
ON THE EXISTENCE OF ORTHOGONAL DESIGNS 

Peter Eades 

A thesis submitted for the degree of 

Doctor of Philosophy 

at the 

Australian National University 

Canberra 

July 1977 



(i) 

STATEMENT 

The results presented in this thesis are my own, except where 

otherwise stated. 

Peter Eades 



(ii) 

ACKNOWLEDGEMENTS 

It is a great pleasure to thank my supervisor Jennifer Seberry for her 

constant help, advice and encouragement during my research. I am also 

grateful to John Cossey, Peter J. Robinson and many other mathematicians at 

the Austral ian National University for providing a stimulating atmosphere in 

which to work. 

I also acknowledge the financial support of the Australian Government 

and the Australian National University. 

I extend special thanks to Mrs Barbara Geary for her skilful typing. 

Finally I would like to thank my wife Diana without whose support this 

thesis would not have been possible. 



(iii) 

ABSTRACT 

An orthogonal design of type (s^, s ^ , s^) and order n on the 

comniuting variables x , x , x , is an n n matrix A with entries 
-L ^ Z't 

from {o, ir^, such that 

= 
V 2 
) S .X . 

^=l 

I . 

The existence question for orthogonal designs stems from many problems 

originating in fields as diverse as algebraic topology and coding theory. A 

brief history of the existence question is included in the Introduction. 

Wolfe [79] and Shapiro [53] have recently found effective necessary and 

sufficient conditons for the existence of orthogonal designs in terms of 

rational matrices. Subsequent research has been directed mainly toward the 

question of determining precisely when these necessary conditions suffice 

for existence. 

This question is answered in many particular cases by the diredt 

construction of orthogonal designs in Chapter 2. A method which searches for 

an orthogonal design of given parameters is presented. This method has been 

implemented by hand and by computer to construct a large number of 

previously unknown orthogonal designs. Some related techniques are used to 

construct infinite families of orthogonal designs. 

In Chapter 3 two different asymptotic existence results are proved. 

Firstly, it is shown that if all of n , s , , s , ..., s are sufficiently 

divisible by 2 , then often the existence of an orthogonal design of type 

l̂ s , s , ..., s ] and order n can be deduced. Secondly, the Wolfe-

Shapiro necessary conditions are shown to be often sufficient for the 

existence of orthogonal designs with few nonzero entries. 

A kind of integral analogue to the Wolfe-Shapiro theory is presented in 



(iv) 

Chapter 4. As a consequence, it is shown that the Wolfe-Shapiro necessary 

conditions suffice for the existence of an n x n matrix A with entries 

u 
from (mx. : 1 < i < u, m such that AA^ y s .X. I . This is 

important because such a matrix resembles an orthogonal design. 

In Chapter 5 the power of the results in previous chapters, especially 

Chapter 2, is illustrated by the tabulation of numerical results. 

Many of the results in this thesis can be found in the published 

papers of the author. 
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INTRODUCTION 

THE EXISTENCE PROBLEM 

The following definition was formulated in 1973 by Geramita, Geramita 

and Wallis [24] in order to unify some algebraic and combinatorial concepts. 

DEFINITION. An orthogonal design of order n and type 

(s , s , ..., s ] on the commuting variables x , a; , ... , a? , is an 

n X n matrix A with entries from {o, ±a; , ±x , ..., ±x } such that 
1 2 ^ 

(0.0.1) = 
u 2 
y s .X. 

H--1 ^ ^ 
I . 

Alternatively, the rows of A are formally orthogonal and each row has 

•precisely s^ entries of the type ±x^ . 

Special kinds of orthogonal designs were studied for many years before 

1973. Jacques Hadamard [36] in 1893 showed that the determinant of a real 

n X n matrix with entries from the interval [-1, 1] has absolute value at 

hi, 

most n^ . Matrices which achieve this bound have subsequently been called 

Hadamard matrices. It is clear from (0.0.1) that an orthogonal design of 

type in) and order n gives an example of an Hadamard matrix. Hadamard 

proved the converse: every Hadamard matrix has mutually orthogonal rows and 

entries from { - 1 , l} . Also, he showed that the order of an Hadamard 

matrix is either 1, 2 , or divisible by 4 . The question of whether there 

is an Hadamard matrix for each order divisible by 4 is open. This problem 

has received a great deal of attention in recent years because of its 

implications in other areas of combinatorics, such as balanced incomplete 

block designs [38], tournaments ([52], [66]) and codes [7]. 

An orthogonal design of type (1, 1, 1, 1) and order 4 , 



(0.0.2) 

^2 ^3 X 

-X 

-^4 ^3 -^2 X 

was used by Williamson in 1944 to construct Hadamard matrices. If 

X^, X^, X^, X^ , are v x v matrices with entries from {-1, l} such that 

= for 1 < t: < J 5 4 and X^X^ + X^X^ + X^X^ + X^X^ = 4yJ , then 

replacing the variable x. by Z. in (0.0.2) yields an Hadamard matrix of 

iy U 

order 4y . Baumert and Hall [4] used orthogonal designs of type 

(b, b, b, b) and order ^b in a similar fashion to construct Hadamard 

matrices of order ^vh . Such orthogonal designs have subsequently been 

called Ba-umevt-Eall arrays, and have received considerable attention (see 

[75], [10]). Turyn [68] has shown that constructions for Baumert-Hall 

arrays are related to problems in signal detection. 

Another special kind of orthogonal design was introduced by Raghavarao 

[50] in 19 59 in connection with a weighing problem. A weighing matrix of 

weight k and order n is an n y- n matrix with entries from {O, 1, -1} 

such that ~ kl . Thus a one variable orthogonal design gives a 

weighing matrix; in particular, an Hadamard matrix of order n is a 

weighing matrix of weight n and order n . Raghavarao demonstrated that a 

weighing matrix describes a method of weighing n objects k at a time to 

obtain an error distribution with small variance. Taussky [57] suggested 

the study of weighing matrices as a natural extension of the study of 

Hadamard matrices. In recent years weighing matrices have been used in 

connection with Pless symmetry codes [6], in designing telephone conference 

networks [5], and in the design of masks for optical spectrometers ([65], 

[43] ). Also, weighing matrices are related to problems in finite projective 



geometry ([37], [35]) and graph theory [34]. 

Geramita and Pullman [25] introduced orthogonal designs of type 

(1, 1, 1, ..., 1) in 1973 as a realization of the maximal number of 

independent vector fields on the n sphere. The problem was solved 

completely by the topologist J.F. Adams [1] in 1952. However, it can be 

stated in terms of an earlier problem of Hurwitz [4-2] and Radon [49] as 

follows (see [2]): What is the maximal nimber of real skew-symmetvia n x n 

matrices A . such that A . - -I for each i and A .A . = -A A . for each 

i ^ j ? Now suppose that A is an orthogonal design of type 

(1, 1, 1, ..., 1) and order n on the variables x^, x^, ..., x^ . Write 

A as X-,P-, + x^P^ + ... + X P where the entries of the P. are from 1 1 2 2 M M ^ 

{0, 1, -1} . Then the equation 

= 
u 
I I 

ensures that the matrices A. = P . ^ i < u) satisfy the requirements -J-

above. Hence by finding orthogonal designs of type (1, 1, 1, 1) on 

a maximal number of variables, Geramita and Pullman gave a neat combinatorial 

solution to the Hurwitz-Radon problem. 

Some other special kinds of orthogonal designs are discussed by Taussky 

[67]. In particular, she notes that the orthogonal designs 

[^J ' 

^2 

-^2 

^2 ^3 
-a:. 

X, 

-^4 ^3 -^2 X-



^2 ^3 ^7 ^8 

^7 ^3 -^2 

give representations of the real numbers, complex numbers, quaternions and 

Cayley numbers respectively. The fact that these four are essentially the 

only orthogonal designs of type (1, 1, 1) and order n on n 

variables is related to the theorem of Bott and Milnor [9] which says that 

the only division algebras over the reals have dimensions 1,2, U and 8 . 

The existence question is central to all the particular studies of 

orthogonal designs mentioned above: 

(0.0.3) For which parameters n, s^^, s^' ^^ -» there exist an 

orthogonal design of type (s , s , ..., s ) and order n ? _L ^ (yi 

This thesis is motivated primarily by the search for an answer to this 

question. Of course the question is open; for example it includes the 

problem of Hadamard matrices. However, recent algebraic and combinatorial 

results have provided some insights on the existence question. The most 

significant of these results are outlined below. 

Using a theorem of Radon [49], Geramita, Geramita and Wallis [24] 

observed that the number of variables of an orthogonal design of 

order n is at most pin) , where p (the Radon function) is defined as 

follows. Suppose that n = , where b is odd and 0 < d < 4 . Then 

p(n) - Sc -v (see also [67]). The proof of this fact uses the observation 



that an orthogonal design of type (G , s , s ) and order n can be 

u 

written as V re ./l , , where 
1 ^ ^ 

(0.0.4) A.A*^. = S.I for 1 5 i < u ; 
^ ^ ^ ' 

(0.0.5) A.a'^. + AA^. = 0 for 1 < t < j 5 u ; 
J J 'Z-

(0.0.6) the entries of each A . are from {O, 1, -l} ; 
'V 

(0.0.7) * ^ = 0 for I 5 i < j 5 u (see (1.1.11)). 
^ J 

A set {a , A A } of rational n ^ n matrices which satisfy 
-L ^ 

(0.0.1+) and (0.0.5) is called a vcL't'i-oyio.l' fcxmiZy of type (sĵ ? ' '' ' ® ^ 

and order . Thus the existence of an orthogonal design implies the 

existence of a rational family of the same order and type. The observation 

that the algebraic properties of an orthogonal design are reflected in the 

associated rational family motivates the following theorem. 

(0.0.8) THEOREM (Rational Family Theorem) [24], [63], [78]. Suppose that 

n - where h is odd. Then there is a rational family of type 

(s , s , ..., s ) and order n if and only if 
-L ^ lA. 

(0.0.9) u < p(n) 

and 

a 
(0.0.10) there is a w x 2 rational matrix P such that 

PP^ = diag(s^, s^, ..., s^) . n 

The Rational Family Theorem as stated above summarizes many results in 

the literature. A full exposition is given by Geramita and Seberry [26]. 

The conditions (0.0.9) and (0.0.10) are called the algehraio necessary 

conditions for the existence of an orthogonal design. For many values of a 

and u , the Hasse-Minkowski classification of rational quadratic forms (see 

Serre [62], p. 41) gives an efficient algorithm for deciding whether (0.0.10) 



holds for given values of s , s , s (see Wolfe [70]). Robinson 
u- ^ T/t 

(private conmiunication) has used a computer to determine all M—tuples 

(s , s , s , s ) with s + s + s + s < 100 such that (0.0.10) holds J - Z - o H A. ^ o ^ 

with a - 2 . In some cases the algebraic necessary conditions can be 

stated in terms of sums of squares. For instance it follows from (0.0.10) 

and a theorem of Davenport and Cassels (Serre [62], p. M-6) that the 

existence of a weighing matrix of weight k and order 2'^b , b odd, 

implies that k can be written as a sum of squares of integers. Also, 

the existence of an orthogonal design of type (s^, s^) and order 2'̂ b 

implies that a > 0 and the product s^s^ can be written as a sum of 

2*^-1 squares of integers. 

An important concept for the theory of orthogonal designs is the fact 

that the algebraic necessary conditions weaken as the order becomes more 

divisible by 2 . That is, if (0.0.9) and (0.0.10) hold for parameters 

n, s , s , ..., s , then they hold when n is replaced with 2n . 1 2 7/i 

A kind of integral analogue to the Rational Family Theorem is proved in 

Chapter 4. In particular, we show that the algebraic necessary conditions 

for the existence of an orthogonal design of type (s^, s^, ..., s^) and 

order n often suffice to ensure the existence of an n x n matrix A 

which has entries from {mx. : m ^ 71, 1 < i S u] and satisfies the same 

equation as an orthogonal design, that is. 

u 
y s .X. 1 ^ •̂ =l 

J . 

Sufficient conditions are given for the matrix A to be an orthogonal 

design, that is, for the entries of A to be from : 1 < i < u] . 

However, the algebraic necessary conditions are not always sufficient 

for the existence of orthogonal designs. Clearly 3 ^ + 8 2 + ... + s^ 5 n 



is also required for the existence of an orthogonal design of type 

(s^, s^, s^) and order n . The following three theorems give further 

combinatorial necessary conditions for existence. 

(0.0.11) THEOREM [24]. Suppose that there is a weighing matrix of weight 

k and order n . 

(a) If n = 2 (mod 4) then either n = 2 or n > k+1 . 

(b) If n is odd then n>/c + Vfe + l with equality only if there is 

a projective plane of order n - k - 1 . • 

(0.0.12) THEOREM (Geramita-Verner Theorem) [27]. Suppose that there is an 

orthogonal design of type [s , s , ..., s ) and order n and 
J- ^ 1/i, 

Sĵ  + s^ + ... + s^ = n - 1 . Then n is even and 

(a) n = 2 (mod 4) implies that there is a symmetric orthogonal 

design of type (s , s , ..., s ) and order n ; 

A- A. 1A 

(h) n E 0 (mod 4) implies that there is a skew-symmetric 

orthogonal design of type (s^, s^, ..., s^] and order n . • 

(0.0.13) THEOREM (Robinson's Theorem) [53]. If there is an orthogonal 

design of type (1, 1, 1, 1, 1, n-5) and order n then n 5 32 . • 

To illustrate the use of Theorems (0.0.12) and (0.0.13) consider the 

possibility that there is an orthogonal design of type (1, 1. 1, .1, 51) 

and order 56 . Note that these parameters satisfy the algebraic necessary 

conditions since p(56) = 8 and 

1 
1 

P = 1 
1 

1 5 5 

satisfies PP^ = diag(l, 1, 1, 1, 51) . But the Geramita-Verner Theorem 

implies that if such an orthogonal design exists, then there is a skew-

symmetric orthogonal design A with the same parameters. It is not 



difficult to verify that yl̂ -̂ ^ + A must be an orthogonal design of type 
0 o 

(1, 1, 1, 1, 1, 51) ; but by Robinson's Theorem, this is impossible. 

The three combinatorial theorems above indicate that the algebraic 

necessary conditions may not be sufficient for the existence of full or 

almost full orthogonal designs (see (1.1.8)). However, numerical evidence 

suggests that if n is sufficiently larger than s + + ... + s , then 

J_ ^ lA, 

the algebraic necessary conditions imply existence. 

(0.0.14) ASYMPTOTIC SUFFICIENCY CONJECTURE. Suppose that a is a non-
negative integer and s , s , ..., s j are positive integers such that 

-L ^ lA. 

u 5 p(2'^) and there is a u x rational matrix P such that 

PP^ = diag(s^, s^, s^) . Then there is an integer N such that an 

orthogonal design of type (s , s , ..., s ) and order 2'^n exists for 

JL ^ X4. 

each n > N . 

The case a - 0 of this conjecture was first proved by Geramita and 

Wallis [31], In Chapter 3 of this thesis the conjecture is discussed for 

0 5 a < 3 . In particular it is proved for weighing matrices, for skew-

symmetric weighing matrices, and for orthogonal designs of order equivalent 

to 2 modulo 4 . Partial results for other cases are obtained. The 

numerical evidence on which the conjecture is based is given in Chapter 5. 

Conjecture (0.0.14) claims that existence can be established at the 

cost of fullness. This cost is considerable, since orthogonal designs have 

greater significance in applications if they are full or almost full. 

Robinson and Seberry [60] have investigated the existence problem for full 

orthogonal designs. They conjecture that existence of full orthogonal 

designs witli a limited number of variables can be established for orders 

which are a power of 2 . 



(0.0.15) ROBINSON-SEBERRY CONJECTURE. If u < 5 and 

+ = then there is an orthogonal design of type 

(s^, s^, s^) and order . 

Remark. Robinson's Theorem (0.0.13) prevents the extension of this 

conjecture to the case u = 6 . Note also that the algebraic necessary 

conditions are not relevant to this conjecture, since if u < b and a > 3 

then u < p(2^) and for every w-tuple (s^, s ^ , s^) of positive 

integers there is a u x rational matrix P such that 

PP^ = diag(s^, s ^ , ..., s j (see [79]). 

The Robinson-Seberry conjecture has been proved by Wallis for w 5 3 

[70], and there is extensive numerical evidence which suggests that it is 

true for u 5 4 [60]. 

In a similar vein, Wallis [70] has proved the following asymptotic 

result for Hadamard matrices. 

(0.0.16) THEOREM (Wallis' Theorem [70]). If y is a positive integer 

then there is an Hadamard matrix of order 2% for all a > [2 log2(v-3)3 .• 

In Chapter 3 we show that for some values of V , Theorem (0.0.16) can 

be generalized to orthogonal designs. That is, if all of 

n, s , s , s , are sufficiently divisible by 2 then there is an 
J_ ^ 2/1 

orthogonal design of type (s^, s ^ , ..., s^) and order n . 

* 

These asymptotic results leave many existence questions untouched. For 

example, the methods of Chapter 3 imply that an orthogonal design of type 

(1, 9) and order 2n exists for all n > 11430 (using the proof of 

Theorem (3.2.2)). We would like to know whether there is an orthogonal 

design of type (4, 9) and order 2n for 1 <n < 11430 . This prompts 



10 

three questions. 

Suppose that u 5 P (2*^) and there is a u 'x vational matrix P 

such that PP^ = diag(s , s , s ) . -L ^ Z/t 

(0.0.17) What is the smallest integer N such that an orthogonal design of 

type (s , s , ..., s ) and order 2^n exists for all n> N ? 
-L Z. ot 

(0.0.18) What is the smallest odd integer I such that an orthogonal 

design of type (s , s , ..., s ) and order 2^1 exists? -L ^ W 

(0.0.19) For which integers m between I and N does there exist an 

orthogonal design of type (s , s , s ] and order 2\ ? 

