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ABSTRACT 

The central concept of this thesis is the relationship between 

a locally finite variety and the section closed classes of groups 

which generate ito R=M. Bryant and L.G„ Kovacs defined the skeleton 

•S(V) of a vaviety £ of groups to be the intersection of the 

section closed classes of groups which generate £ » Of particular 

interest are those varieties generated by their skeletons, for they 

are generated by a unique minimal section closed class of groups. 

Since a locally finite variety ^ is generated by its finite 

monolithic groups, S{V) is always contained in QSM(£) , the 

section closure of the class M(^) of finite monolithic groups in 

^ . For a positive integer m , let ^ denote the variety of all 

abelian groups of exponent dividing m , Bryant and Kovacs showed 

that, for m > 1 and a locally finite variety V , ^ (a^^ is 

equal to O Earlier Cossey showed that the skeleton S(^) 

of a variety ^ of yl-groups is Q S M ( U ) , 

These results are generalized here by showing that for a nontrivial 

variety ^ of i4-groups and a locally finite variety ^ , the 

skeleton is Q S M ( ^ ) = As a corollary necessary and 

sufficient conditions are given for S(UV) to consist of all finite 

groups in ^ » Examples are given to show that a product of two 

nontrivial locally finite varieties need not be generated by its 

skeleton, or, even if it is, the skeleton need not contain all the 

critical groups in the variety. 

In proving the main theorem above, we are led to consider a 

variety which, for some prime p , is generated by finite monolithic 

groups each of which is an extension of a nontrivial abelian p-group 



iV 

by a p ' -groupo In the appendix, knowledge o f the skeleton of such a 

var iety i s applied t o show that i f ^ is a var ie ty of i4-groups, X 

a l o c a l l y f i n i t e var iety whose l a t t i c e of subvariet ies i s d i s t r ibut ive 

and the exponents of ^ and ^ are coprime then the l a t t i c e o f 

subvar iet ies o f ^ is distr ibutive , , 

The consideration of such extensions of abelian p-groups by 

p ' -groups leads t o an interest ing question. When is such a group in 

a l o c a l l y f i n i t e variety V only i f i t i s in S(V) ? R.M, Bryant 

and L»G, Kovacs have shown the answer t o be always, provided the 

p-group i s c y c l i c or elementary abeliano I f the p-group i s not 

c y c l i c and has s u f f i c i e n t l y large exponent then, i t i s shown here, 

there i s a l o c a l l y f i n i t e variety V containing the group, but the 

group i s not in S(^) . In part i cu lar i f the p-group has exponent 

O 

at l eas t p and the p ' -group is c y c l i c th is i s true. Further 

spec ia l cases o f the problem are considered. 
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CHAPTER ONE 

INTRODUCTION 

lo The Problem and Its History 

The central concept of this thesis is the relationship between 

a locally finite variety of groups and the section closed classes of 

groups which generate it. For a class B of varieties and a variety 

V in B , the spine of V relative to B is defined to be the 

intersection of the section closed classes of groups which generate 

varieties in B containing V . A number of results can be rephrased 

in this language., Cossey [9] showed that a monolithic yl-group is in 

the spine of the variety it generates relative to the class of 

varieties of i4-groupso For a positive integer m let ^ denote 

the variety of abelian groups of exponent dividing m . Brisley and 

Kovacs [2] showed that, for a prime p , any finite group in 

the product variety A A is in the spine of A A relative to the 

class of soluble locally finite varieties. 

Two special cases of the relative spine are of interest. The 

skeleton S(£) of a variety V is defined to be the spine of ^ 

relative to the class which consists of ^ alone. The spine T(£) 

of a locally finite variety V is the spine of ^ relative to the 

class of all locally finite varieties. A finite group is said to be 

hypooritiaal if it is in the spine of the variety it generates, 

Bryant and Kovacs [5] have shown that for m > 1 and any locally 

finite variety ^ , the skeleton of A ^ is the section 

closure of the class of monolithic groups in k ^ and have given a 

more precise description of the groups in the skeleton. In unpublished 



work (given in Lemma 9.4 below) they have shown that for a prime p 

and a locally finite variety V of p'-exponent, the product variety 

is generated by its spine; in fact it is generated by hypo-

critical groups. 

Much of this thesis is devoted to generalizing the results of 

Cossey and Bryant and Kovacs mentioned abovec In this chapter a 

language and some elementary results are established, and in the 

next chapter some familiarity with skeletons is developed, In 

particular, necessary and sufficient conditions are given for a Cross 

variety to be generated by its skeleton. 

It is shown in Chapter Three that the skeleton of a 

product variety W of a nontrivial variety U of ^-groups with a localI3 

finite variety ^ is the section closure of the finite monolithic 

groups in W , and a more precise description ^f the groups in the 

skeleton is given. To prove this a technical theorem is needed which 

deals with varieties generated by monolithic groups which, for a prime 

p , are an extension of a nontrivial abelian group of p-power order by a 

p'-groupo That such varieties are of interest in other contexts is 

shown in the appendix to Chapter Three. The appendix is a paper 

which applies the technical lemma to show that if £ is a variety of 

>l-groups and ^ is a locally finite variety whose lattice of sub-

varieties is distributive and the exponents of £ and ^ are coprime 

then the lattice of subvarieties of ^ is distributive. 

In Chapter Four the study of the monolithic groups described 

above is continued and attention is focused on deciding which of them 

are hypocritical. In particular if the normal p-subgroup is cyclic 

or elementary abelian the group is hypocritical. Otherwise, if the 

normal p-subgroup has large enough exponent then the group is not 



hypocritical, in which case it is said to be sinaeve. The problem of 

which of these groups are hypocritical and which are sincere is not 

resolved here, but a number of partial answers are given which 

indicate the complexity of the problem and offer scope for further 

research. 

Apologia 

The freedom with which we talk about sets of varieties when in 

fact they are classes is an accepted abuse of terminology. It is 

done in the faith that, with less elegance but a clearer set theoretic 

foundation, one could discuss equivalent results in the language of 

subgroups of free groups. In this thesis the precedent is followed 

and if language is abused perhaps even further it is done merely to 

avoid cumbersome and pedantic statements about normal subgroups of 

free groups. 



2. Groups and Varieties 

In this section we establish notation and definitions relating 

to groups and varieties and gather facts which will be needed later. 

Notation and definitions which are not given here are as in Hanna 

Neumann [20], Group will mean finite group unless otherwise stated 

or unless this restriction is repugnant to the context, A class of 

groups is a union of isomorphism classes of groups and may contain 

both finite and infinite groups, A group G is said to be 

monolithia if the intersection of the nontrivial normal subgroups is 

nontrivial, and when nontrivial this intersectioh is called the 

monolith. If G is a set or class of groups we denote the class of 

groups isomorphic to 

cartesian products of groups in G by cG , 

subgroups of groups in G by sG , 

factor groups of groups in G by QG , 

finite groups in G by F( G) , and 

monolithic groups in G by M(G) . 

If G consists of a single group G we write cG, sG, QG 

respectively for cG, sG, QG . 

If G is contained in H we write G c H and reserve G c H 

for proper containmento A class G of groups is said to be section 

closed if QG c G and sG c G , For any class G of groups it is 

easy to see that QSG is section closed. A section of a group G 

is an element of QSIS , A section closed class G of groups is 

called a variety if cG c G . Birkhoff [20, 15.23] showed that if G 

is a class of groups then Q S C G is a variety. It is called the 

variety generated by G and denoted by var G , If G is a section 

closed class of groups which generates ^ we write Gscg^ . A monolithic 

group is said to be critical if it is not in the variety generated by its 



proper subgroups. We write d( G) for the class of critical groups 

in G . A Cross variety is a variety generated by a finite group. 

A variety ^ is said to be loGotly finite if every group in it is 

locally finite. An A-gvov^ is a locally finite group whose nilpotent 

subgroups are abelian. A variety of A-groicps is a variety which 

consists of /1-groups. 

The exponent of a locally finite variety is the order of the 

free group on one generator of the variety. The exponent of a group 

is the least common multiple of the orders of the elements of the 

group. For a prime p a group G or a variety ^ is said to have 

p-prime (p') exponent if p does not divide the (finite) exponent 

of G or V , The soole OG of a group G is the product of the 

minimal normal subgroups of G . If an action of G is defined on 

H (for example H may be a section of G or a G^-module) then 

the aentraliser C^iH) in G of H is defined to be the set of 

elements of G which act trivially on ff ; it is always a subgroup 

of G , We write O'^G for C^iaG) . If /!/ is a normal subgroup of 

G we write E < G and if N is characteristic, E char G . If H 

is a subgroup of G we write H ^ G if H is proper, H < G 

and if H is isomorphic to a subgroup of G then H ^ G . If 

H < G and T is a set of (right) coset representatives for H in 

G we say T is a {right) transversal for E ivi G , 

Suppose G is a group and a , 2?, a ^ , ... , a ^ , a^^^ are elements 

of G , We write a'h'^db = [a, 2?] = [a, li?] and inductively for 

n > 1 , 

and 

[a, n b ] = [[a, (n-l)2?], Z?] . 



We denote b '^db by c^ . The derived group G' is the subgroup of 

G generated by la, bl for all a, b in G . If G is generated 

by a^, a^, ... we write G = a^, . . .] . If H, K < G then 

[i?, k:\ = gpdh, kl \ h i H, k i K) . Let = and for e > 1 , 

For a prime p , denotes the set of Sylow p-subgroups 

of G . The Frattini subgroup of G is denoted by '^G and the 

center of G by Z{G) , The automorphism group of G is denoted by 

Aut G , 

For groups G and H a homomorphism from to is denoted 

G H , from G onto H by G H , an embedding by G H and 

an isomorphism by G H or G = H . If cp is a homomorphism of a 

multiplicatively written group G then exponential notation is used, 

C^ or a^ for a G , unless this becomes toe cumbersome 

typographically in which case circle notation is used, a o cp . If 

A is an additively written group then multiplicative notation is 

used for a homomorphism, ĉp or acp . If cp : G Aut S is a 

(fixed) homomorphism then GH denotes the split extension of H by 

G where h^ , h € H and g ^ G , denotes the image of h under 

g'^ . In particular if H - A is a G-module, written additively 

then GA is written multiplicatively and we will switch without 

comment from additive to multiplicative notation and vioe versa as 

seems appropriate. If cp is a homomorphism of G and E < G then 

For varieties U and V , U v V denotes the variety generated 

by the set theoretic union U u V , and U A V the variety of groups 

„ denotes the restriction of cp to . 
H 



in the set theoret ic intersect ion U n V . The product var iety of U 

by V is denoted by W . 

The fo l lowing results are we l l known. 

2.1 LEMMA. If G is a finite A-group then a*G is abelian. 

Proof. Suppose by way of contradiction that (a*G)' 1 . Then, 

(a'^G)' < G so there is a miniinal normal subgroup N of G 

contained in (o'^G)' . Notice N < Z(0*G) . Since a*G is an 

i4-group we can apply [15, VI 14.3 ( b ) ] to get 

N 5 Zia*G) n (o'^G)' = i 

which is the desired contradiction. 11 

2.2 COROLLARY ( C o s s e y [ 9 ] ) . If G is a monolithio A-group 

with aG a p-group for some prime p then a*G € S^(G) . 

Proof. Since OG is a normal p-subgroup of G , i f S ^ S^{G) 

then oG < S . Since G is an i4-group, S < 0*G . By 2.1, a*G is 

abelian and since G is monolithic, S = 0*G . // 

2.3 LEMMA. If G is a monolithia group with a nontrivial 

normal abelian Sylow p-subgroup S then S = a*G . 

Proof. Clearly S ^ o*G . I f ia*G)' 1 i t contains a 

minimal normal subgroup N of G . Then N = cG 5: S and 

N 2 Zia*G) . Since S is abelian we can apply [15, VI 14.3 ( a ) ] to 

get 

N < Zia*G) n io*G)' n S = 1 

which is a contradiction. Thus a*G i s abelian so S = a*G . // 

The fo l lowing theorem is proved in [15, I 18.1 and 18.3] ; in 

th is general i ty the proof r e l i e s on the Feit Thompson Theorem. 

2.4 SCHUR ZASSENHAUS THEOREM. If G is a group, N < G and 

the order \G/N\ of G/N is ooprime to the order of then 

there is a aomplement for N in G and all complements of N in 

G are conjugate. // 



2.5 LEFIMA. If S is a normal Sylow p-subgroup of G then 

^S = S n ^G . 

Proof. Using soine elementary pesults about Fpattini subgroups 

[15 , I I I §3] the problem may be reduced to the case '^S = 1 . By the 

Schur Zassenhaus Theorem S has a complement ^̂  in Ĝ  . I f 

S n ^G > 1 i t contains an irreducible ^-module which has a complement, 

A say, in S (by Maschke's Theorem). But the sp l i t extension HA 

is a maximal subgroup of G avoiding nontrivial elements of S n ̂ G 

which i s a contradiction. / / 

For groups G and H ^ G H denotes the ( restr i c ted) wreath 

product of G and H , and denotes the set of functions from 

^ t o . Under pointwise multiplication is a group, called 

the base group of G ^v H . We identi fy G with the subgroup of 

of functions t r i v i a l everywhere except possibly at 1 ^ H . 

2.6 LEMMA. If G is a monolithio group and G > a'^G and H 

is a group then G wr H is monolithio^ 

a(G wr H) = (aG)^ 

and 

oHG wr H) = . 

Proof. We f i r s t show (.OG) i s a minimal normal subgroup of 

G •wr H . Let cp be a nontrivial element of (oG) . Then there i s 

an a € H such that 1 ^ (p(a) i oG . Since G > O^G there i s a 

h i G such that [Z?, cp(a)] # 1 . Let ip ^ (tG)^ be defined by 

^(a) = b , Tp(a') = 1 : here and below the range of a' is . 

Then X = ['I'J s a t i s f i e s xC'̂ ) ^ 1 and X(<2:') = 1 , and X is in 

the normal closure of cp in G wv H . The normal closure of x in 



is 

•y I y ^ G^, via) ^ aG, y(a') = 

and the normal closure of this in G m H is (oG)^ . Thus (aG)^ 

is a minimal normal subgroup of G wr H . 

