GENERALIZED VORONOI TESSELLATIONS

Robert James Maillardet
B.Sc.(Hons) Monash

This thesis is submitted for the degree of Doctor of Philosophy of the Australian National University.

ORIGINALITY STATEMENT

This thesis represents the original work of the candidate, except for sections $2.4,3.6$ and 4.7 , which contain joint work with Dr R.E. Miles.

ROBERT MAILLARDET

ACKNOWLEDGEMENTS

I would like to thank Dr Roger Miles, who was a continual source of ideas and encouragement, and whose work forms the basis for so much of this thesis; Professor Moran, for his friendly guidance and advice, and Dr Geoff Watterson, who, in a sense, initiated the whole project.
Of my many Canberra friends, I particularly wish to mention
Simon, Roger, Yasser, Cezary and the Murray family for their
hospitality, support, advice and friendship. I especially wish to
thank Miranda and Elizabeth, to both of whom I owe much more than I
can express.

Returning to Melbourne, thanks go to Barbara Innes for her splendid typing and presentation. I sincerely wish to thank my family, and in particular my parents, whose support and assistance have never waned, and to whom I now dedicate this thesis.

To My Parents

ABSTRACT

This thesis is concerned with the Generalized Voronoi
Tessellations V_{n}, a natural generalization of the well known Voronoi Tessellation $V \equiv V_{1}$, which is discussed in detail in Chapter 2. The Voronoi cells associated with random particles distributed over some space are the regions of that space where a particular particle is the closest particle. Generalized Voronoi cells are regions where a particular n particles are the closest n.

We undertake a comprehensive study of the geometry of these tessellations, particularly the particle arrangements around cells, and give stochastic constructions for vertices, sides and polygons (Chapter 3). These investigations form the basis for our main results. We find the mean area of Generalized Voronoi cells, for the general homogeneous case, and a wide collection of moment results (including the variance of the area for V_{n} cells), the probability of a quadrilateral in V_{2}, and certain conditional distributions for the area and perimeter, for the case when the generating point process is Poisson (Chapter 4).

Essential to our understanding of the geometry of V_{n} are plots of realizations of the tessellation. The computation of V_{n} is discussed (Chapter 5), together with a review of work dealing with the computation of V_{1}. Scaled realizations of a sequence of V_{n} 's suggested that the tessellation converges fairly rapidly to a limit; in Chapter 6 we establish limiting distributions for the length of a typical V_{n} side, and for the interval length on an arbitrary linear transect of v_{n}.

Chapter 1 contains a review of tessellation models in general, discusses the ergodic definition of 'typical' cells, and presents a
summary of methods for moment calculations, which also contains some new moment results.

TABLE OF CONTENTS

Originality Statement (i)
Acknowledgements (ii)
Abstract (iv)
Glossary (viii)
CHAPTER 1 RANDOM TESSELLATIONS 1
1.1 Introduction 1
1.2 Ergodic Theory for Homogeneous Random Tessellations 7
1.3 Moment Calculations for Random Tessellations 9
CHAPTER 2 THE VORONOI TESSELLATION 20
2.1 Introduction - Basic Geometry 20
2.2 Applications of the Voronoi Tessellation 22
2.3 Voronoi Theory 26
2.4 Ergodic Theory for V 31
CHAPTER 3 GENERALIZED VORONOI TESSELLATIONS 36
3.1 V_{n} - Basic Geometry 36
3.2 n-Circuits and n-Areas in V_{n} 46
3.3 Particle Contiguity in V_{1} and V_{n} 52
3.4 V_{n} - triangles and quadrilaterals 56
3.5 Stochastic Constructions for V_{n} 65
3.6 Geometry of $V_{n} N$-gons 71
3.7 Occupancy Probabilities for V_{n} cells 77
CHAPTER 4 GENERALIZED VORONOI TESSELLATIONS - NEW THEORY 81
4.1 Mean Areas of Generalized Voronoi Ce11s 81
4.2 The Superpositions $V_{i-1, i}$ 96
4.3 Densities of $\mathcal{L}_{3}(\pm, \pm)$ sides 100
4.4 Some Moment expressions for Voronoi and Generalized Voronoi ce11s 108
4.5 Transect Distributions for V_{n} and the variance of V_{n} ce11 areas 115
4.6 Contiguity Distributions 123
4.7 Basic Results for V_{n} relative to \mathbb{P}. 127
CHAPTER 5 COMPUTATION OF VORONOI AND GENERALIZED VORONOI TESSELLATIONS 131
5.1 Computation of Voronoi Tessellations 131
5.2 The partitioning of $\left\langle\omega_{1} \omega_{2}\right\rangle$ into V_{n} segments 134
5.3 Computation of the V_{n} tessellation 137
5.4 Individual Polygon Generation 143
5.5 $\quad V_{n}$'s based on a degenerate square grid 145
CHAPTER 6 GENERALIZED VORONOI TESSELLATIONS

- LIMITING RESULTS 152
6.1 Limiting Side-Length Distribution for V_{∞}^{\prime} 152
6.2 Limiting Transect Distribution for V_{∞}^{\prime} 162
BIBLIOGRAPHY 167

GLOSSARY

\mathbb{E}^{n}	Euclidean n -space
x, y	points in \mathbb{E}^{n}
2X	boundary of a set X
ϕ	nu11 set
$\omega_{1}, \omega_{2}, \ldots, \Omega_{1}, \Omega_{2}, \ldots$	particles of a point process (as opposed to points in \mathbb{E}^{n})
${ }^{<} \omega_{1} \omega_{2}>$	perpendicular bisector of particles ω_{1} and ω_{2}
$<\omega_{1} \omega_{2} \omega_{3}>$	circumcentre of particles ω_{1}, ω_{2} and ω_{3}
$\left\langle\omega_{1} \omega_{2} \omega_{3}>\right.$	i-filled circumdisk of particles ω_{1}, ω_{2} and ω_{3}
$Q(\underline{x}, r)$	disk radius r centered at point \underline{x}
Q (r)	disk radius r
V_{n}	aggregate of cells (convex polygons) in Generalized
	Voronoi Tessellation
P_{n}, R_{n}	elements of V_{n}
$\left[\omega_{1} \omega_{2} \ldots \omega_{n}\right.$]	element of U_{n} with proximity set $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$
$\mathrm{A}_{\omega, \mathrm{n}}$	n-Area of particle ω
$C_{\omega, n}$	n-Circuit of particle ω
\mathcal{L}_{n}	aggregate of sides of V_{n} cells
$\mathcal{L}_{\mathrm{n}}(\pm, \pm)$	sub-aggregate of sides of V_{n} cells with neighbouring
	segments from V_{n+1} on either side $\mathrm{n}-1$
$\sigma_{n}(\pm, \pm)$	density of $\mathcal{L}_{\mathrm{n}}(\pm, \pm)$ sides
$p_{n}(\pm, \pm)$	ergodic probability that \mathcal{L}_{n} side is member of $\mathcal{L}_{\mathrm{n}}(\pm, \pm)$
$\sigma_{n}(\mathrm{i})$	density of V_{n} i-gons
p_{n} (i)	ergodic probability that V_{n} cell is i-gon
σ_{n}	density of V_{n} cells
v_{1}, v_{2}, \ldots	vertices in V_{n}

```
\sigma(n,n+1) density of (n,n + 1) vertices
\sigma(n) density of }\mp@subsup{V}{n}{}\mathrm{ vertices
V i-1,i superposition of }\mp@subsup{V}{i-1}{}\mathrm{ and }\mp@subsup{V}{i}{
a.s. almost sure1y
p
    convergence in probability
```

Equations are numbered sequentially in each Section, and referenced by (Section. N), or (Chapter. Section. N), if reference is to another Chapter.

Figures are numbered sequentially in each Chapter, and referenced as Figure N, or Figure Chapter. N, if reference is to another Chapter. Lemmas and Theorems are treated the same way.

The following line conventions are followed when a figure contains cells or segments from V_{1}, V_{2}, V_{3} or $V_{4}:-$

If a figure refers to a general V_{i} and V_{i-1} the conventions are:-
\qquad

The following convention is sometimes used to emphasize a particular perpendicular bisector:-

Crosses are used on diagrams to represent the particles of a point process.

CHAPTER 1

RANDOM TESSELLATIONS

1.1 Introduction

This thesis is concerned with the study of generalized Voronoi tessellations, which are a particular class of random tessellations of the plane.

Definition

A tessellation of a space X is an aggregate of disjoint sets C_{i} whose union is X. The C_{i} are called the cells of the tessellation. These cells may share a common boundary set which is null.

In the theoretical tessellation models we consider, the cells fall into a very limited class of types. In most models for the tessellation of d-dimensional $\mathbb{E u c l i d e a n}$ space \mathbb{E}^{d}, the cells are convex polytopes (polygons in \mathbb{E}^{2}, polyhedra in \mathbb{E}^{3}). Some models produce non-convex cells, and even unconnected cells. However connectedness is really a minimal assumption to permit the practical interpretation of the cells of a tessellation as the zone of influence, territory or actual shape of entities occupying X and competing for a share of its space.

For any given X there are numerous ways to partition it to form a tessellation. The established mathematical techniques can be divided into two general categories - (i) where we define the partitioning of X by a direct prescription of the boundaries between cells and (ii) where we specify a random framework of some description
on X (of ten a point process) and a set of rules which partition the space using that random framework. To introduce a range of tessellation models and their generating mechanisms we now list a number of examples from both categories.

Category (i) - Direct Specification of Boundaries
(a) Box and Grid Tessellations

On a first attempt at defining cell boundaries we may think of associating vertical and horizontal lines with random points distributed on two orthogonal axes (in two dimensions) or similarly associating planes with random points distributed on three axes (in three dimensions). We thus generate the grid tessellation of the plane into rectangles and the box tessellation of \mathbb{E}^{3} into rectangular cells.

However we may be interested in a truly random distribution of lines or planes in the sense that the probability that a subset X of \mathbb{E}^{2} is hit by a line or plane of our process is invariant under Euclidean translations and rotations of X. From Integral Geometry, (Santalo [1976]) we know that the measures for lines and planes are uniquely determined (up to a constant) by this condition. By defining appropriate point processes on the parameter space for these geometric objects, a random tessellation results.
(b) Poisson Line Process

If we parametrize a line by the polar co-ordinates of the perpendicular bisector to the line from the origin (p, θ), then a standard Poisson point process with constant intensity ρ (denoted henceforth by \mathbb{P}) defined on the parameter space $(0 \leqslant \theta<2 \pi, p>0)$ produces a random distribution of lines. Each realization of the
point process corresponds to a tessellation of the plane into convex polygons by the associated lines. For any bounded convex domain K in \mathbb{E}^{2}, the number of lines which hit K is Poisson with mean proportional to the perimeter of K . For details see Miles [1964, 1973], Solomon [1978, Ch 3]. Distributional properties of this process which are beyond theoretical treatment have been estimated by Monte Carlo methods (Crain and Miles [1976]).
(c) Poisson Plane Process, Poisson Hyperplane Process

If we parametrize a plane by the spherical polar co-ordinates (p, θ, ϕ) of the foot of the perpendicular from the origin to the plane, the joint probability density function (p.d.f.) for θ and ϕ corresponding to an isotropic direction for the plane is

$$
f(\theta, \phi)=\frac{1}{2 \pi} \sin \theta . \quad 0 \leqslant \theta, \phi<\pi
$$

Hence an inhomogeneous Poisson point process of intensity $\left(\frac{\rho \sin \theta}{2 \pi}\right)$ on the parameter space $(0 \leqslant \theta, \phi<\pi,-\infty<\rho<\infty)$ produces a random distribution of planes which tessellate \mathbb{E}^{3} into convex polyhedra. See Miles [1972] for details on this Poisson plane process and Matheron [1975], Miles [1974] for the extension to the polytopal tessellation of \mathbb{E}^{d} generated by random $(d-1)$ dimensional hyperplanes. Miles has also considered modifications of these Poisson processes, involving anisotropic distributions for orientation and the thickening of lines and planes into strips and slabs (Miles [1964, 1972]). There has also been some work on the properties and characterization of more general line and hyperplane processes (Davidson [1974], Krickeberg [1973], Kallenberg [1976], Papangelou [1972]).
(d) Line Segment Processes

As with the line and plane processes above, we can specify a random process (field) of segments by a point process on the parameter space for these geometric elements, in this case (x, y, ϕ), where (x, y) are the co-ordinates of the midpoint of the segment and ϕ its angle with a fixed direction ($-\infty<\mathrm{x}, \mathrm{y}<\infty, 0 \leqslant \phi<\pi$).

By an ingenious categorization of a random tessellation as a special case of random fields of line segments, Ambartzumian [1970] has proved that the vertices of 'regular' homogeneous isotropic random tessellations can only be of the ' T ' and ' X ' types, under the condition that the marked point process $\left\{a_{i}, \theta_{i}\right\}$ of intersection points a_{i} of an arbitrary line L with the tessellation (with accompanying angles θ_{i}) satisfies certain independence assumptions. (The θ_{i} must be mutually independent and independent of the a_{i}). A consequence of this theorem is that a random tessellation with no ' T ' vertices is a mixture of Poisson line processes (see also Davidson [1970]). Further work by Ambartzumian [1974] using the process of intersection points $\left\{a_{i}, \theta_{i}\right\}$ with an arbitrary line yields the Laplace transform of the side length distribution and relationships between moments for cell characteristics such as area and perimeter and the moments for I, the interval length for $\left\{a_{i}, \theta_{i}\right\}$. These results are stereological in nature. See section 1.3 for an alternative derivation of some of these moment relationships and some additional results.

Category (ii) - Indirect Partitioning Induced by a Superposed Random Framework

The majority of tessellations in this category use a point process defined on the space as the basic framework from which to build the tessellation.
(a) Voronoi and Generalized Voronoi Tessellations

A point process of particles is defined on X. We imagine symmetric growth of cells in all directions from the particles as nuclei, with growth terminating when cell boundaries meet. The region associated with each particle is the set of points which have it as the closest particle. A natural generalization is to consider the regions where n particles are the closest n. These tessellations are studied in detail in following chapters.
(b) Johnson-Meh1 Tessellation

In this tessellation cells are again formed by isotropic growth, but the particles now appear over time (instead of all being present at $t=0$ as in the Voronoi case). The standard Johnson-Meh1 tessellation, with a homogeneous Poisson birth process for particles (probability of birth in volume dV during time dt is adVdt) is considered by Meijering [1953]. A generalized form with birth process $\alpha(t) d V d t$, inhomogeneous in t, is considered by Miles [1972]. This tessellation has non-convex cells with hyperbolic boundaries, but all cells are star shaped relative to their nucleus.

We can also extend the Johnson-Meh1 mode1 by allowing anisotropic growth or different growth speeds. However these modifications are not really tractable, although some use has been made of this generation technique with the qualification that growth does not stop when cell boundaries meet. Thus cells can be composed of disconnected regions (Fischer and Miles [1973]).
(c) Gilbert's Radiating Segments Model

From each particle of a point process on X, a line segment grows at angle ϕ_{i} to a fixed direction (ϕ_{i} uniform on $[0, \pi]$ and independent) and at a constant rate in both directions from the generating particle. Growth terminates when a segment meets another segment. A convex polygonal tessellation of the plane results. Gilbert [1967] has used this as a model for the growth of needle-shaped crystals.

Relevant to Category (ii) methods of defining random tessellations is an analysis of the partitioning of the circular zones of influence associated with plants on a lattice (Gates et al. [1979]). The authors show that fairly general and natural assumptions about the partition sets associated with each plant lead to a very explicit form for the boundary curve between these sets, which includes the Voronoi and Johnson-Mehl boundaries as special cases. Thus the properties we naturally require if we wish to attribute a physical meaning to a tessellation cell in some practical competition context are shown to have a powerful limiting effect on the nature of the tessellation.

This completes the list for Category (ii). The above tessellations are the only models which have received significant mathematical attention. These models are few in number and their generating mechanisms are even more limited. New generation mechanisms, hopefully motivated by a better understanding of practical tessellation phenomena, are certainly needed before tessellation modelling can be of practical significance.

1.2 Ergodic Theory for Homogeneous Random Tessellations

For the purposes of this section we make the formal

Definition

Let (Ω, S, P) be a probability space. A random tesselzation Ψ, is a random variable which maps Ω into the set of aggregates of convex polygons which tessellate the plane.

Let $T^{a} \underline{x}=\underline{x}+a, \underline{x} \in \mathbb{E}^{2}$. A random tessellation is homogeneous if T^{a} is measure preserving i.e. $P\left(T^{a} A\right)=P(A), \forall A \in S$, and ergodic if T^{a} is ergodic i.e. $A=T^{a} A \Rightarrow P(A)=0$ or 1 .

A cell characteristic of a cell of ψ is a scalar, determined by the cell, which is translation invariant e.g. N, the number of sides (or vertices); A, the area; S, the perimeter and I, the inradius. Let $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ be a vector description of a ψ cell, where the Z_{i} are cell characteristics.

For (almost) all realizations ω of ψ we have an infinite aggregate of polygons, and we are naturally interested in the distribution of polygon characteristics for a typical representative of this aggregate. We cannot obtain these distributions by selecting, for example, the polygon which contains the origin, which is not typical but in fact 'area-weighted' in an analogous manner to the length weighting of the interval containing the origin in a strictly stationary linear point process.

A natural way to proceed is to consider the (random) empirical distribution function $F_{Z, r}(z)$ of Z for cells contained in the disk $Q(r)$ and its limit as $r \rightarrow \infty$. Miles [1961], in his as yet unpublished PhD Thesis has shown that

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Z}, \mathrm{r}}(\mathrm{z}) \xrightarrow{\text { a.s. }} \mathrm{F}_{\mathrm{Z}}(\mathrm{z}) \tag{2.1}
\end{equation*}
$$

a (constant) distribution function, as $r \rightarrow \infty$, by an application of Weiner's multiparameter ergodic theorem [1939], provided ψ is homogeneous and ergodic. Weiner's Theorem states that under these assumptions, for a random variable X with $E|X|<\infty$,

$$
\begin{equation*}
\text { a.s. } \lim _{r \rightarrow \infty} \frac{1}{\pi r^{2}} \int_{Q(r)} X\left(T^{-a} \omega\right) d a \tag{2.2}
\end{equation*}
$$

exists and equals $E(X)$. This equality of a 'space average' over a single physical realization with a 'time average' over all realizations, was motivated by statistical mechanics. Ergodicity is the minimal requirement for such equality. However it can be verified by proving a (stronger) mixing condition that realizations of Ψ in different regions tend to independence as the separation of the regions increases.

The critical step in establishing (2.1) using (2.2) is the representation of $\mathrm{F}_{\mathrm{Z}, \mathrm{r}}(\mathrm{z})$ as the integral of an appropriately defined X. For example, if $F_{A, r}(a)$ is the empirical d.f. for the area A of cells in $Q(r)$ then

$$
\begin{aligned}
F_{A, r}(a) & =\frac{\text { number of ce11s in } Q(r) \text { with } A}{\text { number of ce11s in } Q(r)} \leqslant a \\
& =\frac{\frac{1}{\pi r^{2}} \int_{Q(r)} A(t, \omega, x) d t}{\frac{1}{\pi r^{2}} \int_{Q(r)} A(t, \omega) d t}
\end{aligned}
$$

where $A(t, \omega)=(\text { area of cell containing } t)^{-1}$ and $A(t, \omega, x)$ takes the same value for cells with area less than x, and is zero otherwise. For a detailed exposition of ergodic theory applied to homogeneous planar
tessellations see Cowan [1978].

All tessellations considered in this thesis are homogeneous and ergodic. Hence all cell characteristics have well-defined ergodic limiting distributions which can be interpreted as the distribution of these characteristics for a cell of Ψ picked in such a way that each cell has an equal chance of being chosen; such a cell will be referred to as a typical or uniform random cell of ψ.

Using the same theory we can show that any homogeneous ergodic point process has a well-defined particle density ρ where

$$
\rho=\text { a.s. } \lim _{r \rightarrow \infty} \frac{N(r)}{\pi r^{2}},
$$

and $N(r)$ is the number of particles in $Q(r)$.

1.3 Moment Calculations for Random Tessellations

In general the full ergodic distributions for important polygon characteristics are beyond theoretical treatment, and for most of the well-known random tessellations the only theoretical results relate to low-order moments and cross-moments for some characteristics (notably A (area); S (perimeter) and N (number of sides)), as well as some probabilities $\left\{p_{n}\right\}$ from the discrete distribution for N, for small n values.

We note that even though the ergodic distribution for a polygon characteristic may exist (the moment condition in Weiner's theorem essentially puts restrictions on the smallness of polygons) this does not guarantee the existence of the moments of this characteristic, which requires restrictions on the largeness of polygons (see Cowan [1978]).

A moment calculation depends on a representation of the quantity of interest. Sometimes this representation will be obvious; sometimes it will be obtained by a trick of some sort. Obtaining the most convenient representation, or at least a workable one, is a task which often depends on special features of the particular tessellation the theory of random tessellations lacks a body of routinely applicable 'methods'. However we can classify moment calculations into various types.
(i) Ergodic Theory Method

The empirical means over $Q(r)$ for a cell characteristic Z_{i}, tend to the mean of Z_{i} relative to the limiting ergodic distribution $\mathrm{F}_{\mathrm{Z}_{i}}(\mathrm{z})$ (Miles [1970]). For example, Miles uses this technique to calculate $E(A), E(S)$ and $E(N)$ for generalized Voronoi cells (see section 3.1 and Miles [1970]).
(ii) Indicator Function Method

We can calculate the mean of a random area by representing it as an integral of its indicator function (Robbins [1944]). Examples of this technique occur in sections 3.2 and 4.4. As an example, for a general homogeneous isotropic tessellation Ψ, we have the expression

$$
\begin{align*}
E(A) & =E\left(\int I_{A}(\underline{x}) d \underline{x}\right) \\
& =\int E I_{A}(\underline{x}) d \underline{x} \\
& =\int P(\underline{x} \in Q) d \underline{x} \\
& =2 \pi \int_{0}^{\infty} r P((r, 0) \in Q) d r \quad, \tag{3.1}
\end{align*}
$$

for the mean area of a typical cell Q. Analogous to this technique are the representations

$$
\begin{align*}
& S(\omega)=\int S(d \underline{x}) \tag{3.2a}\\
& S(\omega)=\int_{0}^{\infty} S(r, d r) \tag{3.2b}
\end{align*}
$$

which can be used for the calculation of the first moment of the perimeter. (3.2b) is essentially Meijering's representation, which he used to calculate the first moments of S and N for two and threedimensional Voronoi cells (see section 2.3).

(iii) Goudsmit's Method

Goudsmit obtained the mean square area for a typical polygon from a Poisson line process by calculating the probability that two random points are contained in the same polygon in two different ways (Goudsmit [1945]).

This technique was extended to general dimensional Poisson hyperslab processes by Miles [1961]. Richards [1964] generalizes the technique to obtain a variety of averages for a Poisson line process by averaging an arbitrary function of the distance between two random points, constrained to lie within a single polygon. Kendall (see Miles [1964]) obtained $E\left(A^{3}\right)$ for a Poisson line process by considering three random points instead of just two.

In fact the technique, and Richard's generalization, is applicable to general homogeneous isotropic tessellations, and enables us to relate the moments of several polygon characteristics to the moments of certain interval distributions for a linear transect of the process. In this way we duplicate (and extend) certain results of

Ambartzumian [1974]. These results are essentially stereological in nature, and are intimately linked with integral geometry.

Def inition

Let L be an arbitrary linear transect of a homogeneous isotropic tessellation Ψ. The 'events' on L are the intersection points of L with cell boundaries of Ψ. Since Ψ is homogeneous, I, the inter-event distance, has a well-defined stationary ergodic distribution. So does J, the distance from an arbitrary point on L to the next 'event'.

Theorem 1

Let Ψ be a homogeneous isotropic random tessellation, and let $G_{a}(x)$ denote the distribution function of $J, G(x)$ the distribution function of I. Then

$$
E\left(\iint_{Q \times Q} f(|\underline{x}-\underline{y}|) d \underline{x d y}\right)=2 \pi E(A) \int_{0}^{\infty} x f(x)\left(1-G_{a}(x)\right) d x
$$

where f is an arbitrary function of the distance $|\underline{x}-\underline{y}|$ between points \underline{x} and \underline{y}, and the integral is taken over the interior of a typical polygon Q.

Proof
Let

$$
\begin{aligned}
D & =E\left(\iint_{Q \times Q} f(|\underline{x}-\underline{y}|) d \underline{x} d \underline{y}\right) \\
& =E\left(\iiint f(|\underline{x}-\underline{y}|) I(\underline{x}) I(\underline{y}) d \underline{x} d \underline{y}\right)
\end{aligned}
$$

where $I(\underline{x})$ is the indicator function of Q i.e.

$$
I(\underline{x})= \begin{cases}1 & \underline{x} \in Q \\ 0 & \underline{x} \notin Q\end{cases}
$$

Hence

$$
D=\iint f(|\underline{x}-\underline{y}|) E(I(\underline{x}) I(\underline{y})) d \underline{x} d \underline{y}
$$

Now

$$
\begin{aligned}
E(I(\underline{x}) I(\underline{y})) & =P(\underline{x} \text { and } \underline{y} \in Q) \\
& =P(\underline{y} \in Q \mid \underline{x} \in Q) P(\underline{x} \in Q) \\
& =\left(1-G_{a}(c)\right) P\left(\left(r_{1}, 0\right) \in Q\right),
\end{aligned}
$$

where c is the distance between x and y, and $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)$ are the polar co-ordinates of \underline{x} and \underline{y} (see Figure 1). Note that $P\left(\left(r_{1}, \theta_{1}\right) \in Q\right)=P\left(\left(r_{1}, 0\right) \in Q\right)$ by isotropy of Ψ.

Figure 1

Changing to polar co-ordinates gives

$$
D=\iiint \int f(c)\left(1-G_{a}(c)\right) P\left(\left(r_{1}, 0\right) \in Q\right) r_{1} r_{2} d r_{1} d r_{2} d \theta_{1}^{d \theta_{2}}
$$

Note that c is a function only of $\phi=\left|\theta_{2}-\theta_{1}\right|$, and hence D is of the form

$$
\int_{0}^{2 \pi} \int_{0}^{2 \pi} F\left(\left|\theta_{2}-\theta_{1}\right|\right) d \theta_{1} d \theta_{2}
$$

where F has the property that $F(\phi)=F(2 \pi-\phi)$. In this case we have the useful formula,

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} F\left(\left|\theta_{2}-\theta_{1}\right|\right) d \theta_{1} d \theta_{2}=4 \pi \int_{0}^{\pi} F(\phi) d \phi \tag{3.3}
\end{equation*}
$$

Hence

$$
D=4 \pi \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{\infty} r_{1} r_{2} f(c)\left(1-G_{a}(c)\right) P\left(\left(r_{1}, 0\right) \quad \in Q\right) d r_{2} d \phi d r_{1}
$$

Fixing r_{1}, we change variables from $\left(r_{2}, \phi\right)$ to (c, α), the polar co-ordinates of \underline{y} relative to \underline{x} and direction $\overrightarrow{o x}$. The Jacobian of this transformation is cr_{2}^{-1}, so

$$
\begin{aligned}
D & =4 \pi \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{\infty} r_{1} c f(c)\left(1-G_{a}(c)\right) P\left(\left(r_{1}, 0\right) \in Q\right) d c d \alpha d r_{1} \\
& =\frac{4 \pi^{2}}{2 \pi}\left(2 \pi \int_{0}^{\infty} r_{1} P\left(\left(r_{1}, 0\right) \in Q\right) d r_{1}\right) \int_{0}^{\infty} c f(c)\left(1-G_{a}(c)\right) d c \\
& =2 \pi E(A) \int_{0}^{\infty} c f(c)\left(1-G_{a}(c)\right) d c
\end{aligned}
$$

using (3.1), which completes the proof.

Applications of Theorem 1

We can obtain a variety of averages from this theorem by appropriate choices of the function f. Consider $f(x)=x^{n}$ for example. Then

$$
\begin{align*}
E\left(\iint_{Q \times Q}|\underline{x}-\underline{y}|^{n} \underline{d x d y}\right) & =2 \pi E(A) \int_{0}^{\infty} x^{n+1}\left(1-G_{a}(x)\right) d x \\
& =\frac{2 \pi E(A)}{(n+2)}\left[(n+2) \int_{0}^{\infty} x^{n+1}\left(1-G_{a}(x) d x\right]\right. \\
& =\frac{2 \pi E(A) E\left(J^{n+2}\right)}{(n+2)}, \quad n=-1,0,1, \ldots \tag{3.4}
\end{align*}
$$

We can also express (3.4) in terms of the moments for I, the more usual inter-event distribution. We note that if I has mean λ^{-1} say, then we have the following relationship between $G_{a}(x)$ and $G(x)$ (see Lewis [1972] p 354).

$$
G_{a}(x)=1-\lambda \int_{x}^{\infty}(1-G(u)) d u
$$

Hence

$$
\begin{align*}
E\left(J^{n}\right) & =n \int_{0}^{\infty} x^{n-1}\left[1-G_{a}(x)\right] d x \\
& =n \lambda \int_{0}^{\infty} \int_{x}^{\infty} x^{n-1}(1-G(u)) d u d x \\
& =\frac{\lambda}{(n+1)}\left[(n+1) \int_{0}^{\infty} u^{n}(1-G(u)) d u\right] \\
& =\frac{\lambda}{(n+1)} E\left(I^{n+1}\right), \quad n=1,2, \ldots \tag{3.5}
\end{align*}
$$

We also note the relation

$$
\begin{equation*}
\mathrm{E}(\mathrm{~A})=\mathrm{E}(\mathrm{~S}) \mathrm{E}(\mathrm{I}) / \pi=\mathrm{E}(\mathrm{~S}) / \lambda \pi, \tag{3.6}
\end{equation*}
$$

which holds for general homogeneous isotropic tessellations (see Ambartzumian [1974], where the divisor of π is omitted).

$$
\begin{equation*}
E\left(\iint_{Q \times Q}|\underline{x}-\underline{y}|^{n} d \underline{d x d y}\right)=\frac{2 E(S) E\left(I^{n+3}\right)}{(n+2)(n+3)}, \quad n=-1,0,1, \ldots \tag{3.7}
\end{equation*}
$$

In particular, for $n=-1,0,1$ and 2 we have

$$
\begin{gather*}
E(\Phi)=E(S) E\left(I^{2}\right) \\
E\left(A^{2}\right)=E(S) E\left(I^{3}\right) / 3 \\
E\left(A^{2} R\right)=E(S) E\left(I^{4}\right) / 6 \tag{3.8}\\
E(A M)=E(S) E\left(I^{5}\right) / 10
\end{gather*}
$$

where R denotes the mean separation of two random points in a typical polygon, A is its area, M its moment of inertia about its centre of gravity and Φ is its "Newtonian self-energy" (see Richards [1964], for calculation of these moments in the Poisson line process case).

Use is made of (3.4) and (3.8) in sections 4.5 and 6.2 , where the moments of J are used to calculate the variance of the area of V_{n} ce11s.

(iv) Weighting Methods

We have defined a 'typical ce11' of a random tessellation and mentioned that the ce11 containing the origin is 'area-weighted'. From the mean area of an 'area-weighted' cell we can obtain the second moment of the area of a typical cell (see section 4.4 and (4.4.4)). We can also weight cells in various ways. Choosing a uniform random vertex and then choosing (uniformly) from the cells which meet at that vertex gives an [N]-weighted cell, provided an equal number of sides join at each vertex. Superimposing an independent Poisson line
process and choosing cells which are hit by m lines gives an $\left[\mathrm{e}^{-\mathrm{S}} \mathrm{S}^{\mathrm{m}}\right]$ weighted cell. Similarly, considering the sub-aggregate of n-gons of a Poisson line process intersected by $m=i+2 j$ hitting lines we again obtain an $\left[e^{-S} S^{m}\right]$-weighted ce11; the subclass of these ce11s where the hitting lines contain j pairs intersecting inside the cell forms an $\left[e^{-S} S^{i} A^{j}\right]$-weighted aggregate.

