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(i 1)

ABSTRACT

An orthogonal design of type (sl, Sos vees Su) and order % on the
commuting variables Ty Loy eees T is'an #n X'm imatrix A. with entries

from {O, s

1 02 .5 ixu} sueh: that

u

AAt = [ 3 s.x?]I
; s
7=l

The exiétence question for orthogonal designs stems from many problems
originating in fields as diverse as algebraic topology and coding theory. A
brief history of the existence question is included in the Introduction.

Wolfe [79] and Shapiro [63] have recently found effective necessary and
sufficient conditons for the existence of orthogonal designs in terms of
rational matrices. Subsequent research has been directed mainly toward the
question of determining precisely when these necessary conditions suffice
for existence.

This question is answered in many particular cases by the direct
construction of orthogonal designs in Chapter 2. A method which searches for
an orthogonal design of given parameters is presented. This method has been
implemented by hand and by computer to construct a large number of
previously unknown orthogonal designs. . Some related techniques are used to
construct infinite families of orthogonal designs.

In Chapter 3 two different asymptotic existence results are proved.

S

Fiwst by, it i shown! Ethat if all of %, & oo Su are sufficiently

Sl’ 2’
divisible by 2 , then often the existence of an orthogonal design of type

(Sl, 32, N v O ) and order n can be deduced. Secondly, the Wolfe-
U

Shapiro necessary conditions are shown to be often sufficient for the
existence of orthogonal designs with few nonzero entries.

A kind of integral'analogue to the Wolfe-Shapiro theory is presented in



(iv)

Chapter 4. As a consequence, it is shown that the Wolfe-Shapiro necessary
conditions suffice for the existence of an # X n matrix A with entries
t . 2
from {mxi S g m €4 sueh that AT = [Z sixi}f LA THis As
=1

important because such a matrix resembles an orthogonal design.

In Chapter 5 the power of the results in previous chapters, especially
Chapter 2, is illustrated by the tabulation of numerical results.

Many of the results in this thesis can be found in the published

papers of the author.
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INTRODUCTION
THE EXISTENCE PROBLEM
The following definition was formulated in 1973 by Geramita, Geramita

and Wallis [24] in order to unify some algebraic and combinatorial concepts.

DEFINITION. An orthogonal design of order n and type

(sl, SLoC e su) on the commuting variables Ty Ty vens T is an
n xn matrix A with entries from {o, e, A, L, ixu} such that
U
2
(oReE 1) 44" - ['Z s.x.]I :
Tl

Alternatively, the rows of A are formally orthogonal and each row has

precisely s; entries of the type . .

Special kinds of orthogonal designs were studied for many years before
1973. Jacgues Hadamard [36] in 1893 showed that the determinant of a real
n X n matrix with entries from the interval [-1, 1] has absolute value at

n

most n . Matrices which achieve this bound have subsequently been called
Hadamard matrices. It is clear from (0.0.1) that an orthogonal design of
type (n) and order n gives an example of an Hadamard matrix. Hadamard
proved the converse: every Hadamard matrix has mutually orthogonal rows and
entries from {-1, 1} . Also, he showed that the order of an Hadamard
meitieiss sisy edther 1. 2 o or diwvisible by 4 . The guestion of whether there
is an Hadamard matrix for each order divisible by 4 is open. This problem
has received a great deal of attention in recent years because of its
implications in other areas of combinatorics, such as balanced incomplete
block designs [38], tournaments ([52], [66]) and codes [7].

N orenslde=ionnet diype Jlg 1 1, 1) and order 4 .
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-2 96 969 =
(0.0.2) Shi e
—.’L'3 —xu xl .’EQ

- i b = 0

was used by Williamson in 1944 to construct Hadamard matrices. If

oL, X . X s dee © X 0 maltrices with-entries from i1-1,'1} sich that

(i T
£ = Sk e z ' . '
= = < = =
Xi - Xj i oo 7L ) 4 and Xle i X2X2 4 X3X3 + quu Lplie s Ehen

replacing the variable x. by X. in (0.0.2) yields an Hadamard matrix of
7 7

order U4v . Baumert and Hall [4] used orthogonal designs of type
(b, b, b, b) and order U4b in a similar fashion to construct Hadamard
matrices of order 4wb . Such orthogonal designs have subsequently been
called Baumert-Hall arrays, and have received considerable attention (see
[75], [10]). Turyn [68] has shown that constructions for Baumert-Hall
arrays are related to problems in signal detection.

Another special kind of orthogonal design was introduced by Raghavarao
[50] in 1959 in connection with a weighing problem. A weighing matrix of
weight -k and order ‘n is an n X n matrix with entries from {0, 1, =1}

sueh: that WWt = kI . Thus a one variable orthogonal design gives a

weighing matrix; in particular, an Hadamard matrix of order »n is a
weighing matrix of weight »n and order »n . Raghavarao demoﬁstrated that a
weighing matrix describes a method of weighing #n objects k at a time to
obtain an error distribution with small variance. Taussky [67] suggested
the study of weighing matrices as a natural extension of the study of
Hadamard matrices. In recent years weighing matrices have been used in
connection with Pless symmetry codes [6], in designing telephone conference
neltworks [5], and in the design of masks for optical spectrometers ([65];

[43] ). Also, weighing matrices are related to problems in finite projective



geometry ([37], [35]) and graph theory [34].

Geramita and Pullman [25] introduced orthogonal designs of type
(i e e . 1973 'as a realization. of the maximal number of
independent vector fields on the #n sphere. The problem was solved
completely by the topologist J.F. Adams [1] in 1962. However, it can be
stated in terms of an earlier problem of Hurwitz [42] and Radon [49] as

follows (see [2]): What is the maximal number of real skew-symmetric n X n
matrices A. such that ATE 7 foreach 1 and 4L4.A.= -A.A. for each
z % 8y g

1 # J ? Now suppose that A is an orthogonal design of type

(IR, L e e s SL) ¥ and 'opder - 1T on' the 'Vdariables Tis X x - Write

2, co oy

A Ay . P 8P oo arag B where the entries of the P. are from
i 288 W) 2

{o. 1, -1} . Then the equation

ensures that the matrices e Pi}Pi (2 =72 = u) satisfy the requirements

dabove.  Hemee by finding orthogonal designs of type (1, L, 1, ...5 1) on
a maximal number of variables, Geramita and Pullman gave a neat combinatorial
solution to the Hurwitz-Radon problem.

Some other special kinds of orthogonal designs are discussed by Taussky

[67]. In particular, she notes that the orthogonal designs

=] >




give representations of the real numbers, complex numbers, quaternions and
Cayley numbers respectively. The fact that these four are essentially the
enly erihogenal designs of type (1., 1, ..., 1) and order % on n

variables is related to the theorem of Bott and Milnor [9] which says that

the only division algebras over the reals have dimensions 1, 2, 4 and 8

The existence question is central to all the particular studies of
orthogonal designs mentioned above:

(0.0.3) For which parameters n, 815 8 Bl does there exist an

5 wes

orthogonal design of type [sl, S5 s su) and order n ?

This thesis is motivated primarily by the search for an answer to this
quiestion.  OFf coupse the questien 1is open; for example it inecludes ‘Ehe
problem of Hadamard matrices. However, recent algebraic and combinatorial
results have provided some insights on the existence question. The most

significant of these results are outlined below.

Using a theorem of Radon [49], Geramita, Geramita and Wallis [ 20

observed that the number of variables of an orthogonal desigiof

order n is at most p(n) , where p (the Radon function) is defined as

fellows. Suppose that n = 2u0+db s mhere b . is odd and @ =d < L . Then

plu). = Be: + Qd (see also [67]). The proof of this fact uses the observation



(ol

that an orthogonal design of type (sl, Sps evs Su) and order n can be

U
written as E: xiAi , where

=il

(DLD. 1) A.A? =nenlsifeort Al Sis ik
L 1

i i ; !

(0.0:5) A4 el = fen . ] = 4 <. =y s
7 . 7
(0:0.8) the entries of each Ai arcs troms {01, 0 -
(LB Ai * Aj — OIS o N P T ST O R T
A set {Al, A2, o i Au} of rational n X n matrices which satisfy

(0.0.4) and (0.0.5) is called a rational family of type (sl, Sps +ees su)

and order % . Thus the existence of an orthogonal design implies the
existence of a rational family of the same order and type. The observation
that the algebraic properties of an orthogonal design are reflected in the
associated rational family motivates the following theorem.

(0.0.8) THEOREM (Rational Family Theorem) [2u4], [63], [78]. Suppose that

n = 2% where b is odd. Then there is a rational family of type

(sl, Shs wees Su) and ovder n  <f and only if

(0.0.9) 7 =uai )

and

a < 5
(0.0.10) where 25 6 2% 2 rational matrix P such that
oS o e A 0
A 22 2%y

The Rational Family Theorem as stated above summarizes many results in
the literature. A full exposition is given by Geramita and Seberry [26].

The conditions (0.0.9) and (0.0.10) are called the algebraic necessary
conditions for the existence of an orthogonal design. For many values of a
and u , the Hasse-Minkowski classification of rational quadratic forms (see

Serre [62], p. 41) gives an efficient algorithm for deciding whether (0.0.10)



holds for given values of s s, (see Wolfe [79]). Robinson

12 S5 eeo
(private communication) has used a computer to determine all U4-tuples

(sl, $55084s s,) with s, *+ 8, * 8, + s, =100 such that (0.0.10) holds

gt Sy
with a = 2 . 1In some cases the algebraic necessary conditions can be
stated in terms of sums of squares. For instance it follows from (0.0.10)

and a theorem of Davenport and Cassels (Serre [62], p. 46) that the

existence of a weighing matrix of weight k and order 0% -y F oaak
implies that k can be written as a sum of 9% squares of integers. Also,
the existence of an orthogonal design of type (sl, 32) and order 27

implies that @ > 0 and the preduet §,8, can be written as a sum of

2 et squares of integers.

An important concept for the theory of orthogonal designs is the fact
that the algebraic necessary conditions weaken as the order becomes more
diwi=ibide by 2 . That is, if (0.0.9) and (0.0.10) held fer parametces
n, s

5 S 8, » then they hold when n is replaced with 2n .

1 5 DpdeEsnes

A kind of integral analogue to the Rational Family Theorem is proved in
Chapter 4. In particular, we show that the algebraic necessary conditions

for the existence of an orthogonal design of type (Sl’ Sps res su] and

order #n often suffice to ensure the existence of an 7 X n matrix A4

which has entries from {mxi Mmoell, 1 s L= u} and satisfies the same

equation as an orthogonal design, that is,
U
AAt = [ ! s.x%]I 5
R
1=1

Sufficient conditions are given for the matrix A to be an orthogonal

IA

desien, that is,"fop the ‘entpies of ' A to be from {ixi TiRNE = u}

However, the algebraic necessary conditions are not always sufficient

for the existence of orthogonal designs. Clearly Sy {F S5 Flobe HF Su =



is also required for the existence of an orthogonal design of type

(Sl’ 32, ety Su) and order 7n . The following three theorems give further

combinatorial necessary conditions for existence.
(0.0.11) THEOREM [2u]. Suppose that there is a weighing matriz of weight
k and order n .

bl sife ni= 2 (mpdali)eithenveitheraan = 2. ov- n = kil .

(b) If n is odd then n =k + Vk + 1 with equality only if there is
a projective plane of order n - k - 1 . o
(0.0.12) THEOREM (Geramita-Verner Theorem) [27]. Suppose that there is an

orthogonal design of type (sl, Shs wees su) and order n and

s R o et 1. Then n 18 even and

(a) n = 2 (mod 4) <implies that there is a symmetric orthogonal

design of type (sl, Sps wees Su) and order n ;

(b) n = 0 (mod 4) <implies that there is a skew-symmetric
orthogonal design of type (sl, Sps +ees Su) and order n . a

(0.0.13) THEOREM (Robinson's Theorem) [53]. If there is an orthogonal
design-of typee (Lgdsdy-lisd s neb)andiovrder #. thew: 9w =82 O

To illustrate the use of Theorems (0.0.12) and (0.0.13) consider the
passibiliky sthat theee,is aniopthogonal design of itype. (L ko B, 1 5051)
and order 56 . Note that these parameters satisfy the algebraic necessary
conditions since p(56) = 8 and

i

satisfies PPt = diag(1l, 1, 1, 1, 51) . But the Geramita-Verner Theorem
implies that if such an orthogonal design exists, then there is a skew-

symmetric orthogonal design A with the same parameters. It is not



difficult to verify that yI56 + A must be an orthogonal design of type

(eSS T T i@ but by Robinsonts #heorem, thiis ‘18 Impossible.

The three combinatorial theorems above indicate that the algebraic
necessary conditions may not.be sufficient for the existence of full or
almost full orthogonal designs (see (1.1.8)). However, numerical evidence

suggests that if n 1is sufficiently larger than s, * 8, Lo 8 then

the algebraic necessary conditions imply existence.

(0.0.14) ASYMPTOTIC SUFFICIENCY CONJECTURE. Suppose that a <is a non-

negative integer and s., s s, » are positive integers such that

l) 29 SRS TS

u < p(2%) and there is a u x 2% rational matriz P such that
pp? = diag(sl, §ps wevs Su) . Then there is an integer N = such that an
orthogonal design of type (sl, Spaanns Su) and order 2%m exists for

each = Wi
The case a = 0 of this conjecture was first proved by Geramita and
Wallis [317]. (Env¥Chapter 3 of this thesis the conjecture is discussed for
0 =a=3. In particular it is proved for weighing matrices, for skew-
symmetric weighing matrices, and for orthogonal designs of order equivalent
to’ 2 modulo 4 . Partial results for other cases are obtained. The
numerical evidence on which the conjecture is based is given in Chapter 5.
Conjecture (0.0.14) claims that existence can be established at the
cost of fullness. This cost is considerable, since orthogonal designs have
gredter sipnificance im applications if they are full or almost full.
Robinson and Seberry [60] have investigated the existence problem for full
& filoponal decipn= . lliey eenjeciure that existence of full ortheogonal

designs with a limited number of variables can be established for orders

which are a power of 2



(0.0.15) ROBINSON-SEBERRY CONJECTURE. If u =<5 and

5y T Epeeen. b = o s then there is an orthogonal design of type

a
(sl, Shs vues Su) and order 27 .

Remark. Robinson's Theorem (0.0.13) prevents the extension of this
eemyccimre koitheicage) wi=tbruieNote alsorthat the algebraic necessary

conditions are not relevant to this conjecture, since if u <5 and a = 3

ther” u = p(?a) and for every uy-tuple (sl, 32, AR Su) of positive

: . a : :
e persiEEhercais i qi /X)) RaiEron iR xS VENN ST hEh i

EEEIE diag(s s s Su) (see [79]).

12 93
The Robinson-Seberry conjecture has been proved by Wallis for u =< 3
[70], and there is extensive numerical evidence which suggests that it is
true for u =4 [60].
In a similar vein, Wallis [70] has proved the following asymptotic

result for Hadamard matrices.

(0.0.16) THEOREM (Wallis' Theorem [701). If v 4s a positive integer
then there is an Hadamard matrix of order 2% far all a.= [? log2(v—3)] |

In Chapter 3 we show that for some values of v , Theorem (0.0.16) can
be genevalized to orthogpenal designs. That is, if all of

n, 8,5 8 A Su , drelsuEFicicntly divisible by 2 then there is an

23

orthogonal design of type (Sl’ Sps cees Su) dndNeRrRdERITI

These asymptotic results leave many existence questions untouched. For
example, the methods of Chapter 3 imply that an orthogonal design of type
(4, 9) and order 2n exists for all n = 11430 (using the proof of
Theorem (3.2.2)). We would like to know whether there is an orthogonal

s gl (000 and Beder 2n - for 7 =m < 11430 . This prompts



10

three questions.
Suppose that u < p(Qa) and there is a u x 2% rational matriz P
such that PP’ = diag(s., s s |
1> Sgs +e+5 8. ) .
(0.0.17) What is the smallest integer N such that an orthogonal design of

type [sl, Soniites su) and order 2% exists Forpalle ni= N2
(0.0.18) What is the smallest odd integer 1 such that an orthogonal

design of type (sl, Sps wves Su) and order 2%1 exists?
(0.0.19) For which integers m between | and N does there exist an
orthogonal design of type (sl, Sps evs su) and order 2% ?

In this thesis we attempt to answer these questions by direct
construction of orthogonal designs. The principal method is an array used
first by Goethals and Seidel [33] to construct a skew-symmetric weighing
matrix of weight 35 and order 36 . In Chapter 2 an algorithm is
presented for using this array to construct orthogonal designs of order
equivalent to 4 modulo 8 . The array is generalized in the second
section of Chapter 2, and the existence of infinite families of orthogonal
designs is deduced. The power of the results of Chapter 2 is illustrated by

the numerical results in Chapter 5.

The existence question (0.0.3) is only partially answered by this
thesis. Many problems are raised but not solved; even more are left
untouched.

A 1list of significant unsolved problems forms an appendix.
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CHAPTER 1

PRELIMINARIES

(1.1) Notation, conventions, and jargon

(1.1.1) Z denotes the ring of integers and @ denotes the field of
rational numbers.
(1.1.2) The order of an n X n matrix is n .

(1.1.3) The identity matrix of order n is denoted by Iﬁ and the #»n x n
matrix with every entry 1 is denoted by Jn .. | Ihe subseripts dre omitted

where convenient.