In this thesis we attempt to answer these questions by direct 

construction of orthogonal designs. The principal method is an array used 

first by Goethals and Seidel [33] to construct a skew-symmetric weighing 

matrix of weight 35 and order 36 . In Chapter 2 an algorithm is 

presented for using this array to construct orthogonal designs of order 

equivalent to U modulo 8 . The array is generalized in the second 

section of Chapter 2, and the existence of infinite families of orthogonal 

designs is deduced. The power of the results of Chapter 2 is illustrated by 

the numerical results in Chapter 5. 

The existence question (0.0.3) is only partially answered by this 

thesis. Many problems are raised but not solved; even more are left 

untouched. 

A list of significant unsolved problems forms an appendix. 
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CHAPTER 1 

PRELIMINARIES 

(1.1) Notation, conventions, and jargon 

(1.1.1) IL denotes the ring of integers and denotes the field of 

rational numbers. 

(1.1.2) The order of an n n matrix is n . 

(1.1.3) The identity matrix of order n is denoted by I and the n x n 
^ n 

matrix with every entry 1 is denoted by J . The subscripts are omitted 

where convenient. 

(1.1.4) A diagonal matrix may be denoted by diag(a^, a^, ..., a^) . 

(1.1.5) A blank entry in a matrix represents zero. Thus 

1 2 

denotes — 

T. 2 

0 0 

(1.1.6) The largest integer no bigger than a real number q is denoted 

by [(?] . 

(1.1.7) The number of elements of a finite set S is denoted by I-S"! , 

(1.1.8) A matrix is full if all its entries are nonzero. A matrix may be 

referred to as almost full if only a small number of entries are zero. A 

matrix with a large number of zero entries is referred to as sparse. 

(1.1.9) The transpose of a matrix A is denoted by A^ . The multiplicative 

inverse of A^ is written A ^ if this causes no ambiguity. 

(1.1.10) The matrix whose entries are the absolute values of the entries of 

A is denoted' by abs {A ) . 

(1.1.11) If ^ = [a..] - and B = [h. .] are two n x ^ matrices then the 
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Uadamavd product of A and B is written A * B and is an n m matrix 

with ijth entry a. .b. . . If A * B = 0 then A and B are said to be 

disjoint. 

(1.1.12) The symbols x , x ^ , x^^ - - • y y ^^ V ••• , are reserved for use 

as formal commuting variables. To make this notion mathematically precise 

we may consider these variables as elements of the polynomial ring 

Qlx, x^, x^, . . . , y, y^, y^, . . . 

(1.1.13) If A is an n x n matrix and B is an m ^ m matrix with 

-ijth entry h^^ , then their kroneckev product B x A is the rm x rm 

matrix 

V ^2^ ••• 
b^^A b^^A . . . b^^A 

b A b A ... b A 
ml m2 rm 

The relevant properties of the kronecker product are given in [75], 

(1.2) Elementary constructions 

Suppose that there is an orthogonal design A of type s^, ..., s^ 

and order n . Then other orthogonal designs may be constructed as follows 

(from [24]). Replacing the variable x by zero throughout given an 
lA, 

orthogonal design of type [s^^, s^, • orthogonal design of 

type (s +s„, ..., s ) may be obtained by equating variables, that is, 

replacing by x^ throughout. Note that a weighing matrix of weight 

s^ + S2 + • • • + t>e obtained in this way. 

If there is another orthogonal design B of type [s , s ] 

and order m , then the (w+n) x {m+n) matrix 
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A 

is an orthogonal design of type (s-, , s , s ) and order m + n . Note 

that it follows that if W and V are nonnegative integers and 

rm + nv 0 then there is an orthogonal design of type (s^, s^, s 

and order mu) + nv . The significance of this is due to the fact that if m 

is prime to n and r > {m-l)(n-l) then r can be written as rm + nv 

where m and n are nonnegative. This simple observation is used in 

Chapter 3. 

Suppose that A is skew-symmetric, that is, A = -A^ , Then the 

diagonal of A is zero and we can verify that yl + A is an orthogonal 

design of type (l, s^, s^, ..., s^) and order n . In particular, the 

existence of a skew-symmetric weighing matrix of weight k is equivalent to 

the existence of an orthogonal design of type (1, k) and the same order. 

(1.3) Amicable orthogonal designs 

A w-tuple [a^, A^, A^) of orthogonal designs of the same order 

is called amicable if A .A^. = A A^. for 1 5 i < j 5 w . Amicable w-tuples, 

especially pairs, have been studied extensively for the following reason. 

Suppose that there is an orthogonal design B of type (s,, s , ..., s ) 
•i. Z. Z/i 

and order n , and [A , A , . . . , /4 ) is amicable, where each A. has order 

m and type ' '^2-i' ' ' ' ' % ' replacing the variable x. by A. 

in B gives an orthogonal design of type 

t^l'^ll' 1' ^2^12' ® 2 V 2 ' % % J 

1 2 u 

and order mn . The knowledge of amicable w-tuples of orders 2 , 4 , and 

8 has proved invaluable in the construction of full orthogonal designs (see 
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[56]). 

Amicable u-tuples of order 2 have been found which establish the 

following theorems. 

(1.3.1) THEOREM [24]. If there is an orthogonal design of type 

(s , s , s ] and order n and e. € {l, 2} for l<isu, then 
A. ^ (A- if 

there are orthogonal designs of types [s , s , e,s , £,s , ..., e s ) and J- _L X. A X o U 

(e s , e^s , ..., e s ) and order 2n . • 
-L J. 2. A X/i, XA. 

(1.3.2) THEOREM [24]. If there is an orthogonal design of type (s^, s^) 

and order n then there is an orthogonal design of type (s^, s^, s^, s^] 

and order 2n . • 

Wallis [70] used Theorem (1.3.1) to prove the following result for 

orthogonal designs of order a power of 2 . 

(1.3.3) THEOREM [70]. (a) If s^, s^, s^ ^ are positive integers with 

swn then there is an orthogonal design of type (s , s , s ) and order X Z O 

(b) If s^ and s^ are positive integers with swn at most 2^ then 

there is an orthogonal design of type (s^, s^) and order 2'^ . • 

For weighing matrices the kronecker product provides a construction 

similar in effect to the constructions given by amicable orthogonal designs. 

(1.3.4) THEOREM [75]. If and V are weighing matrices of weights k 

and I and orders m and n respectively then f/ x F is a weighing 

matrix of weight kl and order mn . • 

(1.4) Circulant matrices 

An n n matrix [a. .) is circulant if a. . - a^ . . , where the 

subscripts range over a reduced residue system modulo n . It is not 
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difficult to prove that the circulant matrices over a commutative ring form 

a commutative ring. 

Let S^ denote the group of permutation matrices of order n , and 

suppose that T is the permutation matrix which represents the n-cycle 

(1 2 ... n) ; that is 

T = 

0 1 0 
0 0 1 
0 0 0 

0 0 
1 0 

0 1 
0 0 

If the first row of the circulant matrix A is ' ' ' ' '̂ inJ ' "then In̂  

n-1 A = a^^I + a^^T . .... a^T 

This expansion makes algebraic manipulation of circulant matrices easier. 

The element R of S^ which represents 

(1, n)(2, n-1) ... ([%(n+l)], [%(n+2)]) 

is called the backdiagonal matrix of order n . Note that 

1 

R = 

A matrix is hackoirculant if it can be written as AR where A is circulant, 

The fact that backcirculant matrices are symmetric is important in Chapter 2. 

It can be shown easily that there are no circulant orthogonal designs 

with more than one variable, but there is infinite family of circulant 

weighing matrices. 

(1.4.1) THEOREM [74], If q is a prime power then there is a circulant 

2 2 weighing matrix of weight q and order q + (7 + 1 . • 
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These circulant weighing matrices are used extensively in Chapter 3 and 

section (2.3). 

The reader is referred to [17] for details on the problem of existence 

of circulant weighing matrices. 

(1.5) Complementary sequences 

The sequences 

= K i ' = K i ' % = K i ' 

are complementavy if 

u v-l 
(1.5.1) y y a..a. . = 0 , 

for each I € {l, 2, ..., v-l] . For example if a , b, c, d , are integers 

then 

(a, b, c, d) , 

(-b, a, d , -a) , 

(-a, -d, a, b) , 

i-d, c, -b, a) ̂  

are complementary. 

A straightforward computation using (1.5.1) shows that if B. is the 

circulant matrix with first row a . , then 
^ 

u , f u V 
(1.5.2) y B.B^. = 7 y a ^ . I 

(see [26]). Equations of this form are significant in the construction of 

orthogonal designs, especially in Chapter 2. 

Note that the sequences a', a', a' , where A. ^ Z^ 

= K l ' ^iz;' 



17 

are complementary. Thus for each m > v there are m 'x m circulant 

matrices A^ A , ... ̂  A , such that 
-L ^ lA-

I fi ! I. 2 
c 

H ^ l j=l 

This fact is important in Chapters 4 and 5. 

Complementary sequences have extensive applications in both pure and 

applied combinatorics. The reader is referred to [61], [68], [3], [25], for 

further details. 

(1.6) Miscellaneous 

Several mathematical ideas other than the theory of orthogonal designs 

are used in this thesis. 

The classification of rational quadratic forms by Hasse and Minkowski 

is invoked in section (3.2) and often in section (4.2). An exposition of 

this theory is beyond the scope of this thesis, and the reader is referred 

to Serre [62] (part 1). 

The classical theorems on sums of squares of integers are used 

throughout. Sierpinski [54] lists all the necessary theorems. 

The language of algebraic structures (groups, rings etc.) is used in 

various places. In particular, some facts about permutation groups are used. 

Herstein [60] covers this area sufficiently. 

Cyclic difference sets are used in section (2.2)^ details are in 

Baumert [3]. 
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CHAPTER 2 

THE GOETHALS-SEIDEL ARRAY AND SIMILAR CONSTRUCTIONS 

Circulant matrices have been used to reproduce orthogonal designs in 

the following way. Suppose that there is an orthogonal design of type 

s , , s „ , s and order n on the variables CC • CC ̂  m • • • % cc , and 
^ 1 2 W 1 2 ' ' u 

J , X , ..., Z , are v x V circulant matrices with entries from 
-L ^ Z/i 

such that 

u f ( ^ 9 
(2.0.1) X S . X X ' = I rny 

V = 1 ^ ^ i=l ^ ^ ^ 
I , 

and 

(2.0.2) X.X^. = X.X'^. for 1 S i < j ^ u . 
^ 0 0 ^ 

(Note that (2.0.2) is satisfied if each X . is symmetric, or if each X . 
% 'V 

is skew-symmetric.) 

Then an orthogonal design of type [m^, , m^ and order nv 

may be obtained by replacing each variable x. in A by X. . 

The difficulty here is the requirement (2.0.2). For example, it can be 

shown that a skew-symmetric weighing matrix of weight 35 and order 36 

cannot be constructed using an orthogonal design of type (1, 1 , 1 , 1) and 

order 4 . Goethals and Seidel produced such a weighing matrix by using a 

construction which overcame the problem (2.0.2). 

(2.0.3) THEOREM (Goethals-Seidel construction) [33]. Suppose that 

A A , A , A , are v x v circulant matrices with entries from 
1 ' 2 3 ^ 

0 , tx^, and 

4 . 
(2.0.4) y A A ^ = 

i-1 
> s .X AI . 

J=1 ' 



19 

If R denotes the hackdiagonal matrix of order V then 

(2.0.5) 

A^R ^3^ A^R 

-A^R AIR -A^R 

-A^R -AIR A^R 

-A^R -Ap 

is an orthogonal design of type (s^, s^, s^) and order . 

The array (2.0.5) has subsequently been called the Goethals-Seidel 

array. Theorein (2.0.3) has proved to be the most productive method of 

constructing orthogonal designs of order equivalent to 4 modulo 8 . 

A similar array for two circulant matrices is well known. 

(2.0.6) THEOREM (Two-circulant construction) [26]. Suppose that A^ and 

A^ are v ^ v circulant matrices with entries from {o, 

and 

' Vl" • u 2 
y s .X. 
^=l 

I . 

If R denotes the v x v hackdiagonal matrix then 

(2.0.7) ^2^ 

• is an orthogonal design of type (s , s , ..., s ) and order 2v . 

_L ^ lA. 

The two-circulant construction is useful for the construction of 

orthogonal designs of order equivalent to 2 modulo 4 . The array (2.0.7) 

is called the tuo-circulant array. 

A method for finding solutions of (2.0.4) is described in section (2.1) 

following. 

Generalizations of the Geothals-Seidel array are presented in section 

(2.2). Section (2.3) illustrates techniques for using the Geothals-Seidel 

array and its generalizations to produce infinite families of orthogonal 
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designs. 

The results of sections (2.1) and (2.3) have provided a substantial 

amount of information about the questions (0.0.17), (0.0.18) and (0.0.19) 

posed in the introduction to this thesis. The extent of this information is 

indicated in the tables of numerical results in Chapter 5. 

The limitations of constructions such as the Goethals-Seidel array-

are discussed in section (2.9). 

(2.1) A method for constructing orthogonal designs by using circulant 
matrices 

The method outlined in this section has been used successfully to 

compute 4 variable orthogonal designs of order 20 and 2 variable 

orthogonal designs of order 28 . Some success has been achieved with 

weighing matrices of orders 18, 22, 26, 30, 44 , and 52 . The results of 

this computation are included in the tables of numerical results in Chapter 

5. The author believes that the method can be extended to construct 3 and 

4 variable orthogonal designs of order 28 and 2 variable orthogonal 

designs of order 36 , but so far this has not been done. 

The method is presented as it applies to the Geothals-Seidel 

construction (2.0.3), but there are no difficulties in extending the results 

for more general circulant constructions, such as those mentioned in section 

(2.2). 

Specifically, for positive integers ŝ ,̂ s^, s^ , and odd v the 

method searches for four circulant matrices X^, , X^ , of order v 

with entries from { o , ..., such that 

(2.1.1) Y X / . -
^=l 

^ " 2 > s .X . 
• ^ ^ •^=l 

I . 

The existence of an orthogonal design of type (s^, s^, s^] and order 

Uy follows from the Goethals-Seidel construction (2.0.3). 
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Remark. The restriction that V is odd is not necessary for most of 

the results which follow. However, the restriction is made because we are 

principally interested here in constructing orthogonal designs of order not 

divisible by 8 . Orthogonal designs of order divisible by a large power of 

2 can be constructed using other methods (see [55], [57], and section 

(3.1)). 

2 iz Equation (2.1.1) has V components, but since X .X. is circulant and 
"h % 

symmetric, at most %(y+l) of these components are independent. The next 

two definitions are made to isolate the independent components. 
If A^, A^, A^, A^ , are v x v circulant matrices with entries from 

0, ..., and the first row of A has , entries of the 

kind , then the u x 4 matrix M = is called the entry matrix 

J Ĵ 
I 

of ^J • 

Suppose that A is a v ^ v circulant matrix with rows 

r^, ..., r^ , and denote %(y-l) by w . Then the IPV {inner product r 

vector) of A is t t t . Note that if [d^, d^, d j 

is the first row of AA^ , then the IPV of A is [d , d , . . . , d ] . 2 3 h) 
It is clear that [x^, X^, X^, X^) = (a^, A^, A^, is a solution of 

(2.1.1),if and only if 

a (2.1.2) \ m. . - s . for 1 < i < u , 
J=1 

and 

4 
(2.1.3) V . = 0 , where h. is the IPV of ^ . . 

J=1 J ^ J 

In other words, to find a solution of (2.1.1) we need four 

circulant matrices with entries from | o , ' ^^os® entry 
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matrix has ith row adding to s. for 1 S i < u and whose IPV's add to 
ly 

zero. 

The content of a circulant matrix A with entries from 

0, , tx , ,. . , ±x } is the set of pairs (ex., w] where ex. (e = ±1) 

occurs a nonzero number m times in the first row of A . Our next task 

is to show how the contents of solutions of (2.1.1) may be determined from 

the knowledge of the parameters s , s , ..., s 

J- ^ lyi, 

U Suppose that the rowsum of , is T p. .x . for 1 5 j < 4 . Then i=l ^ 

the M X 4 integral matrix P = (p. ,) is called the sum matrix of 

A^, A^, /.J . The f i l l matrix of [A^, A^, A^) is M - abs(P) . 

The content of A . is determined by the ith columns of the sum and fill 

matrices. 

The following Theorem may be used to find the sum matrix of a solution 

of (2.1.1). 

(2.1.4) THEOREM (Sum Matrix Theorem). The sum matrix P of a s o l u t i o n of 

(2.1.1) s a t i s f i e s 

(2.1.5) PP^ = diag(s^, s^, s j . 

Proof. Suppose that A is a V ^ V circulant matrix with rowsum a , 

and denote by h the sum of the squares of the first row of A , and by o 

the sum of the entries of the IPV of A . Then 

{JA)[A^J^) = a^JJ^ = 

(see (1.1.3)). But also 

= (b+2c)jj'^ 

= vib+2c)J . 
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2 
Hence a - h \ 2o . Thus if (p and (/t?̂ ,̂) are the sum and entry 

matrices of a solution of (2.1.1), then since the sum of the sums of the 

entries of the IPV's is zero, it follows that 

4 
y 
i'=l 

u 2 u 
y V. .X. _ y 2 

m. .X . 
.̂7=1 '•J Jj = 0 . 

Expanding this equation and equating coefficients of x.x . gives (2.1.5). • 
J 

(2.1.6) REMARKS. (a) Note that the Sum Matrix Theorem (2.1.4) implies 

that a necessary condition for the existence of an orthogonal design of 

type (Sĵ , s^, s^) and order Uv constructed by using the Goethals-

Seidel array is the existence of a w x 4 integral matrix P satisfying 

(2.1.5). The similarity between this result and the Rational Family Theorem 

(0.0.8) was the original motivation for much of Chapter 4. 

(b) Suppose that P and Q are the sum and fill matrices of a 

solution (X^, = (2.1.1). If B and C 

are permutation matrices of orders u and 4 respectively, then BPC and 

BQC are the sum and fill matrices of another solution of (2.1.1) formed by 

permuting the indices of the A . and the x . . Hence BPC and BQC are J 
regarded as essentially the same as P and Q . Similarly, if P' is 

formed from P by multiplying some rows and columns by -1 , then P' is 

regarded as essentially the same as P . 

