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ABSTRACT

The central concept of this thesis is the relationship between
a locally finite variety and the section closed classes of groups
which generate it. R.M. Bryant and L.G. Kovadcs defined the skeleton
S(¥) of a variety V of groups to be the intersection of the
section closed classes of groups which generate V . Of particular
interest are those varieties generated by‘their skeletons, for they
are generated by a unique minimal section closed class of groups.
Since a locally finite variety V is generated by its finite
monolithic groups, S(V¥) 1is always contained in qsM(Y) , the
section closure of the class M(V) of finite monolithic groups in
¥ '.'PFer | positiverinteger :m", let ém denote the variety of all

abelian groups of exponent dividing m . Bryant and Kovacs showed

that, for. .m. >.1 .gnd a.lecally finite.variety ¥ , S|A V) s
N - , : E ,
equal to esM{A V] . Earlier Cossey showed that the skeleton S(U)

of a variety U of A-groups is QsM(g) .

These results are generalized here by showing that for a nontrivial
variety U of A-groups and a locally finite variety V , the
skeleton S(UV) 1is @sM(UV) . As a corollary necessary and
sufficient conditions are given for S(UV) to consist of all finite
groups in UV . Examples are given to show that a product of two
nontrivial locally finite varieties need not be generated by its
skeleton, or, even if it is, the skeleton need not contain all the
critical groups in the variety.

In proving the main theorem above, we are led to consider a
variety which, for some prime p , is generated by finite monolithic

groups each of which is an extension of a nontrivial abelian p-group
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by a p'-group. In the appendix, knowledge of the skeleton of such a
variety is applied te shew that if U. is-a variety of K A-groups, X
a locally finite variety whose lattice of subvarieties is distributive
and the exponents of U and 'V are coprime then the lattice of
subvarieties of UV . is distributive.

The consideration of such extensions of abelian p-groups by
p'-groups leads to an interesting question. When 1s such a group in
a lecally finite vapiety «l ‘enlytiifedt is in. S(¥) ? R.M: Bryant
and L.G. Kovacs have shown the answer to be always, provided the
p-group is cyclic or elementary abelian. If the p-group is not
cyclic and has sufficiently large exponent then, it is shown here,
there is a locally finite variety V containing the group, but the

group is not in S(¥) . In particular if the p-group has exponent

at least p3 and the p'-greup is cyclic this is true. Further

special cases of the problem are considered.
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CHAPTER ONE

INTRODUCTION

1. The Problem and Its History

The central concept of this thesis is the relationship between
a locally finite variety of groups and the section closed classes of
groups which generate it., Fer a class: B, of varieties and a variety
Y in B , the spine of V' relative to. B is defined to be the
intersection of the section closed classes of groups which generate
varieties in B containing ¥ . A number of results can be rephrased
in this language. Cossey [9] showed that a monolithic A-group is in

the spine of the variety it generates relative to the class of

varieties of A-groups. For a positive integer m let ém denote

the variety of abelian groups of exponent dividing m . Brisley and
Kovécs [2] showed that, for a prime p , any finite group in

the product variety A A  is in the spine of A A relative ‘to. the

class of soluble locally finite varieties.

Two special cases of the relative spine are of interest. The
skeleton S(V) of a variety V is defined to be the spine of V
relative to the class which consists of V alone. The spine T(V)
of a locally finite variety YV 1is the spine of ¥V relative to the
class of all locally finite varieties. A finite group is said to be
hypoeritical if 1t is in the spine of the variety it generates.

Bryant and Kovacs [5] have shown that for m > 1 and any locally

F e ety N, the skeleten "S{A V) of "A ¥ "Is%the sectlen
closure of the class of monolithic groups in A V and have given a

more precise description of the groups in the skeleton. In unpublished



work (given in Lemma 9.4 below) they have shown that for a prime p
and a locally finite variety V of p'-exponent, the product variety

AV is generated by its spine; in fact it is generated by hypo-

critical groups.

Much of this thesis is devoted to generalizing the results of
Cossey and Bryant and Kovdcs mentioned above. In this chapter a
language and some elementary results are established, and in the
next chapter some familiarity with skeletons is developed. In
particular, necessary and sufficient conditions are given for a Cross
variety to be generated by its skeleton.

It is shown in Chapter Three that the skeleton S(UV) of a
product variety UV of a nontrivial variety U of A-groups with a locally
finite variety ¥V 1is the section closure of the finite monolithic
groups in UV , and a more precise description of the groups in the
skeleton is given. To prove this a technical theorem is needed which
deals with varieties generated by monolithic groups which, for a prime
p , are an extension of a nontrivial abelian group of p-power order by a
p'-group. That such varieties are of interest in other contexts is
shown in the appendix to Chapter Three. The appendix is a paper
which applies the techmigal lemma to show that if U is a variety of
A-groups and V is a locally finite variety whose lattice of sub-
varieties is distributive and the expenents of U and' ¥ -“are ceprime
then the lattice of .subvarieties of UV is distributive.

In Chapter Four the study of the monolithic groups described
above is continued and attention is focused on deciding which of them
are hypocritical. In particular if the normal p-subgroup is cyclic
or elementary abelian the group is hypocritical. Otherwise, if the

normal p-subgroup has large enough exponent then the group is not




hypocritical, in which case it is said to be sineere. The problem of
which of these groups are hypocritical and which are sincere is not
resolved here, but a number of partial answers are given which

indicate the complexity of the problem and offer scope for further

research,

Apologia

The freedom with which we talk about sets of varieties when in
fact they are classes is an accepted abuse of terminology. It is
done in the faith that, with less elegance but a clearer set theoretic
fouﬂdation, one could discuss equivalent results in the language of
subgroups of free groups. ‘In this thesis the precedent is followed
and if language is abused perhaps even further it is done merely to
avoid cumbersome and pedantic statements about normal subgroups of

free groups.



2. Groups and Varieties

In this section we establish notation and definitions relating
to groups and varieties and gather facts which will be needed later.
Notation and definitions which are not given here are as in Hanna
Neumann [20]. Group will mean finite group unless otherwise stated
or unless this restriction is repugnant to the context. A class of
groups is a union of isomorphism classes of groups and may contain
beth finite and infinite groups. A group G is said to be
monolithie if the intersection of the nontrivial normal subgroups is
nontrivial, and when nontrivial this intersectioh is called the
monolith. If G 1is a set or class of groups we denote the class of
groups isomorphic to

cartesian products of groups in G by ¢G ,

subgroups of groups in G by 8G ,
factor groups of groups in G by G ,
finite groups in G by F(G) , and
monelithic groups in G by M(G)

If G consists of a single group G we write ¢G, sG, QG
respectively for ¢G, sG, QG .

If G is contained in H we write G <t and reserve G < fl
for proper containment. A class G of groups is said to be section
elosediif @G © G andy &6 €'0'. " Fer any class G of groups it is
easy to see that qsG. is secticn closed, A section of .a group G
is an element of q&7 . A section closed class G of groups is
called a variety if ¢G < G . Birkhoff [20, 15.23] showed that if G
is .a class of groups them  aqscG is a variety. It is called the
variety gemerated by G and denoted by var G . If G 1is a section
closed class of groups which generates V we write Gecell - . A meonolithie

group is said to be eritiecal if it is not in the variety generated by il



proper subgroups. We write ((G) for the class of critical groups

in G . A Cross variety is a variety generated by a finite group.

A variety V¥V is said to be locally finite if every group in it is
locally finite. An A-group is a locally finite group whose nilpotent
subgroups are abelian. A variety of A-groups is a variety which
consists of A-groups.

The eaxponent of a locally finite variety is the order of the
free group on one generator of the variety. The exponent of a group
is the least common multiple of the orders of the elements of the
group. For a prime p a group G or a variety V is said to have
p-prime (p') exponent if p does not divide the (finite) exponent
of G.er I . The socle 0OG of a group G 1is the product of the
minimal normal subgroups of G . If an action of G 1is defined on
H (for example H may be a section of G or a G-module) then

the centralizer CG(H) in G of H is defined to be the set of

elements of G which act trivially on H ; it is always a subgroup

of. G.. We write 0* for CG(OG) . If N is a normal: subgreup of

G e wpite J-4.G-and.if N is characteristic,/ N char:G .. If H
is a subgroup of G we write H =G ; if H is proper, £H < Gu
and if H is isomorphic to a subgroup of G then H G . If
H<G and T is a set of (right) coset representatives for K in
G we say T is a (right) transversal for H in G .

Suppose G 1is a group and a, b, Gis =wns G5 @ 0 are elements

ofeals . o We wpike a_lb-lab =@, bl.z.las 1b]. rand inductively for
7 e
e el

and

[e, mbl = [La, (n-1)b1, b] .



-1 b ;
We denote b "ab by:a . The derived group G' is the subgroup of
G e ber e g bl fer a1l @, b. in G . If- G is generated

by Ay Ags wve We write G = gp(al, Ays ...) PR R e )

[H; X1 = gpl(lh, k] I e,k €X) . Let @ =S\ ard fem e Z .1

(1)
Gy B nge Gl

For a prime p , Sp(G) denotes the set of Sylow p-subgroups

of G . The Frattini subgroup of G 1is denoted by &G and the
center of G by Z(G) . The automorphism group of G 1is denoted by
Aut G .

For groups G and H a homomorphism from G to H 1is denoted
G+ H , from 'G" enter H "by & >>"H ,, an embedding by "G »-H and

an isomorphism by G»> H or G=H . If ¢ 1is a homomorphism of a

multiplicatively written group G then exponential notation is used,

® or &° for a €@ , unless this becomes toccumbersome
typographically in which case circle notation is used, a o ¢ . If
A is an additively written group then multiplicative notation is
used for a homomorphism, A or ap . If ¢ : G > Aut H is a

(fixed) homomorphism then GH denotes the split extension of H by

G where W , h€e€H and g € G , denotes the image of #Z under

g(p . In particular if H = A is a G-module, written additively

then GA is written multiplicatively and we will switch without
comment from additive to multiplicative notation and vice versa as
seems appropriate. If ¢ is a homomorphism of G and H.= G then

@|H denetes the restrictien of. ¢ to & .

5 ULy ¥ denotes, the variety generated

For varieties U and

<

by the set theoretic union U U ¥V , and U A ¥V the variety of groups



in the set theoretic intersection U n 2 Thetproduct vapiety of U
by - ¥. is denoted by UV .

The following results are well known.

2.1 LEMMA. If G <ie a finite A-group them 0*G is abelian.

Proof, Suppose by way of contradiction that (0*G)' # 1 . Then
(0*G)' 4 G so there is a minimal normal subgroup N of G
contained in (0*G)' . Notice N = Z(0*G) . Since O*G is an
A-group we can apply [15, VI 14.3 (b)] to get

N = Z(e*G) n (g%G)" = 1

which is the desired contradiction. rr

2.2 COROLLARY (Cossey [9]). If G <s a monolithic A-group

with 0G a p-group for some prime p then O*G € Sp(G) y
Proof. Since OG 1is a normal p-subgroup of G , if § € Sp(G)

Then ‘06 ‘= %%7 Bince's ¢ '"is an” d-group, § =0 . By 2.1, o* is
abelian and since G 1is monolithic, S = 0*G . i

2.3 LEMMA. If G s a monolithic group with a nontrivial
normal abelian Sylow p-subgroup S then S = 0*G .

Proof, Cleaply S =¢% . If (9%6)" # 1 it cemtaing a
minimal normal subgroup N of G . Then N = 0G =S and
N = Z(0*G) . Since' S is abelian we can apply [15, VI 14.3 (a)] to
get

EEFgletgy n (W) ™ 8. %1

which is a contradiction. Thus O*G is abelian so S = O*G . 7

The following theorem is proved in [15, I 18.1 and 18.3]; 1in
this generality the proof relies on the Feit Thompson Theorem.

2.4 SCHUR ZASSENHAUS THEOREM. If G <s a group, N <G and
the order |G/N| of G/N <is coprime to the order |N| of N then
there 18 a complement for N in G and all complements of N in

G are conjugate. V4



2.5 LEMMA. If S is a mormal Sylow p-subgrowp of G then
S = S n &G .

Proof. Using some elementary results about Frattini subgroups
[15, III §3] the problem may be reduced to the case &S = 1 . By the
Schur Zassenhaus Theorem S has a complement H in G . If
5 n&F > 1 it contains an irreducible H-module which has a complement,
A say, in S (by Maschke's Theorem). But the split extension HA
is a maximal subgroup of (G avoiding nontrivial elements of S n &G
which is a contradiction. //

For groups G and H , G wr H denotes the (restricted) wreath

product wef: G and  H'. and GH denotes the set of functions from

H to G . Under pointwise multiplication GH is a group, called

the base group of G wr H . We identify G with the subgroup of

GH of functions trivial everywhere except possibly at 1 € H .
2.6 LEMMA. If G <8 a menolithic group and. G > 0*G and 'H
18 a group then G wr H 1is monolithic,
(G wr H) s (UG)H
and
o*(G wr H) = (a*6)? .
Proof. We first show (OG)H is a minimal normal subgroup of

Gwr H. Let ¢ be a nontrivial element of (OG)H . Then there is

anl a € 8. isuchythat sel . # ©la) 160G+  Since, G > @3G . there is.a

Pl e ianh that [h, @la)]"# 'L v Tet P (’G)H be defined by
W(a) =b , Y(a') =1 : here and below the range of a' 1s H\{a} .
Then L = [V, 0] satiaPics xla) #'1" and’ HM(a") = 1, and”" ¥ “i&+in

+he normal cloesure.of ¢ in. G wr H . The normal clesure of X in



GH s
e la) £ ook, ute') =)

and the normal closure of this in G wr H is (OG)H S ihus (UG)H

is a minimal normal subgroup of G wr H .
: H s
Let & centralize (0G) sel (6w B L G [ci,/wﬁ =.1 so li
0 . H ;
¢ sl ccobgtneds€ B nisSinceral(a6)” é] = Ly E(d) € e*G and sifice
thia®is8tne®iar Q1LY Jhc ‘B “Ef¢ (O*G)H . 1t fellows that any
nontrivial normal subgroup of G wr H contains (OG)H o Thus
G wr H is monolithic with monolith (GG)H and monolith centralizer

(EROS . o« tnrel

2.7 THEOREM. Suppose p is a prime and P 1is a relatively
free p-éroup. Let N=¢%P, N <P andlet G* be a p'-subgroup
of Aut P/N . Then there is a group G = Aut P such that the map
P >> P/N induces an tsomorphism of G and G* as abstract groups.

