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Abstract 

Combinatorial enumeration has been a very active research field in combi-

natorics. Asymptotic methods were originally used in analysis and were applied 

to combinatorics as combinatoriaHsts became more and more interested in the 

asymptotic behaviour of various combinatorial objects. Asymptotics in combina-

torics have undergone major development during the past fifteen years. 

In this thesis, we are concerned with the asymptotic enumeration of various 

labelled graphs. 

Firstly, we determine the asymptotic number of labelled bipartite graphs with 

a given degree sequence for the case where the maocimum degree is 

In particular, if k = the number of regular bipartite graphs of degree k 

with each part having n vertices is asymptotically 

(nk)\ ( (k-1)^ k^ exp' ' V 2 6n ^ n 

The previous best result required k = This problem is essentially that of 

the asymptotic enumeration of 0-1 matrices with prescribed row and column sums 

which has been drawing great attention since it was put forth in 1963. 

Secondly, we consider the asymptotic number of tournaments with a given 

excess sequence. A tournament is a digraph in which, for each pair of distinct 

vertices v and to, either (u, w) or [w^v) is an edge, but not both. A tournament is 

regular if the in-degree is equal to the out-degree at each vertex. Let . . . ^v^ 
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be the vertices of a labelled tournament and let dj, d'j' be the in-degree and out-

degree of Vj for 1 < i < n. Define Sj = d'j — dj and call 6^^,62,... the 

excess sequence of the tournament. We also define df^d^, • • •, to be the score 

sequence. Let NT(n-, ..., 6^) be the number of labelled tournaments with n 

vertices and excess sequence and let RT{n) = iVr(n; 0 , . . . , 0) be the 

number of labelled regular tournaments with n vertices. The first attack that 

we are aware of on the asymptotics of regular tournaments was due to Spencer. 

In particular, Spencer evaluated RT{n) to within a factor of (1 + Also, 

Spencer obtained 

NT{n- ..., = RT{n) e x p ( ( - - + o( l ) ) • 

Recently, McKay improved the result greatly and obtained that as n —̂  co, for 

any e > 0, 

i ? T ( n ) = ( — + (n odd). 
^ TTTl/ ' 

We identify NT{n; . . . , 8^) as a coefficient in a n-variable power series, and esti-

mate it by applying the saddle-point method to the integral provided by Cauchy's 

Theorem. Since the parameter which is tending to infinity is the number of dimen-

sions, the application of the saddle-point method has an analytic flavour different 

from that of most fixed-dimensional problems. In this thesis, we find a much more 

accurate formula for the asymptotic number of labelled tournaments with a given 

excess sequence. 

Thirdly, we use similar method to determine the asymptotic number of labeled 
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digraphs with a given excess sequence. As far as we know, this is the first significant 

research on this problem. 

Finally, we again employ the saddle-point method to obtain an asymptotic 

formula for the number of labelled eulerian digraphs with n vertices in which the 

multiplicity of each edge is bounded by a fixed integer. 
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Chapter 1 

Introduction 

Combinatorial enumeration has been being a very active research field in 

combinatorics. Many typical problems in this area are described by Goulden and 

Jackson [14]. Asymptotic methods were originally used in analysis. There is a long 

history in mathematics of analytic problems being solved by asymptotic methods. 

Detailed information on asymptotic methods can be found in de Bruijn [9 . 

The first survey article about asymptotics in combinatorics that we are aware 

of is Bender [3], in which quite a few applications of asymptotic methods to com-

binatorial problems were described. Some other asymptotic methods for combina-

torics were also discussed in Canfield [10], and Meir and Moon [28, 29]. Asymp-

totics in combinatorics have undergone major development during the past fifteen 

years. 

Harary and Palmer [15] included many early results on problems relating to 

enumeration of graphs, in which one chapter was about the asymptotic enumera-

tion of graphs, but only some preliminary results were presented there. 

We are concerned with the asymptotic enumeration of various labelled graphs 

by degree sequences. Much work has been done in this area. The first significant 

results on the number of labelled graphs by degree sequence were obtained by 

Read [32, 33], The enumeration of labelled cubic graphs and labelled connected 

cubic graphs was done by Read [32]. Asymptotic formulae for these numbers can 
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also be found in [32]. An asymptotic formula for the number of labelled graphs 

with arbitrary but boimded degrees was estabhshed by Bender and Canfield [4 

and Wormald [38] independently. Bollobas [5] obtained an asymptotic formula for 

the number of regular graphs and general labelled graphs in which the degrees 

can increase with the number of vertices. This was improved by McKay [22], 

who obtained an asymptotic formula for the number of labelled graphs, provided 

each degree is Also, Wormald [38] found the asymptotic formulae for the 

numbers of the r-regular graphs for any fixed r and the labelled regular graphs 

with given fixed degree and girth. Asymptotic formulae for the numbers of labelled 

r-regular graphs which are A;-connected or cychcally fc-connected, for any fixed k 

and r can also be found in [38]. Wormald [38-40], Bollobas [6], Bollobas and 

McKay [7], McKay [16, 19, 23], Robinson and Wormald [34, 35] and Fenner and 

Frieze [13] obtained some properties of random locally restricted graphs. McKay 

18] and McKay and Wormald [26] studied random locally restricted graphs by a 

method based on switching edges. By switching arguments, McKay and Wormald 

24] improved McKay's result [22], establishing an asymptotic formula for the 

number of labelled graphs in which each degree is In particular, an 

asymptotic formula for the nimiber of regular graphs of degree of k and order n 

was obtained if A; = The previous best restdt obtained by McKay [22 

required k = Most recently, McKay and Wormald [27] showed how to 

generate fc-regular graphs on n vertices uniformly at random in expected time 

0{nk^), provided k = by using a modification of the switching argument. 
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A simpler proof of the formula given by McKay [22] for the asymptotic number 

of fc-regular graphs for k = can also be found in [27]. By the saddle point 

method, McKay and Wormald [25] obtained an asymptotic formula for general 

labeled graphs in which each degree is approximately a constant times n, which 

included the degree sequences of almost all graphs. Asymptotic formulae for the 

mmibers of A;-regular graphs with high degree and the total number of regular 

graphs were also obtained. Also by the saddle point method, McKay [17] proved 

the asymptotic formulae for the numbers of regular tournaments, eulerian digraphs 

and eulerian oriented graphs. Some numerical results of the accurate numbers of 

labelled regular tournaments, eulerian digraphs, eulerian oriented graphs, regular 

graphs and regular bipartite graphs were obtained by McKay [20]. 

In this thesis, we obtain an asymptotic formula for the number of bipartite 

graphs by degree sequence by using the switching arguments. By the saddle point 

method, we obtain asymptotic formulae for tournaments, digraphs and eulerian 

digraphs with multiple edges. 

For the terminology for graphs we follow Bondy and Murty [8] and for that 

in probability theory we follow Feller [12]. 

Chapter 2 discusses the asymptotic number of bipartite graphs by degree 

sequence. This is essentially the e n u m e r a t i o n o i n x m 0-1 matrices with prescribed 

row and column sums. As Ryser [36] pointed out, the number of such 0-1 matrices 

must be a very complicated fimction of the row and colvimn sums. After twenty 

years, no explicit formula for the value has been obtained despite much effort. 
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Therefore, researchers turned to the asymptotic version of the problem. The first 

result of interest to us was that of Read [32], who obtained an asymptotic formula 

to a factor of 1 + o ( l ) for the case where the row and colimin sums are all 3. The 

same result with fixed constant row and column svrnis was established by Everett 

and Stein [11] and extended to arbitrary but bounded row and column sums by 

Bekessy, Bekessy and Komlos [1], Bender [2] and Wormald [38]. The first attempt 

to allow the row and column sums to increase with n + m was done by O'Neil [31], 

provided that the row and colimin sums are independently equal and have a certain 

upper bound. This was improved by Mineev and Pavlov [30] and Bollob^ and 

McKay [7], who obtained an asymptotic formula to a factor of 1 + Most 

recently, McKay [21] improved the previous result greatly. In particular, he got 

an asymptotic formula for the number of n x n 0-1 matrices with row and column 

sums fc, provided k = Also, McKay [20] obtained some numerical results 

for the number of labelled regular bipartite graphs. In Chapter 2, we obtain an 

asymptotic formula for the number of labelled bipartite graphs with a given degree 

sequence for the case where the maximum degree is In particular, 

if A: = the number of regular bipartite graphs of degree k with each part 

having n vertices is asymptotically 

ink)\ ( { k - l f P 
exp ' 

V 2 6n ^n 

In Chapter 4, we obtain an asymptotic formula for the number of labelled 

tournaments. A tournament is a digraph in which, for each pair of distinct vertices 

V and w, either {v,w) or {w,v) is an edge, but not both. A tournament is regular 
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if the in-degree is equal to the out-degree at each vertex. Let , . . . , be the 

vertices of a labelled tournament and let d~ ^d^ be the in-degree and out-degree 

of Vj for 1 < i < n. Define Sj = d^ - d j and call • • • ^ ^^e excess sequence 

of the tournament. We also define df ,... to be the score sequence. Let 

NT{n-, , . . . , be the number of labelled tournaments with n vertices and excess 

sequence . . . , As in McKay [17], let RT{n) = NT{n\0,..., 0) be the number 

of labelled regular tournaments with n vertices. 

The first attack that we are aware of on the asymptotics of the regular tour-

naments was due to Joel Spencer [37]. In particular, Spencer evaluated RT{n) to 

within a factor of (1 -f- o(l))" . Also, Spencer obtained 

NT{n, 8^) = RT{n) exp ( ( - f + o{l)) . 

Recently, B. D. McKay [17] obtained the following much more accurate estimate 

of RT{n)., as n —> 00, for any e > 0, 

RT{n) = ( - ) + (n odd). 
\ TTT}/ / 

It is easy to see that RT{n) = 0 if n even. Exact values of RT{n) for n < 21 were 

also obtained by McKay [20]. 

We are concerned with the asymptotic value of NT{n; S^,..., 6^). We identify 

the required quantity as a coefficient in a n-variable power series, and estimate it by 

applying the saddle-point method to the integral provided by Cauchy's Theorem. 

With the help of the asymptotic estimation of an integral obtained in Chapter 3, 
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we obtain that for the case where 8 = max{|<5i|,..., |<5„|} = as n —̂  oo, 

J=1 J-^ 

1 " 1 " 2 1 ^ 6 

j=i j=i j=i 

j=i j=i 

for any e > 0. 

In Chapter 5, we estimate the asymptotic number of labelled digraphs. Let 

NDG{n; , . . . , be the number of labelled simple loop-free digraphs with n ver-

tices and excess sequence . . . , Using a similar method to that of Chapter 4, 

we obtain that for the case where 6 = max{|6il,..., = as n -> oo, 

NDG(n; = e x p ( - i - i ^ + E ^̂  
j=i i=i 

1 " 1 " 1 " 

]=i j=i j=i 

i=i j=i 

for any e > 0. As far as we know, this is the first significant research on this 

problem. 

In Chapter 6, we evaluate the asymptotic number of eulerian digraphs with 

multiple edges. By an eulerian digraph we mean a digraph in which the in-degree is 

equal to the out-degree at each vertex. Let EDME{n, t) be the number of labelled 

loop-free eulerian digraphs with n vertices in which the multiplicity of each edge 

is at most t. Allowing loops would multiply EDME{n,t) by exactly (t -t-1)'^, since 
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loops do not affect the eulerian property. For the case where t = 1, McKay [17 

obtained that as n —> oo, for any e > 0, 

\Tvn/ 

Numerical results for the number of eulerian digraphs with up to 16 vertices can 

be found in [20 . 

As before, we will identify EDME{n,t) as a coefficient in a n-variable power 

series, and estimate it by applying the saddle-point method to the integral provided 

by Cauchy's Theorem. The choice of contour is trivial but substantial work is 

required to demonstrate that the parts of contour where the integrand is small 

contribute negligibly to the result. We will show that as n —> oo, 

for any e > 0. 
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Chapter 2 

Asymptotic Enumeration of Bipartite 

Graphs by Degree Sequence 

2.1. Introduction. 

Let 5 be a bipartite graph with parts X and Y, where X = {x^ ? ^ 2' * * * ' ^ Tt S 

and Y = {yi, y2, • • •, We also assume that x,- has degree for 1 < z < n and 

Hj has degree tj for 1 < i < m. For any integer i > 0, define [x]̂  = x{x — 1) • • • (x — 

f + 1) . Define = maxf^i^,-, t̂ ^̂  = max^^^i^ and k̂ ^̂  = t^^J. For 

any r > 0, further define = Er=i[^i]r and T^ = Ej^il^jlr- For simpHcity, write 

5 = and T = It is obvious that 5 = T. 