We state the first step of the method. 

STEP 1. Use the Sim Matrix Theorem to find a sum matrix of a solution 

of (2.1.1). 

If the algebraic necessary conditions ((0.0.9) and (0.0.10)) for the 

existence of an orthogonal design of type s^? •••5 ŝ J and order 4y 

hold, then the existence of a solution to (2.1.5) is guaranteed by Proposition 

(4.2.3). In most cases if the s. are small [for instance 
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Sĵ  + s^ + ... + s^ < 28 ) then the solution of (2.1.5) is essentially unique 

and can be found easily by hand. 

It is clear that if Q is the fill matrix of a solution of (2.1.1) 

then 

(2.1.7) the entries of Q are even nonnegative integers, 

and if M = [m ] = a b s ( P ) + S then M satisfies (2.1.2) and 
''J 

(2.1.8) the sum of a column of M is at most v . 

There may be a large number of matrices which satisfy (2.1.2), (2.1.7) 

and (2.1.8) (see Example (2.1,11)), but the next two lemmas may be used to 

reduce the number of possibilities. 

(2.1.9) LEMMA. Suppose that A is a circulant matrix of odd order v . 

with entries from {o, 1, -1} and with k nonzero entries in each row. 

(a) If k > v-1 then each entry of the IPV of A is odd. 

(b) If each entry of the IPV of A is even then v > k + Vk + 1 . 

Proof. Part (a) can be proved by an elementary parity check. For part 

(b), a standard counting argument may be employed as follows. Suppose that 

the ijth entry of A is a. . and denote by B. the set 

{j : 1 5 J < f and a . . = o} , 

for 1 < i < y . Each B. contains v - k elements. Also, since each 
^ 

column of A contains k nonzero entries, each integer in {l, 2, ..., v} 

occurs in v - k of the B. . It follows that each element of B, occurs 
^ 1 

in V - k - 1 of the B. for i > 2 : hence 

V 
Y B, n B.l = {v-k){v-k-l) . 

But since the inner product of each pair of distinct rows of A is even and 

V is odd, \B n is odd for 2 < i < v . In particular 
X '2' 

B, r\ B. > 1 . Hence 
1 ^ 
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V 

y \BnB.\>v-l, 
t = 2 1 ^ 

and so 

( v - k r - iv-k) > y - 1 . 

Completing the square gives 

iv-k-1)^ > k . 

By part (a), v > k > 0 and so V > k + Vk + 1 . • 

(2.1.10) LEMMA. Suppose that the entry matrix of a solution 

f^l' ^2' " t^l' ^ J (2.1.1) is 

V 

W 

where V is I ̂  r and VJ is {u-l) ̂  (^-r) . Then 

T A A^. ^ 
f-1 '' 

and 

4 , I = 
j=p+l ^ ^ 

• I 2 
Y s .X. ^ ^ 
^=l 

u 

I 

Y s .X . I . • 

The proof of this lemma is straightforward and thus omitted. 

Before the use of these lemmas is illustrated with an example, the 

second step of the method is stated explicitly. 

STEP 2. Using (2.1.2)^ (2.1.7)^ (2.1.8) and Lemmas (2.1.9) and 

(2.1.10)J find all possible fill matrices which could accompany the sum 

matrix found in Step 1. 

If V and the s. are small, then there are usually very few possible 

fill matrices, and they can be found easily without a computer. 

(2.1.11) EXAMPLE. The existence of an orthogonal design of type 

(1, 5, 5, 9) and order 20 is listed in [31] as being undetermined. To 

construct such an orthogonal design, we require four 5 x 5 circulant matrices 
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' ^^^^ entries from {o, , , , such that 

(2.1.12) y S.Bt = 2 2 2 2 I . 

Now 1 = 1 ^ , 5 = + 2^ , 9 = = 2^ + 2^ + , are essentially 

the only ways of writing 1, 5, 9 , as sums of at most 4 squares, and so 

it is not difficult to show that (esr.entially) the only 4 x 4 integral 

matrix P which satisfies PP^ = diag(l, 5, 5, 9) is 

1 
(2.1.13) P = 

1 2 
-2 1 

(See Remark (2.1.5 ) (b).) 

Now there are eight 4 x 4 integral matrices which, on the basis of 

(2.1.2), (2.1.7) and (2.1.8), could be fill matrices. 

(a) 

2 2 2 

, (b) 

2 2 

, (c) 

2 2 

, (d) 

2 2 2 

(2.1.14) 

(e) , (f) , (g) , (h) 

4 2 

However, four of these matrices can be discounted as possible fill 

matrices by using Lemmas (2.1.9) and (2.1.10). 

Suppose that (b , B , B , S ) has sum matrix P above (2.1.13) and J_ .a vJ 4 

fill matrix (2.1.14) (b). Then the entry matrix is 

1 
2 1 2 

4 1 
2 2 5 
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which satisfies (2.1.2) and (2.1.8). But the (3, 2)th entry of this entry 

matrix indicates by Lemma (2.1.9) that every entry of the IPV of B^ has a 

2 

term in a;̂  with odd coefficient. But occurs at most once in each 

row of each of the other circulant matrices, and it follows that the IPV's 
r\ of the other circulant matrices have no terms in x . Hence it is 
O 

impossible for the IPV's of the B. to add to zero; so (2.1.14) (b) is not 

the fill matrix of the B. . 
^ 

Suppose that (2.1.14) (f) is the fill matrix of fs,, S , 5 , B 1 : 
2 3 ' 

this gives entry matrix 

1 
1 4 
4 1 

4 5 

If this is the entry matrix of (s B B B ) then -L ^ O 

1 
4 5 

1 4 
4 1 

is the entry matrix of another solution (c,, C , C , C ] of (2.1.13) ( X Z o M" 

Remark (2.1.6) (b)). It follows by Lemma (2.1.10) that 

see 

c^cl . c^c* - 2 ^ 2 
2 • 

and thus, using the two-circulant construction (2.0.6), there is an 

orthogonal design of type (1, 9) and order 10 . This is impossible (see 

Theorem (0.0.11)) and so (2.1.14) (f) is not the fill matrix of 

-̂ 3' ' 

Similarly it can be shown that (2.1.14) (h) and (2.1.14) (e) are not 

possible. 
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Each of the possible fill matrices (2.1.14) (a), (c), (d), (g), could 

specify the contents of a solution of (2.1.12). For each of these 

possibilities, we need to search through the circulant matrices whose 

contents are thus specified, until we find a combination whose IPV's add to 

zero. For instance, for (2.1.14) (a) we need to find four 5 x 5 

permutation matrices M ^ , M ^ , M ^ , M̂ ^ , such that 

[x^, x^, -x^, x^, ' 

K ' " " " a ' " ^ 3 ' ' 

K ' " " 2 ' ' 

K ' ' 

are the first rows of circulant matrices whose IPV's add to zero. If this 

search fails then we consider circulant matrices with contents specified by 

(2.1.4) (c), and so on. Note that there are a large number (about 2 x 10® ) 

of M-tuples {M^, M^, M^, M^) of 5 x 5 permutation matrices; however, 

only a small proportion of these need be considered, as we shall presently 

see. 

Once the sum and fill matrices have been chosen, the final steps of 

the method may be executed. 

STEP 3. For each i € {l, 2, 3, 4} write down a oivaulant matrix A. 
% 

with contents specified hy the ith columns of the sum and fill matrices. 

Step 3 can be executed easily either by hand or by computer. Of 

course, the circulant matrices can be represented by their first rows. 

Two circulant matrices with the same content are isometric if they have 

the same IPV. 

STEP 4. For each i € {l, 2, 3, 4} write a list L. of non-

isometric circulant matrices with the same contents as A . . Attach to each 
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circulant matrix its IPV. 

The problem of executing the fourth step is considered next. Given two 

circulant matrices with the same content, how do we determine whether they 

are isometric (without the time consuming calculation of IPV's)? How large 

are the lists L^ ? Useful necessary and sufficient conditions for isometry 

are, in general, unknown, but one obvious sufficient condition can be 

described as follows. Denote by S^ the group of y x y permutation 

matrices, and suppose that T ^ S^ represents the y-cycle (1 2 ... v) . 

Let R denote the y x y backdiagonal matrix (see section (1.3)). The 

subgroup S^ generated by T and R is denoted by <T, R) . If A and 

B are y x y circulant matrices with first rows a and aX for some 

K € (T, R) then it can be seen immediately that A and B are isometric. 

It follows that the number of non-isometric circulant matrices with the same 

content is at most the index of < T , R) in S^ , that is, (y-l)!/2 . Thus 

the lists L . in Step 4 contain at most (y-l)!/2 entries. A complete set 

of distinct coset representatives of (T, R) in S^ is easily seen to be 

E = • M i S^ : M represents a permutation 

6 on {l, 2, ..., y) which satisfies y9 = y and 19 < %(y-l)} . 

Thus to compute the list L^ in step U we first write out the elements of 

S = \b : B is a circulant matrix with first row a.M for some M ^ E 

where a . denotes the first row of the circulant matrix A . chosen at step 
^ ^ 

3. This can be done easily either automatically or by hand. 

Of course S may contain isometric elements. But it can be shown (as 

follows) that if a . = [x , ) then no two distinct elements of 

S are isometric. 

(2.1.15) LEMMA. If a. - [x x , ... , a: ) and B and B are elements 
\ 2. "0 X 2. 
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of S with first rows a M and a .M where M and M are v x v 'Z' J- A _L z 

permutation matrices, then B^ and B^ are isometric if and only if 

they are equal. 

Proof. The first entries of the IPV's of B^ and B^ are equal, 

that is, 

Symmetrizing gives 

Since a^ = x^) we obtain 

y + = MTM~^ + 

where M denotes M^M^ . A simple combinatorial argument using the fact 

that V is odd shows that T + T ^ can be written uniquely as a sum of 

two permutation matrices (see [14]). Hence either T = MTM~^ or 

T ^ = MTM ^ . In either case, since the subgroup of generated by T 

is self centralizing (see [76]), we can deduce that M ^ ( T, R) . Thus M^ 

and M^ are in the same coset of <T, /?> ; but both are elements of S ; 

so M^ - M^ . 

The converse is immediate. • 

This lemma implies that sometimes the list L. achieves its maximum t' 

size (y-l)!/2 . However this is rare. For instance, if the content of A. 
% 

is • (ex., n.) : 1 5 i < M , e = ±l then the subgroup 

^ V % 

of S^ has order 
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u 1 u > 
n.l V - y n. t . ^ u ^ ^=-u 

m = 

Hence there are at most v\/m entries of the list L. , and often 
^ 

V\/m < (y-l)!/2 . However, the coset representatives of L in S^ are more 

difficult to deal with by computer than the representatives of (T, R> . 

Hence L is used only in hand calculations. When a computer is used the 

sort-merge package program may be used to eliminate isometric elements of 

the set S . 

The final step of the method is to search the lists L. for an answer. 
t 

STEP 5. Search for one oirculant matrix C. with IPV c. from each 

list L. (1 5 i < 4) such that c + + + c, = 0 . 1- 1 z 3 4 

In the implementations for orthogonal designs of orders 20 and 28 , 

there was no difficulty in using a naive algorithm for the search at step 5 

because the lists L. were relatively small. However, to extend the 

method to higher orders it seems that a sophisticated search algorithm would 

need to be employed. 

Two notes on the execution of steps 4 and 5 are presented next. 

Firstly, suppose that C^, C^, C^, C^ , are circulant matrices whose 

sum and fill matrices satisfy (2.1.2), (2.1.5), (2.1.7) and (2.1.8). Then 

the sum of the sums of the entries of the IPV's of the C. is zero (see 
^ 

proof of Theorem (2.1.4)). That is, if (o.̂  , c.^, ..., c. ] is the IPV 

of C. (1 5 i 5 4) then 

4 W 
Y y c.. = 0 . 

Hence if 
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Y, a. . = 0 for 1 S J 5 W-1 A "-J 
then 

Z G. = 0 for 1 < J 5 W . 
i=l ^^ 

Hence only %(y-3) of the %(2;-l) components of the IPV's need 

to add to zero for (2.1.1) to hold. This saves time and space in computer 

implementation and provides a simple error checking device for hand 

calculations. 

Secondly, we note that the IPV's of non-isometric circulant matrices 

may be dependent, in the following way. Suppose that ^ ^ S^ normalizes 

the subgroup < T) of S^ generated by T . Note that there is an integer 

d prime to V such that = T^^ for 0 S i < V . Now if the 

circulant matrix A has first row a then the ith entry of the IPV of 

-i t A Is aT a . Hence the IPV of the circulant matrix B with first row 

oN has ith entry , that is, . Hence the IPV of B 

is a permutation of the IPV of A , described as follows. Suppose that the 

IPV of A is [h^, h^, . . . , ) and ii-d)* denotes the image of id in 

{0, 1, ..., v-1} modulo V . Then the IPV of B is [h,^, h^^, h r.) It) 2b wv'' 

where 9 is the permutation on {1, 2, ..., y} defined by 

'(id)* if 1 5 (id)'' < w , 

(2.1.16) e : i i-> • 

y - (id)* otherwise. 

Note that 6 = 1 if and only if N ^ { T, R) . Hence the index of the 

normalizer of {T) in is v(p(v) , where (p is the Euler function. If 

V is prime then the set F' of v x V permutation matrices which 

represent a permutation on {l, 2, ..., v] which fixes v and v-1 is a 
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complete set of distinct coset representatives of the normalizer of ( T) in 

For automatic computation this means that one of the lists, say L^ 

may consist of elements 

S' = {B : B is a circulant matrix with first row a^M for some M ^ E'} . 

This produces a considerably shorter list, and the search (3tep 5) may be 

proportionally shorter in time. 

The use of the normalizer of <T> in hand calculations is illustrated 

in the completion of Example (2.1.11) below. Firstly, however, we show how 

the fact-s above may be used to construct a certain 4 variable orthogonal 

design of order 28 . 

(2.1.17) EXAMPLE. An orthogonal design of type (1, 1, 1, 25) and order 

28 can be constructed as follows. We want four 7 x 7 circulant matrices 

^2' ^3' ' ̂ ^^^ entries from {o, such that 

(2.1.18) 7 F.Ft = 2 2 2 2 I 

The conditions (2.1.2), (2.1.5), (2.1.7), (2.1.8), imply that the sum and 

fill matrices of V^, V^, f J must be diag(l, 1, 1, 5) and 

_6 5 6 ^ 

respectively. Hence must be (j-2j)a:̂  up to isometry (see (1.1.3)); 

thus has IPV 2 2 2 3xî , 3a;̂ ,̂ Choose a skew-symmetric 7 x 7 matrix 

C^ with entries from {O, 1, -1} and precisely one zero in each row; 

denote its IPV by [d^, d^, d^) . Now the normalizer of <T> in acts 

cyclically on (d^, d^, d^] by (2.1.16), and further, it preserves skew-
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symmetry. Hence there are skew-symmetric circulant matrices and C 
z. o 

with IPV's [d^, d^, d ^ and [d^, d^, d ^ respectively. For 1 $ i < 3 

denote x.I + x C. by Y. . It is clear that the IPV's of the F. , 
6- H- X' 

, add to (/, f, f) , where f = [d^+d^+d^+3)xl . But since the 

sum and fill matrices of [v^, F^, F^, f J satisfy (2.1.2), (2.1.5), 

(2.1.7), (2.1.8), it follows that f + f + f = 0 , that is, f = 0 . Hence 

the IPV's of the F^ add to zero, and thus the F^ satisfy (2.1.18). 

Example (2.1.11) completed. The index of the normalizer of <T> in 

S^ is 6 , and so there are at most 6 circulants of order 5 with the 

same contents whose IPV's differ by more than just a permutation. A 

complete set of distinct coset representatives of this subgroup is 

F = {1, (12), (23), (34), (45), (51)} . 

Suppose that a solution (b^, , , B J of (2.1.12) has sum matrix P 

(2.1.13) and fill matrix (2.1.14) (a). Using the set F , a list L. of 

circulants with contents thus specified and essentially different IPV's can 

be made, for each € {l, 2, 3, 4} . A short search reveals that if 

B , B , B , B , have first rows 
X ^ o M" 

(Xg, > 

respectively, then the B . satisfy (2.1.12). 

(2.2) Generalized Goethals-Seidel arrays 

Denote by U^ the multiplicative group of generalized permutation 
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matrices of order v , that is, the elements of U^ are v x v matrices 

with entries from {O, 1, -l} such that each row and column contains 

precisely one nonzero entry. If T denotes the permutation matrix which 

represents (12 ... v) then the circulant matrices of order v over a 

commutative ring K with identity are the elements of the group ring 

K{T) . 

If H is an abelian subgroup of U^ and there is an element R of. 

U^ such that R^ = I and R~^AR = for all A ^ H , then we shall 

call KH a GC-ring (generalized circulant ring). 

The elements of a GC-ring may be used in the Goethals-Seidel array in 

the same way as circulant matrices. That is, if , 4 , , , are 
1 2 3 M" 

elements of a GC-ring such that 

(2.2.1) 

then the rows of 

y = ml , 
^=1 -

A^ A^R 

- A ^ A^R -AIR 

-A^R -AIR A^R 

-A^R A\R - A ^ 

are orthogonal. 

Wallis and Whiteman [73] showed essentially that if H is an abelian 

group of permutation matrices, then KH is a. GC-ring. The elements of KH 

are called type 1 matrices on H . 

Delsarte, Goethals and Seidel [11] introduced another GC-ring. If D 

denotes the v x v matrix diag(l, 1, ..., 1, -l) , then DT generates a 

cyclic subgroup L of U^ of order 2v . The group ring iS is a GC-ring 

and its elements are called negacyclic matrices. 
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Remarks, (a) Mullin and Stanton [46] use the term group matrix rather 

than type 1 matrix. 

(b) The definition of type 1 matrix by V/allis and Whiteman in fact 

only includes the case v;here H represents a transitive pprmutation group. 

However, the c:xtension to the intransitive case is not difficult (see 

Wielandt [76], pp. 1-10). 

