of BC3 in the whole
of their proof; this is to guarantee that BC2 holds for the
modules which occur in the consideration of M4 (essentially

Berger-Cossey's Theorem 2.1(i)[11]).

4. 1In the Berger-Cossey construction (Example 2.3.8) their proof

still holds if p 1is replaced by a set of primes 1w .

Prompted by the suggestions contained in these observations we will
use the method described in Chapter 3 to construct classes more general

Ehaniey: Or Y p 5
=q

=q
In the first step, for each G we collect the irreducible kG-
modules which satisfy new conditions Y1, Y2, Y3 and call this class of

modules Y TT(G) 5 In each case Y1, Y2 and Y3 are generalisations of

BCl, BC2 and BC3 respectively.

In the second step our theorem below shows that M1 to M5 each hold

m
Y r(G)
on q
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Thus, by Theorem 3.2.1 it will follow that the class

m m

e lie e Lo | F o (e) Cav (6

g 0 g [ I8 c¥ (e)]
is a Fitting formation. Here X is a Fitting formation which appears in
condi Eilon® ¥3 It is chosen subject to m™ and q ; details are provided

below.

Yl and Y2 are straight forward generalisations of BCl and BC2 and

follow the suggestion of 4 above, replacing the single prime p by a set

Oof primes™ T

Y3 is a little harder to motivate. Let V be an irreducible kG-
module. It is convenient to have G/ker V in some Fitting formation,
X say. However, in order to satisfy the co-prime relationships which

seem essential to the proof, we have X contained in §ﬂ §TT
0

for

Moo= Nolgl'.

Note that ﬂo is used instead of m so that when 1w = {q} , X
may be set to equal S . It follows that Y3 is automatically satisfied

for all relevant modules. Moreover from 2 we have that Y2 is also
satisfied. Hence we are left with only one substantial condition on qu(G)

namely Y1 . But by 1 we know that this is just Hawkes' original

condition, thus qu(g) is Hawkes' class gq :

Before proceeding to the theorem we will need to explain what we

shall mean by the determinantal order of a representation.

. ¥ /s any kG-module for a field k and 6. 1is the representation

afforded by V then

x
deEReE-NGE SNl
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is a linear representation of G defined in the obvious way

(2o dL) (det 6) (g) := det 6(g)

’ n
Dekine  (det €) i (g) := (det G(g))n & Then following Isaacs' notation
([25] Chapter 6 p.88) (where in fact he is talking about characters
afforded by V not representations) the determinantal order of 6 ,

denoted yte(det 6) sis) the smallest 'n such that det en(g) =ylisefor alil

g € G .
EnSparticulibGamsel(demol(c)h) [ @(Elee G) o dters gdlll g & @
Further it is easy to check that

(2°2) |G : ker det 8| = o(det 6)

and so ofdet 0) [ [GI

2.3 THEOREM Let k be an algebraically closed field of characteristic
q and w be an arbitrary set of primes. Let X be any Fitting
formation with the constraint that X C g“'gﬂo where Lo m el

all

Further, for each soluble group G , let gqﬂ(G) be*faclass of, irreducible

kG-modules Vv satisfying the following conditions :
¥l dim v P8 a 9'-number

Y2 if v affords the representation 6, then o(det 6) s a

' —number

5 @ae W& X,

Then the modules Y "(G) so determined satisfy the module conditions M1
q

to M5 of Theorem 3.2.1 and so the class
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(2.4) v Reglaiie cosliimaer © v V(e
Bl _|k<)_q()}

is a Fitting formation.

Proof For convenience we drop all notation where ambiguity will not

arise : thus Yq“(G) = Y(G) , and so on.
M1 is satisfied trivially.

EorsM2Bwe Sdre given s WWa e vi(G) Fand " NI normalt in' ¢ with
N E_kerG V and must show V € Y(G/N) . Clearly Y1 holds, and Y2 holds
because the determinantal order of the representation afforded lof7 W &S

a kG/N-module is just that for V as a kG-module. For Y3 we have

kerG/N(V) = ker V/N so
G/N/ker (V) = G/ker V
G/N
€ X
For M3 we are given V € Y(N) and an epimorphism ¢ : G > N and
mustl shew V€S Yi(G)e Once again Yl and Y2 follow automatically. To

show V satisfies Y3 we must show G/ker VE& X . But ¢ : G > N defines

an epimorphism
G/ker ¢ > N/ker V

whose kernel is kerG V/ker ¢ . Thus

R

G/kerG V =2 N/ker V

For M4 let N be a maximal normal subgroup of G which must thus

be of prime index, t say. Let V be an irreducible kG-module where
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V € Y(G) , and U an irreducible component of VN 2 We must show
TR VAN
Now suppose ker V $ N ThenSbysmasxamailtity e SN CE=—8 NSilcc =y
SORNGENG c ESHonS IS N dS thusE UM isa N K G-meduille Hence VN = U since
V is irreducible. Thus U satisfies Y1 and Y2 immediately. Observing
that
N/ker U = N ker V/ker V
= G/ker V
€ X
it Feolillows Sthat=R Vs SiisHailisof satiis Eieds Therefore VN € Y(N) and M4 is
satisfied in this case.
We now work modulo ker V . But since ker V is contained in

N and ker U this is equivalent to assuming ker V =1 .

U is any irreducible component of VN 2 New by CltitE feordits
Theorem VN is either homogeneous or else it breaks up into a direct sum

of t non-isomorphic irreducible components.

Inl the f£irst case if VN is homogeneous then by Theorem 2.4.3 it

is also irreducible. Now by the argument we used above for the case

V.; N it follows that VN E V(N o

Hence M4 is satisfied in this case.

In the second case VN breaks up. We have

VO =R e

where the Vi are .non-isomerphic’ irreducible  kN-modules 1 =1,...,t .

We must show Vi GVI(N) Eor each 1 .
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INOWSR MV — = d i m Vi and dim V is a w'-number because
V& Y(©) o Thus dim Vi is a 7'-number, and so Y1 holds. Note
for later use that t is also a 7'-number. It remains to show that

Vi satisfies the conditions Y2 and Y3.

Now for Y2 let ei be the representations afforded by Vi
iv=nl,-..,t and let © be the representation afforded by V . We must
show o(det ei) is a 7'-number, that is o(det Gi(n)) is a w'-
nUMb eI o T MBI S RN S o n AR o 1alle o T S —] S i Over a field of
characteristic gq (as k is) this is equivalent to showing det ei(n) =1

for all 'n € N where n is of order a ﬂo-number and Toh o N a

It is this last claim we shall prove.

By Clifford's theorem there exists z, =1,z

1 ein 2 elements

2 &

of G Ssuch™thait Vi

IR
<

1 . Put o"(G) n N =58 . Since the vi

are non-isomorphic and OW(G) i N we have for each z, T £t hatt

m
there exists X, e OWMe) "\ L. at ¥ € N such that Ziis 5% Wb, iEGEE

absatienl
some xi (& Thus
23
S
o
for x. € e R T O L T

Translated into terms of representations it follows that

iy

Il

BN ()
L

6l(n[n,xi])
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and thus

det ei(n) = det 6l(n) det Gl[n,xi]

Our aim now is to show the following

Bor all n e N of order a ﬂo-number det 6. (n) = det 6, (n)

2.5
In order to do this we take such an n and show det el[n,xi] =1
o&
Let o be the order of n , a ., -number. Thus (det ;) = 1
and since det 6, [n,xt] = det 8; (n) det 9.(n\” 't follows
(det 6, [n,x.1)% =1 ()
e e st
On the other hand since xi € OW(G) and O“(G) and N are both
neormail NI NG S-S Folilows [n,xi] TN and®se
Ll kexr VN6 Tiker W . /ker V.
it i i sk
Choose B to be the order of [n,xi] ker Vi in this group.
Hence
(B)

Bl
(det Gl[n,xi]) =]

iy
— O ()N andf cbserve

New  (a,B)= 1%, for put L0 =

~ n :
Lo ker Vi/ker Vi LO/L0 ker Vl

m

; 0
5, becauce G € X implies 0" (G) € 5 |
=g = =T

is normal in L0

where the last term is in

and so L, < S Now L thus L ker Vi/ker v, € é“é
0
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and hence B is a ﬂé—number. But we already have that o is a

no—number, dee (@,0) = i

The only way (A) and (B) can now hold is if det el[n,x.] =8 2
i

This proves (2.5).

We are now in a position to see how Y2 holds. Since

VN = Vl D coo B Vt we have

det 0 (n) =

: det Si(n) ¢
a

i

I =lNGE

where recall t is a prime in =" . However by hypothesis det 6(n) =1

hence, applying (2.5)
(det Gl(n))t =

But n and hence det el(n) is of order a wo—number, and this is co-

PlEime S EORE ER

Therefore det el(n) =SS Porl i n Bc RN whe refs L icNe fNc rde

a no—number. This is what we set out to prove. Y2 is now satisfied.

Lastly Y3 follows immediately on the assumption ker V =1 .

Therefore Vi € Y(N) for each i and so M4 is satisfied.

To show M5 is satisfied let Ni be a maximal normal subgroup of
G where ]G:Ni[ = ti g2l [atnE deepe b S L2 o

Now by Clifford's theorem either VN is homogeneous or else it
ol

breaks up into a direct sum of t. non-isomorphic irreducibles. ILE Al

is homogeneous then by Theorem 2.4.3 it follows that it is irreducible.

We may best express these alternatives by the following compact

expression.
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(2-6) e =Y TR R e R o B
N, alil 5] SRS
il i
where Vij is an irreducible kNi—module for Wi = l,...,si and s, =1
L :
SEAE. s = 1,20 Note that by hypothesis, Vij € Y(Ni) .

We must shew WV € ¥(G) , that is that conditions Y1, Y2, ¥3 apply

FOT N 2 clo Jals din Jae @aelE g Ve, Yl Yal.

For Y2 let 6 be the representation afforded by V and eij the
representation afforded by Vij . Then for each g € G it is possible to

write g = nn, with n, € Nl and n, € N, . Thus

det 6(g) = det G(nl) det 6(n2)

and so from (2.6)

det 8(g) = iHj det eij(ni) <

But o(det eij) is a Tm'-number so o(det 6) is a mw'-number and this

completes Y2.

For Y3 we must show G/ker V € X . Now Ni/ker Vij € X and
because N, N ker V = [ ker Vij it follows by Rj-closure of X that
AL 3
N /N. N ker V. € X . Thus G/ker V=TPNi ker V/ker ¥ € X . _ This
l l 4 =

satisfies Y¥Y3.

