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ABSTRACT 

Fitting formations, namely Fitting classes that are also formations, 

made their first appearance in the work of Trevor Hawkes in connection 

with skeletal classes of finite sellable groups and primitive saturated 

formations. 

In 1970 Hawkes showed that each metanilpotent Fitting formation 

is saturated and can be characterised by a local definition consisting of 

•Poriv\oiliont) 

^ of. nilpotent groups. However the situation in the general case seems 

considerably more complex. We are motivated by the search for a 

classification result. 

Since Bryce and Cossey have shown that saturated Fitting formations 

can be defined locally by Fitting formations it follows that the non-

saturated situations are of particular interest. 

All groups in this thesis are finite and soluble. 

We supply a general method for constructing Fitting formations by 

examination of properties of chief factors. Let k be a field of 

characteristic q . For each group G suppose M(G) is a given class 
•mort 4hft Wll^l [MCC.)] 

of irreducible kG-modules such ^ satisfies certain closure conditions. 

Then, loosely speaking, the class of groups G where q-chief factors are 

contained in M(G) is a Fitting formation. 

Extensive use is made of this method. 

In our first example we generalise the already known non-saturated 

classes of Hawkes and Berger-Cossey. The class we define is called 

Y ^(X) where u is an arbitrary set of primes and X any Fitting =q = 
on 

formation subject to a condition dependent it and q . 



(iv) 

When T: = {q} , X = S we reduce to Hawkes' case; when IT = {p}, 

X = we have the Berger-Cossey example. 

Further we give criteria under which members of this family are 

non-saturated. Our main theorem will be that Y ^(X) is non-saturated 
=q = 

if there exists primes r,s such that x - ^ T T " , r y ^ Q , S € I T with 

S S c X . We have not been able to find exact conditions for non-
=r=s — = 

saturation. 

In our second main example we define a new family of Fitting 

TT 

formations H (X) , with tt and q as above and X c s S . . 
=q ' ^ = — =TT=7T' 

For each group G we let H^^(G) be the class of irreducible 

kG-modules V which on restriction to the u-radical of G are 

homogeneous and has G/ker V € X . The Fitting formation is then 

defined by the general method described above. Non-saturation occurs in 

similar situations as for Y (X) . 
=q = 

Finally we investigate the possibility that all Fitting formations 

can be constructed by our methods. We define a closure operation P^ 

on the class of Fitting formations, F , where ir is an arbitrary set 

of primes. We put P p = P • Essentially P^ is defined locally at 

each prime q € TT . For X € F , Pq(X) is the class of groups G such 

that each q-chief factor of G extended by its automiser is contained 

in X . 

Since S c p (x) it is clear that X cannot be P„-closed. 
=TT' — ir = - " 

However, we conjecture X is P-closed, This proves to be a difficult 

problem to decide in general although we shall show all saturated cases 

are P-closed and all known non-saturated instances are also. 
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CHAPTER 1 

INTRODUCTION 

Let G be a finite solxible group and m be a co-prime divisor of 

Then an old theorem of Philip Hall [17] states that there exists 

a subgroup of G of order m , and that all such subgroups, the Hall 

subgroups, form a unique characteristic conjugacy class in G . In the 

soluble case this provides a generalisation of the first Sylow theorem. 

In 1961 R.W. Carter [7] showed that for each finite soluble group 

there exists a self-normalising nilpotent subgroup, the Carter subgroup, 

and that Carter siibgroups form a unique characteristic conjugacy class of 

s\ibgroups in the full group. 

These two facts prompted interest in developing a unifojnn account of 

when and how characteristic conjugacy classes of subgroups arise. 

In 1963 Wolfgang Gaschiitz [13] presented the first such description. 

He introduced the seminal concept of a saturated formation, a class of 

finite soluble groups (as are all groups in this thesis) closed under 

taking quotients and siibdirect products and saturated. Roughly speaking, 

he showed that one class of conjugacy subgroups is obtained for each 

saturated formation X ; the subgroups in the class being called X-

covering siibgroups (to use the notation of Carter and Hawkes [8]). For 

example S^-covering subgroups are exactly the Hall ir-subgroups (for TT a 

set of primes S^ is the class of ir-groups) and the N-covering subgroups 

are just the Carter subgroups (for N the class of nilpotent groups). 

Following Gaschiitz, U . Lubeseder [28] showed that every saturated 

formation arises via a local definition from a family of formations 

(Chapter 2 §2.4). This showed that the theory of formations lay at the 



heart of Gaschiitz's methods. Much of early formation theory was worked 

out by Gaschiitz [13] , Carter and Hawkes [8] and B. Huppert [23] . 

In 1967 Herman Schunck [32] was able to significantly generalise 

Gaschiitz'3 work. He replaced Gaschiitz's saturated formations with a more 

general class - the Schunck class - and showed that for each group G there 

exist a set of s\ibgroups, the X-projectors of G , which are conjugate 

in G . 

Saturated formations are Schunck classes although the converse is 

false. In the cases when X = S^ or N say, the X-projectors of a 

group coincide with the X-covering siibgroups. 

Meanwhile in 1966 B. Fischer [11] dualized the concept of a 

formation to define the F'itt'ing class - a class closed under subnormal 

subgroups and products of normal subgroups. Fischer showed that if a 

Fitting class X enjoys a certain weak closure property (similar to 

subgroup closure) then each group G possesses a unique conjugacy class 

of maximal X-subgroups containing the X-radical - the Fischer X-subgroups, 

as Hartley [19] names them. 

However in 1967 B. Fischer, W. Gaschiitz and B. Hartley [12] obtained 

a simpler dualization of formation theory. They showed that there exists 

a unique characteristic conjugacy class of subgroups, called X-injectors, 

for each Fitting class X , without additional closure properties on X 

being necessary. For example the S^-injectors of a group G coincide 

with the S^-projectors and are the Hall ir-siibgroups of G . Indeed, 

given a Fitting class which is also a Schunck class, X say, such that 

X-injectors and X-projectors coincide for all solxible groups, then X = S^ 

for some set of primes IT . The N-injectors of a group G are the 

Fischer N-subgroups. 



By the late 1960s attention had shifted to a more formal study of 

the specific classes that give rise to conjugacy classes of subgroups. 

One line of research has been to explore the interrelationship 

of closure properties on a class. For instance it was recently proved 

by R.A. Bryce and John Cossey [4] that subgroup closed Fitting classes are 

formations. It seems to have been a contribution of Hartley in [19] and 

[12] to express the standard closure properties as closure operations on a 

class in the terminology introduced by P. Hall [18] in 1963. 

The first important result of this new kind had in fact appeared 

quite early. This was the Lubeseder result [28] on saturated formations 

as mentioned above. It provides a characterisation of saturated formations 

in terms of formations. Another early result was by Peter Neumann [30] 

who showed that a formation of nilpotent groups is subgroup closed. 

However it was work of Trevor Hawkes that gave direct encouragement 

to these new sorts of questions. In [21] he pointed out that primitive 

saturated formations are subgroup closed Fitting classes and suggested that 

the converse might also be true. This question first attracted attention 

to the study of Fitting classes that are also formations. Hawkes called 

such classes, the subject of this thesis, Fitting formations. 

In 1970 Hawkes [20] presented a classification of metanilpotent 

Fitting formations showing that they are defined locally by nilpotent groups. 

It follows that such classes are both saturated and subgroup closed. 

However these results do not carry over to the case of nilpotent length 3 ; 

Hawkes is able to construct an example which is neither saturated nor 

s\ibgroup closed. This seems to indicate, as he notes, that the classifica-

tion problem may be a difficult one in the general case. We describe this 

important example in Chapter 2, §3.7. 



Inspired by Hawkes' results Bryce and Cossey [3] showed that a 

subgroup closed Fitting formation is saturated; with the converse failing 

in general, however holding in the case of nilpotent length 3 , The 

methods of [3] also enabled the authors to give an affirmative answer to 

Hawkes' original question in [21]: Every subgroup closed Fitting formation 

is a primitive saturated formation. This means that subgroup closed 

Fitting formations are completely classifiable by local definitions. 

This thesis is motivated by the problem of extending this class-

ification to the general case. 

In [3] Bryce and Cossey showed that all saturated Fitting formations 

can be defined locally by Fitting formations, so it seems likely that a 

treatment of the non-saturated case will be a major step in the general 

classification. 

However, work on the non-saturated cases has been impeded by a lack 

of examples. Indeed, apart from Hawkes' example mentioned above, no new 

examples appeared until 1978 when Tom Berger and John Cossey [1] were able 

to construct an example using a variation of Hawkes' methods. We describe 

this example in Chapter 2 §3.8. 

Accordingly this thesis is a consideration of constructions for 

Fitting formations. We place particular emphasis on the non-saturated 

cases. 

All examples under our examination have a common feature : they are 

defined by collecting those groups whose chief factors are subject to certain 

specified conditions. The thesis ends by considering whether all Fitting 

formations are of this type. 

The thesis is divided into six chapters. Chapter 1 is the 

introduction. Chapter 2 settles preliminary questions of notation and 



convention. We briefly summarise the elementary properties of a Fitting 

formation and collect and arrange other results, particularly from 

representation theory, which we will need. 

In Chapter 3 we formalise the method of constructing a Fitting 

formation used implicitly by Hawkes and Berger-Cossey in the construction 

of their examples which we shall call ^ and Y ^ respectively (where 

p,q are primes). An axiomatic method emerges. Loosely speaking, choose 

a set of irreducible modules M(G) for each group G for which certain 

specified closure conditions hold. Let q be the characteristic of the 

underlying field. Then a Fitting formation is defined by collecting those 

groups which, loosely speaking, have all q-chief factors in M(G) . 

We make extensive use of this method. 

In Chapter 4 we show that Hawkes' class Y^ and Berger-Cossey's 

class Y ^ are members of one family of Fitting formations we call Y ^(X) , =q =q = 

for TT a set of primes and X a Fitting formation sxibject to certain 

requirements. 

In particular we have ^ when ir = {q} , X = S and "g^ when 

TT = {p} , X = Sp.Sp . 

Y ^(X) is constructed using the method of Chapter 3. Accordingly, =q = 

for each G we select a set of irreducible modules called (G) subject 

to a set of conditions, generalisations of those which appear in the Berger-

Cossey construction. 

Next we give sufficient conditions on the choice of X subject to 

IT under which Y ^(X) is non-saturated. We are not able to give necessary =q = 

and sufficient conditions. Finally we consider when two such classes may be 

equal and remark on further elementary properties. 



In Chapter 5 we construct a new example of a non-saturated 

Fitting formation, called H^^(X) where once again TT is a set of 

primes and X a Fitting formation subject to specific conditions. The 

construction is by the method of Chapter 3. Roughly speaking,for each 

group we select those modules which are homogeneous under restriction to 

the appropriate TT-subgroup. 

The conditions we provide under which H ^(X) is non-saturated =q = 
are similar to the case for Y ^(x) . =q = 

All Fitting formations dealt with to this point have been 

constructed by the method of Chapter 3, via consideration of chief 

factors. In Chapter 6 we try to answer a very important question : Can 

all Fitting formations be so constructed? 

Although we cannot provide a definite answer to this question all 

suggestions seem to indicate the answer might be affirmative. 

We define a new closure operation P on the class of Fitting 

formations, F . If X is any Fitting formation P(X) is constructed 

by the method of Chapter 3. Basically P(X) is a class with the 

property that certain well chosen primitive P (X)-groupsare in X . The 

primitive groups under consideration occur naturally as suitable 

extensions of chief factors. 
Fitting formation is 

The important question is whether each ̂  P-closed or not. If 

not then P may prove useful in providing new examples of non-saturated 

Fitting formations. If so then we will have an answer to a basic 

question : Are Fitting formations characterised by properties of 

their chief factors? 



All saturated Fitting formations are P-closed, as are all known 

non-saturated cases, Y^^(X) and H^^(X) . The general case however 

seems a difficult problem. 

The chapter closes with a partially successful consideration of 

how P behaves under products of classes. 
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CHAPTER 2 

PRELIMINARIES 

§1. Introduction 

Most of the notation and terminology of this thesis can be found in 

Wolfgang Gaschiitz's book [14]. The aim of this Chapter is to settle 

remaining details of notation and convention. Foremost amongst these is 

the following reaffirmation : All groups in this thesis, unless explicitly 

stated otherwise, are both finite and soluble. 

We assume familiarity with the following texts : 

For Fitting class and foxnnation theory Gaschutz [14] Chapters 

0, I, VI, VII, IX and X. 

- For general group theory Gorenstein [15] Chapters 1, 2, 5. 

For representation theory Curtis and Reiner [10] Chapters 

1, II, VII and Huppert [24] Chapter V . 

Most of the preliminary results quoted in this chapter fall outside 

these references; overlapping occurs for the sake of emphasis or re-

expression in a more suitable form. 

In general those proofs which are either elementary or for which 

an adequate reference exists have been omitted. 

The material we present is divided into three sections. 

Since no unified description of the basic properties of a 

Fitting formation already exists in the literature, §2 is devoted to that 

aim. Our account ends with Hawkes' characterisation of all metanilpotent 

examples. We will be careful to say for each result which of the closure 

operations are involved. 



In §3 our attention is focussed on modules with a group acting 

on them. Indeed, such modules will be our main way of studying Fitting 

formations. The fact which enables this is that a chief factor of a 

finite soliible group may be viewed as an irreducible module for the 

group itself over a field of prime order. We record several elementary 

consequences and establish certain conventions and notations. The 

section culminates with a description of the two classes that have 

stimulated this thesis : Hawkes' Fitting formation and the Berger-Cossey 

class. 

The final section, §4 , is a brief review of the representation 

theory we shall need. First we state the collection of results henceforth 

referred to as Clifford's theorem. We then go on to examine a situation 

not fully explored by this theorem : roughly when an irreducible module 

restricted to a normal subgroup is rendered homogeneous. The section 

concludes by providing conditions under which an irreducible module for 

a normal subgroup can be expressed as the restriction of an irreducible 

module for the full group. The application of these conditions will turn 

out to be crucial in Chapter 5. 

§2. F i tt ing formations 

Recall that a Fitting formation is a class of groups which is both 

a Fitting class and a formation. 

Let F be the class of all Fitting formations. 

According to standard definitions a Fitting class is a class 

subnormal subgroup closed (S^-closed) and normal product closed (N^-

closed); and a formation is a class quotient group closed (Q-closed) and 

subdirect product closed (R^-closed). 
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Since there are a number of equivalent ways of expressing 

closure under these operations it is appropriate to state which version 

we shall use. 

Accordingly let X be a class. Then X is 

Q-closed whenever G € X implies G/N € X for each N normal 

in G. 

RQ-closed whenever G/N^ ^ i ' i = 1,2 implies 

G/(N Hn.) € X for each N. normal in G . 1 2 = 1 

S^-closed whenever G € X implies all maximal normal subgroups 

of G are in X . 

N^-closed wherever G = N^N^ and N^ are maximal normal 

siibgroups of G in X implies G € X . 

In addition X is saturated (E^-closed) whenever G/$(G) € X implies 

G 6 X for each G . 

P is the set of all primes and IT an arbitrary set of primes. 

Some elementary examples of Fitting formations are : 

1 the class consisting of only < 1 > 

S the class of all finite soliible groups 

S the class of all finite soluble ir-groups =7r 

N the class of all nilpotent groups 

N the class of all nilpotent ir-groups. = T R 

Amongst the non-elementairy examples there are two of particular 

interest to us. These are Hawkes' class, Y^ , defined in [20] and the 
defined 

Berger-Cossey class Y ^ [1] , where p,q are primes. The notation we =q A 
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use for Hawkes' class brings it into line with Berger-Cossey, and 

foreshadows the chief result of Chapter 4 which shows that these 

examples belong to a single family of Fitting formations. A description 

of Y and Y ^ is best reserved till §3 . -q =q 

Let X be a formation and G a group. The X-residuaZ of G , 
X 

written G , is the intersection of all normal subgroups of G whose 
X 

factor group belongs to X . Since X is R^-closed G is the 

uniquely determined smallest normal subgroup of G whose factor group is 
in X . 

