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(iv) 

ABSTRACT 

This thesis is concerned with the Generalized Voronoi 

Tessellations l/̂ , a natural generalization of the well known Voronoi 

Tessellation 1/ = l/̂ , which is discussed in detail in Chapter 2. The 

Voronoi cells associated with random particles distributed over some 

space are the regions of that space where a particular particle is the 

closest particle. Generalized Voronoi cells are regions where a 

particular n particles are the closest n. 

We undertake a comprehensive study of the geometry of these 

tessellations, particularly the particle arrangements around cells, and 

give stochastic constructions for vertices, sides and polygons 

(Chapter 3). These investigations form the basis for our main results. 

We find the mean area of Generalized Voronoi cells, for the general 

homogeneous case, and a wide collection of moment results (including 

the variance of the area for l/̂  cells) , the probability of a 

quadrilateral in I/2, and certain conditional distributions for the 

area and perimeter, for the case when the generating point process is 

Poisson (Chapter 4). 

Essential to our understanding of the geometry of \Ĵ  are plots 

of realizations of the tessellation. The computation of is 

discussed (Chapter 5), together with a review of work dealing with the 

computation of 1/̂ . Scaled realizations of a sequence of l/̂ 's suggested 

that the tessellation converges fairly rapidly to a limit; in Chapter 

6 we establish limiting distributions for the length of a typical M^ 

side, and for the interval length on an arbitrary linear transect of 

1/ . n 

Chapter 1 contains a review of tessellation models in general, 

discusses the ergodic definition of 'typical' cells, and presents a 
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summary of methods for moment calculations, which also contains some 

new moment results. 
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(viii) 

GLOSSARY 

Ie'^ Euclidean n-space 

points in 

9X boundary of a set X 

(f* null set 

0)^^,0)2,.. jJi^.fi^j • • particles of a point process (as opposed to points 

in E ) 

<c0ĵ c02> perpendicular bisector of p a r t i c l e s and tô  

<0)^102^2^ circumcentre of p a r t i c l e s and cô  

_ i - f i l l e d circumdisk of p a r t i c l e s oĵ ,̂ uî  and 

Q(x,r) disk radius r centered at point x 

Q(r) disk radius r 

l/^ aggregate of c e l l s (convex polygons) in Generalized 

Voronoi Tessel lat ion 

P ,R elements of 1/ n n n 

[(jo^a)„..a) ] element of 1/ with proximity set {w^ , . . ,10 } J. ^ XI n X ^ Ti 

A n-Area of p a r t i c l e co 
a),n 

C n - C i r c u i t of p a r t i c l e w a),n 

aggregate of sides of l/^ c e l l s 

£ (± ,±) sub-aggregate of sides of c e l l s with neighbouring 

segments from on either side 
n - 1 

a ^ ( ± , ± ) density of -^^j^Ci.i) sides 

p^(±,±) ergodic probabil ity that JC^ side i s member of X^(±,±) 

a ( i ) density of \I i -gons 
n n 

p ( i ) ergodic probabil ity that f ^ c e l l i s i-gon 

a density of 1/ c e l l s 
n n 

v ^ , V 2 , . . v e r t i c e s in l/^ 



(ix) 

a (n ,n + 1) dens i ty of (n,n + 1) v e r t i c e s 

o (n ) dens i ty of 1/ v e r t i c e s 
n 

^ superpos i t i on of l/^ ^ and \J i 

a . s . almost surely 
p 

convergence in p r o b a b i l i t y 

Equations are numbered sequent ia l ly in each Sec t i on , and 

re ferenced by (Sec t i on . N), or (Chapter. Sec t ion . N), i f r e f e rence i s 

to another Chapter. 

Figures are numbered sequent ia l ly in each Chapter, and 

re ferenced as Figure N, or Figure Chapter. N, i f r e f e rence i s to 

another Chapter. Lemmas and Theorems are treated the same way. 

The f o l l o w i n g l i n e conventions are fo l lowed when a f i g u r e 

conta ins c e l l s or segments from l/^, or 

- ^ 

"2 

"3 



fx J 

If a f i g u r e r e f e r s t o a g e n e r a l l/^ and t h e c o n v e n t i o n s 

a r e : -

I/. 1 

" i - i 

The f o l l o w i n g c o n v e n t i o n i s sometimes used to emphasize a 

p a r t i c u l a r p e r p e n d i c u l a r b i s e c t o r : -

p e r p e n d i c u l a r b i s e c t o r 

C r o s s e s a r e used on d i a g r a m s t o r e p r e s e n t t h e pccPt-leles 

of a p o i n t p r o c e s s . 



CHAPTER 1 

RANDOM T E S S E L L A T I O N S 

1.1 Introduction 

This thes is i s concerned with the study of generalized 

Voronoi t e s s e l l a t i o n s , which are a part icular c lass of random 

t e s s e l l a t i o n s of the plane. 

D e f i n i t i o n 

A -besseZlat-ion of a space X i s an aggregate of d i s j o i n t 

se ts C. whose union i s X. The C. are ca l led the c e l l s of 1 1 
the t e s s e l l a t i o n . These c e l l s may share a common boundary 

set which i s n u l l . 

In the theore t i ca l t e s s e l l a t i o n models we consider , the c e l l s 

f a l l in to a very l imited c l a s s of types. In most models f o r the 

t e s s e l l a t i o n of d-dimensional Euclidean space lE*̂  , the c e l l s are 

convex poly topes (polygons in polyhedra in . Some models 

produce non-convex c e l l s , and even unconnected c e l l s . However 

connectedness i s r e a l l y a minimal assumption to permit the prac t i ca l 

in terpre tat i on of the c e l l s of a t e s s e l l a t i o n as the zone of in f luence , 

t e r r i t o r y or actual shape of e n t i t i e s occupying X and competing f o r a 

share of i t s space. 

For any given X there are numerous ways to p a r t i t i o n i t to 

form a t e s s e l l a t i o n . The establ ished mathematical techniques can be 

divided into two general ca tegor ies - ( i ) where we de f ine the 

par t i t i on ing of X by a d i r e c t presc r ip t i on of the boundaries between 

c e l l s and ( i i ) where we s p e c i f y a random framework of some d e s c r i p t i o n 



on X (often a point process) and a set of rules which partition the 

space using that random framework. To introduce a range of 

tessellation models and their generating mechanisms we now list a 

number of examples from both categories. 

Category (i) - Direct Specification of Boundaries 

(a) Box and Grid Tessellations 

On a first attempt at defining cell boundaries we may think of 

associating vertical and horizontal lines with random points distributed 

on two orthogonal axes (in two dimensions) or similarly associating 

planes with random points distributed on three axes (in three 

dimensions). We thus generate the grid tessellation of the plane into 

rectangles and the box tessellation of lÊ  into rectangular cells. 

However we may be interested in a truly random distribution 

of lines or planes in the sense that the probability that a subset X of 

is hit by a line or plane of our process is invariant under 

Euclidean translations and rotations of X. From Integral Geometry, 

(Santalo [1976]) we know that the measures for lines and planes are 

uniquely determined (up to a constant) by this condition. By defining 

appropriate point processes on the parameter space for these 

geometric objects, a random tessellation results. 

(b) Poisson Line Process 

If we parametrize a line by the polar co-ordinates of the 

perpendicular bisector to the line from the origin (p,6), then a 

standard Poisson point process with constant intensity p (denoted 

henceforth by ]P) defined on the parameter space (0 $ 6 < 2it, p > 0) 

produces a random distribution of lines. Each realization of the 



point process corresponds to a t e s se l l a t i on of the plane into convex 

polygons by the associated l i n e s . For any bounded convex domain K in 

IE , the number of l ines which hi t K i s Poisson with mean proportional 

to the perimeter of K. For d e t a i l s see Miles [1964, 1973], Solomon 

[1978, Ch 3 ] . Distr ibut ional properties of this process which are beyond 

theore t i ca l treatment have been estimated by Monte Carlo methods (Grain 

and Miles [1976]) . 

( c ) Poisson Plane Process, Poisson Hyperplane Process 

If we parametrize a plane by the spherical polar co-ordinates 

(p,9,(j)) of the f o o t of the perpendicular from the or ig in to the plane, 

the j o i n t probabi l i ty density function ( p . d . f . ) for 0 and ()> corresponding 

to an i so t rop i c d i rec t i on for the plane i s 

f(e,(|)) = ^ sin e . 0 < e , (J) < n ZTT 

Hence an inhomogeneous Poisson point process of intensity 

^^^ parameter space ( 0 ^ 6 , <1)< it, - «><p <«>) produces a 

random d is t r ibut ion of planes which tesse l la te into convex 

polyhedra. See Miles [1972] f o r deta i l s on this Poisson plane process 

and Matheron [1975], Miles [1974] f or the extension to the polytopal 

t e s s e l l a t i o n of generated by random (d - 1) dimensional hyperplanes. 

Miles has a lso considered modif icat ions of these Poisson processes, 

involving anisotropic d i s t r ibut ions for or ientat ion and the thickening 

of l ines and planes into s tr ips and slabs (Miles [1964, 1972]) . 

There has also been some work on the properties and characterization of 

more general l i n e and hyperplane processes (Davidson [1974], Krickeberg 

[1973], Kallenberg [1976], Papangelou [1972]) . 



(d) Line Segment Processes 

As with the l i n e and plane processes above, we can s p e c i f y a 

random process ( f i e l d ) of segments by a point process on the parameter 

space f o r these geometric elements, in th i s case (x,y,(J)), where ( x , y ) 

are the c o - o rd inates of the midpoint of the segment and (}> i t s angle 

with a f i x e d d i r e c t i o n ( - » < x , y <«>, 0 <:(})< TT) . 

By an ingenious ca tegor i za t i on of a random t e s s e l l a t i o n as a 

s p e c i a l case of random f i e l d s of l i n e segments, Ambartzumian [1970] 

has proved that the v e r t i c e s of ' r e g u l a r ' homogeneous i s o t r o p i c random 

t e s s e l l a t i o n s can only be of the 'T ' and 'X ' types, under the condi t ion 

that the marked point process i n t e r s e c t i o n points a^ of an 

a r b i t r a r y l i n e L with the t e s s e l l a t i o n (with accompanying angles 0^) 

s a t i s f i e s c e r ta in independence assumptions. (The must be mutually 

independent and independent of the a^ ) . A consequence of th is theorem 

i s that a random t e s s e l l a t i o n with no 'T ' v e r t i c e s i s a mixture of 

Poisson l i n e processes (see a lso Davidson [1970] ) . Further work by 

Ambartzumian [1974] using the process of i n t e r s e c t i o n points 

with an arb i t rary l i n e y i e l d s the Laplace transform of the s ide length 

d i s t r i b u t i o n and r e l a t i o n s h i p s between moments f o r c e l l c h a r a c t e r i s t i c s 

such as area and perimeter and the moments f o r I , the in terva l length 

f o r {a .8 } . These r e s u l t s are s t e r e o l o g i c a l in nature. See sec t i on 
i i 

1 .3 f o r an a l t e r n a t i v e der ivat i on of some of these moment re la t i onsh ips 

and some a d d i t i o n a l r e s u l t s . 

Category ( i i ) - I n d i r e c t Part i t i on ing Induced by a Superposed Random 

Framework 

The major i ty of t e s s e l l a t i o n s in th i s category use a point 

process def ined on the space as the bas ic framework from which to bui ld 

the t e s s e l l a t i o n . 



(a) Voronoi and Generalized Voronoi Tessel lat ions 

A point process of par t i c l es i s defined on X. We imagine 

symmetric growth of c e l l s in a l l d i rect ions from the par t i c l es as 

nuc le i , with growth terminating when c e l l boundaries meet. The region 

associated with each par t i c l e i s the set of points which have i t as the 

c l o s e s t p a r t i c l e . A natural general ization i s to consider the regions 

where n p a r t i c l e s are the c l o ses t n. These tesse l la t i ons are studied 

in d e t a i l in fo l lowing chapters. 

(b) Johnson-Mehl Tessel lat ion 

In this t esse l la t i on c e l l s are again formed by i so trop ic 

growth, but the par t i c l e s now appear over time (instead of a l l being 

present at t = 0 as in the Voronoi case ) . The standard Johnson-Mehl 

t e s s e l l a t i o n , with a homogeneous Poisson birth process for part i c l es 

(probabi l i ty of birth in volume dV during time dt i s adVdt) i s 

considered by Meijering [1953]. A generalized form with birth process 

a ( t )dVdt , inhomogeneous in t , i s considered by Miles [1972]. This 

t e s s e l l a t i o n has non-convex c e l l s with hyperbolic boundaries, but a l l 

c e l l s are star shaped r e l a t i v e to their nucleus. 

We can a lso extend the Johnson-Mehl model by allowing 

anisotropic growth or d i f f e r e n t growth speeds. However these 

modi f i cat ions are not r ea l l y tractable , although some use has been 

made of this generation technique with the qua l i f i ca t i on that growth does 

not stop when c e l l boundaries meet. Thus c e l l s can be composed of 

disconnected regions (Fischer and Miles [1973]) . 



( c ) G i l b e r t ' s Radiating Segments Model 

From each p a r t i c l e of a point process on X, a l i n e segment 

grows at angle to a f i x e d d i r e c t i o n (CF)̂  uniform on [0,TT] and 

independent) and at a constant rate in both d i r e c t i o n s from the 

generating p a r t i c l e . Growth terminates when a segment meets another 

segment. A convex polygonal t e s s e l l a t i o n of the plane r e s u l t s . 

G i l b e r t [1967] has used th i s as a model f o r the growth of needle-shaped 

c r y s t a l s . 

Relevant to Category ( i i ) methods of de f in ing random 

t e s s e l l a t i o n s i s an analys is of the part i t i on ing of the c i r c u l a r zones 

of i n f l u e n c e assoc iated with plants on a l a t t i c e (Gates et a l . [ 1979 ] ) . 

The authors show that f a i r l y general and natural assumptions about the 

p a r t i t i o n se ts assoc iated with each plant lead to a very e x p l i c i t form 

f o r the boundary curve between these s e t s , which includes the Voronoi 

and Johnson-Mehl boundaries as spec ia l cases . Thus the propert ies we 

natura l ly requ ire i f we wish to a t t r i b u t e a physical meaning to a 

t e s s e l l a t i o n c e l l in some p r a c t i c a l competit ion context are shown to 

have a powerful l imi t ing e f f e c t on the nature of the t e s s e l l a t i o n . 

This completes the l i s t f o r Category ( i i ) . The above 

t e s s e l l a t i o n s are the only models which have received s i g n i f i c a n t 

mathematical a t t e n t i o n . These models are few in number and their 

generating mechanisms are even more l imi ted . New generation mechanisms, 

hope fu l ly motivated by a bet ter understanding of p r a c t i c a l t e s s e l l a t i o n 

phenomena, are c e r t a i n l y needed be f o re t e s s e l l a t i o n modelling can be 

of p r a c t i c a l s i g n i f i c a n c e . 



1.2 Ergodic Theory for Homogeneous Random Tessellations 

For t h e p u r p o s e s of t h i s s e c t i o n we make t h e f o r m a l 

Def i n i t i o n 

Let be a p r o b a b i l i t y space . A random tessellation 

Y, i s a random v a r i a b l e which maps fi i n t o t h e s e t of 

a g g r e g a t e s of convex p o l y g o n s which t e s s e l l a t e t h e p l a n e . 

Le t T^x = X + a , X G A random t e s s e l l a t i o n i s homogeneous 

S, Si 

i f T i s m e a s u r e p r e s e r v i n g i . e . P(T A) = P (A) , VA £ S, and ergodic i f 

T^ i s e r g o d i c i . e . A = T^A P(A) = 0 or 1 . 

A c e l l characteristic of a c e l l of T i s a s c a l a r , d e t e r m i n e d 

by t h e c e l l , which i s t r a n s l a t i o n i n v a r i a n t e . g . N, t h e number of 

s i d e s (or v e r t i c e s ) ; A, t h e a r e a ; S, t h e p e r i m e t e r and I , t h e i n r a d i u s , 

L e t Z = ( Z ^ , Z - , . . . , Z ) be a v e c t o r d e s c r i p t i o n of a ¥ c e l l , where t h e 1 2 m 

Z. a r e c e l l c h a r a c t e r i s t i c s . 1 

For ( a l m o s t ) a l l r e a l i z a t i o n s w of f we have an i n f i n i t e 

a g g r e g a t e of p o l y g o n s , and we a r e n a t u r a l l y i n t e r e s t e d i n t h e 

d i s t r i b u t i o n of p o l y g o n c h a r a c t e r i s t i c s f o r a t y p i c a l r e p r e s e n t a t i v e 

of t h i s a g g r e g a t e . We c a n n o t o b t a i n t h e s e d i s t r i b u t i o n s by s e l e c t i n g , 

f o r e x a m p l e , t h e p o l y g o n which c o n t a i n s t h e o r i g i n , which i s n o t 

t y p i c a l b u t i n f a c t ' a r e a - w e i g h t e d ' i n an a n a l o g o u s manner t o t h e 

l e n g t h w e i g h t i n g of t h e i n t e r v a l c o n t a i n i n g t h e o r i g i n i n a s t r i c t l y 

s t a t i o n a r y l i n e a r p o i n t p r o c e s s . 

A n a t u r a l way t o p r o c e e d i s t o c o n s i d e r t h e (random) e m p i r i c a l 

d i s t r i b u t i o n f u n c t i o n F ( z ) of Z f o r c e l l s c o n t a i n e d i n t h e d i s k Q ( r ) z.,r 

and i t s l i m i t a s r ^ M i l e s [ 1 9 6 1 ] , i n h i s a s y e t u n p u b l i s h e d PhD 

T h e s i s h a s shown t h a t 



F^^^Cz) F^(z) , ( 2 .1 ) 

a ( constant ) d i s t r i b u t i o n f u n c t i o n , as r by an app l i ca t i on of 

Welner 's multiparameter ergodic theorem [1939] , provided 4* i s 

homogeneous and e r g o d i c . Welner 's Theorem states that under these 

assumptions, f o r a random v a r i a b l e X with e1x| < <», 

11m 1 
a . s . r-x» Trr̂  X(T ^u))da , ( 2 .2 ) 

Q(r) 

e x i s t s and equals E(X). This equal i ty of a ' space average' over a 

s i n g l e phys i ca l r e a l i z a t i o n with a 'time average' over a l l r e a l i z a t i o n s , 

was motivated by s t a t i s t i c a l mechanics. Ergodic i ty i s the minimal 

requirement f o r such equa l i ty . However i t can be v e r i f i e d by proving 

a ( s t ronger ) mixing condi t ion that r e a l i z a t i o n s of Y in d i f f e r e n t 

reg ions tend to independence as the separation of the regions increases . 

The c r i t i c a l step in establ ishing (2 .1 ) using (2 .2 ) i s the 

representat ion of F (z ) as the in tegra l of an appropriate ly def ined Z, r 
X. For example, i f F (a) i s the empirical d . f . f o r the area A of A,r 

c e l l s in Q(r) then 

number of c e l l s in Q(r) with A $ a 
~ number of c e l l s in Q(r) 

1 
7 A(t ,a ) ,x )dt irr^ 

Q(r) 

Trr 
1 A(t,a))dt 

Q(r) 

where A(t,to) = (area of c e l l containing t ) ^ and A(t,( j j ,x) takes the 

same value f o r c e l l s with area l e s s than x , and i s zero otherwise . For 

a d e t a i l e d expos i t i on of ergodic theory applied to homogeneous planar 



tessellations see Cowan [1978]. 

All tessellations considered in this thesis are homogeneous 

and ergodic. Hence all cell characteristics have well-defined ergodic 

limiting distributions which can be interpreted as the distribution of 

these characteristics for a cell of ¥ picked in Such a way that each 

cell has an equal chance of being chosen; such a cell will be referred 

to as a typical or uniform random cell of V. 

Using the same theory we can show that any homogeneous ergodic 

point process has a well-defined particle density p where 

lim N(r) 
P - T~ » a.s. r-x" irr̂  

and N(r) is the number of particles in Q(r). 

1. 3 Moment Calculations for Random Tessel lat ions 

In general the full ergodic distributions for important 

polygon characteristics are beyond theoretical treatment, and for 

most of the well-known random tessellations the only theoretical 

results relate to low-order moments and cross-moments for some 

characteristics (notably A (area); S (perimeter) and N (number of 

sides)), as well as some probabilities {p^} from the discrete 

distribution for N, for small n values. 

We note that even though the ergodic distribution for a 

polygon characteristic may exist (the moment condition in Weiner's 

theorem essentially puts restrictions on the smallness of polygons) 

this does not guarantee the existence of the moments of this 

characteristic, which requires restrictions on the largeness of 

polygons (see Cowan [1978]). 
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A moment c a l c u l a t i o n depends on a representat ion of the 

quantity of i n t e r e s t . Sometimes th i s representat ion w i l l be obvious; 

sometimes i t w i l l be obtained by a t r i c k of some s o r t . Obtaining the 

most convenient representat ion , or at l e a s t a workable one, i s a task 

which o f t e n depends on spec ia l f eatures of the part i cu lar t e s s e l l a t i o n -

the theory of random t e s s e l l a t i o n s lacks a body of rout ine ly app l i cab le 

'methods ' . However we can c l a s s i f y moment c a l c u l a t i o n s into various 

types . 

( i ) Ergodic Theory Method 

The empirical means over Q(r) f o r a c e l l c h a r a c t e r i s t i c Z^, 

tend to the mean of Z^ r e l a t i v e to the l imi t ing ergodic d i s t r i b u t i o n 

F^ (z ) (Miles [1970 ] ) . For example. Miles uses this technique to 
i 

c a l c u l a t e E(A), E(S) and E(N) f o r general ized Voronoi c e l l s (see sec t i on 

3 . 1 and Miles [1970] ) . 