Let o^ centralize (oG)^ in G m H . Then = 1 so 

c = 1 . Let d i E . Since [(oG)^, S] = 1 , Ud) € a^G and since 

this is true for all d ^ H , 5 € (o^G)^ . It follows that any 

TJ 

nontrivial normal subgroup of G wr H contains (oG) . Thus 

G wr H is monolithic with monolith (OG) and monolith centralizer 

. 11 

2..1 THEOREM. Suppose p is a prime and F is a relatively 

free p-group. Let E < ^P , il? < P end let G^ be a p'-subgroup 

of Aut P/N . Then there is a group G s k\xt P suoh that the map 

P P/N induces an isomorphism of G and G* as abstract groups. 

If G^ < Aut P and G^ has the same properties as G then G^ and 
G are conjugate in Aut P . 

Proof. Let a^, ..., a^ be free generators of P and let 

(p € Aut P/N . Let b. ^ • Since P is relatively free the 

map a - t—̂  b . induces an endomorphism ijj of P . Since N s & , t' t 

M ^ 

\p is an automorphism. Thus the map P -» P/N induces a homomorphism 

Aut P onto Aut P/N . Let H in Aut P be the complete 

inverse image of G* under IT . 

By a theorem of P. Hall [15, III 3.18], ker TT is a p-group. 

By assumption G* ̂  5/ker TT and G'̂  is a p'-group. Thus by the Schur 

Zassenhaus Theorem there is a complement G for ker TT in F and 
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all complements are conjugate in E , and E 5 Aut P . // 

The following lemma is well known and is proved in Brady [1, 

2.3.7]. 

2.8 LEMMA. Suppose G and E are groups, 9 : G E , 

K 5 Aut G , L 5 Aut E and and L ave ooncugate in Aut E . 

Then the split extensions KG and EL are isomorphic. // 

The concept of a minimal representation due to Kovacs and Newman 

[17] is used repeatedly in this thesis. Suppose that G is a section 

closed class of groups such that var 6 is locally finite, and G is 

a group in var G . Then G is a section of a finite direct product 

of groups in G , generally in many ways by [20, 51.1]. (The 

argument offered in [20] in support of 51.1 appears to require a 

further idea which can be adapted from the proof of [20, 15.74].) 

Each such direct product determines a finite non-increasing sequence 

of integers, each integer the order of a direct factor. Order these 

sequences lexicographically, that is by putting one sequence before 

another when its entry in the first place where they differ is the 

smaller. In this ordering there is a unique first sequence. An 

isomorphism 

G ^ E/K , 5 5 X ... X ff^ 

corresponding to this first sequence and such that no proper sub-

group of E has a factor group isomorphic to G is called a minimal 

representation of G on G . The assumption that E be as small 

as possible is not usually made in writings about minimal represent-

ations, but is made here because it has as a consequence that 

K S ^E . 

To describe a frequently used fact about rtlinimal representations 
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we need another d e f i n i t i o n . I f G and H are groups, M < G , 

N < H. and there e x i s t isomorphisms : A/»-> N and 

y : H/C^iN) such t h a t 

[m^] o e = im o f o r a l l m € M, a € G/C^(M) 

then we say M is similar in G to N in H . (Here nf' i s , 

def ined t o be the common value of m f o r x in the coset a of 

CQ{M) in G o ] 

2„9 LEMMA ([20, 53=25]). Suppose G is a group and 

G ^E/K , H S E^'^ .. , H^ , ^ ^ i = 1 , = . . , t 

is a minimal representation 

of G on a section olosed class H of 

groups. Then for each i ' ̂  E^ is critical and G has a minimal 
no'rmal subgroup N. which is similar in G to oH^ in E^ » 

2o10 LEMMAo If G is a monolithic group with a nontrivial 

normal Sylou) p-subgroup S and 

G ^ E/K , E ^ ... ^ 

is a minimal representation of G then a Sylow p-subgroup T of E 

is normal in E and 

Proof 0 As noted e a r l i e r K 5 ^E so K is n i l p o t e n t and the 

Sylow subgroups of K are normal in E , Since G is monolithic 

and 1 S < G , S > aG. so aG i s a p-group. Since oE^ s oG 

f o r each i , OE, i s a p -groupo As H i s a subdirect product of 

the E. , aH i s a p~group. Because the Sylow subgroups of K are 

normal in fi , K i s a p-group. 

The Sylow p-subgroup of G i s normal in G , so the same i s 
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true f o r H/K , and since Z i s a normal p-subgroup of H , a Sylow 

p-subgroup T of H is normal in H „ By 2 ,5 , 

^T ^ T n ^H > K . // 

In the fol lowing well known formula y denotes the Mobius 

functiono 

2 J 1 WITT'S FORMULA ( [19 , 5.11])» Svcppose F is the infinite 

absolutely free group on k generators^ k > 1 . The rank of 

^(c)^'^(ctl) ^^ ^ ^^^^ ahelian group is 

n{o) = I y . // 
d\a 

For a pos i t ive integer m ^ 4??' ^ 4?? respect ively 

the variety of a l l abelian groups of exponent dividing m , the 

variety of a l l ni lpotent groups of c lass at most m , and the variety 

of a l l groups of exponent dividing m , 

For a variety V the lattice of V means the l a t t i c e of sub-

var ie t i es of V using V and A defined e a r l i e r . I t i s modular. 

In.a modular nondistributive l a t t i c e there are always three elements 

whose pairwise j o ins and meets are respect ively equal [22 , Theorems 

32 and 33]o Higman [1"+] gave the f i r s t example of a variety with a 

nondistributive l a t t i c e and showed that f o r each prime p > 5 the 

l a t t i c e Mp ^ Ep I ^^ d is tr ibut ive . Kovacs and Newman, in 

unpublished work, showed 42^3 has a nondistributive l a t t i c e . Bryce 

[ 7 , 4oi+o8] showed f o r any prime p , A ^^^ ^ 

d is t r ibut ive l a t t i c e . Brooks [ 3 ] showed A^A^ has a nondistributive 

l a t t i c e . Thus we get the fo l lowing resu l t . 

2J2 THEOREMo For each prime p there exist three distinct 

locally finite varieties of p-power exponent whose pairwise joins and 

meets are respectively equalo // 
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3o Representation Theory. 

In this section much of the representation theory needed later 

is developedo Most of it is well knowno Notation and terminology 

not here defined are as in Curtis and Reiner [10] though here module 

shall mean finitely generated right module except.where otherwise 

statedo Throughout this section let be a group, p a prime, a 
ct a positive integer and R the ring of integers modulo p . On Ob 

occasion the ring of integers modulo p will be denoted by Z^ . By 

[10, VOolU] there exists a finite splitting field A for G obtained 

by adjoining a primitive ??2th root of unity to Z^ , where m is 

the exponent of G , Both R and A are quasi-Frobenius rings (as 
06 

defined in [10, 58o5])o Let i? be a commutative quasi-Frobenius 

ring of p-power characteristic= Then the group ring RG is also 

quasi-Frobenius [10, 2(d) p., 4023= The regular i?G-module will also 

be denoted by RG . 

If C is a direct sum of A and B , C - A ® B, then A is 

said to be a direat smmand of C o For a positive Integer r , 

A®^' denotes the direct sum of r copies of .4 „ An i?G-module A 

is said to be injeavive if, whenever it is a submodule of a module 

C then it is a direct summand of C . An i?G-module A is said to 

be -pro^eotive if whenever there is a homomorphism of C onto A 

then A is isomorphic to a direct summand of C „ A module 

isomorphic to an indecomposable direct summand of RG is called a 

prinoi-pal indeoomposdble module. 

3ol LEMMA ([10, 56,6 and 58,14]), An RG-module is injeotive 

i f and only if it is -proceotive if and only i f it is a direat sum of 

pHnoiipal indeoompoadble modules. // 
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An flG-module is said to be aompletely veduoible if every sub-

module is a direct summand. Recall that R is of p-power 

characteristic, 

3.2 MASCHKE'S THEOREM ([11, 3.2.2]). Supyose G is a 

p'-group and the submodule A of the RG-module C is a direct 

factor of C as abelian group. Then A is a direct swmand of C . 

In particular if R is a field then C is completely reducible, /'/ 

3„3 KRULL SCHMIDT THEOREM ([10, 14„5]). If 

A = A^® ... @ A^ = ... @ B^ 

are two decompositions of an RG-module A into direct sums of 

nonzero indecomposable submodules then r = s and there is a 

permutation IT of {l, JT'} such that A^ - B^^ for each i . // 

If is a right i?-iiiodule and S is a left fl-module then 

A B or A ® B will denote the tensor product of A and B over ti 

R . For a positive integer r , A denotes the tensor product of 

r copies of (the two sided module) A . If H S G and A is an 
Q 

RH-modnle then A ~ A RG is the RG-n\odule induced from A . 

3<,4 LEMMA If N G and A is an infective RN-module then 

Q 
A is an infective RG-module, 

Q 

Proofp By the definition of A and [10, 12.14], 

(i?/l/)^ = RN RG ̂  RG . 

If A is an injective M-module then there is an i?iV-module B and 

a positive integer r such that A @ B = (RN) by 3.1, By [10, 

12.12] the direct sum distributes over tensor products so 

/ © / - (4 © B)^ - {(RN)^f ^'{RG)®^ . 

By 3.1 the lemma follows, // 
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If A is an i?G-iiiodule and H S G the restriction of A to H 

gives an RH-module denoted by • If A is isomorphic to a 

suhmodule of B we write A . For an i?(J-module A , as noted 

earlier GA denotes the (multiplicatively written) split extension 

of ^ by G where the action of G on i4 by conjugation is the 

module actiono 

The first paragraph of the proof of [10, 63.2] can be adapted to 

prove the following lemma. 

3.5 LEMMA. If e A G and A is an RG-module then 

// 

For an RG-module A , ker A is by definition the centralizer 

in G of A and G is said to aat faithfully on A if ker A - 1 . 

If ker A ~ G then G is said to act trivially on A . 

3.6 LEMMAo If A and B ave RG-modules and A ^B then 

GA/\e.v A is a section of (?B/ker B . 

Proof, Since A <B , ker B S ker A . Now GA/ker ^ is a 

factor group of GA/kev B which is isomorphic to a subgroup of 

Gfl/ker B . // 

Suppose g ^ G and g centralizes every irreducible 

module. Then g - I is in the Jacobson radical (defined in [15, 

V 2.1]) of the group ring l^G which is nilpotent by [15, V 2.M-]. 

Thus there is an r such that (^-1)^ = 0 . Let n be such that 

n 

p^ > r , Then (g-1)^ - 0 and since Z^G has characteristic p , 

n 

g^ -I , It follows that if the maximal normal p-subgroup of G 

is 1• then G has a faithful completely reducible module A . If 

G is also monolithic then G must act faithfully on some 
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irreducible direct summand of A o 

3 0 7 L E M M A o If G is monotithioj p is a prime^ and oG is 

not a p-group then there is an ivreduoihle Z^G-module on which G 

acts faithfullyo // 

308 R E M A R K . If N < G , A is an RN-module and g € G then 

G 

[a ] ̂  ^ A (S g . The set A ® g is an i?il/-module since for any 

n ^ N and a € A , 
- 1 

ia ® g)n = an^ ® g » 

A ® g is called a oonjugate module. Identifying ^ © 1 with A we 
have (M)^ ^ A ® g) so that 

NA ^ NiA ® g) . 

If B is an i?G-module and D < C < B^ , then the subset Cg of B 

is in fact a submodule of B^ . VJith iC/D)g defined as Cg/Dg 

we have thar 

(C/Df > iC/D) ® g ^ (C/D)g^ , 

the obvious isomorphism being such that (c+D) ® '—^ Dg for 
R- - ^ . -

all c in C c 

3 „ 9 L E M M A o If N is a normal p'-subgroup of G and A is 

a homooyalio R^G-module of exponent p^ then [Aj^]^ an 

injeative R G-module. QL 

Proof. By Maschke's Theorem A^ is an injective i?̂ il7-module. 

By 3.4, is injective. 11 

If a > 3 there is a natural homomorphism R ^ R ^ , Under 

it an R G-module of exponent dividing p^ can be considered as an oc 
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R^G-moduleo In particular if , is a p'-group and A is an 

indecomposable -module of exponent p^ then A is homocyclic by cx 

[11, 5,2„2] and, considered as i?g(?-module, it is injective by 

Maschke's Theorem. Applying 3.1 gives the following lemma, 

3„10 LEMMAo. If G is a p'-group then an indeoomposable 

R^G-modute of exponent p^ j 3 S a considered as R^G-module, is 

a principal indeoompo sable R^G-module, // 

If A is a module then for any positive integer n , nA denotes 

the submodule whose underlying set is {na \ a A} . 

3 „ N LEMMAO If G is a p'-group and A is a principal 

indeoomposahle R^G-module then 

A ^ pA 3 p^'^A 3 0 

is the unique composition series for A and all the factors are 

isomorphic, 

Proofo Since A is monolithie-(it is/indecom^sabl^-^wb there-
ct-l fore homocyclic by [11, 5.2o2]. By Maschke's Theorem p A is 

irreducible o For 3 < a the map p A/p A p ~ A defined by 

S 6+1, _ a-1 p'^a + p A ^ p a 

for any a ^ A is an isomorphism since A is homocyclic. Thus 

p̂ '̂ Â is a maximal submodule of p^A » If B is any maximal sub-

module of p^A then p^A/B is of exponent p and so p^^^A < B . 

Thus p̂ '̂ Â is the unique maximal submodule of p^A . Ii 

The join of the minimal submodules of a module A is called 

the socle OA of the module, 
3 J 2 THEOREM, Suppose G is a p'-group and A is an R^G-
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module. The module B is isomorphic to a submodule of A if and 

only if it is isomorphic to a factor module of A . 