(c) Suppose that h is odd and N denotes the b x b matrix 

diagd, -1, 1, -1, -1, 1) . Then a b ^ b matrix A is circulant if 

and only if N ^AN is negacyclic. Hence an equation of the form (2.2.4) 

(or (2.0.1)) has a solution consisting of negacyclic matrices of order b 

if and only if it has a solution consisting of circulant matrices of order 

b . (The author is grateful to Dr L.G. Kovacs for this observation. See 

also Theorem 4.2 of [11].) 

The Goethals-Seidel array itself may be generalized as fO11OT-?S . Let G 

denote the group 

(r, x^, a:̂ , x , ... | x.x. - x .x., x .x^. = x^.x. for i, j € {l, 2, ...}, \ 1 1 Z / 1 ^ (j 1 1 J Q 

2 . t\ r - 1. rx.r = X.) . ' ^ t/ 

Denote by S the subset 

of the integral group ring 7lG . The notion of transpose may be abstracted 

by defining an operation ( on 7lG by (a:-"*̂  " ^ 
t X . t 

r^ - r , and extending to TIG in the obvious fashion. If A = [a. .] is an 

n X n matrix with entries from TLG then A'^ denotes the n ^ n matrix 

with ijth entry a^.. . If A has entries from S and 

AA* = 
u ^ 
Y S .X .X . ^ ^ ^ I 
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then A is called a GGS array {generalized Goethals-Seidel array) of type 

(s , s , s ) and order n . 
-L ^ 1/1. 

For example, the Goethals-Seidel array itself, written as 

t t t 
rx^ rx^ r x ^ 

t 
- r x ^ x^ rx^ - r x ^ 

- r x ^ -rx^^ x^ rx^ 

-rx^^ rx^ - r x ^ 

is a GGS array of type (1, 1, 1, 1) and order 4 . 

The essential use of GGS arrays is immediate. Suppose that there is a 

GGS array 4 of type (s , s , s J and order n , and X , X^, X 
J- ^L U J. Z lA 

are v x V matrices from some GC-ring such that the entries of the X. are 
'V 

from {o, ±2/̂ , ... , ±ŷ  and 

y s.X.X. = 
^ ^ ^ 

V ^ ) m .y . 
fl 

I . 

Then replacing the entries of A with the appropriate matrices yields an 

orthogonal design of type [m^, m^, m^ and order nv . Examples of 

orthogonal designs constructed in this way are given in the next section 

and in Chapter 5. 

More Importantly, GGS arrays may be used to produce more GGS arrays. 

(2.2.2) THEOREM. Suppose that there is a GGS array of type [s , s , ..., s ) 
J- Z 1A. 

and order n . and the y x y matrices A^ , A^, ....A are from some GC-
1 2 ' w 

ring and have entries from {o, ±x , ±cc , . .. , ±x } . If 
_L Z. Z't 

y s .A .A* - y m .X .X . 
- ^ ^ i/r^ J J Jj 

I 
I 

n 
1 

i=l • 

then there is a GGS array of type [m^, rn^, ... , m^ and order nv . 

Proof. Suppose that A is a GGS array of type [s^, ..., s ] and 
J- ^ XiL 
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order v , and the following replacements are made: 

0 I zero matrix of order v ; 

±x. ±A. • 

; 

Then the resulting matrix B has entries from S and 

r u 
BB* = X J n 

I 
y 

L-ri J J Jj 
m .X .X . I nv • 

To illustrate this theorem a GGS array of type (2, 2) and order 6 

is constructed. The two-circulant construction (2.0.6) gives a GGS array of 

type (1, 1) an^ order 2 : 

t x^ vx^ 

-rx^ x^ 

The circulant matrices 

= 

^2 

^2 
Xr X 1 

and A^ -

-X, 
-^2 

X-, 

satisfy A^A* + A^A^ = 2 t t x^x^+x^x^ 

2 "-1 

I . Following the replacements in the 

proof of Theorem (2.2.2), a GGS array of type (2, 2) and order B is 

obtained: 
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X, 

X^ -rx^ 

t 

t t -rx^ rx^ 

rx. 

-rx. 

t t rx^ -rx^ X 1 X, 

t t rx^ -rx^ 

-rx^ 

X 1 

rx^ x^ 

X, 

X. __ 1 

Note that the theorem could be applied a times to obtain a GGS array of 

type (2^, 2^) and order 3^.2 . 

The existence of a GGS array clearly implies the existence of an 

orthogonal design of the same type and order, but the converse is false (see 

section (2.4)). In many cases, however, the converse is true. An important 

fact is that every orthogonal design on 2 variables can be made into a GGS 

array by replacing the second variable x^ by rx^ . The following 

proposition gives some infinite families of GGS arrays with variables. 

(2.2.3) PROPOSITION. Suppose that a is a positive integev and I is a 

product of at least a positive integers^, that is, I - ... I. wheve 

1 2 J 

d > a . 

(a) If I. > 2 for 1 s i S 0 then there is a GGS array of type u 

2'^) and order U . 

(h) If I .> ^ for 1 < i s 0 then there are GGS arrays of type 

'Z' 

(3^, 3^, 3^) and (u^, 4^) and order U . 

Proof. For 2 consider the sequences a^ = (cĉ , x^, , 
= K ' -^2' ' «3 = K ' -2) ' % = '1 

where denotes a sequence of 1 - 2 zeros. These sequences are 
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complementary, and further, if A. is the circulant matrix with first row 
u 

a . then 

4 r ^ ^ 
y A.A1 = 2 y x.x. I . 

Using Theorem (2.2.2) and the Goethals-Seidel array, a GGS array of type 

(2, 2, 2, 2) and order may be obtained. Repeating this procedure a 

times gives (a). For (b) the following complementary sequences may be used 

in a similar fashion: 

(3, 3, 3, 3) : (o, , , -x J , [x^, 0, , x J , 

[x^, x ^ , 0, - x j , (a:^, o) , 

= K ' -^2' K ' ^ 2 ' 

K ' K ' •'̂ 3' • ° 

A numerical investigation of GGS arrays of order 12 has been made and 

the results are listed in section (5.7). These GGS arrays have been used to 

construct orthogonal designs of orders 36 and 60 . Examples are given in 

section (5.4). 

GGS arrays with 2 variables have been used successfully for construct-

ing orthogonal designs of highly composite orders equivalent to 2 modulo 

4 . Examples are given in section (5.3). (See also [70].) 

Finally, we note that there are several other methods of using 

circulant matrices to construct orthogonal designs (see [72]). However, it 

seems that GGS arrays are the most powerful method for orders not divisible 

by 8 . 

(2.3) Some infinite families of orthogonal designs 

The Goethals-Seidel array and its generalizations have been used to 

construct many infinite families of orthogonal designs. Some examples are 



listed in [19] and [13]. The theorems below illustrate some of the techniques 

involved. 

(2.3.1) THEOREM. If there is a GGS array of type (s^, s j and 

order n then there is an orthogonal design of type 

(s^, s^, s^i s^, s^) and order 2n . 

Proof. The negacyclic matrix 

Z . = 
X. y. 
t 

-y. X. 

is an orthogonal design of type (1, 1) . Hence 

u ^ 
Y S.x.x. = 

^ r ^ 

u 

J-

2 2 
X .-^-y . I . • 

The combinat ion of Theorem (2.3.1) and Proposition (2.2.3) gives a 

large collection of orthogonal designs. For example, for each a > 0 

there is an orthogonal design of type 4'̂ ) 

and order 8.5*^ . 

(2.3.2) THEOREM. Suppose that q is a prime power of the form 3??? + 1 . 

2 
Then there is a skew symmetria weighing matrix of weight q and order 

Proof. For each V denote the V x V permutation matrix which 

represents (1 2 ... y) by T^ . Since q = 3m + 1 , 3 divides 

2 2 
q + ^ + 1 but 9 does not divide q + + 1 . Hence the group S^ of 

permutation matrices generated by T ^ 
q +q+l 

is isomorphic to the group 

generated hy T ^ x T^ . Both these groups represent transitive 
3m +3m+l 

permutation groups and it follows (see [16]) that they are conjugate. Hence 

for each circulant matrix W of order q + q + 1 there is a permutation 
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matrix N of order q^ + q + 1 such that N ^WN has the form m 

where the X. are circulant matrices of order 3m + 3m + 1 . If f/ is a 
U 

o 
circulant weighing matrix of weight q (see section (1.4)) then the X. , 

'V 

have entries from {O, 1, -1} and 

Thus x ^ I , ^2^3 ' ^^^ ^^ ^^^ Goethals-Seidel array to 

obtain an orthogonal design of type (l, q^] and order ^[3m^+3m+l] . • 
(2.3.3) THEOREM. Suppose that there is a skew symmetric weighing matrix of 

weight k and order n j and >4k - 1 is prime. Then there is a skew 

2 

symmetrio weighing matrix of weight ^k and order {^k-l)n . 

Proof. Since ^k - 1 is prime there is a cyclic difference set D 

with parameters (v, k, X) = (M-fe-1, 2k, k) . Further, D may be chosen so 

that 0 ^ D and for £C 0 , x € D if and only if -x ^ D . (Baumert [3l 

has details on difference sets.) Denote the incidence matrix of this 

difference set by B . The circulant matrices A^ = x^B and 

A^ = 2 = x^I + x^(B-J-I) satisfy 

+ = 2 2 2 
x^+i^k x^ I. 

Uk-l ' 

The theorem follows since a skew symmetric weighing matrix of weight k may 

be used as a GGS array of type (1, k) . • 

2 

(2.3.4) THEOREM. Suppose that q is a prime power and q + + 1 is a 

prime of the form ^•m - 1 . Then there are orthogonal designs of types 
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(l, 1, 2q , 2(<7+1)̂ ) and (l, 1, q^^iq^l)'^) and order 

^[q^^q-vl) . 

Proof. Suppose that is a circulant weighing matrix of weight q^ 

2 

and order q + + 1 (see (1.4)). Denote J - abs(A/) by S . It can be 

shown that B is the incidence matrix of a cyclic projective plane of order 

q (see [34]); hence BB^ = ql + J . if + q + l = and is prime, 

then there is a cyclic difference set E with parameters 2m-l, m-1) 

such that 0 ^ , and for x 0 , x i E if and only if -x ^ E [3]. 

(In fact E is the complement of the difference set in the proof of the 

previous theorem.) If F is the incidence matrix of E , then A = 2F - J 

j. 2 is skew-symmetric and AA = (q +q+l]l -J . The circulant matrices 

= ^ ' 

Zg = x^W + x^^B , 

satisfy 

= - x^B , 

y Z.Z. = 
i = l 

The circulant matrices 

^ ^ 
2 2 2 2 2 I 

Jg = x^W + x^^B , 

satisfy 

y y.y? = 
t=l 

2 2 2 2 2 2 I • 



Remark, it is not known whether Theorem (2.3.4) generates an infinite 

family of orthogonal designs. The first few primes in 

[q^-vq+l : q is a prime power and q^+q+1 = 3 (mod 4) 

are 7 , 31, 307, 1723, 8011, 9507. 

(2.3.5) THEOREM. Suppose that q is a prime power and > 6 . Then 

there are orthogonal designs of types ( 5 , Sq^) , (5^7^, , (lO, lOq^] , 

(5(c7^+i), 5(c7^+i)) and order 2v(q^+q^l] . 

Proof. The existence of an orthogonal design of type (5, 5) and 

order 2v is established in [21]. Hence there is a GGS array of type 

(5, 5) and order 2v . The circulant weighing matrices of weight q^ and 

2 
order q + q + 1 may be used to complete the proof. • 

(2.4) Limitations 

There are two ways in which the use of GGS arrays for constructing 

orthogonal designs is limited. 

Firstly, little is known about the existence of GGS arrays. The 

numerical investigation of GGS arrays of order 12 (see section (5.7)) 

shows that existence of a GGS array is harder to establish than existence of 

the corresponding orthogonal design. Further, it can be deduced from 

Theorem (2.3.1) that the number of variables of a GGS array of order n is 

at most [%p(2n)] . If 8 divides n then [%p(2n)] < p(n) and so there 

are many orthogonal designs for which a corresponding GGS array does not 

exist. Note also that if 16 divides n then [%p(2n)] > 4 , but no GGS 

array with more than 4 variables is known. 

Secondly, it can be proved that not all orthogonal designs can be 

constructed using GGS arrays. There is an orthogonal design of type (4, 9) 

and order 14 (see [23]). However, using the methods of section (2.2), it 

can be shown that there is no orthogonal design of type ( 4 , 9 ) and order 
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14 constructed by using two 7 x 7 circulant matrices in the two-

circulant construction. Using the same methods it can be shown that there 

are no orthogonal designs of types (3, 7, 8), (1, 3, 6, 8), (1, 4, U, 9) , 

or (2, 2, 5, 5) and order 20 constructed using GGS arrays (see [14], 

[15]). However it is not known whether there are any orthogonal designs of 

order equivalent to 4 modulo 8 which cannot be constructed using GGS 

arrays. The existence of orthogonal designs of types (3, 7, 8), (1, 3, 6, 8), 

(1, 4, 4, 9), (2, 2, 5, 5) and order 20 is undetermined and the author 

knows of no efficient method of solving this problem. 
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CHAPTER 3 

ASYMPTOTIC EXISTENCE RESULTS 

Geramita and Pullman [25] proved that for every positive integer n 

there is an orthogonal design of type (1, 1, 1, ..., 1) and order n on 

p(n) variables. Since the function a p(2^) is strictly increasing, 

an asymptotic result may be Immediately deduced. 

(3.0.1) THEOREM. If s^, s^, ..., s^, Z? ^ are positive integers then theve 

is an integer N such that there is an orthogonal design of type 

(Sj^, s^, s^) and order 2% for all a > E . • 

For example, it is not known whether there is an orthogonal design of 

type (1, 3, 6, 8) and order 20 , but the existence of an orthogonal 

design of this type and order 2^.5 may be obtained for large a as 

follows. If a > 10 then p (2^) > 1 8 - 1 + 3 + 6 + 8 . Hence there is an 

orthogonal design of type (1, 1, 1, 1) and order 2^.5 on 18 

variables for all a > 10 . Equating variables gives an orthogonal design 

of type (1, 3, 6, 8) and order 2^.5 for all a > 10 . 

However this result is unsatisfactory. It is not useful in applications 

because the orthogonal designs obtained are very sparse - the ratio of the 

number of nonzero entries per row to the order in the example above is less 

than .004 . In section (3.1) an asymptotic result which preserves fullness 

is obtained. This result is related to the Robinson-Seberry conjecture 

(0.0.15) and Wallis' Theorem (0.0.16). 

Also, Theorem (3,0.1) sheds no light on the question of sufficiency of 

the algebraic necessary conditions (0.0.9) and (0.0.10). This is because 

the power of 2 dividing the order of the orthogonal design is allowed to 

vary considerably. Asymptotic existence results for orders divisible by a 
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fixed power of 2 are proved in section (3.2). Several cases of the 

Asymptotic Sufficiency Conjecture (0.0.14) are obtained. 

(3.1) Asymptotic existence of full orthogonal designs 

If the positive integers n, s., s , ..., s , are all highly divisible 

by 2 , then in many cases the existence of an orthogonal design of type 

Sj^, s^, s^ and order n may be established. Specifically, we prove: 

(3.1.1) THEOREM. Suppose that r and n are positive integers, 

h^, h^, ..., fc^ J are powers of 2 ^ and there is an orthogonal design of 

type [h^, b^, and order 2^n . 7/ s^, s^, ..., s^ , are 

positive integers with swn + b^ + ... + b^) for some d> Q , then 

there is an integer N such that an orthogonal design of type 

and order exists for each a > . 

Before a proof of this theorem is given, we present a corollary which 

gives full orthogonal designs of order 2'^n for small n . 

(3.1.2) COROLLARY. Suppose that 1 < n 5 8 and s s , ..., s , are 
A. ^ • Z/i 

positive integers with sum 2^n for some d > Q . Then there is an integer 

M such that an orthogonal design of type 

order exists for each a > N . 

and 

Proof. There are full orthogonal designs of type (1) and order 1 , 

type (1, 1, 2, 8) and order 12 , type (4, 4, 8) and order 20 , and 

type (4, 4, 4, 16) and order 28 (see [24], [31], [19]). The corollary 

follows for n = 1, 3, 5 and 7 . For n even, write n as 2'^n^ where 

n^ is odd. • 

Remark. The case n - ^ of this corollary is proved in [18]. 
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Proof of Theorem (3.1.1). Theorem (1.3.1) implies that if there is an 

orthogonal design of type (a^, a ^ , a^) and order m , then there are 

orthogonal designs of types 2aJ and 

(a^, 2a^ and order 2m . This result is used 

extensively below. 

Suppose that there is an orthogonal design of type [b , b , . . ., b.] 
1 2 Z-

and order where each b . is a power of 2 . Denote the sum of the 
'V 

^^ t)y / . If (i is a nonnegative integer then denote the sequence 

2 \ by 5 . By Theorem (1.3.1) there is an orthogonal 

design of type B and order . If 2^ is the highest power of 2 

which occurs in B and .7 > 0 , then replace one occurrence of 2^ with 

[2^ 2^ to form a sequence B' of length 7- + 1 . Using Theorem 

(1.3.1), there is an orthogonal design of type 2B' and order . 

ly 

Again, if 2 is the highest power of 2 occurring in B' and i > 0 , then 

replace one occurrence of 2^ with [2^ to form a sequence B" ; 

there is an orthogonal design of type 4B" and order . Continuing 

in this fashion, an orthogonal design A of type 2^(1, 1 , 1 , ..., 1) and 

order on 2*^/ variables may be obtained, where N denotes 

2^/ - I . If • " • ' ' positive integers with cum 2'^f , then 

equating variables in A gives an orthogonal design of type 

s ^ , s^] and order . Using Theorem (1.3.1), an 

orthogonal design of type s ^ , ..., s^) and order may be 

obtained for all a > N • • 
The above proof is chosen for its simplicity and generality. Other 

methods give smaller values of in particular cases. 
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For example, if d is an integer greater than 2 then denote by /l/̂  

the smallest integer such that an orthogonal design of type 

2^(2^-5)) and order exists for each 

The existence of is assured by Corollary (3.1.2), and Robinson's 

Theorem (0,0.13) shows that for cf > 5 , N^ ^ 0 . Following through the 

proof of Theorem (3.1.1) above it can be shown that N^ is at most 2 ^ - 1 

However, the methods of [18] can be used as follows to obtain N^ < 3 for 

all d > 3 . 

