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(iv) 

ABSTRACT 

This thesis describes an algorithm and an implementation of this 

algorithm for generating finite p-groups. It is essentially an extension 

algorithm which given a group G calculates new groups H^, ... ̂  H^ all 

of which have G as a certain kind of quotient. The new groups 

H ^ , ..., H ^ can be used as input for the algorithm and more new groups are 

calculated. The p-groups generated in this way can be used to form a 

tree. These trees are frequently infinite. Parts of the trees are drawn as 

tree diagrams. These tree diagrams are a succinct way of representing some 

results about p-groups. 

Detailed tree diagrams of 2-groups and 3-groups of maximal class and 
^ro> ps 

2-Glaoo of second maximal class are drawn using previously known results. 

The implementation of the algorithm has been used to calculate all g 
2-generator 3-groups of second maximal nilpotency class up to order 3 

and many up to order . This is approximately 2,500 groups. The 

calculations were used to draw a tree diagram for some 2-generator 

3-groups of second maximal class. Seventeen infinite branches of this tree 

are exhibited. These are of several different t ypes. For one type, one 

infinite branch has been studied in detail and a complete description of the 

tree associated with this infinite branch is given. 

The presentations of the p-groups calculated by the algorithm are 

thought of as being standard. The final chapter describes a process for 

recognizing such a presentation or a presentation which gives a group 

isomorphic to a group with a standard presentation. 



CHAPTER 1 

BACKGROUND AND INTRODUCTION 

Over the years it has become apparent that major difficulties in the 

study of finite p-groups are the great diversity and large numbers of these 

groups. For this reason it is of interest to study certain classes of them. 

One aspect of this thesis is the study of 3-groups of second maximal class. 

Before any details are given about these groups background material is 

discussed. This leads to a brief outline of the contents of the thesis. 

Let G be a group. The l o w e v c e n t r a l s e r i e s 

G > y A G ) > y A G ) > ... > y . A G ) > y . ( G ) > . . . 

^ O 'V-J-

of G is defined inductively by 

= [ G , G] , y ^ { G ) = , G] for i € {3, 4 , 

If there exists an integer e such that y ( G ) - E , then G is n i l p o t e n t 

C? 

and if c is the least such integer then G is said to have n i l p o t e n c y 

c l a s s c - 1 , 

YL 
It is well-known that a group of prime-power order, p , n 2 2 , can 

have nilpotency class no larger than n - 1 . Groups of order p'^ having 

nilpotency class exactly n - 1 are called groups of m a x i m a l n i l p o t e n c y 

c l a s s (Huppert [1957], III, §14)^. These groups have been studied by various 

people. In 1904, 2-groups of maximal nilpotency class were already known to 

de Seguier [1904]. Burnside [1911, §98] studied groups" vrith maximal size ' 

conjugacy classes. He shov/ed these to have the properties of maximal 

nilpotency class groups. 

The major task of classifying groups of maxim.al nilpotency class was 

commenced by Wiman [1946, 19 52]. He introduced the name "maximal 

(nilpotency) class". For each group G , of maximal nilpotency class, he 

introduced a characteristic subgroup, y^iG) , of index p , defined as the 

largest subgroup of G such that [y^CG), y ^ i G ) j 2 Y^C*?) • The subgroup 

^ Notation used in this thesis is based on that used in Gorenstein's F i n i t e 

G r o u p s . A notation index is also given. 

^ References are given by the author and the date of publication which 

appears in square brackets. 



Y^(G^) is useful in determining the structure of G . Blackburn [19 58] 

continued this study. He succeeded in classifying all 3-groups of maximal 

nilpotency class and all groups of order p and nilpotency class 5 . For 

his calculations he introduced the following concept. If G is a group of 

maximal nilpotency class and [Y'(<5)5 Y •(<?)] - Y- • ?(<?) » 

J € {l, 2, ...} then G has degree of oormutativity I . It is not 

assumed that t is the greatest such number. 

Leedham-Green and McKay [1976] constructed for all primes p > 5 , and 

all integers Z- > 0 and n > 4 with n < 2l ^ K , groups of order p ^ , 

nilpotency class n - 1 and degree of commutativity I . Previously, this 

had been done independently by Miech [1974], using very different techniques. 

He also studied metabelian p-groups of maximal nilpotency class (Miech 

[1970]). Shepherd [1970] proved that if n > M- and a group has order p ^ , 

nilpotency class n - 1 and degree of commutativity Z , then 

2l > n-3p+6 ; he later improved this to 2l > n-lp+'A- . This work was also 

done independently by Leedham-Green and McKay. The first mentioned result 

of Leedham-Green and McKay shows that Shepherd's bound is almost best 

possible. From Shepherd's result it follows that if G is a p-group of 

maximal nilpotency class then G is soluble of length at most 

log2(3p-3)J . This same bound was also calculated by Leedham-Green and 

McKay. The existence of such a bound had been shown previously by Alperin 

[1962]. 

Maung, a student of Leedham-Green, is reported to have calculated all 

5-groups of maximal nilpotency class up to order . This was done with 

the aid of a computer. Work by Leedham-Green and McKay on the classification 

of p-groups of maximal nilpotency class is in progress. 

Leedham-Green and McKay and their co-workers at Queen Mary College have 

generalized the study of groups of maximal class to that of groups of large 

Yl 

class, that is groups of order p and class n - r , for fixed r and 

varying n ir a positive integer). A considerable amount of work is being 

done on these groups, in particular the suggestion that such groups have 

solubility length bounded by p and r alone is being investigated. This 

has been proved for groups of maximal nilpotency class, as seen above. When 
Yl 

V is 2 the groups, of order p and class n - 2 , are called groups of 



second maximal nilpotency class. For p equal to 2 these groups have 
been enumerated by James [1975] who called them groups of almost maximal 
class. Implicit in his work is that these groups have solubility length not 
exceeding 3 . 

This brings us to 3-groups of second maximal nilpotency class. I 
first became interested in these groups through Leedham-Green. He visited 
Canberra during September 1975 and the question of bounding the solubility 
length of large class groups, and in particular 3-groups of second maximal 
nilpotency class, was then in his mind. To assist in the study of these 
groups all 2-generator 3-groups of second maximal nilpotency class were 

8 3.0 calculated up to order 3 and many up to order 3 . This amounted to 
approximately two thousand five hundred groups and the calculations were 
done with the aid of a computer (Ascione, Havas, Leedham-Green [1977]). 
These calculations showed that various cases which might arise do not in 
fact occur. Using this Leedham-Green [in preparation b] was able to prove 
that 3-groups of second maximal nilpotency class have solubility length 
bounded by 4 . 

The method used to calculate the 3-groups of second maximal nilpotency 
class is described in Chapter 3. In theory it can be used to calculate any 
finite p-group. It is essentially an extension algorithm which given a 
group G calculates new groups H^, — ' ̂ rn ̂ ^^ which have G as a 

particular kind of quotient. The group G is said to give rise to the 
groups H^, H^ . Such a group, G , is said to be capable while a 

group which does not give rise to any groups is said to be terminal. The 
groups H^, ..., H^ , called descendants of G are used as input for the 

algorithm and more new groups are calculated and so on. Tnis information 
can be conveniently displayed in a tree diagram as follows: 

Tree diagrams are described in more detail in Chapter 4- and many examples 



are given. It is felt that tree diagrams are important as they give a 

c l e a r , concise picture of the groups being described and allow the 

information to be assimilated more easily. The word branch will be used to 

denote part of a tree. 

The idea of using tree diagrams to describe results about p-groups is 

of fairly recent origin. This idea suggests questions about the nature of 

the tree diagram. It can be shown that some trees have infinite branches. 

Many branches end with terminal groups and these branches are necessarily 

finite. Finite branches coming from an infinite branch are called twigs. 

The length of a twig is the number of groups on it excluding the group on 

infinite branch twig of length 2 

^terminal group 

the infinite branch. The term infinite bvanoh is used to m e a n just the 

string of capable groups and not the twigs coming from the infinite branch. 

The first questions asked about tree diagrams concern the number of infinite 

branches and the length of the twigs coming from them. For groups of 

maximal nilpotency class previous results can be re-interpreted to answer 

these questions. In this case an upper bound on the length of the twigs can 

be calculated using the degree of comrautativity of the groups. 

The tree of 2-groups of maximal nilpotency class has one infinite 

branch with twigs of length 1 . Blackburn's results show that the trees 

of 3-groups and 5-groups of maximal nilpotency class each have one 

infinite branch. He has also calculated the degree of commutativity of 

these groups. This shows that the infinite branch in the tree of 3-groups 

of maximal nilpotency class has twigs of length at most 1 . If G is a 

5-group of maximal nilpotency class and of order on the infinite branch 

then a twig coming from G can have length at most m . In both cases the 

bounds for the length of the twigs are obtained. 

G with order 5' 

infinite branch 

twig of length at most m 



Shepherd's results show in general that, for each p , p > 5 , the 
tree of p-groups of maximal nilpotency class has exactly one infinite 
branch. The existence of at least one infinite branch had been known for 
quite some time (Baumslag and Blackburn [1950]). Shepherd's results also 
show that if G is a group of maximal nilpotency class and order p^ on 
the infinite branch then a twig coming from G can have length at most 
m + 3p - 11 . 

James' work on 2-groups of second maximal nilpotency class shows that 
the tree of 2-generator 2-groups of second maximal nilpotency class has 
M- infinite branches with twigs of length 1 and 2 . 

There are 2-groups and 3-groups of second maximal nilpotency class 
which have 3 generators. These groups are not considered here. 

This thesis deals with 2-generator 3-groups of second maximal 
nilpotency class. These groups can be divided into two types called groups 
of maximal type or groups of non-maxim.al type. A group of maximal type can 
be constructed as a pullback whereas a group of non-maximal type can not be. 
This classification gives two types of infinite branches in the tree of 
2-generator 3-groups of second maximal nilpotency class. 

9 
A com.plete tree diagram of these groups, up to order 3 , is shown in 

Chapter 4, This tree diagram consists of many parts most of which give 
details of the groups up to order . Fourteen infinite branches are 
exhibited in this tree. Five of these infinite branches contain only groups 
of maximal type. The remaining nine infinite branches contain only groups 
of non-maximal type. 

These nine infinite branches are discussed in Chapter 5 and are 
exhibited using infinite groups of matrices. It is shown that there is an 
infinite set of finite 3-quotients of these groups of matrices and all the 
finite 3-quotients are different 2-generator 3-groups of second maximal 
nilpotency class. The twigs from these infinite branches appear quite 
complicated. 

The five infinite branches containing only groups of maximal type are 
discussed in Chapter 5. They are exhibited using the same kind of argument 
as for the previous infinite branches hov/ever matrices are not used. The 
twigs from these branches have length either 2 or 3 . One of the 
infinite branches of this type is examined in detail. A complete description 



of this infinite branch and its twigs is given. It is also shovm how these 
groups are constructed as pullbacks. 

It is shown that the fourteen infinite branches exhibited are all 
different. A result of Leedham-Green shows that there are no more. 

The final chapter describes a process for determining whether two finite 
p-groups are isomorphic or not. This process is based on the method used 
for generating p-groups. Where this is machine implemented it provides a 
practical method for determining isomorphism. Calculating p-groups using 
the method for generating them and drawing a tree diagram, in some sense 
gives a classification of the groups. The process described allows other 
groups of the same type, not calculated in the same way, to be recognized 
in the tree diagram. 



CHAPTER 2 

PRELIMINARY RESULTS 

This chapter contains results which are used later but best dealt with 

here. 

In Chapter 1 nilpotency class is defined. For this thesis class is 

defined using a different series. The algorithm for generating p-groups 

uses the lower-exponent-p-central series. This series reflects both the 

commutator and pth power structure of the groups and so is preferred to 

the lower-central series. It is also more convenient for computer 

programming. The lower-exponent-p-central series underlies all the work in 

this thesis. 

Let G be a group. 

DEFINITION 2.1. Tne lower-exponent--p-oentval sevies is a descending 

series of subgroups 

G - ?AG) > ?AG) > ?AG) > ... > P rc) > P (G) > ... 
v i z o-l o 

where P (G) = fP g] {? AG)]^ for c > 1 . 
G - G-1 -I G-1 

DEFINITION 2.2. The upper-exponent-p-osntral series is an ascending 

series of subgroups 

= E s Q^^iG) s Q^^iG) 5 ... 5 Q^{G) s 2 ... 

where ^^ defined so that ^ ^ ^ ^ ^ i® "the exponent-p-centre 

of G/Q^iG) . (The exponent-p-centre consists of central elements with 

order p .) 

LEMMA 2.3. If ^^iG) = P^^^CG) then P^^^(G) = . 

Proof. This is clear since, if P (G) = P (G) then 
c c+1 

LEMMA 2.4. If G is finitely generated then G/P^{G) is elementarij 

abelian and if the nvmher of generators is d then the order of G/P^{G) 



d is at most p 

Proof. Suppose G is generated by g^ then P^(G) is 

generated by g^, P^CG); i, j € {l, d], i < J j . Now 

G/V^iG) is generated by • It is clear that 

[ g i ^ j ^ G ^ f = ^^^G) and [g.V^{G), Q^V^iG)} = V^{G) for 

i , J € {1, . . . , J } , i < 3 . If g^. = e for some i ^ {l, .... d} and m 

is not a multiple of p then - [g^V^iG)]"" = and hence 

= P^(ff) . Thus G/V^{G) is elementary abelian of order at most 

LEMMA 2.5. If 6 is a homomorphism of G ^ then V ((5)0 = P (CG) . 
o o 

Proof. The proof is by induction on c . If 6 is a homomorphism of 

G then 

P^(G)e = [IG, = [(79, G Q l i G Q f = P^(G^e) , 

from a property of homomorphisms. Similarlv if P (G)©= P (GQ) then 
e c 

COROLLARY 2.6. Eaah temi TAG) is fully invariant in 0 . 
o 

COROLLARY 2.7. If N is a normal subgroup in G then 

?^(.G/N) = {?^(G).N]/N . 

Proof. The homomorphism 6 is d : G ^ G/N . 

LEMMA 2.8. If G is finitely generated then G/V (G) is a finite 

p-group. 

Proof. Suppose G is generated by {g^-, ..., g ^ then, by Lemma 2.4, 

G/V^{G) is elementary abelian of order at most p ^ . For i > 1 , 

= P.(G)]{P.(G)]P ^ V.^^iG) -- 1?.{G), G][?.{G)]P . 

Thus is a quotient of ? X G ) / ? S G ) ) which is elementary 



abelian of order some power of p and so G/P {G) is a finite p-group. 

LEMMA 2.9. I f G is a finite p-group, then ? (G) ^ E and 
G 

- G for some positive integer o . 

Proof. Suppose G is a finite p-group then G has non-trivial 

centre and so E . If is trivial then G = . Thus 

G is an elementary abelian group and hence = E . In this case e 

is 1 . 

If is non-trivial it is a finite p-group and so 

0.2(1?) ^ , Thus, there is an Integer c such that = G . 

Suppose that o 

is the least such integer. It is now shown by induction 

that P.(G) < Q .(G) for i ^ { o a } . When i is 0 , 

- G = Q^(G) . Suppose PAG) 2 for some i . By definition 

Q . -.(G) is the exponent-p-centre of G/d . (G) and by the 

inductive hypothesis P.(G)/Q_ . (G) is contained in the exponent-p-centre 

of G/d . AG) . This means that for each g. in ? .(G) , 

equivalent to P. AG) < d • n(^) • Thus P (G) = 5" . If P (G) = E 
^+l c c-1 

then P^ ^(G) contains only central elements of order p . Thus 

P AG) < 0(G) but this is not true. Hence P AG) E . G" 2. J.. G-"^ 

DEFINITION 2.10. A group G has eccp>onent-p-oentral class e if 

P (G) = E but P AG) E . c c-1 

In the rest of this thesis, class will denote exponent-p-central class 

and nilpotency class will be specified as such. 

LEMMA 2.11. The group G/P^(G) has class at most c and i f G/P^(G) 

has class c then G/V AG) has class c - 1 . G— X 

Proof. Using Corollary 2.7, 

P [G/P = [P(G).PJG)]/P (G) = E . C ^ C • r>. J ^ C 

Thus G/P (G) has class at most e . Now suppose G/P (G) has class G G 



10 

exactly c t h e n , using the definition of c l a s s , P [G/? (C)) ^ E . It 

f o l l o w s , using Corollary 2.7, that P (G) < P (G) . Now 
O O—l. 

5 however since if they were e q u a l . 

Lemma 2.3 gives = and this is not true. Again using 

Corollary 2.7 it is shown that P AG/P - E but c-1 ^ c-1 

LEMMA 2.12. If N is a normal subgroup of G and G/N has class 

o , then P (G) ^ N and P (G) ^ N . 
a C - 1 

Proof. Since G/N has class e it follows from the definition of 

class that P^iG/N) = E but P^_^(G/N) F E . Using Corollary 2.7, 

P^(G/N) = [P^iG).N]/N . H o w e v e r , this is the identity hence P^(ff) 5 N . 

In a similar w a y it can be shown that P^ ^(G) ^ N . • 

A subgroup H of a group G is om-Lssihle if every siibset of G which 

with H generates G , generates G by itself. Recall that $((?) the 

Frattini subgroup of G is defined as the intersection of G with all its 

m a x i m a l subgroups. Recall also that ^(G) consists precisely of those 

elements x of G that can be omitted from every system of generators for 

G in which they occur. Thus the Frattini subgroup is omissible 

(M. H a l l [1959, p . 157]). 

LEMMA 2.13. If G is a finite p-group then P^(G) = $((?) and hence 

P^(G) is omissible in G . 

Proof. Since G is a finite p - g r o u p , G is nilpotent. Every 

maximal s u b g r o u p , 4 , of a nilpotent group is a normal subgroup of prime 

index. Thus \G/A\ - p and so G/A is the cyclic group of order p and 

hence abelian. Thus [G, G] S A . The group G/A does not contain any 

non-trivial pth powers and so CP S A . Thus [G, G'](P 5 A , that is 

P^(G) S A . Hence P^iG) is contained in every maximal subgroup of G and 

so P^(G) < . However G/P^(G) is elementary abelian and so P^iG) 

is the intersection of some maximal subgroups and so 0(G) 5 P^iG) . Thus 

- P^(G) . • 
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If G is a finite p-group and the minimum number of generators for 

G i-s d then G/?^{G) is elementary abelian of order p*̂  . In this 

thesis the term d-genevatov groups will be used to denote such groups. It 
is clear that all cZ-generator finite p-groups have the elementary abelian 

group of order p^ as a quotient. This is important for the next chapter. 

In the context of class, as opposed to nilpotency class, it is possible 

for a gpoup "to have oipdop p a.nd cXass ti . This only occur̂ s however* fop 
• Yl Yl 

the cyclic group of order p . If a group has order p and class e it 
is said to have co-class n - c . 

It is clear that the class of a group is greater than or equal to a 
group's nilpotency class. Thus a group of maximal nilpotency class must 
have co-class 1 . The converse is not true. The groups C x C have 

V n 
^ V 

co-class 1 but also nilpotency class 1 . Similarly groups of second 
maximal nilpotency class have co-class 2 but there exist groups with 
co-class 2 and very low nilpotency class. 

The concept of co-class can be extended to infinite groups. This is 
done by giving an alternative definition. 

DEFINITION 2.14. if G is a group let i-.{G) be the dimension of 

P. AG) IV .{G') for ^asa linear space. J- "V 

DEFINITION 2.15. if G is a group then the co-class of G is 

c 
m{G) = I fr.CO-l] 

where c is the class of G or o® if the class does not exist. 

It is clear that if G is a finite group m{G) equals the co-class 
of G as previously defined. 

The following result, due to Blackburn, shows that for groups of 
maximal and second maximal nilpotency class the non-zero terms in the 
co-class sum must occur in the first p terms. 

In Blackburn's [1958] paper he defines ECF{m, n, p) as the set of all 
Yl 

groups G of order p and class m - 1 in which ^ ~ P » 
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i € {3, 4, w} and G/y^iG) is elementary abelian. He then proves the 

following theorem (3.9). 

Let G be a p-group of (nilpotency) class at least p + 1 , and 
suppose that € ECF(p+l, n, p) . Then ^ ECFim, n', p) for 

some m, n' . 

Applying this theorem to a p-group, G , of order p" and having 
maximal nilpotency class shows that |y. {G)/y.{G)\ = p for 

i € {3, . . . , n} . This means that V .{G) = fp. (ff), for ^ L J 
i € {2, n-l} . Thus = 1 for i € {2, n-l} and = 1 , 

since ^ C x C and has rank 2 . 1 P P 

If G is a two-generator p-group with second maximal nilpotency class 
then G/V^{G) is isomorphic to C^ x c^ and so the first term in the 

co-class sum is non-trivial. If the next p - 1 terms in the co-class sum 
are trivial then Blackburn's theorem forces the group to have maximal 
nilpotency class which is not the case. Thus the other non-trivial term 
must be in the first p terms and so P. (G) = [p.(G), G'\ for i greater 

'Z' t-L 
than or equal to p . Thus when p is 3 and G has second maximal 
nilpotency class c either 

and 

or 

and 

PAG)/PAG) ^ . . . ^ P^ AG)/P (G) s C„ 2 3 C-1 c 3 

P^(G)/P^(G) ^ P^(G)/P^(G) Cg X Cg 

P^(G)/P^(G) P^(G)/P^(G) ^ . . . ^ S 

Finally, it is worth noting that there is an infinite group associated 
with each infinite branch of a tree. Suppose that G^, G^, ..., G^, ... 

are groups on an infinite branch and that for every a homomorphic 
mapping cp̂  of G^^^ onto G^ is given. If ^^^^ 6 G^^^ , then 
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q = q cp . 

Define a thread to be a sequence of elements 

y = 92' ' • • • 

for which g^ ^ G^ and -9^ for n € {l, 2, ...} . Then 

-1 ^ -1 -1 -1 
I » 92 > • • • > 3 • • • 

is also a thread and if 

Y ~ 9 » 2' • • •» 5 •' • 

is another thread then 

YT' = 9292' ••• ' 9^9^ n^n" 

is also a thread. Under this multiplicat ion the threads are easily seen to 
form a group (Kurosh [1955, p. 227]). The group is the inyer-se Z-imit or ppoject-

Z-imit of the sequence of groups G , G , ..., G ... and the homomorphisms _L ^ lU 
cp̂  , n € {1, 2, ..,} . These limit groups are not used in this thesis. 

The infinite groups discussed in Chapters 5 and 6 are not limit groups of 
this type. However, there is a mapping from, these infinite groups on to the 
limit group as defined above. 



It; 

CHAPTER 3 

AN ALGORITHM FOR GENERATING FINITE p-GROUPS 

In a lecture presented to a mini-conference on group theory M.F. Newman 

[1977] described "a procedure which given a prime p and a positive integer 

d generates a list of descriptions of all (^-generator finite p-groups". 

An important feature of this procedure is that it lists each group only 

once. This chapter is broken into four sections and discusses the procedure 

in more detail than given by Newman. The first section gives a general 

description of the procedure. This goes over the same ground covered by 

Newman however the two presentations are rather different. The second 

section describes the type of group presentations used by the procedure and, 

in some cases, how to calculate them. At the completion of the second 

section it is possible to give an example. This comprises the third 

section. The last section describes the computer implementation of the 

procedure. The implementation was written in order to calculate 3-groups 

of second maxim.al nilpotency class. Certain features of these groups were 

used to simplify the task. Thus, while the discussion is kept as general as 

possible, certain restrictions are introduced. The example of Section 3 is 

used to illustrate parts of the implementation. 

3.1. A Theoretical Description of the Generating Algorithm 

In this chapter P is a (i-generator, finite p-group with class c , 

(p a prime, c and d are positive integers). The group P is presented 

in a way that makes o and d easy to calculate. This type of presentation 

is described in Section 2. 

DEFINITION 3.1. A group S is a desaevAent of P if Q has d 

generators, Q/?^(Q) is isomorphic to P and is non-trivial. A 

group Q is an irmed-iate descendant of P if it is a descendant of P and 

has class e + 1 . 

Since P has d generators, P/P^(P) is an elementary abelian group 

of order 'p^ and hence P is a descendant of this elementary abelian 

group. 
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Also since, 

(P/P (P))/P (P/P (P)) ^ [F/V.{P)]/[[? iP)V {P)]/?.{F)] ^P/P.(P) , 

using Corollary 2.7 and that P.(P) < P (P) , it follows that P/P.(P) is a 
d T- J 

descendant of P/P^(P) for i < 3 S c . (it is clear that P/P.(P) and 

P/?^iP) both have d generators and that P^(P/P^.(P)) i: E .) Since P 

has class exactly e it follows from Lemma 2.11 that P/P^(P) has class 

exactly k for k ^ {l, c} . Thus, P/P. fP) is an immediate ^+l 
descendant of P/V.{P) for i < o . Hence, it is possible to calculate P 

using an iterative process of calculating immediate descendants starting 

with the elementary abelian group of order p^ . Since any group, P , can 
be calculated 

xn this v/ay a complete list of such groups can be obtained by 
calculating a complete set of immediate descendants at each step. In order 
that the list is complete but contains exactly one copy of each group the 
set of immediate descendants calculated for a given group must be complete 
and irredundant, that is the set must include all immediate descendants, no 
two of which are isomorphic. The process of calculating such a set of 
immediate descendants is loosely referred to as the generating algorithm. 
Iterating the generating algorithm gives the procedure described by Neuinan. 
The theorems which follow show how to calculate the required set of 
immediate descendants. 