(1.1.4) A diagonal matrix may be denoted by diag(al, Aoy +ves an)
(1.1.5) A blank entry in a matrix represents zero. Thus

[i %J
F 2
0P =S0)

(1.1.6) The largest integer no bigger than a real number ¢q is denoted

denotes

by [q]

(1.1.7) The number of elements of a finite set S is denoted by |S]|
(1.1.8) A matrix is full if all its entries are nonzero. A matrix may be
referred to as almost full if only a small number of entries are zero. A
matrix with a large number of zero entries is referred to as sparse.

(1.1.9) The transpose of a matrix A is denoted by At . The multiplicative

inverse of At is written A—t if this causes no ambiguity.
(1.1.10) The matrix whose entries are the absolute values of the entries of
A 1is denoted by abs(4)

e 0 1 I R o (aij) - and B = (bij) are two n X m matrices then the



L2

Hadamard produet of A" and® B is written A * B and is an n X m matrix

with ‘Zgth | entey aijbij e nE ANk BR= 0 - then A ‘and B  are said to be
disjoint.
(L. 1. 12 e “symbols 2 L Yy> Yg» +-. , are reserved for use

as formal commuting variables. To make this notion mathematically precise

we may consider these variables as elements of the polynomial ring
Qﬂr, Lrs Tns coes Yo Yyo Yps ..J

@RS R e R . S mabrixoend. Bods am mm o matpi wath

1jth entry bij , then their kronecker product B x A 1is the mm X mn

matrix
~ .
bllA leA o blmA
leA b22A Sy meA
L?mlA meA S bnmft

The relevant properties of the kronecker product are given in [75].

(1.2) Elementary constructions

Suppose that there is an orthogonal design A of type S1» 855 e o

and order n . Then other orthogonal designs may be constructed as follows

(from [24]). Replacing the variable X by zero throughout given an
orthogonal design of type (sl, Sns sees Su—l) . An orthogonal design of
type (sl+82, Sqs wves Su) may be obtained by equating variables, that is,

by 'z, throughout. Note that a weighing matrix of weight

replacing <« 5

it
So .8, kRt & Vimay be obtained in this way.

If there is another orthogonal design B of type (sl, Sps +res Su)

and order m , then the (mtn) X (mtn) matrix
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4

is an orthogonal design of type (Sl’ Spa ees su) and ‘ordep. m -t . HNote

that it follows that if % and v are nonnegative integers and

My + nv # 0 then there is an orthogonal design of type (sl, Sy cees Su)

andseorder oM tonwy. (The significanece of this. is due to the fact that ifi m
is prime to 7 and » = (m-1)(n-1) then » can be written as mw+ nv
where m and 7 are nonnegative. This simple observation is used in
Chapter 3.

Suppose that A 1is skew-symmetric, that is, 4 = -At . Then the

diagonal of A is zero and we can verify that yI + A is an orthogonal

design of type (l, sl, s s Su) and order n . In particular, the

29
existence of a skew-symmetricweighing matrix of weight k is equivalent to

the existence of an orthogonal design of type (1, k) and the same orden.

(1.3) Amicable orthogonal designs

A pi=tpilE (Al, AQ, S0 oo Au) of orthogonal designs of the same order

is called amicable if AiA§ = AjAE Fop ™ 1l's"25f< g = 1 . Amileable u tuples,

especially pairs, have been studied extensively for the following reason.

Stippese that there is an orthogonal design B  of type (sl, Sos cees Su)
and order n , and (Al, A2, Ll Au] is amicable, where each Ai has order
m and type (ali’ R av.i) . Then replacing the variable . by Ai

in B gives an orthogonal design of type

S

(Slall’ Sy e 1av]1’ S0l e 32“022’ e Suavuu)

and order mn . The knowledge of amicable wu-tuples of orders 2, 4 , and

8 has proved invaluable in the construction of full orthogonal designs (see
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[561).
Amicable u-tuples of order 2 have been found which establish the

following theorems.

(1.3.1) THEOREM [2u]. If there is an orthogonal design of type

(sl, Sps wees su) and order n and e, € WL 2L B ier e =g then
th orth L dest e

ere are ogonal designs of types (sl, 813 €1555 €154, s elsu] and
(elsl, €85 =tns eusu) and order 2n . O

(1.3.2) THEOREM [2u]. If there is an orthogonal design of type (sl, 32)
and order wn then there is an orthogonal design of type (sl, §1s 855 32)

and order 2n . O
Wallis [70] used Theorem (1.3.1) to prove the following result for

orthogonal designs of order a power of 2 .

(1:3.3) HEOREM=kEq0 J e sta 1o frovis

S,» 845 are postitive integers with

S

sum 2% then there is an orthogonal design of type (sl, 5,5 33) and order

(b) If = and s, are positive integers with sum at most 2% then

there is an orthogonal design of type (sl, 32) and order 2% . a

For weighing matrices the kronecker product provides a construction
similar in effect to the constructions given by amicable orthogonal designs.
(1 .20 THEGREM. 75%.. . .JTf s W. and V. .are weighing matrices of weights. k
and 1 and orders m and n respectively then W X V 1is a weighing

matrix of weight kil and order mn . O

(1.4) Circulant matrices

An n X n matrix (a..) iziedrenlanl ik @, = @ . . , Wwhepe the
1d 1 0.J-1

subscripts range over a reduced residue system modulo #n . It is not
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difficult to prove that the circulant matrices over a commutative ring form
a commutative ring.

Let Sn denote the group of permutation matrices of order #un , and

suppose that 7 is the permutation matrix which represents the n-cycle

(Hsf@ o s} e fhat iis

0 1 e 0]

@ © 0

© 0 O 0

T =

o 0 © 1

50 e 0
If the first row of the circulant matrix A4 is (all’ Ay > 4y ) , then

-1
= allI i alQT S alnT

This expansion makes algebraic manipulation of circulant matrices easier.

The element R of Sn which represents

(1, n)(2, n-1) ... ([B(n+1)], [H(nt+2)1)
is called the backdiagonal matrix of order #n . Note that
i i
1L
1
R =
= 5

A matrix is backcirculant if it can be written as AR where A is circulant.
The fact that backcirculant matrices are symmetric is important in Chapter 2.
It can be shown easily that there are no circulant orthogonal designs

with more than one variable. but:-there is 2n infinite family of circulant

weighing matrices.

¢1.4.1)  THEOREM [7ul. If g ' is‘a prime power then there is a circulant

weighing matrix of weight q2 and order q2 +q+ 1. m]
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These circulant weighing matrices are used extensively in Chapter 3 and

seetiont (2.3).

The reader is referred to [17] for details on the problem of existence

of circulant weighing matrices.

(1.5) Complementary sequences

The sequences

g, = (all’ e alu)’ 2 = (an’ 7 i a2v]’ e (aul’ s auv)
are complementary if
u v-1
(i5.1) D o e
e T yd ¥l
For edely SZnaslil 2l lon. ofvei}l ionaEontiedanple If0wa, bh Voilid Joare integers

then
fapibliben dheg
b asdy <o),
(-emadgiasabiiry
C=diicpidb iha) v

are complementary.

A straightforward computation using (1.5.1) shows that'if Bi is the

circulant matrix with first row a then

Uu - Uu % 9
125w . BB, = [X D ai.}I
i=1 i=1 j=1 Y

(see [26]). Equations of this form are significant in the construction of

orthogonal designs, especially in Chapter 2.

r

Note that the sequences ajs aé, cees @l

aé = (ail’ ai2’ Aibart aiu’ O)



1

are complementary. Thus for each m = v there are m X m circulant

matrices 4 , A

1 Sl Au S stehttiEh aits

23
U )
- [S‘ 5 a2..]I.
1=1 i=1 =1 Y
This fact is important in Chapters 4 and 5.
Complementary sequences have extensive applications in both pure and

applied combinatorics. The reader is referred to [61], [68], [3], [26], for

further details.

(1.6) Miscellaneous

Several mathematical ideas other than the theory of orthogonal designs
ave used in this thesis.

The classification of rational quadratic forms by Hasse and Minkowski
is invoked in section (3.2) and often in section (4.2). An exposition of
this theory is beyond the scope of this thesis, and the reader is referred
to Sepresl62 ] (partni)]

The classical theorems on sums of squares of integers are used
throughout. Siérpinski [64] lists all the necessary theorems.

The language of algebraic structures (groups, rings etc.) is used in
various places. In particular, some facts about permutation groups are used.
Herstein [60] covers this area sufficiently.

Cyclic difference sets are used in section (2.2); details are in

Baumert [31.
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CHAPTER 2

THE GOETHALS-SEIDEL ARRAY AND SIMILAR CONSTRUCTIONS

Circulant matrices have been used to reproduce orthogonal designs in
the following way. Suppose that there is an orthogonal design of type

(Sl, Sps wres su) and order n on the variables x.,, x

l’ 23 LA L) u’

1 X

5s +ers X5 are v X v circulant matrices with entries from

l,

{O, iyl, in, e iyz} suech that

Z - . 2
(2.0sr) o [}“ m.y.]I .
= e
and
£ £ e
(2:.0:2) b D A e S R L I
h gt

(Note that (2.0.2) is satisfied if each Xi is symmetric, or if each Xi

15 skew—symmetric.)

Then an orthogonal design of type Dﬂl, m2, LA mz) and order nV
may be obtained by replacing each variable x, in_ 4 by Xi -

The difficulty here is the requirement (2.0.2). Forkexample, it can be
shown that a skew-symmetric weighing matrix of weight 35 and order 36
cannot be constructed using &n orthogonal desigmyct type (L, 1. 1, 1) and
order L . Goethals and Seidel produced such a weighing matrix by using a
construction which overcame the problem (2.0.2).

(2.0.3) THEOREM (Goethals-Seidel construction) [33]. Suppose that

Al, AQ, AS’ AL+ , are v X v circulant matrices with entries from

lome o ae

1 o -

L u
(2.094) i A.A?: [E‘ Sﬂg]f.
] dJ
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If R denotes the backdiagonal matrix of order v then

Al AQR A3R AuR

—AQR Al ASR —AgR
{2.0.50

1 7

-ASR _AHR Al AQR

-A R AtR -A;R A

i 3 2 13|
18 an orthogonal design of type (sl, Sps ot su) and order HWv . =

The array (2.0.5) has subsequently been called the Goethals-Seidel
array. Theorem (2.0.3) has proved to be the most productive method of
constructing orthogonal designs of order equivalent to 4 modulo 8 .

A similar array for two circulant matrices is well known.

(2.0.6) THEOREM (Two-circulant construction) [26]. Suppose that A, and

1
A2 are v X v circulant matrices with entries from {0, ixl, ixQ, celes ixu}
and
U
t t 7
AR e [S_j sixi]I :
=1
If R denotes the v x v backdiagonal matrix then
A AR
1 2
CompT)
AR Al
s an orthogonal design of type [sl, Sps +ens Su) and order 2v . a
The two-circulant construction is useful for the construction of
orthogonal designs of order equivalent to 2 modulo 4 . The array (2.0.7)

is called the two-circulant array.

A method for finding solutions of (2.0.4) is described in section (2.1)
following.

Generalizations of the Geothals-Seidel array are presented in section
(2 e O s tra tes techniques for using the Geothals-Seidel

array and its genmeralizations to produce infinite families of orthogonal
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designs.

The results of sections (2.1) and (2.3) have provided a substantial
amount of information about the questions (0.0.17), (0.0.18) and (0.0.19)
posed in the introduction to this thesis. The extent of this information is
indicated in the tables of numerical results in Chapter 5.

The limitations of constructions such as the Goethals-Seidel array

are discussed in section (2.9).

(2.1) A method for constructing orthogonal designs by using circulant
matrices

The method outlined in this section has been used successfully to
compute &4 variable orthogonal designs of order 20 and 2 variable
orthogonal designs of order 28 . Some success has been achieved with
weighine matrices of orders W8, 22,926, 80, U ', and-+562 e The pesulesiior
this computation are included in the tables of numerical results in Chapter
5. The author believes that the method can be extended to construct 3 and
4 variable orthogonal designs of order 28 and 2 variable orthogonal
designs of order 36 , but so far this has not been done.

The method is presented as it applies to the Geothals-Seidel
construction (2.0.3), but there are no difficulties in exfending the results
for more general circulant constructions, such as those mentioned in section
G2.2).

Specifically, for positive integers §15 8 s, > and odd v  the

2, RN

method searches for four circulant matrices Xl’ X2, X3, Xu , of order

with entries from {0, *x .s ixu} such that

ki
u u
2
@ 4 S b [Y s.x.]I.
J T 7 P e N
7=1 =1
The existence of an orthogonal design of type (sl, Sps wres su] and order

4p follows from the Goethals-Seidel construction (2.0.3).
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Remark. The restriction that v is odd is not necessary for most of
the results which follow. However, the restriction is made because we are
principally interested here in constructing orthogonal designs of order not
divisible by 8 . Orthogonal designs of order divisible by a large power of

2 can be constructed using other methods (see [55], [57], and section

(2:9%) .

Equation (2.1.1) has 02 components, but since XiXE is circulant and

symmetric, at most #%(v+l) of these components are independent. The next
two definitions are made to isolate the independent components.

BE Al, AQ, AB’ Au , are v X v circulant matrices with entries from

{O, tx., %€ , ..., *x | and the first row of A, has m.. entries of the
i 2 u J )

kind ixi o Then the # X U4 mateix M = (mij) is called the entry matrix

e= il AL A A

Suppose that A is a v X v circulant matrix with rows

Pis Pos tees Py and denote %(v-1) by w . Then the IPV (immer product
vector) of A is |r.rl, rrl, ..., r.rt| . Note that e lld e )

g2 e 2 1> S ety
is the first row of AAt ., Tthen*the iFPVeot * ‘A T5 (dQ, d3, s dw]

I'E %S se lear “Ehat (Xl, X2, X3, Xu) = (Al, A2, AS’ Au) g el Fellultikonm ©iF

(2,1.1).3iF and eonly if

= i
{2.1.9) 2, mij =5 topa e ¢ Sa .
=il
and
mn
(2.1:.3) Y. B. =08 . where b. is the TPV of 4.
L J J

In other words, to find a solution of (2.1.1) we need four

i } whose entry

circulant matrices with entries from {O, ixl’ ixQ’ oy ol
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matrix has <th row adding to s ko 1l =9 = 'and whose IPV's add to

Zero.

The content of a circulant matrix A with entries from
{o, ixl, oy eens ixu} is the set of pairs (Exi’ m) where ez, (e = &1)
occurs - a nonzero number m times in the first row of A . Our next task

is to show how the contents of solutions of (2.1.1) may be determined from

S

the knowledge of the parameters v, S1s Sps cees e

u
Suppose that the rowsum of A. is Y .. fer' A= =l i Then
g iz 9

the u X 4 integral matrix P = (pij) is called the sum matrix of

(4, 4,, 4,5 4)) . The fill matriz of (A,, 4,, 4,, 4,) is M - abs(P)

The content of Ai is determined by the <Zth columns of the sum and fill
matrices.

The folleowing Theorem may be used to find the sum matrix of a solution
o (221018
(2.1.4) THEOREM (Sum Matrix Theorem). The sum matrix P of a solution of

PN tis fils

i
(9255) g7 = dlag(sl, Sps vevs Su)

Proof. Suppose that A is a v X v circulant matrix with rowsum a ,
and denote by b the sum of the squares of the first row of A , and by e
the sum of the entries of the IPV of A . Then

a) (at7%) = a%us® = a®og

(sc=a ((INEsh) S Butaaidice

iz t) i

(70) (a%7%) = 7(aa%)g

(b+20)JJt

1

v(b+2e)d .
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2 :
Henee @ =D + 2¢ ., Thus 1If (pij) and (mij) are ‘the sum and entry

matrices of a solution of (2.1.1), then since the sum of the sums of the
entrics o the IPY sV is zero, 1t follows that
Ly U 2 U 5
¥ [z pﬁx”b] [s“ mx} L
Al g S o

Expanding this equation and equating coefficients of xixj gaves (2.1 5)k &l

(2.1.6) REMARKS. (a) Note that the Sum Matrix Theorem (2.1.4) implies
that a necessary condition for the existence of an orthogonal design of

type (Sl’ 32, S5 Su) and order U4v constructed by using the Goethals-

Seidel array is the existence of a u X 4 integral matrix P satisfying
(2.1.5). The similarity between this result and the Rational Family Theorem
(0.0.8) was the original motivation for much of Chapter Uu.

(b) Suppose that P and & are the sum and fill matrices of a

solution (Xl, X2, XS’ Xu) = (Al, A2, AB’ Au) of L2921 . 1)s - TF B agd.
are permutation matrices of orders u and U4 vrespectively, then BPC and

BQC are the sum and fill matrices of another solution of (2.1.1) formed by

permuting the indices of the Ai and the xj . Hence BPC and BQC are

Besdvded ds ecesentially the sape as . Poand ¢.. . Similagily, ifg Pl o=
formed from P by multiplying some rows and columns by -1., them P' is

regarded as essentially the same as P .

We state the first step of the method.

STEP 1. Use the Sum Matrix Theorem to find a sum matrix of a solutiom
Shalk

If the algebraic necessary conditions ((0.0.9) and (0.0.10)) for the

existence of an orthogonal design of type‘ (sl, §ns steo Su) and order Uy

hold, then the existence of a solution to (2.1.5) is guaranteed by Proposition

(0,2.3). 1In most cases if the s; are small (for instance
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By b8y Lt & = 28 ) then, the solutiom of (2.1.5) is essentially unique

and can be found easily by hand.