If cp is an epimorphism of G then 

x.cp r 
G 

(Gaschiitz [14] V.13). 

Now let X be a Fitting class. The '^-radical of G , written 

G , is the product of all normal subgroups of G which belong to X , X 

since X is N -closed G is the uniquely deteirmined largest normal — U A 

subgroup of G in X . 

If H is subnormal in G then 

H^ = H n G^ 

(Gaschiitz [14] X. 3d) 

If X and Y are both Fitting formations then the formation class 

product of X and Y , namely 

Y 
{G G € X} 
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determines the same class as the Fitting class product 

{G I G/G 6 Y} . 
X — 

Thus the expression XY is unambiguous and is just the usual class 

product of X and Y . For a proof of this see GaschUtz [14] X.6 . 

It is an elementary result that XY is again a Fitting formation. To 

see this combine Gaschvitz [14] VII.6 and X.7. 

Furthermore it is easy to see that both X and Y are contained 

in XY . 

Now suppose we wish to show X £ y where X,Y are Fitting 

formations. Typically we take a counter example of minimal order, G 

say, and refine the structure of G leading to a contradiction. The 

first step of this refinement can be completed in general. 

2.1 LEMMA Let X and Y be Fitting formations and G a group of 

minimal order in x but not in Y . Then G has a unique maximal 

normal subgroup and a unique minimal normal subgroup. 

The proof of this result is simple combining the minimality of G 

with the R^jN^-closure of Y . 

By the characteristic of a group G , written y(G) , we shall 

mean the set of primes which divide the order of G . 

Likewise by the characteristic of a class of groups X , written 

Y(X) , we shall mean the set of primes which divide the order of some 

group in X i.e. y(X) = U y(G) . 
G€X 

The following is a well known result. 
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2.2 LEMMA Let X be a Fitting class. Then 

2 n a = S„x, 

The proof of this is an immediate consequence of Gaschiitz [14] X.4c, 

Loosely speaking Lemma 2.2 shows that a Fitting class is amply supplied 

with nilpotent groups. 

The following is a similar kind of result. 

Let N be a normal siibgroup of G . Then G acts on N by 
Ma O 2ind 

conjugation. In particular if^ M £ then G/M acts on N . Now 

under this action for m the semidirect product N.G/M . The following 

lemma shows that a formation is rich enough to contain all extensions of 

this kind when G € X . 

2.3 LEMMA Let x he a formationj G a group in x ^ N a normal 

subgroup of G and M be a normal subgroup of G contained in c (N) . G 

Then 

N.G/M € X 

This is proved by Bryant, Bryce, Hartley [2] Lemma 1.8. 

Let X be a formation. Suppose there exists a formation X(p) 

for each p € Y(X) such that 

X = C n S i X(p))n S 
p€Y(X) ^ ^ - 1 I ̂  

Then we say X is locally defined by X(p) . 

The following is a well known result of Gaschiitz and Lubeseder. 
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2.4 THEOREM A formation has a local definition if and only if it 

is a saturated formation. (Huppert [24] vi Hauptsatz 7.5 and 

Satz 7.25). 

Next we quote Hawkes' characterisation of metanilpotent Fitting 
formations. Theorem 1 of [20]. 

2.5 THEOREM Let X be a Fitting formation contained in N^ . For 

P € Y(X) take 

T(p) = {r € Y(X) I r € Y (0/0^,^(0) for some G € x} 

and put 

1 if T(p) = (f) 

X(P) = 

N , , otherwise =T (p) 

Then x is defined locally by x(p) that is 

X = {G € s I G/0^. (G) e X(p) for each p € Y(X)} . — —Y VA; P P — — 

If G and H are groups let G wr H denote the standard wreath 
H product of G and H , and let G be the base group, n G 

hen 
(cf Neumann [29] §2). The next result interrelates the X=radical of 

G wr H with that of G . X is assumed to be a Fitting formation. 

2.6 LEMMA In terms of the above when G ^ x then 

(G wr H)^ = (G^)" 
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Originally Cossey expressed this result for X a Lockett class 

(Lemma 2.2 [9]) however as is well known (Lockett [27] Theorem 2.2(d)) 

a Q-closed Fitting class, in particular a Fitting formation is a 

Lockett class. 

To close this section we quote a purely group theoretic result 

concerning properties of the Fitting and Frattini subgroups, denoted F(G) 

and $(G) respectively. These properties are culled from Huppert. 

2.7 LEMMA Fov a group G if $(G) = 1 then f(G) is complemented 

in G . Moreover f(g) is the direct product of minimal normal 

subgroups of G ^ say M. , i = l,...,n , and F(G) c c (M.) . 
1 — G i 

Proof All references are to Huppert [24] III. 

The complement for F(G) is assured by Hilfssatz 4.4, and the 

direct product property by Satz 4.5. The centralising property is 

contained in Satz 4.2e, as required. 

Hencefor+h •a.LL cL'^eses o-P groups Sire ijssumed -to be non-+rivia.L, 

§3. G-modu1es and Fitting formations 

Our first remarks in this section concern the situations in which 

we may change the group which acts on a given module. Frequent use will 

be made of such changes. Our practice will be to leave it to the 

context to settle how the modules are being considered. 

Let V be a G-module for a group G . If N is normal and 

contained in ker V then under the appropriate action V may be G 

considered a G/N-module. 

Further, if <j) is a homomorphism of a group X into G , then 

V may be considered an X-module under the obvious action for x € X , 

V € V : 
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XV = <J) (x) V . 

In this case we say that V is an X-module given by inflation from G 

It will be usual to leave the exact homomorphism understood. 

If U,V are isomorphic as G-modules we write U = V to 
G 

signify module isomorphism with respect to the group G . 

If V is a G-module then there is an implied homomorphism of G 

into Aut V . Under this homomorphism we are able to construct a 

semidirect product, always written V.G . Note that U V implies G 
U.G s V.G but the converse fails. 

Moreover if V is an irreducible G-module then G/ker V acts G 
faithfully and irreducibly on V . In line with Bryce, Cossey [6] we 

shall call G/ker V the automisev of V . The following semidirect (j 
product will be of great significance in Chapter 5. 

3.1 DEFINITION If V is any ̂ G-module then we put 

P(V,G) = V.G/ker_ V . G 

3.2 THEOREM For V an ivvedueible G-module P(V,G) is a primitive 

group and v is a unique minimal normal subgroup. 

Proof. For convenience put P = P(V,G) . Then because V is 

irreducible under G it follows V is a minimal normal subgroup of P . 

Moreover because G/ker V acts faithfully on V it follows that G 
Cp(V) = V . 

Thus Theorem 1.8 of Gaschiitz [24] applies showing that P is 

primitive. Uniqueness follows immediately from 1.4 of Gaschiitz again. 

This completes the proof. 
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Now in a finite soluble group chief factors are elementary abelian 

q-groups, q a prime, and so can be regarded as vector spaces over 7L 
q 

Moreover if H/K is a q-chief factor of G then G acts on H/K by 

conjugation in the usual way. Under this action H/K becomes an 

irreducible Z^G-module. The kernel of H/K under this action is 

the centraliser of H/K in G and is denoted by C (H/K) . 

G 

Further, if N is normal in G then we say H/K is above N if 

K ^ N and below N if H c n . Note in passing that if tj) : G ^ H is an epimorphism and U is 

a chief factor of H then there exists a chief factor of G , V say, 

such that V s u . 
G 

Choose a definite chief series for G and let the 

set of all q-chief factors contained in it. Then by Huppert [24] III 

4.3 we have 
n 

(3.3) = N C_(U.) . q q i=i G 1 

Since F(G) = fl 0 , (G) it follows that F(G) is just the intersection 
qCJP ^ 

of centralisers belonging to the chief factors of chief series for G . 

A useful corollary is that when V is any q-chief factor and 

N is normal in G and N 6 S ,S then =q =q 

(3.4) N c C^(V) . 

We can now extend Lemma 2.3 to a consideration of chief factors. 

The following is a most useful result relevant to Chapter 6. 
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3.5 LEMMA Let V be cmy chief factor of G and let G € x where 

X is a formation. Then 

P(V,G) € X . 

Proof Suppose V = H/K . 

That P(V,G) = P(V,G/K) is elementary. 

But then (2.3) applies, yielding the required result. 

Now let k be an arbitrary field of characteristic q . We know 

that any q-chief factor, V say, may be extended to a kG-module of the 

form k ® V . Composition factors of chief factors extended in this 
q 

way constitute the basic material for the several constructions of Fitting 

foirmations we consider in this thesis. 

3.6 DEFINITION Let k he any field of characteristic q and let G 

be a group. 

Denote by r (G) the class of irreducible KG-modules which 

appear as composition factors of KG-modules of the form k v ^ where 
q 

M is a ci-chief factor of G . 

We are now in a position to describe Hawkes' class Y^ , and the 
p 

Berger-Cossey class Ŷ -̂  . 

3.7 EXAMPLE (Hawkes) 

Let k be an algebraically closed field of characteristic q . 

Define the absolute arithmetic q-rank of a group G to be the least 

common multiple of the k-dimensions of the modules in ^^^(G) . 
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Then the class of groups which have absolute arithmetic q-rank 

a q'-number is a Fitting formation. Hawkes [20] Theorem 2. 

3.8 EXAMPLE (Berger-Cossey) 

Let k be an algebraically closed field of characteristic q , 

and p be a prime. For each group G define Y ^(G) to be the class 
q 

of irreducible kG-modules V which satisfy the following conditions 

BCl p does not divide the dimension of V . 
BC2 If e is the representation of G afforded by V , then 

for g € G , det(e(g)) lies in the p'-roots of unity in k 

BC3 G/ker^V is p-nilpotent. 

Then the class of groups 

Y ^ = {G r, (G) C Y ^(G)} =q k - q 

is a non-saturated Fitting formation. Berger-Cossey [1] Theorem 3.1. 

§4. Representation theory 

In this section we collect the representation theory needed. 

First we state what we shall mean by Cliffords Theorem (cf [31] 

Theorem 2.2A). 

4.1 THEOREM Let k be ccn arbitrary fields and G be a group with N 

a normal subgroup of G . If Y is an irreducible VIG-module then 

(1) v^ is completely reducible with all irreducible components 

conjugate under G . 
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(2) Let w be an homogeneous component of v and s the 
N 

stahilisev of w in G . Then N c s c g and w is an 

irreducible 'k.s-module with v = vF . 
G 

(3) The dimensions of the homogeneous components are all the 

sameJ and there are exactly IG:S| of them. 

The next theorem also due to Clifford is co-extensive with the 

last. The most valuable feature of Theorem 4.1 is that we are able to 

write V as being induced from an irreducible module of smaller dimension 

than V . However this only applies in the case |G:S| 1 . When 

G:S = 1 (4.1) reveals nothing about the structure of V as a G-module. 

It is this case, when V^ is homogeneous, that the following result 

covers. 

4.2 THEOREM Let G and N he as before, however this time take k 

to be an algebraically closed field. Let V be an irreducible kG-

module and V^ homogeneous. Let D be the representation of G 

afforded by V and let R be the representation afforded by an 

irreducible constituent of V^ . Suppose the multiplicity of R in 

D is t . 

Then there exist irreducible projective representations ([10], 

§51) of G J P^ and P^ say J such that 

(1) D(g) = P^(g) for g € G 

(2) P^,, = R (or P„(g) = R(g) for g 6 N) , and 
2N 2. 

(3) P^ has degree t and has N in its kernel. 
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Fuicthevmove if there exists an ordinary representation r* of 

G such that R* = R then we may take = R and in this case p^ will 

also be an ordinary representation. 

For a proof of this result see Curtis and Reiner [10] Theorem 

51.7. 

Note that when there exists a kG-module W with the property 

W^ = U we say that U extends or lifts to G . 

As a corollary we have the following 

4.3 THEOREM Let G,N,k and V be as in Theorem 4.2. Suppose 

G:n| = q J where q is any prime. Then v^ is irreducible. 

Proof Let U be an irreducible component of V^ . Applying Theorem 

4.2 and using the same terms we have 

V = R (gi S , 

where R affords an irreducible projective representation for G and 

S one for G/N . 

But G/N is cyclic and so dim S = 1 . This is 

because by Huppert [24] V 25.3 the Schur multiplier of G/N is trivial 

and so the factor set of S is trivial. Thus S is really an ordinary 

irreducible, and for this we know dim S = 1 . 

Thus dim V = dim R . 

But by Theorem 4.2 (2) dim R = dim U and so dim V = dim U . 

Hence V„ is irreducible, as required. N 

Theorems 4.2 and 4.3 are used in Chapters 4 and 5. 
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The most useful version of 4.2 is when U lifts so that V 

can be written as a tensor product of ordinary irreducibles. 

The following results which provide sufficient conditions for 

such lifting are therefore of considerable value, 

4.4 THEOREM Let k be an arbitrary field and N a normal Hall 

subgroup in a group G with complement K . Let v be an irreducible 

^RX^-module such that v is invariant in G i.e. module isomorphic with 

its G-conjugates. Moreover let 9 be the "^-representation afforded 

by V . Then 

(1) V lifts to a ViG-module^ v* say. 

ir~v addition k is al^ebrciicall^ dosed +hei-i 

(2) V may be chosen so that the G-representation afforded by 

V* J say 9 3 has the property 

det 9*(g) = • 

g € K 

det 9(g) 3 ^ N 

Proof For (1) we have Isaacs [26] Theorem A. 

For (2) we know that such a complement K exists by the Schur-

Zassenhaus Theorem, now apply Hawkes [22] (2.6). This completes the 

proof. 

In the situation where N is no longer a Hall subgroup Isaacs [26] 

(4.5) has the following. 
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4.5 THEOREM Let k be an arbitrary field. Let G be a group 

with N a normal subgroup. Let v be an irreducible m-rnodule 

such that V is invariant in G . If for each Sylow subgroup P/N 

of G/N we have that v lifts to P ^ then v lifts to G . 
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CHAPTER 3 

A GENERAL CONSTRUCTION VIA CHIEF FACTORS 

§1. Introduction 

In 1970 Hawkes [20] took the first step towards characterising 

Fitting formations by showing that all examples of nilpotent length 2 can 

be defined locally by nilpotent groups (Theorem 2.5) . At the same time 

however, as we have noted, he constructed an example of nilpotent length 3 

which is neither saturated nor subgroup closed (essentially Example 3.7). 

Later, in 1978, Tom Berger and John Cossey [1] were able to construct 

further cases of non-saturated Fitting formations by applying a variation 

of Hawkes' technique. 

Since then no new such classes have appeared. 

Nevertheless the methods of Hawkes, Berger and Cossey seem to 

contain fruitful ideas about how new examples might arise. Foremost with 

both sets of authors is the central role chief factors are given in the 

construction. 

Now it is a well known fact that the chief factors of a soluble 

group may be considered as irreducible modules for the group over a 

suitable field of prime order. The approach Hawkes, Berger and Cossey 

take is to define their Fitting formations by collecting those groups for 

which certain modules, essentially the chief factors, are restricted in 

some way. Specifically, for a field k of characteristic q and a 

group G , restrictions are placed on the modules in , the class 

of composition factors of the q-chief factors of G extended to k , as 

defined in 2.3.6. 
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In this chapter our aim is to systematise the procedure of 

placing restrictions on T (G) . 

Jv 

In later chapters we shall see how this method enables the 

construction of new examples and also facilitates a more systematic study 

of old ones. 