Let H(s,t) be the set of all labelled simple bipartite graphs with parts X , Y 

and degree sequence s = . . . , 5„) and t = {t-^^t^,... respectively, where 

Xj has degree ŝ  and ŷ  has degree tj for all Define G(s , t ) = |S(s,t)|. The 

labellings we consider are those related by independent permutations of X and 

Y. We are concerned with the asymptotic value of G(s , t ) as n,m — o o . We will 

determine the asymptotic value of G{s, t) when = and t^^^ = 

Let „j(s, t) denote the set of all the nxm 0-1 matrices whose i-th row sum 

is s- ioT 1 < i < n and j-th column sum is tj for 1 < j < m. ^ ( s , t ) denotes 

the cardinahty of the set. As Ryser [36] pointed out the value of t) must 

be a very compHcated function of . . . . . . After twenty years, no 
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explicit formula for the value has been obtained despite much effort. Therefore, 

researchers turned to the asymptotic enumeration of the problem. It is obvious 

that ,„(s,t)| = G(s ,t ) . Define a = 52X3/(252) and define Q(s , t ) by 

5! 

The first result of interest to us was that of Read [32], who proved that 

g ( s , t ) = if = tj = 3 for all i and j. The same result with fixed 

constant s^ and constant tj for 1 < i < n and I < j < rn was established by 

Everett and Stein [11] and extended to arbitrary but bounded row and column 

sums by Bekessy, Bekessy and Komlos [l]. Bender [2] and Wormald [38]. The 

first attempt to allow k^^^ to increase with n + m was by O'Neil [31], who proved 

that Q{s,t) = e ~ " ( l + provided that the row and column sums are 

independently equal and k̂ ^̂  < This was improved by Mineev and 

Pavlov [30], who obtained the following: 

(1) If n = m and = tj = k for all i a n d j , then g ( s , t ) = e" '^+ 

provided 1 < k < 7log ' n 

and 0 < 7 < 1 ( 7 fixed). 

(2) li Si = k for all i and tj = I for all j where I > 1, then Q{s,t) = 

e-« + 0 ( log^n/n i -^ ) , provided 1< k < {I - l ) " S l o g n and 0 < 7 < 1 (7 fixed). 

(3) Q(s , t ) = if ^̂ ^̂  < and 0 < 7 < ( 2 / 3 ) ' / ' ( 7 fixed). 

Bollobas and McKay [7] proved that g ( s , t ) = e - « ( l + 0 (n -3 /4 ) ) if 

for all i, j and k = 0( log ' /^n) . Most recently, McKay [21] showed that 

= tj ^ k 

g ( s , t ) = e x p ( - ^ + 0 ( f ) ) , 5 
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where A = 3 + - 1), provided that k̂ ^̂  > 1 and A < eS, where e < f-

In this Chapter, we use almost the same method as in [21] to obtain an 

asymptotic formula for G{s,t) for the case k̂ ^̂  = 

2.2. The model. 

Consider a set of S+T -points arranged in cells a;̂ , Xj, • • •, yi ? 2/2' • • •' Vm 

of 

size . . . . . it^ respectively. Take a partition P (called a •pairing) 

of the S -\-T points into ( 5 + T)/2 = 5 = T parts (called pairs) of size 2 each with 

the form {x,y) where x G x^ and y 6 y- for some i and some j. The degree of cell 

X- is and that of cell y- is t- . 

Two pairs are parallel if they involve the same cells. The multiplicity of a 

pair is the number of pairs (include itself) parallel to it. A single pair is a pair of 

multiplicity one. A double pair is a set of two parallel pairs of multiplicity two, 

while a triple pair is a set of three parallel pairs of multiplicity three. If p is a 

point, then v{p) is the cell containing that point. 

The bipartite multigraph B{P) associated with P has parts X and Y. The 

edges of B{P) are in correspondence with the pairs of P ; the pair (a:, y) corresponds 

to an edge (xj, yj) ii x E x^ and y G yj. 

For d, t > 0, define C^ ^ — to be the set of all pairings with degrees 

s and t, and exactly d double pairs and t triple pairs, but no pairs of multiplicity 

greater than three. 
We will make use of the following two operations on pairs. 
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I d-switching: 

Take a double pair {{pi,p'i}, {P21P2}} ^^^ single pairs {^3,^3} and 

where {u(Pi),...,u(p4)} G X and { v { p [ ) , . . . G F , such that six 

distinct cells are involved. Replace these four pairs by {^1,^3}, {P2 5^4)5 {p'uPal 

and {p'2,Pi}- Other than the original double pair, all of the pairs created or 

destroyed must be single. (See Figure 1.) 

' \ 

Pl>-r 

P3 
O 1-

O 1-
Pi / 

'Pi 

o / 
V P4 

I I t-switching: 

Figure 1 . A d-switching. 

Take a triple pair {{pi,pi}, {P2^P'2}̂  {Pa^Ps}} ^ ^ ^^ree single pairs {^4,^4}, 

and {pe^p'e}, where { v { p i ) , . . . , v { p q ) } G X and {^(^'1),..., v{p'q)} G Y , 

such that eight distinct cells are involved. Replace these six pairs by {PnP'4^}, 

(Pa^Pel, {P2.P5}, and {p'̂ ^pe}- Other than the original triple 

pair, all of the pairs created or destroyed must be single. (See Figure 2.) 



12 BIPARTITE GRAPHS 

PioA A^P'i 
' ' ' '/ 

'P30-4 

•ps"^ T-P^ 

Figure 2 . A t-switching. 

The inverse of a d-switching will be termed an inverse d-switching, and simi-

larly with the t-switching. Note that a d-switching reduces by one the number of 

double pairs, without aiFecting the number of triple pairs. We will use this fact to 

estimate the relative cardinalities of C^ ^ and The number of triple pairs is 

similarly affected by t-switching. 

2.3. Preliminary results. 

Let P be a random pairing with degrees . . . . . . where 

1 < k^^^ = We will begin with some elementary bounds on the probability 

that P has certain substructures. 

Lemma 2.3.1. The probability of r given pairs occuring in P is 

S r 
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P r o o f . The total number of pairings is 5! and the number of pairings containing 

the r given pairs is (5 - r)!. | 

Define P(s,t) to be the probability that P contains no pairs of multipHc-

ity greater than one. Since each separately labelled bipartite graph of degree 

• • • <2, • • • Corresponds to exactly 5 !̂ S2! • • • - S n ' " ' " ^ m ' P^i"" 

ings, we have 

5! 
G(s,t) = 

•'n-'•1 • ' • t o -
P(s,t). (1) 

Our task is thus reduced to computing P(s,t). We first show that we can 

ignore pairs of high multiplicity and bound the number of double and triple pairs. 

Define 

N2 = max([log(5T)], \28S2T-^/S^]) 

and 

iVg = max([log(5T)l, \28S^TJS^]) 

In the following lemma, and for the remainder of the paper, the notations 

" 0 ( ) " and "o ( ) " refer to the passage of 5 to infinity within the constraint that 

m̂ax = 0(5^/^). The impHed constants will be uniform over all free variables unless 

otherwise stated. 

Lemma 2.3.2. 
,3 Ns 

^ = (i + o ( ! ^ ) ) y y 
d=0 t=o - 0 , 0 
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Proof. (1) Denote P^ to be the probability that P contains a pair of multipHcity 

greater than three. By Lemma 2.3.1, we have 
n ^ / \ /j. 

P , < 2 4 ( S - 4 ) - E E ( : ' (4' 
i=l j=l \ / \ 

= 24(5 - 4 ) - t E 
i = l J=1 

n m , 

< 2 4 ( 5 - 4 ) - v t' y ^ y ^ 
— V y max max a\ 4! ^ 4! .=1 J=1 

^ / max max \ 

- y ST 

(2) Denote P^ to be the probabihty that there are more than N^ double pairs 

in P. Let d= N^ + l. 

(a) Let Rj^ be the mmiber of possible sets of d doubles in P. We have 

SiTi 
< 

By Stirling's formula, 

we have 

< 

(b) Let P{d) be the probabihty that each of a set of d doubles occurs. 

Since log(5T) = 2log5 = S^/S^ < k l^J^S^ = 0 ( 5^ ' ) and similarly 

52T2/52 = 0(52/3), have d = 0(52/3). So by Lemma 2.3.1, we have 

P{d) < (5 -

= 5-2^^(1-2(^/5)-' ' 

= 0( l )5-2^(exp((2J)/5)) ' ' . 
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(c) Define P{a) to be the probability of all the d doubles occur. Then, we 

have 

( e x p ( ( 2 d ) / 5 ) ) " ' ) 

(since 2d < S) Cx 
/ 

= 0 ( ( e V 5 6 ) ' ) (since d > 
21SS2T2 

52 ) 

(since e"̂  < 56) 

(since d > log(5T)). 

Therefore, P^ = 0(1/(ST)). 

(3) Similarly, we have that the probability that there are more than N^ triple 

pairs in P is P3 = 0(1/(ST)). 

(4) Let A be the set of all the pairings and B be the set of all the pairings 

other than those in any Cj^ ^ iov 0 < d < N2 and 0 < t < N^. Then we have 

P(s,t) = - 0 , 0 1 

A 

Hence, 

1 A — B ( 
P ( s , t ) ^0,0 A — B 

IV2 Na 

= EE 
d=o t = o ^0,0 

1 + 
B / A 

1 - B / A (2) 
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Since 
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B\ B 
A + B 

< A + P2 + P3 

< 0 ( max max 

ST 
^ / max max 

ST 
the lemma follows by equation (2). 

We will estimate t| / |Co via estimates on the terms of the expansion 

^1,0 
c '-0,0 Q-1,0 ' 0 , 0 

Each of these terms can be estimated by means of one of the switchings. 

If K is a bipartite mnltigraph, let e(/\) denote its number of edges (counting 

multipHcities). If xx' is an edge of K, then fij^{xx') denotes its multiplicity, i.e., 

the number of edges parallel to xx' including itself. If K and K' are bipartite 

mvdtigraphs with the same vertex set, then K + K' is the bipartite multigraph 

with the same vertex set such that — fif^(xx') + for all 

{z , x']. Similarly, 2K means K + K and K ^ xx' is K with the multiplicity of xx' 

increased by one. 

Let I be a simple bipartite graph with parts X and F , and let i f be a bipartite 

multigraph on the same vertex set with the restriction that if any edge xx' has 

/ /^(xx ' ) > 1, then xx' is an edge of L. Let denote the maximum degree of 

L. Define C{L,H) = C{L,H-s,i) to be the set of all pairings P with degrees s, t 

such that the following are true for all { x , x ' } : 

(a) If xx' is an edge of L, then fiB(^p^{xx') = ^iH{xx'). 
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(b) If xx' is not an edge of L, then fig(^p^{xx') < 1. 

In other words, B{P) must be simple outside L and match H inside L. 

From now on, let fc- = s- for 1 < z < n and k^j^- = tj for 1 < j < m. 

Lemma 2.3.3. Suppose that L is as defined above, and that H and H J satisfy 

the requirements given above for H. Let h- be the degree of x- and be the 

degree ofy- of H for \ < i < n and I < j < m. ii,i2'• • •'in+m similarly 

defined for J. Then, if + / _ ) e ( J ) = e{H) = o{S), and C{L, H) / 

0, we have 

C{L,H + J) 
r-rn+m 
lli=l .f^i - hilji 

C{L,H)\ [S - e{H)] e(J) n { x , i ' } MH+ji^^') fijixx') 

Proof. This is a special case of the combination of Theorems 3.4 and 3.8 of [21 

I 

We will use Lemma 2.3.3 to analyse the structure of C^ Q. For a pairing 

P e C^ Q, let D{P) be the simple bipartite graph with parts X and Y and just 

those edges which correspond in position to the d double pairs of P. 