Lt Gl < Aut B. and Gl has the same properties as G then Gl and

G arve conjugate in" Aut' P ,

Proof. Let Ays eres a, be free generators of P and let

¢ € Aut P/N . Let bi € (a,L.]V)(P . Since P 1is relatively free the
map a, Fﬂ-bi induces an endomorphism Y of P, Since N =< &P ,

Y 1is an automorphism. Thus the map P -> P/N induces a homomorphism

e dabiliner of of/‘Aut P, ente..Aut B/Nuy. Let  H 'in  Apt P ‘be the complete
ji inverse image of G* wunder T .
By a theorem of P. Hall [15, III 3.18], ker T is a p-group.
By assumptionv G* = H/ker T and G* is a p'-group. Thus by the Schur

Zassenhaus Theorem there is a complement G for ker T in H and
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all complements are conjugate in H , and H < Aut P . [
The following lemma is well known and is proved in Brady [1,

2007

2.8 LEMMA. Suppose G and H are groups, © : G»>H ,

K<At G, L=sAutH and 6'k0 and I are eonjugate in Aut H .
Then the split extensione KG and HL are_ésomorphic. T

The concept of a minimal representation due to Kovacs and Newman
[17] is used repeatedly in this thésis. Suppose that G 1is a section
closed class of groups such that var G is locally finite, and G is
a group in var G . Then G 1is a section of a finite direct product
of groups in G , generally in many wayé by 20, 5lalle : (The
argument offered in [20] in support of 51.1 appears to require a
further idea which can be adapted from the proof of [20, 15.74].)
Each such direct product determines a finite non-increasing sequence
of integers, each integer the order of a direct factor. Order these
sequences lexicographically, that is by putting one sequence before
another when its entry in the first place where they differ is the
smaller. In this ordering there is a unique first sequence. An
isomorphism

G HE e, HSEEX %

corresponding‘to this first sequence and such that no proper sub-
group of H has a factor group isomorphic to G 1is called a minimal
representation of G on G . The assumption that H- be as small

as possible is not usually made in writings about minimal represent-
ations, but is made here because it has as a consequence that

K = 8F .

To describe a frequently used fact about minimal representations



we need another definition. If G and H are groups, M 9 G ,
N 4 H and there exist isomorphisms 6,: M»> N and

bl G/CG(M)>+> H/CH(N) such that

(M) o 8 =(mo 0)®H for all m e M, a €6/, (M)

then we say M s similar in G to N in. H . (Here m?  is,

defined to be the common.value of i’ for 2. in .the ceset - @ of

Co(M) in G o)

2.9 LEMMA ([20, 53.25]). Suppose G <s a group and

Gr—_\‘JH/K, HiH xceexH

1 t

T H, € H Jeie ¢ =21, B,

i8 a minimal representation of G on a section closed class H of

groups. Then for each 1°', H; is eritical and G has a minimal
normal subgroup U, which ie eimilar in G to OH, in H . i

2.10 LEMMA. If. G 1is a monolithic group with a nontrivial
normal Sylow p-subgroup S and

GxH/K, HSH X .. xH

t
is a minimal representation of G then a Sylow p-subgroup T of: H
is normal in H and
K Ol
Proof. As noted earlier K < ® so K is nilpotent and the

Sylow subgroups of X are normal in' H ,. Singe G is mgnelithic

and 1#84G, 520G so 6G is a p-group. Since Gﬂi ~ oG
for each 7 , OHi is a  p-group, As H is a subdirect product of
the Hi e ie A p_groupc Because the Sylow subgroups of KX are

nermal im H., K 1is .a p-group.

The Sylow p-subgroup of G 1is normal in G , so the same is
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true for H/K , and since X is a normal. p-subgroup of X , a Sylow
fealmenp 0 el U lsmprmal:in H- . By 2.5;
o= "0 @ =K . &

In the following well known formula M denotes the Mobius
~functien.

2,11 WITT'S FORMULA ([19, 5.111). Suppose F <is the infinite
absolutely free group on Kk generators, k > 1 . The rank of
FoouE as a free abelign group is

(e)' " (et+l)

nla) = = %: u(d)kc/d 3 L
e
dle

For a positive inte m A ) 1
posit nteger s A va and gm denote respectively

the variety of all abelian groups of exponent dividing m , the
variety of all nilpotent groups of class at most m , and the variety
of all groups of exponent dividing m .

For a variety Y the lattice of ¥V means the lattice of sub-
varieties of V. using Vv .and A defined earlier. It is modular.
In a modular nondistributive lattice there are always three elements
whose pairwise joins and meets are respectively equal [22, Theorems
32 and 33]. Higman [14] gave the first example of a variety with a
nondistributive lattice and showed that for each prime p > 5 the

lattice of Ep A gp 1 is not distributive. Kovacs and Newman, in

unpublished work, showed éﬁﬁ% has a nondistributive lattice. Bryce

[7, 4.4.8] showed for any prime p , épzépg A Ep+2 has a non-

distributive lattice. Brooks [3] showed —.ég has.a nendistributive

0|)D>

lattice. Thus we get the following result.
2. 12 - THEOREM. For each prime p there exist three distinct
locally finite varieties of p-power exponent whose pairwise joins and

meets are respectively equal. £r



3. Representation Theory.

In this section much of the representation theory needed later
is -developed. Most of it is well known. Notation and terminology
not here defined are as in Curtis and Reiner [10] though here module
shall mean finitely generated right module except where otherwise
stated. Throughout this section let G be a.group, p a prime, .0

a positive integer and Ru the ring of integers modulo pOc e
occasion the ring of integers modulo p will be denoted by Zp < By

[10, 70.24] there exists a finite splitting field A for G, obtained

by adjoining a primitive mth root of unity to Zp , where m is
the exponent of G . Both Ra and A are quasi-Frobenius rings (as

defined in [10, 58.5]). Let R be a commutative quasi-Frobenius
ring of 'p—power characteristic. Then. the group ring KRG 1is also
quasi-Frobenius [10, 2(d) p. 402]. The regular RG-module will also
be denoted by RG .

1£- € 1z a divect . sum of A and B , C= A @ B, thep 4 i3

said to be a direet summand of C . For a positive integer 2» ,

A@m denotes the direct sum of r copies of 4 . An RG-module A4
is said to be injective if, whenever it is a submodule of a module
C then it is a direct summand of C . An FHAG-module 4 is said to
be projective if whenever there is a homomorphism of ( onto 4
then A is isomorphic to a direct summand of ( . A module
isomorphic to an indecomposable direct summand of RG is called a
principal indecomposable module.

3.1 LEMMA ([10, 56.6 and 58.14]). An RG-module is ingjective
if and only if it is projective if and only if it is a direct sum of

principal indecomposable modules. vid
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An  RG-module is said to be completely reducible if every sub-
module ‘is a direct summand. Recall that B is of p-power
characteristic.

3.2 CHMASCHKE'S THEOREM ([11. 2.2.27). Suppsse .G, 18 @
p'-group and the submodule A of the RG-module C is a dirvect
factor of C as abelian group. Then A 1is a direct summand of C .
In particular if R is a field then C_ <is completely reducible. [/

3.3 KRULL SCHMIDT. THEOREM ([10, 14%.51). If

A;A;'I_@“'@AP:BJ.@'”@BS

are two decompositions of an RG-module A into divect swums of
nonzero indecomposable submodules then r = s and there is a

permtation W of AL, ...s 2k such that A; = B, for each Boa el

If A is a right R-module and B is a left R-module then

A 6% B or A®B will denote the tensor product of A and B over

; " (2Ug
R . For a positive integer r , A4 denotes the tensor product of

r coples of (the two sided module) A . If: H <G and 4 1is an
RH-module then AG = A @ﬁﬂ RG 1is the RG-module induced from A4 .

3.4 LEMMA. If N S G and A 1is an injective RN-module then
AG 18 an injective RG-module.

B G
Proof. By the definition of' 4 .and [16, 12.14],

e il
(RN)~ = RN Q%N RG = RG .

If A is an injective « RN-module 'then there is an FKN-module B and

a positive integer r K such that 4@ B = (RN)@W by @.li By [1a,
12.12] the direct sum diStributes over tensor preducts so

G

Lo ~uent = ("< w® .

By 3.1 the lemma follows. £/
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T even”  RU-medule*and H = G the-restriction of 4 to H

~gives an FRH-module denoted by AH TiEiE A v is“isemerphic to a

submodule of B we write 4 ng . For an RG-module A , as noted
earlier GA denotes the (multiplicatively written) split extension
ef A° by "G " where'the action of ¢ eon A by cenjugation is the
module action.

The first paragraph of the proof of [10, 63.2] can be adapted to
prove the following lemma.

3.5 LEMMA. If NAG and A <ie an RG-module then
)G

AX {:AN

7
For an RG-module 4 , ker A 1is by definition the centralizer
in Goeof A and G is said te aet feithfully en 4 if ker 4. =1 .

If ker 4 = G then G is,said to agel trivially on 4 .

i

3.6 LEMMA. If A and B are FRG-modules and A X B then
GA/ker A 18 a section of GB/ker B .

Propf, Since 4,5 Bi, ker. B=ker 4. MNow Gl/ker 4 is a
factor.group of GA/ker B which is isomorphic to a subgroup of
GB/ker B . //

Suppose g € G and g centralizes every irreducible ZpG—

module. Then g - 1 is in the Jacobson radical (defined in [15,

V 2.1]1) of the group ring ZpG which is nilpotent by [15, V 2.4].

Thus there is an r such that (g—l)r =0 . Let n be sueh that

n
oz o, Theq (g—l)p = 0 and since ZpG has characteristic p ,

gp =1 , It follows that if the maximal normal p-subgroup of G
iz 1+ then G has a faithful completely reducible module A . If

G is also monolithic then G must act faithfully on some
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irreducible direct summand of 4 .
SRR I @ 8 mowolithic, P is.a prime, and OG. .is

not a p-group then there is an irreducible ZpG—moduZe on which G

acts faithfully. P4

4.8 REMARK. If W A G , A is an RNV-module .and g € G. then

QAG)N >A®g . The set A®g 1is an RN-module since for any
n- el amdi e el A

=1
(a@g)n=cmg ®g -

A®g 1is called a conjugate module. Identifying A ® 1 with A4 we

have (N4)Y = N(4A ® g) so that
NA=NA®g)

TEY Biiis an: Ré-module and. D = (0 = BN » then the subset: Cg of B

is in fact a submodule of BN . With (C/D)g defined as C(g/Dg

we have that
G )
(00T Lo e (c/'D)gg_ .
- the obvious isomorphism being such that (etD) ® g+ cg + Dg for

Bidledesiidibn . G §

3.9 LEMMA. If U g & mormabpl-subgroup of G and: A 18

a homoeyclic HOLG-moduZe of exponent pa then (AN}G 18 an
injeective ROLG—moduZe.

Proof. By Maschke's Theorem AN is an injective RaN~module.

By 3.4, (AN}G is injective, i

If o = B there is a natural homomorphism RaG > RBG . Under

it 'an RuG—modulé of exponent dividing pB can be considered as an
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RBG-moduleo In particular if G is a p'-group and 4 1is an
indecomposable RaGemodule of exponent pB then A 1is homocyclic by

[¥1, 5.2.2] and, censidered as R, G-medule, 'it is injective by

B
Maschke's Theorem. Applying 3.1 gives the following lemma.
3.10 LEMMA. If G <is a p'-group then an indecomposable
g

RQG-moduZe of exponent p~ , B = o, considered as RBG-moduZe, i8
a prineipal indecomposable RBG-moduZen 4

If A 1is a module then for any positive integer »n , 74 denotes
the submodule whose underlying set is {na | el Al
3.11 LEMMA. If G <e a p'-group and A is a principal

indecomposable RuG—moduZe then

4288 .. Ip° TADD
ige the unique composition series for A and all the factors are
isomorphic.
Proof. Since A 1is memeiithre-|it is |indecomposablelamd there-
fore homocyclic by [11l, 5.2.2]. By Maschke's Theorem pa—lA is

B

irreducible. For B <. 0 the map p A/p8+lA % pa-lA defined by

pBa + pB+lA‘r» pu-la

for any a € A 1is an isomorphism since 4 1is homocyclic. Thus
B+l g

p~ A is a maximal submodule of pA.. If B is any maximal sub-

module of pBA then pBA/B is of exponent p and se p8+lA =8

Thus pB+lA is the unique maximal submodule of pBA ! il
The join of the minimal submodules of a module A is called
the socle 0A of the module.,

3.12 THEOREM. Suppose G 8 a p'-group and A 1is an R G-
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module. The module B 1s isomorphic to a submodule of A <if and
only if it is isomorphic to a factor module of A .

