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(iii)
ABSTRACT

This thesis is concerned with #M-groups (and sM-groups), finite
groups whose complex irreducible characters are all induced from linear
characters of normal (subnormal) subgroups. By a classical theorem of
Taketa, all such groups are solvable. Our aim is to find group theoretic
properties of these groups (that is, properties which are not defined in
terms of characters). Isaacs and Passman proved that all metabelian groups
are nM-groups. We show that all abelian by nilpotent groups are SM-groups.
The class of all wnlM-groups (or sM-groups) is closed under taking factor
groups, direct products, or normal Hall-subgroups. Normal subgroups and
subdirect products of nM-groups need not be #nM-groups, but all subgroups
of mnlM-groups are 8¥-groups. The correspondiné question concerning
sM-groups are still open.

We prove that if X/L is a complemented chief factor of an sM-group
G , then all elements of K/L have subnormal centralizers in G . The
p-length of an sM-group is at most 1 , for each prime "p . All subgroups
of & oawee' SM-gpeups if and only if all chief factors of 6 (not enly the
complemented ones) satisfy the subnormal centralizer condition mentioned
above, and every non-nilpotent section of (G has a non-central minimal
normal subgroup.

A (finite solvable) group G is an nM-group if and only if all its
factor groups H satisfy the following condition: ‘if A is an abelian
normal subgroup of maximal order in H , if g 1is an element of H outside
4  anl € a subgreup of A such that A/C is eyelic, g normalizes €
and acts trivially on A/C , then C. must contain some non-trivial normal
subgroup of H . If (G 1is an nM-group, then each element of G acts on
each chief factor of G either trivially or fixed point free; all subgroups

of G are sM-groups; the Frattini factor group of G is a subdirect



(iv)

product of Frobenius groups whose kernels are abelian and whose complements
heeNeycities derived sroups; the Fitting factor group G/F of G is
metabelian, supersolvable, and the odd order Sylow subgroups of G/F are
abelian. These conclusions say nothing when G is a p-group; all we can
do is to present examples which show, for each prime p , that there exist
non-metabelian p-groups which are #nM-groups, but not all p-groups are
nM—groups;

An A-group is a (finite solvable) group whose Sylow subgroups are all
abelian. We determine precisely which A-groups are nM-groups or
si{-groups. In particular, an A-group is an nM-group if and only if it is
a subdirect product of Frobenius groups. Th; class of these A-groups which
are nM-groups (sM-groups) is closed under taking subgroups, factor groups,
direet products; if the Frattini factor group of an A-group is in this
class, so is the group.

We construct an A-group of derived length 5 which is an sM-group.
It should be possible to build sM-groups.of arbitrary nilpotent length by

the same method.
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CHAPTER 1

INTRODUCTION

All groups considered in this thesis are finite groups.

A monomial group is one all of whose irreducible complex characters are
monomial characters (see Definition 2.14).

The study of monomial groups is stimulated by the study of Artin's
L-function arising from number theory. Artin defined the [L-function in
1923 (sée Heilbronn [11]). Roughly speaking, the L-function L(s, x, X/k)
is a function of a complex variable s , and depends on a complex charactér
X of the Galois group of a Galois extension K/k of an algebraic number
field Kk of finite degree. 1In general, L is meromorphic in the whole
complex plane. Artin conjectured that the L-function corresponding to any
non-trivial character is always an entire function. One positive answer
known concerns the case when X 1is a monomial character.

Already in 1930, Taketa [20] proved that every monomial group is
solvable. Interest in monomial groups seems to have been sustained ever
since. For instance, a few years ago, van der Waall [23], [2u4], [25] listed
all monomial groups of order up to 200 . Price [17] and vén der Waall [26]
characterized all minimal non-/-groups. For other relatively recent
results, see Dornhoff [5], Seitz [lgj, Schacher and Seitz [18], Chapter 6
of Isaaes [13], Winter and Murphy [22].

Despite all these efforts, there is as yet no satisfactory group
theoretic characterization of monomial groups. We are still unable to
answer some simple question, for instance, whether odd order normal
subgroups of monomial groups are monomial groups. For details, see Chapter
2

The complexity of monomial groups can also be seen from a theorem of



Dade, namely, every solvable group can be embedded into a monomial group.
For instance, Dade's Theorem shows that there is no constant upper bound for
the derived lemgth, p-length, or nilpotent length éf a monomial group.

The purpose of this thesis is to study two special classes of monomial
groups, namely, the class of normal monomial groups (nM-groups; see
Definition 3.2) and the class of subnormal monomial groups (sM-groups; see
Definition 3.1). These are also defined in character theoretic terms, and
the problem is to understand these classes in group theoretic terms (that 1S
without reference to characters).

The thesis 15 dlvided inte eight chapters. . Chapter 1 is the
introduction. Chapter 2 collects some prerequisites from character theory
and surveys results of monomial groups. Proofs are omitted if convenient
references are available.

In Chapter 3 we report on what we know about questions on normal and
subnormal monomial groups which arise by analogy with the results on
monomial groups, though only the more elementary results are actually proved
in this chapter. We show that the classes-of nM-groups or sM-groups are
closed under taking factor groups, direct products, or normal Hall
subgroups. All metabelian groups are wnM-groups, and all abelian—byf
nilpotent groups are sM-groups. We also present some examples.

In Chapter U4 we study s8M-groups in detail. In particular, we find that
Ehev o e st mesiE S L S Fgp-each prime p . The highlight of the
ehapter is the result that all subgroups of a group G are sM-groups if
and only if G satisfies the following two conditions:

(1) each non-nilpotent section of (G has a non-central minimal

normal subgroup;
(s e o el i Factor 'of ¢ and kI € K/L , then the
eenfralizericf KL  in 6 is subnormal.
The class of such groups is closed under subgroups, factor groups., and

direct products.



Chapter 5 is devoted to #nM-groups. We obtain a structural
characterization of these groups, though it is too complicated to state
hepe s NILE dmplies "that the Frattini factor' group of such a group is a
subdirect product of (cyclic groups and) Frobenius groups whose kernels are
abelian and whose complements have cyclic derived groups. In particular,
the Fitting factor group is metabelian, supersolvable, and its odd order
Sylow subgroups are cyclic. All subgroups of n¥-groups are sM-groups.
However, none of these conclusions says anything for p-groups, and in that
case our structural characterization is much harder to relate to familiar
concepts. For instance, we cannot decide whether the derived lengths of
ni{-groups are bounded. We give examples to show, for each prime p , that
not all p-groups are #nlM-groups but there exist non-metabelian p-groups
which are #nM-groups.

In Chapter 6 we determine precisely which A-groups (solvable groups
with all Sylow subgroups abelian) are nlM-groups or sM-groups. The classes
of these groups are closed under subgroups, factor groups, and direct
products. Moreover, if the Frattini factor group of an A-group is an
nl{-group or an sM-group, so is the group itself.

Chapter 7 takes up the question of the nilpotent length of sM-groups.
We show that under a suitable additional condition, the second derivéd group
of an sM-group is nilpotent. However, we also construct an A-group of
nilpotent length 5 which is an sM-group. We believe that it should be
possible to construct sM-groups of arbitrary nilpotent length by the same
method.

The thesis concludes with a Postscript on possible future directions.



CHAPTER 2

PREL IMINARIES

In the first half of this chapter, we collect some results from
character theory that are needed in this thesis. Basic definitions and
classical theorems (such as Frobenius reciprocity, orthogonality relations
of irreducible characters, Mackey Subgroup Theorem) will be taken for
granted.

The general theorems we state are results relatively recently obtained
(for example, Isaacs' "Going Down Theorem'), results we want to have in the
form most suitable for our purpose (for example, Clifford's Theorem, Tensor
Product Theorem), and a special case of a result which has a much simpler
proof than the general one given in the literature.

We also need some theorems on characters of specific groups (Frobenius
groups, extra-special p-groups), and detailed information on the structure
of the regular module of a cyclic p-group over a field of characteristic
2

In the second half of the chapter, we survey well-known results on
M-groups. Although many of them can be found in standard texts liké
Huppert's [12], they are so important for us that this summary seems
necessary. There is only one item here for which we offer a proof, as none
exists in print: namely, that a Frobenius group is an M-group if and only
if the derived group of its complement is cycliec.

We repeat that all groups G considered are assumed to be finite. The
notation we use is the same as that in Isaacs [13]. Unless otherwise
stated, all characters are over the complex field.

If N is a normal subgroup of (G , there is a natural permutation

action by G on the set Irr(N) of irreducible characters of N , defined



as follows. For ¢ € Irr(N) and g € G , define the function ¢9 from W

to ithe complex ficld € by wg(n) = @(gng—l] . Though not completely

obwietis, it is a fact that @g € Irr(N) (see Isaacs [13], Lemma 6.1). We
Rl @g a G-conjugate of ¢ . The next theorem tells how an irreducible
character of (G behaves, when restricted to [ .

THEOREM . 2.3 (Crifford's Theorem). Let x be an irreducible character

oF NG iand “ W 6 . Tlien

(i) =k E‘ ®; where P15 Pos wees O 18 a complete

7—'1
G-orbit of irreducible characters of N ;
r .
(2) { l @l} defines a subgroup of G , and
|G: IG( ol
Proof. See Isaacs [13], Theorem 6.2.
‘Remark. Clifford's Theorem is also valid in terms of direct sum of

irreducible representations over arbitrary fields. We state it in the

present form because most of the time, we use it in the context of complex

characters.

THEOREM 2.2. et N <G, © € Irr(M) , and T = I,(8) . Let
= {¥ €Ien(D) | Uy, 0] # 0}, B = {x € (&) | [XN, 8] # o} .
Then
(1) the map Y +— wG 15.a bijection of A onte B : in
particular, wG is irreducible;
(2) ~ a2 wG =x with Y € 4, then Y is the unique irreducible

constituent of Xop which lies in A s

G R s e then [y 8] = [xy» 6]



Preaf. Sece'li=aacs 13}, Theorem 6.11.
Eets i & Wand G € Ten(l) .. We say that 0 is invariant in- ¢ if

IG(O) = G

THEOREM 2.3 (Going Down Theorem). Let K/L be an abelian chief
Jactor of G . Suppose B € Irr(K) , and 0 <is inwvariant in G . The” one
of the beZowing holds:

(2)e O clTepl L),

L
(2) 6, = ep for some ¢ in Irr(L) , and FENT e e
i
(3) GL = Y ., where the ¢; are distinct elements of
s

SR (BY s ol = ARE |
Proof. See Isaacs [13], Theorem 6.18.

Remark. It follows from Clifford's Theorem that . S is a
My e

complete K-orbit (G-orbit) of irreducible characters of [
Theorems 2.2 and 2.3 combine to give a powerful tool in character
theory. We apply it as follows. Consider a chief series of a solvable

= > PN D = : =2
group G , say G =Gy > G G, 2 Let x be a non-linear

irreducible character of G . Now we know that the restriction of X to

G reduces, and we can consider the smallest index < such that the
n
restriction of x to Gi reduces. Let [ = Gi At lr . We have

is irreducible, and obviously is invariant in G . Then the

Xy Xg

"Going Down Theorem'" tells us how Xr decomposes into a sum of irreducible

characters of 'L . ' In particular, if IK:LI is not a perfect square, the

IK:L]
only possiblity is that X =

,xj N

¢ - Theorem 2.2 then tells us that
7

there is an irreducible character ¢ of IG(wl) such that wG = x , and by



part (2) of Clifford's Theorem, IG(®1) is a proper subgroup of index

|K:L| in G . This often makes it possible to use induction on |G|

We can say something more about Clifford's Theorem. Part (1) of

Clifford's Theorem asserts that L k

u'[\/Jw

¢ - Obviously each ¢ has

=1

the same degree as ¢, > SO we Bave Wy (1) = kt@l(l) . It is a deep theorem
the proof of which involves projective representations that X(l)/@l(l) = kt

divides |G:N| (see Isaacs [13], Theorem 11.29). However, what we actually
need in this thesis is a special case of this general theorem, namely we
can assume that G Is sclvable. The proof is then relatively easy.

THEOREM 2.4, ILet G be a solvable group. Let N< G . Suppose

¥ TGy 5T 9 Tr(l) o and [XN’ 9] 20, Then y(1)/9(1) ' divides

|G:m| .

Proof. We proceed by induction on |G:¥ There is nothing to prove

if |G:N| =1 . If AN 1s a maximal normal subgroup of G , then the
theorem follows immediately from the "Going Down Theorem". If N is not
maximal, let K Dbe a maximal normal subgroup of G containing N . Then

there 1is an irreducible character ¢ of K such that

[XK’ @] £ 0 # [¢N’ 8] . Now |G:K| and |K:N| are both less than [G:Nl g

By the inductive hypothesis, X(1)/@(1) divides |G:K| and ¢(1)/6(1)
divides |K:N| . Thus x(1)/6(1) divides IG:KIIK:NI = |G:N| . The proof
is complete.

FHEDREN: 2. B kel v G =uH X K . . Then

(1) every irreducible character of G has the unique form of

1l

(that is, for all h € H and k € K, x(h-k) = a(h)B(k) )
with o € Irr(H) and B € Irr(X) ;
(2 eae (i S and B € Irr(K) . then x = oB € Irr(G) ;

(N s el ¥ € Trr(d)Y and 8 € Irr(B) :



. D

Proof. For the proof of (1) and (2), see Dornhoff [6], Theorem 10.3.
Part (3) follows directly from the formula for calculating induced
chapacter sy

THEOREM 2.6 (Tensor Product Theorem). Let N <G . Let y € Irr(W)
and X € Iov(G) . Then (xNy)G = XYG

Proof. This follows directly from the formula for calculating induced
characters.

Remark. Let ¢ be any group. Let X and  be two characters of
G . Then XZ may be regarded either as a character of G or as a
character of (G X G . These two views are not unrelated, but they are
clearly different. When the situation arises, the context always makes it

clear which one is intended.

FHEOREN. 2.7, het' H =@ woud ¥ in Ire(H) .. If XG 18 irreducible,
then CG(H) 8

Proof. If CG(H) £ H , then HCG(H) properly contains H , and

HCG(H)
X is irreducible. Without loss of generality, we may assume

G

HCG(H) o hes s anvaedant in G .. By Frobenius rveciprocity,

—~
]

[XG, XGj = [;, (XG)QI = [x, |G:H|x] = |G:H| , a contradiction.

in" this thé;is, we_;re dealing mainly with complex characters. In
fact, the two classes of groups we shall study are defined in terms of some
properties of their complex'characters. However, on one occasion in Chapter
7, we encounter a situation where a p'-group H acts on an elementary
abelian p-group N , thus affording a modular representation of H . 1In
order to relate this to complex characters, we need to extend the ground

field to a splitting field of H , and then exploit the relation between



Brauer characters of H and the complex characters of H . The relevant
results are the following.