Lemma 2.3.4. Let D = D{P) for some P 6 C^ q, where 0 < < Let A he a 

simple bipartite graph with parts X and Y which is edge-disjoint from D. Let dj 

be the degree ofx^ and d^^j be the degree ofyj of D for 1 < i < n and I < j <m. 

ai ,a2 , . . . similarly defined for A. Suppose that = o(5). Then 

the probability that A C B{P) when P is chosen at random from those P G C^ q 
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such that D{P) = D is 

[K - 2c/,],, 
s e(A) 

exp (0( + d) 

Proof. The lemma is trivially true if a^y k-- 2c?,• for any i, so suppose tha t this 

is not the case. Define the bipartite graph L which has the edges of D and A. 

Then, for any J C A^ Lemma 2.3.3 tells us that 

\C{L,2D + J)\ 
C{L,2D) 

where 
-tn+m -2d,] ii 

5 - -2d] e(J) 
. e x p ( 0 ( M ) ) , 

and j i , j 2 , • • • iin+m ^^^ degrees of J . Now, the required probability can be 

written as 

M 

EJCAKJ)^ 

and since the denominator is 1 + the lemma follows. | 

In the following, we will find it convenient to write k^ in place of 5,- if t; = Xj 

(1 < z < n) or t j if u = yj {1 < j < m). 

Lemma 2.3.5. Suppose that 0 < d < N2 and S2,T2 > S. Choose v E {x^, X2T .., 

r > 0. Then, if P is chosen at random from C^Q, cell V is 

incident with exactly r double pairs with probability Q ^ i r ) / w h e r e 

[d\ i 
l\S'2 

[d\ i [K] 

2i exp 

2i exp 

S ^ S2 ^ ¥2 

+ + V eY. 
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P roo f . Firstly, we assume that v ^ X. Suppose that D = D{P) for some P eC^q, 

and let ii; be a neighboiu: of v in D. Let x e X and y eY and x ^ v, such that 

xy is not an edge of D, and let L be the bipartite graph with the edges of D and 

xy. Let R = D - vw, 0 < a < 2 and 0 < /3 < 2, and, for vertex u, let r^ denote 

the degree of u in R. Then 

C{L,2R-^avw-\- /3xy) 
\C{L,2R) 

where, by Lemma 2.3.3, 

\ 
[K a - 2r 

[K - 2 r „ ] a \h 0+0 K - 2r, \{ w = y. 

For any simple bipartite graph B, let denote the number of pairings 

P G C^ Q such that D{P) = B. Then = \C{L,2R + 2vw)VJC{L,2R+2v 

+xy)|, and similarly for N[R + xy]. Thus, when N[R + vw] 0, 

w 

N[R + xy 

N\R + vw f^{2,0-,v,w,x,y)\ ^ ^ 5 V 

[K 2 IK - 2 g 2 

[K - 2 r J 2 \h rw - 2r w 2 
(3) 

since the terms involving 2]v,w,x,y) and //j(2, l;v,w,x,y) are small enough 

to be incorporated into the error term. 

Suppose 1 < ^ < Yk^/2\. Define ^ { i ) to be the set of all simple bipartite 

graphs with parts X and Y with exactly d — \ edges, of which exactly i — 1 are 

incident with v. For R E ^{i), let '^{R) denote the set of all distinct pairs {x, y 

such that X £ X, y £ Y where x ^ v and xy is not an edge of R. Similarly, let 

VV(i?) denote the set of all w £ Y such that vw is not an edge of R. 



20 BIPARTITE GRAPHS 

If rzj denotes the number of pairings P 6 C^ Q such that exactly i double pairs 

are incident with v, then 

Renii) xyex(R) 

and 

Ren{i) wewiR) 

From (3) we find that, for any w and R G 7l{i) for which the denominator is 

non-zero. 

N[R + vw 

ZryeXxY + ^y] - T.ryWR) + ^V 
N R^ vw 

^ x y e X x Y ^ R + xy Y^x=v or xy^R ^ [R + xy] 
N R + vw] 

YlxyeXxV IK- 2 r J 2 iK- - 2^)2 
IK- 2 r j 2 2 

^2x=v or xy£R [k: r - 2r , ] 2 IK - 2r yi 2 
[kv - 2r„] 2rJ 2 

Y^xyexxvi IK 

kv - 2r„] 2[kw ~ 2'"u;]2 

2 IK] 2) 
[krv - 2r J 2 

+ 
XyEiXxY ^^m: 

) ( i + 0 ( % ) ) 

_ + 0(dk_T, + dk^^J, + + + dkt^) 
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2-̂ 2 

/ dk max '̂ m̂ax m̂ax m̂ax ^ ̂  
V 

v̂ ~ — 2r 

X 

w ly 

f l + + ^̂ max + ^Lx , f̂cmax + ^Lx 
V ^ 5 

We can sum over u; in a similar way to obtain, for any R G 1l{i) for which 

the denominator is non-zero, 

T^xyeXiR) ^ R + xy 
R 4- vw 

m a x I m a x ' m a x , m a x 

(Note that for 5 sufficiently large, both the numerator and denominator must be 

non-zero since d = Since this is uniform over R, we conclude that 

n 2 - 1 iSn 
m a x I m a x ' m a x j m a x ' m a x 

5 5, ^ To 

Identifying n^/uQ as the quantity we now obtain the lemma on taking the 

product over i. 

Similarly, we have the result for the case v ^ Y. | 

2 . 4 . A n a l y s i s o f t h e switchings . 

We now analyse each of the switching types in turn, under the assumptions 

of Section 2.3. 
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L e m m a 2 . 4 . 1 . Suppose 0 < d < N^, 0 < t < N^ and SgTg > 0. Then, 

+ 53T3 

Proof. Choose an arbitrary P G C^ ̂ . Define N to be the number of t-switchings 

which can be apphed to P. We can choose a triple pair and its labelHng in 

6t ways, and choose three distinct labelled simple pairs {^4,^4}, {Ps^P's} ^^^ 

{Pe-iPe} in [S — 2d — S ĵg ways. Unwanted coincidences hke v{pi) = v(p^) account 

for choices, while those like v{p^) = v(p^) account for 0{tS{S2 + T2)). 

The forbidden cases where, for example, P already has a pair involving v{pi) and 

v(p'^) account for Overall, we find that 

N = 6tS^ (1 + + ^ 

Now, choose an arbitrary P' e and let N' = N'{P) be the number of 

inverse t-switchings which can be applied to it. We can choose two distinct 3-stars 

(one in X , the other in Y) in S^T^ ways. Of these choices, we must ehminate 

those not permitted. Unwanted coincidences, hke v{p^) = v{p^) and v{p[) = v(p'^) 

account for Cases where P' already has a pair involving v(p,) 

and v{p[) or v{pj and for example, account for 0(t s^ T , + 5 t^ S.) 
V m a x m a x J ' m a x m a x 3 / ' 

Finally, cases where either of the 3-stars include a non-simple pair account for 

OisL^d + t)T, + + 0^3)- Overall, we find that 

r' = 53T3 (1 + + S ^ t j ^ j ^ + (cf + tXs j^^T, + t j ^ . s , ) ^ 

The error term for N' dominates that for N, so the lemma follows on considering 

the ratio N'/N. | 

N' 



BIPARTITE GRAPHS 23 

L e m m a 2.4.2. Suppose 1 < d < N2. Then, 

iS'2 ^ 

P r o o f . Choose an arbitrary P € C^ q. Define N to be the number of d-switchings 

which can be applied to P. We can choose a double pair and its labelling in 

2d ways, and choose two distinct labelled simple pairs {^3,^3} and {^4,^4} in 

5 — 2d]2 ways. Unwanted coincidence like = ^(^3) account for 

choices, while those Hke v{p^) = v{p^) account for 0(d{S2 + Tj)). The forbidden 

cases where, for example, P already has a pair involving and account 

for Overall, we find that 

N = 2dS^(l + 

Now, choose an arbitrary P' G and let N' = N'{P) be the number of inverse 

d-switchings which can be applied to it. We can choose two distinct 2-stars (one 

in X, the other in Y) in S2T2 ways. Of these choices, we must eliminate those not 

permitted. Unwanted coincidences, liket;(pi) = ^(^3), ^(p'l) — = '^(^4) 

and v{p'^) — v{p'^) account for + ^max'̂ 2)- Cases where P' already has 

a pair involving v{p^) and v{p[) or v{p^) and for example, account for 

+ "̂ max̂ max'̂ 2)• Finally, cases wherc either of the 2-stars include non-

simple pair account for + Overall, we find that 

N ' — S T ( 1 -i- ^max^Lx'^2 + + 

\ 15*2 ̂ 2 

The error term for N' dominates that for N, so the lemma follows on considering 

the ratio N'/N. I 
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Whilst we will use Lemma 2.4.2 in one special case, it is not sufficiently 

accurate for us in general. The reason is that the number of double pairs in 

a random pairing is in general much higher than the numbers of triple pairs. 

However, Lemma 2.4.3 is the best that can be done using uniform counts over 

arbitrary members of Ĉ  ̂  and g- In order to do better, we need to consider 

averages over C^ Q and 

Lemma 2.4.3. Suppose I < d < N^ > S2 > S and T2 > S. Then 

To 2SoT. 2ToS^ 4d 25,T, 
52T2 ^ 5252 ^ 5 SS2T2 53 

5| T| 
/ /c a 

+ o{ — ^ + 

Proof. Define N to be the average number of possible d-switchings, where the 

average is over all P G C^ q. We can choose {pi,p'i,p2,p'2} in 2d ways and then 

{P35P31P45P4} in at most [5 — 2)2 ways. This gives us the initial overcount N < 

N* = 2d[S - 2]2 = 2dS'^(l + 0 ( l / 5 ) ) . However, some of these choices are not 

legal. We can divide the set of illegal choices into three families: 

X^: These are choices involving too few vertices, for example if = v{p^) or 

K P S ) = ^(PA)-

X2-. These are the choices for which the pairing already has a pair involving 

and u(p3) or the three other similar cases. However, we exclude any choice which 

belongs to X^. 

.Y3: These are choices for which either {P3,P3} or {p^^p'^} has multipHcity two. 

However, we exclude any choice which belongs to X^. 
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In each case, we will consider the probability that randomly choosing one the 

possibilities leading to N* lies in the given family, where the probability is averaged 

over random P. We will also bound the intersection of X2 and X3. 

Case X j ; The probability of landing in X^ is easily seen to be at most 

by just counting the cases. 

Case X2: Let P, {i = 1,2) be the probability that there is a pair {x,x'} of 

multiplicity i such that v{x) = v{p^) and v{x') = ^(^3). Note that our conditions 

on d, 5, 52 imply that dkl^^^JS2 = o(l) . From Lemma 2.3.5, the expected 

number of pairs of adjacent double pairs with the adjacency in X is S^/Sl) = 

Allowing k̂ ^̂  for the choices of P3 and 5 for the choice of {p^^p'^}, 

we find that P^ = O i d k l J i S S ^ ) ) = 0 ( A : _ / 5 ) . 

Pi is more involved. For any choice of D{P), pj, p[, p2 and p'2, there are on 

average 

choices for pj, p'^, p^ and P4, where v = ^(Pi) and r is the number of double 

pairs incident with v. This follows from Lemma 2.3.4 on summing over all the 

possibilities. If K denotes the expected number of configurations included in the 

value of Pj, then by Lemma 2.3.5, 

, , = 2T, (1 + + E E -
/ .k^+d dk 

- S2 \ ^ ' S ^ T2 n 

where 
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2i 
ilSX 

exp (0( 
z'kL+idK 

Since X;i>o Qv{i) > 1, 

Putting ^ = zkiJS + + idk_)is, + + Idk^j/T,, we have 

d\Ak 

and 

= 

where = 0{z), z^ = 0{z). 

ilS^ 

d-l],[k,-3 

where 

Since 

and 

Qv{^) - SM) = Cii)X(z), 

Ciz) = 
d - Ih-AK -

= - e^^) + - (d - i)[k^ -

ê  = 1 + 

^[^Js - - - 2i]3 I =1 d{[k,]^ - - 2z]3) + - 2i 

= Oidikl + ikl), 

we have that 

< aY{i), 
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for some a > 0, where Y{i) = {dklz + idkl + ikDe"^. 