( i i ) Indicator Function Method 

We can c a l c u l a t e the mean of a random area by representing i t 

as an in tegra l of i t s ind icator funct ion (Robbins [1944] ) , Examples 

of th is technique occur in sec t ions 3.2 and 4 . 4 . As an example, f o r a 

general homogeneous i s o t r o p i c t e s s e l l a t i o n f , we have the expression 

E(A) = E 

EI (x)dx A. 

P(x e Q)dx 

r P ( ( r , 0 ) e Q)dr , ( 3 .1 ) 
.00 

2-n 
0 
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f o r the mean area of a t y p i c a l c e l l Q. Analogous to th is technique 

are the representat ions 

S(cj) = 

S(a)) = 

S(dx) (3 .2a) 

D 

S ( r , d r ) , (3 .2b) 
0 

which can be used f o r the c a l c u l a t i o n of the f i r s t moment of the 

perimeter. (3 .2b) i s e s s e n t i a l l y M e i j e r i n g ' s representat ion , which he 

used to c a l c u l a t e the f i r s t moments of S and N f o r two and three -

dimensional Voronoi c e l l s (see sec t i on 2 . 3 ) . 

( i i i ) Goudsmit's Method 

Goudsmit obtained the mean square area f o r a typ i ca l polygon 

from a Poisson l i n e process by ca l cu lat ing the probab i l i t y that two 

random points are contained in the same polygon in two d i f f e r e n t ways 

(Goudsmit [1945] ) . 

This technique was extended to general dimensional Poisson 

hyperslab processes by Miles [1961] . Richards [1964] genera l izes the 

technique to obtain a v a r i e t y of averages f o r a Poisson l i n e process by 

averaging an arb i t rary funct ion of the d istance between two random 

po in t s , constrained to l i e within a s ing le polygon. Kendall (see 

Miles [1964]) obtained E(A^) f o r a Poisson l i n e process by considering 

three random points instead of j u s t two. 

In f a c t the technique, and Richard ' s genera l i za t i on , i s 

a p p l i c a b l e to general homogeneous i s o t r o p i c t e s s e l l a t i o n s , and enables 

us to r e l a t e the moments of several polygon c h a r a c t e r i s t i c s to the 

moments of c e r t a i n in terva l d i s t r i b u t i o n s f o r a l inear transect of the 

process . In th i s way we dupl i cate (and extend) c e r t a i n r e s u l t s of 
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Ambartzumian [1974] . These results are essentially stereological in 

nature, and are intimately linked with integral geometry. 

Def inition 

Let L be an arbitrary linear transect of a homogeneous 

isotropic tessellation Y. The 'events' on L are the intersection 

points of L with cell boundaries of Y. Since ¥ is homogeneous, I, the 

inter-event distance, has a well-defined stationavy ergodic distribution. 

So does J, the distance from an arbitrary point on L to the next 'event'. 

Theorem 1 

Let T be a homogeneous isotropic random tessellation, and let 

G (x) denote the distribution function of J, G(x) the distribution 
3. 

function of I. Then 

QxQ 

f ( X - X )dxdx = 2TrE(A) xf(x)(l - G (x))dx , a 

where f is an arbitrary function of the distance x ~ Y. between 

points X and and the integral is taken over the interior of a 

typical polygon Q. 

Proof 

Let D = E^ f ( |x - yI)dxdy 
QxQ 

-

- \ ] 

f(ix - y|)I(x)I(y)dxdy^ 

where I(x) is the indicator function of Q i.e. 

I(x) = r 1 x ^ Q 

0 X ^ Q 
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Henc e 
D = f(|x - xl)E(I(x)I(z))dxdx 

Now 

E ( I ( X ) I ( 2 ) ) = P(x and Y € Q) 

= p(y e QIX e Q)p(x e Q ) 

(1 - G (c))P((r^,0) e Q) , a 1 

where c is the distance between x and and are the 

polar co-ordinates of x and y (see Figure 1). Note that 

P((r^,0^) e Q) = P((r^,0) £ Q) by isotropy of H'. 

Figure 1 

Changing to polar co-ordinates gives 

D = ff f(c)(l - G^(c))P((r^,0) € Q)r^r2 dr^dr2de^de2 
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Note that c is a function only of ({) = 182 - | , and hence D is of the 

form 

0 

Ztt 

0 
F( 02 - )d0^d02 , 

where F has the property that F((()) = F(2Tr -({)). In this case we have 

the useful formula. 

2IT r2ir 

0 
F( 0 - 0 |)d0 d0 = 4Tr F((l))d(l) (3.3) 

0 / 1 i / J q 

Hence 

D = 4tt 
.-rr foo 

0 
r^r2f(c)(l - G^(c))P((r^,0) t Q)dr2d((.dr̂  

Fixing r^, we change variables from (r2,<})) to (c,a), the polar 

co-ordinates of ̂  relative to x and direction c^. The Jacobian of 

this transformation is cr2^> so 

D = 4tt 
.00 •TT 

0 - 0 • 0 
r^cf(c)(l - G^(c))P((r^,0) e Q)dcdadr^ 

4tt̂  
2tt 2tt cf (c) (1 - G (c))dc 

3 . 

= 2TrE(A) 
0 
cf(c)(l - G (c))dc , 

cL 

using (3.1), which completes the proof. 

Applications of Theorem 1 

We can obtain a variety of averages from this theorem by 

appropriate choices of the function f. Consider f(x) = x'̂  for 

example. Then 
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E' X -

QxQ 

= 2TTE(A) 

_ 2ttE(A) 

0 
- G (x))dx 

3. 

(n + 2) 
(n + 2) - G (x)dx 

a 

(n + 2) 
, n = -1,0,1,.. (3.4) 

We can also express (3.4) in terms of the moments for I, the 

more usual inter-event distribution. We note that if I has mean X ^ 

say, then we have the following relationship between G (x) and G(x) 
3. 

(see Lewis [1972] p 354). 

G (x) = 1 - X 
a 

(1 - G(u))du . 

Hence E(j") = n x" ^[1 - G (x)]dx 

io 

= nX x" ^(1 - G(u))dudx 

X 
(n + 1) 

(n + 1) 
n 

u (1 - G(u))du 

X 
(n + 1) 

n = 1,2,.. (3.5) 

We also note the relation 

E(A) = E(S)E(I)/TT = E(S)/XTr , (3.6) 

which holds for general homogeneous isotropic tessellations (see 

Ambartzumian [1974], where the divisor of TT is omitted). 

Combining (3.4), (3.5) and (3.6) yields 
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J \ 
(3.7) 

QxQ 

(3.8) 

In particular, for n = -1,0,1 and 2 we have 

E($) = E(S)E(I^) 

E(A2) = E(S)E(I^)/3 

E(A'R) = E(S)E(l'^)/6 

E(AM) = E(S)E(I^)/10 , 

where R denotes the mean separation of two random points in a typical 

polygon, A is its area, M its moment of inertia about its centre of 

gravity and $ is its "Newtonian self-energy" (see Richards [1964], 

for calculation of these moments in the Poisson line process case). 

Use is made of (3.4) and (3.8) in sections 4.5 and 6.2, where 

the moments of J are used to calculate the variance of the area of 1/ n 
cells. 

(iv) Weighting Methods 

We have defined a 'typical cell' of a random tessellation 

and mentioned that the cell containing the origin is 'area-weighted'. 

From the mean area of an 'area-weighted' cell we can obtain the second 

moment of the area of a typical cell (see section 4.4 and (4.4.4)). 

We can also weight cells in various ways. Choosing a uniform random 

vertex and then choosing (uniformly) from the cells which meet at 

that vertex gives an [N]-weighted cell, provided an equal number of 

sides join at each vertex. Superimposing an independent Poisson line 
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process and choosing cells which are hit by m lines gives an [e ^S™]-

weighted cell. Similarly, considering the sub-aggregate of n-gons of 

a Poisson line process intersected by m = i + 2j hitting lines we 

again obtain an [e ^s"*]-weighted cell; the subclass of these cells 

where the hitting lines contain j pairs intersecting inside the cell 

forms an [e ^S^A^]-weighted aggregate. 

Miles [1973] uses these results to calculate higher moments 

for the Poisson line process. 

Devising various methods for choosing polygons and utilizing 

the weighted aggregates which result is a major but relatively 

undeveloped technique for obtaining higher moments. For example, 

consider the following two methods of choosing an 'adjacent polygon 

pair':- i.e. a pair of adjacent polygons with a common side. 

Method 1 Choose a uniform random side and take the pair of polygons 

which have this side as a common side - this is a uniform random 

'polygon pair'. 

Method 2 Choose a uniform random cell. Then choose (uniformly) a 

side of that cell, and take the polygon pair with this side as their 

common side. 

Now consider a side s shared by two polygons with side numbers 

N^ and N2. Under Method 2, 

1 1 ^2 P(s is chosen) — h 
^2 

Hence s, and the polygon pair associated with s, is 

If Z is any characteristic of the polygon pair, then 

-weighted. 
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where f^ is the joint density of N^, N^ and ^ under method i. Write 

E^ for expectation relative to f^. Then 

+ N ) 

-1 where k = E ' IV N^N2 / 

- E + E 

= • 

To calculate E^^^^, we note that each individual polygon 

associated with a uniform random side is [N]-weighted. If g and f are 

the densities of N for [N]-weighted and uniform random cells 

respectively, then 

Nf(N) 

and hence 

= V N T 

E -

where E^ and E^ represent expectations with respect to f and 

Hence 
E, 

and k = . 
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Multiplying both sides of (3.9) by N^N^ and summing gives the 

interesting relationship 

E^CN^N^) = + E^CN^)) 

Hence for a Poisson line process, the 'adjacent' moment 

is (TT̂  + 24)/2 = 16.93, predictably smaller, but not 

substantially, than E^CN^N^) = 10 + /4 = 17.40 (see Miles [1973] 

sections 8 and 9). 

For a Voronoi tessellation (see Chapter 2), 

which is the simulation estimate of E^(N^) given by Hinde and Miles 

[1980]. However, the value of E2(N2) = k^l + is an open 

problem for both tessellations. 

Weighting arguments are essential to arguments used in 

sections 4.3 and 4.4 for the calculation of certain moments and 

probabilities. 
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CHAPTER 2 

THE VORONOI T E S S E L L A T I O N 

2.1 Introduction - Basic Geometry 

This chapter is concerned with the Voronoi (or Dirichlet) 

tessellation, which was first considered in the century 

(Dirichlet [1850]), and which has played an increasingly important 

role in attempts to model tessellated phenomena in a wide range of 

subjects. 

The tessellation is generated by a process of particles 

distributed on a space upon which a distance function is defined (a 

general metric space could be used), We make the following assumptions 

about the particle process -

(i) spatial homogeneity 

(ii) countable particle set (a.s.) 

(iii) no multiple particles i.e. particles which are co-incident 

(a.s.) 

(iv) a.s. particles are in 'general position' e.g. no three 

particles are co-linear, no four particles lie on the same 

circle. 

Definition A particle process in d-dimensions satisfying (i) - (iv) 

will be referred to as a TT̂  type process. 

Label the particles of a TT̂  type process and define 

K = { x : x - o ) < x - c o , x € x } , the half-space of points nearer 
ij - - i - J -

to (jj. than 0).. Consider an arbitrary particle w . The Voronoi cell 
1 J ^ 

of iii., [w^], consists of all those points x with as the nearest 

particle. An example of a Voronoi tessellation for a small number of 



particles is given in Figure 1. Obviously, 
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w. = n K.. 1 . ./ . 11 ( 1 . 1 ) 

Definition 

Figure 1 

1/ = {[cô ] : varies over all particles of a ir̂  type process} , 

is a Voronoi tessellation of the space upon which t t^ is defined. 

If the generating particle process is defined on the plane 

E^ then, from (1.1), each [cô ] is a convex polygon, and f is thus a 

convex polygonal tessellation of E^. Apart from the null set of 
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polygon boundaries, every point of E^ belongs to one, and only one 

[w^]. Consideration of these boundary points shows that they are 

of the two types shown in Figure 2 - either a vertex of exactly three 

cells or in the dividing edge between two adjacent cells - as is clear 

from Figure 1. 

We 

Figure 2 

write <oĵ co2> for the perpendicular bisector of particles 

0)̂ , 0)2 and circumcentre of oĵ , uî  and 

Q(a)^,a)2>W2) is the circumdisk associated with the vertex <ŵ aj2(jJ2> 

(see Figure 2). 

2. 2 Applications of the Voronoi Tessellation 

The Voronoi tessellation has been re-invented in numerous 

fields as a natural way of tessellating a space occupied by a 

collection of entities competing in some manner for territory, hence 

the alternative descriptions of the construct as a Dirichlet or 
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Thiessen tessellation. 

In many cases the tessellation is an Idealized or simplified 

way of dividing the space; however there are some remarkable practical 

examples of visible territory division conforming to the Voronoi model. 

For example, mouthbreeder fish, 'Tilapia mossambica', which define 

their territory by spitting sand at their neighbours, have produced a 

Voronoi tessellation formed with sand parapets in the uniform 

environment of a swimming pool. This phenomena has been successfully 

modelled by starting with random distribution of fish and then moving 

each fish to the centre of gravity of its Voronoi polygon's vertices, 

and then iterating this procedure until a limit tessellation is 

achieved (Hasegawa and Tanemura [1976]). Simulations show that the 

limiting tessellation has more concentrated distributions for polygon 

characteristics A (area), N (number of sides) and for the interior 

angle distribution, showing a tendency towards a hexagonal lattice, 

but the limit is not degenerate as conjectured by Hamilton [1971]. 

The iterative modification is based on the assumption that, although 

the territory will tend to be divided in a Voronoi manner, the animals 

will also wish to maximize their distance from their neighbours. A 

similar method was used to model the territories of pectral sandpipers, 

'Celidris Melanotos', although in this case animals were introduced 

over time, instead of simultaneously at the beginning, with the 

constraint that a new animal could not be added within a certain 

distance of established animals (Hasegawa and Tanemura [1977a]). 

Related to this model is a method of 'areal random packing', where a 

particle can only be added if the Voronoi cells of the resulting 

tessellation are all above an appropriate proportion (1/total no. of 

particles) of the total area being tessellated (Hasegawa and Tanemura 

[1978]). Other evidence of visible Voronoi division is found in the 

arrangement of the endothelial cells of the cornea (Sato [1978]), and 
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the epithelial cells of the gall bladder (Hudspeth [1975]). 

In three dimensions, polyhedral Voronoi cells are the natural 

model for crystals formed by spherically symmetric growth with the 

particles as nuclei (Meijering [1953]). They have also been used to 

classify the nature of nuclei in a geometrical model for the 

crystallization of super-cooled liquids (Tanemura et al. [1977]), and 

in the modelling of the liquid state itself (Bernal [1959]). 

The assumption of simultaneous emergence of plants with equal 

growth rates competiting for space, soil nutrients and light, make the 

Voronoi model applicable to the study of plant competition (Maynard 

Smith [1974]; Mead [1971]). Fischer and Miles [1973] study such a 

territorial competition between crop and weed as affected by different 

spatial arrangements of the crop. Relaxation of the equal growth rate 

assumption leads to a Johnson-Mehl type tessellation with hyperbolic 

division lines. 

Particles generating a Voronoi tessellation are said to be 

contiguous if their Voronoi cells are adjacent. Constructing the line 

segments joining all contiguous particle pairs yields the triangular 

Delaunay tessellation, which, in a sense, is the dual graph to the 

Voronoi tessellation. Figure 3 shows both the Voronoi and Delaunay 

tessellations for a small number of particles. All Ergodic distributions 

for the Delaunay tessellation are essentially known (Miles [1970]). 

This triangulation has been used to test the randomness of arrangements 

of towns as against a regular hexagonal arrangement (central place 

theory), by use of the known distributions for the area and angles of 

a Delaunay triangle (Mardia et al. [1978]). Other geographical uses 

of Voronoi and Delaunay tessellations are noted in Rhynsburger [1973] 

and Boots [1974]. 
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Figure 3 

Hamilton [1971] considered that animal movement was 

influenced by the resulting effect on the size of the animal's 

Voronoi cell relative to its associated herd. In view of the 

simulation work of Hasegawa and Tanemura, effects on the tessellation 

due to particle relocations are of some interest, although not readily 

amenable to theoretical treatment. Hasegawa and Tanemura [1977b], note 

that movement of one particle, in a regular lattice of particles, 

towards the nearest neighbour may increase its Voronoi cell size. 

The mean area and number of sides of the Voronoi cell of a single 

moving particle in certain regular tessellations are considered by 

Cruz Orive [1979]. Also of interest here is the result of Sibson 

[1980a], that the nucleus o), of a Vornoi cell is at the centre of 
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gravity of weights T^, placed at each of the particles contiguous 

to (jj. These weights are just the areas of the \1 ̂ cells generated by 

w and 0)̂  i.e. T^ = area of [wo)̂ ] in the notation of section 3.1. 

Green and Sibson [1978] have developed an efficient computer 

algorithm for the calculation of planar Voronoi tessellations (see 

Chapter 5). They suggest that the tessellation could be used as a 

computational aid in distance based methods of spatial analysis e.g. 

by decreasing the time taken for nearest neighbour searches. Green 

has modelled the spread of infection on an irregular lattice using the 

tessellation (personal comm.). See also Besag [1974]. Sibson points 

out the possibility of uses in curve fitting and interpolation. The 

Delaunay triangulation uniquely possesses an optimal equiangularity 

property which makes it suitable for use in finite element methods for 

the solution of differential equations (Sibson [1980b]). 

2. 3 Voronoi Theory 

Despite the wide variety of practical applications for the 

Voronoi tessellation, relatively few papers have explored the 

theoretical properties of f. 

Meijering [1953] considered two models of crystal growth -

the cell model, which was a Voronoi tessellation based on Poisson 

distributed particles, and the related Johnson-Mehl model, where the 

nuclei of growing crystals appear at different times. For the two-

dimensional case he obtained the mean number of vertices (sides), the 

mean perimeter and the mean area; for the three-dimensional case the 

mean number of edges, vertices and faces, and the mean surface area 

and volume. These values are summarized in Table 1, where p is the 

density of the Poisson generating process. 
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Two-dimensional Voronoi 

Three-dimensional Voronoi 

Table 1 

Quantity-

number of sides 

perimeter 

area 

number of vertices 

number of edges 

number of faces 

edge length 

surface area 

volume 

Expectation 

4 p 

- 1 
P 

27.07 

40.61 

15.54 

17.50 p 
-1/3 

5.821 p 

- 1 

-2/3 

Gilbert [1962] calculated the variance of the area A for 

two- and three-dimensional versions of t/, and obtained upper and lower 

bounds on the distribution function F(a) of A indicating that 

- log(l - F(a)) is 0(a). Gilbert's arguments are discussed and 

extended to the generalized Voronoi case in section 4.4. 

We can choose a uniform random member of 1/ by choosing a 

uniform random particle of the generating process, since each V cell 

contains exactly one particle 'nucleus'. By homogeneity, and the 

complete independence of T in disjoint sets, we can assume that our 

uniform random particle is at the origin, and construct its Voronoi 

cell with respect to Poisson particles E ^ - {0}. Since E ^ - {0} 

and {0} are disjoint sets, the stochastic construction of P i n 

E ^ - {0} is not influenced by the assumption of a particle at {0}. 

We write [wq] for the typical Voronoi cell of cOq generated by 

PL) {wq} with cOq assumed placed at the origin. 
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As an example of the use of this construction of a typical 

polygon, consider the mean area A of [WQ] (see Figure 4). 

Figure 4 

Using Robbins [1944] technique, we use the representation 

A = I(x)dx , 

where I(x) is the indicator function of [WQ]. Hence 

E(A) = p(x e 

= 2-n r.P(r e [coQ])dr 

= 2tt rexp{- pirr^ldr = p ^ 

By comparison, Meijering's technique of integrating over 

radial distance can also be applied to the calculation of the mean 

area for a Voronoi cell. This approach reveals an interesting analogy 

with the coverage of a circle by a special class of random arcs. In 
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this case we use the representation 

A = A(r,dr) , 
0 

where A(r,dr) denotes the area of [oJQ] in an annulus (r,r + dr). Let 

L(r) be the length of a circle, radius r, which is covered by N^ random 

arcs, of random size 2<f), randomly and independently placed on the 

circumference. Then 

A(r,dr) = [2Trr - L(r)]dr , 

provided (|) is given p.d.f. f((t)) = sin 2(f) 0 < ^ < v, /l, and 

N^ Poisson, with mean Apirr^ (see Figure 5). 

Figure 5 
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Hence 

E(A) = E(2ur - L(r))dr . (3.1) 

Now 

L(r) = 
2-nr 

I(x)dx , 

where x is a point on the circumference of Q(r) and 

I(x) = f 1 X covered by an arc 

0 otherwise 

So E(L(r)) = 
2Trr 

0 
P(x covered by arc)dx 

= 2iTr.P(x covered by arc) (3.2) 

Also, 

P(x covered by arc) = P(at least one random arc hits x) 

1 - P(no random arcs hit x) 

f^/2 , ( f 
= E„ 1 - 1 -

\ 

= ^ - -

0 

u/2 

0 

7^f(«d<}) 

7̂ f(<!))d(}. (3.3) 

where P is the probability generating function of N . Since 

P (s) = exp{4pTTr2(s - 1)}, (3.1) to (3.3) yield 

E(A) = [27Tr - 2iTr(l - exp{- pTTr^})]dr = p 
- 1 

Extending this argument to the second moment we have 
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= 

E(A2) = 
i o 0 

- L(r^))(2TTr2 - LCr^)) dr^ , 

illustrating the connection between the covariance of coverage on 

concentric circles and the second moment of the area. In the next 

section we utilize our construction of a typical polygon to write down 

some theoretical expressions for cells of f. 