It is clear that if & is the fill matrix of a solution of (2.1.1)
then
¢y ) the entries of @ are even nonnegative integers,
and if - M = (mij) = abs(P) +€ then M satisfies (2.1.2) and
(2.2.8) the sum of.ad ecolumn.of Miiis at most 1w .

There may be a large number of matrices which satisfy (2.1.2), (2.1.7)
and (2.1.8) (see Example (2.1.11)), but the next two lemmas may be used to
reduce the number of possibilities.

(2.1.9) LEMMA. Suppose that A is a circulant matrix of odd order v .
with entries from {0, 1, -1} and with k nonzero entries in each row.
fa) If ik = wv=-1 then eaech entry of the IPV of 4 da odd.

(b)  If each entry of ithe TPV of 4. is even then v =k + V& + 1 .

Proof. Part (a) can be proved by an elementary parity check. For part
(b), a standard counting argument may be employed as follows. Suppose that

Ehe 2 th entry of A Iis aij and denote by Bi the set

1L S aiJ.:O},

fop o= to = g " Edch Bi contains v - k elements. Also, since each
eolumn of 4 ' contains Kk nonzerc entries, each integer in {1, 2, .., v}
oceups in” v —- K. of the Bi . It follows that each element of Bl occurs

il ale- dluaily s of ithe Bi for 4 = 2 3 hence

%
0 lBl n B.| = (v-k)(v-k-1)
- 7
1=2
But since the inner product of each pair of distinct rows of A is even and

Py e cdd, lBl n Bil isdpddiifons Pas ¢ =10y s JInwpanticulan

Do B.l e llenee
1 7
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v
Yj lBl n Bi b el
=2

and so

v

O S (v-k)zw -1 .
Completing the square gives
ot =1
Byepapeila) o' > k=0 and so »=k+VE + 1. a
(2.1.10) LEMMA. Suppose that the entry matriz of a solution

o Xy, X,) = (4, AL s d e e i) ge

K
W
where™ Vo te “1'xX'y ‘and’ W' o deg (u-1) % (4-») . Then

r L
T ['>f s.x?]f
1 1

o1 fOudd ek Eg
and
4 U
S Ay { 5 s.x?}f. 0
e e S

The proof of this lemma is straightforward and thus omitted.

Before the use of these lemmas is illustrated with ansexample, the
second step of the method .is stated explicitly.

SRR Using (2.122); (2.1:7), (2.1.8) ‘and Lemmas (2.1:9) and
(2.1.10), find all possible fill matrices which could accompany the sum
matrix found in Step 1.

If v and the Si are small, then there are usually very few possible

fill matrices, and they can be found easily without a computer.
(2.1.11) EXAMPLE. The existence of an orthogonal design of type
(L s =i ender 20 isldisted in [81] as being undetermined. To

construct such an orthogonal design, we require four 5 X 5 circulant matrices
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B.» Bys By, B, , with entries from {0, tw) s try, g, ixu} S isuch Ythat
: t L9 D
(200 19 Y, B.B. = |xi+5z +5x +9x  |I .
_ Py i 1 2 2 L

2 2
How .:d =75 5= ; + 22 G = 32 = 22 + 22 + 12 , are essentially

the only ways of writing 1, 5, 9 , as sums of at most UL squdres, and so
ik iis mob difficult to show that (esrentially) the only Y4 X 4 integral
mdtrix P which satisfies PPt = ddag(ll 5, 5.8} s

6 o

2 =
(21 08 P Ly

| w

(See Remark (2.1.6) (b).)
Now there are eight 4 X 4 integral matrices which, on the basis of

(o 2 (2.8 7) and, (2.7.8), eenld be £ill matrices.

— — = — — — — —
2 2 2
(a) ) SLf5Y L ;
2 2 2 2
ez o Zias pria ol b
(% 3L )
2 2 2 2
@) A e =
2 N 2 2
| 4 2 |4 2] i 2l el o

However, four of these matrices can be discounted as possible fill
matriees by using Lemmas (2.1.9) and (2.1.10).

Suppose that (Bl, BQ, BB’ Bu) has sum matrix P above (2.1.13) and

Fallomateax (2.01.11%) (b). Then the entry matrix is

B =

Diie Tl

o
N
l (Ga]
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whieh"Sait isFie=M (NS ond (2.7 8) . " But” the (3, 2)th entry of this entry

matrix indicates by Lemma (2.1.9) that every entry of the IPV of B, has a
term in xg with odd coefficient. But Ty occurs at most once in each
row of each of the other circulant matrices, and it follows that the IPV's
of the other circulant matrices have no terms in xg s Henee d& s
impossible for the IPV's of the Bi tofadd” to" zero; so (2.1.14) (b) is net
the fill matrix of the Bi

Suppose that (2.1.14) (£f) is the fill matrix of (Bl, B,» By Bu] ;

this gives entry matrix

-l
al

U 5]

B B Bu) then

If this is the entry matrix of (B > Byo

l’

1 i

is the entry matrix of another solution (Cl, 02, 03, Cu) of (2.1.13) (=ee

Remark (2.1.6) (b)). It follows by Lemma (2.1.10) that

ClC§ G 0202 = in+9x§]f5 5
and thus, using the two-circulant construction (2.0.6), there is an
orthogonal design of type (1, 9) and order 10 . This is impossible (see
Theorem (0.0.11)) and sé (2.1°18) (F)"is"not the fill matrix of
(7788 528, ]
Similarly it can be shown that (2.1.14) (h) and (2.1.14) (e) are not

possible.
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Eeell of ithel pe-cibile Fi1l matrices (2.1.14) (a),.(c), (d), (g), could
specify the eontents of a solution of (2.1.12). .For each of these
possibilities, we need to search through the circulant matrices whose
contents are thus specified, until we find a combination whose IPV's add to
zero W Eer instance, Vor (21 24 )i(a) me need té-find Ffour | 5exi5

permutation matrices Ml’ M2, MS’ Mu , such that
(xl, x2, -xz, x3, —xs)Mi 3

(xQ, —xs, —xs, xu, —xu)M2 s
(2ys 2y @3 @0 -2 M,
Lxu, xu, x”, xu, ~xu)Mﬁ 5
are the first rows of circulant matrices whose IPV's add to zero. If this
search fails then we consider circulant matrices with contents specified by
(2.1.4) (c), and so on. Note that there are a large number (about 2% 108 )

of L-tuples (M M2, M3, Mq) of 5 X 5 permutation matrices; however,

l’
only a small proportion of these need be considered, as we shall presently

SEE S

Once the sum and fill matrices have been chosen, the final steps of
ithe method mdy be oxeccuted.

STEP 3. For each < € {1, 2, 3, 4} write down a circulant matrix Ai

with contents specified by the ith colwms of the sum and fill matrices.
Step 3 can be executed easily either by hand or by computer. Of

course, the circulant matrices Ai ean be.represented by thein first vows:

Two circulant matrices with the same content are isometric if they have

the same IPV.

STER 4. For each i € {1, 2,3, 4} write a list L, of non-

igometric circulant matrices with the same contents as Ai . Attach to each
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etrculant matrix its IPV.

The problem of executing the fourth step is considered next. Given two
circulant matrices with the same content, how do we determine whether they
are isometric (without the time consuming calculation of IPV's)? How large

are the lists Li ? Useful necessary and sufficient conditions for isometry

are, in general, unknown, but one obvious sufficient condition can be

described as follows. Denote by Sv the group of v X v permutation
matrices, and suppose that T € Sv represents the wv-cycle (1 2 ... v) .

Let R denote the v X v backdiagonal matrix (see section (1.3)). The

subgroup Sv generated by ¥ and .y B.+is denoted by (P, B} . If. A and

B are v X v circulant matrices with first rows a and aK for some
K € (T, R) then it can be seen immediately that A4 and B are isometric.
It follows that the number of non-isometric circulant matrices with the same

content is at most the index of (T, R} in Sv sothatsis, o (p=1)1/2_ . . Thus
the lists Li in Step 4 contain at most (v-1)!/2 entries. A complete set

of distinct coset representatives of (T, R) in Sv is easily seen to be

E = {M € SU : M represents a permutation

Snom 20 .., vl ulidch satisfies 98 =9 .gnd (18 = %(v—l)} .

Thus to compute the list Li in step 4 we first write out the elements of
S = {B : B is a circulant matrix with first row aiM for some M € E}
where ¢g. denotes the first row of the circulant matrix Ai chosen at step

2

3. This can be done easily either automatically or by hand.
Of course S may contain isometric elements. But it can be shown (as

follows) that if a. = (xl, Loy wees xv) then no two distinct elements of
7

S are isometric.

¢2.1./15)aBEMMALT If a, = (xl, Ly nes xv] and Bl and B2 are elements



of S with first rows a.M. and a.M, where M, and M, are v X v
gu L @2 1 2

permutation matrices, then Bl and 32 are tsometric if and only if
they are equal.

Proof. The first entries of the IPV's of B, and 32 are equal,
ENEhE Al
1% = =1 7

O

aMT M = am vy
o, AL g7

Symmetrizing gives

a i (e bal = am, (rer el
Since a. = (xl, Lo oves xv) we obtain
v YV, e VR
where M denotes M’ilM2 . A simple combinatorial argument using the fact

that v 1is odd shows that' T + T_l can be written uniquely as a sum of

two permutation matrices (see [14]). Hence either T = Mt or

_’Z’—l = MTM_l . I eifher ledse, sinee the subgroup of Sv generated by T
is self centralizing (see [761), we can deduce that M € {7, R} .. Thus Ml
and M2 amefin the¥sane cosek ‘of f (I3 R M: " but both ave elements of .5 &
so Mi = M2

The converse is immediate. O

This lemma implies that sometimes the list Li achieves its maximum
size (v-1)!/2 . However this is rare. For instance, if the content of 4

is {(exi, nEi) = eee Sl Ehien the subgpoup

L:{MESv:aiM:ai}

of Sv has order

30
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o e

L=—y 1=-u

Hence there are at most v!/m entries of the list Li , and often
vi/m < (v-1)1/2 . However, the coset representatives of [ in Sb are more

difficult to deal with by computer than the representatives of (T, R)
Hence L 1is used only in hand calculations. When a computer is used the

sort-merge package program may be used to eliminate isometric elements of '

the 'set s 5 .

The final step of the method is to search the lists Li for an answer.
STEP 5. Search for one circulant matrix Ci with IPV c. from each

list Li CF <'2=Y%) such that cl + e, + cq + g, = 03

In the implementations for orthogonal designs of orders 20 and 28 ,
there was no difficulty in using a naive algorithm for the search at step 5

because the lists Li were relatively small. However, to extend the

method to higher orders it seems that a sophisticated search algorithm would
need to be employed.
Two notes on the execution of steps 4 and 5 are presented next.

Firstly, suppose that Cl, 02, CB’

C4 , are circulant matrices whose
stmand Fill matrices satisfy (2.1.2), (2.1.5), (2.1.7) and £2.1.8). ‘Then

the sum of the sums of the entries of the IPV's of the Ci is zero (see

proof of Theorem (2.1.4)). That is, if (cil’ e = ciw) is the IPV

22"

eb o1 = g = 1) Fhen

1
L w
E: f: ci. =0
=il j:_]_ J

Hence if
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n
e, =0 for 1= J = w-1
i=1 ¥
then
in
z: e B foni 1= g =
i=1 Y

Hence only %(v-3) of the %(v-1) components of the IPV's need

to add to zero for (2.1.1) to hold. This saves time and space in computer
implementation and provides a simple error checking device for hand
calculations.

Secondly, we note that the IPV's of non-isometric circulant matrices

may be dependent, in the following way. Suppose that N € Sv normalizes

Ehe subgreup, (T} of Sv generated by T . Note that there is an integer
: 1..-1 id . :
di pwimehitosns rsuchedhat VT Wes, = F Fortadr= ¢ < 9 . 'New it the

circulant matrix 4 has first row a then the <th entry of the IPV of

AR aTktat - lHeneenthe NPV o thercireulant imatrix B with Eirst pow
al has <th entry T et aT_tdat . Hence the IPV of B

is 4 permutation of the IPV of' "A , deseribed as follows. Suppose that the

mPVitefT A is (hl, h2, ! B hw) and (Zd)* denotes the image of Zd in

ot p-1)  medule v . 'ihen the IP¥ of B s (hle, h26’ it hwe)
piiicre R isEEhe permutation ong {12 ot . gl - defined by

(Zd) iRl (id ) = e
(2:1.416) Bz 2 >

v - (2d)* otherwise.
Note that 6 = 1 if and only if" N € (T, E) . Hence the index of the

normalizerof  (T) «an SU is - wdlu)i, iwhever ¢ dg the'Buler Funetion,  IFf

v is prime then the set E' of v X v permutation matrices which

peprescut d permutation on. {1, 2, ..., ®} which fizes v and » - 1 is a
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complete set of distinct coset representatives of the normalizer of (7T) in

S
%
For automatic computation this means that one of the lists, say Ll .
may consist of elements
o= {B : B is a circulant matrix with first row a.M for some M ¢ E'}

ik
This produces a considerably shorter list, and the search (step 5) may be
proportionally shorter in time.

The use of the normalizer of (7T} in hand calculations is illustrated
in the completion of Example (2.1.11) below. Firstly, however, we show how
the facts above may be used to construct a certain U4 variable orthogonal
design of order 28
(2.1.17) EXAMPLE. An orthogonal design of type (1, 1, 1, 25) and order

28 can be constructed as follows. We want four 7 X 7 circulant matrices

Vl’ V2, V3, V4 , with entries from {O, ixl, ixQ, ixa, ixu} such that
u 7z 2R 2NNED 22
= 73
(2 1:18) 7/}_“1 V.V, [xl+x2+x3+25xu .

The eonditions (2.1.2),,(2.1.5), (2.1.7), (2.1.8), imply that the sum and

£il1l matrices of (Vl, V2, V3, Vu) must ‘be diasll, 1. 1,.5) and

i ]
e & 2
respectively. Hence V7, must be (J—QI)xu up to isometry (see (1.1.3));
2 2 2 : :
ithus Vu heis TPV 3xu, qu, 39cu . Choose a skew-symmetric 7 X 7 matrix

Cl with entries from {0, 1, -1} and precisely one zero in each oW ;

d2, d3) -4 Now the nermalizer of (T) in S5  acts

denote its IPV by (d :

l’

cyclically on (dl, d2, ds) by (2.1.16), and further, it preserves skew-
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symmetry. Hence there are skew-symmetric circulant matrices 02 and 03

with IPV's (d,, d,, d;) and (d

s s d2) respeatively.s Fopedili=il = 3

Sl

denore® g e LWEEME S LE s Bt is clesr that the 1PV's of the V. 5
z 4oz z 7

L= = iieddise (. £ F) | whepe ' = (dl+d2+d3+3)xi . But since the

sum and fill matrices of (Vl, V2, V3, Vu) Sefeisip (201 F) - (0 s

(.17, 0. 79680 i ollons"ehate F'e Fr 7 o™ thae 15, f =0 . Hence
the IPV's of the Vi add to zero, and thus the Vi satigfy (2:1.18).
Example (2.1.11) completed. The index of the normalizer of (1) in

SS is 6 , and so there are at most 6 circulants of order 5 with the

same contents whose IPV's differ by more than just a permutation. A
complete set of distinct coset representatives of this subgroup is
Foe by W2) f (99) 0 (any (45) . 51k

Suppose that a solution (Bl, B2, BS’ Bu) of (2.1.12) has sum matrix P
(2. 1.3 and Filil matrix (2.1.14) (a). Using the set F ., 'a list Li of

circulants with contents thus specified and essentially different IPV's can
be made, for each < € {1, 2, 3, 4} . A short search reveals that if
Bl’ BQ, BS’ Bu , have first rows
(2, 25 235 3y, -w,)
(2,0 2, 25, -2, = 0
6”3: Lo Lys =Ty, xz) A
(o> 2> @5 3,5 @)

respectively, then the Bi satishy (2.0.00).

(2.2) Generalized Goethals-Seidel arrays

Denote by Uv the multiplicative group of generalized permutation
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matrices of order v , that is, the elements of Uv abfe #pixsy Ymatrices

with entries from {0, 1, -1} such that each row and column contains
precisely one nonzero entry. If T denotes the permutation matrix which
represents (1 2 ... v) then the circulant matrices of order » over a
commutative ring K with identity are the elements of the group ring

T

If H is an abelian subgroup of Uv and there is an element R of.

UU such that RQ = I and R-lAR = A—l tfor all A € F. . Then we shall
call KH a GC-ring (generalized circulant ring).

The elements of a GC-ring may be used in the Goethals-Seidel array in

the same way as circulant matrices. That s A Al, AQ, AB’ Au , are

elements of a GC-ring such that

u i
{790 A = T
¢ G2l Tt
2.=1 i
then the rows of
Al AZR A3R AHR
i i
—AQR Al AuR —A3R
+ i
—A3R _AMR Al AQR
iz 7
—AuR ASR —AQR Al_d

are orthogonal.

Wallis and Whiteman [73] showed essentially that if H is an abelian
group of permutation matrices, then KH is a GC-ring. The elements of KH
awe ealledutype | Ly imatrices’on H .

Delsarte, Goethals and Seidel [11] introduced another GC-ring. If D
deneres Ehe @ o wekeix digp(l, Ly ..., 1, -1) , then DT generates a

cyclic subgroup L of Uv gl epders 20 . 'The pgroup ring. KL is a GC-ring

and its elements are called negacyclic matrices.
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Remarks. (a) Mullin and Stanton [46] use the term group matrix rather
than type 1 matriz.