Preof, First suppose Al and A2 are indecomposable RaG—

modules of exponent pB with a common composition factor. Consider

Al and A2 as RBG—modules. By 3.10, they are now principal

thus A, and 4

indecomposables, so 3.1l gives that OAléE oA 1 )

5 3
are RBG—injective hulls of isomorphic irreducibles and hence they

are isomorphic. This shows that an indecomposable RaG—module is

determined up to isomorphism by its exponent and a composition
factor,
Suppose (C 1s an irreducible RaG—modulea If A 1is an

RGG—module then the join of all the indecomposable submodules of A

whose socle is isomorphic to (C 1is called the C(-component of A .
Suppose that in an unrefinable direct decomposition of A there are =

indecomposable direct summands in the C-component of 4 and they have exponer

pC(l), Vg pC(n) with o(Z) = e(i+l) fer all 7 . The (-component

of A 1is characterized by a sequence
L1}, @l@)e oyl

e(?) for 7 =n. and a(t) = L fer < > m., and this

where a(Z) =p
is called the C(-sequence of A .
It will be shown that B. is isomorphic to a submodule or factor

module of A if and only if for each irreducible RaG—module A

the C(-sequence of B ,
(BLL), BlaY, sl
48 Buck tleh al(t) =2 b(Z) Fer all 2 5 l; 24 srs

The sufficiency is clear. For the necessity we may suppose by
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way of contradiction that there is a smallest A& such that
glk) < b(k) . Then {b(k)p—l}B has at least k + 1 indecomposable
direct summands with socle C in an unrefinable direct decomposition
while (b(k)p-le has only k . This contradiction establishes the
condition for submodules. The condition for factor modules is
established using a similar argument considering B/(b(k)p_l)B and
4/(Bk)p™1)4

The classes of modules isomorphic to submodules and factor
modules are defined by the same conditions and so must be the same

class of modules. [/
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CHAPTER TWO

SOME REMARKS ON SKELETONS

In Section Feur, the first sectien of.this chapter, seome lemmas
are proved which have some interest in their own right and which are
used in the proof of the main theorems of the next chapter. In
Section Five necessary and sufficient conditions for a Cross variety

to be generated by its skeleton are given.

4. Lemmas and an Example

The definition of the skeleton given in Section 1 is equivalent
to the statement that the skeleten S(¥) of a variety V' is the
intersection of the section closed classes of groups which generate
V . The first lemma helps reduce the problem of finding the skeleton
of ¥V to that of finding skeletons of subvarieties of ¥V .

4.1 LEMMA. If A <s an index set and for each M € A , vy

18 a variety then

S(\/ lx} U 8w ..

A€ T XEA
Proof. Let F be the (infinite) absolutely free group of

countably infinite rank. For each )/E i Tet P

Ny = {zv | W< F and F/N ¢ \)\/ 0 \S{_X_)()} A

and for each N € NA let GANSCGxﬂ be such that F/N ¢ GKN R T

easy to see that Sil RS B R N, denote the cartesian
A eN AN A
A

product of the NA and for U € | NA , H(A) denotes the NA

component of W . Then for any U € NX .
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sy ik} S
A A
‘Since
(_ G
I Lg ,u(x)] 7 Lﬂ} G;\,zv]
the lemma follows. L

To show that equality need not always hold in 4.1 and that a
product of two non-trivial locally finite varieties need not be
generated by its skeleton, we give an example.

4.2 EXAMPLE. Let g be a prime. By 2.12 there are three

distinct locally finite varieties Ea* QQ, 2@ of g-power exponent

whose pairwise joins and meets are respectively equal. Let

melh v and let V be a locally finite variety.

By 4.1 and since. U = U V

L
e

S(uv) c S

I
.
(5
=
C
Wn
=
—

Since: U =1 \/_LJ=3 5

iy
9—_ :sLll) U S(=3=)
Because the lattice of sets is distributive,

Sy < S(u ngnsLF)J

By [20, 21.23],

LY AUy = (Ung)icy

so S(UY) cy ¥ . Similarly S(UV) UV so SWV) < (U AY,)Y .

2,12 By, [20, 23,921, (UAU)YcyYc

]
I=

so S(UV) cannot generate

Y. i

The above is perhaps the simplest example of a locally finite

product variety not generated by its skeleton. Some results of
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Woeppel [23] can be used to show that there is a locally finite
product variety UV not generated by its skeleton in which the
lattice of U is distributive. The next lemma is a presumably well
known variant of [20, 22.43] which will be useful later.
4.3 LEMMA. If G and H are nonempty classes of groups
generating U and discriminating Y respectively then
{6 we B, ¢ €6, F ¢ H}

generates UV .

Proof. Clearly U = \/ var G and UY = (var G*Y). by [24,
GeG GeG

21.23]. The set {Gwr H | H € H} generates (var G)V by [20, 22.43]

so
(B w96 ¢ G W ey = U & {Fw B 1RE 1)
GeG
generates \/ (var G*Y) , which completes the proof. /i

GeG
Recall that the spine T(V) of a locally finite variety V is
the intersection of the skeletons of the locally finite varieties
containing V , so that T(¥) € S(V) . The next lemma shows that
equality may sometimes hold. Recall that M(Y¥) denotes the class of
monolithic groups in V .

4.4 LEMMA. If U <e a nontrivial locally finite variety

generated by monolithic groups with nonabelian monoliths, and JV tis
a locally finite variety then
S(uv) = T(UV) = as{G | G € M(UY) and oG s not abelian} .
Proof. Let
G={Gw H| GeMU, o6 A and H € F(D} .
Let H={H | H € M(UY) and oH f A} . By 4.3, G generates UV .
By 2.6, Gelfl.. If we show, fl € T(UV) we shall have

S(UV) c q86 € qsfl € T(UY) < S(UV)
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proving the lemma.

Suppose K 1s a section closed class of groups generating a
locally finite variety containing UV . Let H € H and take a
minimal representation of H on e

BBl K = Kl e L 1 Kt 5 Ki i R [ R T RS D i

By 2.9, H=H/O‘*H'—3Kl/0*]{l€l< gl € K se. H G TAIL . /Y

4.5 LEMMA. If U and V are nontrivial locally finite
varieties and either U <8 abelian or not of prime power exponent
then M(Y) < F(UW) .

Proof. If U 1is abelian the lemma follows from [5, ol
Suppose U is not of prime power exponent. Let G € M(Y) and p

be a prime divisor of the exponent ef U such that @G is net a

p-group. By 3.7 there is a faithful irreducible ZpG—module A , and

it is easy to see that+ A4 1is self-centralizing in the split
extension GA . Now. GA € UV and if

~ H/ X X
GA = k... EH = Hl B Ht
is a minimal representation of GA on a section closed class G - of
groups generating a locally finite variety containing UV , then

G = GA/A = GA/0*(GA) = Hl/O*Hl €6 by 2:9. b

4.6 LEMMA. If a variety V is generated by its skeleton and

=

M-
=Z,

<
i
.
n<§
’—l

W.
Jig

then V = \/ var{S(_i)nlirﬂj) X
7/,

i

Proof. By 4.1, S(¥) = U (S(W)n¥;) and S = U (S(Wnu.) so
' g

T

U (SWnv.ni.) .

aiy) W
isd Bt
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It follows that ¥ = ?V/ ¥(Z, §) where Y(Z, j) = var(S(ljnlinﬁﬁ) b
T

A variety is said to be join irreducible if it cannot be written
as the join of two proper subvarieties. The next lemma concerns a

join irreducible variety of A-groups and will be useful in the next

chapter.
4.7 LEMMA. If U <s a join irreducible variety of A-groups

then there are critical groups Glo G2, S o WETH CWaEr Gl C. van G2 e

B ,
an U k\:/l var Gk

Proef., Jdetcdi it be the critical groups in. U . and let

l’ 2, e c e

G, =1 and Gl = H Suppose there exist critical groups

0 ik

Gl’ G2, ety Gn with Gi—l 3 Hi € var Gi Repeli o= 1 E s S

We show there 1is a Gn extending this sequence. Let

Gl

=l :
5. F ) @ CUgand B ¢ var G} ,

S,=1{6| GecC and G ¢ var G},

2
and
gy = {6 | G ecCu and 0B & B G}
3 el
singgs C(UY = Ui 8. Wl 5 \V/ var 5. . Because U is join
1=1 1
irredyeitile - U = vdp Si for some < . Since U 1is a variety of

A-groups, G _, H € sti by Lessey [9], /Thus: £'=.3 and 3 . .is

ol 3
not empty. Let Gn+l £ 33 . Now Gn, Hﬁ+l §ﬁvar Gn+l . Centinwing
(0] . (o0]
in this way we see \V/ war G, " coentains  C(U) so U= \V/ war: G0 /Y
k;l k il =it k

With netation as in 4,7, 1f G.€ U then, G is.a sectien.of.a
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finite direet product of the Gk and so is in the variety generated

by one of them. Since a critical A-group generates a join
irreducible Cross variety by Cossey [9], we have the following
corollary.

4.8 COROLLARY. A4 finite group in a join irreducible variety of

A-groups is in a join irreducible Cross subvariety. Ll

5. The Skeleton of a Cross Variety

A Cross variety is defined to—be a variety generated by a finite

group. Let G be a group and

G=8/K , H= Hy X oo0 X Ht : Hi €N G Fep. 2y i T
be a minimal representation of G on var G . The class
QS{Hl, s Ht} is called a critical class for G .

5.1 THEOREM. Let V be a Cross variety. The skeleton S(V)
of Y generates V if and only if each finite group generating ¥
has a unique critical class. If S(¥V) and G each generate V and
G- is a critical plass for G then G = S(V) .

Proof. Assume first that each finite group generating V has a
unique critical class. Let G generate V and G be.its critieal

class. Let H be a section closed class of groups generating V

and let

G R S T el TRy 4 T
be a minimal representation of G on H ., Since G and H
generate V , Qs{Hl, ciniaty Ht} is a critical class for G and by
assumption is egual to %G . Thus GcH , se Gc S(V),. Since G

generates V , S(V) EG so S(¥) = G and S(Y) generates Y .

On the other hand suppose G generates ¥ and has two distinct
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critical classes Gl and G2 v+ Then there iz Gl € Gl such that

Gy £ G2 so
S(L)EGlnGQCGl.

By definition of critical class, S(Y) cannot generate Y . &
In fact for a Cross variety V generated by its skeleton there
is an explicit construction for S(Y) . Following Bryant [4] we call

aiset G e {Gl, pgtl Gt} of groups critical if, for each 7 , G is

not in the variety generated by (Gu(os—l)Gi) \ {Gi} v An et 1o

can be refined to a critical set: if G 1is in the variety generated

by Gl = {Gu(os—l)Gi) . {GiF then in Gl . Gi has been replaced by

groups of smaller order. Continuing with this process we arrive at a
critical set H with var H = var G . We call H a eritieal
refinement of G . If G consists of a single group G we call H
a eritical refinement of G .

5.2 THEOREM. If a Cross variety V. is generated by a finite
group G , H 1is a eritical refinement of G and S(Y) generates
V then S(Y) = asH .

Proof. Because G € var H there is a minimal representation

Q=R = Hl e Ht . Hi € oall Fer - 1= 1 vis ®

of ~@oenm aeH . By 5,1, G = Qs{Hl, e Ht} is the unique critical

olass for G.. If Gc qeH then, var 6 = var H centradicts the
definition of critical refinement. Thus G = qsH and by 5.1 we are
done . i

If ¢ 4is critical then qe{G} is a eritical class for G so

5.1 has a corollary.
5.3 COROLLARY: If G <e eritical and var G. is the join of

two proper subvarieties them S(var G) .does not generate var G . //
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5.4 EXAMPLE. Suppose p is an odd prime and G is a
nonabelian group of order p3 and exponent p2 « Let H Dbe a
monabelian group of order p3 and exponent p . Then by [20,

54,2017,

varm' G = A o NV var H .
ﬁ

Since G 1is critical, 5.3 implies S(var G) does not generate
var G . T

From 5.1 we have another corellary.

5.5 COROLLARY. 4 join irreducible Cross variety is generated
by its skeleton if and only if it 1s generated by a wnique critical
group. L

Lemma 4.6 shows that if a Cross variety is generated by its
skeleton then it has a unique decomposition in terms of join
irreducible subvarieties. It is easy to see that each of these
subvarieties must be generated by its skeleton. Now 5.5 gives the
following result.

5.6 THEOREM. If a Croes variety is generated by its skeleton
then it has a wiique decomposition as an irredundant join of join
irreducible subvarieties each of which is generated by a wnique
eritical group. I

As example 5.4 shows, the converse of 5.6 is not true.



CHAPTER THREE

THE SKELETON OF A PRODUCT VARIETY

In this chapter the skeleton of the product of a nontrivial
variety of A-groups and a locally finite variety is characterized in
two ways, Theorems 6.1 and 6.3 below. In Section 6 it is shown that
these characterizations follow from a description of the skeleton of
a certain product variety, given in Theorem 6.4. In Section 7 a

discussion of RaG—modules in a varietal setting lays the foundation

for a proof of Theorem 6.4 which follows in Section 8.

6. The Theorems

As a locally finite variety Y is always generated by its
critical groups, S(Y) < QsC(i) . In fact equality may sometimes
occur.

6.1 THEOREM. If U <e a nontrivial variety of A-groups and
V 18 a locally finite variety then

| S(EY) = asM(QY) = asC(UY)
and therefore S(UV) generates UY .

For a (nontrivial) variety ¥V , F_(Y) denotes the (infinite)
relatively free group of countably infinite rank.