Miles [1973] uses these results to calculate higher moments for the Poisson line process.

Devising various methods for choosing polygons and utilizing the weighted aggregates which result is a major but relatively undeveloped technique for obtaining higher moments. For example, consider the following two methods of choosing an 'adjacent polygon pair':- i.e. a pair of adjacent polygons with a common side.

Method 1 Choose a uniform random side and take the pair of polygons which have this side as a common side - this is a uniform random 'polygon pair'.

Method 2 Choose a uniform random cell. Then choose (uniformly) a side of that cell, and take the polygon pair with this side as their common side.

Now consider a side s shared by two polygons with side numbers N_{1} and N_{2}. Under Method 2,

$$
\mathrm{P}(\mathrm{~s} \text { is chosen }) \propto \frac{1}{\mathrm{~N}_{1}}+\frac{1}{\mathrm{~N}_{2}}=\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1} \mathrm{~N}_{2}} .
$$

Hence s, and the polygon pair associated with s, is $\left[\frac{\mathrm{N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1} \mathrm{~N}_{2}}\right]$-weighted. If \underline{Z} is any characteristic of the polygon pair, then

$$
f_{2}\left(N_{1}, N_{2}, \underline{Z}\right) \propto \frac{N_{1}+N_{2}}{N_{1} N_{2}} f_{1}\left(N_{1}, N_{2}, \underline{Z}\right)
$$

where f_{i} is the joint density of N_{1}, N_{2} and \underline{Z} under method i. Write $\mathrm{E}_{\mathbf{i}}$ for expectation relative to f_{i}. Then

$$
\begin{align*}
\mathrm{f}_{2}\left(\mathrm{~N}_{1}, \mathrm{~N}_{2}\right) & =\frac{\mathrm{k}\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)}{\mathrm{N}_{1} \mathrm{~N}_{2}} f_{1}\left(\mathrm{~N}_{1}, \mathrm{~N}_{2}\right) \tag{3.9}\\
\mathrm{k}^{-1} & =\mathrm{E}_{1}\left(\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{1} \mathrm{~N}_{2}}\right) \\
& =\mathrm{E}_{1}\left(\frac{1}{\mathrm{~N}_{1}}\right)+\mathrm{E}_{1}\left(\frac{1}{\mathrm{~N}_{2}}\right) \\
& =2 \mathrm{E}_{1}\left(\frac{1}{\mathrm{~N}_{1}}\right)
\end{align*}
$$

where

To calculate $E_{1}\left(\frac{1}{N_{1}}\right)$, we note that each individual polygon associated with a uniform random side is [N]-weighted. If g and f are the densities of N for [N$]$-weighted and uniform random ce11s respectively, then

$$
g(N)=\frac{N f(N)}{E_{f}(N)}
$$

and hence

$$
\begin{aligned}
& E_{g}(N)=\frac{E_{f}\left(N^{2}\right)}{E_{f}(N)} \\
& E_{g}\left(\frac{1}{N}\right)=\frac{1}{E_{f}(N)},
\end{aligned}
$$

where E_{f} and E_{g} represent expectations with respect to f and g . Hence

$$
E_{1}\left(\frac{1}{N_{1}}\right)=\frac{1}{E_{f}\left(N_{1}\right)}
$$

$$
\mathrm{k}=\frac{1}{2} \mathrm{E}_{\mathrm{f}}\left(\mathrm{~N}_{1}\right)
$$

Multiplying both sides of (3.9) by $\mathrm{N}_{1} \mathrm{~N}_{2}$ and summing gives the interesting relationship

$$
\begin{aligned}
E_{2}\left(N_{1} N_{2}\right) & =k\left(E_{1}\left(N_{1}\right)+E_{1}\left(N_{2}\right)\right) \\
& =2 k E_{1}\left(N_{1}\right) \\
& =E_{f}\left(N_{1}^{2}\right)
\end{aligned}
$$

Hence for a Poisson line process, the 'adjacent' moment $E_{2}\left(N_{1} N_{2}\right)$ is $\left(\pi^{2}+24\right) / 2=16.93$, predictably smaller, but not substantially, than $E_{1}\left(N_{1} N_{2}\right)=10+{ }^{3} \pi^{2} / 4=17.40$ (see Miles [1973] sections 8 and 9).

For a Voronoi tessellation (see Chapter 2),

$$
\mathrm{E}_{2}\left(\mathrm{~N}_{1} \mathrm{~N}_{2}\right) \sim \bar{\sim} 37.8
$$

which is the simulation estimate of $\mathrm{E}_{\mathrm{f}}\left(\mathrm{N}^{2}\right)$ given by Hinde and Miles [1980]. However, the value of $E_{2}\left(N_{2}\right)=k\left(1+E_{f}\left(\frac{N_{1}}{N_{2}}\right)\right)$ is an open prob1em for both tessellations.

Weighting arguments are essential to arguments used in sections 4.3 and 4.4 for the calculation of certain moments and probabilities.

CHAPTER 2

THE VORONOI TESSELLATION

2.1 Introduction - Basic Geometry

This chapter is concerned with the Voronoi (or Dirichlet) tessellation, which was first considered in the $19^{\text {th }}$ century (Dirichlet [1850]), and which has played an increasingly important role in attempts to model tessellated phenomena in a wide range of subjects.

The tessellation is generated by a process of particles distributed on a space upon which a distance function is defined (a general metric space could be used). We make the following assumptions about the particle process -
(i) spatial homogeneity
(ii) countable particle set (a.s.)
(iii) no multiple particles i.e. particles which are co-incident (a.s.)
(iv) a.s. particles are in 'general position' e.g. no three particles are co-linear, no four particles lie on the same circle.

Definition A particle process in d-dimensions satisfying (i) - (iv) will be referred to as a π_{d} type process.

Label the particles of a π_{d} type process $\omega_{1}, \omega_{2}, \ldots$ and define $K_{i j}=\left\{\underline{x}:\left|\underline{x}-\omega_{i}\right| \leqslant\left|\underline{x}-\omega_{j}\right|, \underline{x} \in X\right\}$, the half-space of points nearer to ω_{i} than ω_{j}. Consider an arbitrary particle ω_{i}. The Voronoi cell of $\omega_{i},\left[\omega_{i}\right]$, consists of all those points \underline{x} with ω_{i} as the nearest particle. An example of a Voronoi tessellation for a small number of
particles is given in Figure 1. Obviously,

$$
\begin{equation*}
\left[\omega_{i}\right]=\bigcap_{j: j \neq i} K_{i j} \tag{1.1}
\end{equation*}
$$

Figure 1

Definition

$V \equiv\left\{\left[\omega_{i}\right]: \omega_{i}\right.$ varies over all particles of a π_{d} type process $\}$, is a Voronoi tessellation of the space upon which π_{d} is defined.

If the generating particle process π_{2} is defined on the plane \mathbb{E}^{2} then, from (1.1), each $\left[\omega_{i}\right]$ is a convex polygon, and V is thus a convex polygonal tessellation of \mathbb{E}^{2}. Apart from the null set of
polygon boundaries, every point of \mathbb{E}^{2} belongs to one, and only one [ω_{i}]. Consideration of these boundary points shows that they are of the two types shown in Figure 2 - either a vertex of exactly three cells or in the dividing edge between two adjacent cells - as is clear from Figure 1.

Figure 2

We write $<\omega_{1} \omega_{2}>$ for the perpendicular bisector of particles ω_{1}, ω_{2} and $\left\langle\omega_{1} \omega_{2} \omega_{3}\right\rangle$ for the circumcentre of ω_{1}, ω_{2} and ω_{3}. $Q\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ is the circumdisk associated with the vertex $<\omega_{1} \omega_{2} \omega_{3}>$ (see Figure 2).

2.2 Applications of the Voronoi Tessellation

The Voronoi tessellation has been re-invented in numerous fields as a natural way of tessellating a space occupied by a collection of entities competing in some manner for territory, hence the alternative descriptions of the construct as a Dirichlet or

Thiessen tessellation.

In many cases the tessellation is an idealized or simplified way of dividing the space; however there are some remarkable practical examples of visible territory division conforming to the Voronoi model. For example, mouthbreeder fish, 'Tilapia mossambica', which define their territory by spitting sand at their neighbours, have produced a Voronoi tessellation formed with sand parapets in the uniform environment of a swimming pool. This phenomena has been successfully modelled by starting with random distribution of fish and then moving each fish to the centre of gravity of its Voronoi polygon's vertices, and then iterating this procedure until a limit tessellation is achieved (Hasegawa and Tanemura [1976]). Simulations show that the limiting tessellation has more concentrated distributions for polygon characteristics A (area), N (number of sides) and for the interior angle distribution, showing a tendency towards a hexagonal lattice, but the limit is not degenerate as conjectured by Hamilton [1971]. The iterative modification is based on the assumption that, although the territory will tend to be divided in a Voronoi manner, the animals will also wish to maximize their distance from their neighbours. A similar method was used to model the territories of pectral sandpipers, 'Celidris Melanotos', although in this case animals were introduced over time, instead of simultaneously at the beginning, with the constraint that a new animal could not be added within a certain distance of established animals (Hasegawa and Tanemura [1977a]). Related to this model is a method of 'areal random packing', where a particle can only be added if the Voronoi cells of the resulting tessellation are all above an appropriate proportion (1/total no. of particles) of the total area being tessellated (Hasegawa and Tanemura [1978]). Other evidence of visible Voronoi division is found in the arrangement of the endothelial cells of the cornea (Sato [1978]), and
the epithelial cells of the gall bladder (Hudspeth [1975]).

In three dimensions, polyhedral Voronoi ce11s are the natural model for crystals formed by spherically symmetric growth with the particles as nuclei (Meijering [1953]). They have also been used to classify the nature of nuclei in a geometrical model for the crystallization of super-cooled liquids (Tanemura et al. [1977]), and in the modelling of the liquid state itself (Bernal [1959]).

The assumption of simultaneous emergence of plants with equal growth rates competiting for space, soil nutrients and light, make the Voronoi model applicable to the study of plant competition (Maynard Smith [1974]; Mead [1971]). Fischer and Miles [1973] study such a territorial competition between crop and weed as affected by different spatial arrangements of the crop. Relaxation of the equal growth rate assumption leads to a Johnson-Meh1 type tessellation with hyperbolic division lines.

Particles generating a Voronoi tessellation are said to be contiguous if their Voronoi cells are adjacent. Constructing the line segments joining all contiguous particle pairs yields the triangular Delaunay tessellation, which, in a sense, is the dual graph to the Voronoi tessellation. Figure 3 shows both the Voronoi and Delaunay tessellations for a small number of particles. All Ergodic distributions for the Delaunay tessellation are essentially known (Miles [1970]). This triangulation has been used to test the randomness of arrangements of towns as against a regular hexagonal arrangement (central place theory), by use of the known distributions for the area and angles of a Delaunay triangle (Mardia et a1. [1978]). Other geographical uses of Voronoi and Delaunay tessellations are noted in Rhynsburger [1973] and Boots [1974].

Figure 3

Hamilton [1971] considered that animal movement was influenced by the resulting effect on the size of the animal's Voronoi cell relative to its associated herd. In view of the simulation work of Hasegawa and Tanemura, effects on the tessellation due to particle relocations are of some interest, although not readily amenable to theoretical treatment. Hasegawa and Tanemura [1977b], note that movement of one particle, in a regular lattice of particles, towards the nearest neighbour may increase its Voronoi cell size. The mean area and number of sides of the Voronoi cell of a single moving particle in certain regular tessellations are considered by Cruz Orive [1979]. Also of interest here is the result of Sibson [1980a], that the nucleus ω, of a Vornoi cell is at the centre of
gravity of weights $T_{i}, p l a c e d$ at each of the particles w_{i} contiguous to w. These weights are just the areas of the V_{2} cells generated by ω and ω_{i} i.e. $T_{i}=$ area of $\left[\omega \omega_{i}\right]$ in the notation of section 3.1 .

Green and Sibson [1978] have developed an efficient computer algorithm for the calculation of planar Voronoi tessellations (see Chapter 5). They suggest that the tessellation could be used as a computational aid in distance based methods of spatial analysis e.g. by decreasing the time taken for nearest neighbour searches. Green has modelled the spread of infection on an irregular lattice using the tessellation (personal comm.). See also Besag [1974]. Sibson points out the possibility of uses in curve fitting and interpolation. The Delaunay triangulation uniquely possesses an optimal equiangularity property which makes it suitable for use in finite element methods for the solution of differential equations (Sibson [1980b]).

2.3 Voronoi Theory

Despite the wide variety of practical applications for the Voronoi tessellation, relatively few papers have explored the theoretical properties of V.

Meijering [1953] considered two models of crystal growth the cell model, which was a Voronoi tessellation based on Poisson distributed particles, and the related Johnson-Meh1 mode1, where the nuclei of growing crystals appear at different times. For the twodimensional case he obtained the mean number of vertices (sides), the mean perimeter and the mean area; for the three-dimensional case the mean number of edges, vertices and faces, and the mean surface area and volume. These values are summarized in Table 1 , where ρ is the density of the Poisson generating process.

Two-dimensional Voronoi

number of sides	6
perimeter	$4 \rho^{-\frac{1}{2}}$
area	ρ^{-1}

Three-dimensional Voronoi

number of vertices	27.07
number of edges	40.61
number of faces	15.54
edge length	$17.50 \rho^{-1 / 3}$
surface area	$5.821 \rho^{-2 / 3}$
volume	ρ^{-1}

Gilbert [1962] calculated the variance of the area A for two- and three-dimensional versions of V, and obtained upper and lower bounds on the distribution function $F(a)$ of A indicating that - $\log (1-F(a))$ is $O(a) . G i l b e r t ' s$ arguments are discussed and extended to the generalized Voronoi case in section 4.4.

We can choose a uniform random member of V by choosing a uniform random particle of the generating process, since each V cell contains exactly one particle 'nucleus'. By homogeneity, and the complete independence of \mathbb{P} in disjoint sets, we can assume that our uniform random particle is at the origin, and construct its Voronoi cell with respect to Poisson particles $\mathbb{E}^{2}-\{\underline{0}\}$. Since $\mathbb{E}^{2}-\{\underline{0}\}$ and $\{\underline{0}\}$ are disjoint sets, the stochastic construction of \mathbb{P} in $\mathbb{E}^{2}-\{\underline{0}\}$ is not influenced by the assumption of a particle at $\{\underline{0}\}$. We write $\left[\omega_{0}\right]$ for the typical Voronoi cell of ω_{0} generated by $\mathbb{P} \cup\left\{\omega_{0}\right\}$ with ω_{0} assumed $p l a c e d$ at the origin.

As an example of the use of this construction of a typical polygon, consider the mean area A of $\left[\omega_{0}\right]$ (see Figure 4).

Figure 4

Using Robbins [1944] technique, we use the representation

$$
A=\int I(\underline{x}) d \underline{x}
$$

where $I(\underline{x})$ is the indicator function of $\left[\omega_{0}\right]$. Hence

$$
\begin{aligned}
E(A) & =\int P\left(\underline{x} \in\left[\omega_{0}\right]\right) d \underline{x} \\
& =2 \pi \int_{0}^{\infty} r \cdot P\left(r \in\left[\omega_{0}\right]\right) d r \\
& =2 \pi \int_{0}^{\infty} r \exp \left\{-\rho \pi r^{2}\right\} d r=\rho^{-1} .
\end{aligned}
$$

By comparison, Meijering's technique of integrating over radial distance can also be applied to the calculation of the mean area for a Voronoi cell. This approach reveals an interesting analogy with the coverage of a circle by a special class of random arcs. In
this case we use the representation

$$
A=\int_{0}^{\infty} A(r, d r)
$$

where $A(r, d r)$ denotes the area of $\left[\omega_{0}\right]$ in an annulus $(r, r+d r)$. Let $L(r)$ be the length of a circle, radius r, which is covered by N_{1} random arcs, of random size 2ϕ, randomly and independently placed on the circumference. Then

$$
A(r, d r)=[2 \pi r-L(r)] d r,
$$

provided ϕ is given p.d.f. $f(\phi)=\sin 2 \phi \quad 0<\phi<\pi / 2$, and $N_{1} \sim$ Poisson, with mean $4 \rho \pi r^{2}$ (see Figure 5).

Figure 5

Hence

$$
\begin{equation*}
E(A)=\int_{0}^{\infty} E(2 \pi r-L(r)) d r \tag{3.1}
\end{equation*}
$$

Now

$$
L(r)=\int_{0}^{2 \pi r} I(x) d x
$$

where x is a point on the circumference of $Q(r)$ and

$$
I(x)= \begin{cases}1 & x \text { covered by an arc } \\ 0 & \text { otherwise }\end{cases}
$$

So $\quad E(L(r))=\int_{0}^{2 \pi r} P(x$ covered by arc $) d x$

$$
\begin{equation*}
=2 \pi r \cdot P(x \text { covered by arc }) \tag{3.2}
\end{equation*}
$$

A1so,
$P(x$ covered by arc $)=P($ at least one random arc hits $x)$
$=1-\mathrm{P}($ no random arcs hit x$)$

$$
\begin{align*}
& =E_{N_{1}}\left[1-\left(1-\int_{0}^{\pi / 2} \phi /{ }_{\pi} f(\phi) d \phi\right)^{N_{1}}\right] \\
& =1-P_{N_{1}}\left(1-\int_{0}^{\pi / 2} \phi /{ }_{\pi} \mathrm{f}(\phi) \mathrm{d} \phi\right) \tag{3.3}
\end{align*}
$$

where $\mathrm{P}_{\mathrm{N}_{1}}$ is the probability generating function of N_{1}. Since $\mathrm{P}_{\mathrm{N}_{1}}(\mathrm{~s})=\exp \left\{4 \rho \pi r^{2}(s-1)\right\}$, (3.1) to (3.3) yield

$$
E(A)=\int_{0}^{\infty}\left[2 \pi r-2 \pi r\left(1-\exp \left\{-\rho \pi r^{2}\right\}\right)\right] d r=\rho^{-1}
$$

Extending this argument to the second moment we have

$$
\begin{gathered}
A^{2}=\int_{0}^{\infty} \int_{0}^{\infty} A\left(r_{1}, d r_{1}\right) A\left(r_{2}, d r_{2}\right) \\
E\left(A^{2}\right)=\int_{0}^{\infty} \int_{0}^{\infty} E\left[\left(2 \pi r_{1}-L\left(r_{1}\right)\right)\left(2 \pi r_{2}-L\left(r_{2}\right)\right)\right] d r_{1} d r_{2},
\end{gathered}
$$

illustrating the connection between the covariance of coverage on concentric circles and the second moment of the area. In the next section we utilize our construction of a typical polygon to write down some theoretical expressions for cells of V.

2.4 Ergodic Theory for V

Consider a uniform random cell $\mathrm{T} \equiv\left[\omega_{0}\right]$ of V, generated by $\mathbb{P} \cup\left\{\omega_{0}\right\}$. Figure 6 illustrates the geometric structure around such a cell. ω_{0} is the nucleus of T, which is the intersection of N halfplanes ($\mathrm{N}=5$ in Figure 6). The sides of T are portions of perpendicular bisectors B_{i} between ω_{0} and ω_{i}, $i=1,2, \ldots, N$. Each vertex of T is the circumcentre of ω_{0} and two of the $\omega_{i} \cdot V$, the union of the circumdisks associated with each vertex must be empty of particles except for ω_{0} in its interior and $\omega_{1}, \omega_{2}, \ldots, \omega_{N}$ on its boundary. Let $|\mathrm{V}|$ be the area of V.

Figure 6

Parametrize B_{i} by the polar co-ordinates of the foot of the perpendicular from $0,\left(p_{i}, \theta_{i}\right)$, and 1 et q_{i} be the perpendicular distance from ω_{0} to $B_{i}, \mathbf{i}=1,2, \ldots N$. Let $\alpha=\left(p_{1}, \theta_{1}, \ldots, p_{N}, \theta_{N}\right)$, and define

$$
D\left(\omega_{0}\right)=\left\{\alpha: B_{1}, \ldots B_{N} \text { determine a convex } N-\text { gon } \ni \omega_{0}\right\}
$$

Then
P (there is a particle in $d \omega_{0}$ and $T \equiv\left[\omega_{0}\right]$ has N sides with $\alpha \in \operatorname{d} \alpha$)
$=\rho d \omega_{0} P$ (there is a particle in each of N distinct area elements, of areas $4 q_{i} d_{i} d \theta{ }_{i}$ and no other particles in V)
$=\rho d \omega_{0}\left(\prod_{i=1}^{N} 4 \rho q_{i} d p_{i} d \theta{ }_{i}\right) e^{-\rho|V|}$
$=2^{2 N}{ }_{\rho} N+1\left(\sum_{i=1}^{N} q_{i}\right) e^{-\rho|V|} d \alpha d \omega_{0} \quad$.

Integrating over all possible shapes for T, and setting $\rho=1$, w.1.o.g.,

$$
\begin{aligned}
p(N) & \equiv P\left(T \text { has } N \text { sides } \mid \text { particle at } \omega_{0}\right) \\
& =2^{2 N} \int \cdots \int_{D\left(\omega_{0}\right)}\left(\begin{array}{ll}
N & \left.q_{i}\right)
\end{array} e^{-|V|_{d \alpha}} .\right.
\end{aligned}
$$

Monte Carlo estimates of these $p(N)$ values were calculated by Hinde and Miles [1980].

Integrating (4.1) over all possible nucleus positions gives

$$
\begin{equation*}
P(\text { ce11 } T \text { of } V \text { with } \alpha \text { in } d \alpha)=2^{2 N} N+1\left[\int_{T}\left(\prod_{i=1}^{N} q_{i}\right) e^{-\rho|V|_{d}} \omega_{0}\right] d \alpha \tag{4.2}
\end{equation*}
$$

Alternatively, for fixed nucleus ω_{0} with $\left[\omega_{0}\right]$ an N-gon,
(4.1) implies the density

$$
f\left(\alpha \mid \text { particle at } \omega_{0},\left[\omega_{0}\right] \text { an } N-\text { gon }\right)\left(\begin{array}{cc}
N \\
\Pi=1 & q_{i}
\end{array}\right) e^{-p|v|}, \quad \alpha \in D\left(\omega_{0}\right) .
$$

Also from (4.1) we have

$$
f\left(\omega_{0} \mid \text { there is a cell } T \text { of } V \text { with sides } \alpha\right) \alpha\left(\begin{array}{c}
N \tag{4.3}\\
\prod_{i=1}^{N}
\end{array} q_{i}\right) e^{-\rho|V|}, \quad \omega_{0} \in T \text {, }
$$

which shows that the nucleus is not uniformly distributed, and has small probability density near the edges of T, where $|V|$ is large.

These relationships can be re-expressed in terms of the alternative parametrization of $T, \nu=\left(\nu_{1}, \ldots, \nu_{N}\right)$, where $v_{i}=B_{i} \cap B_{i+1}$ is the $i^{\text {th }}$ vertex of $T\left(B_{N+1} \equiv B_{1}\right)$, by use of the Jacobian relation (Miles [1970]),

$$
\left(\begin{array}{ll}
N & L_{i}
\end{array}\right) d \alpha=\left(\begin{array}{c}
N \tag{4.4}\\
\Pi
\end{array}\left|\sin \phi_{i}\right|\right) d \nu,
$$

where L_{i} are the side lengths of T and ϕ_{i} the changes in direction at each vertex as the perimeter of T is traversed. For example (4.2) becomes
P (there is a cell T of V with v in $d v$)

$$
=2^{2 N_{\rho} N+1}\left\{\int_{T}\left(\begin{array}{cc}
N \\
\Pi & q_{i}
\end{array}\right) e^{-\rho|v|_{d}} \omega_{0}\right\}_{i=1}^{N}\left(\frac{\left|\sin \phi_{i}\right|}{L_{i}}\right) d v .
$$

From Figure 6 we note that $A=$ area of $T<|V|$. However we can obtain the distribution of $|\mathrm{V}|$ by application of the complementary theorem for homogeneous Poisson processes (see Miles [1971] and Miles
[1970], Theorem 5.1, for the specialization to the planar case). This states that the distribution of any area associated with n particles chosen from a Poisson process by a homothetic invariant map, and m-filled by particles of that process, has distribution $\Gamma_{1}(m+n-1, \rho)$, where ρ is the density of the process (see (3.5.4)). A mapping ϕ from sets of n particles from \mathbb{P} into sets in \mathbb{E}^{2} is homothetic invariant if translation and rescaling of the particles results in the same translation and rescaling of the image set. Examples of such mappings are the circumcircle of three particles, the minimal disk for n particles (the disk of minimum radius covering all n particles) and the convex hull of the particles.

If we choose the mapping ϕ defined on the $N+1$ particles
${ }^{\omega}{ }_{0},{ }^{\omega} 1, \ldots,{ }_{N}$, as

$$
\phi\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)=\left\{\begin{aligned}
|v| & \text { if } \omega_{0} \text { is only particle inside } \\
& \text { convex hull of the } \omega_{i} \\
0 & \text { otherwise },
\end{aligned}\right.
$$

then if V is empty, $|\mathrm{V}| \sim \Gamma_{1}(\mathrm{~N}+1+0-1, \rho)$ i.e. $\Gamma_{1}(\mathrm{~N}, \rho)$.

Hence, if $F_{n}(a)$ and $F(a)$ are the distribution functions for the area of a uniform random n-gon of V and a uniform random ce11 of V respectively, then

$$
F_{n}(a) \geqslant \sum_{i=n}^{\infty} e^{-\rho a}(\rho a)^{i} / i!=P(M \geqslant n),
$$

where $M \sim$ Poisson with mean ρa, and

$$
F(a) \geqslant \sum_{n=3}^{\infty} \sum_{i=n}^{\infty} P(M=i) p(n)=E(P(M \geqslant N))
$$

where N is the number of sides of a typical cell with probability distribution $\{p(n)\}$. Also, since (4.3) suggests that the nucleus of T will be centrally located, A will be approximately |V|/4 for large N , and hence the area distribution for N -gons when N is large will be approximately $\Gamma_{1}(N, 4 \rho)$.

The results in this section represent joint work between
R.E. Miles and the author.

CHAPTER 3

GENERALIZED VORONOI TESSELLATIONS

3.1 \underline{V}_{n} - Basic Geometry

In this chapter we introduce the random tessellations V_{n}, $n=2,3, \ldots$, which form the main topic of study in this thesis.

The V_{n} tessellations are a natural generalization of the Voronoi tessellation, which can be written as V_{1}. All points in a V_{1} cell have the same closest particle; all points in a V_{n} cell have the same n closest particles. These particles are referred to as the proximity particles of the cell. If a V_{n} cell T has proximity particles $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ we write $T \equiv\left[\omega_{1} \ldots \omega_{n}\right]$.

In full generality we can define V_{n} relative to a
d-dimensional point process π_{d} (see section 2.1). In fact, the assumption of particles in general position can be waived, and some examples of V_{n} 's based on a degenerate square grid of particles are given, but most of the theory deals with processes of type π_{2}, and more particularly, planar Poisson processes. We note that multiplicity of particles in the generating process must be excluded.

The geometry of V_{n} is complicated and hard to visualize. The geometrical viewpoint must be chosen to suit the problem to be solved - hence we look at the vertex structure, the construction of individual polygons, the associated point processes on arbitrary linear transects and on arbitrary perpendicular bisectors of particle pairs, and the relationships between superpositions of V_{n} 's for consecutive n values.

The computation of V_{n} 's is covered in Chapter 5. As an introduction here however, Figure 1 shows plots of V_{1}, V_{2}, V_{3} and V_{1} and V_{2} superposed $-V_{1,2}$. These plots are based on a random distribution of particles. In Figure 2, various V_{n} for a square grid of particles are illustrated. These plots are invaluable to an understanding of the geometry which follows.

Consider the arbitrary n-set of particles $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ chosen from $a \pi_{d}$ type process defined on a space X. For the V_{n} ce11 [$\omega_{1} \omega_{2} \cdots \omega_{n}$] to be non-empty requires that there be at least one point of X with $\omega_{1}, \ldots, \omega_{\mathrm{n}}$ as the nearest n particles. If we label the remaining particles $\omega_{n+1}, \omega_{n+2}, \ldots$, this is equivalent to insisting that each $\omega_{i}, 1 \leqslant i \leqslant n$ is closer to the point then any $\omega_{j}, j \geqslant n+1$. Hence, if $K_{i j}=\left\{\underline{x}:\left|\underline{x}-\omega_{i}\right| \leqslant\left|\underline{x}-\omega_{j}\right|\right.$, $\left.\underline{x} \in X\right\}$, we have the important representation

$$
\begin{equation*}
\left[\omega_{1} \omega_{2} \cdots{ }_{n}\right]=\bigcap_{i=1}^{n} \sum_{j \geqslant n+1}^{n} K_{i j} \tag{1.1}
\end{equation*}
$$

Definition

$$
\begin{aligned}
v_{n} \equiv\left\{\left[\omega_{1} \omega_{2} \ldots \omega_{n}\right]:\right. & \omega_{1}, \ldots, \omega_{n} \text { vary over all possible } n \text {-sets } \\
& \text { from } \left.\pi_{d} \text { type process }\right\}
\end{aligned}
$$

is called a generalized Voronoi tessellation of the space X on which π_{d} is defined.

If X is the plane , then (1.1) shows that each $\left[\omega_{1} \ldots \omega_{n}\right]$ is a convex polygon. Since, apart from the null set of polygon boundaries, every point of \mathbf{E}^{2} belongs to one and only one $\left[\omega_{1} \ldots \omega_{n}\right], V_{n}$ is a convex polygonal tessellation of the plane, as is clear from Figures 1 and 2. In fact, the higher V_{n} 's appear to have exactly the same topological structure as V. However there are some important
geometrical differences, as we see as soon as we start to investigate the different types of points in the polygon boundaries.

If a point \underline{x} has a well-defined set of n closest particles then it will be contained in the V_{n} cell with those particles as its proximity particles. Precisely, a point has n well-defined nearest particles iff a circle can be drawn, centered at \underline{x}, which contains exactly n particles in its interior. A little thought reveals that points of \mathbf{E}^{2} fall into one of four types relative to a V_{n} tessellation, which are illustrated in Table 1.

Table 1

Particle configuration

$$
\text { around } x
$$

(i)

(ii)

(iii)

(iv)

x's place in V_{n} boundary
\underline{x} is inside V_{n} cell

$$
\left[\omega_{1} \cdots \omega_{n}\right]
$$

\underline{x} is on the edge between two v_{n} ce11s $\left[\omega_{1} \cdots \omega_{n-1} \omega_{n}\right]$ and $\left[\omega_{1} \cdots \omega_{n-1}{ }^{\omega}{ }_{n+1}\right]^{1}$
\underline{x} is at the vertex of three

$$
\begin{aligned}
v_{n} \text { ce11s } & {\left[\omega_{1} \omega_{2} \cdots \omega_{n-1} \omega_{n}\right], } \\
& {\left[\omega_{1} \omega_{2} \cdots \omega_{n-1} \omega_{n+1}\right], } \\
& {\left[\omega_{1} \omega_{2} \cdots \omega_{n-1}{ }_{n+2}\right] }
\end{aligned}
$$

\underline{x} is at the vertex of three

$$
V_{\mathrm{n}} \mathrm{cells}
$$

$$
\begin{aligned}
& {\left[\omega_{1} \omega_{2} \cdots \omega_{n-2}{ }^{\omega}{ }_{n-1}{ }^{\omega_{n}}\right]} \\
& {\left[\omega_{1} \omega_{2} \cdots \omega_{n-2}{ }^{\omega}{ }_{n-1}{ }^{\omega}{ }_{n+1}\right]} \\
& {\left[\omega_{1} \omega_{2} \cdots \omega_{n-2}{ }^{\omega}{ }_{n}{ }^{\omega}{ }_{n+1}\right]}
\end{aligned}
$$

Each circle is centred at \underline{x} and is labelled with the number of filling particles.