(b) The definition of type 1 matrixz by Wallis and Whiteman in fact
only includes the case where H represents a transitive permutation group.
However, the cxtension to the intransitive case is not difficult (see
Wielandt [761, pp. 1-10).

(ec) Suppose that b dis odd and N denotes the b X b matrix

diae @l o=l na =) i i e L Phen g b X D fmatrix ‘4 iz eiveulant if

and only if N—lAN is negacyclic. Hence an equation of the form (2.2.4)
(or (2.0.1)) has a solution consisting of negacyclic matrices of order 5
if and only if it has a solution consisting of circulant matrices of order
b . (The author is grateful to Dr L.G. Kovdcs for this observation. See

allse Theerem U2 e ([[LiLl.)

The Goethals-Seidel array itself may be generalized as follows. Let G

denote the group

7 = 17 i e
= % .. B s Lt
<r, Tys Tis Loy Ty oo ] T Ty s Tyl xeL For 1,7 €0 b
r2 = 15 rx = x?>
1 Tz
Denote by S the subset
t v ; ‘ ]
{O, ixl, ixl, irxl, irxl, ix2, ix2, irxl, irxz, ...}

of the integral group ring ZG . The notion of transpose may be abstracted

[ £ £)?
hy defining an operation ( ) on ZG by (xi) =z, [xi] =

p’ = p , 'and extending te ZG  in the obvious fashion. If A = (aij) is an

n X m matrix with entries from ZG then A* denotes the »n X n matrix

witth ' 2 gEn entoy a?i i E. 4" has entries from S and
J
< t
AA* = [ ¥ s.x.x.J
S s T
=1
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then A 1is called a GGS array (generalized Goethals-Seidel array) of type

(Sla Sps sees Su) and order n .

For example, the Goethals-Seidel array itself, written as

r o Y’.’L‘t rxt I’x{
i 2 3 m
—P.’X?t ra
2 il T
—rxt -Yrx 46 20
3 4 ! 2
—mct 220 - &L
& 3 2 L]

iis a,G6S avray of type (1, 1, 1,4 1) and onder 4 .
The essential use of GGS arrays is immediate.. Suppose that there is a

GGS 1 A g » 500
array of type (Sl, 82 5 Su) and order 7 , and Xl’ X2, : Xu

are v X v matrices from some GC-ring such that the entries of the Xi are

from {O, iyl, in, St iyz} and

=

L

t 7

=g gl [Y m.y.]I :
% U F=1 J

1l

-1
Then replacing the entries of A with the appropriate matrices yields an

orthogonal design of type (ml, My o mz) and order nv . Examples of

orthogonal designs constructed in this way are given in the next section
and in Chapter 5.
More importantly, GGS arrays may be used to produce more GGS arrays.

(2.2.2) THEOREM. Suppose that there is a GGS array of type (sl, Sps wens Su)

and order n , and the v x v matrices Al, A Au are from some GC-

0¥ "ees

ring and have entries from {0, s 2Ly, e, ixu} L

L [ .
o [7 mxx]I
i T L e
J=1
then there is a GGS array of type (ml, Mys «ons mz) and order nv .

Proof. Suppose that 4 1is a GGS array of type (sl, Sps +rvs 8
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order v , and the following replacements are made:

Q&= Zere matrix of order v :

w5p =2 Al
7 7

ifac7.5 —> iAi.;
7

T

e > FpRA .
7 %

%
tyy. — tpRA*
7 7

Then the resulting matrix B has entries from § and

¢ U
BE*h="al 7. s.A.A’fJ XD
i ¢t T n
;¥ ‘
A mmeI P O

To illustrate this theorem a GGS array of type (2, 2) and order 6
is constructed. The two-circulant construction (2.0.6) gives a GGS array of

tgpe. (4.0 cand order, .2

xl rx
—Px2 x%—
The circulant matrices
xl x2 xl —x2
Al E xl xQ and A2 = xl —x2
x, xk :xz xL

satisfy AlAi - AQA; = Q[xle+x2x§JI . Following the replacements in the

proof of Theorem (2.2.2), a GGS array of type (2, 2) and order % is

obtained:



Note

type

7 &
.’L‘l .’L'Q —r’x2
&L & —th th
1 2 2 i
X a4 th
2 1 i
r'xt -Prx &L a6
2 i 2
th —r'xt
2 i )
—rxt I‘.’L‘t a8
E ! 2 2

that the theorem could be applied a times

(2a, 2a) and order 3a.2

rx

ok

X

-
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to obtain a GGS array of

The existence of a GGS array clearly implies the

orthogonal design of the same type and order, but the

secti

fact

array

on (2.4)). 1In many cases, however, the converse

is that every orthogonal design on 2 variables

by replacing the second variable x,

by th

o

existence of an
converse is false (see
is true. An important

can be made into a GGS

The following

proposition gives some infinite families of GGS arrays with U4 variables.

2.2

3) PROPOSITION. Suppose that a <is a positive integer and 1 s a

product of at least a positive integers, that is,

g9 .= a.

(2%,

= 1112 S Zj where

fa). If Zi =-2 jJor: 1 =9 = g then there is a GGS arvay of typz

2a, 2a, Qa) and order 4l .

(BlatIF Zi >4 for 1<=1=j then there are GGS arrays of type

BN 0 0, ) and ovder - BT

Proof. For 11, = 2 consider the sequences

a

i il
(0 =2 05 5) » a5 = [m2 =,5 05 ) »
1 3
OZ 0 denotes a -sequence of Zl - 2 zeros.

= (20 2 Ozl—z) ’

1

(23> 2, 021-2) :

These sequences are
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complementary, and further, if Ai is the circulant matrix with first row

a@. then

z
m m k.
Y A A% = 2{ > xixi]I :
=1 =1

Using Theorem (2.2.2) and the Goethals-Seidel array, a GGS array of type

(2, 2800542) wand onden HZl may be obtained. Repeating this procedure a

times gives (a). For (b) the following complementary sequences may be used

in a similar fashion:

3. 1. a3 = (O, T, T, -xq), (xl, g, T xu),

(xla .’L‘2, Os _x”_)a (xl: ‘x29 x33 O) s
I R le, &, T, -xu), (xl, T, Ty, xu),

(xl, Ty Lgs -xu), (xl, Ty Loy xu) - a

A numerical investigation of GGS arrays of order 12 has been made and
the results are listed in section (5.7). These GGS arrays have been used to
construct orthogonal designs of orders 36 and 60 . Examples are given in
section (5.4).

GGS arrays with 2 variables have been used successfplly for construct-
ing orthogonal designs of highly composite orders equivalent to 2 modulo
4 . Examples are given in section (5.3). (See also [70].)

Finally, we note that there are several other methods of using
circulant matrices to construct orthogonal designs (see [72]). However, it

seems that GGS arrays are the most powerful method for orders not divisible
by 8
(2.3) Some infinite families of orthogonal designs

The Goethals-Seidel array and its generalizations have been used to

construct many infinite families of orthogonal designs. Some examples are
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listed in [19] and [13]. The theorems below illustrate some of the techniques

involved.

(2.3.1) THEOREM. If there is a GGS array of type (sl, Sy +e+s 8 ) and

order n then there is an orthogonal design of type

(sl, §15 €55 855 +evs 8, su) and order 2n .

Proof. The negacyclic matrix

L
Xi i T
e
is an orthogonal design of type (1, 1) . Hence
u U
o s.X.X? =1 3 s.{x?+y%] Lt a
e AT AR ey Rl
=1 7=1

The combination of Theorem (2.3.1) and Proposition (2.2.3) gives a

large collection of orthogonal designs. For example, for each a > 0

there is an orthogonal design of type (ua, b,

and order 8.5a

(2.3.2) THEOREM. Suppose that q is a prime power of the form 3m + 1 .
Then there is a skew symmetric weighing matrix of weight q2 and order

4(q2+q+l)/3 -
Proof. TFor each v denote the v X v permutation matrix which

represents (1 2 ... v) by Tv « | Sinee . g = 8m + 1 , .8 divides

q2 +.g + 1 but 9  does not divide q2 +'g £.1 .  Henee the group Sl of

permutation matrices generated by T is isomorphic to the group
Goatqtl

generated by T X T . Both these groups represent transitive
3m +3m+1

permutation groups and it follows (see [16]) that they are conjugate. Hence

2 ; -
for each circulant matrix W of order g + q + 1 there is a permutation
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matrix N of order q2 9 g =l ) such ithat N_lWN has the form

Xl X2 X3
XB Xl X2
el
where the Xi are circulant matrices of order 3m2 e R R e s o

circulant weighing matrix of weight q2 (see section (1.4)) then the X
have entries from {0, 1, -1} and

t t R,
Xle 23 X2X2 * X3X3 =R

Thus xlI, x2Xl’ x2X2, x2X3 » may be used in the Goethals-Seidel array to

obtain an orthogonal design of type (l, q2) and order 4(3m2+3m+l) : a
(2.3.3) THEOREM. Suppose that there is a skew symmetric weighing matrix of

weight k and order n , and Yk - 1 is prime. Then there is a skew

symmetric weighing matrix of weight wk?  and order (4k-1)n .

Proof. Since U4k - 1 is prime there is a cyclic difference set D
with parameters (v, k, A) = (4k-1, 2k, k) . Further, D may be chosen so
that' 0 € B ond fer z #£.0 ;& €D if and only ifss-2 €D . (Baumert [3]
has details on difference sets.) Denote the incidence matrix of this

difference set by B . The circulant matrices Al = xQB and

A2 = xlI + xQ(B—J—I) satisfy

+ £ 990 % 5
AlAl + kA2A2 = [xl+4k x?]Iuk—l ;

The theorem follows since a skew symmetric weighing matrix of weight k may

be used as a GGS array of type (1, k) . O

(2.3.4) THEOREM. Suppose that q is a prime power and q2 Hig +l re a

prime of the form um - 1 . Then there are orthogonal designs of types
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2 2 %
(l, 1 2q2, 2(q+l)2] and (l, e (o2 20l +(q+l)2) and order
4 (g% +q+1)
Proof. Suppose that W 1is a circulant weighing matrix of weight q2

and order q2 g £l (see (1.4)).. Denpte J = abs(W) by B .: It can be
shown that B is the incidence matrix of a cyclic projective plane of order
q (see [34]): hence BBt =gl hdl L T E q2 +qg+1=Un-1 and is prime,
then there is a cyclic difference set E with parameters (4m-1, 2m-1, m-1)
such that 0 ¢ £ , and for x # 0 > erEs SEong fonlyiiE  tas Bp TS

(In fact F is the complement of the difference set in the proof of the

previous theorem.) If F is the incidence matrix of & s Cthen® 4 =¢2F S5

is skew-symmetric and AAt = (q2+q+l)I - J . The circulant matrices

2 i R
Xy = xQI tx Ao,
X3 = x3W tx,B,
X” 5 xBB s
satistky
o t Do 2 L2
.Ea-XQXi = [ml+x2+(2q +2q+l)[x3+x4}]f .
D=
The circulant matrices
Yl = xlI + qu 5
i Sl & Ziges
Ys = xSW +: qu 3
YL+ = x3W - qu %
satisfy
¢ t g 2 2 2872
.Ei Xiyi = |oytE,t2q x3+2(q+l) @, | - O
7/:
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Remark. It is not known whether Theorem (2.3.4) generates an infinite

family of orthogonal designs. The first few primes in

/s : c
{¢°+q+1 : q¢ is a prime power and q2+q+l = 3 (mod 4)}
ape 7, 91 509 o l¥28. 80I1l. 9507.

(2.3.5) THEOREM. Suppose that q 1is a prime power and v = 6 . Then
there are orthogonal designs of types (5, 5q2), (5q2, 5q2), (lO, quz),

2 2
(5(¢°+1), 5(¢°+1)) and order 20(q2+q+l)

Proof. The existence of an orthogonal desigmeef type (5, 5) and
order 2v is established in [21]. Hence there is a GGS array of type

(5, 5) and order 2v . The circulant weighing matrices of weight q2 and

order q2 + g + 1 may be used to complete the proof. O

(2.4) Limitations

There are two ways in which the use of GGS arrays for constructing
orthogonal designs is limited.

Firstly, little is known about the existence of GGS arrays. The
numerical investigation of GGS arrays of order 12 (see section (5.7))
shows that existence of a GGS array is harder to establish:than existence of
the corresponding orthogonal design. Further, it can be deduced from
Theorem (2.3.1) that the number of variables of a GGS array of order = is
at most [%p(2n)] . If 8 divides n then [%p(21n)] < p(n) and so there
are many orthogonal designs for which a corresponding GGS array does not
exist. MNote also that if 16 divides n then [%p(2n)] > 4 , but no GES
array with more than U4 variables is known.

Secondly, it can be proved that not all orthogonal designs can be
constructed using GGS arrays. There is an orthogonal design of type (4, 9)
andiopdesill(sce [23]) .  However, using the methods of section (2.2), it

can be shown that there is no orthogonal design of type (4, 9) and order
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14  constructed by using two 7 X 7 circulant matrices in the two-

circulant construction. Using the same methods it can be shown that there

e meNertliceonc il idesiloms o types (8, 7, 8), (1, 8,6, 8), (1, W, 4, 9)

or (2, 2, 5, 5) and order 20 constructed using GGS arrays (see [14],
[15]). However it is not known whether there are any orthogonal designs of
order equivalent to 4 modulo 8 which cannot be constructed using GGS
darpays.  The existence of opthogonal designs of types (38, 7, 8), €1, 3, 6, 8),
(1, 4, 4, 9), (2, 2, 5, 5) and order 20 is undetermined and the author

knows of no efficient method of solving this problem.
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CHAPTER 3

ASYMPTOTIC EXISTENCE RESULTS

Geramita and Pullman [25] proved that for every positive integer n
there is an orthogonal design of type (1, 1, 18 ...870)dlandierderdin) son
p(n) variables. Since the function g > p(?a) is strictly increasing,
an asymptotic result may be immediately deduced.

(8.0.1) THEOREM,  If 15 8 hisi. b , are positive integers then there

29

is an integer N such that there is an orthogonal design of type
a
(sl, Sps wves su) audyorden 2°h  for-all ,a = N . g

For example, it is not known whether there is an orthogonal design of
type (1, 3, 6, 8) and order 20 , but the existence of an orthogonal
design of this type and order 2%.5 may be obtained for large a as
=61 loyst WIE Ja.= H0N thendoioflle= 157= 18+ Setesi+fer. JiHence shere = an

orthosefialédesimmuotstypelsn (Ihuined 10,5100, andiendent 2 vSidonseds

variables for all a = 10 . Equating variables gives an orthogonal design

of type (1,8, 6, 8) andorder 2%.5 for all a = 10 .

However this result is unsatisfactory. It is not useful in applications
because the orthogonal designs obtained are very sparse - the ratio of the
number of nonzero entries per row to the order in the example above is less
than .004 . In section (3.1) an asymptotic result which preserves fullness
is obtained. This result is related to the Robinson-Seberry conjecture
(0. 0.15) sud Waliis! Theorem (0.0.16).

Also, Theorem (3.0.1) sheds no light on the question of sufficiency of
the algebraic necessary conditions (0.0.9) and (0.0.10). This is because
the power of 2 dividing the order of the orthogonal design is allowed to

vary considerably. Asymptotic existence results for orders divisible by a
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fixed power of 2 are proved in section (3.2). Several cases of the

Asymptotic Sufficiency Conjecture (0.0.14) are obtained.

(3.1) Asymptotic existence of full orthogonal designs

If the positive integers n, S1> 8 s, » are all highly divisible

SUREEE
by 2 , then in many cases the existence of an orthogonal design of type

S15 855 -ees s, and order n may be established. Specifically, we prove:

(3.1.1) THEOREM. Suppose that r and n are positive integers,

bl, bQ, e bZ s are powers of 2 , and there is an orthogonal design of
r

type (bl, b2, 3t bz) and order "2 n . If 15 855 +v-5 8, are

positive integers with sum Qd(bl Wbt bz] Jor some d =0, ithen

there is an integer N such that an orthogonal design of type

+ ;
Qasl, Qasz, e e Qasu and order 2% d+pn exists for eageh a = N.

Before a proof of this theorem is given, we present a corollary which

gives full orthogonal designs of order 2an for smalil 9,

(8ul.2) COROLLARY.. «Suppose thath 1is'n'=.8 and 815 S5 +v-5 S , are
positive integers with sum an for some d = 0 . Then there is an integer
N such that an orthogonal design of type 2asl, 2a32, e 2asu and

order 2a+dn exists for 'cach a = N .
Proot.  There ape full omtliogonal desipgns of type (1) "and order 1
hypet (L, Va2 8 fand fordemenl 2n, ciypegalls; Yse8)n atdtorder 20 , and

type (4, 4, U, 16) and order 28spbsee [2u], [31], [19]). _The corcllary

tollon-Geon pa= 1, 8. 5 ands 7 . Eor m ewen, write . n .ds QCnl where

] dd. 0O
nl is o

Remark. The case n = 1 of this corollary is proved in [18].
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Proof of Theorem (3.1.1). Theorem (1.3.1) implies that if there is an

orthogonal design of type (al, Aps +ovs av) and order m , then there are

orthogonal designs of types (Qal, 2a 0% 2av) and

2’

(al, ay> 2a 2a,,

0> g 2av) and order . 2m . This vesult is used

extensively below.