An interesting corollary can be derived from Theorem 6.1 and [5,
L.80

6.2 COROLLARY. OSuppose [ 1i8 a nontrivial variety of A-groups
and V18 a nontrivial locally finite variety. The skeleton
S(UY) = F(UW <if and only if

(a) U 18 abelian of ewponent a power of a prime p and
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z(F_(1) is a p-grouwp, or

(b) U tie nonabelian and join irreducible.
Proof. For abelian & toe resulf deveiven by [6, 1.5]). Suppese

U is not abelian. If U is the join of two proper subvarieties gl

and Q—Q then by [26, 2L,.8u], %l;ﬁ e ten. 7 =Wl o2 . Thus  there

is an n(Z) such that Fn(i)(,g_l) fL_J_,L_l_ . Let 7 be the larger of

(L) vand n(2) . "Then F (V) {Egliu However

Ly -

S(uy) c LY ulV by definition so F (W) £ S(uv)

Suppose on the other hand that U is join irreducible. By

4.7 there are critical groups Gl, GQ, <o wWith wvapr Gl C var G2 C oeni
'OO

and U = \\/ var GZ< . If G 1is a finite group in__UV then
k=1

V(G) € var G for some %k (as in the proof of 4.8). Thus

k

G € {var G \_y__ . As U 1s not abelian there is an . = k such that

k

GZ is not abelian and G € {var Gz)l :

Let V(G) =B/K , H= G}Z » the direct power of GZ « Bince. ¥V

is nontrivial there is an L € ¥V with |L| =z n . Let
- Ui o : Z
G = Gy wr ((G/v(@))>L) . sSince G, is not abelian G; > 0*G,

Thus G € M(UV) by 2.6. By 6.1, G € S(UV) . We show G € qsG .

By [20, 22,14 and 22.12],

Hwr G/Y(G) = &) wr G/U(E) £ G .

By (20, 22,21 and 22.11],
G € qs{H/K wr G‘/l(G)) = qs (H wr G/__M_(G)) :
This proves the corollary. L/

6.3 THEOREM. Let U be a nontrivial variety of A-groups and
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Y be a nontrivial loeally finite variety. Let {QA | A € A} be the

set of nonabelian join irreducible Cross subvarieties )l -

S(uv) = )\U Flu,y) v sy .
€N -

In [5, 1.4] Bryant and Kovacs have characterized the groups in
S((gﬁéjgj so the above theorem gives a complete description of the
groups in S(UVY) . By Cossey [8] a join irreducible Cross variety in
U 1is generated by a single critical group.

Derivation of §.8.° et {g% ! Noe A} be the set of nonabelian
join irreducible Cross subvarietfes of U . Now u= \V/ Y (UAA)
Aeh e

(=

seby (20, 21,231,

and by 4.1,

S(uy) = U Flgy) v s(wwy) . /1
A

Theorem 6.1 is a consequence of the following theorem.

6.4 THEOREM. Suppose p is a prime and 0o <& a positive
integer. Suppose U 18 a nontrivial loecally finite variety such
that for some variety W of p'-exponent

WeUchs W
== = =
p

and U 1is generated by eritical groups not in M . If Y 1ie a

Locally finite variety then

S(uv) = qs{G | G € M(UL)

and there 16 an N A G, N € U\E. and G/N € V} .
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Also S(UV) generates UV .
The following example shows that, with the assumptions of 6.4,
S(U¥) need not equal ¢sC(UV) .

6.5 EXAMPLE: Let 9, Y, U, and U, be as in 4.2. Let p
be a prime different from ¢q . Suppose G ¢ M(giugg) and let A(G)

be an irreducible ZpG-module en whieh * G acts faithfully; ene

exdsts by 3.7:" ‘Let

U = var{GA(G) | G € M(giqga]} i

Te =l e =y S S Seen Y T ieta warietyact p'-exponent such that

=
1N

UCATW.

Since G acts faithfully and irreducibly on A(G) , GA(G) is
monolithic and by [17], critical. Hence U satisfies the conditions
of 6.4,

Suppose V 1is a locally finite variety of exponent coprime to

pq . Let H- be Z group in EG which is not in gﬂ AU, . We show

H é S(UY) . Suppese by way of contradiction that, H € S(UY) . By

S(UV) < as{GA(G) wr i, | G ¢ M{:Q]_ULJ-QJ and n =1, 2, Eowsl

Then for some G € MiglqgQ} and some positive integer # ,
H € os{GA(G) Wr Fn(l)) . Since' H is a gq-group it must be a section

of a Sylow ¢g-subgroup S of GA(G) wr E%(X)

Clearly S= G where r'= '[Fn(l)l ar Thus o e Uay so

1 v

5 ( ] ! = ( =
B elsu o) . New U o U, W) (geggl) v ([Gyrw) =g A Y,

since the pairwise meets of gi, gQ and Qe are equal. Thus

H ¢ gi AL contradicting the choice of H . It follows, in
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particular, that any critical group in 2@ bt ‘net - in 2& A QQ i

not in S(UV) . However, by 6.4, S(UV) generates B /f

In the rest of this section it will be shown that to prove 6.1
it suffices to prove 6.4. Thus for the rest of this section assume
6.4 is true.

Suppose U 1s a variety of A-groups of exponent

et (1)

p(1) o ey

where pP(l),"..., p(r) are distinct "primes

and Q(l), o.., O{r) are pesitive integers. Let U, be the variety

generated by the monolithic groups in U whose monoliths are p(Z)-

Pupune faps Lo k.. P, and lat U, be generated by the

monolithic groups in U with nonabelian monoliths. (We adhere to
the convention that even the empty class of groups generates E .)

7z

Clearly

Fep P, lat l% be generated by‘the groups in Ei of p(Z)-prime

exponent. Suppose V is a locally finite variety.

6.6 LEMMA. If < >0 then S(y¥) < S(Y) .

Proof. It is enough to prove the lemma for < = 1 . If every
section closed class of groups generating UV contains a subclass

generating U, ¥ then S{gll} c S(u) .

Let .. p = p(1). .and. o = a(l) . By 4,3, gwi is generated by

groups L = Gwr H where G € M(U) , oG is a p-group and
H e F(Y) . Since 0G is a p-group and OL = (OG)H , 0L is alse
a p-group.

Suppose G 1is a section closed class of groups generating UV

and let

e G X e X G, Gi e e R R A
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be a minimal representatien of L on G . We show Gi € gll for

Sl 1. e

Let Liill° As,Légll, YE) Eéag By 2.9 there is an
p

=8k "steh SEhat Ni~ misScnmiliapin T e OGi in Gi e

" Vs *
r/e W, =¢./0 G, -

Since OL =X(I) €A , C (W) =XE) . This G./0%, € X and so

P

ol
gAG; = i{Gz] foy each: 2 . Fix < and let X = ;(Ga) L eTE s =
then Gi £ 0 igll angd. gie, are; dene.: Suppese. K. >. 1l .

, ,b) Y B s an d-ppeup. By [15, VI-1B.3 (b)]s
K' m Z(R) = 1. B K eentralizes OG’L s OG’L =Bl wse. ZLR) i

RAs G, 1s menelithicy K' =1 and X is abelian. : It felleows that

each Sylow subgroup of K is normal in Gi and se K must be

of prime power order. Now K = OGi which is isomorphic to zvi
so K is a, p-group and thus X € A i Hence
p
( )

G. ClfelYum iR =0l 8% W, AlMsey TE wosshiom A Gl A = U.. wesape
o e TR OO el (e e Sl e e

p p p
done .

» Thwe ; ool :
Clearly =]l C A ogl AU A menelithic greup in A ocll AU
p p

bgte-nat g il must have a p-group for its monelith and be in il
by definitien ,of gl » A memelithic,.greup in M, is in p___l since
il E-gl . This completes the proof. o

6.7 LEMMA. Let U be a variety of A-groups and V be a
locally finite variety and G € M(UV)\V with oG a p-group. Let

U* be generated by the groups in M(U) with monolith a p-group.
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Then G € L

RroetE St e = g

Gt s wEG o s (@) . Since, G- f L

|4

v

B Ay e se o' n'V =g, A §* centralizes @ ,

€]

IA

Z(c*nV) . As V is an A-group so is 0* n V and by (15,
i R T 1 B
Z(g*ni)—nta*al)’ = 1 ,

Alse (0*W)' char (6*nV) 4 G .. As- G is menelithic, "(ofav)!'.= 1 ,
Thus 0* NV 1is abelian and its Sylow subgroups are normal in G .
Therefore 0* nV 1is a p-group.

Since V 1is an A-group,a Sylow p-subgroup S of V
centaining ¢ - 1is abelian se

gE=g sgtnl ,
Becapse e nV 1s a p-greup, B =.g%nV , Thug 59G.
Suppose N is a normal subgreoup of V aveiding S . Then
[Hsplrsliy gog = en 8 = 17,

Sl o Sql 125 =SS e et Pehetlhus o = Nolss, the secleoiF ¥t

]

It follows that V is a subdirect product of monolithic groups

each with monolith a p-group. Hence V € TP and G € LAy, L
Derivation of '6.15 Suppese” ¢ € M(UV) . 'If @G 1is net abelian

THETNDY MBS 0 S R . SLE SI(G) = L them by 45, & € S(UV)

Suppese ‘gG is abelian and ' W(G) #1° ¢ Then fob seme <2 ., 06 is

DE 5 51 SNWLN gl
a* pli)-groug” By 6.7, G '€ £¢=\ﬂv= Thus (¢ has a norma

] AN v - BY B
subgroup N such that ¥ € gm\ﬁm and G/N €V y

G ¢ S@il) and by 6.6, G € S(UY) . 7



35

7. R G-Modules

Let p be a prime held fixed for the rest of this chapter and

[

be a locally finite variety. In the next section we shall take
U as in 6.4 but that restriction is unnecessary here, Let G be a
group and V be a normal p'-subgroup of G . Let

C(7y = {dedHrnis dn R V-module and VA ¢ u}

As G and -V are fixed in this section we may write C for C(V) .
71 BEFINITION. If . A =B and .B ¢ C then 4 ¢ C and

Bid € €.  1f Al’ A2 € C , then Al C)A2 € C . Mhes if Al’ A2 =0

then 4 A2 € C implies 4, + A2 € C while B/A., B/A2 € C- implies

i 1
B/AlnA2 cEOL

Thus we may define the C-radical of A , C-rad A , of an RaV—module

&. Lto.be the lappestssubmedule of A4 din_ C ..  They Ceresidual .of. A,
C-res 4 , is the smallest submodule of A such that the factor module
as dmC.o.. Netice that by 8.12,
A/(C-res A) =2 C-rad 4 .

7.2 REMARK. For RQV—modules A, B since: 4 ® B *> A,k induces

C-rad(4 ® B) »> C-rad 4 we find
C-rad(A @ B) = (C-rad 4) @ (C-rad B)

Let. ¢ = C-res(A@ B) . Then

¢ c ((C-res A)@B) n {AD(C—res B)) = (C-res 4) ® (C-res B)

[l

N A Aae =N ATC) 6 e C  =so A n = =g A e sEelllleys e
C-res(4A ® B) = (C-res 4) ® (C-res B)

EEeudl s an RuG—module, B = AV and g € G , then by 3:8,
B e Coinplies By € C . and in.faet C-rad Ay admits G . More

generally,
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(C-rad Bg)g_l € C and so, since. (C-rad Bg)g_l =iy
T o
(C-2iad Bolg -~ < C~rad B € C .
Thus
C-rad Bg = (C-rad B)g .
Similarly
| Bg |} -1 B
|l—d g™ = €C
\f-Ree . 5y (C-res Bg)g_l
and

Bg e B
(C-res B)g = \C-res BJg gt

0
O

C-res Bg = (C-res B)g .

7.3 DEFINITION., Let B(G):  be the class of RQG—modules A

such that the restricticn AV € C.. In this section G, is fixed and
we write B for B(G) . It is easy to see that B  has the closure
properties of C described in 7.1 and B-rad A and B-res 4

may be defined in the obvious ways. Because (B-rad A)V‘E_C—rad AV

and because C-rad AV admits the action of G we have

(B-rad A)V = C-rad AV .

Similarlys, C-res AV admits G and so

(B-res A)V = C-pes AV B

Furthermore arguments for C can be adapted to show

(B-rad A) ® (B-rad B)

B-rad(4 @ B)

and

(1]

B-res(4 @ B) (B-res 4) @ (B-res B)

for any Rqumodules A and LB

7547 ' THEGREMW. .+ If -an RaG—moduZe A s a direct sum of
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homocyclic RaG—moduZes then
B-rad A = A/(B-res 4) .

Proof. Suppose first that A is indecomposable and let

Ay =G 4,
1

where Ai is the Ci—component of AV for some irreducible RaV—
module Ci » Per .g € G +thercoemposition facters of Alg are
isomorphic to ¢, @@, .. Thue if ¢, ®g = C, then, since Cl ®g

v onto

cannot be isomorphic to Cj fer J # 7 , the projection of. 4
Aj determined by the direct sum must send each composition factor of

Alg to 0 and so the projection of AV onto Ai must send each

composition facter of Alg isomorphically. Thus Alg E-Ai . Since

a similar argument shows Aig_l C A, and consequently Ai = Alg :

it

It follows that G permutes the Ai , and 1f G has more than one

orbit then A 1s decomposable, which is a contradiction. Hence G

permutes the A, transitively.

[~

If A 1is indecompesable and homocyclic of exponent pB then it

follows from the proocf of 3.12 that Ai is a direct sum of

isomorphic indecomposable RQV-modules, By:d.llotheve dsian o(z)

a(z)
A

pB—a(i)A_

and by 7.1, C-res Ai = ;

such that C-rad A{ =p
Lets g € G be such-that Aig = Aj . Then

a(w)A; :(pa(a)

b i ¢ p 4 el
. A.}g = (C-pad Ai)g = C-rad Aj =p sl

7 i

e R e ) for mll L. . Let. a'=0(2) . Nowby 7.2,
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B_G'A

Corad 4., = paAV and C-res 4. = p 7o

4 /4

By 3.0 A{B-rad A)V = C-pad AV so B-rad 4 = paﬂ and similarly

. b-a :
B-res 4 = p~ "A . Thus the theorem is true if A4 is homocyclic

and indecomposable.
Suppose now that A 1is a direct sum of homocyclic modules. We

can write A4 = @)Ai where the Ai are homocyclic and indecomposable.
L

By 7.3 and the last paragraph we have
B-rad A = ® (B-rad A7.) ~ [Ai/B—res Ai) ~ A/ (B-res 4) ,
7 . z
which completes the proof. il

i - o i
Let ™ I(G) = B-rad RaG and J(G) = RaG/LB—res RaG). Ae' e, ds

fixed in this sectien we write I and J for I(G) and J(G)
respectively. By the last theorem, I = J and by its proof.any
indecomposable direct summand of I 1is monolithic.