While the procedure generates, in theory, a list of all d-generator 
finite p-groups such a list can never be obtained as it is infinite. The 
number of groups of a given order grows rapidly with increasing order and so 
an efficient generating algorithm is needed. No formal tests to check this 
have been done but the machine implementation has allov/ed calculations to be 
performed which would not otherwise have been possible. The calculation of g 
all 2-generator 3-groups of second maximal class up to order 3 is an 
example of this. 

THEOREM 3.2. For every d-generator finite p-group, P , with class 

0 there exists a d-generator finite p-group^, P^- , of class at most 

c + 1 such that every immediate descendant of P is isomorphic to a 

quotient group of P'^ . 

Proof. Let F be a free group of rank d , freely generated by 
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^d) ' P is a d-generator group there exists a 

homomorphism 9 from F onto P . Let i? be the kernel of this map so 

that F/R is isomorphic to P . Define R^ to be [i?, and P^ to 
be F/R* . 

Now F* has d generators since P has d generators, F has rank 
d and R* < R . Using Corollary 2.7 Initially and then the definition of 

c+r c 

Since F/R has class c , it follows immediately from Lemma 2.12 that 
5 R and hence 

S ([i?, F-]R^.R^]/R* = E . 

Thus F* has class at most c + 1 . 

Now suppose Q is an immediate descendant of P and so, in particular 
(Q) is isomorphic to P . Let (p be a homomorphism from Q onto P 

and so ker 9 = P^(^) • Define q^, ... ̂  q^ to be elements of Q such 

that q .cp = a.0 for i € {l, . . ., d} . Since the a.9 are generators for 

P it follows that Q q^, P(Q)> . However P (Q) 5 FAQ) and 
J. CI c^ O _L 

hence is omissible; thus Q = (q , ..., q^) . Let jp be the homomorphism -L Ci from F onto Q defined by a .ip = q. for i € {l, . .., d} . Let M be 

the kernel of i]; snd then F/M is isomorphic to Q . It is enough to show 
that R'^ is a subgroup of M since then Q is isom.orphic to (F/R*)/(M/R'^) 
and therefore isomorphic to P*/(M/R*) . 

By definition a .tp = q. and q .cp = a.9 and hence a ,i!;cp = a^.Q for 'VI' "V X' 'u 

i € { 1 , . . . , d} . Since ker 0 = i? it follows that iFijjcp = E and hence 
R4) < ker cp = • Now 

R*ip = ([P, FjR^)ilj < [PJQ), Q\ {? (Q)]^ = E . C-

Thus R* 5 ker ip , that is R* is a subgroup of M as required. 

3.3. The group P* is determined up to -isomorphism by P . 
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Proof. TK€ yoix̂  "P IS <X p-^-^^p ol cJcs-iC. k̂ t- P 

ISO ."v̂o. -pKit . 

p-j'̂  . . ., Id'̂ T y . Nouo ĉ ê '̂i cP, ̂  be 

- k^ . r = O^Qa. -Par -c <£ I • • •, oi | cxŵ  io q), 
a Ko ovOfc O-v̂ d 

ker cp̂  = • ^^ be î e homomorphism from F onto P^ such that 

i € il, d} . Let M^ be the kernel of ip^ and so F/M^ 

is isomorphic to P^ . By the definition of Tp^ and cp̂  it follows that 

"" i ^ {1, d] . Thus " ̂  hence 

- ^^^ hence 

However ker cp̂  = which consists only of central elements of order 

p . Thus R^^^ = E and hence R^ 5 ker = ^^2 ' means that 

is isomorphic to ^^ ' ^^ ̂  similar way it can be shown that 

P^/(M^//?^) is isomorphic to P^ and hence P^ and P^ are isomorphic. 

DEFINITION 3.4. The group P^ defined in Theorem 3.2 is called 
the p-covevi-ng group of P . 

The first step in the generating algorithm is, given P , to calculate 
P"̂  . This is done using the p-covering algorithm which is described in 
Section 2. The following discussion deals with calculating the appropriate 
quotients of P^ in order to get all the immediate descendants of P . 
This is part of the next step of the generating algorithm. 

DEFINITION 3.5. The p-multiplioator of P{'^F/R) is R/R'^ , where 

= [P, as in the proof of Theorem 3.2. 

DEFINITION 3.6. The nucleus of P is P^(P^) . 

DEFINITION 3.7. A group P is capahle if the nucleus of P is non-
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trivial and terminal if the nucleus of P is trivial. 

It is shown later that this definition means that P is capable if it 

has immediate descendants and terminal if it does not. Terminal groups are 

of little interest. 

DEFINITION 3.8. Proper subgroups of the p-multiplicator of P which 

supplement the nucleus of P are called allowable subgroups. 

Thus M/R* is an allowable subgroup if M/R^ . P {F/R"^) = R/R* . 
G 

THEOREM 3.9. The subgroup is an allowable subgroup if and only 

if M/R* is the 'kernel of a map from P^ onto an immediate descendant of 
P . 

Proof, This proof uses all the notation of Theorem 3.2. Let M/R* be 

the kernel of the map from P^ onto Q , where Q is an immediate 

descendant of P and Q is isomorphic to F/M as in Theorem 3.2. 

It is first shown that M/R'^ is a proper subgroup of the 

p-multiplicator of P . To do this it is only necessary to show that M is 

a proper subgroup of R as it has already been sho^.m in Theorem 3.2 that 

R'^ is a subgroup of M , Let a^} be a word in M and 

calculate w [a^, .. . , a ^ 9 . 

But M is ker ]p , thus the image of w [a^, ... , a^] under 9 is the 

identity coset. That is, a^} is in ker 9 which is R and so 

M is a subgroup of R . Now {F/R*')/{M/R^) is isomorphic to F/M which 

has class e + 1 but {F/R^)/{R/R"^) is isomorphic to F/R which has class 

c and so M is a proper subgroup of R . 

It is now shown that M/R* supplements the nucleus of P . Since F/R 

has class e , P is a subgroup of R (Lemma 2.12). However, M is a 
o 

subgroup of R and hence M.?^(F) is a subgroup of P . It xvas proved in 

Theorem 3.2 that is a subgroup of ?(Q) • However F/R and hence 

Fip/R\l) have class <3 , thus P (F\p) is a subgroup of Rip (Lemma 2.8) and 
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so is equal to P ( Q ) . It is clear that Bip is also equal to B/M 
o 

and that is equal to (P^(F).m]/M . Thus B/M is equal to 

[P^(F).m]/M and hence B is equal to M.P (F) . Now i?^ is contained in 

M and B but not PJF) and can be factored out to show 

(M/B*). /B* is equal to B/B* . However, using Corollary 2.6, this 

becomes Q4/B^) ,P (F/B^) is equal to B/B'' as required. 

Now suppose M/B'^ is an allowable subgroup. It must be shown that 

M/B'' is the kernel of a map from P'^ onto an immediate descendant of P . 

This is equivalent to showing that P^/iM/B^) is an immediate descendant of 

P . The group P^/{M/B^) is isomorphic to F/M . Since M/B^ is an 

allowable subgroup {V{F).m]/B=^ is equal to B/B^ and hence [P {F) /M 
• c o ' 

is equal to B/M . Corollary 2.6 shows that [P (P).w)/M is equal to 

P (F/M) and hence P (F/M) equals B/M . It is now clear that F/M has 
G G 

d generators (since F/M is a quotient of F/B ), that (F/M)/P (F/M) is 
c 

isomorphic to P and that V (F/M) is non-trivial. This shows that F/M 

is a descendant of P . It remains to show that F/M has class c + 1 . 

For this it is only necessary to show that P (F/M) is trivial. Again, 
O t-L 

using Corollary 2.6 and the definition of (P) , 

P^^^{F/M) = [P^^^(F).M]/M = \PJ<F), F][?^(F)]P.M IM . 

However, F/B , which is isomorphic to P , has class e and hence P (F) 
c 

is a subgroup of B . Thus ^ subgroup of (B*M)/M which is 

trivial and so F/M is an immediate descendant of P . • 

3.10. A group P is capable if and only if P* has class exactly 

c + 1 . 

Proof. It has already been shown that P"̂  has class at most c + 1 

and hence P'^ has class exactly c + 1 if and only if P (P"^) is non-

trivial. However, this is the condition for P to be capable. • 

If P'^ does not have class exactly c + 1 then P (P"^) is trivial. 
o 

This is the condition for P to be terminal and it is clear that in this 

case P can not have any immediate descendants. 
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If P^ does have class exactly o + 1 then P (P^) is non-trivial. 
G 

Choose a proper, non-trivial siibgroup, MIR^ , of RIR^ such that 

{M/R'^) .V^iF/R'^) is equal to R/R'' and then by Theorem 3.9 the group 

is an immediate descendant of P . Thus, a capable group is one 

which has immediate descendants. 

The first step in the generating algorithm, as previously said, is, 

given P , to calculate the p-covering group P* . This is done by the 

p-covering algorithm. The next step is to determine whether P is capable 

or not. This is done by calculating V i R ^ ) , the nucleus of P . If the 

nucleus is trivial there is nothing further to be done as P is terminal. 

If P is capable the next step is to calculate the allowable subgroups. 

This is straightforward given . Theorems 3.2 and 3.9 show that a 

complete set of immediate descendants is obtained by factoring allowable 

siibgroups from . In general this set is not irredundant. 

DEFINITION 3.11. TVTO allowable subgroups M/R^ and N/R^^ are 

equivalent if and only if F/M is isomorphic to F/l] , where F is as 

before. 

This is clearly an equivalence relation and so divides the allowable 

subgroups into equivalence classes. A complete and irredundant set of 

immediate descendants is obtained by factoring from . P^ one representative 

of each equivalence class. Thus, having calculated the allowable subgroups, 

it remains to arrange them into equivalence classes. This is done using 

Aut P , the automorphism group of P . Thus, input for the generating 

algorithm consists of the group P and also Aut P . It is now shown how 

to associate with each automorphism in Aut P a permutation of allowable 

subgroups. It is then shovjn that calculating the orbits of these 

permutations is equivalent to calculating the equivalence classes of the 

allowable subgroups. 

Let 3 be an automorphism of F/R P) . Recall that F is freely 

generated by {a , . . . , a.] . The action of 3 is given by a .P|3 - u .R , 
X. CI %> 

i e {l, d) . This defines u . , i ^ {l, d] which is a word in 

a^, ..., a^ • Define as follows. Let zjfa^^, a^ € F ; then 

To prove that is an automorphism of F/P^ P^) it is first necessary 
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to show that is well-defined. It is equivalent to show that if 
a ^ ^ R'̂  then • • • , w^] ^ R^ . Suppose 

... , a^) ^ i? , a^R^ = u^R . However i?3 = i? 

thus M^) ^ R . Thus < R/R^ . Now since 

R* = [i?, it follows that if .. . , a^) 6 R* then so is 

M^} and is well-defined. 

It is clear that is a homomorphism and so it remains to show that 
3* is onto. Since 3 is an automorphism of F/R and a .r?3 - u.R , 1- 1, 

i ^ {l, cZ} it follows that FIR is generated by {u^, > 

that is F/R = ̂ u^, u^) . Thus F - R) and hence 

F/R* = . However < V^{F/R*) and hence, by 

Lemma 2.13, is omissible. Thus 

F/R"-- = u^*) = 

and hence 3"̂  is an automorphism of F/R* . 

Note that 3"̂  is not uniquely determined by 3 , however 

Suppose a .i?3 = v.-R - u .X'.R = v .R for non trivial ^ R . Then there are 

two mappings 3^ and 3^ where = ..,, and 

a^R*^^ - • It has already been shown that 

{R/R*)^* 5 R/R* and since 3̂^ is an automorphism = R/R* . Now 
restricting 3^ and 3^ "to R/R^ shows that u^] and 

V^] are in R . However, it is shown in the next section of this 

chapter that words in R are a product of pth powers and commutators. 

Now, it is clear that [f ., V = [w ., u ̂ R* and yji?̂  = vP.R* hence 

u^R* = ' ^^^R/R* ^^ uniquely determined 

by 3 . 

LEMMA 3.12. The automorphism 3̂^ induces a permutation on the set of 

atlowahZe subgroups. 

Proof. The nucleus of F/R , V (F/R*) , is fully invariant in F/R* 

(Corollary 2.5), and hence is characteristic. Let M/R* be an allov/able 
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subgroup, thus UIR"^ . P (f/r?^) = . Calculate . P (F/i?^) : 
'' c 

Thus is also an allowable subgroup. • 

Denote the permutation induced, by , on the set of allowable 

subgroups by 3 ' . Let G denote the group of permutations which contains 

all permutations 3 ' corresponding to automorphisms, 3 , of F/R . The 

claim is that the orbits of the allowable subgroups under G correspond to 

the equivalence classes. Before proving this claim it is first shown that 

there is a homomorphism from k\xt{F/R) to the group of permutations induced 

on the allowable subgroups. Define the map ' where ' : 3 ^ 3 ' where 3 

is an autom.orphism of F/R and 3 ' is a permutation induced on the 

allowable subgroups as described above. 

LEMMA 3.13. The map ' is a homomorphism. 

Proof. It is first shown that ' is well-defined. Suppose that 

a:.i?3 = u.R = u.v.R = v .R , 

then there are two choices 3 | and 3^ such that 

d 

or 

As shown previously, v^hen restricted to R/R^ , these mappings are identical 

and hence the induced permutations are also. 

Let 3-, and 3^ be automorphisms of F/R where a.2?3-, = u.R and 
L I ^ 1 ^ 

a.i?3o - V .R for i k {l, . . . , d] , where u. and v. are words in 
1 Z % ^ ^ 

a^, . . . , a^ . Define x^ to be v^ for i € {l, ..., d} . 

Let ... , a^ be a word in R , then 

= . . . , x^R'^ . 

Also equals u.R<^ equals x.R for i € {l, ..., d } and so 
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Thus 3^32 equals (3̂ 3̂2.1 ' and so ' is a homomorphism. 

THEOREM 3.14. Suppose F/R ^ which is isomorphic to P , is a 

p-group as described above. The orbits of the allowable subgroups under G 

correspond exactly to the equivalence classes of allowable subgroups. 

Proof. Suppose M/R^ and N/R^ are allowable subgroups in the same 

equivalence class. Then F/M and F/N are isomorphic. Let be an 

isomorphism from F/M to F/N and let f. be defined by 

am^ = f.N for i i {1, ... , d} . 
U 1. ly 

Now VJ^FtU) equals RIM and ?^{F/m equals R/N and 

?JF/M)Q^ 5 ?(F/N) while P {F/N)d~^ < P (F/M) . 
± C' C X C 

Thus equals R/N and induces an automorphism, 8 , on F/R . 

Now ' is applied to 8 to get Q' and it is shown that (M/R*)Q ' equals 

N/R* . Let W[a^, ..., a^l be an element of M ; then 

where restriction of to R/R'^ . Now 

f^]N = . . . , fj^] 

= W[A^, . . . , cl^MQ^ 

= iV 

where eM is the identity coset, Thus is an element of 'N 

and so {M/R*)Q^\^^^^^ is a subgroup of N/R"" . However, 

and N/R^ have the same index in F/R"^ and so they are equal. Thus 

and N/R'^ are equal. Since 8 is in Aut F/R it follows that 

M/R^ and E/R"^ are in the same orbit. 

Now suppose M/R* and I^R* are two allowable subgroups which are in 

the same orbit. Thus, there is a ŷ ^ , such that {M/R^)-^^ equals N/R^ . 
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This permutation y^ corresponds to Y , an automorphism of F/R . Define 

a map y^ from F/M to F/N by 

where a^) is a word in F and y'^ is an automorphism of F/R* 

corresponding to y in the way previously defined. It is now shown that 
Yo is an isomorphism. 

Suppose ..., a^) is an element of M then 

..., a^R'^^y* is an element of N/R* since this is the original 

supposition about Yj_ • Thus equals N and so y^ 

is well-defined. The mapping y^ is clearly a homomorphism and so it 

remains to show that y^ is onto. Since Y'̂  is an automorphism of F/R'̂  

it has an inverse Y'̂  ̂  • Let equal 

..., . Then 

= ..., a^N . 

Thus Y2 i® onto and the theorem is proved. • 

Once the orbits are calculated an orbit representative from each orbit 
of allowable subgroups is chosen. Let be a set of orbit representatives; 
then the set {P'̂ /iM/R'̂ ); M/R* € C*} is a complete and irredundant set of 
immediate descendants of P . 

It has already been said that input for the generating algorithm 
consists of P and Aut P . After calculating the immediate descendants of 
P their automorphism groups could be calculated independently and then the 
generating algorithm could be applied 

again. It is more convenient to 
calculate the automorphism groups of the immediate descendants as part of 
the generating algorithm. The structure of these automorphism groups allovjs 
this to be done. THEOREM 3.15, If F/M is an immediate descendant of P then 
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Aut F/Af = 5.Z 

where K is the group of automorphisms of F/M which are trivial on F/R /N 
and S is defined as follows. Let S be the subgroup of Aut F/R 
containing those 3's for which fixes M/R^ . Then S consists of 

those automorphismsJ , restricted to F/M . 

Proof, Suppose Y^ is an automorphism of F/M . Now y^ fixes 

?^(.F/M) and hence can be restricted to F/R . Denote this restricted 

automorphism by y . 

If y is the identity then Yj_ is in K . 

If Y is not the identity then calculate Y'̂  • It is now shown that 
Y'̂  fixes F/R'̂  . First let 

a .My - u.M for i € {l, ..., c?} U X. 

so that the ẑ -'s , words in â ,̂ ... , a^ , are defined by this. Then 

Now let W\a^, .. . , a^} be in M ; 

w[u^, u^M = 

= w [a^^^, ... , a^^Y^l 

= eMy^ 

= M . 

Thus Y'̂  fixes M/R'^ and hence can be restricted to F/M . Denote this 
restricted automorphism by Y • It is clear that y is in S . Now 

a.My - u.r.M for i € {l, d] Ia % ly 

where r . is a word in R , 

Define y^^ to be such that 

u.My^ - u.r.M for i € {l, d} 

then clearly Y2 ^^ in Z and y equals J2^2 • equals yYJ^ 
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and Y is in 5 and is in Z . • 

If 3 is an automorphism of F/i? such that acts trivially on 
R/R^ then 3' is the identity permutation and plays no part in determining 
the orbits. The inner automorphisms are of this type. 

3.16. In the calculation of orbits it is not necessary to use inner 
automorphisms of F/R . 

Proof. Suppose 3 is an inner automorphism of F/R , that is 

a.i?3 = a'^a.aR for i ^ {l, d] 1 1-

where a is a word in a^, ..., a^ . Suppose w[a^, ..., a ^ is a word in 

R ; then 

= ..., ajai?^ 

= a^R^ . 

The last step follows since words in R are central modulo R^ . Thus 3' 
is the identity permuration and is not necessary for calculating orbits. 

To summarize this section the steps of the generating algorithm are 
listed. 

1. Given P , the p-covering group P^ is calculated. 

2. The nucleus of P , P (P^) is calculated to determine whether P G 

is capable or terminal. If P is terminal there is nothing else to do. If 
P is capable the following steps are performed. 

3. A list of allowable subgroups is made. 

For each automorphism 3 in Aut P the permutation 3' is 
calculated. 

5. The orbits of allowable subgroups are calculated and an orbit 
representative is chosen. 

6. A description of each immediate descendant is calculated. 

7. A description 
of the automorphism group of each immediate 

descendant is calculated. 
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3.2. A Practical Description of the Generating Algorithm 

The previous section describes the theory of the generating algorithm 

without giving any of the practicalities involved in actually carrying it 

out. This section describes the type of descriptions for P and Aut P 

which are used by the generating algorithm. Enough details are given to 

allow the generating algorithm to be carried out by hand. 

The input for the generating algorithm is a description of P and a 

description of Aut P . The type of presentation used for P is first 

discussed. This is followed by a description of the method used for 

calculating P'̂  and P^CP'^) . Then Aut P and how to calculate the 

automorphism group of an immediate descendant are discussed. The type of 

presentation used for these groups is also given. 

POWER-COMMUTATOR PRESENTATIONS 

The input description for P is a power-commutator presentation. 

DEFINITION 3.17. A power-oonmutator -presentation of a group has the 

following form: 

( 
n / . - s 

'P _ —r a ^ , ... , aj - j a, ^ ' , 0 < a(i, k) < p , 

[a a J = T T 0 5 a(i, j , k) < p, I < j ) . 

(Any powers or commutators not shown are assumed to be trivial.) 

Presentations of this type were first mentioned by Sylow [1872] and he 

in fact proved that every group of order p ^ has a power-commutator present-

ation on n generators. The converse is not true, a power-commutator presentation 
n 

on n generators may not present a group of order p ; the order m.ay be less . 

It is not difficult to prove that in groups with a power-commutator 

n 
presentation every element can be written in the form 1 f a ^ ^ ^ with 

< p . V/ords of this form are called novrncii v7ords. Thus every word 

in flj^, a^ is equivalent to a normal word. The method for calculating 

a normal word equivalent to a given word is as follows. First notice that 
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inverses do not need to be considered as they can always be eliminated using 

the power relations. If a word is not normal it has a subword, oF. , 

i € {l, ... , d} or , i , j € {l, .. . , ci} , i < j . These subwords 

can be replaced by the words 
n 

a 
aU,k) 

kH+1 
, 0 2 a(i, k) < p , and 

n 
a .a . a 

k , 0 2 a(i, J , k) < p , respectively. By repeatedly 

replacing the first type of subwords by the second type a non-normal word 

is made normal. It can be shown that this process terminates. Such a 

process is called collection. For more details about collection processes 

see M.F. Newman [1976] or Havas and Nicolson [1976]. 

DEFINITION 3.18. 

A power-commutator presentation on n generators 

which presents a group of order p is called consistent. 

The following theorem shows how to recognize a consistent presentation. 

This was first proved by Wamsley [1974]. 

THEOREM 3.19. Consistency Theorem. If, in a power-commutator 

presentationJ the following words, 

a.an , 1 ^ i < j < k < n , 
K. ,1 1 

aF.a. 
3 ^ 

a .oF. 
3 -z-

, 1 5 i < J < n , 

a^.^^ , 1 < i S n , 

when collected in two essentially differeyit ways give the same norrr^al word 

then the presentation is consistent. 

The essentially different ways of collecting are as follows. Brackets 

indicate the subwords to be replaced first. 

(a7,a .la . and a. [a .a.] , 

aP]a_. and , 
J • J 

a . 
3 

aP % and [a .a .]aP ^ , 

a. 
^ 

aP and aP. a. . 
^ 
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Collecting these words is referred to as performing the consistency checks. 
The consistency theorem is not proved here. 

If a presentation is found not to be consistent then the element which 
caused the two normal words to be different is eliminated. An example serves 
to illustrate this. Consider the group presentation 

/ 3 a^, . . . ^ a^-, a^ = e , 3 

[a^, a J = a^, [a^, a J = a^, [a^, a j = [a^, a J = a^, [a^, a^] = , 

all other simple commutators are trivial) . 

Performing the consistency checks (in reverse order) shows that this 
presentation is not consistent since 

a. a. = a^a^ but a. 2 2 = • 

Thus a^ must be eliminated if the presentation is to be consistent. 

Eliminating a^ gives a new presentation as follows. 

3 3 a^ = UQ = e , 

a^, a J = a^, [a^, a J = a^, [a^, a^] = a^, [a^, a J = a^, 

all other simple commutators are trivial^ . 

It appears that the consistency checks must be performed for this presentation. 
However, those checks that have already been performed do not have to be 

redone- In the case above a^ and a^ were checked. In the nevr 

presentation both these words give the same normal words when collected in 
two essentially different ways. Thus performing all the consistency checks 
once and eliminating those generators v.'hich cause the two normal words to be 
different will give a consistent presentation. The presentation above is 
still not consistent since 

a, a 
2 = a^ but (a^a^)a^ = a^a 

and 
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a. 2 ^ 2( -s 2 
a^ ^ a^a^ but = ' 

All the other consistency checks have the normal words equal or show that 

a^ and a must be eliminated. 

The presentation below is a consistent power-commutator presentation: 

( a ^ , ag; aj = e , a^ = aj, a^ = a^, = = a^ = e, 

= ^ ^ K ' ^ J = %} • 

This is a presentation for the group 0 which is used as an example in the 

next section. This group is also mentioned in Chapter 4. 

Consistent power-comrautator presentations of cZ-generator p-groups of 

order p ^ and class e are now discussed. Thus, in addition to assuming 

that P is a cZ-generator p-group of class e it is also assumed in the 

rest of this chapter that P has order p ^ . Suppose P is such a group 

with a consistent power-commutator presentation. Since P is generated by 

elements '''' '̂ n ^^^^ definitions in terms of 

a^, a ^ . These definitions appear among the relations of the 

presentation and are called defining relations. Defining relations, for 
alvvK̂ H i , 

p-groups, can onry be of two special types. They are as follows: 

cP. , i < k , and a . is a pth power of some element 

or i < d , 

a ., a .] , i < j < k , i S d . 
.7 "V 

To every generator, a^ , of P a weight, , is assigned as 

follows: 

wt fa .1 = 1 for i ^ {1, . . 

wtfa., (2.1 = wt fa. J + wtfa.l , 

d,] , 

aP ^ 

n 

k-1 

= wtfa.l + 1 . 