Suppose that there is an orthogonal design of type (bl, b2, s bZ)

and order 2"% where each bi is a power of 2 . Denote the sum of the
bi by f . If d is a nonnegative integer then denote the sequence

d d d :

2 bl, 2 b2’ e ) bZ by B . By Theorem (1.3.1) there is an orthogonal

design of type B and order 2d+rn i sl e highest power of 2

which occurs in B and j > 0 , then replace one occurrence of 2 with

2 23_1) to ferm a sequemce "B’ “of length 7 + 1 U "Using Theorem

(1.3.1), there is an orthogonal design of type 2B’ and order 2d+r+l .

Again, if 2¥ is the highest power of 2 oceliwring in B! and ¢ 240 , then

weplace oile gecurpence OF 2° with (QZ_l, 21_1) te ferm a scquencesiBY

2d+r+2

there is an orthogonal design of type u4B" and order Continuing

. N
im this fashion, on epthoponal desipn (A of typedwfi (1, 1. 3. . . di8 " apd

2d+r+Nn

order Qdf variables may be obtained, where N denotes

b : : d
=4 8 4. dre positive imtegebs with sum 2 filgathen
U

d
Z o e U 815 Sy

equating variables in A gives an orthogonal design of type

2d+r+Nn

N :
2 (Sl’ Sps et su] and order Using Theorem (1.3.1), an

2d+raa

s a
orthogonal design of type 2 (sl, Sps +res Su) and order n may be

obtained for all g = N . O

The above proof is chosen for its simplicity and generality. Other

methods give smaller values of N 1in particular cases.
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For example, if d 1is an integer greater than 2 then denote by Nd

the smallest integer such that an orthogonal design of type
(22, ?2, A g 21(?d—5)] and order fzﬁi exists for each a = Nd

Thie "existenee™of [ "' is assured by Corollary (3.1.2), and Robinsen's

d

Theereme( 0088 shows thatiForiid 45 i o M# 0 1o Foldewing thoough the

d

4 d
proof of Theorem (3.1.1) above it can be shown that Nd fedl most "2 =ik
However, the methods of [18] can be used as follows to obtain Nd = 8 afew

all ‘d = 3
There is an orthogonal design of type (1) and order 1 and repeated

applications of Theorem (1.3.1) give orthogonal designs

of type (s L) and order 2 s

of type blaadsil) and order L 44

of type Gl B and order Bl )

of type (R T | R =l e :

of type o i e g o zd) Lo s A :

of type [Bnnn b ey B %) hd o S

abitme Ties Shee S S Sasisarbl § 128k 4k 2d+2) MR
Moy 8 & 6wt bl + I 280k dnist 2d+2 = 8(2d—5) Hence by equating variables
an orthogonal design of type (8, By By 85 B 8(2d—5)) and order 2d+3 may

be obtained. From Theorem (1.3.1) we deduce that Nd =3

Remark. Using sophisticated constructions Robinson [58] has established

the existence of an orthogonal design of type

d-7 QdLQ)

d
O T T S and order 2 for each d > 2 .

Methods similar to those above may be applied to this orthogonal design to
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obtain Nd = TenigeMrors 'd > 5 Nd =] Eop 2 <'d <'5 "Reobinson

[57] has shown that N;,=0 . The case d = 5 remains open.

(3.2) Asymptotic sufficiency of the algebraic necessary conditions

The conjecture (0.0.14) that the algebraic necessary conditions
((0.0.9), (0.0.10)) are asymptotically sufficient for existence is discussed
imy thiss seetion. The‘main results’are’ Theorems (3:2.1)) €3.2.29,7(38.2.3)

zmiel (8,2.6) belen .

Suppose that there is a weighing matrix of weight k and order 2%

where b 1is odd. Then it follows from the algebraic necessary conditions
that k can be written as a sum of 2% squares. Similarly, the existence
of a skew symmetric weighing matrix of weight k and order 2% implies

that a > 0 and %k can be written as a sum of 2% - 1 squares. These
necessary conditions are asymptotically sufficient.
(3.2.1) THEOREM. (a) Suppose that k can be written as a sum of 2%

squares. Then there is an integer N such that a weighing matrix of weight
k and order 2% exists for each n = N .

(b) Suppose that a > 0 and k can be written as a sum of R |

squares. Then there is an integer N such that a skew symmetric weighing

matrix of weight k and order 2% exists for each n = N .
Remark. Geramita and Wallis [31] have also obtained the case a = 0

of Theorem (3.2.1) (a).

For orders equivalent to 2 modulo 4 , the existence of an

orthogonal design of type (Sl, 82) implies the existence of a rational
; iiiias : S .
PR OO b P sieh s Eha te PP dlag(sl, 32) L Thils @emehicicm s

asymptotically sufficient for existence.
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(3.2.2) THEOREM. Suppose that s, and s, are positive integers such

that there is a +2:%¢2 rational matrix +P satisfying pp? - diag(sl, 32)

Then there is an integer N such that an orthogonal design of type

(sl, 32) and evder " 2n exists for eacht w =N .

If b is odd then p(4b) = 4 and so an orthogonal design of order ub
has at most U4 wvariables. The existence of an orthogonal design of type

(Sl’ 82, Sq5 su) implies the existence of a rational 4 X 4 matrix P

sSlichisthaits PPt = diag(sl, 855 845 su) . With some added hypotheses, this

condition is asymptotically sufficient.

(3.2.3) THEOREM. Suppose that 815 855 8

ps 845 8, » are positive integers and

t

there is a4 X 4 . vational matriz P. such that PP diag(sl, 8y S5 sq]

Denote the squarefree part of s by ti for ' loseissulive ' Euvther

suppose that either

(822:4) t.=t, =t =t

or

(3:2.5) 2 i t2 and every prime factor of gcd(tl, ts) 18 either

2.3 or of the form Um ¥ 1 .
Then there is an integer N such that an orthogonal design of type

(sl, Sy S4o su) gnd order " bn exists for.all n = N .

Remark. Similar partial results may be obtained for asymptotic
existence of two and three variable orthogonal designs of order equivalent
to 4 modulo 8 . The extent to which these partial results cover types

(Sl’ SRy su) with u € 12, 4}  and 8 H s s, = 36 is indicated in

sections (5.4) and (5.5).

If g o Su , are positive integers with u < 5 , then there is

l, 829
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g ratiopal 4 =<8 'materix™ P "such that PPt = diag(sl, Sps sres su) (see

[79]1). Hence the algebraic necessary conditions for the existence of
orthogonal designs of order divisible by 8 with less than 6 wvariables
are always satisfied. For two variables, an asymptotic result may be

obtained.

(8.2.6) . THEOREM. Ir 5, and s, are positive integers then there is an

integer N such that an orthogonal design of type (sl, 32) and order 8n

exists for each n = N .

The proofs of the theorems above occupy the rest of this section.
Three lemmas are used.

The first lemma establishes the existence of type 1 weighing matrices
which can be used as building blocks in the constructions to follow.

(3.2.7) LEMMA. Suppose that kl, k = ku , are square integers. Then

2’
for some group H of permutation matrices of odd order there are mutually
disjoint type 1 weighing matrices Wl, Wys wovs Wﬁ s om: Hsvsuche that Wi

has weight ki .
Proaf. .S that + k. = - L e crcy ‘ is a prime
orT. uppose a 3 = qlq2 cee qm qi P
power. If Li is a circulant weighing matrix of weight qi and order

qi tg,t 1 for 1 <72 =<m (see section (1.4)) then the kronecker product

. =1 b X ... %5 “isia type 1 weighing matrix of weight K. on a
C g
group (. of odd order mj = | [qi+qi+l] s eFepieneh o el Dh s e ]
J =1

denote

U 2 JF e . Iﬁ VAR R e e

my m, bl i mj+l m,
B e tor every g E LB 2, LU Tul, Vé is a type 1 weighing.

J
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matrix of weight kj on the group
e % L. XM M €g]
U v I

of permutation matrices of odd order (LS e Let v be an odd integer

at least as large as u , and denote the v X v permutation matrix which

pepresents (L 2 we..®). by T .. For l.= 4 <u denote T x Vj by Wﬁ ’

It is clear that Wﬁ is a type 1 weighing matrix of weight kj on the

group

H:{MXTi:OSi<v,M€G}
of permutation matrices of odd order MMy, «eoom v . For g g
Ti * Tj = 0 and so Wi * Wﬁ =40 6z O

The second lemma reduces the problem of asymptotic existence to finding
orthogonal designs of a particular order.

(3.2.8) LEMMA. Suppose that there is an orthogonal design of type

(sl, S5 wees Su) and order 2%b where b is odd. Then there is an
integer N such that an orthogonal design of type (sl, Spo wres su) and
order 2°n exists forieach . n =N,

Proof. For sufficiently large d there is an orthogonal design of

d. ',
type (sl, Sps s Su) and order 2~ given by Theorem (3.0.1). We can
assume that d > a , for if d = a then the existence of an orthogonal
. : @l
design of type (sl, Sps +ees su) and order 2 is assured by elementary
] y y ; i . d-a
constructions (see section (1.2)). Since b- is odd it is prime to 2
) d-a :

and so every integer at least as large as (b-1)(2° “-1) can be written as

d

bm + 227%  for nonnegative integers m and 7 . Using elementary

constructions (section (1.2)) it can be deduced that if N = (b—l)(2d~a_1) g
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then there is an orthogonal design of type (sl, Shs e Su) and order

a
2in for each @ = N
Remark. The use of Theorem (3.0.1) in the proof of Lemma (3.2.8) means

that the integer d must be at least %(sl e s g su) . This implies

that N depends exponentially on the sum of the S; and thus is very large.

However, in many cases other existence results for orthogonal designs of

order a power of two (e.g. Theorem (1.3.3)) may be used to obtain a smaller

value of N . The numerical results of Chapter 5 seem to indicate that N
may be bounded by a linear function of el e but we have been
unable to prove this.

The third lemma shows that only types (sl, Sps wees Su) where each

5 is squarefree need to be considered.

(3.2.9) LEMMA. Suppose that kl, k e ku , are square integers and

2,
there is an orthogonal design of type (sl, Spo +ets Su) and order n .

Then there is an odd integer v such that an orthogonal design of type

o rder  nu eLlsis.
(klsl, k232, . kusu) and order n

Proof. Suppose that q2 is a prime power which divides kl and W

5 g 2
is a circulant weighing matrix of weight q2 gnd erder @5 gt T U ETE SR
is the backdiagonal matrix of order q2 + g+ 1 then WR is symmetric (see

section (1.4)). Hence the u-tuple (leR, xQI, st, Sieeg qu) is amicable

(see section (1.3)) and so there is an orthogonal design of type

2 :
qzsl, S5 +evs Su and order n(q2+q+l) « «lete that' g +.g t.1 -1s odd.

This process may be continued to achieve the desired result. 0O

Theorem (3.2.6) may be deduced from the lemmas above as follows. If
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S, and s, are integers then there are squares kl, k2, ...; ke 4

Zl, 12, A Zf such that L kl + k2 R ke and

B = Zl + 12 : MmO, Zf.’ and e and f are each at most 4 (see [64]).
There is an opthegenal desipn of type (1, 1, ..., 1) and order: 8 on

e + f variables [24]. Hence by Lemma (3.2.9) there is an orthogonal design

of type (k,, k S

9> ers Kos Lo [/

bt b

and order 8v for some odd

7

v . Using Lemma (3.2.8) and equating variables, we obtain Theorem (3.2.6).

L= 5

Note that Theorem (3.2.6) implies the case a = 3 of Theorem (3.2.1).
The case a < 3 of Theorem (3.2.1) may be obtained in a similar fashion, by

2

53 tees mu and order 2av

constructing orthogonal designs of types mi, m

for v odd, and equating variables.
The case (3.2.4) of Theorem (3.2.3) can be established by using Lemma
(8.2.7) and a construction from [68] and [10] as follows. If @ is a

positive integer then there are integer squares k., k., k_, kK, such that

L 4

= kl + k2 + k3 + ku [64]. Denote the type 1 weighing matrices of

weights kl, k2, k3, ku , obtained in Lemma (3.2.7) by Wl, W2, W3, WL+ .

(If ki = 0 , then the zero matrix may be used for Wi .)’ Suppose that

Al = lel o x2W2 i x3W3 i .904WLL 5
A2 = —xQWl o xlw2 + xuws - xSWu X
A3 = —x3Wi - xuwz i le3 + x2WLL 5
AL+ = —xqu + x3W2 - x2W3 T xlwu .

Then the Ai are type 1 matrices of odd order b with entries from

{o, tp), ta,, trg, ixu} such that
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Using the Goethals-Seidel construction (2.0.3) an orthogonal design of type

L

(my, my m, m) and order Ub may be obtained. If 1 7

3 e Ll e
squares then Lemma (3.2.9) may be used to establish the existence of an

orthogonal design of type (Zlm, Z2m, Z3m, Zum) and order equivalent to U4

modulo 8 . Using Lemma. (3.2.8) the case (3.2.4) of Theorem (3.2.3) may be

obtained.

For the case (3.2.5) of Theorem (3.2.3), suppose that P is a U4 x 4
. ; e
raiElonalSmatni=Esiich¥that s PR = dlag(sl, 32, 33, su) N IEE ti denotes the
squarefree part of S; o then by dividing the  7Zth row of B by Vsi/ti

for 1 =74 =4 we obtain a U4 X U4 rational matrix Pl SiichWER i

R A i : :
Plpl = dlag(tl, t2, t3, tu) s tl = ¢, , then a consideration of

2

determinants yields t3 = tu .

Denote gcd(tl, ta) ieigiie B8 tl/g by ». . aind ts/g by e A

e 3

standard Hasse invariant argument, using the fact that r, is prime to raos

shows that both » andisie can be written as sums of two squares. We

il 3
next show that it follows that there are type 1 matrices. Bl’ BQ, Bg’ BM
of odd order such that
4 t 2, 2 2 2
(3.2 10) .E: B.B, = P E AP Lot ot [T
7=1
In fact we claim something stronger, namely that if kl, k2, k3, ku

s Asernid of odd order

are squares then there are type 1 matrices A4:, 4 i

il 2 3

and with entries from {O, ixl, ix2, ixs, ixu} such that

m
i 1 iz =
(3.2.41) Zi AiAz = [(kl+k2)[xlxl+x2x2]+(k3+ku)[x3x3+xuxu}JI

(see sectien (2.2) for the definition of A* ). For suppose that
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B W W Wu are the type 1 weighing matrices of weights kl,

Ifendbi 38
obtained in Lemma (5:2.7).  If

62017 A= e e

A=W~ sl

then the Ai SeticEy (3.2.41) . FF wr =ik + k. and 15 = k3 + ku , then

we ‘have (3.2.10).
b each prime Factor of g is either 2, 3 ., or of the form Um + 1

then the existence of ‘'a G6S array of type (g, g, g, g)  and order

equivalent to, 4 module. 8 may be deduced. For if L = 0 .and SZ is the

highest power of 3 which divides g then there is a GGS array of type
(SZ, SZ, 3Z, 3Z) and order H.SZ (see Proposition (2.2.3)). Since g/3Z

. L .
has 1o factors equivalent to 8 medule H ,. g/3" can be written as 4 sum

of two squares (see [64], p. 351). Hence using the type 1 matrices

(3.2.11) above with g/SZ = kl bl = k3 + k, s there is a GGS array of type

m
(g5 g5 gs g) . 2nd erder equivalent te U  modulo. 8 (sece Theorem (2.2.2)).

Using the matrices Bi which satisfy (3.2.10) in this GGS array gives an
orthogonal design of type (tl, t2, t3, tu) and order equivalent to U4

modulo 8 . Hence, by Lemma (3.2.9), there is an orthogonal design of type

(31, 55 545 Su) and ordep UMb ., b odd.. This ecase (3.2.5) of Theorem

(3.2.3) follows by Lemma (3.2.8).

Theorem (3.2.2) can be proved in a similar fashion. If there is a

17 i
2 e 7 rEitiomell menpeabx 42 Slieln aoaEhe s 220 = dlag[sl, 32) , then there are



integers m., m

m
1L

e A e D)
o Mao mu SHchiEhkt sl = ml[m3+mu] and 32 = mQ[m3+muJ

A construction similar to (83.2.11) gives an orthogonal design of type

[m§+mi, m§+mi] andiernder equivalent to 2 ‘modulo 4 . Theeorem (3.2,2)

follows by using the lemmata.

58
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CHAPTER 4

INTEGRAL SOLUTIONS

(4.1) Introduction and the main theorems

An integral analogue to the Rational Family Theorem (0.0.8) is provided
ime this ehapten.

Recall that a rational family F of type (s], s o3 Su) and order

2,
7 ais A set {Al, AQ, e A”} of n X u rational matrices which satisfy
(75
(4.1.1) A.A? =g Fep o= 7= gt
% D 7
e G R 5

(L. 1.09) A oo = 0T ol s 1 < g =ty

T 97

£ F “alse satisfics

(i) A Aj =0 For =g < e
i) the entpicssof cach A. are from {87 3 il
u
then z? xiAi is an orthogonal design.
=1

A rational family which consists of integral matrices shall be called
an integral family. An integral family shall be called combinatorial if it
satisfies (4.1.3), that is, if its elements are mutually disjoint.