For instance, in Chapter 4 we show that Hawkes' class Y and 
=q 

Berger-Cossey's class Y^^ belong to one family of examples and in 

Chapter 5 we construct a new family of Fitting foirmations for which some 

members are of non-saturated type. Finally in Chapter 6 we review the 

question of whether it is possible to characterise all Fitting formations 

as occurring in this w a y , by a construction through properties of chief 

factors. 

§2. The General Construction 

By way of introducing our result we point out that Hawkes and 

Berger-Cossey proceed in two stages : Step 1 and Step 2. It will be 

our aim to emphasise that the substantial work is done in Step 1 j whereas 

Step 2 may be replaced once and for all by a general argument. 

For Hawkes and Berger-Cossey then we have the following format : 

Step 1 

over a ?ield k 

For each group there is specified a class of irreducible modules ^ 

-foi-o'il̂  of 

and^these classes Js shown to satisfy certain closure properties. 

Step 2 
a 

The Fitting formation is defined as the class of groups^for which 

r(G) is contained in the class of modules specified in Step 1. 
L* 
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Closure on this class of groups now follows from the closure 

properties on the classes of modules determined in Step 1. 

Note that in the case of Y^^ Step 1 is fairly explicit. In 

particular Berger-Cossey define a class of irreducible kG-modules, 
p 

Yq (G) , over an algebraically closed field of characteristic q (Example 

2.3.8) and then establish two closure results. Theorem 2.1 (i) and (ii) 

[1] . 

Further, note that chief factors only enter the construction in 

Step 2 where comes under consideration. 

Our construction is modelled on this format. 

We begin by ascertaining the closure properties, denoted Ml to 

M5 , which are satisfied (perhaps implicitly) by the modules in Step 1. 

For instance M4 and M5 are suggested by Berger-Cossey [1] Theorem 

2.1 (i) and (ii). Now we suppose that M(G) is a class of irreducible 

kG-modules (for k an arbitrary field of characteristic q) which 

satisfies this list. This completes the equivalent of Step 1 in our 

general construction. 

The equivalent of Step 2 is now satisfied by Theorem 2.1 below. 

This result states (in the terms we have just set up) that the class of 

groups G which satisfy the relation 

rj^(G) c M(G) 

defines a Fitting formation. In this way Step 2 is permanently replaced 

and therefore constructions of this kind are reduced to a one step 

process. 
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2.1 THEOREM Let he a field of characteristic q not necessarily 

algebraically closed. Suppose for each soluble group G we have a 

class of irreducible \G-modules denoted by M(G) , Suppose further 

that for each G ^ M(G) satisfies the following closure conditions. 

Ml The trivial irreducible ̂ G-module is in M(G) 

M2 If V ^ M(G) and N c ker (V) where N is normal in G , G 
then V € M(G/N) . 

M3 If V € M(N) and there is an epimorphism (|) : G N , then 

V e M(G) . 

M4 If V € M(G) and N is a maximal normal subgroup of G and 

H is a composition factor of j then u € M(N) . 

M5 If V is an irreducible kG-module where G = n^n^ for 

N ,N maximal normal subgroups of G and if each composition 
J- ^ 

factor of V^ is in M(N^) for i = 1,2 , then v € M(G) . 
i 

Then the class of groups 

(2.2) M = {G I r^(G) c M(G)} 

is a Fitting formation. 

For an explanation of how we are thinking of the modules in M2 

and M3 see Chapter 2, 3. 

Proof First we must establish that M is isomorphism closed. 

Let G , H be groups with G s h , G € M and F € ^ H ) say. 

Our aim is to show F € M(H) , for then H € M , as required. 

But using the isomorphism it follows that F € T̂ ĈG) and so then 

by M3 we have F 6 M(H) , as desired. 
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For Q-closure let G € M and N be normal in G . We must 

show r̂ (G/N) c M(G/N) . 

Let F € Fĵ CG/N) , and let U be the q-chief factor of G/N 

associated with F i.e. F is taken to be a composition factor of k U 

Now by inflation F is an irreducible kG-module with N c ker (F) — G 
It is easy to see that F must now be in T(G) and so by hypothesis in 

M(G) . 

Thus M2 applies. Hence F € M(G/N) , as required. 

For R^-closure let G/N; € M for i = 1,2 and N^ (1 N^ = 1 . 

We must show R̂ (G) £ m(G) . 

Let F € r̂ ĈG) and U be the associated q-chief factor of G . 

It is an elementary result (Bryce-Cossey [6] Remark (iii) §2.5) 

that U is isomorphic as a G-module to a chief factor of G/N^ for 

i = 1 or 2 . Say i = 1 . 

It follows F € Fĵ CG/N̂ ) and so, by hypothesis, F € M(G/N^) . 

M3 now applies to F . Hence F € M(G) , as required. 

For S -closure take G 6 M and let N be a maximal normal n = 
subgroup of G . We must show T̂ ĈN) £ M(N) . 

As usual let F € T(N) and U be chief factor associated k 
with F ; b^ 4he. JordQr\- Holder 4heorem . wie c-qo Qssurne U is chosen ae 
-foUoyvjS . 

Now take a chief series of G passing through N and refine 

it to a chief series for N . Let V be the chief factor of G which 

contains U . U is an irreducible constituent of V^ , and is 

therefore, by Clifford's theorem, (module) isomorphic to a direct summand 
of V . F is thus a composition factor of (kW)„ . N N 
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* 

Now let F be the composition factor of k V which has F 

* 

as an irreducible constituent of F^ . Since G 6 M , we have 

F* € M(G) . 

Condition M4 now applies giving F € M(N) , as required. 

Finally, for N^-closure let G = N^N^ where N^ are maximal 

normal subgroups of G and N^ € M for i = 1,2 . We must show 

r̂ (̂G) c M(G) . 

Let F € r^(G) and U the associated chief factor of F . 

The argument divides into two cases depending on whether U is 

above N^ fl N^ or below. 

Suppose first U is above N^ (1 N^ . 

Then by maximality of N^ , N^ it follows that U is (isomorphic 

to) either G/N^ or G/N^ . 

If U = G/N^ then as a G-module U is trivial as well as being 

irreducible. Thus F = k U . It follows that F is trivial and 
N. 
1 

irreducible i = 1,2 . Thus by Ml F^ € M(N^) and hence by M5 

i 

F € M(G) , as we require in this case. 

In the case U = ^/N^ a similar argiiment, making only the necessary 

changes of notation, applies. 

In the final case suppose U is below N^ fl N^ 

By Clifford's theorem we have that 

U„ = ® W. . 
^ j=l ^^ 
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where the W^^ are irreducible kN^-modules for i = l , 2 , j=l,,..,r^. 

Hence 

= @ k «> W. . N. . T ID 1 :=1 

Thus each composition factor of F̂ ^ is also one for k » W. . for some j N^ ID 

But note that the W^^ are module isomorphic to chief factors of 

N. . 1 

It follows that each composition factor of F^ must, by hypothesis, 
i 

be in M(N^) , 

M5 now applies and gives F € M(G) , in this case as well. 

Combining the parts it follows that F € M(G) in each case, as 

required for N^-closure. 

This completes the proof of the theorem. 

Following this theorem we are now in possession of the following 

technique for constructing a Fitting formation via consideration of chief 

factors : 

2.3 CONSTRUCTION Take a field k of ohavacteristic q and choose a 

set of irreducible modules M(G) for each group G for which Ml to 

M5 are all satisfied. Then the class 

M = {G I rj^(G) c M(G) } 

forms a Fitting formation. 

We mention two trivial examples. 
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* 
1) If for each G we have M(G) = T then it follows 

M = in'Sc (given that the characteristic of k is q). 

2) If for each G , M(G) is all irreducible kG-modules then 

M = S . 

It is worth noting that if G € S ,S„then because the characteristic -q iT, 

of k is q , Tĵ CG) ec^wok T . Hence S^.^e^c M, and so Fitting 

formations determined in this way exhibit a veiry rich structure. 

It would be interesting to know what are the exact conditions which 

must hold on M(G) in order to produce a Fitting formation in the way 

Theorem 2.1 has described. Indeed there seems to be no reason to expect 

that the conditions Ml to M5 are at all necessary. Moreover, we 

have been unable to find criteria useful for the selection of suitable 

conditions, 
i-p * 1 cor-isis-l-s o-f 4he +r;v'iol kG - o-Nodule alor̂ e. , 
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CHAPTER 4 

A GENERALISATION OF Y AND Y P 
=q =q 

§1. Introduction 

The purpose of this chapter is to extend knowledge of the non-

saturated Fitting formations already known : Hawkes' class, Y (Example 

2.3.7) and Berger-Cossey's class, Y^^ (Example 2.3.8). 

In §2 we show that these classes are members of a more general 

family of Fitting formations we shall call Y ^ (X) . Here TT is a set of =q 
primes and X any Fitting formation contained in S ,S , for 

= =7Y'=-n-0 0 
TTQ = TT \ {q} . 

Throughout this chapter q is the characteristic of an underlying 

algebraically closed field, k . 

Y^^(X) reduces to Y^ when TT = {q} and X = S ; and reduces to 

Y P when TT = {p} and X = S .S . =q ^ = =p'=p 

In §3 we give sufficient conditions for this new family to be non-

saturated. Typically these conditions will be on the choice of X in 

relation to TT and q . Unfortunately we are not able to provide 

necessary and sufficient conditions for Y^^(X) to be non-saturated. 

A number of the key results in this section are used again to 

determine non-saturation in the example of Chapter 5. 

Finally, in §4 elementary properties of (X) are discussed. 

Most importantly we provide necessary and sufficient conditions for two 

specified classes Y ^(X) and Y ^(X) say to be equal, and discuss 
=q = =q = 

further results of a similar kind. 
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§2. The Construction of Y ""(X) 
=q -

The generalisation we propose to construct in this section is 

motivated by a number of quite simple observations. 

1. Suppose G is a group for which r^^CG) satisfies BCl, then 

using Hawkes' terms (as in Example 2.3.7) this is equivalent 

to saying that the absolute arithmetic q-rank of G is a 

p'-number. 

For Y^^ when p = q , BC2 holds automatically. This is 

because of the elementary fact that in a field of characteristic 

q there are no elements of order a power of q . 

Berger-Cossey make only one siibstantive use of BC3 in the whole 

of their proof; this is to guarantee that BC2 holds for the 

modules which occur in the consideration of M4 (essentially 

Berger-Cossey's Theorem 2.1(i) [ 1 ]). 

4 . In the Berger-Cossey construction (Example 2.3.8) their proof 

still holds if p is replaced by a set of primes tt . 

Prompted by the suggestions contained in these observations we will 

use the method described in Chapter 3 to construct classes more general 

than Y or Y ^ . 
=q =q 

In the first step, for each G we collect the irreducible kG-

modules which satisfy new conditions Yl, Y 2 , Y3 and call this class of 

77 

modules Y ^ (G) . In each case Y l , Y2 and Y3 are generalisations of 

BCl, BC2 and BC3 respectively. 

In the second step our theorem below shows that Ml to M5 each hold 

on Y ^(G) . q 
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Thus, by Theorem 3.2.1 it will follow that the class 

Y/(X) = {G € S I r, (G) c Y ""(G)} -q = = k — q 

is a Fitting formation. Here X is a Fitting formation which appears in 

condition Y3. It is chosen subject to tt and q ; details are provided 

below. 

Y1 and Y2 are straight forward generalisations of BCl and BC2 and 

follow the suggestion of ^ above, replacing the single prime p by a set 

of primes it . 

Y3 is a little harder to motivate. Let V be an irreducible kG-

module. It is convenient to have G/ker V in some Fitting formation, 

X say. However, in order to satisfy the co-prime relationships which 

seem essential to the proof, we have X contained in S ,S for 
0 0 

TTQ = TT \ {q} . 

Note that tt̂  is used instead of tt so that when tt = {q} , X 

may be set to equal S . It follows that Y3 is automatically satisfied 

for all relevant modules. Moreover from 2̂  we have that Y2 is also 

satisfied. Hence we are left with only one siibstantial condition on Y^'^(G) , 

namely Yl . But by 1 we know that this is just Hawkes' original 

condition, thus Y ^(S) is Hawkes* class Y . =q = -q 

Before proceeding to the theorem we will need to explain what we 

shall mean by the determinantal order of a representation. 

If V is any kG-module for a field k and 9 is the representation 

afforded by V then 

det 9 : G k'' 
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is a linear representation of G definei in the obvious way : 

(2.1) (det 9) (g) := det 9 (g) 

Define (det 9)"(g) := (det 9(g))'̂  . Then following Isaacs' notation 

([25] Chapter 6 p.88) (where in fact he is talking about characters 

afforded by V not representations) the determinantal order of 9 , 

denoted o(det 9) is the smallest n such that det 9"(g) = 1 for all 

g e G . 

In particular o(det 9(g)) [ o(det 9) for all g 6 G . 

Further it is easy to check that 

(2.2) G : ker det 9 = o(det 9) 

and so o(det 9) 

2.3 THEOREM Let k he an algebraically closed field of characteristic 

q and 77 he an arbitrary set of primes. Let x he any Fitting 

formation with the constraint that x c s ,S where TT = IT \ {q} . 
= - = T R ' = T R Q 0 

IT " " 

Further^ for each soluble group G ^ let Y^ (G) he ^ class of ̂irreducible 

'kG-modules v satisfying the following conditions : 
Y1 dim V is a -n'-number 

Y2 if V affords the representation 9^ then o(det 9) is a 

77' -number 

Y3 G/ker V € X . 

Then the modules Y ^(G-) so determined satisfy the module conditions Ml 

to MS of Theorem 3.2.1 and so the class 
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(2.4) ^q^^S^ = {G € S I rĵ (G) £ Ŷ '̂  (G) } 

is a Fitting formation. 

PJ^oof For convenience we drop all notation where ambiguity will not 

arise : thus (G) = Y(G) , and so on. 

Ml is satisfied trivially. 

For M2 we are given V € Y(G) and N normal in G with 

N c ker^ V and must show V € Y(G/N) . Clearly Yl holds, and Y2 holds 

because the determinantal order of the representation afforded by V as 

a kG/N-module is just that for V as a kG-module. For Y3 we have 

ker^^^(V) = ker V/N so 

G/N / ker (V) s G/ker V 
^ &/N 

€ X 

For M3 we are given V € Y(N) and an epimorphism (j) : G ^ N and 

must show V 6 Y(G) . Once again Yl and Y2 follow automatically. To 

show V satisfies Y3 we must show G/ker V £ X . But (f) : G W defines 

an epimorphism 

G/ker (j) N/ker V 

whose kernel is ker V/ker <() . Thus G 

G/ker V = N/ker V G 

€ X . 

For M4 let N be a maximal normal subgroup of G which must thus 

be of prime index, t say. Let V be an irreducible kG-module where 
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V € Y(G) , and U an irreducible component of V . We must show N 
U € Y(N) . 

Now suppose ker V ^ N . Then by maximality of N , G = N ker V , 

So G acts on U and thus U is a kG-module. Hence V = U since N 
V is irreducible. Thus U satisfies Yl and Y2 immediately. Observing 

that 

N/ker U = N ker V/ker V 

= G/ker V 

€ X 

it follows that Y3 is also satisfied. Therefore V € Y(N) and M4 is N 
satisfied in this case. 

We now work modulo ker V . But since ker V is contained in 

N and ker U this is equivalent to assuming ker V = 1 . 

U is any irreducible component of V^ . Now by Clifford's 

Theorem V^ is either homogeneous or else it breaks up into a direct sum 

of t non-isomorphic irreducible components. 

In the first case if V^ is homogeneous then by Theorem 2.4.3 it 

is also irreducible. Now by the argument we used above for the case 

V ^ N it follows that V^ € Y(N) . 

Hence M4 is satisfied in this case. 