Proof, First suppose A and A are indecomposable i? G— 

modules of exponent p with a common composition factor. Consider 

A^ and A^ as i?g(J-modules. By 3.10, they are now principal 
I 

indecomposables, so 3.11 gives that OA^ s oA^ ; thus A^ and A^ 

are flgG-injective hulls of isomorphic irreducibles and hence they 

are isomorphic o This shows that an indecomposable -module is 

cx 

determined up to isomorphism by its exponent and a composition 

factor. 

Suppose C is an irreducible i?̂ Ĝ -module. If A is an 

R^G-module then the join of all the indecomposable submodules of A 

whose socle is isomorphic to C is called the C-oomponent of A . 

Suppose that in an unrefinable direct decomposition of A there are n 

indecomposable direct summands in^the C-componenJ of A and they have exponer 

p'^^^^ with o{i) > £?(i+l) for all i . The C-component 

of A is characterized by a sequence 

(ad), a(2), 0..] 
where a(i) = p'̂ ^̂ ^ for i S n and a{i) = 1 for i > n ^ and this 

is called the C-sequence of A . 

It will be shown that B is isomorphic to a submodule or factor 

module of A if and only if for each irreducible RG-module C , ct 

the C-sequence of B , 

is such that a(i) > bi.i) for all i = 1, 2, ... . 

The sufficiency is clear. For the necessity we may suppose by 
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way of contradiction that there is a smallest k such that 

a(k) < b(k) . Then {b(k)p~^]B has at least k + 1 indecomposable 

direct summands with socle C in an unrefinable direct decomposition 

while {b{k)p~^'jA has only k , This contradiction establishes the 

condition for submoduleso The condition for factor modules is 

established using a similar argument considering B/[bik)p and 

A/{b(k)p-^]A . 

The classes of modules isomorphic to submodules and factor 

modules are defined by the same conditions and so must be the same 

class of modules, // 
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CHAPTER TWO 

SOME REMARKS ON SKELETONS 

In Section Four, the first section of this chapter, some lemmas 

are proved which have some interest in their own right and which are 

used in the proof of the main theorems of the next chapter. In 

Section Five necessary and sufficient conditions for a Cross variety 

to be generated by its skeleton are given. 

4o Lemmas and an Example 

The definition of the skeleton given in Section 1 is equivalent 

to the statement that the skeleton S(^) of a variety V is the 

intersection of the section closed classes of groups which generate 

^ . The first lemma helps reduce the problem of finding the skeleton 

of ^ to that of finding skeletons of subvarieties of ^ . 

4„1 LEMMAo I f A is an index set and for eaoh X € A ^ V̂ ^ 

is a variety then 

s i V V, c u s i v j , 
• xa ^ ^xa 

Proofo Let F be the (infinite) absolutely free group of 

countably infinite rank. For each ) / i h. let X L 

N ^ = I < F and F/N i \ / \ S } 

and for each N € hl^ let G^^s&gV^ be such that F/N ^ G^^ . It is 

easy to see that S ( v J = fl G, „ . Let denote the cartesian 

product of the and for y € M T » l-'(^) denotes the N^ 

component of U . Then for any y € X 
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c u G, ,,, . X,u(A) 

Since 

n ^u G = U 
A 

n G, „ 
U 

the lemma follows. // 

To show that equality need not always hold in 4.1 and that a 

product of two non-trivial locally finite varieties need not be 

generated by its skeleton, we give an example. 

4„2 EXAMPLE0 Let q he a prime. By 2.12 there are three 

distinct locally finite varieties ^ q-power exponent 

whose pairwise joins and meets are respectively equal. Let 

E ~ ^ V be a locally finite variety. 

By 4ol and since ^ = Û ^ v ^ , 

Since U = U^ V U^ , 

Because the lattice of sets is distributive, 

Sm) c u (S(U2VjnS(U3^) . 

By [20, 21,23], 

^ V A ̂ V = c U^V , 

so S(yV) c U^V . Similarly £ ^ V so e . 

•Xl.ll By [20, Z^-r^l, [U^AU^)V c Uĵ V c W so S ( W ) cannot generate 

^ . // 
The above is perhaps the simplest example of a locally finite 

product variety not generated by its skeleton. Some results of 
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Woeppel [23] can be used to show that there is a locally finite 

product variety W not generated by its skeleton in which the 

lattice of U is distributive. The next lemma is a presumably well 

known variant of [20, 22,43] which will be useful later. 

4 O 3 L E M M A . If G and H are nonempty classes of groups 

generating ^ and disGrind-nating _V respeotively then 

{G WC H \ G ^ G, H € H} 

generates ^ , 

Proof 0 Clearly U = W var and W = \/ (var G'V) by [20, 
G^G G^G 

21.23]. The set {G wr 5 | ̂  € H} generates (var G)W by [20, 22.43] 

so 

{G M H \ G ^ G, H € H] = U {6̂  wr ^ | ̂  € H} 
G^G 

generates W (var G'V) , which completes the proof. // 

GIG 

Recall that the spine T(^) of a locally finite variety ^ is 

the intersection of the skeletons of the locally finite varieties 

containing ' that T(^) c S(V) . The next lemma shows that 

equality may sometimes hold. Recall that M(^) denotes the class of 

monolithic groups in V o 

4 O 4 LEMMAO If ^ is a nontrivial locally finite variety 

generated by monolithic groups with nonahelian monoliths^ and V is 

a locally finite variety then 

S(W) = T(^) = QS{G I € M(W) and AG is not abelian] , 

Proofo Let 

G = {(3 wr F I G € M(U), OG A and H € F(V)} . 

Let H = {H \ H I. M ( W ) and OH ^ A} . By 4.3, G generates W . 

By 2.6, G £H . If we show H c T(UV) we shall have 

S(UV) c QSG C QSH c T(UV) C S(UV) 
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proving the lemma» 

Suppose K is a section closed class of groups generating a 

locally finite variety containing W . Let H € H and take a 

minimal representation of ^̂  on K : 

H ^ K/L , Z 2 Z X . , . X ii: K. € K for all i = 1, t . X 'V t' 

By 2.9, H ^ H/a*H ^ K^/O'^K^ € K . Thus H c K so H c T ( W ) . 

4„5 LEMMA, If U and V are nontvivial locally finite 

varieties and either U is dbelian or not of prime power exponent 

then M(V) . 

Proofo If £ is abelian the lemma follows from [5, 1.2]. 

Suppose U is not of prime power exponent. Let G € M(^) and p 

be a prime divisor of the exponent of ^ such that OG is not a 

p-group. By 3,7 there is a faithful irreducible Z^(?-module A , and 

it is easy to see that A is self-centralizing in the split 

extension GA . Now GA € and if 

GA ^ H/K , H < H^ ... X 

is a minimal representation of GA on a section closed class G of 

groups generating a locally finite variety containing W , then 

G ^ GA/A = GA/OHGA) ^ ^ ^ by 2.9. 11 

4o6 LEMMA, If a variety V is generated by its skeleton and 

n, \m 
V = \/ V. = \/ W. 
= iVi jYi =t7 

t^en V = y variS(V)nV^n^.) 

Proof, By 4.1, S(V) = U (5(V)nV.] and S(V) = U (S(V)nW^.) so 
i J 

= U (SCpnV^nW.) . 
ij 
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I t fo l lows that V = Y V ( i , j ) where V ( i , j ) = var[S(V)nV.nV!.] . // 

A variety i s said to be join irreduaible i f i t cannot be written 

as the j o i n o f two proper subvariet ies . The next lemma concerns a 

j o in i r reduc ib le variety of i4-groups and w i l l be useful in the next 

chapter, 

4o7 LEMMAo 1 / U i s a join irreduoihle variety of A-groups 

then there are oritioal groups G^, G^, ... with var c var G^ £ 

and ^ - \J var G, „ 

Proofo Let E^^ H^̂  . o . be the c r i t i c a l groups in £ and l e t 

GQ = 1 and ~ Suppose there ex ist c r i t i c a l groups 

G., G., G with G. , H. ^ vav G. f o r i = 1, n . _L z n u—i. u "i. 

We show there i s a extending this sequence. Let 

5 = {g I (7 € C(U) and H ^ var (P} , 1 ^ = n+1 

S^ = [G \ G ^ C(U) and G^ ^ var G n 

and 

Since C(U) = U S. , U = \ / var S. . Because U is jo in 

= I ^ ^ C(U) and G^, H^^^ ^ var G] 

3 u 

i rreducible £ = var S^ f o r some i . Since £ i s a variety of 

i4-groups, G.H € QsS. by Cossey [ 9 ] . Thus i = 3 and S i s n nTjL % o 

not empty. Let ^ ° ^^^ ŷ̂ t ^ ^n+1 ' Continuing 

in th i s way we see \ / var G. contains C(£) so £ = \/ var G. . I j 
kh k=l ^ 

With notation as in 4-,7, i f G ^ H then G is a sect ion o f a 
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finite direci: product of the G^ and so is in the variety generated 

by one of them„ Since a critical >l-group generates a join 

irreducible Cross variety by Cossey [9], we have the following 

corollary„ 

408 COROLLARYo A finite group in a join irreduoible variety of 

A-groups is in a join irreduoible Cross subvariety. // 

5„ The Skeleton of a Cross Variety 

A Cross variety is to-be a variety generated by a finite 

group. Let be a group and 

G ^ H/K , H < H'^ X H. , H. € var G for i = 1, . . ., t 
J- U I' 

be a minimal representation of G on var G , The class 

, ,.0, H } is called a oritiaal class for G . 

X u 

5ol THEOREMo Let ^ he a Cross variety. The skeleton 5(V) 

of X generates ^ if and only if eaoh finite group generating ^ 

has a unique oritiaal olass. If S(V) and G eaoh generate V and 

G is a oritiaal alass for G then G = S(V) . 

Proof, Assume first that each finite group generating ^ has a 

unique critical classo Let G generate ^ and G be its critical 

class. Let H be a section closed class of groups generating ^ 

and let 
G ^ H/K , ff < X .,. X , € H for i = 1, ..,, t 

be a minimal representation of (? on H , Since G and H 

generate V , is a critical class for G and by 

assumption is equal to G „ Thus G c H , so G e S(^) . Since G 

generates V , S(^) c G so S(^) = G and S(V) generates V . 

On the other hand suppose G generates X and has two distinct 
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critical classes G^ and G^ . Then there is a ^^ ^ such that 

SO 

By definition of critical class, S(^) cannot generate £ . // 

In fact for a Cross variety ^ generated by its skeleton there 

is an explicit construction for S(^) . Following Bryant [4] we call 

a set G - {G , 00 o, (3.1 of groups oritioal if, for each i , G is 1 V' 

not in the variety generated by (Gu( Q s-l)Ĝ .) \ {<3 .} . Any set G 

can be refined to a critical set: if G is in the variety generated 

by Ĝ  = [GU(QS-1)G.] \ {<3.} then in G , G. has been replaced by 1 V "V' X ^ 

groups of smaller ordero Continuing with this process we arrive at a 

critical set H with var H = var G . We call H a oritiQal 

refinement of G , If G consists of a single group G we call H 

a oritioal refinement of G o 

5o2 THEOREM, I f a Cross variety V is generated by a finite 

group G J H is a aritiaal refinement of G and S(V) generates 

V then ~ QSH „ 

Proofo Because G € var H there is a minimal representation 

G ^H/K , E S H^ X .. o ^ E^ ^ E^ ^ qsH for i = 1, . . . , t 

of G on QSH , By 5,1, G = QS{e^, O . . , is the unique critical 

class for G , If G C QSH then var G = var H contradicts the 

definition of critical refinement. Thus G = QSH and by 5.1 we are 

done 0 11 
If G is critical then QS{G} is a critical class for G so 

5.1 has a corollary, 

5,3 COROLLARY, I f G is aritioal and var G is the join of 

two proper si^bvarieties then S(var G) .does not generate var G . // 
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5o4 EXAMPLEo Suppose p is an odd prime and G is a 

3 2 
nonabelian group of order p and exponent p . Let H he a 

3 
nonabelian group of order p and exponent p . Then by [20, 

54.22], 

var G = V var H . 

Since G is critical, 5.3 implies S(var G) does not generate 

var G . 11 

From 5.1 we have another corollary. 

5.5 COROLLARY. A coin ivfeduoihle Cross vaHety is generated 

by its skeleton if and only if it is generated by a unique aritioal 

group. // 

Lemma 4.6 shows that if a Cross variety is generated by its 

skeleton then it has a unique decomposition in terms of join 

irreducible subvarieties. It is easy to see that each of these 

subvarieties must be generated by its skeleton. Now 5.5 gives the 

following result. 

5.6 THEOREM. If a Cross variety is generated by its skeleton 

then it has a uniqv^ deaomposition as an irredundant join of join 

irreducible subvarieties each of which is generated by a^iio^ique 

oritioa1 group. // 

As example 5.4 shows, the converse of 5.6 is not true. 
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CHAPTER THREE 

THE SKELETON OF A PRODUCT VARIETY 

In this chapter the skeleton of the product of a nontrivial 

variety of .4-groups and a locally finite variety is characterized in 

two ways-. Theorems 6.1 and 6.3 below. In Section 6 it is shown that 

these characterizations follow from a description of the skeleton of 

a certain product variety, given in Theorem 5.M-. In Section 7 a 

discussion of i?Q^(?-modules in a varietal setting lays the foundation 

for a proof of Theorem 5.4 which follows in Section 8. 

6 . The Theorems 

As a locally finite variety V is always generated by its 

critical groups, S(;v) c qsC(^) . In fact equality may sometimes 

occur. 

6.1 THEOREM, If ie a nontrivial variety of A-gvoups and 

V ia a looally finite variety then 

S ( W ) = q s M C ^ ) = qsC(^) 

and therefore S(^) generates ^ . 

For a (nontrivial) variety V , ^^oC^) denotes the (infinite) 

relatively free group of cpuntably infinite rank. 

An interesting corollary can be derived from Theorem 6.1 and [5, 

1.5]. 

6.2 COROLLARY, Suppose ^ is a nontrivial variety of A-groupa 

and ^ is a nontrivial looally finite variety. The skeleton 

S(LW) = F(iJV) if and only if 

(a) ^ ia abelian of exponent a power of a prime p and 
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^l^oo^l-') ^ p-g^oupj or 

(b) ^ is nonabelian and join irveduoible. 