For Y1 the argument becomes more involved. We must show dim V
is a mw'-number. Assume the contrary, that dim V is not a 7'-number.
But by Clifford's theorem we have dim V = Si dim Vij and by hypothesis we
have that dim V.. is a m'-number. Hence the assumption dim V is not
1]

a nmbnumber leads to the conclusion §;# 1 and 5;=t €M, for each i =1,2 .
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The plan for the proof is to show first that V

N is
N1 N2
homogeneous and then that this implies VN is homogeneous.
1
By Theorem 2.4.3 V is
N
1l
irreducible thus dim V = dim V and this contradicts the assumption

1Lt

el WV = i
im tl dim V11 ; tl Eil -

To show V is homogeneous note first that by the maximality

NlﬂN2
of N,,N, it follows [Ni:NlﬂNzl € mifer i = 1,2 | Thus applying
Clifford's Theorem V.. N must be homogeneous or else t_.a m-number
1le N2 3-¢

will divide dim Vij T alcentradilctiions Hence, by Theorem 2.4.3 ,

1St ilrreducible” foriailll Sl Now suppose V.. =V for

v
8y s n
1]N1 N2 13 20

certain GESandiee Then because G = N1N2 it follows that Vij is a
proper kG-submodule of V , a contradiction for V is irreducible.

This shows that the two decompositions of VN NN are distinct. An
i)

elementary argument now shows that VN NN must then be homogeneous, as
i1 52

asserted.(For otherwise , since all He irreducibles are distinct the

deconpoﬁﬁcn s urnigue .

But VN is also homogeneous. For since VijN NN is irreducible
1 1l =)
it is certainly homogeneous, in fact V.jN NN = V11 as VN i is
LD LR
homogeneous and Vll extends to Nl : Thus, applying Theorem 2.4.2,

there exists an ordinary irreducible Nl/Nl n N2—module, SEsay, such

that
(2.7) AV =V RS

Since lleNlnN2| =i is prime dim S =1 . Moreover, either

& = n -
ker S = Nl or ker S Nl N2
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It - e 8 = i ivi ~ 5
Nl Ehen @SRt rilvala it e Vij = Vll’ and so VNl
is homogeneous.
Tiace ker s = N N N let x € N, and o be the

representation afforded by S and £ =. @l W Then from (2.7)

19 s

i 2
det Sij(x) = det Sll(x) (det or(x))

So o(det ) is a 7'-number.

e t
On the other hand (det o(x)) 2 = (det O(x NlﬂNz)) - = 1 Dbecause

Nl/Nl N N2 = Ct2 and so o(det O diV'-;:\es.tz which lies » 1TU,

TThus WdetNo o) R=nlNforca chiiiscr RN =

1
But since dim S = 1 we conclude that S is trivial. Hence by
(Zo7) BCEbim Vo o & W and so V is homogeneous as we asserted.
13 1Ll Nl

This completes the proof that V satisfies Yl. Therefore M5

is satisfied.
This completes the proof of theorem.

We now have the following.

2.8 COROLLARY Using the same notation as the theorem.  If

(T)sss aeu=ilples oithen Xénkgp,gp) i8 the Berger-Cossey class,
Y p -
iq

2) " m = gy, then Yénkg) 18 the Hawkes class, gq .
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m

3.
q

<<

(X) and non-saturation

The main results of this section give conditions on X so that

i !
gq (é) 1s non-saturated. Our method will be to construct certain groups

; i
in gq (é) and show that a contradiction arises if saturation is assumed.

We need a number of lemmas.

The first of these is a fact concerning an arbitrary Fitting

formation, X say.

Let p,qg be primes and let E = be an elementary abelian group
q

of order qn 3 Now in Hawkes [20] (1.5) we have that if X contains a

*
copy of the unique non-nilpotent extension of E A by Ep e calllied qu 5
q

then X contains all extensions of g-groups by cyclic p-groups. Our

first lemma extends this result.

Roughly speaking, just as Lemma 2.2.2 shows that formations come
equipped with all relevant nilpotent groups, we show when a Fitting

formation contains all relevant metanilpotent groups.

3.1 LEMMA Let X be a Fitting formation and p,q primes .

If X contains a non-nilpotent S S 9TOUPs then S.E EX

Proof For convenience put R = X [l gpgq . The proof is divided into

two steps. The first step characterises the elements of R in terms of
' 2 :

automisers for the chief factors. Since R C N we can do this by

applying the Hawkes characterisation theorem, Theorem 2.2.8 The second

step takes G € §p§q and shows that it is in R, thus G € X i.e.

S5 ¢ X, as reguired.

n s #e smallest posiﬂve ]n+eaer such +that p}%
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We use the notation of Theorem 2.2.5.

Firstly y(R) = {p,q} since R C §p§q implaect a(RIFE S p o)
and the fact R contains a non-nilpotent group implies 7 {R)canndt be a singleton.

BT = S pia i lote) 6 € s S implics 0 (€)= 0.6,
Zp2q P Sl i

We have qSTtip) . For suppose not and let G be a non-nilpotent

group in R .

S the Sylow p-subgroup of G is

Now since G € R and R C S

just Op(G) : On the other hand since ¢q ¢ T(p) it follows
Y(G/O , (G)) Dbecause 0 G)/0_, (G is a -group. But
q ¢ A o1p () /0, (@) p-group
Op,(G) = Oq(G) - Thus Oq(G) is a Sylow g-subgroup of G . Therefore
all Sylow subgroups of G are normal and so G is nilpotent, a

contradiction. Hencel G ()i

Further t(g) = ¢ since for every G € R , G/Oq,(G) = G/OP(G) € gq

and so O G) = G and thus (G/0 (G)) = 3
q.q( ) Y (G/ Lo ¢
Hence applying Theorem 2.2.5 G € R 4 ERandeonlhaitE

0 @) € andi " (©/0 . (G) €1 .
S prp® ¢ Lr(p) 4 q'q

Now for a given chief series of G let {Ui} RS = S be ithe
complete set of p-chief factors of G and {Wj} G =1E T s e the

complete set of g-chief factors of G . Then from (2.3.3) we know

r s
= d o g} = New) . Therefore, using R, -
O () iﬂl Cg(U;) and 0O, (G) j=f¥ 3 ; g R,

closure where necessary, it follows that G € R if and only if

Gl @/ ) & AL gEepe edlll alg) o
G/CG(Ui) : gT(P) an /A G( J) 1 '

This completes the first step.
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For the second let G ¢ gpgq and take U to be any p-chief

EREEeE @F @ o Then by (2.3.4) it follows that OP(G)'E CG(U) o So
Eyie ), =
/C4 (0) G/op<G)/ C (V) /0, (6)
S
=q
But € Tlp)e Ty 8 € N € -
k. B 5 =q — =1(p) > i G/CG(U) ET (p)

Moreovertit ™ W 1sia. g chief factor of G then by (2.3.4) again
G E_CG(W) o Shnee @ 4dg s—nilpotent. Thus G = CG(U) hence

G/CG(W) =1 .

Therefore G € R from the characterisation provided in the first

step.
T SENS SN Y N o s W ce cUtitEe dls
The next lemma we will need is of a similar kind.
3.2 LEMMA IfF X¢ S8, where o 1is a set of primes and X <is a

Fitting formation,then there exists r € ¢' and s € o such that

Il

S e X .
Yr=s — =

Proof e EENGENb el groupic fiminiimalford e sin S X S bu tRn o i

S50

=U=0
Then OO(G) = For suppose the contrary. By the minimality
3 G

of G it now follows G/OG(G) € gogo' and so G € gogo' , a

contradiction. Thus OO(G) =Hhiloe

Now let I be a minimal normal subgroup of G . Then L must

be of order a power of r , for some r € o' .

We will show that the group
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is a non-nilpotent grgs—group for some § a prime in o

Put 00,(G) = M and take N/M to be a minimal normal subgroup of

G/M . It is clear that N/M must be a o-group.

Moreover O (N) =Nfl 0 (G) =1 . Hence N¢ SS, . sSoby the

o] o =0=0

minimality of 6 , N =G .. Therefore G € S5185 and’ 'G/M -is cyclie
ofiorder ''a 'prime, ' s . say, with s € g .

Now consider L . By the minimality of G it follows

I § . i i s ini
G/ S8, Moreover G € S;185 implies G/L € S;18; Combining
these "G/L € 55 . Mg s ..
=0=0 =0 =0

Thus we write

G/~ H/L > K/L

For seme H/L € Ss and " " K/L "¢ S, -

But we have OO(K) L g9 K ¢ S gc' andSEromemindmailtitEyc £ E

again, K =G . ThusSELE= M and sol G/ M iisEal cycilli c N groupliof torder sa
preine 8§ 50 86 @ o

It remains to show that GO is non-nilpotent. If it were
nilpotent then G0 € gogc' c

By the Schur-Zassenhaus theorem G splits over L so G = G0 0
thush G € gcgo' ol ceontradietiien:

Hence GO is a non-nilpotent grgs—group contained in

[P

Now by Lemma 3.1 it follows grgs € X , as required.

The following lemmas contain the heaviest part of the construction

we shall use.
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Ihie \first of these is. a generalisation of Berger-Cossey [1]

Lemma 2.2.

3.3 LEMMA Let r,s be different primes and k an algebraically

elosed field 0 characterictic 'q., d & r &

Let H be a group with the following properties

: 4
- B isvan extraspecial group of order r2m : ooml €Ay

S T S

= Z(H) = Z(F(H))

Then there exists a faithful irreducible :ZqH-moduZe, s -

Moreover for the group HE = M., e have :

i S R S Fk(HO) Chen .dim E s an. r—nlnber,

and

(2) If E affords the irreducible representation & then

o(det £) ©s an r-number.

Proof Lemma 3.3

First we prove the following.

(3.4) There exists a faithful irreducible kH-module, Vv  say, such that

*
(1 ) dimy =

*
(2 )i W affords the representation 8 , ithen o(det 0)

18 an r-number.

This fact is proved by applying a well known theorem about the

representation theory of extraspecial groups.
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According to Huppert [24] V 16.14 there are r - 1 faithful and

irreducible kF(H)-modules U with the following properties.
(a) dim U = "
(B) U is determined by its restriction to Z(F(H))

Moreover if 1J affords the representation © then because F(H) is

AN = gEOUPNI EEEciiows
(v) o(det w) is an r-number.