In the second case V„ breaks up. We have N 

V„ = V, © ... ® V N 1 t 

where the V^ are non-isomorphic irreducible kN-modules i = l,...,t 

We must show V^ € Y(N) for each i . 
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Now dim V = t dim V^ and dim V is a tt '-number because 

V € Y(G) . Thus dim V^ is a tt'-number, and so Yl holds. Note 

for later use that t is also a it'-number. It remains to show that 

V^ satisfies the conditions Y2 and Y3. 

Now for Y2 let be the representations afforded by V^ 

i = l,...,t and let 0 be the representation afforded by V . We must 

show o(det 0^) is a it'-niimber, that is o(det 0^(n)) is a it'-

number for all n fc N and for each i = l,...,t . Over a field of 

characteristic q (as k is) this is equivalent to showing det G^(n) = 1 

for all n € N where n is of order a TT^-number and tt̂  = tt \ {q} . 

It is this last claim we shall prove. 

By Clifford's theorem there exists z^ = elements 
z-

of G such that V^ " ' ^^^ (G) fl N = L . Since the V^ 

are non-isomorphic and (G) ̂  l\l we have for each , i ^ 1 that 

there exists x^ ^ (G) \ L at y^ 6 N such that z^ = x^y^^-^ for 
some X. e L . Thus X 

z. 
V. = V, ^ 1 1 

X . 

for x^ 6 O'̂ (G) \ L , i = 2,...,t and x^ = 1 . 

Translated into terms of representations it follows that 

),(n) = 0^ 
r X. ̂  1 n 

= 0^(n[n,x^] ) 
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and thus 

det e^(n) = det e^(n) det 

n € N . 

Our aim now is to show the following : 

2.5 For all n 6 N o/" order a -n^-number det e^(n) = det 0^(n) . 

In order to do this we take such an n and show det e ^ [ n , x . ] = 1 

Let a be the order of n , a iTQ-nuinber. Thus (det ^n)) - 1 

and since de-T 0, Cr^.xl] ' det (î )̂ det 9, (r-V' '-T -TOLLOAJS 

(det = 1 . (A) 

On the other hand since x^ € (G) and (G) and N are both 

normal in G it follows [n,x^] € L and so 

[n,x^] ker V^ € L ker V^/ker V^ . 

Choose B to be the order of [n,x^] ker V^ in this group. 

Hence 

(det = 1 . (B) 

Now (a, 3) = 1 , for put L^ = 0 (G) fl N and observe 

LQ ker V^/ker V^ = L^/L^ fl ker V^ 

TTQ 
where the last term is in S^, because G € x implies 0 (G) € S^, 

and so L € S , . Now L is normal in L thus L ker V^/ker V^ € , 
° 0 
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and hence 6 is a TT^-number. But we already have that a is a 

Tr^-number, thus (a,B) = 1 . 

The only way (A) and (B) can now hold is if det = 1 . 

This proves (2.5). 

We are now in a position to see how Y2 holds. Since 

V^ = V^ @ ... © V^ we have 

t 
det e(n) = n det 6.(n) . 

i=l ^ 

where recall t is a prime in TT' . However by hypothesis det 9(n) = 1 

hence, applying (2.5) 

(det 0^(n))^ = 1 

But n and hence det e^(n) is of order a TTQ-nuitiber, and this is co-

prime to t . 

Therefore det 9^(n) = 1 for all n 6 N , where n is of order 

a TTQ-number. This is what we set out to prove. Y2 is now satisfied. 

Lastly Y3 follows immediately on the assumption ker V = 1 . 

Therefore V. € Y(N) for each i and so M4 is satisfied. 

To show M5 is satisfied let N^ be a maximal normal subgroup of 

G where Ig:N^| = t^ a prime for i = 1,2 . 

Now by Clifford's theorem either V^ is homogeneous or else it 
i 

breaks up into a direct sum of t^ non-isomorphic irreducibles. If it 

is homogeneous then by Theorem 2.4.3 it follows that it is irreducible. 

We may best express these alternatives by the following compact 

expression. 
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(2-6) V = V. ® . . . © V. . © . . . e V. 

where V^^ is an irreducible kN^-module for j = and s^ = 1 

, i = 1,2 . Note that by hypothesis, V^^ € Y(N^) . 

We must show V € Y(G) , that is that conditions Yl, Y2, Y3 apply 

for V . We do this in the order : Y2, Y3, Yl. 

For Y2 let 6 be the representation afforded by V and the 

representation afforded by V^^ . Then for each g € G it is possible to 

write g = n^n^ n^ € N^ and ^ ̂ 2 ' 

det e(g) = det e(n^) det ©(n^) 

and so from (2.6) 

det 9(g) = n det . (n^) . 

But o(det is a it'-number so o(det 9) is a tt'-number and this 

completes Y2. 

For Y3 we must show G/ker V 6 X . Now N^/ker V^^ € X and 

because N. fl ker V = fl ker V. . it follows by R.-closure of X that X ID 0 = 
N /N n ker V € X . Thus G/ker V=TTNl ker V/ker V € X . This i i = 
satisfies Y3. 

For Yl the argument becomes more involved. We must show dim V 

is a ir'-niimber. Assume the contrary, that dim V is not a it'-number. 

But by Clifford's theorem we have dim V = S^ dim V^^ and by hypothesis we 

have that dim V. . is a tt'-number. Hence the asstimption dim V is not 

a Tr«-number leads to the conclusion s- ̂  1 Si = t-eTr, for each i = 1,2 
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The plan for the proof is to show first that V ^ is 

homogeneous and then that this implies V ^ is homogeneous. 

6 y Theorem 2.4.3 V is 

irreducible thus dim V = dim V^^ and this contradicts the asstimption 

dim V = t^ dim V^^ , t^ ^̂  1 . 

To show ("jjj is homogeneous 
note first that by the maximality 

of N ^ J N ^ it follows IN^IN^HN^I ^ TT for i = 1,2 . Thus applying 

Clifford's Theorem V . must be homogeneous or else t . a ir-number 

will divide dim V^^ , a contradiction. Hence, by Theorem 2.4.3 , 

V . PI is irreducible for all i,j . Now suppose V ~ ^^o 

certain j and I . Then because G = N^N^ it follows that V^^ is a 

proper kG-submodule of V , a contradiction for V is irreducible. 

This shows that the two decompositions of V^^ are distinct. An 

elementary argument now shows that V ^ ^^ must then be homogeneous, as 

asserted. ̂  for o4her-wviae , since all 4he irred^-iciblefe ore disj+ioc-t +He 

olecomposi+ion iS wriicjue. 

But V is also homogeneous. For since V . p. is irreducible 

it is certainly homogeneous, in fact V^^^ ^̂ ^ s v^^ as V ^ ^^ is 

homogeneous and V^^ extends to N^ . Thus, applying Theorem 2.4.2, 

there exists an ordinary irreducible N^/N^ fl N^-module, S say, such 

that 

(2.7) V ^ . . V^^ S . 

Since [N^iN^riN^l = t^ is prime dim S = 1 . Moreover, either 

ker S = N^ or ker S = N^ fl N^ . 
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If ker S = N̂  then S is trivial so V. . = V - and so V 1 ID 115 
is homogeneous. 

ker S = N^ n N^ , let x 6 N^ and a be the 

representation afforded by S and I = dim V^^ . Then from (2.7) 

det = det (det o-(x))̂  

So o(det is a IT'-number. 

On the other hand (det ̂ Cx)) = (det ^(x N^Hn^)) = 1 because 

N^/N^ n 
N^ = C^ and so o(det olividies •tj. vs/WicK \'ies ^̂  , 

2 
Thus det a(x) = 1 for each x € N^ . 

But since dim S = 1 we conclude that S is trivial. Hence by 

(2.7) again V . = V and so V is homogeneous as we asserted. X J XX iM ̂ 

This completes the proof that V satisfies Yl. Therefore M5 

is satisfied. 

This completes the proof of theorem. 

We now have the following. 

2.8 CORQT.T.ARY Using the scone notation as the theorem. If 

ir tpj- J orLun 1 
P 

(I) TT = {p} J then is the Bevgev-Cossey class. 

Y =q 

(2) IT = {q} J then is the Hawkes class, Y^ . 
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§3. Yq^(^) and non-saturation 

The main results of this section give conditions on X so that 

Yg^(X) is non-saturated. Our method will be to construct certain groups 

iî  = ̂  ^^^ show that a contradiction arises if saturation is assumed. 

We need a number of lemmas. 

The first of these is a fact concerning an arbitrary Fitting 

formation, X say. 

Let p,q be primes and let E be an elementary abelian group 

of order q^ . Now in Hawkes [20](1.5) we have that if X contains a 

copy of the unique non-nilpotent extension of E * by E , called D ^ , qH p q 

then X contains all extensions of q-groups by cyclic p-groups. Our 

first lemma extends this result. 

Roughly speaking, just as Lemma 2.2.2 shows that formations come 

equipped with all relevant nilpotent groups, we show when a Fitting 

formation contains all relevant metanilpotent groups. 

3.1 LEMMA Let X he a Fitting formation and p^ q primes . 

If X contains a non-niipoiBnt S^S^-group^ then S^S^ £ x . 

Proof For convenience put R = X fl S^S^ . The proof is divided into 

two steps. The first step characterises the elements of R in terms of 
2 

automisers for the chief factors. Since R £ N we can do this by 

applying the Hawkes characterisation theorem. Theorem 2.2.5. The second 
step takes G 6 S S and shows that it is in R , thus G € X i.e. =p=q 

S S e x , as required. =p=q - = 

IS -the smallest posJ+ive .n+eger such 4hat , 
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We use the notation of Theorem 2.2.5. 

Firstly Y(R) = {p,q} since R £ implies Y(R)£{p,q} 

and the fact R contains a non-nilpotent group implies Y be c* slnĉ le+or.. 

Put TT = {p,q} . Note G € S S implies 0 (G) = (Cr). -p-q q r 

We have q € T(p) . For suppose not and let G be a non-nilpotent 

group in R . 

Now since G € R and R £ s^S^ the Sylow p-subgroup of G is 

just Op(G) . On the other hand since q f x(p) it follows 

q \ V(G/0 (G)) because 0 , (G)/0 ,(G) is a p-group. But P p p p' r- ^ s:-

Opi (G) = 0^(G) . Thus 0^(G) is a Sylow q-subgroup of G . Therefore 

all Sylow subgroups of G are normal and so G is nilpotent, a 

contradiction. Hence q € x(p) . 

Further x(q) = ^ since for every G € R , G/0 ,(G) = G/0 (G) € s 
= q P =q 

and so Ogig^*^) = ^ and thus Y(G/0^,^(G)) = <J) . 

Hence applying Theorem 2.2.5 G € R if and only if 

G/Op.p(G) € N^^pj and G/Og.g(G) € 1 . 

Now for a given chief series of G let {U^} i = l,...,r be the 

complete set of p-chief factors of G and {W^} i = l,...,s be the 

complete set of q-chief factors of G . Then from (2.3.3) we know 
r s 

0 , (G) = n C^(U.) and 0 , (G) = nCfw]\ . Therefore, using R^-P P G 1 q q J 0 

closure where necessary, it follows that G € R if and only if 

G/C^(U.) ^ N , , and G/C (W ) € 1 for all i,j . G i —X (p; ^ J 

This completes the first step. 
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For the second let G ^ S^S^ and take U to be any p-chief 

factor of G . Then by (2.3.4) it follows that 0 (G) c c (U) . So 
P ~ G 

G/C (U) = G/0^(G) / C (U)/0 (G) p / G p 

€ S . =q 

But q 6 T ( p ) ; thus s C N , . so G/C (U) € N , , . 

-q — -T ip; G =T (p) 

Moreover if W is a q-chief factor of G then by (2.3.4) again 

G c C^(W) , since G is c^-nilpotent. Thus G = C^(U) hence 

G/C^(W) = 1 . 
Therefore G C R from the characterisation provided in the first 

step. 

Thus S S c X , as required. =p=q - = 

The next lemma we will need is of a similar kind. 

3.2 LEMMA If X ^ cr is a set of primes and x is a 

Fitting formation^then there exists r € a' and s € a such that 

S S ex. =r=s — = 

Proof Let G be a group of minimal order in X but not in i • 

Then 0 (G) = 1 . For suppose the contrary. By the minimality a 

of G it now follows G/0^(G) € , and so G 6 , a 

contradiction. Thus Op(G) = 1 -

Now let L be a minimal normal subgroup of G . Then L must 

be of order a power of r , for some r € o' . 

We will show that the group 
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Gq = L . G/L 

is a non-nilpotent S S -group for some S a prime in a . ~~Ji 

P^t (G) = M and take N/M to be a minimal normal siibgroup of 

G/M . It is clear that N/M must be a a-group. 

Moreover 0 (N) = N H 0 (G) = 1 . Hence N I S S , . So by the o a =a=o 

minimality of G , N = G . Therefore G € S ,S and G/M is cyclic =a —a 
of order a prime, s say, with s 6 o . 

Now consider L . By the minimality of G it follows 

G/L 6 icficj' • Moreover G € implies G/L € î .f̂ j • Combining 

these G/L € S S , 0 s ,S . =a=a' =a•=a 

Thus we write 

G/L = H/L X K/L 

for some H/L € S , and K/L € S =a =a 

But we have O^CK) = 1 so K | igi(ji from minimality of G 

again, K = G . Thus L = M and so G/L is a cyclic group of order a 

prime S , s € a . 

It remains to show that G^ is non-nilpotent. If it were 

nilpotent then G^ € • 

By the Schur-Zassenhaus theorem G splits over L so G = G^ , 

thus G € S S . , a contradiction. 
=a=o' 

Hence G is a non-nilpotent S S -group contained in X . 0 —r—s • = 

Now by Lemma 3.1 it follows S S £ X , as required. —- —s 

The following lemmas contain the heaviest part of the construction 

we shall use. 
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The first of these is a generalisation of Berger-Cossey [1] 

Lemma 2.2. 

3.3 LEÎ 4MA Let r̂  s he different primes and k an algebraically 

closed field of characteristic q ^ q ^̂  r . 

Let he a group with the following properties 

F(H) is an extraspecial group of order r^™^^ , m € M 

H:F (H) I = s"̂  , n 6 ]N 

Z(H) = Z(F(H)) 

Then there exists a faithful irreducible 7L^-module, w say . 

Moreover for the group H^ = w.H we have : 

(1) If E 6 r (H ) then dim E is an r-numher, K U 
and 

(2) If E affords the irreducible representation ̂  then 

o(det is an r-number. 
Proof Lemma 3.3 

First we prove the following. 

(3.4) There exists a faithful irreducible YR-module^ v say^ such that 

(1) dim V = r"" 

(2 ) if V affords the representation e j then o(det G) 

is an r-number. 

This fact is proved by applying a well known theorem about the 

representation theory of extraspecial groups. 
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According to Huppert [24] V 16.14 there are r - 1 faithful and 

irreducible kF(H)-modules U with the following properties. 

(a) dim U = r"̂  

(B) U is determined by its restriction to Z(F(H)) . 

Moreover if affords the representation co then because F(H) is 

an r-group it follows 

(y) o(det 03) is an r-number. 

Now U is invariant in H . For by (3) we need only consider 

X e Z(F(H)) . Thus taking h € H we have 

q q-' CD (x) := CO (x'' ) 

= li)(x) , 

since Z(H) = Z(F(H)) . 

Moreover F(H) is a Hall subgroup in H . 

Theorem 2.4.4 (1) now applies. This shows lifts to H , 

that is, there exists an irreducible kH-module V such that V^._ = U r iH; 
* Hence (1 ) holds. 

(2*) follows from Theorem 2.4.4 (2) and (y) above. 

Lastly V is faithful for if not ker V must be a power of s , 

since F(H) acts faithfully on V . But then ker V C F(H) , a 

contradiction. 

This completes the proof of (3.4). 