Define T{i) = C(i)Y{i). Since 

+ 1) ^ dkl 
C{i) - iS^ ' 

and 

- 4exp(a( 

= 4(l + o(l)) , 

we have 

- • 

Since d < N2 and k^ < k^^^, we have dkUS2 = o(l). Hence, we obtain 

t>0 i > 0 

1>0 2 

T( l ) 
1 - {Adkl)/S2 • 

Since 

(5*2 '' 

we finally have 

K = 5, 
/ k'- dk dk / 2 q / '^max ' ""max ' ""^max _j_ 2__rnax, j j 

2 V 5 S2 ^ 
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Hence, 

* N 

525-, 
4. 4. + + ^ + - ) ) 

5252 ' 5 

Define Di{i = 1,2) to be the probability that there is a pair {x,x'} of multi-

plicity i such that = vip^) and = v{p'^). E^ and F,{i = 1, 2) are definded 

similarly for i'(Pi),^^(Ps) and v{p'2)i'^{P'i)-

Similarly to previous argument, we have D2 = S) and 

T2S3 

Similarly, we have £'2 = ^2 = and 

B, = = + 

Any two of the eight events counted in X2 (single or double pair in any of 

four positions) occur together with probability S), so altogether we find 

that X2 occurs with probability 

52T2 5252 ^ ^ S 

Case X^: With the help of Lemma 2.3.4 and 2.3.5, a routine calculation gives the 

probability of this case as 4d/S + S). 

Events X2 and X3 occur together with probabihty by similar 

reasoning. Thus we have altogether that 
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Conversely, define N' to be the average number of possible inverse 

d-switchings, where the average is over ail P G g- For each choice of u = 

there are at most ways to choose and pj- A similar bound holds for v{p[), 

and so we have an initial overcount N' < S2T2. However, some of these choices 

are not legal and, as before, we divide these into a number of cases: 

Y :̂ These are choices involving too few vertices, for example = or 

v{p[) = v{p'^). 

Y2: These are choices where there is already a pair involving and v(p[), 

excluding anything in case Y .̂ 

Y^: These are choices where there is already a pair involving and v{p'^), or 

v{p^) and v{p'^). Again, we exclude anything in case 

F4: These are choices for which one or more of the pairs chosen have multiplicity 

two, except any choice in case Y .̂ 

These four cases can be analysed using the same method used for X^-X;^. For 

cases Y2 and Y^, we can simply sum over all the possibiHties using Lemma 2.3.4. 

For Case F4, we need Lemma 2.3.5. We will merely state the probabihty in each 

case. 

P 
CaseY,: + 

2 2 
T P P 

AdS, 4dT, ' (kll + d kj^^ + d 
Case n-- + + ^ 

The conjunction of any two of these cases gives no new error terms, so overall 
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we have 
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N' = S^T^il - 2S2T2 . + ^ , + ^ 
S S2T2 53 

+ 0 ( - + 

The lemma now follows on comparing N to N'. I 

2.5. Consolidation. 

With the aid of the lemmas in Section 2.4, we can now apply Lemma 2.3.2 to 

estimate P(s, t). 

L e m m a 2.5.1. 

q2rr T'^ q 

254 ^ 
ki m a x 

Proof. Let 0 < < 7V2 and 0 < f < By Lemma 2.4.1, 

- „ „ „ f ^ ^ j k L j + kj^Sdt + m s , + T,),^ 

Define 

A 

B 

C 

3-̂ 3 
653 ' 
(kL. + kj^MSs + T,) 

A' 

and 

t\ 



BIPARTITE GRAPHS 31 

We have 

Because 

and 

we have 

Since 

A' Ns N. 
= e ^ O i t B + t^C))) ± 

t=0 t=0 

<=0 
Na 

'.tA' 
Ni 

t=0 t = 0 
t\ 

= 0(Aexp(A)), 
t=o 

A' 

t=o 
t\ 

Ns At-2 

= 0{A^ exp(A)) +0(Aexp(A)) , 

Na 

Na 

- Ut) = 0 { A B + A^C + AC) exp(A). 
<=0 

0(AB + A^C + AC) 

53 53 

— C2 5 3 C2 / 5 2 

k L . + 

52 

we have 
N- Ns 

= + + exp(A) 
t=o t=o 

= e x p ( A ) - g ( A ) + 0 ( ̂ max + ^max̂  ) exp(A), 
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where Q{A) is the remainder of Taylor's expansion for exp(^). As we know, we 

can have 

- (iV, + 1 / • 

where 0 < ^ < 1. 

By StirHng's formula, we have 

/ A/" 4-1 \ 
(AT, + 1)! > , 

and since we have that 

653 

and 

N, > log( 5T), 

we obtain that 

exp( -A)Q(A) < exp((^ - 1)A) ( 
N3+1 

W +1)653 
1 ^3+1 

< 1 
eST 

Now we have 

Ns N3 

t=o t=0 

= exp(A) + 0 ( 1 ) exp(A) + exp(A) 

= exp{A)(l + + 

= e x p ( A ) e x p ( o ( ^ — (4) 
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Now assuming S2> S, T2> S and by Lemma 2.4.3, we have 

^ SjT^ Z25^ 2d? _ S^T^d 2S^T2d 
Cô ol S^T^ ^ 5252 ^ 5 ^ 

SI T| + T, n-

Combining this with (4) and summing over d with the help of the approximation 

d'̂  K (c?52T2)/(252), we obtain 

In the case where 0 < ^2 < S or 0 < T2 < 5, Lemma 2.4.2 gives the same result to 

within the same error. In the trivial case = 0 or T2 = 0 (which implies = 0 

or T3 = 0), Equation (5) again holds. 

We now have the result we have been seeking by (1) and Lemma 2.5.1. 

Theorem 2.5.2. If k^^^ = 0(51/^), then 

SI 

^ sJ sJ • • -s H HJ • • -t ' 

uniformly as S 00. | 

Corollary 2.5.3. If k = the number of separately labelled regular bipar-

tite graphs of degree k with each part having n vertices is asymptotically {nk)\ J {k-lY 

as n 00. I 

Corollary 2.5.4. Let 1 < p = p{n) = and 1 < q ^ q{m) = 

and suppose n,m ^ 00 with pn = qm. The number of separately labelled bipartite 



34 BIPARTITE GRAPHS 

graphs with parts X and Y, where X has n vertices each of degree p and Y has m 

vertices each of degree q, is asymptotically 

(M! ( { p - l ) { q - l ) pq' 
ipinqir ^^ 

as n,m oo. | 

V 2 6n ^n m ' J ' 
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Chapter 3 

An Integral 

3.1. Introduction. 

In this chapter, we estimate the asymptotic value of a n-dimensional integral 

by the averaging method [25]. The averaging method was first proposed by McKay 

and Wormald [25]. They obtained the asymptotic value of a n-demensional integral 

which was then applied to prove an asymptotic formula for the number of graphs of 

high degree. We modify their proof to obtain an integral theorem and we will make 

use of the integral theorem to estimate the asymptotic numbers of tournaments 

and digraphs in Chapters 4 and 5. 

3.2. Averaging method. 

In this section, we will use the averaging method [25] to evaluate a n-

dimensional integral. We define U^{t) = {x = (x^, . . . , | < t,i = 

1 , 2 , . . . , n } and we will need the following lemma, which is well known. 

Lemma 3.2.1. The surface area of a n-dimensional sphere of radius p is 

Theorem 3.2.2. Let 0 < e < 1/6. Let t and t' he constants with t' > 0, and let i 

be the complex unit. Suppose that 
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(i) Bk{n) = B'^(n)i with B'^{n) = uniformly for l < k < n - l , 

(ii) Cjfc(n) = with Cj^(n) = uniformly for l < J , k < n - 1, 

(iii) A{n) is real-valued function with t' < A{n) < t, and 

(iv) B[{n),C'j^{n),Djkin), E^in) and F{n) are all real-valued functions whose 

absolute values are bounded by t for I < j,k < n — 1. 

Suppose that 6 > 0,0 < A < 1/4 - e/2, and that 

n—l n—1 
f{x) = exp(^-A(n)n J ] + n ^ Bkin)xl + ^ Cjkin)xlxj 

k=l jfc=l 
n — l n — l 2 

j^k k=l k=l 

is mtegrahle for x 6 Then 

f f{x)dx 

(n-l)/2 

A{n)nJ 

Proof. Define fî  = ^ j j l j and for p > 0, define = n 

{a; 1/̂2 = P^]. We approach the 

integral by considering integration first over 

and then over p, although this is not the way we obtain the final estimate. 

Note first that = 0 if p > n^ For X e and p < we have 

jfc=i 
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j^k 
n-1 

k=l 
and 

n-1 

We now divide the region of integration into three parts. Define 

= U^-iin-'^'^') n{x\0<p< {2A{n))-'/\l - n " ^ ) } , 

{ X I - n - ^ ) < p < {2A{n))-'/'il + n'^) } , and 

^<3 = n{x\ + <p<n^}. 

When a; e f{x) = e x p ( - A ( n ) V + + n'')). Also by 

Lemma 3.2.1, the area of is at most 0(l) (27re/(n - Thus 

/: 
Apart from the 0 ( ) term, the integrand is unimodal, with its maximum at 

p^ = {n—2)/(2A{n)n), so we can bound the integral by the length of its range times 

its maximum value, where the latter is achieved near p — — 

Using log(l — x) < —X — for x = and we find that 

/ f{x)dx + 
JKI \A{n)n/ 

X I exp( -A(n)np2 + + n"^)) dp. 
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The same botind can be derived for the absolute value of the integral over K^. 

The integral over K^ U K^^ will turn out to be neghgible compared to that over 

K2, which we now consider. 

The function f{x) shows a lot of variation on p « 

making direct estimation of the integral difficvdt. Instead, we take advantage of 

the fact that an integral over a region symmetrical about the origin is invariant 

under averaging of its integrand over sign changes of the arguments. 

For 1 < m < n, define 

n-l n-l n-1 ^ n-1 
^^{x) = exp(-A(n)n J^^+nJ^ ^^xt + F{n) (j^ 4) + ^ E 

k=l k=l k^m 
n-1 n-1 n-1 n-1 2 

+ E E + X: E + ^ ^ 
k=l j=m k=m j=m k=l 

and 

^mi^) = + • • . X - X X . . . , X j). 

Further define 77 = | - 6e. Then we have 

/ / xP^{x)dx. (2.1) 

For a; 6 since 

n-l 

k=i 

"-1 n-l 

k=Tn+l j=m+l 

k=i 
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n—\ n-1 

k = m + l j=m+l 

and ^{e"" + = + for small x, we have 

n-1 

k=i 
n-1 n-1 

fc=m + l j=m+l 

n-1 

n-1 n-1 

4 ^ 

fc=m+l j=m+l 

n-1 n-1 

k=l k=m+l 

n —1 n —1 n —1 

j-m+l k=l k=m + l 

n-1 n-1 

k=l j=m+l 

n-1 n-1 

k=m+l j=m+l 

it=l k=m+l 

n-1 

>=m+l 

= V'n^+l(^)exp(0(n-'')) (2.2) 
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uniformly over m, where 

n-l n-l 

H = B^{n)nxl + E Cmk{n)xlx^ + ^ 

k=l k=l 

n-l 

j=m+l 

Also 

fix) = exp(0(n-^ + (2.3) 

n - l n - l 

V'n = exp(^-A(n)n ^ ^^ + E 
k=l k=\ 

k=l ^ k=l 

In K2 we have n^ = {2A{n))-^ (l + 0 ( n - ^ ) ) , so 

n - l n - l ^ n - l 

k=l k=l k=l 

i^^ix) = e x p ( - A ( n ) n ^ + ^ E ^k{n)xt + ^ E ^ d n f r i ^ x 
k=l 

+ 
4A{ny 

The integral of over differs from that over K^ by at most 

/ 71- \ ( n - l ) / 2 

as in the estimation of the integral of / over K^ U K^. Furthermore. 

n - l + ̂  

Jfc=l — n-i/2+« 
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= exp F{n) 
4A(n)2 

x n / e 
k=l 

+ 0{n-^)) 

(1 + + ^B^in fn^x ' + dx 

TT x(n-l)/2 
A{n) 

X T f e x p f i M ! ) ! ! + , 

( A ( n ) n ) 
TT \(" - i ) /2 

A{n)i 

(2.4) 

since 

In the following, any expression Q* denotes the expression Q with all oc-

currences of B^.(n) and Cjf.{n) replaced by 0. Also, all integrals will be over 

Since It/̂ J = (2.1) and (2.2) imply that 

J |V'i|=exp(0(n^-'')) J rn. 

since all the integrands involved are real. We also have for 2 < m < n 

j iV'ml < y + 

= e x p ( 0 ( n - ' ' ) ) I by (2.2), 

which implies that 

(2.5) 
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for m = 1, 2 , . . . 