A necessary and sufficient condition for the existence of integral
Femilies of opder not divisible by 16 ‘1s cobtained in this chapter.  This
condition is shown to be often sufficient for the existence of a
combinatorial integral family. This is of interest because a combinatorial

integral family is not very different from an orthogonal design. If

{Al, AQ, sv.34 foris & combinatorial integral family of type
u
U
i = P trice £
(31, Sos o Su) then A izﬁ szz ds entries fron
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u
{mx. : L= 4. =gk Zﬂ and AAt = [ Et sixg]f . An orthogonal design of
=1

i su) satisfies the same equation and has entries from

Precisely we prove:

(4.1.5) THEOREM. Suppose that b is odd and 0 <a < 3 . Then a

necessary and sufficient condition for the existence of an integral family

of type (sl, Sps wens su] and order 2% is that

(4.1.6) there is a u x 2% integral matrix @ such that
LN
Qe = dlag(sl, 32, ey Su)
(4.1.7) THEOREM. Suppose that b <s an odd integer at least as large as
u and 0 =a=2. Then (4.1.6) is a necessary and sufficient condition

for the existence of a combinatorial integral family of type

(sl, S5 wees Su) and order 2% .

Necessity in these two theorems is established in section (4.2) by
showing that for 0 <a =3 and b odd the algebraic necessary conditions

((0.0.9) and (0.0.10)) for the existence of an orthogonal design of order

2%p  are equivalent to (4.1.6).

We note that (4.1.6) has at least two advantages over the algebraic
necessary conditions in determining existence of orthogonal designs of order
not divisible by 16 . Firstly, it is often easier to construct by hand an

integral solution of the matrix equation

xx? = diag(s,, gl su)

than to use the Hasse-Minkowski theory to prove that a rational solution
exists. Secondly, the constructive approach yields the sum matrix discussed

in section (2.1), and so defines a useful starting point in the search for
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the orthogonal design in question.
a a
Note that for 0 =a =3 and b odd, p(2°p) = 2% . Hence the

condition ¥ = p(2a] (see (0.0.9)) is not necessary in Theorems (4.1.5)
and (4.1.7). It also follows that the condition b = u in Theorem (4.1.7)
excludes only orders less than 16 . These excluded cases are of little
interest since the existence problem for orthogonal designs of order less
than 16 1is largely solved (see Chapter 5).

Sufficiency in Theorems (4.1.5) and (4.1.7) is established in section
(4.3). This section also contains a condition to determine whether certain

combinatorial integral families in fact yield orthogonal designs.

(4.2) The conjecture on integral matrices

The following conjecture originally arose from the observation that the
Sum Matrix Theorem (2.1.4) and the Rational Family Theorem (0.0.8) are
related (see [14]).

S S are

A 5

(4.2.1) INTEGER MATRIX CONJECTURE. Suppose that 81>

positive integers. If the matrix equation
¢t gk o) xrE = diag(sl, 8. o su]

has a rational u X n solution then it has an integral u X n solution.
In this section we prove
(4.2.3) PROPOSITION. The Integer Matrix Conjecture (4.2.1) is true for
U= n= 8.,
This proposition implies that (4.1.6) is a necessary condition for the
existence of an integral family of order 2% , where b 1is odd and
0 segn=:3
Intfaet,ifin = 7 then a stronger result is proved.

(4.2.4) PROPOSITION. Suppose that A <is a nonsingular integral matrix and

CLLE2%5)) =4
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has a rational u X n solution, where u <n <7 . Then (4.2.5) has an
integral u X n solution.

Remark. The author is indebted to Gordan Pall for the proof of
Proposition (4.2.4) presented below (see [47]), and to John Cossey and
Jonathan A. Hillman for helping with the details of the proof. J.S. Hsia
[41] has independently obtained both Propositions (4.2.3) and (4.2.4) using
the language of lattices.

Both the Integer Matrix Conjecture and Proposition (4.2.4) may be
interpreted as statements within the theory of quadratic forms. Some of the
machinery of this theory is required. (Jones [44] is a good reference.)

Unless otherwise stated, all quadratic forms discussed below are
assumed to have full rank.

Two rational forms are rationally equivalent if there is a nonsingular
rational linear transformation which takes one to the other. Thus, for

instanee, if there is'a u X y rational solutien toW(l.2.2), then the form

- + 2 + + i tionall alleni= oS x2 + s x2 + + s x2
xl x2 iete xu ISR En W EeElg = 7% 500 e

Two integral forms are integrally equivalent, or of the same class if
there is a nonsingular integral linear transformation of determinant 1
which takes one form to the other.

A form shall be called classic if it has an integral matrix. A classic
form f shall be called c-reducible if there is an integral linear
transformation which takes a classic form g to f where the determinant
eF f .is greater than the determinant of g . In matriz terms, the form F
with matrix F 1s c-reducible if there is an integral matrix G and a

© and |det F| > |det |

nonsingular integral matrix T such that F = TGT
A form is e-irreducible if it is classic but not e-reducible.

The following provosition is central to the proof of Proposition

(.2 4),



(4.2.6) PROPOSITION. If two c-irreducible forms are rationally equivalent
then they have the same determinant.

Because the proof of this proposition.is long and tedious, it is.left
until the end of this seetion. First, Propositions (4.2.3) and (4.2.4) ave
deduced.

Consider the case u = = 7 . Suppose that there is a u X u rational

solution to (4.2.6), that is, the form f- with matrix 4 is rationally

A 2 2 2 : : : .
equivalent to x + z, F ooo 9 xu » sSinee £ is elassic, there is =2 non=

singular integral linear transformation which takes f to a e-irreducible

form g . Clearly g is rationally equivalent (through f ) to

xi + xg R ek xi ;¢ henee . det.gi=.1..by Propesitien (1.2 .6).: Now a

theorem of Hermite (see Jones [44], p. 60) implies that there is only one

class of positive definite classic forms of determinant 1 with u < 7

: R : 2 2
variables. Hence g 1is integrally equivalent to xl it Z T ooo A xi s The

composition of this equivalence transformation with the transformation from
g to f provides an integral matrix & such that QQﬁ = A
Now suppose that y < n <7 , and P is a rational wu X n solution to

(4.2.5). Let m be an integer such that mP is integral, and denote the

(n-u) x n matrix of ones by V . If U denotes the transpose of the
: t Lia A
n X n matrix (P - mV] , then UU IS Initeorall S Eromithelcasetiy /=y
; : . 13 t
pooved ‘aboye theretisian 77 X n dnteppal motrix | ¥ sueh that "YY¥Y .= QU .

The firskt 2 reows of ¥ form an integral u X 7 solution of (4.2.5).
This completes the proof of Proposition (4.2.4) (except for the proof of
Proposition (4.2.6)).

There are two classes of positive definite classic forms of determinant
1 uith*e 8t vapiablesi{see fu51). 'However, a classic form with 8

S 2 2 ol s e
variables 1s in the same class as Tyt X, ...+ T 1.5 gnd endy if it
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represents an odd number (see [22]). So by using the same argument as in

the case »n < 8 above, we can show that if one of the 8; is odd then the

existence of an 8 X 8 rational solution of (4.2.2) implies the existence

of an 8 X 8 integral solution. Hence only 8-tuples (sl, 853 +ves 88)

of even integers need to be considered to prove the Integer Matrix Conjecture

(4.2:1) for u'=n = 8. Clearly the §; can be assumed to be squarefree,

and so we need only consider the case ss ="2"(med™ ) For =7 =B A

standard Hasse invariant computation shows that slxi + 32x§ s Sg%g

: . . 2 ;
1s rationally equivalent to % slxl it ngg T oo0 A 88x§ « This means that

if there is an 8 X 8 rational solution to (4.2.2) then there is an 8 X 8

rational matrix P such that PPt =% diag(sl, 8,5 b5 38) . Since %sl

is odd there is an 8 X 8 integral matrix S such that

SSt =% diag(sl, S5s oy 88] . The product of S with
[vick A
A=
aggsdh
Jerg=il
e
il
i el
=i

is an B X8 solution to (U4.2.2). This proves the case w = #n = 8 of ‘the
Integer Matrix Conjecture.

The case u < n = 8 follows by observing that every set of u
: : X . 8
mutually orthogonal vectors in 8 dimensional rational space Q can be

- 8
completed to an orthogonal basis of Q.

Only Proposition (4.2.6) remains to be proved.
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is used (see Serre [62], p. 39). Let cp denote the Hasse invariant at the

prime p . The Hasse-Minkowski theory implies that two positive definite
rational forms f and g are rationally equivalent if and only if

cp(f) = cp(g) for each prime p , and the squarefree parts of the

determinants of f and g are equal.
Let f be a e¢-irreducible form. We show that
(0.3 4 dees met divide det f ;3

and, if p is an odd prime then

(4.2.8) p3 does not divide det f ;
and either

(4.2.9) p does not divide det f. and cp(f) = G

or
(B22.10) . p divides det £ and p2 does not divide det f ,

or
(4.2.11) p2 divides det f and cp(f) = -1 .

Proposition (4.2.6) follows immediately from the Hasse-Minkowski theory.
We prove (4.2.7) first. Suppose that 4 divides det f , and choose

r so that the largest power of 2 which divides det f is less than 2%
Now f is integrally equivalent to a form g such that

u r
(4:2.12) = alhl - a2h2 e SIS EL amhm (mod 2 ]

where the q. are integers and hi has shape either
1

2
fh. 23130 2 ey
or
(4,2.1%) 2xy

Or



66

(4.2.15) 2x2 + 2xy + 2y2 :

and the variables of distinct hi's are distinct (see Jones [44], p. 110).

(If fl and f2 are two integral forms then fl = f2 (mod v) means that

the corresponding coefficients of fi and f2 are eauivalent modulo v .)

Since each of the terms (4.2.13), (4.2.14) and (4.2.15) has odd

determinant and 4 divides det f , at least one of the following must

heiid.

(4.2.16) For some hi of shepe 2xy , a. is even.

()
(4.2.17) For some hi of shape 2x° + 2xy + 2y2 > a; is even.

(4.2.18) For some diagonal (4.2.13) hi s 4 divides a;

Chi2° 19} TFor sowe i F£7 ., a = aj = 2 (mod 4) for two diagonal

components (4.2.13) hi and hj

The next lemma is used to show that none of (4.2.16)-(4.2.19) is
possible.
(4.2.20) LEMMA. Suppose that r > 2 and fl = f2 (mod pp) for some
prime p . If there is a classic form h ard an integral linear

transformation of determinant *p which takes h to f2 s then fi 18

e-reducible.

Proof. Let F, and F, denote the matrices of fl and f,

respectively, and suppose thet the transformation from %4 to fl has

matrix T . Now T_lFQT—t 15 dntepnal . but Fl = F,+L , where each entry of
r : : e
Bt sedimilsible by« piage oiSinee thesdenonination of reach entry fof & T digwat
=1 il O
mosE e sk follows that « T “E T is integral.

Now consider the case (4.2.17). The transformation with matrix
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;o

2
has determinant 2 , and sends x" + 3y2 to 2(2x2+2xy+2y2) - (That isi,

1
.
)

By Lemma (4.2.20), f 1is c-reducible, contrary to hypothesis.

For (4.2.19) suppose that a and b are odd and note that the

;4

transformation with matrix

takes the classic form 2ax> - 2axy + %’(a+b)y2 to 2az’ + 2ay2 . Hence
(4.2.19) is iwpossible.

Similarly the transformation x> 2x. may be used to show that (4.2.16)
and (4.2.18) are impossible.

Hence we have (4.2.7), that is, U4 does not divide det f .

For an odd prime p a similar method may be used to establish (4.2.8)-
(4.2.11). In particular, we need to use the fact that each positive integer
is a sum of two squares modulo pP - *That is,. if: & .and .» are positive
integers then there are integers ¢ and d such that k = ot g (mod pp)
To prove this, we can assume that k is odd, because

(c+d)2 + (c—d)2 = 2@2 + 2d2 . If k =1 (mod 4) then consider the sequence

with the mth term Hmpr + k . The celebrated theorem of Dirichlet (see

[8], p- 338) implies that this sequence contains a prime, and this prime

can be written as a sum of two squares (see [64], p. 360). If k 3 (mod 4)

’ r r ; gl
then the sequence with, mth term HWmp + 2p + kK may be used in a similar

Fashien,

Now choose r so that the highest power cf p dividing det f is
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less than pr sualipoantbe shopmi(seeidones [Ud], ps-110) that. F. is

integrally equivalent to a form g which is diagonal modulo pr s §idE p2
divides one of the diagonal coefficients in g , then f is e-reducible by

Lemma (U.2.20) . This
L r
(4.2.21) g =g, +pg, (mdp)
where g, and g, are diagonal forms with coefficients prime to p and no

variables in common.

Next we show that each g; is integrally equivalent to a form hi

such that
. 2 2 2 r
hi_xl+x2+ +az:8_l+kxS (mod p")
where k 1is prime to p . It is clearly sufficient to prove this for forms
ax’ + by2 , where a and b are integers prime to p . Some arithmetic of

integers modulo pr is required and the rezder is referred to Hardy and

Wright (3899 *p. 6%, for details of such things as quadratic residues.
Suppose that there is an integer o such that aq = a2 (mod pr) tlet h

be an integer such that aof = 1 + mp2r for some integer m . The

transformation with matrix

c . 2
has determinant 1 =2nd takes ax2 A by2 iEeNa N FormBwhiichia SIs 2 e aby2

modulo pr
: y 7P -1 x
Jf neither a nor b is a quadratic pesidue of P then a b is a

- : r
quadratic residue, where a - denotes the inverse of @ modulo p . There

2

| 2 e
gre imicoeps 'y cand -0 such that: b T =Y % 8 (mod p ) . Suppose that

2

' SRV r . A
£ is an inteper such that g by = e (mod p ) » “Bimee b is not a
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r r s -
quadratic residue of p° , € $ 0 (mod p ) . MWepitine ¢ ' as 6(8 16) makes
it clear that there is an integer { such that & + wpp is prime to €

Now if ¢ denotes O + pr then

ae’ + b¢2

11

sz + bs° (mod pp)

i o (mod pp)

and so there is an integer £ such that a€2 + b¢2 = & Epr . Sinece &
is prime to ¢ , there arc integers u and Vv such that & = = 4 Wop o

The transformation with matrix

€ )

_}pr-b¢ ae—upr
: 2 2 : : 2 Z
has determinant 1 amnd takes ax  + by +to a form which is = + aby

modulo pr :

Thus we have proved that g, * prg, (4.2.21) is integrally equivalent

to a form which is
e ) 2 2 2 2 2 2 2
h = Ty i Bk s L1 + kxs + p[yl B E e Yp-1 T Zyw}

modulo pr SiWheres LiNand Wi farc’prime o ps " Note that h has many of
the properties of f which we seek to investigate. A power of p divides
det<p . iFYandenly’ 1f dt divides ‘det f . "If" 'k ig'-e-reducible by a
transformation of determinant #p , then f is e¢-reducible. And the Hasse
invariant of f is the same as that of # .

LE p dees mot divide “det J/ then ‘u =.0. , and & simple caleWlation

shows that cp(f) = L.
Suppesc. thats w =3 . Intepers S and B can be found such that
il 2
Lo=.0 tk:B. (mod p) ;..then the form

h' = px2_— 2oz + pr - 2Byz + (a2+82+l]22/p

is.classic. The transformation with matrix
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—

it
b
; B 2T
has determinant p and takes k' to p(x"+y“+iz ) . So by Lemma (4.2.20),

j§ dis. e-redueible, contrary to hypothesis. Hence w < 2  and we have

(Lio.8):

2 ol
It p diwides det F then =2 .and a simple Hasse invariant

argument shows that e (f) = 1 if and only if -7 is 3 quadratic residue
gt . n (and thus of pr ). If 7y is an integer such that Y2 = =7 (mod pr)

then denote the inverse of Yy medulo pp by & . The transformation with

]

has determinant -p and takes the classic form

matrix

22 2 2.2y 2
-Ypx© + 2y“8xy + (1-v“S Jy“/p
. . . 20 2 » . 2
to a form which is equivalent to p(x +Ly ) module - p° . Henece if p

divides det f  then cp(f) = -1 , and we have (4.2.11).

This completes the proof of Proposition (4.2.6).

(4.3) The construction of combinatorial integral families

Suppose that the algebraic necessary conditions for the existence of an

orthogonal design of type (sl, Spo e 3“) and order »n hold, where

n=2" and b is odd; that is, u < p(n) and there is a u x 2%

% 5
eosillonalpa i TR such SEhait PP = dlag(s LG R Su) 5 lE @ = 8 e

I8 2

Proposition (4.2.3) ensures the existence of an integral wu X 2% matrix Q

i
such that @ = diag(sl, Sps tevs Su) . The matrix & can be used as the

sum matrix in an algorithm (section (2.1)) for constructing an orthogonal
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design of type (Sl’ Sps wres Su) and order 7 . However, this algorithm
may not be successkul”(see ‘section (2.4)). 'In the present section, it is
demonstrated that ¢ can always be used to construct an integral family and
ik g'='2 3adl'b = 4 . then @ gives a combinatorial integral family.

This establishes sufficiency in Theorems (4.1.5) and Chi 7).