Proof. For abelian U the result is given by [5, 1,5]. Suppose 

U is not abelian. If £ is the join of two proper subvarieties U^ 

and ^ then by [20, 24,34], U^V ^ ̂  for i = 1, 2 . Thus there 

is an n{i) such that ^ U^V , Let n be the larger of 

nil) and n'(2) . Then ^^(M) ^ u ̂ V , However 

S(UV) c u^v u ̂ V by definition so -f^CW) ^ , 

Suppose on the other hand that £ is join irreducible. By 

4o7 there are critical groups G^, G^, with var G^ c var - ' " 

and U = \/ var G^ . If G is a finite group then 
1. 

£((?) € var G^ for some k (as in the proof of 4,8). Thus 

G € (var Gj^]^ . As U is not abelian there is an I > k such that 

Gj^ is not abelian and G € (var G^]^ . 

Let ^ H/K , H 5 G^ , the direct pov;er of G^ . Since V 

is nontrivial there is an L € V with |l| > n . Let 

G = Gj^ wr „ Sincp G^ is not abelian G^ > . 

Thus G € M(W) by 2,5o By 6.1, S € . We show G € qsS , 

By [20, 22.14 and 22,12], 

U wr Gf^G) < wr G/'^G) < G . 

By [20, 22,21 and 22,11], 

G € QB[H/K w r G/^{G)] £ w r G/^{G)] . 

This proves the corollary, 11 

6„3 THEOREMo Let ^ he a nontrivial variety of A-groups and 
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^ be a nontvivial loaally finite vaHety. Let {u^ | A € A} be the 

set of nonabelian join iTveduoible Cross subvarieties of U . Then 

S I M = ^U^ U S ( ( U A A ) V ) , 

In [5, loH] Bryant and Kovacs have characterized the groups in 

S ( (UAA )^ SO the above theorem gives a complete description of the 

groups in S(^) . By Cossey [8] a join irreducible Cross variety in 

^ is generated by a single critical group. 

Derivation of 6c3c Let {û ^ | A c A} be the set of nonabelian 

join irreducible Cross subvarieties of 11 . Now _U = \ / Û  V (UAA) 
- - = 

s o b y [ 2 0 , 2 1 c 2 3 ] , 

uv ̂  Y 
and by ^cl, 

SiW) ~ U u . 
A 

By 5cl, c and by [5, 1,2], S((UaA)£; £ . By 

= U u S((UAA)£J' . // 
A 

Theorem 6.1 is a consequence of the following rheoremo 

6o4 THEOREMo Suppose p is a prime and a is a positive 

integero Suppose U is a nontrivial looally finite variety such 

that for some variety W of p^ -exponent 

w c U C A W - - - — 

and IJ is generated by oritioal groups not in W . If ^ is a 

looally finite variety then 

= Qs{c; i G € M(UV) 

and there is an N < G^ N € U\W and G/N ^ V} , 
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Also generates W . 

The following example shows that, with the assumptions of 6,4, 

S(UV) need not equal QSC(W) , 

6„5 EXAMPLEo Let q, ^ and U^ be as in 4.2, Let p 

be a prime different from q , Suppose G € and let A{G) 

be an irreducible Z^(?-module on which G acts faithfully; one 

exists by 3,7, Let 

U var{GAiG) \ G ^ , 

If W = V ̂ Û  then W is a variety of p'-exponent such that 

W - U c A W „ = _ = _ = p = 

Since G acts faithfully and irreducibly on A{G) , GAiG) is 

monolithic and by [17], critical., Hence ^ satisfies the conditions 

of 5c4o 

Suppose V is a locally finite variety of exponent coprime to 

pq . Let H be a group in ^ which is not in ^ A ̂ ^ • We show 

H ^ S ( ^ ) , Suppose by way of contradiction that H € S ( ^ ) . By 

4,3, 

c Qsf^P^CG) wr i G € and n = 1, 2, .,.} , 

Then for some G € and some positive integer n , 

H € QS[GA(G) wr F c Since H is a q-group it must be a section 

of a Sylow (^-subgroup S of GA{G) WR F^I^) • 

Clearly S ^ G^ where r = ' ^ % ^ ̂  so 

^̂  ̂  £3 ^ ^ Now U3 n lu^u^] = (^oU^) u ( ^ n ^ ) - % A ^ 

since the pairwise meets of ^ and ^ are equal. Thus 

^ ^ ^ ^ contradicting the choice of ff . It follows, in 
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p a r t i c u l a r , that any c r i t i c a l group in ^ but not in U A H i s o J. z 

not in S ( W ) „ However, by 6 , 4 , S ( W ) generates W . / / 

In the r e s t o f th i s sec t ion i t w i l l be shown that t o prove 6 .1 

i t s u f f i c e s to prove 6=4. Thus f o r the res t o f t h i s sec t ion assume 

6.4 i s trueo 

Suppose ^ i s a var ie ty of A-groups of exponent 

p^j^^a(l) ^̂ ^ p^^^air) ^^lere p ( l ) , p(r) are d i s t i n c t primes 

and a ( l ) , a ( r ) are p o s i t i v e integers . Let U- be the var ie ty 

generated by the monol i thic groups in £ whose monoliths are p ( i ) -

groups f o r i = 1 , o , o , r , and l e t ^ be generated by the 

monolithic groups in ^ with nonabelian monoliths. (We adhere to 

the convention that even the empty c lass of groups generates ^ . ) 

Clearly r , 
V " 

For i > 0 , le t ^ be generated by the groups in ^ of p ( i ) - p r ime 

exponent. Suppose V is a l o c a l l y f i n i t e var i e ty , 

6.6 LEMMAo If i > 0 then cSim) . 

Proofo I t i s enough t o prove the lemma f o r i = 1 <> I f every 

sec t ion c losed c lass of groups generating ^ contains a subclass 

generating Û V then 5 ( u c S ( W ) . 

Let p = p ( l ) and a ~ a ( l ) . By 4 . 3 , Û V i s generated by 

groups L =• G -wv H where G € M(^) , aG i s a p-group and 

H € F(V) o Since oG i s a p-group and OL = iaG) , OL i s a lso 

a p-group, 

Suppose G is a sec t i on c losed c lass o f groups generating ^ 

and l e t 

L = M/I^ , M 5 G X _ . X G, , G. € G f o r i = 1, . , . , t J. u 
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be a miniinal representation of L on G . We show G. € f o r 

a l l i „ 

Let Y = Ŵ V , As , L € ^^V , Y (L ) ^ A ^ • By 2^9 there i s an 

N. < OL such that N. i s s imilar in L to OG. in G. . Then ^ "Z- 1 1 

Since a i 5 Y (L ) ^ A ^ , Cj/1/.) > Y (L ) . Thus G./a*^?. € Y and so — â ' L = f t = 

> f o r each i , Fix i and l e t K = . I f z = 1 

then ^ X E ^^^ done. Suppose K > 1 . 

Since K 5 vf^?.] € U , K i s an yl-group. By [15, VI 14.3 ( b ) ] , 
ty 

K' n Z{K) = 1 . ks K centra l izes oG. , oG. < Z{K) so Z(Z) t 1 • 
'V ly 

As G. i s monolithicj K' - 1 and K i s abelian. I t fo l lows that 
L' 

each Sylow subgroup of K i s normal in G. and so K must be 

of prime power order,, Now K > oG. which i s isomorphic to N. 

1- V 

so K i s a p-group and thus K i ^ . Hence 
G. i k Y A UV = |A Ŵ  A U|V . I f we show A W A U = U, we are 
t = C p ^ l =pOr=l = =1 

done, 

Clearly £ A ^ ^ A £ . A monolithic group in A ^ ^ A U 

]Dut not in Ŵ^ must have a p-group f o r i t s monolith and be in 

by de f in i t i on of ^̂ ^ . A monolithic group in Ŵ  i s in since 

Ŵ  ^ » This completes the proof . // 

6=7 LEMMAo Let £ be a variety of A-groups and ^ be a 

loaally fin-ite voociety and G € M(^)W with oG a p-group. Let 

be generated by the groups in M(£) with monolith a p-group. 
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Then G € U'^V . 

Proof. Let a = aG , a^ = o^'G and V = . Since ^̂  ̂  V , 

V > a . Clearly a* > o so a* n F > a . As a^ centralizes a , 

a 5 Z(a^nF) , As 7 is an ^-group so is a'̂  n 7 and by [15, 

VI 14.3 (b)], 

Zio^nV) o (alrtF)' = 1 . 

Also (a'̂ nF)' char (0=̂ 07) <J . As ff is monolithic, (a^n7) ' = 1 , 

Thus a'̂  n 7 is abelian and its Sylow subgroups are normal in G . 

Therefore a* n 7 is a p-group. 

Since 7 is an yl-group, a Sylow p-subgroup S of V 

containing a is abelian so 

a 5 5 5 a* n 7 . 

Because a"̂  n 7 is a p-group, -S = a"̂  n 7 . Thus S G . 

Suppose A* is a normal subgroup of 7 avoiding S . Then 

[iV, a] 5 [il/, 5] 5 il/ n 5 = 1 , 

so N ^ a* n V = S and iV = 1 . Thus 5 > a7 , the socle of 7 . 

It follows that 7 is a subdirect product of monolithic groups 

each with monolith a p-group. Hence 7 ^ U'̂  and G € U'̂ V . // 

Derivation of 6.1. Suppose G € M(^) . If aG is not abelian 

then by 4.H, G i S ( W ) . If W ) = 1 then by 4.5, € S(UV) . 

Suppose aG is abelian and V((J) t 1 . Then for some i , oG is 

a p(i)-group. By 6.7, G € U,V\W.V . Thus G has a normal 

subgroup 71/ such that iV € U.\W, and 6̂/21/ € V . By 6.4, 

G € ^^^ by 6.6, G € S ( W ) . 11 
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7o i?g^G-Modules 

Let p be a prime held fixed for the rest of this chapter and 

U be a locally finite variety. In the next section we shall take 

U as in 604 but that restriction is unnecessary here. Let be a 

group and F be a normal p'-subgroup of G . Let 

C(7) = j 4 is an i?^7-module and VA € , 

As G and V are fixed in this section we may write C for C(F) , 

7A DEFINITIONo If A s B and B € C then A ^ C and 

B/A € C „ If A^, A^ ^ C , then A^ e A^ ^ C , Thus if A^, A^ < B 

then A^, A^ € C implies A^ + A^ ^ C while B/A^, B/A^ € C implies 

B/A^nA^ € C . 

Thus we may define the C-radioal of A , C-rad , of an i?^7-module 

A to be the largest submodule of i4 in C . The C-residual of A, 

C-res A , is the smallest submodule of A such that the factor module 

is in C o Notice that by 3,12, 

/i/(C-res A) ^ C-rad A , 

7„2 REMARKo For ff^7-modules A, B since A @ B A induces 

C-rad(>l © B) -*> C-rad A we find 

C-rad(4 © B) = (C-rad A) @ (C-rad B) , 

Let C = C-res(4 © B) . Then 

C c ((C-res ^)©Bj n C-res B)) = (C-res A) © (C-res B) , 

Also A/Ac\C ^ {A^C)/C € C so A n C ^ C-res A . It follows that 

C-res(^ © B) = (C-res A) © (C-res B) . 

If A is an i?^G-module, B S A^ and g € G , then by 3.8, 

B ^ C implies Bg € C , and in fact C-rad Ay admits G . More 

generally, 



(C-rad Bg)g ^ € C and so, since (C-rad Bg)g ^ 5 B , 

Thus 

Similarly 

and 

(C-rad Bg)g ^ c C-rad B ^ C 

C-rad Bg = (C-rad B)g . 

iC-res Bĝ^ 9 
- 1 B 

(C-res Bg)g - 1 
€ C 
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Bg B 
(C-res B')g ~ vC-res B g ^ c 

so 

C-res Bg = (C-res B)g . 

7o3 DEFINITION^ Let B(G) be the class of R^G-modnles A 

such that the restriction Ay € C ^ In this section G is fixed and 

we write B for 8(G) „ It is easy to see that B has the closure 

properties cf C described in 7ol and B-rad A and B-res A 

may be defined in the obvious wayso Because (B-rad A)^ c C-rad A 

and because C~rad Ay admixs the action of G we have 

(B-rad A)y = C-rad ^^ . 

Similarly, C-res Ay admits G and so 

F 

(B-res A)y = C-res Ay , 

Furthermore arguments for C can be adapted to show 

B - r a d © B) = (B-rad A) @ (B-rad B) 

and 

B-res(A ® B) ^ (B-res A) @ (B-res B) 

for any /?^G-modules A and B » 

7„4 THEOREMo If an R^-module A is a diveot sum of 
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homooyQlia RG-modules then 
UC 

B-rad A ^ A/(B-res A) . 

Proof,. Suppose first that A is indecomposable and let 

where A. is the C.-component of A„ for some irreducible B V-
u u V (X 

module C^ » For g € G the composition factors of A^g are 

isomorphic to C ® g » Thus if C ® g ^ C. then, since C @ g 
J. M 'V X 

cannot be isomorphic to C^ for 3 t i r, the projection of A ^ onto 

A . determined by the direct sum must send each composition factor of 
J 

A ^ to 0 and so the projection of A ^ onto must send each 

composition factor of A g 

isomopphicdlly« Thus ^ • Since 

A^g-^ 3 [A^g]g-^ = ^^ 
a similar argument shows A.g ^ c and consequently A. = A g . 