From (2.2) we now have, for m = 1 ,2 , . . . , n — 1, 

m + l = Oin-^) J 
= 0{n-^) J IV'il 
= 0{n-^) J rn. by (2.5). 

Similarly, by (2.3), 

J f - J = I IV'il 

= 0 (n -^ ) I r n . 

Thus, by (2.1), 

+ ••• + y - y V 
= + J rn-

j ^n-1 - J i^n 

That is, 

where = = 

The theorem follows from (2.4), (2.6), and the fact that the integral 

(2.6) 

over 

Ki U /\3 is negligible. | 
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Chapter 4 

Asymptotic Enumeration of Tournaments 
with a Given Score Sequence 

4.1. Introduction. 

A tournament is a digraph in which, for each pair of distinct vertices v and 

w, either (v,w) or {w,v) is an edge, but not both. A tournament is regular if 

the in-degree is equal to the out-degree at each vertex. Let , . . . , be the 

vertices of a labelled tournament and let d~, d^ be the in-degree and out-degree 

of Vj for 1 < i < n. Define 8j=d^ — dj and call 6-^,62^ - •• the excess sequence 

of the tournament. We also define (f^, c /^ , . . . , to be the score sequence. Let 

NT{n-, Si,..., 6^) be the number of labelled tournaments with n vertices and excess 

sequence As in [17], let RT{n) = iVr(n; 0 , . . . , 0) be the number of 

labelled regular tournaments with n vertices. 

The first attack that we are aware of on the asymptotics of the regular toxir-

naments was due to Joel Spencer [37]. In particular. Spencer evaluated RT{n) to 

within a factor of (1 -f- Also, Spencer obtained 

NTin, = RT{n) exp ( ( - ^ + o ( l ) ) • 

Recently, B. D. McKay [17] obtained the following much more accurate estimate 

of RT{n) as n ^ 00, for any e > 0, 

+ (n odd). 
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It is easy to see that RT{n) = 0 if n even. Exact values of RT{n) for n < 21 were 

also obtained by B. D. McKay [20 . 

We are concerned with the asymptotic value of NT{n\..., 8^). We identify 

the required quantity as a coefficient in a n-variable power series, and estimate it by 

applying the saddle-point method to the integral provided by Cauchy's Theorem. 

4.2. Calculations. 

In this section, we will identify NT{n] S-^^... ,8^) as a coefficient of the gener-

ating function of toxirnaments Hicj^kKni^J^ ^k^^j^k^) then apply Cauchy's 

Theorem to convert the quantity into a n-dimensional integral. By choosing suit-

able contours, we can make the linear items within the exponential of the integrand 

vanish. We then employ a few linear transformations in order to diagonahze the 

quadratic terms. 

4.2.1. Saddle point method. 

Since the generating function Ui<j<k<ni^j^ ^k + ^j^k^) enumerates tourna-

ments by excess of out-degree over in-degree at each vertex, NT{n-, 6^,..., 6 J is 

the coefficient of . . . 4 " + By Cauchy's Theorem, 

{27ri)nf f dx, dx^, 

where each integration is around a simple closed contour encircling the origin once 

in the anticlockwise direction. We first choose the jth contour to be the circle of 
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radius r^ and then substitute x^ = r̂ ê ^̂  for 1 < j < n. We obtain 

I 

where 

' 

r lli<j<k<n - ej)) + ^ - ^^ ^^ 

Defining 

9(0) = 

we have 

l<j<k<n J ^ 
where 

[ g{0)de. (2.2) 
JuM 

For each j we have that dj dJ = n - 1 and d'j — dj = Sj, so we have 

2c?t = n - 1 4- for 1 < j < n. Thus if n is odd, all the Sj will be even and if n 

is even all the 6j will be odd. Therefore, we know that translation of any $j by tt 

leaves the integrand unchanged. 

We will begin the evaluation of with the part of the integrand which will 

turn out to give the major contribution. Let I2 be the contribution to of those 0 

such that either or + < n-^/^+^Z^ for 1 < j < n - 1 , 

where 0j values are taken mod 2%. We now prove that the contribution to I2 

with different values of are the same. By transformation Oj ^ (i)j + (j>n for 
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1 < i < — 1 and \—̂  (j)̂ , we have 

/ g{e)d0=r(j 9{e)dd')de,^ 

= 27r/ 

where </)' = . . . , J and 9' = {6^,..., since Sj = 0. Considering 

the other - 1 relevant regions similarly, we obtain 

where 6*' = .. . , J with = 0. 

Since 

putting 

we have 

li. 4. l i 
rj rk 

^MO) = 1 + - - - - - 3 

Because log(l + = ^ _ ^ 1^3 _ 1̂ 4 ^ ^̂  ̂ ^ ^^^^^ 

l<j<k<n i<j<n 
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= - p ( E ( E 
l<j<n l<k<n k ^ j 

2 2 rt - ri 

+ E + 
l<j<A:<n k^ j 

l<j<k<n ^k+^j ^k+^j 

+ E (-A + - -
l<j<k<n ^k^^j ^k+^j 

+ Oi (2-3) 
l < i < f c < n 

4 . 2 . 2 . Choices of contours. 

We choose suitable r j for 1 < i < so that the coefficient of the linear item 

of Oj within the exponential in the integrand g[0) will be zero for 1 < j < n. 

We need r ^ , . . . , r^ such that 

(2.4) 
k^i "^k + n 

Substitute r j = {l + b j ) / { l - b^) for 1 < ; < n to get 

k=l J k 

Let us consider the functions , . . . , /„ defined by 

^^ ' n n ^ 1 - ĥ hv 

Further define = • • •, ^nd 

(2.6) 

ftf = ^ = l , 2 , . . . (2.7) 

We will prove that the sequence . . . converges to a vector 

Let II -11 be the norm on R'', defined by IK^^,.. . , a:„)|| = I- Define 

E = Assume that E = and E < 1/100. 
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L e m m a 4.2 .1 . - < 

Proof. We prove the lemma by induction on i. For i = 0, we have 

A ^J^ki^J - ^k) 

1 - 6^6 J n ^ 
k=i 

Now suppose the lemma is true for some i > 0. We prove the lemma is also true 

for z' + 1. We have 

oo 

k^Q 

= E + 
3E' 

1 - 15^2 • 
(2.8) 

Define B = E + Then, by the induction hypothesis - < 

< 3E^ and routine computation on - we obtain 

where 

R = 
_ 2B{3B + B^) + 6 B E \ 1 + B^) + 6BE^{2 + + + B^) 

(1 - B2)(l - 52 - 6BE^ - 9E^) 

< 2{2B{3B + B^) + 6BE^(1 + B^) + 6 B E \ 2 + B^) + 1 8 E \ l + B^)). 

Denote the last quantity as H. Since B < 2E, we have 

E^ 
< 2 ( ( 6 + SE) + +6BE{1 + B^) + 6BE{2 + B^) + + B'^)) < 1 5 . 
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Therefore 

< I 

Lemma 4.2.2. converges to a vector Furthermore, 

- 6 '̂) < 15' 
1 _3i;3+2.i5«-

for each i > 0. 

Proof. For any j > i, by Lemma 4.2.1 we have 

< 1 _3£;3+2ii5»-

Hence the series is Cauchy convergent and thus convergent. Hence exists and 

the bound on follows on taking j ^ oo. | 

Lemma 4.2.3. Letb^^^ = . . . , r̂ - = ((I + ) / ( l - for 1 < j < 

n. Then r^,... is a solution for equations (2-4 )• 

Proof. Since / i , . . . , / „ are continuous, by (2.7) we have = f j {b°°) . That is, 

for 1 < J < n we have 

bf 
n 

h 
n 

1 A 
- E 

1 " h'^ 
- T i — n -

1 - b f b ^ 

br-bf 

- w 
-bT)^ 

hence 
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n ^cp _ ôo n 

k=i J k=i 

and since — we obtain 

- Z ^ ri n ^ ^ 1 ->=i j=i i=i fc=i 
= 0. 

So . . . , satisfies (2.5) and thus r^, . . . , r„ satisfies (2.4). I 

For 1 < i < n, define 

+ 

n9 

nio 

By computation, we have that — tt;|| = 0{E^). Therefore, by Lemma 4.2.2, 

we have 

Lemma 4.2.4. - -uj|| = 0{E^). | 

4.2.3. Transformations. 

We diagonahze the quadratic form within the exponential in the integrand of 

(2.3) by transformations. 

By Lemma 4.2.3, the integrand (2.3) has now been simpHfied as 

\<3<k<n k'^ 3 
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l<j<k<n + '^t + ' - j 

+ E ( - i . + H ' ^ r - H i ^ m - o , ) ^ 

+ o { Y . (2.9) 
l<j<k<n 

with = 0. For convenience, we denote 6°° = (6^,..., we obtain 

l<j<k<n J 

l<i<fc<n-l J J " 

l<j<*:<n 

= exp( E + 

l<j<ik<n-l J '' 

l < j < k < n - l ^ " ^ 

when G with = 

Define V = U a n d let T : R""' R""^ be the hnear transfer-
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mation defined by T : ĥ  y = (y^, 1/2, • • •, yn-\)-> where 

n-l 

k=i 

for 1 < j < n - 1. Let Fj = T{V). By straightforward calculations we have 

= \yj + E yk/i^"'' + i ) l ^ for i < j < n - 1 } , 

k=i 

and 

det(T) = n^/^ 

Putting a^j = {hf. — hj)/{l — and s = + 1), we obtain 

s ( » ) = exp ( " f ( - 1 + 1 ̂  al,. + + " f a l , ) yl 
k=l j=l 1=1 

n-l 
9 \ 

iVk 

n — 1 

i^k 1=1 

n-l n-l 

k=i i=i 

Jt=l j=l 

j^k 

J^k 

,-l/2 + 5e 

yt 

+ (2.11) 

where 5 = + 1), each 0 ( ) term is uniform over the subscript set of the 

sum involved, Sg is the set of 3-subsets of {1, 2, . . . , n - 1} and 54 is the set of 

4-subsets of (1,2, . . . , n - 1}. 
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Denote 

/=i 
n - l 

""kj = -HJ + + + ^ < 
/=1 

and = vjf, for A: > = Define A to be the diagonal matrix with entries 

• • • r the n - 1 X n - 1 matrix with entries Vĵ . and B = V - A, I the 

identity matrix, and define a hnear transformation by 

/ Vi \ / \ 

^Vn-l^ \Zn-J 

By the formula det (X) = exp(tr l og (X) ) , we have 

de t ( ( / + 

= e x p ( - i t r l o g ( ( / + A - i B ) ) ) 

= e x p ( - i t r ( A - ^ 5 - ^A-^BA-'^B + ^A'^BA'^BA'^B )) . 

By Lenrnia 4.2.2, we have ||6|| < 2E. Hence < SE and this implies that 

bj/Z^fcl < cE'^/n for 1 < / < n — 1 for some constant c > 0. Therefore, the 

absolute value of each entry of B)^ is bounded by c^E'^^In. Hence, we have 

< exp(c^2 + •••) 

= 1 + 

Because 
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as a matrix, each entry of ZT=i ^̂  ^^^ 

(I + + B){I + A - ' B ) - ' / ^ = A, 

we obtain 
n-l 

g{e) = exp (^^Mfc^l 
ifc=i 

k=i j=l 

l<j^k<n-l 

+ + H, - Hi) + A + o(e^))4 
k=l j=l 

l<j^k<n-l 

l<j^k<n-l 

{j,k,l,m}eS4 

Further define a linear transformation by 

/ n \i/2 

Clearly, the determinant of the transformation is 

k=l 
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and we obtain 

k=l j = l 

{ j , k , i } e s 3 

+ E i E i - ^ + l - h - + A + 
k=l j = l 

+ ^ 0 { l ) x l x ^ 

l < i ^ k < n - \ 

+ E ( - H 0 { E ' ) ) x l x ] 

l < j ^ k < n - \ 

+ (2.12) 

Let T' \ 9 (—̂  a; be the transformation involved in this section and V = T ' { V ) . 