2. 4 Ergodic Theory for V 

Consider a uniform random cell T = [WQ] of I/, generated by 

P U {WQ}. Figure 6 illustrates the geometric structure around such a 

cell. WQ is the nucleus of T, which is the intersection of N half-

planes (N = 5 in Figure 6). The sides of T are portions of 

perpendicular bisectors B^ between cô  and i = 1,2,..,N. Each 

vertex of T is the circumcentre of and two of the V, the union 

of the circumdisks associated with each vertex must be empty of particles 

except for oî  in its interior and on its boundary. Let V 

be the area of V. 

Figure 6 
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Parametrize B^ by the polar co-ordinates of the foot of the 

perpendicular from , and let q^ be the perpendicular 

distance from (jJQ to i — 1,2,..N. Let ct = and 

define 

DCoJQ) = {ct : determine a convex N-gon 3 oIQ) . 

Then 

P(there is a particle in dw^ and T = [WQ] has N sides with a € da) 

pdw^P(there is a particle in each of N distinct area elements, 

of areas 4q^dp^d0^ and no other particles in V) 

/ N \ - V 
pdcĵ Ĵ  n^4pq.dp.d0. je P 

„2N N+1/^ V-P|V 2 p dadw 0 (4.1) 

Integrating over all possible shapes for T, and setting 

p = 1, w.l.o.g., 

p(N) E P(T has N sides|particle at 

= 2 2N 
D(a)Q) H = 1 V 

V da 

Monte Carlo estimates of these p(N) values were calculated 

by Hinde and Miles [1980]. 

Integrating (4.1) over all possible nucleus positions gives 

. n . ̂  . J N o2N N+1 P(cell T of 1/ with a in da) = 2 P 
N \ 
n q. 

T H = 1 
-P V do), '0 da . 

(4.2) 
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Alternatively, for fixed nucleus with [WQ] an N-gon, 

(4.1) implies the density 

^ \ - V f(a particle at oJQ, [oâ ] an N-gon)al 11 q^^je , ct € DCw^) 

Also from (4.1) we have 

/ N \ - V 
f(coQ|there is a cell T of with sides n Iĵ j® > '̂ O ^ ' 

(4.3) 

which shows that the nucleus is not uniformly distributed, and has 

small probability density near the edges of T, where ]v| is large. 

These relationships can be re-expressed in terms of the 

alternative parametrization of T, v = where 

v^ = B^ n is the i^^ vertex of T = B^) , by use of the 

Jacobian relation (Miles [1970]), 

. N . , N 
n L. da = n sin (p . dv , 

1 / 
(4.4) 

where L. are the side lengths of T and c})̂  the changes in direction at 

each vertex as the perimeter of T is traversed. For example (4.2) 

becomes 

P (there is a cell T of 1/ with v in dv) 

r r / N \ „ •) N / sin (b. 
'dv 

From Figure 6 we note that A = area of T < V . However we 

can obtain the distribution of |v| by application of the complementary 

theorem for homogeneous Poisson processes (see Miles [1971] and Miles 
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[1970], Theorem 5.1, for the specialization to the planar case). This 

states that the distribution of any area associated with n particles 

chosen from a Poisson process by a homothetic invariant map, and 

m-filled by particles of that process, has distribution r^(m + n - l,p), 

where p is the density of the process (see (3.5.4)), A mapping ^ from 

sets of n particles from P into sets in E^ is homothetic invariant if 

translation and rescaling of the particles results in the same 

translation and rescaling of the image set. Examples of such mappings 

are the circumcircle of three particles, the minimal disk for n 

particles (the disk of minimum radius covering all n particles) and the 

convex hull of the particles. 

If we choose the mapping (j) defined on the N + 1 particles 

. as 

V if cOQ is only particle inside 

convex hull of the oo. 1 
0 otherwise , 

then if V is empty, |v| r^(N + 1 + 0 - l,p) i.e. r^(N,p). 

Hence, if F (a) and F(a) are the distribution functions for n 

the area of a uniform random n-gon of 1/ and a uniform random cell of U 

respectively, then 

F (a) > I e P^(pa)'-/i! = P (M > n) , n . i=n 

where M Poisson with mean pa, and 

oo oo 
F(a) > I I = i)p(n) = E(P(M > N)) 

n=3 i=n 
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where N is the number of sides of a typical cell with probability 

distribution {p(n)}. Also, since (4.3) suggests that the nucleus of 

T will be centrally located, A will be approximately |v|/4 for large 

N, and hence the area distribution for N-gons when N is large will be 

approximately r^(N,4p). 

The results in this section represent joint work between 

R.E. Miles and the author. 
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C H A P T E R 3 

G E N E R A L I Z E D V O R O N O I T E S S E L L A T I O N S 

3.1 l/^ - Basic Geometry 

In this chapter we introduce the random tessellations 

n = 2,3,..., which form the main topic of study in this thesis. 

The tessellations are a natural generalization of the 

Voronoi tessellation , which can be written as \Jy All points in a 

l/̂  cell have the same closest particle; all points in a l/̂  cell have 

the same n closest particles. These particles are referred to as 

the proximity particles of the cell. If a cell T has proximity 

particles >••• we write T = 

In full generality we can define l/̂  relative to a 

d-dimensional point process TT̂  (see section 2.1). In fact, the 

assumption of particles in general position can be waived, and some 

examples of U^'s based on a degenerate square grid of particles are 

given, but most of the theory deals with processes of type TT^, and 

more particularly, planar Poisson processes. We note that multiplicity 

of particles in the generating process must be excluded. 

The geometry of is complicated and hard to visualize. 

The geometrical viewpoint must be chosen to suit the problem to be 

solved - hence we look at the vertex structure, the construction of 

individual polygons, the associated point processes on arbitrary 

linear transects and on arbitrary perpendicular bisectors of particle 

pairs, and the relationships between superpositions of l/^'s for 

consecutive n values. 
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The computation of is covered in Chapter 5. As an 

introduction here however. Figure 1 shows plots of \ l M l / ^ and 

l/̂  and l/̂  superposed ~ ^ 2 ' These plots are based on a random 

distribution of particles. In Figure 2, various l/̂  for a square grid 

of particles are illustrated. These plots are invaluable to an 

understanding of the geometry which follows. 

Consider the arbitrary n-set of particles oĵ  »• • • > c h o s e n 

from a ir̂  type process defined on a space X. For the l/̂  cell 

to be non-empty requires that there be at least one point 

of X with as the nearest n particles. If we label the 

remaining particles ' ' • ' ' ' this is equivalent to insisting 

that each cô , 1 ̂  i < n is closer to the point then any , j > n + 1. 

Hence, i f K . . = { x : x - w . < x - w . , x e x } , we have the ij - - 1 - J -
important representation 

n 
[w^w^.-.o) ] = n n K.. ( 1 . 1 ) 
^ ^ " i=l j>n+l 

Definition 

1/ = |[a),a)„. . .0) ] : OJ, ,. . . ,0) vary over all possible n-sets n [ 1 n 1 n 
from TT̂  type processj^. 

is called a generalized Voronoi tessellation of the space X on which 

TTj is defined, a 

If X is the plane, then (1.1) shows that each [w^.-.w^] is a 

convex polygon. Since, apart from the null set of polygon boundaries, 

every point of belongs to one and only one l/̂  is a 

convex polygonal tessellation of the plane, as is clear from Figures 

1 and 2. In fact, the higher l/̂ 's appear to have exactly the same 

topological structure as l̂. However there are some important 
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geometrical differences, as we see as soon as we start to investigate 

the different types of points in tlie polygon boundaries. 

If a point X has a well-defined set of n closest particles 

then it will be contained in the l/̂  cell with those particles as its 

proximity particles. Precisely, a point has n well-defined nearest 

particles iff a circle can be drawn, centered at x, which contains 

exactly n particles in its interior. A little thought reveals that 

points of fall into one of four types relative to a tessellation, 

which are illustrated in Table 1. 

n 

Particle configuration 
around x 

Table 1 

jc's place in boundary 

(i) 
^ ^ U) 

n-1 

(ii) 

(iii) 

n-1 

n+2 

X is inside 1/ cell 
— n 

[as, ... 0) 1 
1 n 

2c is on the edge between two 

\J cells [to, ..0) 1 and 
n 1 n-1 n 

X is at the vertex of three 

1/ cells [aj-,a)„..(ja 1, 
n ' 1 2 n-1 n 

(iv) 

0) 
n-l 

n-2 

03 
n+1 

X is at the vertex of three 

1/ cells 
n 

[ 03^032-. V 2 V n + l ^ 

Each circle is centred at x and is labelled with the number of filling 

particles. 
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Figure 1 ( i ) . for a set of random particles.. 

Each c e l l contains one par t i c l e or nucleus, shown by a 
cross . 



4 0 

Figure 1 ( i i ) . ^^ for a set of randan -particles. 

Note that each cell contains none, one or two particles, 
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Figuve 1 (Hi)., l/^ for a set of randan par Holes. 

Note that each c e l l can contain up to three p a r t i c l e s . 
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Figure 1 (iv). Superposition of V^ and \J^ for a set of random particles. 

[/^ shown in b l ack , l/^ in b lue . Note the two ver tex types 

in [/^ ~ Cl ,2) v e r t i c e s where black and blue l i n e s meet, 

( 2 ,3 ) v e r t i c e s where only blue l i n e s meet. 
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VORONO: - 4 

VORONOI - 5 

Figure 2 (i). l/̂ 's based on a square grid of partioles 
The particles are shown by crosses. 
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VORONOI - 12 

VORONOI - 14 

Figure 2 (ii). V 's based on a squeeze grid of particles 
yi/ 

The particles are shown by crosses. 
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The most important difference between l/̂  and l/̂  (n > 1) 

boundary points is that in l/̂  there are two different sorts of vertices, 

i.e. points type (iii) and (iv) in Table 1. These correspond to the 

centres of (n - 1) and (n - 2)-filled circttmdisks of triples of 

particles from the generating process. A l/̂  vertex corresponding to 

an (n - l)-filled circumdisk will be called an n"*" vertex, that 

corresponding to an (n - 2)-filled circumdisk an n~ vertex. Since it 

is clear that an n"*" vertex is equivalent to an (n + 1) vertex, both 

being (n - 1)-filled circumdisks, we sometimes use the more convenient 

notation (n,n + 1) vertex. An (n,n + 1) vertex appears in both l/̂  and 

For example, from Figure 1, \}̂  has (1,2)-vertices shared 

with l/̂  and isolated (2,3)-vertices inside cells. The situation is 

similar for higher n-values. Each grows from the (n,n + 1) 

vertices of and partitions the l/̂  cells by a web formed by 

(n + l,n + 2)-vertices. This relationship between successive 1/ n 
tessellations is analysed more carefully in section 4.2. 

From Table 1 we note certain important local properties for 

1/ n 
(i) the proximity particles of adjacent cells separated by 

<(jjĵfc02> and [ŵ oĵ oĵ . . and [ . . . , differing 

only by exchanging o)̂  and 1)̂2' 

(ii) around an n"*" vertex the circumferential particles enter 

singly into the proximity sets, around an n vertex they 

enter pairwise combined with the (n - 2)-interior filling 

particles. 

The generalized Voronoi tessellation was first defined by 

Miles [1970], who used ergodic theory methods to calculate E(A), E(N) 

and E(S) for l/̂  n = 1,2,3,... where the generating point process was 

Poisson with density p. These values are 
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E(A) = 1 
(2n - D p 

E(N) = 6 

E(S) = (2n)J _ ^ , A 

(n!(n - l)!(2n - 1)2^" ^p^) (irnp)^ 

3,2 n -C i rcu i t s and n -Areas in 1/ 
p 

Before exploring further the local geometry of l/^, we 

introduce a global geometric construct which is interesting in itself, 

and is a useful tool for geometric arguments to follow. 

Definition 

Let 0) be a particle of the point process generating V . 

Let P = {P : P's proximity set contains co, P £ V }. 
n 

Then the n-Area of w is A = U P 
n p.p 

and the n-Circuit of w is C = 3A 
a),n 10,n 

A is simply the collection of all V cells with co in their 
w,n ^ n 

proximity set - see Figure 3 for an illustration of 2 and 3-Areas with 

their surrounding 2- and 3-circuits. 

Lemma 1 The n-Area of w contains w, and is star-shaped relative to w. 

Proof First we show that 

A = X H {y : Q(y, u - y|) contains < n - 1 particles} 
a),n _ ^ — 

Take y € A . Then there is a P € P such that y € P . 
— w,n n — n 
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Figure Z (i). 2-Civcuit and 2-Area in \J, 

The particle w is circled in blue, and its 2-circuit 
is shaded in yellow. Particles which are cell-contiguous 
with 0) (see section 3.3) are shaded in yellow; 
particles which are edge-contiguous with w (but not 
cell-contiguous) are shaded in green. 



48 

Figure 3 (ii). 2-Oirouit and 2-Area in I/, 

The particle oj is circled in blue, and its 3-Circuit 
is shaded in yellow. As in Figure 3 (i), cell-
contiguous particles are shaded yellow, and particles 
which are edge-contiguous, but not cell-contiguous are 
shaded in green. 
The incomplete portion of the 3-circuit from A to B 
(lower right) is shown in greater detail in Figure 
3 (iii). 



4-9 

Figure 3 (Hi). Completion of S-Civouit from Figure 3 Hi) 

This plot completes the 3-circuit of w between 
points A and B. It clearly shows two pentagons 
which are too small to appear on the smaller scale 
plot. To clarify Figure 3 (ii), certain cells are 
labelled with their proximity sets, using the 
numbering of particles on Figure 3 (ii). 



50 

Therefore u is contained in y's proximity n-set i.e. in the set of the 

n closest particles to y, and Q(y,|a) - y|) must contain < n - 1 

particles other than 00. i.e. y e X. 

Take y £ X. Then co is again in proximity n-set and so y_ 

must be in some P G P i . e . y G A . Hence A = X. 
— (D,n to,n 

As 0) € X, w e A i.e. the n-Area of 00 contains co. (jo ,n 

Now consider a ray emanating from w, with points on the ray 

specified by ^(d) , where d is the distance from u. As 

Q(y(d ),d ) 3 Q(y(d„),d„) for d^ > d_, if y(d,) € A ^ then y(d„) G A ^ J- i z / 1 z 1 aj,n z (jo,n 
for all d„ < d . Hence A is star-shaped relative to to. 2 1 a),n ^ 

Lemma 2 The mean n-Area for a typical particle chosen from a Poisson 

generating process P is 

E(A ) = np a),n 
- 1 n = 1,2,... 

Proof From Lemma 1, 

a),n I (x)dx , a),n — — 

where I (x) = 1 if Q(x, |co - xi ) contains 

^ n - 1 particles 

0 ow. 

Hence E(A ) = a},n P(Q(x,|co - x|) contains < n - 1 particles) dx 

= 2Tr P (circle radius r has < (n - 1) particles in 

it) rdr 

= 2-n 

«> n-1 , axk -pTTr^ (pTrr^) e ^ I 
0 k=0 k! rdr 
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n-1 
- 2 , I 

k=0 0 
^ . f(r;2k + 2,p7T)dr , 

where f is the density function for a random variable with distribution 

r2(2k + (see (5.4).) 

1 -1 Hence E(A ) = y — = np 
k=0 P 

As a check on Lemma 2 we note that the 1-Area of a particle 

is simply its Voronoi cell, with mean area p and the 1-circuit is 

the boundary of the cell. 

The 1-Areas therefore form a tessellation or 1-covering of 

the plane, i.e. the Voronoi tessellation I/. In an analogous way the 

n-Areas form an n-covering of the plane, for, ignoring the null set 

of boundary points, each point x £ E ̂  has n particles in its 

proximity n-set and hence lies in each A , i=l,2,...n. Obviously 

n 
. t o ] = n A 1 2 n w. ,n 1=1 1 

Lemma 3 

The mean number E(N ) of 1/ cells is an n-Area when the 00 ,n n 
generating process is T is 

E(N ) = n(2n - 1) n = 1,2,. . . a),n 

Proof E(A ) • 

= (2n - l)np 
P 

= n(2n - 1) , 

independent of p. 
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Some values of E(N ) are listed in Table 2. 
u) ,n 

Table 2 

n E(N ) (jo,n 
1 1 

2 6 

3 15 

8 120 

300 179,700 

Since A ^ is the Voronoi cell of w, N , = 1, so obviously 

E(N = 1. co,l 

An examination of (Figure 1) suggests that us and cĵ  

generate a cell iff they have a t/̂  segment on their perpendicular 

bisector. Hence 

N „ = N , (2.1) OJ , z 

where N is the number of sides of the Voronoi cell for w. 

Lemma 3 therefore verifies that E(N) = 6 for In the next section 

we prove (2.1) in the context of a general analysis of particle 

contiguities using n-Areas. The only other point of interest in 

Table 2 is to note the rapid increase in E(N ). ^ (jj ,n 

3. 3 Particle Cont iguity in and 1/ n 

In we naturally define two particles to be contiguous if 

they generate adjacent l/̂  cells, or, equivalently, if they have a l/̂  

segment on their perpendicular bisector. 

In I' we apparently have several choices for the definition 

of pairwise contiguity:-



53 

(i) c e l l - c o n t i g u i t y ; and both appear in the proximity set 

of at least one t/^ cell. We w r i t e [01^0)2 n] 

(ii) edge-contiguity; n / (j), where is the aggregate 

of sides of members of l/^, i.e. <a)^(jj2> contains a segment 

b e l o n g i n g to the boundary of 1/ . We write <co,a)o n> 
n 1 z 

(iii) e x t e n d e d - c e l l contiguity - at least one of oĵ ^ and oĵ  appear 

in the proximity sets of adjacent l/̂  cells. 

Lemma 4 [01)̂ 2̂ n] iff <(jĵ (j02 - > n - l > n = 2,3,... 

Proof By definitions of cell and edge contiguity, 

[WTOj^ n ] i n t A D i n t A ^ ^ 
1 I a)2jn 

1 2 a)^,n-l 0)2,n-1 

w h e r e int A is the interior of the n - A r e a . 
o),n 

Assume <a)Ta)„ n - 1>. Consider x £ <WtO)„> fl £ Then 
1 2 — 1 2 n - 1 

Q ( x , |x - 0)^1) is (n - 2)-filled w i t h particles s a y , so 

x £ [o3i..o) ] i.e. [0JT0)„ ^ n ] . 
— i n 1 / 

Assume [0)^0)2 n]. Then there exists x such that 

Ql = Q(x» m a x [ | x - - 0)2!]) is at most (n - 2)-filled, excluding 

0)^ and 0)2' Construct the line L (see Figure 4 ) , joining x to 

w h i c h e v e r of o)̂ ^ or is on the boundary of Q ^ , and let ŷ  e L fl <La^o)2>. 

Then Iz - (Ĵ ^̂ l) is at most (n - 2)-filled, and hence 

2 G Xlĵ  for some i , l < i < n - l . But if <o)^o)2> contains a l/̂  s e g m e n t , 

it m u s t contain I/, s e g m e n t s , for a l l j > i (see section 5.2). Therefore 
J 

<0)^0)2 n - 1>. This completes the lemma. 
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Lemma 5 There is a one-to-one correspondence between l/̂  sides and 

1/2 cells - each cell contains exactly one \1 ̂ side. 

Proof Consider a non-empty l/̂  cell [0)^0)2]. By Lemma A, <(j0ĵ a)2> must 

contain a segment, which is contained in the ^^ cell since if 

X £ l/̂  segment then Q(x, |x - oĵ  |) is empty, and and b)̂  are the 

closest two particles. No \l̂  cell can contain two l/̂  segments on 

<a)^a)2> and since each segment would determine two particles 

which are the closest two leading to a contradiction unless o)̂  e 

and (1)2 = which is impossible since no perpendicular bisector can 

contain more than one segment. (see section 5.2.) 

From Lemma 5, all ^^ cells are as illustrated in Figure 5 

partitioned into two sections by a single l/̂  segment. Hence a \Ĵ  

N-gon has two 2~ vertices and (N - 2) 2"̂  vertices (see also Figure 1) 
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Figure 5 

We note that there is a major difference between the \Ĵ  to \Ĵ  

transition and the transitions V to 1/ , ̂  , due basically to the fact 
n n+1 

that although all vertices are also ^ vertices, not all vertices 

are \J vertices. Thus we lose the one-to-one correspondence between 
n+i 

1/ cells and \J ^ sides which holds for n = 1 in the n > 1 case, 
n n-1 

However the cell-side correspondence can be replaced by a combination 

cell-side and cell-vertex correspondence which is used to calculate 

mean cell areas for general homogeneous tessellations. (see section 

4.1.) 

Extended cell contiguity is equivalent to edge-contiguity. 

For if 0)^ and cô  are extended-cell contiguous with more than one of 

0)^ or 0)2 in adjacent cells, they are cell-contiguous and hence edge-

contiguous. If only one of the pair appears in each adjacent cell, 

the separating l/̂  segment must appear on <aj^a)2> and again we have edge 

contiguity. The reverse implication is obvious. 

In 4.6 w e make use of the geometric lemmas here, together 

w i t h the stochastic constructions for l/̂  vertices given in 3.5 to 

derive some distributions related to pairwise contiguous particles. 
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3. U l/̂  - triangles and quadrilaterals 

In this section we begin to explore the total geometry around 

a l/̂  N-gon for N small. This is extended to general N in section 3.6. 

