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(iii) 

ABSTRACT 

This thesis is concerned with nM-groups (and s/Z-groups), finite 

groups whose complex irreducible characters are all induced from linear 

characters of normal (subnormal) subgroups. By a classical theorem of 

Taketa, all such groups are solvable. Our aim is to find group theoretic 

properties of these groups (that is, properties which are not defined in 

terms of characters). Isaacs and Passman proved that all metabelian groups 

are nA/-groups. VJe show that all abelian by nilpotent groups are sM-groups. 

The class of all ^//-groups (or sM-groups) is closed under taking factor 

groups, direct products, or normal Hall-subgroups. Normal subgroups and 

subdirect products of niV-groups need not be nM-gvonps, but all subgroups 

of nAf-groups are s?<?-groups. The corresponding question concerning 

sAi-groups are still open. 

We prove that if K/L is a complemented chief factor of an sM-group 

G , then all elements of K/L have subnormal centralizers in G . The 

p-length of an sM-group is at most 1 , for each prime p . All subgroups 

of G are s/V-groups if and only if all chief factors of G (not only the 

complemented ones) satisfy the subnormal centralizer condition mentioned 

above, and every non-nilpotent section of G has a non-central minimal 

normal subgroup. 

A (finite solvable) group G is an ?̂ ;"'/-group if and only if all its 

factor groups H satisfy the following condition: if A is an abelian 

normal subgroup of maximal order in H , if g is an element of H outside 

A , and C a subgroup of A such that A/C is cyclic, g normalizes C 

and acts trivially on A/C , then C must contain some non-trivial normal 

subgroup of H . If G is an n/<f-group, then each element of G acts on 

each chief factor of G either trivially or fixed point free; all subgroups 

of G are sM-groups; the Frattini factor group of G is a subdirect 



(iv) 

product of Frobenius groups whose kernels are abelian and whose complements 

have cyclic derived groups; the Fitting factor group C/F of G is 

metabelian, supersolvable, and the odd order Sylow subgroups of G/F are 

abelian. These conclusions say nothing when G is a p-group; all we can 

do is to present examples which show, for each prime p , that there exist 

non-metabelian p-groups which are nZ-f-groups, but not all p-groups are 

nW-groups. 

An /I-group is a (finite solvable) group whose Sylow subgroups are all 

abelian. We determine precisely which ^-groups are nA/-groups or 

sr-/-groups. In particular, an ^-group is an nM-group if and only if it is 

a subdirect product of Frobenius groups. The class of these i4-groups which 

are nM-groups (s/'Z-groups) is closed under taking subgroups, factor groups, 

direct products; if the Frattini factor group of an .4-group is in this 

class, so is the group. 

We construct an <4-group of derived length 5 which is an s/^Z-group. 

It should be possible to build s/^Z-groups, of arbitrary nilpotent length by 

the same method. 
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CHAPTER 1 

INTRODUCTION 

All groups considered in this thesis are finite groups. 

A monomial group is one all of whose irreducible complex characters are 

monomial characters (see Definition 2,14). 

The study of monomial groups is stimulated by the study of Artin's 

L-function arising from number theory. Artin defined the L-function in 

1923 (see Heilbronn [11]). Roughly speaking, the L-function Lis, X, K/k) 

is a function of a complex variable s , and depends on a complex character 

X of the Galois group of a Galois extension K/k of an algebraic num.ber 

field k of finite degree. In general, L is ineromorphic in the whole 

complex plane. Artin conjectured that the L-function corresponding to any 

non-trivial character is always an entire function. One positive answer 

known concerns the case when X is a monomial character. 

Already in 193 0, Taketa [20] proved that every monomial group is 

solvable. Interest in monomial groups seems to have been sustained ever 

since. For instance, a few years ago, van der Waall [23], [24], [25] listed 

all monomial groups of order up to 200 . Price [17] and van der VJaall [26] 

characterized all minimal non-j'-̂ -groups. For other relatively recent 

results, see Dornhoff [5], Seitz [19], Schacher and Seitz [18], Chapter 6 

of Isaacs [13], Winter and Murphy [22]. 

Despite all these efforts, there is as yet no satisfactory group 

theoretic characterization of monomial groups. We are still unable to 

answer some simple question, for instance, whether odd order normal 

subgroups of monomial groups are monomial groups. For details, see Chapter 

2. 

The complexity of monomial groups can also be seen from a theorem of 



Dade, namely, every solvable group oan he embedded into a monomial group. 

For instance, Dade's Theorem shows that there is no constant upper bound for 

the derived length, p-length, or nilpotent length of a monomial group. 

The purpose of this thesis is to study two special classes of monomial 

groups, namely, the class of normal monomial groups (n/^-groups; see 

Definition 3.2) and the class of subnormal monomial groups (sW-groups; see 

Definition 3.1). These are also defined in character theoretic terms, and 

the problem is to understand these classes in group theoretic terms (that is, 

without reference to characters). 

The thesis is divided into eight chapters. Chapter 1 is the 

introduction. Chapter 2 collects some prerequisites from character theory 

and surveys results of monomial groups. Proofs are omitted if convenient 

references are available. 

In Chapter 3 v/e report on what vie know about questions on normal and 

subnormal monomial groups which arise by analogy with the results on 

monomial groups, though only the more elementary results are actually proved 

in this chapt er. We shov/ that the classes of TIA/—groups or sAf—groups are 

closed under taking factor groups, direct products, or normal Hall 

subgroups. All metabelian groups are nM-groups, and all abelian-by-

nilpotent groups are sW-groups. We also present some examples. 

In Chapter 4 we study sAf-groups in detail. In pax'ticular, we find that 

their p-length is at most 1 , for each prime p . The highlight of the 

chapter is the result that all subgroups of a group G are sM-groups if 

and only if G satisfies the following two conditions: 

(1) each non-nilpotent section of G has a non-central minimal 

normal subgroup; 

(2) if K/L is a chief factor of G and kL ^ K/L , then the 

centralizer of kL in G is subnormal. 

The class of such groups is closed under subgroups, factor groups, and 

direct products. 



Chapter 5 is devoted to nA^-groups. We obtain a structural 

characterization of these groups, though it is too complicated to state 

here. It implies that the Frattini factor group of such a group is a 

subdirect product of (cyclic groups and) Frobenius groups v;hose kernels are 

abelian and whose complements have cyclic derived groups. In particular, 

the Fitting factor group is metabelian, supersolvable, and its odd order 

Sylow subgroups are cyclic. All subgroups of ra^f-groups are cM-groups. 

However, none of these conclusions says anything for p-groups, and in that 

case our structural characterization is much harder to relate to familiar 

concepts. For instance, we cannot decide whether the derived lengths of 

rul-gvoups are bounded. We give examples to show, for each prime p , that 

not all p-groups are n/>j-groups but there exist non-metabelian p-groups 

which are nA/-groups. 

In Chapter 6 we determine precisely v/hich -groups (solvable groups 

with all Sylow subgroups abelian) are nM-gvoups or sM-groups. The classes 

of these groups are closed under subgroups, factor groups, and direct 

products. Moreover, if the Frattini factor group of an /4-group is an 

n/^-group or an sAf-group, so is the group itself. 

Chapter 7 takes up the question of the nilpotent length of sA^-groups. 

VJe show that under a suitable additional condition, the second derived group 

of an sAf-group is nilpotent. However, v/e also construct an i4-group of 

nilpotent length 5 which is an sA/-group. We believe that it should be 

possible to construct sA/-groups of arbitrary nilpotent length by the same 

method. 

The thesis concludes with a Postscript on possible future directions. 



CHAPTER 2 

PRELIMINARIES 

In the first half of this chapter, we collect some results from 

character theory that are needed in this thesis. Basic definitions and 

classical theorems (such as Frobenius reciprocity, orthogonality relations 

of irreducible characters, Mackey Subgroup Theorem) will be taken for 

granted. 

The general theorems we state are results relatively recently obtained 

(for example, Isaacs' "Going Down Theorem"), results we want to have in the 

form most suitable for our purpose (for example, Clifford's Theorem, Tensor 

Product Theorem), and a special case of a result which has a much simpler 

proof than the general one given in the literature. 

We also need some theorems on characters of specific groups (Frobenius 

groups, extra-special p-groups), and detailed information on the structure 

of the regular module of a cyclic p-group over a field of characteristic 

P • 

In the second half of the chapter, we survey well-known results on 

M-groups. Although many of them can be found in standard texts like 

Huppert's [12], they are so important for us that this summary seems 

necessary. There is only one item here for which we offer a proof, as none 

exists in print: namely, that a Frobenius group is an M-group if and only 

if the derived group of its complement is cyclic. 

We repeat that all groups G considered are assumed to be finite. The 

notation we use is the same as that in Isaacs [13]. Unless otherwise 

stated, all characters are over the complex field. 

If N is a normal subgroup of G , there is a natural permutation 

action by G on the set lvv{N) of irreducible characters of A' , defined 



(1) x ^ = ^ E . where cp^, cp^, (p^ is a complete 

as follows. For (p € Irr(iV) and g ^ G , define the function cp^ from 

to the complex field C by cp^(n) = . Though not completely 

obvious, it is a fact that cp^ € lvv{N) (see Isaacs [13], Lemma 6.1). We 

call cp^ a G-conjugate of cp . The next theorem tells how an irreducible 

character of G behaves, v;hen restricted to N 

THEOREM 2.1 (Clifford's Theorem). Let x be an ivveduoihle cha.vaater 

of G and /!/ ^ (7 . Then 

t 
I 
i=l 

G-ovbit of ivvedueihle ohavaotevs of N ; 

(2) = js' ? I = defines a subgroup of G ^ and 

Proof. See Isaacs [13], Theorem 6.2. 

Remark. Clifford's Theorem 

is also valid in terms of direct sum of 

irreducible representations over arbitrary fields. We state it in the 

present form because most of the time, we use it in the context of complex 

characters. 

THEOREM 2.2. Let N ^G , Q i Irr(il/) , and T ^ J^(e) . Let 

/4 = {4; ^ IvviT) I e] 0} , S = {x ^ Irr(G) [xj^, 0 j ^ o] Then 

(1) the map !|; 1—> is a bijection of A onto B : in 

particular, ijj'^ is irreducible; 

Q 

(2) i-f i) = X ^ ^ A , then is the unigue irreducible 

constituent of Xy which lies in A i 

(3) if = X with € A , then 9] = [x^,, . 
îl/' 



Proof. See Isaacs [13], Theorem 6.11. 

Let /!/<(? and 9 € Irr(il/) . We say that 6 is invariant in G if 

y e ) = ff . 

THEOREM 2.3 (Going Down Theorem). Let K/L be an abelian chief 

factor of G . Suppose 6 6 Irr(A:) , and 6 is invariant in G . Then one 

of the following holds: 

(1) e^ ^ Irr(L) ; 

2 (2) = ecp for some cp in Irr(L) , and e - ; 

t 
(3) 0r = Y • J where the (p. are distinct elements of 

^ i=l ^ ^ 

Irr(L) , ayid t = \K-.L . 

Proof. See Isaacs [13], Theorem 5.18. 

Remark. It follows from Clifford's Theorem that cp , cp , . . ., cp is a -L z t 

complete Z-orbit (C-orbit) of irreducible characters of L . 

Theorems 2.2 and 2.3 combine to give a powerful tool in character 

theory. We apply it as follows. Consider a chief series of a solvable 

group G , say G - G^ > G^ > ... > G^ - {l} . Let x ^ non-linear 

irreducible character of G . Now we know that the restriction of x "to 

G reduces, and we can consider the smallest index i such that the 
n 

restriction of x "to G. reduces. Let L - G. K = G. , . We have 

X is irreducible, and obviously x is invariant in G . Then the 

"Going Down Theorem" tells us how Xĵ  decomposes into a sum of irreducible 

characters of L . In particular, if \K:L\ is not a perfect square, the 
K:L 

only possiblity is that XT ~ Z • • Theorem 2.2 then tells us that 
•LJ • 'Z' ^=l 

there is an irreducible character ip of Î fcPĵ ] such that = x » ̂ nd by 



part (2) of Clifford's Theorem, is a proper subgroup of index 

K-.L in G . This often makes it possible to use induction on 
VJe can say something more about Clifford's Theorem. Part (1) of 

t 
Clifford's Theorem asserts that = ^ E cp • • Obviously each (p. has 

^=l 

the same degree as cp̂  , so we have x(l) = ^icp^(l) . It is a deep theorem 

the proof of which involves projective representations that = 

divides (see Isaacs [13], Theorem 11.29). Hovrever, what vie actually 

need in this thesis is a special case of this general theorem, namely we 

can assume that G is solvable. The proof is then relatively easy. 

THEOREM 2.4. Let G be a solvable group. Let //< G . Suppose 

X € Irr(G) ̂  e 6 Irr(77) , and [x^, S] 0 . Then xCD/QCD divides 

G:N . 

Proof. We proceed by induction on |(3:iV| . There is nothing to prove 

if G:N = 1 . If N is a maximal normal subgroup of G , then the 

theorem follows immediately from the "Going Down Theorem". If N is not 

maximal, let Z be a maximal normal subgroup of G containing N . Then 

there is an irreducible character cp of X such that 

cp] 0 # [cp̂ , 8] . Now \G:K\ and \K:N\ are both less than . 

By the inductive hypothesis, x^D/^d) divides and (p(l)/9(l) 

G:N divides K:N . Thus x(l)/9(l) divides G:K K:N 

is complete. 

THEOREM 2.5. Let G = H x K . Then 

(1) every irreducible character of G has the unique form a3 

{that is, for all h i H and k ^ K , x{h-k) = ) 

with a € IvviH) and 3 ^ IvviK) ; 

(2) if a € IvriH) and g ? Irr(Z) ̂  then x = Ci3 ^ Irr(G) ; 

(3) let A < E , B < K ; let y € Irr(^) and 6 € Irr(B) ; 

The proof 



t h e n = , 

Proof. For the proof of (1) and (2), see Dornhoff [ 6 ] , Theorem 10.3. 

Part (3 ) f o l l ows d i r e c t l y from the formula f o r calculating induced 

characters. 

THEOREM 2.6 (Tensor Product Theorem). Let N S G . Let y € Irr(iV) 

and X ^ I r - r C G ) . Then ( x ^ y ) = X y " ^ • 

Proof. This fo l lows d i r e c t l y from the formula f o r calculating induced 

characters. 

Remark. Let G be any group. Let X and C be two characters of 

G . Then xC ^e regarded either as a character of G or as a 

character of G x G . These two views are not unrelated, but they are 

c l e a r l y d i f f e r e n t . Vfnen the situation ar i ses , the context always makes i t 

c lear which one i s intended. 

THEOREM 2.7. L e t H < G and x ^^ I v v ( H ) . I f x^ i r r e d u c i b l e , 

t h e n C A H ) 2 H . 
Lr 

Proof. I f GAH) H , then HCAH) properly contains ^ , and 
ir Lr 

H C ^ i H ) 

X i s i rreducib le . Without l oss of general i ty , we may assume 

G = H C ^ ( H ) . Thus X i s invariant in G . By Frobenius r e c i p r o c i t y , 

1 = [ x ^ x^J = (x^O, 'H 
= Cx, G:H x] = G:H , a contradict ion. 