Let F be any ficldyof sehavacteristic \'p ,-and E a Galeis extension
over F of finite degree. Let W be an irreducible FG-module where G

is any group. Let V be an irreducible EG-submodule of ¥ @% T

gffording the chiaracrer - ¥ (with"values'in 'E ). 'Denote by F(x) ' the

subField of* E" obtained by adjoining all values of X to F..

THEOREM 2.8. The EG-module Ve, E is completely reducible, with

all irreducible direct summands Galois conjugate to V . The number of
different Galois conjugates of V is exactly the degree of the extension
F(y)/F .

Proof. See Curtis and Reiner [2], Theorem 70.15.

THEOREM 2.9. ILet 1IBr(G) denote the set of irreducible Brauer
characters of G . If pl|G| , then IBr(G) = Irr(G) .

Proof. See Isaacs [13], Theorem 15.13.

Next, we turn to results on particular groups and characters.

THEOREM 2.10. et x € Ire(G) . Then x(1)° = |G:2(0)| if and oniy
1f ¥ < vanishes outaide Z(G) .
Proof. See Isaacs [13], Corollary 2.30.

THEOREM 2.11. Let G be an extra-special p-group of order p2n+l .

Then any non-linear irreducible character of G +ts faithful and has degree

p' . It is induced from some linear character of any maximal abelian novmal

subgroup of G .

Proof. See Huppert [12], Chapter V, Satz 16.14.

Frobenius groups play an important role in this thesis. It will be
convenient for us to think of a Frobenius group as a split extension

K split H . Here K 1is called the Frobenius kernel and H the Frobenius
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complement. There are many different definitions of .Frobenius group, for
example, see Passman [16], Dornhoff [6], Isaacs [13], Huppert [12]. Near
the end of this chapter, we shall quote results on the structure of
Frobenius groups; here we state a theorem concerning their characters.
THEOREM 2.12. If x <s any irreducible character of a Frobenius group

K split H , then either Ker X = K or X is induced from some irreducible

character of K .
Proof. See Dornhoff [6], Theorem 13.8.

Next, we prove a fact about the regular module of a cyclic p-group

overqa field, of echaracteristic..p..

THEOREM 2.13. Let G be a cyelic group of order pn vtk B g
fteld of characteristic p . Then the regular FG-module (also denoted by

FG ) is uniserial, that is, the submodules of FG form a chain. In fact,
each submodule of FG has the form FG(g-l)t where g 1s a (fixed)

generator of G and 0 =<1 < i
Proof. Let F[x] denote the polynomial algebra with indeterminate
x . The map x+—> g defines an algebra homomorphism from F[x] onto FG
n
with kernel containing T L enough to show that the ideals of
n :
F[x] containing xp - 1 form a chain. Since char F =p ,
n n n
2 -1 = (x-1)® . Each ideal of F[x] containing PV T generated

n
by a divisor of (x-1)P , as Flz] is a principal ideal domain. Now F[zx]

n
: < : y - L T 1 _l)p
is certainly a unique factorization domain, so the divisors o o are

1 ; n
(apart from unit factors) exactly the (z-1) el = L Thas the

claim is proved. In particular, the submodules of FG are exactly the



I

FG(g-l)l where 0=17 =p

Remark. It follows that the fixed point space of g e B e
ket N n n n
Hi(g—2)F | while in F/Fe(g-1P T it is Fe(g-1F “Zrme(g-1)P L .

We shall need this fact later on.

Finally, we turn to M-groups.

DEFINITION 2.14. Let G be a group. An irreducible character X of
G 1is called a monomial character (M-character) if it is induced from a .
linear character of some subgroup of G . The group G is called a
monomial group (M-group) if every irreducible character of G is monomial.
We denote the class of all M-groups by M .

As was mentioned in the Introduction, the first celebrated result on
M-groups was due to Taketa. This is the following.

THEOREM 2.15 (Taketa). ALl M-groups are solvable groups.

Proof. See Huppert [12], Chapter V, Satz 18.6.

The converse of Taketa's Theorem is false. SL(2, 3) 1is a solvable
group, but not an M-group (see Huppert [12], Chapter V, Satz 18.7). We
shall prove in Theorem 3.5 that all metabelian groups are M-groups. It
follows that SL(2, 3) is a solvable non-M-group of smallest order, since
all groups of order at most 23 are metabelian. (Van der Waall [24j has
shown that SL(2, 3) is in fact unique with respect to being a non-M-group
of smallest order.)

It is quite obvious that factor groups of M-groups are M-groups.
Direct products of M-groups are M-groups. This is a consequence of
Theérem 2.5; see Huppert [12], Chapter V, Satz 18.8. However, subgroups of
an M-group need not be M-groups. This fact could be easily seen from a
theorem of Dade.

THEOREM 2.16 (Dade). Bvery solvable group can be embedded into an

M-group.
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Rlrooh e sec Huppert (120 Chapter V.5 Satz 18.11.

Dade's Theorem shows that, for instance, SL(2, 3) which is not an
M-group, can be embedded into an M-group. In fact, this can be seen more
directly than by Dade's general construction: if we take the central

product of two copies of Q8 , and split extend it by an element of order

3 which acts nontrivially on each of these central factors, we obtain an
M-group. It contains a subgroup isomorphic to SL{2, 3)

Dornhoff [5] has shown that normal Hall subgroups of an M-group are
M-groups. Unfortunately, the condition of being a Hall subgroup cannot be
removed from the hypothesis of Dornhoff's Theorem. Dade [3] constructed an
M-group which contains a normal subgroup that is not an M-group. But
Dade's example depends on the prime 2 in a fundamental way so that no odd
analogue seems possible. It is still an open question whether normal
subgroups of M-groups of odd order are M-groups.

Anéther direction of research on [/M-groups is to investigate subgroup-
closed classes of M-groups. Huppert proved that all extensions of
A-groups by supersolvable groups are M-groups (see Huppert [12], Chapter V,
Satz 18.4). This is a class of M-groups that is subgroup closed. Price
[17] investigated the structure of minimal non-M-groups, that is, groups
which are not M-groups but whose proper homomorphic images and proper
subgroups are all M-groups. Van der Waall [26] recently completed the
characterization of the structure of minimal non-M-groups. The largest
subgroup-closed class of M-groups consists of all the (finite solvable)
groups which have no section isomorphic to a minimal non-M-group. In view
of the results of Price and van der Waall, this class may now be understood
without reference to characters.

We conclude this chapter by establishing the following.

THEOREM 2.17. A Frobenius group is an M-group if and only if the
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derived group of its complement is cyclic.

An esseﬁtially equivalent result, namely that a Frobenius group is an
M-group if and only if its complement is supersolvable, was proved by
Seitz: however, he gave no proof im his paper [19] but referred to the
unpublished part of his PhD thesis which we have not seen. The proof we
give here is our own.

Ihe key ftact seems te be the Following. Let & be a finite solvable
group, O0(G) the largest normal subgroup of odd order in G , and suppose
the Sylow 2-subgroups of (G are cyclic or generalized quaternion. If
G/0(G) is mot a 2-group, then it is either SL(2, 3) or the binary
octahedral group (of order 48 ), and neither of these is an M-group.
[loyievor | . we hawve mio convenient pefercnce for this, se we give a short proot
of the variant we really need.

LEMMA 2.18. Let G be an M-group with cyclic or generalized
quaternion Sylow 2-subgroups. Then G/0(G) 1is a 2-group.

Proof. We can assume without loss of generality that O(G) = 1 . By
Taketals Theorem, (G 'is solvable: hence if. F denotes its Fitting
subgroup, then CG(F) = F see Hupgect 1121, Chaprer LI, Satz U.2). S6
G/F 1is isomorphic to a subgroup of the outer automorphism group Out (F)
It is well-known that normal subgroups of cyclic or generalized quatérnion
groups are cyclic or generalized quaternion, and that the outer automorphism

group Out(F) of such a 2-group F 1is a 2-group unless F &:Q8 in which

case Out(F) ~ S. , the symmetric group of degree 3 (see Passman [16],

3
Propositions 9.9, 9.10). Thus we are done unless F Q£Q8 and |G/F| is
3 op 6 . We show that in this case a contradiction follows. For

/| = |G| - lest = }:x(l)2 where X runs through those irreddcible

characters of G whose kernel does not contain Pl s ine B e The
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unique minimal normal subgroup of F , these ¥ must be faithful on F ,

so iy = Fen cach of them.  Now ]G:F'I is = 12 or 24 . and simple

trial and error shows neither of these numbers can be written as a sum af

perfect squares without 12 or 22 among the summands. Hence (1) = 2
Fop seme O | in TeRl@) with P! £ Ker y . As G is an M-group, this
must Be induced from a linear character of some subgroup A of index 2 ,
and then A' < Ker X . Now A is a normal subgroup containing a Sylow
@-suberoup which sets nomtrivially on F/F' , so even F = A' < Ker y_,
contradicting F' $ Kepl @i lh i siconplictc st itlie preof.

LEMMA  2.19. A Frobenius complement G <s an M-group if and only if
G Ze cyclic..

Proof. We need the fact that all Sylow subgroups of a Frobenius
complement G are either cyclic or generalized quaternion (see Passman
[161, Proposition 18.1), Thus if G  is an; M-proup, G/O(G) is a 2-group
by the previous lemma. As all Sylow subgroups of O0(G) are cyclic, this
implies that G 1is supersolvable. Then G' is nilpotent (see Hall
[10], Theorem 10.5.%4). On the other hand, if @ is a Sylow  2-subgroup of
gLl Ehen. G = O(G)g amd G' =0(G)Q' .. Since @' -is cyeclie, all Sylow
snbppeups of the milpotent.sroup G' ane eyclic, so 6" is eyelie..

The converse part of the lemma follows from the fact that all super-
solvable groups are M-groups.

Proof of Theorem 2.17. 1In view of the last lemma, all that remains to
be proved is that if KX split H is a Frobenius group with H' cyclic, then
K split H 'is an M-group. Let ¥ € Irr(K split H) . By Theorem 2.12,
eithen 'Kep'y = 'Klige ¥ is induced from (K . In the first case, ¥ dis an
M-character because H 1is an M-group. In the second case, we appeal to
the celebrated theorem of Thompson that all Frobenius kernels are nilpotent

(see Passman [16], Theorem 17.4). Thus X is an M-group, and again ¥ is

an M-character.
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CHAPTER 3

ELEMENTARY RESULTS AND EXAMPLES

This chapter is a report on what we know about the questions on normal
and subnormal M-groups which arise by analogy with M-group results
surveyed in the previous chapter. To maintain continuity of the report, we
defer all the proofs to the second half of the chapter. Because of Taketa's
Theorem, no generality is lost if we restrict our attention to solvable
groups. We consider only complex characters in this chapter.

DEFINITION 3.1. A character of a group G is called a subnormal
monomial character (sli-character) if it is induced from a linear character
of some subnormal subgroup of G . A group G 1is called a subnormal
monomial group (sM-group) if all its irreducible characters are sM-
characters. We denote the class of all sM-groups by 4M .

DEFINITION 3.2. A character of a group G is called a normal
monomial character (nM-character) if it is induced from a linear character
of some normal subgroup of G . A group G is called a normal monomial
group (nM-group) if all its irreducible characters are nlM-characters. We
denote the class of all ni-groups by #nM .

The definitions yield the following inclusions:

M c sM < M

Each of the above inclusions is proper. The symmetric group Su of

degree 4 1is an M-group but not an sM-group, since it has an irreducible
character of degree 3 , but none of its Sylow 2-subgroups is subnormal.
We shall construct an sM-group which is not an nM-group later in this
chapter; see Example 3.11. First, let us examine some closure properties
of sM. and nM..

THEOREM 3.3. Both sM and nM are homomorphic image closed and
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direct product closed.

THEOREM 3.4, Both 4M and wnM are normal Hall subgroup closed.

We shall see in Chapter 5 that MM is neither closed under normal
subgroups (let alone under subgroups), nor closed under subdirect produeEs:
However, the corresponding questions for 4M are still open. The
difficulty in attempting to test whether normal subgroups of an sM-group
are sM-groups could be seen in Example 3.12. The group we construct in
this example has an irreducible sM-character such that none of the
irreducible constituents of its restriction to a particular normal subgroup
is an M-character (let alone an sM-character). This shows that we must
somehow find a way to make full use of the assumption that all irreducible
characters of G ave sM-characters.

We shall obtain results in Chapter 4 which show that the analogues of
Dade's Theorem are false. We shall obtain in Chapter 6 conclusive
structural characterizations of the sM-groups and #nM-groups which are
A-groups. As for supersolvable groups, we can only say that they need not
be sM-groups; see Example 3.10.

The analogues we can get for Huppert's Theorem are the following.

THEOREM 3.5. ALl metabelian groups are nM-groups.

THEOREM 3.6. ALl extensions of abelian groups by nilpotent grbups are
sM-groups.

These two theorems provide subgroup closed subclasses of WM and &M |
respectively. But we shall see in Example 3.1l that an nM-group, all of
whose subgroups are nM-groups, need not be metanilpotent (let alone
metabelian). In Theorem 4.14 we give-a structural characterization of the
groups whose subgroups are all sM-groups. In Corollary 5.10 we show that

all subgroups of nM-groups are SM-groups.

THEOREM 3.7. If G <is a Frobenius group such that the derived group
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of its complement is cyclic, then all subgroups of G are si-groups.

Of course, we know that if G in 4M is a Frobenius group, then its
Frobenius complement has cyclic derived group (see Theorem 2.17). This and
Theorem 3.7 show that in the case of Frobenius groups, sM-group and /M-group
are the same. 'We do not have any necessary and sufficient condition for a
Frobenius group to be an #nM-group; all we have to offer is the following.

THEOREM 3.8. Let G be a Frobenius group such that the kernel of G
i1s abelian and the jerived group of the complement is cyclic. Then all
subgroups of G are wM-groups.

We now turn to proofs and examples.

Proof of Theorem 3.3. We shall prove the case of 4M . The proof for
the case of WM is exactly the same. (Just replace each occurrence of
"subnormal" by "normal'.)