There is an orthogonal design of type (1) and order 1 and repeated 

applications of Theorem (1.3.1) give orthogonal designs 

of tj'-pe (1, 1) and order 2 , 

of type (1, 1, 2) and order 4 , 

of type (1, 1, 2, 4) and order 8 , 

of type (l, 1, 2, 8, 16, ..., 2^ and order 2^ , 

of type (2, 2, 4, 4, 4, 16, 32, ..,, 2^) and. order , 

r d+2 

of type [4, 4, 4, 4, 8, 8, 32, 64, . . . , 2 j and order 2 

of type (8, 8, 8, 8, 8, 8, 16, 64, 128, ..., and order . 

Now 8 + 16 + 64 + 128 + ... + = 8(2^-5) . Hence by equating variables 

an orthogonal design of type (8, 8, 8, 8, 8, 8(2^-5)) and order may 

be obtained. From Theorem (1.3.1) we deduce that ^^ - 3 • 

Remark, Using sophisticated constructions Robinson [58] has established 

the existence of an orthogonal design of type 

(1, 1, 1, 1, 2, 2, 4, 4, ,.., and order 2'^ for each d> 2 . 

Methods similar to those above may be applied to this orthogonal design to 
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obtain N < 1 . Hence for d > 5 , N . = 1 . For 2 < d < 5 Robinson 
d d 

[57] has shown that N^ = 0 . The case d = 5 remains open. 

(3.2) Asymptotic sufficiency of the algebraic necessary conditions 

The conjecture (0.0.14) that the algebraic necessary conditions 

((0.0.9), (0.0.10)) are asymptotically sufficient for existence is discussed 

in this section. The main results are Theorems (3.2.1), (3.2.2), (3.2.3) 

and (3.2.6) below. 

Suppose that there is a vreighing matrix of weight k and order 

where b is odd. Then it follows from the algebraic necessary conditions 

that k can be written as a sum of 2*̂  squares. Similarly, the existence 

of a skew symmetric weighing matrix of weight k and order implies 

that a > 0 and k can be written as a sum of 2 ^ - 1 squares. These 

necessary conditions are asjnnptotically sufficient. 

(3.2.1) THEOREM. (a) Suppose that k can be written as a sum of 2^ 

squares. Then there is an integer N such that a weighing matrix of weight 

k and order 2^n exists for each n > /V . 

ib) Suppose that a > 0 and k can be written as a sum of 2^-1 

squares. Then there is an integer N such that a skew symmetric weighing 

matrix of weight k and order 2^n exists for each n > N . 

Remark. Geramita and Wallis [31] have also obtained the case a = 0 

of Theorem (3.2.1) (a). 

For orders equivalent to 2 modulo 4 , the existence of an 

orthogonal design of type (s^^, S2) implies the existence of a rational 

2 x 2 matrix P such that PP^ = diag(s^, s^) . This condition is 

asymptotically sufficient for existence. 
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(3.2.2) THEOREM. Suppose that s^ and s^ are positive integers such 

that there is a 2x2 rational matrix P satisfying PP^ = diag(sj^, s^ . 

Then there is an integer N such that an orthogonal design of type 

(s^, s^) and order 2n exists for each n > N . 

If b is odd "then p(M-ii) - 4 and so an orthogonal design of order M-Z? 

has at most 4 variables. The existence of an orthogonal design of type 

(sĵ , s^, Sg, s^) implies the existence of a rational 4 x U matrix P 

such that PP^ = diag(sj^, s^, s^, s^) . With some added hypotheses, this 

condition is asymptotically sufficient. 

(3.2.3) THEOREM. Suppose that s , s , s , s ^ are positive integers and X ^ o M-

there is a 4 x 4 rational matrix P such that PP^ = diag(s , s , s , s ) J- z H 

Denote the squarefree part of s. by t. for 1 5 i < 4 . Further 

suppose that either 

(3.2.4) t^-.t^. t^ 

or 
(3.2.5) t^ - t^ and every prime factor of gcdft , t ] is either 

J_ 2 X o 

2, 3 J or of the form 4m + 1 . 

Then there is an integer N such that an orthogonal design of type 

(s^, s^, Sg, s^) and order 4n exists for all n > N . 

Remark, similar partial results may be obtained for asymptotic 

existence of two and three variable orthogonal designs of order equivalent 

to 4 modulo 8 . The extent to which these partial results cover types 
fs , ..., s 1 with u 6 {2, 4} and s, + ... + s £ 36 is indicated in 1' W 1 u 

sections (5.4) and (5.5). 

If s , s , s , are positive integers with w < 5 , then there is J. 14. 
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a rational w x 8 matrix P such that PP = diag[s^, s^, s^) (see 

[79]). Hence the algebraic necessary conditions for the existence of 

orthogonal designs of order divisible by 8 with less than 6 variables 

are always satisfied. For two variables, an asymptotic result may be 

obtained. 

(3.2.6) THEOREM. If s^ and s^ are positive integers then there is an 

integer N such that an orthogonal design of type (s^, s^) and order 8n 

exists for each n > N . 

The proofs of the theorems above occupy the rest of this section. 

Three lemmas are used. 

The first lemma establishes the existence of type 1 weighing matrices 

which can be used as building blocks in the constructions to follow. 

(3.2.7) LEMMA. Suppose that k , k , k ^ are square integers. Then 

1 2 U 

for some group H of permutation matrices of odd order there are mutually 

disjoint type 1 weighing matrices W , W , ... , W ^ on H such that W. 
has weight k^ . 

2 2 2 Proof. Suppose that k^ - ' '' ^m each q^ is a prime 

2 
power. If L. is a circulant weighing matrix of weight q. and order 

i 1-

2 
q. + q. + 1 for 1 S i < m (see section (1.4)) then the kronecker product 
'Z' 'Z' 

V. - L X L X . . . X Z , is a type 1 weighing matrix of weight k . on a 
J 1 2 m J 

group G . of odd order m . = J 0 
^ 2 For each j i {l, 2, ..., u} 

denote 

I X I X ... X I X V. X I X ... X I 

by V . Note that for every j ^ {l, 2, ..., m} , V'. is a type 1 weighing 
J J 
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matrix of weight k . on the group 
J 
G = {M X X ... X M : M ^ G 

' • 1 2 u r r 

of permutation matrices of odd order ... m . Let v be an odd integer 
1 2 M ^ 

at least as large as u , and denote the v x V permutation matrix which 

represents (1 2 ... y) by T . For 1 5 j 5 u denote T^ x v'. by W. . J tJ 
It is clear that W. is a type 1 weighing matrix of weight k . on the 

J J ' 
group 

H = {m X : 0 < i < V, M ^ G 

of permutation matrices of odd order ' ' ' ^u^ ' J 5 

* = 0 and so W. * W. = 0 . • ^ J 

The second lemma reduces the problem of asymptotic existence to finding 

orthogonal designs of a particular order. 

(3.2.8) LEMMA, Suppose that there is an orthogonal design of type 

(s^, s^' •••5 order where b is odd. Then there is an 

integer N such that an orthogonal design of type (s , s , ..., s ) and -L ^ X4, 

order 'f'n exists for each n > N . 

Proof. For sufficiently large d there is an orthogonal design of 

type (sĵ , s^, ..., s^) and order 2^ given by Theorem (3.0.1). We can 

assume that d > a , for if d < a then the existence of an orthogonal 

design of type [s,, s , ..., s ) and order is assured by elementary 

constructions (see section (1.2)). Since b is odd it is prime to ^ 

and so every integer at least as large as (b-1) [2'^ ^-l) can be written as 

bm + 2^ '^l for nonnegative integers m and I . Using elementary 

constructions (section (1.2)) it can be deduced that if N = (b-1) (2 ^-l) , 
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then there is an orthogonal design of type (s , s , s ) and order 
-L ^ 

2'̂ n for each n > N . 

Remark. The use of Theorem (3.0.1) in the proof of Lemma (3.2.8) means 

that the integer d must be at least + s + ... + s ) . This implies 
-i- ^ 1/t 

that N depends exponentially on the sum of the s. and thus is very large. 

ly 

However, in many cases other existence results for orthogonal designs of 

order a power of two (e.g. Theorem (1.3.3)) may be used to obtain a smaller 

value of N . The numerical results of Chapter 5 seem to indicate that N 

may be bounded by a linear function of s^, s^, ..., s^ , but we have been 

unable to prove this. 

The third lemma shows that only types (s^, s^, s^] where each 

s^ is squarefree need to be considered. 

(3.2.9) LEMMA. Suppose that k , k , k ^ are square integers and 
Jl 2. Vt 

there is an orthogonal design of type (s , s , s ) and order n . 

Then there is an odd integer v such that an orthogonal design of type 

[k s , k s^, k s ] and order nv exists. 
1 1 ' 2 2' ' u w 

2 
Proof. Suppose that q is a prime power which divides k^ and VI 

2 2 
is a circulant weighing matrix of weight q and order q + + 1 . If R 

2 

is the backdiagonal matrix of order q + g + 1 then WE is symmetric (see 

section (1.4)). Hence the w-tuple [ x ^ R , x ^ I , is amicable 

(see section (1.3)) and so there is an orthogonal design of type 

2 
q ®' ^2 ' ' ' ' , s u 

2 2 
and order n[q +q+l) . Note that q + q + 1 is odd. 

This process may be continued to achieve the desired result. • 

Theorem (3.2.6) may be deduced from the lemmas above as follows. If 
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and s^ are integers then there are squares k-, , k^, . . . , k , 
-L z 1 z e 

and 

s^ = Z.̂  + + . . . + , and e and f are each at most 4 (see [64]). 

There is an orthogonal design of type (1, 1, 1) and order 8 on 

e + f variables [24]. Hence by Lemma (3.2.9) there is an orthogonal design 

of type [k^, k^, ..., k^, t^, l^] and order 8v for some odd 

V . Using Lemma (3.2.8) and equating variables, we obtain Theorem (3.2.6). 

Note that Theorem (3.2.6) implies the case a > 3 of Theorem (3.2.1). 

The case a < 3 of Theorem (3.2.1) may be obtained in a similar fashion, by 

constructing orthogonal designs of types \ and order 2 % 

for V odd, and equating variables. 

The case (3.2.4) of Theorem (3.2.3) can be established by using Lemma 

(3.2.7) and a construction from [68] and [10] as follows. If m is a 

positive integer then there are integer squares k,, k , k , k , such that 
^ ^ o M-

m = k^ + k^ + k^ + k̂ ^ [64]. Denote the type 1 weighing matrices of 

weights k , k , k , k , obtained in Lemma (3.2.7) by W , W , W , . 
- L ^ O i" ^ vD I 

(if k. = 0 ^ then the zero matrix may be used for W. .] Suppose that 

^2 = -^2^1 ^ ^4^3 - ^3^4 ' 

\ = ^ ^3^2 - • 

Then the A^ are type 1 matrices of odd order h with entries from 

{o, such that 

y A.A^ = 
^ t 

V 2 
) mx. 

•^=l 

I . 
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Using the Goethals-Seidel construction (2.0.3) an orthogonal design of type 

(w, w, m, m) and order >Ab may be obtained. If 1,1,1^1 , are 
1 2 3 ^ 

squares then Lemma (3.2.9) may be used to establish the existence of an 

orthogonal design of type [l^, l^m, l^m, Z^w) and order equivalent to 4 

modulo 8 . Using Lemma,(3.2.8) the case (3.2.4) of Theorem (3.2.3) may be 

obtained. 

For the case (3.2.5) of Theorem (3.2.3), suppose that P is a 4 x 4 

rational matrix such that PP^ = diag(s^, s^, s^, ŝ )̂ . If t^ denotes the 

squarefree part of s . , then by dividing the ith row of P by Vs Jt. 
^ ^ ^ 

for 1 < t 5 4 we obtain a 4 x 4 rational matrix P^ such that 

"" diag(t^, t^' • If •̂ l "" ̂ 2 ' ^ consideration of 

determinants yields = . 

Denote gcdft^^, t^ by g , t^/g by r^. and t^/g hy v^ . A 

standard Hasse invariant argument, using the fact that r is prime to r , 

shows that both r^ and r^ can be written as sums of two squares. We 

next show that it follows that there are type 1 matrices; B^, B^, , B^ 

of odd order such that 

(3.2.10) y B.B. = 
^=l 

I 

In fact we claim something stronger, namely that if k.., k^., k , k 1 2 3 4 

are squares then there are type 1 matrices A , A , A , A of odd order -L O H" 

and with entries from {o, , i^g s such that 

(3.2.11) y A.A1 = 
z = l 

t t t, t I 

(see section (2.2) for the definition of A* ). For suppose that 
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""̂yp® ^ weighing matrices of weights k^ , k^, k^, k, - L z o M - - L 2 3 4 

obtained in Lemma (3.2.7). If 

(3-2.12) ^^ = x^W^ + , 

A^ = x^W^ - , 

\ = - ' 
then the A^ satisfy (3.2.11). If v^^ k^ and v^^ k^ \ k^ , then 

we have (3.2.10). 

If each prime factor of g is either 2, 3 , or of the form 4m + 1 

then the existence of a GGS array of type {g, g, g, g) and order 

equivalent to 4 modulo 8 may be deduced. For if Z- > 0 and 3^ is the 

highest power of 3 which divides g then there is a GGS array of type 

(3^, 3^, 3^, 3^) and order 4.5^ (see Proposition (2.2.3)). Since g/2^ 

has no factors equivalent to 3 modulo 4 , g/2^ can be written as a sum 

of two squares (see [64], p. 351). Hence using the type 1 matrices 

(3.2.11) above with g/2^ = ^^ + /ĉ  ~ + ' there is a GGS array of type 

{g, g, g, g) and order equivalent to 4 modulo 8 (see Theorem (2.2.2)). 

Using the matrices B. which satisfy (3.2.10) in this GGS array gives an 

orthogonal design of type (t̂ ,̂ , , t^) and order equivalent to 4 

modulo 8 . Hence, by Lemma (3.2.9), there is an orthogonal design of type 

(s^, s^, Sg, s^) and order , h odd. This case (3.2.5) of Theorem 

(3.2.3) follows by Lemma (3.2.8). 

Theorem (3.2.2) can be proved in a similar fashion. If there is a 

2 x 2 rational matrix P such that PP^ = diag(s^, s^) , then there are 
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2 ( 2 2 integers m , m , m , m such that s = w w and s^ = 2 2 

A construction similar to (3.2.11) gives an orthogonal design of type 

and order equivalent to 2 modulo 4 . Theorem (3.2.2) 

follows by using the lemmata. 

2 2 2 2 
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CHAPTER 4 

INTEGRAL SOLUTIONS 

(4.1) Introduction and the main theorems 

An integral analogue to the Rational Family Theorem (0.0.8) is provided 

in this chapter. 

Recall that a rational family F of type (s , s , ..., s ) and order 
• ̂  c. 

n is a set A^^ ..., A^J of n x n rational matrices which satisfy 

(4.1.1) A .A^. = s .1 for 1 < i < u \ 

(4.1.2) A.A^.+AA^. = 0 for l s i < n < u . 
^ J J t ^ -

If F also satisfies 

(4.1.3) A^ * A^ = 0 for 1 S i < 3 S u , 

(4.1.4) the entries of each A. are from {o, 1, -l} , 

u 
then ^ X ./I . is an orthogonal design. 

i-1 ^ ^ 

A rational family which consists of integral matrices shall be called 

an integral family. An integral family shall be called combinatorial if it 

satisfies (4.1.3), that is, if its elements are mutually disjoint. 

A necessary and sufficient condition for the existence of integral 

families of order not divisible by 16 is obtained in this chapter. This 

condition is shown to be often sufficient for the existence of a 

combinatorial integral family. This is of interest because a combinatorial 

integral family is not very different from an orthogonal design. If 

A-^^ A ^ , -'-r A^] is a combinatorial integral family of type 

u 
fs-,5 So5 s 1 then A = Y x .A. has entries from 

1 / w ^ r ^=l 



60 

{wx, : l<i^u,m^TL] and AA^ -
u 2 
y s .X. I . An orthogonal design of 

type (s^, s^, s^) satisfies the same equation and has entries from 

•mx. : l<i<u,m-0, ±l} . 

Precisely we prove: 

(4.1.5) THEOREM. Suppose that b is odd and 0 < a < Z . Then a 

necessary and sufficient condition for the existence of an integral family 

of type (s^, s^, s ] and order is that 

(4.1.5) there is a u x integral matrix Q such that 

QQ^ = diag(s^, s^, ..., s^) . 

(4.1.7) THEOREM. Suppose that b is an odd integer at least as large as 

u and 0 < a < 2 . Then (4.1.6) is a necessary and sufficient condition 

for the existence of a combinatorial integral family of type 

(s^, s^, s^) and order . 

Necessity in these two theorems is established in section (4.2) by 

showing that for 0 5 a 5 3 and b odd the algebraic necessary conditions 

((0.0.9) and (0.0.-10)) for the existence of an orthogonal design of order 

2^b are equivalent to (4.1.6'). 

We note that (4.1.6) has at least two advantages over the algebraic 

necessary conditions in determining existence of orthogonal designs of order 

not divisible by 16 . Firstly, it is often easier to construct by hand an 

integral solution of the matrix equation 

t = diag(s^, s^, . . . , s j 

than to use the Hasse-Minkowski theory to prove that a rational solution 

exists. Secondly, the constructive approach yields the sum matrix discussed 

in section (2.1), and so defines a useful starting point in the search for 
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the orthogonal design in question. 

Note that for 0 < a 5 3 and b odd, p = . Hence the 

condition u 5 P (2'̂ ] (see (0.0.9)) is not necessary in Theorems (4.1.5) 

and (4.1.7). It also follows that the condition h > u in Theorem (4.1.7) 

excludes only orders less than 16 . These excluded cases are of little 

interest since the existence problem for orthogonal designs of order less 

than 16 is largely solved (see Chapter 5). 