We know that V C The asymptotic value of the integral of f(x) 

over will be the same with that over Furthermore, 

similar argument to that of Theorem 3.2.2 shows that the asymptotic value of the 

integral of f(x) over is negligible. Therefore, we still keep the 

region as When x 6 we have that 

{ j , k , i } e S 3 
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and 

Hence, g{0) is now simplified as 

k=i 

+ E - i O + o { E - ) Y x i 

k=l j = l 

+ E i - a k j + 0 ( E ' ) ) i x l x ^ 

+ E ( E ( - A + H j - + A + O i E ^ ) ) x t 
k=l J=1 

+ Y . 

l<i^Jt<n-l 

\ < j ^ k < n - l 
+ (2.13) 

From now on we denote p{x) to be the right hand side of (2.13). Now define 

n-l 
h { x ) 

Jk=i 
n-l n-l 

+ E ( E ( K - + 
k=l j = l ^^k 

+ E {-akj+OiE'))zxlx̂  
l<jVJfc<n-l 

+ E IEVa + - l ^ l M — r + A + o ( E ^ ) ) 4 
k=l j = l - - ^ k 

+ 0 { l ) x l x ^ 

l < M k < n - l 
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n - l 

n - l 

X, 

it=i 

(2.14) 

Then we have 

• 1 / 2 + €) 

1-1/2 + ̂ ) 

<-f 
<-j 

6(a.)|x exp( ^ 

h(x)\0( Y . 0{E')xlx])dx 

l<3^k<n-l 

- 1 dx 

hence 

/ p{x) dx 

= / + [ \b(x)\dx.(2.15) 

Therefore by applying Theorem 3.2.2 to b{x) and |6(a;)|, we obtain 

fc— 1 

(2.17) 

where 

Edn) = ^ ( D - A + - - A M ^ y + i + 0{E^)). 

4.3. Main results. 

The following lemma can be proved easily by Taylor series. 
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Lemma 4.3.1. For sufficiently small e > 0, real A and x with |A - l /2| < e and 

X < 57r/16, 

l - A + Acos(a;) < exp(-iAa;2). | 

By the arguments of the last section, we have 

where 

jfc=l 

ra-l 
^ 1 X 2 2 1 2 \ ^ 2 

i -1 /=1 
5 = l / (n i /2 + l) . 

Since 

n ^ j=i 
we have 

o^iii-kr^' - n(1 - - x:o 
fc=i ;t=i j=i 

Hence, we have proved that if max{|^i|,..., = 

2 \-i /2 

n- l 

k=l j=l 

(3.1) 

So our remaining work is to prove that the contribution to of the parts 

other than the region of the integration of is neghgible. 
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By Lemma 4.3.1, we have that, for 1 < i , A; < n, 

1/2 

where 

^jk 
2rlr) 

irl + r]y 

For 0 < j < 31, define the interval Aj = [(j - l)7r/16,i7r/16]. For any 9 G 

at least one of the 16 intervals U^i, • • • ^ contains n/16 

or more of the dj. Let us suppose that this is true of ^gUAi (thereby under counting 

the possibihties by at most a factor of 16). Define B = A^U- • -UA-^^UA^gU- • -UAgo. 

If 9j G B and E AQ U A j , then | cos(6'^ - dj)\ < cos(7r/16). From this it 

easily follows that the contribution to of all the cases where n̂  or more of 

the Oj lie in B is at most for some c^ > 0. Thus, with an 

undercount of at most 16, we can suppose that at least n — n^ of the Oj lie in 

A3 J U AqU A-^U A2U U • • • U At the expense of another factor of 2", we 

can suppose that \dj\ < 7r/2 for all j and that < tt/S for at least n — n^ oi the 

9j. Now define to be the integral of g{0) on the region with those 6 such 

that 

(i) 37r/16 < \dj\ < 7r/2 for r values of 

(ii) l^jl < 7r/8 for at least n — n^ values of j , and 

(iii) 7r/8 < \9j\ < Ztt/IQ for any other values of j . 

Clearly I^ir) = 0 if r > n^ If Oj and df. are in classes (i) and (ii), respectively, 
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then |cos(6'fc - 9j)\ < cos(7r/16), while if they are both in calsses (ii) and (iii), 

< - 9 t , f ) . Using < 1 for the other cases, we find 

< 7r''(l - 2A + 2A cos2(7r/16)) r(n-n')/2 

E I',{n - r) (3.2) 
n — r 

where 

A = minjAjfc}, 

and S^ is the set of the m-subsets of { l , 2 , . . . , n } . Now define = ~ 

for 1 < 5 < m, F to be the m x m diagonal matrix with entries 

/ n • • • ? /m ^ to be the m X m matrix with g^i = = Xf,̂ ,.̂  for s ^t, to 

be the m xm identity matrix. Similar to the argument in Section 4.2.3, we know 

that the transformation T^ defined as 

/ \ / yi \ 

) 

will transform -A^^^^ into YTs^x fsVl and det{{I^ +F'^ G)-'/^) 

= Therefore, we obtain 

m 

S=1 

Substituting back into (3.2) we find that 

2 " E l 4 ( r ) | < | / 2 | e x p ( - C 2 n + o(n)) 
r=l 
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for some c^ > 0, since we have a\- = 1 - We conclude that only substantial 

contribution must come from the case r = 0. 

Next, define to be the contribution to of those 9 such that 

(i) K | < 3 7 r / 1 6 , 

(ii) n-i /2+^/4 < 37r/8 for h values of j , and 

(iii) \9j - < for the remaining values of j . 

Clearly \I^ih)\ < 37r/8|/^(/i)|, where \Ii{h)\is the same integral over with = 0. 

Now define /i^ = ^kk " ^jk for 1 < A; < n - 1, to be the (n - 1) x (n - 1) 

diagonal matrix with entries h-^,..., and G2 to be the (n —1) x ( n - 1 ) matrix 

with gi.f. = = Xj^. for j ^ k, In-i to be the (n — 1) x (n — 1) identity matrix. 

Let T2 be the transformation defined as 

/ \ / 2/1 \ 

V ^ n - l / \yn-J 

Now apply the bound \T-^{0)\ < exp(-Aj jt (^j - ^kY) ^̂ ^̂  apply the above trans-

formation T2 to transform the B' to y and the values of 0' contributing to for 

h > 1 map to a subset of those y such that either | 

^1/2+6/4^2 + or > for some k. Since the contribution 

to 

/

OO r o o 

-CX) J—00 

of those y is exp(-C3n^/2) for some C3 > 0, we con-

clude that 
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n-l 

h=i 

The remaining case, /i = 0, is covered by I2. Therefore we have completed our 

proof and we have that if max{|^j|,..., = 

*;=! j=l l<j<k<n J l<j<n 

x e x p ( - i + 0(n-i/4+®^)). (3.3) 

Now define 

Wk - Wj 
Pkj = 1 - WjWk 

We have aj, = py + 0 { E ' ) and Sj = r^ + 0(E'>). Hence, 

n-l n 

n ( 1 4 E = n (1 - ^ E vis) 
2 \-l/2 

n + = exp(0(n^£»)) J ] + 
l<j<k<n J l<j<k<n ^^ 

and 
n 

l<;<n i=l l<j<n 

Therefore, we have 
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where Sj and are defined as in (3.4). 

Let S = max{|<5i I, • • • For the case where 6 = by computation, 

we have 

j=i j=i 

and 

l<J<n J = l j=l j=i 

j=l j=l 

Therefore, we have 

Theorem 4.3 .2 . Let e > 0 be sufficiently small and be integers. If 

^k = ^ ^ = max{|6J,..., l^^l} = as n oo we have the number 

of tournaments with n vertices and excess sequence is asymptotically 

NT(n; = e x p ( - i - ^ ^ + E 
J = 1 j=l 

1 " 1 2 1 " 

j=i j=i j=i 

j=i j=i 
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Chapter 5 

Asymptotic Enumeration of Digraphs 

5.1. Introduction. 

Let be the vertices of a labelled simple loop-free digraph and 

let dj,dj be the in-degree and out-degree of Vj for I < j < n. We define 

Sj = dj - dj and refer to . as the excess sequence of the digraph. Let 

be the number of labelled simple loop-free digraphs with n 

vertices and excess sequence 6-^,.. 

We are concerned with the asymptotic value of NDG{n; <5^,..., We iden-

tify the required quantity as a coefficient in a n-variable power series, and estimate 

it by applying the saddle-point method to the integral provided by Cauchy's Theo-

rem. Some techniques are necessary to choose the suitable contours and substantial 

work is required to simplify the integrand and to demonstrate that the parts of 

contours where the integrand is small contribute negligibly to the result. 

5.2. Calculations. 

In this section, we will identify NDG{n-,Si , . . . ,8^) as a coefficient of the 

generating function of digraphs n i< j< f c< „ ( l + + ^j^k^) and then ap-

ply Cauchy's Theorem to convert the quantity into a n-dimensional integral. By 
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choosing the suitable contours, we can make the linear items within the exponen-

tial of the integrand vanish. We then employ a few linear transformations in order 

to diagonalize the quadratic terms. 

5.2.1. Saddle point method. 

Since the generating function ni<j<it<n( l + + ^j^k^) enumerates 

digraphs by excess of out-degree over in-degree at each vertex, NDG{n-, 

is the coefficient of xj^ • • • xj" in Yli<j<k<ni^ + + ^j^k^)- By Cauchy's 

Theorem, 

where each integration is around a simple closed contour encircling the origin once 

in the anticlockwise direction. We first choose the ^th contour to be the circle of 

radius rj and then substitute Xj — rje'^^ for I < j < n. We obtain 

where 

6j ' 

f Ui<j<k<n{i + - e^)) + - 0,))) 
~ I / . „ s dO. (2.1) 

JUr^in) 

Defining 

and 
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we have 

n 
l<j<k<n 

where 

I , = [ g{9)d9. ( 2 . 2 ) 

JUnin) 

We will begin the evaluation of with the part of the integrand which will 

turn out to give the major contribution. Let I2 be the contribution to of those 

6 such that \6j < for 1 < i < 1, where d j values are taken mod 

27r. We now prove that the contribution to I2 with different values of are the 

same. By transformation dj ^ (j)j + iov I < j < n — I and i-> we have 

/ , g(e)de= n f g{e)de')dB^ 

= 27r/" g{<l>„..., 0) del)', 

where 0 ' = , . . . , and 9' = since = 0. We obtain 

/2 = 27r/ g{0)d9\ 

where 9' = {9^, . . . , ) with 9^ = 0. 

Since 

exp(za:) = I + ix - _ l ix^ + J-x^ + 

putting 
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we have 

' j 'k ^k 

' j ' k 

Because log(a + z) = log(a) + ^^ - ^z'^ + ^z^ - ^ ^^^ constant a 

and complex we obtain 

^^^^ _ ni<jr<Jfc<n ^jfc(^) 

l<j<k<n l<i<n l<j<k<n 

l<j<n l<k<n ^ 1 \<j<k<n 

l<j<k<n l<j<k<n 

+ 0 { Y . (2.3) 
i<j<k<n 

where 

o - ^ 
("jk - + — ) + - ' „ ^ 

and 
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5.2.2. Choices of contours. 

We choose suitable rj iov 1 < j < n so that the coefficient of the hnear item 

of within the exponential in the integrand g[0) will be zero for 1 < J < 

We need r^, . . . , such that 

jfc=l k J 
(1 <J <n), 

that is 

E = (1 < J < 

Substitute r̂  = (1 + - h-) for 1 < j < n to get 

{ l < 3 < n ) . 

Let us consider the functions / i , . . . , /„ defined by 

k=l J 

Further define = (S^/n,..., S^/n) and 

(2.4) 

(2.5) 

(2.6) 

i = 1,2,. . . (2.7) 

Note that this is exactly the same with that in Section 4.2.2. We know that the n-

dimensional vector sequence . . . converges to a vector and analogous 

lemmas to Lemma 4.2.1^.2.4 are all true. 