An understanding of the associated particle structure is also necessary 

for the stochastic constructions in section 3.5. 

Triangles 

Triangles occur in 1/ , but as a perusal of Figure 1 indicates, 

none occur in 1/ for n > 1. 
n 

Lemma 6 There are a.s no triangles in l/^, n = 2,3... 

Proof 

Assume there is a triangle T £ l/^. 

As adjacent vertices of T must have two circumferential 

particles in common we can label its vertices and sides as shown on 

Figure 6. is the perpendicular bisector of particles and 

is a i-filled V vertex with circumferential particles , 
O l z j - ^ n 0 1 

and • 

0 2 3 3 

Figure 6 
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If P = 1 shares a boundary <ui oa with R then the 
n 1 n ^ n n+1 n 

proximity set of R is {o), ,. . . ,0) As appears in all sides 
n 1 n-1 n+1 0 

of T , it is either in T's proximity set, or the proximity sets of all 

three adjacent regions. 

If £ T, then it must appear in T's proximity set. 

Absume f T, and that is not in T's proximity set i.e. 

fip must then appear in the proximity sets of all three adjacent regions. 

Draw a ray from which hits the interior of T. This ray 

intersects A in at least two disjoint line segments, violating the 

star-shaped property of A^ ^ about Therefore must be in T's 

proximity set for any position of 

As the sides of T are segments on i = 1,2,3, fi^ 

cannot be in T's proximity set for i = 1,2,3. Hence 

T = [OQ ,. . . with no E ^^ or Q^, i = 1,2,...,n-1. From 

T's proximity set we can obtain the proximity sets of all adjacent 

regions (see Figure 6). The vertex type is determined by the 

proximity sets of the three cells surrounding the vertex. For T, 

i^ = i^ = i^ = (n - 1) i.e. all vertices contain (n - 1) particles in 

their circumdisks. In fact, these particles are ••• 

We now draw the associated circumcircles for the vertices of 

T . From Figure 6 , the circumcircles for vertices v^ and v^ are as 

shown in Figure 7. The circumcircle of vertex v^ must pass through 

^^^ There are three possibilities for its placement:-
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Figure 7 

Write Q^ for the open circumdisk of vertex v^. 

(i) n Q. = (J). As all Q. must contain the particles 

i=l ^ ^ 

(jj^.a)^,. • . this possibility is eliminated, unless n = 1. 

3 2 3 

(ii) n Q. (= n Q.. As in (i) above D Q. must contain 
i=l ^ i=l i=l 

(jj, ,...,0) However, in this case or or both must be 
1 2 

on 6[ n Q . ) and hence in Q̂ ^ or Q2. (See Figure 8.) Therefore 

either Q^ or Q2 or both contain (n - 1) + 1 particles, 

violating the condition that all Q^ are (n - l)-filled. This 

eliminates this possibility for all values of n. 

Figure 8 
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(iii) Q^ n Q^ c Q^ 

In this case Q^ contains , • . • , a n d as well, 

violating the (n - l)-filling condition, and eliminating this 

possibility for all n values. (Figure 9.) 

Figure 9 

This completes the proof of the lemma. 

Polygons in i/̂  

Definition A polygon in l/̂  is suspended by a perpendicular bisector 

of particles oî , ud̂  if it appears in two of its vertices, but 

not as a side of the polygon. A polygon is n-suspended if it is 

suspended by n distinct perpendicular bisectors (see below). 

0-suspended 5-gon 1-suspended 5-gon 2-suspended 4-gon 
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As any <a)̂ a)2> can contain at most one side of a member of \J 

all P e l/̂  are 0-suspended. 

Simulation drawings of t/̂  realizations for n > 1 (see 

Figure 1) suggested the 

Lemma 7 All quadrilaterals in l/̂  are 2-suspended. n = 2,3,4.,. 

Proof Assume we have a quadrilateral S in 1/ . ^ n 

As adjacent vertices of S must have two circumferential points 

in common, we can label its vertices and sides as shown in Figure 10 

1 0 1 2 

V fi > 

3 

V =<???> 4 

Figure 10 

The assignment of circumferential particles on Figure 10 is 

unique, apart from permutations due to relabelling. The particles 

and ^^^ three distinct particles. However and could 

be the same particle. Hence we have the following two cases. 

Case 1 

We can complete Figure 10 here as follows:-
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Iw, , . . ,L0 , fi ) / 4 0 3 4 1, 1 n-i J , 4 

Figure 11 

The circumferential particles of v^ follow from 

(i) v^ must have two circumferential particles in common with v^ 

i.e. OQ and % ^4' 

(ii) the first pair in (i) is eliminated as this is shared by v^ 

with v^. 

(iii) the second pair in (i) is eliminated as v^ must have two 

circumferential particles in common with and f]̂  i 

(iv) this leaves and fi^ as v^'s circumferential particles, 

fi^ lias to be chosen to comply with requirement in (iii). 

Analogous arguments to those used in the triangle case now 

show that a quadrilateral with vertex structure as in Figure 11 is 

impossible. 
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(i) All four sides are of the form and so must be in S's 0 1 0 
proximity set. 

(ii) i = 1,2,3,4 all appear in the sides of S, so given (i) 

they cannot be in S's proximity set. Hence S's proximity set 

must be ,0), ,. . . ,(jo ,}. From this we can determine the (J 1 n-1 
proximity sets of the remaining regions, as shown on Figure 11. 

(iii) From the nature of the proximity sets surrounding each vertex, 

all vertices must contain (n - 1) particles in their open 

circumdisks i.e. i^ = i^ = i^ = = n - 1. These particles 

are ,a)„ ,. . . , . 1 2 n-1 

(iv) The implied circumcircle structure is four circles, all 
4 

intersecting at with ^ Qĵ * However it is 
i=l 

impossible to achieve this without putting at least one of 

fi^ inside a Q^, which means that not all Q^ can 

contain only (n - 1) particles, unless n = 1, 

Hence the vertex structure in Figure 11 cannot correspond to a 

quadrilateral for n = 2,3... . 

Case 2 = — — —3 4 

We complete Figure 10 as follows:-

Figure 12 
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The circumferential structure of v, follows from 4 

(i) v^ and v^ must have two common circumferential particles -

either ^2^3" 

(ii) The first pair in (i) is eliminated as v^ and v^ share this 

pair. 

(iii) The second pair in (i) is eliminated as v^ and v^ as well as 

and v^ would share this pair. 

(iv) Therefore "^"st appear, together with so that v^ and 

v^ share two circumferential points. 

This completes the proof of the lemma. 

Quadrilaterals - associated point structure 

We can use the vertex structure above to develop in more 

detail the point structure associated with a quadrilateral in l/̂  

n = 2,3,..., by looking at the circumdisks Q^ of the vertices v^ 

(see Figure 13). 

Figure 13 
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(i) SIQ, and can be arbitrarily placed on the circumferenc( 

of Q^. 

3 
(ii) As n Q. ^ (t), and as 8Q must pass through Q , fi must lie 

i=l ^ J U J 

between the dotted lines in Figure 13. This is equivalent 

to requiring that the four circumferential points have a 

4 

quadrilateral convex hull, as tfi Q^ as then D Q. would 
^ ^ i=l ^ 

be void. 

(iii) As must both lie on the same side of the line 

joining i Qj^' ^ 

(iv) As and n^ust both lie on the same side of the line 

joining and ^ Q^, fĴ  £ Q^. 

Hence we have the 

Lemma 8 Quadrilaterals in (n = 2,3,...) have the following 

associated point structure. Let be four particles with a 

quadrilateral convex hull. Let Q^ be the disk bounded by the 

circumcircle of three distinct not including oj^. Then these 

particles will generate a quadrilateral if 

4 

(i) n Q. contains (n - 2) particles 

i=l ^ 

4 4 

and (ii) U Q, - n Q, contains only the four particles 

i=l ^ i=l ^ 
4 

The full known structure of a l/̂  quadrilateral is shown in 

Figure 14. 
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Figure 14 

In Figure 14, each region is marked with part of its 

neighbouring n-set. The complete neighbouring n-set is the set 

marked plus {w^,. .. } with no oĵ  = 

3.5 Stochastic Constructions for I/. n 

In this section we present stochastic constructions for 

vertices, cells and sides of \J for the case when the generating ' n 

process is a planar Poisson process P. These constructions are based 

on ergodic results of Miles [1970] relating to m-filled circumdisks of 

three particles chosen from P. 

Let be the aggregate of all ordered triples of particles 

chosen from P and let H2{X,6IJJ} = number of these triples with first 

particle in X and whose ij; value lies in S i p , where = 



are the co-ordinates of ijî  and oĵ  relative to 00̂ . 

Then Miles shows, [Equation 3.14, 1970], that 
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as X 0 (5.1) 

which is intuitively plausible, since we would expect a uniform 

distribution of random particles relative to the first. (5.1) 

specifies an ergodic density for (tsî b)̂ ), which is not normalizable 

over the whole plane. Restricting attention to m-filled circumdisks 

of the three particles and changing variables to polar-co-ordinates 

relative to their circumcentre, i.e. K = » gives 

a. s. 1 ,2m+3 -TrpR' /m!} 6K (5.2) 

where 6K} denotes the number of m-filled circumdisks of three 

unordered particles from P, all contained in X, and 

2 o = - 4 s in( - - -Isin . r i (5.3) 

Hence 

Lemma 9 

A stochastic construction for a uniform random m-filled 

circumdisk of three particles chosen from r 

(i) Choose R, the circumdisk radius, with p.d.f. f(r;v,X) where 

V = 2m + 4, X = TTp i.e. R R2(2m + 4,Trp). This distribution 

is a particular case of the gamma-type distributions defined 

by Miles [p 88, 1970]. If Y r2(v^X) , Y^ r(v/2,A). 

The p.d.f. for r2(v,A) has the form 
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f(r;v.A) = r > 0 . (5.4) 

(ii) Choose (B^.e^jS^) in accordance with the joint density 

f(e^e2e3) = o < e. < 2Tr i = 1,2,3 (5.5) 

Note that R and independent by (5.2). 

(iii) The m-filling particles are uniformly and independently 

distributed on the interior of the circumdisk. 

Vertices in are of two types, corresponding to (n - 1) and 

(n - 2) filled circumdisks of triples of particles from P. Integrating 

(5.2) over R and gives 

2p(m + 1) , |X 

where H^^^Cx} is the number of m-filled circumdisks in X. Let N^(X) 

denote the number of vertices of corresponding to i-filled 

circumdisks inX, i = n - 1, n - 2 i.e. the number of n"̂  or n 

vertices in X. We are interested in a uniform random vertex of 1/ . n 

p^ = P(uniform random vertex corresponds to an i-filled circumdisk) 

a.s. lim ± 
X N_^(X) + N_(X) 

H!̂ ^̂  (X) a.s. lim 3 
^ ^ H^-^X) 4- H5-2(X) 

i + 1 . , T i = n - l , n - 2 (2n - 1) ' 

p^ is the ergodic probability of the vertex being of a 



68 

particular type. Note that for n = 1, p_ = 0, corresponding to the 

existence of only one vertex in l/^, namely empty circumdisks. 

From the above, and lemma 9, 

Lemma 10 

Stochastic construction for uniform random f vertex n 
+ 

(i) choose vertex type n with probability p^. 

(ii) R^ = the radius of the vertex 1^(21 + 4,TTP), where 

i = n - 1 for n"^ vertex, n - 2 for n vertex. 

(iii) (e^e^e^) are distributed in accordance with (5.5), and the 

i-filling particles are again uniformly and independently 

distributed on the circumdisk. 

Lemma 11 

Stochastic Constructions for uniform random 1/ side and n 

[N]-weighted gon 

Let S(Jl) denote the square of side length I with vertices 

f+A +A-) 

(i) Since the density of the process p is simply a scale 

parameter, we are free to set it to any convenient arbitrary 

value, so we let p = kn, which normalizes the expected radius 

of the circumdisk of a vertex to ( 1 / A k ) , for large n. n 

[In a practical simulation k would be chosen to reduce the 

probability of the circumdisks associated with the 

constructed polygon's vertices extending outside S(£).] 

(ii") Construct a 1/ vertex with circumdisk Q centered at the ^ ' n 

origin using Lemma 10 (see Figure 15), with circumferential 

particles liî , a)̂ -
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(iii) Construct a realization of P i n S(l) - Q. 

(iv) Randomly choose one of the three l/̂  sides meeting at the 

origin, generated by circumferential particles uĵ  and uî  say. 

(v) Move along <(;0ĵ aj2>j from the origin until we reach the first 

circumcentre where oĵ  is any other particle. This 

circumcentre is the centre of another 1/ vertex, which n 
terminates the first side of the l/̂  gon. The initial direction 

of movement along <co^W2> is determined by the vertex type; 

if the initial vertex is an n^ vertex, movement is away from 

the third circumferential particle since the vertex 

already contains the (n - 1) particles required for a point in 

a 1/ side (see Table 1). If the initial vertex is an n n 
vertex, movement is towards (i) - (v) amount to a 

stochastic construction for a uniform random side of . n 

(vi) If 0) e Q, the new 1/ vertex is of type n , otherwise it is K. n 
+ n . 

(vii) Step (v) is now iterated for successive sides of the polygon. 

We choose the circumferential particles of each new vertex so 

that we turn 'right', around the polygon. If the new particle 

met on proceeding down the selected perpendicular bisector 

lies in the previous vertex's circumdisk, the new vertex is 

an n~ vertex, otherwise it is an n"*̂. (v) is repeated until 

we return to the origin vertex. This completes the 

construction provided all vertex circumdisks be wholly inside 

S(l). If not. P i s constructed in S(2) - S(l), and the above 

procedure repeated, and so on for S(3) - S(2), S(4) - S(3), 

until the circumdisks are contained in the generating square. 
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S(£) 

Figure 15 

It should be clear from the geometry of Lemma 11 that if a f 

cell has vertices v. with associated circumdisks Q., i = 1,2,...,N 
N N ^ ^ N 

then U Q. - H Q. must be empty of particles and fl Q. must contain 
i=l i=] ^ i=l ^ 

N - 2 particles. 

We note that lemma 11 yields an [N]-weighted l/^-gon, as the 

polygon generated is chosen by a random vertex. Hence, the probability 

of any polygon being chosen is directly proportional to N the number of 

sides. If g(Z) is the density of a vector characteristic Z for such a 

polygon, and f(Z) the density for a uniform random polygon, then 

E (N Z) 

However it is easy to modify lemma 11 to give 
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Leitmia 12 

Stochastic Construction for a Uniform Random 1/ cell — n 

This construction is identical to that in Lemma 11 except 

that (iv) is replaced by 

(iv)' Of the three polygons determined by the V^ vertex centered on 

the origin, choose the one which lies wholly on one side of a 

line through the origin of fixed direction. We can then 

proceed clockwise around this polygon. 

Since each polygon of has almost surely two vertices which 

would lead to it being chosen by application of (iv)', e.g. for a 

fixed vertical line, the left-most and right-most vertices, we obtain 

a uniform random gon by this procedure. 

3.6 Geometry of ^̂ ^ N-gons 

The results in this section represent joint work between 

R.E. Miles and the author. We extend the theory developed in section 

3.5 to detail the exact particle distribution around a l/̂  N-gon. 

Lemma 13 Suppose • • • a r e particles of a n^ type process and 

T = [0)̂ 0)2- -Wĵ ] • Then 
n 

T = n T' (co.) , 
i=l ^ 

« 

where T'(u^) is the cell corresponding to cĵ  relative to the 

reduced particle aggregate ^ ~ ''̂ n̂ ' 

Proof. Is iimnediate on comparing (1.1) and (2.1.1). The second 

intersection in (1.1) represents, by (2.1.1), the cell of 

relative to all particles except a)̂ ,(jj2> • • 
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Figure 16 illustrates a typical structure of a cell n 

T = [a)ĵ a)2• • w^] (with N = 7) , viewed as the intersection of l/̂  cells in 

accordance with lemma 13. The perimeter of T is composed of portions 

of individual (Three in Figure 16.) The other T'(co^) properly 

contain T in their interiors; for clarity these are not shown in the 

figure. 

From Figure 16, we can characterize the two vertex types of 

in yet another way. A vertex of T is either 

(i) a vertex of T'(w^) for some i. This vertex is of the form 

where Sl̂  € IÎ , and we call it an outer vertex, or 

(ii) an intersection point of 9T'((jj.) and 9T'(w, ) for some j, k. 
J ^ 

This vertex is of the form ^^ £ IÎ  and we call 

this an inner vertex. 

A comparison of Figure 16 and Table 1 and reference to 

geometric properties (i) and (ii) noted in section 3.1 will tie 

this vertex description in with previous ones. For convenience. 

Table 3 lists the alternative names for the 1/ vertices. n 

Table 3 

1/ vertex types —n — 

Description Names 

(i) (n - 2)-filled circumdisk n~ vertex; (n - l,n) vertex; 

of three particles inner vertex 

(ii) (n - l)-filled circumdisk n"̂  vertex; (n,n + 1) vertex; 

of three particles outer vertex 

We now classify the particles of IÎ  into four classes 

relative to T. 
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Geometric structure of a typical N-gon T of f^. In this case n = 5, 
N = 7. T has two interior, three inner (w^, and lô ) and four 
outer particles, and is the intersection of the three T'(w^) shovm, 
i = 1,2,3. Note the 5^, 4-filled, outer and 5 , 3-filled inner 
vertices of T. 

Figure 16 
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(PI) Those particles of which do not contribute to 

any inner or outer v e r t i c e s . For each such oo^, T is 

contained in int T'(oj^). Denote by I the class of such 

interior particles. 

(P2) Those particles of which contribute to at least one 
1 n 

inner or outer v e r t e x . Denote by 91 the class of such inner 

particles. 

(P3) Those particles of IÎ  w hich contribute to at least one vertex 

of T . Denote by 90 the class of such outer particles. 

(P4) Those particles of IÎ  w hich do not contribute to any vertices 

of T . Denote by 0 the class of such exterior particles. 

For each vertex of T , construct the associated 

circumdisk Q^ (w^ jOJ^ jW^) , which has two outer and one inner or two 

inner and one outer particles on its circumference, depending on 

whether it is an outer or inner v e r t e x , i = 1,2,...,N. Then, from 

N 
the geometry in section 3.5, it is clear that if V = U Q^ and 

N i=l 

A = n Q . , then V-A must be empty of particles. 9V is a series of 

i=l ^ 

arcs connecting the outer particles, 3A a series of arcs connecting 

the inner particles and all Interior particles are contained in int A , 

with no restriction on their position therein (as in quadrilateral 

case). Since A is obviously convex, the inner particles on its boundary 

must be in convex configuration. 

Each side of T is part of the perpendicular bisector between 

an inner and outer p a r t i c l e , and as each outer/inner vertex is passed 

on a traversal of T's perimeter, a new outer/inner particle replaces 

one of the pair forming the previous side. Hence N = no of inner + no 

of outer p a r t i c l e s , and the no of inner vertices = no of inner 

particles. 
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Since every cell must contain ^ ^̂ ^ segment, it must have 

at least two n vertices and therefore m = no of inner particles > 2. 

Similarly T must have at least two outer particles, for the outer 

particle replaces the inner particle in the proximity set of the 

adjacent cell. If T had only one outer particle it would appear in 

the proximity sets for all cells surrounding T but not in T's proximity 

set, violating the star-shaped property of its n-Area. Hence 

2 < m < min{n,N - 2} . (6.1) 

Also, N > 4, verifying that there are no triangles in By 

comparison, triangles do occur in \l 

The variable element in the above characterization is m, 

the number of inner particles or vertices, which is subject only to 

(6.1). Variations in m, and the arrangement of the vertices lead to 

different types of l/̂  cell. 

Definition If T is an N-gon of let = + 1[-1] if vertex v^ is 

an outer (inner) vertex. Then (j) = (<1)̂ ,4)2 t̂!)̂ ) is the type of T. 

Note from (7.1) that all l/̂  quadrilaterals are of a single 

type as shown in Figure 14, with two inner and two outer vertices. 

The different types of pentagons can be investigated by 

starting with the unique quadrangle type and adding single particles, 

either inner or outer, at various locations within V-A. Figure 17 

illustrates such augmentations. 5.[.5] in a region bounded by 

circular arcs indicates that the introduction of a new inner [outer] 

particle in that region produces a pentagon of 

indicates the similar introduction of a new particle leaves a new 

quadrangle of ^ previous inner [outer] particle 
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disappearing. 

Pentagons thus have either two inner and three outer (n > 2) 

or three inner and two outer vertices (n ^ 3), which alternate 

between inner and outer, except that in the first (second) case there 

is a pair of adjacent outer (inner) vertices. 

Figure 17 

To summarize the structure of a l/̂  N-gon as detailed above, 

we have 

Lemma 14 

1/ N-gon with m inner vertices, 2 < m < min{n,N - 2}, For a l/̂  N-gon 

there are 
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(i) n-m interior particles in int A; 

(ii) m inner particles in 3A in convex configuration; 

(iii) no particles in i n t ( V - A); 

(iv) N-m outer particles in 8V; and 

(v) no restriction on particles outside V. 

3. 7 Occupancy Probabilities for (/^ cells 

Each Voronoi cell contains a single particle or nucleus. 

It is this fact which singles out the \Î  case and makes stochastic 

generation of a M c e l l an easy task. In general a l/̂  cell can contain 

i-particles with 0 ^ i ^ n. Let N denote the (random) number of 

particles in a uniform random 1/ cell and p . the ergodic probability 
n n 91 

that N^ = i. If N^ = i we say the l/̂  cell is i-occupied. 