In th i s t h e s i s , we are dealing mainly with complex characters. In 

f a c t , the two c lasses of groups we shall study are defined in terms of some 

propert ies of their complex characters. However, on one occasion in Chapter 

7 , we encounter a s ituation where a p ' -group H acts on an elementary 

abelian p-group N , thus af fording a modular representation of H . In 

order to re la te t h i s t o complex characters, we need to extend the ground 

f i e l d to a sp l i t t ing f i e l d of H , and then explo i t the re la t i on between 



Brauer characters of H and the complex characters of H . The relevant 

r e s u l t s are the f o l l ow ing . 

Let F be any f i e l d of charac te r i s t i c p , and E a Galois extension 

over F of f i n i t e degree. Let W be an i rreduc ib le FG-module where G 

i s any group. Let V be an i rreduc ib le ffC-subinodule of W E , 

a f f o rd ing the character x (with values in E ). Denote by F(x) the 

subf ie ld of E obtained by adjoining a l l values of x 'to ^ • 

THEOREM 2.8. The EG-module W E is completely reducible^ with 

all •Lrreducible direot surrmands Galois conjugate to V . The number' of 

different Galois conjugates of V is exactly the degree of the extension 

F{x)/F . 

Proof. See Curtis and Reiner [ 2 ] , Theorem 70.15. 

THEOREM 2.9. Let IBr(G) denote the set of irreducible Brauer 

characters of G . If pjl\G\ ^ then IBr(G) = Irr(G) . 

Proof. See Isaacs [ 1 3 ] , Theorem 15.13. 

Next, we turn t o r e s u l t s on part icular groups and characters. 

THEOREM 2.10. Let x ^ Irr (G) . Then x d ) ^ = \G-.Z{G)\ if and only 

if X vanishes outside ZiG) . 

Proof. See Isaacs [ 1 3 ] , Corollary 2.30. 

THEOREM 2.11. Let G be an extra-special p-group of order p^^'^^ . 

Then any non-linear irreducible character of G is faithful and has degree 

YL 

p . It is induced from some linear character of any maximal abelian normal 

subgroup of G . 

Proof. See Huppert [ 1 2 ] , Chapter V, Satz 16.14. 

Frobenius groups play an important r o l e in th i s thes i s . I t w i l l be 

convenient f o r us to think of a Frobenius group as a s p l i t extension 

K s p l i t H . Here K i s ca l l ed the Frobenius kernel and H the Frobenius 
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complement. There are many different definitions of.Frobenius group, for 

example, see Passman [16], Dornhoff [6], Isaacs [13], Huppert [12]. Near 

the end of this chapter, we shall quote results on the structure of 

Frobenius groups; here we state a theorem concerning their characters. 

THEOREM 2.12. If x any irreduoible oharactev of a Frohenius group 

K split H J then either Ker X - Z or x induced from some irreducible 

character of K . 

Proof . See Dornhoff [6], Theorem 13.8. 

Next, we prove a fact about the regular module of a cyclic p-group 

over a field of characteristic p . 

THEOREM 2.13. Let G be a cyclic group of order p , and F a 

field of characteristic p . Then the regular FG-module (also denoted by 

FG ) is uniserialj that is^ the submodules of FG form a chain. In fact, 

each submodule of FC has the form FG{.g-l) where g is a (fixed) 

generator of G and 0 ̂  i < p^ . 

Proof. Let F [ x ] denote the polynomial algebra with indeterminate 

X . The map x i—>• g defines an algebra homomorphism from F[x] onto FG 

n 
with kernel containing xP - 1 . It is enough to show that the ideals of 

F[ar] containing 3? - 1 form a chain. Since char F - p ̂  

n n n 
- 1 = . Each ideal of f[x] containing ar - 1 is generated 

n 
by a divisor of (x-l)^ , as F\.x'] is a principal ideal domain. Now F[x] 

n 
is certainly a unique factorization domain, so the divisors of (x-l)^ are 

"Z- n 

(apart from unit factors) exactly the (ar-l) , 0 < t 5 p . Thus the 

claim is proved. In particular, the submodules of FG are exactly the 
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FGig-1)'^ where 0 S i < p^ . 

Remark. It follows that the fixed point space of g in FG is 

FGig-lf , while in FG/FG{g-lf it is . 

We shall need this fact later on. 

Finally, we turn to /"̂ -groups. 

DEFINITION 2.14. Let G be a group. An irreducible character x 

G is called a monomial oharacter> (M-character) if it is induced from a . 

linear character of some subgroup of G . The group G is called a 

monomial group (A'-group) if every irreducible character of G is monomial. 

We denote the class of all /-̂ -groups by M . 

As was mentioned in the Introduction, the first celebrated result on 

/•/-groups was due to Taketa. This is the following. 

THEOREM 2.15 (Taketa). All M-groups are solvable groups. 

Proof. See Huppert [12], Chapter V, Satz 18.6. 

The converse of Taketa's Theorem is false. SL(2, 3) is a solvable 

group, but not an /-/-group (see Huppert [12], Chapter V, Satz 18.7). We 

shall prove in Theorem 3.5 that all metabelian groups are W-groups. It 

follows that SL(2, 3) is a solvable non-M-group of smallest order, since 

all groups of order at most 23 are metabelian. (Van der Waall [2M-] has 

shown that SL(2, 3) is in fact unique with respect to being a non-Ẑ Z-group 

of smallest order.) 

It is quite obvious that factor groups of Af-groups are M-groups. 

Direct products of /</-groups are M-groups. This is a consequence of 

Theorem 2.5; see Huppert [12], Chapter V, Satz 18.8. However, subgroups of 

an M-gvoup need not be /'/-groups. This fact could be easily seen from a 

theorem of Dade. 

THEOREM 2.16 (Dade). Every solvable group can be embedded into an 

M-group. 



12 

Proof. See Huppert [12], Chapter V, Satz 18.11. 

Dade's Theorem shows that, for instance, SL(2, 3) which is not an 

M-group, can be embedded into an M-group. In fact, this can be seen more 

directly than by Dade's general construction: if we take the central 

product of two copies of Q̂  , and split extend it by an element of order 

3 which acts nontrivially on each of these central factors, we obtain an 

M-group. It contains a subgroup isomorphic to SL(2, 3) . 

Dornhoff [5] has shown that normal Halt subgroups of an M-group are 

M-groups. Unfortunately, the condition of being a Hall subgroup cannot be 

removed from the hypothesis of Dornhoff's Theorem. Dade [3] constructed an 

A/-group which contains a normal subgroup that is not an M-group. But 

Dade's example depends on the prime 2 in a fundamental way so that no odd 

analogue seems possible. It is still an open question whether normal 

subgroups of M-groups of odd order are M-groups. 

Another direction of research on M-groups is to investigate subgroup-

closed classes of M-groups. Huppert proved that all extensions of 

A-groups by supersolvable groups are M-groups (see Huppert [12], Chapter V, 

Satz 18.4). This is a class of M-groups that is subgroup closed. Price 

[17] investigated the structure of minimal non-M-groups, that is, groups 

which are not M-groups but whose proper homomorphic images and proper 

subgroups are all M-groups. Van der Waall [26] recently completed the 

characterization of the structure of minimal non-M-groups. The largest 

subgroup-closed class of M-groups consists of all the (finite solvable) 

groups which have no section isomorphic to a minimal non-M-group. In view 

of the results of Price and van der Waall, this class may now be understood 

without reference to characters. 

We conclude this chapter by establishing the following. 

THEOREM 2.17. A Frobenius group is an M-group if and only if the 
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devived group of its oomptement is ayolic. 

An essentially equivalent result, namely that a Frobenius group is an 

M-group if and only if its complement is supersolvable, was proved by 

Seitz; however, he gave no proof in his paper [l9] but referred to the 

unpublished part of his PhD thesis which we have not seen. The proof we 

give here is our own. 

The key fact seems to be the following. Let (J be a finite solvable 

group, 0(G) the largest normal subgroup of odd order in G , and suppose 

the Sylow 2-subgroups of G are cyclic or generalized quaternion. If 

G/0{G) is not a 2-group, then it is either SL(2, 3) or the binary 

octahedral group (of order 48 ), and neither of these is an M-group. 

However, we have no convenient reference for this, so vje give a short proof 

of the variant vie really need. 

LEMMA 2,18. Let G he an M-gvoup with cyclic or generalized 

quaternion Sylow 2-subgroups. Then G/0{G) is a 2-group. 

Proof. We can assume without loss of generality that OiG) - 1 . By 

Taketa's Theorem, G is solvable; hence if F denotes its Fitting 

subgroup, then 5 F (see Huppert [12], Chapter III, Satz 4.2). So 

G/F is isomorphic to a subgroup of the outer automorphism group Out(F) . 

It is well-known- that normal subgroups of cyclic or generalized quaternion 

groups are cyclic or generalized quaternion, and that the outer automorphism 

group Out(F) of such a 2-group F is a 2-group unless F c^ Q^ in which 

case Out(F) ĉ; S , the symmetric group of degree 3 (see Passman [16], 
o 

Propositions 9.9, 9.10). Thus we are done unless ^ c^ Q^ and G/F 

3 or 6 . We show that in this case a contradiction follows. For 

G/F'\ = 1̂ 1 - \G/F'\ = X X(1) where X ^̂ n̂s through those irreducible 

characters of G whose kernel does not contain F' . As F' is the 

is 
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unique minimal normal subgroup of F , these X must be f a i t h f u l on F , 

so x ( l ) > 1 f o r each of them. Now \G:F'\ i s 12 or 24 , and simple 

t r i a l and error shows neither of these numbers can be written as a sum of 

2 2 

per fect squares without 1 or 2 among the summands. Hence x^D = 2 

f o r some x in Irr(G) with F' Ker x • As G i s an M-group, th is 

must be induced from a l inear character of some subgroup A of index 2 , 

and then A ' 5 Ker x • Now A i s a normal subgroup containing a Sylow 

3-subgroup which acts nontr iv ia l ly on F/F' , so even F < A' s Ker x , 

contradict ing F ' ^ Ker x • This completes the proo f . 

LEMMA 2.19. A Frobenius complement G is an M-group if and only if 

G ' is cyclic. 

Proof. We need the fa c t that a l l Sylovj subgroups of a Frobenius 

complanent G are either c y c l i c or generalized quaternion (see Passman 

[ 1 6 ] , Proposition 18 .1 ) . Thus i f G i s an M-group, G/0{G) i s a 2-group 

by the previous lemma. As a l l Sylow subgroups of 0{G) are c y c l i c , th i s 

ijnplies that G i s supersolvable. Then G' i s ni lpotent (see Hall 

[ 1 0 ] , Theorem 10 .5 .4 ) . On the other hand, i f Q i s a Sylow 2-subgroup of 

G , then G = 0{G)Q and G' ± OiG)Q' . Since Q' i s c y c l i c , a l l Sylow 

subgroups of the nilpotent group G' are c y c l i c , so G' i s c y c l i c . . 

The converse part of the lemma fo l lows from the f a c t that a l l super-

solvable groups are M-groups. 

Proof of Theorem 2.17, In view of the last lemma, a l l that remains to 

be proved i s that i f K s p l i t ^ i s a Frobenius group with H' c y c l i c , then 

K sp l i t H i s an M-group. Let x ^ I r r (Z sp l i t H) . By Theorem 2.12, 

either Ker X - X i s induced .from K . In the f i r s t case , x i s an 

M-character because H i s an M-group, In the second case , we appeal to 

the celebrated theorem of Thompson that a l l Frobenius kernels are nilpotent 

(see Passman [ 1 6 ] , Theorem 17 .4 ) . Thus K i s an M-group, and again x i s 

an M-character. 
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CHAPTER 3 

ELEMENTARY RESULTS AND EXAT^PLES 

This chapter i s a report on what we know about the questions on normal 

and subnormal iV-groups v/hich ar ise by analogy with M-group resul ts 

surveyed in the previous chapter. To maintain continuity of the repor t , we 

de fer a l l the proofs to the second half of the chapter. Because of Taketa's 

Theorem, no genera l i ty i s l os t i f we r e s t r i c t our attention to solvable 

groups. We consider only complex characters in th i s chapter. 

DEFINITION 3.1. A character of a group G i s cal led a subnormal 

monomial character (aV-chairacter) i f i t i s induced from a l inear character 

of some subnormal subgroup of G . A group G i s cal led a subnormal 

monomial group (s/'f-group) i f a l l i t s irreducible characters are sM-

characters. We denote the c lass of a l l sM-groups by -6M . 

DEFINITION 3.2. A character of a group G i s cal led a normal 

monomial character (?i':f-character) i f i t i s induced from a l inear character 

of some normal subgroup of G . A group G i s ca l led a normal monomial 

group (.nM-gvoup) i f a l l i t s i rreducible characters are n/^/-characters. We 

denote the class of a l l raW-groups by nM . 

The de f in i t i ons y i e ld the fo l lowing inclusions: 

nM c -6M e M 

Each of the above inclusions i s proper. The symmetric group of 

degree 4 i s an Af-group but not an aW-group, since i t has an irreducible 

character of degree 3 , but none of i t s Sylow 2-subgroups is subnormal. 

We shal l construct an sM-group which i s not an nM-group la te r in th i s 

chapter; see Example 3.11. F i r s t , l e t us examine some closure propert ies 

of and KliM . 

THEOREM 3.3. Both ^M and nU are homomorphic image closed and 
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direct product closed. 

THEOREM 3.4. Both aM and nM are normal Hall subgroup closed. 

We shall see in Chapter 5 that nU is neither closed under normal 

subgroups (let alone under subgroups), nor closed under subdirect products. 

However, the corresponding questions for -6M are still open. The 

difficulty in attempting to test whether normal subgroups of an sM-group 

are a^^-groups could be seen in Example 3.12. The group we construct in 

this example has an irreducible s/'i-character such that none of the 

irreducible constituents of its restriction to a particular normal subgroup 

is an A/-character (let alone an s/¥-character). This shows that we must 

somehow find a way to make full use of the assumption that all irreducible 

characters of G are s/̂ -̂characters. 

We shall obtain results in Chapter H which show that the analogues of 

Dade's Theorem are false. We shall obtain in Chapter 6 conclusive 

structural characterizations of the sM-groups and nA/-groups which are 

i4-groups. As for super solvable groups, we can only say that they need not 

be SiV-groups; see Example 3.10. 

The analogues we can get for Huppert's Theorem are the following. 

THEOREM 3.5. All metabelian groups are nM-groups. 

THEOREM 3.5. A.II extensions of dbelian groups hy nilpotent groups are 

sM-groups. 

These two theorems provide subgroup closed subclasses of njU and ^M , 

respectively. But we shall see in Example 3.11 that an nM-group, all of 

whose subgroups are -groups, need not be metanilpotent (let alone 

metabelian). In Theorem 4.14 we give'a structural characterization of the 

groups whose subgroups are all sM-groups. In Corollary 5.16 we show that 

all subgroups of rzM-groups are sZ-f-groups. 