If u is any word in P then u is equivalent to a normal word say 

\ a ^ ^ ^ . Suppose is the first non-trivial exponent then 



31 

wt(M) = wt(a^) . The identity element is defined to have infinite weight. 

It is clear that P.(P) contains elements of weight i + 1 and higher. 
t-' 

This follows by induction since ^Q(P) = P contains elements of weight 1 

and higher. 
The definitions of ^n that there is at least one 

element of each possible weight. Thus, let all the generators of weight i 
^ ^ • • • ' ̂ ^ • follows that <5(1) is 

d and die) is n . It is clear that all generators of weight i are in 

Using the definitions it follows that wt[a^l = c and hence elements 

of P can not have weight greater than c . Thus in the presentation for 
P , 

a., a.] = e if wt fiJ .1 i- wt (a .1 > e + 1 

and 

a? = e if wt{a.] = G . 

THE p-COVERING ALGORITHM 

Given a consistent power-commutator presentation for P the p-covering 
algorithm calculates a consistent power-commutator presentation for P* , 
the p-covering group. This section describes the p-covering algorithm. 

Suppose P has the following consistent presentation: 

(a, , ..., a ; as = a. , 0 < a(^, k) < p, 
\ 1 ^ kH+1 ^ 

[a., a.] = f r 0 < a(i, j, k) < p, i < j) . 

Among the relations there are n - d defining relations and hence d + f") 

non-defining relations. Tietze transformations can be applied so that P 

is presented on a^, a^ . The presentation is 
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where u^ and v^ are words in a^, a^ and each relation corresponds 

to a non-defining relation in the original presentation for P . Since P 
is F/R and F is a free group of rank d it follows that 

^ = , ̂  € |l, ..., 

Now R* equals [i?, F ' ] l f and hence 

d+ 
rn 

-{ r 1 M .y . , a . ^ ^ ' J 5 . J , i ^ jl, J ^ dy) • 

-1 -1 
• » M .y • , a . = e. U .V . a _t. ̂  J I ̂  ^ J 

Thus the p-covering group P'̂  , which is F/B"̂ - has the following 
presentation: 

i € |l, (5+(2)}) • 

Now Tietze transformations are applied to write this presentation in 
terms of â  , ..., a^ where the original definitions are used for 

(2 J a . Also the relations u .V = h . are added. Thus the d+l n ^ ^ ^ 
presentation is 

ĉjĵ  5 • •' •> ^^ 5 "b 5 • • • 5 D ; a? = 
n 

0 ^ a i l , k) < p , 

a i l j . k ) . 
n 

a. 

where each h . ^ 
appears depends on the 

i . 

original non-defining 

relation. 
0 5 a(Z-, J, < 

original definitions for 

the 'f'̂'s are central of order p^ . 

In general this power-commutator presentation is not consistent and so 
consistency checks need to be performed and the presentation made 
consistent. A consistent power-commutator presentation for P^ is as 
follows: 

P 
n+1 

n+q 

n+Q 
a . , a .1 = J 

k-j+1 

a^' ' ' , 0 < k) < p , 

0 < a(i, J, < p 

^^^ central of order p^ . 
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The elements correspond to the elements among 

b not eliminated during consistency checking. The 
^+12) 

p-multiplicator of P is generated by and has rank q . 

The definitions for a^ remain unchanged. The definitions for 

'^n+l' '̂ n+q ^^^ types. Either 

a n+l 

n 
a 

kH+1 

n+l 

- 1 

cP. ov a ^ ^ n+l 

n 
a 

k=j+l 

- 1 

jx a. -z-̂  

The element a . can not have weight 1 and so 

n 
a n+l or a ^ k ^ n+l 

n 
a m)r 

k=d+l 
a., a J , 0 < K(k) < p . 
d ^ 

Recalling the definitions of a a it follows that a , is a 
a+1' n n+l 

product of pth powers and commutators. (This is required earlier; see 
p. 21.) 

Weights of the generators a , a are defined as before. The -L yî  
weights of the generators a , ..., a are defined as follows. The n+x. n+G 

generator '̂ yî i ^ definition of the form u = vâ -̂̂  and 

= wtCw) for I € {l, . .. , q} . The weights of other elements and 

the identity are defined as before. Also, as before, it can be shown that 
P.CP*) contains elements of weight i + 1 and higher, •z. 

The above shows that in its most basic form the p-covering algorithm 
has the following tvro steps. 

(1) Add new generators, which are central and of order p , to 
each non-defining relation. 

(2) Perform consistency checks on the resulting presentation 
eliminating generators until it is consistent. 

This is the method employed for hand calculations although special 
properties of the particular group usually reduce the work in the 
consistency checks. 

The machine implementation of the p-covering algorithm uses the two 
basic steps however the details are different. The new generators are added 
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in class by class and as much information as possible is calculated about 

them before they are added in. This reduces the time spent on consistency 

checks. The machine implementation of the p-covering algorithm is a part 

of the nilpotent quotient algorithm (NQA) (Wamsley [1974], Newman [1976]). 

A METHOD FOR CALCULATING THE NUCLEUS OF F 

The following theorem gives a method for reading off P (P*) once P*' 

has been calculated. 

THEOREM 3.20. Th& nucleus of P is generated by [a., a.] and 
C 3 

for i € {l, d} and j 6 {(i(c-l)+l, ..., n} ^ i < j . 

Proof. By definition P (P^) = [P AP'^), P^']{? AP'^)]'^ . It is 
c-l^ 

known that P iP"^) contains elements of weight c + 1 and hence 

([a., a J , a^; i € {1, . . . , d}, j € {d(e-l)+l, n}\ < PJP'^) . 
\ d ^ 3 / 

Now P AP"^) contains elements of weight e and higher. Let u be an 
^ — J_ 

n 

element of P AP"^) ; then u = 
^ "" J-, 

e + 1 or a is the identity. 

aik) , N . 
a^ a , where wt(.a; is K 

Now VJ.P^) is generated by 

(cu, U^-, u € VJ.P'-), g € p A . 

However uF -

n 

k=d{ c-D+l 
a a(k) 

k 
V 

a ̂  (provided o is greater than or equal 

to 3 ), but (F - e and hence a^ , j € {d{c-l)+l, ..., n} is enough to 
J 

generate these elements. Now consider the elements [w, gl . Since wt(u) 

is c it is only necessary to consider elements g with v/eight 1 . For 

g with weight greater than or equal to 2 , [w, g^ is trivial. 

Using weight considerations it is enough to consider as a word in 

a , ... 5 CL^ ' Again using weight considerations it follows that 

u, a^l = a J , [u, a^] 

and 
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n 
aik) 

a. , a. 
k=d{a-i)+i ^ 

n 

k=die-l)+l 

la(fe) 
for i ^ {l, d) . 

Thus 

P^(P^) a j , a^; j € n}, i € {l, d}) 
J ' ' J 

and the theorem is proved. 
• 

Thus, once P* is calculated, P (P*) can be read off and it can be 

determined whether the group is capable or terminal. If P is capable it 

is straightforward to calculate the allowable subgroups. 

It is now shown that the immediate descendants of P have the same 

type of presentation as P . To do this it is only necessary to show that 

the elements of weight c + 1 have definitions of the required type. 

Theorem 3.20 shows that the definitions for elements of weight c + 1 are 

either as fa., a .1 or a^. where j € {a(c-l)+l, ..., n} and 

i € {l, ..., d} . This is the required form. When factoring out the 

allowable subgroups the other elements are written in terms of those with 

weight e + 1 . Thus the immediate descendants of P have the same type 

of presentation as P . 

AUTOMORPHISM GROUPS 

Attention is now turned to Aut P , how to calculate Aut F/M and how 

to describe these automorphism groups. 

Suppose {3,? 3,} is a generating set for Aut P . The first 
1 t 

step is to calculate the permutations of the allo^^^able subgroups. To do 

this it is first necessary to calculate for each automorphism 3 in 

the generating set. Suppose 

a.P3 = u. for i € {l, ..., d] 
1- "V 

where u . is a word in a.,, a , . Then 3"̂  has the following action: 
V 1 u 

a.R^^'' ^ u.R'' for i ^ {l, d] , 
^ ^ 

for i i {(i+1, ... , n+q] 
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The definitions of a^^^ give the words of elements with lower 

subscripts. Since equals R/R"^ it follows that 

and 0 < ]j, . < p . 

Anticipating Section 4 , a q ^ q matrix M . . with entries U- . i s 

used to represent the automorphism in the machine implementation of the 

generating algorithm. In hand calculations there is little value in using 

this matrix. Once {3*, is calculated it is straightforward, 

though rather tedious, to calculate {3^, 3^} . The orbits can now be 

calculated and this again is straightforward. 

Suppose M/R^ is an orbit representative. Theorem 3.15 shows that 
/N. -

Aut F/M is S.K . Let {y^, ..., y^} be a generating set for the 

stabilizer of M/R^ and so 

The subgroup K is generated by elements of the form 

a^^'r-^ a^ , € {1, ..., d}\{i} , 

and a a are elements of F/M \ F/R . Thus 
n+1 n+u 

/V. /V 
Aut F/M - ( Yi i • " , y , y . . (as above)> , 

J- 'hj 

and hence to calculate it the stabilizer of M/R"^ is determined and the 

automorphisms in K are added. (In hand calculations there is no particular 

m.ethod for calculating the stabilizer of M/R"^ .) 

DEFINITION 3.21. An adequate set A of automorphisms for P is a set 

of automorphisms of Aut P which contains enough auTomorphisms to allow the 

generating algorithm to be successfully iterated. More explicitly A has 

the following properties. 

(1) The orbits calculated by the set {3'; 3 ^ correspond to the 

equivalence classes of allowable subgroups. 

(2) Suppose F/M is an immediate descendant of P . Let Sj.^ be the 

stabilizer of M/R"^ using the set {3'; 3 ^ A} and let T^ be a set of 

automorphisms of F/M which depends only on p . Then 5 . u T is an A P adequate set for F/M . 
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Clearly the set , which is a generating set of Aut P , is an 

adequate set for P . In this case T^ is the empty set. 

Suppose are inner automorphisms and 3^} is 

a set of coset representatives for Out P , where Out P = (Aut P)/(Inn P) . 

3 . 2 2 . The set {3^, 3^} is an adequate set for P . 

Proof. It is shown in 3.16 that inner automorphisms are not necessary 
for calculating orbits. Suppose 3 is an inner automorphism of F/R such 
that 

a M = a~\.aR for i € {l, d} 

as in 3.15. Since 3' is the identity permutation it is certainly in the 
. . . ^ 

stabilizer of each orbit representative and hence 3 is in the generating 
set of the automorphism group of each immediate descendant. Suppose one 
immediate descendant is F/M . Theorem 3.15 shovrs that 

a.M^ - a a.av.M for i € {l, ..., d] ^ 1 % ' 

where v. is a word in R . The following autom.orphisms Y and 6 are 

automorphisms of F/M such that 

a.My - a.r.M and a .M& = a~^a .a}4 for i € {l, .. . , d} . 

The automorphism y is in Z and is a product of elements in K in the 
generating set for Aut F/M . Clearly 3 equals y6 and so 3 can be 
replaced in the generating set by 6 . However, 6 is an inner automorphism 
and so can be omitted. In this case also T^ is the empty set. Thus 

3 , ..,, 3 } is an adequate set for P . • -L S 

A DESCRIPTION FOR AUT P 

Before discussing the method of describing Aut P a restriction is 
made. Only groups P for which Aut P is soluble are considered. All 
3-groups of second maximal class have soluble automorphism groups. The 
restriction simplifies the calculation of orbits in the machine 
implementation. It is possible to calculate orbits v/ithout having a soluble 
automorphism group. The group system "Cayley" (Cannon [1976]) has such a 
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routine however in the interests of efficiency it is better to use the 

specialized one for soluble automorphism groups where this is possible. 

3.23. If Aut F/R is soluble then all desoendants of F/R have a 

soluble automovphism group. 

Proof. In Theorem 3.15 it is shown that Aut F/M equals S.K where 

F/M is an immediate descendant of F/R . It follows that (Aut F/M)/K is 

isomorphic to S , where S is as defined in Theorem 3.15. Thus if 

Aut F/R is soluble, so is Aut F/M . • 

Since Aut F/R is soluble it has a composition series which can b e 

made to go through Inn F/R , the group of inner automorphisms of F/R . An 

automorphism from each term in the series can be chosen to form a generating 

set for Aut F/R , say {3^, . This generating set is used to 

write a presentation of Aut F/R . The presentation has the form 

t 

{ 3 , , 3 
a{i,k) 

k=i+l 
, 0 < a(-i, k ) < p(?c), p(i) a p r i m e . 

3.3. = P..3,. 
J -z- I- d 

3 
kH+1 

, 0 s k) < 

Tnis type of presentation is called a powsr-oommutation presentation and is 

a generalization of a power-commutator presentation (Newman [1976]). It can 

b e shown that a finite soluble group always has a power-commutation 

presentation. 

Again suppose •••j are inner automorphisms. Factoring these 

from the presentation above leaves a presentation on 3.., 3„ with the 

j_ s 

same form as the one above. It is this type of presentation which is used 

to describe an adequate set of automorphisms for P . 

3.3. An Example 

Suppose P is a group with the following consistent power-commutator 

presentation: 

2 3 2 3 3 3 
a^, a^, flg, a ^ , a^, a^ ^ e, a^ = a ^ , a ^ == a ^ , = a^ = a^ = e . 

^a^, a^] - a ^ , [a^, a^J - a ^ , a^j a, , [a^, a J - a g ) 
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This is a presentation for the 3-group 0 which has order 3 and class 
4 . It is shown in the diagrams appearing in Chapter 

The 3-covering group of P has the following consistent power-
commutator presentation: 

J 3 3 2 3 2 3 2 3 2 a2, ..., a^^; a^ = ag, a^ = a,.a - - - - -

= ag," = [ag. as] = a j 
p. 2 2 2 ag] = ag, = ag. [a., ̂ 2] = a^. = a, 

The 3-multiplicator of P is 

"9 10 

and the rank of the 3-multiplicator is 4 . 

ian^ 

The nucleus of P which is P̂ CP'̂ ) is a ^ and hence P is 

capable. The allowable subgroups are now calculated. All the maximal 
subgroups of the 3-multiplicator are given by 

<ag, ag, (a^a^, ̂ g, a^^), (a^a^, a^J, (a^a^^, aga^^, aga]J 

where a, Y ^ IO5 2} . There are forty maximal sijbgroups; hovrever 
those that contain the nucleus must be eliminated. They are 

ag, a^, ag), a^, aga^^), {a^, ag, a/^^ . 

Any im.mediate descendants calculated by factoring out these allowable 
7 8 subgroups have order 3 . To obtain immediate descendants of order 3 

the allowable subgroups are 

(a^a^ag, a ^ V ^ o ) B, Y, 6 ^ {O, 1, 2} . 

9 
It is not possible to have immediate descendants of P with order 3 . In 

7 
this example only immediate descendants of order 3 are calculated and so 
the required allowable subgroups are: 
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2. (a^ag, a g , a ^ J 

3. <a^ag, a g , 

4. {a^al, a g , a ^ J 

{a^al, a^al^ a^^ 5. 

6. 

11. 

12. 

14. 

15. 

7. (a^ag, a g , 

7 9' 8 9' 10 

13. ag, a^o^^ 

9. (a^ag, a3ag^ a ^ J 

10. ag, a g ) 

( 
/ 2 2 2 
W l O ' ^8^10' V l O ^8^10' V ^ o ) 

15. (a^aj^, a g , a ^ a ^ ^ 

{^Ao^ V i o ) 

18. (a^a^Q, aga^Q, ^ g a ^ J 

19. (a^a^Q, ag, ag> 

20. aga^Q, ag> 

21. (a^a^Q, aga^^, a ^ 

22. <^7^10' ^^8' V l O ^ 

23. < V l O ' V l O ' V l O ^ 

( V l O ' ^ 8 ^ 0 ' S ^ i o ) 

( V l O ' ^ 8 ' V i o ) 

25. (a^a^Q, aga^^, a g a j j 

( V l O ' V L ' V L ) 

32. 

33. 

28. (a^, a g , a^^) 

29. (a^, agag2, a ^ J 

30. < a^ , , a „> 
7 ' 8 9' 10 

(^7' ^ 8 ^ 0 ' V i o ) 

35. ^a^, aga^Q, aga^^ 

(All allowable subgroups are elementary abelian and so only the generators 

are shown,) 

An adequate set A of automorphisms for P is: 

: a^ ^ a^a^, 33 = . Bg : a^ a^a^, : a^ a^' 

a^ ^ ^ a^ ^2 ^2 ^2 ^ ^ 
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These are extended to automorphisms of V*" and their action on the 
p-multiplicator is 

: a^ a^ : a^ a^ : a^ ̂  a^ gj : a^ 

^ <̂ 8 ̂  ^8 ^8 ̂  ^8 ^8 ̂  '̂S 

ag ̂  ^ ^ ^8^9 S ^̂9 

The corresponding permutations of the allowable subgroups are 

: (2 20 11)(3 12 21)(5 23 li4)(6 15 24)(8 25 17)(9 18 27)(28 34 31) 
(29 35 32)(30 36 33); 

: is the identity permutation; 

e' : (2 5 8)(3 9 5)(11 14 17)(12 18 15)(20 23 26)(21 27 24)(28 29 30) o 
(31 32 33)(34 35 35) ; 

: (2 3)(4 7)(5 9)(6 8)(11 12)(13 15)(14 18)(15 17)(20 21)(22 25) 
(23 27)(24 25)(31 34)(32 35)(33 35) . 

Under these permutations the allowable subgroups form the following 
equivalence classes: 

1; 
2 , 3 , 5, 5 , 8, 9 , 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27; 

7; 
10; 
13, 15; 
19; 
22, 25; 
28, 29, 30, 31, 32, 33, 34, 35, 35. 

7 

Therefore P has eight immediate descendants of order 3 . They are 
P^/1, P'̂ /2, P'̂ /4, P'̂ /IO, P'̂ /IS, P'̂ /19, P'̂ /22, P'̂ /28 , where the numbers 
represent the allowable subgroups. 

The stabilizer of allowable siabgroup 1 is generated by Sg, 

An adequate set of automorphisms for P'̂ /l is 
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^ ^2^6 

^ ^ 

a. a. a. a. 

The last four are in and the first is in T ^ . For all immediate 

descendants of P , 

Ci^ a. 

^ ^2^5 

The stabilizer of allowable subgroup 2 is generated by so an 

adequate set of automorphisms for P'^/2 is 

The stabilizer of allowable subgroup 28 is generated by B^j and 

so an adequate set of automorphisms for P'^/28 is 

The rest are calculated similarly. 

3.4. Machine Implementation of the Generating Algorithm 

This section deals with the machine implementation of the generating 

algorithm, or more correctly the parts of the generating algorithm Vi/hich 

were implemented to calculate 3-groups of second maximal class. The 

p-covering algorithm is part of the NQA and already existed. This is 

discussed in Section 2. The routines discussed here are MATPER, ORBIT and 

STABILIZER. These calculate the permuations, orbits and stabilizers 

respectively. Calculating enough automorphisms for an adequate set is also 

discussed. The ideas for this implementation v;ere communicated by C.R. 

Leedham-Green and I believe they are due to him and his colleagues at 

Queen Mary College. Most of the code for the machine implementation of the 

generating algorithm was written by George Havas, the remainder being 

written by W.A. Alford and J.B. Ascione. 

The machine implementation can only deal with a group P which is a 
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2-generator group and has a soluble automorphism group. If P has order 

p" then the only immediate descendants the machine implementation 

calculates are those with order . 

A METHOD FOR REPRESENTING ALLOWABLE SUBGROUPS 

At the end of Section 2 it is shown how the automorphisms are 
represented by a q ^ q matrix M^^ , where q is the rank of the 

p-multiplicator. The method for representing the allowable subgroups is 

more complicated. Since only immediate descendants of order -p^ are 
calculated all allowable subgroups are maximal subgroups of the 
p-mult iplicator. 

The maximal subgroups of the p-multiplicator, <a a ^ 
^ - n+1 ' n+q 

can be represented in the following way: 

(a a >, \ a ^a a a ),..., (") n+2' ' n+q \ n+1 n+2' n+3' ' n+q/' ' ^ ̂  

{ \ "2 '̂t-l \ 
n+l n+2 ' n+^-l ' n+^+l' ' n+q/ ' 

(a ^a , a o, ^ ) , v;here 0 5 a. < p , j € {l, a} . \ n+l n+q' ' n+q-1 n+q / ' J 

The total number of these subgroups is (p -
-1) however, in 

general, not all of them are allowable as they may not all supplement 
P (P'̂ ) . Recall that elements of the p-multiplicator are labelled so that the elements of P^CP"^) have the lowest subscripts. Suppose P^CP"^) is 

generated by ? •••5 (0 < ^ - » "t̂ -sn those subgroups with 

a = ... = a^ = 0 are not allowable but the remainder are. Thus once the 1 L 
ranks of the p-multiplicator and the nucleus are calculated the allov/able 
subgroups are determined. 

The alloxvable subgroups can be represented as either matrices or 
vectors. A vector representation is more efficient however it is first 
necessary to describe a matrix representation. Each maximal subgroup is 
generated by q - 1 elements. Each of these elements can be written as a 
vector with the entries being the exponents so that the element 



<2 ̂ CL n+1 n+2 a is represented by C , ..., CJ • A (^-1) x q n+q ' ' 

matrix representing a subgroup has the vectors corresponding to the 
generating elements as rows. Clearly, by taking different generating 
elements for the subgroup a different matrix is obtained. However, by 
echelonizing the matrix in the usual way a standard matrix is obtained. The 
standard matrices correspond to the subgroups as presented in ("). Thus the 
matrix corresponding to the subgroup 

( a. a. a. 
a ^a a ji ^-1 
n+1 n+^ n+2 ,a . ̂ a a . ̂  , ... ̂  a ) ' n+^-l n+^ ' n+^+1 ' n+qf 

IS 

1 0 0 

0 1 0 

ith col 
4-

a. , 

1 0 
0 1 0 

0 1 

and this is a standard matrix. 

Let S denote the standard matrix representing a subgroup. A vector 

V which represents the subgroup is one for which Sv^ = 0 (mod p) . A 
noTmal veator is one whose first (that is, left-most) non-zero entry is 1 . 

3.24. There is exaetly one normal vector v such that Sv^ = 0 
(mod p) . 

Proof. This is clear since the rank of S is - 1 . • 

Normalizing a vector is achieved by adding, modulo p , a vector to 
itself and then adding the vector to the result until the first non-zero 
entry is 1 . This should be achieved in at most p - 2 steps. 

A label can be given to each allowable subgroup using the normal vector 
representing that subgroup. 
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DEFINITION 3.25. if V is a normal vector with the first k entries 

zero and q entries altogether, then 

label(v) = 1 + v(/c+2) + pv(/c+3) + p + ... 

EXAMPLE. Suppose p is 3 then if V = (l, 0, 0, 0) label(v) = 1 , 

if V = (1, 2, 2, 2) , label(v) = 27 , if V = (0, 1, 0, 0) , 

label(v) = 28 and if V = (0, 1, 2, 2) , label(V) = 35 . As in the example 

in Section 3 the labels are identified with the allovrable subgroups. 

Before describing how to calculate the permutations the following 

observation is made. 

3.26. If P is a 2-genevatov group of second maximal nilipotency 

class with order p^' ̂  n > 3 ^ then ? (P^) = ^ [a, , , [p. , a ] > . 
O Yl J. Yl 2. 

Proof. Theorem 3.20 shows that in this case 

since a^ is the only generator of weight e . Since P has second 

maximal nilpo+'encv class o. is defined as a commutator - this is shown 
n 

in Chapter 2. Tnus 

oP = a. IP — Li - , 04. . 
n n-1 

p 
a: ^ , a. 
n-1 % 

i € {1, 2} 

(provided p f 2 ) 

a(n-l,n) 
a , a . 
n ^ 

= a , a. 
-ia(n-l ,n) 

Thus cP is written in terms of \a a ] or [a , a ] and so 
n ^ n 1 n I 

Since the machine implementation deals only with 2-generator groups 

and is only concerned v/ith calculating groups of second maximal nilpotency 

class the following discussion assumes that the rank of the nucleus is at 

most 2 . When the rank of the nucleus is 1 there are p allov/able 



46 

subgroups and when it is 2 there are ^(p+1) allowable subgroups. 

THE NIATPER ROUTINE 

MATPER stands for changing matrices into permutations. This routine 
starts with matrices M^^, ..., M^^ , where {6^, is an adequate 

1 s 

set of automorphisms for P , and calculates . The 

permutations are written in terms of the labels identified with the 
allowable subgroups. The routine also needs the ranks of the 
p-multiplicator and nucleus. 

Suppose M/R"^ is an allowable s'obgroup and is an automorphism of 
F/R'^ . Suppose also that {M/R^)^"^ equals another allowable 
subgroup. If S is a matrix corresponding to M/R"^ then -SM^^ is a matrix 

corresponding to N/R"^ . This is clear if the matrix multiplication is 
performed. Thus the smallest set of iq-1) x q m.atrices which contains 5 
and is closed with respect to right multiplication by Mg^^, ..., MQ^ 

contains exactly the matrices which correspond to the allowable subgroups in 
the orbit containing M/R'^ . 