As n increases, the mean cell area decreases, so we would 

expect that, with high probability, most t/̂  cells are 0-occupied for 

large n. 

Lemma 15 

lim _ ^ 

Proof 

V 

where N^(X) = number of i-occupied l/̂  cells in X and N(X) = total 

number of cells in X. Obviously V iN.(X) = N (X) = total number of 
n 1 P 

particles in X. 
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Hence E(N^) 
N (X)/ X 

lim-^ N(X)/ X 

1/E(A ) 2n - 1 n 

Therefore 
n n 
I P . < I ip . = E ( N ) = -jT, 1) 

So p n 1 as n ->• <». 

In fact p „ tends fairly rapidly to one, as we see in IT 5 U 
investigating the occupancy probabilities for a V^-gon. From Figure 

18, it is clear that two particles are contained in the same cell 

iff they each have each other as their nearest neighbour. We call 

such particles symmetric nearest neighbours. 

Figure 18 

Take an arbitrary particle and let R be the distance to 

its nearest neighbour u)̂  with p.d.f. h(R) = 2pttR exp{- qttR^}, for a P 

generating process. 
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Then p = P(a)̂  and oĵ  are symmetric nearest neighbours) 

P(ciĵ , cô  symmetric nearest neighbours |R)h(R)dR 

P(A empty R)h(R)dR , 

where A denotes the area shaded in Figure 1 and A = (tt - k)R^ with 

k = i(4Tr - 3/3). 

Hence P = exp{- p(iT - k)R^}2pTTR exp{- pirR^ldR 

(2tt - k) = 0.6215 

Now consider lim V ^ 
2,2 X N(X) 

As N^CX) = %N(symmetric nearest neighbour particles), 

^2,2 
^^^ ^ N(symmetric nearest neighbour particles) p N (X) 

N (X) P 
•N(X) 

= Isp.ECN^) 

6(2^ - k) 

By an exactly analogous argument, 

NCl/̂  cells which are 1-occupied) = N(particles whose nearest 

neighbours are not symmetric 

nearest neighbours) 

so 1 -2,1 3V (2tt - k) 
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The occupancy probabilities for \Ĵ  cells are summarized in 

Table 4. Note that ECN^) = ̂  as expected from Lemma 14, and that 77% 

of 1̂ 2 cells are 0-occupied. 

Table 4 

2,i 1(4 + n ^ ^ (2^ - k) 

0.77 

1 - 2tt - k 

0.13 

6(2tt - k) 

0.10 
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C H A P T E R 4 

G E N E R A L I Z E D V O R O N O I T E S S E L L A T I O N S - NEW T H E O R Y 

4.1 Mean Areas of Generalized Voronoi Cells 

In this section a deeper analysis of the geometry of the l/̂  

tessellation, and, in particular, superpositions of successive l/̂ , 

lead to an extension of the known means E(A ) for the area A of n' n 
typical cells from the Poisson to the general homogeneous case. 

In Lemma 3.5, we noted the one-to-one correspondence between 

l/̂  sides and ^^ cells. Analysis of a superposition of plots of l/̂ , ̂ ^ 

and suggested the following natural extension of this correspondence 

(see Figure 1). The computer generated plots were instrumental in 

suggesting the geometrically based proofs of this section. The cell/ 

side correspondence is replaced by a cell/side, cell/vertex 

correspondence in the l/̂  case. 

Before establishing this new correspondence we introduce some 

new 

Notation Since every 1/ vertex is also a vertex in 1/ or 1/ , it n n-i n+i 
is clear that adjacent to any l/̂  segment on a perpendicular bisector 

there will be segments of either or We write 

£ = {s : s is a side of P, P £ 1/ } n n 

and £ (±,±) for members of £ with a 1/ segment on either side. 
^ n-: 

For example, members of are of two types, Lr̂ i-̂ -y) or 
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Figure 1. Superposition of V^^ V^ and for a set of random pax'ticles. 

l/̂  shown in black, V^ in blue, l/̂  in green. 
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Lemma 1 

Each member of l/̂  either contains one (1,2) vertex (in which 

case it contains exactly three l/̂  sides, the three which emanate from 

that vertex) 

or contains no (1,2) vertex in which case it contains exactly 

one 1/2 side, a member of 

Proof The proof relies on three geometrical propositions 

(i) a l/̂  cell can contain at most one (1,2) vertex 

(ii) a l/̂  cell must contain at least one l/̂  side 

and 

(iii) a l/̂  cell can contain at most one side of ^ u n l e s s it 

contains a (1,2) vertex, in which case it contains the three 

1̂ 2 sides meeting at that vertex and no other M^ sides. 

To establish (i) assume a cell P contains two distinct 

(1,2) vertices v^ and i.e. two zero-filled circumdisks of three 

particles from the generating process. Assume the particles generating 

v^ are , This implies that P H [0)̂ 0)20)2] • ™ust have at 

least one w. on its circumference distinct from aj., , w„ and aj„. This 
1 i z J 

implies that the l/̂  cell is of the form [00^..], which is a 

contradiction. Hence a l/̂  cell can contain at most one (1,2) vertex. 

(ii) Take a point x £ P , a l/̂  cell, and construct Q(x, |x - to^i^' 

where is the third closest particle to x- Let (D̂  and be first 

and second closest particles (see Figure 2). Construct the line L 

from x to and move along L until reaching L fl or L fl Kta^ui^y, 

whichever is closest to x- Call this point Assuming, w.l.o.g. 

that y is L n it is part of an segment on since 

Q(y,|aj2 - y|) is one-filled by Since obviously y £ P, every l/̂  

cell must contain at least one side. 
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Figure 2 

Finally to establish (iii), consider a side in a cell, 

P. Assume that the ^ s i d e is contained in and label the 

filling particle cô  (Figure 3) . 

Figure 3 
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This implies P E [lo^w^co^], and hence any other \1 ̂ side in P 

must be generated by the same three particles, and must therefore lie 

on or From Figure 3, if x is a point on such a M^ side, 

then that l/̂  side must terminate at at one end. Hence 

Q(a)^a)2W2) is empty and P contains the (1,2) vertex generated by co w w 
X. ^ ^ 

and the three M^ sides which join at that vertex, and no other sides. 

The lemma follows trivially from (i), (ii) and (iii) , and the 

classification of \Ĵ  sides into the two types Z^i-,^), I^C+.H-). 

By lemma 1, we can represent all t/̂  cells as one of two types 

(see Figure 4). 

r 
^ ) 

\ 
N 

\ 

(i) 

We do not specify the number of sides of the cells. But note 

that because a quadrilateral has to be 2-suspended, it must be of type 

(i). A careful study of Figure 1 should clarify the meaning of Lemma 1. 

To generalize the mean area result, we are Interested in 

extending Lemma 1 to n values higher than three. However we cannot 

maintain the same sort of cell-vertex correspondence since proposition 

(!) in Lemma 1 does not extend to general n. We obtain, instead, a 

bound on the number of (n - 2,n - 1) vertices in a l/̂  cell as part of 

the next lemma which establishes properties of the ^ s u p e r p o s i t i o n 

used in generalizing the result. 
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Definition 

= {P n Q : P € I/., Q e i = 2,3,.... 

1/ ^ . is simply the superposition of the I/, and I/. , tessellations. 
1 1 - 1 

Note that the points of a cell in I/. , . have the same i nearest 
1 - 1 , 1 

neighbours and the same (i - 1) nearest neighbours. 

Lemma 2 
Consider V. ^ . H P where Ptl'.,i = 2,3, i.e. we are 1 - 1 , 1 1 

interested in the way partitions a l/̂  cell P. P contains at most 

(i - 2) (i - 2,i - 1) vertices. If P contains j such vertices, then 

it contains 2j + 1 ^ s i d e s , which partition it into j + 2 convex 

polygons, each of which have a side of the cell as part of their 

boundary. 

Proof 

is a convex polygonal tessellation, hence its 

restriction to a l/̂  cell P is a convex polygonal tessellation of P. 

However, each cell of the restriction . H P must have at least 1 1,1 
one side of P as part of its boundary, for otherwise we would have a 

cell lying entirely inside P. This is impossible because every 

f. , cell must contain at least one side of f.. To prove this take 
1 - 1 1 

a point X ^ R. a ^ c o n s t r u c t a line L joining x and 

where o)̂  = j closest particle to x j = l,2,...i (see Figure 5). .th J 

Move along L away from o)̂  until capturing another particle w at y; 

Q(y,|y - is (i - 1) filled. 

Hence 2 ^ segment on <oja)̂ >. Since y € R, R must contain 

at least one segment. 
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<0)0) . > 1 

Figure 5 

Given the above properties of partitioning of P, we 

can form a planar polygonal graph with the same number of cells as 

P n by taking the convex hull of P's (i - l,i) vertices (see 

Figure 6). For this polygonal graph three sides meet at each vertex. 

A planar version of Euler's polyhedral formula is applicable to this 

polygonal graph, provided we count the region external to the graph as 

a face. (For a proof see Ore [1963] p 99.) 

(i-1,i) vertex 

convex hull 

Figure 6 



Assume that there are j (i - 2,i - 1) vertices in P and N 

sides on the convex hull. Applying Euler's formula to this figure 

we have VQ - V^ + V^ = 2 , 

where V^ = no. of vertices = j + N 

3 

V^ = no. of sides = —(j + N) 

V2 = N + 1 and hence 

N = j + 2 and the number of sides = V^ = N = 2j + 1 . 

To complete the lemma we need to show that j cannot exceed 

i - 2, or equivalently, that the number of cells which ^ p a r t i t i o n s 

P into cannot exceed i. But each partitioning cell represents a region 

where one choice of (i - 1) particles from the set of P are the 

closest (i - 1). Hence there are a maximum of ^ ^ such cells. 

Careful study of Figure 7, a computer-generated superposition 

of l/̂  and I/, should illustrate Lemma 2 for the i = 4 case. \J z 3 4 ^ 

cells are partitioned by topological types illustrated in 

Figure 8. 

Before proving the main theorems of this section we need one 

more result which was originally proved by Matschinski [1954]. 

Lemma 3 

Let N = no. of sides of a typical polygon from a homogeneous 

random tessellation I*. Then 

E(N) = ̂  , 
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where y = mean number of lines meeting at a typical vertex. 

This is essentially a geometric result which follows from 

simple geometrical connections between the quantities involved in each 

mean. 

Corollary E(N) = 6 , for a l/̂  tessellation generated by a tt̂  type 

process, n = 1,2,.., since for l/̂  three sides join at every vertex, 

and hence y = 3. 

Theorem 1 

Let A^ denote the area of a typical cell in a tessellation 

generated by a general point process of type TT̂ . 

Then 

E(A ) = [(2n - DP] n = 1,2,3, n 

where p is the particle density for the n^ process. 

Proof 

The proof for n = 1 is contained in the ergodic theory of 

section 1.2, where p, the particle density, is defined as 

N 1 • ^ lim —72" a. s. r->-«> TTr 

where N denotes the number of particles of Tr„ in a circle r ^ 
radius r. 

Lemma 3 shows that E (no. of sides) = 6 for l/̂ , n = 1,2,3. 

We note that since the particles are in general position, three sides 

meet at each vertex and each side is shared by just two cells. Using 

this information it is easy to sequentially obtain the densities 

listed in Table 1. 
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Figure 7, Superposition of l/^ and \1 ̂ for a set of randan particles. 

\Ĵ  shown in blue, l/̂  in green, l/̂  in red. 
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Quantity Density Note 

cells P 

vertices 2p 

sides 3p 

1/2 cells 3p (i) 

vertices 6p 

sides 9p 

r2(-.+) sides 6p (ii) 

£2(+»+) sides 3p 

(1,2) vertices 2p (iii) 

(2,3) vertices 4p 

cells 5p (iv) 

vertices lOp 

(3,4) vertices 6p 

Notes on Table 1 

(i) By Lenima 3.5, the density of l/̂  cells equals the density of 

l/̂  sides. 

(ii) Since 3 L^i-i^) sides meet at each l/̂  vertex their density is 

3 X density of vertices. 

(iii) (1,2) vertices are equivalent to l/̂  vertices. 

(iv) By Leirmia 1, the density of cells can be written as the 

density of (1,2) vertices and the density of £2(+,+) sides. 

Obviously from Table 1, 

E(A2) and E(A3) 



92 

This completes Theorem 1. In the next theorem we extend 

Theorem 1 to all n v a l u e s , by utilizing Lemma 2. 

Theorem 2 

E(A^) = [(2n - l)p] ^ , n = 4,5,6... 

Proof 

The proof is by induction. We first consider l/̂  cells. Let 

a ^ be the density of l/̂  cells containing i (2,3) vertices, i = 0,1,2 

(i < 2 by Lemma 2). (See Figure 8.) 

f — / I r 

(i) (ii) (iii) 

Figure 8 

Since the density of (2,3) vertices is 4p from Table 1, 

+ = 4p . 

Now l/̂  sides are of three types £2(-,-), one of which occurs 

in each (iii) type cell and nowhere else, , one of which 

occurs in each (i) type l/̂  cell and nowhere else, and £2(-,+) (see 

Figure 8). We write 0.(1,1) for the density of sides. Hence 

= 03(+,+) 

(1.1) 
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So the total density of cells = a^ 

= I 
i=0 ^ 

= a^^ + + [o^C+.H-) - a3(-,-)] 

= 4p + - a3(-,-)] . 

We now consider the density of l/̂  sides which meet at (2,3) 

vertices. Since the density of (2,3) vertices is 4p from Table 1, and 

three l/̂  sides join at each such vertex, 

12p = 2a3(-,-) + . (1.2) 

Note that every member of £2(-,-) is counted twice. 

Similarly, considering the density of l''̂  sides meeting (3,4) 

vertices, which have density 6p, we have 

18 = + 2O3(+,+) . (1.3) 

Subtracting (1.3) - (1.2) gives 

a3(+,+) - = 3p (1.4) 

and hence 

= 

which verifies the theorem for n = 4. 

For general n, we write a^ for the density l/̂  cells, 

a(n,n + 1) for the density of (n,n + 1) vertices, and o(n) for the 

density of vertices. 
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Note from Table 1 that 

o(n, n + 1) = 2np (1.5) 

holds for n = 1,2,3. 

Now assume that the theorem holds for all n, with 

1 < n < N - 1, and that (1.5) holds for all n with 1 < n < N - 2. 

(This has been established for N = 5.) 

By this assumption, = (2N - 3)p, so a(N - 1) = 2(2N - 3)p, 

Also by assumption, a(N - 2,N - 1) = 2(N - 2)p, so 

a(N - 1,N) = [4N - 6 - (2N - 4)]p = 2(N - l)p 

So (1.5) holds for n = N - 1. 

Let o^^ denote the density of l/̂  cells containing 

i (n - 2,n - 1) vertices, 0 < i < n - 2 (by lemma 2). Then 

N-2 
y io„ = o(N - 2,N - 1) = 2(N - 2)( 

i=0 ^ 
(1.6) 

Us ing lemma 2 we can construct ^ (see Figure 9). Again 

we have a one-to-one correspondence between cells, containing 

0 (N - 2,N - 1) vertices, and sides. Note that in each 

cell there are i - 1 £„ -.(-,-) sides, i = 1,2,...N-2. N-1 

Hence 

Y (1 - 1 ) - / = vi^-'-^ 
i=i 
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r N-l 

(i) (ii) (iii) 
Figure 9 

• • m 

Now consider the density of l/ĵ  sides which meet 

(N - 2,N - 1) vertices. By assumption, these vertices have density 

2(N - 2)p, so 

6(N - 2)p = + . (1.9) 

The same argument applied to (N - 1,N) vertices yields 

(N - D P = (1.10) 

and subtraction yields 

(1.11) 

Combining (1.6), (1.8) and (1.11) gives 

N-2 
= I 

i=0 

= 0 . N 
N-2 

° + I i^M 
iio ^ 

N-2 
I (i 

i=l 
- D o N 

= 2(N - 2)p + ' V l ^ " ' " ^ ^ 

= (2N - D P 

which completes the inductive proof, 



96 

In the next section a more careful look at the superpositions 

l/̂  ̂  ^ for small i values reveal some interesting geometrical 

correspondences. 

U.2 The Superpositions . 

We can analyse the superposition V. . as a partitioning 1 i J1 
of M^ cells (as was done in Lemma 2) or as a partitioning of f. ^ 

cells. The nature of the partitioning is considerably different in 

the two cases. We illustrate this by considering f . for i = 2,3,4. 1 i, 1 

(i) y 1,2 

Viewed as a partition of ^ cells, this tessellation contains 

only one sort of cell - see Figure 1 and Figure 10. 

Figure 10 

Viewed, however, as a partition of \Ĵ  cells, study of 

Figure 1 shows that the cell types are as listed in Figure 11 for 

i-gons with i small. 
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• •• 

Figure 11 

In fact 1/2 divides a l/̂  i-gon into i convex polygons and 

each l/̂  i-gon contains i sides, (i - 3) £2 sides and 

(i - 2) (2,3) vertices. Write f̂ ĵ Ci) the density of i-gons in 

Then 

I (i - 2) 0 (i) = 0 ( 2 ,3) = 4p . 
i=3 

Since the density of l/̂  cells is p , this verifies that 

6p 00 00 
E(no of sides of cell) = I ±0 (i)/1 a (i) = = 6 

^ 1 = 3 / i=3 ^ 

(ii) I' 2,3 

Viewed as a partitioning of l/̂  cells, l/̂  3 contains the two 

sorts of cell illustrated in Figure 4. 

Viewed as a partition of cells, study of Figure 1 shows 

that the cell types are as listed in Figure 12. 
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F igure 12 

In F i g u r e 12 we have inc luded , f o r c l a r i f i c a t i o n purposes , the 

s i n g l e \ J s i d e which i s contained in every l/^ c e l l . This makes two of 

the l/^ c e l l ' s v e r t i c e s ( 1 , 2 ) v e r t i c e s , and the r e s t must be ( 2 , 3 ) 

v e r t i c e s . Note that each l/^ i -gon conta in s ( i - 5) JC^(+,+) s i d e s 

( i > 5) and ( i - 4) ( 3 , 4 ) v e r t i c e s ( i > 4 ) . Hence 

( i - 4 ) 0 2 ( 1 ) = a ( 3 , 4 ) = 6p 

and s i n c e a„ = Y a - ( i ) = 3p, 2 ^ 2 

:(no of s i d e s of \J^ c e l l ) = I o ^ d ) = = 6 , 
4 4 

18p 

a s expec ted . 

More Important , however, i s the one-to-one correspondence 

between ^ q u a d r i l a t e r a l s and J^gC".") s i d e s which f o l l o w s d i r e c t l y 

from the c e l l types shown in F i g u r e 12, f o r the only ^ c e l l which 

c o n t a i n s an £ 3 ( - , - ) s i d e i s the q u a d r i l a t e r a l . Hence we have the 

i n t e r e s t i n g formula 
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= 03(-,-) . (2.1) 

To investigate whether this correspondence carries on for higher n 

values we consider l/̂  , . 3,4 

(111) ^ 

Viewed as a partitioning of U, cells, 1/ . contains the three 4 J, 4 
sorts of cell illustrated in Figure 8. 

Viewed as a partitioning of cells. Figure 7 shows that the 

cell types are as listed in Figure 13. In Figure 13 the ^^ segments 

are also included. 

I A 
(i) 

(ii) 

(iv) 

Figure 13 

Note that Figure 13 simply gives illustrations of possible 

cell partitions for l/̂  cells with a small number of sides. For example 

the 1*2 side in diagram (ii) could cut the l/̂  sides just once, instead 

of twice. 

However because of the two possibilities for sides inside 
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l/̂  cells we lose any correspondence between sides and 

quadrilaterals in l/̂  - see (iii) in Figure 13. 

Also totalling the (1,2) vertices and (4,5) vertices in each 

l/̂  i-gon we get (i - 4) , so 

), (i - 4)o.(i) = a(l,2) + 0(4,5) = lOp 
4 

and we can again verify that 

E(no of sides of cell) = 5! i^o^ I 

= 30/5 = 6 

4. 3 Densit ies of £^(±,±) s ides 

For sides we saw in section 4.1 that there are two types 

and with densities 6p and 4p for any homogeneous 

tessellation (see Table 1). There are only two types of ^ sides 

because no single perpendicular bisector can contain more than one 

segment of For n > 2, there are three sorts of side - £^(-,-), 

£ (-,+) and £ (+,+). The densities of these side types are of some n n 

interest, at least in the n = 3 case, for they determine, by (2.1) 

the probability of a quadrilateral in \Ĵ  and also the probability of 

the three possible partitions of a l/̂  cell by l/̂  in (see Figure 8) 

In Theorem 2 we obtained two equations (1.9), (1.10) 

involving the required side densities i.e. 

2a ,(-,-) + 0 ,(-,+) = 6(n - 2)p (3.1) n-i n-i 

7 ^(-,+)+2o ^ (+,+)= 6 (n - D P (3.2) n-1 n-i 
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Adding (3.1) and (3.2) gives 2{3[2(n - 1) - l]p}, twice the 

density of sides which follows also from the known density of 

cells (Theorem 2) . However the author has been unable to derive 

another independent equation for these densities for the general 

homogeneous case. Instead we assume a Poisson process as the generating 

process and calculate a2(-,-) using the stochastic constructions in 

section 3.5. 

We choose a random side, L^, in the following manner. 

(i) choose a (2,3) vertex with probability 2/5 

or a (3,4) vertex with probability 3/5 

and then 

(ii) choose a random side of t/̂  meeting this vertex. 