Let G € 4M . Let G/N be any homomorphic image of G . Let
X € Ire(G/N) . Regard Y as an irreducible character of G with kernel
céntaining N . As such, X 4is induced from a linear character A of some

subnormal subgroup S of G . N =Kep y = coqu(Ker A) implies that

N =Ker A\ =S5 . We can regard A as a linear character of S/N which is

G/N ol
subnormal in G/N . Obviously then A / =X » S0 X .is an sM-character.

met L B e Al O THE TN € Ton(e X H) , then by Theorem 2.5,%%¢ = nE
where n € Irr(G) and ¢ € Irr(H) . By assumption, n and ¢ are induced
from linear characters A, y of subnormal subgroups A, B of G, H ,

respectively. Now A X B 1is subnormal in G X H , .AY 1is a linear

character of A4 X B , and (by part (3) of Theorem 2.5)

(Ay)GxH = AGYH =nNE =X . The proof is complete.

Remark. In the above proof, we in fact proved that if ¥ is an &M
or an mnM-character of G with kernel containing a normal subgroup ~N ,

then X 1is also an sM or an nlM-character, respectively, as a character
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of " G/N . The converse of this is also obviously true, namely, if x is an
sM or an ni-character of G/ , then X regarded as a character of G ,
is also an sM or an nM-character, respectively. On many occasions later
on, We need to show that a certain character X of G is an 8sM or an
n{-character. If the hypotheses are inherited by homomorphic images of G ,
then the above discussion allows us to assume that X 1is faithful.

Proof of Theorem 3.4. We shall prove the case of 4M . The proof of
the case nM 1is clearly the same.

Let G € 84 and N a normal Hall subgroup of G . Let 8 be any

non-linear irreducible character of N . Let X be an irreducible

constituent of GG . By Frobenius reciprocity [XN’ 8] # 0 and by Theorem

2.4 Sx1)/801 ) divides  [E:H) .
By assumption, ¥ is induced from a linear character A of some
subnormal subgroup S of G . Therefore
x(1)/6(1) = |G:s|/6(1) = |G:ms||¥S:5]/8(1)

divides IG:N| 5Bt ]NS:SI = IN : U n SI is relatively prime to ‘G:Nl .
so that |WNS:8] is a factor of ©(1l) , in particular I 2 a8l =8la)y.

N .
Now ANS so ‘that (XNS)N ngN « & Thus (X o is a sum of some G

< Xys Iy

NS N
conjugates of 0 . By Mackey's Subgroup Theorem, (X )N = (KNnS and

NhS] is a conjugate of 6

SYe) (XNS)N(l) = el = Bi(1) . Tims (x
Since Nn S is subnormal in N , this conjugate of 6 is an sM-character.
A fortiori, © is an sM-character. The proof is complete.
Proof of Theorem 3.5. See Isaacs and Passman [14], Proposition 1.3.
Proof of Theorem 3.6. Let G be a group, A4 an abelian normal sub-

gpoap of G iand G/A- is nilpotent. We use induction on |G| to conclude

that all proper subgroups of G are s8M-groups. Let X be any non-linear
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irreducible character of G . Let & > Gl S Gn = A be a chief series
of G through A4 . We know that X4 reduces, so we can consider the

smallest index < such that the restriction of N ke Gi reduces. Let

L=, K= G. - As G/A is nilpotent, |K/L| is a prime p . By the

Going Down Theorem, Mt ¢; 8O that IC(@l) is a proper subgroup of

IRNaS

ik

index p in G . By Theorem 2.2, there isa P in IPP(IC(¢1}) such that

wG =X - Now IC(@l} 2 A , so it is subnormal in G . The result then

follows, as Ib(wl} is an sM-group.

Proof of Theorem 3.7. Let G = K split H be any Frobenius group with
H' cyclic. Let x € Irr(G) . By Theorem 2.12, either Ker X Z K so that
X € Irr(H) , or x 1is induced from an irreducible character of K . In the
first case, X 1is an sM-character since H is metabelian, hence an
nM-group by Theorem 3.5. In the second case, ¥ 1is an sM-character
because the Frobenius kernel is nilpotent and hence an sM-group by Theorem
3.6. Therefore G is an sM-group.

Any subgroup . # of G 1is either a subgroup of K so that N is
nilpotent, or a subgroup of H so that N is metabelian, or itself a
Frobenius group whose complement has cyclic derived group. In any case, N
is an sM-group. The proof is complete.

Proof of Theorem 3.8. Let G = K split H be a Frobenius group with X
abelian omd B’ egelich Bety x € Ipr{G) 3 thenreither. Ker X Z K ar X
is induced from a linear character of K . In either case, X 1is an nM-
character. The same argument as in the proof of Theorem 3.7 completes the

proof.

To construct a supersolvable group which is not an 8M-group, we need
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the following lemma.
LEMMA 3.9. Let x € Irr(G) be a nonlinear sM-character. Then Xe 1
reduces.

Proof. 1If not, let X s = C € Irr(G') . By assumption, X is induced

from a linear character A of some proper subnormal sabproup 'S of G

’
& ?G where 2
S%WG’)

runs through a set of double coset representatives of S and G' in G

By Mackey's Subgroup Theorem, I = Xg1 = (AG\ = Z:{

>

and this forces SG' = G . Take a maximal normal subgroup N of G that

eontains S5 . . Them G/F 1s cyelie, so G' =F contrary to SG' = @G

EXAMPLE 3.10. Let p be any odd prime. Let E be an extra-special

p-group of exponent p , order p3 . Let G = E split (g) where g has
order 2 and it inverts some pair of generators of E . Then g acts
trivially on the centre of FE . By Theorems 2.10 and 2.11, any non-linear
irreducible eharacter 'L of 'E wvanishes outside Z(E) , and so L is

invariant in G . Let Y € Irr(G) be such that EXN’ C] # 0 . By the
Going Down Theorem, M= C . This shows that X is not an sM-character

by the previous lemma, since E = G' . Nevertheless, G 1is supersolvable
as G s B il . CEAEY)) Poed (B SHEY where =z is any generator of E , is a
chief series of G with cyclic chief factors.

EXAMPLE 3.11. Let KX be a relatively free group on 3 generators,
with exponent 43 and class 2 ; that is,

K =%n, v 4 | exponent 43, class 2) .

3 3
K' is an elementary abelian group of order 43 and is generated by the
commutators [v, wl, [w, u] and [z, v] . Let
7 9 1
H=<x,y|x=y=l,xy=x4)

We define an action of H on K as follows. Choose an integer k whose
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multiplicative order modulo 43 is 21 , and define

ol e ST = o e Y = w : W = uk7
Routine calculation shows that this is a well-defined action. We claim
that & = K split H is a Frobenius group. To do so, it is enough to prove
that any non-trivial element of H acts fixed point free on K/X' and on
K* . Observe that with respect to the basis uK’', vK', wk' of K/K'

s L

and y act on K/K' as the linear transformations defined by the matrices
Y y

[k" 8 o
l
! 9

ga= | e 0 snd = o @ e
I\ T fabruy

3 : : s
so that y acts on K/K' as the linear transformation defined by

B gl
y3 e % .
BLiceg k7

3 .
Since uK', vK', wK'! ave eigenvectors of x and y and neither =
nor y3 has a trivial eigenvalue, they act fixed point free on K/K' . Now

3 :
each nontrivial element of H has a power equal to £ or Y , so it must
also act fixed point free on KX/K'
We apply the same argument to show that any non-trivial element of H

acts fixed point free on XK' . To this end, we take v, wl, v, ul, [u, ol

. 3
as basis of K' ; routine calculation shows that %, y, ¥ act on K' as

the linear transformations defined by the matrices

) 14
18 . L k 0wt
7 3 14
S= Dot e RS T e A
14
0 B DRI o ), 0 @ ik

Obviously, neither x nor y3 has a trivial eigenvalue. We conclude that
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the split extension X split H formed with this action is a Frobenius
group.

Helobtainyseveralifacts about G .5 K split H .

(1) G 1is an sM-group since it is a Frobenius geoup with: H!: cyelies

(2) G 1is not metanilpotent. This shows that a group whose subgroups
are all sM-groups need not be metanilpotent, let alone abelian-by-nilpotent.

(3) G 1is not an nM-group. The reason is as follows. Let X be an

; s G
irreducible"character of G such that ‘Ker Y i K WSppose” W= ) where
A is a linear character of a normal subgroup N of G . Then

N' <Ker X , so N' 2 KXK' . However, X' is the unique minimal normal

subgroup of v € , s0.we must have [ Nf.=.1 . 1Sincei K' is the only-abelian

normal subgroup of G , then ¥ =K' . Now kK is irreducible, contrary‘to
Thecren 2.7, as' N . i= central and proper in K .

(4) G/K' 1is a Frobenius group with abelian kernel X/K' and
complement H with cyclic derived group. By Theorem 3.8, all subgroups of

G/K' are mnM-groups, but G/K' is not metanilpotent.
EXAMPLE 3.12. Let p and g be prime numbers such that pl(qQ-l)
but pf(g-1) . GF(q2} iz a splitting field fopr Cp s but. GFlg) . is nok.

Thus €_ has a 2-dimensional irreducible module over GF(g) . By
/%

assumption, P # 2

3
Let @ be an extra-special ¢g-group of exponent g and order ¢

when ¢gq 1is odd, and let ¢ be the quaternion group when ¢ = 2 . Let P

3
be an extra-special p-group of exponent p and order p . Let (C be an

abelian normal subgroup of P so that P/C 1is isemorphic to Cp - Bince

Q/Z(Q) ~C_ X C_ , the above discussion shows that we can let P/C act
q q

irreducibly on  @/Z(g) ; or equivalently, P acts irreducibly on /Z2(Q)
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i el e BIRCRERE iien g is odd)" ) ' is a relatively free gfoup, g0 this
action can be extended to € . Otherwise we appeal to the fact that the
quaternion group of order 8 has an autémorphism eFilorpder tan i =il e
serstent (Dl nrith kermel € and obviously. P acts trivially on 2Z(Q) . &Let

G o= 0h=plic P

Let ¢ be a Faithful ivreducible character of @ , so (1) = q 3 and
let Y be an irreducible character of C whose kernel avoids P! , and is
therefore not normal in P . Now ¢Y is an irreducible character of § X C
which is not invariant in G , for its kernel is ker Y which is not normal

ns @ . As @ X C 15 a maximal subgroup of G , it follows that

IG(@Y) = @ X C . Hence (QY)G is irveducible. Since @ X € is normal and

nilpotent, (@y)G is an  sM-character.

Let """ be' a" subpreup ot erder” "p*1m P ) not contained” in @' Then
D acts non-trivially on & 1in such a way that @D has no subgroup of
indest .. | By Mackey's Sulgroup Theorem,

yPP' V@DXP' @D

PI
((LPY)G}QDP, = ((LPY)QCF]QDPJQD = (((PY)QXPI i ((PYPIJ = @ YP'

by Theorem 2.5. As D acts trivially on Q' we know that ¢ is invariant
% s
in @D , hence by Mackey's Subgroup Theorem, (@ }Q = pp , and so by the
X : - 40 y
Going Down Theorem, each irreducible constituent W erE ) is such that

X G
wQ = @ - In partiemlar, each constituent ¥y, of ((wY) )QDP' has degree

q . However, @DP' has no subgroup of index ¢q , so none of these

const ituents can be M-characters.
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CHAPTER 4

SUBNORMAL  #-GROUP S

The first result of this Chapter is that ir ¢ is an  sM-group, K/E
is a complemented chief factor of @ » and KL € K/L , then the centralizer

CG(kL) of KL is submormal in G . We find that sM-groups have p-length

at most 1 , for each prime p . This contrasts with the fact that there
exist M-groups of arbitrarily large p-length (for by Dade's Theorem every
solvable group is embeddable into some M-group). However, supersolvable
groups have all the above mentioned properties, yet we have seen in Example
3.10 that not all supersolvable groups are sM-groups. We are still far
away from having a complete structural characterization of sM-groups.
Finally in Theorem 4.14, we give a structural characterization of groups all

of whose subgroups are sM-groups.

We shall need some structural results first. All groups considered are
finite solvable groups.

LEMMA 4.1. If a subnormal subgroup R of H contains a Sylow

p-eubgrowp P of H , then R contains OPI(H) > the normal closure of P
n g .

Proof. We use induction on IHI . If R =H , there is of course
nothing to prove; so we suppose N 1is a proper normal subgroup of H

containing K . Then P 1is a Sylow p-subgroup of N , and its normal
’ . .
closure OF (§) is characteristic in W , hence normal in H . This
’ 14 ] p 4
obviously shows that P () = &P (W) . By the inductive hypothesis,

OP'(N) =R . The proof is complete,
Let G be a group. The socle of G , denoted by 0(G) , is the

subgroup of G generated by all minimal normal subgroups of G . The
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following theorem gives some well-known properties of o(G) .

THEOREM 4.2. (1) o(G) <is a characteristic subgroup of G .

(28 Wo (G, is abelian.

(3) 0(G) is the direct product of some of the minimal normal
subgroups of G .

(H) oG H) = olG) % o(B),.

(5) For each normal subgroup N of G contained in o(G) , there is
a normal subgroup M in G such that d(G) = N X U

(8) If F and ¢ denote the Fitting and Frattini subgroups of G ,
respectively, then F/® 1is the socle of G/® .

LEMMA 4.3. 1If CG(C(G)) = 0(G) and N is a maximal normal subgroup

oF. .G ., then
(L) ollN) = B o alG) ,

(2) Cy(o(m) = olw) , and

(3) 0(G) = (Nn 0(G)) x L where L 4is central in G .

Proof. Consider first the case 0(G) =N . Then (3) is trivial with
L = {1} . As o(N) is an abelian normal subgroup of G (it is normal, as
it 1s chavactepistic in. N '), so it will contain or avoid, and henece
centralize, each minimal normal subgroup of G . Thus 0(¥) centralizes
0(G) , and by assumption, we have 0(#) = 0(&) . By part (5) of Theorem
4.2, 0o(G) = o(§y) x M for some normal subgroup M of G . However, we
have now ¥ is normal in N but avoids 0(¥) , which forces M = {1} , so
o(N) = 0(G) . Thus (1) and (2) follow immediately.