Suppose V is the normal vector which represents M/R'^ then by 
definition 

Sv^ = 0 . 

Since the matrix M^^ represents an automorphism, it is invertible and 

hence 

= 0 . 

Thus a vector corresponding to N/R"^ is . Since the inverse of an 

automorphism is an automorphism the matrices AL̂ ; give the same 

orbits as the matrices iM"̂  . Thus the smallest set of vectors 
1 s 

which contains V and is closed with respect to left multiplication by 
iM ..., Mopt contains exactly the vectors which correspond to the allovjable 
^l' s 

subgroups in the orbit containing M/R'^ . Notice that Al̂ ^̂ V is a vector 
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corresponding to ^ . 

The labelling of the vectors has been arranged so that the results of 
multiplying the matrices and vectors is achieved by adding columns of the 
matrices. 

Suppose the rank of the nucleus is 2 . There are 
allowable subgroups. Theie are represented by the following normal vectors 
arranged in order according to their labels: 

(1, 1, 0, 0), (1, p-l, 0, 0), (1, 0, • • < 0), (1, 
(1, 0, 1, 0, .. 0) 
(1, 0, 2, 0, .. ., 0) 
(1, 0, 0, 1, 0, . . . , 
(0, 1, 1, 0, .. 0) 
(0, 1, 1, 1, 0, . . . 5 

(0, 1, p-l, p-l, p-l) . 

If V = [u^, V^] is a vector then it is well-known that 

where f'̂ ĝ }̂ - is the ith column of the matrix M^^ . 

The appropriate sequence of adding columns of the matrix to give the 
permutation action corresponding to M̂ ^̂  is as follov/s. 

The im.age of the first vector, (1, 0, ..., 0) is * 

The image of the second vector (1, 1, 0, ..., 0) is 
(MgJ, t (MgJ^ • 

The image of the third vector (1, 2, 0, .. ., 0) is 
' obtain this the second column is added to the 

vector which vjas already calculated as the image of the second vector. 
After each image vector is obtained the label is calculated. The flow chart 
(Figure 3.27) describes the process in detail. 

To sum up, the process described above takes the matrices 
Mo^, Mg^ , the ranks of the p-multiplicator and nucleus and calculates 
Pi "̂s 

the action of the permutations (B^) , ( B ^ ) • This action is 
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The variable J represents the 
label of the original vectors. 

If the rank of the nucleus is 1 
this process is done once, 
however if the rank is 2 the 
process is repeated to deal 
with the extra vectors. 

Do the following for each 
i € {l, . . . , s} r-

Read in the matrix M^^ 

J"=0 

When all the values 
of i have been 
dealt with, stop. 

When this process has been 
Do the following for—[Completed the approj-^iate number 

of times the next value of i is 
taken. 

Ayi=l, rank of nucleus 

The array C , which 
is a working array, 

is zeroed out. 

i KFl 

1 Normalize V 

Label V 

The permutation action is written 
into the K array. 

«i,J-)=iabei(V) 

The variable I tells which colusn | 
of Mg^ to add to tr.e vec:or already p|C( J')=C( (mod p) 

1-
obtained and Ci'̂ ) counts how :?.any 
tises it is added. 

i-'IGURB 3.27. riowciiart for the .^UTPER routine 
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described by an array X where j) gives the image, as a label, of 

the allowable subgroup with label j , under the ith permutation. 

THE ORBIT ROUTINE 

Recall that Aut P is written as a power-commutation presentation and 

that this type of presentation is used for an adequate set for P . The 

permutations, 3,', 6 ' , corresponding to the adequate set also have 
1 s 

this type of presentation. When calculating the orbits and stabilizers the 

permutations are numbered in the reverse order than the presentation would 

lead one to expect. Thus is the first permutation relabelled Sj^ and 

3 ' is the last relabelled 3 ' . 
X s 

Briefly, the method for calculating the orbits is as follows. The 

input for the routine is the allowable subgroups and the permutations. The 

first permutation is applied to the allowable s'jbgroups and this arranges 

them into "orbits". The next permutation is applied to the allowable 

subgroups; some of the "orbits" will co-alesce and some will remain the 

same. This process is repeated with each permutation. After all the 

permutations have been applied the resultant "orbits" are the required 

orbits which arrange the allowable s'jbgroups into equivalence classes. 

Allowable subgroups are no;'? identified with their labels. This gives 

an ordering to the allowable subgroups and so it is possible to speak of the 

smallest or largest allowable subgroup. 

DEFINITION 3.28. The leading term of an orbit is the smallest 

subgroup in the orbit. 

THEOREM 3.29. In the process of calculating the orbits it is 

sufficient to calculate the -permutation action on ovjs. allowable subgroup in 

the "orbit" to determine whether it co-alesoes with any other "orbits" or 

remains the same. 

Proof. Suppose that the permutations 3^, 3^ have been used to 

calculate orbits. The next permutation is • A typical orbit with 

leading term j is taken and is calculated. There are two 

possibilities. Either is in the orbit with leading term j or it 

is not. 
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Suppose is not in the same orbit as j . Since the set of adequate 
permutations has a power-commutation presentation there is a prime p such 

V 
that (3' = I I [remembering that the numbering of 

permutations is reversed and hence is in the orbit with leading 

term j ). Now suppose is in the orbit with leading term j and 

t is less than p . Then 

r a 
= r r (b̂ i 

and hence j is fixed by 

Similarly, it can be shown that j is also fixed by 

T T . (2) 

(O 
Since p is a prime and t is less than p , I and -q- are co-prime. 
Thus by taking the appropriate combination of (1) and (2) it follows that 

J) 
J is fixed by T ^ ' ^^^^ '̂̂ r+l ^^ 

same orbit as j and so contradicts the original assumption. Thus p is 

the smallest number for which j[B' is in the orbit with leading term 

J • 

Now suppose oi^^+j)^ i® ^^ orbit as . It can be 

assumed, without loss of generality, that y is less than or equal to X 
and both are less than p . Using a similar arguTient as before it can be 

A-y -r^ (o t ôj(fe) shown that j is fixed by 1 T (^p+i-^) • means that 

J is in the same orbit as j and hence X equals y . Thus 

J, ^'^^r+l)^' different orbits. 
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Now suppose that i is a different allowable siibgroup from j and 
that it is in the same orbit as j . Using the same argument as above it 

can be shown that i, ^^^r+l)^' f ^ r + J ^ ^ ^ ^^ different 

orbits. Suppose that ^ ^ ^^ different orbits. 

Then 

and hence 

= t . 

Thus i is in the same orbit as jfP^^-,]^ > that is t equals 0 and 

hence ^^ same orbit as i • 

Suppose is in the same orbit as J . Let i be another 

allowable s'obgroup, different from J , and in the same orbit as j . 
Suppose is not in the same orbit as j . Then 

r 

and hence 

r 

k=l 

Thus i is in the same orbit as J J ^ ; that is t equals 0 and 

hence iS' is in the orbit with leading term j . • j»+l 

The method used to calculate orbits in the machine implementation of the 
generating algorithm is now described and an example is worked. Three 
arrays are used in the orbit calculation. They are A, B and C vrhere 
A(j) is the leading subgroup of the orbit containing j ; B(j) is the 
subgroup following j , if it exists, otherwise 3 ( j ) equals 0 ; C(j) is 
the number of times j has been the last term in the orbit with leading 
term A(J) • The C array is calculated in the orbit routine but is used 
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in the s t a b i l i z e r r o u t i n e . 

Initially the arrays a r e set as follows: 

A{j) = J , 5 ( j ) = 0 , Cij) = 1 . 

The first step in the orbit r o u t i n e is to apply the first p e r m u t a t i o n , 

3 | , to the a l l o w a b l e s u b g r o u p s . Suppose j is the lowest a v a i l a b l e 

s u b g r o u p w h i c h h a s not y e t b e e n p r o c e s s e d . The entry in the B array B(j) 

is e x a m i n e d . Since this is the first step B ( j ) equals 0 . The image of 

J , is c a l c u l a t e d . A g a i n , since this is the first s t e p , equals 

. I f , h o w e v e r , equals j then fixes j and j' r e m a i n s 

in an orbit b y i t s e l f . In the a r r a y s , B(j) is put e q u a l to 0 and C ( j ) 

is put e q u a l to 1 . If ^ ( j 3 j } is greater than j then B ( j ) is put 

e q u a l to (j 6|) , ^(jB^] is put equal to j and is put equal to 

0 . N o t i c e that can not b e less than j since the w a y j is 

c h o s e n m a k e s t h i s impossible. Let j S ^ equal k . Again B(k) equals 0 

and so k ^ ^ is c a l c u l a t e d . If equals j it m e a n s the end of the 

orbit h a s b e e n reached and B{k) is put equal to 0 , C{k) is p u t equal 

to 1 . If A{kQ'] is greater than j then the orbit is extended and 

Bik) is put equal to , is put equal to J , and 

is p u t equal to 0 . 

This process is r e p e a t e d in the obvious w a y and so after applying the 

first p e r m u t a t i o n the orbits correspond to the cycles of the p e r m u t a t i o n . 

R e c a l l that in the example given in Section 3 the p e r m u t a t i o n s are 

: (2 20 11)(3 12 21)(5 23 14)(6 15 2U)(8 25 17)(9 18 27)(28 34 31) 

(29 35 32)(30 36 33) ; 

: (2 5 8)(3 9 5)(ll 14 17)(12 18 15)(20 23 25)(21 27 24)(28 29 30) 
3 

(31 32 33)(34 35 35) ; 

: (2 3)(4 7)(5 9)(5 8)(11 12)(13 15)(14 18)(15 17)(20 2l)(22 25) 

(23 27)(24 25)(31 34)(32 35)(33 35) . 

(Note that the m a c h i n e implementation actually uses the Inverses of these 

p e r m u t a t i o n s . ) 
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After is applied to the allowable subgroups the arrays A^ B and 

C are as follows: 

3 1 2 3 4 5 5 7 8 9 10 11 12 13 15 15 17 18 19 20 21 22 23 24 

AU) 1 2 3 M- 5 6 7 8 9 10 2 3 13 5 5 15 8 9 19 2 3 22 5 5 
BU) 0 20 12 0 23 15 0 25 18 0 0 21 0 0 24 0 0 27 0 11 0 0 14 0 
CU) 2 1 1 2 1 1 2 1 1 2 1 0 2 1 0 2 1 0 2 0 1 2 0 1 

J 25 25 27 28 29 30 31 32 33 34 35 35 

A{3) 25 8 9 28 29 30 28 29 30 28 29 30 
B(j) 0 17 0 34 35 35 0 0 0 31 32 33 
CU) 2 0 1 1 1 1 1 1 1 0 0 0 

Now suppose •••5 have been applied to the allowable subgroups 

and "orbits" calculated. The permutation is novr to be applied. Suppose 

J is the lowest available subgroup which has not been processed. The orbit 
containing j is traced through until a subgroup, say k , is found for 
which B{k) equals 0 . This is the last subgroup in the orbit. (Note 
that k may actually be j .) Now and are found. If 

A equals j then does not extend the orbit containing j 

and so B{k) remains 0 and Cik) is increased by one. 

If ĵ ) is greater than j' then two orbits will co-alesce. In 

the arrays B{k) is put equal to ) and the orbit with leading term 

is traced through. For each subgroup, i , examined in the 

tracing process "i) is put equal to J and C{'u) is put equal to 0 . 
The tracing procedure ends when a subgroup is found for which B{i) equals 
0 . Then and are calculated. If ^̂  equals J 

then the orbit will not grow any more and so C{i) is put equal to 1 . If 
is greater than j then another orbit v:ill co-alesce with the 

orbit containing j . Then B{i) is put equal to "̂l̂e 

tracing procedure resumes. The process continues in the obvious way- The 
orbits can be read off from the A array. Theorem 3.29 guarantees that this 
process does indeed calculate the orbits. After the orbits are calculated 
the number of orbits and the leading term of each orbit is determined by 
finding those j for which A(j) - j • This is used to calculate the 
stabilizer. 
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A flow chart describing the orbit routine is given in Figure 3.30. 

In the example 3 ' is the identity and so when it is applied only the 

C array changes. The arrays after and have been applied are 

3 1 2 3 4 5 5 7 8 9 10 ill 12 13 14 15 15 17. 18 19 20 21 22 23 24 

AU) 1 2 3 2 3 7 2 3 10 2 3 13 2 3 15 2 3 19 2 3 22 2 3 
BU) 0 20 12 0 23 15 0 25 18 0 5 21 0 8 24 0 0 27 0 11 9 0 14 0 
CU) 4 1 1 4 0 0 4 0 0 4 2 0 4 0 0 4 1 0 4 0 2 4 0 1 

J 25 25 27 28 29 30 31 32 33 34 35 35 

AU) 25 2 3 28 28 28 28 28 28 23 28 28 
Bio) 0 17 6 34 35 35 29 30 0 31 32 33 
CU) 4 0 0 1 0 0 2 0 1 0 0 0 

• 

The arrays after £ has been applied are 

3 1 2 3 !+ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Aio) 1 2 2 4 2 2 4 2 2 10 2 2 13 2 2 13 2 2 19 2 2 22 2 2 
Bij) 0 20 12 7 23 15 0 25 18 0 5 21 15 8 24 0 3 27 0 11 9 25 14 0 
CU) 5 T -L 0 ! ( 0 0 0 0 5 2 O 4 0 0 1 i. 0 5 0 0 4 0 1 

J 25 25 27 28 29 30 31 32 33 34 35 35 

Aio) 22 2 2 28 28 28 28 28 28 23 28 28 
Bij) 0 17 6 34 35 35 29 30 0 31 32 33 
CU) 1 0 0 1 0 0 2 0 2 0 0 0 

THE STABILIZER ROUTINE 

The next step is to calculate the stabilizing elements generated by 
g' . . ,, 3' ? of the orbit representative of each orbit. The leading 1 s 
subgroup of the orbit is chosen as the orbit representative hovjever there is 
no reason why a different subgroup could not be chosen. 

The STABILIZER routine works on the following principle. Consider the 
orbit with leading term J . Suppose that for each permutation applied this 
orbit has increased in length, that is, co-alesced with another orbit. It 
is clear that no subgroup in this orbit, and in particular the leading 
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I is the subscript of the j-ormutations, so this means the first 
permutation is being consider-ed. 

</ is used to represent t'.ie .subgroups and so the first subgroup 
is being considered. 

CO is a counter. It checki- that no orbit hss rnore than i7 , the 

number of allowable subgrou;;.., subgroups ir. it. 

H is also a counter which cou:,t£ the subgroups. When M reaches 
iV + 1 a new permutation is considered 

L is the subgroup 
following K 

When II reaches + 1 , J is 
increased by 1 so that a new 
permutation is considered. 
First, however, it is checked 
that the last permutation has 
not been dealt with. 

This section 
calculates the number 
of orbits, A'O and the 
leading, term of each 
orbit i'(:;0) . 
When the last value in 
this loop has been 
processed the machine 
implementation 
proceeds to the 
stabilizer routine. 

Do the following for 

( A b o r ^ — 

If £=0 the subgroup 
following K is not 
^vrown and so is 
Calculated. 

AyXIV.) is now 
the subgroup 
fcllowir.g- K . 

C{L)-0 

This incorporates 
a new orbit with 
leading term J . 

subgroups have 
been considered 
go onto a new 
permutation. 

Check that the 
new s^Jib£-roup is not 
in an orbit already 
considered for this 

permutation. 
f-

•J^Ji-l 

co--o\-

riGURi; 3.30. I'low Chart for the ORBIT Routine 
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subgroup, can have a stabilizer. If, however, there is a permutation, say 

, which does not increase the length of the orbit then there is a 

permutation. 

k=l 
K) V 

which fixes j . In the C array C(j) is the 

number of times j has been the last term in the orbit with leading term 

i4(j) . Thus if there is a subgroup k with C{k) greater than or equal to 

two then there is at least one permutation which does not increase the 

length of the orbit containing k . A new array, D , is calculated which 

gives the following information. Z)(j) is 0 if j is the leading term of 

an orbit, otherwise D{j) is the subscript of the permutation which brought 

j into the orbit with leading term Aij) . In the example used before, the 

D array is as follows: 

3 1 2 3 5 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 22 23 24 25 25 

Dij) 0 0 4 0 3 4 4 3 4 0 1 4 0 3 4 4 3 0 1 4 0 3 4 4 3 

J 28 29 30 31 32 33 34 35 35 

Die) 4 0 3 3 1 3 3 1 3 3 

The D array is calculated in the following w a y . If J is the leading 

term of an orbit then Dij) is 0 . The other D values are calculated in 

the order of the subgroups in each orbit. If j is not the leading term of 

an orbit then j is B(k) for some subgroup k . Now k was brought into 

the orbit with leading term Aik) by the permutation with subscript D(k) , 

which has been calculated. Since j follows k it must have been brought 

into- the orbit by a permutation with subscript D(k) or higher. Cik) is 

the number of times k was the last term of the orbit with leading term 

Aik) . When C{k) is 1 the subgroup k has just been brought into the 

orbit. Thus C(k) - 1 permutations do not increase the length of the orbit 

containing k , This means that the [D(k)+Cik)]th permutation will bring 

J into the orbit containing k and hence Dij) is D{k) + C(k) . 

Once a subgroup k is found for vzhich C{k) is greater than or equal 

to 2 it follows that the [D(k)+l]st permutation up to the 

[D(k)+Cik)-l]th permutation do not increase the length of the orbit 

containing k . T h e ^ permutations are used to calculate the stabilizing 

elements of Aik) . The first permutation, that is the [Dik)+l]st is 

applied to A{k) . If this fixes Aik) the first stabilizing element is 

i 
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Set SiI,J,K)^0 
for 1=1,...,N0 

c 0) o •H •p -H • 

O CO <D fd 
CO •p u 

<0 u 
CO H ra •H 
rC o 

^ 
V 

Do the following for 
I=DiK)+l,...,DiK)+C(K)~l 

i 
Mh o 
CO <D 
H 03 > 
0) 
rG 

CO Q) -H (T3 

take 
next 

H^LTiJ) 

1=1 
>> m 
u 
u 

rH CQ • 
o rH tC O 
c o 

•rH 

o (U 
CO 

CO •H 

CU 

M=XiY,H) 

L=DiM) 

> 

the 
value 

have been processed 
NS{J) gives the number 
of stabilizing elements 
calculated for orbit J 

Check whether all orbits 
have been processed.-

Start on a 
new orbit 

F=0 

J:NO 
> 

Proceed to the next 
part of the generating 

algorithm. 

S{J,F,L)=S{J,F,L)+1 

Y=L 

H=M 

FIGURE 3.31,, Flow Chart for the STABILIZER Routine 
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If A{k) is not fixed, say is m then the image of m under 

obtained. If ^^ ^^^^ stabilizing element is 

complete. If is n , not A{k) , then is calculated. 

This process is repeated until A{k) is obtained and the stabilizing 
element complete. This process is also carried out with the other 
permutations, -1 ' ^^ ^^ repeated for each 

element, k , in the orbit with C{k) greater than or equal to 2 . 

It is clear that the stabilizing elements obtained this way generate 
all possible stabilizing elements that can be obtained from 3', ..., 3' , 

1 s 
of the leading term of each orbit. It is also clear that they can be 
written in a presentation of the right type. 

. ̂  . , \ Ci ( ̂  
Each stabilizing element can be written as | f [3/j and it is the 

k^l ^ 
exponents aik) which are recorded. These are recorded in a 3-dimensional 
array S where SiJ, F, L) is the exponent of the Lth permutation in the 
Fth stabilizing element for the J"th orbit. A flow chart of the STABILIZER 
routine is given in Figure 3.31. 

In the example, the non-zero values of the S array for the first two 
orbits are, 

5(1, 1, 1) = 1 , 5(1, 2, 2) = 1 , 5(1, 3, 3) = 1 , 5(1, 4, = 1 ; 

5(2, 1, 2) = 1 . 

For the last orbit the non-zero values are 

5(8, 1, 2) = 1 , 5(8, 2, U) = 1 . 

ADEQUATE SETS USED BY THE MACHINE IMPLEMENTATION 

The adequate set of automorphisms for P used by the m.achine 
implementation of the generating algorithm consists of a generating set for 
Aut P , calculated via a composition series for Aut P , modulo inner and 
central automorphisms. It is shown in 3.22 that if only inner automorphisms 
are omitted then Tp , as in Definition 3,21, is the empty set. This is not 

so if central automorphisms are also omitted. The following argument, 
showing how to calculate Tp , is only true for n greater than or̂  equal to 
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8 . Prior to that the adequate sets of automorphisms are adjusted by hand. 

In P there are three possibilities for the commutators 

and [a ^ , a J , either 
n-1' 2-' ' 

a a, = a 
^ n-1 l-" n 

a ^ , a^ -a 
n-1 1-^ n L V i ' = ^ ' 

^ n-1' 2-J 

or or 

= e a -, , a 
^ n-1' n 

= a 
n-1 2-' n 

In the first two cases 

"l 

2 2 n 

and in the third case 

a,a 
1 n 

a. 

For immediate descendants of P the automorphisms in K are all either 

inner or central and so not included in the adequate set for P . The 

automorphisms in T p correspond to the automorphisms of K from the 

previous step. The other automorphisms of K are not included as they are 

either inner automorphisms or can be obtained as the product of an inner 

automorphism and the automorphism in T p . 

The possibility of pruning the adequate set of automorphisms for P 

still further has not been investigated. However in some cases (see Chapter 

6) it appears that the adequate set could be reduced considerably. 
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CHAPTER 4 

TREES AND TREE DIAGRAMS 

This chapter is split into two sections. The first section describes a 

tree of groups associated with a p-group P , which represents the 

descendants of P . Known results about 2-groups and 3-groups of maximal 

class and 2-groups and some 3-groups of second maximal class are presented 

in terms of the se trees. This is to fill in background information and 

hopefully to convince the reader of the merit of this approach. 

The second section details the com.puter results »fbr 3-groups of second 

maximal nilpotency class calculated by the generating algorithm. Again the 

results are presented in the form of trees. 

4 . 1 . Tree Diagrams calculated from previously knov/n results 

A tr-se is defined in the usual way to be a set of nodes and links in 

which there are no cycles. A divected tvee is a tree in which the links 

have a direction. 

Each p-group P is thought of as having an associated directed tree. 

This tree represents the descendants of P . In this tree the nodes 

represent groups with P being represented by the root node. A directed 

link from a node Q to another node R indicates that R is an immediate 

descendant of Q . The groups represented by the nodes are those calculated 

by the generating algorithm. The consistent power-commutator presentations 

of such groups depend on orbit representatives however the tree of groups is 

independent of these. 

All the trees described in this chapter are associated with 2-

generator groups. These trees are all subtrees of the tree associated with 

C ^ C'p • The following tvee diagram in Figure 4.1 shows a very small part 

of the tree associated with C x C 
P P 

The conventions used in this and all other tree diagrams are as follovjs 

(1) The root node [here x ) appears at the top of the diagram. 

(2) Groups of the same order, and only that order, appear on the same 
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P 

2 
P P 

FIGURE 4.1. This represents all the immediate descendants (up to 
isomorphism) of C x C 

^ P P 

level. The order of the groups at each level is shown on the left hand side 
of the diagram. 

(3) A node marked indicates that the group represented by that 
node is terminal. 

(4) The arrangement of groups in each set of immediate descendants is 
unimportant. For convenience and to facilitate checking it is usual that it 
is the same as the computer output - where this is available. 

(5) Easily Identifiable groups (in this case the abelian ones) are 
indicated in the diagram. 

Further conventions will be introduced when necessary. 

It can be shown that there exist groups with an infinite number of 
capable descendants. The trees associated with these groups are therefore 
infinite. The group C x C is such a group since the groups ^ ̂  ^ y, » 

P P P P 
r € {2, 3, ...} are all descendants of C^ x C^ and are all capable. This 

chain of groups is called an infinite hro.noh of the tree with root node 
C X C . Also, each group C x C has an infinite number of caoable 
P P p'' p"" 

descendants, namely ^ p ^ ^ g ' ® ^ {̂ r'+l, r+2, ...} . Each of these 

chains is also called an infinite branch and thus the tree with root node 
C X C has an infinite number of infinite branches. 
P P 

Restricting the nodes of the tree with root node ^p ^ ^p ' those 

which represent groups of co-class 1 or 2 considerably reduces the 
number of infinite branches. 
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GROUPS OF CO-CLASS 1 

The tree of p-groups of co-class 1 is a subtree of the tree with 
root node ^ -̂p ' "̂ ât in Chapter 1 it is stated that the tree of 

p-groups of maximal nilpotency class has exactly one infinite branch. In 
the tree of p-groups of co-class 1 there are two infinite branches. One 
branch is the branch for groups of maximal nilpotency class and the other 
contains abelian groups. The trees for p equal to 2 and 3 are 
discussed here. When p is larger the tree diagrams become much more 
complicated. 

The beginning of the tree diagram for groups of co-class 1 and p 
equal to 2 is shown in Figure 2. 

FIGURE 4.2 showing 2-groups of co-class 1 . 