A module A € B 1is said to be B-injective if whenever B < (
and C € B then every homomorphism B + A can be extended to a
homomorphism C = A . Suppose B S/K’, b anads B B+ I Vs a

homomorphism. Then I = RaG = - - B RaG can be extended

e G " C e B, CTEB S =L, Thus I is
B-injective. By an argument similar to [10, 57,3] it can be shown
that any direct summand of I is B-injective.

A module A4 € B 1s said to be B-projective if whenever
' B3> (¢ is a homemerphism of B ecente ¢ , B € B and there is a
homomorphism 6 : 4 - ¢ then there is a homomorphism M : A + B
gl ias = 6 . Suppese T : B> C , B;€ B.and 68 ;i J > (.

As J 1s a factor module of RaG o B dndueces .8 RaG TR O e

RaG is a projective Ra§~module there is a homomorphism U : RaG > B
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stch that Wm =8 . «Now R G/ker Y € B so by the minimality of
B-res RaG s ker U = B-res RuG 5 Thus there is a homomorphism
W sndv s enah that if X RaG *> ¢J 1is the obvious map, then

XM

P . Now © =.XB so Xum = X8 and, sincee. X 1s oento,
Hmr =8 . Thus J 1is B-projective. By an argument similar to that
of [10, 56.5] it can be shown that any direct summand of J is
B-projective.

7.5 COROLLARY. 4 divect summand of I 1is B-projective and
B-ingjective.

Proof. By 7.4, I =J and a direct summand of I 1is isomorphic
to a direct summand of J , which is B-projective. //

The following lemma is similar to [5, 2.2].

7.6 LEMMA. Suppose H 1is an extension of a module B € B by

G where the action of G on B by conjugation is the module action,
and A < B for some monolithic direct summand ‘A of I : If N =1H
i8 maximal such that N 9 H and N nO0A =1 then
H/N = GA/ker A .
Proof. The factor group H/N 1s an extension of BN/N by

H/BN , and BN/N 1s an RaG—module. - I R R e

and A X BN/N . As BN/N € B and A is B-injective, 4 is
isomorphic to a direct summand of BN/N . By the choice of ¥ ,
A = BN/N .

Since H/B= G , H/BN: is isemerphic to a facter group of G :

let K 94 G be such that H/BV = G/K . Since A is an R G-module
and, by the last paragraph, an Ra(G/K)—module via the isomorphism,

we Have & = ker'4d '. By the maximality ef , W, n'K = Ker A=
It follows from the preoof of 7.4 that A may be considered as

an injective R,G-module for some B . It is not hard to see this

B
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implies A 1is an injective RB(G/ker A)-module. Since H/N 1is

isomorphic to an extensien of. 4 by G/ker 4., we have by [5, 2.1],
H/N = GA/ker 4 . A
7.7 LEMMA. If A <s a monolithiec module in B then there is

a divect summand A, of I and an integer B such that A and 4,
can be considered as RBG-moduZes and Al 18 isomorphic to the
RBG-injective BULE 6 A,

Proof. Let B be the RaG—injective hull of A . Sinee A< 45

monolithic so is B and thus B 1is principal indecomposable. Let

C be a complement for B in RuG o (B3R 7 iy
I = B-rad RQG = (B-rad B) ® (B-rad C) .

Now A € B and A=<B se A = B-rad B ,
Since: B is monelithic so is B-rad B-. Thus B-rad B is an
indecompcsable direct summand of I . By the proof of 7.4 there is

an integer B such that B-rad B , considered as RBG—module, is
injective. It follows that, considered as RBG—modules,

A. = B-rad B is the R_G-injective hull of 4 , s

8. The Skeleton of a Product Variety

let U, ¥ and’ Y. be as in the statement of Theorem 6.4. Let

Y = WW and Y be the (infinite) free group of countably infinite

rank of Y generated by Yq» Ygs o20 » and Yn the free subgroup of

Y generated by Yys 200 yn , and let Vn ¥=Yn) . Let: 2 =-UV ,

Z its free group freely generated by Bis Bps oo and Zn the

subgroup generated by Zis cooy B When we write B(H) or I(H)



withd H € ¥ then H  and Y(H) cerrespend.respectively te. G and

8.1 PROPOSITION. The variety Z tis generated by

i {YnA/ke-r A | 4 is a prineipal indecomposable RpY -module

such that VnA el L =B =0, = L2, } .

Proof, Observe that if GA/ker 4 € H then
V(GA/ker A) = V(G/ker A)A. € U so GA/ker A € UV and HcC UV .

We show that there is a class of groups in var H which
generates UV . By the Schur Zassenhaus Theorem, 2.4, a critical
group din. U but.net dn M . is.the split iextensien of its W-verbal

subgroup,i B. say, by a group dn . W ., K say. #As  KH is

monolithic, CK(H) =1 . Because H €4
P

isomorphic to a. p'-group of automorphisms of H . Furthermere X

acts indecomposably on H:. se by [11, 5.2.2], H is homocyclic,

B

say of exponent p~ , B =0 .
By 4.3, UV - is generated by groups KH wr FP(V) =M+ £KH ass

-~

above, ¥ =:1, 25 so5 o In ovder te prove B:1l, it therefore suffices

Fp(l)
to show that each such M is contained in var H . Let: 4 =.H

be the Sylow p-subgroup of the base group of M . Let

F= gplk, Fp(l)? so that, F is a complement for 4. in M . As

F € Y, for some 7 there is a homomorphism

e e
n

]

a0 onte F . Let G = Yn arnd: V

V(G) . We regard A as an
. -

F.Comedula wia +7 :u that.is,ifer ‘a.6 4 .gad g € G. define

B

ag =Hafa’)on

Because A and V(F) are in the base group oREN SIS
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V(F)A € U . Now the restriction ef ‘Mmoo »V +maps 'V  onte

/4

Y(F) . -The groups ker 'ITIV and A are normal subgroups of VA
such that 4 n ker TTIV = L. o 'It follows that: VA is'a subdirect

product of V(F)A and V so VA € U . Thus AV€ €V« Now

7 . .
(AV) y is a direct sum of conjugates of 4, which are all isomorphic

/4

by 3.8, so (AVE?GV € C(V) and therefore (A )G € BLG) .- This dmplies

4

G
that 6{4,) € Uy .

By 2.3, H = 0*(KH) so if K #'1 then.2.6 may be.invoked to

give CF(A) =0t cif R = 1IN hls i@ ebvieus. . This

ker .T = CG(A) = (ker d vso FA'x GAfker A", By 3,55 A% (AV}G so

by 3.6, FA is a section of, G"(AV)G/'ker(AV)G % By 3y0y

(VAV\)‘G E :(i)l Ai where the Ai are principal indecomposable

1=
RBG-modules_ Since |;l ker 4, = ker{AV)G y G{AV}G/ker{AV)G is.a
subdirect product of the GAi/ker Ai o DATICE V[AV}G e VAi e
for each 7 . Thus GAi_/ker Ai € H for each 7 so H generates
AR

Let F_ be the (infinite) free group of countably infinite rank

p

of A oc=¥= freely generated by fl, Py o556 and.Let Fn be the

subgroup of F generated by fl, f2, e iy fn . Define

, g y é& _
6.Yn+1»+>Yn by Yow 7.4 fer: 2 =n and Yo sadle,

8.2, LEMMA., Let A4 ;L(Fn-@»l) and regard A as a Y . -Medule

via the homomorphism ¢ : e Yn+l which sends % Y; for
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all 1 =1, ..., ntl . Then A contains a submodule B such that

By =RY and ker 8§ aqcts trivially on B .

Proof. Neotice ker £ = A4 . Let. T be a right transversal for

eplf

S A} in the complete inverse image of ker § under ¢ .

Then each element & of ker § can be written uniquely as a product

ytg with Yy an element of gp(y and t an element of T .

ne)

Let C be a multiplicatively written regular RaYn+l-module

generated by ¢ . Observe that the submodule of CY generated by
2

I I{cx | z € ker 6} is a regular Rayn—module° Sinde 'xY . G €

n+l ul 3

A
p

: . : ¢ _
there is a homomorphism ¢ : Fn+l = Yn*lC such that fé Y; for

all Z.=n and T ¢ = Let e be the exponent of Y ,
ntl ] =

cyn+l i

f = fh+le' and h = ft . Netice h € A and. ker.d  acts trivially
tel

ens h,. Let::B beithe RaYn+l—module generated by A . By the

preceding remark ker 6 acts trivially on B , and BY is also
n

generated by h . For each g € Fn we have
v ‘ \ (£oT) (goT) ( Vg°¢C
\ (To —— 5L
W o g = T 0 70269 o7 (TT ) - [T
7 T Y x

where Yy ranges through gp(yn+l} and x through ker.é . This

shows that A > ] e~ extends to ahomomorphism of BY onto the

&£ n

il o
regular submodule of CY generated by I | e g hence BY is a
" £ ()

regular submodule of AY e L/
n
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8.3 COROLLARY, If I(Yn) 18 regarded as a Y ii-module via §

and -l(zn+l) is regarded as a Yn+l—module via the homemorphism

Zn ) i Yn

) sueh that By Y; Ter @ll 1 = 1, s.:5 ntl then

Proof: Let 4 and B be as in 8.2. Then I(Yn) < B d

~o

Al I 1 si : 1 i
se the split extensien VﬁflI(Yn) 1s a subdirect product of Vﬁ+l

S BARSET TR

AT . . _ )
and VﬁI(Yn} and is therefere in. U . Thus I(Yn) < e

By [20, 21,13} L4 iata frée group in é=a so we can apply 7.4 to
p

get

I(yn) < B{Yn+l} -rad 4 = A/(B(Y . )-res 4) .

) a1 ‘ ( pta 2 b
Sinee « A:E .};{F and B‘Lym-l) res A é(Frz"rl) s

n+l/
< B( i ™ b )
1(r,) < By, )-rad 4 = SR A A
The homomoerphism F *> 4 Buah “Ehat < . =2 " ‘Fem ol
ntl nrl 1 1
2'= I, ss55 B+l  has kernel é(Fn*l) and induces a module isomorphism
| Y < ' oy
gl ezl JdolE. ) =xlz )

This completes the proof. 1
The next lemma ‘gives cne description of S(Z) .
8.4 LEMMA. The skeleton S(Z) = qsH with H as in 8.1.
Proof. Suppese G 1s a section closed class of groups

generating Z . We shew HCc G ., If Y B/ker B € fi: then by 7.7,

B X A for some monolithic direct summand A of I[Yﬁ) o B 8.8,

A g,gizn*l) o Identify 4 with a subgroup of ;izn+l} and consider
the subgroup #H = gpt&(Zn*l), Zn) of Zn+l 2 Bince Zn+l is a

subdirect product of groups in G , so is H . Since 04 1is a
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minimal normal subgroup of H there is a homomorphism © of X
ente asgroup in, G isuch.that: 4 -nker 8 = 1 . It foellows that
Agny Ko @ = 10,8 Let, N =2 ker £ ‘and be maximal in H: such that
svailissand el oy f = 1%, Them H/N € G . Sinee H is an

. e ( i
extension of -Y=\.én+l) by ’Yn and ;{_\Zn_i_l) € B(Yn) s 7.6 gives

H/N = YnA/ker A .
A8 B <A, YnB/'ker B 1is a section of YnA/ker A by 8.6.  Thus

YnB/‘Ker B€0O and HcC, Newbhby 81,
S(Z) crqst € N{6 | G ecaZ} = S(Z) , 4

8.5 LEMMA. Let H be as in 8.1 and

K=1G | G € M(Z) and there is an N 4 G
such that N € UN\W and G/N € V} .

Then qsH = qsK .

Proof, Let G € K and ¥ 9 G such that ¥ € U\W and G/N € ¥ .
We show G € qsH . Let A = W(N) so that A is the unique Sylow
p-subgroup of N . The subgroup gp (4, l(G)) of N. is in U since
N is. Clearly A € Sp (gp(4, ¥(G))) and has a complement isomorphic
to ¥(G/4) . Let K =.G/A . The split extension JN(X)A is in U ,
If we regard A as an ROLKn-module then: A4 € B(X) (taking X fer (¢
and Y(X) for V. of the last section). By 7.7 there is a

B € {1, ..., a} such that if A is regarded as an RBK—module then

the R,K-injective hull K B of A 1is isomorphic to a direct summand

B8
of I(X) . Form an extension G* of B by X using the same
factor set as in the extension G of A by K. Then. G =G* . As
B 1is an injective RBK—module, G? splits over B., G% = KB |

by [8s 2,03, Let M = CK(B) o Glearly M9 G* . Sinee WE=4A =8

M=l mplies MnoG =1l and MnG@G=1. Thus G G¥M .
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By the cheice of B the split extension ¥(X)B- is in U . In
a natural way B is a K/M-module and it follows that V(X/M)B € U .
AslC e Y . " K/M € ¥ so-there is an- m for which there is a

homomorphism 6 of Yﬁ onto X/M , and we regard B as a Yn-module
via © . Now Vﬁ = Yn and the split extension VhB is a subdirect
product of V(X/M)B and Vﬁ , SO VﬁB €:0 . Taking Yn and Vh

for the G and V of the last section, 7.7 implies there is a

woe 18, BRly ... B sueh thet 1f B is5 pegeanded as an X Yn—module

Y

then the RYYn—injective hull C of B is a direct summand of

1(y ) . Now KB/M =Y B/ker B so by 3.6, KB/M is a section of

Y C/ker C € H. Since- G X G*/M=XKB/M , G € qsfl and se K C qeff .
On the other hand suppose H = YﬁA/ker A et . Let

N=gp(V,ker A)d/ker A . Then N<H, N €U\ and H/N €Y so

Hc qsK . g
Theorem 6.4 is a consequence of Proposition 8.1 and Lemmas 8.4

and® 855,
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APPENDIX

The main theorem in the following paper deals with the lattice
of varieties of groups rather than with section closed classes of
groups. It 1s included because it provides another application of
the main technical theorem of this chapter, Theorem 6.4. However to
make the appendix self-contained the specific case of the theorem
needed is proved here. It is interesting to contrast the ease of
proof of this special case with the complexity of the proof of
Theorem 6.4. The reference numbers in the appendix refer to the
references at the end of it rather than to those at the end of the

thesis.
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A PRODUCT VARIETY OF GROUPS WITH DISTRIBUTIVE LATTICE

En B Harrts

Abstract. By a variety of A-groups is meant a locally
finite variety of groups whose nilpotent groups are abelian.
It is shown that if U is a variety of A-groups and V is
a locally finite variety whose lattice of subvarieties 1is
distributive ‘and the exponents of U and YV are coprime,
then the lattice of subvarieties of the product variety

Uy is distributive.