Let II -11 be the norm on R" defined by ||(a:i,..., a;„)|| = Define 

E = I p i , . . Assume that E = and E < 1/100. 
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5.2.3. Transformations. 

We diagonalize the quadratic form within the exponential in the integrand by 

transformations. 

By the results of the previous section, the integrand (2.3) has now been sim-

plified as 

l<j<k<n l<j<k<n 

+ E y : K - c . n ) 
l<j<k<n l<j<k<n 

= exp( ^ 0^,(0, 
l<j<k<n 

+ E E 
l<j<k<n-l l<j<n-l 

+ E E .̂n̂ i 
l<j<k<n-l l<j<n-l 

+ o ( E K ' . - ^ ^ n ) 
l<j<A;<n 

= e x p ( E p ^ k K h - e . f 

l<j<k<n l<j<k<n-\ 

+ E - e^f + 
l<j<it<n-l 

= exp( ^ + 

\<3<k<n 

\<}<k<n-\ 
+ E + i - A i - M M -

l<j<A:<n-l 

+ (2.8) 

when a; G with = 0 and a^j = {b^ - bj)/{l - b,,bj). 

Define V = and let T : R"-^ R"-^ be the linear transfor-
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mation defined by T : 8' \—y = {Vi, 1/2, ••• yn- i ) ' where 

n - l 

k=i 

for 1 < j < n - 1. Let V^ = T{V). By straightforward calculations we have 

= \yj + E + ^ for 1 < J < n - 1}, 
j f c = i 

n—1 n n—1 
g{e) = e x p ( ^ ( " i + E + + E ""nijyl 

k=l j=l 1=1 
n - l 

+ + + E 
jjtk 

n - l n - l 

i^k 
n - l n - l 

vt + + tA, - + 

j^k 

j^k 

where 5 = + 1), each 0{ ) term is uniform over the subscript set of the 

sum involved, is the set of 3-subsets of { l , 2 , . . . , n - 1} and 54 is the set of 

4-subsets of {1 ,2 , . . . , n — 1 

Denote 

n " ^̂  = - 4 + E + h<k + E 
;=i 1=1 



DIGRAPHS 71 

n - l 

^ k j = + H ^ j + «nJt) + ^ all for k < J , 

1=1 

and = v-^ for k > = u,.. Define A to be the diagonal matrix with entries 

• • • V t h e n - l x n - 1 matrix with entries Vĵ . and B = V - A, 1 the 

identity matrix, and define a hnear transformation by 

/ Vi \ / \ 

By the formula det(X) = exp(tr log(X)) , we have 

V ^ n - l / 

det ( ( / + A - ^ B ) " ' / ' ) 

= e x p ( - i t r l o g ( ( / + A - i 5 ) ) 

= e x p ( - i t r ( A - ^ S - ^ A - ^ B A ' ^ B + ^ A - ^ B A ' ^ B A ' ^ B )). 

Since ||6|| < 2E, we have < 8E and this implies that < cE^/n for 

1 < < n - 1 ioT some constant c > 0. Therefore, the absolute value of each 

entry of {A~^B)'' is bounded by c^E"^^ j n . Hence, we have 

det((I + 

< exp(cE2 + . . . ) 

Because 
oo 

i S V ^ 
as a matrix, each entry of X l ^ i is and since 
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(I + + B){I + A-^B)-^''^ = A, 

we obtain 
n - l 

g{e) = 
k=i 

Jt=l J=1 

JJtk 

+ + - + ^ + 

it=i j=i 

j^k 
{j,k,l,m}eS4 

where 5 = + 1). 

Further define a linear transformation by 

/ n \i/2 1/2 

Clearly, the determinant of the transformation is 

k=i 
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and we obtain 

k=l 

k=i j=i 

j^k 

+ E&i-^ + >1- - + iV + o(E^))4 
k=l j=l ^^k ^ 

Mk 

j^k 

{j,k,l,Tn}eS4 

+ (2.9) 

Let T' : 0' ^ X he the transformation involved in this section and V = T ' { V ) . 

We know that V C The asymptotic value of the integral of f{x) 

over will be the same with that over Furthermore, 

similar argument to that of Theorem 3.2.2 shows that the asymptotic value of the 

integral o f / ( x ) over is negligible. Therefore, we still keep the 

region as When x G we have that 
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{j,k,i}ess 

and 

{j,k,l,m}eS4 

Hence, g{0) is now simplified as 

n - l 

k=l 

+EffcA"^. - ^"hK^f"+o{E')y4 
k=l j=l 

j^k 

n - l n - l 

14 

+ ^ 0{l)xlx^ 
j^k 

j^k 

+ (2.10) 

From now on, we denote p{x) to be the right hand side of (2.10). Now define 

n - l 

b(x) 

ik=i 
n - l n - l 

k=l j=l ^^k ^ 

j^k 

n - l n - l 

+ E(E(-M + lA, - TA,)(^f + + 
k=l j=l ^ 
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j^k 

n - l 

+ AE 
k=\ 

(2.11) 

Then we have 

/ {p{x) - h{x)) dx 

b(x)\x\exp{ 0{E')xlx]) 

l<j^k<n-\ 
<-J 
<J 

[ \h(x)\dx, 

- 1 dx 

'' l<j^k<n-l 

hence 

I b{x)dx + 0(n-'/^+'') f \b(x)\dx. (2.12) 

Therefore by applying Theorem 3.2.2 to b(x) and |6(a;)|, we obtain 

p{x) dx 

where 

= (2.13) 
k=l 

7=1 ^ 

5.3. Digraphs. 

The following Lemma can be proved easily by Taylor series. 
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L e m m a 5 .3 .1 . For sufficiently small e > 0, real a,b and x with \a - l / 2| < 

e, |6 - 1/8| < e and jxl < 7r/4, 

1 - a - 6 + acos(x) + 6cos(2x) |< e x p ( - ( | a + 2b)x^). I 

By the arguments of the last section, we obtain 

k=i 

ifc=i 

where 

n n —1 

= " I +1] + + 
n - l 

j=l 

5 = + 

Since 

we have 

and since ^^(n) = - 1 / 9 6 + 0 ( ^ 2 ) , we obtain 

x e x p ( - i + 0 ( n - i / ^ + ^ ) ) . (3.1) 
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So our remaining work is to prove that the contribution to of the parts other 

than the region of the integration of is neghgible. 

First we have that, for 1 < j , fc < n, 

I ' i . C ) ! = ( i + + - e,) + u C f f + ^ f ) 
' j ^k rj Tf, 

= 'Jk ( i + + cos(^. - + U C f ? + 
J 'k ^k 

= 1. 

By Lemma 5.3.1, we have, for 1 < i . A; < n. 

where 

A ,1- — 

We will prove that the integral of g(6) on the parts other than the region of 

the integration of I2 is negligible to the value I/2I. 

For 0 < J < 31, define the interval Aj = [{j - 1)tt/IQJtt/16]. For any 6 G 

U^{7r), at least one of the 16 intervals Aq U U A 3 , . . . , A30 U A g j contains n /16 

or more of the Oj. Let us suppose that this is true of AQUA^ (thereby undercounting 

the possibilities by at most a factor of 16), Define B = A^U • • • U A30. If Oj E B 
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and Of̂  e AqU A^, then 7r/16 < {Oj - < ITtt/IB, hence, \Tjk{e)\ < atj^ < a 

for some constant 0 < a < 1. Define C to be the set consisting of such pairs {j, k) 

and I3 to be the contribution to of all the cases where n^ or more of the Oj lie 

in B. Since, if (i, k) G C, |T,jt(^)l < and for any other pair ( j , k), < 1, 

we have 

I J < (ZTT) a 

From this it easily follows that J3 = for some c^ > 0. Thus 

with an undercount of at most 16, we can suppose that at least n — of the Oj 

he 

in A32 U Aq U A^ U A2. Now define to be the contribution to of those 

0 such that 

(i) 37r/16 < l < TT for r values of j , 

(ii) Oj G A31 U Ag U Aj U for at least n — n^ values of j , and 

(iii) 6- G A3 U A3Q for any other values of j . 

Clearly = 0 if r > n'. If dj and B̂ . are in classes (i) and (ii), respectively, 

then 7r/16 < - < S^r/S, hence, < h for some constant 0 < 6 < 1. 

While if they are both in calsses (ii) and (iii), \Tj^{e)\ < exp{-\jf,{ef. - 9 - f ) . 

Using < 1 for the other cases, we find 
/3(r)| < ^rj^rin-nn/2 ^ Un - r) 

where 

(3.2) 

and is the set of the m-subsets of { l , 2 , . . . , n } . Now define = A 
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Jlt=i for 1 < A; < m, F to be the m x m diagonal matrix with entries 

/ i , . . . , and G to be the m x m matrix with g^ = 0, ĝ ^ = X,,̂  ^̂  for s ^ t , to 

be the m X m identity matrix. Similar to the argtraient in Section 5.2.3, we know 

that the transformation T̂  defined as 

/ \ym/ 

will transform - A , , , . - into E r = i f s V l and 

det ( ( /^ + = Therefore, we obtain 

m 

3 = 1 

Substituting back into (3.2) we find that 

X^l^sC?^)! < |/2|exp(-C2n + o(n)) 
r=l 

for some C2 > 0 since aj^ = l -AXf . - . We conclude that only substantial contribu-

tion must come from the case r = 0. 

Next, define to be the contribution to of those 9 such that 

(i) K | < 3 7 r / 1 6 , 

(ii) n-i/2+^/4 < \e. -9^\< STT/S for h values of and 

(ii) \9j — < rtT^I'^'^^l'^ for the remaining values of j . 

Clearly \I^{h)\ < 37r/8|/4(/i)|, where j/^/i)! is the same integral over with = 0. 

Now define r^. = Xf.^. — X^j iov 1 < k < n — 1. F2 to be the (n — 1) x (n — 1) 

diagonal matrix with entries r^ , . . . , and G2 to be the (n — 1) X (n — 1) matrix 
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with g^k = 0, Qj^ = Ajfc for j ^ fc, to be the (n - 1 ) x (n - 1 ) identity matrix. 

Let T2 be the transformation defined as 

/ \ / y\ \ 

V y n - i / 

Now apply the bound < exp(— XjkiOj - O ^ f ) and apply the above trans-

formation T2 to transform the O' to y and the values of 9' contributing to I[{h) for 

h>l map to a subset of those y such that either | + > 

^1/2+6/4^2 + or {y^l > (2 for some k. Since the contribution 

to 
n - l 

/

oo 0̂0 

-00 J—00 

of those y is 0(n)7r( " - i ) /V(nfc l J rfc)^/^ exp(-C3n^/2) for some C3 > 0, we con-

clude that 

n - l 

h=i The remaining case, h = 0, is covered by /j . Therefore we have proved 

TTTl' m ^ - l t ^ i , ) - ' " n n 
j=l l<i<n l<j<k<n 

X e x p ( - - + I 

Now define 

hj = 
1 - ' 
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= 1 - ( - ) 

where Wj for 1 < j < n are defined as in Section 4.2.2. We have ajf, = Sj^ + 

t̂ k = rj^ + 0 {E^) and r̂  = hj + Hence, 

n V - ^ - exp(o(n^^)) n (1 - i 

l<j<k<n l<j<k<n 

and 

n r f ^ ^ e x p i O i j ^ ^ j E ' ) ) H hj'^ = e M O i n ' E ^ ' ) ) J ] 

l<j<n j=l l<j<n l<j<n 

Therefore, we have 

k=l j=l l<J<n l<j<k<n 

where hj^rji. and Sf.j are defined as in (3.3). 

Let S = max{|^i I,.. . , For the case where S = by computation, 

we have 

6' 

l<A:<n-l j=l j=l 

l<i<fc<n j=l i=l J=1 

j=i J=i j=i 

and 
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l<J<n j=i j=l 

j=i j=i 

Therefore, we have 

T h e o r e m 5.3.2. let e > 0 be sufficiently small and be integers. If 

= 0 ^ = ni^'Xll^j I,..., l^^l) = as n ^ oo we have the 

number of digraphs with n vertices and excess sequence . .,6^ is asymptotically 

NDG(n-, ..., A„) = „> A ( - 1 - i V + ± V 6] 
^wn^ V 4 n ^ n^ ^ ^ 

i = i j= i 

1 " 1 " 1 " 

j= i j=i j=i 

j=l j=l 



83 

Chapter 6 

Asymptotic Enumeration of Eulerian 
Digraphs with Multiple Edges 

6.1. Introduction. 

By an eulerian digraph we mean a digraph in which the in-degree is equal to 

the out-degree at each vertex. Let EDME{n, t) be the number of labelled loop-free 

eulerian digraphs with n vertices in which the multiplicity of each edge is at most 

t. Allowing loops would multiply EDME{n, t) by exactly {t 1)", since loops do 

not affect the eulerian property. For the case where t = McKay [17] obtained 

the asymptotic formula 

EDMEin, 1) = ( + 
\7rny 

for any e > 0. Accurate values of EDME{n, 1) for n < 16 were also obtained by 

McKay [20 . 