Next we suppose 0(G) $ N , and let L Dbe a minimal normal subgroup of
G which is not contained in N . Since ¥ is a maximal normal subgroup,

we have G.= N XL and L is eentral in G . By part (4) of Theorem 4.2,

1

9(c) = gl aan) = a(ll) * L , so that (1) and (3) hold. As L is

1

central, CG(O(N)) CG(O(G)) = 0(G) , and (2) follows. The proof is

complete.
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LEMMA 4.4. 1f CG(O(G)) = 0(G) , and R 1is a subnormal subgroup of

G , then R 1is a direct factor of Ro(G) .
Proof. We use induction on |G| . If R = G , there is nothing to
prove; so we may assume R 1is contained in some maximal normal subgroup

of G . By part (2) of Lemma 4.3, the inductive hypothesis applies to W

2

and we conclude that Ro(l)

R X K  for some K . By (1) and (2) of Lemma

4.3, 4600 e [Faro(@d) (X)L

Gll) Rabsiuwith 8Eivcentral dn 46 . s Thus

X

Ro(G) = R(o(¥) x L} = Ro(N) x L (note that Ro(N) n L <N n L = {1} ), and
hence Ro(G) = (R X K) X L = R X (K x L) . The proof is complete.

LEMMA 4.5. If CG(O(G)} = 0(G) and p 1is a character of a subnormal

subgroup R of G such that pG 18 irreducible, then R = o(G) .
Proof. By Lemma 4.4, we see that Ro(G) = R X K . Since pG is

irreducible, Theorem 2.7 asserts that CG(R) = R which certainly shows that

K=1{1} and R = 0(G) .
Next, we come to a key lemma of this chapter.
LEMMA 4.6. Let G be an sM-group with a self centralizing,
—complemented, minimal normal subgroup K .

§1)  -Bfv wechBonlK) iandvi D= IG(u) s thenm T is subnormal in G .

(2) \If K ‘té8.ayp-group, then G/K 1is a p'-group.

€3)  Ifs kiceky, £hen CG(k) 18 subnormal in G .

Proof. (1) By assumption, G = K split H , where H 1is a maximal
subgroup of G , so that T which contains K , is a semi-direct product of
K and AT o H) - By Theorem 51.15 in Curtis and Reiner L2], ‘7 has an

G
irreducible character T such that Ty =W - By Theorem 242, <17 15uis

irreducible, so that TG = pG for some linear character p of a subnormal

subgroup K of G . ' Observe that X = CG(K) implies that X is the unique

The auther u grate L & Pofemn lsoaas N prinbhing ovk thal -lhe acguaents con be comraide obly
streomalintd 4 lewmas 4.3, 4.4 4S o teploced by e follewmavg, ey Lranghtioaracd, bewmna -
i R v swbusemal m & and C (R) SR, ten R 26(G)
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minimal normal subgroup of G , and so X = ¢(G) , and CG(G(G)] = (@)
We may then apply Lemma 4.5 to conclude that K < R . By Mackey's Subgroup
G G : :
Theeremt (T }K = (p )K 1s a sum of G-conjugates of U , and also a sum of
G-conjugates of Py » SO EIoEEE il = (pk)g For 'seome” g = drn G ¥ Now Rg =7
Pl e G = .
and - G:E | = 18Rl = o (1) = 17(1) = |G:7| , so = 1' . This proves (1)
(2) Consider Irr(X) as an H-module. Note that Irr(K) is

(isomorphic to X as group and) dual to X as H-module: hence it is

faithful and irreducible. Let P be a Sylow p-sugbroup of H , and

consider its permutation action on the set Irr(K)\{l whose cardinality

e
is relatively prime to p : it must fix at least one nontrivial element in
Ter(K) . say 1 . .We have then P = Fn H where T = I,0) . By part (1),
Tn H is subnormal in H , so we can apply Lemma 4.1 to conclude that
4 ’
F (2 = B e 5 Wew ¥ (H) 1is normal in H , so that the set of fixed
1]
points of 0p (B} im Tre(K) is an H-submodule. Since B 1lies in it,
r
arid as Irr(K) is an irreducible H-module, & (H) ' acts trivially on

Irr(K) . But we know that Irr(X) is a faithful H-module, so that

OP'(H) = {1} . This proves (2}.

(8 ket B €K and €= Hn CG(k) so that CG(k) = KC . “lek

M = CK(C) By Z), (IHI, |K|) = 1 , so that Maschke's Theorem yields that
C acts completely reducibly on KX . In particular, K =M X L | yhere L
is the sum of non-trivial irreducible C-submodules of X . We claim that

=K Nl iE W is an irreducible submodule of L ', then obviously

FUYel =R 5. W= [K Cl Gggd a fortdors L < [K. C1 . Conversely

I

[k, ¢l = [M>* 5, €1 =[L, €] =L and the claim is proved. We write now

Kizigp 2 k.or]
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Lo R (RN e = TR, 1) U obviously,

Rieuler Bace . il os ' Tiet i Sazii) Ib(u) < iBy.(1)s each IG(u) is sub-
UEB HEB

normal in G , and as the intersection of subnormal subgroups is a subnormal
subgroup, we have S subnormal in ¢ . Bytthe choiceof " B', we know that

Ch="5 s IR SRR RS 1Y iR Yand CK(S G = CK(C) =M. By

the same argument as we used before, we apply (2) and Maschke's Theorem to

eoncilnd et e 1

CK(S aeE X [E,. 8y Hl . Since the ' ave linear, we
have [K, Ié(u)J SoKep 1t . and. se

PEI<5 mH] & [ TG0] =0 xér = X e

n
LEB UEB
We have already established the converse inclusion, so

L sl = PE. €. Since CK(S N H) 1is contained in ¥ and each of
them cemplements [K, €1 in . K , we have CK(S N H) =M . Therefore

Sn H=C; the converse inclusion having been noted before, this implies

SEm

Chen Thnelh 3 2K 8 nall) = Koas CG(k) is subnoemal ing .G .v Tha

proof is complete.
THEOREM 4.7. et G be an sM-group, K/L a complemented chief

faetor of "¢ and” "R'€ 'K .. “Then CG(kL) 18 subnormal in @G .

Proof. We argue by contradiction. Suppose G 1is a counterexample of

least possible order, and CG(kL) is not subnormal in G . Let H be a

complement of  K/L Jthat 'is, " Kn H =15 and KH =G . Let

M/L = CH L(K/L) - Then M/L is normal in H/L and centralized by K/L

‘)

/

so it is normal in G/L . Moreover, KM/M is a chief factor of G/M

complemented by H/M , and CG/M(kM) = CG(kM)/M = CG(RL)AM sis0 L. (M)

G/M
is not subnormal in G/M . Thus G/M 1is also a counterexample. By the

il ey o G SRR 1 S pavticudar, L= (1Y, K’ is a minimal
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normal subgroup of G complemented by H , and CG(K) = KCH(K) = KM= Kos

Thus we have reached a contradiction with Lemma 4.6 (3).
DEFINITION 4.8. The p-length of a group G 1is defined as follows.

i n Nn

IA

Censider ‘the series {1} = P = NO < Pl <plVES <l 0 LD = G , where

0

v, i Rt nal L T [ 1
Nk/Pk is ﬁhe greatest normal p'-group of G/Pk , and Pk+1/Nk is the
greatest normal p-subgroup of G/Nk « " lhen” w15 the' p-lensth of © (.
Denote the p-length of G by Zp(G)

We need the following result on p-length.
LEMMA 4.9. Let G be any group, such that any proper homomorphic

image of G has p-length at most k , and ZP(G) >k . Thcn

fads 96G)ie {1lhe,

(b) the Fitting subgroup F of G 1is the unique minimal normal

subgroup of G , and it is its own centralizer.

Proof. See Huppert [12], Chapter V, Hilfsatz 6.9.

THEOREM 4.10. If G is an sM-group and p 1is any prime, then the
p-length of G is at most 1 .

Proof. We need only to consider those primes which divide |G| . We
argue by contradiction. Let G be a minimal counterexample with p-length
greater than one for some prime p . Then all proper homomorphic images of
G have p-length at most 1 . By Lemma 4.9, G = F split H , where PF  is
the Fitting subgroup of G , and it is minimal normal and self-centralizing
in GY. 1f- F %ds o pl-sroup, then G/F has p-length 1 , implies that
G has p-length 1 . So F is a p-group. By Lemma 4.6 (2), G has
p-length 1 , a contradiction.

Finally, we consider groups whose subgroups are all sM-groups.

LEMMA 4.11. If every subgroup of G 1is an sM-group, K/L 1is any

ehief factor of G , and k € K , then CG(kL) is subnormal in G .
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Proof. We argue by contradiction. Let G be a minimal counterexample

with C,(kL) not subnormal, then clearly L = {1} .

If M is a normal subgroup of G avoiding K , then XKM/M is a chief

factor of G/M and CG/%(kM) = CG(kM)/M = CG(k)/M is not subnormal in

G/M . On the other hand, all subgroups of G/M are sM-groups, so G/M is
a counterexample. As (G was chosen minimal, # = {1} . Thus X is the
unique minimal normal subgroup of G . Let p be the prime divisor of

|X| , then G has no nontrivial p'-subgroup, and the Fitting subgroup F
of G 1is a p-group, and Theorem 4.10 implies that G/F is a p'-group.
Thus F is complemented by any Hall p’'-subgroup H . If KH = G ., we have
a contradiction to Theorem 4.7, so aséume Hie< G¥ . ¥By.assumptien,all
subgroups of XH are sM-groups. As K is central in F , it is a chief

factor of XH . Thus C, (k) is subnormal in KXH by Theorem 4.7; it is
immed iate that CG(k) is subnormal in G , and this final contradiction

completes the proof.

This lemma would be of no interest if its conclusion was not inherited
by subgroups, but we can show that all is well in this respect. It will be
convenient to have a name for groups for which the conclusion holds. We
shall say that a (finite solvable) group G <is a chiefly sub-Frobenius group

f CG(kL) is subnormal in G whenever KL <is an element of a chief factor

K/, of G . Note that this is equivalent to saying that the centralizer of

kL in G/CGKK/L) is subnormal in this factor group.

THEOREM 4.12. ALl subgroups, factor groups, and direct products of
chiefly sub-Frobenius groups are chiefly sub-Frobenius groups.

Proof. The claim for factor groups is trivial, as each chief factor of
G/N may be viewed as a chief factor of G . To see the claim for a direct

product G X H , we use that the Jordan-Holder Theorem allows us to look
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onlivla tcheNchiletliractorsioft alparticulartchiet seraes. ' 1f K/I = isia chief
facter” im aehief 'series of G * H through G , say, then either K= G so

R/IeE I oNENel ieE factor of T G Tand (G X H)/CGXH(K/L) achs ent H/L o=
G/CG(K/L) does, oo F = G  in which case (G X H)/CGxH(K/L) acts on - E/fE

just as H/CH(KhH/DﬂH) deksionuthe cliief wFactor. (L H)/ (L ol) of  H..

It is a little harder to deal with the case of a subgroup Gl in a

chief lyUsnb-Freleniustsroup WGWIL Choosaralehiiet 'series ‘in ' G , imkevrsect

its membergwith G'l , and refine the resulting series of normal subgroups of
Gl to a chief series. By the Hordan-Holder Theorem, it is sufficient to

examine the factor Kl/Ll of this chief series of Gl S SUppoese Kl/Ll

arise by refining [Gl n Rj/(Gl N L} wliere K/ I disialichilef i tactor Yo G .

so Gl [y S = S -isomorphic to the

1 > Ll = L (@ Jis . PhaE Kl/Ll T shE

1 AL

section KlL/LlL of K/L . Let p be the prime divisor of |K/L| . Now
G/CG(K/L) acts faithfully and irreducibly on K/L , and the argument used

for deducing part (2) from part (1) in the proof of Lemma 4.6 applies, with

the conclusion that G/CG(K/L) is a p'-group. In particular,

Gl/CG (K/L) is a p'-group, so by Maschke's Theorem KX/L 1is completely
1L

reducible as Gl—module. Thus KiL/L = (LlL/L} x (M/L) for some M

normalized by Gl , and Kl/Ll is Gl—isomorphic te c M/L . IE now kl € Kl

and mL 1is the element of M/L corresponding to lel under some

Gl—isomorphism Kl/Ll ~ M/L , we have CGl(lel = CGl(mL) = Gl n CG(mL)

As CG(mL) is subnormal in G by assumption, we conclude that CGl(lel}

is subnormal in Gl . Thas eompletes the proof.
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Remark. The step we repeated here from the proof of Lemma 4.6 may also
be used to show that the p-length of a chiefly sub-Frobenius group cannot
be greater than 1 , for any prime p .

It remains an open question whether every sM-group is a chiefly sub-
Frobenius group.

LEMMA 4.13. If every subgroup of G is an sM-group, then every non-
nilpotent section of G has a non-central minimal normal subgroup.

Proof. Let &G be a minimal counter example. G 1is non-nilpotent and

g(G) =Z2(G) . If M is any minimal normal subgroup of G , choose ¥
maximal among normal subgroups of G which avoid M . Now MNM/N 1is the
unique minimal normal subgroup of G/N . As M = Z(G) , MN/N is central

in G/N ., se either  G/N »is milpotent or, ¥ = {1} by ninimality of G .