We define P3(±,±) = £ £3(1,+)) 

lim 
N3(X) 

where N^^(X) = no of members of £3(1,1) contained in X and 

N3(X) = no. of 1/3 sides in X, i.e. P3(±,±) is the ergodic probability 

that a 1/3 side is a member of £3(1,1). Note that 03(1,1) = p3(l,l)x 

density of I/3 sides = 15p3(l,l)p. 

Now, conditioning on the vertex type v, chosen in (i), we have 

P3(-,-) = P(L3 G £3(-,-)|v = (2,3) vertex)P(v = (2,3) vertex) 

+ P(L3 e £3(-,-)1v = (3,4) vertex)P(v = (3,4) vertex) 

= 1 . P(L3 e £3(-,-)1v = (2,3) vertex) 

= | p ( 2 3 2 | 2 3 ) say . (3.3) 
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Hence it suffices to calculate P(232|23). We use the ergodic 

structure of a (2,3) vertex specified in Lemma 3.10. Referring to 

Figure 14, we know that 

and 

R = radius of vertex r2(6,Trp) with 

p.d.f. g(R) = TT^p^R^expC- pttR^} 0 < R < ~ 

a has same distribution as a random angle from a Delaunay 

triangle (since a = 6 in Figure 14) with p.d.f. 
4 

F ( A ) = sin a[(TT - ot)cos a + sin a], 0 < a < I T , 

obtained from density (3.5.5) 

CO, the filling particle, is uniformly distributed on the 

vertex. 

Sj^IS^] is region in vertex circumdisc to left [right] of line 

joining and 
Figure 14 
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Note that R and a are independent, and that the third 

circumferential particle lies outside the 2a arc between the randomly 

chosen pair oĵ  whose perpendicular bisector contains the 

l/̂  side of interest. 

Consider moving along <a)^aj2>> along the ^ segment. We meet 

a \Ĵ  segment iff oj lies in region S^ and L(R,a,a)) is empty, where 

L(R,a,w) = area of Q(oj^,0)^,a)) outside of the vertex. 

Hence 

P(232|23,R,a,a)) = 0 w f S, 

exp{- pL(R,a,co)} o) G Ŝ  

and 

P(232 23) = 
PCO 'TT 

0 • 0 • 
exp{- pL(R,a,a))}-^.g(R)f (a)da)dadR (3.4) TTK 

Similarly, 

P(123 23) = exp{- pL(R,a,w)}-47--g(R)f (a)dwdadR (3.5) ttK 

Since the densities of \l̂  sides are known, we can calculate 

2 1 
the ergodic probabilities p2(-.+) = ^ and P2(+,+) = Also, since 

we can choose a random l/̂  side, L^, by choosing a (1,2) vertex with 

probability "J or a (2,3) vertex with a probability and then choosing 

a random side of that vertex, we have 

P2(-.+) = ^ " ^ vertex) .3 

+ P(L2 e vertex).-

Po(+.+) = 4 e £_(+,+)I 2,3 vertex) . 
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Solving for the conditional probability gives 

P(L2 e £2(-'+) I (2,3) vertex) = P(123|23) = • (3.6) 

Note that this does not give us the value of P(232|23), since 

the integrals in (3.4) and (3.5) are unequal due to the lack of 

symmetry of f(a) about i\l2. 

Utilizing (3.4) - (3.6), and parametrizing to by polar 

co-ordinates (R',6) 0 < R' < R, - tt < 0 < it, we can obtain 

r 
2 3 ) = 

" I T •TT r 
2 3 ) = 

Jo J 0 ^ - T T 

R 

0 
exp{- pL(R,a,R',G) ]—^g(R)f (a)R'dR'd0dadR -ttK 

Making a further change of variaTsle u = R' /R, and using the 

fact that L is an even function of 0, gives 

P(232 23) =2 
"00 •TT 'TT fl 

0 ^ 0 • 0 J 0 
exp{- pL(R,a,u,0) ]^g(R)f (a)u.dud0dadR - ig . 

(3.7) 

We now consider the functional form of L. 

Figure 15 
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F r o m F i g u r e 1 5 , 

d = 
1 - u ^ 

2 ( c o s a - u c o s 9 ) v > » / 

r ^ = R j s i n ^ a + ( c o s a - d ( u , a , 0 ) ) 2 ] ^ = r ^ C u . a . G ) R 

No m a t t e r w h e r e ( R ' , 6 ) i s i n t h e v e r t e x , (S^^ o r S ^ ) , 

L ( R , a , u , e ) = Tir^^ - A ( R , r 2 , | d | ) 

w h e r e A ( x , y , d ) = a r e a o f i n t e r s e c t i o n o f t w o c i r c l e s r a d i i 

X a n d y s e p a r a t e d b y d i s t a n c e d . 

L ( R , a , u , 6 ) = R 2 { T T r 2 ^ ( u , a , 0 ) - A ( 1 , r ^ ( u , a , 0 ) , | d ( u , a , 9 ) | ) } 

= h ( u , a , 0 ) R ^ . ( 3 . 8 ) 

S u b s t i t u t i n g ( 3 . 8 ) i n t o ( 3 . 7 ) a n d i n t e g r a t i n g o u t R g i v e s 

P ( 2 3 2 2 3 ) = 2 
'IT •IT 

0 - 0 • 

7T u f ( a ) J 1 
- . ^ , , d u d 0 d a -
(tt + h ( u , a , 0 ) ) ^ 

T h i s w a s n u m e r i c a l l y i n t e g r a t e d t o o b t a i n 

P ( 2 3 2 2 3 ) = 0 . 0 8 7 6 

a n d , u s i n g ( 3 . 3 ) , P 3 ( - , - ) = 0 . 0 3 5 0 5 ( 3 . 9 ) 

L e t d e n o t e t h e e r g o d i c p r o b a b i l i t y o f a u n i f o r m 

r a n d o m 1/ c e l l b e i n g a n i - g o n , i = 4 , . . . 
n 
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Theorem 3 

For a l/̂  tessellation with generating process P, 

V^ih) = 0.175 . 

Proof 

From (2.1), (3.9) and Table 1 

o^i^) sides) 
" = o(l/̂  sides) ^^ 

/ N 15 

= 2P(232 23) 

= 0.175 

Thus 17.5% of l/̂  cells are quadrilaterals. This compares 

with 1.1% triangles and 10.7% quadrilaterals for l/̂ . (Simulation 

estimates by Hinde and Miles [1980].) 

From (3.1), (3.2) and (3.9) we can deduce the ergodic 

probabilities P2(±,±) that a uniform random l/̂  side is a member of 

£2(±>±). which are shown, together with the different side densities 

in Table 2. 

Also using (1.1), and Table 2, we can deduce the densities 

o^^, and thus the ergodic probabilities p^^ that a uniform random l/̂  

cell contains i (2,3) vertices - i.e. the probabilities of the three 

possible partitionings of a cell shown in Figure 8. These are shown 

in Table 3. 
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Side type 

density 

probability 

0.526 p 

0.035 

JC3(-,+) 

10.95 p 

0.73 

JC3(+,+) 

3.524 p 

0.235 

Table 3 

0 

3.524 p 

0.705 

1 

0.95 p 

0.105 

0.526 p 

0.19 

From Table 3 we see that 70.5% of I/, cells will have just 4 
two n vertices, 10.5% three and 19.5% five n vertices. 

In section 4.6 use is also made of (3.9) to calculate the 

probabilities of the three types of perpendicular bisector under the 

condition that ^ ^^ ^^ least one \Ĵ  segment appears on 

Obviously an expression similar to that for P(232|23) can be 

written down for general n, although it is considerably more complex. 

However from (3.1) and (3.2), 

and hence 

a (+,+) - a (-,-) = 3p n n 

(2n - 1) 

Thus p (+,+) and p (-,-) are asymptotically equal, 
n n 

For general homogeneous processes the best we can do is give 

the upper bound < - | which follows from the first equation in 

Theorem 2, (1.1) and noting that > 0. 
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4 Some Moment E xp r e s s i o n s for Vorono i and Genera l i zed Vorono i Ce l ls 

A number of different expressions can be written down for the 

second moinent of tbe area of V cells, for both the n = 1 and n > 1 

cases when the generating process is P. The relationships between 

these expressions often reflect more fundamental geometrical 

identities, such as those in section 1.3. 

Voronoi Tessellation 

The situation is simplified for n = 1 since, as we have seen 

in section 2.3, we generate a typical polygon by placing a particle 

at the origin and surrounding it by a Poisson process. If A^ denotes 

the area of a typical cell P, then 

^ = Ij(x)dx , (4.1) 

where I(x) = r 1 x ^ ^ 

0 otherwise 

From (4.1) we quickly obtain E(A^) = p Extending this 

technique to the second moment. 

E(A 2) = E I(x)I(y)dxdy -L 

P(x and y £ P)dxdy 

exp{- pA(x,y)}dxdy , 

where A(x,y) represents the area which must be empty for both x and y 

to be in the t/̂  cells of the origin particle (see Figure 16) . 

Changing to polar co-ordinates and using (1.3.3), 
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'TT foo 

0 Jo 

exp{- pA(r^r2^)r^r2dr^dr2di/;} , (4.2) 

where \p is the angular separation of the points. Putting r^ = ur^ 

yields ACr^r^ijj) = A(u,iJj)r2^, and Integrating out r^ gives 

0 
T7 TVS" dudijj (4.3) 

A(x,y) 

Figure 16 

We now consider an ordinary realization of T over the plane 

with no assumption of a particle at the origin and let denote 

the area of the t/̂  cell which happens to contain the origin. 

This cell is no longer a typical cell - in fact it is area-weighted. 

Let f(A) denote the p.d.f. of A^ and g(A) the p.d.f. of 
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Heurlstically, 

g(a)da = P(typical P has area (a,a + da) and is hit by random pt) 

= P(hit by random pt|area a)P(P has area a) 

« af(a)da . 

Hence g(a) = 
(0) _ af(a) 

(4.4) 

(4.4) explains the reference to as area-weighted, and with (4.3) 

yields 

E ( A « > ) - l l 
1 P Q A(u,i|j) 

dudip (4.5) 

This expression agrees with Gilberts formula (14) [1962], 

which he obtained from the direct representation 

E C A f h - E I(x)dx , 

where again no origin particle is assumed. Conditioning on the radial 

distance of the particle generating with p.d.f. 

h(R) = 2TTpR exp{- pTrR^}, quickly yields an expression (4.2) with an 

additional p factor due to (4.4), since E(A^) = p 

Numerical integration (Gilbert [1962]) of (4.3) yields 

^ 1^28 p ^ , Var(A^) = 0.28 p ^ 

which agree with independent methods used in section 4.5. 
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Extension of Methods to f n > 1 ^n-—^—— 

The immediate difficulty is the generation of a typical 

cell - there is no convenient method analogous to the l/̂  construction. 

However the area-weighted I' gons containing the origin can be 

investigated. Let P^^^ be the \1 ̂ cell which contains the origin, with 

area (4.4) and Theorem 1 give 

= SpECA^^) (4.6) 

where A^ is the area of a typical f^ cell (E(A2) = ^ 1 ' ^^ ^ 

the indicator function of > 

E(Af>) . EI(x)dx 

= 

= 2TT 

rP(r e pj^^dr 
0 ^ 

•00 

0 -

• • rP (r e P^^^ I R^ ,R2 .e^) f (Rpg(R2) ( ^ ^ d ' 

where we have conditioned on the polar co-ordinates of the two 

proximity particles for P^^^ » oî . 

Since the point r is in P^^^ iff and are its two 

closest particles, P(r G 1R^0^R202) = pA(r,e^,R2,62)1, 

where A is the area outside Q(0,R^) but inside a circle, centered at 

r, with radius to the furthest of o)̂  and ^2 (^ee Figure 17). Similar 

expressions can be obtained for higher n values, however a more 

natural approach to this problem, which also yields information about 

the transect distributions, is used to do the calculations (see 

section 4.5). 
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Figure 17 

We can utilize the Voronoi theory in one sense in the 

generalized Voronoi case, to analyse the cell distribution when we 

choose a 1/ cell by choosing a random particle. Since every 1/ cell n -L 
contains exactly one particle, we know that the cell containing a 

random particle is a typical cell. For n > 1, a cell can contain 

0,l,2,...n particles. The distribution of N^, the number of particles 

in a typical cell, is investigated in section 3.7. 

If we choose a l/̂  cell by choosing a random particle, the 

probability of any cell being chosen is proportional to the number of 

particles it contains. Hence 

(4.7) 
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where f is the joint density of N^ and A^ for a typical cell, and g 

is the same density for a cell chosen by a random particle - a 'particle 

weighted' cell. (4.7) yields 

E(N A) n 
'''V - • E(N ) n 

which illustrates that the density depends on the expected number of 

points for a particular area, and is greatly increased for larger cells, 

To illustrate this effect, let P^^ be a particle-weighted ^ cell with 

area A^^. The selected random particle oĵ  is arbitrarily placed at 

the origin, as in the case, and the second associated particle of 

is generated using the radial distribution h(R) = 27rpR exp{- p-rrR̂ } 

(see Figure 18). 

= 2Tr rP(r £ Po^^^^ 
0 

• 00 >00 r2TT 
= 2tt r P(r G 

0 J 0 ^ 0 2tt 

= 2t\ 

r2TT »oo 

• 0 • 0 J 0 

re xp{- pA(r,R,e)}pRexp{- pirR^JdRdSdr , 

where A(r,R,9) is the area in a circle, centre r, radius to the 

furthest of oâ , excluding the area in Q(0,R) (see Figure 18), 

This excluded area is accounted for by the exponential term in h(R). 

Putting R = ur, and integrating out r, gives 

foo fIT U 
A(u , e ) ^ dOdu (4.7) 

which is exactly analogous to (4.5), the expression for the mean area 

of an area-weighted l/̂  gon, with a different interpretation for A(u,e) 

In this case A(u,0) = total area of Q(0,u) and a circle centre (1,0) 
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Figure 18 

with radius to furthest of 0 and (u,6). 

Numerical integration of (4.7) gives 

ECA^P) = 0.542 p ^ 

which is larger than ECA^) = p ^, the mean area for a uniform random 

1/2 cell, but smaller than ECA^^^) =0.78 p'^, the mean area for an 

area-weighted ^^ cell, which follows from (4.6) and the variance of A^ 

calculated in section 4.5. 
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4.5 T ransec t D i s t r ibut ions for 1/ and the variance of 1/ cell areas 
— n — — r>-

In section 1.3 we obtained relationships between the moments 

of I, the inter-event distance, and J, the distance from an arbitrary 

point to the next event, on linear transects of homogeneous 

tessellations, and the moments of polygon characteristics. In 

particular, from (1.3.4), 

E(A2) = T I E ( A ) E ( J 2 ) . (5.1) 

We make use of this equation to numerically calculate the 

variances for l/̂  cell areas from the distribution for J. 

Let L be a linear transect of 1/ . Define J as the distance n n n 
from an arbitrary point on L to the next event, and J ' = /nj . The n n n 
limiting distribution of J^' is investigated in section 6.2. 

Moments of J ' 

Take L^ passing through the origin, and the origin as our 

arbitrary starting position. We generate the n nearest particles to ^ 
s t 

by generating RĴ Ĵ̂ J the distance to the (n + 1) closest particle and 

then uniformly distributing n particles on the disk • These 

n particles are the proximity particles of the cell containing the 

origin, • • • ̂fJĴ  say. We define 

S = n i=l,2..n 

S is the distance from to the furthest of O's 
/ X \ proximity particles, so for the point ( ~ » o ) to have the same n 

/ \ 
proximity particles as 0, qf (—,0),S^j must contain no particles other 

^ /n ^ 
than Note that 0 < S^ < + We define 
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considered open), and q ( a ) i s the arc of l y ing ins ide 

(see Figure 19) . We wr i t e |s| for the area of S. 

q (a ) 

Figure 19 

Consider P ( J ' > x) = P ( ~ has same proximity p a r t i c l e s as the or ig in^ 

= P(A^ i s empty of p a r t i c l e s and does not n 

l i e on q ( a ) ) 

ff P(A^ empty and ^ ^ I V l ' ^^''^n+l^^^'^n+l^'^ ' 

(5 .2 ) 

where f i s the cond i t iona l dens i t y of S given R , , and h i s the ^ n n+1 

marg ina l dens i t y of 
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We n o t e t h a t t h e s u p p o r t of f depends on whether x / / n l i e s 

i n s i d e or o u t s i d e of . The s u p p o r t i s + x / / n ) i f 

x / A i < r - , and ( x / / n - r , ^ , x / / n + r , . ) i f x / / n > r , . A l s o , n+1 n+1 n+1 n+1 

0 < s < r , , - x / / n n n+1 

e x p { - p|A^|} - x / / n < s^ < + x / / n n n+1 

( 5 . 3 ) 

and, s i n c e uj , ̂  i s u n i f o r m l y d i s t r i b u t e d on the c i r c u m f e r e n c e of n+1 

n + 1 ' n ' n n+1 

1 - — r - x / / n < s < r + x / / n IT n+1 n n+1 

Hence 

P ( J ' > x ) = n 

x / / n f x / Z n + r - p n + i e 
io 

A 

x / / n - r 
1 - ^ TT n n+1 n+1 n n+1 

n+1 

+ n + l - x / i ^ 

X / v ^ , r - \ it/ n n+1 n+1 n n+1 
r ^ T - x / / n 

n+1 
( 5 . 4 ) 

= 13̂  + 12 + 13 s a y . 

S i m p l e g e o m e t r i c argument shows t h a t ^ 2 , T i p ) , 

and hence h ( r , , ) i s g i v e n by ( 3 . 5 . 4 ) . To o b t a i n the form of f , 
n+1 

c o n s i d e r 
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= P(S < s |r n n n+1 

P(B^ empty) 

_ f n 

n 
B vn-1 d B n ^ n 

Tir n+1 

- ^ f l _ irr . , V 
B sn-1 

n J 
n+1 

(5 .5 ) 

by use of Lemma 4 (see end of th is s e c t i o n ) . 

The exact form of the d i s t r i b u t i o n of J f o r a l l n i s 

complicated, so we simply c a l c u l a t e the second moment. 

E (J '2 ) = 2 
n 

Ji f̂ o J 
xP(J ' > x)dx = I 2 x l . d x = K. 

" j = l J j = l J 

Consider K^ = 2 
0 

xl^dx = 2 
/nr n+1 

X dxdr n+1 • 

Note that P(S < r , , - x / / n | r n n+1 n+1 P(C empty) (see Figure 20) n 

/ c 
= 

C_ \n 
(5 .6 ) 

where = _ - x / ^ ) 2 = i f x = p^r^^^ 

and C(p) = 2p^/ /n - p^^/n. 
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Figure 20 

Hence, subst i tut ing f o r h. 

K = ^ (^P) 
2 n! 

n+1 /n n 2n+l - P ^ ^ + l ' 
n+1 n+1 

n! 
' . s.n r (n + 2) , 

p (1 - C(p ) ) 

2n(n + 1) 
PTT 

y d -

2n(n + 1) r ( 2 ) r ( 2 n + 1) _ 
PTT r(2n + 3) pTT(2n + 1) 

(5 .7 ) 

Consider 

0 /nr 

•x//n+r 

•'x/Zn-r 

n+1 

n+1 " " " n+1 

Again subst i tut ing f o r f and h, and putting s^ -

X = in tegra t ing out y i e l d s 
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where 

K, = 4n2(n + 1) ^ 2 
— PTT' 

P2-1 
D(p^,p2)cip^dp2 , ( 5 . 8 ) 

. . . s , .n+2 (1 + A(p^P2)/TT) 

= - a - BPĵ ^ + P2 s in a 

B(P3^.P2) = tt - a - + P2 s in a 

a = c o s - 1 1 - Pi^ + P2' 
B = cos 

-1 /hZzllil 

These formulae f o l l o w d i r e c t l y from Lemma 4 . 

S i m i l a r l y , V - + 1 ) 
" 

1+P. 

1-p^ 
D(p^p2)dp^dp2 . ( 5 . 9 ) 

C o l l e c t i n g ( 5 . 7 ) , ( 5 . 8 ) , ( 5 . 9 ) g i v e s 

4 n 2 ( n + 1) - -1 

0 

1+p, 

1-P^ 
D(Pj^,P2)dPj^dp2 + 

P2+I 

P2-I 
D(p^p2)dp^dp2 

n 
^ TT(2n + 1) 

- 1 

This was numer i ca l ly evaluated f o r v a r i o u s va lues of n . 

In Table 4 we present the v a r i a n c e s f o r the sca led sequence 

of t e s s e l l a t i o n s / ( 2 n - l )p l /^ with mean areas normed to un i ty f o r a l l 

n i . e . A ' = (2n - l )pA . These normed v a r i a n c e s tend to the l i m i t i n g 
n 

v a r i a n c e c a l c u l a t e d in s e c t i o n 6 . 2 . 

Note that Var(A_^') = E ( r ' ) - 1 . 
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The value for n = 1 agrees with Gilbert's [196 2] calculation. 

We note that most of the convergence occurs in the first few n values 

so that by the time n = 128, the variance is within 2% of its limiting 

value. 

Lemma 4 

Table 4 

n Var(A^') 

1 0.28 

2 1.34 

3 1.80 

4 2.14 

5 2.22 

6 2.33 

7 2.41 

8 2.48 

9 2.53 

10 2.57 

16 2.71 

32 2.83 

64 2.89 

128 2.91 

00 2.95 

Consider intersecting circles as in Figure 21. 
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Figure 21 

By considering relevant areas of sectors and triangles. 