THEOREM 3.7. If G is a Frobenius group such that the derived group 
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of its complement is cyclia, then all subgroups of G are sld-groups. 

Of course, we know that i f G in is a Frobenius group, then i t s 

Frobenius complement has cycl ic derived group (see Theorem 2.17). This and 

Theorem 3.7 show that in the case of Frobenius groups, sM~gvonp and /-/-group 

are the same. We do not have any necessary and suf f ic ient condition for a 

Frobenius group to be an nM-group; a l l we have to o f f e r is the fol lowing. 

THEOREM 3.8. Let G be a Frobenius group such that the kernel of G 

is ahelian and the derived group of the complement is cyclic. Then all 

subgroups of G are vM-groups. 

We now turn to proofs and examples. 

Proof of Theorem 3.3. We shall prove the case of 4M . The proof for 

the case of mM is exactly the same. (Just replace each occurrence of 

"subnormal" by "normal". ) 

Let C ^ . Let G/N be any homomorphic image of G . Let 

X € IvviG/lS!) . Regard x as an irreducible character of G with kernel 

containing N . As such, x is induced from a linear character A of some 

subnormal subgroup 5 of G . N 2 Ker x = core^(Ker A) implies that 

N - Ker \ ^ S . We can regard A as a linear character of S/N which is 

subnormal in G/N . Obviously then = x ? so x is an sM-character. 

Let G, ff € aM . I f X ^ Irr(G x u) , then by Theorem 2.5, X = HC 

where n € I r r (G) and C ^ lvv{H) . By assumption, n and are induced 

from linear characters A, y of subnormal subgroups A, B of G, H , 

respect ive ly . Now A x B is subnormal in G X H ^ . Ay is a linear 

character of A x S , and (by part (3) of Theorem 2.5) 

Qxfl Q fj 

(Ay) = A Y = nC = X • The proof is complete. 

Remark. In the above proof, we in fact proved that i f x is an sM 

or an Ji^i^-character of G with kernel containing a normal subgroup N , 

then X is also an sM or an nl-^-character, respect ive ly , as a character 
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of G/N . The converse of this is also obviously true, namely, if x is an 

sM or an n/^i-character of G/IJ , then X regarded as a character of G , 

is also an sM or an nM-character, respectively. On many occasions later 

on, we need to show that a certain character x of is sn sM or an 

?^'</-character, If the hypotheses are inherited by homomorphic images of Ĝ  , 

then the above discussion allows us to assume that x is faithful. 

Proof of Theorem 3.4. We shall prove the case of ^M . The proof of 

the case yhM is clearly the same. 

Let G C '6M and N a normal Hall subgroup of G . Let 8 be any 

non-linear irreducible character of N . Let x t)e an irreducible 

Q 
constituent of 9 . By Frobenius reciprocity [x^^, 6] 0 and by Theorem 

2.4, x(l)/6(l) divides . 

By assumption, x is induced from a linear character X of some 

subnormal subgroup S of G . Therefore 

X(l)/e(l) = lG:Sl/e(l) = /e(l) 

divides \G-.N\ . But lil/5:5l - \N : N n S\ is relatively prime to , 

so that \NS:S\ is a factor of 0(1) , in particular \N : N n s\ < 9(1) . 

Now A^'^^cx^^ so that (A^'^j^^X^y • Thus is a sum of some G 

conjugates of 9 . By Mackey's Subgroup Theorem, = ^^NnS^^ 

so = \N : N n S\ ^ 9(1) . Thus is a conjugate of 6 . 

Since N n S is subnormal in N , this conjugate of 9 is an sM-character. 

A fortiori, 9 is an sM-character. The proof is complete. 

Proof of Theorem 3.5. See Isaacs and Passman [14], Proposition 1.3. 

Proof of Theorem 3.6. Let G be a group, A an abelian normal sub-

group of G and G/A is nilpotent. We use induction on | (?| to conclude 

that all proper subgroups of G are sM-groups. Let X be any non-linear 
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i r r e d u c i b l e c h a r a c t e r o f G . Let G > G^ > . . . > G^ ^ A be a c h i e f s e r i e s 

o f G through A . We know that x^ r e d u c e s , so we can c o n s i d e r the 

s m a l l e s t index i such t h a t t h e r e s t r i c t i o n o f x "to G. r e d u c e s . Let 

L = G^ , K = . As G/A i s n i l p o t e n t , \K/L\ i s a prime p . By t h e 

Going Down Theoren , x^ = J ^^ so t h a t -^(jf'P^] i s a proper subgroup o f 
'i'— 1 

index p in G . By Theorem 2 . 2 , t h e r e i s a ijj in such t h a t 

Q 

ip = X • ~ ' ^^ ^^ subnormal in G . The r e s u l t then 

f o l l o w s , a s i s an sA/-group. 

Proof of Theorem 3.7. Let G = K s p l i t H be any Frobenius group with 

H' c y c l i c . Let x ^ I r r ( u ) . By Theorem 2 . 1 2 , e i t h e r Ker X - K so tha t 

X ^ Ivv(H) , or X i s induced from an i r r e d u c i b l e c h a r a c t e r of K . In the 

f i r s t c a s e , x i s an s/>^-character s i n c e H i s m e t a b e l i a n , hence an 

nl^-group by Theorem 3 . 5 . In t h e second c a s e , x i s an sA/-character 

b e c a u s e t h e Frobenius k e r n e l i s n i l p o t e n t and hence an s/-/-group by Theorem 

3 . 6 . T h e r e f o r e G i s an sA/-group. 

Any subgroup N o f G i s e i t h e r a subgroup o f K so that N i s 

n i l p o t e n t , o r a subgroup o f H so t h a t N i s m e t a b e l i a n , or i t s e l f a 

F r o b e n i u s group whose complement has c y c l i c d e r i v e d g r o u p . In any c a s e , N 

i s an s/^Z-group. The p r o o f i s c o m p l e t e . 

Proof of Theorem 3.8. Let G - K s p l i t H he a Frobenius group with K 

a b e l i a n and H' c y c l i c . Let x ^ I r r ( (7 ) ; then e i t h e r Ker X - K or x 

i s induced from a l i n e a r c h a r a c t e r of K . In e i t h e r c a s e , x i s an nM-

c h a r a c t e r . The same argument a s in the p r o o f o f Theorem 3 .7 comple tes t h e 

p r o o f , 

To c o n s t r u c t a s u p e r s o l v a b l e group which i s not an sM-group, we need 
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the following lemma. 

LEMMA 3 .9 , Let x ^ Irr(G) be a nonlinear sM-oharacter. Then x t 
G 

reduces. 

Proof . If not, let Xq, = Z ^ Irr(G') . By assumption, x is induced 

from a linear character A of some proper subnormal subgroup S of G . 

Qt 

By Mackey's Subgroup Theorem, C = X ^ , = [A^]. , - Z f where a: 

runs through a set of double coset representatives of S and G' in G , 

and this forces SG' - G . Take a maximal normal subgroup N of G that 

contains S . Then G/N is cyclic, so G' ^ N , contrary to SG' = G . 

EXAMPLE 3.10. Let p be any odd prime. Let E be an extra-special 

3 

p-group of exponent p , order p . Let G = E split (g) where g has 

order 2 and it inverts some pair of generators of E . Then g acts 

trivially on the centre of E . By Theorems 2.10 and 2.11, any non-linear 

irreducible character C of £ vanishes outside Z(.E) , and so C is 

invariant in G . Let X ^ Irv(G) be such that [x,^, 0 . By the 

Going Down Theorem, X^ - ^ • This shows that X is not an sM-character 

by the previous lemma, since E - G' . Nevertheless, G is supersolvable 

as G > E >( X , Z(E)> > Z(E) > {l} , where x is any generator of , is a 

chief series of G with cyclic chief factors. 

EXAMPLE 3.11. Let be a relatively free group on 3 generators, 

with exponent 43 and class 2 ; that is, 

K = (u, V , w \ exponent 4-3, class 2> . 

3 

K' is an elementary abelian group of order 43 and is generated by the 

commutators Lv, w] , Cu, k ] and Iv., y] . Let 

We define an action of H on K as follows. Choose an integer k whose 
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multiplicative order modulo 43 is 21 , and define 

X X X 
.12 

U ~ U , V ~ V , w = w , U^ - V , V^ - W , hT^ = 
k' 

u 

Routine calculation shows that this is a well-defined action. V/e claim 

that G = K split H is a Frobenius group. To do so, it is enough to prove 

that any non-trivial element of H acts fixed point free on K/K' and on 

K' . Observe that with respect to the basis uK', vK', wK' of K/K' , x 

and y act on K/K' as the linear transformations defined by the matrices 

0 0 f 0 1 o' 
o-* — 0 0 and y ~ 0 0 1 

0 0 0 0 

so that y acts on K/K' as the linear transformation defined by 

3 
y = 

fe 0 0 

0 T< 0 

0 0 T< 

Since uK', VK', WK' are eigenvectors of x and y and neither x 

nor y has a trivial eigenvalue, they act fixed point free on K/K' , Now 

3 

each nontrivial element of H has a power equal to x ov y , so it must 

also act fixed point free on K/K' . 

We apply the same argument to show that any non-trivial element of H 

acts fixed point free on K' . To this end, we take [v, w], [w, u], [w, y] 
3 

as basis of K' \ routine calculation shows that x, y, y act on K' as 

the linear transformations defined by the matrices 

0 0 
\ 

0 0 0 0 

X - 0 0 , y = 0 0 3 

, y = 0 0 

0 0 1 0 0 ̂  0 0 

Obviously, neither x nor y has a trivial eigenvalue. We conclude that 
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t h e s p l i t e x t e n s i o n K s p l i t H formed wi th t h i s a c t i o n i s a Frobenius 

g r o u p . 

We o b t a i n s e v e r a l f a c t s about G - K s p l i t H . 

( 1 ) G i s an s/V-group s i n c e i t i s a Frobenius group with H' c y c l i c . 

( 2 ) G i s not m e t a n i l p o t e n t . Th is shows that a group whose subgroups 

a r e a l l sM-groups need not be m e t a n i l p o t e n t , l e t a l o n e a b e l i a n - b y - n i l p o t e n t 

( 3 ) G i s not an jW-group . The reason i s as f o l l o w s . Let X be an 

n 

i r r e d u c i b l e c h a r a c t e r o f G such that Ker x ^ • Suppose X = ^ where 

A i s a l i n e a r c h a r a c t e r o f a normal subgroup N of G . Then 

N' 5 Ker X » so N' K' . Hov/ever, K' i s the unique minimal normal 

subgroup o f G , so we must have - 1 . S ince K' i s the o n l y a b e l i a n 

K 

normal subgroup o f G , then N ^ K' . Now X i s i r r e d u c i b l e , c o n t r a r y t o 

Theorem 2 . 7 , a s N i s c e n t r a l and proper in K . 

( 4 ) G/K' i s a Frobenius group vrith a b e l i a n k e r n e l K/K' and 

complement H with c y c l i c d e r i v e d group . By Theorem 3 . 8 , a l l subgroups o f 

G/K' a r e nM-groups , but G/K' i s not m e t a n i l p o t e n t . 
EXAMPLE 3 . 1 2 . Let p and q be prime numbers such that p\[q'^-l] 

but pj({q-l) . GF((7 ] i s a s p l i t t i n g f i e l d f o r C^ , but GFiq) i s n o t . 

Thus C^ has a 2 - d i m e n s i o n a l I r r e d u c i b l e module over GTiq) . By 

a s s u m p t i o n , p ^ 2 . 

3 

Let Q be an a x t r a - s p e c i a l <7-group o f exponent q and o rder q 

when q i s o d d , and l e t Q be t h e quatern ion group when q - 2 . Let P 
3 

be an e x t r a - s p e c i a l p - g r o u p o f exponent p and o r d e r p . Let C be an 

a b e l i a n normal subgroup o f P so t h a t P/C i s i somorphic t o C^ . S ince 

Q/Z(.Q) G^ X C^ , t h e above d i s c u s s i o n shows that we can l e t P/C a c t 

i r r e d u c i b l y on Q/Z(Q) ; or e q u i v a l e n t l y , P a c t s i r r e d u c i b l y on Q/Z(Q) 
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w i t h k e r n e l C . When q i s o d d , ^ i s a r e l a t i v e l y f r e e g r o u p , s o t h i s 

a c t i o n c a n b e e x t e n d e d t o Q . O t h e r w i s e v/e a p p e a l t o t h e f a c t t h a t t h e 

q u a t e r n i o n g r o u p o f o r d e r 8 has an automorphism o f o r d e r 3 . Thus P 

a c t s on Q w i t h k e r n e l C and o b v i o u s l y P a c t s t r i v i a l l y on Z{Q) . Let 

G ^ Q s p l i t P . 

Let cp be a f a i t h f u l i r r e d u c i b l e c h a r a c t e r o f ^ , so c p ( l ) = q ; and 

l e t Y b e an i r r e d u c i b l e c h a r a c t e r o f C whose k e r n e l a v o i d s P' , and i s 

t h e r e f o r e n o t normal i n P . Now cpy i s an i r r e d u c i b l e c h a r a c t e r o f Q ^ C 

which i s n o t i n v a r i a n t i n G , f o r i t s k e r n e l i s . ker y which i s n o t normal 

in G . As Q C i s a m.axiinal s u b g r o u p o f G , i t f o l l o w s t h a t 

Q 
J^CcpY) - Q ^ C . Hence (cpy) i s i r r e d u c i b l e . S i n c e Q x C i s normal and 

Q 
n i l p o t e n t , (cpy) i s ^n s / ' ^ - c h a r a c t e r . 

Let Z? be a s u b g r o u p o f o r d e r p in P , n o t c o n t a i n e d in C . Then 

D a c t s n o n - t r i v i a l l y on Q i n such a way t h a t QD has no subgroup o f 

i n d e x q . By M a c k e y ' s Subgroup Theorem, 

b y Theorem 2 . 5 . As Z? a c t s t r i v i a l l y on Q.' we know t h a t cp i s i n v a r i a n t 

i n QD , h e n c e by M a c k e y ' s Subgroup Theorem, = , and s o b y t h e 

G o i n g Down Theorem, e a c h i r r e d u c i b l e c o n s t i t u e n t ip o f c p ^ i s such t h a t 

ijj^ = cp . In p a r t i c u l a r , each c o n s t i t u e n t \pyp, o f [ (cpy) has d e g r e e 

q . However , QBP' has no s u b g r o u p o f i n d e x q , s o none o f t h e s e 

c o n s t i t u e n t s can b e / l ^ - c h a r a c t e r s . 
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CHAPTER 4 

SUBNORMAL M-GROUPS 

The first result of this chapter is that if G is an s/¥-group, K/L 

is a complemented chief factor of G , and kL € K/L , then the centralizer 

C^(feL) of kL is subnormal in G . We find that s/^-groups have p-length 

at most 1 , for each prime p . This contrasts with the fact that there 

exist M-groups of arbitrarily large p-length (for by Dade's Theorem every 

solvable group is embeddable into some /^-group). However, supersolvable 

groups have all the above mentioned properties, yet we have seen in Example 

3.10 that not all supersolvable groups are a'^f-groups. We are still far 

away from having a complete structural characterization of s/'if-groups. 