If M is not the unique minimal normal subgroup of G , then N > £1} .5 and
G/N is nilpotent. Since the interesection of all such N's ' 1is trivial, G
is a subidfect product of such G/N's , and hence G 1is nilpotent. This
contradiction shows that o(G) is the unique minimal normal subgroup of

e IO(G)I = p , a prime number. Hence Op,(G) = {1} and the Fitting

subgroup F of G is a p-group. Since G has p-length 1 by Theorem
4.10 , G/F is a p'-group. By Maschke's Theorem, G/F acts on 0o(F)
completely reducibly, so that o(F) = o(G) . On the other hand, o(G) =F
s0  gl@) = o(F) and eguality holds. Let g € G with prime order q £ p 3
then F{g) is not nilpotent, for g cannot centralize the Fitting subgroup
B . I Fig) <G 5 then by the minimality of G , there is a minimal normal
subgroup M of F{g) such that M 1is non-central in F{g) ; but then
Moo il as oF) = olG) 'is central, o M A F = {1} and

F{g) = F x M follows, contfary to the non-nilpotence of F{g) . We

conclude that G = Flg) . We know that F = [F, g]CF(g) (see Gorenstein

[9], Chapter 5, Theorem 3.5), whence Ei gl = [P, 05 gl 33 F & T8



33

[F, gl < F , then [F, gl{g) < G . Let N be maximal among normal subgroups
of [F, gl{g) which avoid 0(G) ; then No(G)/N is the unique minimal
normal subgroup of [F, gl{g?/N ; it is central there, and has order p .
By the minimality of G , this group is nilpotent and hence in fact a
Peconp - ihus g € N and N= [P, gl ; hence [F, glon o(F) = {1} , =
contradiction. 'We.conclude that [F, gl =F . Let K/IL be a chief factor
of G with = K>L = 6(G) and choose M maximal amoﬁg normal subgroups
of G such that ¥n X =L . Then K/L is G-isomorphic to KM/M , and is
the unique minimal normal subgroup of G/M . G/M is not nilpotent,
otherwise F = [F, gl =M contrary to Kn M = L . Therefore K/L is non-
central in G , and so it is a faithful irreducible (g)-module. Thus

CF(g) = d(G) . Now let F/K be a chief factor of G and choose N

maximal among normal subgroups of K{g) which avoid 0(G) ; the minimality
of G yields, via the argument we have used repeatedly, that Kf{g)/N is a
p-pgroup, amsd g & ¥ . Tms N=[Z, g} , and [K, gl o(€) = {1} . Now

X=X, g]CK(g) =K. gI'* ofF) , and so” Klg) = ¥ X 6(6G) .  Lek
T € Irr(K(g)) with Ker T = N . Then T = IG(TKJ = K{g) which is maximal

- X b !
I U IFEF 2 K5g) "y then IF(TK) =Ta F =K so that (TKJ is
By . ; G F
irreducible. In particular, TG is irreducible as (T )F = (TRJ . Now G
G G X _
is a subnormal M-group, so T = A where A € Irr(L) , (1) =1 , and

L is subnormal in G . So |G:L| - |G:K(g>| is a power of p § and

!
gtiL] = Tms L= Oq'(G) by Lemma 4.1, and so L = ot (e)=1IF, gl =F

a contradiction. If T =G , then N n K = Ker Ty 36 ;'S0

No Kn o) = {1} implies that [X, gl = Nn K = {1} ; hence

K= CK(g) = o(G) = o(F) . Thus |o(F)| = p and F/o(F) a chief factor of

¢ implies that F 1is an extra special p-group. Let ¢ be a faithful
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irreducible character of F » SO @ is G-invariant. There exists an

irreducible character X of G such zhat S e e s KG where

BRI CL) — ond B is subnormal in @ Thus: L is of

p-power index, so ¢ |L| » and by the zrgument we have used before,

E = Oq,(G) 2 LF, g] = F , a final contradiction.

THEOREM 4.14. A1 subgroups of 5 are sM-groups if and only if G
18 a chiefly sub-Frobenius group dnd czch mon-nilpotent section of G hae a
non-central minimal normal subgroup.

Proof. The "only if" claim follows from Lemma 4%.11 and Lemma %.13. To
prove the "if" claim, we argue by induction on IGI .. We need only show
Ehat G Itself is an sM-group. 'Let ¥  be a non-linear irreducibie
character of G . By the minimality of |G| , we can assume that X 2=
faithful. If G is nilpotent we are done, as nilpotent groups are
sM-groups by Theorem 3.6. Otherwise, there exists a non-central minimal

poemal suberoup M in@G . Then € = CC(M) is a proper normal subgroup of

G . If M is a p-group, then G/C iIs a p'-group by the remark after
Theorem 4.12. Let ¢ be an irreducible constituent of Xo o and put
i Ib(@) . As T/C is a p'-group and M n Ker ¢ @« T , by Maschke's

Theorem we have M = (M n Ker ¢) X ¥ with Y normal in T ; as

i, = Ma ke @, 08 Face, B = Z(T)Y . IF ¥ = {1} , then 'y i= net

faithful. Thus there is a non-trivial element y in Y and CG(y) =
Now CG(y) <G ,else 1+£y€MnZ(G) , so M= 2(G) gives a contradiction.
As P = CG(y) , by Theorem 2.2, ¥ is induced from some irreducible

character 7y of CG(y) , and CG(y) is subnormal in G by chiefly sub-
Frobenius property of & . By the inductive hypothesis CG(y) is an

sM-group, so it follows that X 1is an sM-character as required.



Remark (added in proof).

I iz 7ot oo heime te 366 Then the @lses G

chiefly sub-Frobenius groups whose nonnilpotent sections all have non-
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central minimal normal subgroups, is direct product closed; it is obviously

subgroup -closed and factor group closel.
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CHAPTER 5

NORMAL  #-GROUPS

The main result of this chapter is a structural characterization of
nM-groups (Theorem 5.4). Unfortuﬁately, it is rather complicated to state
and difficult to relate to any of the familiar structural properties. We
depiive from it that each 7nlM-group K G is "chiefly Frobenius" in the sense

Ehat iF  K/L “ds @ non-cemtral chief factor of G , then K/L split G/CG(K/L)

is a Frobenius group (whose kernel is abelian and) whose complement has
cyclic derived group; so the Fitting factor group G/F is metabelian, -
supersolvable, and its odd Sylow subgroups are abelian. We also prove that
all subgroups of #nM-groups are sM-groups. However, for p-groups these
conseguences of the characterisation are trivial, all we can do is to
ppesent some examples.  These show, for'each prime -p , that not all
p-groups are mnM-groups but there exist non-metabelian p-groups which are
nM-groups. We find nM-groups whose normal subgroups are not all nM-groups,

and exhibit subdirect products of #nM-groups which are not nM-groups.

LEMMA 5.1. Let A be an abelian normal subgroup of maximal order in
avgroup -G .

1) iIf % 28 a faithful irreducible nlM-character of G , them' ¥. is
induced from A ; in particular, x(1) = |G:4]| .

(2) If x 1is an irreducible M-character of G with x(1) = |G:4]|
then y 1is induced from A ; 1in particular it is an nM-character.

Proof. (1) By assumption, X = BG for some linear character B of

some normal subgroup B of G . As B’ 5'coreG(KeP B) = Ker x = {1} , we

know Lhe B ke akelion seson wl )= 6Bl = |@:4] . et o bean



irreducible constituent of X4 By JFuebenius peciprocity, ¥ s a

2l

constituent of aG S =oliESE 1) =a (1) = |G:Al". Thus
¥(1) = |G:4] = Sl e ks

G
(2) Now X =Y for some linear character Y of some subgroup H .

As YG is irreducible, so is YAH . 3y Clifford's Theorem

t
(YAH) = k¥ o with Ut = ‘AH:IAg(&)i where 0o = Doy Sa. My Mackey's
i1 iz

as @ and Y are linear. Thus

]AH:IAH(OL)I = YAH(l) = |AH:H| = |G:E|/|G:4H|
= x(1)/|G:4H| = |G:4|/|G:4H| = |am:4| ,
SO IAH(a) =A . Now dAH = YAH by Theorem 2.2, and so X = YG = aG . & THe

proof is complete.

Let F denote the class of all (finite solvable) groups whose faithful
irreducible characters are all nM-characters. (For groups which have no
faithful irreducible characters, this condition is vacuous; these groups
are regarded as members of F .) Obviously, a group is an nM-group if and
only if all its factor groups lie in F . The key lemma is the following
structural characterization of F .

LEMMA 5.2. Let A be an abelian normal subgroup of maximal order in a
group G . This group G lies in F if and only if, whenever g € G\A. and
¢ is a subgroup of A such that C = [A, gl and A/C 1is cyclic, we have

coreG(C) -8 1 P N

Proof. The condition is clearly equivalent to the following: if A/C
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isteyelic, coreG(C) P and 4, gl = C , then g ¢ A . The subgroups
€ with A/C cyclic are precisely the Ker o with a ranging through the

irreducible characters of A . We know that coreG(Ker o) = Ker aG S and

G A kgl = e S if mnd onlly 4if g le IG(a) . Thus our task is to prove

that G € F " if"and ‘only - if IG(a) = A whenever o € Irr(4) and aG is
15eakiElouEuLL -
Ler oy Silbevassa then I "ivpedueible ehavadcter of G, and o' an

irreducible constituent of By Frobenius reciprocity, X is a

XA 2
. G G -
ceonstEituentiof Nl ' iand so @ NS sty JaE IG(G) = A , Theorem 2.2

3 et ol G : .
tells g e @ isiHeredueibie. S0 @ = X and ¢ is dn wid-characer.

Conversely, suppose that G ¢ F , and let a € Irr(4) with aG

- : : G .
stelittntnll. (Considies g bvecdunenplle comgElunene % @F @ o By EeehEhmabs

reciprocity and CLifford's Theorem, is a multiple of the sum of the

X4
. 8 G ;
G-conjugates of @ , So . Ker XA: coreG(KeP )= Kep o el Bl e Thais i

faithful and hence an nM-character. By Lemma 5.1 (1), x(1) = |G:4] so

X = aG s Bt ] P =T Slon) f300 B o s irreducible, so is e By Mackey's
Subgroup Theorem, [al)A = |T:Ala , so by Frobenius reciprocity,
i Tj = |o (aT) = ] Fhus [ e = A {asdethe ‘pnoof is
l" [(X ,a =i 2 A 0 . G
cenpiie e

For p-groups, this criterion takes a simpler form, for a p-group G
which has a faithful irreducible character must have cyclic centre;
equivalently if such a group G is non-trivial, then the socle of G ,
g(G) , has onder p .

LEMMA 5.3. Let A be an abelian normal subgroup of maximal order in

a p-group G . Then G ¢ F if and only if either |o(G)| #p or
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it KEral =Nol(G)t!
geG\A

Proof. The "if" claim is immediate from the previous lemma. For the
proof of the "only if" part, we argue by contradiction. Suppose G € F,
Fe g e Y d LA g1 'F 6(6) . Then [4, gl ao(g) = {1} .
Let € Dbe a =ibgroup of A maximal with respect to containing [4, gl and
avoidinzg O0(6) . IF (al) 1is 3 sabgroup of opder p in A4/C , then

=

ol >0 Tss b che meximal ity or C ., we have Wy ar¥a o(GrE 11,
Tthus €, ar = o) "and in fact Y C; a) ="Co(G) .° Thus the omnly subgroup
of order p "in AfC is ColG)/C .- As AJC is an abelian .p-group with

only one subgroup of order p , it must be cyclic. By the previous lemma,

coreGC FoAR) Y B0 Ehaw coreGC = 0(G) , contrary to the assumption that

Cn (@) = {1} . The proof is complete.

Remark. In each of the last two lemmas, A was an arbitrary abelian
normal subgroup of maximal order. It follows that if one such subgroup
satisfies the relevant condition, so does every other. Thus it makes no
difference whether we require that at least one abelian normal subgroup of
max imal order safislies the condition, or that all such subgroups satisfy it.
We have established the following criterion.

THEOREM 5.4. A group (p-group) is an nM-group if and only if in
every factor group G of our group, some abelian normal subgroup A of
maximal order satisfies the conditions of Lemma 5.2 (Lemma 5.3).

Unfortunately, these structural conditions are not easy to use or to
relate to other structural properties. We proceed to discuss what we can’
obtain in this direction.

THEOREM 5.5. If G <s an nM-group, g € G , and K/L 1is a chief
factor of G , then g acts either trivially or fixed point free on K/L .

Equivalently, K/L split G/CG(K/L) 18 a Frobenius group whenever K/L 1is a

non-central chief factor of G .
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Remark. Note that by Theorem 2.17, each G/CG(K/L) has cyclic derived

group. We shall refer to groups which satisfy the conclusions of this
theorem and of this remark, as chiefly Frobenius groups . As Example 3.11
shows, the converse of Theorem 5.5 is false.

Proef. By passing to a factor group of G if necessary, we may assume
that K 1s the unique minimal normal subgroup of G (and L = {1} ): that
isE S NelG) . et p Del the prime diviscr of [K] and 'F the Fitting
subgroup of G , then G has no non-trivial normal p'-subgroup, so by
Theorem BI1@, V¢ Suisia Sylow "prsubgroup of ¢ . A Hall p'-subgreoup H of
G then complement F . Clearly, Z(F) .contains the unique minimal normal
subproup’ (K ' s0 if" g€ G and ‘g = fhoomieh ! frieiPey h e B, we have
CK(g) = CK(h) . We need only pursue the case where h # 1 .

Choose an abelian normal subgroup A of maximal order in G . As in
the praof of 'Lemma ‘5.3, we'see that, by Lemma 5.2, ' [4,h] =2 6(G) =K', As

A is an abelian p-group and h 1is a p'-element, we have

S CA(h) x [A, h] (see Gorenstein [9], Chapter 5, Theorem 2.3). Thus

h acts fixed point free on [4, A] and also on X , and

CK(g) = CK(h) = {1} . The proof is complete.

COROLLARY 5.6. If G <is a chiefly Frobenius group, so in particular
if G 1is an wnM-group, with Fitting subgroup F and Frattint subgroup ¢ ,
then
(1) G/®@ 1is a subdirvect product of groups of prime order and of
Frobenius groups whose kernels are abelian and whose
complements have cyclic derived groups;
(2) G/F 1is a subdirect product of Frobenius complements with
cyclic derived groups; in particular, G/F <is metabelian,
supersolvable, and its odd order Sylow subgroups are all

abelzian.
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, so that the intersection ¥ of

B b
=

{1}

Proof. (1) We may assume
the maximal subgroups M of G is Thus also 0N coPeGM

Ehat iR Ge lis dhe subd irect, prodiet of | the G/coreGM 2By Galiois!