Sufficiency in Theorems (4.1.5) and (4.1.7) is established in section 

(4.3). This section also contains a condition to determine whether certain 

combinatorial integral families in fact yield orthogonal designs. 

(4.2) The conjecture on integral matrices 

The following conjecture originally arose from the observation that the 

Sum Matrix Theorem (2.1.4) and the Rational Family Theorem (0.0.8) are 

related (see [14]). 

(4.2.1) INTEGER MATRIX CONJECTURE. Suppose that s , s , ..., s are 
A. ^ T/t 

positive integers. If the matrix equation 

(4.2.2) XX^ = diag(s^, s^, ..., sj 

has a rational u x n solution then it has an integral u "x n solution. 

In this section we prove 

(4.2.3) PROPOSITION. The Integer Matrix Conjeotuve (4.2.1) is true for 

u < n < 8 . 

This proposition implies that (4.1.6) is a necessary condition for the 

existence of an integral family of order , where b is odd and 

0 < a < 3 . 

In fact, if n < 1 then a stronger result is proved. 

(4.2.4) PROPOSITION. Suppose that A is a nonsingular integral matrix and 

(4.2.5) x / = A 
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has a rational u x n solution, where u < n < 1 . Then (4.2.5) has an 

integral u x n solution. 

Remark. The author is indebted to Gordan Pall for the proof of 

Proposition (4.2.4) presented below (see [47]), and to John Cossey and 

Jonathan A. Hillman for helping with the details of the proof. J.S. Hsia 

[41] has independently obtained both Propositions (4.2.3) and (4.2.4) using 

the language of lattices. 

Both the Integer Matrix Conjecture and Proposition (4.2.4) may be 

interpreted as statements within the theory of quadratic forms. Some of the 

machinery of this theory is required. (Jones [44] is a good reference.) 

Unless otherwise stated, all quadratic forms discussed below are 

assumed to have full rank. 

Two rational forms are rationally equivalent if there is a nonsingular 

rational linear transformation which takes one to the other. Thus, for 

instance, if there is a u x u rational solution to (4.2.2), then the form 

2 2 2 2 2 2 X, + + . . . + a: is rationally equivalent to ŝ o:, + s^x^ + . . . + s x . 1 2 u J 1 1 2 2 u u 

Two integral forms are integrally equivalent, or of the same class if 

there is a nonsingular integral linear transformation of determinant 1 

which takes one form to the other. 

A form shall be called classic if it has an integral matrix. A classic 

form f shall be called c~reducihle if there is an integral linear 

transformation which takes a classic form g to f where the determinant 

of f is greater than the determinant of g . In matrix terms, the form f 

with matrix F is c?-reducible if there is an integral matrix G and a 

nonsingular integral matrix T such that F = TGT^ and |det F\ > |det G 

A form is c-irreducihle if it is classic but not c-reducible. 

The following proDOsition is central to the proof of Proposition 

(4.2.4). 
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(4.2.6) PROPOSITION. If two c-irreducible forms are rationally equivalent 

then they have the same determinant. 

Because the proof of this proposition is long and tedious, it is left 

until the end of this section. First, Propositions (4.2.3) and (4.2.4) are 

deduced. 

Consider the case w = n 5 7 . Suppose that there is a u ^ u rational 

solution to (4.2.6), that is, the form f with matrix A is rationally 

2 2 2 
equivalent to a: + x + . . . + x . Since f is classic, there is a non-

-L ^ ii. 

singular integral linear transformation which takes / to a c-irreducible 

form g . Clearly g is rationally equivalent (through f ) to 
2 2 2 

+ x^ + ... + x^ ; hence det g - 1 by Proposition (4.2.6). Now a 

theorem of Hermite (see Jones [44], p. 60) implies that there is only one 

class of positive definite classic forms of determinant 1 with u < 1 

2 2 2 
variables. Hence g is integrally equivalent to x x + . .. + x . The 

-L ^ XA. 

composition of this equivalence transformation with the transformation from 

g to f provides an integral matrix Q such that Qi^ - A . 

Now suppose that u < n < ^ , and P is a rational u 'x n solution to 

(4.2.5). Let m be an integer such that mP is integral, and denote the 

in-u) X n matrix of ones by F . If V denotes the transpose of the 

n X n matrix (P^, mV] , then UU^ is integral. From the case u = n 

proved above there is an n x n integral matrix Y such that YY^ = UU^ . 

The first u rows of Y form an integral u x n solution of (4.2.5). 

This completes the proof of Proposition (4.2.4) (except for the proof of 

Proposition (4.2.6)). 

There are two classes of positive definite classic forms of determinant 

1 with 8 variables (see [45]). However, a classic form with 8 

2 2 2 
variables is in the same class as x^ -v x^ . . . x^ if and only if it 
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represents an odd number (see [22]). So by using the same argument as in 

the case n < 8 above, we can show that if one of the s. is odd then the 
1 

existence of an 8 x 8 rational solution of (4.2.2) implies the existence 

of an 8 X 8 integral solution. Hence only 8-tuples (s^, s^, Sg) 

of even integers need to be considered to prove the Integer Matrix Conjecture 

(4.2.1) for M = n = 8 . Clearly the s^ can be assumed to be squarefree, 

and so we need only consider the case s. E 2 (mod 4) for 1 5 - ^ 5 8 . A 

standard Hasse invariant computation shows that s x^ + s x^ + . . . + s x^ 1 1 2 2 8 8 

is rationally equivalent to % This means that 

if there is an 8 x 8 rational solution to (4.2.2) then there is an 8 x 8 

rational matrix P such that PP^ = % diag(s^, s^, ..., s^) . Since 

is odd there is an 8 X 8 integral matrix S such that 

SS^ = % diag(s^, s^, Sg) . The product of S with 

1 1 
1 - 1 

1 1 
1 - 1 

1 1 
1 - 1 

1 1 
1 - 1 

is an 8 x 8 solution to (4.2.2). This proves the case u = n = Q of the 

Integer Matrix Conjecture. 

The case u < n - ^ follows by observing that every set of u 

8 mutually orthogonal vectors in 8 dimensional rational space Q. can be 

g 
completed to an orthogonal basis of Q. • 

Only Proposition (4.2.6) remains to be proved. 
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The classification of rational quadratic forms by Basse and Minkowski 

is used (see Scrre [62], p. 39). Let o^ denote the Hasse invariant at the 

prime p . The Hasse-Minkowski theory implies that two positive definite 

rational forms f and g are rationally equivalent if and only if 

^p^/) = ^p^ff^ prime p , and the squarefree parts of the 

determinants of f and g are equal. 

Let / be a c-irreducible form. We show that 

^^•2.7) 4- does not divide det f ; 

and, if p is an odd prime then 

(^^•2.8) p does not divide det f ; 

and either 

(4-2.9) p does not divide det f and = 1 , 

or 
2 

(4.2.10) p divides det / and p does not divide det f , 

or 
(4.2.11) p^ divides det f and o^(f) = -1 . 

Proposition (4.2.6) follows immediately from the Hasse-Minkowski theory. 

We prove (4.2.7) first. Suppose that 4 divides det f , and choose 

r so that the largest power of 2 which divides det f is less than 2^ . 

Now / is integrally equivalent to a form g such that 

(4.2.12) g = a^h^ + aji^ + ... + a /z fmod 2^1 ^ 1 1 2 2 m m ^ ' 

where the a. are integers and h. has shape either "Z* ly 

(4.2.13) x^ , 

or 

(4.2.14) 2xy , 

or 
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(4.2.15) 2xy + , 

and the variables of distinct ^^'s are distinct (see Jones [44], p. 110). 

(if f^ and f^ are two integral forms then f^ E f^ (mod v) means that 

the corresponding coefficients of f^ and f^ are eauivalent modulo V .) 

Since each of the terms (4.2.13), (4.2.14) and (4.2.15) has odd 

determinant and 4 divides det f , at least one of the following must 

hold. 

(4.2.16) For some h. of shape 2xy , a. is even. 
t 1, 

o 2 

(4.2.17) For some h^ of shape 2x" + 2xy + 2j/ •> even. 

(4.2.18) For some diagonal (4.2.13) /i. , 4 divides a. . 

(4.2.19) For some i + q ^ a. E a. = 2 (mod 4) for two diagonal J 
components (4.2.13) h. and la. . -z- J 

The next lemma is used to show that none of (4.2.16)-(4.2.19) is 

possible. 

(1^.2.20) LEMMA. Suppose that r > 2 and f^ E f^ (mod p^) for some 

prime p . If there is a olassia form, h and an integral linear 

transformation of determinant ±p which takes h to j then is 

c-reducihle. 

Proof. Let F^ and F^ denote the matrices of f^ and f^ 

respectively, and suppose that the transformation from h to f^ has 

matrix T . Now is integral, but F^ = F^+L , where each entry of 

r - 1 
L is divisible by p . Since the denominator of each entry of T is at 

most p , it follows that T ^F^T ̂  is integral. • 

Now consider the case (4.2.17). The transformation with matrix 



67 

2 

1 1 
1 

has determinant 2 , and sends x^ + to 2[2x^+2xy+2y'^] . (That is, 

2 

1 1 

2 1 

1 

4 2 

2 4 

By Lemma (4.2.20), f is e-reducible, contrary to hypothesis. 

For (4.2.19) suppose that a and b are odd and note that the 

transformation with matrix 

1 
1 2 

2 2 2 2 takes the classic form 2ax - 2axy + ^{a+b)y to 2ax + 2ay . Hence 

(4.2.19) is impossible. 

Similarly the transformation xi—2x may be used to show that (4.2.15) 

and (4.2.18) are impossible. 

Hence we have (4,2.7), that is, 4 does not divide det f . 

For an odd prime p a similar method may be used to establish (4.2.8)-

(4.2.11). In particular, we need to use the fact that each positive integer 

is a sum of two squares modulo p . That is, if k and r are positive 

integers then there are integers c and d such that k ^ o^ + d^ (mod p^) 

To prove this, we can assume that k is odd, because 
o 2 2 2 

(c+d) + (o-d) = 2c + 2d . If k = 1 (mod 4) then consider the sequence 

with the mth term 4?7?p + k . The celebrated theorem of Dirichlet (see 

[8], p. 338) implies that this sequence contains a prime, and this prime 

can be written as a sum of two squares (see [64], p. 360). If k = 3 (mod 4) 

then the sequence with mth term 4fflp + 2p + k may be used in a similar 

fashion. 

Now choose r so that the highest power of p dividing det f is 
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less than p^ . It can be shown (see Jones [44], p. 110) that f is 

Y> 2 
integrally equivalent to a form g which is diagonal modulo p . If p 

divides one of the diagonal coefficients in g , then f is c?-reducible by 

Lemma (4.2,20), Thus 
(4.2.21) g ^ + pg^ (mod p"̂ ) 

where g^ and g^ are diagonal forms with coefficients prime to p no 

variables in common. 

Next we show that each g. is integrally equivalent to a form h. 

such that 

h. E x^ + xi + ... + x^ ^ + kx^ fmod p^] ^ 1 2 s-1 s ^ ^ 

where k is prime to p . It is clearly sufficient to prove this for forms 

2 2 
ax + by , v/here a and b are integers prime to p . Some arithmetic of 

integers modulo p is required and the reader is referred to Hardy and 

Wright [39], p. 67, for details of such things as quadratic residues. 

Suppose that there is an integer a such that a = a^ (mod p^) . Let 3 

2r 

be an integer such that a^ = 1 + mp for some integer m . The 

transfo-pmation with matrix 

r 

6 P 
r mp a_ 2 2 . 2 2 has determinant 1 ?nd takes ax + by to a form which is a: + aby 

V modulo p 

r -1 If neither a nor b is a quadratic residue of P then a fc is a 

- 1 r quadratic residue, where a denotes the inverse of a modulo p . There 

are integers y and 6 such that £> ̂  = + (mod p^) . Suppose that 

e is an integer such that a ^by^ E e^ (mod p^) . Since b is not a 
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quadratic residue of p^ , £ | 0 (mod p^) . Writing 6 as £(e makes 

it clear that there is an integer ip such that 6 + ipp̂  is prime to £ . 

Now if (j) denotes 5 + ijjp^ then 

ac^ + E by'^ + (mod p^) 

E bb ^ E 1 (mod p^) 

2 2 V 

and so there is an integer ^ such that ac + = 1 + ^p . Since E ' 

is prime to (p , there arc integers y and v such that ^ = ]j£ + V(j) . 

The transformation with matrix 
~ £ (j) ~ 

-p 
vp -bcj) ae-up _ 

2 2 2 has determinant 1 and takes ax + b?/" to a form which is x + aby'^' 

modulo p^ . 

Thus we have proved that ff^ + pg^ (4.2.21) is integrally equivalent 

to a form which is 
2 2 2 2 h = x, + Xr. + • • ' + X -I + kx + p 1 2 s-1 s ^ 

2 2 2 ^ 2 y +y +...+y .+111 

modulo p , where k and 7 are prime to p . Note that h has many of 

the properties of f which we seek to investigate. A power of p divides 

det h if and only if it divides det f . If h is c-reducible by a 

transformation of determinant ±p , then f is e-reducible. And the Hasse 

invariant of f is the same as that of h . 

If p does not divide det h then w = 0 , and a simple calculation 

shows that o i f ) = 1 • 
P 

Suppos-^ that w > 3 . Integers a and 3 can be found such that 

2 2 I E a + 3 (mod p) ; then the form 

2 2 2 2 2 h' - px - 2QLXZ + py - 2Qys + (a +3 +l]z /p 

is classic. The transformation with matrix 
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a 6 p 

has determinant p and takes h ' to p[x -^y ̂ -^z ) . So by Lemma (4.2.20), 

f is c-reducible, contrary to hypothesis Hence w < 3 and we have 

(4.2.8). 

2 

If p divides det f then w - 2 and a simple Hasse invariant 

argument shows that = 1 if and only if -I is a quadratic residue 

of p (and thus of p ^ ). If y is an integer such that y^ = -I (mod p^) 

then denote the inverse of y modulo p ^ by 6 . The transformation with 

matrix 

6 p 

1 

has determinant -p and takes the classic form 

2 2 ^ ^ 9 9^ 9 
-Y px + 2y"&xy + [l-y 6 )y/p 

2 2 

to a form which is equivalent to p[x +ly ) modulo p ^ . Hence if p' 

divides det f then = -1 , and we have (4.2.11). 

This completes the proof of Proposition (4.2.6). 

(4.3) The construction of combinatorial integral families 

Suppose that the algebraic necessary conditions for the existence of an 

orthogonal design of type (s^, s^, s^J and order n hold, where 

n = and b is odd; that is, u 5 p(n) and there is a u x 2' .a 

ra tional matrix P such that PF^ = diag(s , s , ..., s ) . If a 5 3 then 
1' ^2- ' u^ 

Proposition (4.2.3) ensures the existence of an integral u x matrix Q 

such that QQ' = diag(s^., s^, ^i) • matrix Q can be used as the 

sum matrix in an algorithm (section (2.1)) for constructing an orthogonal 
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design of type (s^, e^' ^y) order n . However, this algorithm 

may not be successful (see section (2.4)). In the present section, it is 

demonstrated that Q can always be used to construct an integral family and 

if a < 2 and b > u , then Q gives a combinatorial integral family. 

This establishes sufficiency in Theorems (4.1.5) and (4.1.7). 

The first construction follows a construction of Wolfe [79]. Denote 

the ijth entry of q by q^^. , and denote by r . Suppose that 

•P^, P^, P^} is the integral family which corresponds to the Geramita-

Pullman [25] orthogonal design of type (1, 1, 1, ..., 1) and order 2% 

on r variables. Using the relations 

QQ^ = diag(s^, s^, •••. sJ , 

P.P^ = J for 1 < i 5 M , 

P ^ P ^ - + P / l = 0 for 1 5 i < J < U , 

a simple computation shows that 

( v q . .P 1 < i < u \ ^^J J / 
•J=-

/ 

is an integral family of type (s^, s^, s j and order 2 % . 

For a = 0 it is trivial that the integral, family above is 

combinatorial. For a > 0 note that the sequences 

are complementary (see section (1.5)). Hence for every h > u there are 

h -x b circulant matrices A . , 1 5 J 5 2^ , with entries from J 

m x . : l < i s u , m ^ 7 L ] such that ^ 

Y A s J . 

h • 
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If a is 1 or 2 , then these circulant matrices may be used in the two-

circulant construction (2.0.6) or the Goethals-Seidel construction (2.0.3) 

to form a combinatorial integral family of type (s , s , ..., s ) and order 
-L ^ 

2% . 

This completes the proof of sufficiency in Theorems (4.1.5) and 

(4.1.7). 

Finally we give a combinatorial condition to determine whether a 

combinatorial integral family constructed using GGS arrays is in fact an 

orthogonal design. 

(4.3.1) PROPOSITION. Suppose that A A A , are integral b x b 
-L ^ 

matrices and s , s , ..., s are positive integers such that 
-L ^ Li-

u 

^ s.A.A^. = al . 
i=l ^ ^ ^ 

For 1 < i s u , write A. = B. - C. ^ where B. and C. have nonnegative 

entries, and denote by I. and m. the rowsums of B. and C. 

respectively. Then 

(4.3.2) a^ ^ sAl.-m.y 
i-ll ^' ^ 

and the A. have entries from {o, 1, -l} if and only if 

U 

(4.3.3) a = y s .[l.+m. - V '7 1 
i--l ^^ ^ 

Proof. A standard rowsum argument gives (4.3.2); if the A . have 
^ 

entries from {O, 1, -1} then (4.3.3) is immediate. 

Conversely, suppose that (4.3.3) holds and let 

= K i ' 

denote the first row of A . for 1 < i < u . Now it is clear that 
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I. ̂  m. ̂  V 
J=1 

a .. J-z-

Hence using (4.3.3) we obtain 

u 
a = Y s. Y a .. 

but also 

u 
a = y s. y 

i=i j=i 
a .. 

by considering the scalar products of the first row of each A . with 
% 

itself. Hence 

u 
y s. y t a .. a .. -1) = 0 . 