1. Introduction. The lattice of a variety V. of groups is the
lattice of subvarieties of V partially ordered by inclusion. It is
modular because the lattice of the variety of all groups is dual to
the lattice of fully invariant subgroups of the free group of countably

infinite rank. For an ositive integer m let A B and N
te ra y P g AsB i

dencte respectively the variety of all abelian groups of exponent
dividing m , the variety of all groups of exponent dividing m , and
the variety of all groups which are nilpotent of class at most m .

A variety of A-groups is defined to be a locally finite variety
whose nilpotent groups are abelian. G. Higman [7, 54.24] gave the
first example of a variety with a nondistributive lattice. R.A. Bryce

[3, 6.2,5] showed that for a prime p the product variety A Zé .
B P

has a nondistributive lattice but that a variety of metabelian groups
of bounded expeonent in which, for each p , the p-groups have class
at most p has distributive lattice. He also showed that if m is

. A g i 2
néarly imeime ste o, ol sescif .a prime«poidivideg m then p does



49
net divide n ) then,the lattice of A A isdistributive.

M. S. Brooks [2]  shewed that the lattice of éeég Sl gl

distributive. The main result here generalizes one of John Cossey
[4] who showed that the lattice of varieties of A-groups is
distributive. The exponent of a locally fini%e variety is defined to
be the order of the free group on one generator of the variety.
THEOREM 1. Suppose U is a variety of A-groups and Y 1is a

locally finite variety with distributive lattice and the exponents of

Ilc

and V are coprime. Then the lattice of UV <s distributive.
Notation and terminology not here defined are as in Hanna

Neumann [7]. In view of Theorem 1 it is worth noting that L.G.

Kovacs has an unpublished example which shows that although the

lattice of the meet 2@ A EG is distributive, that of Bsqge)é% is

not,

Acknowledgement. This work is part of my PhD thesis done under
the supervision of Dr R.M. Bryant and Dr L.G. Kovécs and I thank them
both for frequent discussions and constructive criticism., I also
thank Dr John Cossey who suggested the problem discussed here and the
Australian National University for a Research Scholarship which

enabled me to carry out this work.

2. A Theorem on Skeletons. By a section of a group is meant a
factor group of a subgroup of it. If G 1is a class of groups then
sG and oG denote the classes of all groups isomorphic to,
respectively, subgroups and factor groups of groups in. G . 4 elsss
G of groups is said to be section closed if eG < G and sG < G .
It is well known and easy to see that if G is a class of groups

then qsG is section closed. The skeleton S(Y) of a variety ¥
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is defined (in Bryant and Kovacs [2]) to be the intersection of the
section closed classes of groups generating V . A monolithic group
is defined to be a finite group with a unique minimal normal
subgroup, called the monolith. To prove Theorem 1 we need the
following result.

THEOREM 2. Suppose p is a prime and Y is a locally finite
variety containing a variety X of p'-exponent such that for some

positive integer o , Y <8 contained in A .
P

[I><

SR
and Y 1is generated by monolithic groups not in X . Then
S(Y) = os{G | G €Y, GtX and G is monolithic} ,
and S(Y) generates Y .
Proof. Let K G be & menelithie,greup in X . but pet:in X  let
OG be the monelith ef G ; G* be the centralizer of ¢G.  in G,
Z(G) be the center of G , X = X(G) be the X-verbal subgroup of

G , and G' be the derived group of G . We write H 949G if

H 1is a normal subgroup of G .

Notice X 1is the Sylow p-subgroup of O*G ; we show they are
equal, If O0*G 1is not abelian then

gG = (6%G)' n Z(e*G) nX = 1
by [6, IV 2.2], which is a centradictien. Thus. @*G is abelian and,
gsince G is menelithiec, 0%G is of prime power order. Because
@G = X's 6% ,

we have X = 0*G .

Let- H be a sectien clesed class of groups generating Y . To
prove the theorem it suffices to show G € H . We shall use some

properties of the minimal representation defined in [7, p. 163 ff].
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G=H/K , HSHlX...XHP, HiEH Ter Hes 1 oRE ety

be a minimal representation of G on H . Then each H'zl is
monolithic and OH’i ~ gG so GH?: is'a p-group.: By theilast
paragraph O*Hi = .)_('(H,L) . By the Schur Zassenhaus Theorem there is a
complement, Ki say, for O*Hi in H'zl . Since H?l is monolithic,
G*Hi is an indecomposable Ki—group ge by [5, 5.2.,2], O*Hi is a
homocyclic p-group. For some J the exponent of O*HJ. is greater

than or equal to the exponent of 0* . Let #n be the exponent of

0%G . It follows as in Lemma 3 of Cossey [4] that

o * n
G o Hj/(o HJ.) g

and G € H , proving the theorem.

3. Proof of Theorem 1. Let U., U. < UV . We first show
=1 =0

Wy) v @) =vs Lw,) . (%)

Since L\L/\gl) c A (glvp__z) it suffices to.preve that.if F. iz .a

finite free group of V A (g vu ) then E € L\L/\gl) v (l/\U} o lied

1= =
Ql U [_JQ denote the set theoretic union of 21 and 22 v et
IR P SRR AR B R R
be a minimal representation of F# on __U_l U 22 s Because L HEEN L
OHi has .exponent. dividing that.ef ¥V . Since the exponents of U and

V are relatively prime it follows that Hi €0 fer all ', hs

H, €4 u s s ye have Hi £ (_\Lny:l) v (Eni_)__z) il fatlows that

e (_\LAg_l) v (}_/_/\_Q_Q) » proving (¥).
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We need a lemma.

LEMMA.. . If G is a momolithic group in U vy, but not in ¥

-then G € _I__J__l qu ]

Proof. If oG is not abelian then by taking a minimal

representation of G on 31 u =ng2 and" apguing as in [7, 58.31] the

result follows. Thus we may assume OG is an abelian p-group for
some prime p . Let

G?H/K,HEHlX“.,xHP,HiEUU 5 T MR

be ‘a minimal representatien of G oen U, uU. . Let

=1 - =

Vi = (O*Hi) n Z(Hi) and observe that the Sylow p-subgroups of the

Hi are in Vi and OH., SZ(V.) . As V. is an A-group,

Since Hi is monolithic, V;: =.1:. Thus Vi is abelian and must be
a p-group.
Let. ¥ be the variety generated by Hl’ A Hp and ' X be the

variety generated by Hl/Vl, A HP/VP . Then by Theorem 2,

S(x) = aelE | R ey, B kX and H is menelithicl .
It follows that

G e 8(Y) c qelfli, con Bl VL

proving the lemma.

To prove Theorem 1 it suffices to show that if W < UV then
i ve) = (@) v @g,) -

Sinee TN A &lngJ s R % Suffices to shew that if G "is a

S )
monolithic group in W A (glvgg) then G .15 0 m/\glj v (ﬂ/\g?)

Suppose first that G {El Then by the lemma G € U, U
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83 Gllands,
¢ein (wuw) = Wy) v Wy) < @) v (@) .
Suppose G € V . Using the fact that V has distributive

lattice and applying (%) twice, we have

VAR (uww,)

1V9) =¥ A A [ua(yve)]

g

@D A [(@ag, ) vag,)]

[wrna(erg, )] v [ (g,)]

(g, ) v (i)

v oA [l ) vieng)]

This completes the proof of the theorem.
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CHAPTER FOUR

HYPOCRITICAL AND SINCERE GROUPS

It is equivalent to the definition given in Section 1 to say
that a group is hypocritical if whenever it is in a locally finite
variety generated by a section closed class of groups . then it:.is in
the class. Clearly a hypocritical group is critical. It follows
immediately from the definition that a locally finite variety
generated by any class of hypocritical groups is generated by its
spine. One reason for our interest in varieties generated by their
spines, and hence in hypocritical groups, is the Ffellewing, "If 3
variety

generated by its spine is contained in a locally finite

A
Sliciilel \v/ » of a possibly infinite number of varieties, then a
A

consideration of the finite free groups of the Y, shows

V= \v/ QZAXAJ . In particular if V and all its subvarieties are
" A

generated by their spines then

i (Vg -V ey

A A

whenever U C V and \v/ i is locally finite. (By Cossey [9] any
i A

variety of A-groups is generated by its spine relative to the class
of varieties of A-groups, so the lattice of varieties of A-groups
has this infinite distributivity.)

A finite group which is not hypocritical is said to be sincere,
A variety generated by a single sincere critical group is not
generated by its spine, Furthermeore if the skeleton S(V) of a
lpcally finite variety V contains a sincere group # which is not

in Qs{SQl)\H) » equivalently S(Y)\# is section closed, then,
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taking Ki, eyate s Ks such that o7 ¥ QsKi femn fo= 0 o .0 8 Engd

B € qaf, x ... x K,) , we have
TW < esfx, ..., K Jo(S(D\E)) n S(D) < S()

so V 1is not generated by its spine.

In this chapter a class of critical groups is considered and it
is shown that some groups in it are hypocritical and some are sincere.
The class consists of those critical groups which, for some prime
P , are an extension of a nontrivial abelian p-group by a p'-group.
Thus any subclass defined by a fixed prime p which generates a
locally finite variety in fact generates a variety which satisfies
the conditions of U in Theorem 6.4,

In Section 9 the main theorems are stated and it is shown that
certain groups are hypecritical. In Section 10 a method is developed
for showing groups are sincere and is applied to some groups. In
Section 11 the method is further applied to illustrate the difficulties

which arise in showing that a group is sincere.

9. Some Hypocritical Groups

Let p be a prime and G* an irreducible linear p'-group of
degree Kk over the field of p elements. Let o be a positive
integer and let S be a k-generator homocyclic group of exponent

pa . Then S/%S becomes an irreducible ZpG*—module in an obvious

way., By 2.7,an action of G* on § can be defined such that the

action induced on &§/®S is the original action and, by 2.8, the split
extension G(pa, G*) ef § by G* is unigue up to isemorphism.

The groups Gﬁpa, G*J will be the central concern of this chapter.
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Obviously G(p : G*) ih menplithic and by [17, 1.65],1it is critical.

However as the following theorem shows, G(pa, G*) is often not

hypocritical.

9.1 THEOREM. If o =1 or G* has degree 1 then G(p%, G*)

18 hypoeritical. If G* has degree at least 2 then there is an «
such that G(p%, G*) is sincere. If G(p°, G*) is sincere then so
ie G(**, 6%)

The obvious problem is to find the smallest o such that

o i 4 . :
G{p g G*) 1s sincere. This problem is not solved here but a number
of partial results are given which illustrate its difficulty. In
particular,consider the case when G* 1is cyclic of order #n , in

. Q . ik s
which case Glp , n} 1s used to denote Gﬁpa, G*) Yo Lt as well

defined by [21]. Let a(p, n) be the smallest integer such that

Gﬁpa, n) is sincere, for all®° o = a(p, n) .
9.2 THEOREM. If p does not divide n and n does not divide

p - lthen 2 s.elp, n) £,3:.. Leb Kk be the emallest poaitive

integer such that n divides pk T At e
(a) there 18 a noneconstant sequence a(l), .,., a(r) of
integera with » =p , 0 = g(t) s k-1 for all 1 and

pa(l) e e pa(r) = 1 (modulo n) , or

(b) n 1is prime and some prime divisor of k <18 less than
p -1, er
(¢) p =3 and there exist integers a(l), a(2), a(8) and

allh) suaMthet , 0 = a(t) = k-1 forwall <,

@il € g(2) < q(3), and

ga(1) _ ,a(2)  Ja(3) | %M = 1 (moduto n) >
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themr o(pm) =42
Since a variety generated by a single sincere critical group is not

generated by its spine, and since, by Cossey [8], G{pu, n) generates

p

A &én » We have a corollary.

9.3 COROLLARY. If n <is not divisible by a prime p and does

not divide p -1 and if 0 =3 then A =4 18 not generated by
p

its spine. Ll

In the rest of this section it  will be shown that certain groups
are hypocritical. The first lemma, due to Bryant and Kovacs, implies
that if p is a prime and V a locally finite variety of
p'-exponent then épl is generated by its spine. This contrasts

interestingly with the last corollary.

9.4 LEMMA (R.M. Bryant and L.G. Kovacs, unpublished). If G
18 a monolithic group and the monolith oG 1is a p-group for some
prime p while the factor group G/oG <18 a p'-group then G 1is
hypocritical.