I' — 1 1 

It follows that G permutes the A . , and if G has more than one 
% 

orbit then A is decomposable, which is a contradiction. Hence G 

permutes the A . transitively, 

g 

If A is indecomposable and homocyclic of exponent p then it 

follows from the proof of 3,12 that A^ is a direct sum of 

isomorphic indecomposable i? 7-modules, By 3.11 there is an a(i) oc 

such that C-rad A. ^ p^^^h. and by 7.1, C-res A. = . 
X, ly (y "Xf 

Let ^ € G be such that A .g - A . . Then 
t J 

a(i, ^ . (c-rad A.]g - C-rad A. - . 
0 K ^ 3 3 

Thus a(i) = a(j) for all i , J . Let a = a(i) . Now by 7.2, 
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C-rad A^ ^ y^A^ and C-res A^ = • 

By 7.3, (B-rad A)^ - C-rad A^ so B-rad A = y^A and similarly 

B-res A - ^A , Thus the theorem is true if A is homocyclic 

and indecomposable o 

Suppose now that A is a direct sum of homocyclic modules. We 

can write A ~ ̂  A^^ where the A. are homocyclic and indecomposable. 
i 

By 7,3 and the last paragraph we have 

B-rad ^ ^ © (B-rad A .) ^ @ [A./B-res A A ^ A/(B-res A) , 
i ^ ^ 

which completes the proof= // 

Let KG) = B-rad R G and JiG) = R G/[B-res R g] . As G is a (X ^ OL 

fixed in this section we write I and J for I{G) and J(G) 

respectively- By the last theorem, I J and by its proof any 

indecomposable direct summand of I is monolithic. 

A module € B is said to be B-inceotive if whenever BSC 

and C € B then every homomorphism B ^ A can be extended to a 

C homomorphism C ^ A , Suppose B , C € B and Q : B ^ I is a 

homomorphism. Then I 5 R G so Q : B I S R G can be extended Oi QL 

to TT : C ^ R^G o As C € B , Ctt € B so Cu S I . Thus I is 

B-injective. By an argument similar to [10, 57.3] it can be shown 

that any direct summand of I is B-injective. 

A module A ^ B is said to be B-projeotive if whenever 

•n : B C is a homomorphism of B onto C , B € B and there is a 

homomorphism Q : A ^ G then there is a homomorphism ]l : A B 

such that yjr - e . Suppose 7T : S -» C , B € B and Q : J G . 

As J is a factor module of R G , 9 induces 6 : R G ^ C . As (JC uc 

R^G is a projective ifJ?-module there is a homomorphism U : R^G B 



39 

such that yTT = 9 . Now R G/kev \i B so by the minimality of 

E-res R^G , ker U > B-res R^G . Thus there is a homomorphism 

11 : J ^ B such that if X : R^G J is the obvious map, then 

XU = y , Now F = X6 so XyfT = X0 and, since X is onto, 

UTT = e , Thus J is B-projectiveo By an argument similar to that 

of [10, 56.5] it can be shown that any direct summand of J is 

B-projective. 

7.5 COROLLARYo A direot stomand of I is B-yroceotive and 

E-in^eotive. 

Proof„ By 7,4, I = J and a direct summand of I is isomorphic 
to a direct summand of J , which is B-projective. // 

The following lemma is similar to [5, 2.2]o 
lob LEMMAo Suppose H is an extension of a module B i B by 

G where the aotvon of G on B by conjugation is the module aotion^ 

and A s B for some monolithic direct summand A of I . If N < H 

is maximal such that N H and N n aA = 1 then 

H/N S GA/ker A . 

Proofc The factor group U/B is an extension of BB/'R by 

El BE , and M/il/ is an fl G^-module. As /l/na4 = l , = l 

uc 

and A < BB/B , As BB/B ^ B and A is B-injective, A is 

isomorphic to a direct summand of BN/B . By the choice of N , 

A ^ BB/B „ 

Since R/B = G , EiBB is isomorphic to a factor group of G : 

let K G be such that ff/M ^ G/K . Since A is an i?̂ (?-module 
and, by the last paragraph, an -module via the isomorphism, 

we have K 5 ker A . By the maximality of iV , K - ker A . 

It follows from the proof of 7oM- that A may be considered as 

an Injective i?o£?-module for some 3 • It is not hard to see this 



40 

implies A is an injective flg((?/ker A)-module. Since EIB is 

isomorphic to an extension of A by (?/ker A , we have by [5, 2.1], 

EIB G^/ker A , jI 

1J LEMMAo If A is a monolithia module in B then there is 

a direct simnand A^ of I and an integer 3 suoh that A and A^ 

can be considered as R^G-modules and A^ is isomorphic to the 

R^G-injective hull of A . 

Proofo Let B be the R G-injective hull of A . Since A is 

a 

monolithic so is B and thus B is principal indecomposables Let 

C be a complement for B in R^G „ By 7.3, 
I = B-rad R^G = (B-rad B) © (B-rad C) . 

Now ^ € B and A < B so As B-rad B . 

Since B is monolithic so is B-rad B . Thus B-rad B is an 

indecomposable direct summand of J „ By the proof of 7„M- there is 

an integer S such that B-rad B , considered as i?g(3-module, is 

infective- Ii follows that, considered as i?gG-modules, 

A ~ B-rad B is the ective hull of >1 . 11 
1 D 

8o The Skeleton of a Product Variety 

Let H , 1 and W be as in the statement of Theorem 5o4. Let 

_Y = W and 1 be the (infinite) free group of countably infinite 

rank of Y generated by i/^, z/j' ' ^n subgroup of 

J generated by »«,, , and let = v(y^) c Let Z = W , 

Z its free group freely generated by z^, .=. and Z^ the 

subgroup generated by 3 , ooo, 3 o When we write BiH) or 1(H) 
JL Tl 
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with ff € ^ then E and V(Z )̂ correspond respect ive ly to G and 

Y of the las t sect ion <> 

801 PROPOSITIONo The vaHety Z is generated by 

H = {y A/ker A \ A is a prinaipal indeoomposabte R^Y -module 

suah that V^A € U, 1 5 3 < a, n = 1, 2, . 

Proof„ Observe that i f GA/kev A € H then 

n_GA/ker A) < V(G/ker A)A € U so GA/kev ^ € W and H £ W , 

We show that there i s a c lass of groups in var H which 

generates ^ = By the Schur Zassenhaus Theorem, 2<,4, a c r i t i c a l 

group in ^ but net in W is the sp l i t extension of i t s ^ -verbal 

subgroup, H say, by a group in W , Z say. As KH i s 

monol i thic , C„{B) ~ 1 . Because H ^ A ^ and ^ € W , K i s Z - a 

isomorphic to a p ' -group of automorphisms of H . Furthermore K 

acts indecomposably on H so by [11, 5 .2 »2 ] , H i s homocyclic, 

g 
say of exponent p , 3 5 a e 

By 4 ,3 , W is generated by groups KH wr f'^(V) = M , KH as 

above, r- ~ 1, 2 , ,0 , c In order t o prove 8 .1 , i t therefore s u f f i c e s 

F (V) P = 

to show that each such M is contained in var H „ Let A - H 

be the Sylow p-subgroup of the base group of M „ Let 

P - gp(^> P^iiy- so that . F i s a complement f o r A in M . As 

F € J_ , f o r some n there i s a homomorphism 

•TT : J F n 

of y onto F , Let G ~ Y and V ^ HG) . We regard A as an 
n n — 

R^G-module v ia Tf ; that i s , f o r a A and g G define p 

ag - a{g^] . 

Because A and V(F) are in the base group of M , 
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€ U c N o w t h e r e s t r i c t i o n irj^^ o f IT t o F m a p s 7 o n t o 

V ( F ) „ T h e g r o u p s k e r ^^\y a n d A a r e n o r m a l s u b g r o u p s o f VA 

s u c h t h a t A n k e r i r j ^ = i „ i t f o l l o w s t h a t VA i s a s u b d i r e c t 

p r o d u c t o f Y(F)A a n d V s o VA £ g . T h u s Ay € C ( F ) . N o w 

G 

( ^ y ) y i s 3 d i r e c t s u m o f c o n j u g a t e s o f A y w h i c h a r e a l l i s o m o r p h i c 

b y 3 „ 8 , s o [Ay] 
y i C{V) a n d t h e r e f o r e ( / l ^ ] ^ B ( G ^ ) „ T h i s i m p l i e s t h a t € OT O 

B y 2 „ 3 , H ~ a*iKH) s o i f K i: 1 t h e n 2 o 6 may b e i n v o k e d t o 

g i v e Cp(A) = 1 ; if K - I t h i s i s o b v i o u s c T h u s 

k e r TT = C^CA) = k e r A s o FA G ^ / k e r 4 , B y 3 , 5 , A ̂ {a^'^ s o 

Q Q 

b y 3 „ 6 , FA i s a s e c t i o n o f , G{Ay] / k e r U p . } - B y 3 , 9 , 

G 
( i 4 „ ] ^ © y4. w h e r e t h e A , a r e p r i n c i p a l i n d e c o m p o s a b l e 

n r* c 
i ? ^ ( ; - m o d u l e s „ S i n c e fl k e r A ^ - k e r ( / l ^ ) , G [ A ^ ) / k e r ^ ^ ) i s a 

Xf 

s u b d i r e c t p r o d u c t o f t h e G i 4 ^ / k e r A ^ . S i n c e v [ A y ] € £ , V A ^ ^ g 

f o r e a c h i c T h u s GA./\ev A. ( H f o r e a c h i so H g e n e r a t e s 

U V , / / 

L e t F ^ b e t h e ( i n f i n i t e ) f r e e g r o u p o f c o u n t a b l y i n f i n i t e r a n k 

o f A ^ f r e e l y g e n e r a t e d b y f ^ ^ f ^ ^ a n d l e t F ^ b e t h e 
V 

s u b g r o u p o f F g e n e r a t e d b y / j ^ , / g s ° = »a " D e f i n e 

6 6 6 : 1 y b y y. ~ y. f o r i < n a n d w , ^ = 1 , 
n + 1 n ^ n + 1 

8 o 2 L E M M A o Let A ~ regard A as a Y^^^-mdule 

via the homomorphism t, i F ^ •*> Y , which sends f. i/, for rzT-l n t l ^ 
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all i = 1, ntl , Then A contains a submodule B svah that 

By ^ R^Y^ and ker 6 aats trivially on B . 
n 

Proof; Notice ker 5 - 4 „ Let T be a right transversal for 

a] in the complete inverse image of ker 6 under . 

Then each element x of ker 6 can be written uniquely as a product 

yt^ with y an element of ^vihy^^-^ and t an element of T . 

Let C be a multiplicatively written regular -module 

generated by o » Observe that the submodule of C^ generated by 
n 

X 0" X € ker 6} is a regular BY -module„ Since Y ,.C ̂  A Y , 
ot n — 05=^ 

P 

there is a homomorphism cp : F . •*• Y ^C such that f.^ = u. for n+1 ntl t 

all i S n and fŷ ^̂  - ° ® l̂ e the exponent of ^ , 

f = f and h - ] f f^ " Notice h ^ A and ker 6 acts trivially 
tkT 

on h , Let B be the R Y -module generated by h . By the 
06 

preceding remark ker 6 acts trivially on B , and By is also 
n 

generated by h « For each g € F^ we have 

o . = r r < / o = T T 

t t ^ y ^ X 

where y ranges through gp and x through ker 6 , This 

X shows that h \\ o extends to ahomomorphism of By onto the 
X n 

X regular submodule of Cy generated by 1 c ; hence By is a 
n X n 

regular submodule of Ay . // 
n 



^ ^ pe^arded as a Y^^^-module via the homomorphism 

^ntl ^ ^ ^ s - ^ i/,- a U i = 1, n+1 t/zen 

ntl 

803 GO-ROLLARYo 1/ l(y^) is Tegarded as a Y^^^-module via 6 

n+1 

^^^ such that z^ ̂  y^ 

I[Y ] < Y[Z A 

Proofo Let A and B be as in 8„2„ Then ^ 5 < 4 . 

Also the split extension is a subdirect product of F 

and VI[Y) and is therefore in U „ Thus ifj ] < B[Y 1-rad A . n n \ ŷj ̂  \ n+1 

By [20, 21cl3], 4 is a free group in A ^ so we can apply 7.4 to 
P 

get 

< /I - J-res . 

Since ^ . and -res ̂  = , 

The homomorphism F Z such that /. t—»• z . for all 

i = 1 , 000, n+ 1 has kernel and induces a module isomorphism 

This completes the proof. // 

The next lemma gives one description of S(^) „ 

3o4 LEMMAo Hhe skeletor^ S(Z) - qsH with H as in 8„1. 

Proofo Suppose G is a section closed class of groups 

generating Z , We show H cG . If Y B/ker B € H then by 7.7, fU 

B ^A for some monolithic direct summand A of ° By 8.3, 

A ^ ° Identify A with a subgroup of ^^^ consider 

the subgroup H ^ Z^) of Z^^^ „ Since Z^^^ is a 

subdirect product of groups in G , so is H ^ Since OA is a 
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minimal normal subgroup of H there is a homomorphism 6 of H 

onto a group in G such that OA n ker 0 = 1 , It follows that 

A n ker 6 = 1 , Let N > ker 9 and be maximal in H such that 

E < H and A n N ~ 1 . Then E/E € G . Since E is an 

extension of by Y^ and ifẑ ,̂ ]̂ € B[yJ ,7.5 gives 

E/N ^ J v4/ker A , 72 

As B <A , I S/ker 5 is a section of Y A/kev A by 3,6c. Thus ~ n n 

Y^B/kev B i G and H £ G , Now by 8=1, 

S(Z) C Q S H C n { G i G S C G Z } = S ( Z ) , // 

8 O 5 L E M M A o Let H b e a s in 8 . 1 and 

K = {G 1 G € M(Z) and there is an N < G 

suQh that E € U\W and G/N € V} . 

Then QSH = qsK o 

Proof 0 Let G ^ K and N G such that N € U\W and G/N € V 

We show G € QSH 0 Let 4 = so that A is the unique Sylow 

p-subgroup of N o The subgroup gp(>l, ̂ (O) of N is in £ since 

N iSo Clearly A € '^^(gpU, V((S))) and has a complement isomorphic 

to ^(G/A) « Let Z - G/A . The split extension is in U , 

If we regard A as an i?̂ is:-module then A € B(K) (taking K for G 

and V(if) for V of the last section). By 7,7 there is a 

3 € {l, 0 0 0 , a} such that if A is regat̂ ded as an R^K-module then 

the i?o^-in3ective hull B of A is Isomorphic to a direct summand B 

of I(K) = Form an extension G* of B hy K using the same 

factor set as in the extension G of A hy K . Then G < G'^ , As 

B is an injective i?gZ-module, G* splits over 5 , G*' - KB , 

by [5, 2ol]o Let M = C^{B) , Clearly M G* . Since aG S A ^ B , 

M n B = 1 implies M n aG ~ 1 and M n G = 1 , Thus G < G*/M . 
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By the choice of B the split extension ^(K)B is in ^ , In 

a natural way B is a Z/Af-module and it follows that Y^(K/M)B € U . 