The labels Z?„ and Q^ denote the dihedral group of order 8 and the 8 o 
quaternion group of order 8 respectively. The infinite branch (indicated 
by an arrow) beginning with V^ contains groups of maximal nilpotency 

class. At each level there is one capable group and two terminal groups. 

Tne presentations for these groups at the 2' level are as follows: 

( 2 a 2 6 2 2 2 

2 
cc n-1 

= [^3, a j = = 

K ' = C V r ^2^ = % 

The parameters a and B have the obvious range, that is either 0 or 
1 . When a = 6 = 0 the presentation gives the capable group. The 
presentations with a = l , 3 = 0 , and a = e ^ l give the two terminal 
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groups. When a = 0 , 3 = 1 , the group is isomorphic to that with 

a = 1 , 3 = 0 . 

The infinite branch beginning with C^ x C^ contains groups of co-

Yl 

class 1 but not maximal nilpotency class. At the 2 level there are 

two groups - a capable group, C ^ C , and a terminal group. The 

presentations are as follows: 

; a^ = a^ = ag, a3 = a^, = a^, = a^. 

2 r 1 
a = e , a. - a ) . 
n ' 2' l-* nl 

When a = 0 the group is capable and when a = 1 the group is terminal. 

The inverse limit group for this infinite chain is the direct product of the 

multiplicative group of 2-adic integers and C^ , the cyclic group of order 

2 . 

The tree of groups with co-class 1 and p equal to 3 is now 

discussed. The beginning of the tree diagram is shown in Figure 4-. 3. 

FIGURE 4.3 showing 3-groups of co-class 1 . 

The symbol ^ indicates that there are five terminal groups - the nodes 

representing these groups have been suppressed. 

The 3-groups of maximal nilpotency class were completely determined by 

Blackburn [1958]. In his paper he has the following two theorems (4.2 and 

4.3): "For n > 5 and p > 2 the number of types of metabelian groups 
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of order p'^ and (nilpotency) class n - 1 in which 

" is 3 for p = 3 and 

1 + (2n-6, p-1) + (n-2, p-1) for p > 3 

"For n > M- the number of types of p-groups of maximal (nilpotency) 

n 
class of order p which possess an abelian maximal subgroup is 

2 + (n-2, p-1) This second theorem had previously been proved by VJiman 

[1946]. 

Thus, for p = 3 there are six groups when n is greater than or 

equal to 5 and odd and seven groups vrhen n is greater than or equal to 

5 and even. Presentations for these groups were calculated by the 

generating algorithm and are as follows: 

( 
3 6 3 Y 

n 

3 3 

2 
D 5 

3 3 
V 3 n-1 n 

V 2 ^ V l = ^n ^ ^ J = ^ 3 ' ^ J = 
= a 

4' '-'"3 2-1 

a 
= a, a ^ 

4 n 

a 
6' 

a 
L-n-1' ^ L V l ' = ^n/ 

The parameters a , 3 and y are either 0, 1 , or 2 . 

When n is odd distinct groups are as follows: 

Group 1. a = g = Y = 0 ; 

Group 2. a = l , 3 = Y = 0-, 

Group 3. a = 0 , 3 = 1 , Y = 0 ; 

Group 4. a = 2 , 3 = 1 , y = 0 ; 

Group 5. 3 = Y = 1 ; 

Group 6. a = 3 = T = l -

Group 1 is capable and those groups with a = 0 have an abelian maximal 

subgroup, namely that generated by a ^ , a^, a^j . 

When n is even distinct groups are as follov/s: 

Group 1. a = 3 = Y = 0 ; 
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Group 2. a = l , 3 = y = 0 ; 

Group 3. a = 0 , 3 = 1 , Y = 0 ; 

Group 4. a = 2 , 3 = 1 , Y = 0 ; 

Group 5. a = 3 = 0 , Y = l ; 

Group 6. a = 0 , 3 = Y = 1 ; 

Group 7. a = 3 = Y = l . 

Again Group 1 is capable and those with a = 0 have an abelian maximal 
subgroup. 

The other infinite branch in Figure 4.3 starts with ^o ^ ^q • There 
O V 

are two groups at each level - one capable and one terminal. At the 
level the presentations are as follows: 
/ 3 3 3 3 3 r " l C t \ 
^a^, , a^; a^ = e, a^ = a^, a^ = a^, = a^ = e, [a^, a J = a^^. 

When a = 0 the group is capable and when a = 1 or 2 the groups are 
isomorphic and terminal. 

The inverse limit group of this infinite branch is the direct product 
of the multiplicative group of 3-adic integers and C^ , the cyclic group 

of order 3 . 

Notice the similarity in both these infinite branches with the infinite 
branches in the 2-group case. 

GROUPS OF CO-CLASS 2 

The tree of 2-generator p-groups of co-class 2 is a siibtree of the 
tree with root node ^p ^ ^p ' subtree is described for p equal to 

2 . 

Figure <4.4- shows the beginning of the tree diagram. The branches are 
labelled for easy identification. There are four infinite branches 
containing groups vrith second maximal nilpotency class. These are labelled 
Jl, J2, J3, J^ . There are three infinite branches containing groups with 
co-class 2 but not having second maximal nilpotency class. These are 
labelled A^ B and C . These three branches are their twigs are now 
described. 

The first Infinite branch labelled A begins with C^ x C^^ . There are 
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FIGURE 4.4 showing 2-groups o£ co-class 2 . 

CD 
CD 
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three groups at each level for n greater than or equal to 5 . At the 
level the groups have the following presentations: 

, = a , n-1 n' 
/ 2 2 2 2 2 2 

a^; a^ - a^, a^ = a^y a^ - e , a^^ = a^, a^ = a^, ... 

2 r T a\ a = e, a^, a, = a ) . n ' 2' 1-J n! 

Here a is either 0 or 1 . When a is 0 the presentation gives the 
group X C" which is capable and on the infinite branch. When a is 

1 the group is also capable. The presentation for the terminal group is as 
follows: 

2 
a ; a, n 1 

2 2 = e, = 2 2 
= V l = ^n' 

4 = ^^2 = V l ' a^l = = 

The infinite branch labelled B , together with its t̂ vfigs has three 
Yl 

groups at each level. At the 2 level the groups have the following 
presentations: 

2 2 2 2 2 2 ; a^ - e, = Cg = e, a^ = a^, a^ = a^, = a 

a n e, .a^, a j = ag, la^, a^ -- a^, [^3, a^J = a^, la^, a^J 1 - 3 
n-

n 

The parameters a, B and y are either 0 or 1 . V/hen a, 3 and 
Y are all zero the presentation gives the capable group on the infinite 
branch. The two terminal groups occijp when a = 0 , 3 = Y = 1 and 
a = 3 = 1 , Y = 0 . 

The infinite branch labelled C , together with its twigs has 

groups at each level. At the level the groups have the following 
presentations: 

/ 2 2 2 _ a 2 

2 
a = e, n ' 

When a is 0 the group is capable and on the infinite branch. When a is 
1 the group is terminal. 

nie branches labelled Jl, ... , JU contain groups of second maximal 
nilpotency class. All such groups have been enumerated by James [1975] and 

2 2 
- CLr- • • ... a , = a 5 6 n-i n 

a a. = a 3' L 3' 2-̂  n. 
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on the basis of his calculations these groups have been arranged into a 
tree. This is shown in the tree diagram in Figure 4.4. The infinite branch 

labelled J1 together with its twigs has six groups at the 'f' level, for 

n greater than or equal to 6 and three groups at the level. The 
presentations for these groups are as follows and use the notation in James' 
paper; 

• • • V 2 ' ^ 
2 -1 2 

V 3 " V 2 ' V 2 

s . = e for • 1 

a 4 e 2 - 1 2 - 1 

= e. s, , s LO^, oj - o^, [s^, Ô J -= s, , s 1 = sY 

s. ^ for ^ ̂ € {2, ..., n-2}^ . 

For n > 5 the distinct groups are given by: 

(1) a = 3 = Y = 0 ; 

(2) a = l , 3 = Y = Q ; 

(3) a = 0 , Y = 0 ; 

(4) a = 3 = 0 , Y = l ; 

( 5 ) a = 0 , 3 = Y = i ; 

(6) a = 3 = Y = 1 . 

The first presentation with a = 3 = Y = 0 gives the capable group. The 
remaining groups are terminal. 

When n is 5 , y ti® taken as 0 and so the three groups are 
given by the first three presentations. 

The infinite branch labelled J2 together with its twigs has two 
groups v/hen n is 5 , four groups vmen n is 7 , ten groups ^̂ 7hen n is 
greater than 7 and even and six groups when n is greater than 7 and 
odd. The presentations are as follows: 
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( 4 a 2 6 s, S3, s = s^ = 

(where 6 = 0 if n is odd). 
2 6 Y 2 2 . , 

So = s ^s' s^ = s^s^, s. = s. ^s . ^ > 4, 2 n-3 n-2' 3 5 6' ^ t+2 ^+3' ' Sj = s 2' " ®3' 

5 "^14' • • • 3 L' S o 5 S n-3' -
r 1 B Y 

n-3 n-2' 
= s-i s-i = s. 

S 2 \ sJ = [s^, sJ = ŝ . for i > y^ is abelian) . L-2 

When n is 5 , all elements with subscripts greater than 4 are trivial. 
In this case a = 3 = Y 0 and there are two groups depending on whether 
6 is 0 or 1 . The capable group has 6 = 0 while the terminal group 
has 6 = 1 . VJhen n is 7 , 3 = 6 = 0 , a may be 0 or 1 and Y 
may be 0 or 1 thus giving four groups. The group with ct = 3 = Y = 5 = 0 
is capable and has eight immediate descendants. The group with 
a = 3 = 6 = 0 and Y - 1 is capable and two immediate descendants. The 
remaining groups are terminal. 

When n is grearer than 7 and even there are ten groups. Distinct 
groups are given as follows: 

(1) a = 0, 3- = 1, T = 0, 6 = 0 , (6) a- = .1, 3 = 1, Y = 0, 6 = 0 , 
(2) a = 0, 3 = 0, Y = <5 = 1 , (7) a = 1, 3 = 0, Y = 1, 5 = 1 , 
(3) a = 0, 3 = 0, Y = 5 = 0 > (8) a = 1, 3 = 0, Y = 1, <5 = 0 , 
(4) a = 0, 3 = 0, Y = 0, 6 = 1 , (9) a = 1, 3 = 0, Y = 0, 6 = 1 , 
(5) a = 0, 3 = 0, Y = 0, 6 = 0 , (10) a = 1, 3 = 0, Y = 0, 6 = 0 . 

Group 5 is capable and has four immediate descendants. Group 3 is capable 
and has two immediate descendatns. The remaining groups are terminal. 

When n is greater than 7 and odd there are six groups of order 

. Distinct groups are given as follows: 

(1) a = 0, 3 = 0, Y = <5 = 0 , (4) a = 1, 3 = 0, Y = 0, 6 = 0 , 
(2) a = 0, 3 = 0, Y = 0, = 0 , (5) a = 0, 3 = 1, Y = 0, 6 = 0 , 
(3) a = 1, 3 - 0, Y = 1, 5 = 0 3 (6) a = 1, 3 = 1, Y = 0, 6 = 0 . 

Group 2 is capable and has eight immediate descendants. Group 1 is 
capable and has two immediate descendants. The remaining groups are terminal. 
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The infinite branch labelled J3 together with its twigs has three 
groups when n is 5 , four groups when n is 5 and six groups for n 

greater than or equal to 7 . The presentations are as follov/s: 

{ s, s 5 o 2 i • • • 'n-2-
2 _ 3 Y 2 

'n-3 

LS^, S2J 

2 
= o n-2 

B+6 

= S, 2' = s 3, . . . 

When n is 5 the distinct groups are given as follows: 

(1) a = 0 , 3 = 0 , 6 = 0 , 
(2) a = l , 3 = 0 , y = 0 , 6 = 0 , 
(3) a = l , 3 = 0 , Y = l , 6 = 0 . 

Group 1 is capable and has four immediate descendants. The other 
groups are terminal. 

When n is 5 the distinct groups are given as follows: 

( 1 ) a = 0 , 3 = 0, y = 0 , 6 = 0 , ( 3 ) a = 1 , 3 = 0 , Y = 0 , 6 = 0 , 

( 2 ) a = 0 , 3 = 0, Y = 5 = 0 , (4) a = 1 , 3 = 0, Y = 6 = 0 . 

Group 1 is capable having four immediate descendants and group 2 is 
capable having two immediate descendants. The other groups are terminal. 

When n is greater than or equal to 7 the distinct groups are given 
as follows: 

( 1 ) a = 0 , 3 = 0 , Y = 0 , 6 = 0 , (U) a = 1 , 3 = 0 , Y = 1 , 5 = 0 , 

( 2 ) a = 0 , 3 = 0 , Y = 5 = 0 , (5) a = 0 , 3 = 1 , Y = 0 , 5 = 0 , 

( 3 ) a = 1 , 3 = 0 , Y = 0 , 6 = 0 , (6) a = 1 , 3 = 1 , T = 0 , 6 = 0 . 

Group 1 is capable having four immediate descendants; group 2 is 
capable having two immediate descendants. The other groups are terminal. 

The infinite branch labelled together with its twigs has three 
groups when n is 5 and four groups when n is greater than or equal to 
6 . The presentations are as follows: 
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( s , s 1' ®n-2 
a 2 
'n-2' 

-1 3 Y 2 
'2 ®n-3^n-2' ̂ 2 ,'r. S - s,̂  s, - s^ s;, ̂ s;. = s„ s,' s^ = s -1 6 2 

'3 ®n-2' ®3 
-1 

- 1 2 _ - 1 2 ^ 

= 6 2' s^, s = s 3' L^n-3 s = s n - 2 ' s^, s 

The distinct groups are 

(1) a = 0 , 3 = 0 , Y = 0 , 5 = 0 , 
(2) a = 0 , 3 = 0 , Y = l , 5 = 0 , 
(3) a = 0 , 3 = 0 , y = 0 , 5 = 1 , 

a = l , 3 = 0 , Y = 0 , 5 = 0 . 

Group 1 is capable and the others are terminal. When n is 5 , Group 
4 is isomorphic to Group 2. 

There are three infinite branches in the tree of 2-generator 3-groups 
of co-class 2 but not second maximal nilpotency class. These are discussed 
here but 3-groups of second maximal nilpotency class are discussed in the 
next section. 

Figure 4.5 shows a tree diagram of part of the tree of 2-generator 
3-groups of co-class 2 but not second maxim.al nilpotency class. This tree 
is a subtree of the tree of 3-groups of co-class 2 . 

FIGURE 4.5 showing 3-groups of co-class 2 but not second maximal 
nilpotency class. 

The infinite branches are labelled A, B and C and correspond to the 
branches so labelled in the 2-group case. 

The infinite branch labelled A together with its twigs has three 
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groups at each level for n greater than or equal to 5 . At the 
level the groups have the following presentations: 

5' 5 
3 a 

n-1 w 
3 r T 

When a is 0 the group is capable and on the infinite branch. When a 
is either 1 or 2 the groups are isomorphic and capable. The terminal 
group has the following presentation: 

/ 3 3 3 

3 : = e, , a n ' ^ 2 

3 3 , a n-i = a n-

r X ,, Ja^, a 1 = a^. fa, , a 1 - a) . n-1' ^3' 2"' n' 4' l** n/ 

The infinite branch labelled B together with its twigs has four 

groups at each level for n greater than or equal to 6 . At the 3 
level the groups have the following presentations: 

3 T 

3 
n" 

r 1 ct r T 3\ 

The parameters a and 3 are either 0,1 or 2 and distinct groups are 
as follows: 

(1) a = 0 , e = 0 , (3) a = 1 , B = 0 , 
(2) a = 2 , e = 0 , (4) a = 0 , 6 = 1 . 

Group 1 is capable and on the infinite branch. The other three groups are 
terminal. 

The infinite branch labelled C together with its twigs has two groups 
y] 

at each level for n greater than or equal to 5 . At the 3 ' level the 
groups have the following presentations: 
/ 3 ... , a^; a^ - a^. 

- e, [a^, a j = ag, [ag. a 

n 

-- a^, â J = < 

When a and 3 are 0 the group is capable and on the infinite branch. 
The terminal group is given when a is 1 and 3 is 2 . 
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4.2, Tree Diagrams Calculated Using the Generating Algorithm 

Infinite branches in the tree of 2-generator 3-groups of second 

maximal nilpotency class are the subject of Chapters 5 and 6. Here, the 

extent to which the tree diagram has been calculated, using the generating 

algorithm, is illustrated. , Figure M-.5 shows the tree diagram of all 

2-generator 3-groups of either co-class 1 or 2 up to order 3^ and 

some groups of order 3^ . Some groups in the diagram have immediate 

descendants of co-class 3 . These are not shown. The five infinite 

b r ^ c h e s in the diagram have already been discussed. Now 3-groups of 

second maximal nilpotency class are considered. Recall that in Chapter 2 

it is shown that all 2-generator 3-groups, P , of second maximal 

nilpotency class, c , have either 

PQ(P)/P^(P) - C3 X C3 

and 

or 

PAP)/FAP) ^ PJP)/PJP) X 
U X z o 0 0 

and 

Groups of the first type are called CF-gvoups and groups of the second type 

are called non CF-groups. This term was Introduced by Blackburn. Figure 

4.6 shows the classification of 3-groups of second maximal nilpotency class 

into CF-groups and non CF-groups. Non CF-groups of order 3^ and 

CF-groups of order 3 are labelled by letters of 

tne alphabet. This is-

shown in Figure 4.6. Even though some letters are used for both types of 

groups no confusion should arise as a different style of type is employed. 

Some of the groups labelled by letters are terminal. Of those that are g 

capable many do not have descendants of order 3 , These groups and their 

descendants are shown in Figure 4.7. 
For the non CF-groups this leaves B , H , I, Q , U having descendants 

of order 3^^ . In fact all these groups give rise to infinite branches. 

For the CF-groups A , E, G give rise to infinite branches. Figures 4.8 to 



non CF-groups 

i'lGURLi 4.6 showing 2-gencrator 3-groups of co-class 1 and 2 . 

A C D K 1. M N 

6 5 3 U 

3 3 3 Cj ui u^ 

T V, W X 

FIGURE 4.7 showing 2-gencrator 3-groups of co-class 2 which do not have descendants of order 3 

-P 
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4.12 show the extent of the tree diagrams calculated for the trees 

corresponding to these groups. Figure 4-, 11 shows the tree diagram of the 

tree associated with group I . This diagram is slightly different from 

that appearing in Ascione, Havas, Leedham-Green [1977]; however Figure 4.11 

gives the correct version. This tree diagram has been calculated further 

than indicated. It is however too cumbersome to draw. This is also true of 

Figure 4.12. 

With the large number of groups being calculated it was found necessary 

to introduce a naming procedure so that the groups could be easily 

distinguished. In the context of 3—groups of second maximal nilpotency 

class the naming procedure is described via an example. Consider the group 

B ; this group has sixteen immediate descendants. These are labelled 

B#l, B#2, B#15 . The group Bn2 has fifteen immediate descendants and 

these are labelled B#2#l, B#2#2, B#2#15 . 

Other groups are named similarly. In general for this naming 

procedure there is no need to have letters of the alphabet. These were ccd 

hoc names introduced at an early stage of the calculations with the 

generating algorithm. However, they continue to be convenient and so are 

retained. 
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FIGURE 4.8 showing the trees associated with the groups B, Q, U ̂  
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FIGURE 4.9 showing the trees associated witli the groups A and G . 

-J 



54 2M 54. 24. 54. .9. 18. ^ ^ 

30'30'l8 18 k 18 55 29 ^ 27^,^ 2̂ 7 ̂ 27 
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FIGURE 4.10 showing the tree associated with group II . 
Note: b indicates that there are m sets of immediate descendants each of b groups. 
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CD 
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I'IGURE 4.11 showing the tree associated with group I 
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30 42 30 24 81 '+5 , ^ ^ ^ 3 5 3 3 1—1 L_1 1_J L_1 

FIGURE 4.12 showing the tree associated with grouj) E . 
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CHAPTER 5 

SOME INFINITE BRANCHES 

This chapter deals with the infinite branches arising from the non 

CF-groups H and I and the CF-group E . There are nine such infinite 

branches, three arising from the group H , one from the group I and five 

from the group E . The existence of these infinite branches is shown by 

finding an infinite group of matrices which has an infinite number of finite 

3-quotients which are 3-groups of second maximal nilpotency class. The 

first section gives a brief description of the infinite groups and a 

motivation for using them. The next three sections calculate groups which 

give infinite branches in the tree of 3-groups of second maximal nilpotency 

class. The final section shows that all the groups calculated are distinct. 

Leedham-Green has shovm that the groups calculated are all the possible 

ones. 

5.1. Introduction 

The infinire groups of matrices studied in this chapter to give 

information about infinite branches are space groups. Space groups arise 

naturally in the study of crystallography , however these considerations are 

ignored here. A group G is a space group if G has a free abelian normal 

subgroup T , G/T is finite and T is equal to its centralizer in G . 

The subgroup T is called the translation, subgroup. 

A motivation for studying space groups comes from 3-groups of m.axim.al 

class. Consider the group G , generated by 

f 
0 1 o' 1 0 

= -1 -1 0 , = 0 1 0 = 

h c d 1 

2 2 
where a , h^ c , d are integers, e + cZ 0 . 

The group G is a space group hov/ever this is not proved here. 

:or i c {2, . . .} . Elements in G are defined as follows 

Let T be the subgroup of G generated by 

a . , a., a^ 

IT can be shov^n that 
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T contains all the matrices of G which have in the top left-hand 

block. Consider the following series of subgroups in T : 

T > IT, G^ > IT, G, G^ > ... > IT, wG] > ... 

where IT, mG^ ^ IT, G, G, ..., G] . 
m times 

It can be shown that 

IT, mG'l/lT, = 3 for m i {l, ...} . 

The group G/\_T, mG'] is the 3-group of m.aximal nilpotency class of order 

on the infinite branch, that is, it is the group which has infinitely 
many descendants. 

The above group G consists of the cyclic group of order 3 acting on 
a free abelian group of rank 2 . For 3-groups of second maximal 
nilpotency class this suggests looking at a free abelian group of rank 6 
acted on by either C wr C , or a s'ubgroup of C„ wr C which has order o o * o 3 
27 and exponent 9 , or C^ . These groups were studied initially to give 

a set of examples of infinite branches in the tree of 2-generator 3-groups 
of second maximal nilpotency class. The above m.entioned groups are space 

le 'y'Ziry era' ted J th e follow ing pa irs of •f—/O • Lces 

r\ U 0 1 0 0 0 ' 0 1 0 0 r 0 

0 0 0 1 0 0 0 - 1 - 1 0 0 0 0 0 

0 0 0 0 1 0 0 - 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 5 0 0 0 
T 
X 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 1 0 

^ 2 
1 

" 1 ^ 2 ^ 2 
o 

1 ^ 2 
1 

the top left-hand 6 x 5 blocks generate C^ wr C^ ] ; 

0 0 1 0 0 0 0 -1 -1 0 0 0 0 0 
0 0 0 1 0 0 0 1 0 0 0 9 0 0 
0 0 0 0 1 0 0 0 0 0 T n 0 0 
0 0 0 0 0 1 0 5 0 0 -1 0 0 0 
0 ]. 0 0 0 0 0 0 0 0 0 •] 0 0 
-1 -1 0 0 0 0 0 0 0 0 0 0 1 0 

^2 -̂ 2 1 > ̂2 1 

''I 1 

ind 6 X 6 blocks generate : the group of ord 27 ) ; 
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0 0 1 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 5 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 1 0 0 
-1 -1 0 0 0 0 0 0 0 0 0 0 1 0 

<^1 fl 1 ^2 1 

[the top left-hand 5 x 5 blocks generate C^ ). 

In all the above matrices, a^, a^, b^, ..., f^ are integers and not all 

zero. Extending the domain of coefficients enables the size of the matrices 
to be reduced. This is done by adjoining a primitive cube root of unity, 
0) , and working over (I)(uj) instead of ({) . The matrices are reduced to 
4 X M- matrices and these were found more convenient to work with. In the 
reduced form they are as follows: 

0 1 0 0 CO 0 0 o' 
0 0 1 0 0 1 0 0 

1 0 0 0 
? 

0 0 1 o| 
d e f 1 _ lO. b e 

[the top left-hand 3 x 3 blocks generate C wr C^ ); 

"o 1 0 o ' 
f 2 

0) 0 0 0 

0 0 1 0 t 
0 CO 0 0 

OJ 0 0 0 
5 

0 0 1 0 

e J 
I j b 1_ 

(the top left-hand 3 x 3 blocks the 

0 1 0 0̂  1 0 0 o' 
0 0 1 0 0 1 0 0 
CO 0 0 0 0 0 1 0 
a b c d e / 1 

[the top left-hand 3 x 3 blocks generate 

In all the above matrices a, b, f are in Z(w) . 