Proof. Suppose H 1is a section closed class of groups such
that wvar H 1is locally finite and contains G . Since there is a
minimal representation of G on H , there is an H in #H such
that @ 'in B 15 similay to @G in, G ., Take such .an 'K of .the
smallest possible order. Let, K Dbe a minimal supplement for O*H
in B

Finte wH in gpled, X) 1= similapr to @G:. in G ,
H = gp(cH, K) . It follows that 0% = gp(oH, (0*H)nk) . By the
choice of, X , (o*H) n K = ¥k se (0*H) n K 1s nilpetent and
therefore 0*H is nilpotent. It follows that 0*d is a p-group

and, by similarity, H/o*H is a p'-group. By the Schur Zassenhaus
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Theorem there is a complement H. for o*H in H . Now gp(OH, Hl)

B[S
is lsemevphic teo & . /Y

9.5 LEMMA (R.M. Bryant). If G <8 monolithic and O*G ie
cyeclic then G 18 hypoeritical.

Proof. Since G 1is monolithic and 0*G is abelian it must be
a8 p-group for some prime p . It follows that O*G is a Sylow
p-subgroup of G . Suppose H 1is a section closed class of groups
such that var H 1is locally finite and contains G . Let

S B W SRR, el s e for sdee s o bR

be a minimal representation of G on H . By 2.10,a Sylow p-sub-
geeup. I eof H is nermal . in H and X < ¢7-, Since the Sylew

p-subgroup . O%G of G is cyeclic se is T . Let m; be the
projection of H onto Hi defined by the subdirect product and Ti
be the image of T wunder ﬂi . For some j the exponent of Tj is

equal to the exponent of T and is therefore greater than or equal

to the exponent of 0*G .
Since, T 94 H there is a cemplement H%* for T. in H by the

Schur Zassenhaus Theorem. Let Hj* be the image of H* wunder Uj -

Now

|Hj*] = |8*| = |G/0%G|

and Hj* is a complement for I} in Hﬁ 5 Sinice Tj = O*Hj and

bl A JazEE | = |G /o%G
|2 l IHJ/TJI > IHJ/G B = |6/o |

by 248, It fellews, that Iﬁ = G*Hﬁ and if e 1s the exponent of

e L
GEG sEhen e Gh== H . AT .
J/ J ki

9.6 LEMMA., The group G(4, 3) <s hypoeritical.
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Beaof. slet. & = G(4,1:3) ..and H be a section clesed class of
greune =uch that wvar H is locally finite and contains G . Let

B s d x L X H L, Ko6fl for £501,

S
be a minimal representation of G on H .

Let, G be generated by a, b such.that, |a| = 4 and
|6] = 8 . Identify G with K/I via the above isomorphism. By
2.10, L 1is in the Frattini subgroup of the (normal) Sylow

2-subgroup S(XK) of K . Thus X is generated by elements a and

b suphi dhet ek =&, BLE2E, |al = 2" for some n , B =2,
and a2bL # a2L . Therefore a2b # a2 . Let m(Z) be the projection
m(Z)

of K onte Ki defined by the subdirect product and let a(Z) = a

m(zZ)

i

and b(zZ) = b Then K. = gp(a(2), b(£)) and for some J ,

2b(g)

alg) # a(j)2 . Furthermore the Sylow 2-subgroup of G is

b

generated by a and a so S(X) is generated by a, ab and the

Sylow 2-subgroup of Kj is generated by a(g), a(j)b(J) ol il I
be a minimal section of Kj of the form
M

E:= gp(fis hds | A= for some n , |k| = 3

h o
and S = gplf, fh), f2 # f2 for 3 € SQ(H) . Then H & f . andiix
suffices to show H =G .

-2 sl
To simplify notatien let ' g = fh s e f'2 ¢ Z(5)- them it is

easy to see that H/Z(S) has the same form as H , so by the choice
of 'l s g-2f2 € Z(S8) . Now
-2 .2
L gl (g

; D
so f2 € Z(5) and g2 €MD) HThus gp(fz, 92) 4 S and S/gp(fQ, g°)
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is a dihedral group. By [15, I.56) p. 94] the only dihedral group
whose automorphism group is not a 2-group is the direct product of

twe ayclic grnoups of erder 2 . Thus 52 =705 ) v and S Thas cliass

dtimest " 2 . Therefere lS'I =2 . New 5/8" 1is a 2-generster

2-group with an automorphism of order 3 and must be homocyclic.

Since fQ - 92 B . aEt 2 and G wsT L

10. Some Sincere Groups

In this section necessary and sufficient conditions are given
for a group to be sincere. To apply these some information is needed

about a modification of the associated Lie ring of a group. It is

then shown that for large enough o , Gﬁpa, G*) is sincere, and
some other applications are given. The Fitting subgroup F(H) of

a group H 1is the join of the normal nilpotent subgroups of H .

10.1 THEOREM. The growp G = G(p*, G*) is sincere if and only
if ‘there ig8 a monolithie group H such that oH in H is similar

to. GG iny O s @%H = FLHY. 3. 090 5. F(R)Y' , FP(H)/98 ig.similar in

H/®H ‘to ©G in: G and pa does not divide the exponent of
F(H)/F(H)'

Proof. Suppose that the conditions hold and take H minimal to
satisfy them. Then in any chief series of H at most o chief
factors are similar to O0G . Let F be a relatively free p-group

on the minimal number of generators of F(H) of exponent the larger

of pa and the expenent of . F(#) .and of class the class ef F(H) .
Then there is a homomorphism T of F onto F(H) . Let R =ker T

go F/R = F(H) and let . F/R. Dbe a. G*-group via this isomorphism.
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Heli i = i =0 by 2.7 we may makewF . inte a! G*-group such that the
acitaen dndueed ori - F/R is the opiginal action.

Bt e in | P Be such that S 2 R and S8/R=0H as G*-groups.
For any positive integer 7Y let

ACY) = A (F)
)

Then as G*-groups

S/R = o8 = F(H)/®H =~ F/OF = A(a-1)/4(a) .

Since pa does not divide the exponent of F(H)/F(H)' ,
RA(a) = A(a-1) . Clearly A(a) 2R so RA(0)/R contains the
monolith S/R of the split extension G*F/R and thus RA(0) = S .
By the modular law

R(A(e)nS) = RA(a) n S = 8
and
(A(a-1)nR)A(a) = A(0-1) n RA(a) = A(o-1) .
It follows that
S/R = R(A(a)nS) /R = A(a)nS/A(0)NR
and
A(a-1)/4(a) = (A(a-1)nR)A(a)/A(a) = A(0-1)nR/A(Q)NR .

Let F = F/A(Q)nR , A, = A(a)nS/A(a)nR  and

A2 = A(a~1)nR/A(0)nR . Notice F is a G*-group and in any chief

series of the split extension G*F , o+ 1 chief factors are
similar to OG . Since S/R and A(a-1)/A(a) are central G*-

ifaens anb Faoters of  F ., 50 -aye Al and A2 . Consequently Al

and 4, are in the center of F and are G*-invariant. By the

last two paragraphs

Al >~ F/QF = A2

as G*-groups. Let U be a G*-isomorphism from Al to A2 o el
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b, u '
Nl = gp a(a ) [ ae Al
and let o, = A2 o« Than Ni s for <=1, 2 , is a @G*<invariant

central subgroup of F , Let H, be the split extension of

2

o e F/Ni by G* for % =1, 2 . Then in any chief series of H,
@& swchief factors are similar te 0G -, Thus.in any chief series of Hi/OHi
and gp(@Fi, G*) there are only o - 1 chief factors similar to oG .

Since @Fi is the unique maximal G*-invariant subgroupiof Fi gk
follows that G & QSH{ mih

We show G € Qs[HlXHQ). Because Iy n v, =1, G*F. is.a

section of H, X H, . As & an F/A(a)gﬂ » i1t has a homomorphic R

image F/A(a) and G = G*F/A(a) .

For the converse let (G be ;incere. Then there is a class H
of groups generating a locally finite variety containing G such
that G ¢ qsH . Choose 7 minimal such that G is a section of a
direct product of #n groups from H . Let G be the section
closure of the class of direct products of fewer than #n groups from

e €0 ,

H , so that for some H, H,

G € Qs[HleQJ ‘ G

But® G k G . Now choose Hl and H2 minimal in the sense that

neither can be replaced by a proper section without violating (1),

and choose H € S(HleQ) miwialesubieat t6 ¢ € oF , say G = H/K .

. . 6] e
CPserNesEhat for ‘seme*p*,"say 242 1'y 'p divides the exponent of

Hi g £By LL7 1, Hi is monolithic and OHi 1s similar in Hi EEIRE
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in G . DNow by an argument similar to that used in the proof of Lemma

2T it can be shown that for T € Sp(H) , we have T <9 H and

K=" siiticnce a complement H* fer T. in H is isemorphic te

GEuumeWpiting Tl and Hl* for the . projectiens.of T and, H*

respectively determined by the subdirect product, similarity implies

L] a
Hl* ~ G* , It follows that Tl = O*Hl = F(Hl) . Because p

divides the exponent of Hl » and hence of F(Hl] » and G ¢ QsHl

2

oH, = F(H)' . ject =

1 ) The projection of H onto Hl sends ©H ép{F(H))
onto ép(F(Hl)) B @Hl so F(H)/®H and F(Hl)/QHl are G*-isomorphic.
Thus F(Hlj/QHl ig similar In Hl/®Hl te. G Hdn G [/

The theorem has an immediate corollary.

10.2 COROLLARY. IFf G(p®, G*) <is sincere then so is

o+l
Glp

e £/

In order to apply Theorem 10.l1 we use a modified form of the
associated Lie ring of a group (ef. Higman [13]). We shall use basic
facts from the first half of Chapter 5 of Magnus, Karrass, Solitar
[19] without further reference. Let p be a prime and # a positive
integer not divisible by p such that the smallest positive integer
k for which =»n divides pk - 1 1is greater than 1 . As is well

known (ef. [21]), a cyclic group, of order 7 has,a faithful

irreducible representation of dimension %k over Zp S LEE R sl
absolutely free group on Kk generators and let
B N
fe T By (1)
The group Li is abelian and, hereafter, written additively. If

a, = Li and aj € Lj then Eai, aj] is defined to be
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et N ; . '
[bi, bJ] (it (it o) where bi and bJ are elements of F in
the cosets a; and aj respectively; it is well defined by an

[oe)

argument similar to that of [1l, 5.6.1]. The sum & Li » with the
=1

Lie multiplication [a, b] extended by linearity, 1s .called the

associated Lie Zp—algebra and denoted by L . Because F 1is free
and by [19, Theorem 5.12], L is a free-lLie Zp—algebra. By an
obvious modification of [19, Corollary 5.12], Lr has a basis, as
Zp—space, of basic Lie elements of degree r (defined in [19,

Theorem 5.8]).

Let GL(k, p) = Aut Ll so that GL(k, p) is isomorphic to the
general linear group of nonsingular k X Xk matrices over Zp e uikel

the p'-part of the exponent of GL(k, p) be m and let A be the

field obtained by adjoining a primitive mth root of unity to Zp

By [10, 70.24], A 1is a splitting field for every subgroup of

GLLK in) .. niBer gaeh 2 s Lo 90 oL e
LR RE g
L; Li @i A
p
Under the natural embedding of Li in Li* g Li spans the A-space
L,% , so the definitien of [ai, aj] can be extended by linearity to
=

Ezi*, aj*] for ai* € Li* and aj* € Lj* . Under the bracket

o0
operatien, L% = & Li* becomes a Lie A-algebra which is free
d=0

because L is free. By a modification of [19, Corollary 5.12], any

A-basis of Ll* leads to a MA-basis of Lr* s consisting of the

basic Lie elements of degree r .
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Iets ' Endil: and End Li be the monoids formed by the endomor-
phisms of F and Li respectively. Let . End F.~> .End Li be

the map induced by the restriction of endomorphisms of F to F(i) .
Since F 1is free, m is onto. If two endomorphisms have the same

image under Wl » 1t is easy to see they also do under ﬂi Feor

T 21 . Hence there is a monoid homomorphism M, : End Ll > End L.

such that mH, = T. . Under Mo os GL(k, p) 1is sent to a subgroup

of Aut L. , and so L. becomes a ZpGL(k, p)-module. For

a s A, € L. , S€ GL(k, p) and f3 in the coset aje g ol

R 1;

the image of a left-normed element of Li is given explicitly by

I = p
Lgl, P a£]6 = [fl, AP f;]F(r+l)F(r) .

Extending this definition by linearity, LP* becomes a AGL(k, p)-
: i e
module, and 1if bi € Li and bj € Lj then

;. bj]e = [b,8, bj(%)] ;
That is, GL(k, p) may operate on L* by Lie algebra automorphisms.
The following is an unpublished theorem of L.G. Kovdcs which
will be useful in applying Theorem 10.1l. Its proof involves the
Witt formula and some ideas from [6].
10.3 THEOREM (L.G. Kovacs). There exists an »r > 1. (which

may depend on k and p ) such that L, has a submodule isomorphic

to Ll s Lo

10.4  THEOREM. . Suppese 1 < r < poc_l » G* is an irreducible

p'-subgroup of GL(k, p) , and (Ll)G* iﬁ(Lr)G* . Then G(p~, 6*)

18 sincere.
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Rroes: .Lek: F» be:as above,; 4 B =3B (F) and

=
@re =
! p

C= F(r+l)F(r)p » The first step of the proof of [19, Theorem 5.13B]

g eqsily be adapted to show 4A'n B =(C', Since C =4 sithe

modular law yields A nBC =C . Let D <4 be such that D/C and

Ll are . G*-isomorphic, Then C=D=4 so DnBC=C( . Put

F/BC = F ; then F is a finite relatively free p-group with

Frattini factor group naturally isomorphic to L By 2.7,3itels new

1

possible to turn F into a G*-group such that the action on F/OF

is the same as that obtained from the action on I via the natural

1
isomorphism. Moreover as
L, = A/C = A/AnBC = AB/BC = F(P) "
we also have that Lr is G*-isomorphic to F(r) s Invparticular

F/OF 22 BJC = DR/BL = F
(r)

as G*-modules. Let M be a normal G*-subgroup of F maximal with
respect to M n (DB/BC) = 1 . The split extension H of F/M by
G* satisfies the conditions of Theorem 10.1 so G(pa, G*) is
Sincerec. ik

If G* has degree at least 2 then by Theorem 10.3 there is an

: O- -
r > 1 such that (Ll)G*lé {LP)G* SoEED L n it fellews by the

o : :
last theorem that G{p G*) is sincere.