As Z € , K/M € ̂  so there is an n for which there is a 

homomorphism 6 of Y onto K/M , and we regard S as a Y -module 
yi 

via 6 o Now 5 Y and the split extension V B is a subdirect n n ^ n 

product of V(K/M)B and V , so V B € U , Taking Y and V ^ = n ' n = ^ n n 

for the G and V of the last section, 1ol implies there is a 

Y € (3J 3+1J 000, Oi} such that if B is regarded as an i?^y^-module 

then the A T -injective hull C of B is a direct summand of Y n 

i[y ] . Now KB/M'^ Y B/ker B so by 3,6, KB/M is a section of 7X Tt 

Y^C/kev C € H . Since G ̂  G*/M = KB/M , G € qsH and so K £ qsH . 

On the other hand suppose H = Y^A/kev A ^ H c Let 

^ = A)A/ker A „ Then N < H , N € and H/N € V so 

H c qsK o / / 

Theorem 6o4 is a consequence of Proposition 8„1 and Lemmas 8.M-

and 8 0 5, 
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APPENDIX 

The main theo-jc>em in the following paper deals with the lattice 

of varieties of groups rather than with section closed classes of 

grovcpso It is included because it provides another application of 

the main technical theorem of this chapter^ Theorem 60However to 

make the appendix self-contained the specific case of the theorem 

needed is proved here. It is interesting to contrast the ease of 

proof of this special case with the complexity of the proof of 

Theorem GOM-, The reference numbers in the appendix refer to the 

references at the end of it rather than to those at the end of the 

thesis. 
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A PRODUCT VARIETY OF GROUPS WITH DISTRIBUTIVE LATTICE 

L„F„ Harris 

Abstracto By a variety of i4-groups is meant a loca l ly 

f i n i t e variety of groups whose nilpotent groups are abelian. 

I t is shown that i f U is a variety of yl-groups and V is 

a loca l ly f i n i t e variety whose l a t t i c e of subvarieties is 

distr ibutive and the exponents of ^ and ^ are coprime, 

then the l a t t i c e of subvarieties of the product variety 

UV is distributiveo 

lo Introductiono The lattice of a variety V of groups is the 

l a t t i c e of subvarieties of ^ part ia l ly ordered by inclusion. I t , i s 

modular because the l a t t i c e of the variety of a l l groups is dual to 

the l a t t i c e of fu l l y invariant subgroups of the f ree group of countably 

in f in i t e ranko For any posit ive integer m l e t ^ and ^ 

denote respectively the variety of a l l abelian groups of exponent 

dividing m , the variety of a l l groups of exponent dividing m , and 

the variety of a l l groups which are nilpotent of class at most m <, 

A vardety of A-groups is defined to be a loca l ly f i n i t e variety 

whose nilpotent groups are abelian, G, Higman [7 , 54o2M-] gave the 

f i r s t example of a variety with a nondistributive l a t t i c e , R.A. Bryce 

[3 , 6,2,5] showed that for a prime p the product variety A A 
p p 

has a nondistributive la t t i ce but that a variety of metabelian groups 

of bounded exponent in which, for each p , the p-groups have class 

at most p has distr ibutive l a t t i c e . He also showed that i f m is 
2 

nearly prime to n i f a prime p divides m then p does 
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not d iv ide n ) then the l a t t i c e of A A is d i s t r i b u t i v e . =m=m 

M. S, Brooks [ 2 ] showed that the l a t t i c e o f ^ ^ i s not 

d i s t r ibut ive0 The main r e s u l t here general izes one of John Cossey 

[4-] who showed that the l a t t i c e o f v a r i e t i e s o f 4-groups i s 

d i s t r i b u t i v e « The exponent o f a l o c a l l y f i n i t e var ie ty i s def ined t o 

be the order of the f r ee group on one generator o f the var i e ty , 

THEOREM 1„ Suppose U is a variety of A-groups and ^ is a 

loaally finite variety with distributive lattice and the exponents of 

^ and ^ are ooprime. Then the lajttioe of ^ is distributive. 

Notation and terminology not here defined are as in Hanna 

Neumann [7]o In view of Theorem 1 i t i s worth noting that L.G, 

Kovacs has an unpublished example which shows that although the 

l a t t i c e o f the meet ^G A N^ i s d i s t r i b u t i v e , that of (B^QAN^]^ i s 

not 0 
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2o A Theorem on Skeletons, By a section o f a group i s meant a 

f a c t o r group of a subgroup of i t . I f G i s a c lass o f groups then 

sG and QG denote the c lasses o f a l l groups isomorphic t o , 

r e s p e c t i v e l y , subgroups and f a c t o r groups o f groups in G . A c lass 

G of groups i s said t o be section closed i f QG C G and sG C G , 

I t i s we l l known and easy t o see that i f G i s a c lass o f groups 

then QSG i s sec t ion c l osed . The skeleton S(V) of a variety V 
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is defined ( in Bryant and Kovacs [ 2 ] ) to be the intersection of the 

section closed classes of groups generating V . A monolithio group 

i s defined to be a f i n i t e group with a unique minimal normal 

siibgroup, called the monoZ'L'th a To prove Theorem 1 we need the 

fol lowing result , 

THEOREM 2o Suppose p is a prime and ^ is a looally finite 

variety oontaining a variety X of p^ -ectrponent suoh that for some 

positive integer a ^ ^ is contained in A J 

X c Y c A ^ J 

and Y is generated by monolithio groups not in X . Then 

Sir) = j G € Y, (7 t X and G is monolithio] ^ 

and SiY) generates ^ » 

Proofo Let be a monolithic group in ^ but not in X , l e t 

aG be the monolith of G , a^G be the central izer of OG in G , 

ZiG) be the center of G , X = X(G) be the X-verbal subgroup of 

G , and G' be the derived group of G . Vie write H < G i f 

H is a normal subgroup of G . 

Notice X is the Sylow p-subgroup of o*G ; we show they are 

equal0 I f 0*G i s not abelian then 

aG 5 n Z(o*G) n X = 1 

by [6 , IV 2 ,2 ] , which is a contradiction. Thus a*G is abelian and, 

since G is monolithic, O'̂ G is of prime power order. Because 

oG ^ X < a'^G , 

we have X - 0*G o 

Let H be a section closed class of groups generating Y . To 

prove the theorem i t suf f ices to show G € H . We shall use some 

properties of the minimal representation defined in [7, p, 153 //]. 
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Let 

G ^ E/K , H ^ H ^ ... X H^ , E. i H for i = 1 , ... , r 

be a minimal representation of G on H . Then each E. is 
% 

monolithic and aE. ^ qG SO qE . is a p-group. By the last 

paragraph a ^ E . - . By the Schur Zassenhaus Theorem there is a 

complement, K. say, for 0*E. in E. . Since E. is monolithic, 
^ U "If % 

is a.n in decomposable group so by CS, 5»2»2]5 O^H- is a. % % % 

homocyclic p-group. For some Q the exponent of . is greater 
J 

than or equal to the exponent of . Let n be the exponent of 

O'^G . It follows as in Lemma 3 of Cossey [4] that 

and G ^ H y proving the theorem. 

3» Proof of Theorem 1. Let ^^ - ^ • first show 

(VAU^) V (VAU^] = V A ( u ^ V ^ ) . (*) 

Since (^AU^) E. 1 ^ suffices to prove that if F is a 

finite free group of V A ( u ^ V ^ ) then F € (VAU^) v ( V A ^ ) . Let 

u U^ denote the set theoretic union of ^ ^ and ^ = Let 

F ~ E/K , for 

be a minimal representation of F on U^ u ^ . Because F € ^ , 

C E . has exponent dividing that of V . Since the exponents of ^ and 

V are relatively prime it follows that E^ ^ ^ for all i „ As 

^ U u ^ we have E. ^ (VnU } u . It follows that 

F 6 (VAU^] V ( V A ^ ) , proving (»'«). 
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We need a lemma. 

lEMWi. I f G is a monolithio group in U v hut not in V 

then (J € U, u n . 
= 1 = 2 

Proof . I f aG i s not abel ian then by taking a minimal 

r e p r e s e n t a t i o n of G on u ^ and arguing as in [ 7 , 5 3 . 3 1 ] the 

r e s u l t f o l l o w s . Thus we may assume OG i s an abel ian p-group f o r 

some prime p o Let 

G~H/K, H S H^x . . . X H^ , H^ ^ g^ u ^ f o r i = 1 , . , „ , r 

be a minimal representa t ion of G on ^̂ ^ u ^^ • Let 

V. = [o*H.] n vffl'.) and observe t h a t the Sylow p-subgroups o f the U % % 

H. are in V. and oE. S z[V.] . As V. i s an 4-group, U U U ly X, 

Z[V.] nVl = l . 

Since ff. i s monol i th ic , = 1 . Thus V. i s abel ian and must be ^ ^ ^ 

a p-group 0 

Let ^ be the v a r i e t y generated by E^^ E^ and ^ be the 

v a r i e t y generated by ^r^'^r ' ^y Theorem 2 , 

Sir) = qs{E \ E € Y, E if X and E i s monol i th ic } » 

I t fo l lows t h a t 

G € 5 (Y) c . . . , e J e U^ U ^ 

proving the lemma. 

To prove Theorem 1 i t s u f f i c e s t o show that i f W e ^ then 

I A (U^V^) = (WA^ )̂ V (WA^) . 

Since W A [u^V^] £ 1 ^ % ^^ s u f f i c e s to show tha t i f G i s a 

monol i thic group in W A ( u ^ v ^ ) then G i s in (WAU )̂ v (WAg ]̂ • 

Suppose f i r s t t h a t <5 ^ V . Then by the lemma ^ u ^ . 
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As G ^ ̂  , 

ff € W n [U^UU^) = (Wnu^) u (wn^) c (WAU^) v (WA^) . 

Suppose G ^ V . Using the fact that V has distributive 

lattice and applying (>'«) twice, we have 

V A W A (U^V^) = V A W A 

= (VAW) A [(VAU^)V(VA^)J 

= [(VAW)A(VAUJ] V [(VApA(VAn ]] 

= (^AWAU^) V (VAWA^) 

= V A [(WAU^) 

This completes the proof of the theorem. 
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CHAPTER FOUR 

HYPOCRITICAL AND SINCERE GROUPS 

It is equivalent to the definition given in Section 1 to say 

that a group is hypocritical if whenever it is in a locally finite 

variety generated by a section closed class of groups then it is in 

the class. Clearly a hypocritical group is critical. It follows 

immediately from the definition that a locally finite variety 

generated by any class of hypocritical groups is generated by its 

spine. One reason for our interest in varieties generated by their 

spines, and hence in hypocritical groups, is the following. If a 

variety V generated by its spine is contained in a locally finite 

join, \ / V^ , of a possibly infinite number of varieties, then a 
X 

consideration of the finite free groups of the V^ shows 

1 " \ / l^^lx^ ' particular if V and all its subvarieties are 
X 

generated by their spines then 

i i A [ y ix) = Y 

whenever U c V and \ / V^ is locally finite. (By Cossey [9] any 

variety of i4-groups is generated by its spine relative to the class 

of varieties of i4-groups, so the lattice of varieties of ^-groups 

has this infinite distributivity.) 

A finite group which is not hypocritical is said to be sincere. 

A variety generated by a single sincere critical group is not 

generated by its spine. Furthermore if the skeleton S(^) of a 

locally finite variety contains a sincere group E which is not 

in Qs , equivalently S(,^)\H is section closed, then. 
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taking K^, K^ such that H ^ qsZ^ for i = 1, s and 

C X . X Z^) , we have 

T(V) c n S(V) c S(V) 

so ^ is not generated by its spine. 

In this chapter a class of critical groups is considered and it 

is shown that some groups in it are hypocritical and some are sincere. 

The class consists of those critical groups which, for some prime 

p , are an extension of a nontrivial abelian p-group by a p'-group. 

Thus any subclass defined by a fixed prime p which generates a 

locally finite variety in fact generates a variety which satisfies 

the conditions of £ in Theorem 5.4. 

In Section 9 the main theorems are stated and it is shown that 

certain groups are hypocritical. In Section 10 a method is developed 

for showing groups are sincere and is applied to some groups. In 

Section 11 the method is further applied to illustrate the difficulties 

which arise in showing that a group is sincere. 

9, Some Hypocritical Groups 

Let p be a prime and an irreducible linear p' -group of 

degree k over the field of p elements. Let a be a positive 

integer and let /S be a /c-generator homocyclic group of exponent 

cx 
V . Then S/^S becomes an irreducible Z (J'^-module in an obvious 
^ P 

way. By 2.7, an action of G'^ on S can be defined such that the 

action induced on S/^S is the original action and, by 2.8, the split 

extension ^[p^, of S by G^ is unique up to isomorphism. 

The groups G'̂ ] will be the central concern of this chapter. 
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Obviously , is monolithic and by [17, 1.65], it is critical. 

However as the following theorem shows, is often not 

hypocritical. 

9J THEOREM, If a = i or G'^ has degree 1 then G{p'^, (J'̂) 

is hypoaritioal. If G'^ has degree at least 2 then there is an ^ 

suah that G'^'^, G*) is sincere. If G{p^^ (P'^) is sincere then so 

is . 

The obvious problem is to find the smallest a such that 

^ is sincere. This problem is not solved here but a number 

of partial results are given which illustrate its difficulty. In 

particular,consider the case when G"̂  is cyclic of order n , in 

which case G[p^, n] is used to denote G[p'^, ; it is well 

defined by [21]. Let a(p, n") be the smallest integer such that 

n] is sincere for all" a > a(p, n) . 