Finally in Theorem U.14, we give a structural characterization of groups all 

of whose subgroups are s^M-groups. 

We shall need some structural results first. All groups considered are 

finite solvable groups. 

LEMMA 4.1, If a subnormal subgroup R of H contains a Sylow 

p-subgroup F of E , then R contains (f (H) ^ the normal closure of P 

in H . 

Proof. We use induction on . If R - H , there is of course 

nothing to prove; so we suppose is a proper normal subgroup of H 

containing R . Then P is a Sylow p-subgroup of N , and its normal 

closure (F (//) is characteristic in N , hence normal in B . This 

obviously shows that (F (H) = (F (N) . By the inductive hypothesis, 

cP iN) - R • The proof is complete. 

Let G be a group. The socle of G , denoted by o(G) , is the 

subgroup of G generated by all minimal normal subgroups of G . The 
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f o l l ow ing theorem g ives some well-kno'.-.Ti propert ies of o{G) . 

THEOREM 4.2. (l) o{G) is a G^njDj?actevistio subgroup of G . 

( 2 ) a(G) is abelian. 

( 3 ) a(G) is ihe diveot product of sow0 of the minifnat normcit 

subgroups of G . 

( 4 ) a{G X ff) = a(G) x a{H) . 

(5) For each normal subgroup N of G contained in o{G) ^ there is 

a normal subgroup M in G siuch thaz a{G) - N ^ M . 

(6) If F avA ® denote the Fizting and Frattini subgroups of G , 

respectively^ then F/9 is the socle of . 

LEMMA 4.3. If - oiG) a.yixi N is a maximal normal subgroup 

of G ^ then 

( 1 ) a(iV) = 71/ n a (G) ^ 

( 2 ) = a{E) , and 

(3) o{G) = [N o{G)] X L where L is central in G . 

Proof. Consider f i r s t the case 0{G) ^N . Then (3 ) i s t r i v i a l with 

L = { l } . As o{N) i s an abel ian normal subgroup of G ( i t i s normal, as 

i t i s charac te r i s t i c in TV ) , so i t w i l l contain or avo id, and hence 

c e n t r a l i z e , each minimal normal subgroup of G . Thus o(iV) cent ra l i z es 

a(G) , and by assumption, we have Oi'rJ) o(G) . By part ( 5 ) of Theorem 

4.2, 0(G) = o(N) X M f o r some normal subgroup M of G . However, we 

have now M i s normal in N but avoids 0{N) , which f o rces M = { l } , so 

oiN) = OiG) . Thus ( 1 ) and ( 2 ) fo l lov ; immediately. 

Next we suppose o(G) $ N , and l e t Z- be a minimal normal subgroup of 

G which i s not contained in N . Since N i s a maximal normal subgroup, 

we have G = N x L and L i s centra l in ff . By part (U) of Theorem 4.2, 

o(.G) = 0{N) X oiL) = o{N) X L , so that ( 1 ) and ( 3 ) hold. As L i s 

c en t r a l , C^[a(N)] = C^(o(G)) = o(G) , and (2 ) f o l l ows . The proof i s 

complete. 
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LEMMA 4.4. If C^(a(G)) = a(G) , and R is a subnormal subgroup of 

G ^ then R is a diveat factor of RoiG) . 

Proof. We use induction on , If R = G , there is nothing to 

prove; so we may assume R is contained in some maximal normal subgroup IJ 

of G . By part (2) of Lemma 4.3, the inductive hypothesis applies to N , 

and we conclude that Ra(N) = R x K for some K . By (1) and (2) of Lemma 

U.3, oiG) = [n n aiG)] x l = o(N) x L , with L central in G . Thus 

RaiG) = R{o{N) X l) = Ra{N) x l (note that Ro{N) n L < N n L = {l} ), and 

hence Ra{G) = (R x K) x L = R x {K L) . The proof is complete. 

LEMMA 4.5. If C^[aiG)} = a{G) and p is a character of a su.bnormal 

Q 

subgroup R of G such that p is irreducible, then R > a{G) . 

Proof. By Lemma 4.U, we see that Ra(,G) - R x k . Since p*̂  is 

irreducible. Theorem 2.7 asserts that C^O'?) - R which certainly shows that 

K = {1} and R > a{G) . 

Next, we come to a key lemma of this chapter. 

LEMMA 4,6. Let G be an sM-group with a self centralizing^ 

-complemented, minimal normal subgroup K . 

(1) If \i IrrCZ) and T = , then T is subnormal in G . 

(2) If K is a p-group, then G/K is a p'-group. 

(3) If k i K , then is subnormal in G . 

Proof. (1) By assumption, G = K split H , where H is a maximal 

subgroup of G , so that T which contains K , is a semi-direct product of 

K and (T n H) . By Theorem 51.15 in Curtis and Reiner L2j, T has an 

Q 
irreducible character x such that T^ = y . By Theorem 2.2, x is 

G G 

irreducible, so that x = p for some linear character p of a subnormal 

subgroup R of G . Observe that K - implies that K is the unique 

if R W w, Cr (fl^CR) S Rj iLcy^ > S^ { G) , 
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minimal normal subgroup of G , and so K = A{G) , and C^(a(C) } ^ o(G) . 

We may then apply Lemma 4.5 t o conclude that K ^ R . By Mackey's Subgroup 

G G 

Theorem, (x = (p i s a sum of G-conjugates of y , and a lso a sum of 

(^-conjugates of p^ , so that y = (p^)-^ f o r some g in G . Now i?^ 5 T , 

and \G:LF\ - jG:/?] = p ^ ( l ) = T^ (1 ) = \G,T\ , so if ^ T . This proves ( 1 ) . 

( 2 ) Consider I r r ( i i : ) as an ff-module. Note that I r r ( ;^ ) i s 

( isomorphic t o K as group and) dual t o K as -module: hence i t i s 

•^'^(OU^ f a i t h f u l and i r reduc i± ) l e . Let P be a Sylow p-sugbroup of H , and 

consider i t s permutation ac t ion on the set I r r ( A : ) \ { l ^ } whose c a r d i n a l i t y 

i s r e l a t i v e l y prime to p : i t must f i x at l e a s t one n o n t r i v i a l element in 

I r r ( Z ) , say u . We have then F S T E where T = -^^(Vi) • By part ( 1 ) , 

T n H i s subnormal in H , so we can apply Lemma 4.1 t o conclude that 

(F {H) ^ T H . Now Cp (H) i s normal in H , so that the set of f i x ed 

po ints of ( f (H) in lvv{K) i s an ff-submodule. Since y l i e s in i t , 

and as I r f { Z ) i s an i r r educ ib l e //-module, cP (H) ac ts t r i v i a l l y on 

I r r ( Z ) . But we know that Ivr(K) i s a f a i t h f u l //-module, so that 

( f ' i H ) = { l l . This proves ( 2 ) . 

( 3 ) Let k i K and C = H n so that C^ik) = KC . Let 

. By ( 2 ) , ( 1^ ! , = 1 , so that Maschke' s Theorem y i e l d s that 

C ac ts complete ly reduc ib ly on . In p a r t i c u l a r , K - M L , where L 

i s the sum of n o n - t r i v i a l i r r educ ib l e C-submodules of K . We claim that 

L - [_K, C^ . I f f/ i s an i r r educ ib l e submodule of L , then obviously 

IW, C] = W , so W ̂  IK, , and a fortiori L < [ i f , C] . Conversely 

IK, CL = [M ^ L, CJ = LL, CJ ^ L and the claim i s proved. We wr i te now 

Z = Af X [ Z , C] . 
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Let 0 = {y e IvriK) | Ker y > [Z, C]} . Obviously, 

n Ker y = IK, C] . Let 5 = R I (y) . By (1), each r (y) is sub-
y^B yC5 ^ ^ 

normal in G , and as the intersection of subnormal subgroups is a subnormal 

subgroup, we have 5 subnormal in G . By the choice of 5 , we know that 

C S S n H ; hence [Z, (7] < [î , 5 n ffj and n B) ^ = M . By 

the same argument as we used before, we apply (2) and Maschke's Theorem to 

conclude that K = n E) x [z, 5 n ff] . Since the y are linear, we 

have [k, I^(y)J 2 Ker y , and so 

[Z, 5 n A'] 5 n [z, J (y)l 5 n Ker y = IK, C] . 
y€5 ^ y^B 

We have already established the converse inclusion, so 

IK, S n H^ = [K, CI . Since n H) is contained in M and each of 

them complements [K, Cl in K , \je have C (S' n H) = M . Therefore 

A 

S n H < C ; the converse inclusion having been noted before, this implies 

S H ^ C . Thus S ^ KiS n H) = KC ^ is subnormal in ff . The 
proof is complete. 

THEOREM 4.7. Let G be an sM-gvoup, K/L a complemented chief 

factor of G and k ^ K . Then C(kL) is subnormal in G . 

(jr 

Proof. We argue by contradiction. Suppose G is a counterexample of 

least possible order, and C^(feL) is not subnormal in G . Let ff be a 
complement of K/L , that is, K C\ B = L and KH - G . Let 

M/L - Zj^^jXK/L) . Then M/L is normal in B/L and centralized by K/L , 

so it is normal in G/L . Moreover, KM/M is a chief factor of G/M 

complemented by B/M , and = = Z^{kL)/M , so ^q/^/^) 

is not subnormal in G/M . Thus G/M is also a counterexample. By the 

minimality of G , M - {l} . In particular, L = {l} , K is a minimal 
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normal subgroup of G complemented by H , and C (K) - KC (K) - K14 - K . 
G H 

Thus we have reached a contradiction with Lemma 4.5 (3). 

DEFINITION 4.8. The p-length of a group G is defined as follows. 

Consider the series {l} ^ P. ^ N^ < P< N< ...< P s N = G , where u 0 1 1 n n ^ 

^̂ k̂ k̂ greatest normal p'-group of G/P^ , and is the 

greatest normal p-subgroup of G/J]^ . Then n is the p-length of G . 

Denote the p-length of G by . 

We need the following result on p-length. 

LEMMA 4.9. Let G be any group, such that any proper homomorphio 

image of G has p-length at most k , and l^iG) > k . Then 

(a) ^{G) = {1} , 
(b) the Fitting subgroup F of G is the unique minimal normal 

subgroup of G y and it is its oin oentralizer. 

Proof. See Huppert [12], Chapter V, Hilfsatz 6.9. 

THEOREM 4.10. if G is an sM-group and p is any prime^ then the 

p-length of G is at most 1 . 

Proof. We need only to consider those primes which divide . We 

argue by contradiction. Let G be a minimal counterexample with p-length 

greater than one for some prime p . Then all proper homomorphic images of 

G have p-length at most 1 . By Lemma 4.9, G - F split H , where F is 

the Fitting subgroup of G , and it is minimal normal and self-centralizing 

in G . If F is a p'-group, then G/F has p-length 1 , implies that 

G has p-length 1 . So F is a p-group. By Lemma 4.6 (2), G has 

p-length 1 , a contradiction. 

Finally, we consider groups whose subgroups are all sM-groups. 

LEMMA 4.11. If every subgroup of G is an sM-group, K/L is any 

chief factor of G , and k ^ K , then Z(kL) is subnormal in G . 
ir 
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Proof. We argue by contradict ion. Let G be a minimal counterexample 

with C^ikL) not subnormal, then c l ear ly L = { 1 } . 

If M i s a norm.al subgroup of G avoiding K , then KM/M i s a chief 

f a c to r of G/M and ^QJ^^W-D = = i s not subnormal in 

G/M . On the otner hand, a l l subgroups of G/M are s^-^-groups, so G/M i s 

a counterexample. As G was chosen minimal, M = { 1 } . Thus K i s the 

unique minimal normal subgroup of G . Let p be the prime d iv isor of 

K , then G has no nontrivial p ' -subgroup, and the Fitting subgroup F 

of G i s a p-group, and Theorem 4,10 implies that G/F i s a p ' -group. 

Thus F i s complemented by any Hall p'-subgroup H . If KH = G , vie have 

a contradict ion to Theorem 4 . 7 , so assume KH < G . By assumption, a l l 

subgroups of KH are s'^f-groups. As K i s central in F , i t i s a chief 

fac tor of KH . Thus C^r/^) i s subnormal in KH by Theorem 4 .7 ; i t i s 

immediate that C^(^) i s subnormal in G , and th is f i n a l contradiction 

completes the proof . 

This lemma would be of no interest i f i t s conclusion was not inherited 

by subgroups, but we can show that a l l i s well in th is respect . It w i l l be 

convenient to have a name f o r groups f o r which the conclusion holds. Vfe 

shall say that a (finite solvable) group G is a chiefly suh-Fvobenius group 

if C^ikL) is subnorrnal in G whenever kL is an element of a chief factor 

K/L of G . Note that this i s equivalent to saying that the central izer of 

kL in G/Z^K/L) i s subnormal in this factor group. 

THEOREM 4.12. All subgroups^ factor groups^ and direct products of 

chiefly sub-Frobenius groups are chiefly sub-Frobenius groups. 

Proof. The claim f o r fac tor groups i s t r i v i a l , as each chief fac tor of 

G/N may be viewed as a chie f fac tor of . To see the claim for a d i rec t 

product G X H , vie use that the Jordan-Holder Theorem allows us to look 
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only at the chief factors of a particular chief series. If KfL is a chief 

factor in a chief series of G x H through G , say, then either K S G so 

K/L is a chief factor of G and (G x H)/C^^(K/L) acts on K/L as 

G/C^{K/L) does, or L >G in which case (G x H)/r ^(Z/L) acts on K/L 
Lr (jr^M 

just as H/CAKnH/LnH) acts on the chief factor (K n H)/{L n H) of H . 
h 

It is a little harder to deal with the case of a subgroup G^ in a 

chiefly sub-Frobenius group G . Choose a chief series in G , intersect 

its member^with G^ , and refine the resulting series of normal subgroups of 

j'otJ '^i ^ chief series. By the Hordan-Holder Theorem, it is sufficient to 

examine the factor of this chief series of G^ . Suppose 

arise by refining (G^ n k)/[g^ n l] where X/L is a chief factor of G , 

so G^ n X > K^ > L^ > G^ n L . Then is Gj^-isomorphic to the 

section K^L/L^L of K/L . Let p be the prime divisor of \K/L\ . Now 

G/ZAK/L) acts faithfully and irreducibly on K/L , and the argument used 
G 

for deducing part (2) from part (l) in the proof of Lemma 4.5 applies, with 

the conclusion that G/Z^{K/L) is a p'-group. In particular, 

G /C (.K/L) is a p'-group, so by Maschke's Theorem K/L is completely 

reducible as (?^-module. Thus K^L/L = [L^L/l] X (M/L) for some M 

normalized by G^ , and K^/L^ is isomorphic to M/L . If now k^ € K^ 

and mL is the element of M/L corresponding to fe^L^ under some 

G^-isomorphism K^/L^ ^ M/L , we have C^ [k^L^ = ^G^^^^ = n C^(mL) . 