Now U is invariant in H . For by (B) we need only consider

S CR ZA(EICH)N) Thus taking h € H we have
g g
w”(x) := w(x )
= w(x) ,

sinece ZI(H)" = Z(E(H)) -
Moreover F(H) is a Hall subgroup in H .

Theorem 2.4.4 (1) now applies. This shows \J 1lifts to H ,

that is, there exists an irreducible kH-module V such that VF(H) =U.

*
Hence (1 ) holds.

*
(2 ) follows from Theorem 2.4.4 (2) and (y) above.

Eastly V ds faithful for if not ker V must be & pow&'op S
sinece  E(H) acts faathfully on sy But then™ ker 'V € F(E) " a

contradiction.
This completes the proof of (3.4).

Now choose W to be an irreducible Iqu—module such "that "V " as

in (3.4) is a composition factor of k ® W .
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It is well known that k ® W is completely reducible and breaks
up into a direct sum of Galois conjugates of V (Curtis and Reiner [10]
70.15 and Isaacs [26] 9.21). The Galois conjugates of V will each

have the same dimension, kernel and determinantal order as V

Therefore, since V is a faithful module for H it follows that

W SR SiliSeS

(F) and (2) now follow by application of (3.4).
This completes the proof of the lemma.

We know from a note at the end of Chapter 3 that Squgl—c- S_fqﬂ () =

As a corollary to Lemma 3.3 we can now give examples of groups in Xqﬂ(g)

which are not in §q'5<1‘ These will be important in our enquiry into non-

saturation later.

3.5 COROLLARY Let "% be a ser of peliies suell thav Tetein L and
s e€m (note r #q, as in Lemma 3.3) and let X be any Fitting

formation contained in S 8, (recall o= el
9 0

Now with H and Hy as in Lemma 3.3 assume H € X , then

ey (e
Hy =q(=)

Proof We must show F(HO) = Yq“(H )

Let E € F(Ho) .
Yl and Y2 are satisfied by (1) and (2) of the lemma respectively.

For Y3, sinece W € kerH Bf and BHEe X Ot Follows Ho/kerH E €
0 0

11>

as required.

In 84 we will use an important application of this corollary.
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In the same notation if r € Y(X) , then by Lemma 2.2.2 the

extraspecial group of order r2m+l

e R saysisin B X
Thus putting H = R in Lemma 3.3 there is a group W.R € an(g) o

There exists such a group for each r € Y (X) .

Next we show that such groups as in the data of Lemma 3.3 in fact

arise for every choice of primes r,s , r #s .

3.6 LEMMA For any\primes “r,s ., ¥+ s there exists an §, 8 ~group
H say with the following properties.
(1) F(H) = Or(H) and is an extraspecial group of order r2m+l =
for some m .
(2) |H:F@)| =g
(8)  Zz(H) = Z(F(H))
Proof Let S Dbe a cyclic group of order s , and V be a faithful
*
irreducible :Ers—module of dimension m say. Take V to be the

contragredient er—module @HE- =W/ o
*
since r [ [s| , V®V is completely reducible.

By Theorem 43.14 of Curtis and Reiner [10], i(V,V) 21 and so

*
V&YV has an irreducible component, T say, which is trivial of

dimension 1 .

We may write

*
VOV =TAW

for some W a er—module.

Consider the set
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* *
B, ) (ixce V@Y v € VDV /)
Detine a multiplication on B by putting

* * * * *
(u+u ,t.+W) (v+v ,t2+W) = (u+v+u +v ,u®v +t_+t_+W)

I W
#*
DR el e e U el et e N e N

2m+1
o

Then, under this operation B 1is a group of order (since

dim(V&V*/W) =10y .

In fact B 1is extraspecial with

w
Il

Z(B)

{0y | yevav m.

(CESNHupperEM[24 [NVl 8221 8

Now form the semidirect product H = B.S via the module action of

5 on. V. and .V » 85 explowmed imn  Huppert [24] VI 7.22,

Because S i o iith fullfeonit e B et olliliowsE 7 (H) C B and thus

ZE e b (B
Conversely, ‘because “°Z(B) 'is centralised by S, Z(B) € Z(H) .
Thust Z(E)N=0Z(B) ", and s (B8N ilstisatilsfiled

Moreover it is clear that F(H) = B , and that B = Or(H) and

la:rm) | = s .
This satisfies (1) and (2), and completes the proof of the lemma.

This completes the preparation. We now come to the main part of

the section.
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3.7 THEOREM Let k be an algebraically closed field of characteristic
a9 . Let m be a set of primes, and set Ugle v talis ser ' x be

a Fitting formation contained in ShmEe .
Ko
If there exists primes r,s such that r € 7° ¥ T Er gl ko e

and SL50C X 0 lken Zg(é) 18 non-saturated.

Proof Use r,s as provided in the data to construct a group H , as

in Lemma 3.6.
FRSpartiiculian S SHNC §r§s QTGS ORI HIR G X

Now using the same terms and notation of Corollary we have that

m™
HO—W.H€gq()=() -

Suppose on the contrary that zqﬁ(é) is saturated. The
characterisation of a saturated formation Theorem 2.2.4 now applies.
Accordingly there exists a formation X(p) where HO/Op'p(HO) S X(p)

for each prime p in the characteristic of gqn(é) .

Thus. H € X(q) and so H/Z(H) € X(q) . For convenience put
H := H/Z(H) . Now if X 1is any irreducible Zg%ﬂmdule then from (2.2.5)
: - i
again X.H € Xq X) -
Our aim is to obtain a contradiction by showing that there is such

an X for which X.H ¢ zqﬂ(é) :

First observe that any irreducible kH-module M has either
dimension 1 or s. This is because F(H) an extraspecial group implies
F(H)/Z(F(H)) is abelian and so,by Dade [33],

dim M divides |H : F(H)/Z(F(H))| = s
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Now let {Xi 21 = 1,...,EF be a complete set of irreducible

Ezqﬁ—modules 8 Thus .ﬁl ker Xi = Oq(ﬁ) =il (sce Huppert [24] YV 5.17
i=
cunel Wil 7 20)) « Furthermore k ® Xi breaks up into a direct sum of
irreducible kH-modules of equal dimension. Suppose this dimension is
L fer caeln i = Al e e clnem Eollilows sy e elementary argument
that H/ker Xi HisiFabbelllifan S for icach i . But % ker Xi =i S henee
i=1

by the subdirect product closure of abelian groups H 1is abelian, a
coniEiadilct=ilont Therefore there exists an X, such that k Y X, Dbreaks
i il
up inte '@ direet ‘sum of irreducibles of dimensiocn SHils IPBIHE K =R,
il

Now X.H € Yqﬁ(g) :

obtaned from X,
However this is impossible, since the modules in Fk(X.H),\being of

dimension s fail to satisfy condition Y1.

This completes the contradiction and finishes the proof of the

theorem.

As an example of how this theorem can be used we show that qu is

non-saturated.

By Corollary 2.8 we have w = {p} and X =5 'gp 2 So let r

be a prime not equal to g and contained in p"' . Then

Yp
=

SHS S =X, and thus (3.7) shows is non-saturated.

- 5 =
== = =ot=5
The crucial condition of Theorem 3. ,, SESIERX is not as

difficult to satisfy as might at first be thought.

We shall mention two general situations that will suffice :

(38) e thowe exicls pPPimes xr,s With rca', r#q and s €7

such that there exists a non-nilpotent § 8 -group in X, then g
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(3.89) AL q€mand X ¢SS

, then there are primes r,s with

Bpc sl e g 9506 T o such that BIS S X

(3.8) 1is established by Lemma 3.1 and (3.9) by Lemma 3.2 with
o=m .

By Theorem 3.7 Xqﬂ(é) is non-saturated when either of (3.8) or
(BCN) ToeilEle

Unfortunately the condition g € m has to be inserted in (3.9).

This guarantees that r # q .

§4. Elementary Properties of Y "(X)

q

The results in this section explore the relationships between
classes of the type Yqﬂ(é) for varying m and X . The most important
of these are obtained as a corollary to the main theorem which gives
necessary and sufficient conditions for equality to hold between the

classes Yqﬂ(g) and ch(g) for mw,0 arbitrary sets of primes.

(0]

4.1 THEOREM Let m,0 be arbitrary sets of primes. Then gq

™
XO) I E Y X
(® < ¥ (®

if and only if = N y(X) € o N y(X) .

PrEeoeE For convenience we drop all notation where ambiguity will not

o o
arise : thus y(é) SRR (§) = and so on.

g9

o m
Eirst. gigen  grdlap € y N 6 , we shoew that ¥ € ¥" .

heE CAE

1S

- Take V € Fk(G) , where by hypothesis
(1). . dim ¥ .is a ¢'-number,

Yy Lty afFords -8 ,  ofdet B8] isia g'-number,

and

(3) G/ker ¥ € X .
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Now because V is an absolutely irreducible faithful k(G/ker V)-

fromn Dade C32]
module it follows ,that dim V| IG/ker V| - Thus dim V is a y-number
by s(3) Eet s r tbe o prime divisor of dim V , so r € y . Now from
thelda Eas et gt € il and r € o' (from (1)) thus ¢ € y' U n"

BUil e CE S S o ¢ Nl en'ce R E Thus dim V is a  7'-number,

as desired.

Now let r be a prime which divides o(det 0) . It is obvious
Ehat “Ker Wre'ker (det 8)%, thus' |c/ker det 6| divides |G/ker Wl
BE Jog (2.2)  elckaz @) = |G/ker det 6] , hence o(det 8) is a <y-number
cugrel -~ 5z (S a7 o Then by the same argument as for the dimension of V it

Folflllows S tha R CE TS oo l(de BN ) isFan i —number:
By (3) it fFollews G/ker V € X .

Hence G € YTr as desired.

i
Conversely, we have Xo cy

and wish to show y 7 cy No

Suppose the contrary holds and let r € y lln Ny Mg . Our aim

will be to construct a G € Y° \ g“ e chusSebEaiiningfalcontradi ctieon's

Let R be an extraspecial group of order r3 i Then by the
remarks which follow Corollary 3.5 we have that there is an irreducible
kR-module W such that W.R € ZG . Moreover W.R ¢ Z“ for by Lemma 3.3
(1) we have that all modules in Fk(W.R) are of dimension r , and by
hypothesis we have r ¢ T e s

Thus W.R € XO \ ¥" , a contradiction of the hypothesis.