But each term in this sum is nonnegative, and the s. are positive. Hence 
ly 

€ {O, 1} for 1 S 0 S h and 1 < i S u , that is, the A. have 
^ 

entries from {O, 1, -l} . • 

a .. J-z-



7U 

CHAPTER 5 

NUMERICAL RESULTS 

The purpose of this chapter is to present numerical results to 

complement the theory in Chapters 2 and 3. 

Much of the information is compiled in tables using results from the 

literature as well as unpiiblished results of the author. 

In general, proofs are not given, but sometimes a few examples which 

illustrate the techniques involved are outlined. 

Not all currently known numerical existence results are listed here. 

Notably absent are results for skew symmetric weighing matrices, 3 variable 

orthogonal designs, and orthogonal designs of order divisible by 8 . 

Geramita and Seberry [26] have more comprehensive lists. 

In this chapter the formal commuting variables 

' ^2 ' ^3 ' ' ' • ' ' ' ' ' ' ' ' 

are denoted by 

a, b, o, a, 5, c, ... , 

respectively. 

(5.1) Weighing matrices of odd order 

If k is a square integer then denote by Nik) the smallest integer 

such that a weighing matrix of weight k and order n exists for all 

n > Nik) . The argument ik) may be omitted if there is no fear of 

ambiguity. 

The existence of N is assured by Theorem (3.2.1). It follows from 

Theorem (0.0.11) that N > k + Vk + 1 . An upper bound for N can be 

calculated as follows. 

Suppose that the decomposition of k into prime powers is 
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2 2 2 m 

^ - V 2 ••• % denote by T{k) . By taking kronecker 

products of the circulant weighing matrices of weight q . and order 

2 
^ ' ̂  weighing matrix of weight k and order T{k) may be 

obtained. (See Theorem (1.3.4) and the proof of Lemma (3.2.7).) Also, from 

Theorem (1.3.3) it follows that there is a weighing matrix of weight k and 

order 2^ where < k ̂  . Now T(k) is prime to 2^ and so each 

integer at least as large as (T(fe)-l) (2^-l) may be written as 

T(k)m^ + where m^ and m^ are nonnegative integers. Hence there is 

a weighing matrix of weight k and order n for each n > (t(^)-1)(2^-1) . 

Thus we obtain 

Nik) 5 [xik)-l]{2k-l) . 

A familiar arithmetic function may be used to estimate this bound. Denote 

e . 

the sum of the divisors of k by o(k) . If <7. = p for 1 < i < m and 

the p. are prime, then the following expression for a may be obtained 

(Hardy and Wright [39], p. 239): 
m 

oik) = 

2e.+l 

It follows that xik) 5 oik) with equality if and only if \/k is square-

free, Now for each positive real number e there is a real number B such 

that aik) 5 Bk^'^^ (Hardy and Wright [39], p. 266). Hence there is a real 

number A such that N < Ak^^^ . This means that the order of N is at 

most a little larger than quadratic. 

If k is a prime power then a more accurate estimate for Nik) may be 

obtained. In this case • Nik) > xik) = + If k is even then 
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there is an Hadamard matrix of order k , and if k is odd then there is a 

weighing matrix of weight k and order k 1 (see [75]). Note that T{k) 

is prime to both k and + 1 . Hence if k is even then 

fe + V^ + 1 5 Nik) < 

and if k is odd then 

k ^ Vk + 1 < N(k) < (k+\/k)k . 

However, numerical evidence suggests that N is not much larger than a 

linear function of ^ . In fact it seems that N(k) < M(k) , where M(k) 

is T(k) + k - 1 if k is even and T(k) + k if k is odd, but the author 

has not been able to prove this. 

It can be shown that = 10 = . For there are weighing 

matrices of weight 4 and orders 7 and 2n for each n > 2 . It follows 

that 5 10 . If < 10 then there is a weighing matrix of weight 

4 and order 9 . An elementary combinatorial argument (due to J. Verner; 

see [26]) can be employed to show that no such weighing matrix exists. 

Preliminary results from a computer program lead us to conjecture that 

/l/(9) = 22 = M(9) . However, there is a circulant weighing matrix of weight 

16 and order 31 (with first row 

- 0 0 0 0 - 0 + 0 - - + 0 + + 0 0 0 - + - + + 0 0 +. + 0 + 0 0 

where + indicates +1 and - indicates -1 ). This suggests that i\?(16) 

could be less than M(16) = 36 . 

Apart from the results mentioned above, very little is known about the 

behaviour of N(k) . The following table lists results for ^ 5 49 . For 

this table ^ denotes the largest integer for which it is known that 

N > ^ , and N denotes the smallest integer for which it is known that 

W < N . The smallest odd order for which it is known that a weighing matrix 

of weight k exists is denoted by l{k) . 
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k T(k) M(k) Hk) Nik) lik) 
Orders for which the 
existence problem is 

unsolved 

1 10 10 10 7 nil 

9 13 22 13 22 13 15, 17, 19, 21 

16 21 36 21 36 21 23, 25, 27, 29, 33, 35 

25 31 56 31 83 31 many 

35 91 126 44 163 91 many 

49 53 102 53 200 53 many 

(5.2) Two variable orthogonal designs of order equivalent to 2 modulo 4 

Suppose that there is a 2 x 2 rational matrix P such that 

PP^ = diag(s^, s^) • Denote by s^] the smallest integer such that 

an orthogonal design of type (s^, S2) order 2n exists for each 

n > S2) • arguments (s^, s ^ are omitted where there is no fear 

of ambiguity. The existence of N is assured by the fact that the 

algebraic necessary conditions ((0.0.9) and (0.0.10)) are asymptotically 

sufficient for existence (Theorem (3.2.2)). ' 

Denote the sum of ŝ ^ and s^ by s . Using methods similar to those 

of the previous section it can be shown that for every positive real number 

e there is a real constant A such that 

However, numerical evidence suggests that N is bounded by a linear function 

of s^ and s^ . The following table lists the current status of the 

existence problem for orthogonal designs of type (s^^, s^] and order 

equivalent to 2 modulo 4 such that ŝ ^ + s^ - . 
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The column headings are defined in a similar way to those in Table 

(5.1.1): 1 denotes the smallest odd integer such that it is known that an 

orLhogonal design of type [s^, s^) and order 2l exists; ^ denotes the 

largest integer for which it is known that A? > ^ ; N denotes the smallest 

integer for which it is known that N < W . 

(5.2.1) TABLE 

2l_ 2N 21 Orders for which the existence 
problem is unsolved 

1, 1 2 2 2 nil 
1, 4 6 6 6 nil 
1, 9 12 28 14 18, 22 
1, 16 20 40 22 30, 34, 38 
1, 25 28 92 62 many 

1, 36 38 220 182 many 
2, 2 4 4 6 nil 
2, 8 12 12 14 nil 

2, 18 20 40 26 22, 30, 34, 38 
2, 32 36 80 42 many 

8 8 10 nil 
9 14 28 14 18, 22, 26 
16 20 20 22 nil. 
25 30 1300 434 many 

5, 5 12 12 14 nil 

5, 20 26 68 42 26, 30, 34, 38, 46, 50, 58, 62, 66 
8, 8 16 16 18 nil 

8, 18 28 208 182 many 

9, 9 20 46 26 22, 30, 34, 38, 42 
9, 16 28 220 182 many 

9, 25 36 932 806 many 

10, 10 20 20 22 nil 

13, 13 28 28 30 nil 

16, 16 32 32 34 nil 

17, 17 36 104 42 many 
18, 18 36 112 78 many 
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The techniques involved in proving the results in Table (5.2.1) are 

illustrated with an example • 

(1, 16) : Geramita and Verner proved that there is no orthogonal 

design of type (1, 16) and order 18 (see [?6]). Hence N(l, 16) > 20 . 

The 11 X 11 circulant matrices A^ and A^ with first rows 

(5.2.2) haaaaaaaaaa , aaOaaaOOOaO 

satisfy + A^a'^^ = T , and so using the two-circulant 

construction (2.0.6) an orthogonal design of type (1, 16) and order 22 

exists. Similarly 

(5.2.3) haOaaOOOOaaOa , aaaOOaaOaaciaa 

give an orthogonal design of type (1, 16) and order 26 . Now there is an 

orthogonal design of type (1, 1, 8, 8) and order 4n for all n > 5 (see 

section (5.4)); equating variables gives an orthogonal design of type 

(1, 16) for these orders. Thus, by elementary constructions, 

Nil, 16) 5 40 , leaving only the orders 30, 34 and 38 unsolved. 

Remark. The circulants with first rows (5.2.2) and (5.2.3) were found 

by implementing the method described in section (2.1) on the Australian 

National University UllOO/42 Univac computer. 

To illustrate the use of GGS arrays in constructing orthogonal designs 

of highly composite order, the following table gives the present status of 

the existence problem for 2 variable orthogonal designs of orders 4-2, 50, 

54 . A tick 'V" indicates that the orthogonal design exists, a dash 

indicates that it does not exist and a blank space indicates that the 

existence question is unsolved. 
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type Order 42 Order 50 Order 

1, 1 V V V 
1, 4 V V V 
1, 9 V V V 
1, 15 V V V 
1, 25 
1, 36 
1, f+9 -

2, 2 V V A/ 
2, 8 V V V 
2, 18 V 

V 

2, 32 V 
2, 50 - _ 

U, U V V V 
4, 9 V V V 
4, 15 V V V 
4, 25 
4, 35 
4, 49 - __ 

5, 5 V V V 
5, 20 V v 
5, 45 
8, 8 V V V 
8, 18 
8, 32 V 
9, 9 
9, 15 
9, 25 
9, 36 -

10, 10 v V V 
10, 40 - -

13, 13 V V V 
15, 15 V V V 
16, 25 -

15, 35 - — 

17, 17 V 
18, 18 
18, 32 - -

20, 20 V V 
25, 25 - -

25, 26 - -

We give an example which illustrates the methods of proof for these 

results. 

The sequences 

(5.2.5) aOabbb , bobaaa , 

are compleinentary (see section (1.5)) and hence, using the two-circiilant 

construction, there is an orthogonal design of type (5, 5) and order 2n 
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for each n > 6 . Hence there is a GGS array of type (5, 5) and order 2n 

for each n > 6 . The sequences 

hah , hQib , 

are complementary, and so for each v > 3 there are circulant matrices A^ 

and A^ such that 

A^aI + A^A^ = . 

These circulant matrices may be used in the GGS array of type (5, 5) and 

order 2n to obtain an orthogonal design of type (5, 20) and order 2nv 

whenever n > 5 and y > 3 . 

(5.3) Weighing matrices of order equivalent to 2 modulo 4 

For each integer k which can be written as a sum of 2 squares 

denote by N(k) the sm.allest integer such that a weighing matrix of weight 

k and order 2n exists for all n > Nik) . The ai^gument is omitted where 

convenient. 

Using the same methods as in section (5.1) it can be shown that for 

every positive real number £ there is a real constant A such that 

O i p 

i^ik) < Ak for each k ^hich can be written as a sum of 2 squares. 

Again, however, numerical evidence suggests that /!/ is much smaller. 

It follows from Theorem (0.0.11) that N(k) > M(k) , where M{k) is 

defined by 
'^gk if k = 0 (m.od 4) , 

Mik) = -^(k+l) if k = 1 (mod 4) , 

^(k+2) if k E 2 (mod 4) . 

(since M is defined only for integers which can be written as a sum of 2 

squares, the case k ^ 3 (mod 4) does not arise.) 

In fact Nik) - Mik) for k < 16 and it is conjectured that 
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^{k) = M{k) for each k which can be written as a sum of 2 squares.([19]) 

The following table presents the current status of the existence 

problem for weighing matrices of order equivalent to 2 modulo 4 and 

weight k < 29 . 

The integers I and N are defined in the same way as these symbols 

in Table (5.2.1). 

(5.3.1) TABLE 

k 
7M 

(M is the conjectured 
value for N ) 

2N 21 
Orders for which the 
existence problem is 

unsolved 

2 2 2 2 nil 

4 4 4 6 nil 

5 6 6 6 nil 

8 8 8 10 nil 

9 10 10 10 nil 

10 12 12 14 nil 

13 14 14 14 nil 

16 15 16 18 nil 

17 18 36 18 34 

18 20 40 22 34, 38 

20 20 20 22 nil 

25 26 52 26 34, 38, 46, 50 

26 28 28 30 nil 

29 30 62 30 34, 38, 42, 46, 50, 54, 58 

(5.4) Four variable orthogonal designs of order equivalent to 4 modulo 8 

Suppose that s^, s^, s^, s^ are positive integers with sum s , and 

b is an odd integer such that s < ^b . Then the existence of an 

orthogonal design of type (s^^, s^, s^, s^) and order M-fc implies that 

(5.4.1) (by the Geramita-Verner Theorem (0.0.12)); 

(5.4.2) ther^ is a 4 x 4 rational matrix P such that 
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- diag(s , s , s , s ) (the algebraic necessary condition (0.0.10)). 

It is well known that if s S 12 then (5.4.2) is sufficient for the 

existence of an orthogonal design of type (s^, s^, s^, ŝ )̂ and order 

for all n > 3 (see [31], [21]). 

The results of [31] together with the methods of section (2.1) can be 

used to show that orthogonal designs of order 20 and type (s,, s , s , s ) 
J- 2 3 ^ 

exist for all 4-tuples (s^, S2, Sg, s j which satisfy (5.4.1), (5.4.2), 

and s 5 20 , except for (2, 2, 5, 5) , (1, 3, 6, 8) and (1, 4, 4, 9) . 

(See [15] and section (2.4).) 

It is conjectured that (5.4.2) is sufficient for the existence of an 

integer N such that an orthogonal design of type (s , s , s » s ) and 

order 4n exists for each n > N (see (0.0.14)). Using the methods of 

section (3.2), this conjec-t-ure has been verified for 4-tuples with sum s 

at most 28 , and, with 3 exceptions, for 4-tuples with s 5 35 . 

The following table 

gives the status of the existence problem for 

12 < s < 28 . The column headings are defined in the same way as in 

previous tables: I denotes the smalles-t" odd integer for which it is known-

that an orthogonal design of type [s^, s^, s^, Sĵ ) and order 4Z exists; 

N denotes the smallest integer for which it is known that an orthogonal 

design of type [s^, s^, s^, s^) and order 4n exists for each n > N . 

Most of the orthogonal designs listed in this table may be constructed 

using the methods of section (2.1), together with elementary constructions 

and results listed in [57], [55], [19]. Three examples are given after the 

table. 
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o 

^̂ ^ Orders for which the existence problem 

(5.4.3) TABLE 

12 < s 5 16 

"" "" is unsolved 

1, 1, 9 20 16 nil 
1, 2, 2, 9 20 16 nil 
1, 2, 4, 8 20 16 nil 
1, 4, 4, 4 20 15 nil 
1, 4, 5, 5 20 16 nil 
2, 2, 2, 8 20 16 nil 
2, 2, 5, 5 28 24 20 
2, 3, 4, 6 20 16 nil 
4, 4, 4, 4 20 16 nil 

16 < s 5 20 

1, 1, 1, 16 28 24 nil 
1, 1, 8, 8 20 20 nil 
1, 1, 9, 9 20 20 nil 
1, 2, 8, 9 20 40 36 
1, 3, 6, 8 28 48 20, 36, 44 
1, 4, 4, 9 28 48 20, 36, 44 
1, 5, 5, 9 20 40 36 
2, 2, 4, 9 20 40 28, 36 
2, 2, 8, 8 20 20 nil 
2, 3, 6, 9 20 40 28, 36 
2, 5, 5, 8 20 20 nil 
3, 3, 6, 6 20 20 nil 
4, 4, 5, 5 20 20 nil 
5, 5, 5, 5 20 20 nil 

20 < s 5 24 

1, 1, 2, 18 28 48 36, 44 
1, 1, 4, 16 28 24 nil 
1, 1, 10, 10 28 40 36 
1, 2, 2, 16 28 48 36, 44 
1, 2, 6, 12 28 24 nil 
1, 4, 8, 8 36 32 28 
1, 4, 9, 9 52 72 28, 36, 44, 60, 68 
2, 2, 2, 18 28 48 44 
2, 2, 4, 16 28 24 nil 
2, 2, 9, 9 28 24 nil 
2, 2, 10, 10 28 24 nil 

4, 6, 12 28 24 nil 
2, 4, 8, 9 140 168 many 
3, 3, 3, 12 28 48 36, 44 
3, 4, 6, 8 28 56 24, 36, 44, 52 
4, 4, 4, 9 84 112 many 
U, 4, 8, 8 28 24 nil 
4, 5, 5, 9 140. 168 many 
6, 6, 6, 6 28 24 nil 
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(5.4.3) Table (Continued) 

24 < s S 28 

, s 2' ^ 3 ' ^4 
U 4/^ 

1 , 1 , 1 , 25 28 56 

1 , 1 , 5, 20 84 144 

1 , 1 , 8 , 18 28 56 

1 , 1 , 9 , 16 252 280 

1 , 1 , 1 3 , 13 28 56 

1 , 2, 4 , 18 52 80 

1 , 2, 8 , 16 84 112 

1 , 3, 6 , 18 156 464 

1 , 4 , 16 44 40 

1 , 1 0 , 10 44 40 

1 , 5, 5, 16 84 160 

1 , 6, 8 , 12 84 160 

1 , 8 , 8 , 9 52 80 

1 , 9 , 9 , 9 52 80 

2, 3, 6, 16 140 216 

2, 4 , 18 36 48 

2 , 8 , 8 , 8 28 28 

2, 8 , 9 , 9 52 80 

3 , 6, 8 , 9 140 416 

3, 6, 6, 12 60 80 
4 , 16 28 28 

4 , 9 , 9 28 48 

4 , 1 0 , 10 28 28 

5 , 5, 8, 8 36 32 

5, 5 , 9 , 9 52 80 

7 , 7 , 7 , 7 28 28 

(2, 3, 6 , 9) : The 5 x 5 circu 

Orders for which the existence problem 

is unsolved 

36, 4 4 , 52 

m a n y , including 56 

35, 4 4 , 52 

many 

36, 4 4 , 52 

28, 36, 4 4 , 60, 6 8 , 76 

many 

m a n y , including 4 0 , 56, 72 

28, 36 

28, 36 

many 

many 

28, 36, 4 4 , 5 2 , 60, 6 8 , 76 

28, 36, 4 4 , 52, 6 0 , 6 8 , 76 

m a n y , including 40 and 72 

28, 44 

nil 

2 8 , 36, 4 4 , 60, 68, 76 

m a n y , including 4 0 , 56, 72 

28, 36, 4 4 , 52, 6 8 , 76 

nil 

36, 44 

nil 

28 

28, 36, 4 4 , 60, 68, 76 

nil 

1 ' " 2 ' ''3' ''4 

abddc , abddc , hdcod , ddced , 

rows 

respectively satisfy 

• n t-
^=l 

and s o , using the Goethals-Seidel construction, there is an orthogonal 

design of type (2, 3, 6 , 9) and order 20 . Robinson ([55], [57]) gives 

orthogonal designs of this type and orders 24 and 32 . Hence if , 

2 2 ^ 2 „ ,2^ 

are nonnegative integers then there is an orthogonal design of type 
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(2, 3, 6, 9) and order 20m^ + + 32/7?̂  , using elementary constructions 

(see section (1.2)). This implies that N < W , and the only orders for 

which existence is unknovm are 28 and 36 . 