R

Theorem (see Huppert [12], Chapter III, Satz 3.2), each G/coreGM is of the

form  K/L split G/CF(A/L)
(2} By Satz 4.3 in Chapter III o° Huppert [12], G/F is a subdirect

product of the G/CG(K/L)
We note the following analogue of Theorem 4.12.
ALl subgroups, factor groups, and direct products of

THEOREM: . budle
hiefly Frobenius groups.

isia chiefly Frobenius vroup if andyonlydit
the derived group of

are e
(GRS e

chiefly Frobenius groups

G

G

Observe that
ofr K/l has) ey ial

Proof.
KA o

the following hold for each chief factor

G/CG(K/L) is cyclic, and each nontrivial element
The proof of Theorem 4.12 may now be repeated,

centralizer in G/CG(K/L)
mutatis mutandis, until the last substantive sentence, and then we proceed

Since CG(mL) = CG(K/L) by assumption, we conclude that

) . It remains to

J

as follows.
centralises KX /L, , so CGl(Kl/Ll) = CGl(lel

1
note that the derived group of Gl/CG {Kl/Ll) is cyclic, because this
1

factor group is isomorphic to the subgroup G.C (K/L)/CG(K/L) of

This completes the proof

G/CG(K/L)
Next,. we obtain a further consequence -of Theorem 5.4.

is a section of an nM-group and of(H) <s central

ZEL

LEMMA 5.8.
in H and has prime order p , then H 1is a p-group.
Proof. We argue by contradiction. Suppose 0(H) is central of order
G be an. nM-group of least possible

p , but H is mot a p-group, and let
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spderiwith nespeckiito « ¢ "having a section ' S/R ' isomorphic te H . Put
G(S/Ryp= ZJR: .\ The key step is to observe that
R(Z n N) = Z for every nontrivial normal subgroup N of G .
As ‘Z/R| =RDn S the onilyocllternatave is.that R(Z W) = R .7 In that case,
Zecin NN =0E clso WEort BUS »n IY/E 1Is normal dn: S/R.  but
R{S Wl N/ R B 0(5/R) = R(5 0 #)/R o Z/R = R(Z n N)/R = RJR-".
Thevefooe MG/ has '@ seetion dsomorphiec to' H & namely
Sl /BN = SEN/RN = 5/(5 miRN) =S/(S'm NYR = S5/R= H
contrary to the minimal choice of |G| . This proves our key step, which we
shall usel repeatedly.

Let A be an abelian normal subgroup of maximal order in G , and M
be any minimal normal subgroup of G in A . Now from the key step above,
H(Z My = Z . so that  E/RH = R(Z o M)/R = (F oo M}/(R o M) and therefore M
is a p-geoup. As this helds for every choice of M , we conclude that A
ds G150 @ p-group. Letl s Be g p'-elementiof 5 ' them 's { A

Next we prove that [4, sI(R n4) 2 Z nA . Suppose this is false.

flhen 42 opdn=t L2 o4 ol B n A) - and g6

ZIR =RCE 0 /Bl 6 Z Y B)Y /KR aw A) CZ bl e UER ol A/ (R A

=(Zn [4, sD/(E n [4, 8])
shows'that g ' does have mon=triwvial fixed points in B = [4, sV (@ 'wn 4, s1);

that! ds, CB(s) > {1} . As s 1is a p'-element acting on the abelian

p—groups A and B , by Theorem 2.3 of Chapter 5 in Gorenstein [9], we

know that 4 = [4, 8] x CA(S) amd, B 1B 2] s CB(S) . . The first of these

ields WA el = [4, s, s]; hence by the definition of B we have
B = [B, s] , so in the direct decomposition of B we must have

CB(S) = {1} . This contradiction completes the proof of the present step.

Now we choose C in A maximal with respect to containing

4. & [ Seantaining 2 aA .. If A=D>C , then D> Zn 4
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anaSeBe s (7 Sme)e/c . T Thus' (Z n AYC/C “1s ‘the unique minimal subgroup of
Ay O Sand e s¥ampl fesithat WA /C "is ‘cyelie. 'By Lemma 5.2, €  contains a

mipImel® nermal “subgroup s M Pof ' G .7 On the other hand, R nA4A =R n C by

the'ehoice'of "¢ " the converse inclusion holds because -4 = (¢ ; so

RN SR OSSR lISoRE RNE A=NREn O SEZRa0E < 2 nd . o As

PR (Y AR =T e YRR = /R ang bz ar)

p 5 We conclude Tthat

BN =R O IR s Z = R(Zin M) =R 2 final contradietion:
THEOREM 5.9. IFf G <s an nlM-group, then each non-nilpotent section

of G has a non-central minimal normal subgroup.

Proof. Let X be a non-nilpotent section

()

B E S and s supposeNailil

minimal normal subgroups PSS ofs K opeicentral & Lot Ni be maximal among

[

the normal subgroups of X which avoid M% . . Then ‘K is the subdivect
preduet of the K/Ni =¥ 8o dL"least one of these, 'say K/ZVl y 15 non-
nilpotent.  Put H = K/ZVl <y Now . @lH) - is MlZVl/IVl , so it is.central and

of prime order. By Lemma 5.8, H should be nilpotent, but we chose it so
that it is not. . This contradiction proves the theorem.

COROLLARY 5.10. If G <s an w'i-group, then all subgroups of G are
sM-groups.

Proof. It is obvious that each chiefly Frobenius group is a chiefly
sub-Frobenius group. Hence Theorem 5.5 and the remark which follows it,
together with Theorem 5.9 and Theorem 4.1k give our claim.

At this stage, one might feel that we are very close to a convenient
structural characterization of #nM-groups. Indeed, we shall show in the
next chapter that an A-group is an ni-group if and only if it is chiefly

Frobenius.
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However, for p—groups; hicoremsMsissicndlihconemisi8 Idol not sdy

anyEl RSl ST LR st na tlier Frlistrat ing thet we are unable to expleoit the
relative simplicity of Lemma 5.3 (as compared to Lemma 5.2) to find a more
familiar and managable criterion for a p-group to be an #nM-group. For
instance, we cannot decide whether p-groups which are wnM-groups can have
arbitrarily high derived length. (If their derived lengths were bounded
independent of the choice of p , say by 7n , then the derived lengths of
arbitrary nM-groups would be bounded by 7 + 2 . For a minimal counter-
example G to this would have a unique minimal normal subgroup, so by
Theorem 4.10, its Fitting subgroup would be a Sylow subgroup and hence, by
Theorem 3.4, F would be also an #nM{-group.) All we can offer is some

examples which show for each prime p , that not all p-groups are wnM-groups
but there exist non-metabelian p-groups which are #nM-groups. A further
example (which is not a p-group) shows that subdirect products of nM-groups
need not be wnM-groups.

EXAMPLE 5.11. Let p be a prime, p = 5 , and . T an extra-special

group of order p5 and exponent p , generated by a, b, ¢, d , such that

g ble= Lo, d ). iz central apd. [g, el = Ib, cli= La, d] = [b,d] = 1

Consider the map o defined by a° = a . B9 = ke E c9 = acd . d% = ad
Routine calculation with the defining relations of T shows that o0 extends
to an automorphism of T , which we also denote by o . Note that J acts
m !

toiviially on

It is easy to prove by induction on k that

ok
a =
k
a°% = akd 5
k+1
k [2)Z<
CO = ca d s
k+1 k k
k i (

o T

(o)
Q
I
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We shall give only the hardest step, the inductive step in the last

item, assuming the others have already been dealt with. Thus

b0k+l : bokcgk
= ba(k+l)ckd 2 o c](g}ca(k;l)dk
LT B @ 6
z ba(k§2} k’“ld(k;l 4, c](kgl

2

k+1 k+1) _ (k+2) k k+1) (g) (g)
since I 3“J+ [‘ = é~3 il o T i J, [d =, el =&, el

TR

It can be seen from these formulas that of is the identityion ¥ P o
Thus we may form a group S das the split extensiom of T by a group of
eederiup oeenepated by an element . 5 whieh dnduces o on T i Note that
[[b, sl te, s]] =lo. gdl =ife.dl 41 . so that, 5 is not metabelisn.

Thus if 4 4is an abelian normal subgroup of maximal order in S , we must

have |S:4| > p2 (or else S/A would be abelian). On the other hand,
gonsider a faithful irreducible chavecter T of T . Since s aets
Fravialiy on . Vit Follows trom Theorems 2.10 and 2.11 that T

5 . . S
1= dmwapiant in 'S .  If ¥ 1is an irreducible comstituent of T , then (by

_ : 2
Frobenius reciprocity and the Going Down Theorem) Mo = T e (1) ='p

{1} . However, since o0 is an outer automorphism of T ,

and ThiaskKer ¥

F , thus Ker v = {1} fellows: Thus x dis a faithful

IA

we have CS(T)

2 ; .
irreducible character of degree p which cannot be induced from A4 (as

|S:A| > p2 ). Byihenna 59148(1), ¥ dis'mot an nM-character, so §' is not

an nM-group.
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Remark. The above group S was taken from Blackburn's list of groups
of maximal class (see Blackburn [1]), though his description was unsuitable
for characters.

EXAMPLE 5.12. It is immediate to check that the group S of Example
5.11 has an gutomorphism p of order p such that t? =t for all t in

T while s = sfa, bl . Let R be the split extension of S by a group

of order p . genepated by an element ¥» - which induces p on S . We ¢laim
that R <8 an nlM-group; it is obviously non metabelian, and its normal
subgroup S 1is not an wnld-group.

It is clear that T 4is normal in R and R/T' is metabelian, so we
only prove that if Y 1is an irreducible character of R whose kernel does
not eontain . 7L, sthen: v Jis &an n-character of R . If Y(l) = p , this
is automatic, for Y 1is an M-character and all subgroups of index p are
normal. The subgroup generated by a, d, [a, ] , and » is an abelian normal
subgroup of index p3 in R , so if B 1is an abelian normal subgroup of

' 3 : ;
maximal order in R , then |R:B| sp (alternatlvely, by Satz #.3+{b)ein
Chapter L1I of Huppept (121, if |B1 = pB , then B(B+1l) = 14 ; hence
g8 = 4 “and ]R:B! < p3 ). Wane) LEmmne Dedl () clhiene weeie W il s
nM-character unless Y(1) = p2 ; so we need only pursue the case
(L) = p2 . By assumption, ¥ 1is non-trivial on Bt e wT is a faithful
irpeducible character of T by Theorem 2.11. Hence { vanishes on T\T'

: s
by Theorem 2.10. It cannot vanish en . S\ _, for IS:T l = p and
m ;
71 = 7(S) (see Theorem 2.10), thus w(tS ) # 0 for some t in T amd

some m such that 0<m < p . Now (¢6")" = ¢6"la, b1" , and hence

1'% [a, bT" in Z(R) , so if X is a representation of R which affords
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]

m :
Yy , we have X([a, b] ) S viierelll i oia cemplex numberiand. T an

ddle HiE e me N e SR S i id s I Ker UL we know that A # 1 . Thus

X((tsm)P) = AX(tsm} and hence w((tsﬁ}p} = X@(tsm) # w(tsm) S e
gontradiction. Thus there is no Y of degree p2 which would not contain
T' in its kernel, and our proof is complete.

Atathis stage, we have geen that if p 2.5 :then not all p-groups are

i

nlf-groups, but some of them are non-metabelian #n¥-groups. We defer the

consideration of these statements for the remaining primes, to follow up
what is perhaps a more interesting result here, that normal subgroups of
nM-groups need not be wnlM-groups. In the next example we use R to show

that subdirect products of ' #nM{-groups need not be #nM-groups.

EXAMPLE 5.13. Let R be as in Zxample 5.12, and ¢ a prime such that
g = 1 (nodip) ., Ffor! instamee, weimayitake. pi- 5/land ‘g = 1L .y Then it is
possible to form a2 split extension G of a eyclie group & of order g by

Ry 50.that CR(Q) = 8 0aThis, G 15 a subdiveet :product of 6/0-= Rs and

G/S , both of whicn are wnM-groups (the latter because it is metabelian),
but we claim that &G <s not an mnM-group. To show this, we start with the
faithful irreducible character ¥ of 5 which is not an #nM-character (note
that any mon-faithtnl ppodicible character of 5. is a chavacter of

S/Ker ¥ which is metabelian). Recall from Example 5.11 that Xp is faithful

irreducible and ¥ (1) = p2 SRET S 5= an arreducible constituent of XR

then, by Frebenius mesiprocity, X i1s a constituent of wS » 50 that

gt $ Ker { . Thus by the last sentence of the argument concerning Example

=
B L 2l G p2 S It folleows that X =V .
ot o' Bolo raithfil@iraeducible character of @ @ .+ By Theorem 209,
Xy .o is.an irreducible character of @S . Now Ker AX avoids both @ and

5§ .andso mast he trivial as |Q| and lSl are coprime. Thus Ax is a
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faithful irreducible character of &S of degree p2 . By Mackey's Subgroup

R

G .
Theorem, ((Xx) )R = ((XX)S]R =0 = SilrE (R4, so (Xx)G is a faithful

: : ; 3 .
iepedueiblc 'character '0fF degree p . Let A, be an abelian normal

- - . : G ik
subsvaup of maximal order in G . By Lemma 5.1 (1), if (iy) is an

G 3 :
nM-character, then (Ax) = o for some linear character o of 4 ;  in

2
particalar, G4 = p . Thus @ =4 . and hence

il

JA = CG(Q) = QCR(Q) 28 s AS = 25 End dbae r* Feian & SEiE @i

representatives of the A, S or &, S double cosets in G . We can
without loss of generality assume that GQS = AX . By Mackey's Subgroup
Theorem,
p-1 ¢ Pi S G - p-1 Pi i p-1 Pi
R (G P B Gy PR G PR C S S P
ol S
Thus X = \(ap }AﬂS] for come 7 . contrary to the fact that X @ 1s not

- an #nM-character. This proves that (Xx)G is not an nM-character, and so
G 1is not an #nM-group.

We now turn to the problem of p-groups with p < 5 .

EXAMPLE 5.14. The wreath product of a group of order 2 and a
quaternion group @ of order 8 1isa non-metabelian 2-group which is aﬁ

nM-group. This is a split extension of an elementary abelian group A of

order 28 by & , where & permutes regularly some basis of A . Now
eti=fa, glgf rand <GF= [[A, 21, Q’] . If @ . is an element of the
permuted basis of A4 , and h is an element of order 4 in @ , then

2014
[Ea,kle hQ} = Ea—lah, hQJ = a—haa—h a’ # {1} (being the product of four

distinct elements of the basis), so G # e L If A T =0 then

pis AGE GUQ) with T i@ > W and o 0Y="T7". Thus if ¥ € Irv(G) and
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o= IG(u) where o is an irreducible constituent of Xq o elther o = A

in which case ¥ = aG by Theorem 2.2, o T = @' so that

GRS Nee 0 and henee G = Wer o . In the later case,
X 1siveally 4 character of G/G" which is an. nM-group by Theorem 3.5.
Therefore in either case, X is an nM-character, and so G is an
nM-group.

It is not quite so easy to find a non-metabelian 3-group which is an
nM-group. The only construction we have works without extra effort for any
prime p in place of 3 , so we describe it in this generality. It relies
on the following.