Figure 1 (i). V_{1} for a set of random particles.
Each cell contains one particle or nucleus, shown by a cross.

Figure 1 (ii). V_{2} for a set of random particles.

Figure 1 (iii). V_{3} for a set of randam particles.
Note that each cell can contain up to three particles.

Figure 1 (iv). Superposition of V_{1} and V_{2} for a set of random particles. V_{1} shown in black, V_{2} in blue. Note the two vertex types in V_{2} - $(1,2)$ vertices where black and blue lines meet, $(2,3)$ vertices where only blue lines meet.

Figure 2 (i). V_{n} 's based on a square grid of particles The particles are shown by crosses.

VORONOI - 14

Figure 2 (ii). V_{n} 's based on a square grid of particles The particles are shown by crosses.

The most important difference between V_{1} and $V_{n}(n>1)$ boundary points is that in V_{n} there are two different sorts of vertices, i.e. points type (iii) and (iv) in Table 1. These correspond to the centres of $(n-1)$ and $(n-2)$-filled circumdisks of triples of particles from the generating process. A V_{n} vertex corresponding to an ($n-1$-filled circumdisk will be called an n^{+}vertex, that corresponding to an ($n-2$)-filled circumdisk an n^{-}vertex. Since it is clear that an n^{+}vertex is equivalent to an $(n+1)^{-}$vertex, both being (n - 1)-filled circumdisks, we sometimes use the more convenient notation $(n, n+1)$ vertex. An $(n, n+1)$ vertex appears in both V_{n} and V_{n+1}. For example, from V_{12} in Figure $1, V_{2}$ has $(1,2)$-vertices shared with V_{1} and isolated $(2,3)$-vertices inside V_{1} cells. The situation is similar for higher n-values. Each V_{n+1} grows from the $(n, n+1)$ vertices of V_{n} and partitions the V_{n} cells by a web formed by $(n+1, n+2)$-vertices. This relationship between successive V_{n} tessellations is analysed more carefully in section 4.2 .

From Table 1 we note certain important local properties for
V_{n}
(i) the proximity particles of adjacent cells separated by $\left.{ }^{<\omega_{1}} \omega_{2}\right\rangle$ and $\left[\omega_{1} \omega_{3} \omega_{4} \ldots \omega_{n-1}\right]$ and $\left[\omega_{2} \omega_{3} \omega_{4} \cdots \omega_{n-1}\right]$, differing only by exchanging ω_{1} and ω_{2};
(ii) around an n^{+}vertex the circumferential particles enter singly into the proximity sets, around an n^{-}vertex they enter pairwise combined with the ($n-2$)-interior filling particles.

The generalized Voronoi tessellation was first defined by Miles [1970], who used ergodic theory methods to calculate $E(A), E(N)$ and $E(S)$ for $V_{n} n=1,2,3, \ldots$ where the generating point process was Poisson with density ρ. These values are

$$
\begin{aligned}
& E(A)=\frac{1}{(2 n-1) \rho} \\
& E(N)=6 \\
& E(S)=\frac{(2 n)!}{\left(n!(n-1)!(2 n-1) 2^{\left.2 n-3 \rho^{\frac{1}{2}}\right)}\right.} \sim \frac{4}{(\pi n \rho)^{\frac{1}{2}}} .
\end{aligned}
$$

3.2 n -Circuits and n -Areas in V_{n}

Before exploring further the local geometry of V_{n}, we introduce a global geometric construct which is interesting in itself, and is a useful tool for geometric arguments to follow.

Definition

Let ω be a particle of the point process generating V_{n}.
Let $P=\left\{P: P ' s\right.$ proximity set contains $\left.\omega, P \in V_{n}\right\}$.

Then the n-Area of ω is $A_{\omega, n} \equiv \underset{P \in P}{U} P$
and the n -Circuit of ω is $\mathrm{C}_{\omega, \mathrm{n}} \equiv \partial \mathrm{A}_{\omega, \mathrm{n}}$.
$A_{\omega, n}$ is simply the collection of all V_{n} cells with ω in their proximity set - see Figure 3 for an illustration of 2 and 3-Areas with their surrounding 2 - and 3 -circuits.

Lemma 1 The n-Area of ω contains ω, and is star-shaped relative to ω.

Proof First we show that

$$
A_{\omega, n}=X \equiv\{\underline{y}: Q(\underline{y},|\omega-\underline{y}|) \text { contains } \leqslant n-1 \text { particles }\}
$$

Take $\underline{y} \in A_{\omega, n}$. Then there is a $P_{n} \in P$ such that $\underline{y} \in P_{n}$.

Figure 3 (i). 2-Circuit and 2-Area in V_{2}

The particle ω is circled in blue, and its 2-circuit is shaded in yellow. Particles which are cell-contiguous with ω (see section 3.3) are shaded in yellow; particles which are edge-contiguous with ω (but not ce11-contiguous) are shaded in green.

Figure 3 (ii). 3-Circuit and 3-Area in V_{3}
The particle ω is circled in blue, and its 3-Circuit is shaded in yellow. As in Figure 3 (i), cellcontiguous particles are shaded yellow, and particles which are edge-contiguous, but not cell-contiguous are shaded in green.
The incomplete portion of the 3 -circuit from A to B (lower right) is shown in greater detail in Figure 3 (iii).

Figure 3 (iii). Completion of 3-Circuit from Figure 3 (ii) This plot completes the 3 -circuit of ω between points A and B. It clearly shows two pentagons which are too small to appear on the smaller scale plot. To clarify Figure 3 (ii), certain cells are labelled with their proximity sets, using the numbering of particles on Figure 3 (ii).

Therefore ω is contained in \underline{y}^{\prime} s proximity n-set i.e. in the set of the n closest particles to \underline{y}, and $Q(y,|\omega-\underline{y}|)$ must contain $\leqslant n-1$ particles other than w. i.e. $\underline{y} \in X$.

Take $\underline{y} \in X$. Then ω is again in y^{\prime} s proximity n-set and so \underline{y} must be in some $P \in P$ i.e. $y \in A_{\omega, n}$. Hence $A_{\omega, n}=X$.

As $\omega \in X, \omega \in A_{\omega, n}$ i.e. the n-Area of ω contains ω.

Now consider a ray emanating from ω, with points on the ray specified by $y(d)$, where d is the distance from ω. As $Q\left(y\left(d_{1}\right), d_{1}\right) \supset Q\left(y\left(d_{2}\right), d_{2}\right)$ for $d_{1}>d_{2}$, if $y\left(d_{1}\right) \in A_{\omega, n}$ then $y\left(d_{2}\right) \in A_{\omega, n}$ for all $d_{2}<d_{1}$. Hence $A_{\omega, n}$ is star-shaped relative to ω.

Lemma 2 The mean n-Area for a typical particle chosen from a Poisson generating process \mathbb{P} is

$$
E\left(A_{\omega, n}\right)=n \rho^{-1} \quad n=1,2, \ldots
$$

Proof From Lemma 1,

$$
A_{\omega, n}=\int I_{\omega, n}(\underline{x}) d \underline{x}
$$

$$
\text { where } I_{\omega, n}(\underline{x})= \begin{cases}1 \text { if } Q(\underline{x},|\omega-\underline{x}|) \text { contains } \\ & \leqslant n-1 \text { particles } \\ 0 & \text { ow. }\end{cases}
$$

Hence $E\left(A_{\omega, n}\right)=\iint P(Q(\underline{x},|\omega-\underline{x}|)$ contains $\leqslant n-1$ partic1es $) d \underline{x}$

$$
=2 \pi \int_{0}^{\infty} P(\text { circle radius } r \text { has } \leqslant(n-1) \text { particles in }
$$

$$
\text { it) } \mathrm{rdr}
$$

$$
=2 \pi \int_{0}^{\infty} \sum_{k=0}^{n-1} \frac{\left(\rho \pi r^{2}\right)^{k} e^{-\rho \pi r^{2}}}{k!} r d r
$$

$$
=2 \pi \sum_{k=0}^{n-1} \int_{0}^{\infty} \frac{1}{2 \rho \pi} \cdot f(r ; 2 k+2, \rho \pi) d r,
$$

where f is the density function for a random variable with distribution $\Gamma_{2}(2 k+2, \rho \pi) . \quad($ see (5.4).)

Hence

$$
E\left(A_{\omega, n}\right)=\sum_{k=0}^{n-1} \frac{1}{\rho}=n \rho^{-1}
$$

As a check on Lemma 2 we note that the 1-Area of a particle is simply its Voronoi cell, with mean area ρ^{-1}, and the 1 -circuit is the boundary of the cell.

The 1-Areas therefore form a tessellation or 1-covering of the plane, i.e. the Voronoi tessellation V. In an analogous way the n-Areas form an n-covering of the plane, for, ignoring the null set of boundary points, each point $\underline{x} \in \mathbb{E}^{2}$ has n particles $\omega_{1} \ldots \omega_{n}$ in its proximity n-set and hence 1 ies in each $A_{\omega_{i}, n}, i=1,2, \ldots n$. Obvious1y

$$
\left[\omega_{1} \omega_{2} \ldots \omega_{n}\right]=\bigcap_{i=1}^{n} A_{\omega_{i}, n}
$$

Lemma 3

The mean number $E\left(N_{\omega, n}\right)$ of V_{n} cells is an n-Area when the generating process is \mathbb{P} is

$$
E\left(N_{\omega, n}\right)=n(2 n-1) \quad n=1,2, \ldots
$$

Proof

$$
\begin{aligned}
E\left(N_{\omega, n}\right) & =\frac{E\left(A_{\omega, n}\right)}{E\left(A_{n}\right)} \\
& =\frac{(2 n-1) n \rho}{\rho} \\
& =n(2 n-1),
\end{aligned}
$$

independent of ρ.

Some values of $E\left(N_{\omega, n}\right)$ are listed in Table 2.

Table 2

n

$$
E\left(N_{\omega, n}\right)
$$

1
6
15
120
179,700

Since $A_{\omega, 1}$ is the Voronoi ce11 of $\omega, N_{\omega, 1} \equiv 1$, so obviously $E\left(N_{\omega, 1}\right)=1$.

An examination of V_{12} (Figure 1) suggests that ω and ω_{i} generate a V_{2} cell iff they have a V_{1} segment on their perpendicular bisector. Hence

$$
\begin{equation*}
N_{\omega, 2}=N, \tag{2.1}
\end{equation*}
$$

where N is the number of sides of the Voronoi ce11 for ω. Lemma 3 therefore verifies that $E(N)=6$ for V_{1}. In the next section we prove (2.1) in the context of a general analysis of particle contiguities using n-Areas. The only other point of interest in Table 2 is to note the rapid increase in $E\left(N_{\omega, n}\right)$.

3.3 Particle Contiguity in V_{1} and V_{n}

In V_{1} we naturally define two particles to be contiguous if they generate adjacent V_{1} cells, or, equivalently, if they have a V_{1} segment on their perpendicular bisector.

In V_{n} we apparently have several choices for the definition of pairwise contiguity:-
(i) cell-contiguity; ω_{1} and ω_{2} both appear in the proximity set of at least one V_{n} cell. We write $\left[\omega_{1} \omega_{2} \rightarrow n\right]$
(ii) edge-contiguity; $\left.<\omega_{1} \omega_{2}\right\rangle \cap \mathcal{L}_{\mathrm{n}} \neq \phi$, where \mathcal{L}_{n} is the aggregate of sides of members of V_{n}, i.e. $\left\langle\omega_{1} \omega_{2}\right\rangle$ contains a segment belonging to the boundary of V_{n}. We write $<\omega_{1} \omega_{2} \rightarrow n>$
(iii) extended-cell contiguity - at least one of ω_{1} and ω_{2} appear in the proximity sets of adjacent V_{n} cells.

Lemma $4 \quad\left[\omega_{1} \omega_{2} \rightarrow n\right]$ iff $\left.<\omega_{1} \omega_{2} \rightarrow n-1\right\rangle \quad n=2,3, \ldots$

Proof By definitions of cell and edge contiguity,

$$
\begin{aligned}
& \quad\left[\omega_{1} \omega_{2} \rightarrow n\right] \Leftrightarrow \text { int } A_{\omega_{1}}, n \cap \text { int } A_{\omega_{2}, n} \neq \phi \\
& <\omega_{1} \omega_{2} \rightarrow n-1>\Leftrightarrow A_{\omega_{1}, n-1} \cap A_{\omega_{2}, n-1} \neq \phi,
\end{aligned}
$$

where int $A_{\omega, n}$ is the interior of the n-Area.

Assume $<\omega_{1} \omega_{2} \rightarrow n-1>$. Consider $\left.\underline{x} \in<\omega_{1} \omega_{2}\right\rangle \cap \mathcal{L}_{n-1}$. Then $Q\left(\underline{x},\left|\underline{x}-\omega_{1}\right|\right)$ is (n -2)-filled with particles $\omega_{3}, \omega_{4}, \ldots \omega_{n}$ say, so $\underline{x} \in\left[\omega_{1} \ldots \omega_{n}\right]$ i.e. $\left[\omega_{1} \omega_{2} \rightarrow n\right]$.

Assume $\left[\omega_{1} \omega_{2} \rightarrow n\right]$. Then there exists \underline{x} such that $Q_{1}=Q\left(\underline{x}, \max \left[\left|\underline{x}-\omega_{1}\right|,\left|\underline{x}-\omega_{2}\right|\right]\right)$ is at most $(\mathrm{n}-2)$-filled, excluding ω_{1} and ω_{2}. Construct the line L (see Figure 4), joining \underline{x} to whichever of ω_{1} or ω_{2} is on the boundary of Q_{1}, and let $\underline{y} \equiv L \cap<\omega_{1} \omega_{2}>$.

Then $Q\left(\underline{y},\left|\underline{y}-\omega_{1}\right|\right)$ is at most $(n-2)$-filled, and hence $y \in \mathcal{L}_{i}$ for some $i, 1 \leqslant i \leqslant n-1$. But if $\left\langle\omega_{1} \omega_{2}\right\rangle$ contains a V_{i} segment, it must contain V_{j} segments, for all $j>i$ (see section 5.2). Therefore $<\omega_{1} \omega_{2} \rightarrow n-1>$. This completes the lemma.

Figure 4

Lemma 5 There is a one-to-one correspondence between V_{1} sides and V_{2} cells - each V_{2} cell contains exactly one V_{1} side.

Proof Consider a non-empty V_{2} ce11 $\left[\omega_{1} \omega_{2}\right]$. By Lemma 4 , $\left\langle\omega_{1} \omega_{2}\right\rangle$ must contain a V_{1} segment, which is contained in the V_{2} cell since if $\underline{x} \in V_{1}$ segment then $Q\left(\underline{x},\left|\underline{x}-\omega_{1}\right|\right)$ is empty, and ω_{1} and ω_{2} are the closest two particles. No V_{2} cell can contain two V_{1} segments on $\left.<\omega_{1} \omega_{2}\right\rangle$ and $\left\langle\omega_{3} \omega_{4}\right\rangle$ since each segment would determine two particles which are the closest two leading to a contradiction unless $\omega_{1} \equiv \omega_{3}$ and $\omega_{2} \equiv \omega_{4}$ which is impossible since no perpendicular bisector can contain more than one V_{1} segment. (see section 5.2.)

From Lemma 5, all V_{2} ce11s are as illustrated in Figure 5 partitioned into two sections by a single V_{1} segment. Hence a V_{2} N -gon has two 2^{-}vertices and $(\mathrm{N}-2) 2^{+}$vertices (see also Figure 1).

Figure 5

We note that there is a major difference between the V_{1} to V_{2} transition and the transitions V_{n} to V_{n+1}, due basically to the fact that although all V_{1} vertices are also V_{2} vertices, not all V_{n} vertices are V_{n+1} vertices. Thus we lose the one-to-one correspondence between V_{n} cells and V_{n-1} sides which holds for $n=1$ in the $n>1$ case. However the cell-side correspondence can be replaced by a combination cell-side and cell-vertex correspondence which is used to calculate mean cell areas for general homogeneous tessellations. (see section 4.1.)

Extended cell contiguity is equivalent to edge-contiguity. For if ω_{1} and ω_{2} are extended-cell contiguous with more than one of ω_{1} or ω_{2} in adjacent cells, they are cell-contiguous and hence edgecontiguous. If only one of the pair appears in each adjacent cell, the separating V_{n} segment must appear on $\left\langle\omega_{1} \omega_{2}\right\rangle$ and again we have edge contiguity. The reverse implication is obvious.

In 4.6 we make use of the geometric lemmas here, together with the stochastic constructions for V_{n} vertices given in 3.5 to derive some distributions related to pairwise contiguous particles.

$3.4 \quad \mathrm{~V}$ - triangles and quadrilaterals

In this section we begin to explore the total geometry around a $V_{n} N$-gon for N small. This is extended to general N in section 3.6. An understanding of the associated particle structure is also necessary for the stochastic constructions in section 3.5.

Triang1es

Triangles occur in V_{1}, but as a perusal of Figure 1 indicates, none occur in V_{n} for $n>1$.

Lemma 6 There are a.s no triangles in $V_{n}, n=2,3 \ldots$

Proof

Assume there is a triangle $T \in V_{n}$.

As adjacent vertices of T must have two circumferential
particles in common we can label its vertices and sides as shown on Figure 6. $<\Omega_{0} \Omega_{1}>$ is the perpendicular bisector of particles Ω_{0} and Ω_{1}, $<\Omega_{0} \Omega_{1} \Omega_{2}>_{j}$ is a j-filled V_{n} vertex with circumferential particles Ω_{0}, Ω_{1}
and Ω_{2}.

If $P_{n} \equiv\left[\omega_{1}, \ldots, \omega_{n}\right]$ shares a boundary $\left\langle\omega_{n} \omega_{n+1}>\right.$ with R_{n} then the proximity set of R_{n} is $\left\{\omega_{1}, \ldots, \omega_{n-1}, \omega_{n+1}\right\}$. As Ω_{0} appears in all sides of T , it is either in T 's proximity set, or the proximity sets of all three adjacent regions.

If $\Omega_{0} \in T$, then it must appear in T 's proximity set.

Assume $\Omega_{0} \notin \mathrm{~T}$, and that Ω_{0} is not in T's proximity set i.e. Ω_{0} must then appear in the proximity sets of all three adjacent regions.

Draw a ray from Ω_{0} which hits the interior of T. This ray intersects $A_{\Omega_{0}, n}$ in at least two disjoint line segments, violating the star-shaped property of $A_{\Omega_{0}, n}$ about Ω_{0}. Therefore Ω_{0} must be in T's proximity set for any position of Ω_{0}.

As the sides of T are segments on $\left\langle\Omega_{0} \Omega_{i}\right\rangle, i=1,2,3, \Omega_{i}$ cannot be in T's proximity set for $\mathrm{i}=1,2,3$. Hence $T \equiv\left[\Omega_{0}, \omega_{1}, \ldots, \omega_{n-1}\right]$ with no $\omega_{i} \equiv \Omega_{1}, \Omega_{2}$ or $\Omega_{3}, i=1,2, \ldots, n-1$. From T's proximity set we can obtain the proximity sets of all adjacent regions (see Figure 6). The V_{n} vertex type is determined by the proximity sets of the three cells surrounding the vertex. For T, $i_{1}=i_{2}=i_{3}=(n-1)$ i.e. all vertices contain ($n-1$) particles in their circumdisks. In fact, these particles are $\omega_{1}, \omega_{2}, \ldots, \omega_{n-1}$.

We now draw the associated circumcircles for the vertices of T. From Figure 6, the circumcircles for vertices v_{1} and v_{2} are as shown in Figure 7. The circumcircle of vertex v_{3} must pass through Ω_{0}, Ω_{2} and Ω_{3}. There are three possibilities for its placement:-

Figure 7

Write Q_{i} for the open circumdisk of vertex ν_{i}.
3
(i) $\bigcap_{i=1}^{\cap} Q_{i}=\phi$. As a11 Q_{i} must contain the particles $\omega_{1}, \omega_{2}, \ldots, \omega_{n-1}$, this possibility is eliminated, unless $n=1$.
(ii) $\bigcap_{i=1}^{3} Q_{i} \subset \bigcap_{i=1}^{2} Q_{i}$. As in (i) above $\bigcap_{i=1}^{3} Q_{i}$ must contain $\omega_{1}, \ldots, \omega_{n-1}$. However, in this case Ω_{2} or Ω_{3} or both must be on $\delta\left(\sum_{i=1}^{2} Q_{i}\right)$ and hence in Q_{1} or Q_{2}. (See Figure 8.) Therefore either Q_{1} or Q_{2} or both contain $(n-1)+1$ particles, violating the condition that all Q_{i} are ($n-1$)-filled. This eliminates this possibility for all values of n.

(iii) $Q_{1} \cap Q_{2} \subset Q_{3}$

In this case Q_{3} contains $\omega_{1}, \omega_{2}, \ldots, \omega_{n-1}$ and Ω_{1} as well, violating the ($n-1$)-filling condition, and eliminating this possibility for all n values. (Figure 9.)

Figure 9

This completes the proof of the lemma.

Polygons in V_{n}

Definition A polygon in V_{n} is suspended by a perpendicular bisector $<\omega_{1} \omega_{2}>$ of particles ω_{1}, ω_{2} if it appears in two of its vertices, but not as a side of the polygon. A polygon is n-suspended if it is suspended by n distinct perpendicular bisectors (see below).

0 -suspended 5-gon

As any $\left\langle\omega_{1} \omega_{2}\right\rangle$ can contain at most one side of a member of V_{1}, all $P \in V_{1}$ are 0 -suspended.

Simulation drawings of V_{n} realizations for $n>1$ (see
Figure 1) suggested the

Lemma 7 All quadrilaterals in U_{n} are 2-suspended. $n=2,3,4 \ldots$

Proof Assume we have a quadrilateral S in V_{n}.

As adjacent vertices of S must have two circumferential points in common, we can label its vertices and sides as shown in Figure 10

Figure 10

The assignment of circumferential particles on Figure 10 is unique, apart from permutations due to relabelling. The particles Ω_{0}, Ω_{1}, and Ω_{2} are three distinct particles. However Ω_{3} and Ω_{4} could be the same particle. Hence we have the following two cases.

Case $1 \quad \Omega_{3} \neq \Omega_{4}$

The circumferential particles of v_{4} follow from
(i) ν_{4} must have two circumferential particles in common with v_{3} i.e. Ω_{0} and Ω_{2}, Ω_{2} and Ω_{4}, or Ω_{0} and Ω_{4}.
(ii) the first pair in (i) is eliminated as this is shared by v_{3} with ν_{1}.
(iii) the second pair in (i) is eliminated as ν_{4} must have two circumferential particles in common with ν_{2} and $\Omega_{4} \neq \Omega_{3}$.
(iv) this leaves Ω_{0}, Ω_{4} and Ω_{3} as ν_{4} 's circumferential particles. Ω_{3} has to be chosen to comply with requirement in (iii).

Analogous arguments to those used in the triangle case now show that a quadrilateral with vertex structure as in Figure 11 is impossible.
(i) All four sides are of the form $<\Omega_{0} \Omega_{i}>$ and so Ω_{0} must be in S's proximity set.
(ii) $\Omega_{i} i=1,2,3,4$ all appear $i n$ the sides of S, so given (i) they cannot be in S's proximity set. Hence S's proximity set must be $\left\{\Omega_{0}, \omega_{1}, \ldots, \omega_{n-1}\right\}$. From this we can determine the proximity sets of the remaining regions, as shown on Figure 11.
(iii) From the nature of the proximity sets surrounding each vertex, all vertices must contain ($n-1$) particles in their open circumdisks i.e. $i_{1}=i_{2}=i_{3}=i_{4}=n-1$. These particles are $\omega_{1}, \omega_{2}, \ldots, \omega_{n-1}$.
(iv) The implied circumcircle structure is four circles, all 4 intersecting at Ω_{0}, with $\omega_{1} \ldots \omega_{n-1} \in \cap_{i=1} Q_{i}$. However it is impossible to achieve this without putting at least one of $\Omega_{1}, \Omega_{2}, \Omega_{3}$ or Ω_{4} inside a Q_{i}, which means that not all Q_{i} can contain only ($n-1$) particles, unless $n=1$.

Hence the vertex structure in Figure 11 cannot correspond to a quadrilateral for $n=2,3 \ldots$.

Case $2 \quad \Omega_{3}=\Omega_{4}$

We complete Figure 10 as follows:-

Figure 12

The circumferential structure of ν_{4} follows from
(i) v_{4} and v_{3} must have two common circumferential particles either $\Omega_{0} \Omega_{2}, \Omega_{0} \Omega_{3}$, or $\Omega_{2} \Omega_{3}$.
(ii) The first pair in (i) is eliminated as ν_{3} and ν_{1} share this pair.
(iii) The second pair in (i) is eliminated as ν_{4} and ν_{3} as well as ν_{2} and ν_{4} would share this pair.
(iv) Therefore Ω_{2}, Ω_{3} must appear, together with Ω_{1} so that ν_{2} and ν_{4} share two circumferential points.

This completes the proof of the lemma.

Quadrilaterals - associated point structure

We can use the vertex structure above to develop in more detail the point structure associated with a quadrilateral in V_{n} $n=2,3, \ldots$, by looking at the circumdisks Q_{i} of the vertices ν_{i} (see Figure 13).

Figure 13
(i) Ω_{0}, Ω_{1}, and Ω_{2} can be arbitrarily placed on the circumference of Q_{1}.
(ii) As $\cap_{i=1} Q_{i} \neq \phi$, and as ∂Q_{3} must pass through Ω_{0}, Ω_{3} must 1ie between the dotted lines in Figure 13. This is equivalent to requiring that the four circumferential points have a quadrilateral convex hull, as $\Omega_{3} \not \ddagger Q_{1}$ as then $\overbrace{i=1}^{4} Q_{i}$ would be void.
(iii) As Ω_{3} and Ω_{1} must both lie on the same side of the line joining $\Omega_{0} \Omega_{2}$, and $\Omega_{3} \notin Q_{1}, \Omega_{1} \in Q_{3}$.
(iv) As Ω_{0} and Ω_{3} must both lie on the same side of the line joining $\Omega_{1} \Omega_{2}$ and $\Omega_{3} \notin Q_{1}, \Omega_{0} \in Q_{4}$.

Hence we have the

Lemma 8 Quadrilaterals in $V_{n}(n=2,3, \ldots)$ have the following associated point structure. Let $\omega_{1}, \ldots, \omega_{4}$ be four particles with a quadrilateral convex hull. Let Q_{i} be the disk bounded by the circumcircle of three distinct ω_{j} not including ω_{i}. Then these particles will generate a quadrilateral if

```
            4
            (i)}\mp@subsup{\cap}{i=1}{n}\mp@subsup{Q}{i}{}\mathrm{ contains (n-2) particles
and (ii) }\mp@subsup{\}{i=1}{4
```

 The full known structure of a \(V_{n}\) quadrilateral is shown in
 Figure 14.
 Structure of Quadrilateral in $V_{n} n=2,3, \ldots$

Figure 14

In Figure 14, each region is marked with part of its neighbouring n-set. The complete neighbouring n-set is the set marked plus $\left\{\omega_{1}, \ldots, \omega_{n-2}\right\}$ with no $\omega_{i}=\Omega_{i}$.

3.5 Stochastic Constructions for V_{n}

In this section we present stochastic constructions for vertices, cells and sides of V_{n} for the case when the generating process is a planar Poisson process \mathbb{P}. These constructions are based on ergodic results of Miles [1970] relating to m-filled circumdisks of three particles chosen from \mathbb{P}.

Let \dot{P}_{3} be the aggregate of all ordered triples of particles chosen from \mathbb{P} and let $\dot{\mathrm{H}}_{3}\{\mathrm{X}, \delta \psi\}=$ number of these triples with first particle ω_{1} in X and whose ψ value lies in $\delta \psi$, where $\psi=\left(\xi_{2} n_{2} \xi_{3} n_{3}\right)$
are the co-ordinates of ω_{2} and ω_{3} relative to ω_{1}.

Then Miles shows, [Equation 3.14, 1970], that

$$
\begin{equation*}
\dot{\mathrm{H}}_{\mathrm{n}}\{\mathrm{X}, \delta \psi\} /|\mathrm{X}|{ }^{\mathrm{a}} \mathrm{a}_{\mathrm{s}} \rho^{\mathrm{n}}|\delta \psi|, \quad \text { as } \quad|\mathrm{X}| \rightarrow \infty,|\delta \psi| \rightarrow 0 \tag{5.1}
\end{equation*}
$$

which is intuitively plausible, since we would expect a uniform distribution of random particles relative to the first. (5.1) specifies an ergodic density for $\left(\omega_{2} \omega_{3}\right)$, which is not normalizable over the whole plane. Restricting attention to m-filled circumdisks of the three particles and changing variables to polar-co-ordinates relative to their circumcentre, i.e. $k=\left(R_{1} \theta_{1} \theta_{2} \theta_{3}\right)$, gives

$$
\begin{equation*}
H_{3}^{(m)}\{X, \delta k\} /|X| a_{\rightarrow} s \cdot \frac{1}{6} \rho^{3}\left\{(\pi \rho)^{m_{R}}{ }^{2 m+3} e^{-\pi \rho R^{2}} / m!\right\}|\sigma|\left|\delta_{k}\right| \tag{5.2}
\end{equation*}
$$

where $H_{3}^{(m)}\{X, \delta k\}$ denotes the number of m-filled circumdisks of three unordered particles from \mathbb{P}, all contained in X, and

$$
\begin{equation*}
\sigma=-4 \sin \left(\frac{\theta_{2}-\theta_{3}}{2}\right) \sin \left(\frac{\theta_{3}-\theta_{1}}{2}\right) \sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right) . \tag{5.3}
\end{equation*}
$$

Hence

Lemma 9

A stochastic construction for a uniform random m-filled circumdisk of three particles chosen from \mathbb{P}

(i) Choose R , the circumdisk radius, with p.d.f. $\mathrm{f}(\mathrm{r} ; \mathrm{v}, \lambda)$ where $v=2 m+4, \lambda=\pi \rho$ i.e. $R \sim \Gamma_{2}(2 m+4, \pi \rho)$. This distribution is a particular case of the gamma-type distributions defined by Miles $[p 88,1970]$. If $Y \sim \Gamma_{2}\left(\nu_{1} \lambda\right), Y^{2} \sim \Gamma(\nu / 2, \lambda)$.

The p.d.f. for $\Gamma_{2}(\nu, \lambda)$ has the form

$$
\begin{equation*}
f(r ; \nu, \lambda)=\frac{2 \lambda^{\nu / 2} r r^{\nu-1}}{\Gamma(\nu / 2)} \exp \left\{-\lambda r^{2}\right\}, \quad r \geqslant 0 \tag{5.4}
\end{equation*}
$$

(ii) Choose $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ in accordance with the joint density

$$
\begin{equation*}
\mathrm{f}\left(\theta_{1} \theta_{2} \theta_{3}\right)=\frac{|\sigma|}{24 \pi^{2}}, \quad 0 \leqslant \theta_{i}<2 \pi \quad i=1,2,3 \tag{5.5}
\end{equation*}
$$

Note that R and $\left(\theta_{1} \theta_{2} \theta_{3}\right)$ are independent by (5.2).
(iii) The m-filling particles are uniformly and independently distributed on the interior of the circumdisk.