2 ^ + 2.l5.R,d sin o BCR^.R^.d) . .Rj' 2. 2 

= ttR̂ ^ - aR^^ - BR^^ + R^d sin a , 

and A(R-|,R2,d) = ttR̂ ^ - aR^^ - + R̂ d̂ sin a . 

Here cos a = (R^^ - R^^ + d2)/2R^d, cos 3 = (R2^ " R^^ + d^)/2R2d, 

0 < a, B < -IT . 

As is obvious from Figure 21, 

S: = -
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4. 6 Cont igu i ty D ist r ibut ions 

There are several distributions of interest relating to 

contiguous particles in f . A fundamental quantity to consider is D , 
n n 

the distance between two particles, given that they are cell-contiguous 

in i.e. [oâ oĵ  n] (see section 3.3). 

Consider D2. As [00̂ 012 2] = <01̂ 0)2 1>, by Lemma 3.4, to 

choose a uniform random pair satisfying [00̂ 0)2 2] we can choose a 

random pair of the three circumferential particles on a uniform random 

(1,2) vertex. In fact each particle pair satisfying ^^ ^^^ 

exactly two chances of being chosen by such a method. The line joining 

and chosen in the above manner is just a uniform random side 

of a Delaunay triangle, whose distribution and moments follow from 

the Stochastic Construction for a uniform random l/̂  vertex (Lemma 

3.10) for the case where the generating particles process is P . 

From Miles [1970], p 113, 

x,rn - + 5)/2) (6.1) 

The density ^^^ interesting form 

, / s 2Trx 
f2(x) = - 3 - 1 - E X (6.2) 

where H(x) and ^(x) are the d.f. and p.d.f. of the standard normal 

distribution (Sibson [1980b]). (6.2) assumes p = 1. Since p is simply 

a scale parameter the p.d.f. for general p is f2(x;p) = P f2(xp ). 

Now consider D^. Again applying Lemma 4, we are concerned 

with particle pairs satisfying <0)̂ 0)2 2>. However if we choose a 

particle pair randomly from a uniform random (2,3) vertex, not all 
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pairs satisfying 2> will have equal chances of being chosen. 

This is because there is more than one pattern of l/̂  segments on 

under the condition <0)̂ 002 2> compared to the single pattern 

under the condition <a) m 1>. (For details on segmentation of <a),a),> 
^ ^ 1 2 

see section 5.2.) The three classes of patterns on <co^w2> are listed, 

in Figure 22. Write 2>^ for the condition that <a)̂ a)2> has 

pattern i as listed in Figure 22. Then, under the above sampling 

scheme, particle pairs satisfying <0)̂ 0)2 2>^ or <03̂ 0)2 2>2 have 

equal chances of being chosen but 2>^ pairs have a double 

weighting due to the four (2,3) vertices contained in that 

arrangement. 

(1) 

(2) 

(3) 

Figure 22 

It seems natural to condition on the pattern type, and if 

f^Cx) is the p.d.f. of D^ we have 

3 
f2(x|<a)^W2 ^ 2>) = I f(x I <0)̂ (1)2 2>^)P (<0)̂ 0)2 2>^| <0)̂ 0)2 ̂  2>) . 

i=l 

Using the side densities calculated in sections 4.1 and 4.3, 

the conditional probabilities of the three pattern types can be 
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calculated. Let ip̂  be the density of perpendicular bisectors with 

arrangement i. Then from Figure 22, 

ip̂  = density of sides = 3p (Table 1) 

^2 " " (Table 1) 

and = a3(-,-) = 0.526 p (Table 3) 

Table 5 gives the resulting conditional probabilities for 

the three arrangements. Although we have D^ expressed as a mixture 

of three related contiguity distributions, one of which is known since 

f2(x) = f (x <0)̂ 0)2 author has been unable to obtain even 

theoretical expressions for f(x| <01̂ 0̂)2 for i = 2,3. 

Table 5 

i P (<0)̂ 0)2 ̂  2>^ <a)̂ a)2 2>) 

1 0.463 

2 0.455 

3 0.082 

Another measure of the separation of contiguous particles 

0), , in 1/ is the number of particles which are closer to w than 1 2 n 

0)2 is (or vice versa). Let o)̂  and uĵ  be a uniform random pair of 

cell contiguous particles in generated by F, and let u)̂  he the 

closest particle to (where I is random). Let q^ denote 

P(I = i), i = 1,2,... . Using (6.2) we have (p = 1), 
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= P(I = i r)f2(r)dr , 

(where P(I = i r) = P(circle radius r is (i - 1) filled) 

= e"^^ (Trr^)^-l/(i - 1) ! 

Hence q..- = (2i) ! 
i 3i! (i - 1) ! 

dx 
1 (4 + x^) 

The q^ values for i = 1,2,..15 are listed in Table 6. We note 

that 

E(I) = I iq 
i=l 

(1 + ^r^)f„(r)dr 

= 1 + 7tE(D2^) 

= 6 , 

by use of (6.1). Since the closest particle to o)̂  is always contiguous 

and the mean number of sides is 6 we would expect (approximately) that 

P(I = 1) = which is supported by Table 6. The mean value 

E(I) = 6, which may seem too large given that E(N) = 6 , can be 

explained by realizing that particles near to o)̂  can miss out on 

contiguity if closer particles intervene. This spreads out the 

distribution for I. In fact, E(l') = 1 + 3TrE(D2') + which 

gives Var(I) = 220/3. 
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i i i 

1 0.1516 6 0.071 11 0,0284 

2 0.1339 7 0.0596 12 0,0235 

3 0.1160 8 0.0498 13 0.0194 

4 0.0993 9 0.0414 14 0,0159 

5 0.0843 10 0,0344 15 0,0131 

4.7 Basic Results for \I relative to IP n 

The results in this section summarize joint work between 

R.E. Miles and the author. See Miles and Maillardet [1982], 

To enable us to write down probability statements for an 

N-eon of f we have to establish a link between the f cell and the ® n n 
particles which generate it. This can be done using the geometry 

of N-gons in section 3.6, and particularly Lemma 3.14. From this 

geometry it is clear that associated with any N-gon T in are N 

particles whose perpendicular bisectors determine the sides of T (see 

Figure 3.16). We refer to these N particles as the generating particles 

of the cell; they are just the inner and outer particles of T. 

Compare this situation with a \Î  N-gon, whose sides are generated by 

N + 1 particles, with the nucleus particle free to occupy any point 

inside the cell. 

We wish to establish a correspondence between N-gons and 

their N generating particles. Consider N particles in the plane. 

The collection of possible cells which they generate in l/̂  is just 

the collection of cells in their M f o r any cell they generate in l/̂  

they will generate in l/̂  simply by introducing the requisite number of 
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interior particles into the area A (see Lemma 3.14). The of four 

particles contains a quadrilateral if they have a quadrilateral convex 

hull, otherwise it contains no finite polygonal region. The of 

five particles contains a pentagon, a quadrilateral, and a certain 

number of infinite polygonal regions (the number depending on whether 

the particles have a triangular, quadrilateral or pentagonal convex 

hull). See Figure 23 for the quadrilateral convex hull case. It 

seems intuitively plausible that five particles will generate at most 

one pentagon in their and indeed that N particles will generate 

at most one N-gon in their We assume that this is so, but have 

yet to determine a proof. 

The 1/2 of five particles with a quadrilateral convex hull 

Figure 23 
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Now consider an N-gon in l/̂ , parameterized by its N vertices 

y_ = "^N^ ^^ there a unique set of generating particles 

associated with it? The answer, in general, is no, for since vertices 

in l/̂  can be of two sorts, inner and outer, an N-gon will have a range 

of permissible types to which it could belong (see section 3.6). And 

it is easy to construct examples of two identical cells of different 

types with different generating particles. However, for a polygon of 

fixed type (f). Miles [1982] has shown that there is a unique set of N 

generating particles, and has determined the Jacobian of the 

transformation between those particles = (b^,b2,..b^) and 

^ ~ • • ' ^^^ parametrization of T in terms of its sides 

(see section 2.4). Thus we have 

2N ^ 
db = 2 n q^da , (7.1) 

i=l 

where q^ is the perpendicular distance between a side and either of its 

generating particles. 

Using the one-to-one correspondence between generating 

particles and polygons of fixed type, and noting carefully the geometry 

of Lemma 3.14, we have, for a Poisson point process P a s the underlying 

point process, 

P(there is a particle in each of the area elements db^,..,db^ generating 

an N-gon in U^) 

= ^ n pdb^^Pr^there are (n - m) particles in int A, and no particles 

in int(V - A) 

V-A 
= ( n^ pdbJ{(p|A|)^-™e-p|'l/(n -m)!}e-P 

= P A (n - m)!'^db . 



130 

Hence, using (7.1) we have 

P(there is an N-gon member of 1/ witliin the side limitations da) n ' —' 

„2N r N-hi-m = 2 p n-m - 1 / N A exp{- p V }(n - m)! n q. da , (7.2) 
H=1 ~ 

where we have summed over the collection $ of permissible types (}> 

for the cell. Using (2.4.4), we can transform to the vertex 

parametrization of T and hence to 'structural N-gon co-ordinates' 

n = (z,£,a) , where 

v^ = z 

v^ = z + £(cos 

v^ = z + £A^(cos ip̂ , sin i = 3,4,..,N 

Here z gives the position, £ the size and 

^ = (A^,. . , • • the shape of T. So for certain functions g 

and h, A = g(a)£^ and V = h(£)il^, and (7.2) becomes 

P(there is an N-gon member of t̂ ^ in dn) 

= 2^^ I expl- ph(a)z'}(n - m)! - 1 

N N 
X n (|sin il̂. Iq./L.) n X . (7.3) 

i=l 1 1 1 i=3 

Since the area and perimeter of the cell can be written as 

A = a(a)£^ and S = s(a)£, (7.3) shows that for a given shape, the 

conditional distributions of A and S are mixtures of the generalized 

gamma distributions defined by Miles [1970] p 88. 
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CHAPTER 5 

COMPUTATION OF VORONOI AND GENERALIZED 

VORONOI TESSELLATIONS 

The generalized Voronoi tessellations, even for regular 

lattices of particles rather than random particles in general 

position, are difficult to visualize and think about without a picture. 

The task of constructing these tessellations by hand, even for small 

values of n, is extremely laborious, as Miles comments in his initial 

work. It was essential that a program for producing these 

tessellations over large areas was developed. 

A summary of developed techniques for efficient computation 

of Voronoi tessellations is given in section 5.1, together with an 

assessment of transferring the same techniques to the case. 

Section 5.2 gives the geometric background to the program we use, 

which is explained in detail in section 5.3. Section 5.4 specifies 

a more efficient alternative program for generation of t/̂  for n very 

large. Section 5.5 investigates calculations based on a degenerate 

square grid of particles. 

5.1 Computat ion of Voronoi Tessel lat ions 

The computation of the Voronoi tessellation has become a 

subject of considerable interest over the last few years. This is no 

doubt due to its increasing importance and use in a wide variety of 

modelling situations. 

The history of the computation of \ } a t least for the planar 

case, is summarized in Green and Sibson [1978], where an efficient 

technique for the computation of planar Voronoi tessellations over a 
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region bounded by linear constraints is developed. This program is 

very fast, and works by iteratively modifying an established 

tessellation by the successive addition of new particles. 

This works well for l/̂ , since the only cells which are 

modified are those which are edge-contiguous with the added particle, 

Figure 1 illustrates how the cell of an added particle captures its 

territory from the cells of edge-contiguous particles. 

® added particle 

Figure 1 

The Green/Sibson algorithm begins with a nearest neighbour 

search, since a new particle will always be edge-contiguous with its 

nearest neighbour, and the new contiguities are traced out as 

indicated in Figure 1. Use is made of the established tessellation 

to decrease the time of this nearest neighbour search. 

Applying a similar approach to the computation of is 

unworkable. As an example consider adding a particle w to an 

established I/5Q tessellation. Let be the 50-Area of a. relative 

to the existing particles. 
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Over the whole of A^ ^^ the tessellation is changed, and the 

cells within this area have different proximity particles due to the 

inclusion of o). Around the edge of A there are other cells with CO , JU 

the same proximity particles but which now have a side (part of the 

perpendicular bisector between one of their proximity particles and co) 

which has modified their geometry. For n = 50, Lemma 3.3 indicates a 

mean number of 4950 cells will be effected by having their proximity 

particles changed. These considerations obviously rule out any 

straightforward application of the Green/Sibson approach to the \I n 
case. 

The Green/Sibson algorithm works in time, where N is 

the number of particles for which the tessellation is calculated. This 

is made up of a linear term in N for the tracing of new contiguities 
h. 

and an N term for the nearest neighbour search, assisted by the 

existing tessellation. The authors point out the possibility of an 

0(N log N) run time by a more sophisticated nearest neighbour search 

over several generations of the tessellation, at some cost in storage. 

Further work aimed at improving the efficiency of \Î  

computation is currently being carried out by Murota (University of 

Tokyo), who has implemented an 0(N log N) algorithm based on an 

efficient version by Horspool [1979] of an algorithm originally 

described in Shamos and Hoey [1975] (personal communication). Murota 

is also currently working on an improvement to the Green/Sibson 

algorithm which could run in 0(n) time on average. 

There has also been recent work on extending the Green/Sibson 

algorithm to the computation of Voronoi and Delaunay tessellations in 

k-dimensions (Bowyer [1981]). Bowyer computes the dual Delaunay 

tessellation by a natural extension of the two-dimensional algorithm. 
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performing a tessellation assisted search to find the added particles 

nearest neighbour, and a vertex search through the established 

Delaunay vertices to calc ulate the contiguities generated or removed 

by the new particle. Watson [1981] has tackled the problem in a 

similar fashion. 

It is important to remember that there are two sorts of 

problems in the generation of tessellations, which are computationally 

clearly distinct. One is the generation of the tessellation over a 

certain area, the other the generation of an individual typical polygon 

for simulation purposes, to investigate polygon characteristics beyond 

theoretical treatment. These problems are related, and the former could 

always be solved by an iterative application of the latter to build up 

the tessellation, polygon by polygon, over a region (see sections 5.3, 

5.4). For the Voronoi case the generation of individual polygons is 

straightforward, using the typical cell [COQ] generated by P U {COQ}, as 

described in section 2.3. A large scale Monte Carlo study of Voronoi 

cells was carried out by Hinde and Miles [1980], using this technique. 

5. 2 T h e p a r t i t i o n i n g of 

Consider two particles of the generating process of the 

tessellation, which is assumed to be of type Jl̂ , and their perpendicular 

bisector <aj^a)2>. This is partitioned by the other particles of into 

segments of In fact any point x on <a)^a)2> is contained in an 

segment if the circle, centered at x and passing through and 

i.e. Q(x,|x - is (n - l)-filled, n = 1,2,3,.... (see Figure 2) 

and we write n(x) = n. Such a circle is referred to as a centered 

circle. 
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Base circle 

<(.̂ 0)2 
L 

centered circles - (n-l)filled 

Figure 2 

The endpoints of the segments are the circumcentres n 
where (jô  ranges over the other particles of n^. 

The main processes of interest in an analysis of the 

partitioning of <a)̂ a32> are 

(i) the point process of circumcentres {<u)^a)2U)^>, € n^}, C(d). 

and 

(ii) the random step function {n^(x), x £ <(i)Ĵ (j02>}, where n^(x) = n 

if 2i ̂  JĈ  segment. 

Since no meaning can be ascribed to an arbitrary or typical 

pair of particles or equivalently a typical perpendicular bisector, 

we always condition on the distance between and 0)2 - hence 

and C(d) . 

A typical realization of n^(x) is given in Figure 3. 
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<oĵ a)2> - numbered with 

JĈ  segments 

base circle 

@ base circle particle 

X non-base circle particle 

Figure 3 

Although similar arguments apply relative to an origin fixed 

anywhere on we arbitrarily fix the origin at the midpoint 

between and uî  refer to the circle, centre origin which passes 

through (JÔ  and as the base circle (Figure 2). 

If there are n particles in the base circle, the origin is in 

an segment. We call these particles base circle particles. Note 

that the segment centered on the base circle is not necessarily 
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the minimum £ which appears on <(JL> n ^^ 1 2 

As we move x in a positive direction away from the centered 

circle at x will either capture additional particles or lose base 

circle particles which lie in the negative half of the base circle. 

Each time a base circle particle is lost, a reverse jump occurs and 

the value of n^(x) decreases by one; similarly each time another 

particle is captured n^(x) increases by one. It is clear that there 

are only a limited number of reverse jumps in any realization, equal 

to the number of base circle particles, and that, eventually, n^(x) 

will increase monotonically to Infinity on both sides. We can 

reconstruct therefore from knowledge of the number of particles 

in the base circle and the marked point process (C(d),S) where S 

indicates whether the circumcentre is generated by a base circle 

particle. 

In the case there is only ever a single l/̂  segment on <(i)̂ a)2>-

This is because a l/̂  vertex is empty, so that movement in either 

direction cannot lose a particle - there must be a strict monotonic 

increase either side of a ^^ segment. Similarly for l/̂ , there is a 

maximum of n l/̂  segments on <(JÔ W2>, since if there is at least one such 

segment there is an (n - l)-filled centered circle on <(JÔ W2> which 

limits the number of reverse jumps either side of it to (n - 1) and 

hence the number of segments to a maximum of n, in the case where the 

(n - 1) reverse jumps alternate with positive jumps. 

5. 3 Computation of the l/^ tessellation 

Efficiency is not an overriding consideration in the 

computation of l/̂ ; the aim was for a program that would generate the 

tessellation over large areas for a range of values of n. 
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The technique used is to concentrate attention not on whole 

polygons, but on the perpendicular bisectors of all particles that are 

sufficiently close that there is a fair probability of them containing 

a 1/ segment. For each <(jo co„> chosen we find <oô a)„a!, > for the other n 1 Z 1 2 k 

particles noting each time whether tû  is a base circle particle or 

not, and simultaneously finding the total number of particles in the 

base circle - NBC say. This information amounts to knowing (C(d),S) 

for the <a)ĵ a)2> under consideration. 

The program uses vector parametric form for <a)^W2> and stores 

circumcentres by storing the appropriate parameter value - positive 

values in one array and negative values in another, so that the sign 

can be used to indicate the presence of a 'base-circle particle' 

generated circumcentre (-) or otherwise (+) (see Figure 4). 

Once all circumcentres are calculated, both arrays are 

ordered (by absolute value) . The central segment on <t0ĵ oo2>» which 

cuts through the origin, is a ĵ̂ gf-̂ ĵ  segment with endpoints at the 

smallest positive and largest negative circumcentres. Further f^ 

segments extend between successive circumcentres, with n values 

dictated by the S value corresponding to their circumcentre nearest to 

in the fashion explained in section 5.2. The program simply 

proceeds along <a)^a)2> in the positive and then negative directions and 

stores segments of any l/̂  which is being generated into an appropriate 

data file (see Figure 4) . The search along <a)^W2> terminates when the 

segments are no longer in the recorded region, or when it becomes 

clear that no more l/̂  segments can occur since all base-circle reverse 

jumps have been exhausted. 
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Figure 4 

This procedure is repeated for all choices of pairs of 

particles. If we fix oĵ  and allow ti)̂  to vary over the possible pairs, 

the program generates all l/̂  segments in which plays a part. Such 

a l/̂  segment, on say, is the boundary between two cells of 

the form ] and ], and hence clearly forms part of 1 z n 1 z n 
the boundary of w^'s n-Area - i.e. part of oĵ 's n-Circuit C^ ^^ (see 

section 3.2). Hence the program essentially computes the n-Circuits 

for all particles. This is strictly true only for the first particle, 

for later particles are paired only with particles they have not yet 

been paired with, which means that only parts of their n-Circuit not 

previously computed will be generated. 

Choice of particle pairs 

Given a particle the question is what other particles 

should be paired with it to ensure that all perpendicular bisectors 

containing l/̂  segments are considered. We can get some indication 

from Lemma 3.2, which showed that 
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Since the n-Area of is star shaped and isotropic about , 

the expected length of a ray from cô  to C in an arbitrary direction 
fT is J /ttp. Of course parts of C far away from to, can still be due 

1 

to particles oĵ  very close to for which k> is true for some 

k < n. zĵ /irp is hence interpretable as the average distance to a 

particle from given that the minimum ^ appearing on their 

perpendicular bisector is a 1/ . n 

For smaller values of n, depending on the size of the area 

of tessellation generated, some time saving is possible by griding 

the plane and considering only those particles in certain grids near 

to cô . Since such an approach is probabilistic, rather than geometric, 

tTiere is always a possibility that a l/̂  segment is missed. This 

difficulty need not be faced, however, for when we are interested in 

calculating a series of l̂ '̂s the highest n value determines the pair 

selection and this often means choosing all possible pairs. 

For example, to generate the plots in Figure 5, which shows 

a sequence of 1/ 's f or n = 4, 16, 64 and 256, and the 1/ „„ in Figure 6, n 
500 random particles were placed in the unit square, and areas of the 

different 1/ 's were stored over the regions shown in Figure 7. All n 

possible particle pairs were considered. In this case we can be 

virtually certain that the tessellations produced over their respective 

areas will be complete, since, with high probability, each point in 

these areas has its n nearest particles determined by the particles 

inside the unit square, so there is a corresponding high probability 

that all edge-contiguous particle pairs will be considered. 