As Z^imL) is subnormal in G by assumption, we conclude that C^ (̂ i-̂ l) 

is subnormal in G^ . This completes the proof. 

1 
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Remark, The step we repeated here from the proof of Lemma U.6 may also 

be used to show that the p-length of a chiefly sob-Frobenius group cannot 

be greater than 1 , for any prime p . 

It remains an open question whether every sM-growp is a chiefly sub-

Frobenius group. 

LEMi4A 4.13. If every subgroup of G is an sM-group^ then every non-

nilpotent section of G has a non-central minimal normal subgroup. 

Proof. Let G he a minimal counter example. G is non-nilpotent and 

a(G) 5 Z(G) . If M is any minimal normal subgroup of G , choose N 

maximal among normal subgroups of G which avoid M . Now NM/N is the 

unique minimal normal subgroup of G/N . As M < Z(G) , MN/N is central 

in G/N , so either G/N is nilpotent or N = {l} by minim.ality of G . 

If M is not the unique minimal normal subgroup of G , then N > {l} , and 

G/N is nilpotent. Since the interesection of all such il/'s is trivial, G 

is a subidrect product of such G/N's , and hence G is nilpotent. This 

contradiction shows that a{G) is the unique minimal normal subgroup of 

G ; so |a(G)| = p , a prime number. Hence - "the Fitting 

subgroup F of G is a p-group. Since G has p-length 1 by Theorem 

4.10 , G/F is a p'-group. By Maschke's Theorem, G/F acts on o{F) 

completely reducibly, so that a(F) 5 oiG) . On the other hand, a(G) <F 

so oiG) < a(F) and equality holds. Let g ^ G with prime order q p 

then F<g) is not nilpotent, for g cannot centralize the Fitting subgroup 

F . If < G , then by the minimality of G , there is a minimal normal 

subgroup M of Fig) such that M is non-central in Fig) but then 

M n oiF) = {1} as a(F) = oiG) is central, so M n F = {l} and 

Fig) = F X M follows, contrary to the non-nilpotence of . We 

conclude that G = F<g) . We know that F = IF, glC^ig) (see Gorenstein 

[9], Chapter 5, Theorem 3.5), whence [F, gl = LF, g, gl < F , If 



33 

I F , < F , then [F, gl^g^ < G . Let N be maximal among normal subgroups 

of [F, gl^g) which avoid a{G) ; then No{G)/N is the unique minimal 

normal subgroup of [F, gl^g^/N ; it is central there, and has order p . 

By the minimality of G , this group is nilpotent and hence in fact a 

p-group. Thus g i. N and N > [F, gl ; hence [F, n a(F) = {l} , a 

contradiction. We conclude that [F, g'] = F . Let K/L be a chief factor 

of G V7ith F 2 K > L > oiG) and choose M maximal among normal subgroups 

of G such that M n K - L . Then K/L is G-isomorphic to KM/M , and is 

the unique minimal norinal subgroup of G/M . G/M is not nilpotent, 

otherwise F - [F, g] ^ M contrary to K n M - L . Therefore K/L is non-

central in G , and so it is a faithful irreducible <^)-module. Thus 

C^ig) = a(G) . Now let F/K be a chief factor of G and choose N 

maximal among normal subgroups of Kig) v;hich avoid o{G) ; the minimality 

of G yields, via the argument we have used repeatedly, that K^g)/N is a 

p-group, and g ^ N . Thus N > IK, g] , and LK, g] n a(G) = {l} . Now 

K = [K, g^iC^ig) = LK, g-\ x a((7) , and so Kig) = B x a(G) . Let 

T € Irr(A'<^>) with Ker T = iV . Then T = - which is maximal 

in G . If r = Kig) , then = T n F = X so that (x^)^ is 

irreducible. In particular, is irreducible as = ^^^^ ' ^ 

G G 
is a subnormal M-group, so T = A where X € Irr(L) , X(l) = l , and 

L is subnormal in ff . So \G:L\ = \G:K<g)\ is a power of p , and 

q \L\ . Thus L > 0^\G) by Lemma 4.1, and so L > (G) > [F, g] = F , 

a contradiction. If T = G , then 7/ n Z = Ker x^ < G , so 

N n K n o{G) = {l} implies that [A', gl 5 A' n A = {l} ; hence 

K = C ig) ^ oiG) = a(F) . Thus |a(F)| = p and F/o{F) a chief factor of 
K 

G implies that F is an extra special p-group. Let cp be a faithful 
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an irreducible character of F , so cp is G-invariant. There exists 

irreducible character X of such That Xp ^ ^ . Now x = where 

X € Irr(L) , X(l) = 1 and L is subnormal in G . Thus L is of 

p-power index, so q , and by the argument we have used before. 

L ^ 0^- (G) ^ IF, gl = F , a final contradiction. 

THEOREM 4.14. All subgroups of G are sM-groups if and only if G 

is a ahiefly sub-Frobenius group and exah non-nilpotent seotion of G has a 

non-aentral minimal normal subgroup. 

Proof. The "only if" claim follows from Lemma 4.11 and Lemma 4.13. To 

prove the "if" claim, we argue by induction on . We need only show 

that G itself is an sM-group. Let X be a non-linear irreducible 

character of G . By the minimality of , v/e can assume that X is 

faithful. If G is nilpotent we are done, as nilpotent groups are 

sM-groups by Theorem 3.5. Otherwise, -here exists a non-central minimal 

normal subgroup M in 6" . Then C ^ is a proper normal subgroup of 

G . If M is a p-group, then G/C is a p'-group by the remark after 

Theorem 4.12. Let tp be an irreducible constituent of X/̂  s and put 

T - Iq^^) • As T/C is a p'-group and Mn Ker cp < T , by Maschke's 

Theorem we have M - {M n Ker cp) x I with Y normal in T ; as 

[M, y] 5 M n ker cp , in fact Y ^ ZiT) . If J = {l} , then x is not 

faithful. Thus there is a non-trivial element y in Y and ^Q^U"^ - ^ • 

Now < G , else 1 f y ^ M r\ Z{G) , so M < Z(G) gives a contradiction. 

As T < C^iy) , hy Theorem 2.2, x is induced from some irreducible 

character y of ^G^^^ ' ^G^^^ ^^ subnormal in G by chiefly sub-

Frobenius property of G . By the inductive hypothesis is an 

sM-group, so it follows that x is an sM-character as required. 
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Remark (added in proof). It is not too hard to see that the class of 

chiefly sub-Frobenius groups whose nonr.ilpotent sections all have non-

central minimal normal subgroups, is direct product closed; it is obviously 

subgroup closed and factor group closed. 
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CHAPTER 5 

NORMAL M-GROUPS 

The main result of this chapter is a structural characterization of 

?2/'f-groups (Theorem 5.4). Unfortunately, it is rather complicated to state 

and difficult to relate to any of the familiar structural properties. We 

derive from it that each inI4-gvo\i-p G is "chiefly Frobenius" in the sense 

that if yjL is a non-central chief factor of G , then K/L split G/^JK/L) 
G 

is a Frobenius group (whose kernel is abelian and) vrhose complement has 

cyclic derived group; so the Fitting factor group G/F is metabelian, ' 

supersolvable, and its odd Sylow subgroups are abelian. We also prove that 

all subgroups of ru^-groups are SiV-groups. However, for p-groups these 

consequences of the characterisation are trivial, all we can do is to 

present some examples. These show, for each prime p , that not all 

p-groups are ?^-groups but there exist non-metabelian p-groups which are 

n/'^-groups. We find nM-gvoups whose normal subgroups are not all ?'2Af-groups, 

and exhibit subdirect products of nM-gvoups which are not ni^-groups. 

LEMMA 5 , 1 . Let A be an abelian normal subgroup of maximal order in 

a group G . 

(1) If X is a faithful irreducible vM-aharaoter of G ^ then x 

induced from A ; in particular^ xd) -

(2) If x irreducible M-character of G with xd) - G\A 

then X induced from A ; in particular it is an nM-eharacter. 
Q 

Proo f . ( 1 ) By assumption, X = 3 for some linear character 3 of 

some normal subgroup B of G . As S' < core^(Ker 3) = Ker x = {l} , we 
know that B is abelian, so x ^ ) = \G-B\ > • Let a be an 
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i r reducib le constituent of x^ • By rrobenius r e c i p r o c i t y , x i s ^ 

constituent of a , so that x d ) - = . Thus 

X ( l ) = \G:A\ = oFil) and X = ct̂  • 

Q 

( 2 ) Now X = T f o r some l inear character y of some subgroup H . 

As Y*̂  i s i r reduc ib le , so i s . By C l i f f o r d ' s Theorem 

(y"^^)^ - ^ Y. * ^ where a = a^ say. By Mackey's 
t 

z 
Ul 

Subgroup Theorem, = ' ^^ Frobenius r e c i p roc i t y . 

k = ^^ [y J 

as a and y are l inear . Thus 

AH 
Aff:I^^(a)\ = y ( 1 ) = \aH-.H G:H / a-.AH 

= X(l)/ G:AH > G:A / G:AH AH:A 

AH AH G ^ 
so J . „ ( a ) = A . Now a = Y by Theorem 2.2, and so X = Y = Oi^ . The 

An 

proof i s complete. 

Let F denote the c lass of a l l ( f i n i t e so lvable ) groups whose f a i t h f u l 

i r reduc ib le characters are a l l ?^'-^-characters. (For groups' which have no 

f a i t h f u l i r reducib le characters, th is condition i s vacuous; these groups 

are regarded as members of F . ) Obviously, a group is an nM-gvoup if and 

only if all its factor groups lie in F . The key lemma is the fo l lowing 

structural characterization of F . 

LD̂ MA 5.2. Let A be an ahelian normal subgroup of maximal order in a 

group G . This group G lies in F if and only i f , whenever g ^ G\A and 

C is a subgroup of A such that C > and A/C is ayclic, we have 
/ 

cove^iC) > { 1 } . 

Proof. The condit ion i s c l ea r l y equivalent to the f o l l ow ing : i f A/C 
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1= is c y c l i c , core^(C) { l } , and [^4, gr] < c , then g i A . The subgroups 

C with A/C c y c l i c are prec ise ly the Ker a with a ranging through the 

Q 

i r reducible characters of A . We know that core„(Ker a ) = Ker a , and 
Lr 

that lA, g ] < Ker a i f and only i f g' ^ I^ia) . Thus our task is to prove 

Q 

that C F i f and only i f I^ia) - A whenever a € I r r ( ^ ) and a i s 

f a i t h f u l . 
Let X be a f a i t h f u l i rreducible character of G , and a an 

i r reducib le constituent of x^ • By Frobenius r e c ip roc i t y , x i s a 
/i. 

G G constituent of a , and so a is f a i t h f u l . I f lAa) - A , Theorem 2.2 
( j 

G G t e l l s us that a i s i r reduc ib le , so a = X X is n^'^-character. 
Q 

Conversely, suppose that G ^ f , and l e t a ^ I r r ( A ) with a 

G 

f a i t h f u l . Consider an irreducible constituent x ® • By Frobenius 

r e c ip roc i t y and C l i f f o r d ' s Theorem, x^ is a multiple of the sum of the 
Q 

G-conjugates of a , so- Ker x. = core^(Ker a ) = Ker a = { l } . Thus x i s 

f a i t h f u l and hence an nl4-chavactev. By Lemma 5.1 ( 1 ) , x d ) = I'̂ '-'̂ l so 

r G T 
X = a • Put T - I g i a ) as a is i r reduc ib le , so i s a . By Mackey's 

fjl 

Subgroup Theorem, fa = , so by Frobenius r e c i p r oc i t y . 

r r ( ' 
-

a , [a T:A . Thus I „ ( a ) -A and the proof is 
Lr 

complete. 

For p-groups, th is c r i t e r i on takes a simpler form, f o r a p-group G 

which has a f a i t h f u l i rreducible character must have cyc l i c centre; 

equivalent ly i f such a group G i s non - t r i v i a l , then the socle of G , 

aiG) , has order p . 

LEMMA 5.3- ^ ^^ a b e l i a n normal subgroup o f maximal o r d e r i n 

a p - g r o u p G . Then G ^ F i f and o n l y i f e i t h e r |a((?)| p or 
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n g-] > o{G) . 

Proof. The "if" claim is immediate from the previous lemma. For the 

proof of the "only if" part, we argue by contradiction. Suppose G € F , 

a((?)| = p , g € , and [A, ^ a{G) . Then [/I, n o{G) = {l} . 

Let C be a subgroup of A maximal v.-ith respect to containing [^4, g'\ and 

avoiding a(G) . If ( aC> is a subgroup of order p in A/C , then 

< C , a> > C , so by the maxlmality of C , vie have < C, a) n o{G) {l} ; 

thus <C, a) > o{G) and in fact < C , a> = CoiG) . Thus the only subgroup 

of order p in A/C is CoiG)/C . As A/C is an abelian p-group with 

only one subgroup of order p , it mnsz be cyclic. By the previous lemma, 

core^C > { 1 } , so that core„(7 > a(G) , contrary to the assumption that 
G Lr 

C o oiG) = { 1 } . The proof is complete. 

Remark. in each of the last two lemmas, A was an arbitrary abelian 

normal subgroup of maximal order. It follows that if one such subgroup 

satisfies the relevant condition, so does every other. Thus it makes no 

difference whether v;e require that at least one abelian normal subgroup of 

maximal order satisfies the condition, or that all such subgroups satisfy it. 

We have established the following criterion. 

THEOREM 5.4. A group (p-group) is an nl4-group if and only if in 

every factor group G of our group^ some abelian normal subgroup A of 

maximal order satisfies the conditions of Lemma 5.2 (Lemma 5.3;. 

Unfortunately, these structural conditions are not easy to use or to 

relate to other structural properties. We. proceed to discuss what we can-

obtain in this direction. 

THEOREM 5.5. If G is an nI4-group, g ^ G , and K/L is a chief 

factor of G ^ then g acts either trivially or fixed point free on K/L . 

Equivalently, K/L split G/Z^{K/L) is a Frobenius group whenever K/L is a 

non-central chief factor of G . 
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Remark. Note that by Theorem 2.17, each G/C^{K/L) has cyclic derived 

group. We shall refer to groups which satisfy the conclusions of this 

theorem and of this remark, as chiefly Frobenius groups . As Example 3.11 

shows, the converse of Theorem 5.5 is false. 

Proof. By passing to a factor group of G if necessary, we may assume 

that K is the unique minimal normal subgroup of G (and L - {l} ); that 

is, K - a(G) . Let p be the prime divisor of and F the Fitting 

subgroup of G , then G has no non-trivial normal p'-subgroup, so by 

Theorem 4.10, F is a Sylow p-subgroup of G . A Hall p'-subgroup H of 

G then complement F . Clearly, Z(F) contains the unique minimal normal 

subgroup Z , so if g i G and g = fh with f ^ F , h H , we have 

C^(g') = ' need only pursue the case where /z # 1 . 