Vertices in V_{n} are of two types, corresponding to $(n-1)$ and ($\mathrm{n}-2$) filled circumdisks of triples of particles from \mathbb{P}. Integrating (5.2) over R and ($\theta_{1} \theta_{2} \theta_{3}$) gives

$$
H_{3}^{(m)}\{x\} /|x|^{a_{\rightarrow} s} 2 \rho(m+1), \quad|x| \rightarrow \infty
$$

where $H_{3}^{(m)}\{X\}$ is the number of m-filled circumdisks in X. Let $N_{ \pm}(X)$ denote the number of vertices of V_{n} corresponding to i-filled circumdisks in $\mathrm{X}, \mathrm{i}=\mathrm{n}-1, \mathrm{n}-2$ i.e. the number of n^{+}or n^{-} vertices in X. We are interested in a uniform random vertex of V_{n}. $\mathrm{p}_{ \pm} \equiv \mathrm{P}$ (uniform random V_{n} vertex corresponds to an i-filled circumdisk)

$$
\begin{aligned}
& =\lim _{|X| \rightarrow \infty}^{a} \frac{N_{ \pm}(X)}{N_{+}(X)+N_{-}(X)} \\
& =\lim _{|X| \rightarrow \infty}^{\lim _{n}} \frac{H_{3}^{(i)}(X)}{H_{3}^{n-1}(X)+H_{3}^{n-2}(X)} \\
& =\frac{i+1}{(2 n-1)}, \quad i=n-1, n-2 .
\end{aligned}
$$

particular type. Note that for $n=1, p_{-}=0$, corresponding to the existence of only one vertex in V_{1}, namely empty circumdisks.

From the above, and 1emma 9,

Lemma 10

Stochastic construction for uniform random V_{n} vertex
(i) choose vertex type $\mathrm{n}^{ \pm}$with probability $\mathrm{p}_{ \pm}$.
(ii) $R_{i} \equiv$ the radius of the vertex $\sim \Gamma_{2}(2 i+4, \pi \rho)$, where $\mathrm{i}=\mathrm{n}-1$ for n^{+}vertex, $\mathrm{n}-2$ for n^{-}vertex.
(iii) ($\theta_{1} \theta_{2} \theta_{3}$) are distributed in accordance with (5.5), and the i-filling particles are again uniformly and independently distributed on the circumdisk.

Lemma 11

Stochastic Constructions for uniform random V_{n} side and [N]-weighted V_{n} gon

Let $S(\ell)$ denote the square of side length ℓ with vertices $\left(\pm \frac{\ell}{2}, \pm \frac{l}{2}\right)$.
(i) Since the density of the process ρ is simply a scale parameter, we are free to set it to any convenient arbitrary value, so we let $\rho=k n$, which normalizes the expected radius of the circumdisk of a V_{n} vertex to $(1 / \sqrt{\pi k})$, for large n. [In a practical simulation k would be chosen to reduce the probability of the circumdisks associated with the constructed polygon's vertices extending outside $\mathrm{S}(\ell)$.
(ii) Construct a V_{n} vertex with circumdisk Q centered at the origin using Lemma 10 (see Figure 15), with circumferential particles $\omega_{1}, \omega_{2}, \omega_{3}$.
(iii) Construct a realization of \mathbb{P} in $S(1)$ - Q.
(iv) Randomly choose one of the three V_{n} sides meeting at the origin, generated by circumferential particles ω_{1} and ω_{2} say.
(v) Move along $\left\langle\omega_{1} \omega_{2}\right\rangle$, from the origin until we reach the first circumcentre $\left.<\omega_{1} \omega_{2} \omega_{k}\right\rangle$, where ω_{k} is any other particle. This circumcentre is the centre of another V_{n} vertex, which terminates the first side of the V_{n} gon. The initial direction of movement along $\left\langle\omega_{1} \omega_{2}\right\rangle$ is determined by the vertex type; if the initial vertex is an n^{+}vertex, movement is away from the third circumferential particle ω_{3}, since the vertex already contains the ($n-1$) particles required for a point in a V_{n} side (see Table 1). If the initial vertex is an n^{-} vertex, movement is towards ω_{3}. (i) - (v) amount to a stochastic construction for a uniform random side of V_{n}.
(vi) If $\omega_{k} \in Q$, the new V_{n} vertex is of type n^{-}, otherwise it is n^{+}.
(vii) Step (v) is now iterated for successive sides of the polygon. We choose the circumferential particles of each new vertex so that we turn 'right', around the polygon. If the new particle met on proceeding down the selected perpendicular bisector lies in the previous vertex's circumdisk, the new vertex is an n^{-}vertex, otherwise it is an n^{+}. (v) is repeated until we return to the origin vertex. This completes the construction provided all vertex circumdisks be wholly inside $S(1)$. If not, \mathbb{P} is constructed in $S(2)-S(1)$, and the above procedure repeated, and so on for $S(3)-S(2)$, $S(4)-S(3)$, until the circumdisks are contained in the generating square.

Figure 15

It should be clear from the geometry of Lemma 11 that if a V_{n} ce11 has vertices ν_{N} with associated circumdisks $\mathrm{Q}_{\mathrm{i}}, \underset{\mathrm{N}}{\mathrm{i}}=1,2, \ldots, \mathrm{~N}$ then $\underset{i=1}{U} Q_{i}-\cap_{i=1} Q_{i}$ must be empty of particles and $\cap_{i=1} Q_{i}$ must contain N - 2 particles.

We note that lemma 11 yields an [N]-weighted V_{n}-gon, as the polygon generated is chosen by a random vertex. Hence, the probability of any polygon being chosen is directly proportional to N the number of sides. If $g(\underline{Z})$ is the density of a vector characteristic \underline{Z} for such a polygon, and $f(\underline{Z})$ the density for a uniform random polygon, then

$$
g(\underline{Z})=\frac{E_{f}(N \mid \underline{Z})}{E_{f}(N)} f(\underline{Z})
$$

Lemma 12
Stochastic Construction for a Uniform Random V_{n} cell

This construction is identical to that in Lemma 11 except that (iv) is replaced by
(iv)' Of the three polygons determined by the V_{n} vertex centered on the origin, choose the one which lies wholly on one side of a line through the origin of fixed direction. We can then proceed clockwise around this polygon.

Since each polygon of V_{n} has almost surely two vertices which would lead to it being chosen by application of (iv)', e.g. for a fixed vertical line, the left-most and right-most vertices, we obtain a uniform random V_{n} gon by this procedure.

3.6 Geometry of $U_{n} N$-gons

The results in this section represent joint work between R.E. Miles and the author. We extend the theory developed in section 3.5 to detail the exact particle distribution around a $V_{n} N$-gon.

Lemma 13 Suppose $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ are particles of a Π_{2} type process and $\mathrm{T}=\left[\omega_{1} \omega_{2} \cdots \omega_{\mathrm{n}}\right]$. Then

$$
T=\bigcap_{i=1}^{n} T^{\prime}\left(\omega_{i}\right)
$$

where $T^{\prime}\left(\omega_{i}\right)$ is the V_{1} cell corresponding to ω_{i} relative to the reduced particle aggregate $\Pi_{2}^{\prime}=\Pi_{2}-\left\{\omega_{1} \omega_{2} \cdot \cdot \omega_{n}\right\}$.

Proof. Is immediate on comparing (1.1) and (2.1.1). The second intersection in (1.1) represents, by (2.1.1), the V_{1} cell of ω_{i} relative to all particles except $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$.

Figure 16 illustrates a typical structure of a V_{n} cell $T=\left[\omega_{1} \omega_{2} \ldots \omega_{n}\right]$ (with $N=7$), viewed as the intersection of V_{1} cells in accordance with lemma 13. The perimeter of T is composed of portions of individual $\mathrm{T}^{\prime}\left(\omega_{i}\right)$. (Three in Figure 16.) The other $\mathrm{T}^{\prime}\left(\omega_{i}\right)$ properly contain T in their interiors; for clarity these are not shown in the figure.

From Figure 16, we can characterize the two vertex types of V_{n} in yet another way. A vertex of T is either
(i) a vertex of $T^{\prime}\left(\omega_{i}\right)$ for some i. This vertex is of the form $<\omega_{i} \Omega_{1} \Omega_{2}>$ where $\Omega_{i} \in \Pi_{2}^{\prime}$, and we call it an outer vertex, or
(ii) an intersection point of $\partial T^{\prime}\left(\omega_{j}\right)$ and $\partial T^{\prime}\left(\omega_{k}\right)$ for some j, k.

This vertex is of the form $\left\langle\omega_{j}{ }^{\omega}{ }_{k} \Omega_{1}\right\rangle, \Omega_{1} \in \Pi_{2}^{\prime}$ and we call this an inner vertex.

A comparison of Figure 16 and Table 1 and reference to geometric properties (i) and (ii) noted in section 3.1 will tie this vertex description in with previous ones. For convenience, Table 3 lists the alternative names for the V_{n} vertices.

Table 3

$\stackrel{V}{n}^{V}$ vertex types

Description

Names

(i) ($\mathrm{n}-2$)-filled circumdisk $\quad \mathrm{n}^{-}$vertex; ($\mathrm{n}-1, \mathrm{n}$) vertex; of three particles inner vertex
(ii) ($n-1$-filled circumdisk $\quad n^{+}$vertex; ($\left.n, n+1\right)$ vertex; of three particles outer vertex

We now classify the particles of Π_{2} into four classes relative to T .

Geometric structure of a typical N-gon T of V_{n}. In this case $n=5$, $N=7$. T has two interior, three inner $\left(\omega_{1}, \omega_{2}\right.$ and $\left.\omega_{3}\right)$ and four outer particles, and is the intersection of the three $\mathrm{T}^{\prime}\left(\omega_{i}\right)$ shown, $i=1,2,3$. Note the $5^{+}, 4-$ filled, outer and $5^{-}, 3-f i l l e d$ inner vertices of T .
(P1) Those particles of $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ which do not contribute to any inner or outer vertices. For each such ω_{i}, T is contained in int $T^{\prime}\left(\omega_{i}\right)$. Denote by I the class of such interior particles.
(P2) Those particles of $\omega_{1}, \ldots, \omega_{n}$ which contribute to at least one inner or outer vertex. Denote by ∂I the class of such inner particles.
(P3) Those particles of Π_{2}^{\prime} which contribute to at least one vertex of T. Denote by $\partial 0$ the class of such outer particles.
(P4) Those particles of Π_{2}^{\prime} which do not contribute to any vertices of T. Denote by 0 the class of such exterior partic1es.

For each vertex of $T,\left\langle\omega_{1} \omega_{2} \omega_{3}\right\rangle$, construct the associated circumdisk $Q_{i}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, which has two outer and one inner or two inner and one outer particles on its circumference, depending on whether it is an outer or inner vertex, $i=1,2, \ldots, N$. Then, from the geometry in section 3.5, it is clear that if $V=U Q_{i}$ and $\Lambda=\bigcap_{i=1} Q_{i}$, then $V-\Lambda$ must be empty of particles. ∂V is a series of arcs connecting the outer particles, $\partial \Lambda$ a series of arcs connecting the inner particles and all interior particles are contained in int Λ, with no restriction on their position therein (as in quadrilateral case). Since Λ is obviously convex, the inner particles on its boundary must be in convex configuration.

Each side of T is part of the perpendicular bisector between an inner and outer particle, and as each outer/inner vertex is passed on a traversal of T 's perimeter, a new outer/inner particle replaces one of the pair forming the previous side. Hence $N=$ no of inner + no of outer particles, and the no of inner vertices $=$ no of inner partic1es.

Since every V_{n} cell must contain a V_{n-1} segment, it must have at least two n^{-}vertices and therefore $\mathrm{m}=$ no of inner particles $\geqslant 2$. Similarly T must have at least two outer particles, for the outer particle replaces the inner particle in the proximity set of the adjacent V_{n} cell. If T had only one outer particle it would appear in the proximity sets for all cells surrounding T but not in T's proximity set, violating the star-shaped property of its n-Area. Hence

$$
\begin{equation*}
2 \leqslant m \leqslant \min \{n, N-2\} \tag{6.1}
\end{equation*}
$$

Also, $N \geqslant 4$, verifying that there are no triangles in V_{n}. By comparison, triangles do occur in V_{1}.

The variable element in the above characterization is m, the number of inner particles or vertices, which is subject only to (6.1). Variations in m, and the arrangement of the vertices lead to different types of V_{n} cell.

Definition If T is an N-gon of V_{n}, let $\phi_{i}=+1[-1]$ if vertex v_{i} is an outer (inner) vertex. Then $\phi=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right)$ is the type of T.

Note from (7.1) that all V_{n} quadrilaterals are of a single type as shown in Figure 14, with two inner and two outer vertices.

The different types of pentagons can be investigated by starting with the unique quadrangle type and adding single particles, either inner or outer, at various locations within $\mathrm{V}-\Lambda$. Figure 17 illustrates such augmentations. 5.[.5] in a region bounded by circular arcs indicates that the introduction of a new inner [outer] particle in that region produces a pentagon of $V_{n+1}\left[V_{n}\right]$. 4.[.4] indicates the similar introduction of a new particle leaves a new quadrangle of $V_{\leqslant n}\left[V_{n}\right]$, with a previous inner [outer] particle
disappearing.

Pentagons thus have either two inner and three outer ($\mathrm{n} \geqslant 2$)
or three inner and two outer vertices ($\mathrm{n} \geqslant 3$), which alternate
between inner and outer, except that in the first (second) case there is a pair of adjacent outer (inner) vertices.

Figure 17

To summarize the structure of a $V_{n} N$-gon as detailed above,
we have

Lemma 14
For a $V_{n} N$-gon with m inner vertices, $2 \leqslant m \leqslant \min \{n, N-2\}$,
there are
(i) $n-m$ interior particles in int Λ;
(ii) m inner particles in $\partial \Lambda$ in convex configuration;
(iii) no particles in $\operatorname{int}(V-\Lambda)$;
(iv) $N-m$ outer particles in ∂V; and
(v) no restriction on particles outside V .

3.7 Occupancy Probabilities for $V n$ cells

Each Voronoi cell contains a single particle or nucleus.
It is this fact which singles out the V_{1} case and makes stochastic generation of a V_{1} cell an easy task. In general a V_{n} cell can contain i-particles with $0 \leqslant i \leqslant n$. Let N_{n} denote the (random) number of particles in a uniform random V_{n} cell and $p_{n, i}$ the ergodic probability that $N_{n}=i$. If $N_{n}=i$ we say the V_{n} cell is i-occupied.

As n increases, the mean ce11 area decreases, so we would expect that, with high probability, most V_{n} cells are 0 -occupied for large n .

Lemma 15

$$
\lim _{\mathrm{n} \rightarrow \infty} p_{\mathrm{n}, 0}=1
$$

Proof

$$
E\left(N_{n}\right)=\lim _{a \cdot s \cdot|X| \rightarrow \infty} \sum_{i=0}^{n} \frac{i N_{i}(X)}{N(X)},
$$

where $N_{i}(X)=$ number of i-occupied V_{n} cells in X and $N(X)=$ total number of V_{n} cells in X. Obviously $\sum i N_{i}(X)=N_{p}(X)=$ total number of particles in X.

Hence

$$
\begin{aligned}
E\left(N_{n}\right) & =\lim \frac{N_{p}(X) /|X|}{N(X) / X X \mid} \\
& =\frac{\rho}{1 / E\left(A_{n}\right)}=\frac{1}{2 n-1}
\end{aligned}
$$

Therefore

$$
\sum_{i=1}^{n} p_{n, i}<\sum_{i=1}^{n} i p_{n, i}=E\left(N_{n}\right)=\frac{1}{(2 n-1)}
$$

So $p_{n, 0} \rightarrow 1$ as $n \rightarrow \infty$.

In fact $p_{n, 0}$ tends fairly rapidly to one, as we see in investigating the occupancy probabilities for a V_{2}-gon. From Figure 18, it is clear that two particles are contained in the same V_{2} cell iff they each have each other as their nearest neighbour. We call such particles symmetric nearest neighbours.

Figure 18

Take an arbitrary particle ω_{1} and let R be the distance to its nearest neighbour ω_{2} with p.d.f. $h(R)=2 \rho \pi R \exp \left\{-\rho \pi R^{2}\right\}$, for a \mathbb{P} generating process.

Then $p=P\left(\omega_{1}\right.$ and ω_{2} are symmetric nearest neighbours)

$$
\begin{aligned}
& =\int_{0}^{\infty} P\left(\omega_{1}, \omega_{2} \text { symmetric nearest neighbours } \mid R\right) h(R) d R \\
& =\int_{0}^{\infty} P(A \text { empty } \mid R) h(R) d R,
\end{aligned}
$$

where A denotes the area shaded in Figure 1 and $A=(\pi-k) R^{2}$ with $k=\frac{1}{6}(4 \pi-3 \sqrt{3})$.

Hence

$$
\begin{aligned}
p & =\int_{0}^{\infty} \exp \left\{-\rho(\pi-k) R^{2}\right\} 2 \rho \pi R \exp \left\{-\rho \pi R^{2}\right\} d R \\
& =\frac{\pi}{(2 \pi-k)}=0.6215
\end{aligned}
$$

Now consider

$$
p_{2,2}=\lim _{|X| \rightarrow \infty} \frac{N_{2}(X)}{N(X)} .
$$

As $N_{2}(X)=\frac{1}{2} N$ (symmetric nearest neighbour particles),

$$
\begin{aligned}
\mathrm{P}_{2,2} & =1 \mathrm{im} \frac{1}{2} \frac{\mathrm{~N}(\text { symmetric nearest neighbour particles) }}{N_{p}(X)} \cdot \frac{N_{p}(X)}{N(X)} \\
& =\frac{1}{2} p \cdot E\left(N_{2}\right) \\
& =\frac{\pi}{6(2 \pi-k)}
\end{aligned}
$$

By an exactly analogous argument,

$$
\begin{aligned}
\mathrm{N}\left(V_{2} \text { cells which are } 1 \text {-occupied }\right)= & N(\text { particles whose nearest } \\
& \text { neighbours are not symmetric } \\
& \text { nearest neighbours) }
\end{aligned}
$$

$$
p_{2,1}=\frac{1}{3}\left(1-\frac{\pi}{(2 \pi-k)}\right)
$$

The occupancy probabilities for V_{2} cells are summarized in Table 4. Note that $E\left(N_{2}\right)=\frac{1}{3}$ as expected from Lemma 14 , and that 77% of V_{2} cells are 0 -occupied.

Table 4

| i | | |
| :---: | :---: | :---: | :---: |
| $\mathrm{p}_{2, \mathrm{i}} \mid$ | 0 | |
| $\frac{1}{6}\left(4+\frac{\pi}{(2 \pi-\mathrm{k})}\right)$ | 1 | |
| 0.77 | $\frac{1}{3}\left(1-\frac{\pi}{2 \pi-\mathrm{k}}\right)$ | 2 |
| $\frac{\pi}{6(2 \pi-\mathrm{k})}$ | | |
| 0.13 | 0.10 | |

CHAPTER 4

GENERALIZED VORONOI TESSELLATIONS - NEW THEORY

4.1 Mean Areas of Generalized Voronoi Cells

In this section a deeper analysis of the geometry of the V_{n} tessellation, and, in particular, superpositions of successive V_{n}, lead to an extension of the known means $E\left(A_{n}\right)$ for the area A_{n} of typical V_{n} cells from the Poisson to the general homogeneous case.

In Lemma 3.5, we noted the one-to-one correspondence between V_{1} sides and V_{2} cells. Analysis of a superposition of plots of V_{1}, V_{2} and V_{3} suggested the following natural extension of this correspondence (see Figure 1). The computer generated plots were instrumental in suggesting the geometrically based proofs of this section. The ce11/ side correspondence is replaced by a ce11/side, ce11/vertex correspondence in the V_{3} case.

Before establishing this new correspondence we introduce some new

Notation Since every V_{n} vertex is also a vertex in V_{n-1} or V_{n+1}, it is clear that adjacent to any V_{n} segment on a perpendicular bisector there will be segments of either V_{n-1} or V_{n+1}. We write

$$
\mathcal{L}_{\mathrm{n}}=\left\{\mathrm{s}: \mathrm{s} \text { is a side of } P, P \in V_{\mathrm{n}}\right\}
$$

and $\mathcal{L}_{\mathrm{n}}(\pm, \pm)$ for members of \mathcal{L}_{n} with a $V_{\mathrm{n}-1}$ segment on either side. For example, members of \mathcal{L}_{2} are of two types, $\mathcal{L}_{2}(-,+)$ or $\mathcal{L}_{2}(+,+)$.

Figure 1. Superposition of V_{1}, V_{2} and V_{3} for a set of random particles. V_{1} shown in black, V_{2} in blue, V_{3} in green.

Each member of V_{3} either contains one (1,2) vertex (in which case it contains exactly three V_{2} sides, the three which emanate from that vertex)
or contains no $(1,2)$ vertex in which case it contains exactly one V_{2} side, a member of $\mathcal{L}_{2}(+,+)$.

Proof The proof relies on three geometrical propositions
(i) a V_{3} cell can contain at most one $(1,2)$ vertex
(ii) a V_{3} cell must contain at least one V_{2} side
and
(iii) a V_{3} ce11 can contain at most one side of V_{2}, unless it contains a $(1,2)$ vertex, in which case it contains the three V_{2} sides meeting at that vertex and no other V_{2} sides.

To establish (i) assume a V_{3} ce11 P contains two distinct $(1,2)$ vertices v_{1} and ν_{2}, i.e. two zero-filled circumdisks of three particles from the generating process. Assume the particles generating ν_{1} are $\omega_{1}, \omega_{2}, \omega_{3}$. This implies that $P \equiv\left[\omega_{1} \omega_{2} \omega_{3}\right] . v_{2}$ must have at least one ω_{i} on its circumference distinct from ω_{1}, ω_{2} and ω_{3}. This implies that the V_{3} ce11 is of the form $\left[\omega_{i} ..\right]$, which is a contradiction. Hence a V_{3} cell can contain at most one $(1,2)$ vertex.
(ii) Take a point $\underline{x} \in P$, a V_{3} cell, and construct $Q\left(\underline{x},\left|\underline{x}-\omega_{3}\right|\right)$, where ω_{3} is the third closest particle to \underline{x}. Let ω_{1} and ω_{2} be first and second closest particles (see Figure 2). Construct the line L from \underline{x} to ω_{3} and move along L until reaching $\left.L \cap<\omega_{3} \omega_{1}\right\rangle$ or $\left.L \cap<\omega_{2} \omega_{3}\right\rangle$, whichever is closest to \underline{x}. Call this point $\underset{y}{y}$. Assuming, w.1.o.g. that \underline{y} is $\left.L \cap<\omega_{1} \omega_{3}\right\rangle$, it is part of an \mathcal{L}_{2} segment on $\left\langle\omega_{1} \omega_{3}\right\rangle$, since $Q\left(\underline{y},\left|\omega_{3}-\underline{y}\right|\right)$ is one-filled by ω_{2}. Since obviously $\underline{y} \in P$, every V_{3} ce11 must contain at least one V_{2} side.

Figure 2

Finally to establish (iii), consider a V_{2} side in a V_{3} cell, P. Assume that the V_{2} side is contained in $\left\langle\omega_{1} \omega_{2}\right\rangle$, and label the filling particle ω_{3} (Figure 3).

Figure 3

This implies $\mathrm{P} \equiv\left[\omega_{1} \omega_{2} \omega_{3}\right]$, and hence any other V_{2} side in P must be generated by the same three particles, and must therefore lie on $\left\langle\omega_{1} \omega_{3}\right\rangle$ or $\left\langle\omega_{2} \omega_{3}\right\rangle$. From Figure 3 , if x is a point on such a v_{2} side, then that V_{2} side must terminate at $\left\langle\omega_{1} \omega_{2} \omega_{3}\right\rangle$ at one end. Hence $Q\left(\omega_{1} \omega_{2} \omega_{3}\right)$ is empty and P contains the $(1,2)$ vertex generated by $\omega_{1} \omega_{2} \omega_{3}$ and the three V_{2} sides which join at that vertex, and no other sides.

The lemma follows trivially from (i), (ii) and (iii), and the classification of V_{2} sides into the two types $\mathcal{L}_{2}(-,+), \mathcal{L}_{2}(+,+)$.

By lemma 1 , we can represent all V_{3} cells as one of two types (see Figure 4).

Figure 4

We do not specify the number of sides of the cells. But note that because a quadrilateral has to be 2-suspended, it must be of type (i). A careful study of Figure 1 should clarify the meaning of Lemma 1.

To generalize the mean area result, we are interested in extending Lemma 1 to n values higher than three. However we cannot maintain the same sort of cell-vertex correspondence since proposition (i) in Lemma 1 does not extend to general n . We obtain, instead, a bound on the number of $(n-2, n-1)$ vertices in a V_{n} cell as part of the next lemma which establishes properties of the V_{i}, V_{i-1} superposition used in generalizing the result.

$$
V_{i-1, i} \equiv\left\{P \cap Q: P \in V_{i}, Q \in V_{i-1}\right\} \quad i=2,3, \ldots
$$

$V_{i-1, i}$ is simply the superposition of the V_{i} and V_{i-1} tessellations. Note that the points of a cell in $V_{i-1, i}$ have the same i nearest neighbours and the same (i-1) nearest neighbours.

Lemma 2
Consider $V_{i-1, i} \cap P$ where $P \in V_{i}, i=2,3, \ldots$ i.e. we are interested in the way V_{i-1} partitions $a V_{i}$ cell P. P contains at most ($\mathbf{i}-2$) ($\mathbf{i}-2, i-1)$ vertices. If P contains j such vertices, then it contains $2 j+1 V_{i-1}$ sides, which partition it into $j+2$ convex polygons, each of which have a side of the V_{i} cell as part of their boundary.

Proof

V_{i-1} is a convex polygonal tessellation, hence its restriction to a V_{i} cell P is a convex polygonal tessellation of P. However, each cell of the restriction $V_{i-1, i} \cap P$ must have at least one side of P as part of its boundary, for otherwise we would have a V_{i-1} cell lying entirely inside P. This is impossible because every V_{i-1} cell must contain at least one side of V_{i}. To prove this take a point $\underline{x} \in R, a V_{i-1}$ cell, and construct a line L joining \underline{x} and ω_{i}, where $\omega_{j}=j^{\text {th }}$ closest particle to $\underline{x} j=1,2, \ldots i$ (see Figure 5). Move along L away from ω_{i} until capturing another particle ω at \underline{y}; $Q\left(\underline{y},\left|y-\omega_{i}\right|\right)$ is $(i-1)$ filled.

Hence $\underline{y} \in \mathcal{L}_{i}$ segment on $\left\langle\omega \omega_{i}\right\rangle$. Since $\underline{y} \in R, R$ must contain at least one \mathcal{L}_{i} segment.

Figure 5

Given the above properties of V_{i-1} 's partitioning of P, we can form a planar polygonal graph with the same number of cells as $P \cap V_{i-1}$ by taking the convex hull of $P^{\prime} s(i-1, i)$ vertices (see Figure 6). For this polygonal graph three sides meet at each vertex. A planar version of Euler's polyhedral formula is applicable to this polygonal graph, provided we count the region external to the graph as a face. (For a proof see Ore [1963] p 99.)

P

Assume that there are $j(i-2, i-1)$ vertices in P and N sides on the convex hull. Applying Euler's formula to this figure we have $\mathrm{V}_{0}-\mathrm{V}_{1}+\mathrm{V}_{2}=2$,

$$
\text { where } \begin{aligned}
V_{0} & =\text { no. of vertices }=j+N \\
V_{1} & =\text { no. of sides }=\frac{3}{2}(j+N) \\
V_{2} & =N+1
\end{aligned}
$$

and hence
$N=j+2$ and the number of V_{i-1} sides $=V_{1}=N=2 j+1$.

To complete the lemma we need to show that j cannot exceed i - 2 , or equivalently, that the number of cells which v_{i-1} partitions P into cannot exceed i. But each partitioning cell represents a region where one choice of (i - 1) particles from the set of P are the closest $(i-1)$. Hence there are a maximum of $\binom{i}{i-1}=i$ such cells.

Careful study of Figure 7, a computer-generated superposition of V_{2}, V_{3} and V_{4} should illustrate Lemma 2 for the $i=4$ case. V_{4} cells are partitioned by V_{3} into the topological types illustrated in Figure 8.

Before proving the main theorems of this section we need one more result which was originally proved by Matschinski [1954].

Lemma 3
Let $N=$ no. of sides of a typical polygon from a homogeneous random tessellation Ψ. Then

$$
E(N)=\frac{2 \mu}{\mu-2}
$$

where $\mu=$ mean number of lines meeting at a typical vertex.

This is essentially a geometric result which follows from
simple geometrical connections between the quantities involved in each mean.

Corollary $E(N)=6$, for a V_{n} tessellation generated by a π_{2} type process, $n=1,2, \ldots$, since for V_{n} three sides join at every vertex, and hence $\mu=3$.

Theorem 1

Let A_{n} denote the area of a typical cell in a V_{n} tessellation generated by a general point process of type π_{2}.

Then

$$
E\left(A_{n}\right)=[(2 n-1) \rho]^{-1}, \quad n=1,2,3
$$

where ρ is the particle density for the π_{2} process.

Proof
The proof for $n=1$ is contained in the ergodic theory of section 1.2 , where ρ, the particle density, is defined as

$$
\lim _{r \rightarrow \infty} \frac{N_{r}}{\pi r^{2}}
$$

where N_{r} denotes the number of particles of π_{2} in a circle radius r.

Lemma 3 shows that E (no. of sides) $=6$ for $V_{n}, n=1,2,3$. We note that since the particles are in general position, three sides meet at each vertex and each side is shared by just two cells. Using this information it is easy to sequentially obtain the densities listed in Table 1.

Figure 7. Superposition of V_{2}, V_{3} and V_{4} for a set of random particles. V_{2} shown in blue, V_{3} in green, V_{4} in red.

Quantity	Density	Note
V_{1} cells	ρ	
V_{1} vertices	2ρ	
V_{1} sides	3ρ	(i)
V_{2} cells	3ρ	
V_{2} vertices	6ρ	(ii)
V_{2} sides	9ρ	
$\mathcal{L}_{2}(-,+)$ sides	6ρ	(iii)
$\mathcal{L}_{2}(+,+)$ sides	3ρ	
$(1,2)$ vertices	2ρ	(iv)
$(2,3)$ vertices	4ρ	
V_{3} cells	5ρ	
V_{3} vertices	10ρ	
$(3,4)$ vertices	6ρ	

Notes on Table 1

(i) By Lemma 3.5, the density of V_{2} cells equals the density of V_{1} sides.
(ii) Since $3 \mathcal{L}_{2}(-,+)$ sides meet at each V_{1} vertex their density is $3 \times$ density of V_{1} vertices.
(iii) $(1,2)$ vertices are equivalent to V_{1} vertices.
(iv) By Lemma 1 , the density of V_{3} cells can be written as the density of $(1,2)$ vertices and the density of $\mathcal{L}_{2}(+,+)$ sides.

Obviously from Table 1,

$$
E\left(A_{2}\right)=\frac{1}{3 \rho} \text { and } E\left(A_{3}\right)=\frac{1}{5 \rho}
$$

This completes Theorem 1. In the next theorem we extend Theorem 1 to all n values, by utilizing Lemma 2.

Theorem 2

$$
E\left(A_{n}\right)=[(2 n-1) \rho]^{-1}, \quad n=4,5,6 \ldots
$$

Proof

The proof is by induction. We first consider V_{4} cells. Let σ_{4}^{i} be the density of V_{4} cells containing $i(2,3)$ vertices, $i=0,1,2$ (i $\leqslant 2$ by Lemma 2). (See Figure 8.)