10.5° COROLLARY. If G* has degree at least 2 then there is

o b
an o such that G(p , G*) is sincere. i

The first sentence of Theorem 9.1 follows from Lemmas 9.4 and
9.5, the second 'is just Corellary 10.5, and the final sentence follows

from Corollary 10.2. Thus the proof of Theorem 9.1 is complete.
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As mentioned earlier the obvious problem is to find the

smallest 0 such that G(pu, G*) is sincere. In fact it would be
nice to know if there is a bound on such o which is independent of
G* . There is such a bound, 3 , if G* is cyclic, and the main
lemma which is needed in the proof of that can also be applied to
show that for many cyclic G* the bound is in fact 2 .
By the choice of # and k there is an irreducible cyclic
subgweup 1 of order #  in: GL{K, p) . Let 7.= gp(8). . .The
representations of T over /A are absolutely irreducible and,

since T 1is abelian, they are all one dimensional by [12, 16.6.7].

By [11, 5.6.,3], for seme primitive mnth root A of upity in A , the

%
characteristic roots of © on Ll* are W for 1 = Ol 5 e e e

It follows that there 1s a basis Ups Ups eens Uy g for Ll* such

that
%
u.8 = W u. forall 7.
A A
10.6 THEOREM. If there exists a nonconstant sequence,
@l1)s v,.5 @t2) . 0 tnbogere with O = g(t) = k=1 Jer aitl i  and
idsat e pa(r) = 1 (modulo n)
) (9 . s e=1
then (LlJT'i‘\LPjT © i1 Uiew of Theerem 10.4%, 1T » <p then

o ; ;
Glp ', n) 1is sincere

Proof. Let there be such a sequence and, by renaming if
necessary, let
gli v ala) = .,..= alr)

Then is a basic Lie element in L* ,

Ll [ua(l)’ “aloye "'"’ua(r)]

so e # 0 . By the cheice of the Uy s
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L“a(l.)e’ o) ua(z’)e:I

i
A Lua(l)’ Up(2)? *ts ua(rij

where

(1)
L ) a(2) + I Cmecuilely )

;p *p a(r)z

5 o o +p

Since A has-order n , X is an eigenvalue of 8 on (LP*)T .

Since O has the common eigenvalue A on (Ll*JT and (LP*JT,

they have a common. composition factor and, by [10, 29.6], so do

( pl ( )
(Lt md < 4E

(
iy However L )

Jp 1s irreducible and (LP)T is

)
J

o ] educible s ( < ) /
completely reducible so LLl 7 N7(LPJT9 1/

15 ;Ll’T I iLr]T then it is equally easy to see that the

converse of the first statement of Theorem 10.6 holds, but as this is
nct needed it is not. proved here.
Becausze

(p—l)pk—l + p(pk—2} = pk = 1 (modulo n)

and' 2p-1 < p2 s Theorem 10.6 has a corollary.

10.7 COROLLARY. If p does not divide n and n does not

divide p - 1 then G{ps, n) 1is sincere. y

As the following theorem shows, we can do slightly better than
Theorem 10.6 would suggest.

10.8 THEOREM. If there exists a noneonstant sequence of at
mbaE: . integers all), ..., alr) with @ = ali) = k-1 forall < ., and

a(l) e ) =

p + 20s + P 1 (modulo n)

then G(p°, n) is eincere.
Proaies Fap b < puthe besult. is part.efTheorem 10.6.

Suppose. then that » = p . By [18, 4.06],
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&0 AA (F)F ST AR e = L T
) =iy ; e

, S )
(p+1) (p) (p) ~(p+l) (p)

and, sines, |y, @] = [y, pxl is a law of A A by [18, 4,027,

(2) e T I
¥ =p—[=p’=]
Let; 4 = F P i T MR LYy = P
(p) Sp=p ) (p+1) e 0 F(p+l)F(p) g

observe B =C . By (1), A n B = C(AnF") . By renaming if
Recessaryl let 4(l) > a@f2) = ... = a(r) and

s _ : o :
Lua(l)’ Uy (92 i ua(P)J . ‘Then' e  is a left-normed basic

1 a * . ; o a % ¥
Lie element in Lp butf by 120, 98,831, wet In Lp* n Ep’*, Qé“l ,fﬁrAé%n

L
Thus © has an eigenvalue A on Lp*/‘(Lp*n[L/{*,I/Q’*]) . Observe ggfg,ﬁt

L/ (L,nltf, 14]) = A/anB = 4B/B . @Ln fOL.

et F = F/B . andotuzn . F . dnte 2 T-group, as in the proof of

Thegrem 10.4., Then L. < AB/B so take Al = AB/B. such that L

+

i

and Al are isomorphic as T-groups. As Z(F) < &F , Z(F) is

n. Let D be a normal T-subgroup of F

Qi

elementary abell
containing a T-complement for Al in Z(F) and maximal such that

DnA4, =1 . Since, by (2), %(F’) < Z(F) = DA, , we have
gp(?.fp) = LEUE s g

It follows that the split extension H of F/D by T satisfies

the conditions of Theerem 10.1, so G(p2, n) is sincere. 1/

For the next item, we restrict attention further to the case
where 7 1is a prime.

10.9 COROLLARY. If n <s a prime and some prime divisor of k

18 less than SN ien Gt n)  is sincerve.
p LP 2 4

Proof., Suppose r is a prime divisor of k which is less than



i
p — 1. The manld of Lp is given by the Witt formula, 2.11, as

2 :
;{kr—k) » Notice ' X does not divide the rank'of Lr » Since the

only irreducible modules for the cyclic group T = gp(6) of erder n
over a field of p elements are the trivial moedule and the rank k

modules, there 1s a trivial T-module in Lr . It follews that

there is a basic Lie element' u of weight:- » such that u0 = u .

| is basic, it is nonzero. Now

Because ’u U f
I_ b k—l-

- ot | o
ke WL Sl i ] I PR O

k-1

is a common eigenvalue of © on L, and L_. and
1t L

hence, as in the proof of Lemma 10.6, we have that {Ll)T i‘{Lr+l}T :

Since 1 < r+l < p , Theorem 10,4 implies G{pz, n) is sincere. L
Lemma 9.4, Corollaries 10.7, 10.8 and 10.9 prove the first

statement and parts (a) and (b) of Theorem 9.2. In the next section

part (e) is proved.

11. On 3-Groups and Automorphisms

&bserve—that for p > 3 Theorem—9.2 (el Ffeltews—fromFheorem
306~ The part of Theorem 9.2 which remains to be proved is
restated here for convenience.

11.1 THEOREM. Let n be an integer greater than and not
divisible by 3 ; Llet k be the smallest positive integer such that
n divides 3Z< =M UF there extee untegers. a(l), al2), a(8) and
a(4) such that

B ror all i, all) % al2) < al(8) ,

and
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52(1) frga(2) o 5a(3) | 3a(4) = 1 (modulo n)

then G(9, n) 1s sincere.

Part of the interest of this theorem lies in the fact that the

BEiwe. 3.3

on

less than the sequence length, &4 , and that the
groups in question remain sincere. That this is not always the case
is demonstrated by the hypocritical group. G(4, 8}y Fer whichi p =12
and there is a nonconstant sequence 0, 0, 1 of lonmp s 8 = e i

|
such that 2O %20 +2° =:1 (moedulo 3)

To prove Theorem 11l.l, we construct groups H as described in

Theorem 10.1, and so work in the variety LB

B3 ;i . We also work in

B.A, so that the derived group has exponent 3

A group G 1id a lecally finite variety V¥ is said to be
hypocritical relative to V 1if it is in every section closed class
of groups which generates a subvariety of ¥V containing it. One
could then restate Cossey's result [9] as: an A-group is hypocritical
relative to any variety of A-groups containing it. One additional
step to the proof of Theorem 11.1 shows that the group G(9, q) 1is

hypocritical relative to Lé@’ Bl A éﬁéﬁ if and only if none of the

sufficient conditions of its sincerity given in Theorems 10.8 and
LA Lrean be.satisfied-
In fact a computer check has confirmed that G(9, n) is sincere
for all primes »n < 1098 by checking that the conditions of Theorems 10.8
11.1 are satisfied for all such #n but are not satisfied for
W= 1888 . Thus.the group G(9, 1083) is hypocnitical relative te

[ge, ;ﬂ A égés but it is not known if G(9, 1093) is hypocritical

in general.

Notice that the conditions of the theorem imply k.= 3 ., Let F
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be tlie absglutely free .group of rank X and let T = gp(6) = GL(k, p)

witheeee e iemeer  n ., Let ¥V = @3,_5:[ Aéeés se Wo= N(E) - Snd

ey ]

= @ aisioce B, = . by [15, III 6.6], @B, E| =N, and so

F € 54 - On account of a result of Magnus (36.32 in [20]), the

second derived group F" of F is generated by the basic non-left-
normed commutators of weight 4 . The next lemma implies F" is
freely generated by them. We write [a, b; e, d] for
PS5, 583 "aT]
11.2 LEMMA. T |7 = gFate-1) - '
‘ : e order |F"| = 3 where a = %k(k-1) .
Proof. We first show F" # 1 by constructing a 3-generator

n -
A BoA; such that G" #1 . Let I, =N, A B,

U_n

group G 1in Eg -

and let S be the free group of 16 freely generated by a, b, ¢, d .

Define an automorphism f of S by

af = @@y bf = bd , cf = ¢ and df =d .
It is easy to,check that f has.order 3 . Let G be the split

A_. and

extension of - S by gp(f) . Then G € é% Ay

(le

Gesigpka . by} .5 Bipge
ERecf 30bs Thasfewd] #£:1.,

G" #£1 ; It remains te shew that G € EEG’ éﬂ ¢ ds 5 € By, am
; arl]|
element of order greater than 3 in G must be of the form f ¢

with +' €8 . Let: h.= Lf'ltlg . An easy calculation shows H7/S' G

has exponent 3 so h € 8' = Z(8) . Since h 1is also centralized
P 5 ¢ 7(G) . Thus, G € [B., E| amd P’ #£1 .
Take first the case k = 3 , and observe that L4 N [L2, L2] is

a 3-dimensional Za-spacem End F induces the action of GL(3, 3)
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on Lu n ELQ, LQJ b It 'is.easy to -check that the.subgreup . SL(3, 3)

of GL(3, 3) acts trivially on every reducible Z3GL(3, 3)-module,

— —_

but not on Lu N LLz, LQJ s Se this medule must be ‘irreducible.

2l
(u) T(5) 3nd

Hence no verbal subgroup can lie properly between F

3 < = ; ; )
F"F(q) F(S) » so we conclude F" is 3-dimensional.

In the general case a standard argument (like [20, 33.45])
involving deletions shows that if there is a nontrivial relation
modulo V among the non-left-normed basic commutators of weight 4
in F then there is one such that the commutators which occur in it
nontrivially all involve the same free generators. By the last
paragraph there are no nontrivial relations modulo V among
commutators involving only three generators. Let a, b, ¢, d be
among the distinct free generators of F . It is now sufficient to

show that in any relation of the type

TR PR L I T

we must have o = B = Y = 0 (modulo 3) . Using an endomorphism of F
sending a~—+ b and fixing the other generators, we see B = Y ;

using one sending a > ¢ and fixing the other generators, we see

@ = -y ; and using one sending a+> d and fixing the other
generators, we see 0 = B . Thus
¥ @28 = ¥ fmedulo 3)

SO

il

g =B E v 0 (medule 3) ',

and consequently there are no nontrivial relations among the basic
£ zin
non-left-normed commutators in F" . s

The proof of Theorem 11.1 now comes without difficulty. Let
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3
4=F"F Py and C=FF, % . By the last lenma VA/VC has

the same order . as A4/C so A n Ve =cC .

Eemliie sl L 88 that K.= Lu N EEQ, L2] suoThen oK is freely

generated by the non-left-normed basic Lie elements of welght U4

]

so the same is true of XK ® A x~ Lq* n [LQ*, LQf] relative to any
A-basis of Ll* - If there exist integers satisfying the conditions

of Theorem 11.1, then there is a non-left-normed.basic commutator &
of weight U4 obtained by a suitable ordering and bracketing of

%a(1)° Yq(2)° %gq(a) » 30d Ua(yy ° Hence el =%z 80,0 has the

common eigenvalue A on L.* and K® A . Thus (Ll)Tég (X)

4 it

~

As 1n the proof of Theorem 10.4, make F = F/VC into a T-group

such that Ll and F/®F are T-isomorphic, and L. is isomorphic

i
to a submodule of F" . Then an adaption of the proof of Theorem
10.8 completes the proof of Theorem 11.1.

Finally it 1s shown that the conditions of Theorems 10.8 and 11.1

A s IV ilcew o MEhe

determine hypocrisy relative to [26’ éﬂ A §6=6

fact that Ll 1s a submodule of LP or - K. if and enly if the

relevant congruence is satisfied, it suffices to show F" = F(u)

By some elementary commutator calculations it is verified that

B/ e éS-—éB 9 g v lein A___3é3 A @’3’ g] which is a proper

subvariety of éﬁéﬁ A Qq and, by [18], must be contained in

.. Thus F' = F and, since the other inclusion is easy

Aghy N Ny (4)

to see, we are done.
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