Each pair of matrices is discussed separately in the following sections 
of this chapter. 
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5.2. One Infinite Branch 

Consider the group G{a, b, o, d, e, f) of 4 x 4 matrices over (JXw) 
generated by 

1 0 0 o" 'o 1 0 > 0 
0 1 0 0 0 0 1 0 
0 0 1 0 

' ^ 2 = 
to 0 0 0 

d 
\ 

e f 1 a b c 1_ 
2 2 2 

where a, ... ̂  f and oj are as before and d + e + f 0 . There is a 
set of finite 3-quotients of G which constitutes an infinite branch in 
the tree of S-groups of second maximal nilpotency class. Exactly one 
infinite branch arises in this way. These two claims are now proved. 

The group G is a space group but this is not proved here. Let T be 
the subgroup of G which consists of all those matrices in G with J in 

o 
the top left-hand block. Thus T is an abelian, normal subgroup of G . 

It can be shown that T is the translation subgroup of G . Elements of T 

have only the first three entries in the bottom row which are unspecified. 
These entries are written as a row vector to represent the element in T . 
Thus 

. 0 
I : 0 
3 : 0 

^ g h i : 1 . 

is written as {g, . Multiplication of two elements in T is written 
as addition of the vectors. 

Implicit in the following calculations is that G/T is isomorphic to 
C^ . A method for naming elements is also shown. 

aj = (3d, 3e, 3f) , a^ = a,^ = 

'a^, a J = = (-fo^+d, -d+e, -e+f) , 

CO 0 0 0 

0 CO 0 0 

0 0 U) 0 

a+oj(bi-a) a+b+Liic a+b+c 1 

a': = (-3fM+3d, -3d+3e, -3e+3/) , O 
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'a^, a^J = (-ea)+2/co-d, -fo^+2d-e, -d+2e-f) = a^ , > 3 , 

3 

L t^' 2-' 

a. , 

[ a ^ , a J = ( i Z d - c o ) , e C l - c o ) , / ( l - w ) ) , 

[ d ( l - w ) + / ( - 2 0 3 - 1 ) , ( 5 ( c o - l ) + e ( l - a 3 ) , e ( o j - l ) + / ( l - a ) ) ) , a n d 

_ a . , a ] f o r i € { 5 , 6 , . . . } . 'V A 

\g, h, i ) , a^j = e , 

{g, h, i ) , a^^ = (iw-g, ^-/z, , 

'{g, h, i ) , a^^ = e , 

[ (q ' , k , i ) , a j = [ ^ ( ( j j - 1 ) , , i ( c a - l ) ) , 

{g, h, i)^ - ( 3 ^ , 3 i ) 

w h e r e {g ^ J i , i ) i s a n y e l e m e n t i n T . T h u s 

a ^ = ( c i ( l - w ) + 3 e c o - 3 j o j , - 3 a V e ( l - c o ) + 3 / w , 3 i Z - 3 e + j ( 1 - o j ) ) , 

a = ( - l Q c Z c o + i f + l l e c o + e - l O j o j - 5 / , 5 ( i w - 5 c ? - 1 0 e c o + e + l l j a ) + / , 1 0 < i - d w + 5 e w - 5 e - 1 0 / a ) + f ) , 
8 

a g = ( 2 l d w - 2 1 e ' i J - 5 s r 2 1 s w + 1 5 e , -15( fco+5d+21s .a ) -21 jo j -5/ , 5 d u - 1 5 d - 1 5 s a 3 - r 6 s + 2 1 f w ) . 

I t i s now s h o w n t h a t t h e s u b g r o u p T i s g e n e r a t e d b y a ^ , a ^ , a ^ , a ^ , a ^ , 

a . T h i s i s d o n e b y f i r s t c o n s i d e r i n g t h e f o l l o w i n g e l e m e n t s o f T : 
8 

t^ - (d, e, f) , 

t^ = (/CO, d, e) , 

tg = (eco, fco, d) , 

t = (<ioj, e w , / w ) , 
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= d^^ ew) , 

tg = (-ew-e, -/oo-/, dco) , 

= (-dco-d, -ew-e, -/w-/) = - t^ , 

tg = (/, -cfw-d, -eu3-e) = -t^ - t^ , . 

t = (e, -doj-d) = -t^ - t, , 

t = n 

'm(mod9) if OT is not a multiple of 9 , 

Now a, = 

g if m is a multiple of 9 . 
s 

tĵ  , ~ ~ ^ gr'eater than or equal to 5 , 

n-3 , 
a = (-1)" y (-1)^ 

k^Q n 
n-3 
k ^k+1 • 

This is easily proved by induction using that 

^ t. - t. for i S {l, . . .} 

and 

ror 

Notice that t. ^ is iust a multiple of o) of t. and hence 1+6 J ir- ^ 
t.,a, 1 - t - t. . 

This is enough to show that T is generated by 
t } . However, an equivalent generating set is 

X 2 3 4 b 

a, , a^, a^, , a^, a J . In general IT, mGl is generated by 1 d D o / o 
a •m+3' • •• ' %+8 and IT, (w+DG] is generated by a 

! l ' 
, a m+9 

the element a ^ is not in IT, . It is now shown by induction 
m+3 

that a^ ^ is in [?, {m+l)Gl . Calculations show that 
m+3 

a' = = - - - [t^-tj 

1 4 

3 Each of the terms in brackets is in [T, (5] and hence a^ is in IT, G] 
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3 3 3 
Now a ^ = 

- T - 1 

and since a ^ is in [T, G] it follows 

3 ^ 
that a is in [T, G , G ] . Similaply a - and hence a ^ is in 

[T, 3(7] . Suppose a ^ is in [T, mG'] . Now a^ 
m+3 and hence 

3 
'^m+Z ^^ • ^ is the following series of subgroups: 

T > IT, (?] > [T, G, G] > . . . > IT, mGl > . . . 

such That lE?, mG:\/lT, ( n + D G ] ] = 3 . 

No;̂ ^ G/lT, G ] has the following consistent power-coinmutator 

presentation: 

3 3 3 3 3 
(a^, a^, a^, a^, a ^ ; a ^ = a^, a ^ = e , a;^ - e , a ^ = e . 

a^, a^j = la r ^2] = ^'5) • 

This represents a 3-group of second maximal nilpotency class. In fact the 

presentation gives CF-group E . 

It is clear that G/lT, {m+l)G^ is an immediate descendant of 

GI{T, mG'] and hence the following set is an infinite set of finite 

3-quotients of G which constitutes an infinite branch in the tree of 

3-groups of second maximal nilpotency class: 

{G/IT, G], G/IT, G, G], . . . , G/lT, ffiG], . . . } . 

For m € {l, ...} the group G/lT, mG'] is independent of the values of 

a, f and hence only one possible infinite branch can arise from this 

case. 

5 . 3 . Six Infinite Branches 

Consider the group G{a, b, a, d, e, f ) of 4 x 4 matrices over ({>(0)) 

generated by 

0 1 0 CO 0 0 0 ' 

0 0 1 0 , = 0 1 0 0 

= 

1 0 0 0 

, = 
0 0 1 0 

d 
\ 

e f h a 
\ 

b c 1 
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where a, ... , / and w are as before and (d+e+f) + b + c t 0 . There 
is a set of finite 3-quotients of G which constitutes an infinite branch 
in the tree of 3-groups of second maximal nilpotency class. There are six 
non-isomorphic groups G , namely, 

G(0, 0, 1, 0, 0, 0) 
G(0, 0, 0, 1, 0, 0) 
GiO, 0, 1, 1, 0, 0) 
G(0, 1, 1, 0, 0, 0) 
G(0, 2, 1, 0, 0, 0) 
G(0, 1, 1, 1-oj, 0, 0) . 

It is first shown that there is a set of finite 3-quotients of G 

which constitutes an infinite branch in the tree of 3-groups of second 
maximal nilpotency class. This is done by the same basic method used in the 
previous section. The group G is a space group but this is not proved 
here. Let T be the subgroup of G consisting of all those matrices in G 

with I in the top left-hand block. Thus T is an abelian, normal o 
siabgroup and it can be shown that T is the translation subgroup of G . 

Calculations show that a^, a^. = <2, = a^ an 

not in I 

3 

however a l-2' a^, a^, a J , a 2-J 

a 2' 
least 81 , class 3 and exponent 3 ; thus G/T is isomorphic to 
C„ wr . Again, elements of T are iNnritten as vectors containing the o o 
first three entries in the bottom row. 

It is now convenient to regard T̂ as a faithful G/T)-module under 
conjugation with coset representatives. The coset representatives a^ and 

a^ have the following action: 

(g, h, i) = g, h) , 

and a^, a^, a^j 1 3 are all in T . Thus G/T has order at 

a 
{g, h, i) ^ h, ^) , 

for (g, h^ i) in T . 

Define 6 to be the sum d + e + f . As a module 
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T - < (6, 6, 6), (cCw-l), o) > , 

[T, G] =<(6(w-l), 0, O) , (e(l-w), (Z)+c)(w-l), Z^Cl-w)) > , 

IT, G, ff] =<(6(l-w), 6(w-l), o) , ((&-c)(l-a)), (Z?-c)(l-a3), , 
0, 0), (3c?, 0, 0)> , 

[T, 3G1 =<[6(w-l), 6(w-l), 6(co-l)), (-32?, 3b, 0), (-3e, 3e, 0), 

[3ib-o), 0, O] > , 
IT, =<(36, 0, 0), {3b, 3b,'3b), (3c, 3c, 3c), [-3(i>-c), . 3(2?-c) , o] > , 

IT, 5G] =<(-36 , 36, 0), [3Z?(a)-l), 0, o) , (3c(a)-l) , 0, o) , 
[3(b-c), 3{b-c), 3{b-c)]) , 

IT, 6̂ 7] =<(36 , 36, 36), (-3&(w-l) , 3&(w-l) , o) , (-3c(a)-l), 3c(w-l) , o) , 
[3(2?-c)(a)-l), 0, O) > . 

It is easy to see that (3c(a)-l), 32>(l-w), o] is in IT, 5(?] and 
hence 3T S IT, 6(?] . It is now shown that IT, 5(7] S 3T and this is used 
to show that | [T, = 3 . 

First, ho'wever, ?AG) is calculated. It is clear that elements in o 

V^{G) have the form a\t where X € {O, 1, 2} and t i T . 

^ J-

X 2X % % 
= t.t \t 

= t or e depending on X . 

Calculating [t, aj, [t, a j , [a^, aj, [a^, a^ it follows that (as a 

module) 

PAG) =<(5(w-l), 0, O] , fc(l-w), (Z?+c)(«-l), Z?(l-'a3))> . 

Thus ?^(G) = IT, G1 , 

Now T is a subgroup of Z(oj) x Z(oj) x 2(a)) and so T has at most 

six generators. Thus T/T^ , that is T/3T , has order at most 3^ . Since 

G/T has order 3^ it follows that G/3T has order at most 3^° . Now 

G/? (G) has order 3^ and class 3 and hence G/3T has class at most o 
8 . From this it follows that IG, 8G] < 3T . However since 
iT, ff] = VAG) = IG, 3G1 it follows that IT, 6G] = [(?, 8G] . Thus o 
IT, 6(7] 5 3T . 
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It follows that IT, 6G] = 3T and hence T/lT, Gl has order at most 

3 . This means that IT, mG^l/lT, | for w M l , 5} . If 

this is not the case then IT, mG^l = IT, (OT+1){?] for some w € {l, 5} . 

All subsequent terms IT, (ff7+2)(?], [_T, (m+3)G:], ... are then equal and this 

is not possible. 

Each term of the vectors in IT, 6(?] is essentially a multiple of 

(w-l) of the corresponding terms of the vectors in IT, 2G1 . This is a 

repeating pattern and hence | [!?, mG'\/\_T, {m+l)G'\\ - 3 for m i {l, ...} . 

It has already been said that G/lT, G] is a 3-group of second 

maximal nilpotency class. Thus, the following infinite set of finite 

{G/IT, G], G/IT, G, (?], G/IT, 35], ..., G/lT, mG^, ...} 

3-quotients of G constitutes an infinite branch in the tree of 3-groups 

of second maximal nilpotency class. 

It is now shown that there at most six non-isomorphic groups, G , of 

the type described at the beginning of the section. To simplify this a few 

lemmas are first proved. 

The above calculations show that the elements of T do not depend on 

the value of a or the individual values of d, e, f only the sum d + e + f 

which is denoted by 5 . This leads to the following lem.ma. 

LEMMA 5.1. The group Gia, b, c, d, e, f) as defined above is 

isomorphia to the group G(0, b, c, 6, 0, 0) . 

Proof. Denote G(a, b, e, d, e, f) by Group 1 and G(0, b, o, 6, 0, 0) 

by Group 2 and let T^ and T^ be the translation subgroups of these 

groups respectively. Denote the matrices generating Group 1 by a^ and a^ 

and define a^ to be [a^, a J , â ^ to be [a^, a J (as above) and the 

matrices generating Group 2 by b^ and b^ and define b^ to be 

'b^, b , b^ to be [b^, . Now every element in Group 1 can be 

written uniquely as a^a^ajajt where a , 3 , T , <5 are eixher 0 , 1 or 2 

and t is in T^ . Similarly every element in Group 2 can be written 

un iquely as b^^b^b^j^^t where a , 3, T , 6 are either 0 , 1 or 2 and t 

is in T^ . It will be established that T^ and T^ are identical. 
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Let 6 be a map from Group 1 to Group 2 where 

e : ala\alalt . . . 

It is clear that 6 is one-to-one and onto and so to prove the lemma it 
remains to show that 9 is a homomorphism. 

a^ T^ a^ 62 Y2 
Put g^ = a^ a^ a^ a^ t^ and g^ = a^ a^ a^ a^ t^ ; then 

r^i "2-1 
9 ^ 9 2 = ^2 ^2 ' ^3 ' 

1 2 , , , 
^ ^ 2 ^ 2 

where 

*12 = 

-t - + 

' 

= S 
rTn 

'7' 

t ^ = 

-Yl T, — — Y 
4-

^3 
j-

u ^ 0 

^3 ^3 5 

^3' ^3 
Y2-T ; 

^3' ^3 
- T2-
^3' S ' S 

2̂-

D 
a^ , a a t ^ , a. 

a2T - 32-1 

rYi ^2 32-1 

rYi 32-1 
^3 ' ̂ 2 

= a2 , a^ , a^ 

a 3 Y. 
Now, = ^ 

a 32 Y2 ^2 
0(^2) = ^2 ^3 ^ ^2 
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a +a B 

where t^^ is the same as except that â . is replaced by ĥ . , 12 
i i {l, 4} , in the expressions for t^, t^^ . The expression for 

g-̂ g2 y®"*- ̂ ^ ^^ appropriate form to allow to be calculated. 

Before this is done it is first shown that t^^ equals t^^ . Let 

ig, h, i-) be an element of T^ and also T^ , then (g, h, i) . A is 

\ . r . r n (i, g, h) and (g, h, i) is {i, g, h) . Thus [t, equals [t, b 

and hence t, a 1 equals t, h'. where t is an element of T^ or 

T^ . Also ig, h, i) is (̂ oj, h, i) and ig, h, i) is (g-co, h, i) . 

Thus [t, a J equals [t, h ^ and equals t, D, Since a. 

and a^ are defined in terms of a^ and a^ and b^ and b^ are defined 

in terms of b^ and b^ it follows that [t, a ^ equals [t, b ^ , 

t, a 
6 

equals + h ft, a,,l equals Vt, 0,1 and U. ' - — ^ t, a, equals 

^ - 2 for any element t of T^ or . There are eight more types of 

commutators to check; namely: 

r^i B̂ -r 
2 

r'l 
' 

a^i 
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- Y 
a 

1 a. Y2I 
3 ' ' "3 

Calculations with the matrices show that all these commutators are 
equal to the corresponding commutators in Group 2 and so t^^ equals t^^ . 

Recall that 

9 ^ 9 0 "" ^ 1 ^2 
r^i "21 

^3 ' ""l. 

Taking all possible values for r^i â -i 
' 

and there are 

twelve possibilities for 9-̂ 92 * Hoivever, the above is enough to show that 

whatever the possibility, = 9 9 [g'̂ l • Trius 6 is an isomorphism 

and the lemma is proved. • 

All further work in this section deals with the group 
G(0, b, c, 6, 0, 0) which is now denoted 6, b, c) . (The order of 
6, b, c may seem unnatural however this order is used throughout this 
chapter.) The generators of G(S, b, c) are 

CO 0 0 0 

= 

0 1 0 0 
0 0 1 0 
1 0 0 0 
5 0 0 1 

and = 

J 

0 1 0 0 
0 0 1 0 
Q b e 1 

2 2 2 
where 6, b, c are in Z(co) and 6' + b + c ^ 0 . 

LEMMA 5.2. r n e g r o u p G ( 6 , b , c ) i s i s o m o r p h i c t o t h e g r o u p 

G i X & , X b , X a ) w h e r e X i s i n QCw) . 

Proof. The isomorphism is achieved by conjugating a^ and a^ by 

1 0 0 0 ' 

0 1 0 0 
0 0 :L 0 

0 0 0 
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LEMMA 5.3. T h e g r o u p 0 ( 0 , b , o ) i s i s o m o r p h i c t o t h e g r o u p 

c, h ) . 

Proof. Conjugating a^ and a^ by 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0̂ 0 0 1 

gives 

0 0 1 0̂  CO 0 0 o' 
1 0 0 0 and 0 1 0 0 
0 1 0 0 0 0 1 0 
0 0 0 _0 c b 1_ 

However, squaring the first matrix gives 

0 1 0 0 
0 0 1 0 
1 0 0 0 
0 0 0 1 

and squaring this gives the first matrix. Thus a group isomorphic to 
Gio y b, o) is generated by 

0 1 0 o " w 0 0 0 

0 0 1 0 and 0 1 0 0 
1 0 0 0 0 0 1 0 
0 0 0 1 

J 
0 c b 

but these matrices generate G{0, c, b) . • 

Before showing that for all choices of 6, b and e there are at most 
six distinct groups G(6, b, c) a few remarks abour Z(w) are made,. The 
integers of ({)(w) make up 2(oo) . It can be shown that these integers have 
the form r + sw , where r and s are integers. It can also be shown 
that 1 - w is a prime in ZCw) and hence any elenent in Z(a)) can be 

written as (l-oj)Pâ  , where p ^ {O, 1, ...} and a^ contains no powers 

of 1 - 0) . Thus 
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= 

±1 

±0) 
±(1+00) 

^ + (l-a))x 

where X is i" ^(w) • For the purposes of the following classification it 
is enough to take 

" {l+to} + (l-^)X where x is in Z(w) . 

Finally, it can be shown that 2(co) is a Euclidean integral domain. 
This is used extensively in the following classification. 

In defining the matrices a^ and a^ which generate G(6, h, c) the 

case ^ - h = e - 0 is excluded since then a^ and a^ generate 

C3 ^ ' consider all possible choices for 6, h and c the 

following cases are considered. 

(1) One of b and 0 is non-zero. 

(2) One of 6,1) and c is zero. 

(3) None of 6,2? and c is zero. 

CASE 1 - ONE OF 6, Z? AND e IS NON-ZERO 

In this case Lemma 5.2 is used and X is chosen appropriately so that 
the only groups to consider are, (?(1, 0, 0), G(0, 1, 0) and G(0, 0, 1) . 
However, Lemma 5.3 shows that (J(0, 1, 0) and G(0, 0, 1) are isomorphic. 
This case yields two groups, G(l, 0, 0) and (?(0, 0, 1) . 

CASE 2 - ONE OF 5, 2? AND c IS ZERO 

This case must itself be split into three different cases, namely: 

(i) b = 0 

(ii) e = 0 ; 

(iii) 6 0 . 

Suppose b is zero. Write 6 as v/here does not 

contain any powers of 1 - w and xjrite c as v;here c^ does 

not contain any powers of 1 - w . Suppose p < T ; applying Lemma 5.2 and 
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choosing X appropriately the group to consider is, 

G 0, ^ 1 

where and c^ have no common factors. Since and o^ contain no 

powers of 1 - O) then and Cj^d-S)"^"^ have no common factors and so 

a6, + (l-w)"̂  ^ is 1 for some a and 3 in Z(co) . The group 1 

0, 0 

contains the elements [5^(1-^), 0, o] and 

and hence , 0, 0 . Thus the 

group contains (1-w, 0,0) . Since has no powers of 1 - w it can be 

written as either 1 + (l-co)x or 1 + co + (l-oj)x where x is in 2(a)) . 
Notice that since the group contains (1-co, 0,0) it also contains 

((i-w)x, 0, o) , (1-w)' 0, 0 

The group G 0, (1-w)^ 

and the inverses of these elements, 

is generated by 

' 0 1 0 0 OJ 0 0 0 
0 0 1 0 and 0 1 0 0 0 0 1 0 and 
1 0 0 0 0 0 1 0 

0 0 1 0 0 1 

However, the group also contains the following elements 

0 1 0 0̂  . 0 ' 0 1 0 0 
0 0 1 0 ; : 0 0 0 1 0 

0 0 0 : 0 1 
c -, ^ 0 1 .0 r< 

0 0 1 _ -(l-w)x 0 0 , : 1 orl 1+-J 0 1 
depending on the original 

and 

CO 0 
0 1 
0 0 

0 
0 
1 

0 .0 (1-to)̂  1 

0 
0 3 
0 

0 0 1 

w 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

Thus depending on , (7(1, 0, 0) or G(l+U), 0, 0) are subgroups of 
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0, (l-aj)'̂ -Pĉ  

contain the element 

G 0, 

isomorphic to 6̂ (1, 

G (l-a))P 0, 

. However, both 0, 0) and (7(1+00, 0, 0) 

(1-0), 0, 0) and hence both contain 

as a subgroup. Thus G 0, IS 

0 , 0 ) . If T < p the group to consider is 

and an argument similar to the one above shov/s that 

this group is isomorphic to 6̂ (0, 0, 1) . When T = p the group to 
consider is 0, c^} . Again a similar argixnent is employed and 

depending on and a^ this group is isomorphic to one of 

G ( l , 0, 1) , 
(7(1, 0, 1+oj) , 
(?(l+w, 0, 1) . 

However u(l, 0, 1+co) is G(l, 0, 2) since both groups contain 
(1-co, 0, 0) . Similarly (7(1+0), 0, 1) is G(2, 0, 1) , By Lemma 5.2, 
G(2, 0, 1) is isomorphic to G(-2, G, -1) and this is G(l, 0, 2) since 
both these groups contain (3, 0, 0) . 

To show that u(l, 0, 1) and G(1. 0, 2) are isomorphic (|)(u)) is 

considered. In vvco) the map oj i—ui^ is clearly an isomorphism. Now 
G(l, 0, 1) is generated by 

'o 1 0 0 CO 0 0 o' 
0 0 1 0 and 0 1 0 0 

1 0 0 0 0 0 1 0 

1 0 0 1_ _0 0 1 1, 

and hence G(]., 0, 1} i? isomorphic to the group generated by 

'o 1 0 o" 9 
CO" 0 0 o' 

0 0 1 0 and 0 1 0 0 

1 0 0 0 0 0 1 0 

1 
\ 

0 0 1 
J 

^ 0 0 1 

However, another pair of generators for this group is 

0 1 0 o' CO 0 0 o' 
0 0 1 0 and 0 1 0 0 0 0 1 0 and 0 
1 0 0 0 0 0 1 0 
1 0 0 1, _0 0 2 1 
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Thus G(l, 0, 1) is isomorphic to 0, 2) . 

Suppose c? is zero. Write 6 as where has no powers 

of 1 - 0 ) and write h as where b^ has no powers of 1 - ca . 

The argument for this case proceeds exactly as for the case when h is 
zero. Thus, when p is less than a the group is isomorphic to 
(7(1, 0, 0) . When a is less than p the group is isomorphic to 
G(0, 1, 0) . By Lemma 5,3 this group is isomorphic to 6̂ (0, 0, 1) . When 
a equals p , depending on and h^ the group is isomorphic to one of 

(7(1, 1, 0) , 
G(l, 1+03, 0) , 
G!(1+(jO, 1, 0) . 

The group G(l, 1, 0) contains (1, 1, 1) and hence (-1, -1, -1) . 
The generator a^ can be multiplied by this to show that 1, 0) is 

(7(1, 0, -1) ; that is G(l, 0, 2) . However this group is isomorphic to 
G(l, 0, 1) . Now G(l, l+LO, 0) is (?(1, 2, 0) and an argument as above 
shows that this is G(l, 0, 1) . Finally G(l+aj, 1, 0) is ff(2, 1, 0) 
v/hich is isom.orphic to (7(1, 2, 0) . 

Suppose 6 is zero. write o as where h^ contains no 

powers of 1 - co and wr̂ ite c as (l-co)^c^ where c^ contains no powers 

of 1 - oa . Using Lemma 5.3 it can always be arranged that T 5 a . When 
T < a by applying Lemma 5.2 the group to consider is 

0, , . 

no Provided A in Lem.ma 5.2 is chosen appropriately, b^ and a^ have 

common factors. Using an argument similar to that above it can be shown 

that the group contains [(1-oj) , 0 , 0 ) . If a - T is greater than 
equal to 2 then the group is isomorphic to G(Q, 0, 1) . 

equals one then the group is (O, (1- , e 

or 
ir a - T 

Possibilities for o 1 
are 

1 
\i+4 + (l-co) 

0 

1 
1+w 

+ (1-w) X 
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where x is in . Using the same type of argument as before, 
depending on and c^ , the group is isomorphic to one of the following 

groups: 

G(0, 1-w, 1) , GiO, w+2, 1) , 
G(0, 1-0), -w+2) , GiO, w+2, -03+2) , 
GiO, 1-0), oj+3) , GiO, 03+2, 03+3) , 
G( 0 , 1-03, 1+03) , G(0 , 03+2 , 1+03) , 
GiO, 1-03, 2) , GiO, w+2, 2) , 
G{0 , 1-03, 203+3) , G(0, 03+2, 2o3+3) . 