(i)

(ii)

(iii)

Figure 8

Since the density of $(2,3)$ vertices is 4ρ from Table 1 ,

$$
\sigma_{4}^{1}+2 \sigma_{4}^{2}=4 \rho
$$

Now V_{3} sides are of three types $\mathcal{L}_{3}(-,-)$, one of which occurs in each (iii) type V_{4} cell and nowhere else, $\mathcal{L}_{3}(+,+)$, one of which occurs in each (i) type \mathcal{V}_{4} cell and nowhere else, and $\mathcal{L}_{3}(-,+)$ (see Figure 8). We write $\sigma_{j}(\pm, \pm)$ for the density of $\mathcal{L}_{j}(\pm, \pm)$ sides. Hence

$$
\begin{align*}
& \sigma_{4}^{0}=\sigma_{3}(+,+) \tag{1.1}\\
& \sigma_{4}^{2}=\sigma_{3}(-,-)
\end{align*}
$$

So the total density of V_{4} cells $\equiv \sigma_{4}$

$$
\begin{aligned}
& =\sum_{i=0}^{2} \sigma_{4}^{1} \\
& =\sigma_{4}^{1}+2 \sigma_{4}^{2}+\left[\sigma_{3}(+,+)-\sigma_{3}(-,-)\right] \\
& =4 \rho+\left[\sigma_{3}(+,+)-\sigma_{3}(-,-)\right]
\end{aligned}
$$

We now consider the density of V_{3} sides which meet at $(2,3)$ vertices. Since the density of $(2,3)$ vertices is 4ρ from Table 1 , and three V_{3} sides join at each such vertex,

$$
\begin{equation*}
12 p=2 \sigma_{3}(-,-)+\sigma_{3}(-,+) \tag{1.2}
\end{equation*}
$$

Note that every member of $\mathcal{L}_{3}(-,-)$ is counted twice.

Similarly, considering the density of V_{3} sides meeting $(3,4)$ vertices, which have density 6ρ, we have

$$
\begin{equation*}
18=\sigma_{3}(-,+)+2 \sigma_{3}(+,+) \tag{1.3}
\end{equation*}
$$

Subtracting (1.3) - (1.2) gives

$$
\begin{equation*}
\sigma_{3}(+,+)-\sigma_{3}(-,-)=3 \rho \tag{1.4}
\end{equation*}
$$

and hence

$$
\sigma_{4}=7 p
$$

which verifies the theorem for $n=4$.

For general n, we write σ_{n} for the density V_{n} ce11s, $\sigma(n, n+1)$ for the density of $(n, n+1)$ vertices, and $\sigma(n)$ for the density of V_{n} vertices.

Note from Table 1 that

$$
\begin{equation*}
\sigma(\mathrm{n}, \mathrm{n}+1)=2 \mathrm{n} \rho \tag{1.5}
\end{equation*}
$$

holds for $n=1,2,3$.

Now assume that the theorem holds for all n, with $1 \leqslant n \leqslant N-1$, and that (1.5) holds for all n with $1 \leqslant n \leqslant N-2$. (This has been established for $\mathrm{N}=5$.)

By this assumption, $\sigma_{N-1}=(2 \mathrm{~N}-3) \rho$, so $\sigma(\mathrm{N}-1)=2(2 \mathrm{~N}-3) \rho$. Also by assumption, $\sigma(N-2, N-1)=2(N-2) \rho$, so

$$
\sigma(N-1, N)=[4 N-6-(2 N-4)] \rho=2(N-1) \rho
$$

So (1.5) holds for $n=N-1$.

Let σ_{n}^{i} denote the density of V_{n} cells containing $\mathbf{i}(n-2, n-1)$ vertices, $0 \leqslant i \leqslant n-2$ (by 1emma 2). Then

$$
\begin{equation*}
\sum_{i=0}^{N-2} i \sigma_{N}^{i}=\sigma(N-2, N-1)=2(N-2) \rho . \tag{1.6}
\end{equation*}
$$

Using lemma 2 we can construct $V_{N-1, N}$ (see Figure 9). Again we have a one-to-one correspondence between $V_{N}{ }^{0}$ cells, containing $0(\mathrm{~N}-2, \mathrm{~N}-1)$ vertices, and $\mathcal{L}_{\mathrm{N}-1}(+,+)$ sides. Note that in each V_{N}^{i} ce11 there are $i-1 \mathcal{L}_{N-1}(-,-)$ sides, $i=1,2, \ldots N-2$.

Hence

$$
\begin{gather*}
\sigma_{N}^{0}=\sigma_{N-1}(+,+) \tag{1.7}\\
\sum_{i=1}^{N-2}(i-1) \sigma_{N}^{i}=\sigma_{N-1}(-,-) \tag{1.8}
\end{gather*}
$$

Now consider the density of V_{N} sides which meet
(N - 2,N - 1) vertices. By assumption, these vertices have density $2(N-2) \rho$, so

$$
\begin{equation*}
6(N-2) \rho=2 \sigma_{N-1}(-,-)+\sigma_{N-1}(-,+) \tag{1.9}
\end{equation*}
$$

The same argument applied to ($N-1, N$) vertices yields

$$
\begin{equation*}
6(\mathrm{~N}-1) \rho=\sigma_{\mathrm{N}-1}(-,+)+2 \sigma_{\mathrm{N}-1}(+,+) \tag{1.10}
\end{equation*}
$$

and subtraction yields

$$
\begin{equation*}
\sigma_{\mathrm{N}-1}(+,+)-\sigma_{\mathrm{N}-1}(-,-)=3 \rho . \tag{1.11}
\end{equation*}
$$

Combining (1.6), (1.8) and (1.11) gives

$$
\begin{aligned}
\sigma_{N} & =\sum_{i=0}^{N-2}{ }^{\sigma_{N}}{ }^{i} \\
& =\sigma_{N}^{0}+\sum_{i=0}^{N-2} i \sigma_{N}^{i}-\sum_{i=1}^{N-2}(i-1) \sigma_{N}{ }^{i} \\
& =2(N-2) \rho+\left[\sigma_{N-1}(+,+)-\sigma_{N-1}(-,-)\right]
\end{aligned}
$$

$$
=(2 \mathrm{~N}-1) \rho
$$

In the next section a more careful look at the superpositions $V_{i-1, i}$ for small i values reveal some interesting geometrical correspondences.

4.2 The Superpositions $V_{i-1, i}$

We can analyse the superposition $V_{i-1, i}$ as a partitioning of V_{i} cells (as was done in Lemma 2) or as a partitioning of V_{i-1} cells. The nature of the partitioning is considerably different in the two cases. We illustrate this by considering $V_{i-1, i}$ for $i=2,3,4$.
(i) $V_{1,2}$

Viewed as a partition of V_{2} cells, this tessellation contains only one sort of ce11 - see Figure 1 and Figure 10.

Figure 10

Viewed, however, as a partition of V_{1} ce11s, study of Figure 1 shows that the cell types are as listed in Figure 11 for i-gons with i small.

Figure 11

In fact V_{2} divides a V_{1} i-gon into i convex polygons and each V_{1} i-gon contains i $\mathcal{L}_{2}(+,+)$ sides, $(i-3) \mathcal{L}_{2}(+,+)$ sides and (i - 2) $(2,3)$ vertices. Write $\sigma_{N}(i)$ for the density of i-gons in V_{n}. Then

$$
\sum_{i=3}^{\infty}(i-2) \sigma_{1}(i)=\sigma(2,3)=4 \rho
$$

Since the density of V_{1} cells is ρ, this verifies that

$$
E\left(\text { no of sides of } V_{1} \text { ce11) }=\sum_{i=3}^{\infty} i \sigma_{1}(i) / \sum_{i=3}^{\infty} \sigma_{1}(i)=\frac{6 \rho}{\rho}=6\right.
$$

(ii) $V_{2,3}$

Viewed as a partitioning of V_{3} cells, $V_{2,3}$ contains the two sorts of cell illustrated in Figure 4.

Viewed as a partition of V_{2} cells, study of Figure 1 shows that the cell types are as listed in Figure 12.

Figure 12

In Figure 12 we have included, for clarification purposes, the single V_{1} side which is contained in every V_{2} cell. This makes two of the V_{2} cell's vertices $(1,2)$ vertices, and the rest must be $(2,3)$ vertices. Note that each V_{2} i-gon contains (i-5) $\mathcal{L}_{3}(+,+)$ sides $(i \geqslant 5)$ and $(i-4)(3,4)$ vertices $(i \geqslant 4)$. Hence

$$
\sum_{4}^{\infty}(i-4) \sigma_{2}(i)=\sigma(3,4)=6 \rho
$$

and since $\sigma_{2}=\sum_{4}^{\infty} \sigma_{2}(i)=3 \rho$,

$$
E\left(\text { no of sides of } V_{2} \text { cell) }=\sum_{4}^{\infty} i \sigma_{2}(i) / \sum_{4}^{\infty} \sigma_{2}(i)=\frac{18 \rho}{3 p}=6\right.
$$

as expected.

More important, however, is the one-to-one correspondence between V_{2} quadrilaterals and $\mathcal{L}_{3}(-,-)$ sides which follows directly from the cell types shown in Figure 12 , for the only V_{2} cell which contains an $\mathcal{L}_{3}(-,-)$ side is the quadrilateral. Hence we have the interesting formula

$$
\begin{equation*}
\sigma_{2}(4)=\sigma_{3}(-,-) \tag{2.1}
\end{equation*}
$$

To investigate whether this correspondence carries on for higher n values we consider $V_{3,4^{\circ}}$
(iii) $V_{3,4}$

Viewed as a partitioning of V_{4} cells, $V_{3,4}$ contains the three sorts of cell illustrated in Figure 8.

Viewed as a partitioning of V_{3} cells, Figure 7 shows that the ce11 types are as listed in Figure 13. In Figure 13 the V_{2} segments are also included.

(i)

(ii)

Figure 13

Note that Figure 13 simply gives illustrations of possible cell partitions for V_{3} cells with a small number of sides. For example the V_{2} side in diagram (ii) could cut the V_{4} sides just once, instead of twice.
V_{3} cells we lose any correspondence between $\mathcal{L}_{4}(-,-)$ sides and quadrilaterals in V_{3} - see (iii) in Figure 13.

Also totalling the $(1,2)$ vertices and $(4,5)$ vertices in each V_{2} i-gon we get $(i-4)$, so

$$
\sum_{4}^{\infty}(i-4) \sigma_{3}(i)=\sigma(1,2)+\sigma(4,5)=10 \rho
$$

and we can again verify that

$$
\begin{aligned}
& E\left(\text { no of sides of } V_{3} \operatorname{ce11}\right)=\sum_{4}^{\infty} i \sigma_{3}{ }^{i} \sum_{4}^{\infty} \sigma_{3}{ }^{i} \\
& =30 / 5=6 \text {. }
\end{aligned}
$$

4. 3 Densities of $\mathcal{L}_{3}(\pm, \pm)$ sides

For V_{2} sides we saw in section 4.1 that there are two types $\mathcal{L}_{2}(-,+)$ and $\mathcal{L}_{2}(+,+)$ with densities 6ρ and 4ρ for any homogeneous tessellation (see Table 1). There are only two types of V_{2} sides because no single perpendicular bisector can contain more than one segment of V_{1}. For $n>2$, there are three sorts of V_{n} side $-\mathcal{L}_{n}(-,-)$, $\mathcal{L}_{\mathrm{n}}(-,+)$ and $\mathcal{L}_{\mathrm{n}}(+,+)$. The densities of these side types are of some interest, at least in the $n=3$ case, for they determine, by (2.1) the probability of a quadrilateral in V_{2} and also the probability of the three possible partitions of a V_{4} cell by V_{3} in $V_{3,4}$ (see Figure 8).

In Theorem 2 we obtained two equations (1.9), (1.10)
involving the required side densities i.e.

$$
\begin{align*}
& 2 \sigma_{n-1}(-,-)+\sigma_{n-1}(-,+)=6(n-2) \rho \tag{3.1}\\
& \sigma_{n-1}(-,+)+2 \sigma_{n-1}(+,+)=6(n-1) \rho \tag{3.2}
\end{align*}
$$

Adding (3.1) and (3.2) gives $2\{3[2(n-1)-1] p\}$, twice the density of V_{n-1} sides which follows also from the known density of V_{n-1} cells (Theorem 2). However the author has been unable to derive another independent equation for these densities for the general homogeneous case. Instead we assume a Poisson process as the generating process and calculate $\sigma_{3}(-,-)$ using the stochastic constructions in section 3.5.

We choose a random V_{3} side, L_{3}, in the following manner.
(i) choose a $(2,3)$ vertex with probability $2 / 5$
or a $(3,4)$ vertex with probability $3 / 5$
and then
(ii) choose a random side of V_{3} meeting this vertex.

We define

$$
\begin{aligned}
p_{3}(\pm, \pm) & \equiv \mathrm{P}\left(\mathrm{~L}_{3} \in \mathcal{L}_{3}(\pm, \pm)\right) \\
& =\lim _{|\mathrm{x}| \rightarrow \infty} \frac{\mathrm{N}_{ \pm \pm}(\mathrm{X})}{\mathrm{N}_{3}(\mathrm{X})}
\end{aligned}
$$

where $N_{ \pm \pm}(X)=$ no of members of $\mathcal{L}_{3}(\pm, \pm)$ contained in X and $N_{3}(X)=$ no. of V_{3} sides in X, i.e. $\mathrm{P}_{3}(\pm, \pm)$ is the ergodic probability that a V_{3} side is a member of $\mathcal{L}_{3}(\pm, \pm)$. Note that $\sigma_{3}(\pm, \pm)=p_{3}(\pm, \pm) \times$ density of V_{3} sides $=15 p_{3}(\pm, \pm) \rho$.

Now, conditioning on the vertex type v, chosen in (i), we have

$$
\begin{align*}
p_{3}(-,-)= & P\left(L_{3} \in \mathcal{L}_{3}(-,-) \mid \nu=(2,3) \text { vertex }\right) P(\nu=(2,3) \text { vertex }) \\
& +P\left(L_{3} \in \mathcal{L}_{3}(-,-) \mid \nu=(3,4) \text { vertex }\right) P(\nu=(3,4) \text { vertex }) \\
= & \frac{2}{5} \cdot P\left(L_{3} \in \mathcal{L}_{3}(-,-) \mid \nu=(2,3) \text { vertex }\right) \\
\equiv & \frac{2}{5} P(232 \mid 23) \text { say . } \tag{3.3}
\end{align*}
$$

Hence it suffices to calculate $P(232 \mid 23)$. We use the ergodic structure of a $(2,3)$ vertex specified in Lemma 3.10. Referring to Figure 14, we know that

$$
\begin{aligned}
R= & \text { radius of vertex } \sim \Gamma_{2}(6, \pi \rho) \text { with } \\
& \text { p.d.f. } g(R)=\pi^{3} \rho^{3} R^{5} \exp \left\{-\rho \pi R^{2}\right\} \quad 0<R<\infty
\end{aligned}
$$

α has same distribution as a random angle from a Delaunay triangle (since $\alpha=\beta$ in Figure 14) with p.d.f. $f(\alpha)=\frac{4}{3 \pi} \sin \alpha[(\pi-\alpha) \cos \alpha+\sin \alpha], 0<\alpha<\pi$, obtained from density (3.5.5)
and ω, the filling particle, is uniformly distributed on the vertex.

$S_{1}\left[S_{2}\right]$ is region in vertex circumdisc to left [right] of line joining ω_{1} and ω_{2}.

Note that R and α are independent, and that the third circumferential particle lies outside the 2α arc between the randomly chosen pair ω_{1}, ω_{2} whose perpendicular bisector $\left\langle\omega_{1} \omega_{2}\right\rangle$ contains the V_{3} side of interest.

Consider moving along $\left\langle\omega_{1} \omega_{2}\right\rangle$, along the V_{3} segment. We meet a V_{2} segment iff ω lies in region S_{1} and $L(R, \alpha, \omega)$ is empty, where $L(R, \alpha, \omega)=$ area of $Q\left(\omega_{1}, \omega_{2}, \omega\right)$ outside of the vertex.

Hence

$$
P(232 \mid 23, R, \alpha, \omega)=\left\{\begin{array}{cc}
0 \quad \omega \in S_{2} \\
\exp \{-\rho L(R, \alpha, \omega)\}
\end{array} \omega \in S_{1}\right.
$$

and

$$
P(232 \mid 23)=\int_{0}^{\infty} \int_{0}^{\pi} \int_{S_{1}} \exp \{-\rho L(R, \alpha, \omega)\} \frac{1}{\pi R^{2}} \cdot g(R) f(\alpha) d \omega d \alpha d R \quad \text { (3.4) }
$$

Similar1y,

$$
\begin{equation*}
P(123 \mid 23)=\int_{0}^{\infty} \int_{0}^{\pi} \int_{S_{2}} \exp \{-\rho L(R, \alpha, \omega)\} \frac{1}{\pi R^{2}} \cdot g(R) f(\alpha) d \omega d \alpha d R \tag{3.5}
\end{equation*}
$$

Since the densities of V_{2} sides are known, we can calculate the ergodic probabilities $\mathrm{p}_{2}(-,+)=\frac{2}{3}$ and $\mathrm{p}_{2}(+,+)=\frac{1}{3}$. A1so, since we can choose a random V_{2} side, L_{2}, by choosing a (1,2) vertex with probability $\frac{1}{3}$ or a $(2,3)$ vertex with a probability $\frac{2}{3}$ and then choosing a random side of that vertex, we have

$$
\begin{aligned}
\mathrm{p}_{2}(-,+)= & P\left(L_{2} \in \mathcal{L}_{2}(-,+)\right)=P\left(L_{2}\right.
\end{aligned} \begin{aligned}
& \left.\mathcal{L}_{2}(-,+) \mid(1,2) \text { vertex }\right) \cdot \frac{1}{3} \\
& \\
& +P\left(L_{2} \in \mathcal{L}_{2}(-,+) \mid 2,3 \text { vertex }\right) \cdot \frac{2}{3} \\
& p_{2}(+,+)=\frac{2}{3} P\left(L_{2} \in \mathcal{L}_{2}(+,+) \mid 2,3 \text { vertex }\right) .
\end{aligned}
$$

Solving for the conditional probability gives

$$
\begin{equation*}
P\left(L_{2} \in \mathcal{L}_{2}(-,+) \mid(2,3) \text { vertex }\right)=P(123 \mid 23)=\frac{1}{2} \tag{3.6}
\end{equation*}
$$

Note that this does not give us the value of $P(232 \mid 23)$, since the integrals in (3.4) and (3.5) are unequal due to the lack of symmetry of $f(\alpha)$ about $\pi / 2$.

Utilizing (3.4) - (3.6), and parametrizing ω by polar co-ordinates $\left(R^{\prime}, \theta\right) 0<R^{\prime}<R,-\pi<\theta<\pi$, we can obtain
$P(232 \mid 23)=\int_{0}^{\infty} \int_{0}^{\pi} \int_{-\pi}^{\pi} \int_{0}^{R} \exp \left\{-\rho L\left(R, \alpha, R^{\prime}, \theta\right)\right\} \frac{1}{\pi R^{2}} g(R) f(\alpha) R^{\prime} d R^{\prime} d \theta d \alpha d R-\frac{1}{2}$.

Making a further change of variable $u=R^{\prime} / R$, and using the fact that L is an even function of θ, gives

$$
\begin{equation*}
P(232 \mid 23)=2 \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{1} \exp \{-\rho L(R, \alpha, u, \theta)\} \frac{1}{\pi} g(R) f(\alpha) u \cdot d u d \theta d \alpha d R-\frac{1}{2} \tag{3.7}
\end{equation*}
$$

We now consider the functional form of L.

Figure 15

From Figure 15,

$$
\begin{gathered}
d=\frac{1-u^{2}}{2(\cos \alpha-u \cos \theta)} \cdot R=d(u, \alpha, \theta) R \\
r_{2}=R \cdot\left[\sin ^{2} \alpha+(\cos \alpha-d(u, \alpha, \theta))^{2}\right]^{\frac{1}{2}}=r_{2}(u, \alpha, \theta) R .
\end{gathered}
$$

No matter where $\left(R^{\prime}, \theta\right)$ is in the vertex, $\left(S_{1}\right.$ or $\left.S_{2}\right)$,

$$
L(R, \alpha, u, \theta)=\pi r_{2}^{2}-A\left(R, r_{2},|d|\right)
$$

where $A(x, y, d)=$ area of intersection of two circles radii x and y separated by distance d .

$$
\begin{align*}
\mathrm{L}(\mathrm{R}, \alpha, \mathrm{u}, \theta) & =\mathrm{R}^{2}\left\{\pi r_{2}{ }^{2}(\mathrm{u}, \alpha, \theta)-\mathrm{A}\left(1, \mathrm{r}_{2}(\mathrm{u}, \alpha, \theta),|\mathrm{d}(\mathrm{u}, \alpha, \theta)|\right)\right\} \\
& \equiv \mathrm{h}(\mathrm{u}, \alpha, \theta) \mathrm{R}^{2} . \tag{3.8}
\end{align*}
$$

Substituting (3.8) into (3.7) and integrating out R gives

$$
P(232 \mid 23)=2 \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{1} \frac{\pi^{2} u f(\alpha)}{(\pi+h(u, \alpha, \theta))^{3}} d u d \theta d \alpha-\frac{1}{2} .
$$

This was numerically integrated to obtain

$$
P(232 \mid 23)=0.0876
$$

and, using (3.3),

$$
\begin{equation*}
p_{3}(-,-)=0.03505 \tag{3.9}
\end{equation*}
$$

Let $p_{n}(i)$ denote the ergodic probability of a uniform random V_{n} cell being an $i-g o n, i=4, \ldots$

Theorem 3

For a V_{2} tessellation with generating process \mathbb{P},

$$
p_{2}(4)=0.175 .
$$

Proof

From (2.1), (3.9) and Table 1

$$
\begin{aligned}
\mathrm{p}_{2}(4)=\frac{\sigma_{2}(4)}{\sigma_{2}} & =\frac{\sigma_{3}(-,-)}{\sigma\left(V_{3} \text { sides }\right)} \frac{\sigma\left(V_{3} \text { sides }\right)}{\sigma_{2}} \\
& =\mathrm{p}_{3}(-,-) \cdot \frac{15}{3} \\
& =2 \mathrm{P}(232 \mid 23) \\
& =0.175 .
\end{aligned}
$$

Thus 17.5% of V_{2} ce11s are quadrilaterals. This compares with 1.1% triangles and 10.7% quadrilaterals for V_{1}. (Simulation estimates by Hinde and Miles [1980].)

From (3.1), (3.2) and (3.9) we can deduce the ergodic probabilities $p_{3}(\pm, \pm)$ that a uniform random V_{3} side is a member of $\mathcal{L}_{3}(\pm, \pm)$, which are shown, together with the different side densities in Table 2.

Also using (1.1), and Table 2, we can deduce the densities $\sigma_{4}{ }^{i}$, and thus the ergodic probabilities $\mathrm{p}_{4}{ }^{i}$ that a uniform random V_{4} cell contains i $(2,3)$ vertices - i.e. the probabilities of the three possible partitionings of a V_{4} cell shown in Figure 8. These are shown in Table 3.

Side type	$\mathcal{L}_{3}(-,-)$	$\mathcal{L}_{3}(-,+)$	$\mathcal{L}_{3}(+,+)$
density	0.526ρ	10.95ρ	3.524ρ
probability	0.035	0.73	0.235

Table 3

\mathbf{i}	0	1	2
${ }^{\sigma_{4}{ }^{\mathbf{i}}}$	3.524ρ	0.95ρ	0.526ρ
${ }_{\mathrm{p}_{4}{ }^{\mathbf{i}}}$	0.705	0.105	0.19

From Table 3 we see that 70.5% of V_{4} ce11s will have just two n^{-}vertices, 10.5% three and 19.5% five n^{-}vertices.

In section 4.6 use is also made of (3.9) to calculate the probabilities of the three types of perpendicular bisector under the condition that $<\omega_{1} \omega_{2} \rightarrow 2>$ i.e. that at least one V_{2} segment appears on ${ }^{<\omega_{1}} \omega_{2}>$.

Obviously an expression similar to that for $P(232 \mid 23)$ can be written down for general n , although it is considerably more complex. However from (3.1) and (3.2),

$$
\sigma_{\mathrm{n}}(+,+)-\sigma_{\mathrm{n}}(-,-)=3 p
$$

and hence

$$
p_{n}(+,+)-p_{n}(-,-)=\frac{1}{(2 n-1)}
$$

Thus $\mathrm{p}_{\mathrm{n}}(+,+)$ and $\mathrm{p}_{\mathrm{n}}(-,-)$ are asymptotically equal.

For general homogeneous processes the best we can do is give the upper bound $p_{2}(4) \leqslant \frac{2}{3}$ which follows from the first equation in Theorem 2, (1.1) and noting that $\sigma_{4}^{1}>0$.
4.4 Some Moment Expressions for Voronoi and Generalized Voronoi Cells

A number of different expressions can be written down for the second moment of the area of V_{n} cells, for both the $n=1$ and $n>1$ cases when the generating process is \mathbb{P}. The relationships between these expressions often reflect more fundamental geometrical identities, such as those in section 1.3.

Voronoi Tessellation

The situation is simplified for $\mathrm{n}=1$ since, as we have seen in section 2.3, we generate a typical V_{1} polygon by placing a particle at the origin and surrounding it by a Poisson process. If A_{1} denotes the area of a typical ce11 P , then

$$
\begin{equation*}
A_{1}=\int I_{1}(\underline{x}) d \underline{x} \tag{4.1}
\end{equation*}
$$

where

$$
I(\underline{x})= \begin{cases}1 & \underline{x} \in P \\ 0 & \text { otherwise } .\end{cases}
$$

From (4.1) we quickly obtain $E\left(A_{1}\right)=\rho^{-1}$. Extending this technique to the second moment,

$$
\begin{aligned}
E\left(A_{1}{ }^{2}\right) & =E \iint I(\underline{x}) I(\underline{y}) d \underline{x} d \underline{y} \\
& =\iint P(\underline{x} \text { and } \underline{y} \in P) d \underline{x d} \underline{y} \\
& =\iint \exp \{-\rho A(\underline{x}, \underline{y})\} \underline{x} \underline{d} \underline{y},
\end{aligned}
$$

where $A(\underline{x}, \underline{y})$ represents the area which must be empty for both \underline{x} and \underline{y} to be in the V_{1} cells of the origin particle (see Figure 16).

$$
\begin{equation*}
E\left(A_{1}^{2}\right)=4 \pi \int_{0}^{\pi} \int_{0}^{\infty} \int_{0}^{\infty} \exp \left\{-\rho A\left(r_{1} r_{2} \psi\right) r_{1} r_{2} d r_{1} d r_{2} d \psi\right\}, \tag{4.2}
\end{equation*}
$$

where ψ is the angular separation of the points. Putting $r_{1}=u r_{2}$ yields $A\left(r_{1} r_{2} \psi\right)=A(u, \psi) r_{2}{ }^{2}$, and integrating out r_{2} gives

$$
\begin{equation*}
E\left(A_{1}^{2}\right)=\frac{2 \pi}{\rho^{2}} \int_{0}^{\pi} \int_{0}^{\infty} \frac{u}{A(u, \psi)^{2}} d u d \psi \tag{4.3}
\end{equation*}
$$

Figure 16

We now consider an ordinary realization of \mathbb{P} over the plane with no assumption of a particle at the origin and let $A_{1}^{(0)}$ denote the area of the V_{1} cell $\mathrm{P}^{(0)}$ which happens to contain the origin. This cell is no longer a typical cell - in fact it is area-weighted.

Let $f(A)$ denote the p.d.f. of A_{1} and $g(A)$ the p.d.f. of $A_{1}^{(0)}$.

Heuristically,

$$
\begin{aligned}
g(a) d a & =P(\text { typical } P \text { has area }(a, a+d a) \text { and is hit by random } p t) \\
& =P(\text { hit by random pt|area } a) P(P \text { has area } a) \\
& \propto a f(a) d a .
\end{aligned}
$$

Hence

$$
\begin{equation*}
g(a)=\frac{a f(a)}{E\left(A_{1}\right)}, \quad E\left(A_{1}^{(0)}\right)=\frac{E\left(A_{1}^{2}\right)}{E\left(A_{1}\right)} \tag{4.4}
\end{equation*}
$$

(4.4) explains the reference to $\mathrm{P}^{(0)}$ as area-weighted, and with (4.3) yields

$$
\begin{equation*}
E\left(A_{1}^{(0)}\right)=\frac{2 \pi}{\rho} \int_{0}^{\pi} \int_{0}^{\infty} \frac{u}{A(u, \psi)^{2}} \operatorname{dud} \psi \tag{4.5}
\end{equation*}
$$

This expression agrees with Gilberts formula (14) [1962], which he obtained from the direct representation

$$
E\left(A_{1}^{(0)}\right)=E \int I(\underline{x}) d \underline{x}
$$

where again no origin particle is assumed. Conditioning on the radial distance of the particle generating $\mathrm{P}_{1}^{(0)}$ with p.d.f. $h(R)=2 \pi \rho R \exp \left\{-\rho \pi R^{2}\right\}$, quickly yields an expression (4.2) with an additional ρ factor due to (4.4), since $E\left(A_{1}\right)=\rho^{-1}$.

Numerical integration (Gilbert [1962]) of (4.3) yields

$$
E\left(A_{1}^{2}\right)=1.28 \rho^{-2}, \quad \operatorname{Var}\left(A_{1}\right)=0.28 \rho^{-2}
$$

which agree with independent methods used in section 4.5.

Extension of Methods to $U n>1$

The immediate difficulty is the generation of a typical
V_{n} ce11 - there is no convenient method analogous to the V_{1} construction. However the area-weighted V_{n} gons containing the origin can be investigated. Let $\mathrm{P}_{2}^{(0)}$ be the V_{2} cell which contains the origin, with area $\mathrm{A}_{2}^{(0)}$. (4.4) and Theorem 1 give

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{~A}_{2}^{(0)}\right)=3 \rho \mathrm{E}\left(\mathrm{~A}_{2}^{2}\right) \tag{4.6}
\end{equation*}
$$

where A_{2} is the area of a typical $V_{2} \operatorname{cell}\left(E\left(A_{2}\right)=1 / 3 \rho\right)$. If $I(\underline{x})$ is the indicator function of $\mathrm{P}_{2}^{(0)}$,
$E\left(A_{2}^{(0)}\right)=\int E I(\underline{x}) d \underline{x}$
$=2 \pi \int_{0}^{\infty} r P\left(r \in P_{2}^{(0)}\right) d r$
$=2 \pi \int_{0}^{\infty} \iiint P\left(r \in P_{2}^{(0)} \mid R_{1}, \theta_{1}, R_{2}, \theta_{2}\right) f\left(R_{1}\right) g\left(R_{2}\right)\left(\frac{1}{2 \pi}\right)^{2} d R_{1} d R_{2} d \theta \theta_{1} d \theta 2 d r$,
where we have conditioned on the polar co-ordinates of the two proximity particles for $\mathrm{P}_{2}^{(0)}, \omega_{1}$ and ω_{2}.

Since the point r is in $P_{2}^{(0)}$ iff ω_{1} and ω_{2} are its two closest particles, $P\left(r \in P_{2}^{(0)} \mid R_{1} \theta_{1} R_{2} \theta_{2}\right)=\exp \left\{-\rho A\left(r, R_{1}, \theta_{1}, R_{2}, \theta_{2}\right)\right\}$, where A is the area outside $Q\left(\underline{0}, R_{1}\right)$ but inside a circle, centered at r, with radius to the furthest of ω_{1} and ω_{2} (see Figure 17). Similar expressions can be obtained for higher n values, however a more natural approach to this problem, which also yields information about the transect distributions, is used to do the calculations (see section 4.5).