Therefore y N m C y o, as desired.

(0]

459 GCOROLIARY: For terms as in Theorem 4.1 gq

(X) = Yqﬂ(é) if and

only if & 0w = y(X) e .



S

4.3 COROLLARY

only if y(X) N mcyx No.

For terms as in Theorem 4.1 Y 0()=() € Xq“(é) 2 and

Proof Assuming XO = Xﬂ we shew vy 0 7€ vyl o . By Theorem 4.1 we
have y N7 cy N o, where it suffices toshow y N m #y N o .
Suppose the contrary. The Corollary 4.2 applies giving zo = gﬂ A
contradiction. The converse is proved in a similar way.
m
4.4 copopizey  If t M@ c o Nylxy and xcy them ¥(0c ¥y
whenever these terms are defined.
4.5 THEOREM For any set of primes w for which gg(g) s defined
we have
T
S S (s (e (X) @/ ciils b,
and
S oS iBone A0y € g
NYoX) =
=q —
SE S X e 7 (0X) € gt
\:q :q: = —_
Proof e W & Fk(G), then it is easy te seel that @ ¢ € S '§q§ aliE

ginel el fiE (@/kee W € X

First suppose G ¢ Eq,gq(gﬂ,ﬂi) :

Wi wellows loy Deee [33]

S BN E RS z;(é)

¥2 by (2.

Now for each V € Fk(G) 3

2N and e S by Soulias serkion above.
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That z 'Eqé is immediate from the converse of the

above.

i y(é)_g TR C 2 S Zg(g) . Thus Fk(G) centainsk the

trivial KkG-module alone since E/lzae v € g Hence Yﬂ(x) =8 =S
f— :q:

ﬂ =q'=q °

LE () con' ), take G ¢ gq'gqé 5 Mo - € € Xg(g) since

C/llkes V€ EW, g Hence X (é) =85 8 X , &F e iEEe!,

1
q =0 ==

The intersection property is straight forward.

4.6 THEOREM If x and y are Fitting formations and m,0 are sets

of primes then

(0]
Y ) e

Proof EE @ € Zo(é) N Yy

Then),  for al TR Vic Fk(G) if r is a prime dividing dim V then

e € @' Nl 7Y = (elmE)? , cocl S chin W ag & () Y=nenisEe.
Similarly o(det 8) is a (oUm)'-number.

Alse  G/ker 'V € X n ¥

Moreover
Xwes s s ;5
LT ICTARSIB TR o T o) o)l (5]
ks e -p :
= (coUﬂo) coUﬂo
Hence
oUm
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The converse is established by a similar elementary argument.

A trivial example of Theorem 4.6 is that

Sr'=y

Y“[ﬂ s,s]= BEERY (oaasi]
) g =q =

What this shows is that when X = n

rEﬂO

S SN Eh e MCilia S's Y TT(X)
=Y =X =q —

o
is the intersection of the Berger-Cossey classes i ¢ E SN {q})
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CHAPTER 5

MORE NON-SATURATED FITTING FORMATIONS

§1. Introduction

In this Chapter we give new examples of non-saturated EilEting

formations.
The construction takes place in §2 where we define Eqﬂ(g) A
family of Fitting formations. Once again q 1is the characteristic of an

underlying field, 1m is a set of primes and X a Fitting formation
subject to a co-prime condition dependent on w . We proceed by the

module method of Chapter 3.

In §3 we give necessary (though not necessary and sufficient)
conditions on the choice of X wunder which non-saturation occurs. [fhese

; . i
conditions resemble those we found for non-saturation in the case Xq (X)

§2. The Construction of H_"(X)

q

Before we discuss any details of the construction the following
lemma, which sorts out the consequences of basic co-prime relationships,

needs to be stated.

2.1 LEMMA Let w be a set of primes and K a group in S S . - Then

TTI

o () = @ (@) =
m

Moreover if M 18 any K-module then
Oﬂ(K/ker M) = Oﬂ(K)ker M/ker M

and so any oﬂ(K)-moduZe may also be considered to be an OW(K/ker M) -

module.
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Proof We have K € § S . Now
T =m=m"'

11

TTI TT'
O (K)O" (K)/O_, (K) O_(K)/O_(K) No (k)

But this is impossible unless OTT () 2@ ()
— 7w
However K € 5,8, says o' (K) € S, - and so 0" (K) ¢ OW(K)
TT'
WaEs. @ (1K) = OH(K)

It follows that

Oﬂ(K/ker M) Oﬂ'(K/ker M)

0" (K) ker M/ker M

ON(K) ker M/ker M

In particular the action of OF(K) on M is just the action of

O“(K/ker M) O S
This completes the proof.

We now state the main theorem :

2.2 THEOREM Let 7w be a set of primes and k an algebraically closed

field of characteristic q . Let X be a Fitting formation such that

XOG s sﬂ' : For each G define an(G) to be the class of irreducible
===

kG-modules Vv satisfying :

HI1 18 homogeneous.

VO (e} [ker V)
™

HZN G eV € X .

Then the class
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m 2 m
Ea Bs e lim (e S ()}

is a Fitting formation.

By Theorem 3.2.1 it is enough to show that the module M1,...,M5
i
apply for Hq (@) - Application of Theorem 3.2.1 then implies Eqﬂ(g)

is a Fitting formation as we require.

Just as in the example of Chapter 4, gqﬂ(g) , the conditions
M1, M2, M3 are easily checked and only use the condition that G/ker V is
contained in a class X without regard to any of the finer structure
available. The cases M4 and M5 (which show that Eqﬂ(é) JISEAEN = Eing
class) are the difficult situations. It is here the condition X C gﬂgﬂ,
is indispensible. The principal reason for this is that crucial parts
of the argument use Isaac's lifting theorem for invariant irreducible
representations of normal Hall subgroups. Unlike the role the same
condition Y3 plays in gqﬂ(g) , H2 is used extensively in establishing

thalsSre sultE:

It is worthwhile to draw attention to an often repeated situation
in the proof and simultaneously show why lifting results are so significant.
We have an irreducible kG-module V say and want to find out something
abeu ERaIsES All we know is that VN is homogeneous for N normal in G .
The way we proceed is to use Theorem 2.4.2 and write V as a tensor
product of two irreducible projective representations. At this point the
lifting property becomes crucial. Let U be an irreducible component of
VN 3 Theniit UL E-sE oG i the o reme2 a2 telilistusEtha tR VA cantbe

written as the tensor product of two ordinary irreducible kG-modules

U and seome other T sag, with N in the kernel. Thus

V=U®T.
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Proof Instead of Hqﬂ(G) we simply write H(G)
MISSisisatistied trivially.

HoRM2 e SRV HI(E) B ain ¢ N E_kerG W5 We must show V € H(G/N) .

Put € She/Nr:

112

Now ker V = ker V/N , so é/ker_ A
G G

that "V € B(E) .

G/ker V thus it follows

Eor M3 let W € H(N) and let ¢ : G > N be an epimorphism,.

We must show V € H(G) .

Now it is easy to see that ¢ : g ker ¢ > ¢(g) kerN V defines

an epimorphism

VY : G/ker ¢ > N/kerN ViAE:

which has kegsv/ker ¢ as kernel.

hence is homogeneous

11

Thus G/ker V N/ker. V

G N i Vo (E/ ke V)
T ©

Rinsl  (@/REiE . W & X .

G

Therefore V € H(G) , as we require.

To show M4 is satisfied let N be a maximal normal subgroup of G
gmel W & B{E) o Take U to be an irreducible component of VN , then

we must show U € H(N) , that is U is homogeneous.

0 (N/ker U)
bl
ke mRVE TSNS Ehe né byamazximallSittyR o S NSV G =8NS ket Vaaand 8 s e

U 1is a G-module. Thus U ="V .

This has two consequences : firstly U € H(G) so that UO (G/ker U)
m

is homogeneous; secondly, kerN 0 = ker v 0 N S dose

OW(G/ker o) = Ow(N/kerN(U)) 5
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Combining these it follows that UO (N/kerN u) is homogeneous,
)

and moreover N/ker U € X
Hence U € H(N) as required.

Therefore consider the case ker V CN . We will work modulo

ker V . Indeed, by M2, we may as well assume that ker V =1 , that is

That U satisfies H2 is now immediate since N/ker U is an

element of QSn§ -

What remains - H1 - is to show that U is homogeneous.

eL (N/kexris U)
T N
By lemma 2.1 this is equivalent to showing UO (N) is homogeneous on the
m
assumption VO (G) is homogeneous. For convenience put Q = OH(G) and
T
Q2 = ON(N) = By Gaschiitz [14] X.3d we have Q2 =Nl .

Two situations arise.

(1) |G:N| € "
and

(62) IG:N[ = Pl Eore Pae A

In situation (1), because Q = ON(G) =0o" (G) by Lemma 2.1 it
follows Q C N . Moreover Q2 =N e =0 - Thu'sT RIS S any,
irreducible component of VN then because VQ = (VN)Q is homogeneous

2

SO iSRRI EE

Q

Therefore UQ is homogeneous, as required.
%

This dispenses with situation (1).
a5 tuaten (2), |e:N]| =p .

The first thing we do is build up our knowledge of how V

breaks up.



65

Let W be an irreducible component of VQ . Then from Clifford's
Theorem we have that W is invariant in G . Moreover Q 1is a normal
HalliSsubgreoupint G . Hence by Theorem 2.4.4(1) W extends to W , an

irreducible kG-module with WQ =W .

Now using this extendibility we apply Theorem 2.4.2 to write
V=WXT where T is some irreducible kG-module with Q in the kernel.

Thus

Examining these new terms we observe that TN is irreducible.
This is because any submodule of TN must also be a module for Q and so

aimodulie " foENNE =8NO" "centradicting the irreducibility of T .

As for ﬁN there are only two alternatives. Either ﬁN is
homogeneous or else it breaks up into IG:N| = p non-isomorphic

irreducibles.

In the homogeneous case let X be the irreducible constituent and

(X@...@X)n (i le Xes appears wathrmul tilpldciiEy  ni i S we e

put W N

N

11

Then we have

(W)

=1
Il

1R

n

X_ @...5% . (@)
e

Moreover since IN:Q2| is a m7'-number we have by Clifford's
Theorem that the number of homogeneous components in (a) is a 7'-number.