Choose an abelian normal subgroup A of maximal order in G . As in 

the proof of Lemma 5.3, we see that, by Lemma 5.2, lA, h2 > o{G) - K . As 

A is an abelian p-group and h is a p'-element, we have 

A = C^(^) ^ lA, hi (see Gorenstein [9], Chapter 5, Theorem 2.3). Thus 

h acts fixed point free on lA, hi and also on K , and 

CAg) - CAh) = {1} . The proof is complete. 
K K 

COROLLARY 5.6. If G is a chiefly Frobenius group^ so in particular 

if G is an nM-group, vyith Fitting subgroup F and Frattini subgroup # ^ 

then 

(1) G/^ is a subdirect product of groups of prime order and of 

Frobenius groups whose kernels are abelian and whose 

complements have cyclic derived groups; 

(2) G/F is a subdirect product of Frobenius complements with 

cyclic derived groups; in particular^ G/F is metabelian, 

super solvable, and its odd order Sylow subgroups are all 

abelian. 
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Proof. (1) We may assume <i> = {l} , so that the intersection flM of 

the maximal subgroups M of G is {l} . Thus also fl cove= {l} , 

that is, G is the subdirect product of the G/cove^ . By Galois' 

Theorem (see Huppert [12], Chapter III, Satz 3.2), each G/cove^ is of the 

form K/L splix G/C^iK/L) . 
LT 

(2) By Satz U.3 in Chapter III of Huppert [12], G/F is a subdirect 

product of the G/C^{K/L) . 

We note the following analogue of Theorem 4.12. 

THEOREM 5.7. All subgroups^ faazov groups, and direct produats of 

chiefly Frobenius groups are chiefly Frobenius groups. 

Proof. Observe that G is a chiefly Frobenius group if and only if 

the following hold for each chief factor K/L of G : the derived group of 

GtZAK/L) is cyclic, and each nontrivial element of KjL has trivial u 

centralizer in G/C^iK/L) . The proof of Theorem. 4,12 may nov; be repeated, 

mutatis mutandis, until the last substantive sentence, and then we proceed 

as follows. Since C^imL) = C^{K/L) by assumption, we conclude that Lr Lr 

C^ [k^L] centralises ^^/L^ , so C^ [KJ^/^J = ^Q i^i^J ' ^^ remains to 

note that the derived group of cyclic, because this 

factor group is isomorphic to the subgroup G^C^{K/L)/C^{K/L) of 

G/Z^iK/L) . This completes the proof. 
G 

Next, we obtain a further consequence of Theorem 5.4. 

LEMMA 5.8. If H is a section of an nM-group and aiH) is central 

in H and has prime order p , then H is a p-group. 

Proof. We argue by contradiction. Suppose oiH) is central of order 

p , but H is not a p-group, and let G be an. ?2/>'i-group of least possible 
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order with respect to G having a section S/R isomorphic to H . Put 

aiS/R) - Z/R . The key step is to observe that 

RiZ n N) = Z for every nontrivial normal subgroup N of G . 

As \Z/R\ = p , the only alternative is that RiZ n N) - R . In that case, 

R{S n N) ^ R also, for R{S n N)/R is normal in S/R but 

R{S n N)/R o o{S/R) = R{S n N)/R n Z/R = RiZ n N)/R = R/R . 

Therefore G/N has a section isomorphic to H , namely 

SN/RN ^ SRN/RN ^ 5 / ( 5 n RN) ^ S/iS n N)R = S/R - H , 

contrary to the minimal choice of . This proves our key step, v/hich we 

shall use repeatedly. 

Let A be an abelian normal subgroup of maximal order in G , and M 

be any minimal normal sijbgroup of G in . Now from the key step above, 

RiZ n M) = Z , so that Z/R = RiZ n M)/R ĉ  (Z n M)/iR o M) and therefore M 

is a p-group. As this holds for every choice of M ^ vie conclude that A 

is also a p-group. Let s be a p'-element of S ; then s ^ ̂  . 

Next we prove that [A, s](i? n A) ^ Z n A . Suppose this is false. 

Then Z n A = iZ n lA, s])(i? n A) and so 

Z/R = RiZ n A)/R c^ iZ n A)/iR n A) = iZ n U , s])(i? n A)/iR n A) 

= iZ n U , s])/(/? n U , si) 

shows that s does have non-trivial fixed points in B = U , s]/(i? n , s]); 

that is, C„(s) > {l} . As s is a p'-element acting on the abelian 
B 

p-groups A and B , by Theorem 2.3 of Chapter 5 in Gorenstein [9], we 

know that A = [A, s] x and B = [5, si x C^(s) . The first of these 

yields U , s] = lA, s, s]; hence by the definition of B we have 

5 == [S, s] , so in the direct decomposition of B we must have 

C (s) = {l} . This contradiction completes the proof of the present step. 
B 

Now we choose C in A maximal with respect to containing 

U , s](i? n A) but not containing Z n A . If A > D > C , then D > Z n A 
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and D/C > (Z n A)C/C . Thus (Z n A)C/C is the unique minimal subgroup of 

A/C and this implies that A/C is cyclic. By Lemma 5.2, C contains a 

minimal normal subgroup M of G . On the other hand, R n A < R n C by 

the choice of C \ the converse inclusion holds because A > C \ so 

R r\ A - R r\ C . Also R n A - R n C S Z r ^ C < Z n A . As 

(Z n A)/{R n = (Z n = Z/R and |Z//?| = p , we conclude that 

R r \ A - Z r \ C > Z n M , so Z = i?( Z n A?) = i? , a final contradiction. 

THEOREM 5.9. If G is an -nl-i-cvoup, then each non-niZpotent section 

of G has a non-central minimal no'iyrial subgroup. 

Proof. Let be a non-nilpotent section of G , and suppose all 

minimal normal subgroups M. of K are central. Let /I/, be maximal among 

the normal subgroups of K which avoid M. . Then K is the subdirect 

product of the K/N. ; so at least one of these, say K/N , is non-
-L 

nilpotent. Put H = K/N^ . Now o{H) is » ^^ central and 

of prime order. By Lemma 5.8, H should be nilpotent, but we chose it so 

that it is not. This contradiction proves the theorem. 

COROLLARY 5.10. If G is an vM-gvoup, then all subgroups of G are 

sM-groups. 

Proof. It is obvious that each chiefly Frobenius group is a chiefly 

sub-Frobenius group. Hence Theorem 5.5 and the remark which follows it, 

together with Theorem 5.9 and Theorem 4.14 give our claim. 

At this stage, one might feel that we are very close to a convenient 

structural characterization of nM-gvon^s. Indeed, we shall show in the 

next chapter that an ^-group is an rj^^-group if and only if it is chiefly 

Frobenius. 



However, for p-groups. Theorems 5.5 and Theorei?. 5.9 do not say 

anything at all. It is rather frustrating that we are unable to exploit the 

relative simplicity of Lemma 5.3 (as compared to Lemma 5.2) to find a more 

familiar and managable criterion for a p-group to be an ?W-group. For 

instance, we cannot decide whether p-groups v;hich are n/'f-groups can have 

arbitrarily high derived length. (If their derived lengths were bounded 

independent of the choice of p , say by n , then the derived lengths of 

arbitrary n/'-i-groups vjould be bounded by n + 2 . For a minimal counter-

example G to this would have a unique minimal normal subgroup, so by 

Theorem U.IO, its Fitting subgroup would be a Sylow subgroup and hence, by 

Theorem 3 . 4 , F would be also an ?^'i-group. ) All we can offer is some 

examples v/hich show for each prime p , that not all p-groups are nAf-groups 

but there exist non-metabelian p-groups v/hich are n/^f-groups. A further 

example (which is not a p-group) shows that subdirect products of n/<f-groups 

need not be nAf-groups. 

EXAMPLE 5.11. Let p be a prime, p 2 5 , and T an extra-special 

group of order p ^ and exponent p , generated by a, b, o, d , such that 

[a, = Lo, d'] is central and [a, c] = e] = la, d'] = [Z?, d ] = 1 . 

Consider the map a defined by cP - a ^ iP - be , c^ - aod , d'^ = ad . 

Routine calculation with the defining relations of T shows that a extends 

to an automorphism of T , which we also denote by a . Note that O acts 

trivially on T' . 

It is easy to prove by induction on k that 

a -a , 

^0 Kj d = a d , 

k+1^ 
a 

c = ca 

^ ^ (2) ta) 
b = ba G d Id, c] 
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We shall give only the hardest step, the inductive step in the last 

item, assuming the others have already been dealt with. Thus 

Ml k k O nO O -bo 

= ba ad id, c^ ca d ('J 

tfhi'^t) k.^ (2) . -ha c d \d , cjCd, c] (I) 

^ 3 / k+iS 2 ̂  
rk + 2 

- oa c d Id, c] 

since f/c+r 'k+l' 
3 

. 2 J 3 . Q - ̂  = k+l 
2 d , ej = [d, c] ft 

[ b . [ b -
fe+i 3 

It can be seen from these formulas that a^ is the identity on T . 

Thus vje may form a group S as the split extension of T by a group of 

order p generated by an element s which induces O on T . Note that 

Lb, s] , La, s]j = Ce, adl [e, d] ^̂  1 , so that S is not metabelian. 

Thus if A is an abelian normal subgroup of maximal order in 5 , we must 

2 

have S:A > p (or else S/A would be abelian). On the other hand, 

consider a faithful irreducible character T of T . Since s acts trivially on J" , it follows from Theorems 2.10 and 2.11 that T 
g 

is invariant in 5 . If x is an irreducible constituent of x , then (by 
2 Frobenius reciprocity and the Going Down Theorem) X(1)=P 

and T n Ker x = • However, since o is an outer automorphism of T , 

we have C (T) < T , thus Ker x = {l} follows. Thus x is a faithful s 
2 irreducible character of degree p which cannot be induced from A (as 

r\ 

S-A\ > P )• By Lemma 5.1 (1), X is not an nM-character, so S is not 

an n/>̂ -group. 
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Remark. The above group S was taken from Blackburn's list of groups 

of maximal class (see Blackburn [1]), though his description was unsuitable 

for characters. 

EXAT-IPLE 5.12. It is immediate to check that the group S of Example 

5.11 has an automorphism p of order p such that t^ - t for all t in 

T while s^ - s[a, b] . Let R be the split extension of S by a group 

of order p generaxed by an element r which induces p on 5 , We claim 

that i? 'ts cLTi Tj-'l— group-, it is obviously non metabelian, and its normal 

subgroup S is not an nM-group. 

It is clear that T is normal in R and R/T' is metabelian, so we 

only prove that if is an Irreducible character of R whose kernel does 

not contain T' , then ip is an n/'f-chavacter of R . If ip(l) ̂  p , this 

is automatic, for is an M-character and all subgroups of index p are 

normal. The subgroup generated by a, d, [a, b] , and i' is an abelian normal 

3 
subgroup of index p in i? , so if B is an abelian normal subgroup of 

max; imal order in R , then |r?:B| < p (alternatively, by Satz 7.3 (b) in 
o 

Chapter III of Huppert [12], if = p , then 3(3+1) > 14 ; hence 

3 > 4 and |i?:B! < p ). Thus Lemma 5.1 (2) shows that ip is an 

2 
??A/-character unless i|;(l) 5 p ; so we need only pursue the case 

:p(l) = p^ . By assumption, ip is non-trivial on T' , so ^J^ is a faithful 

irreducible character of T by Theorem 2.11. Hence ip vanishes on T\T' 

by Theorem 2.10. It cannot vanish on S\T , for l^:?"! = p^ and 

T' = ZiS) (see Theorem 2.10), thus 'pits'^] ^ 0 for some t in T and 

som e m such that 0 < m < p . Now [ts"^]^ - ts'^la, b'f , and hence 

1 [a, b^ in Z(i?) , so if is a representation of R which affords 
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, we have X([a, bi^] - Xl where X is a complex number and I an 

identity matrix. As T' avoids Ker 'j , we know that \ ^ I . Thus 

K i i t s Y ] = AX(ts") and hence (ts^)'") = Aî fts''̂ ') ̂  ^[ts''] , a 
2 

contradiction. Thus there is no ip or degree p which would not contain 

T' in its kernel, and our proof is cc~plete. 

At this stage, we have seen that if p > 5 then not all p-groups are 

"/•2i'-/-group3, but some of them are non-merabelian n;'/-groups. We defer the 

consideration of these statements for -he remaining primes, to follow up 

what is perhaps a more interesting result here, that normal subgroups of 

/^V-groups need not be rJ-:''-groups. In tne next example we use B to show 

that subdirect products of -groups need not be n/'</-groups. 

EXAMPLE 5 . 1 3 . Let i? be as in Ixample 5.12, and q a prime such that. 

q = 1 (mod p) , for instance, we may take p = 5 and q = 11 . Then it is 

possible to form a split extension 0 of a cyclic group Q of order q by 
r? , so that C (Q) = S . This G is a siAbdiveot product of G/Q = R and 

R 

G/S , both of which ave nM-groups (the latter because it is metabelian), 

but we claim that G is not an nl4-gvoiip. To show this, we start with the 

faithful irreducible character y^ of S which is not an nM-character (note 

that any non-faithful irreducible character of S is a character of 

5/Ker x which is metabelian). Recall from Example 5.11 that Xy is faithful 

2 . R irreducible and x d ) = P • If is an irreducible constituent of x 

then, by Frobenius reciprocity, X is a constituent of ip̂  , so that 

y k Ker ilJ . Thus by the last sentence of the argument concerning Example 

9 ? 
5.12, '4;(1) > p . It follows that x' = ^ • 

Let X be a faithful irreducible character of Q . By Theorem 2.5, 

Ax is an irreducible character of <gS . Now Ker Xx avoids both Q and 

5 and so must be trivial as \Q\ and |5| are coprime. Thus Xx is a 
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2 
faithful irreducible character of QS of degree p . By Mackey's Subgroup 

Theorem, ((Xx)^)^^ = [(^X)^)^ = x'"̂  = ^ Irr(i?) , so (Ax)^ is a faithful 

3 
irreducible character of degree p , Let A be an abelian norinal 

Q 
subgroup of naxiinal order in G . By Leinma 5.1 (1), if (Ax) is an 

G G 

nM-character, then (Ax) = ct for sone linear character a of i4 ; in 

particular, = p • Thus Q ^ A , and hence 
A < = CC„('5) QS . Thus = ^ and the r'^ form a set of 

u n 

representatives of the A, S or Q, S double cosets in G . We can 

OS 

without loss of generality assume that a - Xx • By Mackey's Subgroup 

Theorem, 

T [(a"-'),,/ = = ((AX)^), = T iaxfls - % / • 
^=l 

Thus x 

S 
for some i , contrary to the fact that X is not 

Q 

an nM-character. This proves that (Ax) is not an n/^f-character, and so 

G is not an nM-group. 

We now turn to the problem of p-groups with p < 5 . 