9o2 THEOREM, If p does not divide n and n does not divide 

p - 1 then 2 5 a(p, n) 5 3 . Let k be the smallest positive 

k 

integer suah that n divides p - 1 . If either 

(a) there is a nonoonstant sequence a(l), ..., aCr) of 

integers with r < p ^ 0 5 a{i) < k-1 for all i and 

p'^^^^ + ... + p^^^^ E 1 {modulo n) , or 

(b) n is prime and some prime divisor of k is less than 

p - 1 , or 

(o) p = 3 and there exist integers ail), a(2), a(3) and 

a(4) suah that 0 5 a(i) S k-1 for all i , 

ail) < a(2) < a(3) and 

3^(1) ̂  3a(2) ̂  gaO) ^ gaC^) . ̂  ^^ ̂  
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then a(p, n) = .2 , 

Since a variety generated by a single sincere critical group is not 

generated by its spine, and since, by Cossey [8], n] generates 

A ^ 5 we have a corollary, 
P 

903 COROLLARYo If n is not divisible by a prime p and does 

not divide p - 1 and if a > 3 then A A is not generated by 

P 

its spine, 11 

In the rest of this section it will be shown that certain groups 

are hypocritical. The first lemma, due to Bryant and Kovacs, implies 

that if p is a prime and ^ a locally finite variety of 

p'-exponent then k ^ is generated by its spine. This contrasts 

interestingly with the last corollary. 

904 LEMMA (R„M« Bryant and L.G. Kovacs, unpublished). If G 

is a monolithio group and the monolith aG is a p-group for some 

prime p while the factor group G/aG is a p'-group then G is 

hypooritioal,. 

Proofo Suppose H is a section closed class of groups such 

that var H is locally finite and contains G . Since there is a 

minimal representation of G on H , there is an in H such 

that crff in ff is similar to <JG in G , Take such an B of the 

smallest possible ordero Let Z be a minimal supplement for 0*H 

in ff o 

Since Off in gp(off, K) is similar to OG in G ̂  

^ = gpCaff, Z) , It follows that = gp(a£?, {a*H)c\K) . By the 

choice of K , {o*H) r\ K < M so {a*H) n Z is nilpotent and 

therefore a*H is nilpotent. It follows that o*H is a p-group 

and, by similarity, H/a*E is a p'-group. By the Schur Zassenhaus 



59 

Theorem there is a complement H^ for a'^H in H . Now H^] 

is isomorphic to « // 

9„5 LEMMA (R.M. Bryant). If G is monolithio and a^G is 

oyalio then G is hypooritioal. 

Proof. Since G is monolithic and a^G is abelian it must be 

a p-group for some prime p . It follows that O^G is a Sylow 

p-subgroup of G „ Suppose H is a section closed class of groups 

such that var H is locally finite and contains G . Let 

G ^ H/K , H S H^ ^ X H^ , H^ € H for i = 1, ..., t 

be a minimal representation of G on H . By 2.10,a Sylow p-sub-

group of is normal in H and K S ^T . Since the Sylow 

p-subgroup a^G of G is cyclic so is T . Let IT. be the 

projection of H onto H . defined by the subdirect product and T . 
If "V 

be the image of T under TT. . For some j the exponent of T . is 
'Z' J 

equal to the exponent of T and is therefore greater than or equal 

to the exponent of O'^G „ 

Since T < H there is a complement H'^ for T in ff by the 

Schur Zassenhaus Theoremo Let H be the image of H^ under """, . 
3 J 

Now 

U.'^j < jz^^l = \G/o*G 

and H is a complement for T. in H. , Since T. < o*H. and 
J J J J J 

T. <3 H. , 
3 J ' 

= \H./T. > H./a''H. = G/O'^G 
• J J J J J 

by 2.9o It follows that T- = and if e is the exponent of 
J J 

a^G then G ^ H ,/T f . // 
J J 

9o6 LEMMA, The group 3) is hypoovitioal. 
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Proofo Let G = 3) and H be a section closed class of 

groups such that var H is l o ca l l y f i n i t e and contains G . Let 

G ^ K/L , Z S X ... X , ^ ^ i = 1, t 

be a minimal representation of G on H . 

Let G be generated by a, b such that \a\ = 4 and 

= 3 , Identify G with K/L via the above isomorphism. By 

2.10, L i s in the Frattini subgroup of the (normal) Sylow 

2-subgroup S{K) of K . Thus K i s generated by elements a and 

b such that oL = a , bL = B , \a\ = f o r some n , |Z?| = 3 , 

2b 2 2b 2 and a L i: a L . Therefore a t a . Let T (̂̂ ) be the project ion 

of K onto K^ defined by the subdirect product and l e t a ( i ) = 

and b(i) = . Then K. = g p ( a ( i ) , b(i)] and f o r some j , 

aij)'^^^^^ t . Furthermore the Sylow 2-subgroup of G i s 

generated by a and a^ so S(K) is generated by a, a^ and the 

Sylow 2-subgroup of K. is generated by a ( j ) , aij)^'-^^ . Let H J 

be a minimal section of K̂ . of the form 

H = g p ( / , h), I / I = 2" f or some n , \h\ = 3 

and S = gp[f, fy , / f^^ f o r 5 ^ S^(H) . Then 5 € H and i t 

s u f f i c e s to show H ^ G 0 

To simplify notation l e t g = . If g'^f^ | Z{S) then i t is 

easy to see that H/ZiS) has the same form as H , so by the choice 

of H , € Z(S) . Now 

1 = 9] = 9. 

so f^ € Z(S) and g^ € Z(S) , Thus gp , g^] <> 5 and S/gp , g'^) 
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is a dihedral group. By [15, 1.56) p. 94] the only dihedral group 

whose automorphism group is not a 2-group is the direct product of 

2 

two cyclic groups of order 2 . Thus S < ZiS) and S has class 

at most 2 , Therefore \S'\ S 2 . Now S/S' is a 2-generator 

2-group with an automorphism of order 3 and must be homocyclic. 

Since f + g^ and S 2 , \S/S'\ > 4 and G ^ H/S' , // 

10. Some S incere Groups 

In this section necessary and sufficient conditions are given 

for a group to be sincere. To apply these some information is needed 

about a modification of the associated Lie ring of a group. It is 

then shown that for large enough a , is sincere, and 

some other applications are given. The Fitting subgroup F(H) of 

a group H is the join of the normal nilpotent subgroups of H . 

lOol THEOREM, The group G = , G*) is sinoere if and only 

if there is a monolithio group H suah that oH in H is similar 

to OG in G , a'^H = FiH) , oH S F(H)' , F{H)/m is similar in 

cx 

EI^E to oG in G and p does not divide the exponent of 

FiH)/FiH)' . 

Proof0 Suppose that the conditions hold and take E minimal to 

satisfy them. Then in any chief series of E at most a chief 

factors are similar to oG . Let F be a relatively free p-group 

on the minimal number of generators of F{E) of exponent the larger 

of p^ and the exponent of F{E) and of class the class of F{E) . 

Then there is a homomorphism IT of F onto F{E) . Let R = ker IT 

so F/R ^ F{E) and let F/R be a Ĝ '̂ -group via this isomorphism. 
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Now i? 5 so by 2,7 we may make F into a Ĝ '̂ -group such that the 

action induced on F/R is the original action. 

Let 5 in F be such that S > R and S/R ^ OH as iS'^-groups. 

For any positive integer Y let 

^(Y) = A (F) . 
P 

Then as G*-groups 

S/R ^ OH ^ F{,H)/m ^ F/^F ^ ^(a-l)M(a) , 

ct 

Since p does not divide the exponent of FiH)/FiH)' , 

> ^(a-i) , Clearly i4(a) i R so RAia)/R contains the 

monolith S/R of the split extension G*F/R and thus > S . 

By the modular law 

= RA{a) n 5 = 5 

and 

(yl(a-l)nfl]^(a) = 4(a-l) n RA{a) = /i(a-l) . 

It follows that 

S/R = R[A{a)nS]/R ^ (a)nSM(a)nfl 

and 

^(a-l)M(a) = U(a-l)ni?]^(a)M(a) ^ 4(a-l)nff/.4(a)nfl , 

Let F = FM(a)nff , A^ = A{a)nS/A{oL)nR and 
A^ - A(OL-l)nR/A(a)r)R , Notice F is a G'^-group and in any chief 

series of the split extension G*F , a + 1 chief factors are 

similar to oG „ Since S/R and i4(a-l)/i4(a) are central G*-

invariant factors of F , so are and A^ » Consequently A^ 

and A^ are in the center of F and are G'^-invarianto By the 

last two paragraphs 

^^ ^ F/$F ^ A^ 

as (?*-groupSo Let y be a '^-isomorphism from to A^ . Let 
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N^ = gp a[a^) \ a ^ A^ 

and let 7172=^2- Then il/̂  , for i = 1, 2 , is a (̂ '̂ -invariant 

central subgroup of F . Let H. be the split extension of 

" i = 1, 2 . Then in any chief series of H. , 'h 

a chief factors are similar to QG . Thus in any chief series of E./OE. 

and there are only a - 1 chief factors similar to OG . 

Since is the unique maximal (P'̂ -invariant subgroup of F. , it 

follows that G (^ZE. . • 

We show G ^ Because n il/̂  = 1 , G^F is a 

section of E^y- E^ . As f = F/A{a)r^ , it has a homomorphic f\ 

image F/A{a) and G ̂  G'^F/Aia) . 

For the converse let G be sincere. Then there is a class H 

of groups generating a locally finite variety containing G such 

that G qsH . Choose n minimal such that (7 is a section of a 

direct product of n groups from H . Let G be the section 

closure of the class of direct products of fewer than n groups from 

H , so that for some E^, E^ i G , 

G 6 (1) 

but G G . Now choose E^ and H^ minimal in the sense that 
-

neither can be replaced by a proper section without violating (1), 

and choose E € minimal subject to G ^ qE , say G E/K . 

Ci 
Observe that for some i , say ^ = 1 , p divides the exponent of 

E. . By [17], E. is monolithic and OE . is similar in E. to AG 'V tr 
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in G . Now by an argument similar to that used in the proof of Lemma 

it can be shown that for T ^ , we have T E and 

K < ^T . Hence a complement H* for T in E is isomorphic to 

G* , Writing T^ and E^* for the projections of T and E* 

respectively determined by the subdirect product, similarity implies 

E^^ G* . It follows that T^ = O'^E^ = f [ e ^ . Because p ^ 

divides the exponent of E^ , and hence of f [ e ^ , and G f qsE^ , 

lu ' rp. ^ ^ ^^ u u If^u - n (•n<ru\'] o E ^ < F [ e ^ j ' c The projection of E onto E^ sends = ^ [ F i E ) J 

onto = ^E^ so F { E ) / m and are (J'^-isomorphic, 

Thus is similar in E ^ / m ^ to aG in G . // 

The theorem has an immediate corollary. 

10.2 COROLLARY, I f is sinaere then so is 

a-i-l ^ G\p , G'^J . // 

In order to apply Theorem 10.1 we use a modified form of the 

associated Lie ring of a group (of. Higman [13]). We shall use basic 

facts from the first half of Chapter 5 of Magnus, Karrass, Solitar 

[19] without further reference. Let p be a prime and n a positive 

integer not divisible by p such that the smallest positive integer 

k 

k for which n divides p - 1 is greater than 1 . As is well 

known {af. [21]), a cyclic group, of order n has a faithful 

irreducible representation of dimension k over Z^ . Let F be an 

absolutely free group on k generators and let 

L . - F . ../F, . . 
^ {.%) (t+1) 

The group L . is abelian and, hereafter, written additively. If 

a . (i L . and a . ^ L . then fa., a ,1 is defined to be % % J J I- J-" 
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^C^^iUo^l^ii^om f elements of F in 

the cosets a^ and a^ respectively; it is well defined by an 

argument similar to that of [11, 5.5.1]. The sum © L. , with the 
i=l ^ 

Lie multiplication [a, 2?] extended by linearity, is called the 

associated Lie l^-algebva and denoted by L . Because F is free 

and by [19, Theorem 5.12], L is a free Lie Z^-algebra. By an 

obvious modification of [19, Corollary 5.12], L^ has a basis, as 

^p-space, of basic Lie elements of degree r (defined in [19, 

Theorem 5.8]), 

Let GL(fe, p) = Aut L^ so that GL(/c, p) is isomorphic to the 

general linear group of nonsingular k x k matrices over Z^ . Let 

the p'-part of the exponent of GL(k, p) he m and let A be the 

field obtained by adjoining a primitive W7th root of unity to Z^ . 

By [10, 70,24], A is a splitting field for every subgroup of 

GL(/C, p) . For each i = 1, 2, ... , let 

p 

Under the natural embedding of L. in L.'^ , L. spans the A-space 

L."̂  5 SO the definition of [a., a. J can be extended by linearity to 'V ^ <j 

a.*, a.* for a.'̂  € L.* and a.'̂  ^ L.'̂  . Under the bracket ^ ' J - ^ ^ J J 
oo 

operation, L^ = @ becomes a Lie A-algebra which is free 

i=l 

because L is free. By a modification of [19, Corollary 5.12], any 

A-basis of L^* leads to a A-basis of L̂ '̂  , consisting of the 
basic Lie elements of degree r . 
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Let End F and End L^ be the monoids formed by the endomor-

phisms of F and L^ respectively. Let TT̂  : End F ^ End L^ be 

the map induced,by the restriction of endomorphisms of F to . 

Since F is free, TT̂  is onto. If two endomorphisms have the same 

image under , it is easy to see they also do under TT̂  for 

^ > 1 , Hence there is a monoid homomorphism \i. : End L End L. 
2. t-

such that TT^y^ = TT̂  . Under , GL(k, p) is sent to a subgroup 

of Aut L. 5 and so L. becomes a Z GL(k, p)-module. For 

a^, , .. , a^ € , 0 € GL(k, p) and f^ in the coset a^.Q of F , 

the image of a left-normed element of L . is given explicitly by 

[a^, a j e = [f^, . 

Extending this definition by linearity, L^"^ becomes a AGL(?c, p)-

module, and if h. L .* and b. i L then 
^ ^ 0 0 

[b., .le = b .6] . 

That is, p) may operate on L'̂  by Lie algebra automorphisms. 