The first construction follows a construction of Wolfe [79]. Denote
the - dgehilentey sofe g by qij , and denote p(Qa) by » . Suppose that

{Pl’ P2, oo Pr} is the integral family which corresponds to the Geramita-

Pullman [25] orthogonal design of type (1, 1, 1, ..., 1) and order 2%

en ¥ wvariables. ' Using the velations

i L
Qe = dlag[sl, 32, ey su) .
iz R
P.P. =4k] fou® ¥ =7 = 1,
i
t t : A
Bol P B =0 fap b= il g
D g Ji L

a simple computation shows that

1A
S,
IA

4

is an integral family of type (sl, Sps e Su) and order 2%

{ ]2
3 Gk = 2

For a = 0 it is trivial that the integral family above is
combinatorial. For a > 0 ncte that the sequences

. a
= ah .k S SO o
CJ' (quxl’ qQJxQ, > unxu] 2 1 J

are complementary (see section (1.5)). Hence for every b = u there are

b x b: eirculant matrices Aj R == S theentpies from

{m:ci 2 A= = s EZ} such that

a

2 & U 5

0 G [ Y s.x.JI
Ao

j/:Jl dJ j b



2

If a is 1 er 2 , then these circulant matrices may be used in the two-
circulant construction (2.0.6) or the Goethals-Seidel construction (2.0.3)

to form a combinatorial integral family of type (sl, 32, 5008 Su) and order

%

This completes the proof of sufficiency in Theorems (4.1.5) and
(i, T,

Finally we give a combinatorial condition to determine whether a
combinatorial integral family constructed using GGS arrays is in fact an
orthogonal design.

(4.3.1) PROPOSITION. Suppose that Al, A s Au s a¥e integral B x b

23

matrices and s., s

1> Spo +-+» 8, are positive integers such that

u
D s
For 1 =1 =u , write Ai = Bi < Ci , where Bi and Ci have nonnegative

entries, and denote by Zi and m. the rowsums of Bi and Ci

respectively. Then

=

(4.3.2) a =

2
)
7

1
==

and the A, have entries from {0, 1, -1} <if and only if

R

(4.3.3) o s (L;m.)

1o

=1

Proof. A standard rowsum argument gives (4.3.2); if the Ai have
entries from {0, 1, =1} then (4.3.3) is immediate.
Conversely, suppose that (4.3.3) holds and let
gy = l@paa i g

denote the first row of Ai For st s . S Now it 15 cleap that
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Hence using (4.3.3) we obtain

u b
aAER SR B Sl
S E e
but also
U b 5
a 12 s; bl DA
gl =Wt

by considering the scalar products of the first row of each Ai with

itself. Hence

3 %’*| | (la|-1)
NS N @oad=1] =0
55 PR T S Lt L

But each term in this sum is nonnegative, and the s; are positive. Hence
|aji| € to Y eFert 17 Y5l SpE sl varyEbighat 1s, the A. have

entries from {0, 1, -1} . O
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CHAPTER 5

NUMERICAL RESULTS

The purpose of this chapter is to present numerical results to
complement the theory in Chapters 2 and 3.

Much of the information is compiled in tables using results from the
literature as well as unpublished results of the author.

In general, proofs are not given, but sometimes a few examples which
illustrate the techniques involved are outlined.

Not all currently known numerical existence results are listed here.
Notably absent are results for skew symmetric weighing matrices, 3 variable
orthogonal designs, and orthogonal designs of order divisible by 8 .
Geramita and Seberry [26] have more comprehensive lists.

In this chapter the formal commuting variables

C e e R e

i it D 3

3 e,

are denoted by

respectively.

(5.1) Weighing matrices of odd order

If k is a square integer then denote by WN(k) the smallest integer
such that a weighing matrix of weight k and order n exists for all
n = N(k) . The argument (k) may be omitted if there is no fear of
ambiguity.

The existence of N is assured by Theorem (3.2.1). It follows from
Theorem (0.0.11) that N = k + Vk + 1 . An upper bound for N can be

calculated as follows.

Suppose that the decomposition of k into prime powers is
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m ok
k = qiqg R q; ; denote [ l [q§+qi+1] by T(k) . By taking kronecker
1=

products of the circulant weighing matrices of weight qi and order

2 : - .
q9; *+ q; + 1 , a weighing matrix of weight k and order t(k) may be
obtained. (See Theorem (1.3.4) and the proof of Lemma (3.2.7).) Also, from

Theorem (1.3.3) it follows that there is a weighing matrix of weight k and

w-1 w

order 2 where 2 Sk 2 Now T(k) is prime to 2“ and so each

integer at least as large as (T(k)—l)(Qw-l] may be written as

T(k)ml T meQ where m, and m, are nonnegative integers. Hence there is

a weighing matrix of weight %k and order »n for each n = (T(k)—l)(?w-l)
Thus we obtain

N(k) = (t(k)-1)(2k-1)
A familiar arithmetic function may be used to estimate this bound. Denote

e
ihe \sum-of . the divisers. of . k. by. G(k) .:.If gs:= pi$ Fore 1.7 = misand

the p; are prime, then the following expression for 0 may be obtained

(Hardy and Wright [39], p. 239):

2e .+1
m [2 = -1
O(k) = __E—:E__
7

=1

It follows that Tt(k) = o(k) with equality if and only if Vk is square-

free. Now for each positive real number ¢ there is a real number B such
thate alk) = Bkl+€ (Hardy and Wright [39], p. 266). Hence there is a real

number A such that N = Ak2+€ S hisEmcans SEhabEhe lorder ok RV = i

most a little larger than quadratic.

If k 1is a prime power then a more accurate estimate for WN(k) may be

obtained. In this case -N(k) = t(k) =k +Vk +1 . If k is even then



76

there is an Hadamard matrix of order k , and if %k is odd then there is a
weighing matrix of weight k and order k + 1 (see [75]). Note that: (k)
is prime to both % and %k + 1 . Hence if k 1is even then

kK + VK + 1= N(k) < (k+VE)(k-1)
and if kB dsfodd then

k k1 = N(K) = (kB .

However, numerical evidence suggests that N is not much larger thap a
linear function of k . In fact it seems that WN(k) < M(k) , where M(k)
is (k) + k -1 if k 1is even and T(k) + k if k 4is odd, but the author
has not been able to prove this.

It can be shown that N(4) = 10 = M(4) . For there are weighing
matrices of weight 4 and orders 7 and 2n for each n = 2 . It follows
that WN(4) =10 . If N(4) < 10 then there is a weighing matrix of weight
4 and order 9 . An elementary combinatorial argument (due to J. Verner;
see [26]) can be employed to show that no such weighing matrix exists.

Preliminary results from a computer program lead us to conjecture that
N(9) = 22 = M(9) . However, there is a circulant weighing matrix of weight
16 and order 31 (with first row

= (0 (0 0 0 = @0 = =p0) 5 qE (0 (0F (O e E =R (0] (0) = an () 5= (0) (0
where + indicates +1 and - indicates -1 ). This suggests that N(16)
could be less than M(16) = 36

Apart from the results mentioned above, very little is known about the
behaviour of WN(k) . The following table lists results for k < 49 . For
this ‘table N denotes the largest integer for which it is known that

M=

N , and N denotes the smallest integer for which it is known that
N <N . The smallest odd order for which it is known that a weighing matrix

of weight k exists is denoted by Z(k)
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(5.1.1)e TABLE

it Orders for which the
k T(k) M(k) (k) N(k) L(k) existence problem is
unsolved
L 7 10 10 10 7 aLaL L
9 13 22 13 22 13 5. SRdio o0
16 21 36 21 36 23 98, 25. 27, 29. 33 n35
25 Sl 56 31 83 Sl many
36 9L 126 Ly 163 il many
49 53 02 58 200 53 many

(5.2) Two variable orthogonal designs of order equivalent to 2 modulo 4

Suppesel that “there st gl 2= X8 S patieonal matrix B sueh that
Toa o .
PP~ = dlag(sl, 32) s Denoitef by N(sl, 32) the smallest integer such that
an orthogonal design of type (sl, 32) and order 2n eoxists for each
n > N[sl, 32) . The arguments (Sl’ 32) are omitted where there is no fear

of ambiguity. - The existenceiof N iz assured by the fact that the
algebraic necessary conditions ((0.0.9) and (0.0.10)) are asymptotically
sufficient for existence (Theorem (3.2.2)).

Denote the sum of 81 and 85 by s . Using methods similar to those

of the previous section it can be shown that for every positive real number
€ there is a real constant A such that

Sie

N(sl, s ) = 4ds

2
However, numerical evidence suggests that N is bounded by a linear function

of 51 and 32 . The following table lists the current status of the

existence problem for orthogonal designs of type (sl, 32) and order

equivalent to 2 modulo 4 such that §, 1t 8, S 38 .



The column headings are defined in a similar way to those in Table

85209

78

. denotes the smallest odd integer such that it is known that an

orthogonal design of type (sl, 82) and order 27 exists; N denotcs the

largest

integer

integer for which it is known that N = N

for which it is known that N < W .

{(5.2.1) . TABLE

S o il 07 Order spri”;)%rl ev:nh iicsh utnhseoﬁfxeids tence
P 2 2 2 nil
g 6 6 6 nil
iz 9 12 28 14 183829
1,16 20 40 22 30, 34, 38
3. 95 28 92 62 many
g | 38 220 182 many
24 2 4 4 6 mil
2. B 12 12 14 nil
2,18 20 4o 26 220301 3T 138
2 a2 36 80 42 many
b, u 8 8 10 nil
b, 9 14 28 14 8. 129 "i0E
. 16 20 20 22 nil:
I 125 30 1300 43y many
5.5 12 12 14 nil
g, 20 26 68 42 26, 30, 34, 38, U6 50, 58, 62, 66
8,8 16 16 18 nil
8, 18 28 208 182 many
< P 20 46 26 22,.30, 34, 38, U2
g9, 16 28 220 182 many
Sun2h 36 932 806 many

10, 10 20 20 22 nil

13. 13 28 28 30 nil

16, 16 32 32 34 mil

B l7 4 LT 36 104 42 many

18 18 36 112 78 many

s N denotes the smallest
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The techniques involved in proving the results in Table (5.2.1) are
illustrated with an example -

(1, 16) : Geramita and Verner proved that there is no orthogonal
design of type (1, 16) and order 18 (see [26]). Hence N(1, 16) = 20
The 41 x 11 ' circulant matrices A. and A, with first rows

1

(5.292) baaacaaaaaa , aadaaa000a0

satisfy AlAf o+ AQAS = (b2+16a2)f , and so using the two-circulant

construction (2.0.6) an orthogonal design of type (1, 16) and order 22
exisks. Similarly
(5.223) ba0aa0000aada , aaaldl0aalaazaa
give an orthogonal design of type (1, 16) and order 26 . Now there is an
orthogonal design of type (1, 1, 8, 8) and order 4n for all #n =5 (see
section (5.4)); equating variables gives an orthogonal design of type
(1, 16) for these orders. Thus, by elementary constructions,
N(1, 16) = 40 , leaving only the orders 20, 34 and 38 unsolved.

Remark. The circulants with first rows (5.2.2) and (5.2.3) were found
by implementing the method described in section (2.1) on the Australian

National University U1100/42 Univac computer.

To illustrate the use of GGS arrays in constructing orthogonal designs
of highly composite order, the following table gives the present status of
the existence problem for 2 variable orthogconal designs of orders 42, 50,
54 . A tick "V" indicates that the orthogonal design exists, a dash "-"
indicates that it does not exist and a blank space indicates that the

existence question is unsolved.
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(5 2: 40% TABLE

Order U442 Order 50 Order 54

—~+

ORISR = (ORI B SR VR

(@)

N I @8 [ (= o) d5 = (@)

(o) (op) (On] (©))

TSR
=l S
e S

v v
= 0o
(00)

F o w
o N
SES = ==

8505275883
= aaan
= o oaee
SR = L

[ ")
N
a

(8} (o) (&) (46) (G8) (63) (60) (Gnl @l Gn) d= I= I= [5 1S (2 [15) 1) D) (D) (N[220 (= (=0 [ i [ (e
v
= ©
(o)

w
D

10
40
13
16
25
36
17
18
32 = s
20 v vV v
25 = z

26 E: 2

S

[ (L]
s =

<

w

e e
(6e) (oo} S| ‘op) {op) (©p) (©b) (@) (@)

»

N
()
-

[}

N N
D O
o

We give an example which illustrates the methods of proof for these

mesuiliEsT
The sequences
(5.2.5) aOabbb , bObaaa ,
are complementary (see section (1.5)) and hence, using the two-circulant

construction, there is an orihogonal design of type (5, 5) and order 2
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for each 'n = 6 . Hence there is a GBS array of type (5, 5) and order 2n
for eachh m=d6 0y The sequences
Dabiibobe:

are complementary, and so for each v = 3 there are circulant matrices Al

and A2 such that

t Ca i
A a0 = ifa bt T
These circulant matrices may be used in the GGS array of type (5, 5) and

order 2n to obtain an orthogonal design of type (5, 20) and order 2nv

whenever #m = 6 and v = 3

(5.3) Weighing matrices of order equivalent to 2 modulo 4

For each integer k which can be written as a sum of 2 squares
denote by N(k) the smallest integer such that a weighing matrix of weight
k and order 2n exists for all #n = N(k) . The argument is omitted where
convenient.

Using the same methods as in section (5.1) it can be shown that for

every positive real number € there is a rcal constant A such that

N(k) = Ak3+€ for each k which can be written as a sum of 2 squares.
Again, however, numerical evidence suggests that N is much smaller.

It follows from Theorem (0.0.11) that W~N(k) = M(k) , where M(k) is
defined by

(L% if k

111
(@)

(mod 4) ,

-

M Es Satitl) TiF R (mod 4) ,

S kt2) Tf k =72 (med &)
(Since M is defined only for integers which can be written as 2 sum of 2
squares, the case k = 3 (mod 4) does not arise.)

$h foiralilk)s = M(k): for |kis L6yvand it is conjectured that
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N(k) = M(k) for ecach k which can be written as a sum of 2 squares.([19]).
The foliowing table preseunts the current status of the existence

problem for weighing matrices of order cquivalent to 2 modulo 4 and

weight k =< 29

The integers . and N are defined in the same way ds these symbols

i Telnle (5.2400).

(B3 1) TABLE

2M o Orders for which the
k (M is the conjectured 2N 21 existence problem is
value for N ) unsolved

2 2 2 2 Tl

M m m 6 nil

5 6 6 6 TlE

8 8 8 110 Ll

9 10 10 10 nil
10 12 2 14 il
1L 14 14 14 ALl
16 16 16 18 nil
7 18 36 18 34
18 20 140 29 34 88
20 20 20 27 i oLl

25 26 52 26 g1t magseisp

26 28 28 30 Ll

29 30 62 30 git, 38° W9 . We, 50, i, 58

(5.4) Four variable orthogonal designs of order equivalent to 4 modulo 8

Supposc that 81> 855 845 8§, are positive integers with sum s , and

39
b is an odd integer such that s = 4b . Then the existence of an

orthogonal design of type (sl, S5 Sgq5 su) and order Wb implies that

(5.4.1) s # 4 - 1 (by the Geramita-Verner Theorem (0.0.12));

(5.5 2 thepre is 2 WXl wetiona) matrix P such that
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ppt - diag(sl, Ll Su) (the algebraic necessary condition (0.0.10)).

#tSicstwell knewm Ehat 1f s = 12 then (5.4.2) is sufficient for the

existence of an orthogonal design of type (sl, 5o 45 su] and order Uun

ter all, n= 3" Usee [31], [21]).
The results of [31] together with the methods of section (2.1) can be

used to show that orthogonal designs of order 20 and type (Sl’ Sys 855 84)
exist for all U4-tuples (sl, Sys Sgq5 84) which satishy (5. M. 1) (5.8.2),

andiis =100 lexecpt der (2.2, 5, 5}, °(1.°3, 6, 8) andv Al Ui 9
(See [15] and section (2.4).)
It is conjectured that (5.4.2) is sufficient for the existence of an

integer N such that an orthogonal design of type (sl, Sye 845 su) and

onderl, ¥ Yexists forleach n'= N  (see (0.0.14)). *Using the methods of
section (8.2), this conjecture has been verified for U-tuples with sum s
at most 28 , and, with 3 exceptions, for U4-tuples with s = 36

The following table gives the status of the existence problem for
12 < s = 28 . The column headings are defined in the same way as in
previous tables: I denotes the smallest odd integer for which it is known:

that an orthogonal design of type (sl, Syo 83, su) and order Ul exists;

N denotes the smallest integer for which it is known that an orthogonal

design of type (sl, Sy S35 su) and order Un exists for each n = N .