We note that in calculating I/3QQ this program must also 

calculate for all i < 300, since all such \Ĵ  segments must be 
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F-LgiAve 5. Realizations of the tesselUtions M a r d 

scaled so as to have equal mean areas. 
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Figure 6. ^^qq f'^^ ̂  '^f partioles 
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considered in passing along each perpendicular bisector. The only 

limitation, then, is the amount of data storage available, and the 

time spent actually storing the required data. The program generating 

Figures 5 and 6 ran for approximately one hour on a Dec-20 System of 

the R.S.S.S., A.N.U.. If required, data on all tessellations 

l/̂ ,. . . ,l/̂ QQ could have been stored. 

unit square 

Figure 7 

5.4 Individual Polygon Generation 

For potential simulation studies of l/̂ , another program was 

developed for the generation of individual l/̂  polygons. This was based 

on the Stochastic Construction of a typical l/̂  cell. 

The program presents some interesting logical problems in 

terms of keeping track of particles, base circle or otherwise, in 
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searching appropriate areas for the next vertex, and in proceeding 

around the polygon in the correct manner, but is basically a straight-

forward application of the logic of Lemma 3.11. This program can also 

be used for building up plots of large regions of l/̂  by applying the 

algorithm repeatedly to add polygons adjacent to those already 

generated (see Figure 8). 

Initial 
f vertex n incomplete vertices 

Figure 8 

In this case, the initial polygon is developed from a typical 

1/ vertex surrounded by a realization of T. A list is kept of n 
incomplete vertices i.e. vertices with only two segments joining. The 

program iterates through the incomplete vertex list, adding the polygon 

which completes that vertex and an adjacent vertex, and at the same 

time adding the new incomplete vertices associated with that polygon 

to the incomplete vertex list. This iteration continues until a 

specified area is tessellated. A working version of this program was 

used to generate \ l I t could be applied to the generation of l̂ '̂s 

for very large n with reasonable run times i.e. n 2000. 
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5.5 l/^'s based on a degenerate square 

A program was developed for the computation of f^'s based on 

a degenerate square grid of particles. This was similar in structure 

to that used for random particles in general position, but there are 

some interesting fundamental differences between the two cases. 

(i) a square grid is degenerate not only in the sense that more 

than three particles can lie on the same straight line or more than 

four on a circle, leading to vertices with more than three polygons 

meeting at the vertex, but many different pairs of particles have the 

same perpendicular bisector. Hence instead of a point x £ <a)̂ a)2> 

belonging to a unique \J , if Q(x, X - OJ, ) is (n - l)-filled, it in 

general belongs to a whole sequence of l/̂  segments, but relative to 

different generating particle pairs for <(jjĵa)2> (see Figure 9). 

P on is in 

P on <aj„a), > is in £ 3 4 / 
P on is between i) D 

and 

Figure 9 

(ii) unlike n^(x) on <(jô a)2> for the general position case, the 

jump between successive l/̂  segments on a perpendicular bisector can 
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and often does exceed one, since more than three particles can be on 

the one circle (see Figure 10). This effect is easily accomodated into 

the previous program however. The circumcentres are stored for each 

particle as before, so if, as in Figure 10, two particles (oĵ  and tô  

say) lie on the same circle as and cô , the circumcentre list would be 

-1, -is, is, 1 . 

<a)̂ (jj2> is numbered with segments, 

Figure 10 
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Since the base circle is zero-filled {-h-S) is a l/̂  segment. 

Since the particle generating the first ij, was not a base circle 

particle, we add one to the n value and have a \Ĵ  segment {hM)', this 

segment is not stored however being of zero-length. The n value again 

rises by one, since is not a base circle particle and we have a l/̂  

segment (^,1). 

For higher n values this effect is magnified with large 

numbers of particles on the one circle. The solution here depends on 

the circumcentres, calculated individually for each combination of o)̂  , 

0)2 and oĵ , being exactly equal so that zero-length segments can be 

disregarded and short legitimate l/̂  segments recorded. This was 

achieved by calculating circumcentres in double precision, but 

checking their equality only to single precision. This is an 

acceptable solution for our program which generates up to 150. 

(iii) Symmetry considerations obviously play a large part in these 

tessellations. The whole plane is covered by repetitions of a basic 

triangle as shown in Figure 11. In addition the arrangement of 

segments along any perpendicular bisector, for any pair of its generating 

particles, is symmetric about the midpoint between the particles. 

Figure 11 
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(iv) To ensure that complete tessellations were generated, i.e. 

that no edge-contiguous particle pairs were missed, the tessellation 

was generated over a single square region S inside a square grid large 

enough to ensure that all points in S have at least their nearest n 

particles determined by the larger grid - a twenty by twenty grid 

ensures valid in the central region up to approximately 240 (see 

Figure 12). 

Y X 

* * 

)< * 

X X 

Figure 12 

A program using a 20 x 20 grid of particles, over which all 

possible particle pairs were considered, generated \ J . . . ,\l^^^ in 

twenty three minutes. Figure 13 shows a selection of these (see 

also Figure 3.2). It is interesting to note that the first three are 

all square lattices. The tessellations are plotted over 9 squares or 

36 repetitions of the basic triangle to give a global impression of 

the patterns. 

Returning to the case of particles in random position, we 

note the remarkable similarity of the sequence of scaled l/^'s in 

Figure 5, which suggests that the distributions of cell 

characteristics, e.g. those of (N,/(2n - l ) p S , (2n - l ) p A ) , tend 
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rapidly to non-degenerate limits. This prompted the investigations 

of limiting distributions undertaken in Chapter 6. 
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VORONO! - 50 

VORONOI - 51 

Figure 13 (i). 1/ 's based on a square grid of particles 
Yt 

The particles are shown by crosses. 
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V O R O N O I - 52 

V O R O N O I - 53 

Figure 13 (ii). t/^'s based on a square grid of particles 

The particles are shown by crosses. 
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CHAPTER 6 

G E N E R A L I Z E D VORONO I T E S S E L L A T I O N S - L IM IT ING R E S U L T S 

In this chapter we establish some limiting distributions 

relating to a sequence of scaled f tessellations. If we scale the n 
tessellation by v^ along both axes the mean cell area is normed to 

n[(2n - l)p] This scaling is used for convenience in the 

derivations and we refer to 

V = v^ 1/ , 0° n->-<» n 

as the limiting tessellation, in which the polygon characteristics 

have the calculated limiting distributions. However the calculated 

moments are given relative to 

V = A2n - D P 1/ , 00 n 

the limiting tessellation for the sequence of normed l/̂  having unit 

mean cell area. 

6.1 Limiting S ide-Length Distribution for V 

In this section we make use of the stochastic construction of 

a uniform random side of a member of i.e. a uniform random member 

of given in Lemma 3.11, to prove a limit result for the ergodic 

side-length distribution of 

From Lemma 3.10 we have the following ergodic results for an 

N-filled vertex of l/̂  (see Figure 1). 
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Figure 1 

R^ r2(2N + 4,Trp) with p.d.f. f (R) 

N = n - 1 with probability = /(2n-l) ij as n 

n - 2 / /o 1 \ 1 = /(2n-l) ^ I5 as n oo. 

a, half the angular separation of two circumferential particles, 

has the same distribution as a random angle in a Delaunay 

tessellation (since 2a = 23 in Figure 1). 

A s in ct Hence g(A) = p.d.f. of a = -—^^^^^— (sin a + (IT - a)cos a) 

Let D denote the length of a random side of 1/ , and consider n ^ n 
P(a D > a) , where a > 0 and a -^-ooasn-^-", £ > 0 . n n n n 
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P(a D > £) = y n n . V ^ i=n-l,n-2 
> £|R,a,N = i)f^(R)g(a)dadR 

(1.1) 

Assuming i = n - 1, consider 

lim .CO 

> £|R,a,N = n - 1)(R)g(a)dRda (1.2) 

From Figure 1, 

P(a D > a R,a,N = n - 1) = P(no particles in A or B ) n n n n 

= P(A^ empty) P(B^ empty) 

/ B^ xn-1 
= exp{- pkj^l -

where A and B are functions of a , a and R. Hence (1.2) becomes n n n 

[li im 
0 [ n ^ 

exp{- pA } 1 - f T(R)dR n-1 g(a)da (1.3) 

where, since the inner integral in (1.2) is bounded by one, which is 

integrable on [0,tt], we have interchanged the limit and integration by 

Lebesque's dominated convergence theorem. 

As R ^ ^ r„(2n + 2,i\p) , n-1 2 

2 _ J _ l 
r(n + l ) ^ ~ V.P -V / — as n 
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Hence 
^ 

for C = n-1/^, as n ^ CO e(C ,) — a n d 
V Tip 

^ Therefore making the change of variable r = in 

the inner integral in (1.3), we have 

lim / B vn-1 
exp{- pA ] 1 fA rr)dr , Q n \ mrr^/ n-1^ ' ' (1.4) 

where f* , (r) is the p.d.f . of C ^ with C , ? 1/A^ as n n J- n-1 n-1 
We need the 

Lemma 1 lim 
n-x" 

as n «>, where is the p.d.f. of X^ and the g^ are continuous 

and bounded. 

A proof of Lemma 1 is appended to this section. Applying 

Lemma 1 to (1.4) we have 

lim 
n-w 

/ B xn-1 
exp{- pA } 1 - — ^ f* ,(r)dr ^ n V mTr-̂ /̂ n-1 

Inn r A -1 expi- pA 1 
/ B \n-l 
1 -

/np 

lim 
n-x» expj- pA^(£,a,a^,R)(^l - y 

n-1 

R= 
Tip 

We now consider the limits of A (i,a,a ,R) and B (£,a,a ,R) n n n n 

(see Figure 2) 

A = R'2(e - sin 6 cos 9) - R^(a - sin a cos a) , n 
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w h e r e R ' 2 = ( R S I N a ) 2 + ( R COS a - £ / A ) 2 = R 2 _ ^^ ^ O S a 

and 

n n 

R s i n a 
s i n e = , cos 6 = 

(R c o s a - £ / a ) N_ 
" " R ' ' 

F i g u r e 2 

Hence A = GR'^ - R s i n a ( R c o s a - £ / a ) - aR^ + R ^ s i n a c o s a n n 

. -1/^R s i n • 
= s x n Y ^ j R + 

R£ s i n a 
aR'^ 

a 
n 

o f - 1 R s i n a 1 / 2 £ R c o s a Z \ . - 1 / R s i n a \ , R£ s i n a c j - ^ ^ ^ s x n + — - -

E x p a n d i n g s i n ^ a s a T a y l o r s e r i e s a b o u t s i n a . 
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A ^ = R ^ ^ a + r v / - ^ 1 ^ _ t a n - 1 j - t a n ^ a 

{ 2 R R c o s a \ . - I / r s i n a \ . R l s i n a 
— I — r r C T n ! ! + 

n n ^ ' ' 

C o n s i d e r R ^ ^ f r - = r 2 - 1 

C O S a 

a R 
n 

_£ 

= r 2 
1 / 2 1 C O S g £ 

a R ( a R ) ' 

3 f 2 £ C O S g £ ^ 

a R ( a R ^ ) J 
^ n n ' 

/ t t ^ 

i f w e c h o o s e a = / n , a n d e v a l u a t e a t R = J — 
n ' Trp 

N o t e t h a t 
,2 ( 'R 

T h e r e f o r e 

A = t a n 
n 

l ^ \ . £ s i n a 

/ Tip 

2 £ s i n a 2 £ a c o s g ^ ^^^jL^ 

n / Trp A r p 

B = I T ( R 2 - R ' 2 ) + A 
n n 

9 1? 1 
( s i n g + ( t t - g ) c o s g ) + 0 ( — ) 

/ r r p 

a n d 
l i m . / n 

A \ Z,a,vn, — 
n->oo n V ' V f r p / / 

2£ 
( s i n a - a c o s a ) 

-irp 

l i m 

n - x " 
B = — ( s i n 6 - B c o s B ) = B s a y , 

w h e r e 6 = - a -



Substituting the above in (1.5), 
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exp{- pA }( 1 
pB \n-l 

n 

n 

R 
» Trri irp 

= exp { - p . 
2Z 

/iTp 

(sin a - a cos 
pB \n-l 

Jn-x»V n / 

0(i)xn-l 
= exp{- 2.]£(sin a - a cos - ^ . - 4 ) 

= exp 2zJ-^(sin a - a cos a)|exp{- p B } 

= exp<- 42,J^sin a + (^ - a)cos a^ (1.6) 

Clearly lim P(a D > £ R,a,N) is the same for both N = n - 1 
n n 

and N = n - 2, and since P^-i'Pn-Z n «>, (1.1), (1.3), (1.5) 

and (1.6) combined give 

P(v^D > £) = 
n-x" n 

0 

e x p ^ - s i n a + (^ - a)cos aj.g(a)da 

Hence we have established the 

Theorem 1 

Let D denote the length of a uniform random member of £ . 
n " 

Then the sequence {v^nD^} converges in distribution to D^, the side 

length for a uniform random member of with 

P(D' > £) = 
0 

exn^- AjlZ-^sin c;+ (-^--a)cos a j p ~ - ( s i n a + (^-a)cos a)da. 

Since D' is positive, we can calculate the mean as 
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e(D:) = P(D' > x)dx 

fIT 

0 0 
exp|- 4xj^sin a + (Y-a)cos a^jd 4sina, . , , . .J X — — ( , s i n a + ( T T - a ) c o s a)da 

J i t 

sin a(sin a + ( T r - a ) c o s a) 
0 3/p^sin a + ("I - a)cos aj 

da 

= (3/^) - 1 sin ada 4- TT Sin a cos a 
0 ^ fsin a + (y - a)cos a 

da 

= 2/3/^ 

This result checks with the known results for E(S) and E(N) 

from section 3.1, since, from section 1,2 we have 

lim 
R̂ ĉo E(s) = i S./N(R) 

cells in Q(R) ^ 

E ( N ) = i ^ ™ I N , / N ( R ) 

cells in Q(R) ^ 

and 

edges in Q(R) 

where the S^ denotes perimeter, N^ number of sides and L̂ , edge length 

of cells, N(r) = total number of cells in Q(R) and N^(R) = total 

number of edges in Q(R). 

Also Nj^(R) = ^ZN^ and ES^ = so 

ZS. 2EL. h^N. EL. ZN. i 1 1 1 1 
N(r) N(r) l̂ ZN̂  N^(R) N(r) ' 

and hence E(L) = E(S)/E(N) 



Higher moments for D' can be obtained numerically. 
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E(D'™) = m X™ > x)dx 

4m! 
/ 

3tt 4 -V 
sin a(sin g + (tt - a)cos a) 

0 sin a + (-2 - a)cos a m 
da 

m 
m/2[ 

TT sin ada 
0 ( sin a + ("I - a)cos a)"̂  ̂  

sin a cos a 
sin a + ("2 - a)cos a m 

The second integral disappears since the integrand is odd 

about Hence 

„ , m/2-1 tt/2 sin ada 
0 (sin a + (y - a)cos a ^ 

(1.7) 

In Table 1 we list the moments of D , the side length for 
OO 

a uniform random member of f , numerically calculated from (1.7). 
OO 

Table 1 

m 

1 

2 

3 

4 

Var(D ) 

E(D 

0.532 

0.576 

0.952 

2.13 

0.293 
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Proof of Lemma 1 

^ " iiZ arid F (x) the d.f. of X n-w n n n 

Consider 

g^(x)f^(x)dx - Z 

g^(x)f^(x)dx - gj^(x)f^(x)dx + g^(x)f^(x)dx - g^(a) + g^(a) - £ 

g^(x)f^(x)dx- g^(x)f^(x)dx + g^(x)f^(x)dx- g^(a) + g^Ca) - £ 

g„(x) - g^(x) f^(x)dx + g^(x)dF^(x) - g^(a) + (a) - £ 

Let e > 0. 

A li™ / \ £, ^N^ such that Vn > N^, g^^Ca) - H < e/3. 

As F^ ^ F(x), the d.f. for a random variable degenerate at 'a', 

and the g^ are bounded and continuous, we can apply the Helly-Bray 

Theorem to obtain 

g^(x)dF(x) = g^(a) 

i.e. 3N2 such that Vn > N2, g^(x)dF^(x) - g^(a) < e/3 . 

Finally as {g^(a)} is a Cauchy sequence, 

f̂ N̂  such that Vn,m > N^, |gj^(a) " I 

Hence Ve > 0, choosing N > max{N^,N^} and n > max{N2,N2} ensures that 
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g^(x)f^(x)dx - £ < e/3 + e/3 + e/3 < 

i.e. lim 
n->oo 

which completes the lemma. 

6 . 2 Limiting T r a n s e c t Distribution for I/' 

In section 4.5 we defined J' as /nj , where J is the distance 
n n n 

from an arbitrary point to the next 'event', or intersection with the 

tessellation, on a linear transect of 1/ . We now establish the 
n 

limiting distribution of J'; J' J', the transect distribution for n n oo' 

the scaled aeeregate I/' = v'̂ l/ . 
b b b ^ ^ ^ 

Now, from (4.5.2) and using the notation of section 4.5 (see Figure 

4.19) 

P(J' > x) = P ( ^ J x) 
00 n-^ n 

lim 
n-HJo 

r ,T+x//n n+1 
P(An empty, w^^^ € q(a) 

(2.1) 

Since R , r ^ ( 2 n + 2,Trp), n+1 2 

Var(R^^^) /^p as n -

So R',1 = R , , /v^S- , — , and n+1 n+1 TTP 
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P(J' > x) =lim 
.00 

0 

v^r' , _ +x / /n n+1 

0 
P(An empty, w ^ q(a) r ,, ,s )f(s r ,Jds . n+i n+i n n n+1 n 

n+1 n+1 

where h* is the p.d.f. of The inner integral is bounded and 

continuous, so, by leirana 1, 

P(J' > x) = lim n-x» 
rH TTp / 

An empty, w^^j^^q(a) n 
n+1 /̂irp'̂ n 

f s n ^n+1 V TTpy ®n 

Since x is fixed, eventually / — > x//n, so 
\l-np 

= has support + Using (4.5.3) and (4.5.5), 

P(J' > X) = jpfs < - x/^lr = oo n-x» [ \ n V TTP n+1 v/ttp/ 

VTTD 

n 
TTP 

1 - -
a 
TT/ 
\ -P 
e 2nB 

-x/ Vn TT . TTp, 

1 -
B xn-l 

s dj - I fa ua 7 n n 
\UP J 

From Figure 20 and (4.5.6), 

p(s < x/^|r = = fl - - ^ T V n V^p n+1 Vttp/ V ^^n+1^ 

as n 0° 

_ In n 
In the integral we make the change of variable to y^ - J — s^ - ^^ 

giving 
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l i m 

n-)-a> 

x / / r r ^ 

- x / / 

1 -
-rrp 

I 1 - - ! e x p { - p A } 2 B p 1 -
/ !— n->°oV tt ) 

n 
B \ n - l / T T p y 

1 + idy. 
\ / n 

s i n c e t h e i n t e g r a n d i s b o u n d e d o n a f i n i t e i n t e r v a l , 

U s i n g L e m m a 4 . 4 w e c a n e s t a b l i s h t h a t 

n\\/TTp J n -^n r rp / j — 

/ y „ 

/ r r p 

1 _ n 1 2 " 
\ ^ / 

_ / y 

+ 2 y c o s — + O ( - ) 
•'N \ X J N 

= A ( y ^ ) + O ( ^ ) , 

B ( I ^ J ^ i y + — = A ( y ) - 2 u y + 0 A , 
n y J i T p ' J n • ' n i r p / ^ n • 'n n 

a n d 

P| / — Trp 

l i m 

In HP 
Trp ' ' i n 

n ITTP 

TTp / 
= C O S 

-TTp X / 

, . / p B \ n - l , . / 0 ( - ) > , n - l 

N o t e a l s o t h a t 1 - = ^ ^ 1 - ^ ( A ( y ) - 2 u y ) + ^ 
n - x » \ n / \ n n n ^ / 

= e x p { - p ( A ( y ^ ) - 2 T T y ^ ) } . 

H e n c e t h e i n t e g r a l b e c o m e s 

x / / r r p 

e x p j - 2 p ( A ( y ^ ) - - ^ y ^ ) ^ • c o s ^ ( y ^ A p / x ) l d y ^ 

- X / Z t t ^ " I 

x e x p j - z J ^ C A C p ) - T r p ) x | ( c o s ~ ^ p ) ^ d p , 
_ 3 / 2 
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where A(p) = 2(1 - p^)'^ + 2pcos~-^(-p) . - 1 

Collecting the above results gives the 

Theorem 2 Let J^ denote the transect length from an arbitrary point 

to the first intersection with the tessellation on a linear transect 

of l/^. Then the sequence converges in distribution to J^, the 

transect length for a uniform random member of I/', with 

P(J' > x ) = e x p { - 2 v ^ x } + 
2v^ 

X exp ^-2j—[A(p) - TTp)]xKcos p) dp 

We are interested in the moments of J', 

E(J'™) = m X™ > x)dx oo 

m! 

.m in/2 Z TT 

1 + m. 7T 
m-1 1 / -1 (cos p) dp 

-1 (A(p) - TTp) 
m+1 

-m/2 
(2.2) 

In Table 2 we list the moments of J^, the transect length for a 

uniform random member of numerically calculated from (2.2), 

together with the same moments for D^, the side length. 

Table 2 

m 

1 

2 

3 

4 

0.826 

1.26 

2.74 

7.71 

2//2 
/3v^ = 0.532 

0.576 

0.952 

2.13 
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Utilizing these values, and (1.3.4), we can obtain the moments 

listed in Table 3, all of which refer to the limiting tessellation 1/ . 
^ m 

Table 3 

£($ ) 5.19 

E(A 3.946 

E(A ^R ) 5.73 
00 CO 

E(A I ) 12.1 
00 oo 

Var(J ) 0.574 
00 

Var(D ) 0.293 
00 

Var(A ) 2.946 
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