Figure 17

We can utilize the Voronoi theory in one sense in the generalized Voronoi case, to analyse the V_{n} cell distribution when we choose a V_{n} cell by choosing a random particle. Since every V_{1} cell contains exactly one particle, we know that the ce11 containing a random particle is a typical cell. For $n>1$, a V_{n} cell can contain $0,1,2, \ldots n$ particles. The distribution of N_{n}, the number of particles in a typical V_{n} cell, is investigated in section 3.7.

If we choose a V_{n} cell by choosing a random particle, the probability of any cell being chosen is proportional to the number of particles it contains. Hence

$$
\begin{equation*}
g\left(N_{n}, A_{n}\right) \propto N_{n} f\left(N_{n}, A_{n}\right), \tag{4.7}
\end{equation*}
$$

where f is the joint density of N_{n} and A_{n} for a typical cell, and g is the same density for a cell chosen by a random particle - a 'particle weighted' cell. (4.7) yields

$$
g\left(A_{n}\right)=f\left(A_{n}\right) \frac{E\left(N_{n} \mid A\right)}{E\left(N_{n}\right)},
$$

which illustrates that the density depends on the expected number of points for a particular area, and is greatly increased for larger cells. To illustrate this effect, let P_{2}^{p} be a particle-weighted V_{2} cell with area $A_{2}{ }^{p}$. The selected random particle ω_{1} is arbitrarily placed at the origin, as in the V_{1} case, and the second associated particle of $P_{2}{ }^{P}$ is generated using the radial distribution $h(R)=2 \pi \rho R \exp \left\{-\rho \pi R^{2}\right\}$ (see Figure 18).

$$
\begin{aligned}
E\left(A_{2}^{\mathrm{p}}\right) & =2 \pi \int_{0}^{\infty} r P\left(r \in P_{2}^{\mathrm{p}}\right) \mathrm{dr} \\
& =2 \pi \int_{0}^{\infty} r \int_{0}^{\infty} \int_{0}^{2 \pi} \mathrm{P}\left(r \in \mathrm{P}_{2}^{\mathrm{P}} \mid \mathrm{R}, \theta\right) \mathrm{h}(\mathrm{R}) \frac{1}{2 \pi} d \theta d R d r \\
& =2 \pi \int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\infty} r \exp \{-\rho A(r, R, \theta)\} \rho \operatorname{Rexp}\left\{-\rho \pi R^{2}\right\} d R d \theta d r,
\end{aligned}
$$

where $A(r, R, \theta)$ is the area in a circle, centre r, radius to the furthest of ω_{1}, ω_{2}, excluding the area in $Q(\underline{0}, R)$ (see Figure 18). This excluded area is accounted for by the exponential term in $h(R)$. Putting $\mathrm{R}=\mathrm{ur}$, and integrating out r , gives

$$
\begin{equation*}
E\left(A_{2}^{\mathrm{p}}\right)=\frac{2 \pi}{\rho} \int_{0}^{\infty} \int_{0}^{\pi} \frac{u}{A(u, \theta)^{2}} d \theta d u \tag{4.7}
\end{equation*}
$$

which is exactly analogous to (4.5), the expression for the mean area of an area-weighted V_{1} gon, with a different interpretation for $A(u, \theta)$. In this case $A(u, \theta)=$ total area of $Q(\underline{0}, u)$ and a circle centre $(1,0)$

Figure 18
with radius to furthest of $\underline{0}$ and (u, θ).

Numerical integration of (4.7) gives

$$
E\left(A_{2}^{p}\right)=0.542 \rho^{-1},
$$

which is larger than $E\left(A_{2}\right)=\frac{1}{3} p^{-1}$, the mean area for a uniform random V_{2} cell, but smaller than $E\left(A_{2}^{(0)}\right)=0.78 \rho^{-1}$, the mean area for an area-weighted V_{2} cell, which follows from (4.6) and the variance of A_{2} calculated in section 4.5 .

4.5 Transect Distributions for V_{n} and the variance of U_{n} cell areas

In section 1.3 we obtained relationships between the moments of I, the inter-event distance, and J, the distance from an arbitrary point to the next event, on linear transects of homogeneous tessellations, and the moments of polygon characteristics. In particular, from (1.3.4),

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{~A}^{2}\right)=\pi \mathrm{E}(\mathrm{~A}) \mathrm{E}\left(\mathrm{~J}^{2}\right) \tag{5.1}
\end{equation*}
$$

We make use of this equation to numerically calculate the variances for V_{n} cell areas from the distribution for J.

Let L_{n} be a linear transect of V_{n}. Define J_{n} as the distance from an arbitrary point on L_{n} to the next event, and $J_{n}{ }^{\prime}=\sqrt{n} J_{n}$. The limiting distribution of $J_{n}{ }^{\prime}$ is investigated in section 6.2 .

Moments of $\mathrm{J}_{\mathrm{n}}{ }^{\prime}-$

Take L_{n} passing through the origin, and the origin as our arbitrary starting position. We generate the n nearest particles to $\underline{0}$ by generating R_{n+1}, the distance to the $(n+1)^{s t}$ closest particle and then uniformly distributing n particles on the disk $Q\left(\underline{0}, R_{n+1}\right)$. These n particles are the proximity particles of the V_{n} cell containing the origin, $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ say. We define

$$
S_{n}=\max _{i=1,2 \ldots n}\left|\omega_{i}-\left(\frac{x}{\sqrt{n}}, 0\right)\right|
$$

S_{n} is the distance $\operatorname{from}\left(\frac{x}{\sqrt{n}}, 0\right)$ to the furthest of $\underline{0}^{\prime} \mathrm{s}$ proximity particles, so for the point $\left(\frac{x}{\sqrt{n}}, 0\right)$ to have the same n proximity particles as $\underline{0}, Q\left(\left(\frac{\mathrm{x}}{\sqrt{n}}, 0\right), S_{n}\right)$ must contain no particles other than $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$. Note that $0<S_{n}<R_{n+1}+\frac{x}{\sqrt{n}}$. We define
$A_{n}=Q\left(\frac{x}{\sqrt{n}}, S_{n}\right)-Q\left(\underline{0}, R_{n+1}\right), B_{n}=Q\left(\underline{0}, R_{n+1}\right)-Q\left(\frac{x}{\sqrt{n}}, S_{n}\right)$ (these areas are considered open), and $\mathrm{q}(\alpha)$ is the arc of $\mathrm{Q}\left(\underline{0}, \mathrm{R}_{\mathrm{n}+1}\right)$ lying inside $Q\left(\frac{x}{\sqrt{n}}, S_{n}\right)$ (see Figure 19). We write $|S|$ for the area of S.

Figure 19

Consider $P\left(J_{n}{ }^{\prime}>x\right)=P\left(\frac{x}{\sqrt{n}}\right.$ has same proximity particles as the origin $)$

$$
=P\left(A_{n} \text { is empty of particles and } \omega_{n+1}\right. \text { does not }
$$ 1ie on $\mathrm{q}(\alpha)$)

$=\iint P\left(A_{n}\right.$ empty and $\left.\omega_{n+1} \notin q(\alpha) \mid r_{n+1}, s_{n}\right) f\left(s_{n} \mid r_{n+1}\right) h\left(r_{n+1}\right) d s_{n} d r_{n+1}$,
where f is the conditional density of S_{n} given R_{n+1} and h is the marginal density of R_{n+1}.

We note that the support of f depends on whether x / \sqrt{n} lies inside or outside of $Q\left(\underline{0}, r_{n+1}\right)$. The support is $\left(0, r_{n+1}+x / \sqrt{n}\right)$ if $x / \sqrt{n}<r_{n+1}$, and $\left(x / \sqrt{n}-r_{n+1}, x / \sqrt{n}+r_{n+1}\right)$ if $x / \sqrt{n}>r_{n+1}$. Also,

$$
P\left(A_{n} \operatorname{empty} \mid r_{n+1}, s_{n}\right)=\left\{\begin{array}{cl}
1 & 0<s_{n}<r_{n+1}-x / \sqrt{n} \tag{5.3}\\
\exp \left\{-\rho\left|A_{n}\right|\right\} & r_{n+1}-x / \sqrt{n}<s_{n}<r_{n+1}+x / \sqrt{n}
\end{array}\right.
$$

and, since ω_{n+1} is uniformly distributed on the circumference of $Q\left(\underline{0}, R_{n+1}\right)$

$$
P\left(\omega_{n+1} \notin q(\alpha) \mid r_{n+1}, s_{n}\right)=\left\{\begin{array}{cl}
1 & 0<s_{n}<r_{n+1}-x / \sqrt{n} \\
1-\frac{\alpha}{\pi} & r_{n+1}-x / \sqrt{n}<s_{n}<r_{n+1}+x / \sqrt{n}
\end{array}\right.
$$

Hence

$$
\begin{align*}
P\left(J_{n}^{\prime}>x\right) & =\int_{0}^{x / \sqrt{n}} \int_{x / \sqrt{n}-r_{n+1}}^{x / \sqrt{n}+r_{n+1}} e^{-\rho\left|A_{n}\right|}\left(1-\frac{\alpha}{\pi}\right) f\left(s_{n} \mid r_{n+1}\right) h\left(r_{n+1}\right) d s_{n} d r_{n+1} \\
& +\int_{x / \sqrt{n}}^{\infty} \int_{0}^{r} n+1^{-x / \sqrt{n}} 1 . f\left(s_{n} \mid r_{n+1}\right) h\left(r_{n+1}\right) d s_{n} d r_{n+1} \\
& +\int_{x / \sqrt{n}}^{\infty} \int_{r_{n+1}}^{r_{n+1}+x / \sqrt{n}} e^{-\rho\left|A_{n}\right|}\left(1-\frac{\alpha}{\pi}\right) f\left(s_{n} \mid r_{n+1}\right) h\left(r_{n+1}\right) d s_{n} d r_{n+1} \tag{5.4}\\
& =I_{1}+I_{2}+I_{3} \text { say }
\end{align*}
$$

Simple geometric argument shows that $R_{n+1} \sim \Gamma_{2}(2 n+2, \pi \rho)$, and hence $h\left(r_{n+1}\right)$ is given by (3.5.4). To obtain the form of f, consider

$$
\begin{align*}
F\left(s_{n} \mid r_{n+1}\right) & =d . f . \text { of } S_{n} \text { given } R_{n+1}=r_{n+1} \\
& =P\left(S_{n} \leqslant s_{n} \mid r_{n+1}\right) \\
& =P\left(B_{n} \text { empty }\right) \\
& =\left(1-\frac{\left|B_{n}\right|}{\pi r_{n+1}^{2}}\right)^{n} \\
f\left(s_{n} \mid r_{n+1}\right) & =\frac{-n}{\pi r_{n+1}^{2}}\left(1-\frac{\left|B_{n}\right|}{\pi r_{n+1}^{2}}\right)^{n-1} \frac{d\left|B_{n}\right|}{d s_{n}} \\
& =\frac{2 n \beta}{\pi r_{n+1}^{2}}\left(1-\frac{\left|B_{n}\right|}{\pi r_{n+1}^{2}}\right)^{n-1} s_{n}, \tag{5.5}
\end{align*}
$$

by use of Lemma 4 (see end of this section).

The exact form of the distribution of J for all n is complicated, so we simply calculate the second moment.

$$
E\left(J_{n}^{\prime}{ }^{2}\right)=2 \int_{0}^{\infty} x P\left(J_{n}{ }^{\prime}>x\right) d x=\sum_{j=1}^{3} 2 \int_{0}^{\infty} x I_{j} d x=\sum_{j=1}^{3} K_{j}
$$

Consider $K_{2}=2 \int_{0}^{\infty} x I_{2} d x=2 \int_{0}^{\infty} \int_{0}^{\sqrt{n r}} n+1 \quad x \cdot P\left(S_{n}<r_{n+1}-x / \sqrt{n} \mid r_{n+1}\right) h\left(r_{n+1}\right)$

$$
\times \mathrm{dxdr}_{\mathrm{n}+1}
$$

Note that $P\left(S_{n}<r_{n+1}-x / \sqrt{n} \mid r_{n+1}\right)=P\left(C_{n}\right.$ empty) (see Figure 20)

$$
\begin{equation*}
=\left(1-\frac{\left|c_{n}\right|}{\pi r_{n+1}^{2}}\right)^{n} \tag{5.6}
\end{equation*}
$$

where $\left|C_{n}\right|=\pi r_{n+1}{ }^{2}-\pi\left(r_{n+1}-x / \sqrt{n}\right)^{2}=\pi C\left(p_{1}\right) r_{n+1}{ }^{2}$, if $x=p_{1} r_{n+1}$ and $C(p)=2 p_{1} / \sqrt{n}-p_{1}{ }^{2 / n}$.

Figure 20

Hence, substituting for h,

$$
\begin{align*}
K_{2} & =\frac{4(\pi \rho)^{n+1}}{n!} \int_{0}^{\infty} \int_{0}^{\sqrt{n}} p_{1} r_{n+1}\left(1-C\left(p_{1}\right)\right)^{n} r_{n+1} 2 n+1 e^{-\rho \pi r_{n+1}}{ }^{2} r_{n+1} d_{1} d r_{n+1} \\
& =\frac{4(\pi \rho)^{n+1}}{n!} \int_{0}^{\sqrt{n}} p_{1}\left(1-C\left(p_{1}\right)\right)^{n} \frac{\Gamma(n+2)}{2(\rho \pi)^{n+2}} d p_{1} \\
& =\frac{2 n(n+1)}{\rho \pi} \int_{0}^{1} y(1-y)^{2 n} d y \\
& =\frac{2 n(n+1)}{\rho \pi} \frac{\Gamma(2) \Gamma(2 n+1)}{\Gamma(2 n+3)}=\frac{n}{\rho \pi(2 n+1)} \tag{5.7}
\end{align*}
$$

Consider

$K_{1}=2 \int_{0}^{\infty} \int_{\sqrt{n r} r_{n+1}^{\infty}}^{\infty} \int_{x / \sqrt{n}-r_{n+1}}^{x / \sqrt{n}+r_{n+1}} x \cdot \exp \left\{-\rho\left|A_{n}\right|\right\}\left(1-\frac{\alpha}{\pi}\right) f\left(s_{n} \mid r_{n+1}\right) h\left(r_{n+1}\right) d s_{n} d x d r_{n+1}$.

Again substituting for f and h, and putting $s_{n}=p_{1} r_{n+1}$,
$\mathrm{x}=\mathrm{p}_{2} \mathrm{r}_{\mathrm{n}+1} \sqrt{\mathrm{n}}$, and integrating out $\mathrm{r}_{\mathrm{n}+1}$ yields
where

$$
\begin{equation*}
K_{1}=\frac{4 n^{2}(n+1)}{\rho \pi^{2}} \int_{1}^{\infty} \int_{p_{2}-1}^{p_{2}+1} D\left(p_{1}, p_{2}\right) d p_{1} d p_{2} \tag{5.8}
\end{equation*}
$$

$A\left(p_{1}, p_{2}\right)=A\left(r_{n+1}, p_{1} r_{n+1}, p_{2} r_{n+1}\right) / r_{n+1}{ }^{2}$
$=\pi p_{1}{ }^{2}-\alpha-\beta p_{1}{ }^{2}+p_{2} \sin \alpha$

$$
\begin{aligned}
\mathrm{B}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) & =\pi-\alpha-\beta \mathrm{p}_{1}{ }^{2}+\mathrm{p}_{2} \sin \alpha \\
\alpha & =\cos ^{-1}\left(\frac{1-\mathrm{p}_{1}{ }^{2}+\mathrm{p}_{2}^{2}}{2 \mathrm{p}_{2}}\right), \quad \beta=\cos ^{-1}\left(\frac{\mathrm{p}_{1}^{2}-1+\mathrm{p}_{2}^{2}}{2 \mathrm{p}_{1} \mathrm{p}_{2}}\right)
\end{aligned}
$$

These formulae follow directly from Lemma 4.

Similarly,

$$
\begin{equation*}
K_{3}=\frac{4 n^{2}(n+1)}{\pi^{2} \rho} \int_{0}^{1} \int_{1-p_{2}}^{1+p_{2}} D\left(p_{1} p_{2}\right) d p_{1} d p_{2} \tag{5.9}
\end{equation*}
$$

Collecting (5.7), (5.8), (5.9) gives

$$
\begin{gathered}
E\left(J_{n}^{\prime 2}\right)=\left[\frac{4 n^{2}(n+1)}{\pi^{2}}\left[\int_{0}^{1} \int_{1-p_{2}}^{1+p_{2}} D\left(p_{1}, p_{2}\right) d p_{1} d p_{2}+\int_{1}^{\infty} \int_{p_{2}-1}^{p_{2}+1} D\left(p_{1} p_{2}\right) d p_{1} d p_{2}\right]\right. \\
\\
\left.+\frac{n}{\pi(2 n+1)}\right] \rho^{-1} .
\end{gathered}
$$

This was numerically evaluated for various values of n.

In Table 4 we present the variances for the scaled sequence of tessellations $\sqrt{(2 n-1) \rho} V_{n}$ with mean areas normed to unity for all ni.e. $A_{n}{ }^{\prime}=(2 n-1) \rho A_{n}$. These normed variances tend to the 1imiting variance calculated in section 6.2.

Note that $\operatorname{Var}\left(A_{n}{ }^{\prime}\right)=\frac{(2 n-1) \pi \rho}{n} E\left(J_{n}^{\prime 2}\right)-1$.

The value for $\mathrm{n}=1$ agrees with Gilbert's [1962] calculation. We note that most of the convergence occurs in the first few n values so that by the time $n=128$, the variance is within 2% of its limiting value.

Table 4

n	$\operatorname{Var}\left(\mathrm{~A}_{\mathrm{n}}{ }^{\prime}\right)$
1	0.28
2	1.34
3	1.80
4	2.14
5	2.22
6	2.33
7	2.41
8	2.48
9	2.53
10	2.57
16	2.71
32	2.83
64	2.89
128	2.91
∞	2.95

Lemma 4

Consider intersecting circles as in Figure 21.

Figure 21

By considering relevant areas of sectors and triangles,

$$
\begin{aligned}
B\left(R_{1}, R_{2}, d\right) & =\pi R_{1}^{2}-\frac{2 \alpha}{2 \pi} \cdot \pi R_{1}^{2}-\frac{2 \beta}{2 \pi} \cdot \pi R_{2}^{2}+2 \cdot \frac{1}{2} \cdot R_{1} d \sin \alpha \\
& =\pi R_{1}^{2}-\alpha R_{1}^{2}-\beta R_{2}^{2}+R_{1} d \sin \alpha \\
A\left(R_{1}, R_{2}, d\right) & =\pi R_{2}^{2}-\alpha R_{1}^{2}-\beta R_{2}^{2}+R_{1} d \sin \alpha
\end{aligned}
$$

and

Here $\cos \alpha=\left(R_{1}{ }^{2}-R_{2}^{2}+d^{2}\right) / 2 R_{1} d, \cos \beta=\left(R_{2}^{2}-R_{1}^{2}+d^{2}\right) / 2 R_{2} d$, $0<\alpha, \beta<\pi$.

As is obvious from Figure 21,

$$
\frac{\mathrm{dB}}{\mathrm{dR}_{2}}=-2 \beta \mathrm{R}_{2}
$$

4. 6 Contiguity Distributions

There are several distributions of interest relating to contiguous particles in V_{n}. A fundamental quantity to consider is D_{n}, the distance between two particles, given that they are cell-contiguous in V_{n} i.e. $\left[\omega_{1} \omega_{2} \rightarrow n\right]$ (see section 3.3).

Consider D_{2}. As $\left.\left[\omega_{1} \omega_{2} \rightarrow 2\right] \equiv<\omega_{1} \omega_{2} \rightarrow 1\right\rangle$, by Lemma 3.4 , to choose a uniform random pair satisfying $\left[\omega_{1} \omega_{2} \rightarrow 2\right.$] we can choose a random pair of the three circumferential particles on a uniform random $(1,2)$ vertex. In fact each particle pair satisfying $<\omega_{1} \omega_{2} \rightarrow 1>$ has exactly two chances of being chosen by such a method. The line joining ω_{1} and ω_{2}, chosen in the above manner is just a uniform random side of a Delaunay triangle, whose distribution and moments follow from the Stochastic Construction for a uniform random V_{1} vertex (Lemma 3.10) for the case where the generating particles process is \mathbb{P}.

From Miles [1970], p 113,

$$
\begin{equation*}
E\left[D_{2}^{k}\right]=\frac{2^{k+3} \Gamma((k+5) / 2)}{3(k+2) \pi} \tag{6.1}
\end{equation*}
$$

The density $\mathrm{f}_{2}(\mathrm{x})$ of D_{2} has the interesting form

$$
\begin{equation*}
\mathrm{f}_{2}(\mathrm{x})=\frac{2 \pi \mathrm{x}}{3}\left[1-E\left(\mathrm{x} \sqrt{\frac{\pi}{2}}\right)+\mathrm{x} \sqrt{\frac{\pi}{2}} \xi\left(\mathrm{x} \sqrt{\frac{\pi}{2}}\right)\right] \tag{6.2}
\end{equation*}
$$

where $\Xi(x)$ and $\xi(x)$ are the d.f. and p.d.f. of the standard normal distribution (Sibson [1980b]). (6.2) assumes $\rho=1$. Since ρ is simply a scale parameter the p.d.f. for general ρ is $f_{2}(x ; \rho)=\rho^{\frac{1}{2}} f_{2}\left(x \rho^{\frac{1}{2}}\right)$.

Now consider D_{3}. Again applying Lemma 4, we are concerned with particle pairs satisfying $\left\langle\omega_{1} \omega_{2} \rightarrow 2\right\rangle$. However if we choose a particle pair randomly from a uniform random $(2,3)$ vertex, not all
pairs satisfying $<\omega_{1} \omega_{2} \rightarrow 2>$ will have equal chances of being chosen. This is because there is more than one pattern of V_{n} segments on $<\omega_{1} \omega_{2}>$ under the condition $<\omega_{1} \omega_{2} \rightarrow 2>$ compared to the single pattern under the condition $<\omega_{1} \omega_{2} \rightarrow 1>$. (For details on segmentation of $\left.<\omega_{1} \omega_{2}\right\rangle$ see section 5.2.) The three classes of patterns on $\left.<\omega_{1} \omega_{2}\right\rangle$ are listed. in Figure 22. Write $<\omega_{1} \omega_{2} \rightarrow 2>_{i}$ for the condition that $<\omega_{1} \omega_{2}>$ has pattern i as listed in Figure 22. Then, under the above sampling scheme, particle pairs satisfying $\left\langle\omega_{1} \omega_{2} \rightarrow 2>_{1} \text { or }<\omega_{1} \omega_{2} \rightarrow 2\right\rangle_{2}$ have equal chances of being chosen but $\left\langle\omega_{1} \omega_{2} \rightarrow 2\right\rangle_{3}$ pairs have a double weighting due to the four $(2,3)$ vertices contained in that arrangement.
(1) $\cdot-\frac{1}{4}-\frac{1}{2}-\frac{1}{2}-\cdots$
(2) $\quad-\frac{-}{4}-\frac{-\infty}{3}-\cdots$
(3)

Figure 22

It seems natural to condition on the pattern type, and if $f_{3}(x)$ is the p.d.f. of D_{3} we have

$$
\left.f_{3}\left(x \mid<\omega_{1} \omega_{2} \rightarrow 2>\right)=\sum_{i=1}^{3} \mathrm{f}\left(x\left|<\omega_{1} \omega_{2} \rightarrow 2\right\rangle_{i}\right) P\left(<\omega_{1} \omega_{2} \rightarrow 2\right\rangle_{i} \mid<\omega_{1} \omega_{2} \rightarrow 2>\right)
$$

Using the side densities calculated in sections 4.1 and 4.3, the conditional probabilities of the three pattern types can be
calculated. Let ψ_{i} be the density of perpendicular bisectors with arrangement i. Then from Figure 22,

$$
\begin{gathered}
\psi_{1}=\text { density of } V_{1} \text { sides }=3 \rho \quad(\text { Table } 1) \\
\psi_{2}+2 \psi_{3}=\sigma_{2}(+,+)=4 \rho \quad(\text { Table } 1) \\
\psi_{3}=\sigma_{3}(-,-)=0.526 \rho \quad(\text { Table } 3)
\end{gathered}
$$

and

Table 5 gives the resulting conditional probabilities for the three arrangements. Although we have D_{3} expressed as a mixture of three related contiguity distributions, one of which is known since $f_{2}(x)=f\left(x\left|<\omega_{1} \omega_{2} \rightarrow 2\right\rangle_{1}\right)$, the author has been unable to obtain even theoretical expressions for $\mathrm{f}\left(\mathrm{x} \mid\left\langle\omega_{1} \omega_{2} \rightarrow 2\right\rangle_{i}\right)$ for $\mathrm{i}=2,3$.

Table 5

i	$\mathrm{P}\left(\left\langle\omega_{1} \omega_{2} \rightarrow 2\right\rangle_{i} \mid\left\langle\omega_{1} \omega_{2} \rightarrow 2>\right)\right.$
1	0.463
2	0.455
3	0.082

Another measure of the separation of contiguous particles ω_{1}, ω_{2} in V_{n} is the number of particles which are closer to ω_{1} than ω_{2} is (or vice versa). Let ω_{1} and ω_{2} be a uniform random pair of cell contiguous particles in V_{2} generated by \mathbb{P}, and 1 et ω_{2} be the $I^{\text {th }}$ closest particle to ω_{1} (where I is random). Let q_{i} denote $P(I=i), i=1,2, \ldots$. Using (6.2) we have $(\rho=1)$,

$$
q_{i}=\int_{0}^{\infty} P(I=i \mid r) f_{2}(r) d r
$$

(where $P(I=i \mid r)=P($ circle radius r is ($i-1)$ filled)

$$
=e^{-\pi r^{2}}\left(\pi r^{2}\right)^{i-1} /(i-1)!
$$

Hence

$$
q_{i}=\frac{(2 i)!}{3 i!(i-1)!}\left\{-\frac{1}{5^{i+\frac{1}{2}}}+\int_{1}^{\infty} \frac{d x}{\left(4+x^{2}\right)^{i+\frac{1}{2}}}\right\}
$$

The q_{i} values for $i=1,2, \ldots 15$ are listed in Table 6 . We note that

$$
\begin{aligned}
E(I) & =\sum_{i=1}^{\infty} i q_{i} \\
& =\int_{0}^{\infty}\left(1+\pi r^{2}\right) f_{2}(r) d r \\
& =1+\pi E\left(D_{2}{ }^{2}\right) \\
& =6,
\end{aligned}
$$

by use of (6.1). Since the closest particle to ω_{1} is always contiguous and the mean number of sides is 6 we would expect (approximately) that $P(I=1)=1 / 6$, which is supported by Table 6 . The mean value $E(I)=6$, which may seem too large given that $E(N)=6$, can be explained by realizing that particles near to ω_{1} can miss out on contiguity if closer particles intervene. This spreads out the distribution for I. In fact, $E\left(I^{2}\right)=1+3 \pi E\left(D_{2}{ }^{2}\right)+\pi^{2} E\left(D_{2}{ }^{4}\right)$, which gives $\operatorname{Var}(I)=220 / 3$.

\mathbf{i}	q_{i}	i	q_{i}	i	q_{i}
1	0.1516	6	0.071	11	0.0284
2	0.1339	7	0.0596	12	0.0235
3	0.1160	8	0.0498	13	0.0194
4	0.0993	9	0.0414	14	0.0159
5	0.0843	10	0.0344	15	0.0131

4.7 Basic Results for v_{n} relative to \mathbb{P}

The results in this section summarize joint work between
R.E. Miles and the author. See Miles and Maillardet [1982].

To enable us to write down probability statements for an N-gon of V_{n} we have to establish a link between the V_{n} ce11 and the particles which generate it. This can be done using the geometry of $V_{n} N$-gons in section 3.6, and particularly Lemma 3.14. From this geometry it is clear that associated with any $N-$ gon T in V_{n} are N particles whose perpendicular bisectors determine the sides of T (see Figure 3.16). We refer to these N particles as the generating particles of the ce11; they are just the inner and outer particles of T. Compare this situation with a $V_{1} N$-gon, whose sides are generated by $\mathrm{N}+1$ particles, with the nucleus particle free to occupy any point inside the cell.

We wish to establish a correspondence between N-gons and their N generating particles. Consider N particles in the plane. The collection of possible cells which they generate in V_{n} is just the collection of cells in their V_{2}, for any cell they generate in V_{2} they will generate in V_{n} simply by introducing the requisite number of
interior particles into the area Λ (see Lemma 3.14). The V_{2} of four particles contains a quadrilateral if they have a quadrilateral convex hull, otherwise it contains no finite polygonal region. The V_{2} of five particles contains a pentagon, a quadrilateral, and a certain number of infinite polygonal regions (the number depending on whether the particles have a triangular, quadrilateral or pentagonal convex hu11). See Figure 23 for the quadrilateral convex hull case. It seems intuitively plausible that five particles will generate at most one pentagon in their V_{2}, and indeed that N particles will generate at most one N-gon in their V_{2}. We assume that this is so, but have yet to determine a proof.

The V_{2} of five particles with a quadrilateral convex hull.

Now consider an N-gon in V_{n}, parameterized by its N vertices $\underline{\nu}=\left(\nu_{1}, \nu_{2}, \ldots \nu_{N}\right)$ say. Is there a unique set of generating particles associated with it? The answer, in general, is no, for since vertices in V_{n} can be of two sorts, inner and outer, an N -gon will have a range of permissible types to which it could belong (see section 3.6). And it is easy to construct examples of two identical cells of different types with different generating particles. However, for a polygon of fixed type ϕ, Miles [1982] has shown that there is a unique set of N generating particles, and has determined the Jacobian of the transformation between those particles $\underline{b}=\left(b_{1}, b_{2}, \ldots b_{N}\right)$ and $\underline{\alpha}=\left(p_{1}, \theta_{1}, \ldots, p_{N}, \theta_{N}\right)$, the parametrization of T in terms of its sides (see section 2.4). Thus we have

$$
\begin{equation*}
\underline{d b}=2^{2 N} \int_{i=1}^{N} q_{i} \underline{d} \underline{\alpha}, \tag{7.1}
\end{equation*}
$$

where $\mathrm{q}_{\mathbf{i}}$ is the perpendicular distance between a side and either of its generating partic1es.

Using the one-to-one correspondence between generating particles and polygons of fixed type, and noting carefully the geometry of Lemma 3.14, we have, for a Poisson point process \mathbb{P} as the under1ying point process,
P (there is a particle in each of the area elements $d b_{1}, \ldots, d b_{N}$ generating an N -gon in V_{n})

$$
\begin{gathered}
=\left(\begin{array}{cc}
N & \\
\prod & \left.\rho d b_{i}\right)
\end{array}\right) \operatorname{Pr}(\text { there are }(n-m) \text { particles in int } \Lambda, \text { and no particles } \\
\\
\text { in } \operatorname{int}(V-\Lambda))
\end{gathered}
$$

$=\left(\begin{array}{l}N \\ i=1\end{array} \rho d_{i}\right)\left\{(\rho|\Lambda|)^{n-m} e^{-\rho|\Lambda|} /(n-m)!\right\} e^{-\rho|v-\Lambda|}$
$=\rho^{N+n-m}|\Lambda|^{n-m} e^{-\rho|V|}(n-m)!^{-1} d \underline{b}$.