EXAMPLE 5.14. The wreath product of a group of order 2 and a 

quaternion group Q of order 8 is a non-metdbelian 2-group which is an 

nM-qroup. This is a split extension of an elementary abelian group A of 

order by Q , where Q permutes regularly some basis of A . Now 

G' = LA, QlQ' and G" = [ U , , Q'] • If a is an element of the 

permuted basis of , and h is an element of order 4 in $ , then 

2 1 3 

'La, hi, h'^] = [a'^a^, h^] = a^ {l} (being the product of four 

distinct elements of the basis), so G ' W {l} • If A < T < G then 

T - A{T n Q) with T Q > {l} and so Q' < T . Thus if X ^ Irr(G) and 



49 

T - where a is an irreducible constituent of x^ 5 either T - A 

Q 

in which case X - ot by Theorem 2.2, or T > Q' so that 

G" S LA, < [/I, r] < Ker a and hence G" < Ker a . In the later case, 

X is really a character of G/G" which is an n/V-group by Theorem 3.5. 

Therefore in either case, X is an ?7/-f-character, and so G is an 

rzAZ-group. 

It is not quite so easy to find a non-metabelian 3-group which is an 

7iM-gvo\ip, The only construction we have works without extra effort for any 

prime p in place of 3 , so we describe it in this generality. It relies 

on the following. 

LEMMA 5.15. (i) If N -is a normal subgroup of an arbitrary finite 

group G ^ and U is the regular G-module over an arbitrary fields one may 

view the set C^(iV) of fixed points of N in U as G/N-module; as suah^ 

is the regular G/N-module. 

(2) Suppose in addition that U has prime characteristic p and 

that N is a cyclic p-group in the centre of G . Put V - U/C^{N) , 

then^ as G/N-module^ is also regular. 

Proof. (1) By definition, U has a basis {u \ g ^ G] such that y 

u h - u for all g, h in G . Put u - Y u for each element x in 

G/N . It is straightforward to see that {u | a: € G/N] is a basis of 

, permuted regularly by G/N . 

(2) A generator h of N permutes the given basis of U in cycles 

of length , so as iV-module, U is a direct sum of regular modules U^ 

A = 1, 2, ..., |G:iVl) . Thus C (iF) = © C {N) , and so F = © where 
i i i 

V. = f/./C„ {N) , and = © Ĉ . (iV) . By Theorem 2.13, we must have 
^ ^ f/. V V^ 
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= and = = U /U where 

n = n \ , and dim C^ ( N ) = dim C^ (//) = i . C l e a r l y , u -> ^ ( / z - l ) maps 
i i 

^ l i n e a r l y onto U . i h - l f ' ^ with k e r n e l U . { h - 1 ) ^ ^ , and s o 
L- 2- % 

y i e l d s an isomorphisin of onto • S ince h. i s c e n t r a l in G , 

t h i s i s a G-module isomorphism. Nov; the c l a im f o l l o v ; s by ( 1 ) . 

EXAMPLE 5 , 1 6 . Let P be an e x t r a - s p e c i a l p-group of order p^ , and 

R a maxim.al subgroup of P . Apply p a r t ( 2 ) of the p r e v i o u s lemma to the 

r e g u l a r P-module V over a f i e l d of order p , with N = P ' , then 

C y i P ' ) i s a r e g u l a r P /P ' -module , v/hich we may c a l l W , and c l e a r l y 

C ^ ( f | / P ' ) = . From p a r t ( 1 ) of our lemma a p p l i e d t o W and t o the 

normal subgroup R / P ' of P / P ' , we s e e t h a t Cj^(P) i s a r e g u l a r P / R -

module. As P / R i s of order p , i s u n i s e r i a l P-module of 

d imension p . Let A / C ^ i P ' ) be the unique 2-d imens iona l submodule of 

- We c l a i m t h a t the s p l i t e x t e n s i o n G of 4 by P i s a non-

m e t a b e l i a n ?^>f-group of order p^ ^ 

To s e e t h i s , l e t u s examine the r.odule A a l i t t l e f u r t h e r . Because 

P a c t s t r a n s i t i v e l y on a basiL; of U , the f i x e d po int space i® 

1 - d i m e n s i o n a l , hence i s l - d i n e n s i o n a l . As P i s a p-group and 

A has c h a r a c t e r i s t i c p , every i r r e d u c i b l e P-submodule of A i s t r i v i a l , 

so C (P) i s the unique minimal P-submodule of ^ . As A / C i P ' ) i s a 
A ^ 

2 - d i m e n s i o n a l u n i s e r i a l module on which only t h e c y c l i c quot ient P / R a c t s , 

we s e e t h a t [ ^ / C ^ ( P ' ) , P] i s 1 - d i m e n s i o n a l . Let 1 i: h ^ P ' , a s h i s 

c e n t r a l in P , a > a ( / z - l ) = [ a , /z] i s a P-module endomorphism of A 

with k e r n e l C ^ ( P ' ) • Thus the image [[^1, P ] , h \ o f l A , P] i s a 
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l-dimensional submodule. Hence [l̂/l, P] , P'J is the unique irreducible 

. Also, if h is any nontrivial element of P , we have 

C/1, h'] > • This is clear from our discussion v/hen h i P' , otherwise 

we appeal ro the fact that C^(P') is a regular module for the abelian 

group P/P' , so even [C^(P'), h] is a non-zero submodule and therefore 

must contain the unique irreducible. V/e are now ready to consider 

G ^ A split P . 

Since P acts faithfully on A (for P' does), we must have 

0{G) < C^(P) , so a(c7) = C^(P) = [c^, P], P'] . As G' = [/l, P]P' and 

P" = { 1 } , we have G" - aiG) . Thus G is not metabelian, and A is an 

abelian normal subgroup of maximal order in G (for any normal subgroup of 

3 
index less than p must have abelian factor group and so cannot be 

abelian}. If g € G\A , then g - ah with a i A , 1 f h i P , so 

[A, g'] = LA, hi > C^(P) = o(G) . Thus, by Theorem 5.3, the faithful 

irreducible characters of G are all mM-charactevs. Non-faithful 

characters of G must contain the unique minimal normal subgroup G" in 

their kernels, so they are nM-characters by Theorem 3.5. This completes 

the proof. 

It remains to show that not all 2-groups or 3-groups are nM-groups. 

This can be easily seen from an example which works equally well for all 

primes p . 

EXAMPLE 5.17. The Sylow p-subgroup of GL(n, p) are nM-groups if 

and only if n < 4 ^ that is, if and only if they are metabelian. 

To see this, we take a Sylow p-subgroup as the subgroup G consisting 

of upper unitriangular matrices. Let E^^ denote the n x n matrix with 

i, j entry 1 and all other entries 0 , and I the n x n identity 

matrix. Now J + £"..€ G whenever i < j , and a straightforward 
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calculation shows that if i < J and k < I , then 

= i" + where is the Kronecker delta. For each 

integer k v/ith 1 < k < n , let denote the subgroup of G generated 

by {l+E. . i l<i^k<{}<n] . Fro- the commutator relation above, we 'Z'J 

kin-k) see that each G-, is abelian, and of course C, = p , as K. K 

[l+S'.,.)̂  = 1 . It was shown by Goozeff in [8] that the G. are precisely VQ K 

the maximal abelian normal subgroups of G . Since ^ ^̂ ^ ]_ generated 

by J + , we see that J + generates Z{G) . Put A = G^ : ^ In In ^ [n/2] ' 

this is then a normal abelian subgroup of maximal order in G . It is easy 

to see from the commutator relation above that if n > 5 , then G is not 

metabelian, while [/I, I+E __ _ J is the subgroup generated by 

ll+E. i 1 [n/2]| and hence avoids Z(G) . Thus, by Lemma 5.3, in ' t,n-l 

this case, G is not an ?'̂/'</-group. Cr. the other hand. 

G-.A 
^ p(n^-n]/2-Cn/2](n-[n/2]) 

2 

so if n < U , then G-.A S p , and nence GfA is abelian, G is 

metabelian, and an nAf-group by Theorer, 3.5. 

The example also illustrates thax fwt all maximal abelian normal 

subgroups of a p-group need be abelian normal subgroups of maximal order^ a 

fact which contributes to the difficulty of applying Lemma 5.2 and Lemma 

5.3. For instance, choose G as above with p > 2 and n = 4 ; then 
3 

G/G^ is extra-special of order p . Let U be the regular G/G^-module 

over the field of order p , regarded as G-module, and form the split 

extension H of U by G . Let A = UG^ , this is an abelian normal 
3 

subgroup of H with H/A an extraspecial p-group of order p , so any 
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normal subgroup of H properly containing /I must contain AG' . Nov/ U 

as a G'G/G -module is a direct sum of regulars which are uniserial of 1 X 

dimension p , whence it is easy to see that AG' has class precisely p . 

If B v/ere an abelian normal subgroup of E not contained in A , then AB 

would contain A.G' yet iz would have class at most 2 , for 

(AB)' = W, B] < ^ n B s Z{AB) . Thus A is the unique maximal abelian 

normal subgroup of H . However, A/U is not contained in the unique 

abelian normal subgroup of maximal order in li/U namely in UG^/U . This 

shoxvs that Lemmas 5.2 and 5.3 are not suited for applications which involve 

induction on group order. 

The trouble we have had to go to for examples of p-groups which are 

non-metabelian suggests that it would be very hard to find p-groups which 

are JT/̂ f-groups and have derived length greater than 3 , if indeed any such 

groups exist. As a further indication of how hard this task would be, we 

mention that such a group would need to have order at least p^^ . For if 

there is an n̂ '-̂ -group G vv/ith G'" {l} and |g1 2 p^^ , this G has a 

factor group H with cyclic centre and E'" t (l) . This E has a faithful 

irreducible -character Y , which must be induced from a linear character 

of some abelian normal subgroup A , by Lemma 5.1 (l). Then E/A is an 
CoroiUdu A.30 ^ -ti 

rzM-group with {E/A)" {l} . By " 

- - P^^ so E/A • Repeating this 

argument with E/A in place of G , we find a non-metabelian nld-gvoxxg K 

2 
with an abelian normal subgroup of index dividing p , a contradiction. 

13 6 



54 

CHAPTER 6 

A-6R0UPS 

In the investigation of ?^>^-groups we saw that the case of p-groups 

presented a largely intractable probler.. To demonstrate that the 

difficulties in the v;ay of a better understanding of nM-groups are 

essentially nilpotent in nature, we consider here /1-groups, that is, 

solvable groups whose Sylow subgroups are all abelian, A further reason for 

looking at these is that all /1-groups are M-groups by a special case of 

Huppert's Theorem (first established by Ito in [15]). 

We show that an -group is an ?^V-group if and only if it is a chiefly 

Frobenius group; equivalently, if and only if it is a subdirect product of 

Frobenius groups. It follows that ^-groups ;<;hich are nl^^-gvonps have 

derived length at most 3 , and that an ^-group is an nM-group if (and 

only if) its Frattini factor group is an nM-group. The class of the 

i4-groups which are nI4-gvo\ips is closed under taking subgroups, factor 

groups, and direct products. 

We also show that an >l-group is an sM-gvoup if and only if it is a 

chiefly sub-Frobenius group. The question of the derived lengths of such 

groups is left for the next chapter. An ^-group is an sM-group if (and 

only if) its Frattini factor group is an sM-group. The class of the 

-groups which are sM-groups is closed under taking subgroups, factor 

groups and direct products. 

We shall need some elementary lemm.as on i4-groups. Let o(.G) denote 

the socle of G . 

LEMMA 6.1. If G is an A-gvoup, then C^[oiG)] is the Fitting 

subgroup F of G , and o(G) = o(F) . 

Proof. Let F^ be a Sylow p-subgroup of F . As the Sylow 
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p-subgroups of G are abelian, F^ is an abelian p-group and ^^^Q^^pl 

is a p'-group. Thus acts trivially on F^ (see Chapter 5, 

Theorem 2.5 in Gorenstein [9]), so that = C^(^p) • Also, by 

Maschke's Theorem, O(F^) < oiG) . These hold for all p , so 

C^(a(F)) 0(F) 5 oiG) . Since F is the Fitting subgroup, it 

must contain both and 0{G) (see Huppert [12], Chapter III, Satz 

4.2 (b)). Thus aiG) = aiF) and €^[0(0} = F as claimed. 

LEMMA 6.2. Let G be an A-group with o{G) minimal normal in G . 

Then (for some prime p ) the Fitting subgroup F is a Sylow p-subgroup^ 

complemented by a Hall p'-subgroup H . Also G has a normal subgroup P 

such that o{G) is G-isomorphia to F/F which is comrplemented by HP ̂  

and G/P has trivial Frattini subgroup. 

Proof. Since the Sylow subgroups of F are normal in G and a(G) 

is the unique minimal normal subgroup, F is a p-group. A Sylow 

p-subgroup of G must contain F and, being abelian, it centralizes F . 

However, by Lemma 6.1, F is its own centralizer, so F is a Sylow 

p-subgroup. It is then com.plemented by a Hall p'-subgroup H . Let p^'^^ 

n 

denote the exponent of F , and consider the map TT : / 1—> . This is 

clearly a (;-endomorphism of F , with {l} < FIT $ A(F) . Now Fir is 

normal in G , hence a(G) < FTT . By Lemma 5.1, we have FIT = o{G) . Put 

P = Ker TT . Then P <1 (? , F/P is G-isomorphic to a{G) , and so 
C (F/P) = F/P . Thus a{G/P) = F/P and HP/P is a maximal subgroup 
G/P 

complementing F/P . If we let ^{G/P) denote the Frattini subgroup of 

G/P , then ^{G/P) n F/P 5 HP/P n F/P = {l} , and so ^{G/P) = {l} . (It is 

easy to see that P is the Frattini subgroup of G , but we do not need 

that. ) 
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LEMMA 5.3. If K/L is any chief factor of an A-group G ^ then K/L 

is G-isomorphic to some complemented chief factor M/N of G ; in 

paj'ticular^ to one with N containing the Frattini subgroup ^ of G . 

Proof. Let S be maximal among the normal subgroups of G with 

K S - L . Then K/L is G-isomorphic to KS/S and KS/S is the unique 

minimal norinai subgroup of G/S . Thus by Lemma 6.2, KS/S is G-isomorphic 

to M/E where M is the Fitting subgroup of G/S and the Frattini 

subgroup of G/LJ is trivial, and M/l] is complemented. Now //<i'//i/ is 

contained in the Frattini subgroup of G/N (see Kuppert [12], Chapter III, 

Hilfsatz 3.U), so < N as required. 

COROLLARY 6.4. Let G he an A-group and ^ the Frattini subgroup 

of G . 

(1) If G/i is a chiefly Frobenius group, so is G . 

(2) If G/^ is an sM-groupy then G is a chiefly sub-Frobenius 

group. 

Proof. (1) Let K/L be any chief factor of G . By Lemma 6.3, K/L 

is G-isomorphic to M/tl where N > 9 . Thus each element g of G acts 

on K/L as g^ acts on M/N . By assumption, g^ acts trivially or fixed 

point free on M/N , hence g acts trivially or fixed point free on K/L . 

Also G/Z^{K/L) ~ {G/<i)/Z^^^{M/N) , so that G/Q,Q{K/L) has cyclic derived 

group as required-

(2) Let K/L be any chief factor of G . We use again Lemma 6.3 to 

conclude that K/L is G-isomorphic to a complemented chief factor M/N 

where N > ̂  . If k i K and kL corresponds to mN under the 

G-isomorphism K/L M/N , then C^{kL)/^ = and so C^ikL) is 

subnormal by Theorem 4.7. 