By examining the different elements in these groups it can be shown 
that they are all isomorphic to G(0, 0, 1) . 

If a equals x the group to consider is G[O, b^, c^) . Using the 

same argument, it appears that there are thirty-six oossible groups 
depending on b^ and . However, Lemma 5.3 reduces this to twenty-one 

groups. They are as follows: 

G(0, 1, 1) , (7(0, 2, 1) , 
G(0, 1, -03+2) , (7(0, 1, 1+03) , 
G(0, 1, 03+3) , G(Q, 1, 203+3) , 
G(C, -u)+2, -03+2) , G( 0 , -03+2 , 1+03) , 
G(0, -03+2, 03+3) , G(0, -03+2, 2) , 
G( 0 , 03+3, 03+3) , G(0, -03+2, 2o3+3) , 
G( 0 , 1+03, 1+03) , G(0 , 03+3 , 1+03) , 
G(0, 1+03, 2) , G(0, 03+3, 2) , 
G(0, 1+03, 2o)+3) , G(0, 03+3, 2o3+3) , 
(7(0, 2, 2) , 
G(0 , 2 , 203+3) , 
G(0, 203+3 , 201+3) . 

The groups in the left-hand column are all isomorphic to G(0, 1, 1) 
and the groups in the right-hand column are all isomorphic to G(0, 2, 1) . 
Thus case 2, when one of 6 , 3 and e is zero yields three groups; 
G(l, 0, 1) when b is zero and (7(0, 1, 1) and G(0, 2, 1) when 6 is 
zero. 

CASE 3: NONE OF 6, b AND e IS ZERO 

G O T VJrite 6 as (l-o)) , b as (l-o)) Ẑ ^ and c? as (1-co) c;̂  where 
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contain any powers of 1 - w . The arguments 

employed in this case are exactly the same as those used in the previous 
case. There are seven cases to consider depending on the relative sizes of 
a, p and T . In each of these seven cases there are three parts depending 
on which two of b^ and o^ have no common factors. The results are 

summarized below, 

a is the smallest 

When and b^ , and and o^ have no common factors all 

possible groups are isomorphic to G(.l, 0, 0) . 

p is the smallest 

VJhen and b^ , and b^ and c^ have no common factors all 

possible groups are isomorphic to G(0, 0, 1) . 

T is the smallest 

When and , and b^ and c^ have no common factors all 

possible groups are isomorphic to 0, 1) . 

a = p < T 

All possible groups are isomorphic to {?(1, 0, 1) . 

a = T < p 

All possible groups are isomorphic to (7(1, 0, 1) . 

p = T < a 

All possible groups are isomorphic to either GiO, 1, 1), 0(0, 2, 1) 
or G(l-oa, 1, 1) . 

a = p = T 

All possible groups are isom.orphic to either G(l, 0, 0) or 
Gil, 0, 1) . 

The first three cases are not quite complete. The missing parts are 
now dealt with. Suppose a is less than p and T and b^ and c^ have 

no common factors. Applying Lem.ma 5.2 the group to consider is 

Q (1-0))'^"%^, . Suppose x is less than p , then the 

group contains ((l-w)''" , 0, o) . If p is greater than or equal to 
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T + 2 then the group is isomorphic to G 0, (l-co)"̂  ̂ c . Lemma 5.2 

can be applied so that and c^ have no common factors. This case has 

already been done. 

If p equals x + 1 depending on b^ and o^ the group is isomorphic 

to one of the following: 

G 

G 

G 

G 

. , vT-a+1 ,, ,T-a (l-oj) , (1-0)) 

(1-co) , (1-0)) (-o)+2) 

(1-co) , (l-oj) (a)T3) 

(l-a))^"^+-(l+a)), (1-0)) T-a 

, G 6 (l-a))™^(i+a)), (l-o))'""(-a)+2) T-a, 
1 

(l-o))''"̂ ^̂ (l+o)), (l-o))''~°(o)+3) T-a, 

(l-o))''~̂ (l+o))| , G 
J .1 . .T-a+1 6 (1-0)) ̂ "̂ '-"(1+0)), (l-o))'̂ ~̂ (l+oj) 

(1-0))"̂ -̂ . 2 

(1-0))"̂  

(1-0))''-̂ "'̂  1+0)), (1-0))^-^.2] , 

(1-0))̂  ^^^(1+0)), (1-0))̂  '̂ (2o)+3) 

Groups in the left-hand column now fall into the category of and b^ 

having no comn:cn factors and these groups have already been dealt with. The 
first group in the right-hand column has and c^ with no common 

factors. Nov: 

-0) + 2 = (l+0))(-3aj-l) , 

0) + 3 = (l+o))(-2o)+l) , 

2 = (l+w)(-2w) , 

2o) + 3 = (l+w)(-0)+2) . 

Applying Lemma 5.2, v:ith X equal to (l+O)) , to the last five groups in 
the right-hand column shows that these groups fall into a case that has 
already been dealt with. 

If p is less than T then the arg'ament is similar to that used V'jhen 
T is less than p . If p equals i there are thirty-six different 
groups to consider. All of these can be shown to fall into cases ali'eady 
considered by either using the method above or modifying the generators by 
elements in the group. 
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The other two missing cases in the summary are dealt with in the same 

way. Thus case 3 yields one group - G(l-to, 1, 1) . 

This section has shown that there are at most six non-isomorphic groups 

in which the top left-hand 3 x 3 blocks generate C C . In 5.5 it 
3 3 

is shown that these six groups are all different. 

5.4. Two Infinite Branches 

Consider the group G{a, b, Q, d, e, f) of 4 x 4 matrices over Q(oj) 

generated by 

. 2 
w 0 0 0' '0 1 0 0 

0 (Jj 0 0 0 0 1 0 
, a^ -

0 0 1 0 
, a^ -

CO 0 0 0 

h e 1 
J- d e 1 

) 

where a, j and cj are as before and a, ..., j are not all zero. 

There is a set of finite 3-quotients of G which constitutes an infinite 

branch in the tree of 3-groups of second maximal nilpotsncy class. There 

are two non-isomorphic groups, namely, 

0, 0, 0), 0, 0) , 

Gil, -w, 0, Q, 1, 1) . 

Consider the group generated by the following pair of matrices: 

= 

0 

0 

1 
a(co+2)-h2?(u+2) 

+c(w+2)t3(i(-a)-l)-3e 

CO 

0 

0 

1 
0 

0 

1 
0 

a(aj-l)-fo(oj+2) a(co-l)tZ>(ajt2) 

1 
0 

0 

0 

1 

+G(l-co)+3e(jj +6'(l-w)-T-3e -c(a)+2) + 3e 

A subgroup of index 3 in this group is genei 

' Hov/ever, 

•a Lea Dv and 
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CO 0 0 0 

0 w 0 0 
0 0 1 0 
3 a 3i) 3 e 1 

and h b -1 2 

0 1 0 0 
0 0 1 0 
to 0 0 0 

[3d 3e 3f 1_ 

Conjugating these matrices by 

J. 
0 
0 
0 

0 0 0 : 3 

shows that the subgroup generated by b^j and b ^ ^ is Isomorphic to 

G(a, b, a, d, e, f ) , the first group mentioned in this section. 

The group generated by b^ and b^ is a group of the type studied in 

Section 5.3. Recall that a group of this type is denoted G{6, b, o) . A 
group of this type has two subgroups of index 3 which modulo the 
translation siibgroup have exponent 9 . It can be shown that these two 
subgroups are isom.orphic. A proof similar to that given in Lemma 5.1 may be 
used however this is not given here. Recall also that there are at most six 
non-isomorphic groups GiS, b, c) . Thus, there are at most six non-
isomorphic groups G{a, b, e, d, e, f ) and these can be determined by 
studying the appropriate subgroup (shown above) of each of the six groups 

b, c) . The groups obtained are as follows: 

b, a) SubgrouD of index 3 

Gil, 0, 0) 
Gil, 0, 1) 

GiO, 1, 1) 
GiO, 0, 1) 
GiO, 2, 1) 
G(l-w, 1, 1) 

GiO, 0, 0, cj, 0, 0) 
(̂ (1, 0, -1, 0), 0, 1) 

G d , -OJ, 0, 0, 1, 1) 
0, -1, 0, 0, 1) 

Gil, -2u, 1, 0, 2, 1) 
-co, 0, 2COT1, 1, 1 ) 

In fact, the first two groups (in the right-hand column) are isomorphic 
and the last four groups are isomorphic and different from the first two. 
For each of the two r.on-isomorphic groups, GiO, 0, 0, w, 0, 0) and 
Gil, -OJ, 0, 0, 1, 1) the following infinite set 

{G/LT, Gl, G/LT, G, (P], . . . , G/IT, mGl, ...} 
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constitutes an infinite branch in the tree of 3-groups of second maximal 
nilpotency class. Again, T is the subgroup of G consisting of all those 
matrices of G with in the top left-hand block. 

As before is a space group but this is not proved here. The 
importance of G being a space group is that it allowed a space group 
program to show that there are only two non-isomorphic groups 
G{a, b, c, d, e, f) . 

The space group program is based on the ideas of Zassenhaus and the 
implementation, by K.-J. Kohler, is based on the work of Brown (Brown et at 
[1978]). I am indebted to K.-J. Kohler for running the program for me. The 
space group program calculated all the distinct space groups of the types 
considered in this chapter. The results confirmed those of Sections 5.2 and 
5.3 and showed that there are two distinct groups Gia, b, a, d, e, f) . 

5.5. Conclusion 

In this chapter nine space groups have been discussed. The space group 
program shows that they are all distinct. It is now shown that the infinite 
branch obtained from each space group is different. (This also shows that 
the space groups themselves are distinct.) Suppose is a space group. 
The following table shows for each G the first S-quotient G/lT, mGl , 

that is the 3-quotient with the lov/est order, which occurs on only one 
infinite branch. 

Space Group Lowest order 3-quotient occuiĝ ng 
on only one infinite branch 

Group from Section 5.2 

G(0, 0, 1) 
Gil, 0, 0) 
G(l, 0, 1) 
G(0, 1, 1) 
G(0, 2, 1) 
(7(1-03, 1, 1) 

G(0, 0, 0, CO, 0, 0) 
G{1, -w, 0, 0, 1, 1) 

E#l#5#lffl5 

E#l#5#l#l 
E#2#5#l#16 

I 

(Recall from Chapter 4 the method for naming groups.) 
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Finally, C.R. Leedham-Green has shown that the infinite branches 
described in this chapter are all the possible infinite branches which arise 
from the groups H, I and E . This result stems from Leedham-Green's 
proof that 3-groups of second maximal nilpotency class have solubility 
length bounded by 4 and is still in preparation. It also depends on some 
results of S. McKay. 
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CHAPTER 6 

SOME MORE INFINITE BRANCHES 

This chapter deals with the infinite branches arising from the non 

CF-groups B , Q and U and the CF-groups A and G . Groups on these 

infinite branches can be constructed as pullbacks. These groups are said to 

be of maximal type. Groups on the infinite branches discussed in Chapter 5 

can not be constructed as pullbacks. These groups are said to be of non-

maximal type. This is the distinguishing feature between the infinite 

branches of Chapter 5 and the infinite branches to be discussed here. 

The first section shows that there is an infinite branch arising from 

each of the groups B, Q , U , A and G . The second section examines in 

detail the infinite branch and its twigs arising from B . The third and 

final section looks at the ways in which 2-generator 3-groups of second 

maximal class can be constructed as pullbacks. The descendants of B are 

used in an example to illustrate this, 

6.1. Five Infinite Branches 

This section shows that there is an infinite branch arising from each 

of the groups B, Q , U , A and G . A detailed proof showing the existence 

of an infinite branch arising from U is given; the other proofs are 

similar and dealr with briefly. 

The idea of the proof is as follows. The group U^ with presentation 

3 ? 3 
(a^, a^, a^, a^, a,.; a^ - a^, a^ = " "^J " 5 

Lag, = = = 

a^, a, 
5' 1-J L 5' 2-J 

a^, a. = r, 

2' P "3^ 

a^] = [a^, agj = e, 

= ^OJ 

is shov/n to be an infinite group which has an infinite number of finite 

quotients each of which is a 3-group of second maximal nilpotency class and 

a descendant of U . 

The motivation for considering the group L)^ is as follov/s. Consider 

the group U^ with consistent power-commutator presentation 
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3 2 3 2 3 2 3 2 3 a i a -
n 1 = V e ' S = V ? ' V s ' 

3 2 3 2 3 2 
^7 = V i o ' ••• ' ^n-3 -a , 

n-1 n 

[^7 

3 2 

a - a/\ - a } . 
n-1' l-" n! 

This group is a descendant of U . It is shown that U^ is on an infinite 

branch arising from U . This is done by exhibiting an infinite group which 

has U^ as a factor for all n greater than or equal to 6 . The 

following presentation clearly gives such a group providing it is infinite: 

3 2 3 2 3 2 3 2 3 3 2 
f̂lĵ , ...; 

1 _ 
for /c > 6, 

[a^, = ag, [ag, a j = [ag, a^] ^ a., [a^, a j a^, [a^, a j = a^^^ 

for A: > 6, 

all other simple commutators are trivial) . 

However, for fc > 9 , a^ = and a^ = = ^ 

3 2 3 3 
a = a a , a a a^ = e . Using Tietze transformations the presentation for 
u A ^ o M- C 

U^ above is arrived at. 

Consider the group U^ with presentation as above. Simple calculations 

show that the terms in the lower-exponent-p-central series for are as 

follows: 

P^iuJ -- [a^, a^, a.) , 

/ 3"" 
m 3(^-1) 

The group U^ can not be trivial since it has non-trivial quotients. 

m i {2, 3, ..,} . 
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Clearly > and hence U ^ is infinite. By applying the 

Tietze transformations in reverse it can be shown that U is a factor of 
n 

U ^ for all n greater than or equal to 6 . 

The existence of infinite branches arising from the other groups 

follows using a similar argument as above. The groups, with presentations 

listed below, are used: 

/ 3 3 -3 —1 3 
: {a^, a^, a^, a^, a^-, a^ = e , a ^ = a^ a,, a ^ , a^ = e , la^, a j = a 

3 4 2' 3, 

^iJ = a 3' 2' 

1 -3 -3 
a, , a^ - a^ a a , a ̂  a , a 

5' L T_J 3 4 ' 

[a^, a J = [a3, ag] = a J 

^ : ^ 3 ' '"S' 
-3 -1 3 

a , a = a , a , a 
I- 3' 1- 4 ' 5' ^ 4 1"' 

-3 -3 r 
a. , a J = [a^, a^] = e . 

5' 2-J 3' 
La^, a^^ = la^, a J = [a^, a J = [a^, a^J = e/ , 

5' 

A. 
'^S' 

„-9 -3 

-3 -3 
= e L u' 3J 

a^, a^, a^, a^; aJ 

4 ' 2-' 3 '4 

6.2. The Infinite Branch Arising from B 

This section deals with the descendants of the group B . These groups 

have been calculated, using the machine implementation of the generating 

algorithm, up to order . The following calculations enable the tree of 

descendants of B to be described. The method employed to do this is a 

hand calculation of the generating algorithm for a general case. 

Let B^ be the group with the following consistent pov/er-commutator 

presentat ion: 
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a 

4 = V i O ' V 3 = W n ' V 2 = ^ ^ V i = ^n = 

[a a ] = a [a a ] = a^, [a., a J = 

La^, = La^, a j = [a., a^J = a^. 

a , , a^ -a 
^ n-1 2-' n n-1' 

It is assumed that n is greater than or equal to 7 . The immediate 

descendants of B^ are now calculated. The 3-covering group B* is now 

required. The following is a presentation for B^ , hov/ever it is not 

consistent: 

( 

3 
^n-1 

[«2 

dr-D 

» t o . 1-

= " "3-' ' "4,3' = CLM. 

3' ^2^ 

a,.,, a = a. 

o 5 , 1 ' " ^3^ 

r 

= aM, a^, a. 

[a., a J = , [a., a 

= a, 5, J 5' 5,4 

= a . ̂ a . a.\ - a . ••, 
J+1 J,,2 L 

5 S J < n - 1 , 3 < i < J , 

.,3 < i < n - l ) . 
5 / 

Now the consistency checks are performed. All these checks have been 

performed; however only those which eliminate generators are shown here. 

The order in which the checks are performed is important to reduce work. 
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For i ^ {7, n-l} , collect a a. â, in two different ways: n ^-l 1 ^ 

a (a. aj = a,a. ,a,a a a .a 

[a a. Ja, = a^a. a .a a a. . , . 

Thus CLŷ  ̂  - ̂  fo^ ^ n-l} . Similarly, by performing consistency 

checks on a a a^, a aa^, a , a a^a^ the generators a a a ,, a „, n 5 V n 3 2' n 3 1' n 2 l n,5' n,5' n,3' 
respectively are found to be trivial. 

Now consider a .a. for j € {3, n-i-l] : yi-% J 

r ^ 3 2 2 

a .] a a .a . .a . ̂ a . ̂  .a . „ -â  . , 

.{a .a.] -- a .a^ . ̂ a . ̂ a^ • • 

2 a n 

2 Thus a . ̂  .a . . . = e. This covers a large number of cases since 

j ^ {3, n-i+l} and for each j , i € {3, min[n-j+l, n-5]} . 
When J = 3 , i t { 3 , n-S} and more specifically when j = 3 and 

o 
i = 3 = e . However it has already been shovm that a o - ̂  n-l,3 n,3 WJJ 
thus cj = s . When J = 3 and i = 4 it is shown that a - e . n—-L 50 Yl-'A^o 

In this way the following are all shown to be trivial: 

for J € {3, ...,5} , a^ . a .are trivial; 

for J ^ {7, n-2} , trivial. 

Now consider (a .) a for i 6 {4, ..., n-o] : 

3 2 3 

2 r > 2 3 a n 

Thus a . = e for i n-5} . Collecting the following 3 ,n-̂ +l 
specific cases gives the following results: 
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3 

n-1 1 3,n ' 

3 _ 2 
n-2 1 3,n-1 n,l 

3 
n-3 1 3,n-2 n,l ' 

2 Now consider a for i € {u, n-S) : 

r 2 3 2 ^ 
n-^- 2 2 n-^+2 n-t+3 n-^+2,2 n-^+3,2 

2 r ^ 2 3 
n-^ ̂  r.-̂  2-̂  2 n-^+2 

Thus a'̂  . ̂  M . „ „ = e for i ^ n-6} . Before making use of this 

it is necessary to consider the two special cases below: 

Combining this with V i + 2 , 2 V i + 3 , 2 

a . = s for J € {8, ..., n-l} . 

Finally consider the following cases: 

^ . ~ • = g fQjo l ^ n-5} shows that 
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3 
^7,2 = ® ' 

3 

= ^,2^5,2 ' 

^ , 3 = ̂ 5,2 ' 

^6,3= ^ ' 

a a^a^ •"T 

a 

All other consistency checks have the tvro normal words equal. 

The remaining generators are relabelled as follows: a ° ° n ,1 ' ̂ n+1 ' 
2 3 ~ % ' 5 following is a 

consistent power commutator presentation for B^ : 

3 2 

3 2 3 2 3 2 
'^g^io' V 2 = V l ' 

[^2' = ̂ 3' ""J = ^ 

= a„a a a J = a n+2' 
â J = a^, L^g, a^. 

= [a^, -- 1 S i ̂  n) . 
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The rank of the 3-inultiplicator of B^ is 5 . The following is an 

adequate set of automorphisms for B^ : 

: , : 
^ 

^ V e 

2 • ^2«n-2 
^ 

^2 ̂  ^2^7 

^n-2 ' _ 2' ̂ n-1 ' ^ 2 

The matrix M corresponding to each automorphism is calculated. For 
the matrix M = J^ , the identity matrix. The other matrices 

are as follows: 

M 
n-

o n-2 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 1 0 0 1 • 

0 0 0 O' 
0 2 0 0 0 

0 2 1 0 0 
0 0 0 2 0 
0 0 0 0 2 

Hg. 
n-3 

where x = 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 2 0 1 0 
0 0 0 0 1, 

1 if n is odd, 

2 if n is even. 

M 

X 0 0 0 0' 
0 2 0 0 0 '2 if n is odd. 
0 0 2 0 0 where x = • 

0 0 0 0 2 _1 if n is even 
0 0 0 2 0 

n-l 

When n is odd the allowable subgroups are divided into fifteen 
equivalence classes with the following representative subgroups: 

^ 3 ' V S ^ ' 

• ' 
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n+1 n+2' n+3' n+4' n+5 ' 

K+l^n+S' ''n+2' ^ + 5 ) ' 

^n+2' ' 

(^n+l^n+4' ^n+2' ^n+s) ' 

/ 2 2 \ 

(^n+l^n-fV ^n+2' V s ) ' 

.. / 2 2 \ 

/ 2 \ 

When n is even the allowable subgroups are divided into fourteen 
equivalence classes with the following representative sxibgroups: 

1- ^^n+2' ^n+3' ^n+4' ' 

2- ^n+3' ^n+5) ' 

(^n+l^Ln' ^n+2' ^n+3' ^^n+B) ' 
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c / 2 6. \a a a a „a \ n+1 n+4' - . o - . /I > 
2 

n+2' "n+5/ ' 

^n+2' ' 

( 2 \ n+1 n+5' n+2' n+3' n+4 n+s/ ' 

/ 2 2 2 \ 
W+l'^n+S' %+3%+5' ^n+4^n+5/ ' 

13. <a a ,a _>, n+1 n+5' n+2 n+3 n+4 n+i 

n+1 n+5' n+2' n+3 n+5' n+14 n+5 

The representative subgroups are chosen using the selection procedure 
of the generating algorithm. 

The above shows that when n is odd B has fifteen iinmediate n 
descendants and when n is even B has fourteen immediate descendants. 

n 
The machine implementation of the generating algorithm calculates adequate 
sets of automorphisms for all immediate descendants. Here, adequate sets of 
automorphism.s are only calculated for those immediate descendants which are 
capable. To determine which immediate descendants are capable the 
3-covering group of each is calculated. Instead of calculating this 
separately for each of the tv/enty-nine im.mediate descendants all the 
3-covering groups can be calculated at once. This is done by calculating a 
presentation for the 3-covering group of the 3-covering group of B^ , 
that is . The calculation of B'̂'̂  is similar to the calculation of n 
B'̂  A power-commutator presentation for B̂ '̂  is as follows: n • n 
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% = ^8^9' 4 = %-2 = Vn^V V l = Wn+1,1' 

3 2 3 
a -a T . = e, 
n n+1,1 n+1 

K ' 

a j 

= a., a^ = a„, a^,, a. 

a. 2J = "3J " 3' a,., a. = a 

2 r 1 2 
5 n+2 n+3 5,1 5 2-' 6 n+2 5,2 i- 5 ' 3-J n+2 5,3 = aM ji <3,, 

= a., a. = a^a 
rnvt^a' 

To obtain a presentation for the 3-covering group of an iminediate 
descendant of B the orbit representative for that immediate descendant is 

factored from B"̂ * 
n 

The following additional relations must also be used: 

W 3 , 5 = ' 

3,3 2 
CL. ̂ a. 

L^n+5 

K + 3 

"5,1 

K-,2 

= a ^a^ c^c o^u 

= a, ^a,. ̂ a, 

In these relations + either the identity or rewritten in n+5 
terms of determined by the orbit representative. 
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Recall that a group P , of order- p'̂  and class e , is capable if 

and only if P (P^) is non-trivial. Recall also Theorem 3.20 which shows 

that P^(P^) is generated by [a^, a J , [a^, a j and a^ . This theorem 

is used to determine which immediate descendants are terminal. Since the 

immediate descendants have order 3 M+1 the elements to check in their 

3 3-covering groups are [fL̂ ^̂ , a J , [a^^^, a j and a^^^ . The presentation 

3 for B̂ '̂  shows that in all these groups ^^^^ is trivial and 
n+1' l-" 

equals ^q I • Thus it is only necessary to check the element 

[a ^ ̂ -A • The results are summarized below. n+1 1-* 

FOR n ODD 

Group 2 - a consistency check on shows that a ^ , aA - e ^ 6 2 1 ^ n+1 l-" 

Groups 3 and 5 - a ^ = a ^ , but [a os - ® â nd hence ^ n+2 n+1 wt2 

1 2 

n+1 1-' = e . 

Groups 7, 8, ..., 15 - either a^^^ - or a^^^ = a^^^ and in both 

14 , 

cases performing consistency checks on a gives A ^ ^ CL-^ - e . 

FOR n EVEN 

Group 2 - same as group 2 for n odd. 

Group 4 - same as group 5 for n odd. 
Groups 5, 6, 14 - either a^^^ = a^^^ or = a^^^ and in both 

cases performing consistency checks on a^ gives ^ cc^ - e . 

The groups not shown here are in fact capable. This is shown by 

exhibiting their immediate descendants. 