We will identify EDME{n,t) as a coefficient in a n-variable power series, 

and estimate it by applying the saddle-point method to the integral provided by 

Cauchy's Theorem. Since the parameter which is tending to oo is the number 

of dimensions, the application of the saddle-point method has an analytic flavour 

different from that of most fixed-dimensional problems. In particular, the choice 

of contour is trivial but substantial work is required to demonstrate that the parts 
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of contour where the absolute value of the integrand is small contribute negligibly 

to the result. 

X, < 5 for 1 < ^ < n] . 

6.2. Main result. 

For 5 > Oandn > 1, define (5) = {(^i , . • •, 

L e m m a 6 .2 .1 . 

(i) For integer t >0 and real x with |x| < 7r/{t + l), 

(1 4- exp(ix) + • • • + exp{itx))/{t + 1) |< e x p ( - i t ( t + 2)x^). 

(ii) For integer t >0 and any real x, 

1 + exp(zx) + • • • + exp(ztx)| <t-\ + {2 + 2cos(x))^^^ 

Proof. The proof for (ii) is too elementary to include and the proof for (i) is as 

follows. 

1 -exp( i (^ + l )x ) /I - c o s ( ( i + l)x)\i/2 
1 — exp(zx) 

/ i — cosi 
^ V TT" cos(x) 

sm{(t + l)|x|/2) 
sin(|x|/2) 

= exp ^log(sin((i + l)|x|/2)) — log(sin( X 

since for 0 < x < tt, 

log(sin(x)) =.log(x) + ^ 

where { B ^ } are the Bernoulli numbers, which satisfy < 0 . | 

The following Theorem 6.2.2 was obtained by McKay [17] which is useful for 

our estimation. 
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T h e o r e m 6.2.2. Let a, b and c he real numbers with a > 0. Let 0 < e < 1/8, and 

let n > 2 be an integer. Define 

J = J(a, 6, c, n) = 

l<i<k<n l<j<k<n \<j<k<n 

where the integral is over S' G with Q^ = 0. Then, as n o o , 

T h e o r e m 6.2.3. For any e > 0, as n oo, 

Proo f . Since UiKjjikKnC^+^j^k^ + - is the generating function 

for the digraphs in which the multiplicity of each edge is at most t, EDME{n, t) 

is the constant term. By Cauchy's Theorem, 

EDME{n,t) 

1 I / Ui<j^k<ni^ + ^j^k' + + • • • + "^'j^k') , 

where each integration is around a simple closed contour encircling the origin once 

in the anticlockwise direction. We choose each contour to be the unit circle and 

substitute Xj = e'̂ -' for 1 < j < n. We obtain 

1 
EDME{n, t) = 

X / TT f l + - 0k)) + • • • + exp(zt(^, - ^ J ) ) dO. 
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Defining 

EULERIAN DIGRAPHS 

= t + l 

and 

we have 

g{e) = n 

EDME{n,t)=^ , 

where 

Ju^M 

We will begin the evaluation of I with the part of the integrand which will 

turn out to give the major contribution. Let be the contribution to I of those 

9 such that \d- — < for 1 < j < n — 1, where values are taken mod 

27r. Since g{9) is invariant under uniform translation of all the 9 j , we see that the 

contributions to from different values of 9^ are the same. Hence, 

/i=27r/ g{0)d9\ 

where 9' = {9^,..., ) with 9^ = 0. 

Since 

exp(z'x) = l + ix-\x'^ - ^ix^ + + O(x^), 

and 

log(l + = + ^z' - + O(z'), 
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for complex z, we obtain 

9(0) = n 
\<j^k<n 

= e x p ( ^ logT,. , (0)) 

l<j^k<n 

+ o ( E 
l<j<k<n 

Applying Theorem 6.2.2, we have 

^ \ t { t + 2)nJ ^V 20t{t + 2) ^ ^ ' 

So our remaining work is to prove that the integral oi g{0) over the other parts of 

the region of integration is negligible compared to (2.1). 

Let = 7r/6(i + 1). For j = 0 ,1 ,2 ,3 , Qt + 4, 6i + 5, define the interval A^ = 

{ j — 1)6, j6]^ and B = [—tt, —2^] U [26, tt]. For any 0 G let us suppose that 

Aq U Ai contains n/3{t + 1) or more of the 9j. (If not, we can make this t rue by 

suitable translation). If ^^ G B and E AQUA^, then 6 < \ 0 j - B f . \ < tt+ 6. Define 

C to be the set consisting of such pairs ( j , k) and I2 to be the contribution to I 

of all the cases where n ' or more of the Oj he in B. Since, if ( j , k) G C, \ T j f , { 0 ) \ < 

_ 1 + (2 - \-2cos{6)y/^)/{t + 1), and for any other pair ( j , A;), \Tjk{e)\ < 1, we 

have that 

/2I < (27r)"((^ - 1 + (2 + 2cos{S)y/^) /{t + 1)) 
2n^+73(<+l) 
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From this it easily follows that = 0(exp(-Cin^+^))/i for some ĉ  > 0. Thus 

we can suppose that at least n - n^ oi the 9j lie in [-26,26], Now define ^ ( r ) to 

be the contribution to I of those 6 such that 

(i) 36 < \Bj\ < TT for r values of j, 

(ii) 6j E [—26,26] for at least n — n^ values of j, and 

(iii) 9J e A3 U for any other values of j . 

Clearly = 0 if r > If 9- and 9^. are in classes (i) and (ii), respectively, 

then 6 < \9j — 9f.\ < tt + 26, while if they are both in classes (ii) and (iii), by 

Lemma 6.2.1, < + 2){9j - 9kf). Using < 1 for the 

other cases, we find 

(r)\ / , \ 2r(n-n') 

J ( ( i - l + (2 + 2cos(<^))^/2)/(^ + l ) ) 

X 1 /3(^-01, (2.2) 

where 

r. zirn) = f n expi-^t{t + 2){9^ - 9,r)d9, • • • d9^. 

We can apply the transformation T defined in Section 4.2.3 (using m in place of 

n) to easily obtain 

/^(m)<27rmi/2f- Utt \(m-l)/2 
\t{t + 2)mJ 

Substituting back into (2.2) we find that 

Y^ 1̂ 3(̂ )1 < lA I exp(-C2n + o(n)) 
r=l 

for some C2 > 0. We conclude that only substantial contribution must come from 

the case r = 0. 
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Next, define to be the contribution to I of those 9 such that 

(i) K\ < 

(ii) < \e. -0J<66 for h values of j , and 

(iii) \0j — < for the remaining values of j . 

Since g{6) is invariant under uniform translation of all the dj, we see that the 

contributions to l4^{h) from different values of are the same. Hence, we have 

^ 66|/4(/j,)|, where |/4(/i)| is the same integral over 9' with = 0. Since 

we have \Tjf.{9)\ < e x p ( - ^ i ( t + - , apply the transformation T defined 

in Section 4.2.3 to transform the 9' to y and the values of 9' contributing to 

I'^ih) for h > 1 map to a subset of those y such that either | Vkl > /2 or 

y l̂ > j2 for some k. Since the contribution to 

/

OO /.OO \ 

-OO J—OO k-=\ 

of those y is 0(rz)(127r/t(t + exp(-C3n2^) for some C3 > 0, we conclude 

that 
n- l 

h=\ 

The remaining case, = 0, is covered by I^. Therefore we have completed our 

proof. I 
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Chapter 7 

Conclusions and Future Research 

7.1. Introduction. 

We have presented a few research results on the asymptotic enumeration of 

labelled graphs. In this chapter, we give some conclusions and a brief description 

of potential future research in this area. 

7.2. Conclusions. 

We obtain an asymptotic formula for the number of the labelled bipartite 

graphs by degree sequence in Chapter 2. We identified these graphs as one cell 

of a partiton of a larger class of objects (pairings) and then obtained estimates of 

the relative sizes of the cells by counting simple perturbations (switchings) which 

transform one cell into another. Since the total number of pairings is available, 

the size of each cell can be inferred. The switching argument was first proposed 

by McKay [18] and then applied to estimate the number of 0-1 matrices with 

prescribed line sums [21] and to obtain an asymptotic formula for the number 

of symmetric 0-1 matrices with prescribed row smns [22]. Recently, McKay and 

Wormald [27] showed how to generate A:-regular graphs on n vertices uniformly at 

random in expected time provided k = by using a modification of 
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the switching argument. This method will probably be applied to other asymptotic 

enumeration problems as well as problems relating to uniform generation of graphs. 

In Chapters 4-6, we obtain asymptotic formulae for the numbers of labelled 

tournaments, digraphs and eulerian digraphs with multiple edges. The methods 

we employ to solve such problems are similar. We first identify the corresponding 

values as coefficients of their generating functions, and then apply Cauchy's The-

orem to express the quantities as n-dimensional integrals. Transformations and 

statistical arguments are used to purge those terms in the integrands which do 

not give a major contribution to the integrals. Similar methods were used to ob-

tain asymptotic formulae for regular tournaments, eulerian digraphs and eulerian 

oriented graphs [17] and general graphs of high degree [25 . 

7.3. Future research. 

7.3.1. Asymptotics of bipartite graphs of high degree. 

In Chapter 2, we determine the asymptotic number of bipartite graphs with 

a given degree sequence for the case where the maximum degree is In 

particular, if A; = the number of regular bipartite graphs of degree k with 

each part having n vertices is asymptotically 

(nA;)! / (A; -1)2 ^ Iky. / (k-l)^ 

m-

Both the restdts we will seek and the method we are proposed to use in the 

research on asymptotic enumeration of bipartite graphs of high degree are quite 
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different from those in Chapter 2. We will consider the estimation of the number of 

bipartite graphs with separately labelled parts and degree sequence • • •, 

• • •, by Cauchy integral, where Sj is approximately a constant times of m 

for all j and t^. is approximately a constant times of n for all k. 

Since the generating function for bipartite graphs by degree sequence is 

the number of bipartite graphs with parts X and Y where the degree of x^ is 

Si for 1 < i < n and the degree of yj is tj for 1 < j < m is the coefficient of 

Xĵ  • • • • • • yl;['. By Cauchy's Theorem, the coefficient is equal to 

where each integral is along a closed curve around origin in the anti-clockwise 

direction. We will estimate the integral to obtain an asymptotic formula for the 

number of bipartite graphs of high degree. 

7.3.2. Asymptotics of eulerian oriented graphs with multiple edges. 

By an eulerian digraph we mean a digraph in which the in-degree is equal 

to the out-degree at each vertex and by an eulerian oriented graph we mean an 

eulerian digraph in which at most one of the edges {v, w) ov {w, v) are permitted for 

any distinct v and w. Let EOG{n, t) be the number of labelled loop-free eulerian 

oriented graphs with n vertices in which the multiplicity of each edge is at most t. 

Allowing loops would multiply EOG{n,t) by exactly {t + 1)", since loops do not 



CONCLUSIONS AND FUTURE RESEARCH 93 

affect the eulerian property. In Chapters 4-6, we used the saddle-point method to 

obtain asymptotic formulae for the numbers of labelled tournaments, digraphs and 

eulerian digraphs with multiple edges. Now we are concerned with the asymptotic 

value of EOG{n,t). McKay [17] obtained that as n —> oo, 

(on+l . (n — l)/2 

V + 47m / 

for any e > 0. Exact values of EOG{n, 1) for n < 15 were also obtained by McKay 

20]. Similarly to Chapter 6, in which we estimated the asymptotic number of 

eulerian digraphs with multiple edges, we will again apply the saddle-point method 

to derive an asymptotic formula for EOG{n, t). 
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