CEMMA "5.15." (1) If N 'is a normal subgroup of an arbitrary Finite
group G , and U 1is the regular G-module over an arbitrary field, one may

view the set CU(N) of fixed points of N in U as G/N-module; as such,
CU(N) 18 the regular G/N-module.

(2) Suppose in addition that U has prime characteristic p , and

that . il iz g eyelic p-group in Lthe centre of G . ‘Put V = U/CU(N) .

then, as G/N-module, CV(N) 18 also regular.
Proof. (1) By definition, U has a basis {ug | g € G} such that

W b=
g

U 7 Fortdlllgelia IR6iG & Put Tl E: u for each element x in
aq
J gE.”L‘

/N . Tt is straiphtforwerd to see that {ux | x € G/N} is a basis of
CU(N) , permuted regularly by G/N .

(2) A generator h of N permutes the given basis of U in cycles

of length INI , so as N-module, U is a direct sum of regular modules Ui

(7 = eRERCR e ) . Thus CU(N) :Q)CU.(ZV) ,and so V=@V, where
Z.lg Z

. = e end G () = @ C (¥) .. By Theorem 2.13, we must have

7 T | % 1% V.

7 7
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C, )y = Ui(h—l)n_l = vl.m_l)”‘2 - Ui(h—l)n_Q/Ui(h-l)n—l B e

T T

n=|N , and dinm CU (V) = dim CV B =L el condy s 7 > u(h-1) maps
Z 7

-2 : n— < =1
Ui(h—l)n linearly onto Ui(h—l) : with kernel Ui(h—l)n , and so
yields an isomorphism of CV(N) onto CU(N) ssinpes sl i sicentral in G

this is a G-module isomorphism. Now the claim follows by (1) .

EXAMPLE 5.16. Let P be an extra-special p-group of order p3 , and
K & maximal subgproup of P . Apply part (2) of the previous lemma to the

T

porular " Al-nodule. U over & Field'of order p |, with I = P" & then
CV(P') is a regular P/P’'-module, which we may call W , and clearly

CW(R/P') = CV(R) . From part (1) of our lemma applied to W and to the

nermal subgroup R/P' "of P/P" ", we sce that CV(R) is a regular P/R-
module,’“As "P/R i3 of'order p , L (R} is unisepial P-module of
dimension p . Let A/CU(P') be the unique 2-dimensional submodule of
CV(R) - We glaim that the split extension G of © 4 by P  is a non-
2
; P +5
metabelian nM-group of order p k

To see this, let us examine the module 4 a little further. Because

P acts teapsitivelyion a basis'of U ; the fixed point space CU(P) is
l-dimensional, hence CA(P) is 1l-dimensional. As P is a p-group and

A has characteristic p , every irreducible P-submodule of A4 is trivial,

SO CA(P) is the unique minimal P-submodule of A4 . As A/CA(P') is a

2_dimensional uniserial module on which only the cyclic quotient P/R acts,

we see that EA/CA(P'), Eﬂ d= I damensienal. Let 1 # h € P!, 58 hods

central in P, ar> a(h-1) = [a, K]l is a P-module endomorphism of 4

with kernel CA(P'5 . Thus the image [[A, Pl, h] o LA Phias g
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l1-dimensional submodule. Hence [[A, 2] P'] is the unique irreducible

CA(P) S Aise el Bis tany montrivial element of . P, we have
BAE e CA(P) . This is elear from our discussion when ‘h € P' , otherwise
we appeal to the fact that CA(P') is a regular module for the abelian

gbonpe- /P o sa

(1]

ven [CA(P'), h] is a non-zero submodule and therefore

must contain the unique irreducible. We are now ready to consider
G = A split P .
cinee P aets faithfully'on 4 (for P’  deoes), we must have

GECII=IC M)\ eoa(chie CH)E T4y PIIRS] SLils, G0 4, PIB! | and

Ptz {1} elhchve G = o (EDERET L o EA G s leit meabelitan s and T A s Ran
5 5

abelian normal subgroup of maximal order in G (for any normal subgroup of

index less than p3 must have abelian factor group and so cannot be
Sheliian] . (T8 fglaiol  stlcnsygpl=dabicwithia. € Aol £4h @B, ‘so

Blsol - [4 Il = CA(P) = glG) . Thus,k by Theovem 5.3, the faithful

irreducible characters of (G are all #nM-characters. Non-faithful
characters of G must contain the unique minimal normal subgroup G" in
their kernels, so they are nM-characters by Theorem 3.5. This completes
the proof.

It remains to show that not all 2-groups or 3-groups are nM-groups.
This can be easily seen from an example which works equally well for all
primes p

EXAMPLE 5.17. The Sylow p-subgroup of GCL(n, p) are nM-groups if
and only if n =4 , that is, if and only if they are metabelian.

To see this, we take a Sylow p-subgroup as the subgroup G consisting

of upper unitriangular matrices. Let E%j denote the 7 X n matrix with

i, j entry 1 and all other entries 0 , and I the 7 X n identity

matpig.. How T+ Eij € G whenever 71 < jJ , and a straightforward
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gal epiindeml=iop=athat if 7. < j and K < 1  then

[I+E7:j, o0 B et F

kEiZ where 6:k is the Kronecker delta. For each

dnteser K iwith, 1 = K <.#n ., let G, denote the subgroup of G generated

by {I+Eij | 1= 4 =k<j=n} . From the commutator relation above, we
see that each G, is abelian, and of course |Gk] = pk(nbk) e

(I+Eij}p =1 . It was shown by Goozsrfz in [8] that the G, are precisely
the maximal abelian normal subgroups of G . Since Gl n Gn—l is generated
by I + Eln , we see that I + Eln generates Z(G) . Put 4 = G[n/2] 3
this iz then a mormsl sbelian subgroup of meximal order in. G . It 1s easy

to see from the commutator relation above that if 7z > 5 , then G is not

metabelian, while [A, e is the subgroup generated by

n—2,n—l]

| 2 = [n/2]} and hence avoils Z(G) . Thus, by Lemma 5.3, in

{I+Ei,n—l

hhalstcase N G nokNant M-groupk ™ €x the otlicr hand

2
|G:A| p(n —n}/Q—[n/2](n—[n/2])

Epadf  hE Y urther IG:AI = p2 » and hence G/4 is abelian,. .G .18
metabelian, and an #nM-group by Theorem 3.5.

The example also illustrates that not all maximal abelian normal
subgroups of a p-group need be abelicn normal subgroups of maximal order, a
fact which contributes to the difficulty of applying Lemma 5.2 and Lemma

5.3. For instance, choose G as above with p > 2 and n = 4 ; then
3 3 .
G/Gl is extra-special of order p . .Let U be the regular G/Gl—module

over the field of order p , regarded as G-module, and form the split

extensi B et I, by G .. Let 4 = UGl , this is an abelian normal

: S
subgroup of H with H/A an extraspecial p-group of opder ' p , SO any
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nonmaENslbeneonpreor " H properly contdining 4 must contain AG' . ‘Now U

a2 G'Gl/Gj—mOdule is a direct sum of regulars which are uniserial of
AL

dimension p , whence it is easy to see that AG' has class precisely p

If B were an abelian mormal subgroup of H not contained in A , then AB
would contain 4G' yet it would have class at most 2 , for

B =R AN BNV N BV = 2 (AB )V . *Thus A" 15 the unique maximal 'gbelian

normal subgroup of H . However, A/U is not contained in the unique

abelian normal subgroup of maximal order in H/U namely in UGQ/U STk

n

shows that Lemmas 5.2 and 5.3 are not suited for applications which involve
induction on group order.

The trouble we have had to go to for examples of p-groups which are
non-metabelian suggests that it would be very hard to find p-groups which
are nM-groups and have derived length greater than 3 , if indeed any such
groups exist. As a further indication of how hard this task would be, we
mention that such a group would need to have order at least pls . Fop'ds
there is an #nM-group G with G"# {1} and |G| = plUr s Ghis G has a
factor group H with cyclic centre and H"# {1} . This H has a faithful
irreducible #nM-character 7Y , which must be induced from a linear character
of some abelianinormai subgroup 4 , by Lemma 5.1 (1). Then H/A is an

CoroMaay a:39 t} &'Aam_s LAl
nM-group with (H/A)" # {1} . By It6'sTheerem—{(see Dorrhoff 615 TFheorenm

6 s s
22.3) (12 = |m:za)| =p™® so |H/A| =x(1) =p° . Repeating this

argument with H/A in place of G , we find a non-metabelian 7n//-group KX

- S 2 e
with an abelian normal subgroup of index dividing p~ , a contradiction.
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CHAPTER 6

A-GROUPS

In the investigation of nM-groups we saw that the case of p-groups
presented a largely intractable problem. To demonstrate that the
difficulties in the way of a better understanding of #nM-groups are
essentially nilpotent in nature, we consider here A-groups, that is,
solvable groups whose Sylow subgroups are all abelian. A further reason for
looking at these is that all A-groups are M-groups by a special case of
Huppert's Theorem (first established by Itd in [15]).

We show that an A-group is an ni-group if and only if it is a chiefly
Frobenius groups; equivalently, if and only if 1t is a subdirect product of
Frobenius groups. It follows that A-groups which are #M-groups have
derived length at most 3 , and that an A-group is an #nM-group if (and
gnly if) its Erattini factor group is an mM-group. The elass of the
A-groups which are nM-groups is closed under taking subgroups, factor
groups, and direct products.

We also show that an A-group is an 8M-group if and only if it is a
chiefly sub-Frobenius group. The question of the derived lengths of such
groups is left for the next chapter. An A-group is an sM-group if (and
only if) its Frattini factor group is an sM-group. The class of the
A-groups which are 8M-groups is closed under taking subgroups, factor
groups and direct products.

We shall need some elementary lemmas cn A-groups. Let o(G) denote

then sSeclcioE N Gt

LEMMA 6.1. If G is an A-group, then C,(0(G)) is the Fitting

subgroup F of G , and o(G) = o(F) .

Proof. Let F% be a Sylow p-subgroup of F . As the Sylow
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p-subgroups of (G are abelian, Fp is an abelian ?—group and G/CG(FP}
is a p'=gpoup. Thus CG(O(FP)) doks trivially on Fb (see Chapter 5,
Theeopem 2.5 in Gorenstein [91]). so that CG(O(FP)} = CG(Fp) . Alse by
Maschke's Theorenm, O{Fp) = @(G ). These hold for all. p , is0

CG(O(F)) = CG(F) BNEO(F) ='a(6) . “Sinee ‘B is the Fitting subgroup, it
must contain both CG(F} and = @(G@)  (see Huppert [12], Chapter III, Satz

S. 2 (ha). dhas ol @) = e (F ) and CG(O(G)) = F  as claimed.

LEMMA 6.2. Let G

IS

e an A-group with o(G) minimal normal in G .
Then (for some prime p ) the Fitting subgroup F <is a Sylow p-subgroup,
complemented by a Hall p'-subgroup H . Also G has a normal subgroup P
such that o(G) <is G-isomorphic to F/P which is complemented by HP ,
and G/P has trivial Frattini subgroup.

Proof. Since the Sylow subgroups of F are normal in G and o(G)
is the unique minimal normal subgroup, F 1is a p-group. A Sylow
p-subgroup of G must contain F and, being abelian, it centralizes F .
However, by Lemma 6.1, F is its own centralizer, so F  is a Sylow

p-subgroup. It is then complemented by a Hall p'-subgroup H . Let pn+l

denote the exponent of F , and consider themap 7 : f > fpn « O Ehns is
dfearly ‘o' Geendomorphism of F , with {1} < Fmr = o(F) . Now Fr is
normal in G , hence o(G) < Fr . By Lemma 6.1, we have Fm = o(G) . Put
PREt N A S nhen & PR @ L PP i5e G-isomorphie to' o(G) and so

CG/P(F/P) = F/P . Thus o(G/P) = F/P and HP/P is a maximal subgroup

complementing F/P . If we let &(G/P) denote the Frattini subgroup of
G/P , then &(G/P) n F/P < HP/P n F/P = {1} , and so &(G/P) = {1} . (It is

easy to see that P is the Frattini subgroup of G , but we do not need

that.?



EEBMASSGS - I K/L. is any chief factor of an A-group G , then K/L
is G-isomorphic to some complemented chief factor M/N of G ; in
particular, to one with N containing the Frattini subgroup & of G .

Proof.. Let S  be maximal among the normal subgroups of G with
I el Then R/D ie G-isomorphic to KS/S. and KS/S is the unique
hih el nowmell saboraun wof /S . Thus by Lemma 6.2, XKS/S is G-isomorphic
to M/N wheré M sibe Wit im> subseoup of (G/5 and the Evattini
subgroup of G/N 1is trivial, and M/N is complemented. Now N®/N is
contained in the Frattini subgroup of G/N (see Huppert [12], Chapter III,

Il as required.

A

Hilfsatz Bub ). sou

COROLLARY 6.4. ILet G be an A-group and & the Frattini subgroup
gf ..

(1) If. G/® sis g ehiefly Frobentus group, 8. %8 .G .

(2) If G/® <is an sM-group, then G is a chiefly sub-Frobenius
group.

Proof. (1)  Let RK/L  be any chief factor of G, . By Lemma. 6.3y, /L
i= . G-ilsamocphic to M/, wiere N =@ .. Thus each element ‘g of "G acts
g Kflly as g® .aets on  M/N.. . By assumpEion, .gPs acts triviglly or fixed
poinl sfrec an M/, hence g. dcts tpivially or Fixed point free on K/E

Also G/CG(K/L)A: (¢/®)/C CI)(M/IV) s s G/CG(K/L) has cyclic derived

G/
group as required.

(2) Let X/L be any chief factor of G . We use again Lemma 6.3 to
conclude that K/L is G-isomorphic to a complemented chief factor M/N
Miepe U =@ 0 BE k€ K and kD correspends: toy mll under the

G-isomorphism K/L ~ M/N , then CG(kL)/@ = é(mN) and so CG(kL) is

Cer
subnormal by Theorem 4.7.
LEMMA 6.5. If an A-group H <is a Frobenius complement, then its

derived group is cyclic.
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PRGN W ow Tkl Sylew subgroups of H ' are cyelic, so that H is
superselvable ™ % is nilpotent with eyelic Sylow subgroups, and thus H!
is eyvelile:

THEOREM 6.6. If G <is an A-group, then the following are
equivalent:

(1) G 18 an nM-group;

(2) G 1is a chiefly Frobenius group;

(3) G <is a subdirect product of Frobenius groups.