But again by Clifford's Theorem since IQ:Q2| =P WQ must either be
2

homogeneous or the direct sum of p non-isomorphic modules.
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We assume first the latter, namely,
W =HWECHE S D

where Wi is an irreducible sz—module Eeri = e S pl e Since

ﬁQ = W we have the immediate consequence
W, =W & ... ® W (B)

Now comparing the two decompositions of W found in (a) and (B)

Q
we obtain a contradiction : (o) shows W has 1©' homogeneous
Q2
components whereas (B) shows W has precisely p and p € 7 .
Q2
Thus WQ must be homogeneous.
2
But Sthien SV =8 (\7/%) must also be homogeneous, hence U S
Q Q0 Q
2 2 2
homogeneous and thus M4 is satisfied in this case.
Therefore we assume that WN is not homogeneous. So it must

break up into a set of p non-isomorphic irreducible kN-modules Si -

= e P wilth

Combining this decomposition with the fact VN =W_ TN we get

= S DS TR ORI NS
VN Sl X TN D D b N

Thus U , an irreducible component of V is an irreducible

N r

component of SQ D TN For seomel 8 € {i,...,p} . Moreover we have

W =5 BB s v
PO,
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and comparing this with (B) it follows that dim W. = dim S.Q Eex
Jj 5t
2
LAl S, Sk

Hence by ‘the irreducibility of Wi we have that S.Q is
al

2
irreducible for each i = 1E o i o T This implies

Eoate 2l e

f
Q2 2
is homogeneous.
Therefore UQ is homogeneous, as we require.

2

So M4 is satisfied.

For M5 let Ni be a maximal normal subgroup of G for i =
and let G = N1N2 p Further assume V is an irreducible kG-modu
such that all irreducible components of VN are in H(Ni) for ea

it
=811 2D -, Then we must show V € H(G) , that is that V

o -(G/ker
T

homogeneous.
Firstly we show that V satisfied H2, wviz G/ker V € X .

Consider VN and let Ui' be an irreducible component for

i= l,...,tj = L 2 Then by hypothesis Nj/ker Uij € X for

hees Thus by subdirect product closure of X , Nj/ker e ¥ Sy -
= j =
So Nj ker V/ker V € X .

Thus by normal product closure of X , G/ker V.€ X ..

Hence V satisfies H2.

{0

le

ch

V)

each

is
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Suppose ker V ¢ Ni HeE" W =NINer M 2 W) Uisay . 4 = 1. Then
by the maximality of Nl . G = Nl ker V . Let U be an irreducible
component of VN s Then U an Nl—module is also of course a module

1
Foriiker S\ ! BUEEE = Nl ker V thus U is an kG-module and so
A% =0U .
1
Thus ker U = ker V [l N, := ker N an@e Vees € H (N e
1L N, 1
s

Hence G/ker V = Nl/ker U and this implies VOHCG/ker V) 1s
homogeneous, so Hl1 holds.

Therefore consider the case ker V E_Ni Bl i X A Just as in

the proof of M4 we now work modulo ker V so that by M2, we may assume

ker v =1
As before put Q = Oﬂ(G) :

Two situations arise :

(ay - Jeng € 7 for i =1,2
and
2) [G:Nil =N P e say, SR € T forteither S = ] or ) s
In the first situation assume lG:NlI =t and |G:N2| =t o
]
tl - t2 jeraatini=1s) aliol HaiEk Since OTr (G) = ON(G) :=0Q it is clear that

QcC Ni =2 an d S Ehuls

Il
2
=)

10

Oﬂ(Ni)

We must show V is homogeneous.

Q
If either V or VN is homogeneous then it follows immediately
By 2
that Vi = (i) is homogeneous where i =1 or 2. Therefore assume

Q N."Q

il
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the contrary. Thus by Clifford's Theorem we may write

Vo= '» '
T e

HOIE I — O B e Ee leach Vij is an irreducible kNi—module.

By hypothesis V.. € H(N.) and so V.. is homogeneous and a
1) 1 1J9

. But thi i 1Lai \Y
u is implies ( Nl)Q

homogeneous component of VQ for each 1i,j

must have tl homogeneous components whilst (VN )Q has t2 homogeneous
2

components h =
p s hence tl t2 and each Vlk equals a V2€ for some £ .

In particular this means that V an irreducible N_.-module

11 D i
is also a Nz-module. But then since G = N1N2 this implies Vll is
a kG=medule of Vi .
Hence Vll = V.
Thus VQ = VllQ is homogeneous, as required.
In case (2) put IG:N2[ = P SEED e C T

Then by Clifford's Theorem there are only two possibilities to
consider : either VN is homogeneous or else it breaks up into p
2

non-isomorphic irreducibles. Put Q2 2= OW(N2) .

When VN is homogeneous we have by Theorem 2.4.3 that VN is
2 2

irreducible. Thus by hypothesis VN € H(N2) and so by lemma 2.1 VQ
2 2
is homogeneous.

We must show VQ is homogeneous.

The way we do this is to use the homogeneity GRE W interdery te

92

apply Theorem 2.4.2 and by this determine a decomposition for V_ .

Q
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Let W be an irreducible component of V
2

Now in order to use the full force of Theorem 2.4.2 it is necessary
to show that W may be extended to an irreducible kG-module, W say,

such that WQ =W . We use Theorem 2.4.5 to show this extension exists.

2
The conditions we need are that if L/Q2 is any Sylow subgroup of G/Q2
EhienS W e tends N EoR N, We show that this holds by examining as
separate cases the Sylow p-subgroups and the Sylow p'-subgroups.
: i " :
Since Q = OW(G) =10 (G) -, Q/Q2 is 3 Sylow p-subgroup of

G/Q2 y Now let E be the irreducible of VQ which has W as an
irreducible component of E . BN\ homogeneous implies that E

Q Q Q

2 2 2
is homogeneous and thus by Theorem 2.4.3 EQ =W . Hence W extends
2
toR @F T
Now let R/Q2 be a Sylow r-subgroup of G/Q2 iTohe 0 A0S o Then
iz € gf  anel e melileows R & N2 s Moreover Q2 is a normal Hall subgroup
©nt N2 and so Theorem 2.4.4 (1) applies. This shows that there is an
irreducible sz-module, F say, such that FQ =W . It follows that
2
FR is an irreducible kR-module and (FR)Q =W , hence W extends to R .
2

Therefore Theorem 2.4.5 applies as we have foreshadowed and there

exists an irreducible kG-module, W such that W =W .
2

Now consider V and apply Theorem2.4.2 in the familiar way to write

V=W®T where T is some irreducible kG-module with Q2 in the

kernel.

Thus
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Now we know that ﬁQ is irreducible. Moreover T is
homogeneous. For by Clifford's Theorem the irreducible components are
conjugates of one another by elements of G WO s Since G/Q2 is

the direct product of Q/Q2 and N/Q2 there is no effect to conjugation;

But since |Q:Q2! = p it must break up into a direct sum of
isomorphic one dimensionals irreducible modules. Applying Theorem 2.4.2

again it follows that VQ =W_®T must be homogeneous, as we desire.

Q Q
This completes the argument for the case when VN is homogeneous.
2
Now suppose VN breaks up into p non-isomorphic irreducibles
2
Vi A =R P, SeRthatiwelmay swrite
\Y = Vo Bl @ :
N 1 Vp
2
By hypothesis Vi (& H(N2) e cachi e This says ViQ is
2
homogeneous for each i . Now consider V and let W be an irreducible

i

. Thus

component of V1Q2

19
By Clifford's Theorem V. = VlG and then by Mackey's theorem
(VlG)Q = (lez)Q . Hence
v, = (le2>Q
= W, . . o)

Th Sy is homogeneous if wQ is irreducible.

We shall show that WQ is irreducible.



2

What we do know about W is that it is either invariant in

@ @Z e i@ meie,

Let us suppose W 1is Q-invariant; our aim will be to use the

homogeneity of ViQ to arrive at a contradiction.
2

Because Q2 is a normal Hall subgroup of N2 and W is invariant

in N2 by Theorem 2.4.4 (1) we have that W extends to an irreducible

kN2—module W suchiEhatt WQ =W . So using Theorem 2.4.2 in the

familiar way we may write

EorEXENaNcerEaliin sz-module with Q2 in the kernel.

Now we know from Clifford's theorem that there exists a set of
%
elements in G , xl = 1,...,xp such that Vi = V1 pdl= Lo n D

Moreover because G/Q2 is the direct product of Q/Q2 and N2/Q2 SIS 0S

possible to choose these X, such that they are all in Q .

X,
o lllows B EremEEERsES BENaE S = X Forltcach. T =l e A

Thus
X X,
v, t = (WX)
1
X, X,
=W ® X
i
=W QX .
Now using the assumption that W is invariant in @Q we have that
X

W Een W . Thus
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112
=

52
4 y =il
Hence, considering W » Theorem 2.4.2 applies again so that we

may write

= =
W == W
for some T an irreducible sz—module with Q2 in the kernel. Moreover
by iteration it follows that
s
B! = S
W =W&®&T

Eope. § € 39 5

However we know that xi , 1 #1 , has order a mw-number, say m .

Thus W =W® T . This implies T = e
2

But T is a linear representation of N2/Q2 a m7'-group and so

there is an n € N, a 7'-number such that ™ =1 "

N2
Finally, (m,n) = 1 and so T must be trivial. But this shows
—x' —
W e W and thus Vi = V1 Haticontradilc Eilont
Therefore W cannot be Q-invariant.
Let U be a proper irreducible submodule of WQ A
Now look at U " Tt breaks up into a direct sum of irreducibles.

2

But each one of these irreducibles is an irreducible constituent of
2

(WQ)Q and thus of VQ and so also of VlQ 1 for some i L P
2 2

and so is a Q-conjugate of W .
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But W is not Q-invariant and this means that U cannot be

2

homogeneous.

Thus by Clifford's theorem U breaks up into p non-isomorphic
2
irreducibles, say U. , i = 1L e S0l
2

But then

dim (U) p dim Ui

p dim W

dim (W)

and so WQ must be irreducible.
Thus VQ is homogeneous.

This completes the proof of M5.

The theorem is now proved.

§3. Hq"(;) and Non-saturation

In this section the objective is to describe conditions on the
choice of X which relate to the set of primes m and guarantee that

gqﬂ(g) is in fact a non-saturated Fitting formation.