Now choose W to be an irreducible S^H-module such that V as 

in (3.4) is a composition factor of k <8> W . 
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It is well known that k W is completely reducible and breaks 

up into a direct sum of Galois conjugates of V (Curtis and Reiner [10] 

70.15 and Isaacs [26] 9.21). The Galois conjugates of V will each 

have the same dimension, kernel and detemiiinantal order as V . 

Therefore, since V is a faithful module for H it follows that 

W is also. 

(1) and (2) now follow by application of (3.4). 

This completes the proof of the lemma. 

We know from a note at the end of Chapter 3 that Sq'.S,c Y ^(X) . 
= 1 =q = 

As a corollary to Lemma 3.3 we can now give examples of groups in Y ^(X) =q = 
which are not in S , S q . These will be important in our enquiry into non--q 
saturation later. 

3.5 COROLLARY Let -k be a set of primes such that r € tt ' and 

s c TT (note r q J as in Lemma S.S) and let x he any Fitting 

formation contained in S ,S (recall tt̂  = it \ {q}J . 

Now with H and H^ as in Lemma 3.2 assume H € x ^ then 

H^ t Y^(X) . 0 =q = 

Proof We must show T(H^) c y . 0 — q 0 

Let E € r(HQ) . 

Yl and Y2 are satisfied by (1) and (2) of the lemma respectively. 

For Y3,since W c ker E and H € X it follows H /ker E 6 X , 
"o " ° "o -

as required. 

In §4 we will use an important application of this corollary. 
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In the same notation if r € y (X) , then by Leitiina 2.2.2 the 

extraspecial group of order , R say, is in X . 

Thus putting H = R in Lemma 3.3 there is a group W.R € Y ^(X) . 
=q = 

There exists such a group for each r € y(X) . 

Next we show that such groups as in the data of Lemma 3.3 in fact 

arise for every choice of primes r,s , r s . 

3.6 LEMMA Fov any primes r̂  s j r ^ s there exists an s S -group 
—IT—S 

H say with the following properties. 

(1) F(H) = 0^(H) and is an extraspecial group of order 2m+l 
una. uts un uuu group oj uraeir r , 

for some m . 

(2) |H:F(H)I = S 

(2) Z(H) = Z(F(H)) 

Proof Let S be a cyclic group of order s , and V be a faithful 
* 

irreducible 7L S-module of dimension m say. Take V to be the 

contragredient ffi^S-module of V . 
Since r I |s| , V <8> V is completely reducible. 

By Theorem 43.14 of Curtis and Reiner [10], i(V,V) ^ 1 and so 
* 

V >8) V has an irreducible component, T say, which is trivial of 

dimension 1 . 
We may write 

V <8> V* = T ® W 

for some W a Z S-module. r 

Consider the set 
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B = { (x,y) X € V ® V* , y € V 'S) V*/W} . 

Define a multiplication on B by putting 

* * (u+u ,t^+W) (v+v /t^+W) = (u+v+u +v ,Ui8)V H-t^+t^+W) 
\Ni41n u , v £ V , u*,v*£\/ ood t, €. V ® \J* . 
Then, under this operation B is a group of order (since 

dim(V!8fV*/W) =1) . 

In fact B is extraspecial with 

B' = Z(B) 

= {(0,y) y 6 V ̂  V*/W} 

(cf. Huppert [24] VI 7.22), 

Now form the semidirect product H = B.S via the module action of 

S on V and V , qs explo'ioed lo Hv-̂ ppe-rt ^ ^ 7,22, 

Because S is faithful on B it follows Z(H) £ B and thus 

Z(H) c z(B) . 

Conversely, because Z(B) is centralised by S , Z(B) £ Z(H) . 

Thus Z(H) = Z(B) , and so (3) is satisfied. 

Moreover it is clear that F(H) = B , and that B = 0^(H) and 

H:F(H)I = s . 

This satisfies (1) and (2), and completes the proof of the lemma. 

This completes the preparation. We now come to the main part of 

the section. 



53 

3.7 THEOREM Let k he an algebraically closed field of oharaotevisUo 

q . Let be a set of primes, and set = ^ \ {q} . Let x be 

a Fitting formation contained in s s 

If there exists primes r, s such that r S u ' ^ r ^ ^ q ,S6TT 

iris - i ^ la^i) non-saturated. 

Proof Use r,s as provided in the data to construct a group H , as 

in Leirana 3.6. 

In particular H € S S and so H 6 X . 

=r=s 

Now using the same terms and notation of Corollary we have that 

H^ = W.H € Y ^(X) . 0 =q = 
Suppose on the contrary that Y ^(X) is saturated. The =q = 

characterisation of a saturated formation Theorem 2.2.4-now applies. 

Accordingly there exists a formation X(p) where ^o^^'p^^O^ ^ ^(P) 

for each prime p in the characteristic of Y^^CX) . 

Thus H € X(q) and so H/Z(H) € X(q) . For convenience put 

H := H/Z(H) . Now if X is any irreducible 2.^H-module then from (2.2.5) 

again X.H € (X) . 

Our aim is to obtain a contradiction by showing that there is such 

an X for which X.H I Y ^(X) . =q = 

First observe that any irreducible kH-module M has either 

dimension 1 or s. This is because F(H) an extraspecial group implies 

F(H)/Z(F(H)) is abelian and so, by Dade CS^l,, 

dim M divides H : F(H)/Z(F(H)) = s . 
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Now let {X^ : i = 1,...,s} be a complete set of irreducible 
£ _ 

Z^H-modules . Thus n^ ker X. = 0^{H) = 1 (see Huppert [24] V 5.17 

and VI 7.20). Furthermore k x^ breaks up into a direct sum of 

irreducible kH-modules of equal dimension. Suppose this dimension is 

1 for each i = 1,...,£ . it then follows by an elementary argument 
- £ 

that H/ker X is abelian for each i . But fl ker X = 1 hence 
i=l ^ 

by the subdirect product closure of abelian groups H is abelian, a 

contradiction. Therefore there exists an X. such that k ^ X breaks 
1 i 

up into a direct sum of irreducibles of dimension s . Put X = X 
i 

Now X.H € Y '̂ (X) , =q = 
obfoioed -Pr-oro X. 

However this is impossible, since the modules in T (X.H)^ being of ic 
dimension s fail to satisfy condition Yl. 

This completes the contradiction and finishes the proof of the 

theorem. 

As an example of how this theorem can be used we show that Y ^ is 
=q 

non-saturated. 

By Corollary 2.8 we have TT = {p} and X = S^.S^ . So let r 

be a prime not equal to q and contained in p' . Then 

S S c s S = X , and thus (3.7) shows Y ^ is non-saturated. =r=p — =p'=p = =q 

The crucial condition of Theorem 3."?, S S £ X is not as 

difficult to satisfy as might at first be thought. 

We shall mention two general situations that will suffice : 

(3.8) If there exists primes r̂  s with r € TT' j r q and s 6 TT 

such that there exists a non-nilpotent s S -group in x, then s S e x . —IT—S — —IT—S — — 
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(3.9) X-f q € TT Qod X ̂  i^i^i then there ave primes r̂  s with 

r^TT'j r^^qj s^tt suoh that S S ^ x . 
— 

(3.8) is established by Lemma 3.1 and (3.9) by Lemma 3.2 with 

a = 7T . 

By Theorem 3.7 (X) is non-saturated when either of (3.8) or 

(3.9) hold. 

Unfortunately the condition q € IT has to be inserted in (3.9). 

This guarantees that r q . 

§4. Elementary Properties of Yq^(^) 

The results in this section explore the relationships between 

classes of the type Y^^(X) for varying IT and X . The most important 

of these are obtained as a corollary to the main theorem which gives 

necessary and sufficient conditions for equality to hold between the 
TT CT classes Y (X) and Y (X) for IT,a arbitrary sets of primes. q = q = 

4.1 THEOREM Let ttj a be arbitrary sets of primes. Then 

if and only if TT H y (X) c a 0 y (X) . 

Proof For convenience we drop all notation where ambiguity will not 

arise : thus y(X) = y , Y^^(X) = Y^ and so on. 

First, given y f l T r C y r i a , we show that £ • 

Let G e Y^ . Take V € ^̂ (̂G) , where by hypothesis 

(1) dim V is a a'-number, 

(2) if V affords 9 , o(det 6) is a a'-number. 

and 

(3) G/ker V 6 X . 
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Now because V is an absolutely irreducible faithful k(G/ker V)-
Dode CsaD 

module it follows ̂ that dim V | [c/ker v| . Thus dim V is a ynumber 

by (3). Let r be a prime divisor of dim V , so r € y • Now from 

the data y' U a' c y- U tr' and r € o' (from (1)) thus r € y' U tt' . 

But r 6 y so r | y' hence r € tt ' . Thus dim V is a tt'-number, 

as desired. 

Now let r be a prime which divides o(det 0) . It is obvious 

that ker V £ ker (det 9) , thus |G/ker det e| divides |G/ker V . 

But by (2.2) o(det 6) = |G/ker det e| , hence o(det 9) is a y-number 

and r € y . Then by the same argument as for the dimension of V it 

follows that r € tt' , so o(det 9) is an tt'-number. 

By (3) it follows G/ker V € X . 

Hence G € Y^ as desired. 

Conversely, we have y'̂  £ y^ and wish to show y fl tt £ y fl a . 

Suppose the contrary holds and let r C y f l T T X y r i a . Our aim 

will be to construct a G € Y*̂  \ Y^ , thus obtaining a contradiction. 

Let R be an extraspecial group of order r^ . Then by the 

remarks which follow Corollary 3.5 we have that there is an irreducible 

kR-module W such that W.R € Y*̂  . Moreover W.R ^ Y^ for by Lemma 3.3 

(1) we have that all modules in rĵ (W.R) are of dimension r , and by 

hypothesis we have r ^ it' . 

Thus W.R 6 y'̂  \ Y^ , a contradiction of the hypothesis. 

Therefore y n T T £ y n a , as desired. 

4.2 COROLLARY For terms as in Theorem 4.1 Ŷ '̂ (X) = (X) if and 

only if y(X) n TT = y(x) n a . 
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4.3 COROLLARY Fov terms as in Theorem 4.1 W ^ Xq^(x) if and 

only if y(X) N TT c Y(X) N a . 

Proof Assuming Y c y we show Y f l i T C Y n a . By Theorem 4.1 we 

have Y £ Y cr , where it suffices to show y ^ Y • 

Suppose the contrary. The Corollary 4.2 applies giving Y'̂  = Y^ , a 

contradiction. The converse is proved in a similar way. 

4.4 COROLLARY If T: FL Y (X) £ O FL Y (X) and X £ Y then y'^(X) £ Y^(Y) 

whenever these terms are defined. 

4.5 THEOREM For any set of primes TT for which Y^(x) is defined 

we have 

s ,s (s ,nx) c Y'^{X) C S ,S X =q' = g =TT' = = =q = - =q' =q= 

and 

Y (X) = =q = 

S ,S for Y(X) C TT =q'=q = -

S ,S X for Y(X) C IT' =q'=q= = -

Proof Let V 6 (G), then it is easy to see that G € S S X if k =q'=q= 
and only if G/ker V € X . 

First suppose G 6 S ,S (S .flx) . Now for each V € F (G) , =q' =q =Tr' = k 
Yl follows by Dade [33], Y2 by (2.2) and Y3 by our assertion above. 

Thus G € Y^(X) . =q = 
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That Y^(X) c Ig.S^X is immediate from the converse of the 

above. 

If Y(X) £ tt , take G € Y^(x) . Thus (G) contains the 

trivial kG-module alone since G/ker V ^ S . Hence Y^(X) = S S 
-IT =q = =q'=q 

If y(X) £ TT' , take G € S ,S X . Then G e y'̂  (X) since -q -q- =q = 

G/ker V € S^, . Hence Y^(X) = S^.S^X , as required. 

The intersection property is straight forward, 

4.6 THEOREM If x and Y are Fitting formations and -n^a are sets 

of primes then 

Y ^(X) N Y^(Y) = Y ^^^(XHY) . =q = =q = q = = 

Proof Let G C Y'^(X) fl Y'^(Y) • 

Then, for all V € T^^CG) if r is a prime dividing dim V then 

r € a' N TT' = (aUir) ' , and so dim V is a (OUTT)'-niamber. 

Similarly o(det 9) is a (oUir)'-niimber. 

Also G/ker V € X D Y . 

Moreover 

X R Y C S . S r i s . s = = - =7r 

Hence 

Y^(X) N Y^(Y) C Y^^^CXFLY) 
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The converse is established by a similar elementary argument. 

A trivial example of Theorem 4.6 is that 

Y 
=q 

n s ,s 
=r' r 

rtTT^ 0 

= n Y ^(s ,s ) 
r^TT, 

=q =r'=r 

W h a t this shows is that when X = fl s .S , the class Y ^(X) 
=r'=r =q 

is the intersection of the Berger-Cossey classes Y ^ , r 6 T r \ { q } . 
-q 
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CHAPTER 5 

MORE NON-SATURATED FITTING FORMATIONS 

§1. Introduction 

In this Chapter we give new examples of non-saturated Fitting 

formations, 

The construction takes place in §2 where we define (X) , a 

family of Fitting formations. Once again q is the characteristic of an 

underlying field, IT is a set of primes and X a Fitting formation 

siibject to a co-prime condition dependent on IT . We proceed by the 

module method of Chapter 3. 

In §3 we give necessary (though not necessary and sufficient) 

conditions on the choice of X under which non-saturation occurs. These 

conditions resemble those we found for non-saturation in the case Y ^(X) . 
=q = 

§2. The Construction of 

Before we discuss any details of the construction the following 

lemma, which sorts out the consequences of basic co-prime relationships, 

needs to be stated. 

2.1 LEMMA Let ir he a set of primes and K a group in S^S^, • Then 

O (K) = O'^' (K) . 
TT 

Moreover if M is any YL-modute then 

0 (K/ker M) = O (K)ker M/ker M 
IT TT 

and so any O {Yi)-module may also be considered to be an o^ (K/ker M)' 

module. 



61 

Proof We have K ^ S S , . Now =Tr=TT ' 

(K)/0^,(K) = 0^(K)/0^(K) 0 O^'(K) 

€ S =77 

But this is impossible unless O^ (K) ̂  O (K) . — TT 

However K € , says o"'(K) 6 , and so o'̂ '(K) £ O^ (K) 

Thus (K) = O (K) . TT 

It follows that 

O (K/ker M) = O^ (K/ker M) TT 

= 0 (K) ker M/ker M 

= 0 (K) ker M/ker M TT 

In particular the action of C)̂ (K) on M is just the action of 

O (K/ker M) on M , TT 

This completes the proof. 

We now state the main theorem : 

2.2 THEOREM Let he a set of iprimes and k an algebraioally closed 

field of claavactevistic q . Let x be a Fitting formation suah that 

X c s S . For each G define H ^(G) to he the class of irreducihle = — =Tr=7r' q 
\nG-modules v satisfying : 

HI V I is homogeneous. O (G /ker V ) TT 
H2 G/ker V 6 X . 

Then the class 
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H/(X) = {G I r (G) C H ^(G)} —q — K — q 

is a Fitting formation. 

By Theorem 3.2.1 it is enough to show that the module Ml,...,M5 

apply for H ^(G) . Application of Theorem 3.2.1 then implies H ^(X) q =q = 
is a Fitting formation as we require. 

Just as in the example of Chapter 4, Y ^(X) , the conditions =q = 
Ml, M2, M3 are easily checked and only use the condition that G/ker V is 

contained in a class X without regard to any of the finer structure 

available. The cases M4 and M5 (which show that H^^(X) is a Fitting 

class) are the difficult situations. It is here the condition X c s S , 

is indispensible. The principal reason for this is that crucial parts 

of the argument use Isaac's lifting theorem for invariant irreducible 

representations of normal Hall subgroups. Unlike the role the same 

condition Y3 plays in Y^^(X) , H2 is used extensively in establishing 

this result. 