Hence, using (7.1) we have
P (there is an N-gon member of U_{n} within the side limitations $d \underline{\alpha}$)

$$
\begin{equation*}
=2^{2 N} \sum_{\phi \in \Phi} \rho^{N+n-m}|\Lambda|^{n-m} \exp \{-\rho|V|\}(n-m)!^{-1}\left(\prod_{i=1}^{N} q_{i}\right) d- \tag{7.2}
\end{equation*}
$$

where we have summed over the collection Φ of permissible types ϕ for the cell. Using (2.4.4), we can transform to the vertex parametrization of T and hence to 'structural N-gon co-ordinates' $\eta=(z, l, \underline{\sigma})$, where

$$
\begin{aligned}
& \nu_{1}=z \\
& v_{2}=z+\ell\left(\cos \psi_{2}, \sin \psi_{2}\right) \\
& \nu_{i}=z+\ell \lambda_{i}\left(\cos \psi_{i}, \sin \psi_{i}\right) \quad i=3,4, \ldots, N
\end{aligned}
$$

Here z gives the position, ℓ the size and $\underline{\sigma}=\left(\lambda_{3}, \ldots, \lambda_{N}, \psi_{2}, \ldots, \psi_{N}\right)$ the shape of T. So for certain functions g and $h, \Lambda=g(\underline{\sigma}) l^{2}$ and $V=h(\underline{\sigma}) l^{2}$, and (7.2) becomes
P (there is an N-gon member of V_{n} in $d n$)

$$
\begin{gather*}
=2^{2 N} \sum_{\phi \in \Phi} \rho^{N+n-m} g(\underline{\sigma})^{n-m} \ell^{2 N+2 n-2 m-3} \exp \left\{-\rho h(\underline{\sigma}) \ell^{2}\right\}(n-m)!^{-1} \\
\times \prod_{i=1}^{N}\left(\left|\sin \psi_{i}\right| q_{i} / L_{i}\right) \prod_{i=3}^{N} \lambda_{i} \tag{7.3}
\end{gather*}
$$

Since the area and perimeter of the cell can be written as $A=a(\underline{\sigma}) l^{2}$ and $S=s(\underline{\sigma}) l,(7.3)$ shows that for a given shape, the conditional distributions of A and S are mixtures of the generalized gamma distributions defined by Miles [1970] p 88.

CHAPTER 5

COMPUTATION OF VORONOI AND GENERALIZED VORONOI TESSELLATIONS

Abstract

The generalized Voronoi tessellations, even for regular lattices of particles rather than random particles in general position, are difficult to visualize and think about without a picture. The task of constructing these tessellations by hand, even for sma11 values of n, is extremely laborious, as Miles comments in his initial work. It was essential that a program for producing these tessellations over large areas was developed.

A summary of developed techniques for efficient computation of Voronoi tessellations is given in section 5.1 , together with an assessment of transferring the same techniques to the V_{n} case. Section 5.2 gives the geometric background to the program we use, which is explained in detail in section 5.3. Section 5.4 specifies a more efficient alternative program for generation of V_{n} for n very large. Section 5.5 investigates calculations based on a degenerate square grid of particles.

5.1 Computation of Voronoi Tessellations

The computation of the Voronoi tessellation has become a subject of considerable interest over the last few years. This is no doubt due to its increasing importance and use in a wide variety of modelling situations.

The history of the computation of V_{1}, at least for the planar case, is summarized in Green and Sibson [1978], where an efficient technique for the computation of planar Voronoi tessellations over a
region bounded by linear constraints is developed. This program is very fast, and works by iteratively modifying an established tessellation by the successive addition of new particles.

This works well for V_{1}, since the only cells which are
modified are those which are edge-contiguous with the added particle. Figure 1 illustrates how the cell of an added particle captures its territory from the cells of edge-contiguous particles.

© added particle

Figure 1

The Green/Sibson algorithm begins with a nearest neighbour search, since a new particle will always be edge-contiguous with its nearest neighbour, and the new contiguities are traced out as indicated in Figure 1. Use is made of the established tessellation to decrease the time of this nearest neighbour search.

Applying a similar approach to the computation of V_{n} is unworkable. As an example consider adding a particle ω to an established V_{50} tessellation. Let $A_{\omega, 50}$ be the 50-Area of ω relative to the existing particles.

Over the whole of $A_{\omega, 50}$ the tessellation is changed, and the cells within this area have different proximity particles due to the inclusion of ω. Around the edge of $A_{\omega, 50}$ there are other cells with the same proximity particles but which now have a side (part of the perpendicular bisector between one of their proximity particles and ω) which has modified their geometry. For $n=50$, Lemma 3.3 indicates a mean number of 4950 cells will be effected by having their proximity particles changed. These considerations obviously rule out any straightforward application of the Green/Sibson approach to the V_{n} case.

The Green/Sibson algorithm works in $\mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$ time, where N is the number of particles for which the tessellation is calculated. This is made up of a linear term in N for the tracing of new contiguities and an $\mathrm{N}^{\frac{1}{2}}$ term for the nearest neighbour search, assisted by the existing tessellation. The authors point out the possibility of an $O(N \log N)$ run time by a more sophisticated nearest neighbour search over several generations of the tessellation, at some cost in storage.

Further work aimed at improving the efficiency of V_{1} computation is currently being carried out by Murota (University of Tokyo), who has implemented an $O(N \log N)$ algorithm based on an efficient version by Horspool [1979] of an algorithm originally described in Shamos and Hoey [1975] (personal communication). Murota is also currently working on an improvement to the Green/Sibson algorithm which could run in $O(n)$ time on average.

There has also been recent work on extending the Green/Sibson algorithm to the computation of Voronoi and Delaunay tessellations in k-dimensions (Bowyer [1981]). Bowyer computes the dual Delaunay tessellation by a natural extension of the two-dimensional algorithm,
performing a tessellation assisted search to find the added particles nearest neighbour, and a vertex search through the established Delaunay vertices to calculate the contiguities generated or removed by the new particle. Watson [1981] has tackled the problem in a similar fashion.

It is important to remember that there are two sorts of problems in the generation of tessellations, which are computationally clearly distinct. One is the generation of the tessellation over a certain area, the other the generation of an individual typical polygon for simulation purposes, to investigate polygon characteristics beyond theoretical treatment. These problems are related, and the former could always be solved by an iterative application of the latter to build up the tessellation, polygon by polygon, over a region (see sections 5.3, 5.4). For the Voronoi case the generation of individual polygons is straightforward, using the typical ce11 [ω_{0}] generated by $\mathbb{P} \cup\left\{\omega_{0}\right\}$, as described in section 2.3. A large scale Monte Carlo study of Voronoi cells was carried out by Hinde and Miles [1980], using this technique.

5.2 The partitioning of $\left\langle\omega \omega^{\omega}\right\rangle$ into V segments

Consider two particles of the generating process of the tessellation, which is assumed to be of type π_{2}, and their perpendicular bisector $\left.<\omega_{1} \omega_{2}\right\rangle$. This is partitioned by the other particles of Π_{2} into segments of \mathcal{L}_{n}. In fact any point x on $\left\langle\omega_{1} \omega_{2}\right\rangle$ is contained in an \mathcal{L}_{n} segment if the circle, centered at x and passing through ω_{1} and ω_{2} i.e. $Q\left(\underline{x},\left|\underline{x}-\omega_{1}\right|\right)$ is $(n-1)$-filled, $n=1,2,3, \ldots$ (see Figure 2) and we write $n(\underline{x})=n$. Such a circle is referred to as a centered circle.

Figure 2

The endpoints of the V_{n} segments are the circumcentres ${ }^{<} \omega_{1} \omega_{2} \omega_{i}>$ where ω_{i} ranges over the other particles of Π_{2}.

The main processes of interest in an analysis of the partitioning of $\left\langle\omega_{1} \omega_{2}\right\rangle$ are
(i) the point process of circumcentres $\left\{\left\langle\omega_{1} \omega_{2} \omega_{i}\right\rangle, \omega_{i} \in \Pi_{2}\right\}, C(d)$, and
(ii) the random step function $\left\{n_{d}(\underline{x}), \underline{x} \in<\omega_{1} \omega_{2}>\right\}$, where $n_{d}(\underline{x})=n$ if $\underline{x} \in \mathcal{L}_{\mathrm{n}}$ segment.

Since no meaning can be ascribed to an arbitrary or typical pair of particles or equivalently a typical perpendicular bisector, we always condition on the distance between ω_{1} and ω_{2} - hence $n_{d}(\underline{x})$ and $C(d)$.

A typical realization of $n_{d}(\underline{x})$ is given in Figure 3 .
\mathcal{L}_{n} segments
——— base circle
© base circle partic1e
x non-base circle particle

Figure 3

Although similar arguments apply relative to an origin fixed anywhere on $\left\langle\omega_{1} \omega_{2}\right\rangle$, we arbitrarily fix the origin at the midpoint between ω_{1} and ω_{2} and refer to the circle, centre origin which passes through ω_{1} and ω_{2} as the base circle (Figure 2).

If there are n particles in the base circle, the origin is in an $\mathcal{L}_{\mathrm{n}+1}$ segment. We call these particles base circle particles. Note that the $\mathcal{L}_{\mathrm{n}+1}$ segment centered on the base circle is not necessarily
the minimum \mathcal{L}_{n} which appears on $\left\langle\omega_{1} \omega_{2}\right\rangle$.

As we move \underline{x} in a positive direction away from $\underline{0}$, the centered circle at \underline{x} will either capture additional particles or lose base circle particles which lie in the negative half of the base circle. Each time a base circle particle is lost, a reverse jump occurs and the value of $n_{d}(\underline{x})$ decreases by one; similarly each time another particle is captured $n_{d}(\underline{x})$ increases by one. It is clear that there are only a limited number of reverse jumps in any realization, equal to the number of base circle particles, and that, eventually, $n_{d}(x)$ will increase monotonically to infinity on both sides. We can reconstruct $n_{d}(\underline{x})$, therefore from knowledge of the number of particles in the base circle and the marked point process ($C(d), S$) where S indicates whether the circumcentre is generated by a base circle particle.

In the V_{1} case there is only ever a single V_{1} segment on $<\omega_{1} \omega_{2}>$. This is because a V_{1} vertex is empty, so that movement in either direction cannot lose a particle - there must be a strict monotonic increase either side of a V_{1} segment. Similarly for V_{n}, there is a maximum of $n V_{n}$ segments on $\left\langle\omega_{1} \omega_{2}\right\rangle$, since if there is at least one such segment there is an $(n-1)$-filled centered circle on $<\omega_{1} \omega_{2}>$ which limits the number of reverse jumps either side of it to $(n-1)$ and hence the number of V_{n} segments to a maximum of n, in the case where the ($n-1$) reverse jumps alternate with positive jumps.

5.3 Computation of the $V{ }_{n}$ tessellation

Efficiency is not an overriding consideration in the computation of V_{n}; the aim was for a program that would generate the tessellation over large areas for a range of values of n.

The technique used is to concentrate attention not on whole polygons, but on the perpendicular bisectors of all particles that are sufficiently close that there is a fair probability of them containing a V_{n} segment. For each $\left\langle\omega_{1} \omega_{2}\right\rangle$ chosen we find $\left\langle\omega_{1} \omega_{2} \omega_{k}\right\rangle$ for the other particles ω_{k}, noting each time whether ω_{k} is a base circle particle or not, and simultaneously finding the total number of particles in the base circle - NBC say. This information amounts to knowing (C (d), S) for the $\left.<\omega_{1} \omega_{2}\right\rangle$ under consideration.

The program uses vector parametric form for $\left\langle\omega_{1} \omega_{2}\right\rangle$ and stores circumcentres by storing the appropriate parameter value - positive values in one array and negative values in another, so that the sign can be used to indicate the presence of a 'base-circle particle' generated circumcentre (-) or otherwise (+) (see Figure 4).

Once all circumcentres are calculated, both arrays are ordered (by absolute value). The central segment on $\left.<\omega_{1} \omega_{2}\right\rangle$, which cuts through the origin, is a $V_{N B C+1}$ segment with endpoints at the smallest positive and largest negative circumcentres. Further V_{n} segments extend between successive circumcentres, with n values dictated by the S value corresponding to their circumcentre nearest to $\underline{0}$, in the fashion explained in section 5.2 . The program simply proceeds along $\left.<\omega_{1} \omega_{2}\right\rangle$ in the positive and then negative directions and stores segments of any V_{n} which is being generated into an appropriate data file (see Figure 4). The search along $\left\langle\omega_{1} \omega_{2}\right\rangle$ terminates when the segments are no longer in the recorded region, or when it becomes clear that no more U_{n} segments can occur since all base-circle reverse jumps have been exhausted.

Figure 4

This procedure is repeated for all choices of pairs of particles. If we fix ω_{1} and allow ω_{2} to vary over the possible pairs, the program generates all V_{n} segments in which ω_{1} plays a part. Such a V_{n} segment, on $\left\langle\omega_{1} \omega_{i}\right\rangle$ say, is the boundary between two V_{n} cells of the form $\left[\omega_{1} \Omega_{2} \ldots \Omega_{n}\right]$ and $\left[\omega_{i} \Omega_{2} \ldots \Omega_{n}\right]$, and hence $c l e a r l y$ forms part of the boundary of ω_{1} 's n-Area - i.e. part of ω_{1} 's n-Circuit $C_{\omega_{1}}$, n (see section 3.2). Hence the program essentially computes the n-Circuits for all particles. This is strictly true only for the first particle, for later particles are paired only with particles they have not yet been paired with, which means that only parts of their n-Circuit not previously computed will be generated.

Choice of particle pairs

Given a particle ω_{1} the question is what other particles should be paired with it to ensure that all perpendicular bisectors containing V_{n} segments are considered. We can get some indication from Lemma 3.2, which showed that

$$
E\left(A_{\omega, n}\right)=n / \rho
$$

Since the n-Area of ω_{1} is star shaped and isotropic about ω_{1}, the expected length of a ray from ω_{1} to $C_{\omega_{1}, n}$ in an arbitrary direction is $\sqrt{n} / \pi \rho$. Of course parts of $C_{\omega_{1}, n}$ far away from ω_{1} can still be due to particles ω_{j} very close to ω_{1} for which $\left\langle\omega_{1} \omega_{j} \rightarrow k\right\rangle$ is true for some $k<n . \quad 2 \sqrt{n} / \pi \rho$ is hence interpretable as the average distance to a particle from ω_{1}, given that the minimum V_{i} appearing on their perpendicular bisector is a V_{n}.

For smaller values of n, depending on the size of the area of tessellation generated, some time saving is possible by griding the plane and considering only those particles in certain grids near to ω_{1}. Since such an approach is probabilistic, rather than geometric, there is always a possibility that a V_{n} segment is missed. This difficulty need not be faced, however, for when we are interested in calculating a series of V_{n} 's the highest n value determines the pair selection and this often means choosing all possible pairs.

For example, to generate the plots in Figure 5, which shows a sequence of V_{n} 's for $n=4,16,64$ and 256 , and the V_{300} in Figure 6 , 500 random particles were placed in the unit square, and areas of the different V_{n} 's were stored over the regions shown in Figure 7. A11 possible particle pairs were considered. In this case we can be virtually certain that the tessellations produced over their respective areas will be complete, since, with high probability, each point in these areas has its n nearest particles determined by the particles inside the unit square, so there is a corresponding high probability that all edge-contiguous particle pairs will be considered.

We note that in calculating V_{300} this program must also calculate V_{i} for all $i<300$, since all such V_{i} segments must be

Figure 5, Realizations of the tessellations V_{4}, V_{16}, V_{64} and V_{256} scaled so as to have equal mean areas.

Figure 6. $\quad V_{300}$ for a set of random particles
considered in passing along each perpendicular bisector. The only limitation, then, is the amount of data storage available, and the time spent actually storing the required data. The program generating Figures 5 and 6 ran for approximately one hour on a Dec-20 System of the R.S.S.S., A.N.U.. If required, data on all tessellations V_{1}, \ldots, V_{300} could have been stored.

Figure 7

5.4 Individual Polygon Generation

For potential simulation studies of V_{n}, another program was developed for the generation of individual V_{n} polygons. This was based on the Stochastic Construction of a typical V_{n} cell.

The program presents some interesting logical problems in terms of keeping track of particles, base circle or otherwise, in
searching appropriate areas for the next vertex, and in proceeding around the polygon in the correct manner, but is basically a straightforward application of the logic of Lemma 3.11. This program can also be used for building up plots of large regions of V_{n} by applying the algorithm repeatedly to add polygons adjacent to those already generated (see Figure 8).

In this case, the initial polygon is developed from a typical V_{n} vertex surrounded by a realization of \mathbb{P}. A list is kept of incomplete vertices i.e. vertices with on1y two segments joining. The program iterates through the incomplete vertex list, adding the polygon which completes that vertex and an adjacent vertex, and at the same time adding the new incomplete vertices associated with that polygon to the incomplete vertex list. This iteration continues until a specified area is tessellated. A working version of this program was used to generate V_{1}. It could be app1ied to the generation of V_{n} 's for very large n with reasonable run times i.e. $\mathrm{n} \approx 2000$.

5.5 $\quad-\quad$'s based on a degenerate square grid

A program was developed for the computation of V_{n} 's based on a degenerate square grid of particles. This was similar in structure to that used for random particles in general position, but there are some interesting fundamental differences between the two cases.
(i) a square grid is degenerate not only in the sense that more than three particles can lie on the same straight line or more than four on a circle, leading to vertices with more than three polygons meeting at the vertex, but many different pairs of particles have the same perpendicular bisector. Hence instead of a point $\underline{x} \in<\omega_{1} \omega_{2}>$ belonging to a unique V_{n}, if $Q\left(\underline{x},\left|\underline{x}-\omega_{1}\right|\right)$ is ($\left.n-1\right)$-filled, it in general belongs to a whole sequence of V_{n} segments, but relative to different generating particle pairs for $\left\langle\omega_{1} \omega_{2}\right\rangle$ (see Figure 9).

Figure ?

(ii) unlike $n_{d}(\underline{x})$ on $\left\langle\omega_{1} \omega_{2}\right\rangle$ for the general position case, the jump between successive V_{n} segments on a perpendicular bisector can
and often does exceed one, since more than three particles can be on the one circle (see Figure 10). This effect is easily accomodated into the previous program however. The circumcentres are stored for each particle as before, so if, as in Figure 10 , two particles (ω, and ω_{4} say) lie on the same circle as ω_{1} and ω_{2}, the circumcentre list would be

$$
-1,-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1 .
$$

${ }^{<} \omega_{1} \omega_{2}>$ is numbered with \mathcal{L}_{n} segments.

Since the base circle is zero-filled $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is a V_{1} segment. Since the particle generating the first $\frac{1}{2}, \omega_{3}$, was not a base circle particle, we add one to the n value and have a V_{2} segment $\left(\frac{1}{2}, \frac{1}{2}\right)$; this segment is not stored however being of zero-1ength. The n value again rises by one, since ω_{4} is not a base circle particle and we have a V_{3} segment $\left(\frac{1}{2}, 1\right)$.

For higher n values this effect is magnified with large

 numbers of particles on the one circle. The solution here depends on the circumcentres, calculated individually for each combination of ω_{1}, ω_{2} and ω_{i}, being exactly equal so that zero-length segments can be disregarded and short legitimate V_{n} segments recorded. This was achieved by calculating circumcentres in double precision, but checking their equality only to single precision. This is an acceptable solution for our program which generates V_{n} 's up to 150 .(iii) Symmetry considerations obviously play a large part in these tessellations. The whole plane is covered by repetitions of a basic triangle as shown in Figure 11. In addition the arrangement of V_{n} segments along any perpendicular bisector, for any pair of its generating particles, is symmetric about the midpoint between the particles.

(iv) To ensure that complete tessellations were generated, i.e. that no edge-contiguous particle pairs were missed, the tessellation was generated over a single square region S inside a square grid large enough to ensure that all points in S have at least their nearest n particles determined by the larger grid - a twenty by twenty grid ensures valid V_{n} in the central region up to approximately 240 (see Figure 12).

Figure 12

A program using a 20×20 grid of particles, over which all possible particle pairs were considered, generated $V_{1}, V_{2}, \ldots, V_{150}$ in twenty three minutes. Figure 13 shows a selection of these V_{n} (see also Figure 3.2). It is interesting to note that the first three are all square lattices. The tessellations are plotted over 9 squares or 36 repetitions of the basic triangle to give a global impression of the patterns.

Returning to the case of particles in random position, we note the remarkable similarity of the sequence of scaled V_{n} 's in Figure 5, which suggests that the distributions of V_{n} ce11 characteristics, e.g. those of $(N, \sqrt{(2 n-1) \rho} S,(2 n-1) \rho A)$, tend
rapidly to non-degenerate limits. This prompted the investigations of limiting distributions undertaken in Chapter 6 .

Figure 13 (i). V_{n} 's based on a square grid of particles The particles are shown by crosses.

VORONOI - 52

VORONOI - 53
Figure 13 (ii). $\quad V_{n}$'s based on a square grid of particles
The particles are shown by crosses.

CHAPTER 6

GENERALIZED VORONOI TESSELLATIONS - LIMITING RESULTS

In this chapter we establish some 1 imiting distributions
relating to a sequence of scaled V_{n} tessellations. If we scale the tessellation by \sqrt{n} along both axes the mean cell area is normed to $n[(2 n-1) p]^{-1}$. This scaling is used for convenience in the derivations and we refer to

$$
V_{\infty}^{\prime}=\lim _{n \rightarrow \infty} \sqrt{n} V_{n},
$$

as the limiting tessellation, in which the polygon characteristics have the calculated limiting distributions. However the calculated moments are given relative to

$$
V_{\infty}=\lim _{n \rightarrow \infty} \sqrt{(2 n-1) \rho} V_{n}
$$

the limiting tessellation for the sequence of normed V_{n} having unit mean ce11 area.

6.1 Limiting Side-Length Distribution for $V^{\prime}{ }_{\infty}$

In this section we make use of the stochastic construction of a uniform random side of a member of V_{n}, i.e. a uniform random member of \mathcal{L}_{n}, given in Lemma 3.11 , to prove a limit result for the ergodic side-length distribution of V_{∞}^{\prime}.

From Lemma 3.10 we have the following ergodic results for an N-filled vertex of V_{n} (see Figure 1).

Figure 1

$$
R_{N} \sim \Gamma_{2}(2 N+4, \pi \rho) \text { with p.d.f. } f_{N}(R)
$$

$N=\left\{\begin{array}{lll}n-1 & \text { with probability } p_{n-1}={ }^{n} /(2 n-1) \rightarrow \frac{1}{2} \text { as } n \rightarrow \infty \\ n-2 & \prime \prime & \prime \prime \\ p_{n-2}= & (n-1) /(2 n-1) \rightarrow \frac{1}{2} \text { as } n \rightarrow \infty\end{array}\right.$
α, half the angular separation of two circumferential particles, has the same distribution as a random angle in a Delaunay tessellation (since $2 \alpha=2 \beta$ in Figure 1).

Hence

$$
g(\alpha)=p \cdot d . f . \text { of } \alpha=\frac{4 \sin \alpha}{3 \pi}(\sin \alpha+(\pi-\alpha) \cos \alpha)
$$

Let D_{n} denote the length of a random side of V_{n}, and consider $\mathrm{P}\left(\mathrm{a}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}>\ell\right)$, where $\mathrm{a}_{\mathrm{n}}>0$ and $\mathrm{a}_{\mathrm{n}} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$, $\ell>0$.

$$
\begin{equation*}
P\left(a_{n} D_{n}>\ell\right)=\sum_{i=n-1, n-2} \iint P\left(a_{n} L_{n}>\ell \mid R, \alpha, N=i\right) f_{i}(R) g(\alpha) d \alpha d R \tag{1.1}
\end{equation*}
$$

Assuming $\mathrm{i}=\mathrm{n}-1$, consider

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \int_{0}^{\infty} P\left(a_{n} D_{n}>\ell \mid R, \alpha, N=n-1\right) f_{n-1}(R) g(\alpha) d R d \alpha \tag{1.2}
\end{equation*}
$$

From Figure 1,

$$
\begin{aligned}
P\left(a_{n} D_{n}>\ell \mid R, \alpha, N=n-1\right) & =P\left(\text { no particles in } A_{n} \text { or } B_{n}\right) \\
& =P\left(A_{n} \text { empty }\right) P\left(B_{n} \text { empty }\right) \\
& =\exp \left\{-\rho A_{n}\right\}\left(1-\frac{B_{n}}{\pi R^{2}}\right)^{n-1},
\end{aligned}
$$

where A_{n} and B_{n} are functions of ℓ, a_{n}, α and R. Hence (1.2) becomes

$$
\begin{equation*}
\int_{0}^{\pi}\left[\lim _{n \rightarrow \infty} \int_{0}^{\infty} \exp \left\{-\rho A_{n}\right\}\left(1-\frac{B_{n}}{\pi R^{2}}\right)^{n-1} f_{n-1}(R) d R\right] g(\alpha) d \alpha \tag{1.3}
\end{equation*}
$$

where, since the inner integral in (1.2) is bounded by one, which is integrable on $[0, \pi]$, we have interchanged the limit and integration by Lebesque's dominated convergence theorem.

$$
\text { As } R_{n-1} \sim \Gamma_{2}(2 n+2, \pi \rho) \text {, }
$$

$$
\begin{gathered}
E\left(R_{n-1}\right)=\frac{\Gamma\left(\frac{2 n+3}{2}\right)}{\Gamma(n+1)} \frac{1}{\sqrt{\pi \rho}} \rightarrow \sqrt{\frac{n}{\pi \rho}} \text { as } n \rightarrow \infty \\
\operatorname{Var}\left(R_{n-1}\right)=\frac{n+1}{\pi \rho}-\left(E R_{n-1}\right)^{2} \rightarrow \frac{1}{\pi \rho}, \text { as } n \rightarrow \infty .
\end{gathered}
$$

Hence for $C_{n-1}=R_{n-1 / \sqrt{n}}$, as $n \rightarrow \infty \quad E\left(C_{n-1}\right) \rightarrow \frac{1}{\sqrt{\pi \rho}}$ and $\operatorname{Var}\left(C_{n-1}\right) \rightarrow \frac{1}{n \pi \rho}$. Therefore making the change of variable $r=R / \sqrt{n}$ in the inner integral in (1.3), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \exp \left\{-\rho A_{n}\right\}\left(1-\frac{B_{n}}{n \pi r^{2}}\right)^{n-1} f \frac{f}{n-1}(r) d r, \tag{1.4}
\end{equation*}
$$

where $f_{n-1}^{*}(r)$ is the p.d.f. of C_{n-1} with $C_{n-1} \xrightarrow{P} 1 / \sqrt{\pi \rho}$ as $n \rightarrow \infty$. We need the

Lemma 1

$$
\lim _{n \rightarrow \infty} \int g_{n}(x) f_{n}(x) d x=\lim _{n \rightarrow \infty} g_{n}(a), \quad \text { if } \quad x_{n} \xrightarrow{p} a
$$

as $n \rightarrow \infty$, where $f_{n}(x)$ is the p.d.f. of X_{n} and the g_{n} are continuous and bounded.