LEMMA 6.5. If an A-group H is a Frobenius complement, then its 

derived group is cyclic. 
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Proof. Now all Sylov7 subgroups of II are cyclic, so that H is 

super solvable, H' is nilpotent v/ith cyclic Sylov; subgroups, and. thus H' 

is cyclic. 

THEOREM 6.6. If G is an A-grouv, then the following are 

equivalent: 

(1) G is an nt4-gvouv; 

(2) G is a chiefly Fvobenius grou.pj 

(3) G is a s'j.bd.iveot vroduat of Frobenius groups. 

Proof. By Theorein 5.5, (1) implies (2). From Lemma 6.5, Theorem 3.8, 

Theorem 5.5, and Theorem 5.7, we see that (3) implies (2). 

We prove by induction on that (2) implies (1). By Theorem 5.7, 

we can assume that all proper factor groups of G are -groups; so by 

Theorem 5.4 we need only show that G satisfies the conditions of Lemma 

5.2. The unique abelian normal subgroup of maximal order in an y4-group is 

the Fitting subgroup F . By Lemma 6.1, if g ^ G\F , then g fails to 

centralize some minimal normal subgroup N of G . As G is a chiefly 

Frobenius group, g acts fixed point free on N , so that 

[F, gl > IN, gl ^ N . Thus for any C such that F > C > [F, g] , 

core^C > {l} . 

To see that (2) implies (3), we argue by contradiction. By Theorem 

5.7, a minimal counterexample G must be subdirectly irreducible, that is, 

o{G) is minim.al normal in G . By the first statement of Lemma 6.2, 

G - F split H . By Lemma 6.1 and the assumption that (7 is a chiefly 

Frobenius group, each non-trivial element h of H acts fixed point free 

on aiG) = o(F) . Thus C^ih) n a(F) = {l} and so C^{h) = 1 . This 

proves that G is a Frobenius group, a contradiction. 

COROLLARY 6.7. If an A-group G is an nM-group, then G"'= {l} . 

Proof. G is a subdirect product of Frobenius -groups K split H 

with K abelian and H' cyclic. 
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COROLLARY 6.8. An A-gvoup G is an n!^-group if and only if its 

Frattini factor group G/^ is an nl-i-group. 

Proof. The "only if" part folloiv's from Theorem 3.3. The "if" part 

follows immediately from part (1) of Corollary 6.4 and the equivalence of 

(1) and (2) in Theorem 6.5. 

COROLLARY 5.9. All subgroups, factor groups and (finite) direct 

products of A-groups which are nM-groups, are also nI4-groups. 

Proof. This follou's from Theorem 5.7 and the equivalence (1) and (2) 

in Theorem 6.5. 

Now we turn to /.-groups which are s/</-groups. The key result is the 

f ollov/ing. 

THEOREM 6.10. fi.n A.-group G is an sM~group if a'nd only if it is 

a chiefly sub-Frobenius group. 

Proof. The "only if" part follows from Theorem 3.3 and part (2) of 

Corollary 6.4. The "if" part follovjs from Lemma 6.1 and Theorem "4.14. 

COROLLARY 6.11. An A-group G is an sM-group if and only if its 

Frattini factor group G/^ is an sM-group. 

Proof. This follows from Theorem 3.3, part (2) of Corollary 6.4, and 

Theorem 6.10. 

COROLLARY 6.12. All subgroups, factor groups, and (finite) direct 

products of sM-groups)^^^ sM-groups. 

Proof. This follows from Theorem 4.12 and Theorem 6.10. 
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CHAPTER 7 

THE NILPOTENT LENGTH OF SUBNORMAL ^f-GROUPS 

This chapter contains two results concerning the nilpotent length (that 

is, the Fitting height) of s"-groups. The first gives an additional 

condition under which the second derived group of an sM-group must be 

nilpotent. While the condition is rather artificial, vie include the result 

because its proof involves ideas which seem interesting even if we cannot 

use them to better effect. The second is a sketch of the construction of an 

sA/-group of nilpotent length 5 ; we believe it should be possible to build 

sM-groups of arbitrary large nilpotent length by the same method. 

THEOREM 7.1. If G is an sM-group such that every chief factor K/L 

of G with K ^ G" is cyclic or of prime rank^ then G" is nilpotent. 

Proof. We argue by contradiction. Let G be a counterexample of 

minimal order. Then all proper factor groups of G are nilpotent by 

metabelian but G is not; so G must have a unique minimal normal 

subgroup M . Now of course M < G" so \M\ = p ^ where r is 1 or a 

prime. Let F be the Fitting subgroup and # the Frattini subgroup of 

G , then G" ^ f - As F/^ is the Fitting subgroup of G/^ (see Huppert 

[12], Chapter III, Satz 4.2), ^ i {l} would imply (G/4>)" 5 , contrary 

to G" ^ F . Thus <i> = {l} • Let H be a maximal subgroup not containing 

M , so G ^ M split H . As is normal in G but avoids M , it 

must b e trivial, so by Theorem 4.10, H is a p'-group. 

Let e be the exponent of H and E a finite field of characteristic 

p containing a primitive eth root of 1 , so E is a splitting field for 

H (see Isaacs [13], Theorem 9.15). By Theorem 2.8, if we form E ® M (over 

the field of order p ) w e obtain a direct sum o f , say s , Galois 

conjugates of some irreducible Ei^-module V . As M is a faithful 
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//-module, so is V . Since r is 1 or a prime, and r - s dim Y , either 

s = 1 or dim V ~ 1 . If dim V - 1 , then H must be abelian; this is 

clearly impossible since G" is non-nilpotent. Thus dim 7 > 1 = s , so M 

is absolutely irreducible. Let u be the Brauer character of H afforded 

by M . By Theorem 2.9, u is an ordinary (irreducible) character, so by 

Theorem 3.9, u^, reduces. By Clifford's Theorem, the degrees of the 

irreducible constituents of u^, are proper divisors of the prime degree of 

u , so these constituents are all linear and hence H" is in the kernel of 

u . As u is faithful, this means that H" = {l} , so G" < M , contrary 

to the assumption that G" is nonabelian. This completes the proof. 

EXAMPLE 7,2. Nov; we turn to the construction of an sM-group of 

nilvotent length 5 . It will be an /.-group, so by Theorem 6.10 all we 

need to prove about it is that it is a chiefly sub-Frobenius group of 

derived length 5 . 

16 27 We start with ia \ a = 1> and ib \ b - 1> , Let a act on b 

invertingly, and form the corresponding split extension 

^ / 7 16 ,27 , ,-1. G = (.a, b a = b ^ 1, b = b >, 

2 
Note that G' - ̂ b) , and ia b) is a cyclic subgroup of index 2 ; in 

particular, G is certainly a chiefly sub-Frobenius group. We shall need 

repeatedly the following fact. If g ^ G , i > 1 , and a % < g> , 

i-1 
b f , then g ^ <a b > . 

M-9 4-9 CI J Let G act on < c, d \ o = d - 1, cd = dc) so that c? - d , 

^ = , c^ = c^^ , ct" - d^^ . As 18^ E 18 X 30 E 1 (mod 49) , it is 

straightforward to check that this definition is legitimate. One may also 

view d) as the G-module induced from the <a Z)>-module < e> such 
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that o^ ^ = o ^^ . As a^ and h act fixed point free but a^h^ acts 

trivially on ic, d) , the comment above with i - 1 makes it easy to check 

that H - (a, d) split G is a chiefly sub-Frobenius group. Also, 

H' - <b, c, d) and H" - ( a, d) . The Fitting subgroup F{H) is 

4 3 8 9 7 
<a , b , c, d) , and FiH)/(a , b ^ c ^ d) is cyclic of order 42 . 

8 9 7 Consider a 1-dimensional faithful F(H)/<a , b , o , (i)-module U 

over the field of order 43 , as an F(Z^)-module, and form the induced 
12 

^/-module . By Mackey's Subgroup Theorem, [iP] . . - @ u. v;here the 

U. are the conjugates or LI under a set of representatives of the cosets 

of F{H) in H . Let the numbering be arranged so that V^ - U and 

2 2 JJ^, f/g are the conjugates under < a , b, c, d) ; then (a , b, o, d) 

6 12 
normalizes and a interchanges © U. and @ U. . As < G> and id) 

i=7 

2 
are also normalized by <a , Z?, e, d) and interchanged by a , we readily 

see that c acts fixed point freely on the first sura and trivially on the 

second, while d acts trivially on the first and fixed point freely on the 
8 9 7 7 4 3 second. Of course, <a , b , o , d > acts trivially while a and b 

act fixed point freely on both. In particular, if h ^ < c, d) then 

1 if € , 

h] 

e u. if h ^ <c, c , d') , 

12 
© V. if h^'^e , , d') , 
^=7 

ifi otherwise. 

Now form K ^ jF split H . Then K' = ipH' and K" = iPb" = iPic, d) , 
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so K'" - l/^ . To v e r i f y that K i s a c h i e f l y sub-Frobenius group, we need 

only es tab l ish that i f 0 t u i l/^ , then C^ (m ) is subnormal in H . 

Since C „ ( u ) i s generated by i t s ele~ents x of prime power order, and 
ti 

since j o ins of subnormal s'obgroups are subnormal (see Passman [15 ] , Chapter 

1, Theorem 5 .5 ) , th i s w i l l be proved i f we show that the subnormal closure 

of each such x c en t ra l i z e s u . V?her. x i s a 7-element, i t l i e s in the 

normal Sylow 7-siibgroup o, d) of .V , so <x> i t s e l f i s subnormal and 

there i s no work to do. When x i s a 2-element or a 3-element, then some 

conjugate or̂  l i e s in the Hall {2 , 5}-subgroup G of H . As this 

f i x e s the nonzero u^ , we have a^ ^ { J ^ ) and b^ \ { x ^ ) , so 

€ ia^b'^) . Thus if oc^ i s a 2-element, i t i s centra l in H , while i f 

i t i s a 3-element, i t i s centra l in the normal subgroup < b, c, d> of S ; 

so i s subnormal. Consequently, so i s < x) , and we are done. 

We shal l need l a t e r on that i f h € < s, d) then the subnormal closure 

w% / J. J 

S of h in K is / [l/^, h](h) . /Ta-,_3ee t h i s , observe that IT S o{K) , 

and r e c a l l that by Lemma 4.4, 5 is a d i rec t f ac to r o f SaiK) : there fore 

S i s a d i r e c t f a c t o r of s,/ , and hence [i/^, h] 2 S] S S / 

C ^ / c r c e l y , [l/\ h]< h> i s normal in which i s subnormal in K , so 

S 5 [V^, h]<h) . 

u 8 9 7 7 

Note that the F i t t i n g subgroup FiK) is ir< a , b , c , d ) , of index 

35a? in K . Choose a prime p such that p E 1 mod (2 x 3 x 7 x 43) 

( t h i s i s psos ib le by D i r i c h l e t ' s Theorem), and a f a i t h f u l 1-dimensional 

11 module V f o r the c y c l i c group FiK)/ © U^ <d^> of order 2 x 3 x 7 x 43 , 

over the f i e l d of order p . Regard V as an F(7s:)-module, and consider 
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the induced module V^ . By Mackey's Subgroup Theorem, is the 

direct sum of conjugates V. of V . Number these so that V - V 1 

and the conjugates under iPi a'̂ , b, c, d) are listed first: let 

W^ be the sum of these, and W^ be the sum of the other V. . Then 1 ' 2 t 

if (a , b, a, d) normalizes and a interchanges and , and also 

7 7 _ 7 

(c ) and d ) . it follows that c acts fixed point freely on A/̂  and 

trivially on fv'̂  , while d^ acts trivially on ^ and fixed point freely 

on VI . Similarly @ U- acts trivially on W , and ® U. acts 
t-7 t-1 

trivially on f/̂  • 

The proof of the fact that V^ split K is a chiefly sub-Frobenius 

group follows the previous pattern. The only step that is different is to 

show that if 0 ̂  v € V^ and k ^ d) n , then the subnormal 

closure of h in K centralizes v . If h ^ F{K) , then ih) is 

subnormal and there is nothing to prove. If h { F{K) , that is, 

7 7 7 

h (a , d ) , then h is nontrivial and fixes the nonzero v , hence 

7 7 7 

h i ̂  c ) or <d > (otherwise it would act fixed point free on both , 

W ]. Say = < ; then v ^ W^ . Also, h d^ c , d^) , so ® U. ih) , and as @ U. acts trivially on W , 
^=l 

S does centralize V . 

It remains to note that K'" = l/ acts nontrivially on V^ and 

therefore K'" cannot lie in the Fitting subgroup of V^ split K ; hence 
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CHAPTER 8 

POSTSCRIPT 

The principal aim in the study of iV-groups, and certainly in the 

present thesis, has been to relate classes of finite solvable groups defined 

in character theoretic terms to classes defined in structural terms. The 

last two decades have seen an explosive development in the theory of 

(structurally defined) classes of finite solvable groups. This theory 

subdivides into chapters according to what closure properties the classes in 

question are required to have. One of the difficulties which prevents the 

adequate structural understanding of the class M of A/-groups is that it 

has too few closure properties. In these circumstances, one might ask for 

classes with further closure properties which "approximate" M from above 

or from below. The determination of the unique largest subgroup closed class 

in M by Price and van der Waall may be seen as an example of such a 

result. (It should now be possible to decide whether that class is 

subdirect product closed.) On the other hand, no upper approximation seems 

to exist for Ai , beyond Taketa's Theorem, and Dade's Embedding Theorem 

shows that no better subgroup closed upper approximation is possible. In a 

sense, the key to the results in the present thesis has been the study of 

primitive nM or sA/-groups (primitive in the sense of having a core free 

maximal subgroup). Perhaps a study of the primitive M-groups may pay 

similar dividends. Indeed, it is clear that not every primitive solvable 

group is an iV-group (consider C^ x C^ split SL(2, 3) formed with respect 

to the natural action], so the Schunck class generated by W is not the 

class of all finite solvable groups; this might be the way to find a better 

upper approximation for M than Taketa's. Our Lemma 4.6 provides only 

partial (but, as we have seen, still quite useful) information about the 
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Schunck class generated by sM , while Corollary 5.5 (1) may be viewed as a 

complete determination of the Schunck class generated by (liU . Certain 

subgroup closed formations have also played a critical role in this thesis 

(Theorem 4.12 and U . m ; the last remark in Chapter 4; Theorem 5.5, the 

rem.ark after it, and Theorem 5.7). We are inclined to conjecture that the 

Frattini factor group of a chiefly Frobenius group is always an ^^-group. 

It seems likely That profitable directions of X'/ork could be identified by 

exploiting further concepts and ideas from the theory of classes of finite 

solvable groups. 

Finally, we draw attention to the close relationship betv/een Examples 

5.12 and 5.13. While our failed attempts to decide v/hether iM is normal 

subgroup closed or S'ubdirect product closed have left us uncertain about 

which way the answers might go, we feel there is an intimate connection 

between the two questions, and conjecture.that if one has an affirmative 

answer, so does the other. 
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