It is worthwhile to draw attention to an often repeated situation 

in the proof and simultaneously show why lifting results are so significant. 

We have an irreducible kG-module V say and want to find out something 

about it. All we know is that V is homogeneous for N normal in G . N 
The way we proceed is to use Theorem 2.4.2 and write V as a tensor 

product of two irreducible projective representations. At this point the 

lifting property becomes crucial. Let U be an irreducible component of 

V . Then if U lifts to G , Theorem 2.4.2 tells us that V can be N 

written as the tensor product of two ordinary irreducible kG-modules : 

U and some other T say, with N in the kernel. Thus 

V = U <S» T . 
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'Proof Instead of H^^ (G) we simply write H{G) . 

Ml is satisfied trivially. 

For M2 let V € H(G) and N c ker^ V . We must show V ^ H(G/N) 

Put G = G/N . 

Now ker_ V = ker V/N , so G/ker_ V s G/ker V thus it follows 
G G 

that V € H(G) . 

For M3 let V € H(N) and let cf) : G N be an epimorphism , 

We must show V € H(G) . 

Now it is easy to see that ^ : g ker cj) ^ (|) (g) ker V defines N 
an epimorphism 

ip : G/ker <() N/ker^ V , 

which has ker V/ker (j) as kernel. 
G 

Thus G/ker^ V = N/ker^ V , hence V^ (Q/ker V) ^^ homogeneous 
IT G 

and G/ker V € X . G — 

Therefore V € H(G) , as we require. 

To show M4 is satisfied let N be a maximal normal subgroup of G 

and V € H(G) . Take U to be an irreducible component of V , then N 
we must show U € H(N) , that is U^ (fj/ĵgj- y) is homogeneous. 

IT 

If ker V ̂  N then by maximality of N , G = N ker V , and so 

U is a G-module. Thus U = V . 

This has two consequences : firstly U € H(G) so that U^ (G/ker U) 
IT 

is homogeneous; secondly, U = ker V fl N so that 

O (G/ker U) s O (N/ker fU)) . 
IT 77 N 
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Combining these it follows that U^ (N/ker u) homogeneous, 
TT N 

and moreover N/ker U € X . 

Hence U € H(N) as required. 

Therefore consider the case ker V £ N . We will work modulo 

ker V . Indeed, by M2, we may as well assume that ker V = 1 , that is 

G € S S , . =TT=TT ' 

That U satisfies H2 is now immediate since N/ker U is an 

element of OS X . ^ n= 

What remains - Hi - is to show that U^ (N/ker U) homogeneous. 
IT N 

By lemma 2.1 this is equivalent to showing U^ is homogeneous on the 
TT 

assumption V is homogeneous. For convenience put Q = O (G) and O Vlj) TT TT 

^2 T̂T̂ '̂ ^ ' Gaschutz [14] X.3d we have Q^ = N H Q . 

Two situations arise. 
(1) |G:N| € TT-

and 

(2) |G:N| = p , for p € tt 

In situation (1), because Q = (G) = O^ (G) by Lemma 2.1 it 

follows Q c N . Moreover Q2 = N 0 Q = Q . Thus if U is any 

irreducible component of V^ then because V^ = (VJJ)Q is homogeneous 

so is '̂ Q ' 

Therefore U is homogeneous, as required. 

This dispenses with situation (1). 

In situation (2), iG:N| = p . 

The first thing we do is build up our knowledge of how V̂ ^ 

breaks up. 
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Let W be an irreducible component of V^ . Then from Clifford's 

Theorem we have that W is invariant in G . Moreover Q is a normal 

Hall subgroup in G . Hence by Theorem 2.4.4(1) W extends to W , an 

irreducible kG-module with w^ = w . 

Now using this extendibility we apply Theorem 2.4.2 to write 

V = W T where T is some irreducible kG-module with Q in the kernel. 

Thus 

N N N 

Examining these new terms we observe that T is irreducible. N 

This is because any submodule of T^ must also be a module for Q and so 

a module for G = NQ contradicting the irreducibility of T . 

As for W„ there are only two alternatives. Either W is N N 

homogeneous or else it breaks up into G:N = p non-isomorphic 

irreducibles. 

In the homogeneous case let X be the irreducible constituent and 

put W s (X®...@X) (i.e. X appears with multiplicity n in W ) . N n N 
Then we have 

'x . .ax . (a) 

Moreover since ^tQ^ is a ir'-number we have by Clifford's 

Theorem that the number of homogeneous components in (a) is a TT'-number. 

But again by Clifford's Theorem since |Q:Q«| = P , W must either be 

homogeneous or the direct sum of p non-isomorphic modules. 
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We assume first the latter, namely. 

w^ = w ® ... ® w 
P 

where W^ is an irreducible kQ^-module for i = l , . . . , p . Since 

Wg = W we have the immediate consequence 

w^ = w, ® ... © w (B) 
Q2 1 p 

Now comparing the two decompositions of W^ found in (a) and (6) 

we obtain a contradiction : (a) shows W^ has IT' homogeneous 

components whereas ( G ) shows W has precisely p and p 6 IT . 

Thus W must be homogeneous. 

But then = (V ) must also be homogeneous, hence U is 
Q2 Q Q2 Q2 

homogeneous and thus M4 is satisfied in this case. 

Therefore we assume that W„ is not homogeneous. So it must N 
break up into a set of p non-isomorphic irreducible kN-modules S^ , 

i = 1,...,p , with 

W = S, © . . . © S . N 1 p 

Combining this decomposition with the fact V^ = W^ T^ we get 

V = S, T © . . . ® S ® T . N 1 N p M 

Thus U , an irreducible component of V^ , is an irreducible 

component of S^ ® T^ for some I € {l,...,p} . Moreover we have 
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and comparing this with (6) it follows that dim W. = dim S for 
D iQ^ 

all i,j . 

Hence by the irreducibility of W. we have that S is 
iQ2 

irreducible for each i = l , . . . , p . This implies 

is homogeneous. 

Therefore U is homogeneous, as we require. 

So M4 is satisfied. 

For M5 let N^ be a maximal nojrmal siibgroup of G for i = 1,2 

and let G = ' Further assume V is an irreducible kG-module 

such that all irreducible components of V„ are in H(N.) for each N. 1 
1 

i = 1,2 . Then we must show V € H(G) , that is that V^ (c/ker V) ^^ 
TT 

homogeneous. 

Firstly we show that V satisfied H2, viz G/ker V € X . 

Consider V̂ ^ and let U_. be an irreducible component for j N. ij 

i = l,...,tj , j = 1,2 . Then by hypothesis N^/ker U^^ € x for each 

i . Thus by siibdirect product closure of X , N^/ker ̂ .̂ V € X . 

So N. ker V/ker V € X . 
J 

Thus by normal product closure of X , G/ker V € X . 

Hence V satisfies H2. 
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Suppose ker V ^ N^ for i = 1 or i = 2 , say i = 1 . Then 

by the maximality of N^ , G = N^ ker V . Let U be an irreducible 

component of V . Then U an N -module is also of course a module 
1 ^ 

for ker V . But G = N^ ker V thus U is an kG-module and so 

Thus ker U = ker V fl N, := ker., V and V 6 H(N, ) . 1 N^ 1 

Hence G/ker V s N^/ker U and this implies V^ (G/ker V) 
TT 

homogeneous, so Hi holds. 

Therefore consider the case ker V £ n^ , i = 1,2 . Just as in 

the proof of M4 we now work modulo ker V so that by M2, we may assume 

ker V = 1 . 

As before put Q = O (G) . 
TT 

Two situations arise : 

(1) G:N^ € TT* for i = 1,2 

and 

(2) G:N. = p say, p € tt for either i = 1 or 2 . 

In the first situation assume 1g:N^| = t^ and = t^ for 

' ^2 ^^ • Since O^ (G) = O^ (G) := Q it is clear that 

Q c N. ; i = 1,2 and thus 1 

O (N.) = N. n Q 
IT 1 1 

= Q . 

We must show V^ is homogeneous. 

If either V or V is homogeneous then it follows immediately 

that V = (V ) is homogeneous where i = 1 or 2 . Therefore assume Q N^ Q 
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the contrary. Thus by Clifford's Theorem we may write 

V = © . . . ® v.^ N. il It. 1 1 

for i = 1,2 , where each V. . is an irreducible kN.-module. 
13 1 

By hypothesis V. . € H(N.) and so V. . is homogeneous and a i: 1 i3Q 

homogeneous component of V^ for each i,j . But this implies (V^ 

must have t^ homogeneous components whilst (V̂ ^ has t^ homogeneous 

components hence t = t and each V equals a V for some -£ . J- XJC 

In particular this means that V̂ ^̂  , an irreducible N^-module 

is also a N^-module. But then since G = N^N^ this implies V^^ is 

a kG-module of V . 

Hence V^^ = V . 

Thus V^ = Vĵ-ĵQ is homogeneous, as required. 

In case (2) put = p , p € ir . 

Then by Clifford's Theorem there are only two possibilities to 

consider : either V is homogeneous or else it breaks up into p 

non-isomorphic irreducibles. Put Q^ := ©^(N^) • 

When V^ is homogeneous we have by Theorem 2.4.3 that V^ is 

irreducible. Thus by hypothesis V^ € H(N2) and so by lemma 2.1 V^ 

is homogeneous. 

We must show V^ is homogeneous. 

The way we do this is to use the homogeneity of V in order to 

apply Theorem 2.4.2 and by this determine a decomposition for V^ . 
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Let W be an irreducible component of V 

Now in order to use the full force of Theorem 2.4.2 it is necessary 

to show that W may be extended to an irreducible kG-module, W say, 

such that w^ = w . We use Theorem 2.4.5 to show this extension exists. 

The conditions we need are that if L/Q^ is any Sylow siibgroup of G/Q^ 

then W extends to L . We show that this holds by examining as 

separate cases the Sylow p-subgroups and the Sylow p"-subgroups. 

Since Q = O^(G) = O^ (G) , Q/Q^ is 3- Sylow p-subgroup of 

G/Q^ . Now let E be the irreducible of V^ which has W as an 

irreducible component of E . But V homogeneous implies that E 

is homogeneous and thus by Theorem 2.4.3 E = W . Hence W extends 

to Q . 

Now let R/Q2 tie a Sylow r-subgroup of G/Q^ for r ^ p . Then 

r € it' and it follows R < N^ . Moreover Q^ is a normal Hall subgroup 

of N^ and so Theorem 2.4.4 (1) applies. This shows that there is an 

irreducible kN^-module, F say, such that F^ = W . It follows that 

F is an irreducible kR-module and (F^)^ = W , hence W extends to R R R Q2 

Therefore Theorem 2.4.5 applies as we have foreshadowed and there 

exists an irreducible kG-module, W such that W = W . 

Now consider V and apply Theorem 2.4. 2 in the familiar way to write 

V = W T where T is some irreducible kG-module with Q^ in the 

kernel. 

Thus 

Vg = W^ ^ Tg . 
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Now we know that W^ is irreducible. Moreover T^ is 

homogeneous. For by Clifford's Theorem the irreducible components are 

conjugates of one another by elements of G \ Q . Since G/Q^ is 

the direct product of Q/Q^ and N/Q^ there is no effect to conjugation. 

But since |Q:Q2I = P it must break up into a direct sum of 

isomorphic one dimensionals irreducible modules. Applying Theorem 2.4.2 

again it follows that v^ = w^ Cd t^ must be homogeneous, as we desire. 

This completes the argument for the case when V is homogeneous. 
2 

Now suppose V breaks up into p non-isomorphic irreducibles 
2 

V^ , i = l , . . . , p , so that we may write 

= V- © ... ® V . 

By hypothesis V^ ^ each i . This says V^^ is 

homogeneous for each i . Now consider V^ and let W be an irreducible 

component of V^^ . Thus 

V^^ s {m. . .®W) . IQ n 

Q 

By Clifford's Theorem V = V^ and then by Mackey's theorem 

(V^^)^ = (V^^ . Hence 

^Q -

n 

Thus V^ is homogeneous if Vp is irreducible. 

We shall show that W® is irreducible. 
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What we do know about W is that it is either invariant in 

Q or it is not. 

Let us suppose W is Q-invariant; our aim will be to use the 

homogeneity of V^ to arrive at a contradiction. 

Because Q^ is a normal Hall subgroup of N^ and W is invariant 

in N^ by Theorem 2.4.4 (1) we have that W extends to an irreducible 

kN^-module W , such that W = W . So using Theorem 2.4.2 in the 

familiar way we may write 

V^ = W X 

for X a certain kN^-module with Q^ in the kernel. 

Now v;e know from Clifford's theorem that there exists a set of 
X . 

elements in G , ~ such that ^^ ~ » i = If.-.fP • 

Moreover because G/Q^ is the direct product of Q/Q^ and ^^ ̂ ^ 

possible to choose these x^ such that they are all in Q . 
X . 

It follows from this that X = X , for each i = l,...,p . 

Thus 

X. X 
v^ ^ = {mx) 

X . X . 
= W ^ <g> X ^ 

X . 
= W ^ X . 

Now using the assumption that W is invariant in Q we have that 
X . 

W ^ s W . Thus 
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X. X. 

s W . 

X . 
Hence, considering W ^ , Theorem 2.4.2 applies again so that we 

may write 

X . 
W ^ s w (S) T 

for some T an irreducible kN -module with Q in the kernel. Moreover 

by iteration it follows that 

s X . 
W ^ = W <8i T® 

for s 6 U . 

However we know that x^ , i 1 , has order a Tr-number, say m . 

Thus W = W t'" . This implies t"̂  = 1 
2 

But T is a linear representation of ^ tt '-group and so 

there is an n € , a tt'-number such that t"̂  = 1 

Finally, (m,n) = 1 and so T must be trivial. But this shows 
X . 

W ^ s w and thus ^^ = ' ^ contradiction. 

Therefore W cannot be Q-invariant. 

Let U be a proper irreducible submodule of Vp . 

Now look at U . It breaks up into a direct sum of irreducibles. 
But each one of these irreducibles is an irreducible cons^I+ueot of 

x^ 
(Vp) and thus of V and so also of V^^ for some i , i = l,...,p 

2 
and so is a Q-conjugate of W . 
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But W is not Q-invariant and this means that U„ cannot be 

homogeneous. 

22 

Thus by Clifford's theorem U breaks up into p non-isomorphic 

irreducibles, say U^ , i = 1,..,,p . 

But then 

dim(U) = p dim U^ 

= p dim W 

= dim(w2) 

and so W ^ must be irreducible. 

Thus V ^ is homogeneous. 

This completes the proof of M5. 

The theorem is now proved. 

§3. H^^(^) and Non-saturation 

In this section the objective is to describe conditions on the 

choice of X which relate to the set of primes tt and guarantee that 

H ^(X) is in fact a non-saturated Fitting formation. =q = 

As a preliminary to these results we record the following lemma, 

a counterpart to Corollary 4.3.5, which supplies a range of useful examples 

of groups in (X) and contained in fgi 

3.1 LEMMA Let -n be a set of primes and X a Fitting formation such 

that X c s S , . Suppose r^ s are primes with r 6 77 and s € tt ' and 

let h" be groups satisfying the same conditions as in Lemma 4.3.3. 
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Further suppose H € x . 

Then H^ € h ^(x) . 0 =q = 

P^oof What we need to show is that if E S T, (H ) then E / / ^ v k 0 0 (.Ho / ker t ) TT ' ' 
is homogeneous. Now by Lemma 4.3.3 

H^/ker E s h 

e X 

so H2 is satisfied. Moreover O (H) = F(H) . 
IT 

Now by Lemma 4.3.3 (1) we know dim E is an r-number. Suppose 

is homogeneous. Then by Clifford's theorem the number of F (HJ homogeneous components must be an s-number. 

But this implies s dim E , a contradiction, so E^. . is t (H) 
homogeneous. 