A proof of Lemma 1 is appended to this section. Applying
Lemma 1 to (1.4) we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{\infty} \exp \left\{-\rho A_{n}\right\}\left(1-\frac{B_{n}}{n \pi r^{2}}\right)^{n-1} f_{n-1}^{*}(r) d r \\
&=\left.\lim _{n \rightarrow \infty} \exp \left\{-\rho A_{n}\right\}\left(1-\frac{B_{n}}{n \pi r^{2}}\right)^{n-1}\right|_{r=\frac{1}{\sqrt{\pi \rho}}} \\
&=\lim _{n \rightarrow \infty} \exp \left\{-\left.\rho A_{n}\left(l, \alpha, a_{n}, R\right)\left(1-\frac{B_{n}\left(l, \alpha, a_{n}, R\right)}{\pi R^{2}}\right)^{n-1}\right|_{R=\sqrt{\frac{n}{\pi \rho}}}\right.
\end{aligned}
$$

We now consider the limits of $A_{n}\left(\ell, \alpha, a_{n}, R\right)$ and $B_{n}\left(\ell, \alpha, a_{n}, R\right)$

(see Figure 2)

$$
A_{n}=R^{\prime 2}(\theta-\sin \theta \cos \theta)-R^{2}(\alpha-\sin \alpha \cos \alpha),
$$

where $R^{\prime 2}=(R \sin \alpha)^{2}+\left(R \cos \alpha-\ell / a_{n}\right)^{2}=R^{2}-\frac{2 \ell \cos \alpha}{a_{n}}+\frac{\ell}{a_{n}{ }^{2}}$
and $\sin \theta=\frac{R \sin \alpha}{R^{\prime}}, \quad \cos \theta=\frac{\left(R \cos \alpha-\ell / a_{n}\right)}{R^{\prime}}$

Figure 2

Hence $A_{n}=\theta R^{\prime 2}-R \sin \alpha\left(R \cos \alpha-\ell / a_{n}\right)-\alpha R^{2}+R^{2} \sin \alpha \cos \alpha$

$$
\begin{aligned}
& =\sin ^{-1}\left(\frac{R \sin \alpha}{R^{\prime}}\right) R^{\prime 2}+\frac{R \ell \sin \alpha}{a_{n}}-\alpha R^{2} \\
& =R^{2}\left\{\sin ^{-1} \frac{R \sin \alpha}{R^{\prime}}-\alpha\right\}-\left(\frac{2 \ell R \cos \alpha}{a_{n}}-\frac{\ell}{a_{n}^{2}}\right) \sin ^{-1}\left(\frac{R \sin \alpha}{R^{\prime}}\right)+\frac{R \ell \sin \alpha}{a_{n}}
\end{aligned}
$$

Expanding $\sin ^{-1}$ as a Taylor series about $\sin \alpha$,

$$
\begin{aligned}
A_{n}=R^{2}(\alpha & \left.+\tan \alpha\left(\frac{R}{R^{\prime}}-1\right)-\tan ^{3} \alpha\left(\frac{R}{R^{\prime}}-1\right)^{2}+\ldots-\alpha\right) \\
& -\left(\frac{2 \ell R \cos \alpha}{a_{n}}-\frac{\ell}{a_{n}^{2}}\right) \sin ^{-1}\left(\frac{R \sin \alpha}{R^{\prime}}\right)+\frac{R \ell \sin \alpha}{a_{n}}
\end{aligned}
$$

Consider $R^{2}\left(\frac{R}{R^{\prime}}-1\right)=R^{2}\left(\frac{1}{\sqrt{1-\frac{2 l \cos \alpha}{a_{n} R}+\frac{l}{\left(a_{n} R\right)^{2}}}}-1\right)$

$$
\begin{aligned}
& =R^{2}\left[\frac{1}{2}\left(\frac{2 l \cos \alpha}{a_{n} R}-\frac{\ell}{\left(a_{n} R\right)^{2}}\right)+\frac{3}{6}\left(\frac{2 \ell \cos \alpha}{a_{n} R}-\frac{\ell}{\left(a_{n} R^{2}\right)}\right)^{2}-\ldots\right] \\
& =\frac{\ell \cos \alpha}{\sqrt{\pi \rho}}+O\left(\frac{1}{n}\right),
\end{aligned}
$$

if we choose $a_{n}=\sqrt{n}$, and evaluate at $R=\sqrt{\frac{n}{\pi \rho}}$.

$$
\text { Note that } \quad R^{2}\left(\frac{R}{R^{\prime}}-1\right)^{2}=O\left(\frac{1}{n}\right)
$$

Ther ef ore

$$
\begin{aligned}
A_{n} & =\tan \alpha\left(\frac{\ell \cos \alpha}{\sqrt{\pi \rho}}\right)-\left(\frac{2 \ell \cos \alpha}{\sqrt{\pi \rho}}-\frac{\ell}{\mathrm{n}}\right)\left(\alpha+O\left(\frac{1}{\mathrm{n}}\right)\right)+\frac{\ell \sin \alpha}{\sqrt{\pi \rho}} \\
& =\frac{2 \ell \sin \alpha}{\sqrt{\pi \rho}}-\frac{2 \ell \alpha \cos \alpha}{\sqrt{\pi \rho}}+O\left(\frac{1}{\mathrm{n}}\right) \\
\mathrm{B}_{\mathrm{n}} & =\pi\left(R^{2}-R^{\prime 2}\right)+A_{\mathrm{n}} \\
& =\frac{2 \ell}{\sqrt{\pi \rho}}(\sin \alpha+(\pi-\alpha) \cos \alpha)+0\left(\frac{1}{\mathrm{n}}\right) \\
& \lim _{\mathrm{n} \rightarrow \infty} A_{\mathrm{n}}\left(\ell, \alpha, \sqrt{\mathrm{n}}, \sqrt{\frac{\mathrm{n}}{\pi \rho}}\right)=\frac{2 \ell}{\sqrt{\pi \rho}}(\sin \alpha-\alpha \cos \alpha) \\
& \lim _{\mathrm{n} \rightarrow \infty} B_{\mathrm{n}}\left(\ell, \alpha, \sqrt{\mathrm{n}}, \sqrt{\frac{\mathrm{n}}{\pi \rho}}\right)=\frac{2 \ell}{\sqrt{\pi \rho}}(\sin \beta-\beta \cos \beta)=B \text { say },
\end{aligned}
$$

and

Substituting the above in (1.5),

$$
\begin{align*}
&\left.\lim _{n \rightarrow \infty} \exp \left\{-\rho A_{n}\right\}\left(1-\frac{\rho B_{n}}{n}\right)^{n-1}\right|_{R=\sqrt{\frac{n}{\pi \rho}}} \\
&=\exp \left\{-\rho \cdot \frac{2 \ell}{\sqrt{\pi \rho}}(\sin \alpha-\alpha \cos \alpha)\right\}_{n \rightarrow \infty}\left(1-\frac{\rho B_{n}}{n}\right)^{n-1} \\
&=\exp \left\{-2 \ell \sqrt{\frac{\rho}{\pi}}(\sin \alpha-\alpha \cos \alpha)\right\}_{n \rightarrow \infty}\left(1-\frac{\rho B}{n}+\frac{\rho\left(\frac{1}{n}\right)}{n}\right)^{n-1} \\
&=\exp \left\{-2 \ell \sqrt{\frac{\rho}{\pi}}(\sin \alpha-\alpha \cos \alpha)\right\} \exp \{-\rho B\} \\
&=\exp \left\{-4 \ell \sqrt{\frac{\rho}{\pi}}\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right)\right\} \tag{1.6}
\end{align*}
$$

Clearly $\lim P\left(a_{n} D_{n}>\ell \mid R, \alpha, N\right)$ is the same for both $N=n-1$ and $\mathrm{N}=\mathrm{n}-2$, and since $\mathrm{p}_{\mathrm{n}-1}, \mathrm{p}_{\mathrm{n}-2} \rightarrow \frac{1}{2}$ as $\mathrm{n} \rightarrow \infty$, (1.1), (1.3), (1.5) and (1.6) combined give

$$
\lim _{n \rightarrow \infty} P\left(\sqrt{n} D_{n}>\ell\right)=\int_{0}^{\pi} \exp \left\{-4 \ell \sqrt{\frac{\rho}{\pi}}\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right) \cdot g(\alpha) d \alpha\right\}
$$

Hence we have established the

Theorem 1

Let D_{n} denote the length of a uniform random member of \mathcal{L}_{n}. Then the sequence $\left\{\sqrt{n} D_{n}\right\}$ converges in distribution to D_{∞}^{\prime}, the side length for a uniform random member of V_{∞}^{\prime}, with

$$
P\left(D_{\infty}^{\prime}>\ell\right)=\int_{0}^{\pi} \exp \left\{-4 \ell \int \frac{\rho}{\pi}\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right)\right\} \frac{4 \sin \alpha}{3 \pi}(\sin \alpha+(\pi-\alpha) \cos \alpha) d \alpha .
$$

$E\left(D_{\infty}^{\prime}\right)=\int_{0}^{\infty} P\left(D_{\infty}^{\prime}>x\right) d x$
$=\int_{0}^{\pi} \int_{0}^{\infty} \exp \left\{-4 x \sqrt{\frac{\rho}{\pi}}\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right)\right\} d x \frac{4 \sin \alpha}{3 \pi}(\sin \alpha+(\pi-\alpha) \cos \alpha) d \alpha$
$=\int_{0}^{\pi} \frac{\sin \alpha(\sin \alpha+(\pi-\alpha) \cos \alpha)}{3 \sqrt{\rho \pi}\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right)} d \alpha$
$=(3 \sqrt{\rho \pi})^{-1}\left[\int_{0}^{\pi} \sin \alpha d \alpha+\int_{0}^{\pi} \frac{\pi}{2} \cdot \frac{\sin \alpha \cos \alpha}{\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right)} d \alpha\right]$
$=2 / 3 \sqrt{\rho \pi}$.

This result checks with the known results for $E(S)$ and $E(N)$
from section 3.1 , since, from section 1.2 we have

$$
\begin{aligned}
& E(S)=\lim _{R \rightarrow \infty} \sum_{\text {cells }} \operatorname{in}_{Q(R)} S_{i} / N(R) \\
& E(N)=\lim _{R \rightarrow \infty} \sum_{\text {cells }} \sum_{Q(R)} N_{i} / N(R)
\end{aligned}
$$

and

$$
E(L)=\lim _{R \rightarrow \infty} \sum_{\text {edges }} \operatorname{in~} Q(R) L_{i} / N_{l}(R)
$$

where the S_{i} denotes perimeter, N_{i} number of sides and L_{i} edge length of cells, $N(r)=$ total number of ce11s in $Q(R)$ and $N_{\ell}(R)=$ total number of edges in $Q(R)$.

Also

$$
\begin{aligned}
& N_{\ell}(R)=\frac{1}{2} \Sigma N_{i} \text { and } \Sigma S_{i}=2 \Sigma L_{i}, \quad \text { so } \\
& \frac{\Sigma S_{i}}{N(r)}=\frac{2 \Sigma L_{i}}{N(r)} \frac{1 / 2}{2} \Sigma N_{i} \\
& \frac{1}{2} \Sigma N_{i}
\end{aligned} \frac{\Sigma L_{i}}{N_{\ell}(R)} \frac{\Sigma N_{i}}{N(r)}, ~ \$
$$

and hence

$$
E(L)=E(S) / E(N)
$$

Higher moments for D_{∞}^{\prime} can be obtained numerically.
$E\left(D_{\infty}^{\prime m}\right)=m \int_{0}^{\infty} x^{m-1} P\left(D_{\infty}^{\prime}>x\right) d x$
$=\frac{4 m!}{3 \pi\left(4 \sqrt{\frac{\rho}{\pi}}\right)^{m}} \int_{0}^{\pi} \frac{\sin \alpha(\sin \alpha+(\pi-\alpha) \cos \alpha)}{\left[\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right]^{m}} d \alpha$
$=\frac{m!\pi^{m / 2-1}}{3.4^{m-1} m / 2}\left[\int_{0}^{\pi} \frac{\sin \alpha d \alpha}{\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right)^{m-1}}\right.$

$$
\left.+\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin \alpha \cos \alpha}{\left[\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right]^{m}}\right]
$$

The second integral disappears since the integrand is odd
about $\frac{\pi}{2}$. Hence

$$
\begin{equation*}
E\left(D_{\infty}^{\prime m}\right)=\frac{2 m!\pi^{m / 2-1}}{3.4^{m-1}} \int_{0}^{\pi / 2} \frac{\sin \alpha d \alpha}{\left(\sin \alpha+\left(\frac{\pi}{2}-\alpha\right) \cos \alpha\right)^{m-1}} \tag{1.7}
\end{equation*}
$$

In Table 1 we list the moments of D_{∞}, the side length for a uniform random member of V_{∞}, numerically calculated from (1.7).

Tab1e 1

m	$\mathrm{E}\left(\mathrm{D}_{\infty}^{\mathrm{m}}\right)$
1	0.532
2	0.576
3	0.952
4	2.13
$\operatorname{Var}\left(\mathrm{D}_{\infty}\right)$	0.293

Proof of Lemma 1

$$
\text { Let } \quad \ell=\lim _{n \rightarrow \infty} g_{n}(a) \text {, and } F_{n}(x) \text { the d.f. of } X_{n}
$$

Consider

$$
\begin{aligned}
& \left|\int g_{n}(x) f_{n}(x) d x-\ell\right| \\
& =\left|\int g_{n}(x) f_{n}(x) d x-\int g_{N}(x) f_{n}(x) d x+\int g_{N}(x) f_{n}(x) d x-g_{N}(a)+g_{N}(a)-\ell\right| \\
& \leqslant\left|\int g_{n}(x) f_{n}(x) d x-\int g_{N}(x) f_{n}(x) d x\right|+\left|\int g_{N}(x) f_{n}(x) d x-g_{N}(a)\right|+\left|g_{N}(a)-\ell\right| \\
& \leqslant \int\left|g_{n}(x)-g_{N}(x)\right| f_{n}(x) d x+\left|\int g_{N}(x) d F_{n}(x)-g_{N}(a)\right|+\left|g_{N}(a)-\ell\right|
\end{aligned}
$$

Let $\varepsilon>0$.

$$
\text { As } \lim _{\mathrm{n} \rightarrow \infty} g_{\mathrm{n}}(\mathrm{a})=\ell, \exists \mathrm{N}_{1} \text { such that } \forall \mathrm{n}>\mathrm{N}_{1},\left|g_{\mathrm{n}}(\mathrm{a})-\ell\right|<\varepsilon / 3
$$

As $F_{n} \rightarrow F(x)$, the d.f. for a random variable degenerate at 'a', and the g_{n} are bounded and continuous, we can apply the Helly-Bray Theorem to obtain

$$
\int g_{N}(x) d F_{n}(x) \rightarrow \int g_{N}(x) d F(x)=g_{N}(a)
$$

i.e. $\quad \exists N_{2}$ such that $\forall n>N_{2},\left|\int g_{N}(x) d F_{n}(x)-g_{N}(a)\right|<\varepsilon / 3$.

Finally as $\left\{g_{\mathrm{n}}(\mathrm{a})\right\}$ is a Cauchy sequence,

$$
\exists N_{3} \text { such that } \forall n, m>N_{3},\left|g_{n}(a)-g_{m}(a)\right|<\varepsilon / 3
$$

Hence $\forall \varepsilon>0$, choosing $N>\max \left\{\mathrm{N}_{1}, \mathrm{~N}_{3}\right\}$ and $\mathrm{n}>\max \left\{\mathrm{N}_{2}, \mathrm{~N}_{3}\right\}$ ensures that

$$
\begin{gathered}
\left|\int g_{n}(x) f_{n}(x) d x-\ell\right|<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3<\varepsilon \\
\quad \lim _{n \rightarrow \infty} \int g_{n}(x) f_{n}(x) d x=\lim _{n \rightarrow \infty} g_{n}(a),
\end{gathered}
$$

i.e.
which completes the lemma.

6.2 Limiting Transect Distribution for $V_{-\infty}^{\prime}$

In section 4.5 we defined J_{n}^{\prime} as $\sqrt{n} J_{n}$, where J_{n} is the distance from an arbitrary point to the next 'event', or intersection with the tessellation, on a linear transect of V_{n}. We now establish the limiting distribution of $J_{n}^{\prime} ; J_{n}^{\prime} \xrightarrow[\infty]{d} J_{\infty}^{\prime}$, the transect distribution for the scaled aggregate $V_{\infty}^{\prime}=\lim _{n \rightarrow \infty} \sqrt{n} V_{n}$.

Now, from (4.5.2) and using the notation of section 4.5 (see Figure 4.19)
$P\left(J_{\infty}^{\prime}>x\right)=\lim _{n \rightarrow \infty} P\left(\sqrt{n} J_{n}>x\right)$
$=\lim _{n \rightarrow \infty} \int_{0}^{\infty} \int_{0}^{r} n+1+x / \sqrt{n} P\left(\right.$ An empty, $\left.w_{n+1} \theta^{\dot{q}} q(\alpha) \mid r_{n+1}, s_{n}\right) f\left(s_{n} \mid r_{n+1}\right) d s_{n} h\left(r_{n+1}\right) d r_{n+1}$.

Since $R_{n+1} \sim \Gamma_{2}(2 n+2, \pi \rho)$,

$$
\begin{gathered}
E\left(R_{n+1}\right)=\sqrt{\frac{n}{\pi \rho}} \\
\operatorname{Var}\left(R_{n+1}\right) \rightarrow 1 / \pi \rho \text { as } n \rightarrow \infty .
\end{gathered}
$$

So $R_{n+1}^{\prime}=R_{n+1} / \sqrt{n} \xrightarrow{p} 1 / \sqrt{\pi \rho}$, and

$$
\begin{gathered}
P\left(J_{\infty}^{\prime}>x\right)=1 i m \int_{0}^{\infty}\left[\int_{0}^{\sqrt{n} r_{n+1}^{\prime}+x / \sqrt{n}} P\left(\text { An empty, } w_{n+1} \notin q(\alpha) \mid r_{n+1}, s_{n}\right) f\left(s_{n} \mid r_{n+1}\right) d s_{n}\right] . \\
h^{*}\left(r_{n+1}^{\prime}\right) d r_{n+1}^{\prime},
\end{gathered}
$$

where h^{*} is the p.d.f. of R_{n+1}^{\prime}. The inner integral is bounded and continuous, so, by lemma 1 ,

$$
\begin{array}{r}
P\left(J_{\infty}^{\prime}>x\right)=\lim _{n \rightarrow \infty} \int_{0}^{\sqrt{\frac{n}{\pi \rho}}+x / \sqrt{n}} P\left(\text { An empty, } w_{n+1} \notin q(\alpha) \left\lvert\, r_{n+1}=\sqrt{\frac{n}{\pi \rho}}\right., s_{n}\right) . \\
\\
f\left(s_{n} \left\lvert\, r_{n+1}=\sqrt{\frac{n}{\pi \rho}}\right.\right) d s_{n} .
\end{array}
$$

Since x is fixed, eventually $\sqrt{\frac{n}{\pi \rho}}>x / \sqrt{n}$, so $f\left(s_{n} \left\lvert\, r_{n+1}=\sqrt{\frac{n}{\pi \rho}}\right.\right)$ has support $\left(0, \sqrt{\frac{n}{\pi \rho}}+x / \sqrt{n}\right)$. Using (4.5.3) and (4.5.5),
$P\left(J_{\infty}^{\prime}>x\right)=\lim _{n \rightarrow \infty}\left\{P\left(\left.S_{n}<\sqrt{\frac{n}{\pi \rho}}-x / \sqrt{n} \right\rvert\, r_{n+1}=\sqrt{\frac{n}{\pi \rho}}\right)\right.$

$$
\left.+\int_{\sqrt{\frac{n}{\pi \rho}} x / \sqrt{n}}^{\sqrt{\frac{n}{\pi \rho}}+x / \sqrt{n}}\left(1-\frac{\alpha}{\pi}\right) e^{-\rho\left|A_{n}\right|} \frac{2 n \beta}{\pi \cdot\left(\sqrt{\frac{n}{\pi \rho}}\right)^{2}}\left(1-\frac{\left|B_{n}\right|}{\pi\left(\sqrt{\frac{n}{\pi \rho}}\right)^{2}}\right)^{n-1} s_{n} d_{n}\right\}
$$

From Figure 20 and (4.5.6),

$$
\begin{aligned}
P\left(\left.S_{n}<\sqrt{\frac{n}{\pi \rho}}-x / \sqrt{n} \right\rvert\, r_{n+1}=\sqrt{\frac{n}{\pi \rho}}\right) & =\left(1-\frac{\left|c_{n}\right|}{\pi r_{n+1}^{2}}\right)^{n} \\
& =\left(1-\frac{2 x \sqrt{\pi \rho}}{n}+\frac{x^{2} \pi \rho}{n^{2}}\right)^{n} \rightarrow \\
& \exp \{-2 x \sqrt{\pi \rho}\} \\
& \text { as } n \rightarrow \infty .
\end{aligned}
$$

In the integral we make the change of variable to $y_{n}=\sqrt{\frac{n}{\pi \rho}} s_{n}-\frac{n}{\pi \rho}$, giving

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{-x / \sqrt{\pi \rho}}^{x / \sqrt{\pi \rho}}\left(1-\frac{\alpha}{\pi}\right) \exp \left\{-\rho A_{n}\left(\sqrt{\frac{n}{\pi \rho}}, \sqrt{\frac{\pi \rho}{n}}\left(y_{n}+\frac{n}{\pi \rho}\right), \frac{x}{\sqrt{n}}\right) 2 \beta \rho\left(1-\rho \frac{\left|B_{n}\right|}{n}\right)^{n-1}\left(1+\frac{\pi \rho y_{n}}{n}\right) d y_{n}\right. \\
& =\int_{-x / \sqrt{\pi \rho}}^{x / \sqrt{\pi \rho}} \lim _{n \rightarrow \infty}\left(1-\frac{\alpha}{\pi}\right) \exp \left\{-\rho\left|A_{n}\right|\right\} 2 \beta \rho\left(1-\rho \frac{\left|B_{n}\right|}{n}\right)^{n-1}\left(1+\frac{\pi \rho y_{n}}{n}\right)^{n} d y_{n}
\end{aligned}
$$

since the integrand is bounded on a finite interval.

Using Lemma 4.4 we can establish that

$$
\begin{aligned}
A_{n}\left(\sqrt{\frac{n}{\pi \rho}}, \sqrt{\frac{\pi \rho}{n}}\left(y_{n}+\frac{n}{\pi \rho}\right), x / \sqrt{n}\right) & =\frac{2 x}{\sqrt{\pi \rho}}\left(1-\frac{y_{n}{ }^{2} \pi \rho}{x^{2}}\right)^{\frac{1}{2}}+2 y_{n} \cos ^{-1}\left(-\frac{y_{n} \sqrt{\pi \rho}}{x}\right)+O\left(\frac{1}{n}\right) \\
& =A\left(y_{n}\right)+O\left(\frac{1}{n}\right), \\
B_{n}\left(\sqrt{\frac{n}{\pi \rho}}, \sqrt{\frac{\pi \rho}{n}}\left(y_{n}+\frac{n}{\pi \rho}\right), x / \sqrt{n}\right) & =A\left(y_{n}\right)-2 \pi y_{n}+O\left(\frac{1}{n}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \beta\left(\sqrt{\frac{n}{\pi \rho}}, \sqrt{\frac{\pi \rho}{n}}\left(y_{n}+\frac{n}{\pi \rho}\right), x / \sqrt{n}\right)=\cos ^{-1}\left(\frac{y_{n} \sqrt{\pi \rho}}{x}\right) \\
& \lim _{n \rightarrow \infty} \alpha\left(\sqrt{\frac{n}{\pi \rho}}, \sqrt{\frac{\pi \rho}{n}}\left(y_{n}+\frac{n}{\pi \rho}\right), x / \sqrt{n}\right)=\cos ^{-1}\left(-\frac{y_{n} \sqrt{\pi \rho}}{x}\right) .
\end{aligned}
$$

Note also that $\lim _{n \rightarrow \infty}\left(1-\frac{\rho B_{n}}{n}\right)^{n-1}=\lim _{n \rightarrow \infty}\left(1-\frac{\rho}{n}\left(A\left(y_{n}\right)-2 \pi y_{n}\right)+\frac{o\left(\frac{1}{n}\right)}{n}\right)^{n-1}$

$$
=\exp \left\{-\rho\left(A\left(y_{n}\right)-2 \pi y_{n}\right)\right\} .
$$

Hence the integral becomes

$$
\begin{aligned}
& \int_{-x / \sqrt{\pi \rho}}^{x / \sqrt{\pi \rho}} \exp \left\{-2 \rho\left(A\left(y_{n}\right)-\pi y_{n}\right) \frac{2 \rho}{\pi}\left\{\cos ^{-1}\left(y_{n} \sqrt{\pi \rho} / x\right)\right\}^{2} d y_{n}\right. \\
&=\frac{2 \sqrt{\rho}}{3 / 2} \int_{-1}^{1} x \exp \left\{-2 \sqrt{\frac{\rho}{\pi}}(A(p)-\pi p) x\right\}\left(\cos ^{-1} p\right)^{2} d p
\end{aligned}
$$

where

$$
A(p)=2\left(1-p^{2}\right)^{\frac{1}{2}}+2 p \cos ^{-1}(-p)
$$

Collecting the above results gives the

Theorem 2 Let J_{n} denote the transect length from an arbitrary point to the first intersection with the tessellation on a linear transect of V_{n}. Then the sequence $\left\{\sqrt{n} J_{n}\right\}$ converges in distribution to J_{∞}^{\prime}, the transect length for a uniform random member of V_{∞}^{\prime}, with
$\left.P\left(J_{\infty}^{\prime}>x\right)=\exp \{-2 \sqrt{\pi \rho} x\}+\frac{2 \sqrt{\rho}}{3 / 2} \int_{-1}^{1} x \exp \left\{-2 \sqrt{\frac{\rho}{\pi}}[A(p)-\pi p)\right] x\right\}\left(\cos ^{-1} p\right)^{2} d p$

We are interested in the moments of J_{∞}^{\prime}.

$$
\begin{align*}
E\left(J_{\infty}^{\prime m}\right) & =m \int_{0}^{\infty} x^{m-1} P\left(J_{\infty}^{\prime}>x\right) d x \\
& =\frac{m!}{2^{m} \pi^{m / 2}}\left[1+m \cdot \pi^{m-1} \int_{-1}^{1} \frac{\left(\cos ^{-1} p\right)^{2} d p}{(A(p)-\pi p)^{m+1}}\right]^{-m / 2} . \tag{2.2}
\end{align*}
$$

In Table 2 we list the moments of J_{∞}, the transect length for a uniform random member of V_{∞}, numerically calculated from (2.2), together with the same moments for D_{∞}, the side length.

Table 2

m	$\mathrm{E}\left(\mathrm{J}_{\infty}{ }^{\mathrm{m}}\right)$	$\mathrm{E}\left(\mathrm{D}_{\infty}{ }^{\mathrm{m}}\right)$
1	0.826	$2 / \sqrt{2} / 3 \sqrt{\pi}=0.532$
2	1.26	0.576
3	2.74	0.952
4	7.71	2.13

Utilizing these values, and (1.3.4), we can obtain the moments listed in Table 3, all of which refer to the limiting tessellation V_{∞}.

Table 3

$\mathrm{E}\left(\Phi_{\infty}\right)$	5.19
$\mathrm{E}\left(\mathrm{A}_{\infty}{ }^{2}\right)$	3.946
$\mathrm{E}\left(\mathrm{A}_{\infty}{ }^{2} \mathrm{R}_{\infty}\right)$	5.73
$\mathrm{E}\left(\mathrm{A}_{\infty} \mathrm{I}_{\infty}\right)$	12.1
$\operatorname{Var}\left(\mathrm{~J}_{\infty}\right)$	0.574
$\operatorname{Var}\left(\mathrm{D}_{\infty}\right)$	0.293
$\operatorname{Var}\left(\mathrm{~A}_{\infty}\right)$	2.946

BIBLIOGRAPHY

Ambartzumian, R.V. (1970). Random fields of segments and random mosaics on a plane. Proc. $6^{\text {th }}$ Berkeley Symp. Math. Statist. Prob. 3, 369-381.

Ambartzumian, R.V. (1974). Convex polygons and random tessellations. In Harding and Kenda11 (1974), 176-191.

Barlow, G.W. (1974). Anim. Behav. 22, 876-878.
Bernal, J.D. (1959). A geometrical approach to the structure of liquids. Nature 183, 141-147.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J.R.S.S. B, 36, 192-225.

Boots, B.N. (1974). Delaunay triangles: an alternative approach to point pattern analysis. Proc. Assoc. Amer. Geographers 6, 26-29.

Bowyer, A. (1981). Computing Dirichlet tessellations. Comp. J. 24, 162-166.

Cowan, R. (1978). The Use of the Ergodic Theorems in Random Geometry. Supp 1. Adv. App 2. Prob. 10, 47-57.

Crain, I.K. and Miles, R.E. (1976). Monte Carlo estimates of the distributions of the random polygons determined by random lines in the plane. J. Statist. Comp. Sim. 4, 293-325.

Cruz-Orive, L.M. (1979). Distortion of Certain Voronoi Tessellations when one particle moves. J. Appl. Prob. 16, 95-103.

Davidson, R. (1974). See Harding and Kendall (1974).
Dirichlet, P.G. (1850). Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. fur die reine und angewandte Mathematik 40, 216-219.

Fischer, R.A. and Miles, R.E. (1973). The Role of Spatial Pattern in the Competition between Crop Plants and Weeds - A Theoretical Analysis. Math. Biosci. 18, 335-350.

Gates, D.J., O'Conner, A.J., and Westcott, M. (1979). Partitioning the union of disks in plant competition models. Proc. R. Soc. Lond. A. 367, 59-79.

Gilbert, E.N. (1962). Random Subdivisions of space into crystals. Ann. Math. Statist. 33, 958-972.

Gilbert, E.N. (1967). Random Plane Networks and needle-shaped crystals. Chap. 16 of Applications of Undergraduate Mathematics in Engineering, B. Noble. Macmillan, New York.

Goudsmit, S.A. (1945). Random Distribution of Lines in a Plane. Rev. Mod. Phys. 17, 321-322.

Grant, P.R. (1968). Amer. Naturalist. 102, 75-80.
Green, P.J. and Sibson, R. (1978). Computing Dirichlet tessellations in the plane. Comp. J. 21, 168-173.

Hamilton, W.D. (1971). Geometry for the selfish herd. J. Theor. Biol. 31, 295-311.

Harding, E.F., and Kenda11, D.G. (1974). Stochastic Geometry: A Tribute to the Memory of Rollo Davidson. Wiley, London.

Hasegawa, M. and Tanemura, M. (1976). On the pattern of space division by territories. Ann. Inst. Statist. Math. 28, Part B, 509-519.

Hasegawa, M. and Tanemura, M. (1977a). Japanese. J. App I. Statist. 5, 47-61.

Hasegawa, M. and Tanemura, M. (1977b). Hoppoh Ringyo (Northern Forestry). 29, 115-119.

Hasegawa, M. and Tanemura, M. (1978). Mathematical Models on Spatial Patterns of Territories. Proc. Int. Sym. on Math. Topics in Biology, Kyoto, Japan, September 1978.

Hinde, A.L. and Miles, R.E. (1980). Monte Carlo estimates of the distributions of the random polygons of the Voronoi tessellation with respect to a Poisson process. J. Statist. Comput. Simul. 10, 205-223.

Horspoo1, N. (1979). Constructing the Voronoi diagram in the plane, Technical Report SOCS 79.12, July 1979, McGi11 Univ.

Hudspeth, A.J. (1975). Proc. Nat. Acad. Sci. U.S.A. 72, 2711-2713.
Kallenberg, 0. (1976). On the structure of stationary flat processes. Z. Wahrscheinlichkeitstheorie vemw. Gebiete. 37, 157-174.

Krickeberg, K. (1973). Moments of Point Processes. Tecture Notes in Mathematics 296, Springer-Verlag, Berlin, 70-101.

Lewis, F.T. (1946). The shape of cells as a mathematical problem. Amer. Scientist 34, 359-369.

Lewis, P.A.W. (Ed) (1972). Stochastic Point Processes: Statistical Analysis, Theory and Applications, Wiley.

Mardia, K.V., Edwards, R. and Puri, M.L. (1978). Analysis of central place theory. Bull. I.S.I. 47 (2), 93-110.

Matheron, G. (1975). Random Sets of Integral Geometry, Wiley, New York.
Matschinski, M. (1954). Considerations statistiques sur les polygones et les polyèdres. Publ. Inst. Stat. Univ. Paris. 3, 179-201.

Maynard-Smith, J. (1974). Models in Ecology (C.U.P.).
Mead, R. (1971). Models for interplant competition in irregularly spaced populations. In Statist. Ecology (Patil et al., eds.) Penn. State. U.P., Vo1 2, 13-30.

Meijering, J.L. (1953). Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Phillips. Res. Rep. 8, 270-290.

Miles, R.E. (1961). Random Polytopes: the generalization to n dimensions of the intervals of a Poisson process. PhD Thesis, Cambridge Univ.

Miles, R.E. (1964). Random Polygons determined by random lines in a plane. Proc. Nat. Acad. Sci. U.S.A. 52, I 901-907, II 1157-1160.

Miles, R.E. (1970). On the Homogeneous Planar Poisson Point Process. Math. Biosci. 6, 85-127.

Miles, R.E. (1971). Poisson flats in Euc1idean spaces. Part II: Homogeneous Poisson flats and the Complementary Theorem. Adv. App 2. Prob. 3, 1-43.

Miles, R.E. (1972). The Random Division of Space. Supp I. Adv. Appl. Prob. 243-266.

Miles, R.E. (1973). The Various Aggregates of Random Polygons determined by Random lines in a plane. Adv. Math. 10, 256-290.

Miles, R.E. (1974). A Synopsis of 'Poisson flats in Euclidean spaces'. In Harding and Kenda11 (1974), 202-227.

Miles, R.E. and Maillardet, R.J. (1982). The basic structures of Voronoi and generalized Voronoi polygons. Essays in Statistical Science (ed. J. Gani and E.J. Hannan), Applied Prob. Trust, J. Appl. Prob. 19A, 97-111.

Ogawa, T. and Tanemura, M. (1974). Geometrical Considerations on Hard Core Problems. Prog. Theo. Phy. 51, 399-417.

Ore, 0. (1963). Graphs and their uses. Random House.
Papangelou, F. (1972). Summary of some results on point and line processes. In Lewis (1972), 522-532.

Rhynsburger, D. (1973). Analytic delineation of Thiessen polygons. Geographical Analysis. 5, 133-144.

Richards, P.I. (1964). Averages for Polygons formed by Random Lines. Proc. Nat. Acad. Sci. U.S.A. 52, 1160-1164.

Ripley, B.D. (1977). Modelling Spatial Patterns. J.R.S.S. B, 39, 172-192.

Robbins, H.E. (1944). On the measure of a random set. Ann. Math. Statist. 15, 70-74.

Santalo, L.A. (1976). Integral Geometry and Geometric Probability, Vol 1, Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Mass.

Sato, T. (1978). Japanese J. Ophthalmo Z. 22, 114-126.

Shamos, M.I. and Hoey, D. (1975). Closest point problems. Proc. $16^{\text {th }}$ Annual IEEE Symp. on Foundations of Computer Science (1975), 151-162.

Sibson, R. (1978). Locally equiangular triangulations. Comp. J. 21, 243-245.

Sibson, R. (1980a). A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Phil. Soc. 87, 151-155.

Sibson, R. (1980b). The Dirichlet tessellation as an aid in data analysis. Scand. J. Statist. 7, 14-20.

Smalley, I.J. (1966). Contraction crack networks in basalt flows. Geot. Mag. 103, 110-114.

Solomon, H. (1978). Geometric Probability CBMS-NSF Regional Conference Series in Applied Mathematics, No. 28. Society for Industrial and Applied Mathematics, Philadelphia.

Tanemura, M. et al. (1977). Geometrical Analysis of Crystallization
of the Soft-Core Mode1. Prog. Theor. Phys. 58, 1079-1095.
Watson, D.F. (1981). Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comp. J. 24, 167-172.

Weiner, N. (1939). The Ergodic Theorem. Duke Math. J. 5, 1-18.