When n is either odd or even B #1 is isomorphic to B . This is 
» i l i v X . 

clear since they have identical presentations and hence is capable. 
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If 3 is an automorphism in the set of adequate automorphisms for B^ then 

fixes "̂ n+S' ' "̂ n+Ŝ  ' examination of the matrices M 

shows this to be true. Thus, there is no need to calculate the immediate 
descendants of the calculations above have done this already. 

Consider B when n is odd and B when n is even. Both n n 
these groups are capable and their 3-covering groups have the following 
consistent power-commutator presentation: 

3 3 3 2 2 3 2 
a a -a a^ - a a - a a a a a - aa^, n+5' 1 n+5' 2 n+6' 3 5 7 n+2 n+3' 4 7 8' 

'"S = ^ ̂ 8^9' ̂ 7 = V l O ' V l = % = ' 
a = a , - <2, , L 2' 3' ^ 3' I-' L 3' 2- 5, 

2 
S ] a a a , , 5 n+1 a , L 4' 3J 

2 r -1 2 2 
[ s . = a a a 

6 n+1 n- ^^ , +3 n+4 , S l = D n+3 a^. a^ -a ^a L 5 ' S-l n+2 n+3 

2̂-
= 2̂̂  ^8' 

a a. - a '-"n+1' '- n+1' 2-̂  n+2/ 

For n odd a stabilizer calculation shows that the following set is an 
adequate set of automorphisms for B ir̂  : 

^2 ^ 
? M 2 , B 

<̂ 2 ̂  ^ 2 V l 
n-'o 

'n-b 

^ 

, 3 n-4 , 3 

^2 '̂ 2̂ 7 

^ ^ 

n-3 ' _ 
«2 ^ 

^ ^ 

1 

For 3^, 3^ ^ , the associated matrix M is . Also 
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w 
^n-3 

M 

1 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 1 0 0 » 
0 0 0 1 0 ^n-2 

1 2 0 1 0 
1 1 0 0 I j _0 0 0 0 

'2 0 0 0 0" 1 0 0 0 
0 2 0 0 0 0 2 0 0 0 
2 2 1 0 0 1 0 2 0 0 
0 0 0 2 0 n 0 0 0 0 2 

0 V. 0 0 0 2 0 0 2 0_ 

The allowable subgroups fall into eight equivalence classes with the 
following representative subgroups: 

1. (a a ,, a a n+3' n+4' w+5' n+6 ' 

2 . (a ^a'^ a , , a ^, a ^ / , \ n+2 n+3' n+!4' n+5' n+5/ ' 

3. <a „,a ,,a n+2 n+3 n+4 n+5 n+5 

n+2 n+3' n+b' n+5 ' 

2 2 5. {a ^a a ^a a . , a , ^ n+2 n+D n+3 n+b' n+4' n+5/ 

^ n+2 n+b' n+3 n+5' n+4 n+5' n+5/ ' 

7. ^a „a n+2 n+5' n+3 n+5' n+4' n+5 

( ^ n + 2 V 5 ' V 3 ^ n + 5 ' %+4' 'n+5 ' ' 

These groups B B Ûŝ B are all terminal. The proof is 
Yl ^ 

omitted but similar to that used for previously showing that groups are 
terminal. 

For n even a stabilizer calculation shovfs that the following set is 
an adequate set of automorphisms for : 
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a 1 a. a. 

a, 

^n-5 • 

a. 

cc. a, n-h 

a. 

2 n-1 

a. a. 

n - 6 • 

a. 

a, 
, 6 

a. n - 3 

a. 

a. 

a 1 
' ^n-2 = 

a. 

a. 

Oi, 

a. 

a. 

For ' equals : 

M 

1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 1 0 0 0 1 2 0 0 
3 

0 0 0 1 0 1 2 0 1 0 
^ n - 1 

0 0 0 0 1 

1 1 0 0 1 0 0 0 0 T -L 0 0 0 1 0 

The allowable subgroups fall into twelve equivalence classes with the 
following representative subgroups: 

^n+5' "'n+Ŝ  ' 

' 

^n+5' ' 

^n+3' ^h-B) ' 

V b ^ ' 

2+5' ̂ + 5 ) ' 

9- ^n+6/ ' 

11. r- 5 M r- 1 O. « ' n + 2 n + 5 ' n + 3 n + 5 n + 4 n + 5 ' n + 6 
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12. \a M ^ o^ r-5 (2 a . \ n+2 n+5 n+3 n+5 nf^ n+5 n+6/ 

These groups are all terminal. 

When n is odd, is capable and (B^j^s)has the follov/ing 

consistent power-commutator presentation: 

(a^, ..., 

3 2 3 2 3 2 
8 10 11' n-1 n+1 n+2' n n+2' 

2 , a, = a^a , ,a ' 1-1 h V7+ I 5 n+1 n+3 n+4' ^ 5' 2-a., a. n+2 n+3' 
a^j = [a., a^] - a^a^^^g. 

L^n+1' "'n+2' i-̂ n+l' ̂ 2 = G K . I . ôJ = ̂  n+ 2 } 

A stabilizer calculation shows that the following set is an adequate 
set of automorphisms for B^#5 : 

a-, 

a^a 

a. a 1 
, 62 : , 6, 

2 n ^2 ^ 2 V l 
n-5 

^ 

a2 ̂  a^a^ 

6 

^ 

2 2 4 
2 n I—n" n 1—̂  n "]_ "]_ "1 "2 

For equals J^ : 
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M 
^n-3 

M 

1 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 1 0 0 
0 0 0 1 0 2 2 0 1 0 
2 1 0 0 0 0 0 0 1_ 

2 0 0 0 0' 1 0 0 0 0" 
0 2 0 0 0 0 2 0 0 0 
1 2 1 0 0 M , = 2 0 2 0 0 
0 0 0 2 0 n 0 0 0 0 2 
0 0 0 0 2 0 0 0 2 0 

The allowable subgroups fall into eight equivalence classes with the 
following representative subgroups: 

1. (a ,, a r-^a r-̂  •> n+3 ntM-' n+5 n+6 

2. 

' 

S+3' ^n+5/ ' 

' 2 

^ntsS+S' ^n+e) ' 

^nts) " 

The groups B B #65̂ 8 are all terminal. 

Suppose n is odd then the following diagram sums up the above 
calculations: 

-Ji 

,n+3 
n+2 



Jl 

.n+1 

n+3 

U n+2 

2 2 2 2 

.2. 2. 2 

,n+2 

.n+3 

n+4 

FIGURE 6.1 showing the conjectured patterns for the trees of descendants of Q, U, A and G . (Here n is even.) 

NO CO 
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The machine calculations show that for n equal to 7 , 8 and 9 the 

calculations above are correct. Thus, an induction argument shows that for 

n greater than or equal to 7 the tree of descendants of B consists of 

the above diagram repeated. This shows that there is exactly one Infinite 

branch arising from the group B . The branch contains the groups for 

n greater than or equal to 7 . 

It is conjectured that similar proofs could be carried through to show 

that there is exactly one infinite branch arising from each of the other 

groups Q , U , A and G . The amount of work involved would be considerable 

and it is felt that the result is not worth the effort. 

It is conjectured that the tree of descendants of each of the groups 

Q , U , A and G has a repeating pattern. These patterns are shown in 

Figure 6.1. 

6.3. Fullbacks 

This section considers the groups which can be constructed as 

pullbacks. It is shov,'n that the pullback construction is of a very special 

type. An example is also given. 

DEFINITION 6.2. Let R, S and T be groups and f : R ^ T , 

g : S T be group epimorphisms. Then R x^ S is the group such that: 

(1) diagram 1 commutes; 

(2) if X is a group which makes diagram 2 commute then there 

is a unique epimorphism x that maps K to i? x ^ S and 

t - il , k - 3T 

I 
R ^^S 

3 

S K S 

9 k 9 

R 
f 

Diagram 1 

^ T R 
f 

Diagram 2 

The group R x^ S is called the pullbaak, or subdirect product, o: R 

and S over T and 
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i? x^ 5 = ( (r, s); r € s € 5 and fir) - g(s)) . 

LEMMA 6.3. Suppose G is a group which contains two non-trivial 

normal subgroups L and M which intersect trivially^ then G is 

isomorphic to G/L ^Q^J^^ G/M . 

Proof. This pyoof aaa-umes that—G—is- a—p-group which is always the 

GQOO horo. Let h he a map between G and G/L ^QJJ^^ GIM such that 

h{g) = (^L, gU) for g G . Now {gL, gM) is in G/L 0/U since 

G/LU equals G/UL . It is clear that h is a homomorphism. Suppose that 

h[g^ = h[g^ for g g ̂  in G . Then g'̂ /̂ f) = [g ̂ L, g jd] and so 

g^ = g^ - g^ for some I in L and som.e m in M . Thus I - m , but 

L and M intersect trivially and hence I - m - e . Thus g^ = g^ and 

the mapping h is one-to-one. t^^u.^xW), ^k^e^vt ^ 

iW^s IS Q poisbotk = v̂-eoM. 1 vw M . A"^ 

K ii o-.-si-c. . Thus h is an isomorphism. • 

If G is a group which satisfies Lemm.a 6.3 then it is said that G 

can be constructed as a pullbaok. 

YL 

THEOREM 6.4. Suppose P is a 2-generator 3-group of order 3 and 

seco-nd maxirr.al class which can be constr^ucted as a pullbacii. If P has 

second maximal nilpotenx^y class then P can be const'rv.cted as a pullback TZ" 1 
of two groups with maximal nilpotency class, one of order 3 the other 

of order less fnan or equal to 3^ . If P does not hjxve second mascimal 

nilpotency class then the ways in which P can be constrv.ated as a pullback 

(xre shown. 

Proof. Consider the upper and lower exponent-3-Gentral series of P . 

Since P has second maximal class Q^^iP) is a subgroup of C^ x C^ x C^ . 

Suppose (l^iP) equals C^ ^ C^ x C^ , then Q ^ + i ^ ? ) ^ ^ isomorphic to 

C for i £ {2, n-3} and so P/Q.^(P) has co-class 0 and hence is 

cyclic. Thus P is generated by {x, and so is abelian. Now if P 

is abelian and is x x C^ then P is a 3-generator group. 

Thus d A P ) is a subgroup of x C . Since ? contains at least two 
_L o o 
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non-trivial normal subgroups which intersect trivially it follows that 
contains C^ . Thus equals C^^ C^ . 

Choose L and M to be non-trivial normal subgroups which intersect 
trivially and choose them to be maximal with respect to this intersecting 
property. Since P contains the normal subgroup P (P) it is possible Yl" o 

to choose M such that P „(P) is a subgroup of M . Let L and R 11— o 1 1 

be subgroups of L and M respectively such that equals L^ x M^ . 

Thus M never equals M since P. AP) is contained in P AT) . Thus, 

there are two possibilities: 

(1) L^ = L , M ^ ^ M • 

(2) L^t L , iV̂  t M . 

Case 1. L^ = L , Ai. M . It has already been shown that Q.̂ (P) 

equals C^ x C and hence it has four subgroups. One of these is P (P) 3 o n-j 
and another is L . 

Let I be an element of L ; then I is not in - Suppose 

I is in P.(P) but not in P̂ . ,(P) for i greater than or equal to 3 . 

Suppose P has second maximal nilpotency class; then [P_̂ (P) , P_ 

eauals P. (P) for i greater than or equal to three. Also [L, P] 1-rl 

equals E since L < Q.̂ (P) < Z(P) , the centre of P . Now 

P. (P) 5 P.(P) and so LP. (P) S L? .{P) . However Z- is a generator of 

L and I is in VAP) thus L?^{P) equals . Thus 
LV (P) 5 P.(P) but since I is not in P. .(P) and has order 3 , i+1 ~ ^ 
L?.AP) = P.(P) . t̂ +l ^ 

This means that 
P̂ .(P), Pj = ; z-

but 

^+l 

which is a contradiction. Hence I is not in P.(P) for i greater than 
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or equal to 3 and in particular I is not in ^^(P) • 

If P is a non-CF-group then P^(P)/P^(P) equals C^ x C^ and so 

P (P) has four subgroups containing P (P) . One of these subgroups must 2 J 
be M as it can not be any larger. One of the remaining three contains 

1+ 
L . Thus P/M is a group of order 3 and maximal nilpotency class and 

P/L is a group of order ^ and maximal nilpotency class. 

If P is a CF-group then [P^iP), P] equals P^(P) and so by the 

argument above I is in L but not in P^CP) • Also P^(P)/P2(P) equals 

C C and so P (P) has four subgroups v?hich contain P„(P) . One of 3 3 ^ 
these subgroups must be M and one of the remaining three contains L . 

Thus P/M is a group of order 3 and maximal nilpotency class and P/L 
n-1 

is a group of order 3 and maximal nilpotency class. 

Case 2. L^ t L , M^ t M . Let L^ and M^ be subgroups of L 

and M respectively such that L^ is in L^ and M^ is in M^ . Then 

0 (P)/0-(P) equals C^ x C and P/OAP) is cyclic. An examination of 
2-generator 3-groups of second maximal class but not second maximal 
nilpotency class shows that there are three types of groups in this case. 
For all three types the two generators of the group are a and b such 
that a has order and b has order 9 . The groups are as follows; 

(1) C'g ̂  where L = (b) and M = (a) ; 

3 

(2) {a,b-, (f' ̂  = e, = e, a - > where L - and 

M ^ {(?) . This group is an immediate descendant of C'g ̂  • 3 

(3) <a, ^ = e, = e, = b^) where L ^ i b^) and 

M ^ {a^) . 
This group is the capable group in branch C of Figure 4.5. 

It must happen that L^ equals L since if there were an L^ and 
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M^ containing L^ and M^ respectively then would equal 

^ C'g . This is not possible since P has second maximal class. • 

Descendants of the group B are now examined to determine those that 
can be constructed as pullbacks. As before B^ denotes the group on the 

infinite branch of order If n is odd then B î l, B #7, B #10, B #13 can n n n n 
be constructed as pullbacks. For the other groups Q. is C and so they 1 o 
can not be constructed as pullbacks. 

If n is even then B. #1, B B #7, B #9, B #11, B #13 can be yif Yif yi, yif Yt yx 

constructed as pullbacks. The other groups have equal to C^ . Notice 

that the capable immediate descendants of B^ can not be constructed as 

pullbacks; neither can any of their immediate descendants. 

The above groups are constructed in the following way. In the notation 
of Definition 5.2 the group R is the capable maximal class group of order 

. Depending on whether n is odd or even the group S is one of the 
six or seven groups of m.aximal nilpotency class. These groups are numbered 
as in Chapter The group S is the capable group of m.aximal nilpotency 

3 
class of order 3 . Different pullback groups can be obtained depending on 
the maps j and g . The results are summarized below. 

For n odd For n even 
group S resultant pullbacks group S resultant pullbacks 

n 

n 

1 B #1 n 
1 B #1 n 

2 B #1, B #1, B #7 n n n 
2 

3 B^#13 3 B/S, B ) n 
B ̂  n' 

5 B #10 n 5 B n 

5 B^#10, B^#13, B^#13 6 B m n 

7 B n n n ' n 

The resultant pullback groups all have the following^subgroup lattice 
shown in Figure 6.5. 



[Bji] =P 

<a ,a ,a , >=P „(P n-1 n n+1 n-^ 
•̂ 2 \ 4 5 ' n' n+1 

<a ,a , >=P J P ) n n+1 n-3 

<a >=P ^(P) n+1 n-2 
-ia.a^ a -,) \ 4 5 n+1/ 

FIGURB 6.5 shovving the/subgroup lattice of pullback groups, 

fO <s> 
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CHAPTER 7 

A RECOGNITION PROCESS 

This chapter describes a method for recognizing the lower-exponent-p-

central quotients of a given group. The quotients are recognized in order. 

Thus, if G is a given group and GIV^G) is to be recognized, first 

GIV^G) is recognized, then G/?^{G) , and so on until G/?^{G) is 

recognized. The recognition method consists of matching the quotients with 

a "standard" presentation. Suppose a tree diagram of groups is calculated. 

The presentations of the groups in the tree diagram are defined to be 

standard. Thus a standard presentation depends on the orbit representative 

chosen. 

This recognition process was used in Chapter 5 to recognize the groups 

on the infinite branches and to draw up the table at the end of Chapter 5. 

Suppose is a finitely presented group and G/VAG) is the lower-

exponent-p-central quotient to be recognized. Denote this quotient 

<J; R> . In the process of recognizing < J; R) all its lower-exponent-p-

central quotients will be recognized. However, 

(X; K>/P.«X; R)) = (G/PAG)] / [(P.(G)PAC-)}/PAG)] 
u ' K u K K. 

^ G/P.{G) 
t 

Thus in recognizing the lower-exponent-p-central quotients of ( Z; the 

lower-exponent-p-central quotients of G are also recognized. For this 

reason it is usual to choose < X; R) to be the largest lower-exponent-p-

central quotient of G , if it exists. Lemmas 2.8 and 2.11 show that 

<X; R> is a finite p-group of class at most k . Thus ( X; R) has a 

consistent power-commutator presentation and \x\ is less than or equal to 

the number of generators for G . Suppose X is d . 

The method for recognizing < X; R) is as follows. First 

(X; R>/P^((X; R>) is recognized. This is the elementary abelian group of 

order p^ . It has an identical presentation to the standard presentation 

and hence is recognized. 
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Now suppose that < R>/P«X; R)), . . . , < Z; R)/P (< X; R>) have been 

recognized but < X; R)) has not been recognized. In 

recognizing the first c quotients the presentation for < Z; R> may have 

changed. Let X denote the group isomorphic to <X; R) whose presentation 

is such that X/?^{X) is standard. The method for recognizing X/? (X) 
C- tX 

is as follows. Put X/? (X) = P = <a, , ... , a ; R> . Let P = F/R where 

^ ± n 

F is a free group of rank d . Now P"^ can be calculated and then M/R'^ 

is calculated such that P^/Ud/R'^) = X/P^^^iX) . If M/R^ happens to be 

the orbit representative then the presentation for is standard. 

Suppose however that M/R^ is not the orbit representative. Then the 

presentation for X/P is not standard. Suppose L/R'^ is the orbit 

representative. Then there exists a g ' such that = L/R"^ , where 

3 ' is a permutation of the set of allowable subgroups. An automorphism, 

3 , of P which corresponds to 3 ' can be calculated. Suppose 

a.3 = u . f a , a J] for i ^ {l, .. , , d} . Now M/R"^ and L/i?^ are 
t- I' • 1. a 

eenerated bv vjords but these can be written in terms of ^ n+l n^q 

a, , ... J a , . SupDose 
J. a 

UIR^ = < ..., a j , ..., w [a..., a^) 

then 

L/R^' = < . . . , M ^ L , . . . , ( M J ^ , . . . , u^ '> . 

Suppose the non-standard presentation for 

(o , .... a ; R > . Consider the following presentation, 
'1 ' n+l a 

i ^ {1, d}, P^^^ = 0) , (^0 

v/here R, represents the same relations as R only in 
D 

b , , b . , and P = 0 indicates that the group has class 
d+1 d+n+1 o+l 

e + 1 . It is first shown that the group with presentation (-'0 is isomorphic 

to X/P ^ AX) . Then it is shown that (-0 is a standard presentation for 
C^ T J-
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Since 3 is an automorphism of F/R it follov/s that 
F = {u-^i . .. , • It can also be shown that 

= ^d^^i ' where x^ i ' 
= ... , a^) , ... , uj^a^, ..., for i ^ [l, d] . 

However, a^, .. . , a^ are generators of a free group and b^ are 

generators for another free group of rank d . Hence 

'̂ i = ' ^ ^ ' •• ̂  i € {1, . . . , cf} , 

where x. is also written in terms of b., ..., b. . These relations for 
Z' 1. d 

b . are used to perform Tietze transformations on the presentation labelled 

i"). Since P = 0 the x. disappear. Since u .{b , bj] = bn . 

for i € {l, . . . , d] , the b^ are written in terms of •••s ' 

Thus the presentation becomes ib^^^, ; ' ̂ e+1 ~ ̂ ^ which is 

clearly isomorphic to • 

The subgroup corresponding to M/R'^ in the group with presentation (-'0 
is .. . , However, rewriting this 

in terms of b-̂ , b^ the subgroup becomes, 

•••.b^], tJjC'^-il^l' 

b^]]) . 

Thus vjhen written in terms of b^, b^ the s^jbgroup corresponds to 

L/R'^ . Thus, when (-0 is written in terms of b^, . . . , bĵ  it becomes a 

standard presentation for • 

EXAMPLE. Consider the following group B1 , given by a consistent 
pov/er-commutator presentation, 

(a^, a^, a^, a^, a^; aj = a^a^, = a^, [a^, a j = ag, [a3, a j = 
\ 

[ag, a j = a^, L^^, = " 

Now BI/PABI) = C^ X C and this is standard. Also 1 o o 
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B1/?^{B1) = (a^, a^, [a^. a I-' 

and this is standard. Now 

Sl/PgCSl) = (a^, a^^ a^, a^; ' - &2' ^ J "" a. - a, 

and this is not standard - at least not on my particular tree diagram. Put 
Bl/V^iBl) = P and then 

P* = a^, a^, a^, a^, a^, a^; ; a^ - a^, a^ - a^, [a^, a 7' L 2' 1-i 

a^, a. = a^, [a^, a^j = a 

IS and M/R"̂  - (a^, a^a^, a ^ . The orbit representative L/i?̂  

2 
a^, and 3 is such that a^^ = = u^, a ^ - a^.^ = u^ • 

Consider the presentation 
B = (b^, b^, b^, b,^, b^, bg, b^-, b^ = b^ = bj?^, 

bl == b^b^, bl = b'ij, [b^, b^] = b^, Ib^, b^] = btj, 

= = • 

Now this presentation is rewritten as a power-commutator presentation in 
terms of b^ , b^ and b^ and b^ are eliminated. This could be done by-

hand but in practice it is done by applying a machine implementation of the 
NQA. 

The presentation obtained is 

&2' = ̂ 3' = ^2^ = = ̂ 5) • 

VJith this presentation for 51 the lower-exponent-p-central quotients 
Sl/P (SI), Sl/P (SI), S1/P„(S1) and Bl/? (Bl) = Bl are all standard and 1 2 3 ^ 
hence the group SI is recognized. 

This example arose from a comparison of lists of groups compiled by 
Bender and James. It is in this type of exercise that the recognition 
process can be most useful. 

To use the recognition process it is not necessary to have standard 
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presentations already defined. The process can be used to determine whether 
two finite p-groups are isomorphic or not. Suppose G and H are finite 
p-groups with class c . The quotients G/? AG), ..., G/V (G) are defined J. ^ 
to be standard and the quotients H/VAE), E/V (E) are matched with 1 a 
them. 
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INDEX OF NOTATION 

Aut G is the automorphism group of G 

3 is an automorphism of F/R 
is an automorphism of F/R"̂  

3' is a permutation of the allowable subgroups 
indicates the group generated by a^, a^ , relations may 

or may not be given; uiso -vke. r,c!*-«v->cU SiAb^&up • 
a^, B) indicates the group generated by a^, ..., a^ and all the 

elements of B 

Lx, yl = X ^y ^xy 

IG, = < Ig, g ^ G, h ^ H) 

(f g ^ G) 

e is the identity element 
E is the trivial group 
F is a free group of rank d 

Y.(G) is the (i-l)th term of the lower-central series of G 
V 

I is the n x n identity matrix 
n 

Inn((?) is the group of inner automorphisms of G 

[x] is the integer part of x 

Moi is the matrix corresponding to 

Out(G) = Aut(G)/Inn(G) 
Yl 

P is a d-generator, finite p-group of order p and class a 
t"̂  is the p-covering group of P 
P.(G) is the ith term in the lower-exponent-p-central series of G 
i 

R S is the pullback of R and S over T 

({) represents the rational numbers 
Q^iG) is the ith term of the upper-exponent-p-central series of G 

0) is a primitive cube root of unity 
a^ is a word in a^^ . . ., a^ ; u, V, x are also used for 

words 
TZ represents the integers 
ZiG) is the centre of G 
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INDEX OF DEFINITIONS 

allowable subgroups 18 
adequate set of automorphisms 36 
capable 3, 17 
CF-group 7 3 
class 9 
co-class 11 
collection 28 
consistency checks 29 
consistent power-commutator presentation 28 
constructed as a pullback 125 
defining relations 30 
degree of commutativity 2 
descendant 14 
(^-generator groups 11 
directed tree 50 
equivalence of allowable subgroups 20 
exponent-p-central class 9 
exponent-p-centre 7 
generating algorithm 15 
gives rise 3 
immediate descendant 14 
infinite branch 4, 61 
inverse limit 13 
label of a normal vector 45 
leading term of an orbit 49 
link 60 
lower-central-series 1 
lower-exponent-p-central series 7 
maximal nilpotency class 1 
maximal type 5 
naming procedure for groups 75 
nilpotency class 1 
nilpotent 1 
node 60 
non CF-groups 73 
non-maximal type 5 
normal words 27 
normal vector 44 
nucleus 17 
omissible 10 
p-covering group 17 
power-commutation presentation 38 
power-commutator presentation 27 
projective limit 13 
pullback 124 
root node 60 
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space group 81 
standard presentation 130 
terminal 3, 17 
thread 13 
translation subgroup 81 
tree 60 
tree diagram 60 
twigs 4 
upper-expbnent-p-central series 7 
weight 30 
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