Therefore H^ 6 H ^(X) , as asserted. 0 =q = 

3.2 COROLLARY Let r € y (g) H tt . Take 

R to he an extraspeoial group of order so that by Lemma 2.2.2, 

R € X . Then there exists an irreducible 'ZlR-module, w, suah that 

W.R € H ^(X) . =q = 

Corollary 3.2 gives simple examples of groups in not in 

The main non-saturation theorem follows. 
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3.3 THEOREM Let ir be a set of primes and -put T T ^ = TT \ {q} . 

Let X he any Fitting formation contained in . 

If there exists primes r,s such that r € TT^ j s € IT ' and 

IT S S c; X , then H (x) is non-saturated. =r=s — = -Q = 

This condition is basically the same as the one for non-saturation 

in the case Y^^(X) . We refer the reader to the remarks we made 

following the statement and proof of Theorem 4.3.7 as they also apply 

here. Just as in those remarks, as a special case of this theorem, it 

follows that the class H ^(S S .) is non-saturated. =q =P=P' 

The proof of Theorem 3.3 follows the same pattern as the proof of 

Theorem 4.3.7. 

Proof of Theorem 3.3 Taking the primes r,s as in this theorem we 

use Lemma 4.3.6 to construct a group H = B.S (where F(H) = B is an 

extraspecial group of order r^™^^ and S is a cyclic group of order s) 

with the property that H satisfies the properties (1), (2) and (3) of 

Lemma 4.3.6. 

Now lemma 3.1 applies, so that H^ € H^^(X) . 

We now assume that H ^(X) is saturated, and so the characterisation =q = 

of saturated formations. Theorem 2.2.5, must apply. Using the notation of 

this theorem we have that H 6 and thus H/Z(H) € X (ĉ^ . Put 

H = H/Z(H) . 

Just as in the proof of Theorem 4.3.7 we can now choose X to be 

a faithful irreducible Z^H-module such that if U is any irreducible 

component of k O X then dim U 1 . 
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But by Theorem 2.2.5 again X.H € H '̂ (X) , thus U - is 
=q = O (H) IT 

homogeneous. But |H:0^(H)| = s , thus by Theorem 2.4.3 U 
0^(H) I S 

irreducible. However since B is extraspecial 0 (H) is abelian and 
TT 

therefore dim U = 1 . 

But this contradicts our assumption dim U 1 . 

Hence H ^(X) cannot be saturated, -q -

This completes the proof of 3.3. 

In the special case when q (• IT Theorem 3.3 can be reexpressed 

in a more practically useful way. 

3.4 THEOREM Let TT he a set of primes q^Tr. -^/x^^sUs, 

then H ^ (X) -is non-saturated. =q = 

Proof Since X c s S . the stated condition is equivalent by definition = — =-n=Tj' 

to X 4 S ,s . = 4- =11 -IT 

Now we use Lemma 4.3.2 to find primes R , S , r € T T , S € T T ' , and 

use these in exactly the same was as in Theorem 3.3. 

From this we conclude H ^(X) is non-saturated. =q = 
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CHAPTER 6 

MORE ON CONSTRUCTIONS BY CHIEF FACTORS 

§1. Introduction 

In Chapter 3 we defined a method for constructing Fitting formations 

which depended on the representation properties of chief factors. In 

Chapters 4 and 5 we used this method to construct interesting examples. 

In this chapter we try to show that all Fitting formations can be 

characterised by such a method. 

In §2 we start by defining a closure operation P on F , the 
TT 

class of all Fitting formations (where rr is an arbitrary set of primes, 

as usual). The definition of P^ involves the construction technique 

of Chapter 3. An important role will be given to certain naturally 

occurring primitive groups. The section culminates with a theorem which 

shows that the case TT = P is essential to understanding the general 

case IT c i> . We put P ^ = P . 

In §3 we conjecture that all Fitting formations are P-closed. 

If the conjecture is true then this provides a characterisation of an 

arbitrary Fitting formation. We show that all saturated examples are 

P-closed and that all known non-saturated cases (those of Chapters 4 and 5) 

are as well. The general case however seems a difficult problem. 

In §4 we close by considering the behaviour of P^ (for an 

arbitrary IT) under products of classes. The problems here too seem 

considerable. For instance we are unable to show that P preserves 

products of classes in the general case, although this would be consistent 

with the truth of the conjecture in §3 . 
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§2. The closure operation P on F 
rr 

The objective of this section is to define a closure operation P 
TT 

on the class of Fitting formations, F , where IT is an arbitrary set 

of primes. The essential features of P are determined by the case TT 

of a single prime, q say. 

As indicated in the introduction the construction of P (X) where 
q = 

X is any Fitting formation will be by examination of chief factors using 

the module technique of Chapter 3. An important role will be given 

to certain naturally occurring primitive groups. 

More precisely, if V is any G-module for a group G then we 

have from Definition 2.3.1 that 

P(V,G) = V.G/ker V . 

Moreover, if V is any chief factor of G then Lemma 2.3.2 shows 

that P(V,G) is a primitive group, with V the unique minimal normal 

subgroup of P(V,G) . 

Now, expressed as simply as possible, Pq(^) will be the class 

of groups G which have P(W,G) contained in X for each q-chief factor 

W of G . 

Before proceeding with the details of the construction we note 

the following elementary results. 

Let W be any G-module for a group G . Then 

If N is normal in G and also contained in ker W then 

P(W,G/N) = P(W,G) 
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W can be thought of as a module for P(W,G) on which W 

acts trivially and so considered we have P(W,P(W,G)) s P(W,G) 

Moreover if X is any Fitting formation and W is a chief factor 

of G then recalling Lemma 2.3.5 we have 

P(W,G) € X . 

We shall use the foregoing facts without explicit reference. 

We now construct the Fitting formation • 

Note that T (G) is just the class of q-chief factors of G y/i 
q 

considered in the natural way as irreducible Z G-modules. 
q 

2.1 THEOREM Let X be a Fitting formation and let q be any prime. 

For each group G let Pg(G) he the class of irreducible tl^-modules 

V J such that 

P(V,G) € X 

Then the modules in Pq(G) satisfy the conditions Ml "to M5 of Theorem 

3.2.1 and therefore the class of groups 

p (X) = {G r (G) c P^(G)} q = zz — q q 

is a Fitting formation. 

Proof 

Ml is satisfied trivially. 

M2 is immediate. 
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F o r M 3 l e t V b e a n i r r e d u c i b l e 7L N - m o d u l e i n P (N) a n d 
q q 

(j) : G N a n e p i m o r p h i s m . W e m u s t s h o w V € P (G) . 
q 

N o w t h e e p i m o r p h i s m cj) : G N i n d u c e s a n e p i m o r p h i s m 

G N/ker^(\/) i n t h e u s u a l w a y w i t h k e r n e l k e r ^ ( V ) . 

T h u s G / k e r (V) s N / k e r fV) a n d s o s i n c e t h e a c t i o n o f t h e s e G N 
t w o g r o u p s (as d e f i n e d b y i n f l a t i o n ) i s t h e s a m e . 

P ( V , G ) = P ( V , N ) 

€ X 

a s r e q u i r e d . 

F o r M 4 l e t N b e a m a x i m a l n o r m a l s u b g r o u p o f G a n d t a k e V 

t o b e a n i r r e d u c i b l e 7L G - m o d u l e in P (G) . W e m u s t s h o w t h a t if U 
q q 

i s a n i r r e d u c i b l e c o m p o n e n t o f V „ t h e n U € P (N) , t h a t i s 
N q 

P ( U , N ) € X . 

N o w P ( V , N ) i s n o r m a l i n P ( V , G ) € X s o b y S ^ - c l o s u r e o f X , 

P ( V , N ) 6 X . 

S i n c e b y C l i f f o r d ' s t h e o r e m V ^ i s c o m p l e t e l y r e d u c i b l e t h e r e 

i s a Z ^ N - m o d u l e W s a y s u c h t h a t U V / W . 

T h u s U.N/ker^^ V s P ( V , N ) / W € X . 
N = 

B y Q - c l o s u r e a g a i n t h e d e s i r e d r e s u l t f o l l o w s , P ( U , N ) € X . 

F o r M 5 l e t G = N ^ N ^ w h e r e N ^ £ G , i = 1 , 2 , a n d t a k e a n 

i r r e d u c i b l e G - m o d u l e V f o r w h i c h e a c h i r r e d u c i b l e c o m p o n e n t o f t h e 
V 

r e s t r i c t i o n V i s c o n t a i n e d i n P<,(N.) , f o r e a c h i = 1,2 . W h a t 
N . 1 
1 

w e m u s t s h o w i s t h a t V ^ , t h a t i s P ( V , G ) € X . 
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As G = N^N^ it follows that 

G/ker V = (N^ ker V/ker V)(N^ ker V/ker V) . 

This means we can rewrite P(V,G) as a product of normal subgroups 

P(V,G) = P(V,N^ ker V)P(V,N2 ker V) 

That P(V,G) e X will now follow from the N^-closure of X provided 

we can show P(V,N.^ ker V) 6 X , i = 1,2 . We do this by writing 

P(V,N^) as a subdirect product of terms in X . Note that 

P(V,N^) = P(V,N^ ker V) . Without loss suppose i = 1 . 

Now by Clifford's theorem 

V̂ ^ = U, 0 . . . e U, 
N^ 1 k 

for Uj , an irreducible Z^N^-module j = l,...,k . 

It is now possible to define a set of k epimorphisms, 

j = l,...,k by the projection of V onto U^ in the usual way 

Moreover 

ker 

Thus 

(j). = {(x,y) I X € U @ . . . ® U © . . . ® U , y € ker (u )/ker (V) } 
3 -L J ^ J 

k 
n ker (f) . = { (0,ker V) } 

j=l ^ ''l 

= 1 , 
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since fl ker (U.) = ker (V) . 
j=l ^ ^ ^ 

Therefore P(V,N^) is a subdirect product of the . 

But by hypothesis each of these is in X . 

It follows that i = l , 2 , and hence that 

P(V,G) ^ X , as we required. 

This completes the proof of the theorem. 

We can now extend this construction to an arbitrary set of primes 

IT . With as above put 

P (X) = n P (X) 
TT = , q = 

q€TT 

It is an elementary result that (X) so defined is also a Fitting 

formation. 

We now have the following result. 

2.2 THEOREM Fov any set of primes it , P^ is an operation on F 

defined by 

P : X ̂  P (X) IT = TT = 

Moreover p is a closure operation. In particular for x,Y tn F TT 

(1) If x^Y, then p^(x)5p^(y) 

and 

(2) X c p^(x) 

(3) P^^(X) = P^(X) . 
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Proof 

(1) is obvious 

(2) is an immediate corollary of Lemma 2.3.5. 

(3) uses (2) and the identity P(W,P(W,G)) s P(W,G) for W 

and G . 

This completes the proof. 

Now we know from a remark made at the end of Chapter 3 that 

S , c p (X) . =TT — IT = 

When TT = ]P we put Pp = P in §3 we conjecture that all 

Fitting formations are P-closed. 

In the remainder of this section though we develop properties of 

P for an aqrbitrary it . IT 

We need the following technical lemma. 

2.3 LEMMA Let Tf be an arbitrary set of primesj x be any 

Fitting formation and G a group in P^ (X) . For convenience put 

G = G/0 , (G) . Then TT ' 

_x 
G c $(G) . 

Proof The important case is when tt contains just a single prime, q 

say. We do this first. 

Let G € P (X) and put G = G/0^,(G) . It will suffice to show q = q 
_X 

G/$(G) € X , for this implies g" £ $(g) , as we require. 

For convenience put S = G/$(G) . 
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By an elementary result (Huppert [24] III Hilfssatz 3.4.(b)) 

|(S) = 1 , and therefore Lemma 2.2.7 applies. From this we get that 

F(S) = M^ X ... X M^ 

for some £ where M^ is a minimal normal siibgroup of S , j = l , . . . , £ 

Choose a complement, K say, for F(S) in S (this exists by 

Huppert [24] III 4.5 and 4.4). Now define a complement in S for each 

M^ in the following w a y . 

K. = (M^x...xM.x...xM ).K . 
1 1 1 £ 

Further, put L. = C (M. ) and note L, is norrr^ol S , 
1 K , X 

1 
bSiPK^ riomnQl'ised K Q r > d ceoVoIise<=l b-j M ^ while S = K M ^ 

Now since G 6 P (X) , S € P (X) and so P(M.,S) € X for 
q = q = : = 

each j . 

Thus 

s S/Lj 

6 X . 

Noting that 

L . n F(S) = M, X . . . X M X . . . X M 
j 1 J X, 

we can show by a standard argument that fl L . - 1 . 
j=l ^ 
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Hence by the subdirect product closure of X we have S € X . 

This completes the case for tt = {q} . 

In the last part of the proof we generalise the situation to an 

arbitrary set of primes, tt . 

Since G € P (X) = fl P (X) we have 
TT = q = 

qCiT 

G/0^, (G) ̂  (G)) € X 

for each q € tt . 

Now define H ^ to be the normal subgroup of G such that 

H^/0^, (G) = <l>(G/0^, (G)) 

Then by R -closure of X 
0 — 

G / O H € X 
q 

But it is easy to see 

n n ^ / o ^ , (G) = (G)) 

Hence 

G/0 ,(G) / (G)) € X 
TT ' / TT — 

as required. 

This completes the proof of the lemma. 
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As a first approximation to the range of rdevaol ĝ -oups 

the following result sandwiches P (x) between two classes which TT = 
are only dependent on the choice of X and tt . 

For instance we know that both X and S . are contained in =1T ' 
P (X) . What we now show is that P (X) must at least contain the 

II — TT = 

class S ,X . 
= T r ' = 

2.4 THEOREM Let X be any Fitting formation and it an arbitrary set 

of primes. Then 

2.5) n S ,S X => P X =5 S ,X ^ =q'=q= — TT = — =Tr' = 

In particular this means 

(2.6) NX £ P(X) 2 X . 

Proof It suffices to consider the case when tv = {q} . 

Let G € and put G = G/0̂ ,(G) so that G € X , thus 

G € P (X) . q = 

But now all q-chief factors of G can be thought of as q-chief 

factors of G , and this implies by M3 that G € . Thus 

P (X) 3 S ,X . 
q = - = q = 

Now consider G € P (X) and take { U . t o be a complete set q = 1 1—-L 
of q-chief factors belonging to a chief series of G . Then because 

P(U.,G) € X it follows G/C (U.) € X for each i and thus 1 = G 1 — 

G/ n C (U.) € X . 
i=l ^ ^ 

But by (2.3.3) this implies G/0^.^(G) € X , therefore G € f^.S^X 

and S ,S X 2 P (X) . =q'=q= - q = 
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Thus (2.5) is established, as required. 

For (2.6) put IT = P in (2.5). 

Now 

.S S S 

is easy to see. 

Therefore, since N = fl s,S ,(2.6) follows as required. 
qCP ^ ^ 

This completes the proof of the theorem. 

Now let TT be an arbitrary set of primes and take the product of 

each term in (2.6) on the left by S , . Thus =ir • 

S ,NX 3 S ,P(X) D S ,X . (a) =TT == — =Tr = — =77 ' = 

Now compare this with the case in (2.5) where we have 

n S ,S X 3 P (X) 3 S ,X . (3) =q =q= — TT = — =TT = q€TT 

Observe that S ,NX = S ,S X . =q'== =q'=q= 

This is because if G/0^, (G) € NX then 

G 6 S X =q' =q= 

= S ,S X =q'=q= 

for each q € P , and conversely, 

Thus S ,NX = n S ,S X 
== q€7T 
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Comparing (a) and (3) the natural question to ask now is whether or 

not P (X) = S ,P(X) . 
TT = =1T ' = 

We provide an affirmative answer to this in the following -fKeorem. 