(1, 1, 1, 25) : The existence of ?.n orthogonal design of type (1, 1, 1, 25) 

and order 28 is established in section (2.1) (example (2.1.17)). It 

follows from results in [57] that there is an orthogon=',l design of order 32 

and (1, 1, 1, 25) , Also from [57], there is an orthogonal design of type 

U , 1, 1, 1, 2, 6) and order 16 . The 3 x 3 circulants A. , 1 5 t 5 6 , 

with first rows 

aOO , boo , eOO , dOO , ddd , Md 

are S3nTimetric and satisfy 

Hence there is an orthogonal design of type (1, 1, 1, 25) and order M-8 

(see introduction ot Chapter 2 or [72]). Similarly, 5 x 5 circulants with 

first rows 

aOOOO , i)0000 , ddddd , Odddd , Odddd 

may be used in an orthogonal design of type (1, 1, 1, 1, 2, 2) and order 

8 to give an orthogonal design of type (1, 1, 1, 25) and order M-0 . It 

follows that N < hO . 

(2, 4, 4, 18) : There is a GGS array of type (2, 2, 4, 4) and order 12 

(see section (5.7)). The 3 x 3 circulant matrices A^ , A^, A^, A„ , \>rith 1 / 3 4 

first rows 

add , ddd , bdd , cOO , 

respectively satisfy 

2A^A\ + 2A^A\ + M^AI + ^A^AI = . 

Hence there is an orthogonal design of type (2, 4, 4, 18) and order 36 . 

There "is a circulant weighing matrix y of weight 9 and order 13 

(see Theorem (1.4.1)) and VJ may be chosen with zero diagonal. The matrices 
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A^^ al + dW , A^^ al - dl-J , 3atisfy A^a''^ + A^A^^ = . The 

sequences 

ochb , hhoc , 

(from [21]) are complementary, and so there are 13 x 13 circulant matrices 

and ^^ such that a/"^ + A^A^ = . Using A^, A^, /l̂  

in the Goethals-Seidel array (2.0.5) there is an orthogonal design of type 

(2, 4, 18) and order 52 . 

Similarly, using a GGS array of type (2, 2, 2, 2) and order 12 an 

orthogonal design of typs (2, U, 18) and order 60 may be obtained. 

Since there is an orthogonal design of type (1, 2, 2, 9) and order 

for all n > 4 , there is an orthogonal design of type (2, 4., 18) 

and order 8n for all n > 4 (by Theorem (1.3.1)). 

It follows that iV < 48 . 

The following table gives values of I and 'N for 28 < s 5 36 . The 

double asterisk indicates that an orthogonal design of this type is 

not known for any order equivalent to 4 modulo 8 . 

Two examples are given to illustrate the calculations involved in 

preparing Table (5.4.4). , 

(1, 5, 5, 25) : There is a circulant weighing matrix W of weight 25 and 

order 31 (Theorem (1.4.1)). If A^ = al^^ and = dW then 

A^A^ + = [a +2bd )/ . Also, there arc complementary sequences which 

give 31 X 31 circulant matrices A^ and A^ such that 

A^A^ + = (see (5.2.5)). The matrices A^, A^, A^, A^ may 

be used in the Goethals-Seidel array (2.0.5) to construct an orthogonal 

design of type (I, 5, 5, 25) and order 124 . There are orthogonal designs 

of this type and orders 64 [57] and 96 [55]. It can be deduced that 

N 5 492 . 
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(5.4.^) TABLE 

28 < s 5 32 

s^, s 
2 ' ®3 ' 41 4^ 

®3' ^4 4Z 4/17 

1 , 1 , 4 , 25 124 368 2 , 3 , 1 0 , 15 
1 , 2 , 2 , 25 84 112 2 , 4 , 8 , 16 44 40 
1 , 2 , 3 , 24 84 248 2 , 5 , 5 , 18 52 80 
1 , 2 , 9 , 18 52 84 2 , 6 , 9 , 12 140 416 
1 , 5 , 20 84 248 2 , 8 , 1 0 , 10 44 40 
1 , 8 , 18 196 272 3 , 3 , 1 2 , 12 60 80 
1 , 9 , 16 52 80 3 , 4 , 6 , 18 156 216 
1 , 1 3 , 13 60 56 4 , 5 , 5 , 16 44 40 
1 , 9 , 1 0 , 10 52 80 4 , 6 , 8 , 12 60 80 
2 , 2 , 5 , 20 84 248 4 , 8 , 8 , 9 140 184 
2 , 2 , 8 , 18 52 80 4 , 9 , 9 , 9 156 184 
2 , 2 , 9 , 15 140 168 5 , 5 , 1 0 , 10 44 40 
2 , 2 , 1 3 , 13 60 56 

32 < 

8 , 8 , 8 , 8 

s 5 36 

36 32 

1 , 1 , 2 , 32 84 160 2 , 8 , 1 3 , 13 60 56 
1 , 1 , 9 , 25 364 1088 3 , 3 , 3 , 27 60 120 
1 , 1 , 1 6 , 16 84 80 3 , 3 , 6 , 24 60 96 
1 , 1 , 1 7 , 17 68 64 3 , 3 , 1 5 , 15 60 96 
1 , 2 , 6 , 27 156 464 3 , 6 , 8 , 16 140 232 
1 , 2 , 8 , 25 124 368 3 , 6 , 9 , 18 60 120 
1 , 2 , 1 1 , 22 3 , 8 , 1 0 , 15 
1 , 3 , 8 , 24 84 248 4 , 4 , 5 , 20 84 248 
1 , 4 , 25 124 184 4 , 4 , 8 , 18 60 140 
1 , 5 , 5 , 25 124 492 4 , 4 , 9 , 16 140 416 
1 , 8 , 8 , 16 84 160 4 , 4 , 1 3 , 13 60 56 
1 , 8 , 9 , 18 156 248 4 , 8 , 8 , 16 44 40 
1 , 9 , 1 3 , 13 364 456 5 , 5 , 8 , 18 260 336 
2 , 2 , 4 , 25 372 448 5 , 5 , 1 3 , 13 60 56 
2 , 2 , 1 6 , 16 60 96 6 , 6 , 1 2 , 12 60 96 
2 , 3 , 6 , 25 372 1112 8 , 8 , 9 , 9 52 128 
2 , 9 , 18 156 192 8 , 8 , 1 0 , 10 44 40 
2 , 6 , 7 , 21 9 , 9 , 9 , 9 36 36 
2 , 6 , 1 2 , 16 84 160 
2 , 8 , 8 , 18 84 160 

( 3 , 3 , 15, 15) : Proposition ( 2 . 2 , 3 ) gives a GGS array of type ( 3 , 3 , 3 , 3 

and order 20 . The 3 X 3 circulant matrices A^, A^, , A^ , with first 

rows 

aec , bdd , edd , dcc 

satisfy 
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4 

^=l 

and so there is an orthogonal design of type (3, 3, 15, 15) and order 60 

(see section (2,2)). From table (5.4.3) there is an orthogonal design of 

type (3, 3 , 6, 5) and order 4n for each n > 5 . Equating variables 

gives an orthogonal design of type (3, 15) for these orders. Using 

Theorem (1.3.2) an orthogonal design of type (3, 3, 15, 15) and order 8n 

for each n > 5 may be obtained. Using elementary constructions (section 

(1.2)) it follow? that 5 96 . 

Remark. The author is grateful to Peter J. Robinson for permission 

to use his list of 4-tuples which satisfy (5.4.2). 

(5.5) Twn variable orthogonal designs of order equivalent to 4 modulo 8 

Suppose that s^ and s^ are positive integers and with sum s , and 

h is an odd integer with hb > s . Then the existence of an orthogonal 

design of type (s^^, s^) and order 4Z? implies that 

(5.5.1) ^ ^ squares, and 

(5.5.2) if s = 4 Z > - l then there is a 2 x 3 integral matrix P 

such that PP^ = diag(s^, s^j • 

These two conditions follow from the Rational Family Theorem (0.0.8) and the 

Geramita-Verner Theorem (0.0.12). 

For s < 28 , (5.5.1) and (5.5.2) are sufficient for existence. 

(5.5.3) THEOREM. Suppose that b < 1 and s^^ and s^ are positive 
( 

integers which satisfy (5.5.1) and (5.5.2). Then there is an orthogonal 

design nf type (s^^, s^) and order 4Z? . 

Proof. The table (5.5.4) gives the first rowS of circulant matrices 

which can be used in the Goethals-Seidel array to obtain orthogonal designs 
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of order 28 and the types listed. (These circulant matrices were found by 

implementing the method of section (2.1) on the Univac UllOO/42 computer at 

the Australian National University.) For types and orders other than those 

in this table the theorem is proved in [19], [31], [55], [57]. • 

(5.5.4) TABLE 

(4, 19) aaaaaaa , aaOaaaO aaaaabb bbOaOaO 

(5, 21) adbaahh , aaaaabb aaaaaaO) aaaaaaO 

(6, 17) aaaaabb , aaaaaab abOaOOO bbaaaaO 

(6, 20) aaaaaab , aaaaaao ababaaO aabaBaO 

(1, 6, 21) bBbBbhc , bbbbbBa hbabbaa bBBbbaa 

(V, 15) aaaaaab , baobooo ababaBo aabaaaO 

(7, 19) aabaabb , aaaabaO abaaaao aaaaabb 

(1, 10, 14) oBdbhbb , BaaaaaO bababaO bbababo 

(9, 16) bbbabab , aaaoBbO aaa^ho aaaaaao 

(8, 17) aaaaaaO , aabbbBo abaaabo aaaaabB 

(11, 15) babbhhQ) , baBBbbo aaaaaab aaaaaaa 

(11, 17) bbhaabh , bbbhadb aaaaaab aaaaaaa 

(12, 14) abababh , abbaaaO aababbB aaaabho 

(9, 17) ababbbh , aahbcao aaahaaB aaaaaaO 

(11, 12) bbhbobo , aaaaOOO ababbbh aaaaaab 

It is conjectured (0.0.14) that (5.5.1) suffices for the existence of 

an integer N such t h c x t an orthogonal design of type (s^, s^] and order 

4n exists for each n > N . For s S 36 , this is true with only two 

exceptions. 

(5.5.5) THEOREM. Suppose that s^ and s^ are positive integers such 

that s^ + s^ < 36 and s^s^ is a sum of 3 squares. If 

(s^, s^) (11, 23) or (15, 19) then there is an integer N such that an 

orthoaonal desian of type [s^, s^] and order 4n exists for each n > N .U 

This theorem may be proved by considering cach pair (s^, s^) 

separately, and using the methods of section (3.2). 
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(5.6) Weighing matrices of order equivalent to 4 modulo 8 

For each positive integer k denote by N{k) the smallest integer 

such that a weighing matrix of weight k and order exists for each 

n > Nik) . The argument is omitted where convenient. Using similar methods 

as in section (5.1), it can be shown that if e is a positive real number 

then there is a real constant A such that Nik) < Ak^^^ for all k . 

However, numerical evidence suggests that Nik) is much smaller. It 

has been conjectured [69] that Nik) = [(?:+3)/4] . This conjecture has been 

verified for 2 45 . For 45 < 2 60 , the following table gives an 

upper bound N for N . 

(5.6,1) TABLE 

k ^N 4[(fe+3)/4] k hN 4[(?C+3)/4] 

46 104 48 54 108 56 

47 48 48 55 108 56 

48 48 48 56 56 56 

49 104 52 57 120 60 

50 52 52 58 60 60 

51 52 52 59 60 60 

52 52 52 60 60 
1 

60 

53 60 56 

(5.7) GGS arrays of order 12 

There are GGS arrays of order 12 and the following types: 

4 variables: (1, 1, 1, 1), (1, 1, 2, 2), (2, 2, 2, 2), (2, 2, 4, 4) ; 

3 variables: (1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 1, 5), (1, 2, 2), 

(1, 2, 3), (2, 2, 2), (2, 2, 4), (2, 2, 5), (2, 2, 8), 

(2, 4, 4), (2, 4, 6), (3, 3, 3), (4, 4, 4) ; 

2 variables: (1, D , (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 8), 

(1, 9), (1, 10), (1, 11), (2, 2), (2, 3), (2, 4), (2, 5), 

(2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 3), (3, 4), 
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(3, 6), (3, 7), (3, 8), (3, 9), (4, 4), (4, 5), (4, 6), 
(4, 8), (5, 5), (5, 7), (6, 6) . 

All but (1, 8), (1, 9), (1, 10), (1, 11), (3, 4), (3, 8), (3, 9), 

(5, 7) can be constructed by using 3 x 3 matrices in the Goethals-Seidel 

array (2.0.5) (see Theorem (2.2.2)). The first rows of some of these 

circulants are listed below, and others can be obtained by elementary 

constructions (section (1.2)). The two variable GGS arrays may be made from 

orthogonal designs of the same type (see section (2.2)). 

(5.7.1) TABLE 

type circulant matrices 

(1, 1, 1, 1) aOO •> boo 3 cOO 3 dOO 

(1, 1, 2, 2) aOO 5 boo 5 cdO 3 cdO 

(2, 2, 2, 2) abO aho 3 cd(9 5 cdO 

(2, 2, 4) abc ? abc 5 dbo 3 Sc 

(1, 1, 5) aOQ boo 9 ccc 3 Occ 

(2, 2, 5) abO !> abO 5 ccc 3 Occ 

(3, 3, 3) abc 5 aho 3 aOo 3 Obo 

(2, 9) abb 5 abb 3 bbb 3 Obb 

(3, 7) abO » aOb 3 abh 3 bbb 

(5, 5) abb Oaa 5 baa 3 Obb 

(5, 6) abb •> haa 3 hbb 3 Oaa 

GGS arrays of the following types are not known to exist, even though 

the corresponding orthogonal designs exist. 

4 variables: (1, 1, 1, 4), (l, 1, 1, 9), (1, 1, 2, 8), (1, 1, 4, 4), 
(1, 1, 5, 5), (1, 2, 2, 4), (1, 2, 3, 6), (3, 3, 3, 3) ; 

3 variables: (1, 1, 9), (1, 1, 10), (1, 2, 4), (1, 2, 6), (1, 2, 8), 
(1, 3, 6), (1, 3, 8), (1, 4, 4), (1, 4, 5), (1, 5, 5), 
(2, 3, 4), (2, 3, 6), (2, 3, 7), (2, 5, 5), (3, 3, 6) . 

nilinagay ^awgar bi:wayay 
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APPENDIX 

SOME UNSOLVED PROBLEMS 

The following problems are selected on two criteria. 

Firstly, the author considers these problems to be solvable - no 

questions of immense difficulty are included. 

Secondly, solutions to these problems would enhance the results of this 

thesis. 

(Ql). In section (2.4) it 5s shown that there are at most [%p(2n)] 

variables in a GGS array of order n . If 16 divides n , then 

[%p(2n)] > 5 ; are there any GGS arrays with 5 variables? 

(Q2). Suppose that H and G are transitive abelian subgroups of the 

symmetric group, and 0 is an isomorphism from H onto G . Then it can 

be shown [16] that there is a permutation ct) such that ipd = (p ^ip^ for 

each 4' ^ ff • Hence type 1 matrices on transitive groups are classified 

up to conjugacy by isomorphism. Can a similar theorem be proved for GC-rings 

in general? 

(Q3). GGS arrays of type (m, m, m, m) and order equivalent to 
I 

4 modulo 8 play an important role in Chapters 2, 3 and 5. However the 

only such arrays known for m = 3 (mod 4) have m a power of 3 

(Proposition 2.2.3). Are there any GGS arrays of type (m^ m, m , m) and 

order equivalent to 4 modulo 8 where rn 3 is squarefree and equivalent 

to 3 modulo 4 ? 

(Q4). Are there orthogonal designs of types (3, 7, 8), (1, 3, 6, 8), 

(1, 4, 4, 9), (2, 2, 5, 5) , and order 20 ? (An answer to this question 

cannot be found by using GGS arrays (see section (2.4)), and could lead to 

new methods for constructing orthogonal designs of order equivalent to 4 

modulo 8 .) 
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(Q5). Theorem (4.1.7) is proved using a great deal of heavy machinery. 

Is there a direct combinatorial proof? 

(Q6). Is there a weighing matrix of weight 9 and order 15 ? 

(Q7). Is there a real number r between 0 and 1 such that if 

^u ^^^ positive integers with sum less than 2'^v , then there 

is an orthogonal design of type (s^, s^, s^) and order ? (A 

positive answer -t-o this question would lower the bounds in the asymptotic 

results of section (3.2) - see the remark after Lemma (3.2.7).) 

(Q8). Are there any weighing matrices of weight 35 and odd order n 

such that 45 < n < 89 ? 