Most of the orthogonal designs licted in this table may be constructed
using the methods of section (2.1), together with elementary constructions

and results listed in [57], [55], [19]. Three examples are given after the

table.
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(5.4.3) TABLE

12's 8 =118

- " - - Wl uT Orders for which the existence problem

I i is unsolved
b o Il < 20 16 il

{5 A T 20 16 il

15 254, 8 20 16 a1

VR T T 20 16 nil

Lo %0 5,5 20 16 nil

2, 2, 2,8 20 16 nil

2 25 R 8 28 24 20
200 406 20 16 nil

b, 4, 4, u 20 16 nil
o< ost-= 70

L PP MR W o 28 24 nil
3.1 8,8 20 20 nil

0 1o M WA 20 20 Nzl

Bl gl I 20 40 36
a6 8 28 48 20, 36, 4.
5 g - Sl TR < 28 u8 20, 36, 44
s Mlar: Sl Pul 20 40 36

el fll . S| 20 40 28, 36
sttty Wil < W 20 20 nil

Z el h 20 40 28, 36
2.5, 5,8 20 20 nil

2, 3. 6,6 20 20 nil

po B 55 20 20 mid

S 20 20 mall
20 < 5= 24

Eads 22 18 28 48 36, 44
e 1, U 1E 28 24 L

A 130 71D 28 40 36
1.2, 2,16 28 48 36, Lu
d, 72, 6. 12 28 24 nil

R 36 232 28

i i S 52 72 28, 86, 44, 60, 68
2ok 2%t 2 15 28 L8 Ll

o e 28 24 nad

2o 2.8 4 28 24 nil

7 M GO I 28 24 nil

L T 28 24 nil
g g N 140 168 many

< e Ml (O b 28 48 36, 4u
3, W, 6,8 28 56 U, 36, 4, 52
b4, 4,9 8L {2 many

i e B 28 24 I

o 52, 9 140. 168 many

6, Gy 3.0 28 24 nil

w
w
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(5.b7.8) s Table@€onttnued)

24 G5 = 28

Sy> 5o Sy5 Sy uz uy Orders for which the existence problem
is unsolved

la l) l, 25 28 56 36’ LLL;’ 512

o il et 5 s 00 84 luh Many., including 56

1,1, 8,18 28 56 96, B 5D

il e i 252 280 many

T A 28 56 36, 4u, 52

L R L 52 80 280 6. Ul el Wi

o 02 i3 SlLG 84 S0 many

L, &y B, 1§ 5516 ey mamy, including 4@, 56, 72

I T Ly 40 28, 36

IR Ly 4o 98 ap

H[E 1 ESP RGN ka0 8L 160 many

o6 50585 12 84 160 many

1. 84 afQ 52 80 28 496, L, w50 Feps 68 & 76

1.9 bl 52 80 288, B, il . 521 6l ebl UG

2408 (B U 140 216 many, including 40 and 72

gicd thEra g 36 u8 D8 3y

B8 B 28 28 nil

pie glhigong 52 80 26 836 5 uib, "0, 68176

Jdy5 By B, 9 140 416 memy , ineludine LLOL 56,72

R L, 60 80 28, 95, L. Bo e e

TN O s 28 28 nil

e g g 28 48 36, uu

TR S ey 28 28 nil

B, s upedp 36 -2 28

5,5, 9. 9 52 80 28, 85, UL G0, 68 e

7 B8 Sipre g 28 28 nil

2, 8, 6, 59 Bhie .o %65 redrculants Al, AQ, A3, Aq , with first rows

abdde , abdde , bdeed , ddeed ,

respectively satisfy
: 17 2 2 2 2
Y AL = (2a°+3b“+6c +9d°) T
o=

and so, using the Goethals-Seidel construction, there is an orthogonal

e bype 1285 € ,09) - and order 20 . Rebimsen: G[55], [571) wives
orthioeonal de=sipgns of this type and orders 24 apd 32.. Hence if ml, m2,
m, are nonnegative infegers then there is an orthogonal design of type

3
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(2, 3, 6, 9) and order 20ml + ?_um2 + 32m3 , using elementary constructions

(see section (1.2)). This implies that N =< 40 , and the only orders for
which existence is unknown are 28 and 36 .

(1, 1, 1, 25) : The existence of =n orthogonal design of type (1, 1, 1, 25)ﬁ
and order 28 is established in section (2.1) (example (2.1.17)). It

follows from results in [57] that there is an orthogonal design of order 32
and (1, 1, 1, 25) . Also from [57], there is an orthogonal design of type

(1, 1,1, 1, 2, 6) and order 16 . The 2 X 3 circulants Ai Ll K58 1~

with first rows
abf , . boG ; €00 ; doo-, did . ddd
are symmetric and satisfy

aa w4 a7+ aa% v a4l + 2040 + saal = (@PbPecs25d7)1
Hence there is an orthogonal design of type (1, 1, 1, 25) and order Uu8
(see introduction ot Chapter 2 or [72]). Similarly, 5 X 5 circulants with
first rows

a0000 , b0200 , ddddd , 0dddd , 0dddd
may be used in an orthogonal design of type (1, 1, 1, 1, 2, 2) and order
8 to give an orthogonal design of type (1, 1, 1, 25) and order 40 . It

follows that N = 40

(2, 4, 4, 18) : There is a GGS array of type (2, 2, 4, 4) and order 12

(see section (5.7)). The 3 x 3 circulant matrices Al, AQ, AB’ .4,4 s mith
first rows
add , ddd , bdd , ¢c00 ,
recpectively satisfy
i1 t [ Gik 2 2 2 2\
= i3 ans
20 A7 + 2,45 + WA A + 44 = (207 +ubT+ucT+18d7)T

Hence there is an orthogonal design of type (2, 4, 4, 18) and order 36 .
here is a circulant weighing matrix W of weight 9 and order 13

(see Theorem (1.4.1)) and W may be chosen with zero diagonal. The matrices
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i e o t B
Ay =al +dWi , A,=al -dV ,satisfy A A + 447 = (2

24186°)T . The

seauences
ccbb , bbee ,
(from [21]) are complementary, and so there are 13 X 13 circulant matrices
2

: t i 2. LD :
AS and A, such that AdA, + A A= (40 +4d ]I . Using 4

yy -

P A3’ Au

1°
in the Goethals-Seidel array (2.0.5) there is an orthogonal design of type
(2, 4, 4, 18) and order 52
Similarly, using a GGS array of type (2, 2, 2, 2) and order 12 an
orthogonal design of typs (2, 4, 4, 18) and order 60 may be obtained.
Since there is an orthogonal design of type (1, 2, 2, 9) and order
“m for all 7n = U4 , there is an orthogonal design of type 425 4, &  18)

and order 8n for all n = 4 (by Theorem (1.3.1)).

It follows that W = u8 .

The following table gives values of 7 and N for 28 < 8 < 236 . The
double asterisk "#*" indicates that an orthogonal design of this type is
not known for any order equivalent to 4 modulo- 8 .

Two examples are given to illustrate the cclculations involved in
greparing Table (5.4.4).

(1, 5, 5, 25) : There is a circulant weighing matrix W of weight 25 and

order 31 (Theorem (1.4.1)). 1If Al = il and Au = dW then

31

AlAi - AuAi = (a2+25d2)I . Also, there arc complementary sequences which

give 31 x 31 ~irculant matrices A2 and A3 such that

A2A§ + A At - (5b2+502)I (see (5.2.5)). The matriccs Al’ A8 A

33 e L

be used in the Goethals-Seidel array (2.0.5) to construct an orthogonal
design of type (1, 5, 5, 25) and order 124 . There are orthogonal designs
of this type and orders 64 [57] and 96 [55]. It can be deduced that

N = 492
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(5.4.4) TABLE

28R g =

a5l 8, e § uz Ly 8.y 5508 008) 47 uN
10T ke 124 368 i s oo e

i 9. a0 a0 8L 3 D ils e i 4l 40
S 8L 248 55 el Mg 52 80
ioa g 38 52 8L e 140 416
PruD 5 9 84 2u8 2 B a0, 10 4y 40
ol R g 196 272 gnm o g 60 80
o s RS 52 80 S T 156 216
RN TN T 60 56 e uy 40
bl o R 52 80 e i i 60 80
2o 2 5 20 84 2u8 L B G g) 140 184
Chg B4 ST 52 80 nlig g -9 156 184
e S 140 168 B.si5 g b 4y 40
o T 60 56 il 36 32

SORSRSE==E36

i 5 9 8L 160 98 Ui e 60 56
e g B 36U 1088 S, By oy 60 120
e T 8l 80 T e 60 96
s L L 68 6l 3.4 '35 e 60 96
1,.2.%5 27 156 6L 3, B0 16 140 232
THL B 124 368 5 s s 60 120
i 2ls Wk, 09 sk T By N RaRS ek

g 8 DN 84 248 4, 4, 5, 20 84 248
ASElE sl 025 124 184 bt dlisl  BINE8 60 140
f 55 25 124 ug2 B o] RS 140 u16
i B, A 15 8L 160 i oaE s 60 56
il 156 L8 .8, B. 16 4y 40
e 3 364 u56 S el ks _ 260 936
2 250 25 2 ung Sy S5E 18k : 60 56
2o 25 it 16 60 96 eyl BaL 1 60 96
i e o 372 1112 B BLra g 52 128
2, 4, 9, 18 156 192 8.8, 16, 10 1y 40
3BT S e 9.9, a 4 36 36
2L 0ubEe 1240 16 8L 160

5. B.'a. 18 8 160

(G 5,015,500, Propiositions(2.2.3) gives'a GBS @vray of ype (38, 3, 3)

and, opder 20 .. The .3 X 2 ‘circulant matrices 4., 4..,:4 Au ssWith Fivst

Jae S

POWS

ace , bdd , edd , dce

satisfy
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2

DO - (527 e9p 150 %415d0) T

; 1
1

I
7=
and so thepe is an erthogonal design of type (3, 3, 15, 15) and order. 60
(see section (2.2)). From table (5.4.3) there is an orthogonal design of
type (3 N@ G NE). and erder lUn. for esch » = 5 . 'Equating variables
gives an orthogonal design of type (3, 15) for these orders. Using
Theorem (1.8.2) an orthoponal desipn of type (3,23, 15, 15). and order 8n
for each n =2 5 may be obtained. Using elementary constructions (section
(L2200t Follows that M= 96 ..

Remark. The authcr is grateful to Peter J. Robinson for permission

to use his listief U-—tuplesiuwhich satisfy (5.us2)n

(5.5) Twn variable orthogonal designs of order equivalent to 4 modulo 8

Suppose that s and s, are positive integers and with sum s , and

b 1is an odd integer with U4b = s . Then the existence of an orthogonal

design of type (sl, 32) and order u4b implies that

(5:5:1) 8,8, is a sum of 3 squares, and

(5.5k8)L . AF e =.ub — L then there is a 2 x 3, intepral matrix . B

N

Gl
sSuch S Ehai  PPar= dlag(sl, 32)

These two conditions follow from the Rational Family Theorem (0.0.8) and the
Geramita-Verner Theorem (0.0.12).
For .8 < 28 , (5.5.1) and (5.5.2) are sufficient for exisience.

(5.5.3) THEOREM. . Suppose that b =7 and s, and s, are positive

integers which satisfy (5.5.1) and (5.5.2). Then there is an orthogonal

design of type (sl, 32) and order Uub .

Proof. The table (5.5.4) gives the first rows of circulant matrices

which can be used in the Goethals-Seidel array to obtain orthogonal designs
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of order 28 and the types listed. (These circulant matrices were found by
implementing the method of section (2.1) on the Univac U1100/42 zomputer at
the Australian National University.) For types and orders other than those

in this table the theorem is proved in [19], [31], [55], [57]. O

(5.5.4). TABLE

(4, 19) aaaaaaa , aaOaaad , aaaaabb , bb0a0daod
(5, 21) aabaabb , aaaaabb , aaaaaad , aaaaaal
¢6, "177) aaaaabb , aaaaaab , ab0a000 , bbaaaa0
(6. .200 aacaaab , aaaaaab , ababaa0d , aababa0
e e
(7, 15) aaaaaab , baobt00 , ababab0 , aabaaal
(7F 19% aabaabb , aaaabad , abaaaal , aaaaabb
(1, 30, 14) 0bEbbbb , baaaaad , babzbad , bbabab0
(9, 16) bbbabab , aaaabb0 , aaaabb0 , acaaaa0
(i) aaaaaa0 , aabbbb0 , abaaab0d , acaaabb
(11, ‘15) babbbbo , babbbb0 , aaaaaab , aaaaaaa
(i 1) bbLoabb , bbbbaab , aaaaaab , aaaaaaa
(12 10t) abababb , abbaaa0 , aababbb , aaaabb0
(9. a7} ababbbb , aabbca0 , aaabcab , aaaaaal
(1119} bbbbob0 , aaaa000 , ababbbb , aaaaaab

It is conjectured (0.0.14) that (5.5.1) suffices for the existence..of

an integer N such that an orthogonal design of type (sl, 32] and order

iy exists for eaeh n =N . For s = 36 , this is true with enly twe

exceptions.

(5.5.5) THEOREM. Suppose that s, and 5, are positive integers such

that B aihiis = 86 and sgs. cds @ sumiefd (3 sguares.; Jf

2 2
(sl, 82) e ,“23) or (15,719) then there is an integer N such that an
orthoqonal desisn of type (sl, 32) and order uUn exists for each n = N .O

This theorem may be proved by considering each pair (sl, 82)

separately, and using the methods of section {3.2).
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(5.6) Weighing matrices of order equivalent to 4 modulo 8

For each positive integer k denote by N(k) the smallest integer
such that a weighing matrix of weight k and order Un exists for each
n =z N(k} . The argument is omitted where convenient. Using similar methods

as in section (5.1), it can be shown that if € is a positive real number

then tThere is a real constant 4 such that WN(k) = Ak5+€ Forfaly FRAT
However, numerical evidence suggests that N(k) is much smaller. It

has been conjectured [69] that WN(k) = [(k+3)/4] . This conjecture has been

verified fer 'k =45 . Fer U6 =k = 60, the following table gives an

upper bound N for N .

(5. 608 “TFABLE

k 4N 4L (k+3) /4] k uy LL(k+3)/4]

46 104 48 54 108 56
47 48 48 55 108 56
L8 48 48 56 56 56
49 104 o2 57 120 60
50 52 52 58 60 60
ol 52 52 59 60 60
52 92 O 60 6Q 60
53 60 56

(5.7) GGS arrays of order 12

There are GGS arrays of order 12 and the following types:
Jsvartables:: (l, l, l, l)a (ls la 23 2), (23 29 23 2)3 (29 23 L": '—l—) 5
3 wvariables: (l, l, l), (l, l, 2)9 (l, l, ’4), (la la 5)9 (la 2) 2)9

(o B S e g o D0 i W (2 2 B2 B8
e e T S IR e R (- TR SR T (11 SO T D)
P ablee o (1 L) (DN ST Sy el 5) .. (1, 6], . (1,.8),

o T R G e (O B TS W O T Tl
o e D g (0. Ta), (8, 3), (B, MY,
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S oL 70 GRS o), (8, b)), (4, 5)y (M, 6,
s 50 06, T (650 6)
EuES R e B Lo (L T, G Y1) (3, ), (3, 8), (&, 9),
(5, 7) can be constructed by using 3 X 3 matrices in the Goethals-Seidel
array (2.0.5) (see Theorem (2.2.2)). The first rows of some of these
circulants are listed below, and others can be obtained by elementary
constructicns (section (1.2)). The two variable GGS arrays may be made from

orthogonal designs of the same type (see section (2.2)).

(5.7.1) TABLE

type circulant matrices
@1 sk, 0R1) @00y 00N 00w, vedd
Flgedegd 22 2 @00 L s 29b00. S vedd . cdl
B sk add %) abO , ablusuvied® . ed
(2625 ot Frl) abe g dbenstudbe ;. dbe
(3% a5 ) 2004 . DOl b cee iz Gee
628 2p05) ab .- abb . eee . Qce
@33 .3913) abeis s iablie iale 5 Gbe
¢2.. 9) abb ¢v.abb . bbb, 0bb
69, 0% abl 5% aObiwsvoabb s 1BBD
(55 :5) abb {i80de . ibaais. ' obb
(5, 6) abb 3. baaisu bbb 0oge:

GGS arrays of the following types are not known to exist, even though
the corresponding orthogonal designs exist.

R o L | AR (G R 6 e (O SR DT G e S B I e
il e (T 2 2 2,3 B (8 S8 B e

Sy 150 100 (L2 tdisell 9pn Slpeblonis®s )p
SRR (I ), (1, &, Wy, (0, B,08), (L, 6.0 5%
(2> 3 u)9 (29 39 6)') (29 39 7)9 (Qa 5: 5)9 (39 35 6)

Bitvaritableskaach,

b

nilinagay dawgar bi:wayay
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APPENDIX

SOME UNSOLVED PROBLEMS

The following problems are selected on two criteria.

Firstly, the author considers these problems to be solvable - no
questions of immense difficulty are included.

Secondly, solutions to these problems would enhance the results of this
thesis.

(Q1). 1In section (2.4) it js shown that there are at most [%p(2n)]
variables in a GGS array of order n . If 16 divides n , then
[3p(2n)] = 5 ; are there any GGS arrays with 5 wvariables?

(Q2). sSuppese that H and G are transitive abelian subgroups of the
symmetric group, and 6 is an isomorphism from H onto G . Then it can
be shown [16] that there is a permutation ¢ such that ¢6 = ¢—lw¢ for
each Y € H . Hence type 1 matrices on transitive groups are classified
up to conjugacy by isomorphism. Can a similar theorem be proved for GC-rings
in general?

(Q3). @GS arrays of type (m, m, m, m) and order equivalent to
4 modulo 8 play an important role in Chapters 2, 3 and B. However the
only such arrays known for m = 3 (mod 4) have m a power of 3
(Proposition 2.2.3). Are there any GGS arrays of type (m, m, m, m) and
order equivalent to 4 modulo 8 where m # 3 1is squarefree and equivalent
to 3 module 4 -2

(Q4). Are there orthogonal designs of types (3, 7, 8), (1, 3, 6, 8),
(1, 4, GoNEENEEO NS 5) , and order 20 ? (An answer to this question
cannot be found by using GGS arrays (see section (2.4)), and could lead to
new methods for constructing orthogonal designs of order equivalent to L

modulo 8 .)
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(Q5). Theorem (4.1.7) is proved using a great deal of heavy machinery.
Is there a direct combinatorial proof?
(Q6). Is there a weighing matrix of weight 9 and order 15 ?

(Q7). 1Is there a real number » between 0 and 1 such that if

815 8595 ++-, 8 ~are positive integers with sum less than 2% , then there

is an orthogonal design of type (Sl, Sps sees su) and order 2% 2 (A
positive answer to this question would lower the bounds in the asymptotic

pestlts of scetion (3.2) - see the remark after Lemme (3.2.7).)

(Q8). Are there any weighing matrices of weight 36 and odd order

sllchsEhaiE RIS E=)N=g