Proof. By Theorem 5.5, (1) implies (2). From Lemma 6.5, Theorem 3.8,
Theorem 5.5, and Theorem 5.7, we see that (3) implies (2).

We prove by induction on |G| that (2) implies (1). By Theorem 5.7,
we can assume that all proper factor groups of G .are nH-groups; so by
Theorem 5.4 we need only show that G satisfies the conditions of Lemma
5.2. The unique abelian normal subgroup of maximal order in an A-group is
N\ Pitting -subgroup F .! By Lemma'B.1, if g € G\F , then g <Fails to
centralize some minimal normal subgroup N of G . As G 1is a chiefly
Frobenius group, ¢ acts fixed point free on N , so that
BE, gl =0iN, gl = Fe. ishusitor aﬁy Gl iemchistheat {1 =00 =0l E Jwall o

coreGC >A L A

To see that (2) implies (3), we argue by contradiction. By Theorem
5.7, a minimal counterexample G must be subdirectly irreducible, that is,
gl(@) 1= minimal mormel in G . = By the first statement of Lemma 6.2,
G = F split H . By Lemma 6.1 and the assumption thet G 1s a ehiefly
Frobenius group, each non-trivial element hof B acts fixed point Free

on. GG =—e(F) . Thus CF(h) aolP) = 11} and so CF(h) =1 . This

proves that G 1is a Frobenius group, a contradiction.
COROLLARY 6.7. If an A-group G 1tis an nl-group, then %= 111"
Proof. G is a subdirect product of Frobenius A-groups X split H

with K eBelicn and B' cyelic.
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COROLLARY 6;8. An A-group G 1is an nM-group if and only if its
Frattini factor group G/® 1is an wnli-group.

Prgof.  The Yenly if" part follows from Theorem 3.3. The "if" part
follows immediately from part (1) of Corollary 6.4 and the equivalence of
(1) and (2) in Theorem 6.6.

COROLLARY 6.9. ALl subgroups, factor groups and (finite) direct
products of A-groups which are nM-groups, are also nM-groups.

Proof. This follows from Theorem 5.7 and the equivalence (1) and (2)
in Theorem 6.6.

Now we turn to A-groups which are sM-groups. The key result is the
following;

THEOREM 6.10. 4n A-group G is an sM-group if and only if it is
a chiefly sub-Frobenius group.

Proof. The "only if" part follows from Theorem 3.3 and part (2) of
Corollary 6.4. The "if" part follows from Lemma 6.1 and Theorem 4.1lk.

COROLLARY 6.11. 4n A-group G <s an sM-group if and only if its
Frattini factor group G/® 1is an sM-group.

Proof. This follows from Theorem 3.3, part (2) of Corollary 6.4, and
Theorem 6.10.

COROLLARY 6.12. Ail fubgpfups, factor groups, and (finite) direct

sRAC o A —grons s
products of sM-groups re sM:éroﬁpéT

Proof. This follows from Theorem 4.12 and Theorem (S AL0)5
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CHAPTER 7

THE NILPOTENT LENGTH OF SUBNORMAL M-GROUPS

Fliits chapter contains two results concerning the nilpotent length (that
is, the Fitting height) of sM-groups. The first gives an additional
condition under which the second derived group of an sM-group must be
nilpotent. While the condition is rather artificial, we include the result
because its proof involves ideas which seem interesting even if we cannot
use them to better effect. The second is a sketch of the construction of an
sM-group of nilpotent length 5 ; we believe it should be possible to build
sM-groups of arbitrary large nilpotent length by the same method.

THEOREM 7.1. If G is an sM-group such that every chief factor K/L
afedGuewithve KnE0GY 1is eyclie or of prime rank, then G is nilpotent.

ProofisstWe argue by comntradiction. Let @ be a counterexample of
minimal order. Then all proper factor groups of (G are nilpotent by
metabelian but G is not; so G must have a unique minimal normal
subgroup M . Now of course M = G" so M| = pr where »r» 1is 1 or a
prime. Let F be the Fitting subgroup and ¢ the Frattini subgroup of
G, then G"+¥F . As F/® is the Fitting subgroup of G/® (see Huppert
[12] . Chepter 1IL, Satz Nt.2), &% {1} would imply (G/®)" = F/$® , contrary
to G"$F . Thus & = {1} . Let H be a maximal subgroup not containing

M, so G=MsplitH . As CH(M) is normal in @ < but avoids. M ., 1%

must be trivial, so by Theorem 4.10, H 1is a p'-group.

Let ¢ be the exponent of H and E a finite field of characteristic
p containing & ppimitive eth root of 1 , so E is a splitting field for
H (see Isaacs [13], Theorem 9.15). By Theorem 2.8, if we form E ® M (over
the field of order p ) we obtain a direct sum of, say 8 , Galois

conjugates of some irreducible EH-module V . As M is a faithful
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H-ie-luilcias sl = 0 s inee | ¢ . 1s 1 - or a prime, and r =35 dim V , either

s IE G A ST dim I = 1, them H must be abelian;  this is
elicnimpess ible sinec’ ¢  is mon-nilpotent.  Thus dim V > 1 =28 , so M
is absolutely irreducible. Let wu be the Brauer character of H afforded

by i "By Theonem 2.9, 1 is an ordinary (irreducible) character, &6 by

Thicaren 8 59, Up s reduces. By Clifford's Theorem, the degrees‘of the

irreducible constituents of Uy, are proper divisors of the prime degree of

u , so these constituents are all linear and hence H"” 1is in the kernel of
IRy W ig Faithoul) this means that B = {1} ', s0 @" = M, contpary
to the assumption that ‘G is nonabelian. This completes the proof.

EXAMPLE 7.2. ©Now we turn to the construction of an sM-group of
nilpotent length 5 . It will be an A-group, so by Theorem 6.10 all we
need to prove about it is that it is a chiefly sub-Frobenius group of

derived length 5 .

2
Wellsitart witth (@ | a16 = 1 and S } b = ) . e @ eEE em /o

invertingly, and form the corresponding split extension

16

et e, Al = h

Rete that' (G0 = ADbY ., ‘and (azb) is a eyclic subproup of index 2 ¢ dn
particular, G 1is certainly a chiefly sub-Frobenius group. We shall need

7
A 2
Pepestedly the following fact. If g€ G , =21 , and a ¢ high .,

7-1 1+l 1

2
3 £{gy , then g € {a b3

b

a
Let @ aetieon Nc., d | 049 —d =l ed =ide) -so-that e ='d

da = c—l 5 cb = 018 : db = dSO 2 GRAS 183 18"x 30 = 1 (med 89} , it is

straightforward to check that this definition is legitimate. One may also

view (e, d? as the G-module induced from the (a’h)-module {e) such
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2
-18 2 . .
that &% Bs el v @niena b ace Bixed point free but aqu acts

triviglisSoni e ) &, the comment above with ¢ = 1 'makes it easy to check
Ehat. B ={e, d} split G  is a chiefly sub-Frobenius group. . Also,
e e e s (e gy . The Fitting subproup. F(H) .is

L ‘ y i, 7 g
L@ ba, & ks amd F(d)/<a8, b9, ei's @) wis eyelicaof ender g

Consider a 1l-dimensional faithful F(H)/(ag, bg, 07, d)-module U
over the field of order 43 , as an F(H)-module, and form the induced
. 12
H-module Uh . By Mackey's Subgroup Theorem, (UH)F(H) = ® Ui where the
el

U. are the conjugates of U under a set of representatives of the cosets

of F(H) in H . Let the numbering be arranged so that Ul = U and

U. are the conjugates under <a2, b, e, d :  then <a2, bl

R
6 1%
normalizes and a interchanges ©® Ui and @ Ui il e meana . Udl
=1 =7

are also normalized by <a2, b, ¢, d  and interchanged by a , we readily
see that ¢ acts fixed point freely on the first sum and trivially on the
second, while d acts trivially on the first and fixed point freely on the

8 9 7 d7) 3

% 2 L
second . . OF course, $@ b 5, 2 ., acts trivially while a < and b

act fixed point freely on both. - In particular, if % € {c, d then

-

1 iE" e <c7, dh 3
6
R L aE e
. 7
=1
qua h] = 4
17
L e a e G
. 7
=Y
kUH otherwise.

Now.form K = UH SpEICH o Then K' = UHH' and X" = UHH" = UH(c, da>
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Sle ) L = UH . To verify that X 1is a chiefly sub-Frobenius group, we need
onltyWestabiiich that "if O # u € UH S Elem CH(u) fsi subnoemad 1n o H .
Since CH(u) is generated by its elements x of prime power order, and

since joins of subnormal subgroups ars subnormal (see Passman [16], Chapter

1, Theorem 6.6), this will be proved if we show that the subnormal closure

Slcaehslichi il e cniEra il e s R el e IS8 o 8 W7 Seillee i s it el e SEmE Rl e
normal Sylow 7-subgroup (e, d) of H , so {(zx). itself is subnormal and
there is no work to do. When & is a2 2-element or a 3-element, then some

conjugate R lies in the Hall {2, 3}-subproup & ofF . H .. As this 7

Y 4 2
fixes the nonzero u’ , w= have a (z¥) and b : (z?) , so

9

7 € (agbg) LRGeS ! L is g 2 plement, At ds cemtral in VF ilwhile QE

it is a 3-element, it is central in the normal subgroup- (b, ¢, d} of H ;

so {(zY) is subnormal. Consequently, so is (x) , and we are done.

We shall need later on that if & € (e, d) then the subnormal clesure

contzinod 1 /
Qi et ik can K isA/[UH, h](h) . /%@,see this, observe that UH = o(k)

and recall that by Lemma 4.4, S 1is a direct factor of So(K) : therefore

S idis a direet factor of SUH , and hence EVH, h] < ESUH, S] = S)/

Ynd ood

y [UH, h](h) is normal in UH(h) which is subnormal imn X . so

5 = [Uh, n]( R

1 8 9 7l 7 .
Note that the Fitting subgroup F(X) is UH(a 2 B 5 a0 i To Bl indes

@600 in K . .Choose a prime p such that p =1 moa (2 % 8 % 7 % &3}
(this is psosible by Dirichlet's Theorem), and a faithful 1l-dimensional
i 7
module V for the cyclic group F(X)/[.C) Ui)<d ) ' of erder 2 %X.3 x Tix &3

=0

over the field of order p . Regard V as an F(K)-module, and consider
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the induced module VK . By Mackey's Subgroup Theorem, (VK] is the

F(K)

direct sum of 3538 conjugates R Nanbexehies e a0 thart Vl =V

and the (364 conjugates under UH(aQ, b, e, d)k ape listed Fivst: let

Wl be the sum of these, and WQ be the sum of the other Vi o RThen

iy 2 : i .
U[<a s by, ¢, d normalizes and a interchanges Wl and W2 , and also

7 R I A _ 7 ; ;
e and ) d ) . It Folleows that ¢ - acts fixed point freely om Wl and
e e " 7 i : :
Er v omn Wy while d sers medyisilily @ Wl and fixed point freely
1 6
on W2 Snsimilapdy @ U, agks troivially on Wl sodnd Ui acts
Tedils 1=1

trivially on W2

The proof of the fact that VK split KX 1is a chiefly sub-Frobenius

group follows the previous pattern. The only step that is different is to
show that if 0 #£ v € VK and o Eke, dVn CK(U) , then the subnormal
elosune of B ' in 'K ecepntralizes . v, If hH € P(K) , then -{AhY "ds

subnormal and there is nothing to prove. If h { BUK) L ehdt As.

hok (07, d7) » Themn h7 is nontrivial and fixes the nonzero v , hence
h7 € <c7> or (d7) (otherwise it would act fixed point free on both Wl 5
7 7 7
w,). Say (h) =(c> 5 then v €W, . Also, h€lc,dDNe’,d),
6 6
So o= [UH, h](h) = [ ® Ui)(h> S amd s kD Ui acts treivially on W2 -
= 71

S does centralize v
Tt remains to note that KX'"'= UH acts nontrivially on VK and

therefore K'"' cannot lie in the Fitting subgroup of VK split K ; hence
g p



(VKK) el non-—abelian, and therfore the derived length of VKK 1=ENG

o4
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CHAPTER 8

POSTSCRIPT

The principal aim in the study of [M-groups, and certainly in the
present thesis, has been to relate classes of finite solvable groups defined
in character theoretic terms to classes defined in structural terms. The
last two decades have seen an explosive development in the theory of
(structurally defined) classes of finite solvable groups. This theory
subdivides into chapters according to what closure properties the classes in

question are required to have. One of the difficulties which prevents the

(&N

adequate structural understanding of the class M of M-groups is that it
has too few closure properties. In these circumstances, one might ask for
classes with further closure properties which "approximate" M from above
or from below. The determination of the unique largest subgroup closed class
in M by Price and van der Waall may be seen as an example of such a
result. (It should now be possible to decide whether that class is
subdirect product closed.) On the other hand, no upper approximation seems
to exist for M , beyond Taketa's Theorem, and Dade's Embedding Theorem
shows that no better subgroup closed upper approximation is possible. 1In a
sense, the key to the results in the present thesis has been the study of
primitive #nM or sM-groups (primitive in the sense of having a core free
maximal subgroup). Perhaps a study of the primitive M-groups may pay

similar dividends. Indeed, it is clear that not every primitive solvable

group is an M-group (consider 03 X 03 split SL(2, 3) formed with respect

to the natural action), so the Schunck class generated by M 1is not the
class of all finite solvable groups; this might be the way to find a better
upper approximation for M than Taketa's. Our Lemma 4.6 provides only

partial (but, as we have seen, still quite useful) information about the
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Schunck class generated by 4M , while Corollary 5.6 (1) may be viewed as a
complete determination of the Schunck class generated by wnM . Certain
_subgroup closed formations have also played a critical role in this thesis
(Theorem 4.12 and 4.14; the last remark in Chapter 4; Theorem 5.5, the
remark: after it, and Theorem 5.7). We are inclined to conjecture that the
Frattini factor group of a chiefly Frobenius group is always an #nM-group.
It seems likely that profitable directions of work could be identified by
exploiting further concepts and ideas from the theory of classes of finite
solvable groups.

Finally, we draw attention to the close relationship between Examples
5.12 and 5.13. While our failed attempts to decide whether 4M is normal
subgroup closed or subdirect product closed have left us uncertain about
which way the answers might go, we feel there is an intimate connection
between the two questions, and conjecture.that if one has an affirmative

answer, so does the other.
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