As a preliminary to these results we record the following lemma,
a counterpart to Corollary 4.3.5, which supplies a range of useful examples

of groups in gq”(g) and contained in S

S, S
_.q —-$‘

3.1 LEMMA Let m be a set of primes and X a Fitting formation such

that X e s8s .. . Supgose x,s are primes with r € m and s € n' and
and H° . 4 . . 3
let H be groupssatisfying the same conditions as in Lemma 4.3.3.
A



75

Further suppose H €

11>

Th o
en HO € gq (X)

Proof What we need to show is that if E € T. (H th
i (H) en Eon(Ho/kerE)

is homogeneous. Now by Lemma 4.3.3
Ho/ker E = H
€ X
so H2 is satisfied. Moreover Oﬂ(H) = F(H) .

Now by Lemma 4.3.3 (1) we know dim E is an r-number. Suppose

EF(H) is not homogeneous. Then by Clifford's theorem the number of

homogeneous components must be an s-number.

But this implies =< dimPE ol contradicEion)se EF(H) L&

homogeneous.

Therefore H_ € gqﬂ(é) , as asserted.

0
3.2 COROLLARY Eet  r € y(x) O .40 : Take
R to be an extraspecial group of order L oo that by Lemma 2.2.2,
R € X . Then there exists an irreducible Z(i%a—module, W, such that

RS (X
=q =

: m :
Corollary 3.2 gives simple examples of groups 1in (§) not in

H
=q

The main non-saturation theorem follows.
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3.3  THEOREM Tt bela sset of spriiges and put . =m Nefales

Let X be any Fitting formation contained in S

i iere eqisbe primesc v,E ' sueh thats x & mo s BoE et and

SIS CE then gg(g) 18 non-saturated.
This condition is basically the same as the one for non-saturation
: m
in the case Zq (5) . We refer the reader to the remarks we made

following the statement and proof of Theorem 4.3.7 as they also apply
here. Just as in those remarks, as a special case of this theorem, it

follows that the class qu(g S ) 1s noen—saturated.

The proof of Theorem 3.3 follows the same pattern as the proof of

Theorem 4.3.7.

Proof of Theorem 3.3 Taking the primes r,s as in this theorem we

use Lemma 4.3.6 to construct a group H = B.S (where F(H) = B 1is an
: 2m+1 : :
extraspecial group of order r and SISt al ey clhaclgroupieffordens s)

with the property that H satisfies the properties (1}, (2) and (3) of

Lemma 4.3.6.

Now lemma 3.1 applies, so that H_ € Eqﬂ(é) :

0

We now assume that gqﬂ(g) is saturated, and so the characterisation

of saturated formations, Theorem 2.2.5, must apply. Using the notation of
this theorem we have that H € X(q) and thus H/Z(H) € X(q) - Put
H = H/Z(H) .

Just as in the proof of Theorem 4.3.7 we can now choose X to be

a faithful irreducible :Zqﬁ—module such that if U 1is any irredueible

component of k ® X then dim U # 1 .
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But by Theorem 2.2.5 again X.H € H Tr(X) P EU ST - is
=q = O (H)
m
homogeneous. But Iﬁ:ow(ﬁ)l = s , thus by Theorem 2.4.3 UO () is
i
irreducible. However since B is extraspecial Oﬂ(ﬁ) is abelian and

therefore dim U = 1

But this contradicts our assumption dim U # 1 .
™
Hence Eq (X) cannot be saturated.

This completes the proof of 3.3.

In the special case when g ¢ m Theorem 3.3 can be reexpressed

in a more practically useful way.

3.4 THEOREM Let m be a set of primes q ¢ v . If x¢ s Us

then

Proof

to

114

=4 Y

gqﬂ(g) 18 non-saturated.

Since X € S S , the stated condition is equivalent by definition
is B
=7 '=7

Now we use Lemma 4.3.2 to find primes r,s ,r € m, s € 7' , and

’

use these in exactly the same was as in Theorem 3.3.

m :
From this we conclude Eq (X) 1is non-saturated.
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CHAPTER 6

MORE ON CONSTRUCTIONS BY CHIEF FACTORS

§1. Introduction

In Chapter 3 we defined a method for constructing Fitting formations
which depended on the representation properties of chief factors. In

Chapters 4 and 5 we used this method to construct interesting examples.

In this chapter we try to show that all Fitting formations can be

characterised by such a method.

In 82 we start by defining a closure operation Pﬂ on . F i, the

class of all Fitting formations (where w is an arbitrary set of primes,

as usual). The definition of PTr involves the construction technique
of Chapter 3. An important role will be given to certain naturally
occurring primitive groups. The section culminates with a theorem which

shows that the case 7w = IP is essential to understanding the general

CREE W € 12 We put PE>= P

In §3 we conjecture that all Fitting formations are P-closed.
If the conjecture is true then this provides a characterisation of an
arbitrary’ Pitting formation. We show that all saturated examples are
P-closed and that all known non-saturated cases (those of Chapters 4 and 5)

are as well. The general case however seems a difficult problem.

In §4 we close by considering the behaviour of PTT (for an
arbitrary =) under products of classes. The problems here too seem
considerable. For instance we are unable to show that P preserves

products of classes in the general case, although this would be consistent

with the truth of the conjecture in §3 .
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§2. The closure operation P1T on " F

The objective of this section is to define a closure operation P
on the class of Fitting formations, F , where = is an arbitrary set

of primes. The essential features of P1T are determined by the case

of a single prime, q say.

As indicated in the introduction the construction of P (X) where
X is any Fitting formation will be by examination of chief factors using
the module technique of Chapter 3. An important role will be given

to certain naturally occurring primitive groups.

More precisely, if V is any G-module for a group G then we

have from Definition 2.3.1 that

PV, G) = V.G/Kker WV .

Moreover, if V 1is any chief factor of G then Lemma 2.3.2 shows
that P(V,G) is a primitive group, with V the unique minimal normal

subgroup of P(V,G) .

Now, expressed as simply as possible, Pq(é) will be the class

of groups G which have P(W,G) contained in X for each g-chief factor

W et G .

Before proceeding with the details of the construction we note

the following elementary results.
Let W be any G-module for a group G . Then

If N is normal in G and also contained in ker W then

P(W,G/N) = P(W,G)
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- W can be thought of as a module for P(W,G) on which W

acts trivially and so considered we have P(W,P(W,G)) = P(W,G) .

Moreover if X Wiswany Fitting formatienjand. iW..is:a.chief factor

of G then recalling Lemma 2.3.5 we have

P(W,G) € X .

We shall use the foregoing facts without explicit reference.
We now construct the Fitting formation Pq(g) .

Note that %z (G) is just the class of g-chief factors of G

q

considered in the natural way as irreducible EZqG-modules.

2.1 THEOREM Let X be a Fitting formation and let q be any prime.
For each group G let Pq(G) be the class of irreducible :zqG-moduZes

N Usuch that
P(V,G) € é

Then the modules in Pq(G) satisfy the conditionsMI to M5 of Theorem

3.2.1 and therefore the class of groups

= G
P (B {¢ | qu(G) S ) }

is a Fitting formationm.

Proof

Ml is satisfied trivially.

M2 is immediate.
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For M3 let V be an irreducible :qu—module in P (N) and
q

¢ : G> N an epimorphism. We must show V ¢ Pq(G) s

Now the epimorphism ¢ : G - N induces an epimorphism

G ~ N/kerN(V) in the usual way with kernel kerG(V) :

Thus G/kerG(V) = N/kerN(V) and so since the action of these

two groups (as defined by inflation) is the same,

P(V,G)

112

P(V,N)

as required.

For M4 let N be a maximal normal subgroup of G and take V
to be an irreducible :ZqG—module Tl Pq(G) Y We must show that if U
is an irreducible component of VN then U ¢ Pq(N) T EhaEliis

P(U,N) € X .

New » EI(V;, N i'stnormailsint s PV G) e XE S Son by, Sn—closure @t X

BV, I € X .

Since by Clifford's theorem VN is completely reducible there

is a :ZqN—module W say such that U = V/W .

Thus U.N/kerN VzP(VN/MWEZX.

By O-closure again the desired result follows, P(U,N) € X .

For M5 let G = N1N2 where Ni 4G, i =1,2 , and take an

irreducible Z.G-module V for which each irreducible component of the

CL

EeSkrEilctEillon VN is contained in RﬁNi) e tor feach it =8 ) B What
il

we must show is that V €F

1

(@) i, ‘that as  P(V,G) € X .
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ASENGR= NlNZ 1 ENEoilowsT Ehat

G/ker V = (Nl ker V/ker V)(N2 ker V/ker V) .
This means we can rewrite P(V,G) as a product of normal subgroups

P(V,G) = P(V,N, ker V)P(V,N. ker V)

1 2

WeEe PV @) @ é will now follow from the N_-closure of X provided

0
we can show P(V,N.L ke FRVARRE S XA SR = ]9 We do this by writing
P(V,Ni) as a subdirect product of terms in X . Note that

P(V,Ni) = P(V,Ni ker V) . Without loss suppose i =1 .

Now by Clifford's theorem
\Y = 0, @ oo @ U

iROns Uj anhrreducibile ZZquf-module Y= Ay ok

It is now possible to define a set of k epimorphisms,
¢J : P(VINl) = P(Ulel)

i =SS Kby S theNprojjec tionYo sV entoe Uj in the usual way

Moreover

it N

ker ¢. = {(x,y) | X U SRS el ) Uk Vi Clker
J ] 1

(Uj)/keer(V)}

Thus

: {(0,ker V)]
1 ] N

Il =t
~
()
b
©-
Il
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<
since N ker (Uj) = kerN (V)

Therefore P(V,Nl) is a subdirect product of the P(Uj,Nl)
But by hypothesis each of these is in X .

It follows that P(V,Ni) CEXE IR and S hiencelthat

P(V,G) € X, as we required.
This completes the proof of the theorem.

We can now extend this construction to an arbitrary set of primes

W With Pq(é) as above put

It is an elementary result that Pﬁ(§) so defined is also a Fitting

formation.

We now have the following result.

2.2 THEOREM For any set of primes m , L 18 an operation on F

defined by

™ =
Moreover P_ is a closure operation. In particular for X,¥ in F
() g ey S then Bo(x) - PN

and
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Proof

(1) is obvious

(2) is an immediate corollary of Lemma 2.3.5.

(3) uses (2) and the identity P(W,P(W,G)) = P(W,G) for W

and G .

This completes the proof.