The following is an unpublished theorem of L.G. Kovacs which 

will be useful in applying Theorem 10.1. Its proof involves the 

Witt formula and some ideas from [6]. 

10o3 THEOREM (L,G, Kovacs). There exists an r > 1 (which 

may de-pend on k and p ) suoh that L^ has a submodule isomorphic 

to L^ . // 

cx-l 

10.4 THEOREM, Suppose 1 < r < p ^ G^ is an irreducible 

p'-subgroup of GL(k, p) , and < . Then G'"] 

is sincere. 
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Proofo Let F be as above, A = F. . , B = B̂  {F) and (p) ^a-1 

^ ^ • first step of the proof of [19, Theorem 5.13B] 

can easily be adapted to show A r\ B ^ C . Since C < A , the 

modular law yields A n BC = C . Let D < A be such that D/C and 

L^ are G^-isomorphic, Then C ^ D < A so D n BC = C . Put 

F/BC - F ; then F is a finite relatively free p-group with 

Frattini factor group naturally isomorphic to L^ . By 2.7,it is now 

possible to turn F into a G'^-group such that the action on F/$F 

is the same as that obtained from the action on L^ via the natural 

isomorphism. Moreover as 

L^ = AiC - A/ArSC ^ AB/BC = f^^^ , 

we also have that L^ is G'^-isomorphic to • In particular 

F/^F ^ V/C S DB/BC 5 F^^^ 

as G*-modules, Let Af be a normal G'^-subgroup of F maximal with 

respect to M n (DB/BC) = 1 . The split extension H of F/M by 

G* satisfies the conditions of Theorem 10.1 so G*] is 

sincere. // 

If G^ has degree at least 2 then by Theorem 10,3 there is an 

r > 1 such that ^ ^^r^ G'^ ^^ > it follows by the 

last theorem that G'^p^, G*] is sincere. 

10o5 COROLLARYo If G* has degree at least 2 then there is 

an a such that , G*} is sincere. // 

The first sentence of Theorem 9.1 follows from Lemmas 9.4 and 

9.5, the second is just Corollary 10.5, and the final sentence follows 

from Corollary 10,2e Thus the proof of Theorem 9.1 is complete. 
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As mentioned earlier the obvious problem is to find the 

smallest a such that G^] is sincere. In fact it would be 

nice to know if there is a bound on such a which is independent of 

G'̂  . There is such a bound, 3 , if G* is cyclic, and the main 

lemma which is needed in the proof of that can also be applied to 

show that for many cyclic G* the bound is in fact 2 . 

By the choice of n and k there is an irreducible cyclic 

subgroup T of order n in GL(k, p) . Let T = gp(e) . The 

representations of T over A are absolutely irreducible and, 

since T is abelian, they are all one dimensional by [12, 15,6.7]. 

By [11, 5,5,5], for some primitive nth root X of unity in A , the 

i 

characteristic roots of 9 on are X^ for i = 0, 1, k-l 

It follows that there is a basis w^, ..., fo^ such 

thai 
i 

u.d = X^ u. for all i . t ^ 

10o6 THEOREMo If there exists a nonoonstccnt sequence^ 

a(l), ,0-, a(r) of integers with 0 5 a{i) 5 k-1 for all i and 

ail) , air) - ^ , , , . p t- .,, + p ::: 1 {modulo n) 

then [l^J^ < [L^j^ . In view of Theorem 10.4^ if r < p'^ ^ then 

n) is sincere = 

Proofo Let there be such a sequence and, by renaming if 

necessary, let 

ail) > ai2) 5 ... 5 air) . 

Then c = ^a(2)' "' ^^ ^ Lie element in L* , 

so c 0 ^ By the choice of the u. , 
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l-
J^^a % ) • • • ) -ail)' a(2)' ''airh = X' 

where 

I = , ... . , 1 . 

Since A has order n , X is an eigenvalue of 8 on ^ • 

Since 6 has the common eigenvalue X on (î '̂ jy and 

they have a common composition factor and, by [10, 29.6], so do 

[l^]^ and [l^]^ . However [^2) T ^^ irreducible and [l^]^ is 

completely reducible so [L^]^ < {lJ^. 11 

^^ ~ ^^r^T equally easy to see that the 

converse of the first statement of Theorem 10.6 holds, but as this is 

not needed it is not proved hereo 

Because 

(p-l)p^"^ + = p^ E 1 (modulo n) 

2 and 2p-l < p , Theorem 10,5 has a corollary. 

10o7 COROLLARYd If p does not divide n and n does not 

divide p - 1 then , n] is sincere. // 

As the following theorem shows, we can do slightly better than 

Theorem 1005 would suggest, 

10„8 THEOREMo If there exists a nonoonstant sequence of at 

most p integers a(l), air) with 0 < aii) s k-1 for all i ^ and 

p^^l^ + + p̂ '̂'̂  s 1 imodulo n) 

then G^vP^, n) is sincere. 

Proofo For r < p the result is part of Theorem 10.6. 

Suppose then that r ~ p o By [18, 4.06], 
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(1) A A n F, , = F, Pf, , J =p=p (p+1) (p) (p) (p+1)^ (p)-* 

and, since , I = px] is a law of A A by [18, ^602], -p=p 

(2) A A A N B . E 

^et ^ = , B = and C = F^^^^^F^^P and 

observe B > C - By (1), ^ n B = . By renaming if 

necessary, let a(l) > a{2) 5 5 a(r) and 

- â(r)-̂  ' Then c is a left-normed basic 

Lie element in L^* but, by [20, 36,33], not in L^* n 

Thus e has an eigenvalue A on L̂ *'/ , • Observe 

Let F - F-B and turn F into a T-group, as in the proof of 

Theorem 10-4 Then L^ < AB/B so take A^ 5 AB/B such that L^ 

and A^ are isomorphic as T-groups. As Z(F) 5 , Z(F) is 

elementary abelian- Let Z? be a normal T-subgroup of F 

containing a r-complement for in Z(F) and maximal such that 

D n A^ ^ 1 - Since, by (2), ^(F) 5 Z(F) 5 DA^ , we have 

B (F.-D) < A,D/D 5 {F/D) ' . 

It follows that the split extension H of F/D by T satisfies 

the conditions of Theorem 10,1, so G[p , n] is sincere, 11 

For the next item, we restrict attention further to the case 

where n is a prime-
10.9 corollary0 If n is a prime and some prime divisor of k 

is less than p - 1 then , n) is sincere^ 

Proofp Suppose r is a prime divisor of k which is less than 
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p - 1 „ The rank of L ^ is given by the Witt formula, 2,11, as 

^[k^-k] . Notice k does not divide the rank of L^ „ Since the 

only irreducible modules for the cyclic group T = gp(6) of order n 

over a field of p elements are the trivial module and the rank k 

modules, there is a trivial T-module in L^ . It follows that 

there is a basic Lie element u of weight r such that uQ - u . 

Because Uŷ  is basic, it is nonzero« Now 

k-1 .k-1 

U , - ju, A^ '^k-l] ^ ^ 

k-1 

so X^ is a common eigenvalue of 6 on L^ and 

hence, as in the proof of Lemma 10.5, we have that ~ ^^r+lJT ' 

Since 1 < r-rl < p , Theorem 10,4 implies , n] is sincere, // 

Lemma Qoi+j Corollaries 10 = 7, 10.8 and 10,9 prove the first 

statement and parts (a) and (b) of Theorem 9,2o In the next section 

part (a ) is proved-

11. On 3-Groups and Automorphisms 

Observe T.hat foi^—p ^ 3 ,-Theorem 0.2 (j) follows Ii'mii Theoi'him 

The part of Theorem 9.2 which remains to be proved is 

restated here for convenience. 

11 J THEOREM. Let n be an integer greater than and not 

divisible by 3 ; let k be the smallest positive integer suoh that 

n divides - 1 . If there exist integers a(l), a(2), a(3) and 

a(4) suah that 

0 5 aii) S k-1 for all i , ail) < a{2) < a(3) , 

and 
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„a(l) a(2) , „a(3) , „a(4) _ , . , , . >3 + 3 1-3 - 1 {modulo n) 

then G(9, n) is sinaere. 

Part of the interest of this theorem lies in the fact that the 

prime, 3 , is less than the sequence length, 4 , and that the 

groups in question remain sincere. That this is not always the case 

is demonstrated by the hypocritical group G(4, 3) , for which p = 2 

and there is a nonconstant sequence 0 , 0 , 1 of length 3 = p +1 

such that 2̂^ -f 2° t = 1 (modulo 3) „ 

To prove Theorem 11,1, we construct groups H as described in 

Theorem 10,1, and so work in the variety . We also work in o 

that the derived group has exponent 3 . 

A group G in a locally finite variety ^ is said to be 

hypoaritiaal relative to V if it is in every section closed class 

of groups which generates a subvariety of ^ containing it. One 

could then restate Cossey's result [9] as: an /4-group is hypocritical 

relative to any variety of i4-groups containing it. One additional 

step TO the proof of Theorem 11.1 shows that the group 0(9, q) is 

hypocritical relative to s ^ ^ ^^ ^^^ only if none of the 

sufficient conditions of its sincerity given in Theorems 10.8 and 

11,1 can be satisfied-

In fact a computer check has confirmed that 0(9, n) is sincere 

for all primes n < 1093 by checking that the conditions of Theorems 10, 

11,1 are satisfied for all such n but are not satisfied for 

n = 1093 . Thus the group 6̂ (9 , 1093) is hypocritical relative to 

e1 a but It is not known if (7(9, 109 3) is hypocritical 

in general. 

Notice that the conditions of the theorem imply k > 3 . Let F 



73 

be the absolutely free group of rank k and let T - gp(9) ̂  GL(/c, p) 

with T of order n , Let V = ^ ̂  A B̂ Â̂^ , V ~ V(F) and o <3 o 

F = F/V . Since B^ 2 ̂  by [15, III 5.6], , ̂  ^ ̂  and so 

F € ̂  « On account of a result of Magnus (36.32 in [20]), the 

second derived group F" of F is generated by the basic non-left-

normed commutators of weight 4 . The next lemma implies F" is 

freely generated by them. We write [a, b-, c, d] for 

La, &], [c, cf]_ . 

11,2 LEMMA. The order |F"| = where a - mk-1) . 

Proof- We first show F" by constructing a 3-generator 

group G in [b,, e] A B̂ Â. such that G" t 1 . Let i- = ̂  A B̂^ 

and let S be the free group of ^ freely generated by a, b, a, d . 

Define an automorphism / of S by 

a^ - ac , b^ = bd , a^ - a and d^ - d . 

It is easy to check that / has order 3 . Let G be the split 

extension of S by gp(/) . Then G € X3A3 ^ B.^ and 

G - gp(a, b, f ) . Since 

[a, b, /] = [c, tZ] # 1 , 

IS" 1 . It remains to show that AS S ' € B ^ , a n 

element of order greater than 3 in (7 must be of the form f~ t 

1 3 
with t € 5 , Let h - [f~ t] , An easy calculation shows Q-

has exponent 3 so h € S' = Z(S) . Since h is also centralized 

by , h € ZiG) o Thus G € [I3, il and F" ^ 1 . 

Take first the case k - 3 , and observe that L^ n [l̂  » 2̂-' 

a a-dimensional Z -space. End F induces the action of GL(3, 3) 
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on n [l̂ J = It is easy to check that the subgroup SL(3, 3) 

of GL(3, 3) acts trivially on every reducible Z GL(3, 3)-module, 

but not on L.̂  n I-^, , so this module must be irreducible. 

Hence no verbal subgroup can lie properly between F. and CM-) C 5 ̂  

' conclude F" is 3-dimensional. 

In the general case a standard argument (like [20, 33,4-5]) 

involving deletions shows that if there is a nontrivial relation 

modulo V among the non-left-normed basic commutators of weight 4 

in F then there is one such that the commutators which occur in it 

nontrivially all involve the same free generators. By the last 

paragraph there are no nontrivial relations modulo V among 

commutators involving only three generators. Let a, b, o, d be 

among the distinct free generators of F . It is now sufficient to 

show that in any relation of the type 

[a, bi o, dfla, c; b, dlha, d-, b, c]^ € V 

we must have a i 3 ^ Y ^ 0 (modulo 3) , Using an endomorphism of F 

sending a b and fixing the other generators, we see 6 = Y ; 

using one sending a ̂ ^ a and fixing the other generators, we see 

a = -y and using one sending a — d and fixing the other 

generators, we see a E B o Thus 

-Y E a = 6 = Y (modulo 3) 

so 

a H 6 S Y = 0 (modulo 3) , 

and consequently there are no nontrivial relations among the basic 

non-left-normed commutators in F" , // 

The proof of Theorem 11.1 now comes without difficulty. Let 
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4 

the same order as A/C so 4 n FC - C » 

Let K ^ A/C so that K ^ L.^ n [l^, L^ „ Then Z is freely 

generated by the non-left-normed basic Lie elements of weight 4 , 

so the same is true of K ® k L^* r̂  relative to any 

A-basis of L^* , If there exist integers satisfying the conditions 

of Theorem 11,1, then there is a non-left-normed basic commutator c 

of weight 4 obtained by a suitable ordering and bracketing of 

""ad)' ""aO) ' ° = ^^ ® ^^^ ^he 

common eigenvalue A on L^* and K ® A . Thus (K)^ . 

As in the proof of Theorem 10,4, make F = F/VC into a T-group 

such that L^ and F'^F are T-isomorphic, and L^ is isomorphic 

to a submodule of F" . Then an adaption of the proof of Theorem 

10.8 completes the proof of Theorem 11, 

Finally it is shown that the conditions of Theorems 10,8 and 11.1 

determine hypocrisy relative to » iJ ^ ^ ^ ^ ' ^^ view of the 

fact that L^ is a submodule of L^ or K if and only if the 

relevant congruence is satisfied, it suffices to show F" - » 

By some elementary commutator calculations it is verified that 

F/F" € 43A3 » so it is in 4343 ^ which is a proper 

subvariety of A-Aq ^ ^ and, by [18], must be contained in 
J 3 ^^^ 

A N^ , Thus > and, since the other inclusion is easy 

to see, we are done. 
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