2.7 THEOREM Let tt be an arbitrary set of primes and x any Fitting 

formation. Then 

P (X) = S ,P(X) . 
TT = =TT ' = 

Proof It is enough to consider the case it = {q} . 

Firstly we demonstrate that Pq(X) £ s^,p(x) . 

Let G € P (X) and put G = G/0 ,(G) . Then the aim is to 
q = q' 

show G € P(X) . 
_X _ 

Now from lemma 2.3 it follows G £ $(G) £ F(G) . But by the way 

G is chosen we have F(G) = 0 (G) . q 
Hence G/O (G) € X . 

q 

If { u . , is the set of chief factors for G then we know 
1 1 = 1 

F(G) = n C-(U.) so O (G) c C-(U.) for each i . Thus G 1 <5 1 

P(U^,G) = P(U^,G/0^(G)) 

€ X 

for each i = 1,...,"" (since G/0^(G) € X and then by lemma 2.3.5) 

Therefore G € P(X) , and the containment is proved. 

Finally we show the converse : igiP^^) £ ' 
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This is simple for we already know that S ,P(X) c s P (X) 
=q = - =q' q = 

But now observe that = P (x) . 

The converse now follows. 

This completes the proof of the theorem.. 

Theorem 2.7 provides a crucial insight into the structure of the 

class P^(X) , IT P . What we can see is that (X) is essentially 

determined by P(X) . in other words the over all effect of the set of 

primes tt is not very interesting, whereas deeper, more substantial 

questions involve only the representation properties of the chief factors. 

Accordingly in the next section we study P(X) . 

§3. Is eqc f i F;4-j-'ir-\g -Po>-rr^o4ioo P - c - losed ? 

In this section we concentrate on the possibility of characterising 

an arbitrary Fitting formation, X say, using the methods developed in §2 

We make the following conjecture. 

(3.1) Each Fitting formation is p-olosed. 

Using Theorem 2.7 we may reword (3.1) in the following way : 

Let X be any Fitting formation^ then P^(x) = i^.x for each 

TT c p . 

If (3.1) is true then every Fitting formation can be characterised 

by a construction via the representation properties of chief factors. 

Even if (3.1) is false the situation would still be of interest. 

Our first result is a simple corollary to Lemma 2.3. 
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3.2 THEOREM If X is any saturated Fitting formation then x is 

V-olosed. 

Equivalently^ when x is saturated then 

P (X) = s ,x TT = = T T ' = 

for any set of primes^ TT . 

Proof By (2.5) we only need to show P (X) c s X . 

IT = — TT ' = 

But this is an immediate corollary of Lemma 2.3, for by that result 

G/$(G) € X and so by saturation of X , G € X . 

Thus G € S^,X , as required. 

Thus (3.1) holds in the saturated case. 

We also have the following. 

3.3 COROLLARY The aontainment P (X) s .x in Theorem 2.4 is in TT = — =7r' = 
general the best possible one. 

Proof By the theorem, equality holds in the saturated case. 

3.4 COROLLARY If X is saturated, then so is P^(X) . 

Proof By the theorem we have P (X) = S ,X . 
TT = = 1 7 — 

It is well known that this is saturated. 

We point out that it is not known whether the other containment in 

Theorem 2.4, namely fl S ,S X ^ P (X) , is best possible (obviously if —q —q— TT — q€7r 
it is then our conjecture is false). 
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Corollary 3.4 is included to tidy up a dead end : one cannot 

constiruct a non-saturated Fitting formation by applying P to a 
IT 

saturated example. However, what happens when P^ is applied to a non-

saturated case is unknown; again the question seems to be related to the 

possible P-closure of F . 

It is easy to check that all Fitting formations in the classes 

la ^ = ̂  ' specifically the non-saturated cases, are P-closed. 

For instance consider Y ^(X) . =q = 

Let G € P(Y ^(X)) and U € T, (G) . We will show U € Y ^(G) . -q — K q 

Since U € ^̂ (̂G) we know by definition there exists a q-chief 

factor V of G with U a direct summand of V . So, by definition 

of P , P(V,G) € Y ^(X) , =q = 

Thus U e Y ^(P(V,G)) . q 

But then U as a G-module immediately satisfies Yl and Y2. 

Noting that the kernel of U as a P(V,G)-module is just 

V.ker U/ker V it follows that G/ker U 6 X . 

Hence Y3 is also satisfied. 

Thus P(Y ^(X)) = Y ^(X) and Y ^(X) is P-closed. =q = =q = q = 

similarly U € H ^(P(V,G)) implies U € H ^(G) and so H ^(X) is q q q 
also P-closed. 

Thus all known Fitting formations are P-closed. 

The section closes with the following theorem which indicates how^it 

might be to find a counter example to (3.1). 
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3.5 THEOREM If X and Y are v-closed Fitting formations, then 

XY is also v-olosed. 

Proof We must show P(XY) c XY . 

Assume on the contrary that this containment fails, and let G be 

a counter example of minimal order. 

Thus G possesses a unique minimal normal subgroup. Call it N . 

Let N be a p-group, say. 
Y 

Take U to be any chief factor of G . Our aim will be to show 
Y 

that P(U,G ) € X , for then G 6 P(X)Y and so by hypothesis G € XY , 

a contradiction. 
Y 

It suffices to take U to be a minimal normal subgroup of G~ 

contained in N . For if U = H/K say with K 1 , then by minimality 

G/K ^ XY , so 

Y Y 
G /K = (G/K) 

€ X 

and 

Y Y 
P(H/K,G ) = P(H/K,(G/K) ) 

€ X 

as we require. 

We call this U , N^ . To reiterate : the aim is to show 

P(Nq,G ) 6 X . 
Y 

Now P(N,G) € XY so P(N,G)~ € X . 
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When P(N,G) ^ Y this provides us with crucial information. 

-I /_v For convenience put C = ^^(N) and G /G'nC.Then it follows that 

_Y Y 
N.G s P(N,G) 

€ X . 

But by Clifford's theorem U ^ is completely irreducible with 
G= 

NQ isomorphic to a direct summand. 
_Y _Y 

Hence N .G is a quotient of N.G (cf. the proof of S -U n 
_Y 

closure in Theorem 2.1 , and thus N^.G ^ X , 
Y 

Hence P(NQ,G ) € X . as we require. 
Y 

Now consider the case where P(N,G) € Y . Here C £ G~ since 

G/C € Y and so we have the containments 

NQ c N C Z(G ) . 

This implies P(NQ,G ) € S^ . 

But p is in the characteristic of X . So by Lemma 2.2.2 , 
Y 

P(Nq,G ) € X , as we require in this case also. 

We complete the proof by showing p is in the characteristic of X . 

Suppose the contrary holds. 

Y 

Then (INI,IG /NI) = 1 unless G/N 6 Y . But if G/N € Y then 

since we have assumed in this case P(N,G) € Y , it follows G € P(Y) = Y , 
a contradiction. 

Y 
Thus G~ splits over N with complement K . 
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Y 

However because N centralises the whole of G~ , this is 

a direct product. Thus K is normal in G yet N 0 K = 1 , contradicting 

the uniqueness of N . 

Hence p is in the characteristic of X . 

This completes proof of the theorem. 

§4. The behaviour of P^ under products of classes 

Let X,Y be Fitting formations and ir an arbitrary set of primes. 

Then it is easy to see that the equation 

(4.1) P (XY) = P (X)P (Y) 
TT = = TT = TT = 

is in general false. 

For instance put X = Y = S . Then because S is saturated 
= = =TT =TR 

we have P (XY) = S ,S whereas P (X)P (Y) = (S ,S and so equality 
IT == =iT'=-ir TT =' TT = =Tr'=Tr ^ 

fails. 

In this section we look for necessary and sufficient condition 

under which (4.1) holds. Unfortunately the best we are able to do is 

provide rather weak results. In particular we have little knowledge of 

the truth or otherwise of (4.1) in the most important special case TT = P 

Our first result leads to a sufficiency condition. 

4 . 2 THEOREM Let x_,Y he Fitting formations and TT an arbitrary set 

of primes. Then 

(1) £ 

(2) P^(XY) £ . 
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Proof We prove (1) first. 

Assume on the contrary that G is a counterexample of minimal 

order i.e. a group of smallest order in P^(X)Y but not in P^(XY) . 

Then G has a unique minimal normal subgroup, N say. 

Now let H/K be any chief factor of G with K ^ 1 and H/K 

a TT-group. 

Then consider G/K . 

By the minimality of G it is in P^{XY) and so 

P(H/K,G) s P(H/K,G/K) 

€ XY 

If N is a tt'-group then it follows G € P^(XY) and this provides 

a contradiction, completing the proof in this case. 

If, on the other hand, N is a ir-group suppose N i- C (N) . 
G 

Then the minimality of G implies P(N,G) € P^(XY) and so 

P(N,G) s P(N,P(N,G)) 

6 XY 

Hence G 6 P (XY) , a contradiction. So N = C (N) . 
IT = = G 

We now consider P(N,G) and show that it is in XY in every case. 

This will provide the final contradiction. To reduce notation put 

N := P(N,G) . 

Since G C P (X)Y it follows^ N € P (X)Y . Thus if U is a 
TT = = TT - -

_Y 
chief factor of N~ then 
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P^(U,N ) € X . TT = 

However by Clifford's theorem, since N is a chief factor of N it 

follows that 

N = U, ® . . . ® U 

_Y 
where the U^ , i = l,...,r are (isomorphic to) chief factors of N 

contained in N . Hence, by the same argument in Theorem 2.1 used to 

_Y 
show (X) is N^-closed, we have that P^(N,N ) is the subdirect 

_Y 
product of the ) for i = l,...,r . This implies 

_Y 
P(N,N ) € X . 

-)hQ+ Y 
Using elementary properties it follows N € X . A — 

Thus N € XY , as we needed to show. 

Therefore G € P^(XY) and so P^(X)Y £ (XY) , as asserted in 

part (1). 

In part (2) follow the proof of Theorem 3.5 making all appropriate 

changes up to the point where we consider the case P(N,G) € y . In this 

X 

case it follows^ P(N^,G ) € Y and so G € P^(XUY)Y , a contradiction. 

This completes the proof of the theorem. 

Theorem 4.2 has an immediate corollary. 

4.3 COROLLARY Retain the terms of the theorem whenever x £ Y we have 

P (XY) = P (X)Y TT == TT = = 

If in addition p (x) = Y then J =77 = = 
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P (XY) = P (X)P (Y) . IT = = IT = TT = 

In the next two results we try to turn the situation around. 

4.4 THEOREM Fov x̂ ŷ TT as ahove. 

If 

P (XY) = P (X)P (Y) IT = = TT = TT = 

and if 

P (X)P (Y) C P (X)Y a n d P (X) P (X)S , T T = T r = — T T = = T T = T r = = T r ' 

then 

P (Y) = Y . TT = = 

Proof The method of this proof is to assvime the contrary and then 

derive a contradiction by constructing a group which is in P^(X)P^(Y) 

but not in P (XY) . TT = = 

In order to effect this construction we use the wreath product. 

Hence use of Lemma 2.2.6, which interrelates the radical and the wreath 

product is crucial. 

Let G be a counterexample of minimal order in P^(Y) but not Y . 

Further take H to be a group of minimal order in P^(X)S^, but not in 

P (X) . It is well known that H must have a unique maximal normal 
TT =-

subgroup, call this M say. Moreover by the minimality of H it is clear 

that M is the P_(X)-radical of H . Thus H/M ^ , • TT = 

Now consider H wr G . Our aim will be to show H wr G ^ P^(X)P^(Y) 

whereas H wr G I P (XY) , providing the desired contradiction. ' TT = = 
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Since H € P (X) we may use Lemma 2.2.6 to calculate the ir = 
P (X)-radical of H wr G . 7T = 

Thus 

^^ ^^P (X) = (x))"" TT = IT = 

and hence 

H wr G/(H wr G)^ s (H/M)^.G . 

Q 
For convenience put W = (H/M) .G . 

Q 
Now because (H/M) has characteristic a tt'-number all q-chief 

G factors, q € IT of W occur above (H/M) . Moreover each chief factor 
Q 

above (H/M) may be thought of as an inflation of a chief factor in G . 

But G ^ P (Y) , so W € P (Y) . Hence H wr G € P (X)P (Y) . 77= 1T= 77 = 77 = 
However assume H wr G 6 P (XY) . Then by hypothesis TT == 

Q 
H wr G € and so (H/M) ,G € Y . This implies G € Y . 

But this contradicts the minimality of G . 

It therefore follows that P^(Y) = Y . 

This completes the proof of the theorem. 

Observe in (4.2) that the hypothesis P^(X) specifically 

excludes the possibility 77 = P . Our next result aims to include this 

crucial case. 
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4.5 THEOREM Let X J Y J I T be as before. 

If 

P (X)P (Y) c p (X)Y and P (X) = P (X)S , q = q = - q = = q = q = = q ' 

for each q € TT , then 

P (Y) = S ,Y . IT = =Tr = 

Proof Suppose the conclusion is false. Let G be a group of minimal 

order in P (Y) not in S ,Y . Further take H to be any soliible q = =q' = 

group of minimal order not in • 

The first step is to refine the structures of H and G . 

First we work on H . 

By minimality it follows that the P^(X)-radical is the unique 

minimal normal subgroup, M say. Moreover P (X) = P (^)S implies 

H/M I S , . Thus Ih/mI = q . =q' 

Now we refine the structure of G . 

It is well known that there is a unique minimal normal subgroup, 

L say. 

Now suppose L is a q'-group. 

Then writing O^,(G/L) = K/L we have that K is a q'-group. 

But 

G/K = G/L / Op,(G/L) 

€ Y 

by minimality of G with respect to G/L 
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Thus G € , a contradiction. 

Hence L is a q-group. 

Next we consider M wr C . We shall show M wr C ^ P (X) . q q ^ q = 

This will provide the basis for the penultimate contradiction. Remember 

this. 

Assume that M wr C € P (X) . q q = 

It is clear that 

C 
- ./t q (H wr C )/M ^ = (H/M) wr C 

and that this is a q-group. 
C C 

Thus (M wr C )/M is subnormal in (H wr C )/M and so q q 
M wr C is subnormal in H wr C . Vie deduce from this that q q 

^^ V p (X) - V P (X) q = q = 

But now by assumption 

and moreover by Lemma 2.2.6 

V P q ( X ) = Cĉ -

c c 
Thus M ^.C c M ^ , a contradiction. q -

So M wr C P (X) . q ^ q = 
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In the next step we look at M wr G and show that the P (X)-q = 

radical is just M^ . This will lead straight to the final 

contradiction. 

For convenience put R = (M wr G) , . • 

The first thing to notice is that M £ R • This is for the 

obvious reason that M € P^CX) by the minimality of H . 

Q 
Now suppose R/M / 1 . 

Recall that L is the unique minimal normal siibgroup of G . 
G G G G Thus M .L/M is the unique minimal normal subgroup of M .G/M 

Thus M^.L £ R and by this it follows € Pq(X) . 

Moreover since L is a q-group let C be a s\ibgroup isomorphic 
G G to C . Then M .C is normal in M .L and so 

M'^.C € P (X) q = 

Now by definition 

M^ = n M 
g6G ^ 

and so putting 

N = n M 
y 

it follows that 

M*̂  = M^ X N 

Now since C ac+S •frivioil̂  on N it follows that N is normal in 

M^.C . 
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Hence 

M^.C/N = M^ X N.C/N 

C 

q 
= M ^.c 

= M wr C 
q 

€ P^(X) 

But this is a contradiction. 

Q 
So R = M as claimed. 

The final contradiction follows immediately. Since 

M wr G/M*^ = G 

i t follows M wr G € P (X) P, f Y ^ q = = 

Thus by hypothesis M wr G € P^(X)Y . 

We deduce from this G € Y , a final contradiction of the minimality 

of G . 

This completes the proof of the theorem. 
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