Now we know from a remark made at the end of Chapter 3 that
gn' E'Pﬂ(é) 3

When m = P we put PI>= P and in §3 we conjecture that all

Fitting formations are P-closed.

In the remainder of this section though we develop properties of

P1T for anarbitrary

We need the following technical lemma.

2.3 LEMMA Let w be an arbitrary set of primes, X be any

Fitting formation and G a group in P_(X) . For convenience put
- - G/0_,(G) . Then
£
Gl'S TG .
Proof The important case is when 7 contains just a single prime, g

say. We do this first.

Let G € P _(X) and put G = G/Oq,(G) 3 It will suffice to show
q=

11>

G/9(G) € X', for this implies @ E'Q(E) , as we require.

For convenience put S = G/2(G) -



S

By an elementary result (Huppert [24] III Hilfssatz 3.4. (b))

@(8)'= 1 , and therefore Lemma 2.2.7 applies. From this we get that
17 () =Ml>< o ><M£
for some & where Mj g 2 mebmbnedl peranell culseiaowe @ 8 50 3 = Apooo

€heoose a complement, K say, for F(S) in 8 (this exists by
Huppert [24] III 4.5 and 4.4). Now define a complement in S for each

Mi in the following way,

Ki = (Mlx"'Xﬁix"'XM2)°K s

Further, put Li = © (Mi) and note L; s rnormal vt ie) e

bejnﬂ normalised bj Ki and centralised bj M while §5=KiM;..

Now since G € Pq(g) Y SIEC Pq(g) and so P(Mj,s) € § 1E@NE

each j .

Thus

PI(Mes SHES = SMIS SRy /e
( J ) J J/ 3
=S /il
J
XA
Noting that
= e 3G ﬁ_ SIS S |

0
we can show by a standard argument that N Lj = 1

j=1
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Hence by the subdirect product closure of X we have S €

11><

Thils cempletes the case for w = {q} .

In the last part of the proof we generalise the situation to an

arbitrary set of primes, =

Sincel WG EVP (X)) = ([ P (X)  we have
Tr: q=
ge€m

G/0O G ®(G/0 G & 5%
/q.()/(/q.u) X

Eoreachiae e

Now define Hq to be the normal subgroup of G such that
H /0 H(E) "= 0(E/0 HAE))
e g q

Then'by = R -—cllosure of X

C

11>

@/ Mz &
/ q

But it is easy to see

Il

N H, /Oy (6) 9(G/0_, (G))

Hence

E 7
G/0_, (G) / 2(G/0_,(G)) € X

as required.

This completes the proof of the lemma.
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As a first approximation to the range of relevant groups

the following result sandwiches Pﬁ(§) between two classes which

are only dependent on the choice of X gugvel g

For instance we know that both X and S T dEeENcontaimed®in
= =T

Pﬂ(§) : What we now show is that Pﬂ(g) must at least contain the

glass ' 5

ﬂ'§ 3

2.4 THEOREM Let X be any Fitting formation and w an arbitrary set

of primes. Then
(2:5) s = 5 xem P ()i s %
e =q= — M= = =T =
gem
In particular this means
(2.6) NX 2 P(X) 2 X .
Proof It suffices to consider the case when 1 = {g} .

let 6 < 5% and put G — G/Od(G) 50 that ' G € X+, ‘thus

e Bi()
q=

But now all qg-chief factors of G can be thought of as g-chief

factors of G S and thilshimpliest byt M3EEhat G € Pq(é) E Thus

PR(x) 5
q(=) 2

it
11

ql
Now consider G € Pq(g) and take {Ui}§=l to be a complete set

of g-chief factors belonging to a chief series of G . Then because

PN, ) ERXa R foltllows G/CG(Ui) € X tFor each i ‘and thus
l -

1E
G/'ﬂ CG(Ui) £ ¥ -
1=1

is i i cixerthere fore MGRERSINS X
But by (2.3.3) this implies G/Oq,q(G) X Sl

and| S5 .S X2 P (X) .
=q =q_— q-—
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Thus (2.5) is established, as required.
BoeM(2Y6)put i = 1P\ in (2.5).

Now

S fleesyec
€p g2 2q'2
q 9 =9 g€ 9 =9
is easy to see.
Therefore, since N = [ S ,S_ ., (2.6) follows as required.
g€ P

This completes the proof of the theorem.

Now let 7 be an arbitrary set of primes and take the product of

eachtterm® in N(12756)Monthelile £t by g Thus

='n" i
NX DS (X)) o SEiR. . (o)

Now compare this with the case in (2.5) where we have

flis siis B (8)

m

lta
11>

,.n,l

ge€m

Observe that S ,NX =S ,S X .

This is because if G/Oq,(G) € NX =f]§q,§q§ then

for each g € P, and conversely.

Thust S NX = gl s ,5 X .
N Gen L
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Comparing (a) and (B) the natural question to ask now is whether or

not P (X) = § ,P(X) .

We provide an affirmative answer to this in the following theorem.

2.7 THEOREM Let m be an arbitrary set of primes and X any Fitting

formation. Then
2 R = g ,P(X) 5
AE = pa

Proof It is enough to consider the case w = {q}
Firstly we demonstrate that Pq(g) < §q,P(§) s

Let G € P (X) and put G = G/Oq,(G) . Then the aim is to

show! € & P(é) s

11>

Now from lemma 2.3 it follows G E_@(a) E_F(é) 5 But by the way

G 1is chosen we have F(a) = Oq(a) o
Hence é/oq(a) € X .

e Hu.l 1 is the set of chief factors for G then we know
i'i=

F(G) = 2 Cé(Ui) so Oq(G)‘E Ca(Ui) EoBNcachims Thus

G) = G €
P(Ui,G) P(Ui,G/Oq( )

m
11>

Eorlcachiit i n=en S sEIsR(shiince E/Oq(a) € X and then by lemma 2.3.5).
Therefore G € P(X%X) , and the containment is proved.

Finally we show the converse : gq,P(g) < Pq(é) s
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This is simple for we already know that Sq,P(X) CeS: P AX)

ButSnowieobserve Ehat S ‘P (X) = P (X) .

The converse now follows.

This completes the proof of the theorem..

Theorem 2.7 provides a crucial insight into the structure of the
class Pn(é) v AR What we can see is that Pﬂ(é) is essentially
determined by P(é) 3 In other words the over all effect of the set of
primes 1w is not very interesting, whereas deeper, more substantial

questions involve only the representation properties of the chief factors.

Accordingly in the next section we study P(X) .

§3. Is each Fi'H"\nq forvotiomn P- c\osed?

In this section we concentrate on the possibility of characterising

an arbitrary Fitting formation, X say, using the methods developed in §2 .

We make the following conjecture.

(3.1} . Each  Fitting formation is p-closed.
Using Theorem 2.7 we may reword (3.1) in the following way

Let X be any Fitting formation, then E_(X)= 5 X for each

TR G T

If (3.1) is true then every Fitting formation can be characterised

by a construction via the representation properties of chief factors.
Even if (3.1) is false the situation would still be of interest.

our first result is a simple corollary to Lemma 2053
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3.2 THEOREM If X <s any saturated Fitting formation then X 18

P-closed.

Equivalently, when X 18 saturated then

P_(X) =

{119}
1>

for any set of primes, T .

Proof By (2.5) we only need to show Pﬂ(g) cs

11>

TT'
But this is an immediate corollary of Lemma 2.3, for by that result

G/®(G) € X and ;se by saturation of X ,, G €

11>

Thus G € En-¥ , as required.

Thus Bl Nhellds St theWsaturatedicaser

We also have the following.

3.3 COROLLARY The containment B X in Theorem 2.4 is in

general the best possible one.
Proof By the theorem, equality holds in the saturated case.

3.4 COROLLARY If X s saturated, then so is P_(X) .

X

Proof By the theorem we have Pﬁ(é) gﬂ,_

It is well known that this is saturated.

We point out that it is not known whether the other containment in

Theorem 2.4, namely M s ,8 X 2 P _(X) , is best possible (obviously if
qg€m g
it is then our conjecture is false).
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Corollary 3.4 is included to tidy up a dead end : one cannot
construct a non-saturated Fitting formation by applying P Eoa
i

saturated example. However, what happens when PTT is applied to a non-

saturated case is unknown; again the question seems to be related to the

possible P-closure of F

It 15 easy to check that all Fitting formations in the classes

il m ol
Zq (é) and Eq (é) , sSpecifically the non-saturated cases, are P-closed.

For instance consider Xqﬂ(g) -
Let G € P(Xqﬂ(é)) and U €T, (G) . We will show U € Yq"(c)

Silnece N E Fk(G) we know by definition there exists a g-chief
factor vV of G with U a direct summand of V . So, by definition

i
ef - P o PV, G) € gq (X)
Thus U € Yq“(P(v,G)) -
But then U as a G-module immediately satisfies Y1 and Y2.

Noting that the kernel of U as a P(V,G)-module is just

V.ker U/ker V it follows that G/ker U ¢ X .
Hence Y3 is also satisfied.

Thus P(Xqﬂ(g)) = Xq”(é and Yqﬂ(é) aisEPEcllioscdt

: ™ m™ ;
Chlmulilznzilsy . O &€ Hqﬂ(P(V,G)) implies U ¢ Hq (G) and so Hq (X) 1is

also P-closed.

Thus all known Fitting formations are P-closed.

difficult
The section closes with the following theorem which indicates hoyﬁit

might be to find a counter example to (3.1).
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3.5 THEOREM g E Nand Y are p-closed Fitting formations, then
XY s also pP-closed.
Proof We must show P(XY) C XY .

Assume on the contrary that this containment fails, and let G be

a counter example of minimal order.

Thus G possesses a unique minimal normal subgroup. (@ IR N

L2 N 9@ &l [oChEely), SEh.

3¢
Take U  tebe any chief factor of G .. Our aim will be to show

=

that P(U,Gz) € X , o do@n @ & P(é)g and so by hypothesis G € XN

acontradiictieont

=

It suffices to take U to be a minimal normal subgroup of g

contained in N . For if: U = H/K say with K # 1 , then by minimality

G/K € X¥ ', S0

X 4
G /K = (G/K)
€ X
and
¥ ¥
BIH/KS, G ="P(H/I (C/K)F)
€ X
as we require.
W eeull w4 NO . To reiterate : the aim is to show
i
P(NO,G Yo 0 Xl
s

Now P(N,G) € XY so P(N,G) € X .
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When P(N,G) ¢ Y this provides us with crucial information.

X

Y
For convenience put C = CG(N) and -G =6 //G:i\C.Then It follllows that

=<
=<

NIE =i PG E)

m
11><

But by Clifford's theorem 'N~Y is completely irreducible with

=
N0 isomorphic to a direct summand.
X Y
Hence NO.G isia. cuotient of N.G
_Y
closure in Theorem 2.1 , and thus NO'G X
Y
Hence P(NO,G ) € X . as we require.

Now consider the case where P(N,G) € Y .

G/C € Y and so we have the containments

Y
N.cN -«
o SN E Z(E)

Y
This implies P(NO,G_) € gp :

But P 1s in the characteristiclof

=

P(NO,Gz) € X, aswe require in this case also.
We complete the proof by showing p is in

Suppose the contrary holds.

Y
Then (|N|,|¢ /N|) =1 unless G/N €

Il

since we have assumed in this case P(N,G) € ¥,

a contradiction.

3¢

e (et Ehelpreoeof of Sn—

4

Here € @ G since

11>

the characteristic of

. So by Lemma 2.2.2

But if GE/N'c ¥ | then

it follows

Thus G splits over N with complement K .

G € P(X)

11>

=<

’
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e
However because N centralises the whole of G Rt SIS

a direct product. Thuss Kieis normal in ¢ yet N MK =1 o contrddicthing

the uniqueness of N .
Hence p is in the characteristic of X .

This completes proof of the theorem.

§4. The behaviour of PTT under products of classes

Let X, Y be Fitting formations and w an arbitrary set of primes.

Then it is easy to see that the equation

(4.1) 12 (7)) 2oy (1)
T == = =

is in general false.

For instance put X =Y = Then because §“ is saturated

Siis
=T
wE e B 0R) = § 8 whereas P G () = (8_.8 )2 and so equality
fails.

In this section we look for necessary and sufficient condition

under which (4.1) holds. Unfortunately the best we are able to do is

provide rather weak results. In particular we have little knowledge of

the truth or otherwise of (4.1) in the most important special case m =1 .

Our first result leads to a sufficiency condition.

4.2 THEOREM Let X,Y be Fitting formations and w an arbitrary set

of primes. Then

(1) P (X)
'n'_

=<
n

P (XY)
—_ m ==

(2) P (XY) € P (XUD)Y .
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Proof We prove (1) first.

Assume on the contrary that G 1is a counterexample of minimal
order i.e. a group of smallest order in PN(X)Y OUESTEE T P (6X0VE)
= = m ==

Then G has a unique minimal normal subgroup, N say.

How let H/K be any chief facter of G with K #1 and H/K

a T-group.
Then consider G/K .

By the minimality of G it is in Pﬂ(§¥) and so

P(H/K,G) P(H/K,G/K)

112

€ 2

If N is a w'-group then it follows G € Pﬂ(gg) and this provides

a contradiction, completing the proof in this case.

If, on the other hand, N is a mw-group suppose N # CG(N) :

Then the minimality of G implies P(N,G) € Pﬂ(éz) and so

P(N,G) = P(N,P(N,G))
¢ XY
Hence G € Pﬂ(ZX) , a contradiction. So N = CG(N) -

We now consider P(N,G) and show that it is in XY in every case.

This will provide the final contradiction. To reduce notation put
N := P(N,G) .
-H—\u*l'_
Since G € P_(X)Y it follows N S Pﬂ(g)x - fEhu SRR S B
'n' = = = =
Y

chief factor of ﬁ= then



S/

<

B [ELRC € %o

However by Clifford's theorem, since N is a chief factor of N it

follows that

Y
where the Ui ¢ 2 = L, 0., r ‘are (isemerphiec to) chief factors of N

contained in N . Hence, by the same argument in Theorem 2.1 used to

Y
show Pﬁ(é) is No—closed, we have that Pﬂ(N,ﬁ_) is the subdirect
¥
product of the Pﬂ(Ui,N N EerE =l s S This implies
o X
PN, N € X .
Hhat

=<

Using elementary properties it followsA N € X
Thus N € XY , as we needed to show.

Therefore G € Pn(gg) and so Pﬂ(§)¥ = Pﬂ(gg) , as asserted in

jeruae. (L) -

In part (2) follow the proof of Theorem 3.5 making all appropriate

changes up to the point where we consider the case P(N,G) € - In this
Hhat g
case it follows,\P(No,G JreY “and se G € pﬁ(gug)g ol contradiaic Erlons

This completes the proof of the theorem.

Theorem 4.2 has an immediate corollary.

4.3 COROLLARY Retain the terms of the theorem whenever X 2> Y we have

P (XY) = P_(X)Y
T == m = =

If in addition E (X) =% then
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P (XY) = P (X)P (D) .

In the next two results we try to turn the situation around.

4.4 THEOREM How "X ¥, ' as above.

If
Pﬂ(éﬁ) = PF(E)PW(E)
and if
Pﬂ(é)Pﬂ(g) E_Pﬂ(é)g and Pﬁ(é) # Pﬂ(é)gﬂ.
then
B (Y). =X .
’ﬂ' = =
Proof The method of this proof is to assume the contrary and then

derive a contradiction by constructing a group which is in Pn(g)Pﬂ(g)

Isibhe iaene  alial Pﬂ(gg) .

In order to effect this construction we use the wreath product.

Hence use of Lemma 2.2.6, which interrelates the radical and the wreath

productiis crucials

Let G be a counterexample of minimal order in Pﬂ(g) but not e
Further take H to be a group of minimal order in Pﬂ(é)gﬂ, IofBlie faloie. alin
Pﬂ(é) i It is well known that H must have a unique maximal normal
subgreup), fecalilsthh'SENME Sa v Moreover by the minimality of H it is clear

EhalEseM Siisy the Pﬂ(g)—radical @ e Thus H/M € S

Now consider H wr G . Our aim will be to show H wr G € P“(X)P“(X)

whereas H wr G ¢ P (XY) , providing the desired contradiction.
TT==
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SHinc e MRENE Pn(é) we may use Lemma 2.2.6 to calculate the

Pﬂ(é)-radical ©hE Bl Ve @ .

Thus

=
£
R
e
I
=

and hence

H wr G/ (H wr G)Pﬂ(é) = (AR @ o

For convenience put W = (H/M)G.G .

Now because (H/M)G has characteristic a mw'-number all g-chief
FactorsiccE TN FR VBN o ccurrabeove (H/M)G 5 Moreover each chief factor

above (H/M)G may be thought of as an inflation of a chief factor in G .

BuitenG  c PN Sef  Was P (Y)i Hence H wr G € P (X)P (Y) .
= ™ = m = m =
However assume H wr G € P“(éz) = Then by hypothesis
Hwr G €P (X)Y and so (a/m)©.G € ¥ . This implies G € Y .

But this contradicts the minimality of G .
It therefore follows that PN(Z) =
This completes the proof of the theorem.

Observe in (4.2) that the hypothesis P_(X) # P_(X)S;, specifically

excludes the possibility m =T . Our next result aims to include this

crucial case.
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4.5 THEOREM Tet WX, Y, wbe as before.

If

12 (412 (YO & e d =
JBPL(X) S P (XY and P (X) = P_(X)S,

fovrieaeh g € w., then

Proof Suppose the conclusion is false. Let G be a group of minimal
order in Pq(z) not in §q'x : PFurther take ' H to be any seluble

group of minimal order not in Pq(g) c
The first step is to refine the structures of H and G .
First we work on H .

By minimality it follows that the Pq(é)—radical is the unique
minimal normal subgroup, M say. Moreover Pq(é) = Pq(é)gq, implies

H/M § S, - Thus la/M| = q .
Now we refine the structure of G .

It is well known that there is a unique minimal normal subgroup,

[ S'cl e
Now suppose L 1is a g'-group.

Then writing Oq,(G/L) —lK/In s we haver that K iisSEal S gt Sgroup:

But

1R

G/K = G/L / Op,(G/L)

3

by minimality of G with respect to G/L .
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ElusBRGHCES I ¥ oS a ‘contradiction.
=q=
HencelMNERN ISR a N =g reoup:

Next we consider M wr Cq - We shall show M wr Cq ¢ Pq(§) s

This will provide the basis for the penultimate contradiction. Remember

Ehaish
Assume that M wr C € P (X) .
q q.=
It is clear that

c
(H wr C) m = (H/M) wr Cq

and that this is a g-group.

€ @
Thus (M wr Cq)/M 9 is subnormal in (H wr Cq)/M E and so

M wr Cq is subnormal in H wr Cq g We deduce from this that

(M wr Cq)P (X) C (H wr Cq)P (X)

But now by assumption

=M ©
(M wr Cq)Pq(X) WY -

and moreover by Lemma 2.2.6

=M
(M wr Cq)P ()_() wir CC’,-
q —
C @
Thus M q.C cC M E R con trodaictiont

q—

S At O O
¥ q¢q=
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In the next step we look at M wr G and show that the Pq(§)—

- : : G . : ; -
EadiieallSiSESnISERENM This will lead straight to the final

conktradictieon.

For convenience put R = (M wr G)P (X)

EhelfitEsERthingitotnotilceliisthat MG €ER . This is for the

obvious reason that M € Pq(g) by the minimality of H .
G
Now suppose R/M # 1 .

Recall that L is the unique minimal normal subgroup of G .
G G ; . s G G
Thus M .L/M is the unique minimal normal subgroup of M .G/M .

Thus M°.L C R and by this it follows M.L € B () .
Moreover since L 1is a g-group let C be a subgroup isomorphic

to Cq . Then MG.C is normal in MG.L and so

MG.C ERPE ()
q —

Now by definition

MG = Il
g€G
and so putting
N = 1 My
y¢C
HitREoillliews ™ Ehait
G €

Now since C -acts frhdaﬂj“ CnEENE ER eIl ow s Eha=N SN sEn o nrmatlSsin

MG.C



103

Hence

MC.c/N

Il
=
X
2
Q

N
2

11
=

= M wr C
q

But this is a contradiction.

So R = MG as claimed.

The final contradiction follows immediately. Since
M wr G/MG = G
€ 12 ()

it foll M G ¢ P_(X
it follows wr q(=) RW (I )

Thus by hypothesis M wr G € Pq(§)

=<

We deduce from this G €

=

, a final contradiction of the minimality

(e e

This completes the proof of the theorem.
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